Germination and seedling development
USDA-ARS?s Scientific Manuscript database
Cottonseed germination and seedling development are highly sensitive to the environment at planting and for several weeks after that. Major factors that affect germination and development are temperature, water availability, soil conditions such as compaction, rhizosphere gases, and seed and seedlin...
Hoang, Nguyen H.; Kane, Michael E.; Radcliffe, Ellen N.; Zettler, Lawrence W.; Richardson, Larry W.
2017-01-01
Background and Aims The endangered leafless ghost orchid, Dendrophylax lindenii, one of the most renowned orchids in the world, is difficult to grow under artificial conditions. Published information on asymbiotic and symbiotic (co-culture with a mycobiont) seed germination, seedling anatomy and developmental morphology of this leafless orchid is completely lacking. This information is critical for the development of efficient procedures for ghost orchid production for successful reintroduction. Methods Ghost orchid seedling early development stages were morphologically and anatomically defined to compare germination, embryo and protocorm maturation and seedling development during asymbiotic and symbiotic culture with one of two mycorrhizal strains (Dlin-379 and Dlin-394) isolated from ghost orchid roots in situ. Key Results Seeds symbiotically germinated at higher rates when cultured with fungal strain Dlin-394 than with strain Dlin-379 or asymbiotically on P723 medium during a 10-week culture period. Fungal pelotons were observed in protocorm cells co-cultured with strain Dlin-394 but not Dlin-379. Some 2-year-old seedlings produced multinode inflorescences in vitro. Production of keikis from inflorescence nodes indicated the capacity for clonal production in the ghost orchid. Conclusions Ghost orchid embryo and seedling development were characterized into seven stages. Fungal strain Dlin-394 was confirmed as a possible ghost orchid germination mycobiont, which significantly promoted seed germination and seedling development. Internal transcribed spacer sequencing data confirmed that Dlin-394 belongs within the genus Ceratobasidium. These results offer the opportunity to examine the benefits of using a mycobiont to enhance in vitro germination and possibly ex vitro acclimatization and sustainability following outplanting. PMID:28025292
Hoang, Nguyen H; Kane, Michael E; Radcliffe, Ellen N; Zettler, Lawrence W; Richardson, Larry W
2017-02-01
The endangered leafless ghost orchid, Dendrophylax lindenii, one of the most renowned orchids in the world, is difficult to grow under artificial conditions. Published information on asymbiotic and symbiotic (co-culture with a mycobiont) seed germination, seedling anatomy and developmental morphology of this leafless orchid is completely lacking. This information is critical for the development of efficient procedures for ghost orchid production for successful reintroduction. Ghost orchid seedling early development stages were morphologically and anatomically defined to compare germination, embryo and protocorm maturation and seedling development during asymbiotic and symbiotic culture with one of two mycorrhizal strains (Dlin-379 and Dlin-394) isolated from ghost orchid roots in situ KEY RESULTS: Seeds symbiotically germinated at higher rates when cultured with fungal strain Dlin-394 than with strain Dlin-379 or asymbiotically on P723 medium during a 10-week culture period. Fungal pelotons were observed in protocorm cells co-cultured with strain Dlin-394 but not Dlin-379. Some 2-year-old seedlings produced multinode inflorescences in vitro Production of keikis from inflorescence nodes indicated the capacity for clonal production in the ghost orchid. Ghost orchid embryo and seedling development were characterized into seven stages. Fungal strain Dlin-394 was confirmed as a possible ghost orchid germination mycobiont, which significantly promoted seed germination and seedling development. Internal transcribed spacer sequencing data confirmed that Dlin-394 belongs within the genus Ceratobasidium These results offer the opportunity to examine the benefits of using a mycobiont to enhance in vitro germination and possibly ex vitro acclimatization and sustainability following outplanting. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company.
Galdiano, Renato Fernandes; de Macedo Lemos, Eliana Gertrudes; de Faria, Ricardo Tadeu; Vendrame, Wagner Aparecido
2014-03-01
Vitrification, a simple, fast, and recommended cryopreservation method for orchid germplasm conservation, was evaluated for Dendrobium hybrid "Dong Yai" mature seeds. The genetic stability of regenerated seedlings was also evaluated using flow cytometry. Mature seeds from this hybrid were submitted to plant vitrification solution (PVS2) for 0, 0.5, 1, 2, 3, 4, 5, or 6 h at 0 °C. Subsequently, they were plunged into liquid nitrogen (LN) at -196 °C for 1 h and recovered in half-strength Murashige and Skoog culture medium (1/2 MS), and seed germination was evaluated after 30 days. Seeds directly submitted to LN did not germinate after cryopreservation. Seeds treated with PVS2 between 1 and 3 h presented the best germination (between 51 and 58%), although longer exposure to PVS2 returned moderated germination (39%). Germinated seeds were further subcultured in P-723 culture medium and developed whole seedlings in vitro after 180 days, with no abnormal characteristics, diseases, or nutritional deficiencies. Seedlings were successfully acclimatized under greenhouse conditions with over 80% survival. Flow cytometry analysis revealed no chromosomal changes on vitrified seedlings, as well as seedlings germinated from the control treatment (direct exposure to LN). These findings indicate that vitrification is a feasible and safe germplasm cryopreservation method for commercial Dendrobium orchid hybrid conservation.
Starch bioengineering affects cereal grain germination and seedling establishment
Hebelstrup, Kim H.; Blennow, Andreas
2014-01-01
Cereal grain germination is central for plant early development, and efficient germination has a major role in crop propagation and malting. Endosperm starch is the prime energy reserve in germination and seedling establishment. In this study, it was hypothesized that optimized starch granule structure, and not only the endosperm starch content per se, is important for germination and seedling establishment. For that purpose, wild-type (WT), and specifically engineered degradable hyperphosphorylated (HP) starch and more resistant amylose-only (AO) starch barley lines were used. The transgenics showed no severe phenotypes and the WT and HP lines degraded the starch similarly, having 30% residual starch after 12 d of germination. However, the AO line showed significant resistance to degradation, having 57% residual starch. Interestingly, protein and β-glucan (BG) degradation was stimulated for both HP and AO lines as compared with the WT. At late seedling establishment stages, specific sugars were rapidly consumed in the AO line. α-Amylase activity was distinctly suppressed in both the HP and the AO lines. Pre-germination β-amylase deposition was low in the AO grains and β-amylase was generally suppressed in both HP and AO lines throughout germination. As further supported by scanning electron microscopy and histochemical analyses on grain and seedlings, it was concluded that inadequate starch granule deposition in combination with the suppressed hydrolase activity leads to temporal and compensating re-direction of starch, sugar, and protein catabolism important to maintain metabolic dynamics during grain germination and seedling establishment. PMID:24642850
Meng, Yongjie; Shuai, Haiwei; Luo, Xiaofeng; Chen, Feng; Zhou, Wenguan; Yang, Wenyu; Shu, Kai
2017-01-01
Seed germination and early seedling establishment are critical stages during a plant’s life cycle. These stages are precisely regulated by multiple internal factors, including phytohormones and environmental cues such as light. As a family of small molecules discovered in wildfire smoke, karrikins (KARs) play a key role in various biological processes, including seed dormancy release, germination regulation, and seedling establishment. KARs show a high similarity with strigolactone (SL) in both chemical structure and signaling transduction pathways. Current evidence shows that KARs may regulate seed germination by mediating the biosynthesis and/or signaling transduction of abscisic acid (ABA), gibberellin (GA) and auxin [indoleacetic acid (IAA)]. Interestingly, KARs regulate seed germination differently in different species. Furthermore, the promotion effect on seedling establishment implies that KARs have a great potential application in alleviating shade avoidance response, which attracts more and more attention in plant molecular biology. In these processes, KARs may have complicated interactions with phytohormones, especially with IAA. In this updated review, we summarize the current understanding of the relationship between KARs and SL in the chemical structure, signaling pathway and the regulation of plant growth and development. Further, the crosstalk between KARs and phytohormones in regulating seed germination and seedling development and that between KARs and IAA during shade responses are discussed. Finally, future challenges and research directions for the KAR research field are suggested. PMID:28174573
Winkler, Manuela; Hülber, Karl; Hietz, Peter
2005-05-01
Seeds of epiphytes must land on branches with suitable substrates and microclimates to germinate and for the resulting seedlings to survive. It is important to understand the fate of seeds and seedlings in order to model populations, but this is often neglected when only established plants are included in analyses. The seeds of five bromeliad species were exposed to different canopy positions in a Mexican montane forest, and germination and early seedling survival were recorded. Additionally, the survival of naturally dispersed seedlings was monitored in a census over 2.5 years. Survival analysis, a procedure rarely used in plant ecology, was used to study the influence of branch characteristics and light on germination and seedling survival in natural and experimental populations. Experimental germination percentages ranged from 7.2 % in Tillandsia deppeana to 33.7 % in T. juncea, but the seeds of T. multicaulis largely failed to germinate. Twenty months after exposure between 3.5 and 9.4 % of the seedlings were still alive. There was no evidence that canopy position affected the probability of germination, but time to germination was shorter in less exposed canopy positions indicating that higher humidity accelerates germination. More experimental seedlings survived when canopy openness was high, whereas survival in census-seedlings was influenced by moss cover. While mortality decreased steadily with age in juveniles of the atmospheric Tillandsia, in the more mesomorphic Catopsis sessiliflora mortality increased dramatically in the dry season. Seedling mortality, rather than the failure to germinate, accounts for the differential distribution of epiphytes within the canopy studied. With few safe sites to germinate and high seedling mortality, changes of local climate may affect epiphyte populations primarily through their seedling stage.
WINKLER, MANUELA; HÜLBER, KARL; HIETZ, PETER
2005-01-01
• Background and Aims Seeds of epiphytes must land on branches with suitable substrates and microclimates to germinate and for the resulting seedlings to survive. It is important to understand the fate of seeds and seedlings in order to model populations, but this is often neglected when only established plants are included in analyses. • Methods The seeds of five bromeliad species were exposed to different canopy positions in a Mexican montane forest, and germination and early seedling survival were recorded. Additionally, the survival of naturally dispersed seedlings was monitored in a census over 2·5 years. Survival analysis, a procedure rarely used in plant ecology, was used to study the influence of branch characteristics and light on germination and seedling survival in natural and experimental populations. • Key Results Experimental germination percentages ranged from 7·2 % in Tillandsia deppeana to 33·7 % in T. juncea, but the seeds of T. multicaulis largely failed to germinate. Twenty months after exposure between 3·5 and 9·4 % of the seedlings were still alive. There was no evidence that canopy position affected the probability of germination, but time to germination was shorter in less exposed canopy positions indicating that higher humidity accelerates germination. More experimental seedlings survived when canopy openness was high, whereas survival in census-seedlings was influenced by moss cover. While mortality decreased steadily with age in juveniles of the atmospheric Tillandsia, in the more mesomorphic Catopsis sessiliflora mortality increased dramatically in the dry season. • Conclusions Seedling mortality, rather than the failure to germinate, accounts for the differential distribution of epiphytes within the canopy studied. With few safe sites to germinate and high seedling mortality, changes of local climate may affect epiphyte populations primarily through their seedling stage. PMID:15767270
Growth and development of plants flown on the STS-3 space shuttle mission
NASA Astrophysics Data System (ADS)
Cowles, J. R.; Scheld, H. W.; Peterson, C.; LeMay, R.
Pre-germinated pine seedlings and germinating oat and mung bean seeds were flown on the STS-3 Space Shuttle mission. Overall, the seedlings grew and developed well in space. Some oat and mung bean roots, however, grew upward. Lignin content was slightly lower in flight tissues and protein content was higher.
Urva; Shafique, Hina; Jamil, Yasir; Haq, Zia Ul; Mujahid, Tamveel; Khan, Aman Ullah; Iqbal, Munawar; Abbas, Mazhar
2017-05-01
Recently, laser application in agriculture has gained much attention since plant characteristics were improved significantly in response of pre-sowing seed treatment. Pre-sowing laser seed treatment effects on germination, seedling growth and mineral profile were studied in Moringa olifera. M. olifera healthy seeds were exposed to 25, 50, 75mJ low power continuous wave laser light and grown under greenhouse conditions. The seedling growth and biochemical attributes were evaluated from 10-day-old seedlings. The germination parameters (percentage, mean germination time), vigor index, seedling growth (root length, seedling length, shoot fresh weight, root fresh weight, shoot dry weight, root dry weight) enhanced considerably. The laser energy levels used for seed irradiation showed variable effects on germination, seedling growth and mineral profile. The mineral contents were recorded to be higher in seedling raised from laser treated seeds, which were higher in roots versus shoots and leaves. The effect of laser treatment on seedling fat, nitrogen and protein content was insignificant and at higher energy level both nitrogen and protein contents decreased versus control. Results revealed that M. olifera germination, seedling growth and mineral contents were enhanced and optimum laser energy level has more acceleratory effect since at three laser energy levels the responses were significantly different. Overall the laser energy levels effect on germination and seedling growth was found in following order; 75mJ>50mJ>25mJ, where as in case of fat, protein and nitrogen contents the trend was as; 25mJ>50mJ and 75mJ. However, this technique could possibly be used to improve the M. olifera germination, seedling growth, and minerals contents where germination is low due to unfavorable conditions. Copyright © 2017 Elsevier B.V. All rights reserved.
Effect of carbon nanomaterials on the germination and growth of rice plants.
Nair, Remya; Mohamed, M Sheikh; Gao, Wei; Maekawa, Toru; Yoshida, Yasuhiko; Ajayan, Pulickel M; Kumar, D Sakthi
2012-03-01
For the successful diverse applications of different nanomaterials in life sciences, it is necessary to understand the ultimate fate, distribution and potential environmental impacts of manufactured nanomaterials. Phytotoxicity studies using higher plants is an important criterion for understanding the toxicity of engineered nanomaterials. We studied the effects of engineered carbon nanomaterials of various dimensionalities (carbon nanotubes, C60, graphene) on the germination of rice seeds. A pronounced increase in the rate of germination was observed for rice seeds in the presence of some of these carbon nanostructures, in particular the nanotubes. Increased water content was observed in the carbon nanomaterial treated seeds during germination compared to controls. The germinated seeds were then grown in a basal growth medium supplemented with carbon nanomaterials for studying their impact on further seedling growth. Treated seedlings appeared to be healthier with well-developed root and shoot systems compared to control seedlings. Our results indicate the possible use for carbon nanomaterials as enhancers in the growth of rice seedlings.
Santo, A; Mattana, E; Frigau, L; Marzo Pastor, A; Picher Morelló, M C; Bacchetta, G
2017-05-01
Brassica insularis is a protected plant that grows on both coastal and inland cliffs in the western Mediterranean Basin. The objective of this study was to test if any variability exists in the salt stress response during seed germination and seedling development in this species relative to its provenance habitat. Variability among three populations in the salt stress effects on seed germination and recovery under different temperatures was evaluated. The effect of nebulisation of a salt solution on seedling development was evaluated between populations growing at different distances from the sea. Seeds of B. insularis could germinate at NaCl concentrations up to 200 mm. Seed viability was negatively affected by salt, and recovery ability decreased with increasing temperature or salinity. Inter-population variability was detected in salt response during the seed germination phase, as well as in seedling salt spray tolerance. The inland population seedlings had drastically decreased survival and life span and failed to survive to the end of the experiment. In contrast, at least 90% of the coastal seedlings survived, even when sprayed at the highest frequency with salt solution. This study allowed investigation of two natural factors, soil salinity and marine aerosols, widely present in the B. insularis habitat, and provided the first insights into ecology of this protected species and its distribution in the Mediterranean. These results might be useful in understanding the actual distributions of other species with the same ecology that experience these same abiotic parameters. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.
Foster, Mercedes S.
2008-01-01
The relative effectiveness of arboreal or terrestrial birds at dispersing seeds of Ormosia macrocalyx and O. bopiensis (Fabaceae: Papilionoideae) were studied in south-eastern Peru. Seeds of both species were either scarified, to represent seed condition after dispersal by terrestrial birds, or left intact, to represent seed condition after dispersal by arboreal birds. Seeds were distributed along forest transects, and germination, seedling development and mortality were monitored to determine the successes of the two groups at producing seedlings. Scarified seeds germinated with the early rains of the dry-to-wet-season transition, when erratic rainfall was interspersed with long dry spells. Intact seeds germinated 30 d later when the rain was more plentiful and regular. Intact seeds of O. macrocalyx gave rise to significantly more seedlings (41.1% vs. 25.5%) than did scarified seeds, in part, because significantly more seedlings from scarified seeds (n = 20) than from intact seeds (n = 3) died from desiccation when their radicles failed to enter the dry ground present during the dry-to-wet-season transition. Also, seedlings from scarified seeds were neither larger nor more robust than those from intact seeds despite their longer growing period. Results are consistent with the hypothesis that dispersal effectiveness of arboreal birds, at least for O. macrocalyx, is greater than that of terrestrial birds. Screen-house experiments in which seedlings developed under different watering regimes supported this result. Numbers of seedlings developing from intact and scarified seeds of O. bopiensis did not differ significantly.
Why wait? Three mechanisms selecting for environment-dependent developmental delays.
Scott, M F; Otto, S P
2014-10-01
Many species delay development unless particular environments or rare disturbance events occur. How can such a strategy be favoured over continued development? Typically, it is assumed that continued development (e.g. germination) is not advantageous in environments that have low juvenile/seedling survival (mechanism 1), either due to abiotic or competitive effects. However, it has not previously been shown how low early survival must be in order to favour environment-specific developmental delays for long-lived species. Using seed dormancy as an example of developmental delays, we identify a threshold level of seedling survival in 'bad' environments below which selection can favour germination that is limited to 'good' environments. This can be used to evaluate whether observed differences in seedling survival are sufficient to favour conditional germination. We also present mathematical models that demonstrate two other, often overlooked, mechanisms that can favour conditional germination in the absence of differences in seedling survival. Specifically, physiological trade-offs can make it difficult to have germination rates that are equally high in all environments (mechanism 2). We show that such trade-offs can either favour conditional germination or intermediate (mixed) strategies, depending on the trade-off shape. Finally, germination in every year increases the likelihood that some individuals are killed in population-scale disturbances before reproducing; it can thus be favourable to only germinate immediately after a disturbance (mechanism 3). We demonstrate how demographic data can be used to evaluate these selection pressures. By presenting these three mechanisms and the conditions that favour conditional germination in each case, we provide three hypotheses that can be tested as explanations for the evolution of environment-dependent developmental delays. © 2014 European Society for Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
Effects of stress temperatures of germination on polyamine titers of soybean seeds
NASA Astrophysics Data System (ADS)
Pineda-Mejia, Renan
High and low stress temperatures during seed germination and seedling development limit total germination and the rate of germination and growth. Changes in polyamine (PA) concentrations in seeds of different species have been associated with germination, growth and environmental stresses such as temperature, drought, oxygen, chilling injury and osmotic conditions. Two studies were conducted to determine the effect of stress temperatures during germination and seedling development on polyamine titers in soybean seeds. Three germination temperatures, 25, 30, and 36°C were used in the first study to evaluate their influence on changes in polyamine concentrations in soybean seeds germinated at 76 and 90 hours. The polyamines (PAs), cadaverine (Cad), putrescine (Put), spermidine (Spd), agmatine (Agm), and spermine (Spin) were quantified by HPLC using a cation exchange column and an electrochemical detector. Cad, Put, Agm, and Spd declined as the germination temperatures increased from 25 to 36°C. Conversely, Spin increased considerably with an increase in temperature. Total germination was reduced from 97.2 to 92.5% as germination temperatures increased from 25 to 36°C. Germination time did not affect Cad, Agm and Spm, and total germination, however, the interaction between temperature and germination time for Put and Spd concentrations was significant. In the second study, changes in PA concentrations, seedling growth, germination time (t50), fresh and dry weight, and moisture content were measured in the embryonic axis and cotyledons of soybean seeds germinated at 10 and 25°C through six stages of germination dry seed (DS), testa split (TS), radicle at 10 mm (Ra-10), root hairs visible (RHV), secondary root primordia (SRP), and complete seedling (CS). The concentrations of Cad and Put in the embryonic axis, were significantly higher in seeds germinated under low temperature than in seeds at 25°C (approximately 10 and 3 fold respectively). However, this difference was not observed until the last three stages of germination. The stage of germination also influenced the levels of these polyamines. The concentrations of Cad and Put detected at the CS stage were 50 and 18 fold respectively, relative to the initial concentrations found at the DS stage. Spd levels in seeds under stress temperatures also increased, but to a lesser extent compared to Cad and Put. Differences in Spd concentrations between temperatures were observed only at the CS stage. Agm concentrations were higher at 25 than at 10°C at SRP and CS. Spm concentrations of seeds germinated at 25°C remained higher during the first four stages of development but at the end of germination, seeds at 10°C had higher quantities of Spm. In the cotyledons, Polyamines tended to decline with stages of germination, regardless of the temperature. However, Agm levels increased in the cotyledons of soybean seeds. Maximum dry weight and seedling growth was found at RHV, SRP, and CS. Maximum levels of Cad and Put were also found during these stages. Spd increased with both temperatures from DS to Ra-10, thereafter, Spd levels in seeds at 10°C continued increasing while seeds at 25°C declined. High and low stress germination temperatures caused significant changes in polyamine concentrations, reduced germination and seedling growth of soybean seeds.
[Effects of different fungi on symbiotic seed germination of two Dendrobium species].
Zi, Xiao-meng; Gao, Jiang-yun
2014-09-01
The epiphytic orchid, Dendrobium aphyllum and D. devonianum are used as traditional Chinese medicine, and became locally endangered in recent years because of over-collection. We test the effect of inoculations of endophytic fungi FDaI7 (Tulasnella sp.), FDd1 (Epulorhiza sp. ) and FCb4 (Epulorhiza sp.), which isolated from D. aphyllum, D. denonianum and Cymbidium mannii, respectively, on artificial substrate in these two Dendrobium species. In the symbiotic germination experiment, FDaI7 and FDd1 were effective for protocorm formation and seedling development of D. aphyllum and D. denonianum separately. After 60 days, 14.46% of the D. aphyllum seeds grown to protocorms and 12.07% developed to seedlings inoculated only with FDaI7, while contrasted with 0 when inoculated the other two isolates and non-inoculation treatment. However, in D. denonianum, seeds only grown to protocorms and developed to seedlings when inoculated with FDd1, the percentages were 44.36% and 42.91% distinguishingly. High specificity was shown in symbiotic germination on artificial substrate of Dendrobium. Protocorms could further develop to seedlings within or without light when inoculated the compatible fungi. However, light condition (12/12 h Light/Dark) produced the normal seedlings, while dark condition (0/24 h L/D) produced the abnormal seedlings. These may suggest that the development of young seedlings require light based on the effective symbiotic fungi. These findings will aid in seedling production of simulation-forestry ecology cultivation, conservation and reintroduction of Dendrobium.
Zhou, Lina; Xia, Mengjie; Wang, Li; Mao, Hui
2016-09-01
As a persistent organic pollutant in the environment, perfluorooctanoic acid (PFOA) has been extensively investigated. It can accumulate in food chains and in the human body. This work investigated the effect of PFOA on wheat (Triticum aestivum L.) germination and seedling growth by conducting a germination trial and a pot trial. A stimulatory effect of PFOA on seedling growth and root length of wheat was found at <0.2 mg kg(-1), while >800 mg kg(-1) PFOA inhibited germination rate, index, and root and shoot growth. In the pot trial, PFOA concentration in root was double that in the shoot. Soil and plant analyzer development (SPAD) and plant height of wheat seedling were inhibited by adding 200 mg kg(-1) PFOA. Proline content and POD activity in wheat seedlings increased as PFOA increased, while CAT activity decreased. Using logarithmic equations, proline content was selected as the most sensitive index by concentration for 50% of maximal effect (EC50). Hence, the tolerance of wheat seedlings to PFOA levels could be evaluated on the basis of the physiological index. Copyright © 2016 Elsevier Ltd. All rights reserved.
da Costa Marques, Mônica Regina; de Souza, Paulo Sérgio Alves; Rigo, Michelle Machado; Cerqueira, Alexandre Andrade; de Paiva, Julieta L; Merçon, Fábio; Perez, Daniel Vidal
2015-10-01
This study aims to evaluate possible toxic effects of oil and other contaminants from oilfield-produced water from oil exploration and production, on seed germination, and seedling development of sunflower (Helianthus annuus L.). In comparison, as treated by electroflocculation, oilfield-produced water, with lower oil and organic matter content, was also used. Electroflocculation treatment of oilfield-produced water achieved significant removals of chemical oxygen demand (COD) (94 %), oil and grease (O&G) (96 %), color (97 %), and turbidity (99 %). Different O&G, COD, and salt levels of untreated and treated oilfield-produced water did not influence germination process and seedling biomass production. Normal seedlings percentage and vigor tended to decrease more intensely in O&G and COD levels, higher than 337.5 mg L(-1) and 1321 mg O2 L(-1), respectively, using untreated oilfield-produced water. These results indicate that this industrial effluent must be treated, in order to not affect adversely seedling development. This way, electroflocculation treatment appears as an interesting alternative to removing oil and soluble organic matter in excess from oilfield-produced water improving sunflower's seedling development and providing a friendly environmental destination for this wastewater, reducing its potential to harm water resources, soil, and biota.
Su, Tao; Wolf, Sebastian; Han, Mei; Zhao, Hongbo; Wei, Hongbin; Greiner, Steffen; Rausch, Thomas
2016-01-01
In higher plants, cell wall invertase (CWI) and vacuolar invertase (VI) are recognized as essential players in sugar metabolism and sugar signaling, thereby affecting source-sink interactions, plant development and responses to environmental cues. CWI and VI expression levels are transcriptionally controlled; however, both enzymes are also subject to posttranslational control by invertase inhibitor proteins. The physiological significances of inhibitor proteins during seed germination and early seedling development are not yet fully understood. Here, we demonstrate that the inhibitor isoform AtCIF1 impacted on seed germination and early seedling growth in Arabidopsis. The primary target of AtCIF1 was shown to be localized to the apoplast after expressing an AtCIF1 YFP-fusion construct in tobacco epidermis and transgenic Arabidopsis root. The analysis of expression patterns showed that AtCWI1 was co-expressed spatiotemporally with AtCIF1 within the early germinating seeds. Seed germination was observed to be accelerated independently of exogenous abscisic acid (ABA) in the AtCIF1 loss-of-function mutant cif1-1. This effect coincided with a drastic increase of CWI activity in cif1-1 mutant seeds by 24 h after the onset of germination, both in vitro and in planta. Accordingly, quantification of sugar content showed that hexose levels were significantly boosted in germinating seeds of the cif1-1 mutant. Further investigation of AtCIF1 overexpressors in Arabidopsis revealed a markedly suppressed CWI activity as well as delayed seed germination. Thus, we conclude that the posttranslational modulation of CWI activity by AtCIF1 helps to orchestrate seed germination and early seedling growth via fine-tuning sucrose hydrolysis and, possibly, sugar signaling.
Chauhan, Bhagirath S
2013-01-01
Feather lovegrass [Eragrostis tenella (L.) Beauv. Ex Roemer & J.A. Schultes] is a C4 grass weed that has the ability to grow in both lowland and upland conditions. Experiments were conducted in the laboratory and screenhouse to evaluate the effect of environmental factors on germination, emergence, and growth of this weed species. Germination in the light/dark regime was higher at alternating day/night temperatures of 30/20 °C (98%) than at 35/25 °C (83%) or 25/15 °C (62%). Germination was completely inhibited by darkness. The osmotic potential and sodium chloride concentrations required for 50% inhibition of maximum germination were -0.7 MPa and 76 mM, respectively. The highest seedling emergence (69%) was observed from the seeds sown on the soil surface and no seedlings emerged from seeds buried at depths of 0.5 cm or more. The use of residue as mulches significantly reduced the emergence and biomass of feather lovegrass seedlings. A residue amount of 0.5 t ha(-1) was needed to suppress 50% of the maximum seedlings. Because germination was strongly stimulated by light and seedling emergence was the highest for the seeds sown on the soil surface, feather lovegrass is likely to become a problematic weed in zero-till systems. The knowledge gained from this study could help in developing effective and sustainable weed management strategies.
Bittencourt-Oliveira, M C; Hereman, T C; Macedo-Silva, I; Cordeiro-Araújo, M K; Sasaki, F F C; Dias, C T S
2015-05-01
We evaluated the effect of crude extracts of the microcystin-producing (MC+) cyanobacteria Microcystis aeruginosa on seed germination and initial development of lettuce and arugula, at concentrations between 0.5 μg.L(-1) and 100 μg.L(-1) of MC-LR equivalent, and compared it to crude extracts of the same species without the toxin (MC-). Crude extracts of the cyanobacteria with MC (+) and without MC (-) caused different effects on seed germination and initial development of the salad green seedlings, lettuce being more sensitive to both extracts when compared to arugula. Crude extracts of M. aeruginosa (MC+) caused more evident effects on seed germination and initial development of both species of salad greens than MC-. Concentrations of 75 μg.L(-1) and 100 μg.L(-1) of MC-LR equivalent induced a greater occurrence of abnormal seedlings in lettuce, due to necrosis of the radicle and shortening of this organ in normal seedlings, as well as the reduction in total chlorophyll content and increase in the activity of the antioxidant enzyme peroxidase (POD). The MC- extract caused no harmful effects to seed germination and initial development of seedlings of arugula. However, in lettuce, it caused elevation of POD enzyme activity, decrease in seed germination at concentrations of 75 μg.L(-1) (MC-75) and 100 μg.L(-1) (MC-100), and shortening of the radicle length, suggesting that other compounds present in the cyanobacteria extracts contributed to this result. Crude extracts of M. aeruginosa (MC-) may contain other compounds, besides the cyanotoxins, capable of causing inhibitory or stimulatory effects on seed germination and initial development of salad green seedlings. Arugula was more sensitive to the crude extracts of M. aeruginosa (MC+) and (MC-) and to other possible compounds produced by the cyanobacteria.
Nancy L. Shaw; Marshall R. Haferkamp; Emerenciana G. Hurd
1994-01-01
Reestablishment of spiny hopsrge (Grayia spinosa [Hook.] Moq.) in the shrub steppe requires development of appropriate seeding technology. We examined the effect of planting date and seedbed environment on germination and seedling establishment of 2 seed sources at 2 southwestern Idaho sites. Seedbeds were prepared by rototilling. In 1987-88, seeds...
Rekik, Imen; Chaabane, Zayneb; Missaoui, Amara; Bouket, Ali Chenari; Luptakova, Lenka; Elleuch, Amine; Belbahri, Lassaad
2017-03-15
Wastewater reuse in agriculture may help mitigate water scarcity. This may be reached if high quality treatments removing harmful pollutants are applied. The aim of the present study was to compare the effect of untreated (UTW) and treated wastewater (TW) on germination and seedlings development of alfalfa (Medicago sativa L.), fescue (Festuca arundinacea Schreb.) and sorghum (Sorghum bicolor (L.) Moench). UTW presented high turbidity (130 NTU), chemical and biological oxygen demand (COD, 719mgL -1 , BOD 5, 291mgL -1 ) and metal concentrations. These levels caused mortality (18% for fescue), decreased germination speed in seeds (37.5% for alfalfa) and reductions of root and stem length in seedlings (80% and 22% respectively for alfalfa). Adverse effects on seeds germination were reflected at the biochemical level by increased H 2 O 2 levels (6 times for sorghum after 5days) and by increased Malondialdehyde (MDA) levels (more than 600 times for sorghum roots) during seedlings development. When TW was used, these parameters were close to control seeds ones. They were also dependent on plant species and developmental stage. Therefore, for efficient reclaimed wastewater reuse in irrigation, suitable crops, displaying wide tolerance to toxic contents during germination and later seedling development stages have to be selected. Copyright © 2016 Elsevier B.V. All rights reserved.
Ward, Jason M; Smith, Alison M; Shah, Purvi K; Galanti, Sarah E; Yi, Hankuil; Demianski, Agnes J; van der Graaff, Eric; Keller, Beat; Neff, Michael M
2006-01-01
Gibberellic acid (GA) promotes germination, stem/hypocotyl elongation, and leaf expansion during seedling development. Using activation-tagging mutagenesis, we identified a mutation, sob2-D (for suppressor of phytochromeB-4 [phyB-4]#2 dominant), which suppresses the long-hypocotyl phenotype of a phyB missense allele, phyB-4. This mutant phenotype is caused by the overexpression of an APETALA2 transcription factor, SOB2, also called DRN-like. SOB2/DRN-like transcript is not detectable in wild-type seedling or adult tissues via RT-PCR analysis, suggesting that SOB2/DRN-like may not be involved in seedling development under normal conditions. Adult sob2-D phyB-4 plants have curled leaves and club-like siliques, resembling plants that overexpress a closely related gene, LEAFY PETIOLE (LEP). Hypocotyls of a LEP-null allele, lep-1, are shorter in the light and dark, suggesting LEP involvement in seedling development. This aberrant hypocotyl phenotype is due at least in part to a delay in germination. In addition, lep-1 is less responsive to GA and more sensitive to the GA biosynthesis inhibitor paclobutrazol, indicating that LEP is a positive regulator of GA-induced germination. RT-PCR shows that LEP transcript accumulates in wild-type seeds during imbibition and germination, and the transcript levels of REPRESSOR OF ga1-3-LIKE2 (RGL2), a negative regulator of GA signaling during germination, is unaffected in lep-1. These results suggest LEP is a positive regulator of GA-induced germination acting independently of RGL2. An alternative model places LEP downstream of RGL2 in the GA-signaling cascade.
NASA Astrophysics Data System (ADS)
Hanley, Mick E.; Fenner, Michael; Ne'eman, Gidi
2001-12-01
The role of heat-shock in stimulating the germination of soil-stored seeds from fire-following plant species is well known. However, the effects of high pre-germination temperatures on subsequent seedling growth are less well understood. In this study, we examined the effect of pre-germination heat shock at five temperatures (60°, 75°, 90°, 105° and 120°C, each applied for 5 min) on the seedling growth of four, fire-following Fabaceae species from four Mediterranean-type ecosystems; Hippocrepis multisiliquosa (Israel), Gastrolobium villosum (Western Australia), Cyclopia pubescens (South Africa) and Lupinus succulentus (California). Following heat treatment and subsequent germination, seedlings were grown in controlled conditions before being harvested at either 10, 20- or 40 d old. A significant increase in mean dry weight biomass was found at 10 days for Hippocrepis seedlings germinated from seeds pre-heated to 90°C. However, subsequent comparison of mean dry weight biomass for seedlings of this species at 20 and 40 d old showed no significant response to heat shock pre-treatment. Similarly, an initial increase in growth of Gastrolobium seedlings germinated from seeds heated to 90° and 105°C disappeared as the plants matured. Seedling growth of Lupinus and Cyclopia was unaffected by the pre-germination heat treatment of their seeds. Since seedling competition is influenced by the size and growth rates of neighbouring plants, any changes in seedling growth rates as a consequence of the temperature environment experienced by their seeds, may therefore influence patterns of post-fire plant community recovery.
Leiblein-Wild, Marion Carmen; Kaviani, Rana; Tackenberg, Oliver
2014-03-01
Germination characteristics and frost tolerance of seedlings are crucial parameters for establishment and invasion success of plants. The characterization of differences between populations in native and invasive ranges may improve our understanding of range expansion and adaptation. Here, we investigated germination characteristics of Ambrosia artemisiifolia L., a successful invader in Europe, under a temperature gradient between 5 and 25 °C. Besides rate and speed of germination we determined optimal, minimal and maximal temperature for germination of ten North American and 17 European populations that were sampled along major latitudinal and longitudinal gradients. We furthermore investigated the frost tolerance of seedlings. Germination rate was highest at 15 °C and germination speed was highest at 25 °C. Germination rate, germination speed, frost tolerance of seedlings, and the temperature niche width for germination were significantly higher and broader, respectively, for European populations. This was partly due to a higher seed mass of these populations. Germination traits lacked evidence for adaptation to climatic variables at the point of origin for both provenances. Instead, in the native range, seedling frost tolerance was positively correlated with the risk of frosts which supports the assumption of local adaptation. The increased frost tolerance of European populations may allow germination earlier in the year which may subsequently lead to higher biomass allocation--due to a longer growing period--and result in higher pollen and seed production. The increase in germination rates, germination speed and seedling frost tolerance might result in a higher fitness of the European populations which may facilitate further successful invasion and enhance the existing public health problems associated with this species.
NASA Astrophysics Data System (ADS)
Juan, Traba; Sagrario, Arrieta; Jesús, Herranz; Cristina, Clamagirand M.
2006-07-01
Seeds of the Mediterranean Hackberry Celtis australis are often encountered in fox faeces. In order to evaluate the effect of gut transit on the size of seeds selected, the rates and speed of germination and on the survival of the seedlings, Mediterranean Hackberry seeds from fox faeces were germinated in a greenhouse. The results were compared with those of seeds taken from ripe, uneaten fruits. Fox-dispersed seeds were smaller and lighter than the control ones and had higher (74% vs. 57%) and more rapid germination (74.5 days vs. 99.2 days). Seedlings from fox-dispersed seeds showed significantly greater survival by the end of the study period (74.1% vs. 43.6%) than the control ones. Survival in seedlings from fox-dispersed seeds was related to germination date, late seedlings showing poorer survival. This relationship was not observed away in the control seedlings. Seed mass did not affect seedling survival. Seedling arising from fox-dispersed seeds grew faster than control ones. These results suggest that fox can play a relevant role as seed disperser of Mediterranean Hackberry.
[Double mulching application for Panax notoginseng growing seedlings].
Ou, Xiao-Hong; Fang, Yan; Shi, Ya-Na; Guo, Lan-Ping; Wang, Li; Yang, Yan; Jin, Hang; Liu, Da-Hui
2014-02-01
In order to improve the irrigation for Panax notginseng growing seedlings, different mulching ways were carried out to investigate the effects of double mulching. Field experiment was applied to study soil moisture, soil temperature and bulk density of different mulching ways while the germination rate and seedlings growth also were investigated. Compared with the traditional single mulching with pine leaves or straw, double mulching using plastic film combined with pine leaves or straw could reduce 2/3 volumes of irrigation at the early seedling time Double mulching treatments didn't need to irrigate for 40 days from seeding to germination, and kept soil moisture and temperature steady at whole seedling time about 30% and 9.0-16.6 degrees C, respectively. The steady soil moisture and temperature benefited to resist late spring cold and germinate earlier while kept germination regularly, higher rate and seedlings quality. In contrast, single mulching using pine leaves or straw had poor soil moisture and temperature preserving, needed to irrigate every 12-day, meanwhile dropped the germination and booming time 14 days and 24-26 days, respectively, reduced germination rate about 11.3%-8.7%. However, single pine leaves mulching was better than straw mulching. In addition, though better effects of soil moisture and temperature preserving as well as earlier and higher rate of germination with single plastic films mulching had, some disadvantages had also been observed, such as daily soil temperature changed greatly, seedling bed soil hardened easily, more moss and weeds resulted difficulty in later management. To the purpose of saving water and labor as well as getting higher germination rate and seedlings quality, double mulching using plastic films combined pine leaves at the early time and single mulching removing plastic films at the later time is suggested to apply in the growing seedlings of P. notoginseng.
Mao, Peili; Han, Guangxuan; Wang, Guangmei; Yu, Junbao; Shao, Hongbo
2014-01-01
Effects of age and stand density of mother tree on seed germination, seedling biomass allocation, and seedling growth of Pinus thunbergii were studied. The results showed that age of mother tree did not have significant influences on seed germination, but it was significant on seedling biomass allocation and growth. Seedlings from the minimum and maximum age of mother tree had higher leaf mass ratio and lower root mass ratio than from the middle age of mother tree. Moreover, they also had higher relative height growth rate and slenderness, which were related to their biomass allocation. Stand density of mother tree mainly demonstrated significant effects on seed germination and seedling growth. Seed from higher stand density of mother tree did not decrease germination rate, but had higher mean germination time, indicating that it delayed germination process. Seedlings of higher stand density of mother tree showed higher relative height growth rate and slenderness. These traits of offspring from higher stand density of mother tree were similar to its mother, indicating significant environmental maternal effects. So, mother tree identity of maternal age and environments had important effects on natural regeneration of the coastal P. thunbergii forest.
Mao, Peili; Han, Guangxuan; Wang, Guangmei; Yu, Junbao; Shao, Hongbo
2014-01-01
Effects of age and stand density of mother tree on seed germination, seedling biomass allocation, and seedling growth of Pinus thunbergii were studied. The results showed that age of mother tree did not have significant influences on seed germination, but it was significant on seedling biomass allocation and growth. Seedlings from the minimum and maximum age of mother tree had higher leaf mass ratio and lower root mass ratio than from the middle age of mother tree. Moreover, they also had higher relative height growth rate and slenderness, which were related to their biomass allocation. Stand density of mother tree mainly demonstrated significant effects on seed germination and seedling growth. Seed from higher stand density of mother tree did not decrease germination rate, but had higher mean germination time, indicating that it delayed germination process. Seedlings of higher stand density of mother tree showed higher relative height growth rate and slenderness. These traits of offspring from higher stand density of mother tree were similar to its mother, indicating significant environmental maternal effects. So, mother tree identity of maternal age and environments had important effects on natural regeneration of the coastal P. thunbergii forest. PMID:24955404
Dornbos, D L; Spencer, G F
1990-02-01
A large variety of secondary metabolites that can inhibit germination and/or seedling growth are produced by plants in low quantities. The objective of this study was to develop a bioassay capable of reliably assessing reductions in germination percentage and seedling length of small-seeded plant species caused by exposure to minute quantities of these compounds. The germination and growth of alfalfa (Medicago saliva), annual ryegrass (Lolium multiflorum), and velvetleaf (Abutilon theophrasti) were evaluated against six known phytotoxins from five chemical classes; cinmethylin (a herbicidal cineole derivative) was selected as a comparison standard. Each phytotoxin, dissolved in a suitable organic solvent, was placed on water-agar in small tissue culture wells. After the solvent evaporated, imbibed seeds were placed on the agar; after three days, germination percentages and seedling lengths were measured. Compared to a commonly used filter paper procedure, this modified agar bioassay required smaller quantities of compound per seed for comparable bioassay results. This bioassay also readily permitted the measurement of seedling length, a more sensitive indicator of phytotoxicity than germination. Seedling length decreased sigmoidally as the toxin concentration increased logarithmically. Phytotoxicity was a function of both compound and plant species. Cinmethylin, a grass herbicide, reduced the length of annual ryegrass seedlings by 90-100%, whereas that of alfalfa and velvetleaf was inhibited slightly. The agar bioassay facilitated the rapid and reliable testing of slightly water-soluble compounds, requiring only minute quantities of each compound to give reproducible results.
NASA Technical Reports Server (NTRS)
Smith, J. D.; Staehelin, L. A.; Todd, P.
1999-01-01
White clover (Trifolium repens) was germinated and grown in microgravity aboard the Space Shuttle (STS-60, 1994; STS-63, 1995), on Earth in stationary racks and in a slow-rotating two-axis clinostat. The objective of this study was to determine if normal root cap development and early plant gravity responses were dependent on gravitational cues. Seedlings were germinated in space and chemically fixed in orbit after 21, 40, and 72 h. Seedlings 96 h old were returned viable to earth. Germination and total seedling length were not dependent on gravity treatment. In space-flown seedlings, the number of cell stories in the root cap and the geometry of central columella cells did not differ from those of the Earth-grown seedlings. The root cap structure of clinorotated plants appeared similar to that of seedlings from microgravity, with the exception of three-day rotated plants, which displayed significant cellular damage in the columella region. Nuclear polarity did not depend on gravity; however, the positions of amyloplasts in the central columella cells were dependent on both the gravity treatment and the age of the seedlings. Seedlings from space, returned viable to earth, responded to horizontal stimulation as did 1 g controls, but seedlings rotated on the clinostat for the same duration had a reduced curvature response. This study demonstrates that initial root cap development is insensitive to either chronic clinorotation or microgravity. Soon after differentiation, however, clinorotation leads to loss of normal root cap structure and plant graviresponse while microgravity does not.
Research on tomato seed vigor based on X-ray digital image
NASA Astrophysics Data System (ADS)
Zhao, Xueguan; Gao, Yuanyuan; Wang, Xiu; Li, Cuiling; Wang, Songlin; Feng, Qinghun
2016-10-01
Seed size, interior abnormal and damage of the tomato seeds will affect the germination. The purpose of this paper was to study the relationship between the internal morphology, seed size and seed germination of tomato. The preprocessing algorithm of X-ray image of tomato seeds was studied, and the internal structure characteristics of tomato seeds were extracted by image processing algorithm. By developing the image processing software, the cavity area between embryo and endosperm and the whole seed zone were determined. According to the difference of area of embryo and endosperm and Internal structural condition, seeds were divided into six categories, Respectively for three kinds of tomato seed germination test, the relationship between seed vigor and seed size , internal free cavity was explored through germination experiment. Through seedling evaluation test found that X-ray image analysis provide a perfect view of the inside part of the seed and seed morphology research methods. The larger the area of the endosperm and the embryo, the greater the probability of healthy seedlings sprout from the same size seeds. Mechanical damage adversely effects on seed germination, deterioration of tissue prone to produce week seedlings and abnormal seedlings.
Germination and seedling establishment in orchids: a complex of requirements
Rasmussen, Hanne N.; Dixon, Kingsley W.; Jersáková, Jana; Těšitelová, Tamara
2015-01-01
Background Seedling recruitment is essential to the sustainability of any plant population. Due to the minute nature of seeds and early-stage seedlings, orchid germination in situ was for a long time practically impossible to observe, creating an obstacle towards understanding seedling site requirements and fluctuations in orchid populations. The introduction of seed packet techniques for sowing and retrieval in natural sites has brought with it important insights, but many aspects of orchid seed and germination biology remain largely unexplored. Key Considerations The germination niche for orchids is extremely complex, because it is defined by requirements not only for seed lodging and germination, but also for presence of a fungal host and its substrate. A mycobiont that the seedling can parasitize is considered an essential element, and a great diversity of Basidiomycota and Ascomycota have now been identified for their role in orchid seed germination, with fungi identifiable as imperfect Rhizoctonia species predominating. Specificity patterns vary from orchid species employing a single fungal lineage to species associating individually with a limited selection of distantly related fungi. A suitable organic carbon source for the mycobiont constitutes another key requirement. Orchid germination also relies on factors that generally influence the success of plant seeds, both abiotic, such as light/shade, moisture, substrate chemistry and texture, and biotic, such as competitors and antagonists. Complexity is furthermore increased when these factors influence seeds/seedling, fungi and fungal substrate differentially. Conclusions A better understanding of germination and seedling establishment is needed for conservation of orchid populations. Due to the obligate association with a mycobiont, the germination niches in orchid species are extremely complex and varied. Microsites suitable for germination can be small and transient, and direct observation is difficult. An experimental approach using several levels of environmental manipulation/control is recommended. PMID:26271118
Wu, Ai-Ping; Li, Zi-Li; He, Fei-Fei; Wang, Yan-Hong; Dong, Ming
2015-01-01
To screen allelochemical-resistant species of the alien invasive weed Mikania micrantha, we studied the allelopathic inhibition effects of the leaf aqueous extract (LAE) of Mikania on seed germination and seedling growth of the 26 species native or naturalized in the invaded region in South China. Seed germination was more strongly negatively affected by LAE than seedling growth. Responses of seed germination and seed growth to LAE differed differently among the target species. LAE more strongly negatively affected seed germination, but less strongly negatively affected seedling growth, in non-legume species than in legume species. LAE more strongly negatively affected seed germination and seedling growth in native species than naturalized exotic species. Therefore, naturalized exotic non-legume seedlings are more suitable than seeds of native legume species for restoration of Mikania-invaded habitats. PMID:26177031
Wu, Ai-Ping; Li, Zi-Li; He, Fei-Fei; Wang, Yan-Hong; Dong, Ming
2015-01-01
To screen allelochemical-resistant species of the alien invasive weed Mikania micrantha, we studied the allelopathic inhibition effects of the leaf aqueous extract (LAE) of Mikania on seed germination and seedling growth of the 26 species native or naturalized in the invaded region in South China. Seed germination was more strongly negatively affected by LAE than seedling growth. Responses of seed germination and seed growth to LAE differed differently among the target species. LAE more strongly negatively affected seed germination, but less strongly negatively affected seedling growth, in non-legume species than in legume species. LAE more strongly negatively affected seed germination and seedling growth in native species than naturalized exotic species. Therefore, naturalized exotic non-legume seedlings are more suitable than seeds of native legume species for restoration of Mikania-invaded habitats.
Toxicity Effect of Cr Stress on Seed Germination and Seedling Growth in Lactuca Sativa
NASA Astrophysics Data System (ADS)
Ma, Wan Zheng; Ma, Wan Min; Du, Ying Ying; Dan, Qiong Peng; Yin, Bing; Dai, Shan Shan; Hao, Xiang
2018-03-01
The impact of Cr6+ on the growth of lactuca sativa in Greenhouse Cucumber was investigated. The seeds of lacuna sativa Italian bolting resistance lettuce were treated by different Cr6+ concentration to study the effects on its seed germination and seedling growth. The results showed that the seed germination rate, vigor index of seedlings decreased with increment of Cr6+ concentration to varying degrees, and vigor germination, vigor index, raw weight, root length significantly lower. The absorption of lettuce seedlings on different nutrient elements is impacted by the concentration of Cr6+.
Effect of saline water on seed germination and early seedling growth of the halophyte quinoa
Panuccio, M. R.; Jacobsen, S. E.; Akhtar, S. S.; Muscolo, A.
2014-01-01
Salinization is increasing on a global scale, decreasing average yields for most major crop plants. Investigations into salt resistance have, unfortunately, mainly been focused on conventional crops, with few studies screening the potential of available halophytes as new crops. This study has been carried out to investigate the mechanisms used by quinoa, a facultative halophytic species, in order to cope with high salt levels at various stages of its development. Quinoa is regarded as one of the crops that might sustain food security in this century, grown primarily for its edible seeds with their high protein content and unique amino acid composition. Although the species has been described as a facultative halophyte, and its tolerance to salt stress has been investigated, its physiological and molecular responses to seawater (SW) and other salts have not been studied. We evaluated the effects of SW and different salts on seed germination, seedling emergence and the antioxidative pathway of quinoa. Seeds were germinated in Petri dishes and seedlings grown in pots with SW solutions (25, 50, 75 and 100 %) and NaCl, CaCl2, KCl and MgCl2 individually, at the concentrations in which they are present in SW. Our results demonstrated that all salts, at lower concentrations, increased the germination rate but not the germination percentages, compared with control (pure water). Conversely, seedlings were differently affected by treatments in respect to salt type and concentration. Growth parameters affected were root and shoot length, root morphology, fresh and dry weight, and water content. An efficient antioxidant mechanism was present in quinoa, activated by salts during germination and early seedling growth, as shown by the activities of antioxidant enzymes. Total antioxidant capacity was always higher under salt stress than in water. Moreover, osmotic and ionic stress factors had different degrees of influence on germination and development. PMID:25139769
The oxygen requirement of germinating flax seeds
NASA Astrophysics Data System (ADS)
Kuznetsov, O.; Hasenstein, K.
Experiments for earth orbit are typically prepared on the ground and often germinated in orbit in order to study gravity effects on developing seedlings. Germination requires the breakdown of storage compounds and respiration. In orbit the formation of a water layer around the seed may further limit oxygen availability. Therefore, the oxygen content of the available gas volume is one of the limiting factors for seed germination. In preparation for an upcoming shuttle experiment (MICRO on STS-107) we studied germination and growth of flax (Linum usitatissimum L.) seedlings in the developed hardware. We tested per seed chamber (gas volume = 14 mL, O2 = 2.9 mL) between 4 to 32 seeds glued to germination paper by 1% (w/v) gum guar. A lexan cover and a gasket hermetically sealed each of the eight chambers. For imbibition of the seeds a previously optimized amount of distilled water was dispensed through sealed inlets. The seedlings were allowed to grow for either 32 to 48 h on a clinostat or without microgravity simulation. Then their root length was measured. With 32 seeds per chamber, four times the intended number of seeds for the flight, the germination rate decreased from 94 to 69%, and the root length was reduced by 20%. Experiments on the germination and root length in controlled atmospheres (5, 10, 15 and 21% O2 ) suggest that germination and growth for two days requires about 200 :l of O (1 mL air) per seed. Our2 experiments correlate oxygen dependency from seed mass and germination temperature, and analyze accumulation of gaseous metabolites (supported by NASA grant NAG10-0190).
2014-01-01
Phytotoxic activity of Ocimum tenuiflorum (Lamiaceae) plant extracts was investigated against the germination and seedling growth of cress (Lepidium sativum), lettuce (Lactuca sativa), alfalfa (Medicago sativa), Italian ryegrass (Lolium multiflorum), barnyard grass (Echinochloa crus-galli), and timothy (Phleum pratense) at four different concentrations. The plant extracts at concentrations greater than 30 mg dry weight equivalent extract mL−1 reduced significantly the total germination percent (GP), germination index (GI), germination energy (GE), speed of emergence (SE), seedling vigour index (SVI), and coefficient of the rate of germination (CRG) of all test species except barnyard grass and GP of lettuce. In contrast, time required for 50% germination (T 50) and mean germination time (MGT) were increased at the same or higher than this concentration. The increasing trend of T 50 and MGT and the decreasing trend of other indices indicated a significant inhibition or delay of germination of the test species by O. tenuiflorum plant extracts and vice versa. In addition, the shoot and root growth of all test species were significantly inhibited by the extracts at concentrations greater than 10 mg dry weight equivalent extract mL−1. The I 50 values for shoot and root growth were ranged from 26 to 104 mg dry weight equivalent extract mL−1. Seedling growth was more sensitive to the extracts compared to seed germination. Results of this study suggest that O. tenuiflorum plant extracts have phytotoxic properties and thus contain phytotoxic substances. Isolation and characterization of those substances from this plant may act as a tool for new natural, biodegradable herbicide development to control weeds. PMID:25032234
Islam, A K M Mominul; Kato-Noguchi, Hisashi
2014-01-01
Phytotoxic activity of Ocimum tenuiflorum (Lamiaceae) plant extracts was investigated against the germination and seedling growth of cress (Lepidium sativum), lettuce (Lactuca sativa), alfalfa (Medicago sativa), Italian ryegrass (Lolium multiflorum), barnyard grass (Echinochloa crus-galli), and timothy (Phleum pratense) at four different concentrations. The plant extracts at concentrations greater than 30 mg dry weight equivalent extract mL(-1) reduced significantly the total germination percent (GP), germination index (GI), germination energy (GE), speed of emergence (SE), seedling vigour index (SVI), and coefficient of the rate of germination (CRG) of all test species except barnyard grass and GP of lettuce. In contrast, time required for 50% germination (T 50) and mean germination time (MGT) were increased at the same or higher than this concentration. The increasing trend of T 50 and MGT and the decreasing trend of other indices indicated a significant inhibition or delay of germination of the test species by O. tenuiflorum plant extracts and vice versa. In addition, the shoot and root growth of all test species were significantly inhibited by the extracts at concentrations greater than 10 mg dry weight equivalent extract mL(-1). The I 50 values for shoot and root growth were ranged from 26 to 104 mg dry weight equivalent extract mL(-1). Seedling growth was more sensitive to the extracts compared to seed germination. Results of this study suggest that O. tenuiflorum plant extracts have phytotoxic properties and thus contain phytotoxic substances. Isolation and characterization of those substances from this plant may act as a tool for new natural, biodegradable herbicide development to control weeds.
Sullivan, Joe H.; Muhammad, DurreShahwar; Warpeha, Katherine M.
2014-01-01
UV-radiation elicits a suite of developmental (photomorphogenic) and protective responses in plants, but responses early post-germination have received little attention, particularly in intensively bred plants of economic importance. We examined germination, hypocotyl elongation, leaf pubescence and subcellular responses of germinating and/or etiolated soybean (Glycine max (L.) Merr.) seedlings in response to treatment with discrete wavelengths of UV-A or UV-B radiation. We demonstrate differential responses of germinating/young soybean seedlings to a range of UV wavelengths that indicate unique signal transduction mechanisms regulate UV-initiated responses. We have investigated how phenylalanine, a key substrate in the phenylpropanoid pathway, may be involved in these responses. Pubescence may be a key location for phenylalanine-derived protective compounds, as UV-B irradiation increased pubescence and accumulation of UV-absorbing compounds within primary leaf pubescence, visualized by microscopy and absorbance spectra. Mass spectrometry analysis of pubescence indicated that sinapic esters accumulate in the UV-irradiated hairs compared to unirradiated primary leaf tissue. Deleterious effects of some UV-B wavelengths on germination and seedling responses were reduced or entirely prevented by inclusion of phenylalanine in the growth media. Key effects of phenylalanine were not duplicated by tyrosine or tryptophan or sucrose, nor is the specificity of response due to the absorbance of phenylalanine itself. These results suggest that in the seed-to-seedling transition, phenylalanine may be a limiting factor in the development of initial mechanisms of UV protection in the developing leaf. PMID:25549094
Wu, Wei-Hua; Chen, Yi-Fang
2016-01-01
The phytohormone abscisic acid (ABA) plays important roles during seed germination and early seedling development. Here, we characterized the function of the Arabidopsis WRKY6 transcription factor in ABA signaling. The transcript of WRKY6 was repressed during seed germination and early seedling development, and induced by exogenous ABA. The wrky6-1 and wrky6-2 mutants were ABA insensitive, whereas WRKY6-overexpressing lines showed ABA-hypersensitive phenotypes during seed germination and early seedling development. The expression of RAV1 was suppressed in the WRKY6-overexpressing lines and elevated in the wrky6 mutants, and the expression of ABI3, ABI4, and ABI5, which was directly down-regulated by RAV1, was enhanced in the WRKY6-overexpressing lines and repressed in the wrky6 mutants. Electrophoretic mobility shift and chromatin immunoprecipitation assays showed that WRKY6 could bind to the RAV1 promoter in vitro and in vivo. Overexpression of RAV1 in WRKY6-overexpressing lines abolished their ABA-hypersensitive phenotypes, and the rav1 wrky6-2 double mutant showed an ABA-hypersensitive phenotype, similar to rav1 mutant. Together, the results demonstrated that the Arabidopsis WRKY6 transcription factor played important roles in ABA signaling by directly down-regulating RAV1 expression. PMID:26829043
Barba-Espin, Gregorio; Nicolas, Eduardo; Almansa, Maria Soledad; Cantero-Navarro, Elena; Albacete, Alfonso; Hernández, José Antonio; Díaz-Vivancos, Pedro
2012-10-01
In this work we investigate the effect of the imbibition of pea seeds with different thioproline (TP) concentrations on the germination percentage and the early growth of the seedlings. The interaction between TP and hydrogen peroxide (H₂O₂) treatments is also analysed in order to test if any synergy in germination and growth occurs. Although the imbibition of pea seeds in the presence of TP did not significantly improve the germination percentage, TP and/or H₂O₂ pre-treatments increased seedlings growth. This increase in seedling growth was reduced by abscisic acid (ABA) addition. Imbibition of pea seeds in the presence of ABA also reduced the endogenous H₂O₂ contents of pea seedlings in control and TP-treated seeds. The incubation of pea seeds with TP and/or H₂O₂ in presence or absence of ABA decreased the activity of H₂O₂-scavenging enzymes. The increase of the endogenous H₂O₂ contents observed in TP and/or H₂O₂ treatments in absence of ABA could be correlated with the decrease in these activities. Finally, the hormone profile of pea seedlings was investigated. The results show that the increase in seedling growth is correlated with a decrease in ABA in samples pre-treated with H₂O₂ and TP + H₂O₂. Nevertheless, no significant differences in endogenous ABA concentration were observed with the TP pre-treatment. This paper suggests a relationship between endogenous H₂O₂ contents and plant growth, so reinforcing the intricate crosstalk between reactive oxygen species (ROS) and plant hormones in seed germination signalling and early seedling development. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Shearin, Zackery R. C.; Filipek, Matthew; Desai, Rushvi; Bickford, Wesley A.; Kowalski, Kurt P.; Clay, Keith
2018-01-01
Background and aimsWe characterized fungal endophytes of seeds of invasive, non-native Phragmites from three sites in the Great Lakes region to determine if fungal symbiosis could contribute to invasiveness through their effects on seed germination and seedling growth.MethodsField-collected seeds were surface sterilized and plated on agar to culture endophytes for ITS sequencing. Prevalence of specific endophytes from germinated and non-germinated seeds, and from seedlings, was compared.ResultsOne-third of 740 seeds yielded endophyte isolates. Fifteen taxa were identified with Alternaria sp. representing 54% of all isolates followed by Phoma sp. (21%) and Penicillium corylophilum (12%). Overall germination of seeds producing an isolate (36%) was significantly higher than seeds not producing an isolate (20%). Penicillium in particular was strongly associated with increased germination of seeds from one site. Sixty-three isolates and 11 taxa were also obtained from 30 seedlings where Phoma, Penicillium and Alternaria respectively were most prevalent. There was a significant effect of isolating an endophyte from the seed on seedling growth.ConclusionsThese results suggest that many endophyte taxa are transmitted in seeds and can increase seed germination and seedling growth of invasive Phragmites. The role of fungal endophytes in host establishment, growth and invasiveness in nature requires further research.
Early growth stages salinity stress tolerance in CM72 x Gairdner doubled haploid barley population
Angessa, Tefera Tolera; Zhang, Xiao-Qi; Zhou, Gaofeng; Broughton, Sue; Zhang, Wenying
2017-01-01
A doubled haploid (DH) population of barley (Hordeum vulgare L.) generated from salinity tolerant genotype CM72 and salinity sensitive variety Gairdner was studied for salinity stress tolerance at germination, seedling emergence and first leaf full expansion growth stages. Germination study was conducted with deionized water, 150 mM and 300 mM NaCl treatments. Seedling stage salinity tolerance was conducted with three treatments: control, 150 mM NaCl added at seedling emergence and first leaf full expansion growth stages. Results from this study revealed transgressive phenotypic segregations for germination percentage and biomass at seedling stage. Twelve QTL were identified on chromosomes 2H–6H each explaining 10–25% of the phenotypic variations. A QTL located at 176.5 cM on chromosome 3H was linked with fresh weight per plant and dry weight per plant in salinity stress induced at first leaf full expansion growth stage, and dry weight per plant in salinity stress induced at seedling emergence. A stable QTL for germination at both 150 and 300 mM salinity stress was mapped on chromosome 2H but distantly located from a QTL linked with seedling stage salinity stress tolerance. QTL, associated markers and genotypes identified in this study play important roles in developing salinity stress tolerant barley varieties. PMID:28640858
Zhang, Yan-Yan; Wu, Kun-Lin; Zhang, Jian-Xia; Deng, Ru-Fang; Duan, Jun; Teixeira da Silva, Jaime A.; Huang, Wei-Chang; Zeng, Song-Jun
2015-01-01
This paper documents the key anatomical features during the development of P. armeniacum zygotic embryos and their ability to germinate asymbiotically in vitro. This study also examines the effect of media and seed pretreatments on seed germination and subsequent seedling growth. Seeds collected from pods 45 days after pollination (DAP) did not germinate while 95 DAP seeds displayed the highest seed germination percentage (96.2%). Most seedlings (50%) developed to stage 5 from 110 DAP seeds whose compact testa had not yet fully formed. Suspensor cells were vacuolated, which enabled the functional uptake of nutrients. The optimum basal medium for seed germination and subsequent protocorm development was eighth-strength Murashige and Skoog (1/8MS) for 95 DAP seeds and ¼MS for 110 DAP seeds. Poor germination was displayed by 140 DAP seeds with a compact testa. Pretreatment of dry mature seeds (180 DAP) with 1.0% sodium hypochlorite solution for 90 min or 40 kHz of ultrasound for 8 min improved germination percentage from 0 to 29.2% or to 19.7%, respectively. Plantlets that were at least 5 cm in height were transplanted to a Zhijing stone substrate for orchids, and 85.3% of plantlets survived 180 days after transplanting. PMID:26559888
Effect of anatase nanoparticles (TiO2) on parsley seed germination (Petroselinum crispum) in vitro.
Dehkourdi, Elahe Hashemi; Mosavi, Mousa
2013-11-01
Nano priming is a new method for the increase of seedling vigor and improvement of germination percentage and seedling growth. The experiments to evaluate the effect of different concentrations of nano-anatase on germination parameters of parsley as a completely randomized design with five replications were performed in a tissue culture laboratory of the Department of Horticulture, Shahid Chamran University of Ahvaz. In addition, nano-anatase at four concentrations (10, 20, 30, and 40 mg/ml) was added to the Murashige and Skoog medium. At the end of the experiment, the percentage of germination, germination rate index, root and shoot length, fresh weight of seedlings, vigor index, and chlorophyll content were evaluated. The results showed that an increase in the concentration of nano-anatase caused a significant increase in the percentage of germination, germination rate index, root and shoot length, fresh weight, vigor index, and chlorophyll content of seedlings. The best concentration of nano-anatase was 30 mg/ml.
Gomaa, Nasr H; Picó, F Xavier
2011-06-01
Water-limited hot environments are good examples of hyper-aridity. Trees are scarce in these environments but some manage to survive, such as the tree Moringa peregrina. Understanding how trees maintain viable populations in extremely arid environments may provide insight into the adaptive mechanisms by which trees cope with extremely arid weather conditions. This understanding is relevant to the current increasing aridity in several regions of the world. Seed germination experiments were conducted to assess variation in seed mass, seed germination, and seedling traits of Moringa peregrina plants and the correlations among these traits. A seed burial experiment was also designed to study the fate of M. peregrina seeds buried at two depths in the soil for two time periods. On average, seeds germinated in three days and seedling shoots grew 0.7 cm per day over three weeks. Larger seeds decreased germination time and increased seedling growth rates relative to smaller seeds. Seeds remained quiescent in the soil and germination was very high at both depths and burial times. The after-ripening time of Moringa peregrina seeds is short and seeds germinate quickly after imbibition. Plants of M. peregrina may increase in hyper-arid environments from seeds with larger mass, shorter germination times, and faster seedling growth rates. The results also illustrate the adjustment in allocation to seed biomass and correlations among seed and seedling traits that allows M. peregrina to be successful in coping with aridity in its environment.
2017-01-01
The present study evaluated the effects of glyphosate on Pisum sativum germination as well as its effect on the physiology and biochemistry of germinated seedlings. Different physico-chemical biomarkers, viz., chlorophyll, root and shoot length, total protein and soluble sugar, along with sodium and potassium concentration, were investigated in germinated seedlings at different glyphosate concentrations. This study reports the influence of different concentrations of glyphosate on pea seeds and seedlings. Physicochemical biomarkers were significantly changed by glyphosate exposure after 15 days. The germination of seedlings under control conditions (0 mg/L) was 100% after 3 days of treatment but at 3 and 4 mg/L glyphosate, germination was reduced to 55 and 40%, respectively. Physiological parameters like root and shoot length decreased monotonically with increasing glyphosate concentration, at 14 days of observation. Average root and shoot length (n=30 in three replicates) were reduced to 14.7 and 17.6%, respectively, at 4 mg/L glyphosate. Leaf chlorophyll content also decreased, with a similar trend to root and shoot length, but the protein content initially decreased and then increased with an increase in glyphosate concentration to 3 mg/L. The study suggests that glyphosate reduces the soluble sugar content significantly, by 21.6% (v/v). But internal sodium and potassium tissue concentrations were significantly altered by glyphosate exposure with increasing concentrations of glyphosate. Biochemical and physiological analysis also supports the inhibitory effect of glyphosate on seed germination and biochemical effects on seedlings. PMID:28728354
Germination and seedling establishment in orchids: a complex of requirements.
Rasmussen, Hanne N; Dixon, Kingsley W; Jersáková, Jana; Těšitelová, Tamara
2015-09-01
Seedling recruitment is essential to the sustainability of any plant population. Due to the minute nature of seeds and early-stage seedlings, orchid germination in situ was for a long time practically impossible to observe, creating an obstacle towards understanding seedling site requirements and fluctuations in orchid populations. The introduction of seed packet techniques for sowing and retrieval in natural sites has brought with it important insights, but many aspects of orchid seed and germination biology remain largely unexplored. The germination niche for orchids is extremely complex, because it is defined by requirements not only for seed lodging and germination, but also for presence of a fungal host and its substrate. A mycobiont that the seedling can parasitize is considered an essential element, and a great diversity of Basidiomycota and Ascomycota have now been identified for their role in orchid seed germination, with fungi identifiable as imperfect Rhizoctonia species predominating. Specificity patterns vary from orchid species employing a single fungal lineage to species associating individually with a limited selection of distantly related fungi. A suitable organic carbon source for the mycobiont constitutes another key requirement. Orchid germination also relies on factors that generally influence the success of plant seeds, both abiotic, such as light/shade, moisture, substrate chemistry and texture, and biotic, such as competitors and antagonists. Complexity is furthermore increased when these factors influence seeds/seedling, fungi and fungal substrate differentially. A better understanding of germination and seedling establishment is needed for conservation of orchid populations. Due to the obligate association with a mycobiont, the germination niches in orchid species are extremely complex and varied. Microsites suitable for germination can be small and transient, and direct observation is difficult. An experimental approach using several levels of environmental manipulation/control is recommended. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Uptake of Seeds Secondary Metabolites by Virola surinamensis Seedlings
Kato, Massuo Jorge; Yoshida, Massayoshi; Lopes, Norberto Peporine; da Silva, Denise Brentan; Cavalheiro, Alberto José
2012-01-01
The major secondary metabolites and fatty acids occurring in the seeds of Virola surinamensis were monitored by GC-MS during germination and seedling development. The role as carbon source for seedling development was indicated considering that both classes of compounds were similarly consumed in the seeds and that no selective consumption of compounds could be detected. PMID:22505921
Tree seedling response to LED spectra: Implications for forest restoration
Antonio Montagnoli; R. Kasten Dumroese; Mattia Terzaghi; Jeremiah R. Pinto; Nicoletta Fulgaro; Gabriella Stefania Scippa; Donato Chiatante
2018-01-01
We found that different spectra, provided by light-emitting diodes or a fluorescent lamp, caused different photomorphological responses depending on tree seedling type (coniferous or broad-leaved), species, seedling development stage, and seedling fraction (shoot or root). For two conifers (Picea abies and Pinus sylvestris) soon after germination (â¤40 days), more...
Aschenbrenner, Anna-Katharina; Amrehn, Evelyn; Bechtel, Lisa; Spring, Otmar
2015-04-01
Sunflower trichomes fully develop on embryonic plumula within 3 days after start of germination. Toxic sesquiterpene lactones are produced immediately thereafter thus protecting the apical bud of the seedling against herbivory. Helianthus annuus harbors non-glandular and two different types of multicellular glandular trichomes, namely the biseriate capitate glandular trichomes and the uniseriate linear glandular trichomes. The development of capitate glandular trichomes is well known from anther tips on sunflower disk florets, but not from leaves and no information is yet available on the development of the linear glandular trichomes. Scanning electron microscopy of sunflower seedlings unravelled that within the first 40 h of seed germination all three types of trichomes started to emerge on primordia of the first true leaves. Within the following 20-30 h trichomes developed from trichoblasts to fully differentiated hairs. Gene expression studies showed that genes involved in the trichome-based sesquiterpene lactone formation were up-regulated between 72 and 96 h after start of germination. Metabolite profiling with HPLC confirmed the synthesis of sesquiterpene lactones which may contribute to protect the germinating seedlings from herbivory. The study has shown that sunflower leaf primordia can serve as a fast and easy to handle model system for the investigation of trichome development in Asteraceae.
Asymbiotic in vitro seed propagation of Dendrobium.
Teixeira da Silva, Jaime A; Tsavkelova, Elena A; Ng, Tzi Bun; Parthibhan, S; Dobránszki, Judit; Cardoso, Jean Carlos; Rao, M V; Zeng, Songjun
2015-10-01
The ability to germinate orchids from seeds in vitro presents a useful and viable method for the propagation of valuable germplasm, maintaining the genetic heterogeneity inherent in seeds. Given the ornamental and medicinal importance of many species within the genus Dendrobium, this review explores in vitro techniques for their asymbiotic seed germination. The influence of abiotic factors (such as temperature and light), methods of sterilization, composition of basal media, and supplementation with organic additives and plant growth regulators are discussed in context to achieve successful seed germination, protocorm formation, and further seedling growth and development. This review provides both a basis for the selection of optimal conditions, and a platform for the discovery of better ones, that would allow the development of new protocols and the exploration of new hypotheses for germination and conservation of Dendrobium seeds and seedlings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kueppers, Lara; Faist, Akasha; Ferrenberg, Scott
Accurately predicting upslope shifts in subalpine tree ranges with warming requires understanding how future forest populations will be affected by climate change, as these are the seed sources for new tree line and alpine populations. Early life history stages are particularly sensitive to climate and are also influenced by genetic variation among populations. Here, we tested the climate sensitivity of germination and initial development for two widely distributed subalpine conifers, using controlled-environment growth chambers with one temperature regime from subalpine forest in the Colorado Rocky Mountains and one 5 °C warmer, and two soil moisture levels. We also tracked germinationmore » rate and timing, rate of seedling development, and seedling morphology for two seed provenances separated by ~300 m elevation. Warming advanced germination timing and initial seedling development by a total of ~2 weeks, advances comparable to mean differences between provenances. Advances were similar for both provenances and species; however, warming reduced the overall germination rate, as did low soil moisture, only for Picea engelmannii. A three-year field warming and watering experiment planted with the same species and provenances yielded responses qualitatively consistent with the lab trials. Altogether these experiments indicate that in a warmer, drier climate, P. engelmannii germination, and thus regeneration, could decline, which could lead to declining subalpine forest populations, while Pinus flexilis forest populations could remain robust as a seed source for upslope range shifts.« less
Kueppers, Lara; Faist, Akasha; Ferrenberg, Scott; ...
2017-11-11
Accurately predicting upslope shifts in subalpine tree ranges with warming requires understanding how future forest populations will be affected by climate change, as these are the seed sources for new tree line and alpine populations. Early life history stages are particularly sensitive to climate and are also influenced by genetic variation among populations. Here, we tested the climate sensitivity of germination and initial development for two widely distributed subalpine conifers, using controlled-environment growth chambers with one temperature regime from subalpine forest in the Colorado Rocky Mountains and one 5 °C warmer, and two soil moisture levels. We also tracked germinationmore » rate and timing, rate of seedling development, and seedling morphology for two seed provenances separated by ~300 m elevation. Warming advanced germination timing and initial seedling development by a total of ~2 weeks, advances comparable to mean differences between provenances. Advances were similar for both provenances and species; however, warming reduced the overall germination rate, as did low soil moisture, only for Picea engelmannii. A three-year field warming and watering experiment planted with the same species and provenances yielded responses qualitatively consistent with the lab trials. Altogether these experiments indicate that in a warmer, drier climate, P. engelmannii germination, and thus regeneration, could decline, which could lead to declining subalpine forest populations, while Pinus flexilis forest populations could remain robust as a seed source for upslope range shifts.« less
Kuprewicz, Erin K.
2015-01-01
Scatter hoarding of seeds by animals contributes significantly to forest-level processes, including plant recruitment and forest community composition. However, the potential positive and negative effects of caching on seed survival, germination success, and seedling survival have rarely been assessed through experimental studies. Here, I tested the hypothesis that seed burial mimicking caches made by scatter hoarding Central American agoutis (Dasyprocta punctate) enhances seed survival, germination, and growth by protecting seeds from seed predators and providing favorable microhabitats for germination. In a series of experiments, I used simulated agouti seed caches to assess how hoarding affects seed predation by ground-dwelling invertebrates and vertebrates for four plant species. I tracked germination and seedling growth of intact and beetle-infested seeds and, using exclosures, monitored the effects of mammals on seedling survival through time. All experiments were conducted over three years in a lowland wet forest in Costa Rica. The majority of hoarded palm seeds escaped predation by both invertebrates and vertebrates while exposed seeds suffered high levels of infestation and removal. Hoarding had no effect on infestation rates of D. panamensis, but burial negatively affected germination success by preventing endocarp dehiscence. Non-infested palm seeds had higher germination success and produced larger seedlings than infested seeds. Seedlings of A. alatum and I. deltoidea suffered high mortality by seed-eating mammals. Hoarding protected most seeds from predators and enhanced germination success (except for D. panamensis) and seedling growth, although mammals killed many seedlings of two plant species; all seedling deaths were due to seed removal from the plant base. Using experimental caches, this study shows that scatter hoarding is beneficial to most seeds and may positively affect plant propagation in tropical forests, although tradeoffs in seed survival do exist. PMID:25970832
Karmous, Inès; Trevisan, Rafael; El Ferjani, Ezzeddine; Chaoui, Abdelilah; Sheehan, David
2017-01-01
In agriculture, heavy metal contamination of soil interferes with processes associated with plant growth, development and productivity. Here, we describe oxidative and redox changes, and deleterious injury within cotyledons and seedlings caused by exposure of germinating (Phaseolus vulgaris L. var. soisson nain hâtif) seeds to copper (Cu). Cu induced a marked delay in seedling growth, and was associated with biochemical disturbances in terms of intracellular oxidative status, redox regulation and energy metabolism. In response to these alterations, modulation of activities of antioxidant proteins (thioredoxin and glutathione reductase, peroxiredoxin) occurred, thus preventing oxidative damage. In addition, oxidative modification of proteins was detected in both cotyledons and seedlings by one- and two-dimensional electrophoresis. These modified proteins may play roles in redox buffering. The changes in activities of redox proteins underline their fundamental roles in controlling redox homeostasis. However, observed differential redox responses in cotyledon and seedling tissues showed a major capacity of the seedlings' redox systems to protect the reduced status of protein thiols, thus suggesting quantitatively greater antioxidant protection of proteins in seedlings compared to cotyledon. To our knowledge, this is the first comprehensive redox biology investigation of the effect of Cu on seed germination.
Sodium chloride effects on lipase activity in germinating rape seeds.
Ben Miled, D D; Zarrouk, M; Chérif, A
2000-12-01
Seeds of rape (Brassica napus L.) were germinated at various NaCl concentrations up to 200 mM. Germinating levels, seedling growth, triacylglycerol mobilization and lipase activity were investigated. High salt concentrations resulted in retardation of seed germination. Seedling growth as measured by radicle length was severely reduced by NaCl doses higher than 50 mM. Moreover, the mobilization of storage oil in control rapeseed seedlings, started about 24 h after imbibition. As for germination and growth, elevated salt concentrations are found to delay triacylglycerol degradation. Experiments using triolein as substrate indicated clearly that lipase activity was inhibited by salt treatment.
Souza, Aline Das Graças; Smiderle, Oscar Jose; Bianchi, Valmor Joao
2018-04-26
This study aimed to evaluate the efficiency of using the computerized imaging seed analysis system (SAS) in the biometric and morphophysiological characterization of seeds and the initial growth of seedlings from peach rootstocks. The experimental design was completely randomized with five replicates of 20 seeds. The variables analyzed were degree of seed humidity, length and width of seeds measured by SAS technology and manual measurements, mean germination time, germination percentage, radicle length and width, taproot length, length of the aerial part and taproot/aerial part ratio. The highest seed length, germination percentage (100%) and lower germination time (11.3), were obtained with the cv. Capdeboscq while, 'Tsukuba 1', 2' and 3' had intermediate seedlings length, varying from 1.55 to 1.65 cm with mean germination times between 14.5 and 18.0 days and average germination percentage of 96%. The computerized analysis of images is fast and efficient for biometric evaluations such as seed width and length, as well as initial growth of peach tree seedlings. The cvs Capdeboscq, Flordaguard and Tsukuba 2 presented greater radicle width, length and a mean taproot/aerial part ratio equal to 2, as well as higher number of adventitious roots, which indicated a strong positive correlation between radicle length, taproot length and initial seedling growth. The continuity of the research will certainly allow the development of reliable procedures for other species, besides allowing the identification of wider alternatives for the use of this system for the expansion of knowledge in the areas of physiology and evaluation of the physiological potential of seeds. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Germination and early plant development of 10 plant species exposed to Nano TiO2 and CeO2
Ten agronomic plant species were exposed to different concentrations of nano-TiO2 or CeO2 (0, 250, 500 and 1000 ug/l) and followed to examine effects on germination and early seedling development. For TiO2, cabbage showed increased and corn decreased percent germination, while ...
Organ-coordinated response of early post-germination mahogany seedlings to drought.
Horta, Lívia P; Braga, Márcia R; Lemos-Filho, José P; Modolo, Luzia V
2014-04-01
Water deficit tolerance during post-germination stages is critical for seedling recruitment. In this work, we studied the effect of water deficit on morphological and biochemical responses in different organs of newly germinated mahogany (Swietenia macrophylla King) seedlings, a woody species that occurs in the Amazon rainforest. The root : shoot ratio increased under water deficit. The leaf number and water potential were not altered, although reductions in leaf area and stomatal conductance were observed. Osmotic potential became more negative in leaves of seedlings under severe stress. Water deficit increased fructose, glucose, sucrose and myo-inositol levels in leaves. Stems accumulated fructose, glucose and l-proline. Nitric oxide (NO) levels increased in the vascular cylinder of roots under severe stress while superoxide anion levels decreased due to augmented superoxide dismutase activity in this organ. Water deficit induced glutathione reductase activity in both roots and stems. Upon moderate or severe stress, catalase activity decreased in leaves and remained unaffected in the other seedling organs, allowing for an increase of hydrogen peroxide (H2O2) levels in leaves. Overall, the increase of signaling molecules in distinct organs-NO in roots, l-proline in stems and H2O2 and myo-inositol in leaves-contributed to the response of mahogany seedlings to water deficit by triggering biochemical processes that resulted in the attenuation of oxidative stress and the establishment of osmotic adjustment. Therefore, this body of evidence reveals that the development of newly germinated mahogany seedlings may occur in both natural habitats and crop fields even when water availability is greatly limited.
The role of onion-associated fungi in bulb mite infestation and damage to onion seedlings.
Ofek, Tal; Gal, Shira; Inbar, Moshe; Lebiush-Mordechai, Sara; Tsror, Leah; Palevsky, Eric
2014-04-01
In Israel Rhizoglyphus robini is considered to be a pest in its own right, even though the mite is usually found in association with fungal pathogens. Plant protection recommendations are therefore to treat germinating onions seedlings, clearly a crucial phase in crop production, when mites are discovered. The aim of this study was to determine the role of fungi in bulb mite infestation and damage to germinating onion seedlings. Accordingly we (1) evaluated the effect of the mite on onion seedling germination and survival without fungi, (2) compared the attraction of the mite to species and isolates of various fungi, (3) assessed the effect of a relatively non-pathogenic isolate of Fusarium oxysporum on mite fecundity, and (4) determined the effects of the mite and of F. oxysporum separately and together, on onion seedling germination and sprout development. A significant reduction of seedling survival was recorded only in the 1,000 mites/pot treatment, after 4 weeks. Mites were attracted to 6 out of 7 collected fungi isolates. Mite fecundity on onion sprouts infested with F. oxysporum was higher than on non-infested sprouts. Survival of seedlings was affected by mites, fungi, and their combination. Sprouts on Petri dishes after 5 days were significantly longer in the control and mite treatments than both fungi treatments. During the 5-day experiment more mites were always found on the fungi-infected sprouts than on the non-infected sprouts. Future research using suppressive soils to suppress soil pathogens and subsequent mite damage is proposed.
Tigre, R C; Silva, N H; Santos, M G; Honda, N K; Falcão, E P S; Pereira, E C
2012-10-01
Responses to germination and initial growth of Lactuca sativa (lettuce) submitted to organic extracts and purified compounds of Cladonia verticillaris ("salambaia") were analyzed in this work. The experiments were conducted in laboratory conditions using extracts and pure compounds at different concentrations. None of the assays showed any influence on the germination of L. sativa seeds using C. verticillaris extracts; however, modifications in leaf area and seedling hypocotyl and root development occurred. In the growth experiments, seedlings exposed to ether or acetone extract showed diminished hypocotyl growth in detriment to the root stimulus, compared to controls. Increases in extract concentrations led to the formation of abnormal seedlings. To determine the allelochemicals of C. verticillaris, its principal components, fumarprotocetraric and protocetraric acids, were isolated and then analyzed by high performance liquid chromatography (HPLC). When the seedlings were exposed to the two acids separately, presented increased leaf area at all concentrations. In contrast, hypocotyl and root stimulus was observed only in the presence of protocetraric acid at different concentrations. Fumarprotocetraric as well as protocetraric acids, isolated and purified from C. verticillaris and Parmotrema dilatatum respectively, influenced the development of L. sativa seedlings at high concentrations, indicating a possible bioherbicide potential of these acids. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.
Damage repair effect of He-Ne laser on wheat exposed to enhanced ultraviolet-B radiation.
Yang, Liyan; Han, Rong; Sun, Yi
2012-08-01
We explored the use of He-Ne laser on alleviating the effects of ultraviolet-B (UV-B) light on winter wheat development. Triticum aestivum L. cv. Linyuan 077038 seeds were irradiated with either UV-B (10.08 kJ m(-2) d(-1)) (enhanced UV-B) or a combination of UV-B light and the He-Ne laser (5.43 mW mm(-2)). Plants also were exposed to the He-Ne laser alone. Our results showed that enhanced UV-B produced negative effects on seed germination and seedling development. Germination rate and shoot growth decreased compared with the control. Root development was inhibited, and root length was decreased. Chlorophyll content and expression of peroxidase (POD) isozymes and their activity decreased. Seedling height and shoot biomass dropped significantly compared to the control. Implementing the He-Ne laser partially alleviated the injury of enhanced UV-B radiation, because germination rate and shoot growth were enhanced together with root development. Chlorophyll content and POD expression and activity increased. Seedling height and shoot biomass were increased. Furthermore, the use of the He-Ne laser alone showed a favorable effect on seedling growth compared with the control. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Patrick H. Brose
2011-01-01
Timely development of newly germinated oak (Quercus spp.) seedlings into competitive-sized regeneration is an essential part of the oak regeneration process. The amount of sunlight reaching the forest floor partly governs this development, and foresters often use the shelterwood system to expose oak seedlings to varying degrees of insolation. To...
S-nitrosylation triggers ABI5 degradation to promote seed germination and seedling growth
Albertos, Pablo; Romero-Puertas, María C.; Tatematsu, Kiyoshi; Mateos, Isabel; Sánchez-Vicente, Inmaculada; Nambara, Eiji; Lorenzo, Oscar
2015-01-01
Plant survival depends on seed germination and progression through post-germinative developmental checkpoints. These processes are controlled by the stress phytohormone abscisic acid (ABA). ABA regulates the basic leucine zipper transcriptional factor ABI5, a central hub of growth repression, while the reactive nitrogen molecule nitric oxide (NO) counteracts ABA during seed germination. However, the molecular mechanisms by which seeds sense more favourable conditions and start germinating have remained elusive. Here we show that ABI5 promotes growth via NO, and that ABI5 accumulation is altered in genetic backgrounds with impaired NO homeostasis. S-nitrosylation of ABI5 at cysteine-153 facilitates its degradation through CULLIN4-based and KEEP ON GOING E3 ligases, and promotes seed germination. Conversely, mutation of ABI5 at cysteine-153 deregulates protein stability and inhibition of seed germination by NO depletion. These findings suggest an inverse molecular link between NO and ABA hormone signalling through distinct posttranslational modifications of ABI5 during early seedling development. PMID:26493030
Lin, Fei; Hao, Zhanqing; Ye, Ji; Jiang, Ping
2006-08-01
This paper studied the effects of Hylocomium splendens and Rhytidiadelphus triquetrus, the main bryophytes in dark coniferous forests of Changbai Mountains, on the seed germination and seedling growth of Pinus koraiensis, Picea koraiensis and Larix olgensis. The results indicated that at definite concentrations, the water extract of H. splendens inhibited Picea koraiensis seed germination, while that of R. triquetrus promoted it. Although the water extracts of the two bryophytes had no obvious effects on the seed germination of Picea koraiensis and Larix olgensis, they expedited the occurrence of the tree species' daily germination peak. The water extracts of test bryophytes inhibited the seedling growth of P. koraiensis and Picea koraiensis, but promoted that of Larix olgensis. The living shoots of the two bryophytes had no obvious effects on the seed germination of Picea koraiensis and Larix olgensis, but delayed the daily germination peak of Picea koraiensis while promoted that of Larix olgensis, andthe killed shoots inhibited the seed germination of all test tree species. Living shoots in larger amounts promoted the seedling growth of Picea koraiensis and Larix olgensis, but killed shoots were inadverse.
Sentandreu, Maria; Leivar, Pablo; Martín, Guiomar; Monte, Elena
2012-04-01
Plants need to accurately adjust their development after germination in the underground darkness to ensure survival of the seedling, both in the dark and in the light upon reaching the soil surface. Recent studies have established that the photoreceptors phytochromes and the bHLH phytochrome interacting factors PIFs regulate seedling development to adjust it to the prevailing light environment during post-germinative growth. However, complete understanding of the downstream regulatory network implementing these developmental responses is still lacking. In a recent work, published in The Plant Cell, we report a subset of PIF3-regulated genes in dark-grown seedlings that we have named MIDAs (MISREGULATED IN DARK). Analysis of their functional relevance using mutants showed that four of them present phenotypic alterations in the dark, and that each affected a particular facet of seedling development, suggesting organ-specific branching in the signal that PIF3 relays downstream. Furthermore, our results also showed an altered response to light in seedlings with an impaired PIF3/MIDA regulatory network, indicating that these factors might also be essential to initiate and optimize the developmental adjustment of the seedling to the light environment.
Samara size versus dispersal and seedling establishment in Ailanthus altissima (Miller) Swingle.
Delgado, J A; Jimenez, M D; Gomez, A
2009-03-01
We have specifically carried out a greenhouse experiment to assess relationship between samara weight and seed success. Relationship assessed as dispersal potential, germination level, germination rate and early seedling mass for the invasive species Ailanthus altissima. For this purpose, we considered two close stands as seeds source. We found no correlation between samara size and neither germination level, germination rate, nor seedling mass, but a positive correlation with samara projected area. These results suggest that samara weight is not directly related to germination, dispersal and invasion potential neither. Nevertheless, stands differed in the invasion potential of their samaras; one stand presented samaras with higher projected area per weight unit whereas the other one presented samaras that produced heavier seedlings. Whatever the origin, (genetic or environmental) of this differences it should be advantageous for a colonizing invader species such as A. altissima since it could imply a wider range of habitats susceptible to invasion.
Oxygen requirement of germinating flax seeds.
Kuznetsov, Oleg A; Hasenstein, K H
2003-01-01
Plant experiments in earth orbit are typically prepared on the ground and germinated in orbit to study gravity effects on the developing seedlings. Germination requires the breakdown of storage compounds, and this metabolism depends upon respiration, making oxygen one of the limiting factors in seed germination. In microgravity lack of run-off of excess water requires careful testing of water dispensation and oxygen availability. In preparation for a shuttle experiment (MICRO on STS-107) we studied germination and growth of flax (Linum usitatissimum L.) seedlings in the developed hardware (Magnetic Field Chamber, MFC). We tested between four to 32 seeds per chamber (air volume=14 mL) and after 36 h measured the root length. At 90 microliters O2 per seed (32 seeds/chamber), the germination decreased from 94 to 69%, and the root length was reduced by 20%, compared to 8 seeds per chamber. Based on the percent germination and root length obtained in controlled gas mixtures between 3.6 and 21.6% O2 we determined the lower limit of reliable germination to be 10 vol. % O2 at atmospheric pressure. Although the oxygen available in the MFC's can support the intended number of seeds, the data show that seed storage and microgravity-related limitations may reduce germination. c2003 Published by Elsevier Ltd on behalf of COSPAR.
Oxygen requirement of germinating flax seeds
NASA Technical Reports Server (NTRS)
Kuznetsov, Oleg A.; Hasenstein, K. H.; Hasentein, K. H. (Principal Investigator)
2003-01-01
Plant experiments in earth orbit are typically prepared on the ground and germinated in orbit to study gravity effects on the developing seedlings. Germination requires the breakdown of storage compounds, and this metabolism depends upon respiration, making oxygen one of the limiting factors in seed germination. In microgravity lack of run-off of excess water requires careful testing of water dispensation and oxygen availability. In preparation for a shuttle experiment (MICRO on STS-107) we studied germination and growth of flax (Linum usitatissimum L.) seedlings in the developed hardware (Magnetic Field Chamber, MFC). We tested between four to 32 seeds per chamber (air volume=14 mL) and after 36 h measured the root length. At 90 microliters O2 per seed (32 seeds/chamber), the germination decreased from 94 to 69%, and the root length was reduced by 20%, compared to 8 seeds per chamber. Based on the percent germination and root length obtained in controlled gas mixtures between 3.6 and 21.6% O2 we determined the lower limit of reliable germination to be 10 vol. % O2 at atmospheric pressure. Although the oxygen available in the MFC's can support the intended number of seeds, the data show that seed storage and microgravity-related limitations may reduce germination. c2003 Published by Elsevier Ltd on behalf of COSPAR.
Oxygen requirement of germinating flax seeds
NASA Astrophysics Data System (ADS)
Kuznetsov, Oleg A.; Hasenstein, K. H.
2003-05-01
Plant experiments in earth orbit are typically prepared on the ground and germinated in orbit to study gravity effects on the developing seedlings. Germination requires the breakdown of storage compounds, and this metabolism depends upon respiration, making oxygen one of the limiting factors in seed germination. In microgravity lack of run-off of excess water requires careful testing of water dispensation and oxygen availability. In preparation for a shuttle experiment (MICRO on STS-107) we studied germination and growth of flax ( Linum usitatissimum L.) seedlings in the developed hardware (Magnetic Field Chamber, MFC). We tested between four to 32 seeds per chamber (air volume = 14 mL) and after 36 h measured the root length. At 90 μl O 2 per seed (32 seeds/chamber), the germination decreased from 94 to 69%, and the root length was reduced by 20%, compared to 8 seeds per chamber. Based on the percent germination and root length obtained in controlled gas mixtures between 3.6 and 21.6% O 2 we determined the lower limit of reliable germination to be 10 vol. % O 2 at atmospheric pressure. Although the oxygen available in the MFC's can support the intended number of seeds, the data show that seed storage and microgravity-related limitations may reduce germination.
Magnetic stimulation of marigold seed
NASA Astrophysics Data System (ADS)
Afzal, I.; Mukhtar, K.; Qasim, M.; Basra, S. M. A.; Shahid, M.; Haq, Z.
2012-10-01
The effects of magnetic field treatments of French marigold seeds on germination, early seedling growth and biochemical changes of seedlings were studied under controlled conditions. For this purpose, seeds were exposed to five different magnetic seed treatments for 3 min each. Most of seed treatments resulted in improved germination speed and spread, root and shoot length, seed soluble sugars and a-amylase activity. Magnetic seed treatment with 100 mT maximally improved germination, seedling vigour and starch metabolism as compared to control and other seed treatments. In emergence experiment, higher emergence percentage (4-fold), emergence index (5-fold) and vigorous seedling growth were obtained in seeds treated with 100 mT. Overall, the enhancement of marigold seeds by magnetic seed treatment with 100 mT could be related to enhanced starch metabolism. The results suggest that magnetic field treatments of French marigold seeds have the potential to enhance germination, early growth and biochemical parameters of seedlings.
Cytokinins and Expression of SWEET, SUT, CWINV and AAP Genes Increase as Pea Seeds Germinate
Jameson, Paula E.; Dhandapani, Pragatheswari; Novak, Ondrej; Song, Jiancheng
2016-01-01
Transporter genes and cytokinins are key targets for crop improvement. These genes are active during the development of the seed and its establishment as a strong sink. However, during germination, the seed transitions to being a source for the developing root and shoot. To determine if the sucrose transporter (SUT), amino acid permease (AAP), Sugar Will Eventually be Exported Transporter (SWEET), cell wall invertase (CWINV), cytokinin biosynthesis (IPT), activation (LOG) and degradation (CKX) gene family members are involved in both the sink and source activities of seeds, we used RT-qPCR to determine the expression of multiple gene family members, and LC-MS/MS to ascertain endogenous cytokinin levels in germinating Pisum sativum L. We show that genes that are actively expressed when the seed is a strong sink during its development, are also expressed when the seed is in the reverse role of being an active source during germination and early seedling growth. Cytokinins were detected in the imbibing seeds and were actively biosynthesised during germination. We conclude that, when the above gene family members are targeted for seed yield improvement, a downstream effect on subsequent seed germination or seedling vigour must be taken into consideration. PMID:27916945
Kovačec, Eva; Likar, Matevž; Regvar, Marjana
2016-05-01
Seed-associated fungal communities affect multiple parameters of seed quality at all stages of production, from seed development to post-harvest storage and germination. We therefore investigated the diversity and dynamics of fungal communities in the seeds of common buckwheat (Fagopyrum esculentum) and Tartary buckwheat (F. tataricum) from harvest to 1 y of storage. Fungal populations in seeds were relatively stable, comprised mainly of field fungi. Incidence of fungi was most likely determined by fungal interspecies direct interactions, as well as by their synthesis of volatile organic compounds. Most prominent antagonistic interactions were seen for two plant pathogens, Alternaria alternata on Botrytis cinerea. Detrimental effects of the fungi on seed germination and seedling development were related to fungal extracellular enzyme activity, and in particular to amylase, cellulase and, polyphenol oxidase. Polyphenol and tannin concentrations in buckwheat seedlings were related to fungal growth rate and intensity of fungal cellulase activity, respectively, which suggests that physical penetration of the fungi through the host tissues is probably the stimulus for the activation of plant defence reactions in these seedlings. Copyright © 2016 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Tian, Yu; Guan, Bo; Zhou, Daowei; Yu, Junbao; Li, Guangdi; Lou, Yujie
2014-01-01
A series of seed priming experiments were conducted to test the effects of different pretreatment methods to seed germination, seedling growth, and seed yield traits in maize (Zea mays L.). Results indicated that the seeds primed by gibberellins (GA), NaCl, and polyethylene glycol (PEG) reagents showed a higher imbibitions rate compared to those primed with water. The final germination percentage and germination rate varied with different reagents significantly (P < 0.05). The recommended prime reagents were GA at 10 mg/L, NaCl at 50 mM, and PEG at 15% on account of germination experiment. 15% PEG priming reagent increased shoot and root biomass of maize seedling. The shoot biomass of seedlings after presoaking the seeds with NaCl reagent was significantly higher than the seedlings without priming treatment. No significant differences of plant height, leaf number, and hundred-grain weight were observed between control group and priming treatments. Presoaking with water, NaCl (50 mM), or PEG (15%) significantly increased the hundred-grain weight of maize. Therefore, seed pretreatment is proved to be an effective technique to improve the germination performance, seedling growth, and seed yield of maize. However, when compared with the two methods, if immediate sowing is possible, presoaking is recommended to harvest better benefits compared to priming method.
Seedling Vigor in Beta vulgaris: The Artistry of Germination
USDA-ARS?s Scientific Manuscript database
Seedling vigor and stand establishment are two problems that growers have struggled with for decades. The initial conditions that a germinating seed encounters, and its ability to deal with them, affect the rate at which germination occurs, the rate of mobilization of stored energy reserves that the...
Qi, Shan-Shan; Dai, Zhi-Cong; Miao, Shi-Li; Zhai, De-Li; Si, Chun-Can; Huang, Ping; Wang, Rui-Ping; Du, Dao-Lin
2014-01-01
Background and Aims Invasive clonal plants have two reproduction patterns, namely sexual and vegetative propagation. However, seedling recruitment of invasive clonal plants can decline as the invasion process proceeds. For example, although the invasive clonal Wedelia trilobata (Asteraceae) produces numerous seeds, few seedlings emerge under its dense population canopy in the field. In this study it is hypothesized that light limitation and the presence of a thick layer of its own litter may be the primary factors causing the failure of seedling recruitment for this invasive weed in the field. Methods A field survey was conducted to determine the allocation of resources to sexual reproduction and seedling recruitment in W. trilobata. Seed germination was also determined in the field. Effects of light and W. trilobata leaf extracts on seed germination and seedling growth were tested in the laboratory. Key Results Wedelia trilobata blooms profusely and produces copious viable seeds in the field. However, seedlings of W. trilobata were not detected under mother ramets and few emerged seedlings were found in the bare ground near to populations. In laboratory experiments, low light significantly inhibited seed germination. Leaf extracts also decreased seed germination and inhibited seedling growth, and significant interactions were found between low light and leaf extracts on seed germination. However, seeds were found to germinate in an invaded field after removal of the W. trilobata plant canopy. Conclusions The results indicate that lack of light and the presence of its own litter might be two major factors responsible for the low numbers of W. trilobata seedlings found in the field. New populations will establish from seeds once the limiting factors are eliminated, and seeds can be the agents of long-distance dispersal; therefore, prevention of seed production remains an important component in controlling the spread of this invasive clonal plant. PMID:24825293
Mutagenic effects of gamma rays on soybean (Glycine max L.) germination and seedlings
NASA Astrophysics Data System (ADS)
Kusmiyati, F.; Sutarno; Sas, M. G. A.; Herwibawa, B.
2018-01-01
Narrow genetic diversity is a main problem restricting the progress of soybean breeding. One way to improve genetic diversity of plant is through mutation. The purpose of this study was to investigate effect of different dose of gamma rays as induced mutagen on physiological, morphological, and anatomical markers during seed germination and seedling growth of soybean. Seeds of soybean cultivars Dering-1 were irradiated with 11 doses of gamma rays (0, 5, 10, 20, 40, 80, 160, 320, 640, 1280, and 2560 Gy [Gray]. The research design was arranged in a completely randomized block design in three replicates. Results showed that soybean seed exposed at high doses (640, 1280, and 2560 Gy) did not survive more than 20 days, the doses were then removed from anatomical evaluation. Higher doses of gamma rays siginificantly reduced germination percentage at the first count and final count, coefficient of germination velocity, germination rate index, germination index, seedling height and seedling root length, and significantly increased mean germination time, first day of germination, last day of germination, and time spread of germination. However, the effects of gamma rays were varies for density, width, and length of stomata. The LD50 obtained based on survival percentage was 314.78 Gy. It can be concluded that very low and low doses of gamma rays (5-320 Gy) might be used to study the improvement of soybean diversity.
7 CFR 201.56 - Interpretation.
Code of Federal Regulations, 2012 CFR
2012-01-01
... considered to have germinated when it has developed those essential structures which, for the kind of seed.... In general, the following are considered to be essential structures necessary for the continued development of the seedling (although some structures may not be visible in all kinds at the time of seedling...
7 CFR 201.56 - Interpretation.
Code of Federal Regulations, 2014 CFR
2014-01-01
... considered to have germinated when it has developed those essential structures which, for the kind of seed.... In general, the following are considered to be essential structures necessary for the continued development of the seedling (although some structures may not be visible in all kinds at the time of seedling...
NASA Astrophysics Data System (ADS)
Tong, Jiayun; He, Rui; Zhang, Xiaoli; Zhan, Ruoting; Chen, Weiwen; Yang, Size
2014-03-01
The objective of this paper is to demonstrate whether air plasma can change the seed germination characteristics, seedling emergence, as well as biochemical reactivity, in Andrographis paniculata (A. paniculata) seedlings by modifying the seed coat and finding a beneficial treatment dose. Eight treatment doses and one control were used to conduct electrical conductivity determination, a germination test, a seedling emergence test and a biochemical assay. The results showed that after being treated with air plasma excited at 5950 V for 10 s, the permeability of the seeds was improved significantly, resulting in the acceleration of seed germination and seedling emergence. In the meantime, the catalase activity and catalase isoenzyme expression were also improved, while the malondialdehyde content in the seedlings was decreased (which means greater counteraction with environmental stress). After being treated with 4250 V for 10 s and 5950 V for 20 s, the seed germination was enhanced, but without an obvious change in seedling emergence. However, after treatment with 3400 V for 20 s and 5100 V for 10 s, the permeability of the seeds was decreased, resulting in a delay in seedling emergence. These results indicate that air plasma can change the physiological and biochemical characteristics of Andrographis paniculata seeds by modifying the seed coat, combined with the effects of the active plasma species, and that different treating doses have different effects.
Effect of Kelp Waste Extracts on the Growth and Development of Pakchoi (Brassica chinensis L.)
NASA Astrophysics Data System (ADS)
Zheng, Shiyan; Jiang, Jie; He, Meilin; Zou, Shanmei; Wang, Changhai
2016-12-01
To explore the effects of kelp waste extracts (KWE) on the growth and development of Brassia chinensis L., germination and greenhouse experiments were carried out under different concentrations of KWE. The results showed that a higher germination percentage (95%), associated with high germination index (8.70), germination energy (71.67%) and seedling vigor index (734.67), was obtained under a lower KWE concentration (2%) compared with the control. The radicle length (4.97 cm), fresh weight (0.32 g/10 seedlings) and dry weight (0.015 g/10 seedlings) were significantly increased in the treatment of 2% KWE. KWE also could enhance the root growth, the maximum leaf length × width and the fresh weight of plants, the optimal value of which increased by 8.37 cm, 58.14 cm2 and 7.76 g under the treatment of 10% KWE compared with the control respectively. Meanwhile, the contents of vitamin C and soluble sugars in pakchoi leaf were improved by 19.6 mg/100 g and 1.44 mg/g compared with the control, and the nitrate content was decreased by 212.27 mg/kg. Briefly, KWE could markedly stimulate the pakchoi seeds germination at a lower concentration (2%) and enhance the plant growth and quality at a higher concentration (10%).
Frank C. Sorensen
1980-01-01
Low-elevation seeds collected 6 and 2 weeks before assumed natural seed fall were stratified 1, 2, 4, 8, 16, 32, 64, and 123 days and germinated in the laboratory. Germinated seeds from all stratification periods were sown at the same time in the nursery bed. Germination and seedling measurements were taken over two growing seasons.Early collection gave...
[Research on allelopathic effects of phellamurine].
Wang, Han; Zhang, Zhao; Dai, Ling-Chao; Si, Jian-Yong; Zhang, Ben-Gang; Li, Yan-Fang; Zhang, Yang
2013-09-01
Conducted research on new allelochemicals phellamurine extracted from deciduous of Phellodendron amurense, which worked in allelopathy effect to seed germination and growth process of P. amurense and P. chinense in order to interpret the causes of rare seedlings of wild populations of P. amurense. Extracted and separated phellamurine from P. amurense deciduous, and treated the seeds of P. amurense and P. chinense in after-ripening stage and germination stage with different concentrations of phellamurine solution, then detection of the seed germination rate, germination index, seedling height, root length and seed vigor index to evaluate the allelopathic effect of phellamurine. The results show that: phellamurine solution at 0.30 g x L(-1) produce significant inhibition to seed after-ripening of P. amurense, and also the solution at 0.15 g x L(-1) produce significant inhibition to seeds germination of P. amurense; the solution at 0.15 g x L(-1) produce significant inhibition to seeds after-ripening and seeds germination of P. chinense, inhibition intensity increased with the concentration and enhanced. For both species, the presence of phellamurine can lower the seed germination rate, extend the germination time, reduce the ability of seedlings to adapt to the environment, thus the phellamurine may be one of the causes of rare seedlings in the wild population of P. amurense.
Seed handling practices for southern pines grown in containers
William H. Pawuk; James P. Barnett
1979-01-01
Cost of producing container-grown seedlings increase when containers are not fully stocked. Best use of containers requires high seed viability and low losses of newly germinated seedlings. Seed handling practices before and after sowing affect germination and seedling survival. This is a summary of seed preperation, sowing rates, disease control, and seed...
Thobunluepop, P; Pawelzik, E; Vearasilp, S
2008-10-01
This study aimed to evaluate the perspective changes of several physiological performances of rice seeds cv. KDML 105 which were coated with various seed coating substances [chemical fungicide, captan (CA) and biological coating polymers; chitosan-lignosulphonate polymer (CL) and eugenol incorporated into chitosan-lignosulphonate polymer (E + CL)] during storage (12 months). CA significantly increased seed moisture content and seed water activity through out the storage period. The qualities and viability of the seeds were seriously declined by this treatment. Moreover, CA inhibited the shoot and root development, seedling dry weight accumulation, delayed the seed germination and seedling growth rate. CA treated seeds were susceptible to stress conditions that declined the seed germination potential under cold, high moisture and temperature stress conditions. Nevertheless, CL and E + CL coating polymer could maintain seed storability, which significantly improved seed germination and seedling performances. These improvements were attributed to maintain the nutritive reserve and dehydrogenase activity in seeds. Moreover, the biological seed treatment stimulated the embryo growth and so speeding up the seedling emergence when compared untreated seeds.
Larson, Julie E; Sheley, Roger L; Hardegree, Stuart P; Doescher, Paul S; James, Jeremy J
2016-05-01
Seedling recruitment is a critical driver of population dynamics and community assembly, yet we know little about functional traits that define different recruitment strategies. For the first time, we examined whether trait relatedness across germination and seedling stages allows the identification of general recruitment strategies which share core functional attributes and also correspond to recruitment outcomes in applied settings. We measured six seed and eight seedling traits (lab- and field-collected, respectively) for 47 varieties of dryland grasses and used principal component analysis (PCA) and cluster analysis to identify major dimensions of trait variation and to isolate trait-based recruitment groups, respectively. PCA highlighted some links between seed and seedling traits, suggesting that relative growth rate and root elongation rate are simultaneously but independently associated with seed mass and initial root mass (first axis), and with leaf dry matter content, specific leaf area, coleoptile tissue density and germination rate (second axis). Third and fourth axes captured separate tradeoffs between hydrothermal time and base water potential for germination, and between specific root length and root mass ratio, respectively. Cluster analysis separated six recruitment types along dimensions of germination and growth rates, but classifications did not correspond to patterns of germination, emergence or recruitment in the field under either of two watering treatments. Thus, while we have begun to identify major threads of functional variation across seed and seedling stages, our understanding of how this variation influences demographic processes-particularly germination and emergence-remains a key gap in functional ecology.
Vivipary and offspring survival in the epiphytic cactus Epiphyllum phyllanthus (Cactaceae).
Cota-Sánchez, J Hugo; Abreu, Deusa D
2007-01-01
Vivipary, the germination of seeds before they are shed from the parent plant, is a rare event in angiosperms involving complex ecophysiological processes. Pseudovivipary and cryptovivipary occur in approximately 30 (2%) species of the cactus family. A remarkable case of vivipary in Epiphyllum phyllanthus is described here. Information is provided regarding the biology of viviparous fruits, morphology, mortality, survival rates of viviparous offspring, and some eco-evolutionary implications of this reproductive strategy in the Cactaceae. This epiphytic cactus has no host-specific relationship. A low proportion (33.3%) of individuals produced viviparous fruits. Seed number/fruit varied from 197 to 230 with percentage of viviparous germination from 97.5% to 99%. The viviparous seedlings exhibited normal development and were no different from non-viviparous offspring. Transplanting experiments showed that the first week is critical for seedling establishment, and high mortality occurred in the three treatments used: 69% on the phorophyte surface, 58.6% on the ground, and 44.8% under controlled conditions. The number of survivors gradually stabilized, and the contribution to establishment was comparable in each of the treatments after the acclimation phase. It is suggested that vivipary is associated with thermoregulation, parental care, conspecific nursing, and rapid seedling establishment. Germination is not a limiting factor in the perpetuation of this viviparous species, but seedling establishment is. In viviparous individuals of E. phyllanthus, seedling mortality during establishment rather than failure to germinate within the fruit is a limiting factor affecting local population density. Overall, viviparity is an intrinsic, genetic event involving high metabolic costs favouring germination and dispersal of the fittest offspring regardless of substrate and environmental conditions.
Effects of diesel and kerosene on germination and growth of coastal wetland plant species.
Kim, Kee Dae
2014-11-01
This study aims to investigate effects of diesel and kerosene on seed germination and seedling growth among coastal wetland plants to select species that can be used for the restoration and revegetation of oil-polluted habitats. Tests on 51 species were performed in Petri dishes containing 0 %, 6 %, 12 %, and 18 % diesel, 20 %, 40 %, and 60 % kerosene; each treatment combination was replicated five times with 20 seeds in each Petri dish. All dishes were held in a growth chamber with 20°C day of 12 h/15°C night of 12 h in 80 % humidity for 20 days for calculating the germination percentage, seedling weight, and seedling vitality. The germination percentage of Rumex stenophyllus decreased significantly in diesel and kerosene treatments. The weights of seedlings treated with diesel and kerosene either increased or decreased in comparison with controls depending on the species. Vitality percentage values were high for seedlings of Chenopodium ficifolium. Thus, herbaceous plant responses to oil treatments are species-specific.
Qi, Xiaoli; Wu, Wei; Shah, Farooq; Peng, Shaobing; Huang, Jianliang; Cui, Kehui; Liu, Hongyan; Nie, Lixiao
2012-01-01
Poor seed germination and early seedling growth associated with urea-induced soil ammonia volatilization are major constraints in the adoption of dry direct-seeded rice. To directly examine soil ammonia volatilization and its damage to seed germination and early seedling growth of dry direct-seeded rice when urea is applied at seeding, two Petri-dish incubation experiments and a field experiment were conducted. Ammonia volatilization due to urea application significantly reduced seed germination and early seedling growth of dry direct-seedling rice. NBPT significantly reduced ammonia volatilization following urea application. The application of ammonium sulfate, instead of urea at seeding, may mitigate poor crop establishment of dry direct-seeded rice. Root growth of dry direct-seeded rice was more seriously inhibited by soil ammonia volatilization than that of shoot. Results suggest that roots are more sensitive to soil ammonia toxicity than shoots in dry direct-seeded rice system when N is applied as urea at seeding. PMID:22454611
Ten agronomic plant species were exposed to different concentrations of nano titanium dioxide (nTiO2) or nano cerium oxide (nCeO2) (0, 250, 500 and 1000 mg/L) to examine potential effects on germination and early seedling development. We modified a standard test protocol develop...
Ravelombola, Waltram; Shi, Ainong; Weng, Yuejin; Mou, Beiquan; Motes, Dennis; Clark, John; Chen, Pengyin; Srivastava, Vibha; Qin, Jun; Dong, Lingdi; Yang, Wei; Bhattarai, Gehendra; Sugihara, Yuichi
2018-01-01
This is the first report on association analysis of salt tolerance and identification of SNP markers associated with salt tolerance in cowpea. Cowpea (Vigna unguiculata (L.) Walp) is one of the most important cultivated legumes in Africa. The worldwide annual production in cowpea dry seed is 5.4 million metric tons. However, cowpea is unfavorably affected by salinity stress at germination and seedling stages, which is exacerbated by the effects of climate change. The lack of knowledge on the genetic underlying salt tolerance in cowpea limits the establishment of a breeding strategy for developing salt-tolerant cowpea cultivars. The objectives of this study were to conduct association mapping for salt tolerance at germination and seedling stages and to identify SNP markers associated with salt tolerance in cowpea. We analyzed the salt tolerance index of 116 and 155 cowpea accessions at germination and seedling stages, respectively. A total of 1049 SNPs postulated from genotyping-by-sequencing were used for association analysis. Population structure was inferred using Structure 2.3.4; K optimal was determined using Structure Harvester. TASSEL 5, GAPIT, and FarmCPU involving three models such as single marker regression, general linear model, and mixed linear model were used for the association study. Substantial variation in salt tolerance index for germination rate, plant height reduction, fresh and dry shoot biomass reduction, foliar leaf injury, and inhibition of the first trifoliate leaf was observed. The cowpea accessions were structured into two subpopulations. Three SNPs, Scaffold87490_622, Scaffold87490_630, and C35017374_128 were highly associated with salt tolerance at germination stage. Seven SNPs, Scaffold93827_270, Scaffold68489_600, Scaffold87490_633, Scaffold87490_640, Scaffold82042_3387, C35069468_1916, and Scaffold93942_1089 were found to be associated with salt tolerance at seedling stage. The SNP markers were consistent across the three models and could be used as a tool to select salt-tolerant lines for breeding improved cowpea tolerance to salinity.
McMahon, Vern; Stumpf, P. K.
1966-01-01
The capacity of both developing seeds and germinating seedlings of safflower for the incorporation of acetate-C14 into long-chain fatty acids is examined. Intact tissue of the developing seed shows a low rate of acetate incorporation into fatty acid initially but between the tenth and twenty-fifth day after flowering the tissue has a high rate of synthesis, in particular with respect to the unsaturated fatty acids. Centrifuged fractionation of homogenates of this developmental tissue yielded several active fractions, the most active being the PI fraction consisting mostly of plastids. Cofactor requirements and pH effects are examined. Germinating tissue shows a more uniform capacity for synthesis of fatty acids since there is no marked change in synthetic capacity. The newly synthesized fatty acids are consistently palmitic, stearic, and oleic acid. No linoleic synthesis could be detected. The most active fraction of cell-free preparation of germinating tissue is the plastid fraction (PI), similar to what was formed with developing tissue. PMID:5904587
Souza, Manuela O DE; Pelacani, Claudinéia R; Willems, Leo A J; Castro, Renato D DE; Hilhorst, Henk W M; Ligterink, Wilco
2016-01-01
This study aimed to evaluate the effects of priming on seed germination under salt stress and gene expression in seeds and seedlings of P. angulata L. After priming for 10 days, seed germination was tested in plastic trays containing 15 ml of water (0 dS m-1 - control) or 15 ml of NaCl solution (2, 4, 6, 8, 10, 12, 14 and 16 dS m-1). Fresh and dry weight of shoots and roots of seedlings were evaluated at 0, 2, 4, 6, 8 dS m-1. Total RNA was extracted from whole seeds and seedlings followed by RT-qPCR. The target genes selected for this study were: ascorbate peroxidase (APX), glutathione-S-transferase (GST), thioredoxin (TXN), high affinity potassium transporter protein 1 (HAK1) and salt overly sensitive 1 (SOS1). At an electroconductivity of 14 dS m-1 the primed seeds still germinated to 72%, in contrast with the non-primed seeds which did not germinate. The relative expression of APX was higher in primed seeds and this may have contributed to the maintenance of high germination in primed seeds at high salt concentrations. GST and TXN displayed increased transcript levels in shoots and roots of seedlings from primed seeds. Priming improved seed germination as well as salt tolerance and this is correlated with increased expression of APX in seeds and SOS1, GST and TXN in seedlings.
Abraham, Sonia; Augustine, Jomy; Thomas, T Dennis
2012-07-01
Coelogyne nervosa is an epiphytic orchid endemic to Western Ghats, South India. The mature seeds of C. nervosa were cultured on ½ MS (Murashige and Skoog), MS, Kn (Knudson) and VW (Vacin and Went) media to evaluate the seed germination response. Of the four basal media used, MS medium supported maximum seed germination. Further experiments to enhance seed germination were done on MS medium supplemented with various concentrations (10, 20, 30 and 40 %) of coconut water (CW). Thirty percent CW gave the highest response in terms of percent seed germination (96), fresh weight (7.2 mg/seedling) and protocorm length (15.2 mm). Since CW containing medium did not support further seedling growth, each seedling was isolated and cultured on MS medium supplemented with either BA (6-benzylaminopurine) or Kin (kinetin) alone (1.0-4.0 mg/l each) or in combination with NAA (1-naphthaleneacetic acid; 0.2-1.0 mg/l). Maximum growth was observed on MS medium supplemented with BA (3.0 mg/l) and NAA (0.5 mg/l). On this medium, the seedlings reached an average length of 3.6 cm with 2.8 well expanded green leaves per seedling. Similarly optimum, healthy, white root induction (3.3 roots/seedlings) was also observed on the same medium. The rooted seedlings were successfully transplanted to pots with 91 % success. The 2-year-old tissue culture derived plants produced normal flowers and fruits.
Guo, Feng-Xia; Wu, Zhi-Jiang; Chen, Yuan; Xi, Zhuo-Xia; Zhang, Xiao-Hu; Yao, Li-Rong; Chen, Xiang
2012-11-01
To reveal the allelopathy effect of Astragalus membranaceus var. mongholicus seeds and provide information for the intercrop production. The A. membranaceus. var. mongholicus seeds were soaked in distilled water for different time (12, 24, 36, 48, 60 h) , and then the seed extracts were used to study their effects on the seed germination, seedling growth and development of two Codonopsis pilosula. The A. membranaceus var. mongholicus seeds contained some allelopathy compounds. Their soaked liquid had significantly influence on the seed germination and seedling growth of C. pilosula. The seed germination rate, germination power, germination index and vigor index of two C. pilosula calrivar were improved and then inhabited with soaking time elongation. The extract soaking for 24 h significantly improved the germination traits but the extract for 60 h appeared different degrees of inhibiting vigor. The seed extracts soaking ranging between 12 and 60 h all significantly improved the above plant growth of C. pilosula but significant inhibited their radicle growth in length. And with the soaking time elongation the facilitation effect weakened and the inhibiting effect enhanced, especially more significant in the C. pilosula caltivar (Baitiaodangshen). The A. membranaceus var. mongholicus seeds have allelopathic compounds and the endogenous inhibitor can be extracted when soaked for more than 24 h in water with intact seeds, resulting in improvement of seed germination rate. The C. pilosula could be intercropped in A. membranaceus var. mongholicus field, however, when intercroped it should notice that the intercrop proportion should vary with the caltivar.
Duran, Nádia M; Savassa, Susilaine M; Lima, Rafael Giovanini de; de Almeida, Eduardo; Linhares, Francisco S; van Gestel, Cornelis A M; Pereira de Carvalho, Hudson W
2017-09-13
Nanoparticles properties such as solubility, tunable surface charges, and singular reactivity might be explored to improve the performance of fertilizers. Nevertheless, these unique properties may also bring risks to the environment since the fate of nanoparticles is poorly understood. This study investigated the impact of a range of CuO nanoparticles sizes and concentrations on the germination and seedling development of Phaseolus vulgaris L. Nanoparticles did not affect seed germination, but seedling weight gain was promoted by 100 mg Cu L -1 and inhibited by 1 000 mg Cu L -1 of 25 nm CuO and CuSO 4 . Most of the Cu taken up remained in the seed coat with Cu hotspots in the hilum. X-ray absorption spectroscopy unraveled that most of the Cu remained in its pristine form. The higher surface reactivity of the 25 nm CuO nanoparticles might be responsible for its deleterious effects. The present study therefore highlights the importance of the nanoparticle structure for its physiological impacts.
Proteolytic and Trypsin Inhibitor Activity in Germinating Jojoba Seeds (Simmondsia chinensis).
Samac, D; Storey, R
1981-12-01
Changes in proteolytic activity (aminopeptidase, carboxypeptidase, endopeptidase) were followed during germination (imbibition through seedling development) in extracts from cotyledons of jojoba seeds (Simmondsia chinensis). After imbibition, the cotyledons contained high levels of sulfhydryl aminopeptidase activity (APA) but low levels of serine carboxypeptidase activity (CPA). CPA increased with germination through the apparent loss of a CPA inhibitor substance in the seed. Curves showing changes in endopeptidase activity (EPA) assayed at pH 4, 5, 6, 7, and 8 during germination were distinctly different. EPA at pH 4, 5, 6, and 7 showed characteristics of sulfhydryl enzymes while activity at pH 8 was probably due to a serine type enzyme. EPA at pH 6 was inhibited early in germination by one or more substances in the seed. Activities at pH 5 and later at pH 6 were the highest of all EPA throughout germination and increases in these activities were associated with a rapid loss of protein from the cotyledons of the developing seedling.Jojoba cotyledonary extracts were found to inhibit the enzymic activity of trypsin, chymotrypsin, and pepsin but not the protease from Aspergillus saotoi. The heat-labile trypsin inhibitor substance(s) was found in commercially processed jojoba seed meal and the albumin fraction of seed proteins. Trypsin inhibitor activity decreased with germination.
Proteolytic and Trypsin Inhibitor Activity in Germinating Jojoba Seeds (Simmondsia chinensis) 1
Samac, Deborah; Storey, Richard
1981-01-01
Changes in proteolytic activity (aminopeptidase, carboxypeptidase, endopeptidase) were followed during germination (imbibition through seedling development) in extracts from cotyledons of jojoba seeds (Simmondsia chinensis). After imbibition, the cotyledons contained high levels of sulfhydryl aminopeptidase activity (APA) but low levels of serine carboxypeptidase activity (CPA). CPA increased with germination through the apparent loss of a CPA inhibitor substance in the seed. Curves showing changes in endopeptidase activity (EPA) assayed at pH 4, 5, 6, 7, and 8 during germination were distinctly different. EPA at pH 4, 5, 6, and 7 showed characteristics of sulfhydryl enzymes while activity at pH 8 was probably due to a serine type enzyme. EPA at pH 6 was inhibited early in germination by one or more substances in the seed. Activities at pH 5 and later at pH 6 were the highest of all EPA throughout germination and increases in these activities were associated with a rapid loss of protein from the cotyledons of the developing seedling. Jojoba cotyledonary extracts were found to inhibit the enzymic activity of trypsin, chymotrypsin, and pepsin but not the protease from Aspergillus saotoi. The heat-labile trypsin inhibitor substance(s) was found in commercially processed jojoba seed meal and the albumin fraction of seed proteins. Trypsin inhibitor activity decreased with germination. PMID:16662104
David F. Olson; Stephen G. Boyce
1971-01-01
Acorn production is extremely variable and unpredictable. Flowering is copious, but many climatic factors influence acorn development from initiation of flowers to acorn maturity. Acorns are consumed by birds, animals, insects, and microorganisms. The establishment of seedlings is more closely related to favorable site factors than to size of crops. A majority of oaks...
James P. Barnett
1998-01-01
The influence of seed size and weight on early seedling growth of tree species has been studied for over 50 years. Righter (1945) found that, in the genus Pinus, the positive correlation between seed weight and seedling height was temporary and disappeared after time in the field. A more recent study with loblolly pine (Pinus taeda...
[Effects of light intensity on Quercus liaotungensis seed germination and seedling growth].
Yan, Xing-fu; Wang, Jian-li; Zhou, Li-biao
2011-07-01
This paper studied the effects of different shading (55.4%, 18.9%, 5.5%, 2.2%, 0.5% , and 0.3% natural sunlight) on the seed germination and seedling growth of Quercus liaotungensis. The seed germination rate and germination index were the highest (72.5% and 0.22, respectively) at 55.4% natural sunlight, declined with decreasing light intensity, and were the lowest (42.5% and 0.11, respectively) at 0.3% natural sunlight. Strong light had definite delaying effect on the germination. The index of germination vigor increased with decreasing light intensity, being the maximum at 0.5% natural sunlight. The delay of seed germination under strong light could be the selective tradeoff on varied seed fates. Strong light benefited the basal stem diameter and root system growth and dry mass accumulation of Q. liaotunensis seedling, but resulted in the minimum seedlings height (6.06 cm). Greater morphological plasticity was observed for the seedlings under different shading, which lent support to the higher adaptability of the seedlings to light environment. For example, the specific leaf area, specific shoot length, specific root length, and chlorophyll b and total chlorophyll contents were the maximum at 0.5% natural sunlight, being 142.57 cm2 x g(-1), 156.86 cm x g(-1), 271.87 cm x g(-1), 0.07 g x cm(-2), and 0.24 g x cm(-2), respectively, and the minimum at 55.4% natural sunlight, being 44.89 cm2 x g(-1), 52.84 cm x g(-1), 101.98 cm x g(-1), 0.04 g x cm(-2), and 0.15 g x cm(-2), respectively. The variation of the root/shoot ratio of Q. liaotungensis seedlings under different shading could be the effects of the combination of light intensity and water availability.
Germination biology of Hibiscus tridactylites in Australia and the implications for weed management
Chauhan, Bhagirath Singh
2016-01-01
Hibiscus tridactylites is a problematic broadleaf weed in many crops in Australia; however, very limited information is available on seed germination biology of Australian populations. Experiments were conducted to evaluate the effect of environmental factors on germination and emergence of H. tridactylites. Germination was stimulated by seed scarification, suggesting the inhibition of germination in this species is mainly due to the hard seed coat. Germination was not affected by light conditions, suggesting that seeds of this species are not photoblastic. Germination was higher at alternating day/night temperatures of 30/20 °C (74%) and 35/25 °C (69%) than at 25/15 °C (63%). Moderate salinity and water stress did not inhibit germination of H. tridactylites. Seedling emergence of H. tridactylites was highest (57%) for the seeds buried at a 2 cm depth in the soil; 18% of seedlings emerged from seeds buried at 8 cm but no seedlings emerged below this depth. Soil inversion by tillage to bury weed seeds below their maximum depth of emergence could serve an important tool for managing H. tridactylites. PMID:27174752
Germination biology of Hibiscus tridactylites in Australia and the implications for weed management
NASA Astrophysics Data System (ADS)
Chauhan, Bhagirath Singh
2016-05-01
Hibiscus tridactylites is a problematic broadleaf weed in many crops in Australia; however, very limited information is available on seed germination biology of Australian populations. Experiments were conducted to evaluate the effect of environmental factors on germination and emergence of H. tridactylites. Germination was stimulated by seed scarification, suggesting the inhibition of germination in this species is mainly due to the hard seed coat. Germination was not affected by light conditions, suggesting that seeds of this species are not photoblastic. Germination was higher at alternating day/night temperatures of 30/20 °C (74%) and 35/25 °C (69%) than at 25/15 °C (63%). Moderate salinity and water stress did not inhibit germination of H. tridactylites. Seedling emergence of H. tridactylites was highest (57%) for the seeds buried at a 2 cm depth in the soil; 18% of seedlings emerged from seeds buried at 8 cm but no seedlings emerged below this depth. Soil inversion by tillage to bury weed seeds below their maximum depth of emergence could serve an important tool for managing H. tridactylites.
Ramlall, Chandika; Varghese, Boby; Ramdhani, Syd; Pammenter, Norman W; Bhatt, Arvind; Berjak, Patricia; Sershen
2015-01-01
Increased air pollution in a number of developing African countries, together with the reports of vegetation damage typically associated with acid precipitation in commercial forests in South Africa, has raised concerns over the potential impacts of acid rain on natural vegetation in these countries. Recalcitrant (i.e. desiccation sensitive) seeds of many indigenous African species, e.g. must germinate shortly after shedding and hence, may not be able to avoid exposure to acid rain in polluted areas. This study investigated the effects of simulated acid rain (rainwater with pH adjusted to pH 3.0 and 4.5 with 70:30, H2 SO4 :HNO3 ) on germination, seedling growth and oxidative metabolism in a recalcitrant-seeded African tree species Trichilia dregeana Sond., growing in its natural seed bank. The results suggest that acid rain did not compromise T. dregeana seed germination and seedling establishment significantly, relative to the control (non-acidified rainwater). However, pH 3.0 treated seedlings exhibited signs of stress typically associated with acid rain: leaf tip necrosis, abnormal bilobed leaf tips, leaf necrotic spots and chlorosis, reduced leaf chlorophyll concentration, increased stomatal density and indications of oxidative stress. This may explain why total and root biomass of pH 3.0 treated seedlings were significantly lower than the control. Acid rain also induced changes in the species composition and relative abundance of the different life forms emerging from T. dregeana's natural seed bank and in this way could indirectly impact on T. dregeana seedling establishment success. © 2014 Scandinavian Plant Physiology Society.
Alexandre, Ana; Silva, João; Santos, Rui
2018-01-01
Restoration of seagrass beds through seedlings is an alternative to the transplantation of adult plants that reduces the impact over donor areas and increases the genetic variability of restored meadows. To improve the use of Cymodocea nodosa seedlings, obtained from seeds germinated in vitro , in restoration programs, we investigated the ammonium and phosphate uptake rates of seedlings, and the synergistic effects of light levels (20 and 200 μmol quanta m -2 s -1 ) and different nitrogen to phosphorus molar ratios (40 μM N:10 μM P, 25 μM N:25 μM P, and 10 μM N:40 μM P) on the photosynthetic activity and growth of seedlings. The nutrient content of seedlings was also compared to the seed nutrient reserves to assess the relative importance of external nutrient uptake for seedling development. Eighty two percent of the seeds germinated after 48 days at a mean rate of 1.5 seeds per day. All seedlings under all treatments survived and grew during the 4 weeks of the experiment. Seedlings of C. nodosa acquired ammonium and phosphate from the incubation media while still attached to the seed, at rates of about twice of adult plants. The relevance of external nutrient uptake was further highlighted by the observation that seedlings' tissues were richer in nitrogen and phosphorus than non-germinated seeds. The uptake of ammonium followed saturation kinetics with a half saturation constant of 32 μM whereas the uptake of phosphate increased linearly with nutrient concentration within the range tested (5 - 100 μM). Light was more important than the nutrient ratio of fertilization for the successful development of the young seedlings. The seedlings' photosynthetic and growth rates were about 20% higher in the high light treatment, whereas different nitrogen to phosphorus ratios did not significantly affect growth. The photosynthetic responses of the seedlings to changes in the light level and their capacity to use external nutrient sources showed that seedlings of C. nodosa have the ability to rapidly acclimate to the surrounding light and nutrient environment while still attached to the seeds. C. nodosa seedlings experiencing fertilization under low light levels showed slightly enhanced growth if nourished with a balanced formulation, whereas a slight increase in growth was also observed with unbalanced formulations under a higher light level. Our results highlight the importance of high light availability at the seedling restoration sites.
Shi-Jean Susana Sung; Paul P. Kormanik; Taryn L. Kormanik; Stanley J. Zarnoch
2005-01-01
Acorn quality is an integral part of artificial oak regeneration. Progeny from individual mother trees of similar geographic areas frequently exhibited a wide range of germination percentage. The purpose of our study was to evaluate the impact of acorn moisture content (MC) at sowing on germination and subsequent seedling growth.
Han, Yi J; Baskin, Jerry M; Tan, Dun Y; Baskin, Carol C; Wu, Ming Y
2018-02-19
Seed predation by insects is common in seeds of Fabaceae (legume) species with physical dormancy (PY). However, the consequences of insect seed predation on the life history of legumes with PY have been little studied. In the largest genus of seed plants, Astragalus (Fabaceae), only one study has tested the effects of insect predation on germination, and none has tested it directly on seedling survival. Thus, we tested the effects of insect predation on seed germination and seedling growth and survival of Astragalus lehmannianus, a central Asian sand-desert endemic. Under laboratory conditions, seeds lightly predated in the natural habitat of this perennial legume germinated to a much higher percentage than intact seeds, and seedlings from predated and nonpredated seeds survived and grew about equally well. Further, in contrast to our prediction seedlings from predated seeds that germinated "out-of-season" under near-natural conditions in NW China survived over winter. The implication of our results is that individual plants from predated seeds that germinate early (in our case autumn) potentially have a fitness advantage over those from nonpredated seeds, which delay germination until spring of a subsequent year.
Carry-over of Differential Salt Tolerance in Plants Grown from Dimorphic Seeds of Suaeda splendens
Redondo-Gómez, Susana; Mateos-Naranjo, Enrique; Cambrollé, Jesús; Luque, Teresa; Figueroa, M. Enrique; Davy, Anthony J.
2008-01-01
Background and Aims Halophytic species often show seed dimorphism, where seed morphs produced by a single individual may differ in germination characteristics. Particular morphs are adapted to different windows of opportunity for germination in the seasonally fluctuating and heterogeneous salt-marsh environment. The possibility that plants derived from the two morphs may also differ physiologically has not been investigated previously. Methods Experiments were designed to investigate the germination characteristics of black and brown seed morphs of Suaeda splendens, an annual, C4 shrub of non-tidal, saline steppes. The resulting seedlings were transferred to hydroponic culture to investigate their growth and photosynthetic (PSII photochemistry and gas exchange) responses to salinity. Key Results Black seeds germinated at low salinity but were particularly sensitive to increasing salt concentrations, and strongly inhibited by light. Brown seeds were unaffected by light, able to germinate at higher salinities and generally germinated more rapidly. Ungerminated black seeds maintained viability for longer than brown ones, particularly at high salinity. Seedlings derived from both seed morphs grew well at high salinity (400 mol m−3 NaCl). However, seedlings derived from brown seeds performed poorly at low salinity, as reflected in relative growth rate, numbers of branches produced, Fv/Fm and net rate of CO2 assimilation. Conclusions The seeds most likely to germinate at high salinity in the Mediterranean summer (brown ones) retain a requirement for higher salinity as seedlings that might be of adaptive value. On the other hand, black seeds, which are likely to delay germination until lower salinity prevails, produce seedlings that are less sensitive to salinity. It is not clear why performance at low salinity, later in the life cycle, might have been sacrificed by the brown seeds, to achieve higher fitness at the germination stage under high salinity. Analyses of adaptive syndromes associated with seed dimorphism may need to take account of differences over the entire life cycle, rather than just at the germination stage. PMID:18463109
Carry-over of differential salt tolerance in plants grown from dimorphic seeds of Suaeda splendens.
Redondo-Gómez, Susana; Mateos-Naranjo, Enrique; Cambrollé, Jesús; Luque, Teresa; Figueroa, M Enrique; Davy, Anthony J
2008-07-01
Halophytic species often show seed dimorphism, where seed morphs produced by a single individual may differ in germination characteristics. Particular morphs are adapted to different windows of opportunity for germination in the seasonally fluctuating and heterogeneous salt-marsh environment. The possibility that plants derived from the two morphs may also differ physiologically has not been investigated previously. Experiments were designed to investigate the germination characteristics of black and brown seed morphs of Suaeda splendens, an annual, C(4) shrub of non-tidal, saline steppes. The resulting seedlings were transferred to hydroponic culture to investigate their growth and photosynthetic (PSII photochemistry and gas exchange) responses to salinity. Black seeds germinated at low salinity but were particularly sensitive to increasing salt concentrations, and strongly inhibited by light. Brown seeds were unaffected by light, able to germinate at higher salinities and generally germinated more rapidly. Ungerminated black seeds maintained viability for longer than brown ones, particularly at high salinity. Seedlings derived from both seed morphs grew well at high salinity (400 mol m(-3) NaCl). However, seedlings derived from brown seeds performed poorly at low salinity, as reflected in relative growth rate, numbers of branches produced, F(v)/F(m) and net rate of CO(2) assimilation. The seeds most likely to germinate at high salinity in the Mediterranean summer (brown ones) retain a requirement for higher salinity as seedlings that might be of adaptive value. On the other hand, black seeds, which are likely to delay germination until lower salinity prevails, produce seedlings that are less sensitive to salinity. It is not clear why performance at low salinity, later in the life cycle, might have been sacrificed by the brown seeds, to achieve higher fitness at the germination stage under high salinity. Analyses of adaptive syndromes associated with seed dimorphism may need to take account of differences over the entire life cycle, rather than just at the germination stage.
Effects of cold plasma treatment on alfalfa seed growth under simulated drought stress
NASA Astrophysics Data System (ADS)
Jinkui, FENG; Decheng, WANG; Changyong, SHAO; Lili, ZHANG; Xin, TANG
2018-03-01
The effect of different cold plasma treatments on the germination and seedling growth of alfalfa (Medicago sativa L.) seeds under simulated drought stress conditions was investigated. Polyethyleneglycol-6000 (PEG 6000)with the mass fraction of 0% (purified water), 5%, 10%, and 15% were applied to simulate the drought environment. The alfalfa seeds were treated with 15 different power levels ranged between 0-280 W for 15 s. The germination potential, germination rate, germination index, seedling root length, seedling height, and vigor index were investigated. Results indicated significant differences between treated with proper power and untreated alfalfa seeds. With the increase of treatment power, these indexes mentioned above almost presented bimodal curves. Under the different mass fractions of PEG 6000, results showed that the lower power led to increased germination, and the seedlings presented good adaptability to different drought conditions. Meanwhile, higher power levels resulted in a decreased germination rate. Seeds treated with 40 W resulted in higher germination potential, germination rate, seedling height, root length, and vigor index. Vigor indexes of the treated seeds under different PEG 6000 stresses increased by 38.68%, 43.91%, 74.34%, and 39.20% respectively compared to CK0-0, CK5-0, CK10-0, and CK15-0 (the control sample under 0%, 5%, 10%, and 15% PEG 6000). Therefore, 40 W was regarded as the best treatment in this research. Although the trend indexes of alfalfa seeds treated with the same power were statistically the same under different PEG 6000 stresses, the cold plasma treatment had a significant effect on the adaptability of alfalfa seeds in different drought environments. Thus, this kind of treatment is worth implementing to promote seed growth under drought situations.
Germination, genetics, and growth of an ancient date seed.
Sallon, Sarah; Solowey, Elaine; Cohen, Yuval; Korchinsky, Raia; Egli, Markus; Woodhatch, Ivan; Simchoni, Orit; Kislev, Mordechai
2008-06-13
An ancient date seed (Phoenix dactylifera L.) excavated from Masada and radiocarbon-dated to the first century Common Era was germinated. Climatic conditions at the Dead Sea may have contributed to the longevity of this oldest, directly dated, viable seed. Growth and development of the seedling over 26 months was compatible with normal date seedlings propagated from modern seeds. Preliminary molecular characterization demonstrated high levels of genetic variation in comparison to modern, elite date cultivars currently growing in Israel. As a representative of an extinct date palm population, this seedling can provide insights into the historic date culture of the Dead Sea region. It also has importance for seed banking and conservation and may be of relevance to modern date palm cultivation.
CHR729 Is a CHD3 Protein That Controls Seedling Development in Rice.
Ma, Xiaoding; Ma, Jian; Zhai, Honghong; Xin, Peiyong; Chu, Jinfang; Qiao, Yongli; Han, Longzhi
2015-01-01
CHD3 is one of the chromatin-remodeling factors that contribute to controlling the expression of genes associated with plant development. Loss-of-function mutants display morphological and growth defects. However, the molecular mechanisms underlying CHD3 regulation of plant development remain unclear. In this study, a rice CHD3 protein, CHR729, was identified. The corresponding mutant line (t483) exhibited late seed germination, low germination rate, dwarfism, low tiller number, root growth inhibition, adaxial albino leaves, and short and narrow leaves. CHR729 encoded a nuclear protein and was expressed in almost all organs. RNA-sequencing analysis showed that several plant hormone-related genes were up- or down-regulated in t483 compared to wild type. In particular, expression of the gibberellin synthetase gibberellin 20 oxidase 4 gene was elevated in the mutant. Endogenous gibberellin assays demonstrated that the content of bioactive GA3 was reduced in t483 compared to wild type. Moreover, the seedling dwarfism, late seed germination, and short root length phenotypes of t483 were partially rescued by treatment with exogenous GA3. These results suggest that the rice CHD3 protein CHR729 plays an important role in many aspects of seedling development and controls this development via the gibberellin pathway.
Ten agronomic plant species and Arabidopsis thaliana were exposed to different concentrations of the metal oxide nanoparticles (NPs) TiO2 or CeO2 (0 - 1000 mg L-1) and monitored to examine effects on germination rate and early seedling development. Endpoints measured included ge...
Ureide metabolism during seedling development in French bean (Phaseolus vulgaris).
Quiles, Francisco Antonio; Raso, María José; Pineda, Manuel; Piedras, Pedro
2009-01-01
French bean (Phaseolus vulgaris) is a legume that transports most of the atmospheric nitrogen fixed in its nodules to the aerial parts of the plant as ureides. Changes in ureide content and in enzymatic activities involved in their metabolism were identified in the cotyledons and embryonic axes during germination and early seedling development. Accumulation of ureides (ca. 1300 nmol per pair of cotyledons) was observed in the cotyledons of dry seeds. Throughout germination, the total amount of ureides slightly decreased to about 1200 nmol, but increased both in cotyledons and in embryonic axes after radicle emergence. In the axes, the ureides were almost equally distributed in roots, hypocotyls and epicotyls. The pattern of ureide distribution was not affected by the presence of nitrate or sucrose in the media up to 6 days after imbibition. Ureides are synthesized from purines because allopurinol (a xanthine dehydrogenase inhibitor) blocks the increase of ureides. Allantoin and allantoate-degrading activities were detected in French bean dried seeds, whereas no ureidoglycolate-degrading activity was detected. During germination, the levels of the three activities remain unchanged in cotyledons. After radicle emergence, the levels of activities in cotyledons changed. Allantoin-degrading activity increased, allantoate-degrading activity decreased and ureidoglycolate-degrading activity remained undetectable in cotyledons. In developing embryonic axes, the three activities were detected throughout germination and early seedling development. The embryonic axes are able to synthesize ureides, because those compounds accumulated in axes without cotyledons.
González, Luís
2014-01-01
Mine tailings represent a serious threat to the environment and human health; thus their restoration has become a major concern. In this study, the interactions between Brassica juncea and different mine soil treatments were evaluated in order to understand their effect on germination and early growth. Three soil treatments containing 25% and 50% of technosol and 30% of compost were prepared. Germination and early growth were assessed in soil and pore water extracts from the treatments. Unlike the untreated mine soil, the three treatments allowed germination and growth, achieving levels comparable to those of seedlings from the same species developed in normal conditions. The seedlings grown in 50% of technosol and 30% of compost exhibited greater germination percentages, higher growth, and more efficient mechanisms against oxidative stress, ascribed to the organic matter and nutrients content of these treatments. Considering the unequivocal ability of B. juncea for phytoremediation, the results suggest that technosol and compost may be an auspicious solution to allow the germination and early growth of this species in mine tailings. PMID:25386602
Seed Germination and Cuttings Growth of Piper Aduncum
NASA Astrophysics Data System (ADS)
Susanto, D.; Sudrajat; Suwinarti, W.; Amirta, R.
2018-04-01
Sirih hutan (Piper aduncum L) is one of group shurbs tropical species, has potential to be developed as raw material of biomass based electricity. The aim of this research was to know seed germination and cuttings growth of P. aduncum plant as the first step in cultivation of this plant. Observation of flowers and fruits were done in secondary forest, while seed germination and growth of shoot cuttings were done in the laboratory. The results showed that P. aduncum seeds can be germinated in a relatively short time of 17 to 25 days with a fairly high germination percentage of 90 ± 8.16% and germination rate of 4.7 ± 0.34%. The growth of seedlings at 2 months old was 4.78 ± 0.42 cm, plant height 3.97 ± 0.27 cm, and relative growth rate 0.33 ± 0.14%. The treatment of synthetic growth regulator had significant effect on shoot growth and root number on the plant stem cuttings. Preparation of seedlings ready to plant in a generative and vegetative for cultivation of these plants in the experimental plot.
Electromagnetic Treatment of Loblolly Pine Seeds
James P. Barnett; Stanley L. Krugman
1989-01-01
Loblolly pine (Pinus taeda L.) seeds were exposed to an electromagnetic radiation treatment (Energy Transfer Process, marketed by the Energy Transfer Corporation), and the effects of the treatments on seed germination, seedling development, disease resistance, and field performance of seedlings were evaluated. None of the evaluated variables showed...
Dissecting cold tolerance in rice as revealed by association mapping
USDA-ARS?s Scientific Manuscript database
Cold stress is an important abiotic stress which negatively affects morphological development and seed production in rice (Oryza sativa L.). At the seedling stage, cold stress causes poor germination, seedling injury and poor stand establishment; and at the reproductive stage cold decreases seed yi...
[Study on influence factors of seed germination and seeding growth of Lonicera macranthoides].
Xu, Jin; Zhang, Ying; Cui, Guang-Lin; She, Yue-Hui; Li, Long-Yun
2016-01-01
In order to improve reproductive efficiency and quality standard, the influence factors of seed germination and seeding growth of Lonicera macranthoides werew studied. The fruit and seed morphological characteristics of L. macranthoides were observed, the seed water absorbing capacity was determined, and different wet sand stratification time, temperature and germination bed treatment were set up. The effects of the parameters on seed germination and seedling growth were analysed. There was no obstacles of water absorption on L. macranthoides seed, quantity for 22 h water absorption was close to saturation. In the first 80 d, with the increase of the stratification time, seed initial germination time was shortened, germination rate and germination potential was improved. Stratification for 100 d, germination rate decreased. At 15 ℃, seed germination and seedling growth indicators were the best. The seedling cotyledon width in light was significantly higher than that in dark. Seeds on the top of paper and top of sand germination rate, germination potential, and germination index was significantly higher than that of other germination bed and mildew rate is low. The optimal conditions of seeds germination test was stratified in 4 ℃ wet sand for 80 d, 15 ℃ illuminate culture on the top of paper or top of sand. The first seeding counting time was the 4th day after beginning the test, the final time was the 23th day. The germination potential statistical time was the 13th day after beginning the test. Copyright© by the Chinese Pharmaceutical Association.
Moulick, Debojyoti; Santra, S C; Ghosh, Dibakar
2017-11-01
Interactive aspect of among selenium (Se) and As (As) to mitigate As induced phytotoxicity in rice during germination and seedling growth has been based on mostly to petriplates and hydroponic mode of experiments. In this investigation we explore the consequences of sowing Se primed rice seeds in As spiked soil. Unprimed, hydroprimed and Se primed rice (IET-4094) seeds sown in As spiked soil, with five replications, arranged in complete randomized design for evaluating the impacts of seed priming on germination and seedling growth as well as As uptake and translocation pattern. Se promotes germination, seedling growth by modulating proline content, lipid peroxidation in root and shoot beside enhancing total chlorophyll content significantly in both As free and As spiked soil as compared to their respective unprimed and hydroprimed counterparts grown alike. Findings also indicates that seed priming with Se was able to execute dual roles i.e. a promotive and antagonistic aspect against As by restricting maximum soil As load to the root (with greater bioconcentration factor) and reducing translocation of As from root to shoot in a more practical and farmer friendly way to mitigate As induced toxicity and enhance germination and growth in rice seedlings. Copyright © 2017. Published by Elsevier Inc.
Zhu, Zai-Biao; Lu, Wei-Wei; Guo, Qiao-Sheng; Cao, Ya-Yue; Feng, Shan; Ning, Zi-Jun
2014-04-01
Current study was carried out to optimize the priming condition of Oldenlandia diffusa seeds, and improve germination rate and seed vigor of 0. diffusa seeds under drought conditions. Uniform design was used to optimize the concentration and priming time of three priming materials (PEG, KNO3, GA3). Different concentrations of polyethylene glycol (PEG) was used to simulate drought stress. The seedling was cultured in 1/4 Hoagland medium for 30 d. The results showed that seed priming treatment with 366 mg x kg(-1) GA3 for 1h resulted in significant increase in germination rate, germination index, vigor, root length, plant height and biomass of O. diffusa seeds under drought stress (15% PEG), while seed priming with 3.0% KNO3 for 1 h showed little effect on germination and growth of O. diffusa seeds under drought stress. Seed priming treatment with appropriate GA3 concentration and priming time could enhance seed germination and drought resistance of O. diffusa in seedling stage.
NASA Astrophysics Data System (ADS)
İşlek, Cemil; Murat Altuner, Ergin; Çeter, Talip; Alpas, Hami
2013-06-01
High hydrostatic pressure is a non-thermal food processing technology that is found to increase the percentage of germination, decrease the germination time and improve the microbial quality of seeds. In this study, pressures of 100-400 MPa for 10 min at 30°C are used to compare the percentage of germination, the microbial quality of seeds, chlorophyll a and b, and total phenolic compounds concentrations in seedlings, and the anatomy-morphology characteristics of garden cress. Enhanced reductions of total aerobic mesophilic bacteria, total and fecal coliforms, and yeast and mould populations in seeds were observed, especially at 300 MPa. In addition, the percentage of germination, chlorophyll content and phenolic compounds concentrations, fresh and dry weights, and hypocotyl lengths of the seedlings are higher than those of all samples, where the percentage of germination is equal to controls but higher than other samples, and radicula length is lower than controls but higher than others.
Kenaf (Hibiscus cannabinus L.) impact on post-germination seedling growth
USDA-ARS?s Scientific Manuscript database
The chemical interaction between plants, which is referred to as allelopathy, may result in the inhibition of plant growth and development. The objective of this research was to determine the impact of kenaf (Hibiscus cannabinus L.) plant extracts on the post-germination growth of five plant species...
USDA-ARS?s Scientific Manuscript database
Cold temperature is an important abiotic stress which negatively affects morphological development and seed production in rice (Oryza sativa L.). At the seedling stage, cold stress causes poor germination, seedling injury and poor stand establishment; and at the reproductive stage cold decreases se...
Ma, Le Yuan; Chen, Nian Lai; Han, Guo Jun; Li, Liang
2017-10-01
This research investigated the effects of different concentrations (0, 0.5, 1.0, 2.0 mmol·L -1 ) of salicylic acid on the seed germination and physiological characteristics of legume forage Coronilla varia (cultivar 'Lvbaoshi') under PEG-6000 (concentration 8% and 12%) simulated drought stress. The results showed that under drought stress, 0.5-1.0 mmol·L -1 salicylic acid significantly increased germination percentage, germination vigour, germination index, vitality index and bud length of C. varia. Under the stress of 12% PEG, the dry mass of C. varia seedlings processed by 1.0 mmol·L -1 salicylic acid was significantly higher than that under drought stress. 0.5-1.0 mmol·L -1 salicylic acid processing significantly increased proline, soluble protein content, the activities of catalase, peroxidase and superoxide dismutase of C. varia seedlings under drought stress, but cell electrolyte permeability, H2O2 content and O2 - · production rate of seedlings were significantly decreased. 1.0 mmol·L -1 salicylic acid produced the best results. When the concentration of salicylic acid was beyond 2.0 mmol·L -1 , no mitigation effect was observed on the seed germination and growth of seedlings under drought stress. It was concluded that salicylic acid at appropriate concentrations could effectively improve osmotic regulation, antioxidation and mitigate the damage of drought stress so as to promote the growth of C. varia seedlings.
Zhou, Jie; Bian, Li-hua; Zou, Lin; Zhou, Bin-qian; Liu, Wei; Wang, Xiao
2015-10-01
Smoke water and distillation liquid were used to treat the seeds of Trichosathes kirilowii and to study the effects of smoke water and distillation liquid on the seed germination and seedling growth of T. kirilowii. The results showed that germination rate, germination index and germination vigor of T. kirilowii all were significantly improved with the treatment of SW and DL treatment. The activity of α-amylase were significantly increased with the treatment of SW and DL at 1:2,000. SW and DL treatment showed no significant effects on the activity of SOD. The activity of POD were markedly enhanced under the treatment of SW (1:000) and DL (1:2,000). CAT activity were increased with the treatment of SW and DL at 1:2,000 while were inhibited by SW and DL at 1:500. Seedling height and root length were increased with the treatment of SW and DL (1:1,000, 1:2,000). SW and DL treaments improved the content of chlorophyll, and moreover with the concentration of SW and DL, the stimulatory were also increased. This work demonstrated that smoke water and diatillation liquid at 1:2,000 could stimulate the seed germination and seedling growth of T. kirilowii, and it provided the references for the study of seed germination technology.
Zhang, Hai-Yan
2013-06-01
Taking normal corn, waxy corn, pop corn, and sweet corn as test materials, this paper studied their seed germination and seedling growth under effects of simulated acid rain (pH 6.0, 5.0, 4.0, 3.0, 2.0, and 1.0). Simulated acid rain at pH 2.0-5.0 had no significant effects on the seed germination and seedling growth, but at pH 1.0, the germination rate of normal corn, waxy corn, pop corn, and sweet corn was 91.3%, 68.7%, 27.5%, and 11.7%, respectively. As compared with those at pH 6.0 (CK), the germination rate, germination index, vigor index, germination velocity, shoot height, root length, shoot and root dry mass, and the transformation rate of stored substances at pH 1.0 had significant decrease, and the average germination time extended apparently. At pH 1.0, the effects of acid rain were greater at seedling growth stage than at germination stage, and greater on underground part than on aboveground part. Due to the differences in gene type, normal corn and waxy corn had the strongest capability against acid rain, followed by pop corn, and sweet corn. It was suggested that corn could be categorized as an acid rain-tolerant crop, the injury threshold value of acid rain was likely between pH 1.0 and pH 2.0, and normal corn and waxy corn would be prioritized for planting in acid rain-stricken area.
Gomes-Filho, Enéas; Lima, Carmen Rogélia Farias Machado; Costa, José Hélio; da Silva, Ana Cláudia Marinho; da Guia Silva Lima, Maria; de Lacerda, Claudivan Feitosa; Prisco, José Tarquinio
2008-01-01
Pitiúba cowpea [Vigna unguiculata (L.) Walp] seeds were germinated in distilled water (control treatment) or in 100 mM NaCl solution (salt treatment), and RNase was purified from different parts of the seedlings. Seedling growth was reduced by the NaCl treatment. RNase activity was low in cotyledons of quiescent seeds, but the enzyme was activated during germination and seedling establishment. Salinity reduced cotyledon RNase activity, and this effect appeared to be due to a delay in its activation. The RNases from roots, stems, and leaves were immunologically identical to that found in cotyledons. Partially purified RNase fractions from the different parts of the seedling showed some activity with DNA as substrate. However, this DNA hydrolyzing activity was much lower than that of RNA hydrolyzing activity. The DNA hydrolyzing activity was strongly inhibited by Cu(2+), Hg(2+), and Zn(2+) ions, stimulated by MgCl(2), and slowly inhibited by EDTA. This activity from the most purified fraction was inhibited by increasing concentrations of RNA in the reaction medium. It is suggested that the major biological role of this cotyledon RNase would be to hydrolyze seed storage RNA during germination and seedling establishment, and it was discussed that it might have a protective role against abiotic stress during later part of seedling establishment.
King, S.E.; Grace, J.B.
2000-01-01
Cogongrass (Imperata cylindrica), an invasive perennial introduced from Southeast Asia, is currently spreading throughout the southeastern United States from Florida to Louisiana. In the U.S., cogongrass is generally not considered a wetland species, although it's range is expanding in regions with high wetland abundance. The objective of this study was to determine if excessive soil moisture might prevent cogongrass from establishing in areas with seasonally flooded soils. In one greenhouse experiment, we examined cogongrass germination and seedling growth in soils that were freely drained, saturated, and inundated. We performed a second greenhouse experiment to evaluate growth and survival of cogongrass seedlings of four different size classes in five soil moisture treatments ranging from dry to inundated. Cogongrass germination was lowest when seeds were overtopped with water. There were no differences in germination between saturated and freely drained treatments; however, seedlings grew largest in freely drained soil and were smallest when immersed. In our second experiment, most cogongrass plants survived except when given no water, but growth differed by watering treatment depending on seedling size. Increasing moisture was more detrimental to the growth of small seedlings compared to the growth of larger cogongrass plants. Overall, cogongrass was most sensitive to soil inundation in the earliest stages of establishment; thus, excessive moisture conditions in the spring, during early seedling development, could restrict invasion of cogongrass by seed. Once cogongrass is established, however, its tolerance of flooding appears to increase.
Germination and emergence of annual species and burial depth: Implications for restoration ecology
NASA Astrophysics Data System (ADS)
Limón, Ángeles; Peco, Begoña
2016-02-01
Due to the high content of viable seeds, topsoil is usually spread on ground left bare during railway and motorway construction to facilitate the regeneration of vegetation cover. However, during handling of the topsoil, seeds are often buried deeply and they cannot germinate or the seedlings cannot emerge from depth. This study experimentally explores the predictive value of seed mass for seed germination, mortality and seedling emergence at different burial depths for 13 common annual species in semiarid Mediterranean environments. We separate the effect of burial depth on germination and emergence by means of two experiments. In the germination experiment, five replicates of 20 seeds for each species were buried at depths ranging from 0 to 4 cm under greenhouse conditions. Germinated and empty or rotten seeds were counted after 8 weeks. In the emergence experiment, five replicates of four newly-germinated seeds per species were buried at the same depths under controlled conditions and emergence was recorded after 3 weeks. The effect of burial depth on percentage of germination and seedling emergence was dependent on seed size. Although all species showed a decrease in germination with burial depth, this decrease was greater for small-than large-seeded species. Percentage of emergence was positively related to seed mass but negatively related to burial depth. Seed mortality was higher for small-than large-seeded species, but there was no general effect of burial depth on this variable. Thus, the current practice of spreading 30 cm deep layers of topsoil in post-construction restoration projects is unadvisable. In this restoration scenario, thinner layers of topsoil should be used to achieve the maximum potential of the topsoil for germination and seedling establishment.
Hashimoto, Yasushi; Fukukawa, Satoru; Kunishi, Ayako; Suga, Haruhisa; Richard, Franck; Sauve, Mathieu; Selosse, Marc-André
2012-08-01
Dust seeds that germinate by obtaining nutrients from symbiotic fungi have evolved independently in orchids and 11 other plant lineages. The fungi involved in this 'mycoheterotrophic' germination have been identified in some orchids and non-photosynthetic Ericaceae, and proved identical to mycorrhizal fungi of adult plants. We investigated a third lineage, the Pyroleae, chlorophyllous Ericaceae species whose partial mycoheterotrophy at adulthood has recently attracted much attention. We observed experimental Pyrola asarifolia germination at four Japanese sites and investigated the germination pattern and symbiotic fungi, which we compared to mycorrhizal fungi of adult plants. Adult P. asarifolia, like other Pyroleae, associated with diverse fungal species that were a subset of those mycorrhizal on surrounding trees. Conversely, seedlings specifically associated with a lineage of Sebacinales clade B (endophytic Basidiomycetes) revealed an intriguing evolutionary convergence with orchids, some of which also germinate with Sebacinales clade B. Congruently, seedlings clustered spatially together, but not with adults. This unexpected transition in specificity and ecology of partners could support the developmental transition from full to partial mycoheterotrophy, but probably challenges survival and distribution during development. We discuss the physiological and ecological traits that predisposed to the repeated recruitment of Sebacinales clade B for dust seed germination. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rupiasih, N. Nyoman, E-mail: rupiasih@gmail.com; Vidyasagar, Pandit B., E-mail: prof-pbv@yahoo.com
2016-03-11
An investigation of the effects of UV-C radiation and hypergravity on germination, growth and content of chlorophyll of wheat seedlings has been done. The UV-C irradiation periods of exposure were 30, 60, 90, 120 and 180 minutes. The hypergravity used were 1000 g, 2000 g and 2500 g. The combination treatment is UV-C irradiation for 180 min followed by each hypergravity. The results showed that irradiation of UV-C on wheat seeds have stimulated the seed germination, but hypergravity and combination treatments on wheat seeds have inhibited the seed germination. Those treatments gave negative effects to growth rate, the content of chlorophyll a, b andmore » total chlorophyll of wheat seedlings.« less
Link, B M; Cosgrove, D J
1999-12-01
In young cucumber seedlings, the peg is a polar out-growth of tissue that functions by snagging the seed coat, thereby freeing the cotyledons. Previous studies have indicated that peg formation is gravity dependent. In this study we analyzed peg formation in cucumber seedlings (Cucumis sativus L. cv Burpee Hybrid II) grown under conditions of normal gravity, microgravity, and simulated microgravity (clinostat rotation). Seeds were germinated on the ground, in clinostats and on board the space shuttle (STS 95) for 1-2 days, frozen and subsequently examined for their stage of development, degree of hook formation, number of pegs formed, and peg morphology. The frequency of peg formation in space grown seedlings was found to be nearly identical to that of clinostat grown seedlings and to differ from that of seedlings germinated under normal gravity only in a minority of cases; approximately 6% of the seedlings formed two pegs and nearly 2% of the seedlings lacked pegs, whereas such abnormalities did not occur in ground controls. The degree of hook formation was found to be less pronounced for space grown seedlings, compared to clinostat grown seedlings, indicating a greater degree of decoupling between peg formation and hook formation in space. Nonetheless, in all seedlings having single pegs and a hook, the peg was found to be positioned correctly on the inside of the hook, showing that there is coordinate development even in microgravity environments. Peg morphologies were altered in space grown samples, with the pegs having a blunt appearance and many pegs showing alterations in expansion, with the peg extending out over the edges of the seed coat and downwards. These phenotypes were not observed in clinostat or ground grown seedlings.
NASA Technical Reports Server (NTRS)
Link, B. M.; Cosgrove, D. J.
1999-01-01
In young cucumber seedlings, the peg is a polar out-growth of tissue that functions by snagging the seed coat, thereby freeing the cotyledons. Previous studies have indicated that peg formation is gravity dependent. In this study we analyzed peg formation in cucumber seedlings (Cucumis sativus L. cv Burpee Hybrid II) grown under conditions of normal gravity, microgravity, and simulated microgravity (clinostat rotation). Seeds were germinated on the ground, in clinostats and on board the space shuttle (STS 95) for 1-2 days, frozen and subsequently examined for their stage of development, degree of hook formation, number of pegs formed, and peg morphology. The frequency of peg formation in space grown seedlings was found to be nearly identical to that of clinostat grown seedlings and to differ from that of seedlings germinated under normal gravity only in a minority of cases; approximately 6% of the seedlings formed two pegs and nearly 2% of the seedlings lacked pegs, whereas such abnormalities did not occur in ground controls. The degree of hook formation was found to be less pronounced for space grown seedlings, compared to clinostat grown seedlings, indicating a greater degree of decoupling between peg formation and hook formation in space. Nonetheless, in all seedlings having single pegs and a hook, the peg was found to be positioned correctly on the inside of the hook, showing that there is coordinate development even in microgravity environments. Peg morphologies were altered in space grown samples, with the pegs having a blunt appearance and many pegs showing alterations in expansion, with the peg extending out over the edges of the seed coat and downwards. These phenotypes were not observed in clinostat or ground grown seedlings.
Shen, You-xin; Gao, Lei; Xia, Xue; Li, Yuhui; Guan, Huilin
2013-01-01
Adding propagules (source) to a degraded site (recipient) is a common way of manipulating secondary succession to restore diversity and services formerly provided by forests. However, heretofore no study has considered the effect of “successional distance” between source and recipient site. Four sites in the Shilin karst area of SW China were treated as different states along a secondary successional sere: grass, shrub, young secondary forest, and primary forest. Ten 1 m ×1m soil quadrats in the grass, shrub and young forest sites were replaced with 10 cm deep soil sources from corresponding later successional stage(s) in January 2009. Woody plant seed germination was monitored in the first year and seedling survival was monitored until the end of the second year. At the end of 2010, 2097 seeds of woody plants belonging to 45 taxa had germinated, and 3.9% of the seedlings and 7.8% of the species survived. Germination of most species was sensitive to ambient light (red, far-red, R:FR ratios, photosynthetically active radiation). Soil source and recipient site had a significant effect on the total number of seeds and number of species that germinated, and on the percentage of seedlings that survived through the end of the second year. Closer successional stages between recipient site and soil source had higher seed germination and seedling-survival percentages. However, a transition threshold exists in the young forest state, where seeds can germinate but not survive the second year. Our results, although based on an unreplicated chronosequence, suggest that successional distance between soil sources and recipient sites affect forest recruitment and restoration in degraded karst of SW China. PMID:24223891
Darbah, Joseph N. T.; Kubiske, Mark E.; Nelson, Neil; ...
2007-01-01
Atmospheric CO 2 and tropospheric O 3 are rising in many regions of the world. Little is known about how these two commonly co-occurring gases will affect reproductive fitness of important forest tree species. Here, we report on the long-term effects of CO 3 and O 3 for paper birch seedlings exposed for nearly their entire life history at the Aspen FACE (Free Air Carbon Dioxide Enrichment) site in Rhinelander, WI. Elevated CO 2 increased both male and female flower production, while elevated O 3 increased female flower production compared to trees in control rings. Interestingly, very little flowering hasmore » yet occurred in combined treatment. Elevated CO 2 had significant positive effect on birch catkin size, weight, and germination success rate (elevated CO 2 increased germination rate of birch by 110% compared to ambient CO 2 concentrations, decreased seedling mortality by 73%, increased seed weight by 17%, increased root length by 59%, and root-to-shoot ratio was significantly decreased, all at 3 weeks after germination), while the opposite was true of elevated O 3 (elevated O 3 decreased the germination rate of birch by 62%, decreased seed weight by 25%, and increased root length by 15%). Under elevated CO 2 , plant dry mass increased by 9 and 78% at the end of 3 and 14 weeks, respectively. Also, the root and shoot lengths, as well as the biomass of the seedlings, were increased for seeds produced under elevated CO 2 , while the reverse was true for seedlings from seeds produced under the elevated O 3 . Similar trends in treatment differences were observed in seed characteristics, germination, and seedling development for seeds collected in both 2004 and 2005. Our results suggest that elevated CO 2 and O 3 can dramatically affect flowering, seed production, and seed quality of paper birch, affecting reproductive fitness of this species.« less
Impacts of elevated atmospheric CO2 and O3 on paper birch (Betula papyrifera): reproductive fitness.
Darbah, Joseph N T; Kubiske, Mark E; Nelson, Neil; Oksanen, Elina; Vaapavuori, Elina; Karnosky, David F
2007-03-21
Atmospheric CO2 and tropospheric O3 are rising in many regions of the world. Little is known about how these two commonly co-occurring gases will affect reproductive fitness of important forest tree species. Here, we report on the long-term effects of CO2 and O3 for paper birch seedlings exposed for nearly their entire life history at the Aspen FACE (Free Air Carbon Dioxide Enrichment) site in Rhinelander, WI. Elevated CO2 increased both male and female flower production, while elevated O3 increased female flower production compared to trees in control rings. Interestingly, very little flowering has yet occurred in combined treatment. Elevated CO2 had significant positive effect on birch catkin size, weight, and germination success rate (elevated CO2 increased germination rate of birch by 110% compared to ambient CO2 concentrations, decreased seedling mortality by 73%, increased seed weight by 17%, increased root length by 59%, and root-to-shoot ratio was significantly decreased, all at 3 weeks after germination), while the opposite was true of elevated O3 (elevated O3 decreased the germination rate of birch by 62%, decreased seed weight by 25%, and increased root length by 15%). Under elevated CO2, plant dry mass increased by 9 and 78% at the end of 3 and 14 weeks, respectively. Also, the root and shoot lengths, as well as the biomass of the seedlings, were increased for seeds produced under elevated CO2, while the reverse was true for seedlings from seeds produced under the elevated O3. Similar trends in treatment differences were observed in seed characteristics, germination, and seedling development for seeds collected in both 2004 and 2005. Our results suggest that elevated CO2 and O3 can dramatically affect flowering, seed production, and seed quality of paper birch, affecting reproductive fitness of this species.
Jiao, Yu-jie; Wang, Ya-qi; Yuan, Ling
2015-11-01
The tuberous roots of Aconitum carmichaeli are largely used in traditional Chinese medicine and widely grown in Jiangyou, Sichuan, China. During the growth process, this medicinal plant releases a large amount of allelochemicals into soil, which retard the growth and development of near and late crops. Therefore, a pure culture experiment was thus carried out by seed soaking to study the allelopathic effects of extracts from tuberous roots of A. carmichaeli (ETR) on the seed germination and young seedling growth of Lolium perenne, Trifolium repens, and Medicago sativa, the late pasture grasses after cultivation of A. carmichaeli. The results showed that three pasture grasses varied significantly in seed germination and young seedling growth in response to ETR concentrations. Seed germination of M. sativa was stimulated by low ERT concentration (0.01 x g(-1)), while all of pasture grass seeds germinated poorly in solution with 1.00 g x L(-1). Seed soaking with 1.00 g x L(-1) also inhibited significantly the growth of pasture young seedlings, with M. sativa showing the highest seedling height reduction of 42.05% in seeding height, followed by T. repens (40.21%) and L. perenne with about 11%. Cultivation of L. perenne could thus be beneficial to increase whole land productivity in A. carmichaeli-pasture grass cropping systems. In addition, hydrolysis of protein, starch, and inositol phosphates was blocked and free amino acids, soluble sugars and phosphorus were decreased in seeds by seed soaking with ETR, which could be one of the reason for the inhibition of seed germination. There was a significant reduction in root vigor, nitrate reductase, and chlorophyll after the seed treatment with ETR, indicating the suppression of nutrient uptake, nitrate assimilation, and photosynthesis by allelopathic chemicals in ETR, which could lead to the slow growth rate of pasture grass seedlings.
Stanga, John P.; Smith, Steven M.; Briggs, Winslow R.; Nelson, David C.
2013-01-01
Abiotic chemical signals discovered in smoke that are known as karrikins (KARs) and the endogenous hormone strigolactone (SL) control plant growth through a shared MORE AXILLARY GROWTH2 (MAX2)-dependent pathway. A SL biosynthetic pathway and candidate KAR/SL receptors have been characterized, but signaling downstream of MAX2 is poorly defined. A screen for genetic suppressors of the enhanced seed dormancy phenotype of max2 in Arabidopsis (Arabidopsis thaliana) led to identification of a suppressor of max2 1 (smax1) mutant. smax1 restores the seed germination and seedling photomorphogenesis phenotypes of max2 but does not affect the lateral root formation, axillary shoot growth, or senescence phenotypes of max2. Expression of three transcriptional markers of KAR/SL signaling, D14-LIKE2, KAR-UP F-BOX1, and INDOLE-3-ACETIC ACID INDUCIBLE1, is rescued in smax1 max2 seedlings. SMAX1 is a member of an eight-gene family in Arabidopsis that has weak similarity to HEAT SHOCK PROTEIN 101, which encodes a caseinolytic peptidase B chaperonin required for thermotolerance. SMAX1 and the SMAX1-like (SMXL) homologs are differentially expressed in Arabidopsis tissues. SMAX1 transcripts are most abundant in dry seed, consistent with its function in seed germination control. Several SMXL genes are up-regulated in seedlings treated with the synthetic SL GR24. SMAX1 and SMXL2 transcripts are reduced in max2 seedlings, which could indicate negative feedback regulation by KAR/SL signaling. smax1 seed and seedling growth mimics the wild type treated with KAR/SL, but smax1 seedlings are still responsive to 2H-furo[2,3-c]pyran-2-one (KAR2) or GR24. We conclude that SMAX1 is an important component of KAR/SL signaling during seed germination and seedling growth but is not necessary for all MAX2-dependent responses. We hypothesize that one or more SMXL proteins may also act downstream of MAX2 to control the diverse developmental responses to KARs and SLs. PMID:23893171
Godínez-Alvarez, H; Morín, C; Rivera-Aguilar, V
2012-01-01
Information about the effects of biological soil crusts (BSC) on germination, seedling survival and growth of vascular plants is controversial because they can have positive, neutral or negative effects. This controversy may be because most studies conducted until now have just analysed one or two recruitment stages independently. To understand the BSC effects on vascular plants, it is necessary to consider each stage of the recruitment process and synthesise all this information. The goal of this study was twofold. First, we analyse germination, seedling survival and growth of three vascular plants (Agave marmorata, Prosopis laevigata and Neobuxbaumia tetetzo) on BSC (cyanobacteria and mixed crust) from a tropical desert region of south-central México. Second, we synthesise the information to determine the total effect of BSC on plant species performance. We conducted experiments under controlled conditions to evaluate the proportion of germinated seeds, proportion of surviving seedlings and seedling dry weight in BSC and bare soil. Results showed that BSC have different effects on germination, seedling survival and growth of plant species. Plant species performance was qualitatively higher on BSC than bare soil. The highest performance of A. marmorata and P. laevigata was observed on cyanobacteria and mixed crusts, respectively. The highest performance of N. tetetzo was on both crust types. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.
Naveed, Shahzad Amir; Zhang, Fan; Zhang, Jian; Zheng, Tian-Qing; Meng, Li-Jun; Pang, Yun-Long; Xu, Jian-Long; Li, Zhi-Kang
2018-04-25
To facilitate developing rice varieties tolerant to salt stress, a panel of 208 rice mini-core accessions collected from 25 countries were evaluated for 13 traits associated with salt tolerance (ST) at the germination and seedling stages. The rice panel showed tremendous variation for all measured ST traits and eight accessions showing high levels of ST at either and/or both the germination and seedling stages. Using 395,553 SNP markers covering ~372 Mb of the rice genome and multi-locus mixed linear models, 20 QTN associated with 11 ST traits were identified by GWAS, including 6 QTN affecting ST at the germination stage and 14 QTN for ST at the seedling stage. The integration of bioinformatic with haplotype analyses for the ST QTN lets us identify 22 candidate genes for nine important ST QTN (qGR3, qSNK1, qSNK12, qSNC1, qSNC6, qRNK2, qSDW9a, qSST5 and qSST9). These candidate genes included three known ST genes (SKC1, OsTZF1 and OsEATB) for QTN qSNK1 qSST5 and qSST9. Candidate genes showed significant phenotypic differences in ST traits were detected between or among 2-4 major haplotypes. Thus, our results provided useful materials and genetic information for improving rice ST in future breeding and for molecular dissection of ST in rice.
González-López, Óscar; Casquero, Pedro A.
2014-01-01
Gentiana lutea L. is widely used in bitter beverages and in medicine; Gentianae Radix is the pharmaceutical name of the root of G. lutea. These uses have generated a high demand. The wild populations of Gentiana lutea var. aurantiaca (M. Laínz) M. Laínz have been decimated; it is necessary to establish guidelines for its cultivation. Gentian as most alpine species has dormant seeds. Dormancy can be removed by cold and by means of a gibberellic acid (GA3) treatment. However, cold treatments produce low germination percentages and GA3 treatments may produce off-type seedlings. So, the objective was to determine, for the first time, the presowing treatments that allow high germination rate and good seedling morphology. The best pregerminative doses of GA3 to break seed dormancy were 100, 500, and 1000 ppm, while the best doses to optimize the seedling habit were 50 and 100 ppm. This study provides, for the first time, a 100 ppm GA3 dose that led to a high germination rate and good seedling morphology, as the starting point for gentian regular cultivation. PMID:25105167
González-López, Óscar; Casquero, Pedro A
2014-01-01
Gentiana lutea L. is widely used in bitter beverages and in medicine; Gentianae Radix is the pharmaceutical name of the root of G. lutea. These uses have generated a high demand. The wild populations of Gentiana lutea var. aurantiaca (M. Laínz) M. Laínz have been decimated; it is necessary to establish guidelines for its cultivation. Gentian as most alpine species has dormant seeds. Dormancy can be removed by cold and by means of a gibberellic acid (GA3) treatment. However, cold treatments produce low germination percentages and GA3 treatments may produce off-type seedlings. So, the objective was to determine, for the first time, the presowing treatments that allow high germination rate and good seedling morphology. The best pregerminative doses of GA3 to break seed dormancy were 100, 500, and 1000 ppm, while the best doses to optimize the seedling habit were 50 and 100 ppm. This study provides, for the first time, a 100 ppm GA3 dose that led to a high germination rate and good seedling morphology, as the starting point for gentian regular cultivation.
Shi, Yu; Zhang, Yi; Yao, Hejin; Wu, Jiawen; Sun, Hao; Gong, Haijun
2014-05-01
The beneficial effects of silicon on plant growth and development under drought have been widely reported. However, little information is available on the effects of silicon on seed germination under drought. In this work, the effects of exogenous silicon (0.5 mM) on the seed germination and tolerance performance of tomato (Solanum lycopersicum L.) bud seedlings under water deficit stress simulated by 10% (w/v) polyethylene glycol (PEG-6000) were investigated in four cultivars ('Jinpengchaoguan', 'Zhongza No.9', 'Houpi L402' and 'Oubao318'). The results showed that the seed germination percentage was notably decreased in the four cultivars under water stress, and it was significantly improved by added silicon. Compared with the non-silicon treatment, silicon addition increased the activities of superoxide dismutase (SOD) and catalase (CAT), and decreased the production of superoxide anion (O2·) and hydrogen peroxide (H2O2) in the radicles of bud seedlings under water stress. Addition of silicon decreased the total phenol concentrations in radicles under water stress, which might contribute to the decrease of peroxidase (POD) activity, as observed in the in vivo and in vitro experiments. The decrease of POD activity might contribute to a less accumulation of hydroxyl radical (·OH) under water stress. Silicon addition also decreased the concentrations of malondialdehyde (MDA) in the radicles under stress, indicating decreased lipid peroxidation. These results suggest that exogenous silicon could improve seed germination and alleviate oxidative stress to bud seedling of tomato by enhancing antioxidant defense. The positive effects of silicon observed in a silicon-excluder also suggest the active involvement of silicon in biochemical processes in plants. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Assessing seedbank recruitment windows of opportunity in thaw slump thermokarsts
NASA Astrophysics Data System (ADS)
Huebner, D. C.; Bret-Harte, M. S.
2013-12-01
Tall shrub thickets (>1m) of birch and willow have been observed in stabilized lobes of thaw slump thermokarsts (gullies cause by thawed permafrost) in the Low Arctic near Toolik Lake, Alaska. We tested whether there are differences in seedling recruitment and establishment in thermokarsts vs outside the disturbance by comparing in-situ seedling presence, greenhouse germination of natural seedbanks, and cohort age groups of willow (Salix spp.) and birch in two 50m transects sampled in thermokarst lobes of different age: one young lobe of 7 y.a. at Lake NE-14, and one older lobe of 22 y.a. at Lake I-minus 1 vs. two transects outside the lobes. Young thermokarsts may provide germination windows of opportunity for fast growing species like graminoids and deciduous shrubs. In-situ seedling observations generally agreed with expectations. Fifteen times as many live seedlings were observed in the young lobe vs. outside, composed mainly of graminoids and willows, and five times more seedlings were observed inside the older lobe vs. outside, including 25% birch. Germination trials of seedbanks, as expected, showed a reverse trend. The smaller seedbanks in the young lobe had far fewer germinants than outside: over 49 times more seedlings germinated in the outside seedbank compared to the thermokarst, and were composed mainly of longer-lived evergreen shrubs in the genera Ledum and Rhododendron. The older lobe, by contrast, showed seven times greater germination than outside and was composed mainly of graminoids. Birch made up only 5%, reflecting variation in species composition between sites. ANOVA of seedbank germination across sites showed unit increase in number of germinated seeds was negatively correlated to percent cover of bare soil, positively correlated to the amount of organic matter present in the surface soil as reflected in sample volume, and positively correlated to thaw depth. Reverse trends in germination trials vs. presence of live seedlings may be explained by lower seedbank quality but higher recruitment in younger lobes due to greater viable seed input and turnover, particularly of short-lived seeds such as willow, whereas older lobes and undisturbed tundra may have larger seedbanks whose recruitment of new individuals may be limited under natural conditions. Age cohort comparisons between willow species (Salix pulchra or S. glauca), as expected, found over 80% of individuals sampled at the young lobe between 3-4 y.a., while outside showed more variable distribution across six cohorts spanning five to 35 y.a. For both birch and willow, there was more cohort variability in the older lobe than outside, suggesting recruitment outcomes could have site-species interactions.
ERIC Educational Resources Information Center
Hershey, David R.
1995-01-01
Presents an activity that involves using sponge seedlings to demonstrate the germination process without the usual waiting period. Discusses epigeous versus hypogeous germination, and cotyledon number and biodiversity. (JRH)
Germination and early seedling growth of Pinus densata Mast. provenances
Yulan Xu; Nianhui Cai; Bin He; Ruili Zhang; Wei Zhao; Jianfeng Mao; Anan Duan; Yue Li; Keith Woeste
2016-01-01
We studied seed germination and early seedling growth of Pinus densata to explore the range of variability within the species and to inform afforestation practices. Phenotypes were evaluated at a forest tree nursery under conditions that support Pinus yunnanensis, one of the presumed parental species of P. densata...
Germination Under Stress: A Marker For Inherent Vigor Or An Isolated Event?
USDA-ARS?s Scientific Manuscript database
Seedling vigor and its translation to late-season vigor are, at best, murky for most beet breeders. The initial conditions a germinating seed encounters, and its ability to overcome them, affects stored energy reserves to withstand future adverse environments and the ability of the seedling to survi...
Marcu, Delia; Damian, Grigore; Cosma, Constantin; Cristea, Victoria
2013-09-01
The effects of gamma radiation are investigated by studying plant germination, growth and development, and biochemical characteristics of maize. Maize dry seeds are exposed to a gamma source at doses ranging from 0.1 to 1 kGy. Our results show that the germination potential, expressed through the final germination percentage and the germination index, as well as the physiological parameters of maize seedlings (root and shoot lengths) decreased by increasing the irradiation dose. Moreover, plants derived from seeds exposed at higher doses (≤0.5 kGy) did not survive more than 10 days. Biochemical differences based on photosynthetic pigment (chlorophyll a, chlorophyll b, carotenoids) content revealed an inversely proportional relationship to doses of exposure. Furthermore, the concentration of chlorophyll a was higher than chlorophyll b in both irradiated and non-irradiated seedlings. Electron spin resonance spectroscopy used to evaluate the amount of free radicals induced by gamma ray treatment demonstrates that the relative concentration of radiation-induced free radicals depends linearly on the absorbed doses.
[Allelopathic effects of extracts from fibrous roots of Coptis chinensis on two leguminous species].
Li, Qian; Wu, Ye-Kuan; Yuan, Ling; Huang, Jian-Guo
2013-03-01
An experiment was carried out to study the allelopathic effects of Coptis chinensis fibrous root extracts (CRE) on the germination and seedling growth of Vicia faba and Pisum sativum in order to alleviate the allelopathic effects and increase land productivity. The seeds of both garden pea (P. sativum) and broad been (V. faba) were germinated in CRE solution of various concentrations, the germination rate, seedling growth and related physiological indexes were measured. The result indicated that there were no significant effects of CRE in low concentrations on seed germination, including both the rate and index, and seed vitality and membrane permeability. With the increment of CRE concentrations, however, the high seed membrane permeability and germination inhibition were observed. For example, the germination rates were reduced by 23.4% (P. sativum) and 9.5% (V. faba), respectively, in CRE solution with 800 mg . L-1. Simultaneously, soluble sugars and the free amino acids in the seeds were lower than those in the control (without CRE) after soaking seeds in CRE solutions. In addition, the seedling growth and nitrate reductase activity were stimulated by CRE at low concentrations in contrast to high concentrations which behaved otherwise and inhibited the nutrient utilization in endosperm. Therefore, the large amount of allelochemicals released from the roots and remains of C. chinensis in soils could inhibit the seed germination and seedling growth of legumes, which may lead to decrease even fail crop yields after growing this medical plant.
EASTERN DODDER (CUSCUTA MONOGYNA VAHL.) SEED GERMINATION AFFECTED BY SOME HERBACEOUS DISTILLATES.
Movassaghi, M; Hassannejad, S
2015-01-01
Eastern dodder (Cuscuta monogyna Vahl.) is one of the noxious parasitic weeds that infected many ornamental trees in green spaces and gardens. Our purpose is to find natural inhibitors for prevention of its seed germination. In order to reach this aim, laboratory studies were conducted by using of herbaceous distillates of Dracocephalum moldavica, Nasturtium officinalis, Malva neglecta, Mentha piperita, Mentha pulegium, Rosa damascene, Ziziphora tenuior, and Urtica dioica on seed germination of C. monogyna. Z. tenuior distillate stimulated C. monogyna seed germination, whereas others reduced this parasitic weed's seed germination. D. moldavica caused maximum inhibition on weed seed germination. Seedling growth of C. monogyna was more affected than its seed germination. All of these herbaceous distillates reduced C. monogyna seedling length so that the latter decreased from 28.2 mm in distilled water to 4.5, 3.97, 3.85, 3.67, 3.1, 2.87, 2.57, 1.9, and 1.17 in M. pulegium, M. piperita, F. officinalis, Z. tenuior, N. officinalis, M. neglecta, R. damascene, U. dioica and D. moldavica, respectively. By using these medicinal plants distillates instead of herbicides, the parasitic weed seedling length and host plant infection will reduce.
Li, Wen-Yan; Chen, Bing-Xian; Chen, Zhong-Jian; Gao, Yin-Tao; Chen, Zhuang; Liu, Jun
2017-01-01
Seed germination is a complicated biological process that requires regulation through various enzymatic and non-enzymatic mechanisms. Although it has been recognized that reactive oxygen species (ROS) regulate radicle emergence and root elongation in a non-enzymatic manner during dicot seed germination, the role of ROS in monocot seed germination remains unknown. NADPH oxidases (NOXs) are the major ROS producers in plants; however, whether and how NOXs regulate rice seed germination through ROS generation remains unclear. Here, we report that diphenyleneiodinium (DPI), a specific NOX inhibitor, potently inhibited embryo and seedling growth—especially that of the radicle and of root elongation—in a dose-dependent manner. Notably, the DPI-mediated inhibition of radicle and root growth could be eliminated by transferring seedlings from DPI to water. Furthermore, ROS production/accumulation during rice seed germination was quantified via histochemistry. Superoxide radicals (O2−), hydrogen peroxide (H2O2) and hydroxyl radicals (•OH) accumulated steadily in the coleorhiza, radicle and seedling root of germinating rice seeds. Expression profiles of the nine typical NOX genes were also investigated. According to quantitative PCR, OsNOX5, 7 and 9 were expressed relatively higher. When seeds were incubated in water, OsNOX5 expression progressively increased in the embryo from 12 to 48 h, whereas OsNOX7 and 9 expressions increased from 12 to 24 h and decreased thereafter. As expected, DPI inhibits the expression at predetermined time points for each of these genes. Taken together, these results suggest that ROS produced by NOXs are involved in radicle and root elongation during rice seed germination, and OsNOX5, 7 and 9 could play crucial roles in rice seed germination. These findings will facilitate further studies of the roles of ROS generated by NOXs during seed germination and seedling establishment and also provide valuable information for the regulation of NOX family gene expression in germinating seeds of monocot cereals. PMID:28098759
Saharan, Vinod; Kumaraswamy, R V; Choudhary, Ram Chandra; Kumari, Sarita; Pal, Ajay; Raliya, Ramesh; Biswas, Pratim
2016-08-10
Food crop seedlings often have susceptibility to various abiotic and biotic stresses. Therefore, in the present study, we investigated the impact of Cu-chitosan nanoparticles (NPs) on physiological and biochemical changes during maize seedling growth. Higher values of percent germination, shoot and root length, root number, seedling length, fresh and dry weight, and seed vigor index were obtained at 0.04-0.12% concentrations of Cu-chitosan NPs as compared to water, CuSO4, and bulk chitosan treatments. Cu-chitosan NPs at the same concentrations induced the activities of α-amylase and protease enzymes and also increased the total protein content in germinating seeds. The increased activities of α-amylase and protease enzymes corroborated with decreased content of starch and protein, respectively, in the germinating seeds. Cu-chitosan NPs at 0.16% and CuSO4 at 0.01% concentrations showed inhibitory effect on seedling growth. The observed results on seedling growth could be explained by the toxicity of excess Cu and growth promotory effect of Cu-chitosan NPs. Physiological and biochemical studies suggest that Cu-chitosan NPs enhance the seedling growth of maize by mobilizing the reserved food, primarily starch, through the higher activity of α-amylase.
Li, Juan; Hettenhausen, Christian; Sun, Guiling; Zhuang, Huifu; Li, Jian-Hong; Wu, Jianqiang
2015-01-01
Around 1% of angiosperms are parasitic plants. Their growth and development solely or partly depend on host plants from which they extract water, nutrients, and other molecules using a parasitic plant-specific organ, the haustorium. Strong depletion of nutrients can result in serious growth retardation and in some cases, death of the hosts. The genus Cuscuta (dodder) comprises about 200 holoparasitic species occurring on all continents. Their seedlings have no roots and cotyledons but are only string-like hypocotyls. When they contact suitable host plants, haustoria are formed and thereafter seedlings rapidly develop into vigorously growing branches without roots and leaves. This highly specialized lifestyle suggests that Cuscuta plants likely have unique physiology in development and stress responses. Using germination and seedling growth assays, we show that C. australis seeds and seedlings are highly insensitive to abscisic acid (ABA). Transcriptome analysis and protein sequence alignment with Arabidopsis, tomato, and rice homologs revealed that C. australis most likely consists of only four functional ABA receptors. Given that Cuscuta plants are no longer severely challenged by drought stress, we hypothesize that the ABA-mediated drought resistance pathway in Cuscuta spp. might have had degenerated over time during evolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ansley, R.J. Jr.
1983-01-01
Gardner saltbush (Atriplex gardneri (Moq.) D. Dietr.) provides valuable winter browse and is an important soil stabilizer in arid, alkaline, and saline areas of the intermountain region. However, seed dormancy and poor seedling vigor inhibit its potential for revegetation by direct seeding on disturbed lands. The objectives of this study were to 1) develop seed treatments which would overcome dormancy in Gardner saltbush seeds, 2) evaluate field establishment by direct seeding of Gardner saltbush, and 3) characterize seed dormancy, seedling vigor and some aspects of the ecology of germination in Gardner saltbush. In the laboratory, single and combined pretreatments removedmore » dormancy to varying degrees. Dormancy was completely alleviated with 15 months dry after-ripening + scarification + 24 hours washing + 4 weeks stratification. Dry after-ripening and scarification appeared to facilitate effects of washing and stratification. Physiologically, indirect evidence was obtained suggesting both embryo and seedcoat mediated dormancy occur in Gardner saltbush. Ecologically, the various levels of germination response to simulated environmental pretreatments appeared to be an adaptation of Gardner saltbush seeds to ensure a temporal dispersal of release from dormancy. This increases the probability that under natural conditions some seedlings will emerge during times when the environment is amenable to seedling survival.« less
NASA Astrophysics Data System (ADS)
Zhou, Renwu; Zhou, Rusen; Zhang, Xianhui; Zhuang, Jinxing; Yang, Size; Bazaka, Kateryna; (Ken) Ostrikov, Kostya
2016-09-01
Atmospheric-pressure N2, He, air, and O2 microplasma arrays have been used to investigate the effects of plasma treatment on seed germination and seedling growth of mung bean in aqueous solution. Seed germination and growth of mung bean were found to strongly depend on the feed gases used to generate plasma and plasma treatment time. Compared to the treatment with atmospheric-pressure O2, N2 and He microplasma arrays, treatment with air microplasma arrays was shown to be more efficient in improving both the seed germination rate and seedling growth, the effect attributed to solution acidification and interactions with plasma-generated reactive oxygen and nitrogen species. Acidic environment caused by air discharge in water may promote leathering of seed chaps, thus enhancing the germination rate of mung bean, and stimulating the growth of hypocotyl and radicle. The interactions between plasma-generated reactive species, such as hydrogen peroxide (H2O2) and nitrogen compounds, and seeds led to a significant acceleration of seed germination and an increase in seedling length of mung bean. Electrolyte leakage rate of mung bean seeds soaked in solution activated using air microplasma was the lowest, while the catalase activity of thus-treated mung bean seeds was the highest compared to other types of microplasma.
Zhou, Renwu; Zhou, Rusen; Zhang, Xianhui; Zhuang, Jinxing; Yang, Size; Bazaka, Kateryna; Ken Ostrikov, Kostya
2016-09-01
Atmospheric-pressure N2, He, air, and O2 microplasma arrays have been used to investigate the effects of plasma treatment on seed germination and seedling growth of mung bean in aqueous solution. Seed germination and growth of mung bean were found to strongly depend on the feed gases used to generate plasma and plasma treatment time. Compared to the treatment with atmospheric-pressure O2, N2 and He microplasma arrays, treatment with air microplasma arrays was shown to be more efficient in improving both the seed germination rate and seedling growth, the effect attributed to solution acidification and interactions with plasma-generated reactive oxygen and nitrogen species. Acidic environment caused by air discharge in water may promote leathering of seed chaps, thus enhancing the germination rate of mung bean, and stimulating the growth of hypocotyl and radicle. The interactions between plasma-generated reactive species, such as hydrogen peroxide (H2O2) and nitrogen compounds, and seeds led to a significant acceleration of seed germination and an increase in seedling length of mung bean. Electrolyte leakage rate of mung bean seeds soaked in solution activated using air microplasma was the lowest, while the catalase activity of thus-treated mung bean seeds was the highest compared to other types of microplasma.
Aromatic biosynthesis in pine tissues
NASA Technical Reports Server (NTRS)
Cowles, J. R.
1984-01-01
Pinus elliotti is a woody plant species responsive to gravity and capable of synthesizing large quantities of lignin. Lignification begins very quickly after germination; lignin is detected in the vascular region within 4 days after germination and rapidly progresses up the hypocotyl. Young pine seedlings bend in response to geostimulation for about 10 days after germination, with the most rapid response time occurring in 4- to 5-day-old seedlings. Various chemicals were used to establish their effects on the geotropic response in this gymnosperm species. IAA completely arrests the geotropic response for 18 to 24 hr. Afterward the seedlings respond geostimulation as if they were not treated. The same pattern of response will occur with a second IAA treatment. If the synthetic auxin, 2-4,D, is used, the georesponse is permanently blocked. The method of application does not appear to be critical; addition of auxin to only one side of the seedling gave results similar to those obtained by treating the entire seedling.
Zhao, Ming; Guo, Brian; Onakpa, Michael M; Wong, Tiffany; Wakasa, Kyo; Che, Chun-Tao; Warpeha, Katherine
2017-12-22
Broadleaf weeds are very costly for crop growers. Additional herbicidal compounds need to be obtained, especially from natural sources. Extracts of Icacina trichantha were evaluated for responses in germinating seeds and seedlings of rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana). An ethyl acetate fraction of I. trichantha tuber and a diterpenoid constituent, icacinol (1), were found to have impacts on germination and growth of seedlings. The seed germination inhibitory activity on rice was minimal, but significant on Arabidopsis. While rice indicated some growth delay in leaf expansion in the presence of 1, the effects appeared temporary; chlorophyll and anthocyanins were not significantly altered compared to DMSO controls. Rice seedlings attained biomass similar to DMSO controls, and rice grains per panicle were not significantly different from the DMSO controls. On the other hand, Arabidopsis exhibited damage to leaf expansion, reduced chlorophyll, and increased anthocyanins in aerial portions of the seedlings. Icacinol (1) may be a suitable chemical agent to investigate further for the treatment of eudicot weeds.
NASA Technical Reports Server (NTRS)
Venketeswaran, S.
1987-01-01
Experiments to determine whether plant tissue cultures can be grown in the presence of simulated lunar soil (SLS) and the effect of simulated lunar soil on the growth and morphogenesis of such cultures, as well as the effect upon the germination of seeds and the development of seedlings were carried out . Preliminary results on seed germination and seedling growth of rice and calli growth of winged bean and soybean indicate that there is no toxicity or inhibition caused by SLS. SLS can be used as a support medium with supplements of certain major and micro elements.
Speer, Henry L.
1973-01-01
The effect of arsenate, arsenite, 2,4-dinitrophenol, and anaerobiosis on early events in seed germination was investigated using both intact and punched seeds of lettuce (Lactuca sativa L.). It was found that punching the seed removes penetration barriers to the entrance of inhibitors without an undue loss of germination or light responses. The kinetics of the action of germination inhibitors were established by 2-hour pulse experiments. Arsenate and 2, 4-dinitrophenol have very different kinetics. The inhibition of germination in punched seeds by arsenate given in conjunction with phosphate compared with the lack of inhibition of arsenate plus phosphate on the growing seedling, suggest a distinct metabolic change in the germinating embryo at some time between the onset of germination and subsequent seedling growth. Images PMID:16658515
NASA Astrophysics Data System (ADS)
Yildiz, Mustafa; Er, Celâl
2002-04-01
The aim of this study was to determine the effect of concentration (40, 60, and 80%) and temperature (0, 10, 20, and 30°C) of sodium hypochlorite (NaOCl) solutions on seed germination, in vitro viability and growth of flax seedlings and regeneration capacity of hypocotyl explants. Results showed that seed germination, seedling growth and shoot regeneration were negatively affected by increasing concentration and temperature of disinfectant. The best results in seedling growth and shoot regeneration were obtained when 40% disinfectant concentration at 10°C was used.
M. Hussain; M. E. Kubiske; K. F. Connor
2001-01-01
1. Pinus tuedli seeds, developed under ambient or elevated (ambient + 200 Ч1-1) [CO2], were collected from Duke Forest, North Carolina, USA in October 1998. Seeds were germinated in nutrient-deficient soil in either ambient or elevated [COJ (ambient + 200 Ч1-1) greenhouse...
In Vivo Effects of Barbituates on Seed Germination and Seedling Growth.
ERIC Educational Resources Information Center
Kordan, H. A.
1984-01-01
A simple, low-cost experimental system can be used to demonstrate the "in vivo" effects of barbituates on seed germination and seedling growth behavior in different plant species. Lipid solubility and concentration of individual barbituates both affect the response. List of materials needed, procedures used, and typical results obtained are…
Activities That Increase Germination and Establishment of Longleaf Pine Seedlings in Containers
James P. Barnett
2002-01-01
Critical to the successful production of longleaf pine (Pinus palustris Mill.) container stock is use of high quality seeds that are properly prepared and sown. Uniformity in germination and establishment in containers makes nursery production easier and more profitable for the grower. Activities that affect seedling performance include: time of seed...
Rohamare, Yogita; Dhumal, K N; Nikam, T D
2014-09-01
Seed germination and subsequent metabolic changes in Ajowan (Trachyspermum ammi L.) (NRCSS AA-2) seedlings was studied under water limiting conditions, imposed by increasing concentrations of polyethylene glycol (PEG 6000). Five water stress conditions (0, -0.05, -0.1, -0.15 and -0.2 MPa) were created in the laboratory in a completely randomized design. The results revealed that water stress (-0.2 MPa) significantly reduced seed germination components like final germination percent (80%) radical (64%) and plumule (63%) length, fresh (63%) and dry (74%) weight of seedlings and vigor index (SVI) by 92% over control. Decrease in osmotic potential resulted in decreased protein content (56%) with concomitant increase in total sugars (55%) at -0.2 MPa as compared to control. Significant increase in free proline and glycine betaine content by 1.5 to 2 folds was observed at the highest water stress condition. The seedlings exhibited increased activity of superoxide dismutase and peroxidase under stressed condition. In the present study, it was found that Ajowan was a moderately drought tolerant species at laboratory level.
Annual Variation in the Sterol Content of Digitalis purpurea L. Seedlings 1
Jacobsohn, Myra K.; Jacobsohn, Gert M.
1976-01-01
Seedings from a single lot of Digitalis purpurea L. seeds were germinated in batches over a period of 13 months. A total lipid extract was made which was resolved into esterified and unconjugated plus glycosylated sterol fractions. The amounts of sterol in each fraction and in the total were compared for seedlings germinated at different times of the year. The amount of esterified sterols reached a maximum value from March until June, and a low value from July until January. In January, a sharp increase began which lasted until March. Amounts of unconjugated and glycosylated sterols were elevated from March until June, low from July until October, and on the rise from November until March. These data correlate with an annual cycle in seed germination. The phase of maximum sterol content of seedlings is followed by a period of null germination. PMID:16659713
Soriano, Diana; Orozco-Segovia, Alma; Márquez-Guzmán, Judith; Kitajima, Kaoru; Gamboa-de Buen, Alicia; Huante, Pilar
2011-01-01
Background and Aims The size and composition of seed reserves may reflect the ecological strategy and evolutionary history of a species and also temporal variation in resource availability. The seed mass and composition of seed reserves of 19 co-existing tree species were studied, and we examined how they varied among species in relation to germination and seedling growth rates, as well as between two years with contrasting precipitation (652 and 384 mm). Methods Seeds were collected from a tropical deciduous forest in the northwest of Mexico (Chamela Biological Station). The seed dry mass, with and without the seed coat, and the concentrations of lipids, nitrogen and non-structural carbohydrates for the seed minus seed coat were determined. The anatomical localization of these reserves was examined using histochemical analysis. The germination capacity, rate and lag time were determined. The correlations among these variables, and their relationship to previously reported seedling relative growth rates, were evaluated with and without phylogenetic consideration. Key Results There were interannual differences in seed mass and reserve composition. Seed was significantly heavier after the drier year in five species. Nitrogen concentration was positively correlated with seed coat fraction, and was significantly higher after the drier year in 12 species. The rate and lag time of germination were negatively correlated with each other. These trait correlations were also supported for phylogenetic independent contrasts. Principal component analysis supported these correlations, and indicated a negative association of seedling relative growth rate with seed size, and a positive association of germination rate with nitrogen and lipid concentrations. Conclusions Nitrogen concentration tended to be higher after the drier year and, while interannual variations in seed size and reserve composition were not sufficient to affect interspecific correlations among seed and seedling traits, some of the reserves were related to germination variables and seedling relative growth rate. PMID:21385781
Ben Ghnaya, Asma; Hamrouni, Lamia; Amri, Ismail; Ahoues, Haifa; Hanana, Mohsen; Romane, Abderrahmane
2016-09-01
Allelopathic materials inside a tree can produce positive or negative change in the survival, growth, reproduction and behaviour of other organisms if they escape into the environment. To assess these effects, this work was carried out to evaluate the allelopathic impact of Eucalyptus erythrocorys L. on seed germination and seedling growth of two weeds: Sinapis arvensis L. and Phalaris canariensis L.; on one cultivated crop: Triticum durum L. Aqueous; and on ethanolic leaf extracts of E. erythrocorys L. The study was effected using four concentrations (10, 20, 25 and 30 μL/mL) while distilled water was used as a control. The results showed that the E. erythrocorys L. crude extracts had an inhibitory effect on seed germination and seedling growth of both studied weeds and wheat. The inhibition rate was increased by the increase in extract concentration. Only ethanolic extracts of E. erythrocorys L. induced a significant inhibition of seed germination of durum wheat. The effect of E. erythrocorys L. crude extracts was more severe on weeds than on durum wheat. These results indicate that the seedling growth, especially radicle elongation, was the more sensitive indicator to evaluate the effects of extracts than was the seed germination.
NASA Astrophysics Data System (ADS)
Khan, M. L.
2004-03-01
I examined the effects of seed mass on performance of seedlings of Artocarpus heterophyllus L. (Moraceae), a large evergreen late successional shade-tolerant tree species in three contrasting light conditions. Seed mass varied many fold from 1.5 to 14 g in A. heterophyllus. Germination and germination time showed a significant correlation with seed mass. Germination differed significantly among three light regimes (50%, 25% and 3%). Seed mass and light level significantly affected seedling survival. The seedlings that emerged from large seeds survived better than those from small seeds under all light regimes. Survival of seedlings was maximum in 25% light regime for all seed mass classes but did not differ significantly from that at 50% light regime. Survival was significantly lower in 3% light as compared to 50% and 25% light regimes. Seedling vigor (expressed in terms of seedling height, leaf area and dry weight) was also significantly affected by seed mass and light regimes. Seedlings that emerged from larger seeds and grew under 50% light regime produced the heaviest seedlings, while those resulting from smaller seeds and grown under 3% light regime produced the lightest seedlings. Resprouting capacity of seedlings after clipping was significantly affected by seed mass and light regime. Seedlings emerging from larger seeds were capable of resprouting several times successively. Resprouting was more pronounced under 50% and 25% light regimes as compared to 3% light. Success of A. heterophyllus regeneration appears to be regulated by an interactive effect of seed mass and light regime.
Ziaebrahimi, L; Khavari-Nejad, R A; Fahimi, H; Nejadsatari, T
2007-10-01
Evaluation of allelopathic effects of this plant on other near cultivations especially wheat is the aim of this study. Effects of water extracts of eucalyptus leaves examined on germination and growth of three wheat cultivar seeds and seedlings. Results showed that: germination percentage strongly decreased, leaf and root lengths also affected and dry and wet weights of both roots and shoots showed similar change patterns. Activities of peroxidase and polyphenoloxidase as antioxidant enzymes in roots and shoots measured. Activity of peroxidases increased in stress conditions and roots showed more increased enzyme activity than leaves. Activity of polyphenoloxidases increased only in one of three cultivars and again roots showed more activity of this enzyme in response to eucalyptus extract. Suggest that detoxification process were conducted mainly in roots of seedlings.
Bae, Jichul; Benoit, Diane L; Watson, Alan K
2016-06-01
In southern Québec, supplement roadside ground covers (i.e. Trifolium spp.) struggle to establish near edges of major roads and thus fail to assist turf recruitment. It creates empty niches vulnerable to weed establishment such as common ragweed (Ambrosia artemisiifolia). We hypothesized that heavy metal stresses may drive such species shifts along roadside edges. A growth chamber experiment was conducted to assess effects of metals (Zn, Pb, Ni, Cu, and Cd) on germination and seedling behaviors of roadside weed (A. artemisiifolia) and ground cover legumes (Coronilla varia, Lotus corniculatus, and Trifolium arvense). All metals inhibited T. arvense germination, but the effect was least on A. artemisiifolia. Low levels of Pb and Ni promoted germination initiation of A. artemisiifolia. Germination of L. corniculatus was not affected by Zn, Pb, and Ni, but inhibited by Cu and Cd. Germination of C. varia was decreased by Ni, Cu, and Cd and delayed by Zn and Pb. Metal additions hindered seedling growth of all test species, and the inhibitory effect on the belowground growth was greater than on the aboveground growth. Seedling mortality was lowest in A. artemisiifolia but highest in T. arvense when exposed to the metal treatments. L. corniculatus and C. varia seedlings survived when subjected to high levels of Zn, Pb, and Cd. In conclusion, the successful establishment of A. artemisiifolia along roadside edges can be associated with its greater tolerance of heavy metals. The findings also revealed that L. corniculatus is a potential candidate for supplement ground cover in metal-contaminated roadside edges in southern Québec, especially sites contaminated with Zn and Pb. Copyright © 2015 Elsevier Ltd. All rights reserved.
Uptake and translocation of phytochemical 2-benzoxazolinone (BOA) in radish seeds and seedlings.
Chiapusio, Geneviève; Pellissier, François; Gallet, Christiane
2004-07-01
The molecular aspects of phytochemical interactions between plants, especially the process of phytochemical translocation by the target plant, remain challenging for those studying allelopathy. 2-Benzoxazolinone (BOA) is a natural chemical produced by rye (Secale cereale) and is known to have phytotoxic effects on weed seeds and seedlings. The translocation of BOA into target plants has been poorly investigated. Therefore, the total absorption of [ring U 14C] BOA was estimated by oxidizing whole seedlings of Raphanus sativus cv. for 8 days and quantifying the radioactivity. Non-radiolabelled BOA in seedlings was also estimated by HPLC. BOA applied at 10(-3) M was readily taken up by germinated radish at a rate of 1556 nmol g(-1) FW. At these same concentrations, BOA reduced radish germination by 50% and caused a delay in radicle elongation. Exogenous BOA was responsible for the observed germination inhibition. At a concentration of 10(-5) M, BOA was taken up by germinated seeds (31 nmol g(-1) FW), but this quantity did not affect radish germination. Labelled BOA was not mineralized in the culture medium during seedling growth as no 14CO2 was recovered. Both 10(-3) and 10(-5) M BOA were translocated into radish organs, mainly into roots and cotyledons. These organs were then identified as potential physiological target sites. Cotyledons remained the target sink (44% of the total radioactivity). The kinetics of BOA uptake at 10(-3) and 10(-5) M in radish seedlings was identical: BOA accumulation was proportional to its initial concentration. A comparison between radioactivity and HPLC quantification for 10(-3) M BOA indicated that BOA (along with some metabolites) could effectively be recovered in radish organs using chromatography.
Tan, Mu-xiu; Zeng, Wen-wen; Wei, Peng-xiao; Mo, Qiao-cheng; Pu, Zu-ning; Cen, Xiu-fen; Shi, Feng-hua
2015-05-01
To explore the germination conditions of Lonicera hypoglauca sand culture seeds and the effects of sand culture seedlings sterilization. 0.1% HgCl2 with different sterilization time, different illumination time and temperature culture condition were adopted to study the germination conditions of sand culture seeds. Different sterilization treatments and different hardening-seedling days were used to test the sterilization effect of sand culture seedlings. The sterilization effect of the combination of 75% ethanol 30 s + 0.1% HgCl2 5 min on Lonicera hypoglauca seeds was the optimum,with the average pollution rate of 15.56%, and the average germination rate reached 51.11%. The combination of varied temperature-room temperature under light for 12 h/d was the best, with the average germination rate peaked at 75.49%, and the average germination potential reached 68.36%. The treatment of detergent liquor scrub-tap water wash on the part above the hypocotyl, which was sand cultured under the opening condition and had no root, showed the best sterilization effect, with the average pollution rate was zero, and the average survival rate peaked at 100.00%. The sterilization effect of sand culture seedlings, which was disinfected after cleaning by detergent liquor scrub-tap water wash after hardening-seeding for 30 days, was the best, with the average pollution rate of 50.00%, and the average survival rate of 100.00%. The best sterilization effect is the combination of 75% ethanol 30 s + 0.1% HgCl2 5 min; Lighting for 12 h/d of varied temperature-room temperature is regarded as the optimum culture condition. The treatment of detergent liquor scrub-tap water wash treatment on the part above the hypocotyl,which is sand cultured under the opening condition and had no root, shows the best sterilization effect. For the sand culture seedlings, before inoculated in subculture medium, should be hardening-seedling for some days and sterilized after detergent liquor scrub-tap water wash.
Castanha, C.; Torn, M.S.; Germino, M.J.; Weibel, Bettina; Kueppers, L.M.
2013-01-01
Background: Seedling germination and survival is a critical control on forest ecosystem boundaries, such as at the alpine–treeline ecotone. In addition, while it is known that species respond individualistically to the same suite of environmental drivers, the potential additional effect of local adaptation on seedling success has not been evaluated. Aims: To determine whether local adaptation may influence the position and movement of forest ecosystem boundaries, we quantified conifer seedling recruitment in common gardens across a subalpine forest to alpine tundra gradient at Niwot Ridge, Colorado, USA. Methods: We studied Pinus flexilis and Picea engelmannii grown from seed collected locally at High (3400 m a.s.l.) and Low (3060 m a.s.l.) elevations. We monitored emergence and survival of seeds sown directly into plots and survival of seedlings germinated indoors and transplanted after snowmelt. Results: Emergence and survival through the first growing season was greater for P. flexilis than P. engelmannii and for Low compared with High provenances. Yet survival through the second growing season was similar for both species and provenances. Seedling emergence and survival tended to be greatest in the subalpine forest and lowest in the alpine tundra. Survival was greater for transplants than for field-germinated seedlings. Conclusions: These results suggest that survival through the first few weeks is critical to the establishment of natural germinants. In addition, even small distances between seed sources can have a significant effect on early demographic performance – a factor that has rarely been considered in previous studies of tree recruitment and species range shifts.
USDA-ARS?s Scientific Manuscript database
Cowpea is one of the most important cultivated legumes in Africa. The worldwide annual production in cowpea dry seed is 5.4 million metric tons. However, cowpea is unfavorably affected by salinity stress at germination and seedling stages, which is exacerbated by the effects of climate change. The l...
Fluridone: a combination germination stimulant and herbicide for problem fields?
Goggin, Danica E; Powles, Stephen B
2014-09-01
Problem weeds in agriculture, such as Lolium rigidum Gaud., owe some of their success to their large and dormant seed banks, which permit germination throughout a crop-growing season. Dormant weed seed banks could be greatly depleted by application of a chemical that stimulates early-season germination and then kills the young seedlings. Fluridone, a phytoene desaturase-inhibiting herbicide that can also break seed dormancy, was assessed for its efficacy in this regard. The germination of fluridone-treated Lolium rigidum seeds was stimulated on soils with low organic matter, and almost 100% seedling mortality was observed, while the treatment was only moderately effective on a high-organic-matter potting mix. Seedlings from wheat, canola, common bean and chickpea seeds sown on fluridone-treated sandy loam were bleached and did not survive, but lupins and field peas grew normally. This proof-of-concept study with fluridone suggests that it may be possible to design safe and effective molecules that act as germination stimulants plus herbicides in a range of crop and soil types: a potentially novel way of utilising herbicides to stimulate seed bank germination and a valuable addition to an integrated weed management system. © 2014 Society of Chemical Industry.
Tiberio, F C S; Sampaio-e-Silva, T A; Dodonov, P; Garcia, V A; Silva Matos, D M
2012-11-01
Palms are distinctive plants of tropics and have peculiar allometric relations. Understanding such relations is useful in the case of introduced species because their ability to establish and invade must be clarified in terms of their responses in the new site. Our purpose was to assess the survival and invasive capacity of an introduced palm species in the Atlantic rainforest, Euterpe oleracea Mart., compared to the native Euterpe edulis Mart. and to the hybrids produced between the two species. Considering this, we compared the allometry in different ontogenetic stages, the germination rates, and aspects of the initial development. The ontogenetic stages proposed for both Euterpe illustrated the growth patterns described for palm trees. E. oleracea and hybrids adjusted to the geometric similarity allometric model, while E. edulis presented a slope greater than would be expected considering this model, indicating a greater height for a given diameter. E. oleracea showed the same amount of pulp per fruit as E. edulis and a similar initial development of seedlings. The main differences observed were a lower germination rate and a faster height gain of E. oleracea seedlings. We conclude that E. oleracea, which is similar to E. edulis in aspects of allometry, development, seed and seedling morphology, may be an important competitor of this native palm tree in the Atlantic Forest.
Gabotti, Damiano; Caporali, Elisabetta; Manzotti, Priscilla; Persico, Martina; Vigani, Gianpiero; Consonni, Gabriella
2014-06-01
The empty pericarp4 (emp4) gene encodes a mitochondrion-targeted pentatricopeptide repeat (ppr) protein that is involved in the regulation of mitochondrial gene expression and is required for seed development. In homozygous mutant emp4-1 kernels the endosperm is drastically reduced and the embryo is retarded in its development and unable to germinate. With the aim of investigating the role of emp4 during post-germinative development, homozygous mutant seedlings were obtained by cultivation of excised immature embryos on a synthetic medium. In the mutants both germination frequency as well as the proportion of seedlings reaching the first and second leaf stages were reduced. The anatomy of the leaf blades and the root cortex was not affected by the mutation, however severe alterations such as the presence of empty cells or cells containing poorly organized organelles, were observed. Moreover both mitochondria and chloroplast functionality was impaired in the mutants. Our hypothesis is that mitochondrial impairment, the primary effect of the mutation, causes secondary effects on the development of other cellular organelles. Ultra-structural features of mutant leaf blade mesophyll cells are reminiscent of cells undergoing senescence. Interestingly, both structural and functional damage was less severe in seedlings grown in total darkness compared with those exposed to light, thus suggesting that the effects of the mutation are enhanced by the presence of light. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Predicting germination in semi-arid wildland seedbeds. I. Thermal germination models
Jennifer K. Rawlins; Bruce A. Roundy; Scott M. Davis; Dennis Eggett
2011-01-01
The key to stopping high-frequency or catastrophic wildfires in the western U.S.A. is the successful restoration of burned lands to functional plant communities. Developing models of seedling establishment for invasive and native species will help in the selection of species for restoration projects that are able to establish and compete with invasive species given the...
Darbah, Joseph N T; Kubiske, Mark E; Nelson, Neil; Oksanen, Elina; Vapaavuori, Elina; Karnosky, David F
2008-10-01
We studied the effects of long-term exposure (nine years) of birch (Betula papyrifera) trees to elevated CO(2) and/or O(3) on reproduction and seedling development at the Aspen FACE (Free-Air Carbon Dioxide Enrichment) site in Rhinelander, WI. We found that elevated CO(2) increased both the number of trees that flowered and the quantity of flowers (260% increase in male flower production), increased seed weight, germination rate, and seedling vigor. Elevated O(3) also increased flowering but decreased seed weight and germination rate. In the combination treatment (elevated CO(2)+O(3)) seed weight is decreased (20% reduction) while germination rate was unaffected. The evidence from this study indicates that elevated CO(2) may have a largely positive impact on forest tree reproduction and regeneration while elevated O(3) will likely have a negative impact.
Zhang, Haiyan; Vasanthan, Thava; Wettasinghe, Mahinda
2004-12-29
The effect of germination and growth under illuminated and dark environments on canola seed reserves was investigated. Depletion of proteins and lipids in whole seedlings and their top (leaf/cotyledons) and bottom parts (stem/roots/seed coat) was independent of light, whereas the protein solubility increased at a faster rate under an illuminated environment than in the dark. A rapid increase in free fatty acids but a net decrease of dry matter content in seedlings grown in the dark environment was observed. The dry matter content of seedlings grown in the illuminated environment increased due to photosynthetic biomass accumulation.
Inglis, Peter W.; Ciampi, Ana Y.; Salomão, Antonieta N.; Costa, Tânia da S.A.; Azevedo, Vânia C.R.
2014-01-01
Seeds of a tropical tree species from Brazil, Astronium fraxinifolium, or zebrawood, were germinated, for the first time in microgravity, aboard the International Space Station for nine days. Following three days of subsequent growth under normal terrestrial gravitational conditions, greater root length and numbers of secondary roots was observed in the microgravity-treated seedlings compared to terrestrially germinated controls. Suppression subtractive hybridization of cDNA and EST analysis were used to detect differential gene expression in the microgravity-treated seedlings in comparison to those initially grown in normal gravity (forward subtraction). Despite their return to, and growth in normal gravity, the subtracted library derived from microgravity-treated seedlings was enriched in known microgravity stress-related ESTs, corresponding to large and small heat shock proteins, 14-3-3-like protein, polyubiquitin, and proteins involved in glutathione metabolism. In contrast, the reverse-subtracted library contained a comparatively greater variety of general metabolism-related ESTs, but was also enriched for peroxidase, possibly indicating the suppression of this protein in the microgravity-treated seedlings. Following continued growth for 30 days, higher concentrations of total chlorophyll were detected in the microgravity-exposed seedlings. PMID:24688295
Ushahra, Jyoti; Bhati-Kushwaha, Himakshi; Malik, C P
2014-09-01
A study was undertaken to examine the influence of biogenic nanoparticles synthesized from Tridax procumbens on different parameters of seed germination, seedling growth, and various biochemical parameters in four Eruca sativa varieties having low percentage of germination. Seeds were treated with different concentrations (30 and 40 ppm) of biogenic nanoparticles, of which 30 ppm was found to be the most effective and was therefore used for subsequent studies. Initially, the effect of biogenic nanoparticles on germination percentage, speed of germination, coefficient of germination, mean germination time, shoot and root length, fresh and dry matter, and vigor index was studied. From the experiments performed and the results obtained, it was evident that the treatment with biogenic nanoparticles decreased the electrolyte leakage and level of malondialdehyde as compared to control. The treatment with biogenic nanoparticles enhanced the levels of proline and ascorbic acid and stimulated the antioxidant enzyme activities resulting in the reduced level of reactive oxygen species. These activities were found to be variety-dependent. The possible involvement of biogenic nanoparticles in the production of new pores in seed coat during their penetration, resulting in the influx of the nutrients inside the seed, is suggested. This accelerated seed germination is followed by rapid seedling growth. The present findings indicated that biogenic nanoparticles promote seed germination in E. sativa by overcoming the detrimental effects of reactive oxygen species (ROS) and improving the antioxidative defense system which finally result in increased seedling growth.
Mendoza, Eduardo; Dirzo, Rodolfo
2009-07-01
Tolerance, the capacity of plants to withstand attack by animals, as opposed to resistance, has been poorly examined in the context of seed predation. We investigated the role that the seed mass of the large-seeded endemic tree Aesculus californica plays as a tolerance trait to rodent attack by comparing, under greenhouse conditions, patterns of germination, and subsequent seedling growth, of seeds with a wide range of natural damage. Germination percentage was reduced by 50% and time to germination by 64% in attacked compared to intact seeds, and germination probability was negatively correlated with damage. Seedlings that emerged from intact seeds were taller and bore more leaves than those from damaged seeds. This species' large seed mass favors tolerance to damage because heavily damaged seeds are able to germinate and produce seedlings. This finding is significant given that seeds of this species are known to contain chemical compounds toxic to vertebrates, a resistance trait. We posit that this combination of tolerance and resistance traits might be a particularly effective antipredation strategy when seeds are exposed to a variety of vertebrate predators.
Footitt, S; Huang, Z; Ölcer-Footitt, H; Clay, H; Finch-Savage, W E
2018-07-01
The impact of global warming on seed dormancy loss and germination was investigated in Alliaria petiolata (garlic mustard), a common woodland/hedgerow plant in Eurasia, considered invasive in North America. Increased temperature may have serious implications, since seeds of this species germinate and emerge at low temperatures early in spring to establish and grow before canopy development of competing species. Dormancy was evaluated in seeds buried in field soils. Seedling emergence was also investigated in the field, and in a thermogradient tunnel under global warming scenarios representing predicted UK air temperatures through to 2080. Dormancy was simple, and its relief required the accumulation of low temperature chilling time. Under a global warming scenario, dormancy relief and seedling emergence declined and seed mortality increased as soil temperature increased along a thermal gradient. Seedling emergence advanced with soil temperature, peaking 8 days earlier under 2080 conditions. The results indicate that as mean temperature increases due to global warming, the chilling requirement for dormancy relief may not be fully satisfied, but seedling emergence will continue from low dormancy seeds in the population. Adaptation resulting from selection of this low dormancy proportion is likely to reduce the overall population chilling requirement. Seedling emergence is also likely to keep pace with the advancement of biological spring, enabling A. petiolata to maintain its strategy of establishment before the woodland canopy closes. However, this potential for adaptation may be countered by increased seed mortality in the seed bank as soils warm. © 2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.
Hung, Richard; Lee, Samantha; Bennett, Joan W.
2014-01-01
“Mushroom alcohol,” or 1-octen-3-ol, is a common fungal volatile organic compound (VOC) that has been studied for its flavor properties, its effects on fungal spore germination, mushroom development, and as a signaling agent for insects. Far less is known about its effects on plants. We exposed Arabidopsis thaliana seeds, under conditions conducive to germination, to high (10 and 100 mg/1) and low concentrations (1, 2, and 3 mg/1) of racemic, S, and R forms of 1-octen-3-ol for 3 days. In addition, 1-, 2-, 3-, and 4-week-old A. thaliana plants also were exposed to 1 mg/1 of the compounds for the same period of time. Seedling formation was retarded with all tested levels of exposure to 1-octen-3-ol for both enantiomers and the racemer, while 95% of unexposed control seeds germinated to seedling within 3 days. There was a dose-dependent response in the reduction of seedling formation between 1 mg/1 and 3 mg/1 of exposure. When exposed seeds were removed from the VOC, nearly all resumed germination. Young plants exposed to 1 mg/1 of the R and S enantiomers of 1-octen-3-ol exhibited a mild inhibition of growth and chlorophyll production at 2 and 3 weeks but not at 4 weeks. PMID:24999439
Limited evolutionary divergence of seedlings after the domestication of plant species.
Milla, R; Morente-López, J
2015-01-01
The most vulnerable stage in the life of plants is the seedling. The transition from wild to agricultural land that plants experienced during and after domestication implied a noticeable change in the seedlings' environment. Building on current knowledge of seedling ecology, and on previous studies of cassava, we hypothesise that cultivation should have promoted epigeal germination of seedlings, and more exposed and photosynthetic cotyledons. To test this hypothesis, we phenotyped seedling morpho-functional traits in a set of domesticated and wild progenitor accessions of 20 Eudicot herbaceous crop species. Qualitative traits like epi- versus hypogeal germination, leafy versus storage type of cotyledons, or crypto- versus phanerocotyledonar germination, remained conserved during the domestication of all 20 species. Lengths of hypocotyls and epicotyls, of cotyledon petioles, and indices of cotyledon exposure to the aboveground environment changed during evolution under cultivation. However, those changes occurred in diverse directions, depending on the crop species. No common seedling phenotypic convergence in response to domestication was thus detected among the group of species studied here. Also, none of the 20 crops evolved in accordance with our initial hypothesis. Our results reject the idea that strong selective filters exerted unconsciously by artificial selection should have resulted in generalised channelling of seedling morphology towards more productive and more herbivore risky phenotypes. This result opens up unexplored opportunities for directional breeding of seedling traits. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.
Teaster, Neal D; Motes, Christy M; Tang, Yuhong; Wiant, William C; Cotter, Matthew Q; Wang, Yuh-Shuh; Kilaru, Aruna; Venables, Barney J; Hasenstein, Karl H; Gonzalez, Gabriel; Blancaflor, Elison B; Chapman, Kent D
2007-08-01
N-Acylethanolamines (NAEs) are bioactive acylamides that are present in a wide range of organisms. In plants, NAEs are generally elevated in desiccated seeds, suggesting that they may play a role in seed physiology. NAE and abscisic acid (ABA) levels were depleted during seed germination, and both metabolites inhibited the growth of Arabidopsis thaliana seedlings within a similar developmental window. Combined application of low levels of ABA and NAE produced a more dramatic reduction in germination and growth than either compound alone. Transcript profiling and gene expression studies in NAE-treated seedlings revealed elevated transcripts for a number of ABA-responsive genes and genes typically enriched in desiccated seeds. The levels of ABI3 transcripts were inversely associated with NAE-modulated growth. Overexpression of the Arabidopsis NAE degrading enzyme fatty acid amide hydrolase resulted in seedlings that were hypersensitive to ABA, whereas the ABA-insensitive mutants, abi1-1, abi2-1, and abi3-1, exhibited reduced sensitivity to NAE. Collectively, our data indicate that an intact ABA signaling pathway is required for NAE action and that NAE may intersect the ABA pathway downstream from ABA. We propose that NAE metabolism interacts with ABA in the negative regulation of seedling development and that normal seedling establishment depends on the reduction of the endogenous levels of both metabolites.
Wang, Quanzhen; Chen, Guo; Yersaiyiti, Hayixia; Liu, Yuan; Cui, Jian; Wu, Chunhui; Zhang, Yunwei; He, Xueqing
2012-01-01
Switchgrass is a perennial C4 plant with great potential as a bioenergy source and, thus, a high demand for establishment from seed. This research investigated the effects of ultrasound treatment on germination and seedling growth in switchgrass. Using an orthogonal matrix design, conditions for the ultrasound pretreatment in switchgrass seed, including sonication time (factor A), sonication temperature (factor B) and ultrasound output power (factor C), were optimized for germinating and stimulating seedling growth (indicated as plumular and radicular lengths) through modeling analysis. The results indicate that sonication temperature (B) was the most effective factor for germination, whereas output power (C) had the largest effect on seedling growth when ultrasound treatment was used. Combined with the analyses of range, variance and models, the final optimal ultrasonic treatment conditions were sonication for 22.5 min at 39.7°C and at an output power of 348 W, which provided the greatest germination percentage and best seedling growth. For this study, the orthogonal matrix design was an efficient method for optimizing the conditions of ultrasound seed treatment on switchgrass. The electrical conductivity of seed leachates in three experimental groups (control, soaked in water only, and ultrasound treatment) was determined to investigate the effects of ultrasound on seeds and eliminate the effect of water in the ultrasound treatments. The results showed that the electrical conductivity of seed leachates during either ultrasound treatment or water bath treatment was significantly higher than that of the control, and that the ultrasound treatment had positive effects on switchgrass seeds.
Li, Juan; Hettenhausen, Christian; Sun, Guiling; Zhuang, Huifu; Li, Jian-Hong; Wu, Jianqiang
2015-01-01
Around 1% of angiosperms are parasitic plants. Their growth and development solely or partly depend on host plants from which they extract water, nutrients, and other molecules using a parasitic plant-specific organ, the haustorium. Strong depletion of nutrients can result in serious growth retardation and in some cases, death of the hosts. The genus Cuscuta (dodder) comprises about 200 holoparasitic species occurring on all continents. Their seedlings have no roots and cotyledons but are only string-like hypocotyls. When they contact suitable host plants, haustoria are formed and thereafter seedlings rapidly develop into vigorously growing branches without roots and leaves. This highly specialized lifestyle suggests that Cuscuta plants likely have unique physiology in development and stress responses. Using germination and seedling growth assays, we show that C. australis seeds and seedlings are highly insensitive to abscisic acid (ABA). Transcriptome analysis and protein sequence alignment with Arabidopsis, tomato, and rice homologs revealed that C. australis most likely consists of only four functional ABA receptors. Given that Cuscuta plants are no longer severely challenged by drought stress, we hypothesize that the ABA-mediated drought resistance pathway in Cuscuta spp. might have had degenerated over time during evolution. PMID:26258814
Seed germination and seedling emergence of Scotch broom (Cytisus scoparius)
Timothy B. Harrington
2009-01-01
Scotch broom is a large, leguminous shrub that has invaded 27 U.S. states. The species produces seeds with a hard coat that remain viable in the soil for years. Growth-chamber studies were conducted to determine effects of temperature regime and cold-stratification period on seed germination. Seedling emergence, mortality, and biomass also were studied in response to...
Li, Xian-Xian; Yu, Min-Feng; Ruan, Xiao; Zhang, Yu-Zhu; Wang, Qiang
2014-09-26
The aqueous extract from Carya cathayensis Sarg. exocarp was centrifuged, filtered, and separated into 11 elution fractions by X-5 macroporous resin chromatography. A phenolic compound, 4,8-dihydroxy-1-tetralone (4,8-DHT) was isolated from the fractions with the strongest phytotoxicity by bioassy-guided fractionation, and investigated for phytotoxicity on lettuce (Latuca sativa L.), radish (Raphanus sativus L.), cucumber (Cucumis sativus L.), onion (Allium cepa L.) and wheat (Triticum aestivum L.). The testing results showed that the treatment with 0.6 mM 4,8-DHT could significantly depress the germination vigor of lettuce and wheat, reduce the germination rate of lettuce and cucumber, and also inhibit radicle length, plumule length, and fresh weight of seedlings of lettuce and onion, but could significantly promote plumule length and fresh weight of seedlings of cucumber (p < 0.05). For the tested five plants, the 4,8-DHT was the most active to the seed germination and seedling growth of lettuce, indicating that the phytotoxicity of 4,8-DHT had the selectivity of dosage, action target (plant type) and content (seed germination or seedling growth).
Li, Haiyan; Li, Xiaoshuang; Zhang, Daoyuan; Liu, Huiliang; Guan, Kaiyun
2013-01-01
Eremosparton songoricum (Litv.) Vass. is an endemic and extremely drought-resistant desert plant with populations that are gradually declining due to the failure of sexual recruitment. The effects of drought stress on the seed germination and physiological characteristics of seeds and seedlings were investigated. The results showed that the germination percentage decreased with an increase of polyethylene glycol 6000 (PEG) concentration: -0.3 MPa (5 % PEG) had a promoting effect on seed germination, -0.9 MPa (15 % PEG) dramatically reduced germination, and -1.8 MPa (30 % PEG) was the threshold for E. songoricum germination. However, the contents of proline and soluble sugars and the activity of CAT increased with increasing PEG concentrations. At the young seedling stage, the proline content and CAT, SOD and POD activities all increased at 2 h and then decreased; except for a decrease at 2 h, the MDA content also increased compared to the control (0 h). These results indicated that 2 h may be a key response time point for E. songoricum to resist drought stress. The above results demonstrate that drought stress can suppress and delay the germination of E. songoricum and that the seeds accumulate osmolytes and augment the activity of antioxidative enzymes to cope with drought injury. E. songoricum seedlings are sensitive to water stress and can quickly respond to drought but cannot tolerate drought for an extended period. Although such physiological and biochemical changes are important strategies for E. songoricum to adapt to a drought-prone environment, they may be, at least partially, responsible for the failure of sexual reproduction under natural conditions.
Berry, Tannis; Bewley, J. Derek
1992-01-01
During tomato seed development the endogenous abscisic acid (ABA) concentration peaks at about 50 d after pollination (DAP) and then declines at later stages (60-70 DAP) of maturation. The ABA concentration in the sheath tissue immediately surrounding the seed increases with time of development, whereas that of the locule declines. The water contents of the seed and fruit tissues are similar during early development (20-30 DAP), but decline in the seed tissues between 30 and 40 DAP. The water potential and the osmotic potential of the embryo are lower than that of the locular tissue after 35 DAP also. Seeds removed from the fruit at 30, 35, and 60 DAP and placed ex situ on 35 and 60 DAP sheath and locular tissue are prevented from germinating. Development of 30 DAP seeds is maintained or promoted by the ex situ fruit tissue with which they are in contact. Their germination is inhibited until subsequent transfer to water, and germination is normal, i.e. by radicle protrusion, and viable seedlings are produced, compared with 30 DAP seeds transferred directly to water; more of these seeds germinate, but by hypocotyl extension, and seedling viability is very poor. Isolated seeds at 35 and 60 DAP re-placed in contact with fruit tissues only germinate when transferred to water after 7 d. At 30 DAP, isolated seeds are insensitive to ABA at physiological concentrations in that they germinate as if on water, albeit by hypocotyl extension. At higher concentrations germination occurs by radicle protrusion. Osmoticum prevents germination, but there is some recovery upon subsequent transfer to water. Seeds at 35 DAP are very sensitive to ABA and exhibit little or no germination, even upon transfer to water. The response of the isolated seeds to osmoticum more closely approximates that to incubation on the ex situ fruit tissues than does their response to ABA. This is also the case for isolated 60 DAP seeds, whose germination is not prevented by ABA, but only by the osmoticum; these seeds are inhibited when in contact with ex situ fruit tissues also. It is proposed that the osmotic environment within the tissues of the tomato fruit plays a greater role than endogenous ABA in preventing precocious germination of the developing seeds. PMID:16653081
Kolahi, M; Peivastegan, B; Hadizade, I; Abdali, A
2008-07-15
Phytotoxicity of barley extracts (Hordeum vulgare L.) on wild oat (Avena ludoviciana Durieu) was investigated. Water extracts five varieties of barley were bioassayed on germination and seedling growth of wild-oat to test the heterotoxicity of barley on wild-oat, study the dynamics of allelopathic potential over four growth stages and identify the most allelopathic plant part of barley in each stage. Whole barley plants were extracted at growth stage 4 (stems not developed enough), whilst for the following growth stages roots, stems, panicles and leaves were extracted separately. Seedling growth bioassays demonstrated that the wild-oat responded differently to the allelopathic potential of barley. For wild-oat radical growth and coleoptile growth were more depressed than germination, though. The allelopathic potential of barley plant parts was not stable over its life cycle for wild-oat. Leaves and stems were the most phytotoxic barley plant parts for wild-oat in the all stages. Among the varieties Eizeh appeared as the best one showing toxicity to seed germination of wild oat at its stage 4 and 8. Results suggested that the response by wild-oat varied depending on the source of allelochemicals (plant part) and the growth stage of the barley plant and kind of variety. The results leaded to conclude that Eizeh variety of barley was good to grow as it has good check on seed germination of wild oat plants as well as it also retarded the growth of root and shoot length of oat.
Hoyle, G. L.; Cordiner, H.; Good, R. B.; Nicotra, A. B.
2014-01-01
The life stages of seed germination and seedling establishment play a vital role in maintaining plant populations and determining range dynamics of species. Thus, it is not surprising that specific germination requirements and dormancy mechanisms have evolved in all major angiosperm clades. In a rapidly changing climate, we face growing pressure to manage, conserve and restore native plant species and communities. To achieve these aims, we require solid knowledge of whether and how seed germination requirements and dormancy status vary between different populations of a given species and how germination strategies may be affected by warming climatic conditions. We assessed the effect of decreasing durations of cold stratification (i.e. conditions representing a shortened winter as predicted under climate change) on germination and dormancy of the alpine herb Aciphylla glacialis. Our results confirmed previous research showing that A. glacialis seeds possess physiological dormancy that can be alleviated by cold stratification. In addition, the results demonstrated that A. glacialis seeds have underdeveloped embryos at dispersal; these grow to germinable size following 4–9 weeks at both constant 5°C and 10–5°C (day–night) temperatures. We conclude that A. glacialis exhibits morphophysiological dormancy. Furthermore, we found that the final percentage germination and dormancy status varied significantly among natural populations and that this variation did not correlate with elevation at the site of seed origin. Seeds germinated following 6–8 weeks of cold stratification, and seedlings showed no detrimental effects as a result of shorter stratification periods. Together, these results suggest that reduced duration of winter is unlikely to have direct negative impacts on germination or early seedling growth in A. glacialis. The causes and implications of the population variation in germination traits are discussed. PMID:27293636
Identification of Vigor Related Transcripts in Beta vulgaris When Germinated Under Abiotic Stress
USDA-ARS?s Scientific Manuscript database
Germination is the first opportunity to evaluate vigor for beet breeders. The initial condition a germinating seed encounters affects the speed and success of germination, the amount of stored energy reserves to withstand future stress, and the overall ability of the seedling to flourish. However, s...
NASA Astrophysics Data System (ADS)
Pizo, Marco A.; Von Allmen, Christiane; Morellato, L. Patricia C.
2006-05-01
Intraspecific variation in seed size is common in wild plant populations and has important consequences for the reproductive success of individual plants. Multiple, often conflicting evolutionary forces mediated by biotic as well as abiotic agents may maintain such a variation. In this paper we assessed seed size variation in a population of the threatened, commercially important palm Euterpe edulis in southeast Brazil. We investigated (i) how this variation affects the probability of attack by vertebrate and invertebrate post-dispersal seed predators, and (ii) if seed size influences the outcome of seeds damaged by beetles in terms of seed germination and early survival of seedlings. Euterpe edulis seeds varied in diameter from 8.3 to 14.1 mm. Neither insects nor rodents selected the seeds they preyed upon based on seed size. Seed germination and total, shoot and root biomasses of one-year seedlings were significantly and positively affected by seed size. Root biomass and seedling survival were negatively affected by seed damage caused by a scolytid beetle ( Coccotrypes palmarum) whose adults bore into seeds to consume part of the endosperm, but do not oviposit on them. Seed size had a marginally significant effect on seedling survival. Therefore, if any advantage is accrued by E. edulis individuals producing large seeds, this is because of greater seed germination success and seedling vigor. If this is so, even a relatively narrow range of variation in seed size as observed in the E. edulis population studied may translate into differential success of individual plants.
Laser photoactivation gibberellin molecules in the surface tissues of plants
NASA Astrophysics Data System (ADS)
Grishkanich, Alexander; Zhevlakov, Alexander; Kascheev, Sergey; Sidorov, Igor; Ruzankina, Julia; Yakovlev, Alexey; Mak, Andrey
2016-03-01
The experimental results presented in this study are the early studies of germination on the example of Picea abies and were aimed at testing the germination of seeds and the development of morphology, caused a therapeutic effect on the laser radiation field in the early stages of development under the action of ultraviolet and red light in the spectral range of 405 nm and 640 nm. A set of seeds irradiated at various energy doses within the same time. The experimental results analyzed in parallel with control group. In all analyzed seeds were studied the germination and growth of seedlings. The results showed that the percentage of germination higher than control group Samanids all of the recurrence options.
M.A. Radwan; Dan L. Campbell
1981-01-01
Chemical properties of ash and mud from the 1980 volcanic eruption of Mount St. Helens and their effect on germination and seedling production of selected plants were studied. The volcanic materials were low in some important nutrients and cation exchange capacity, and they adversely affected seedling production. Catsear, a preferred wildlife browse, and lodgepole pine...
Planting depth effects and water potential effects on oak seedling emergence and acorn germination
Wayne A. Smiles; Jeffrey O. Dawson
1995-01-01
The effects of four planting depths (0, 3, 7, 11 cm) and acorn size on the percentage seedling emergence of red, pin, and black oak were determined. In a complimentary study, the effects of five water potential treatments (0, -.2, -.4, -.6, -1.0 MPa) on the percentage germination of red, pin, and black oak acorns were measured.
Lang, Duo-yong; Fu, Xue-yan; Rong, Jia-wang; Zhang, Xin-hui
2015-01-01
To explore the relationship between continuous cropping obstacle and autotoxicity of Astragalus membranaceus var. mongholicus. Distilled water(CK), water extracts of rhizosphere soil(50, 100, 200 and 400 mg/mL) were applied to test their effect on early growth and physiological characteristics of Astragalus membranaceus var. mongholicus. The water extracts from rhizospher soil of cultivated Astragalus membranaceus var. mongholicus significantly increased seedling emergence rate, root length and vigor index of Astragalus membranaceus var. mongholicus seedling when at the concentration of 100 mg/mL or below, however,there was no significant effect at 200 mg/mL or higher. The water extracts from rhizosphere soil of cultivated Astragalus membranaceus var. mongholicus significantly reduced the SOD activity in Astragalus membranaceus var. mongholicus seedling at 400 mg/mL and POD activity at 200 mg/mL and 400 mg/mL,while significantly increased the MDA content. Water extracts from Astragalus membranaceus var. mongholicus rhizosphere soil significantly affected Astragalus membranaceus var. mongholicus germination and seedling growth in a concentration-dependent manner, generally, low concentrations increased the SOD and POD activity which improved seed germination and seedling growth, while high concentrations caused cell membrane damage of the seedling.
Bowers, Janice E.; Turner, R.M.; Burgess, T.L.
2004-01-01
Seedling emergence and survival of 15 perennial species were studied for six years in a 557-m2 permanent plot at Tumamoc Hill, Arizona, USA, an ungrazed site in the northern Sonoran Desert. The minimum rain required for germination and emergence ranged from 17.5 to 35.6 mm. Few species emerged in every year of the study. First-year survival averaged across all 15 species was 3.7%; only 0.1% of seedlings lived as long as four years. The odds of survival in the first year improved with increased rain. About three times as many seedlings died from predation as desiccation. In 2-m2 subplots, mortality of three woody species in the first 30 days after emergence appeared to be independent of seedling density. Short-, moderate-, and long-lived species displayed distinct survival strategies. Long-lived species compensated for generally poor seedling survival by frequent germination and emergence. Moderate-lived species exhibited highly episodic germination and emergence, a potentially risky behavior that might have been offset to some extent by relatively good long-term survival. Short-lived species had the highest seedling survival. Because these species can bloom in their first year, good early survival meant that some individuals were able to reproduce before they died.
NASA Astrophysics Data System (ADS)
Alvarado-López, Sandra; Soriano, Diana; Velázquez, Noé; Orozco-Segovia, Alma; Gamboa-deBuen, Alicia
2014-11-01
Successful revegetation necessarily requires the establishment of a vegetation cover and one of the challenges for this is the scarce knowledge about germination and seedling establishment of wild tree species. Priming treatments (seed hydration during a specific time followed by seed dehydration) could be an alternative germination pre-treatment to improve plant establishment. Natural priming (via seed burial) promotes rapid and synchronous germination as well as the mobilisation of storage reserves; consequently, it increases seedling vigour. These metabolic and physiological responses are similar to those occurring as a result of the laboratory seed priming treatments (osmopriming and matrix priming) applied successfully to agricultural species. In order to know if natural priming had a positive effect on germination of tropical species we tested the effects of natural priming on imbibition kinetics, germination parameters (mean germination time, lag time and germination rate and percentage) and reserve mobilisation in the seeds of two tree species from a tropical deciduous forest in south-eastern México: Tecoma stans (L Juss. Ex Kunth) and Cordia megalantha (S.F Blake). The wood of both trees are useful for furniture and T. stans is a pioneer tree that promotes soil retention in disturbed areas. We also compared the effect of natural priming with that of laboratory matrix priming (both in soil). Matrix priming improved germination of both studied species. Natural priming promoted the mobilisation of proteins and increased the amount of free amino acids and of lipid degradation in T. stans but not in C. megalantha. Our results suggest that the application of priming via the burial of seeds is an easy and inexpensive technique that can improve seed germination and seedling establishment of tropical trees with potential use in reforestation and restoration practices.
Silva, Anderson Tadeu; Ligterink, Wilco; Hilhorst, Henk W M
2017-11-01
Metabolic and transcriptomic correlation analysis identified two distinctive profiles involved in the metabolic preparation for seed germination and seedling establishment, respectively. Transcripts were identified that may control metabolic fluxes. The transition from a quiescent metabolic state (dry seed) to the active state of a vigorous seedling is crucial in the plant's life cycle. We analysed this complex physiological trait by measuring the changes in primary metabolism that occur during the transition in order to determine which metabolic networks are operational. The transition involves several developmental stages from seed germination to seedling establishment, i.e. between imbibition of the mature dry seed and opening of the cotyledons, the final stage of seedling establishment. We hypothesized that the advancement of growth is associated with certain signature metabolite profiles. Metabolite-metabolite correlation analysis underlined two specific profiles which appear to be involved in the metabolic preparation for seed germination and efficient seedling establishment, respectively. Metabolite profiles were also compared to transcript profiles and although transcriptional changes did not always equate to a proportional metabolic response, in depth correlation analysis identified several transcripts that may directly influence the flux through metabolic pathways during the seed-to-seedling transition. This correlation analysis also pinpointed metabolic pathways which are significant for the seed-to-seedling transition, and metabolite contents that appeared to be controlled directly by transcript abundance. This global view of the transcriptional and metabolic changes during the seed-to-seedling transition in Arabidopsis opens up new perspectives for understanding the complex regulatory mechanism underlying this transition.
Dormancy cycling and persistence of seeds in soil of a cold desert halophyte shrub
Cao, Dechang; Baskin, Carol C.; Baskin, Jerry M.; Yang, Fan; Huang, Zhenying
2014-01-01
Background and Aims Formation of seed banks and dormancy cycling are well known in annual species, but not in woody species. In this study it was hypothesized that the long-lived halophytic cold desert shrub Kalidium gracile has a seed bank and dormancy cycling, which help restrict germination to a favourable time for seedling survival. Methods Fresh seeds were buried in November 2009 and exhumed and tested for germination monthly from May 2010 to December 2011 over a range of temperatures and salinities. Germination recovery and viability were determined after exposure to salinity and water stress. Seedling emergence and dynamics of the soil seed bank were investigated in the field. Key Results Seeds of K. gracile had a soil seed bank of 7030 seeds m−2 at the beginning of the growing season. About 72 % of the seeds were depleted from the soil seed bank during a growing season, and only 1·4 % of them gave rise to seedlings that germinated early enough to reach a stage of growth at which they could survive to overwinter. About 28 % of the seeds became part of a persistent soil seed bank. Buried seeds exhibited an annual non-dormancy/conditional dormancy (ND/CD) cycle, and germination varied in sensitivity to salinity during the cycle. Dormancy cycling is coordinated with seasonal environmental conditions in such a way that the seeds germinate in summer, when there is sufficient precipitation for seedling establishment. Conclusions Kalidium gracile has three life history traits that help ensure persistence at a site: a polycarpic perennial life cycle, a persistent seed bank and dormancy cycling. The annual ND/CD cycle in seeds of K. gracile contributes to seedling establishment of this species in the unpredictable desert environment and to maintenance of a persistent soil seed bank. This is the first report of a seed dormancy cycle in a cold desert shrub. PMID:24249808
Fire season and intensity affect shrub recruitment in temperate sclerophyllous woodlands.
Knox, K J E; Clarke, P J
2006-10-01
The season in which a fire occurs may regulate plant seedling recruitment because of: (1) the interaction of season and intensity of fire and the temperature requirements for seed release, germination and growth; (2) post-fire rainfall and temperature patterns affecting germination; (3) the interaction of post-fire germination conditions and competition from surrounding vegetation; and (4) the interaction of post-fire germination conditions and seed predators and/or seedling herbivores. This study examined the effects of different fire intensities and fire seasons on the emergence and survival of shrubs representing a range of fire response syndromes from a summer rainfall cool climate region. Replicated experimental burns were conducted in two seasons (spring and autumn) in 2 consecutive years and fuel loads were increased to examine the effects of fire intensity (low intensity and moderate intensity). Post-fire watering treatments partitioned the effects of seasonal temperature from soil moisture. Higher intensity fires resulted in enhanced seedling emergence for hard-seeded species but rarely influenced survival. Spring fires enhanced seedling emergence across all functional groups. Reduced autumn recruitment was related to seasonal temperature inhibiting germination rather than a lack of soil moisture or competition. In Mediterranean-type climate regions, seedling emergence has been related to post-fire rainfall and exposure of seeds to seed predators. We think a similar model may operate in temperate summer rainfall regions where cold-induced dormancy over winter exposes seeds to predators for a longer time and subsequently results in recruitment failure. Our results support the theory that the effect of fire season is more predictable where there are strong seasonal patterns in climate. In this study seasonal temperature rather than rainfall appears to be more influential.
Pansing, Elizabeth R; Tomback, Diana F; Wunder, Michael B; French, Joshua P; Wagner, Aaron C
2017-11-01
Tree recruitment is a spatially structured process that may undergo change over time because of variation in postdispersal processes. We examined seed pilferage, seed germination, and seedling survival in whitebark pine to determine whether 1) microsite type alters the initial spatial pattern of seed caches, 2) higher abiotic stress (i.e. higher elevations) exacerbates spatial distribution changes, and 3) these postdispersal processes are spatially clustered. At two study areas, we created a seed distribution pattern by burying seed caches in microsite types frequently used by whitebark pine's avian seed disperser (Clark's nutcracker) in upper subalpine forest and at treeline, the latter characterized by high abiotic environmental stress. We monitored caches for two years for pilferage, germination, and seedling survival. Odds of pilferage (both study areas), germination (northern study area), and survival (southern study area) were higher at treeline relative to subalpine forest. At the southern study area, we found higher odds of 1) pilferage near rocks and trees relative to no object in subalpine forest, 2) germination near rocks relative to trees within both elevation zones, and 3) seedling survival near rocks and trees relative to no object at treeline. No microsite effects were detected at the northern study area. Findings indicated that the microsite distribution of seed caches changes with seed/seedling stage. Higher odds of seedling survival near rocks and trees were observed at treeline, suggesting abiotic stress may limit safe site availability, thereby shifting the spatial distribution toward protective microsites. Higher odds of pilferage at treeline, however, suggest rodents may limit treeline recruitment. Further, odds of pilferage were higher near rocks and trees relative to no object in subalpine forest but did not differ among microsites at treeline, suggesting pilferage can modulate the spatial structure of regeneration, a finding supported by limited clustering of postdispersal processes.
Evolution of 'smoke' induced seed germination in pyroendemic plants
Keeley, J. E.; Pausas, J.G.
2016-01-01
Pyroendemics are plants in which seedling germination and successful seedling recruitment are restricted to immediate postfire environments. In many fire-prone ecosystems species cue their germination to immediate postfire conditions. Here we address how species have evolved one very specific mechanism, which is using the signal of combustion products from biomass. This is often termed ‘smoke’ stimulated germination although it was first discovered in studies of charred wood effects on germination of species strictly tied to postfire conditions (pyroendemics). Smoke stimulated germination has been reported from a huge diversity of plant species. The fact that the organic compound karrikin (a product of the degradation of cellulose) is a powerful germination cue in many species has led to the assumption that this compound is the only chemical responsible for smoke-stimulated germination. Here we show that smoke-stimulated germination is a complex trait with different compounds involved. We propose that convergent evolution is a more parsimonious model for smoke stimulated germination, suggesting that this trait evolved multiple times in response to a variety of organic and inorganic chemical triggers in smoke. The convergent model is congruent with the evolution of many other fire-related traits.
Dametto, Andressa; Sperotto, Raul A; Adamski, Janete M; Blasi, Édina A R; Cargnelutti, Denise; de Oliveira, Luiz F V; Ricachenevsky, Felipe K; Fregonezi, Jeferson N; Mariath, Jorge E A; da Cruz, Renata P; Margis, Rogério; Fett, Janette P
2015-09-01
Rice productivity is largely affected by low temperature, which can be harmful throughout plant development, from germination to grain filling. Germination of indica rice cultivars under cold is slow and not uniform, resulting in irregular emergence and small plant population. To identify and characterize novel genes involved in cold tolerance during the germination stage, two indica rice genotypes (sister lines previously identified as cold-tolerant and cold-sensitive) were used in parallel transcriptomic analysis (RNAseq) under cold treatment (seeds germinating at 13 °C for 7 days). We detected 1,361 differentially expressed transcripts. Differences in gene expression found by RNAseq were confirmed for 11 selected genes using RT-qPCR. Biological processes enhanced in the cold-tolerant seedlings include: cell division and expansion (confirmed by anatomical sections of germinating seeds), cell wall integrity and extensibility, water uptake and membrane transport capacity, sucrose synthesis, generation of simple sugars, unsaturation of membrane fatty acids, wax biosynthesis, antioxidant capacity (confirmed by histochemical staining of H2O2), and hormone and Ca(2+)-signaling. The cold-sensitive seedlings respond to low temperature stress increasing synthesis of HSPs and dehydrins, along with enhanced ubiquitin/proteasome protein degradation pathway and polyamine biosynthesis. Our findings can be useful in future biotechnological approaches aiming to cold tolerance in indica rice. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Flooding effects on stand development in cypress-tupelo
Richard F. Keim; Thomas J. Dean; Jim L. Chambers
2013-01-01
The effects of inundation on growth of cypress (Taxodium spp.) and tupelo (Nyssa spp.) trees have been extensively researched, but conclusions are often complicated by attendant effects on stand development. Flooding affects development of cypress-tupelo stands by limiting seedling germination and survival, truncating species...
Liu, Yan; Hou, Long-Yu; Li, Qing-Mei; Jiang, Ze-Ping; Gao, Wei-Dong; Zhu, Yan; Zhang, Hai-Bo
2017-01-01
To investigate the effects of β-carboxyethyl germanium sequioxide (Ge-132) and germanium dioxide (GeO 2 ) on improving salt tolerance of evening primrose (Oenothera biennis L.), seed germination, seedling growth, antioxidase and malondialdehyde (MDA) were observed under treatments of various concentrations (0, 5, 10, 20, 30 μM) of Ge in normal condition and in 50 mM NaCl solution. The results showed that both Ge-132 and GeO 2 treatments significantly increased seed germination percentage and shoot length in dose-dependent concentrations but inhibited early root elongation growth. 5-30 μM Ge-132 and 10, 20 μM GeO 2 treatments could significantly mitigate even eliminate harmful influence of salt, representing increased percentage of seed germination, root length, ratio between length of root and shoot, and decreased shoot length. These treatments also significantly decreased peroxidase (POD) and catalase (CAT) activities and MDA content. The mechanism is likely that Ge scavenges reactive oxygen species - especially hydrogen peroxide (H 2 O 2 ) - by its electron configuration 4S 2 4P 2 so as to reduce lipid peroxidation. This is the first report about the comparison of bioactivity effect of Ge-132 and GeO 2 on seed germination and seedling growth under salt stress. We conclude that Ge-132 is better than GeO 2 on promoting salt tolerance of seed and seedling.
Linda S. Gribko
1995-01-01
During a 2-year investigation into the effect of small mammals on northern red oak (Quercus rubra) acorn survival and germination, widespread germination failure and lack of seedling vigor was apparent in control quadrats on one of two watersheds under study. Insects were present in and on the failed acorns but it was unknown whether they were...
Ratnikova, Tatsiana A.; Rao, Apparao M.; Taylor, Alan G.
2015-01-01
Seed coat permeability was examined using a model that tested the effects of soaking tomato (Solanum lycopersicon) seeds in combination with carbon-based nanomaterials (CBNMs) and ultrasonic irradiation (US). Penetration of seed coats to the embryo by CBNMs, as well as CBNMs effects on seed germination and seedling growth, was examined. Two CBNMs, C60(OH)20 (fullerol) and multiwalled nanotubes (MWNTs), were applied at 50 mg/L, and treatment exposure ranged from 0 to 60 minutes. Bright field, fluorescence, and electron microscopy and micro-Raman spectroscopy provided corroborating evidence that neither CBNM was able to penetrate the seed coat. The restriction of nanomaterial (NM) uptake was attributed to the semipermeable layer located at the innermost layer of the seed coat adjacent to the endosperm. Seed treatments using US at 30 or 60 minutes in the presence of MWNTs physically disrupted the seed coat; however, the integrity of the semipermeable layer was not impaired. The germination percentage and seedling length and weight were enhanced in the presence of MWNTs but were not altered by C60(OH)20. The combined exposure of seeds to NMs and US provided insight into the nanoparticle-seed interaction and may serve as a delivery system for enhancing seed germination and early seedling growth. PMID:26495423
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romney, E.M.; Wallace, A.; Hunter, R.B.
New Artemisia seedlings are not established each year. Many that are established fail to survive because of unfavorable rainfall in succeeding years. A total of 184 young plants was examined for the number of annual growth rings to ascertain the year of establishment after all vegetation had been killed near the time of a nuclear test event in 1965. The three most important recent years for establishment and survival of new seedlings (as of 1976 and based on a sample of 184 plants) were 1966 (9 percent), 1969 (29%), and 1973 (36%). A total of 27% was established in themore » other years from 1965 to 1976. These three years were also the years with high rainfall input during preceding winter and spring months. If old plants are killed, seeds germinate with much lower inputs of precipitation. Many seedlings germinated in 1968 at a site where old ones had been burned off even though the rainfall was not favorable. Plants of a given age varied greatly in size according to their competition. Seedlings germinating in old stands grew little in comparison with those germinating in areas where old plants had been killed. One exception was an area where intense competition occurred due to large numbers of new plants, resulting in growth restriction on all plants.« less
Effects of cold plasma treatment on seed germination and seedling growth of soybean
Ling, Li; Jiafeng, Jiang; Jiangang, Li; Minchong, Shen; Xin, He; Hanliang, Shao; Yuanhua, Dong
2014-01-01
Effects of cold plasma treatment on soybean (Glycine max L. Merr cv. Zhongdou 40) seed germination and seedling growth were studied. Seeds were pre-treated with 0, 60, 80, 100 and 120 W of cold plasma for 15 s. Results showed that plasma treatments had positive effects on seed germination and seedling growth, and treatment of 80 W had the highest stimulatory effect. Germination and vigor indices significantly increased by 14.66% and 63.33%, respectively. Seed's water uptake improved by 14.03%, and apparent contact angle decreased by 26.19%. Characteristics of seedling growth, including shoot length, shoot dry weight, root length and root dry weight, significantly increased by 13.77%, 21.95%, 21.42% and 27.51%, respectively, compared with control. The seed reserve utilization, including weight of the mobilized seed reserve, seed reserve depletion percentage and seed reserve utilization efficiency significantly improved by cold plasma treatment. In addition, soluble sugar and protein contents were 16.51% and 25.08% higher than those of the control. Compared to a 21.95% increase in shoot weight, the root weight increased by 27.51% after treatment, indicating that plasma treatment had a greater stimulatory effect on plant roots. These results indicated that cold plasma treatment might promote the growth even yield of soybean. PMID:25080862
Qie, Lufeng; Jia, Guanqing; Zhang, Wenying; Schnable, James; Shang, Zhonglin; Li, Wei; Liu, Binhui; Li, Mingzhe; Chai, Yang; Zhi, Hui; Diao, Xianmin
2014-01-01
Drought tolerance is an important breeding target for enhancing the yields of grain crop species in arid and semi-arid regions of the world. Two species of Setaria, domesticated foxtail millet (S. italica) and its wild ancestor green foxtail (S. viridis) are becoming widely adopted as models for functional genomics studies in the Panicoid grasses. In this study, the genomic regions controlling germination and early seedling drought tolerance in Setaria were identified using 190 F7 lines derived from a cross between Yugu1, a S. italica cultivar developed in China, and a wild S. viridis genotype collected from Uzbekistan. Quantitative trait loci were identified which contribute to a number of traits including promptness index, radical root length, coleoptile length and lateral root number at germinating stage and seedling survival rate was characterized by the ability of desiccated seedlings to revive after rehydration. A genetic map with 128 SSR markers which spans 1293.9 cM with an average of 14 markers per linkage group of the 9 linkage groups was constructed. A total of eighteen QTLs were detected which included nine that explained over 10% of the phenotypic variance for a given trait. Both the wild green foxtail genotype and the foxtail millet cultivar contributed the favorite alleles for traits detected in this trial, indicating that wild Setaria viridis populations may serve as a reservoir for novel stress tolerance alleles which could be employed in foxtail millet breeding.
Teaster, Neal D.; Motes, Christy M.; Tang, Yuhong; Wiant, William C.; Cotter, Matthew Q.; Wang, Yuh-Shuh; Kilaru, Aruna; Venables, Barney J.; Hasenstein, Karl H.; Gonzalez, Gabriel; Blancaflor, Elison B.; Chapman, Kent D.
2007-01-01
N-Acylethanolamines (NAEs) are bioactive acylamides that are present in a wide range of organisms. In plants, NAEs are generally elevated in desiccated seeds, suggesting that they may play a role in seed physiology. NAE and abscisic acid (ABA) levels were depleted during seed germination, and both metabolites inhibited the growth of Arabidopsis thaliana seedlings within a similar developmental window. Combined application of low levels of ABA and NAE produced a more dramatic reduction in germination and growth than either compound alone. Transcript profiling and gene expression studies in NAE-treated seedlings revealed elevated transcripts for a number of ABA-responsive genes and genes typically enriched in desiccated seeds. The levels of ABI3 transcripts were inversely associated with NAE-modulated growth. Overexpression of the Arabidopsis NAE degrading enzyme fatty acid amide hydrolase resulted in seedlings that were hypersensitive to ABA, whereas the ABA-insensitive mutants, abi1-1, abi2-1, and abi3-1, exhibited reduced sensitivity to NAE. Collectively, our data indicate that an intact ABA signaling pathway is required for NAE action and that NAE may intersect the ABA pathway downstream from ABA. We propose that NAE metabolism interacts with ABA in the negative regulation of seedling development and that normal seedling establishment depends on the reduction of the endogenous levels of both metabolites. PMID:17766402
Li, Xuan; Yang, Yuechao; Gao, Bin; Zhang, Min
2015-01-01
Because of its strong pollutant degradation ability, nanoscale zerovalent iron (NZVI) has been introduced to soils and groundwater for remediation purposes, but its impacts on plants are still not very clear. In this work, the effects of low concentration (10–320 μmol/L) NZVI particles on seed germination and growth of peanut plants were evaluated. The exposure of peanut seeds to NZVI at all the tested concentrations altered the seed germination activity, especially the development of seedlings. In comparison with the deionized water treated controls (CK), all of the NZVI treatments had significantly larger average lengths. Further investigations with transmission electron microscopy (TEM) and thermogravimetric analysis (TGA) suggested that NZVI particles may penetrate the peanut seed coats to increase the water uptake to stimulate seed germination. The growth experiments showed that although NZVI at a relatively high concentration (320μmol/L) showed phytotoxicity to the peanut plants, the lower concentrations of NZVI particles stimulated the growth and root development of the plants. At certain concentrations (e.g., 40 and 80 μmol/L), the NZVI treated samples were even better than the ethylenediaminetetraacetate-iron (EDTA-Fe) solution, a commonly used iron nutrient solution, in stimulating the plant growth. This positive effect was probably due to the uptake of NZVI by the plants, as indicated in the TEM analyses. Because low concentrations of NZVI particles stimulated both the seedling development and growth of peanut, they might be used to benefit the growth of peanuts in large-scale agricultural settings. PMID:25901959
NASA Astrophysics Data System (ADS)
Hosseini, Seyed Iman; Mohsenimehr, Soad; Hadian, Javad; Ghorbanpour, Mansour; Shokri, Babak
2018-01-01
In this study, low pressure non-thermal radiofrequency nitrogen plasma at very low power has been used to treat the artichoke seeds on the powered cathode for the first time. The influence of treatment time on the surface physical properties, germination rate, seedling growth, and enzyme activity of the seeds has been investigated. Results showed that plasma treatment considerably improved the germination rate and seedling growth. The root length grew by 28.5% and 50% and root dry weight increased by 13% and 53%, respectively, for 10 and 15 min of treatment. The same trend has been found for the shoot growth parameters although the greater stimulatory efficacy on root has been obtained. The nitrogen plasma treatment substantially made the seeds' surface hydrophilic which leads to 36.9% improvement in seed's water uptake at 15 min of treatment. Our study showed the activity of peroxidase and catalase enzymes slightly increased after the plasma treatment.
Quan, Sheng; Yang, Pingfang; Cassin-Ross, Gaëlle; Kaur, Navneet; Switzenberg, Robert; Aung, Kyaw; Li, Jiying; Hu, Jianping
2013-01-01
Plant peroxisomes are highly dynamic organelles that mediate a suite of metabolic processes crucial to development. Peroxisomes in seeds/dark-grown seedlings and in photosynthetic tissues constitute two major subtypes of plant peroxisomes, which had been postulated to contain distinct primary biochemical properties. Multiple in-depth proteomic analyses had been performed on leaf peroxisomes, yet the major makeup of peroxisomes in seeds or dark-grown seedlings remained unclear. To compare the metabolic pathways of the two dominant plant peroxisomal subtypes and discover new peroxisomal proteins that function specifically during seed germination, we performed proteomic analysis of peroxisomes from etiolated Arabidopsis (Arabidopsis thaliana) seedlings. The detection of 77 peroxisomal proteins allowed us to perform comparative analysis with the peroxisomal proteome of green leaves, which revealed a large overlap between these two primary peroxisomal variants. Subcellular targeting analysis by fluorescence microscopy validated around 10 new peroxisomal proteins in Arabidopsis. Mutant analysis suggested the role of the cysteine protease RESPONSE TO DROUGHT21A-LIKE1 in β-oxidation, seed germination, and growth. This work provides a much-needed road map of a major type of plant peroxisome and has established a basis for future investigations of peroxisomal proteolytic processes to understand their roles in development and in plant interaction with the environment. PMID:24130194
Wang, Congyan; Xiao, Hongguang; Zhao, Lulu; Liu, Jun; Wang, Lei; Zhang, Fei; Shi, Yanchun; Du, Daolin
2016-04-01
Invasive species can exhibit allelopathic effects on native species. Meanwhile, the types of acid deposition are gradually changing. Thus, the allelopathic effects of invasive species on seed germination and growth of native species may be altered or even enhanced under conditions with diversified acid deposition. This study aims to assess the allelopathic effects (using leaves extracts) of invasive plant Solidago canadensis on seed germination and growth of native species Lactuca sativa treated with five types of acid deposition with different SO4(2-) to NO3(-) ratios (1:0, sulfuric acid; 5:1, sulfuric-rich acid; 1:1, mixed acid; 1:5, nitric-rich acid; 0:1, nitric acid). Solidago canadensis leaf extracts exhibited significantly allelopathic effects on germination index, vigor index, and germination rate index of L. sativa. High concentration of S. canadensis leaf extracts also similarly exhibited significantly allelopathic effects on root length of L. sativa. This may be due to that S. canadensis could release allelochemicals and then trigger allelopathic effects on seed germination and growth of L. sativa. Acid deposition exhibited significantly negative effects on seedling biomass, root length, seedling height, germination index, vigor index, and germination rate index of L. sativa. This may be ascribed to the decreased soil pH values mediated by acid deposition which could produce toxic effects on seedling growth. Sulfuric acid deposition triggered more toxic effects on seedling biomass and vigor index of L. sativa than nitric acid deposition. This may be attributing to the difference in exchange capacity with hydroxyl groups (OH(-)) between SO4(2-) and NO3(-) as well as the fertilizing effects mediated by nitric deposition. All types of acid deposition significantly enhanced the allelopathic effects of S. canadensis on root length, germination index, vigor index, and germination rate index of L. sativa. This may be due to the negatively synergistic effects of acid deposition and S. canadensis on seed germination and growth of L. sativa. The ratio of SO4(2-) to NO3(-) in acid deposition was an important factor that profoundly affected the allelopathic effects of S. canadensis on the seed germination and growth of L. sativa possibly because the difference in exchange capacity with hydroxyl groups (OH(-)) between SO4(2-) and NO3(-) as well as the fertilizing effects triggered by nitric deposition. Thus, the allelopathic effects of invasive species on seed germination and growth of native plants might be enhanced under increased and diversified acid deposition.
Awan, Tahir Hussain; Chauhan, Bhagirath Singh; Cruz, Pompe C. Sta.
2014-01-01
Urena lobata is becoming a noxious and invasive weed in rangelands, pastures, and undisturbed areas in the Philippines. This study determined the effects of seed scarification, light, salt and water stress, amount of rice residue, and seed burial depth on seed germination and emergence of U. lobata; and evaluated the weed's response to post-emergence herbicides. Germination was stimulated by both mechanical and chemical seed scarifications. The combination of the two scarification methods provided maximum (99%) seed germination. Germination was slightly stimulated when seeds were placed in light (65%) compared with when seeds were kept in the dark (46%). Sodium chloride concentrations ranging from 0 to 200 mM and osmotic potential ranging from 0 to −1.6 MPa affected the germination of U. lobata seeds significantly. The osmotic potential required for 50% inhibition of the maximum germination was −0.1 MPa; however, some seeds germinated at −0.8 MPa, but none germinated at −1.6 MPa. Seedling emergence and biomass increased with increase in rice residue amount up to 4 t ha−1, but declined beyond this amount. Soil surface placement of weed seeds resulted in the highest seedling emergence (84%), which declined with increase in burial depth. The burial depth required for 50% inhibition of maximum emergence was 2 cm; emergence was greatly reduced (93%) at burial depth of 4 cm or more. Weed seedling biomass also decreased with increase in burial depth. Bispyribac-sodium, a commonly used herbicide in rice, sprayed at the 4-leaf stage of the weed, provided 100% control, which did not differ much with 2,4-D (98%), glyphosate (97%), and thiobencarb + 2,4-D (98%). These herbicides reduced shoot and root biomass by 99–100%. PMID:24658143
Bi, Baodi; Tang, Jingliang; Han, Shuang; Guo, Jinggong; Miao, Yuchen
2017-06-06
Sinapic acid and its esters have broad functions in different stages of seed germination and plant development and are thought to play a role in protecting against ultraviolet irradiation. To better understand the interactions between sinapic acid esters and seed germination processes in response to various stresses, we analyzed the role of the plant hormone abscisic acid (ABA) in the regulation of sinapic acid esters involved in seed germination and early seedling growth. We found that exogenous sinapic acid promotes seed germination in a dose-dependent manner in Arabidopsis thaliana. High-performance liquid chromatography mass spectrometry analysis showed that exogenous sinapic acid increased the sinapoylcholine content of imbibed seeds. Furthermore, sinapic acid affected ABA catabolism, resulting in reduced ABA levels and increased levels of the ABA-glucose ester. Using mutants deficient in the synthesis of sinapate esters, we showed that the germination of mutant sinapoylglucose accumulator 2 (sng2) and bright trichomes 1 (brt1) seeds was more sensitive to ABA than the wild-type. Moreover, Arabidopsis mutants deficient in either abscisic acid deficient 2 (ABA2) or abscisic acid insensitive 3 (ABI3) displayed increased expression of the sinapoylglucose:choline sinapoyltransferase (SCT) and sinapoylcholine esterase (SCE) genes with sinapic acid treatment. This treatment also affected the accumulation of sinapoylcholine and free choline during seed germination. We demonstrated that sinapoylcholine, which constitutes the major phenolic component in seeds among various minor sinapate esters, affected ABA homeostasis during seed germination and early seedling growth in Arabidopsis. Our findings provide insights into the role of sinapic acid and its esters in regulating ABA-mediated inhibition of Arabidopsis seed germination in response to drought stress.
Assessing Seedling Recruitment in Retrogressive Thaw Slumps in the Alaskan Low Arctic
NASA Astrophysics Data System (ADS)
Huebner, D. C.; Bret-Harte, M. S.
2016-12-01
Thermal erosion of permafrost soils may promote shifts from moist acidic tussock tundra (MAT) to shrub tundra in the Alaskan Low Arctic. Tall birch and willow shrub thickets (>1 m) have been observed in stabilized retrogressive thaw slumps (RTS) caused by thermal erosion near lake margins. RTS contain unvegetated, sheltered microsites, which may revegetate through seedling recruitment. We assessed whether recruitment in RTS was greater than in undisturbed MAT by measuring increased seedling cover and seedbank viability. We expected that seedbanks would show post-RTS tradeoffs in quantity and quality, with young seedbanks containing fewer, mostly viable seeds whose viability would decrease as seeds accumulate after disturbance. We made pairwise comparisons of in-situ seedling counts, seedbank viability (percent germination), and seed density (seeds m-2) of soil seedbanks across a chronosequence of RTS and nearby undisturbed MAT (n = 8 sample areas) at two sites near Toolik Lake, Alaska. Both RTS chronosequences were aged in a previous study through shrub ring counts and radiocarbon dated peat. RTS included young (1-10 years after disturbance), middle-aged (10-29 years) and old (> 30 years) sites. Undisturbed MAT areas were not aged but were likely undisturbed by RTS for > 300 years. We found 6 to 40 times more in-situ seedlings in younger RTS than in older RTS, and no seedlings in undisturbed MAT. Younger RTS had more willow and birch seedlings than older RTS. Higher in-situ seedling counts were correlated with deeper thaw depths, more bare soil, and decreased elevation, which suggested sheltering effects. Seedbank viability was unrelated to seedbank size or in-situ counts. Seedbank size increased with age at only one RTS site with no difference in percent germination. At the other site, percent germination decreased with age, but seedbank size was not different. Willow and birch germination was 1-2% overall. Site differences in seedbank size, viability, and species composition indicate that local variation may shape seedbank properties. Our results suggest that RTS in the Alaskan Low Arctic may facilitate greater seedling recruitment, which may in part explain the occurrence of tall shrub thickets in RTS.
Delerue, Florian; Gonzalez, Maya; Michalet, Richard; Pellerin, Sylvain; Augusto, Laurent
2015-01-01
The identification of an ecological niche specific to the regeneration phase has mobilised significant attention. However, the importance of the regeneration niche concept remains unclear. Our main objective was to study the existence of such a regeneration niche for a leguminous shrub, Ulex europaeus. This study was carried out in southwest France in the context of water and nutrient stresses (mainly phosphorus limitation) due to the presence of nutrient-poor sandy soils. We analysed the regeneration of the species from the germination of seeds and emergence of new seedlings until the seedlings reached young shrub size. Our design included a P fertilisation treatment. We also investigated microsite characteristics (micro-topography and vegetation development) as they can interact with meteorological conditions and determine water availability for seeds and seedlings. We found that P availability controlled seedling growth and the time necessary to reach young shrub size. Water availability appeared to impact the species germination and seedlings survival. We also found that P and water availability depended on the interactions between microsite characteristics and climatic variations. Finally we found evidence that P and water availability are important ecological factors shaping the regeneration niche of the species, but we found weak evidence that any microsite would be appropriate for the regeneration of the species in the long term. Future studies regarding regeneration niches need to distinguish more clearly the ecological factors important for regeneration (the regeneration niche per se) and the physical world where the seedlings appear and develop (the regeneration habitat). PMID:26098877
Increased germination and growth rates of pea and Zucchini seed by FSG plasma
NASA Astrophysics Data System (ADS)
Khatami, Shohreh; Ahmadinia, Arash
2018-04-01
Recently, cold atmospheric plasma (CAP) with the unique bio-disinfection features is used in various fields of industry, medicine, and agriculture. The main objectives of this work were to design FSG plasma (a semi-automatic device) and investigate the effect of the cold plasma in the enhancement of the Pea and Zucchini seed germination. Plasma irradiation time was studied to obtain a proper condition for the germination enhancement of seeds. The growth rate was calculated by measuring length of root and stem and dry weight of plants treated by plasma. To investigate drought resistance of plants, all treated and untreated samples were kept in darkness without water for 48 h. From the experimental results, it could be confirmed both drought resistance and germination of seedlings increased after plasma was applied to seeds at 30 s, while seeds treated whiten 60 s showed a decrease in both germination rate and seedling growth.
Footitt, Steven; Clay, Heather A; Dent, Katherine; Finch-Savage, William E
2014-01-01
Seed dormancy cycling plays a crucial role in the lifecycle timing of many plants. Little is known of how the seeds respond to the soil seed bank environment following dispersal in spring into the short-term seed bank before seedling emergence in autumn.Seeds of the winter annual Arabidopsis ecotype Cvi were buried in field soils in spring and recovered monthly until autumn and their molecular eco-physiological responses were recorded.DOG1 expression is initially low and then increases as dormancy increases. MFT expression is negatively correlated with germination potential. Abscisic acid (ABA) and gibberellin (GA) signalling responds rapidly following burial and adjusts to the seasonal change in soil temperature. Collectively these changes align germination potential with the optimum climate space for seedling emergence.Seeds naturally dispersed to the soil in spring enter a shallow dormancy cycle dominated by spatial sensing that adjusts germination potential to the maximum when soil environment is most favourable for germination and seedling emergence upon soil disturbance. This behaviour differs subtly from that of seeds overwintered in the soil seed bank to spread the period of potential germination in the seed population (existing seed bank and newly dispersed). As soil temperature declines in autumn, deep dormancy is re-imposed as seeds become part of the persistent seed bank. PMID:24444091
Chiu, Rex S; Nahal, Hardeep; Provart, Nicholas J; Gazzarrini, Sonia
2012-01-27
Imbibed seeds integrate environmental and endogenous signals to break dormancy and initiate growth under optimal conditions. Seed maturation plays an important role in determining the survival of germinating seeds, for example one of the roles of dormancy is to stagger germination to prevent mass growth under suboptimal conditions. The B3-domain transcription factor FUSCA3 (FUS3) is a master regulator of seed development and an important node in hormonal interaction networks in Arabidopsis thaliana. Its function has been mainly characterized during embryonic development, where FUS3 is highly expressed to promote seed maturation and dormancy by regulating ABA/GA levels. In this study, we present evidence for a role of FUS3 in delaying seed germination at supraoptimal temperatures that would be lethal for the developing seedlings. During seed imbibition at supraoptimal temperature, the FUS3 promoter is reactivated and induces de novo synthesis of FUS3 mRNA, followed by FUS3 protein accumulation. Genetic analysis shows that FUS3 contributes to the delay of seed germination at high temperature. Unlike WT, seeds overexpressing FUS3 (ML1:FUS3-GFP) during imbibition are hypersensitive to high temperature and do not germinate, however, they can fully germinate after recovery at control temperature reaching 90% seedling survival. ML1:FUS3-GFP hypersensitivity to high temperature can be partly recovered in the presence of fluridone, an inhibitor of ABA biosynthesis, suggesting this hypersensitivity is due in part to higher ABA level in this mutant. Transcriptomic analysis shows that WT seeds imbibed at supraoptimal temperature activate seed-specific genes and ABA biosynthetic and signaling genes, while inhibiting genes that promote germination and growth, such as GA biosynthetic and signaling genes. In this study, we have uncovered a novel function for the master regulator of seed maturation, FUS3, in delaying germination at supraoptimal temperature. Physiologically, this is important since delaying germination has a protective role at high temperature. Transcriptomic analysis of seeds imbibed at supraoptimal temperature reveal that a complex program is in place, which involves not only the regulation of heat and dehydration response genes to adjust cellular functions, but also the activation of seed-specific programs and the inhibition of germination-promoting programs to delay germination. © 2011 Chiu et al; licensee BioMed Central Ltd.
2012-01-01
Background Imbibed seeds integrate environmental and endogenous signals to break dormancy and initiate growth under optimal conditions. Seed maturation plays an important role in determining the survival of germinating seeds, for example one of the roles of dormancy is to stagger germination to prevent mass growth under suboptimal conditions. The B3-domain transcription factor FUSCA3 (FUS3) is a master regulator of seed development and an important node in hormonal interaction networks in Arabidopsis thaliana. Its function has been mainly characterized during embryonic development, where FUS3 is highly expressed to promote seed maturation and dormancy by regulating ABA/GA levels. Results In this study, we present evidence for a role of FUS3 in delaying seed germination at supraoptimal temperatures that would be lethal for the developing seedlings. During seed imbibition at supraoptimal temperature, the FUS3 promoter is reactivated and induces de novo synthesis of FUS3 mRNA, followed by FUS3 protein accumulation. Genetic analysis shows that FUS3 contributes to the delay of seed germination at high temperature. Unlike WT, seeds overexpressing FUS3 (ML1:FUS3-GFP) during imbibition are hypersensitive to high temperature and do not germinate, however, they can fully germinate after recovery at control temperature reaching 90% seedling survival. ML1:FUS3-GFP hypersensitivity to high temperature can be partly recovered in the presence of fluridone, an inhibitor of ABA biosynthesis, suggesting this hypersensitivity is due in part to higher ABA level in this mutant. Transcriptomic analysis shows that WT seeds imbibed at supraoptimal temperature activate seed-specific genes and ABA biosynthetic and signaling genes, while inhibiting genes that promote germination and growth, such as GA biosynthetic and signaling genes. Conclusion In this study, we have uncovered a novel function for the master regulator of seed maturation, FUS3, in delaying germination at supraoptimal temperature. Physiologically, this is important since delaying germination has a protective role at high temperature. Transcriptomic analysis of seeds imbibed at supraoptimal temperature reveal that a complex program is in place, which involves not only the regulation of heat and dehydration response genes to adjust cellular functions, but also the activation of seed-specific programs and the inhibition of germination-promoting programs to delay germination. PMID:22279962
Seed germination of five Poa species at negative water potentials
USDA-ARS?s Scientific Manuscript database
Under field conditions water is often inadequate for satisfactory seed germination. An experiment was conducted to determine the effects of simulated dry conditions on germination and seedling growth of five bluegrass (Poa) species including: Texas, P. arachnifera Torr.; annual, P. annua L.; mutto...
Jutila, H.M.; Grace, J.B.
2002-01-01
1. We evaluated the responses of native grassland sods to a variety of types of disturbance in order to assess hypotheses about the competitive effects of established vegetation on seed germination and seedling establishment. In particular, we consider whether germination is more responsive to the magnitude and duration of vegetation removal (competitive release) or to individual disturbance types (specific effects). 2. Field-collected sods of coastal tallgrass prairie were subjected to no manipulation, cutting with clippings left, cutting with clippings removed (hayed), burning, and complete destruction of established vegetation under greenhouse conditions. The emergence and fate of seedlings, as well as light penetration through the canopy, were followed for a period of 4.5 months. 3. Total seedling emergence increased from cut to control, hayed, burned and plants-removed treatments. Several periods of increased seedling emergence suggested responses to both light penetration and seasonal change. 4. Species richness was lowest in cut sods and highest in sods that had plants removed or were burned. Rarefaction analysis showed that these differences were largely those expected from differences in seedling number, except for the cut treatment, which produced fewer species per seedling than other treatments. 5. Indicator species analysis and ordination methods revealed that seedling community composition overlapped strongly across all treatments, although the area of ordination space did increase with increasing numbers of seedlings. 6. Overall, most of the effects of disturbance could be explained by cumulative light penetration to the soil surface, an indicator of total competitive release, although a few specific effects could be found (particularly for the cutting treatment). Thus, these results generally support the competitive release hypothesis.
Effect of synthetic detergents on germination of fern spores
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devi, Y.; Devi, S.
Synthetic detergents constitute one of the most important water pollutants by contaminating the lakes and rivers through domestic and industrial use. Considerable information is now available for the adverse effects of detergents an aquatic fauna including fish, algae, and higher aquatic plants. Marked inhibition of germination in orchids and brinjals and of seedlings growth in raddish suggest that rapidly growing systems could be sensitive to detergent polluted water. The present study of the effect of linear alkyl benzene sulphonate on germination of the spores of a fern, Diplazium esculentum aims at the understanding of the effects of water pollution onmore » pteridophytes and the development of spore germination assay for phytoxicity evaluation.« less
Li, Xue-feng; Wang, Jian; Xu, Wen-bo; Wang, Kun
2010-07-01
Aqueous extracts of Artemisia frigida leaf and stem and soils beneath A. frigida were used to test their allelopathic effects on the seed germination and seedling growth of three Poaceae plants (Leymus chinensis, Stipa krylovii, and Cleistogenes squarrosa) on Leymus chinensis grassland. The aqueous extracts of A. frigida leaf and stem decreased the seed germination index of test plants and prolonged their seed germination time, and inhibited the shoot growth of the three plants and the root growth of S. krylovii. The aqueous extracts at concentration > or = 0.075 g x ml(-1) presented a strong inhibition on the root growth of L. chinensis, while those at concentration < or = 0.05 g x ml(-1) had less effects. For the root growth of C. squarrosa, the aqueous extracts showed a "low-promotion and high-inhibition effect". Under the effects of A. frigida soil, the seedling growth of test plants was inhibited. The sensitivity of test plants to the allelopathic effects of A. frigida was in the order of S. krylovii > L. chinense > C. squarrosa, with a higher sensitivity of root growth than shoot growth.
Limiting factors of four rare plant species in `Ōla`A Forest of Hawai'i Volcanoes National Park
VanDeMark, Joshua R.; Pratt, Linda W.; Euaparadorn, Melody
2010-01-01
In conclusion, 2 of the 3 regularly-monitored rare plant species of `Ōla`a Forest appeared to have more than 1 limiting factor inhibiting the natural increase in their populations, while for P. floribunda the most important factor was high seedling mortality. Most plants of the monitored C. giffardii population appeared to be hybrids, probably with the more common species C. lysiosepala. Seed germination rates were low, and natural seedlings were not observed. Pollinators were not seen in many hours of observation, indicating that cross pollination is a rare or uncommon event. The re-introduced population of P. floribunda had relatively low mortality, and reproduction was successful with high rates of fruit formation from abundant flowers. Seed germination rates were high, and a soil seed bank was detected. Natural seedling recruitment was observed, but high seedling mortality indicated that this life stage was the most vulnerable in the species. The population of S. alba was small and the vine life form precluded an accurate estimate of the number of adult plants in `Ōla`a Forest. Natural dormancy was likely a factor in the observed low rate of seed germination. No soil seed bank was detected, and alien rodents were implicated as seed predators. Natural recruitment was observed at multiple sites in `Ōla`a, but seedling mortality was high. The cause of seedling mortality was not identified.
Effects of fungal elicitors on seed germination and tissue culture of Cymbidium goeringii
NASA Astrophysics Data System (ADS)
Gong, Mingfu; Guan, Qinlan; Lin, Tianxing; Lan, Juming; Liu, Si
2018-04-01
The endophytic fungi were isolated from the roots of Cymbidium goeringii and Cymbidium faberi and were made into liquid fungal elicitors used to co-fungus germination of seeds of C. goeringii and C. faberi. The results showed that the germination rate of the seeds of C. goeringii was increased 15% to 30% by inoculating the mixed fungal elicitors of C. goeringii and was no significant change by inoculating the mixed fungal elicitors of C. faberi. Mixed fungal elicitor promoted the acclimation of tissue culture seedlings. Mixed fungal elicitor prepared mycorrhizal inoculant made new seedlings easier to survive when transplanted.
Ma, Qian; Hedden, Peter; Zhang, Qifa
2011-08-01
Despite the accumulation of data on the genetic and molecular understanding of heterosis, there is little information on the regulation of heterosis at the physiological level. In this study, we performed a quantitative analysis of endogenous gibberellin (GA) content and expression profiling of the GA metabolism and signaling genes to investigate the possible relationship between GA signaling and heterosis for seedling development in rice (Oryza sativa). The materials used were an incomplete diallele set of 3 × 3 crosses and the six parents. In the growing shoots of the seedlings at 20 d after sowing, significant positive correlations between the contents of some GA species and performance and heterosis based on shoot dry mass were detected. Expression analyses of GA-related genes by real-time reverse transcription-polymerase chain reaction revealed that 13 out of the 16 GA-related genes examined exhibited significant differential expression among the F1 hybrid and its parents, acting predominantly in the modes of overdominance and positive dominance. Expression levels of nine genes in the hybrids displayed significant positive correlations with the heterosis of shoot dry mass. These results imply that GAs play a positive role in the regulation of heterosis for rice seedling development. In shoots plus root axes of 4-d-old germinating seeds that had undergone the deetiolation, mimicking normal germination in soil, the axis dry mass was positively correlated with the content of GA₂₉ but negatively correlated with that of GA₁₉. Our findings provide supporting evidence for GAs playing an important regulatory role in heterosis for rice seedling development.
NASA Technical Reports Server (NTRS)
Wahid, Nadya; Bounoua, Lahouari
2011-01-01
Selection of quality seeds in breeding programs can significantly improve seedling productivity. Germination and biochemical analyses on seeds from ten natural populations of maritime pine (Pinus pinaster Ait.) in Morocco reveals significant differences among populations in seed weight, germination characters and protein content in both dry seeds and megagametophytes. During germination, the mobilization of protein content in megagametophyte is significantly different among populations than sugar content. A strong positive correlation between the germination capacity and the protein content in both dry seeds and megagametophytes indicates that the best populations in term of germination capacity may also be the richest in protein content. The present study finds that seed weight is not a good indicator for quality seed selection, nor is it recommended to increase the degree of germinability. Our results suggest that the pine population in southern Morocco might have adapted to drought conditions as it is characterized by heavy seed weight and lower speed of protein content mobilization in megagametophyte compared to northern populations growing in temperate climate.
Grass seedling demography and sagebrush steppe restoration
J. J. James; M. J. Rinella; T. Svejcar
2012-01-01
Seeding is a key management tool for arid rangeland. In these systems, however, seeded species often fail to establish. A recent study inWyoming big sagebrush steppe suggested that over 90% of seeded native grass individuals die before seedlings emerged. This current study examines the timing and rate of seed germination, seedling emergence, and seedling death related...
Alsaeedi, Abdullah H; El-Ramady, Hassan; Alshaal, Tarek; El-Garawani, Mohamed; Elhawat, Nevien; Almohsen, Mahdi
2017-09-01
During the past 10 years, exploiting engineered nanoparticles in agricultural sector has been rapidly increased. Nanoparticles are used to increase the productivity of different crops particularly under biotic and abiotic stresses. This study aims to test the ability of nanosilica (NS) to ameliorate the detrimental impact of Na + with different concentrations on the seed germination and the growth of common bean seedlings. Five doses of Na + have been prepared from NaCl, i.e., 1000, 2000, 3000, 4000, and 5000 mg L -1 , and distilled water was applied as a control. Seeds and seedlings were treated with three different NS concentrations (100, 200, and 300 mg L -1 ). The results proved that Na + concentrations had detrimental effects on all measured parameters. However, treating seeds and seedlings with NS improved their growth and resulted in higher values for all measurements. For instance, the addition of 300 mg L -1 NS leads to an increase of the final germination percentage, vigor index, and germination speed for seeds irrigated with 5000 mg Na + L -1 by 19.7, 80.7, and 22.6%, respectively. Although common bean seedlings could not grow at the highest level of Na + , fortification seedlings with NS helped them to grow well under 5000 mg L -1 of Na + . An increase of 11.1 and 23.1% has been measured for shoot and root lengths after treating seedlings with 300 mg L -1 NS under irrigation with 5000 mg Na + L -1 solutions, and also at the same treatment, shoot and root dry masses are enhanced by 110.9 and 328.0%, respectively. These results proved the importance of using NS to relieve the detrimental effects of Na + -derived salinity. This finding could be reinforced by low Na content which was measured in plant tissues after treating seedlings with 300 mg L -1 of NS.
Plant development in the absence of epiphytic microorganisms
NASA Astrophysics Data System (ADS)
Kutschera, U.; Koopmann, V.; Grotha, R.
2002-05-01
Microorganisms (bacteria, fungi) are common residents of the roots, stems and leaves of higher plants. In order to explore the dependency of plant development on the presence of epiphytic microorganisms, the achenes (seeds) of sunflower (Helianthus annuus L.) were sterilized and germinated under aseptic conditions. The sterility of the seedlings was determined with the agar impression method. In seedlings from non-sterile seeds (control) that were likewise raised in a germ-free environment, all plant organs investigated (stem, cotyledons and primary leaves) were contaminated with bacteria. Hypocotyl elongation was not affected by epiphytic microorganisms. However, the growth rates of the cotyledons and primary leaves were higher in sterile seedlings compared with the control. The implications of this differential inhibition of organ development by epiphytic bacteria that are transmitted via the outer surface of the seed coat are discussed. We conclude that epiphytes in the above-ground phytosphere are not necessary for the development of the sunflower seedling.
Gallep, Cristiano M; Moraes, Thiago A; Dos Santos, Samuel R; Barlow, Peter W
2013-06-01
Measurements of spontaneous ultra-weak light (biophoton) emission from native Brazilian and German wheat seedlings in three simultaneous series of germination tests are presented, two run in Germany and one in Brazil. Seedlings in both countries presented semi-circadian rhythms of emission that were in accordance with the local lunisolar gravimetric tidal acceleration, as did seeds which had been transported from Brazil to Germany. The simultaneity of the photon emission patterns in all tests argues for the lunisolar tide and its rhythmic variations as regulators of the natural rhythm of photon emission. However, seedlings from seed samples transported from Brazil to Germany showed, in addition, a temporary disturbance within the emission periodicity which may indicate a possible short-term acclimatization to the new location.
Kimber, A.; Korschgen, C.E.; Van Der Valk, A.G.
1995-01-01
Vallisneria americana declined in backwaters of the Upper Mississippi River, U.S.A., after a drought in 1988. To determine whether viable seeds of V. americana occurred in the seed bank of navigation pool 7, Lake Onalaska, the upper 5 cm of sediment was collected from 103 sites in May 1990. These sediment samples were kept in pots at a depth of 0.4, 0.8, and 1.2 m in an outdoor pond for 12 weeks. Vallisneria americana seeds germinated from sites throughout the lake, and some seedlings produced overwintering buds by the end of the study. Seeds, spores, or fragments of 12 other species of aquatic plants also germinated. Seed germination trials with fresh and stored seeds in both greenhouse and ponds in which light availability was reduced with shade cloths indicated that seed germination was insensitive to light level. To determine the tight requirements for seedling survival and bud production, sediment from Lake Onalaska was incubated in ponds under neutral density shade screens reducing light to 2, 5, 9, and 25% of full sun. Seeds germinated under all shade treatments but survival was significantly higher in the 9 and 25% light treatments, and bud production was restricted to these light levels.
Liu, Da; Cui, Yue; Walcott, Ronald; Chen, Jinru
2018-01-01
Vegetable seeds contaminated with bacterial pathogens have been linked to fresh-produce-associated outbreaks of gastrointestinal infections. This study was undertaken to observe the physiological behavior of Salmonella enterica and enterohemorrhagic Escherichia coli (EHEC) cells artificially internalized into vegetable seeds during the germination process. Surface-decontaminated seeds of alfalfa, fenugreek, lettuce, and tomato were vacuum-infiltrated with four individual strains of Salmonella or EHEC. Contaminated seeds were germinated at 25°C for 9 days, and different sprout/seedling tissues were microbiologically analyzed every other day. The internalization of Salmonella and EHEC cells into vegetable seeds was confirmed by the absence of pathogens in seed-rinsing water and the presence of pathogens in seed homogenates after postinternalization seed surface decontamination. Results show that 317 (62%) and 343 (67%) of the 512 collected sprout/seedling tissue samples were positive for Salmonella and EHEC, respectively. The average Salmonella populations were significantly larger ( P < 0.05) than the EHEC populations. Significantly larger Salmonella populations were recovered from the cotyledon and seed coat tissues, followed by the root tissues, but the mean EHEC populations from all sampled tissue sections were statistically similar, except in pregerminated seeds. Three Salmonella and two EHEC strains had significantly larger cell populations on sprout/seedling tissues than other strains used in the study. Salmonella and EHEC populations from fenugreek and alfalfa tissues were significantly larger than those from tomato and lettuce tissues. The study showed the fate of internalized human pathogens on germinating vegetable seeds and sprout/seedling tissues and emphasized the importance of using pathogen-free seeds for sprout production. IMPORTANCE The internalization of microorganisms into vegetable seeds could occur naturally and represents a possible pathway of vegetable seed contamination by human pathogens. The present study investigated the ability of two important bacterial pathogens, Salmonella and enterohemorrhagic Escherichia coli (EHEC), when artificially internalized into vegetable seeds, to grow and disseminate along vegetable sprouts/seedlings during germination. The data from the study revealed that the pathogen cells artificially internalized into vegetable seeds caused the contamination of different tissues of sprouts/seedlings and that pathogen growth on germinating seeds is bacterial species and vegetable seed-type dependent. These results further stress the necessity of using pathogen-free vegetable seeds for edible sprout production. Copyright © 2017 American Society for Microbiology.
Yadav, Shiv Shankar; Shukla, Rajni; Sharma, Y K
2009-05-01
Effect of various concentrations of nickel (100, 200, 500 and 1000 microM) and recovery treatments of boron (50 and 100 microM) and copper (15 and 75 microM) each with 200 microM and 500 microM of nickel on germination, growth, biomass, chlorophyll, carotenoids, pheophytin, amylase, protein, sugar as well as activity of catalase and peroxidase were studied in radish (Raphanus sativus cv. Early menu) seedlings. Nickel treatments caused a considerable reduction in germination percentage, growth and biomass. The different pigments were also decreased with nickel treatments. However boron addition with nickel recovered the negative effect on pigment contents. Among biochemical estimations, amylase activity and total proteins were found to be reduced in nickel treatments. Peroxidase and catalase activity were induced other than higher total sugar with nickel treatments. The combination of nickel with boron resulted into increased protein contents. This combination also reduced the catalase and peroxidase activity. The influence of nickel with copper failed to produce significant recovery except 200 microM nickel in combination with 15 microM copper with regard to catalase and peroxidase activity. The effect of nickel on hydrolyzing enzyme amylase was observed to be inhibitory resulting into poor germination followed by poor seedlings growth. The stress protecting enzymes peroxidase and catalase seem to be induced under the influence of nickel, and providing protection to the seedlings. The application of boron with nickel showed improved germination and growth. The level of catalase and peroxidase were found to be significantly reduced showing normal growth and biomass of seedlings.
Vokou, Despina; Douvli, Panagiota; Blionis, George J; Halley, John M
2003-10-01
We compared the potential allelopathic activity of 47 monoterpenoids of different chemical groups, by estimating their effect on seed germination and subsequent growth of Lactuca sativa seedlings. Apart from individual compounds, eleven pairs at different proportions were also tested. As a group, the hydrocarbons, except for (+)-3-carene, were the least inhibitory. Of the oxygenated compounds, the least inhibitory were the acetates; whenever the free hydroxyl group of an alcohol turned into a carboxyl group, the activity of the resulting ester was markedly lower (against both germination and seedling growth). Twenty-four compounds were extremely active against seedling growth (inhibiting it by more than 85%), but only five against seed germination. The compounds that were most active against both processes belonged to the groups of ketones and alcohols; they were terpinen-4-ol, dihydrocarvone, and two carvone stereoisomers. We used a model to investigate whether compounds acted independently when applied in pairs. The combined effect varied. In half of the cases, it followed the pattern expected under the assumption of independence; in the rest, either synergistic or antagonistic interactions were found in both germination and elongation. However, even in cases of synergistic interactions, the level of inhibition was not comparable to that of a single extremely active compound, unless such a compound already participated in the combination. The specific structural factors that operate and determine the activity of monoterpenoids still remain rather obscure. The same holds true for the combined effect; its character cannot in general be predicted on the basis of individual compounds acting alone.
Xu, Shaochun; Wang, Pengmei; Zhou, Yi; Zhang, Xiaomei; Gu, Ruiting; Liu, Xujia; Liu, Bingjian; Song, Xiaoyue; Xu, Shuai; Yue, Shidong
2018-01-01
Seagrasses are important components of global coastal ecosystems, and the eelgrass Zostera marina L. is widely distributed along the Atlantic and Pacific coasts in the temperate northern hemisphere, but limited datum related to the contribution of sexual reproduction to population recruitment have been reported. This study aimed to understand eelgrass sexual reproduction and population recruitment in Swan Lake (SLL), and Huiquan Bay (HQB) was included for comparison. Random sampling, permanent quadrats or cores and laboratory seed germination-based experimental methods were employed. The flowering, seed production, seed banks, seed germination, seedling survival, and seedling growth of eelgrass were investigated from July 2014 to December 2015 to evaluate the contribution of sexual reproduction to population recruitment. Results indicated a dominant role of asexual reproduction in HQB, while sexual reproduction played a relatively important role in SLL. The highest flowering shoot density in SLL was 517.27 ± 504.29 shoots m−2 (June) and represented 53.34% of the total shoots at the center site. The potential seed output per reproductive shoot and per unit area in SLL were 103.67 ± 37.95 seeds shoot−1 and 53,623.66 ± 19,628.11 seeds m−2, respectively. The maximum seed bank density in SLL was 552.21 ± 204.94 seeds m−2 (October). Seed germination mainly occurred from the middle of March to the end of May, and the highest seedling density was 296.88 ± 274.27 seedlings m−2 in April. The recruitment from seedlings accounted for 41.36% of the Z. marina population recruitment at the center site, while the sexual recruitment contribution at the patch site (50.52%) was greater than that at the center site. Seeds in SLL were acclimated to spring germination, while in HQB, they were acclimated to autumn germination (early October–late November). Seed bank density in HQB was very low, with a value of 254.35 ± 613.34 seeds m−2 (early October). However, seeds in HQB were significantly larger and heavier than those in SLL (size: P = 0.004; weight: P < 0.001). The recruitment from seedlings accounted for as low as 2.53% of the Z. marina population recruitment in HQB. Our laboratory seed germination experiment, which was conducted in autumn, showed that the seed germination percent in HQB was significantly greater than in SLL at optimal germination temperatures (10 and 15°C; P < 0.001). A laboratory seed germination test at suitable temperature may be a potential novel approach to identify the ecological differences among different geographic populations. It is suggested that the Z. marina population recruitment may have different strategies and adapt to specific local conditions, such as in SLL and HQB, and the temperature regime may control morphological and phonological variations. PMID:29483922
Xu, Shaochun; Wang, Pengmei; Zhou, Yi; Zhang, Xiaomei; Gu, Ruiting; Liu, Xujia; Liu, Bingjian; Song, Xiaoyue; Xu, Shuai; Yue, Shidong
2018-01-01
Seagrasses are important components of global coastal ecosystems, and the eelgrass Zostera marina L. is widely distributed along the Atlantic and Pacific coasts in the temperate northern hemisphere, but limited datum related to the contribution of sexual reproduction to population recruitment have been reported. This study aimed to understand eelgrass sexual reproduction and population recruitment in Swan Lake (SLL), and Huiquan Bay (HQB) was included for comparison. Random sampling, permanent quadrats or cores and laboratory seed germination-based experimental methods were employed. The flowering, seed production, seed banks, seed germination, seedling survival, and seedling growth of eelgrass were investigated from July 2014 to December 2015 to evaluate the contribution of sexual reproduction to population recruitment. Results indicated a dominant role of asexual reproduction in HQB, while sexual reproduction played a relatively important role in SLL. The highest flowering shoot density in SLL was 517.27 ± 504.29 shoots m -2 (June) and represented 53.34% of the total shoots at the center site. The potential seed output per reproductive shoot and per unit area in SLL were 103.67 ± 37.95 seeds shoot -1 and 53,623.66 ± 19,628.11 seeds m -2 , respectively. The maximum seed bank density in SLL was 552.21 ± 204.94 seeds m -2 (October). Seed germination mainly occurred from the middle of March to the end of May, and the highest seedling density was 296.88 ± 274.27 seedlings m -2 in April. The recruitment from seedlings accounted for 41.36% of the Z. marina population recruitment at the center site, while the sexual recruitment contribution at the patch site (50.52%) was greater than that at the center site. Seeds in SLL were acclimated to spring germination, while in HQB, they were acclimated to autumn germination (early October-late November). Seed bank density in HQB was very low, with a value of 254.35 ± 613.34 seeds m -2 (early October). However, seeds in HQB were significantly larger and heavier than those in SLL (size: P = 0.004; weight: P < 0.001). The recruitment from seedlings accounted for as low as 2.53% of the Z. marina population recruitment in HQB. Our laboratory seed germination experiment, which was conducted in autumn, showed that the seed germination percent in HQB was significantly greater than in SLL at optimal germination temperatures (10 and 15°C; P < 0.001). A laboratory seed germination test at suitable temperature may be a potential novel approach to identify the ecological differences among different geographic populations. It is suggested that the Z. marina population recruitment may have different strategies and adapt to specific local conditions, such as in SLL and HQB, and the temperature regime may control morphological and phonological variations.
King, S.E.; Grace, J.B.
2000-01-01
Cogongrass is a nonindigenous species perceived to threaten native communities of the southeastern United States through modification of species composition and alteration of community processes. To examine how gap size and disturbance type influence the invasion of wet pine savannas by cogongrass, we performed three field experiments to evaluate the response of cogongrass seeds and transplanted seedlings to four different gap sizes, four types of site disturbance, and recent burning of savanna vegetation. Cogongrass germinated, survived, and grew in all gap sizes, from 0 to 100 cm in diameter. Similarly, disturbance type had no effect on germination or seedling and transplant survival. Tilling, however, significantly enhanced transplanted seedling growth, resulting in a tenfold increase in biomass over the other disturbance types. Seedling survival to 1 and 2 mo was greater in burned savanna than unburned savanna, although transplant survival and growth were not affected by burning. Results of this study suggest that cogongrass can germinate, survive, and grow in wet pine savanna communities regardless of gap size or type of disturbance, including burning. Burning of savanna vegetation may enhance establishment by improving early seedling survival, and soil disturbance can facilitate invasion of cogongrass by enhancing plant growth.
King, S E; Grace, J B
2000-09-01
Cogongrass is a nonindigenous species perceived to threaten native communities of the southeastern United States through modification of species composition and alteration of community processes. To examine how gap size and disturbance type influence the invasion of wet pine savannas by cogongrass, we performed three field experiments to evaluate the response of cogongrass seeds and transplanted seedlings to four different gap sizes, four types of site disturbance, and recent burning of savanna vegetation. Cogongrass germinated, survived, and grew in all gap sizes, from 0 to 100 cm in diameter. Similarly, disturbance type had no effect on germination or seedling and transplant survival. Tilling, however, significantly enhanced transplanted seedling growth, resulting in a tenfold increase in biomass over the other disturbance types. Seedling survival to 1 and 2 mo was greater in burned savanna than unburned savanna, although transplant survival and growth were not affected by burning. Results of this study suggest that cogongrass can germinate, survive, and grow in wet pine savanna communities regardless of gap size or type of disturbance, including burning. Burning of savanna vegetation may enhance establishment by improving early seedling survival, and soil disturbance can facilitate invasion of cogongrass by enhancing plant growth.
Container hardwood seedling production
John McRae
2005-01-01
Container production of hardwood seedlings requires larger cavities, more space, and the ability to easily sort seedlings (as compared to conifers) very early during the germination phase of production. This presentation demonstrates the most productive system, based upon past experience, to commercially produce container hardwoods. The container system of choice is...
NASA Astrophysics Data System (ADS)
Fidanza, Michael; McMillan, Mica; Kostka, Stan; Madsen, Matthew D.
2014-05-01
Turfgrass seed germination and emergence is influenced mostly by water and oxygen availability, temperature, nutrition and biological activity in the rootzone. In many areas globally, seed germination and subsequent turfgrass establishment is greatly diminished due to inadequate irrigation water amount and quality, and the problem is further compound due to water repellent soils. Successful turfgrass seed germination is critical when attempting to establish a more sustainable turfgrass species in place of an existing, high-input required turf stand. Greenhouse research investigations were conducted in 2013 in Pennsylvania (USA), to evaluate surfactant coated perennial ryegrass (Lolium perenne) and Kentucky bluegrass (Poa pratensis) seed for germination and emergence, seedling vigor and overall turfgrass quality. Both turfgrasses tested are cool-season or C3 grasses, and perennial ryegrass has a bunch-type growth habit while Kentucky bluegrass is rhizomatous. Perennial ryegrass is used world-wide as a principal component in sports turf mixes and in overseeding programs, and typically germinates rapidly in 3 to 10 days after seeding. Kentucky bluegrass also is used world-wide for sports turf as well as lawns and landscapes, and germinates slowly in 7 to 28 days. Research results indicate that surfactant coated seed of both species germinated one to three days faster compared to uncoated seed, and that seedling vigor and overall turfgrass quality was better with surfactant coated seed compared to uncoated seed. In a study with only perennial ryegrass, surfactant-coated seed without fertilizer (i.e., N and Ca) applied at time of sowing resulted in seedling vigor and quality considered to be similar or better than uncoated seed with fertilizer applied at time of sowing. Therefore, the potential benefits with seed germination and emergence, and seedling vigor and turfgrass quality also may be attributed to the surfactant coating and not only a fertilizer response. The utilization of a surfactant coated turfgrass seed could potentially reduce inputs (i.e., cost, time and labor, other materials) and improve water conservation (i.e., reduction in irrigation water need for establishment).
USDA-ARS?s Scientific Manuscript database
Cheatgrass (Bromus tectorum) dominance and competitiveness is often attributed to early (fall) germination. We hypothesize that cheatgrass germinates earlier compared to three commonly used restoration/rehabilitation perennial grass species [‘Hycrest’ crested wheatgrass( Agropyron desertorum ssp. c...
Tenth workshop on seedling physiology and growth problems in oak plantings
Brian Roy Lockhart; Emile S. Gardiner; Daniel C. Dey
2008-01-01
Research results and ongoing research activities in field performance of oak plantings, seedling propagation, genetics, acorn germination, and natural regeneration of oaks are described in 15 abstracts.
Damasco, O L; Refuerzo, L C
The traditional on farm conservation of Calamansi [x Citrofortunella microcarpa (Bunge) Wijnands], an important indigenous Citrus species in the Philippines, is now being threatened by shifting agricultural crop production, climate change, and increasing biotic and abiotic stresses. The study aimed to characterize the desiccation and cryopreservation tolerance of seeds as the basis for complementary long term ex situ conservation. Intact seeds were desiccated in an airtight container filled with activated silica gel for 0-96 h. Seeds placed in cryotubes were subjected to rapid freezing in liquid nitrogen, rapid thawing in a water bath at 50 degree C for 3 min, and cultured on MS basal medium for seedling recovery and growth. Recovered seedlings were potted out in plastic bags filled with coir dust: garden soil mixture (1:1 v/v) and maintained in the nursery. Significant reduction in percentage germination was obtained at in a moisture content (MC) window between 24.3% and 4.2% and complete loss of viability at below 3.2%. The number of germinated embryos per seed was significantly reduced following desiccation from a mean of 4.2 embryos per seed for the untreated control to 1.2 to 1.02 embryos per seed at 33.3-4.2% MC, respectively. Recovery and germination of seeds after cryopreservation were obtained in a MC window between 24.3% and 4.2% with the maximum seed germination (27%) obtained at 13.4%. Germination abnormalities such as incomplete germination, greening and or enlargement of cotyledon without shoot emergence were observed in both desiccated and cryopreserved seeds. Variations in response to seed desiccation and cryopreservation were observed among Calamansi accessions tested. Maximum seedling recovery after liquid nitrogen storage varied between 12.5% and 61.5%. Recovered seedlings from desiccation and cryopreservation treatments survived ex vitro establishment and showed normal growth and similar morphology with the non-treated control seedlings. The partial tolerance of Calamansi seeds to desiccation and subsequent recovery after cryopreservation provides the basis for long term ex situ preservation of this valuable germplasm, although further optimization is needed.
Nilsen, E T; Walker, J F; Miller, O K; Semones, S W; Lei, T T; Clinton, B D
1999-11-01
In the southern Appalachian mountains a subcanopy species, Rhododendron maximum, inhibits the establishment and survival of canopy tree seedlings. One of the mechanisms by which seedlings could be inhibited is an allelopathic effect of decomposing litter or leachate from the canopy of R. maximum (R.m.) on seed germination, root elongation, or mycorrhizal colonization. The potential for allelopathy by R.m. was tested with two bioassay species (lettuce and cress), with seeds from four native tree species, and with three ectomycorrhizal fungi. Inhibitory influences of throughfall, fresh litter, and decomposed litter (organic layer) from forest with R.m. (+R.m. sites) were compared to similar extractions made from forest without R.m. (-R.m. sites). Throughfall and leachates of the organic layer from both +R.m. and -R.m. sites stimulated germination of the bioassay species above that of the distilled water control, to a similar extent. There was an inhibitory effect of leachates of litter from +R.m. sites on seed germination and root elongation rate of both bioassay species compared with that of litter from -R.m. sites. Native tree seed stratified in forest floor material from both forest types had a slightly higher seed germination rate compared with the control. A 2-yr study of seed germination and seedling mortality of two tree species, Quercus rubra and Prunus serotina, in field plots showed no significant influence of litter or organic layer from either forest type. Incorporating R.m. leaf material into the growth medium in vitro depressed growth of one ectomycorrhizal species but did not affect two other species. Leaf material from other deciduous tree species depressed ectomycorrhizal growth to a similar or greater extent as leaf material from R.m. In conclusion, R.m. litter can have an allelopathic effect on seed germination and root elongation of bioassay species as well as some ectomycorrhizal species. However, this allelopathic affect is not manifest in field sites and is not likely to be an important cause for the inhibition of seedling survival within thickets of R.m.
NASA Technical Reports Server (NTRS)
Blancaflor, Elison B.; Hou, Guichuan; Chapman, Kent D.
2003-01-01
N-Acylethanolamines (NAEs) are prevalent in desiccated seeds of various plant species, and their levels decline substantially during seed imbibition and germination. Here, seeds of Arabidopsis thaliana (L.) Heynh. were germinated in, and seedlings maintained on, micromolar concentrations of N-lauroylethanolamine (NAE 12:0). NAE 12:0 inhibited root elongation, increased radial swelling of root tips, and reduced root hair numbers in a highly selective and concentration-dependent manner. These effects were reversible when seedlings were transferred to NAE-free medium. Older seedlings (14 days old) acclimated to exogenous NAE by increased formation of lateral roots, and generally, these lateral roots did not exhibit the severe symptoms observed in primary roots. Cells of NAE-treated primary roots were swollen and irregular in shape, and in many cases showed evidence, at the light- and electron-microscope levels, of improper cell wall formation. Microtubule arrangement was disrupted in severely distorted cells close to the root tip, and endoplasmic reticulum (ER)-localized green fluorescent protein (mGFP5-ER) was more abundant, aggregated and distributed differently in NAE-treated root cells, suggesting disruption of proper cell division, endomembrane organization and vesicle trafficking. These results suggest that NAE 12:0 likely influences normal cell expansion in roots by interfering with intracellular membrane trafficking to and/or from the cell surface. The rapid metabolism of NAEs during seed imbibition/germination may be a mechanism to remove this endogenous class of lipid mediators to allow for synchronized membrane reorganization associated with cell expansion.
Qie, Lufeng; Jia, Guanqing; Zhang, Wenying; Schnable, James; Shang, Zhonglin; Li, Wei; Liu, Binhui; Li, Mingzhe; Chai, Yang; Zhi, Hui; Diao, Xianmin
2014-01-01
Drought tolerance is an important breeding target for enhancing the yields of grain crop species in arid and semi-arid regions of the world. Two species of Setaria, domesticated foxtail millet (S. italica) and its wild ancestor green foxtail (S. viridis) are becoming widely adopted as models for functional genomics studies in the Panicoid grasses. In this study, the genomic regions controlling germination and early seedling drought tolerance in Setaria were identified using 190 F7 lines derived from a cross between Yugu1, a S. italica cultivar developed in China, and a wild S. viridis genotype collected from Uzbekistan. Quantitative trait loci were identified which contribute to a number of traits including promptness index, radical root length, coleoptile length and lateral root number at germinating stage and seedling survival rate was characterized by the ability of desiccated seedlings to revive after rehydration. A genetic map with 128 SSR markers which spans 1293.9 cM with an average of 14 markers per linkage group of the 9 linkage groups was constructed. A total of eighteen QTLs were detected which included nine that explained over 10% of the phenotypic variance for a given trait. Both the wild green foxtail genotype and the foxtail millet cultivar contributed the favorite alleles for traits detected in this trial, indicating that wild Setaria viridis populations may serve as a reservoir for novel stress tolerance alleles which could be employed in foxtail millet breeding. PMID:25033201
Inhibitory effect of marine green algal extracts on germination of Lactuca sativa seeds.
Choi, Jae-Suk; Choi, In Soon
2016-03-01
The allelopathic potential of nine green seaweed species was examined based on germination and seedling growth of lettuce (Lactuca sativa L.). Out of nine methanol extracts, Capsosiphon fulvescens and Monostroma nitidum extracts completely inhibited germination of L. sativa at 4 mg/filter paper after 24 hr of treatment. Water extracts of these seaweeds generally showed low anti-germination activities than methanol extracts. Of the nine water extracts, Enteromorpha linza extract completely inhibited L. sativa germination at 16 mg/filter paper after 24 hrs. To identify the primary active compounds, C. fulvescens. powder was successively fractionated according to polarity, and the main active agents against L. sativa were determined to be lipids (0.0% germination at 0.5 mg of lipids/paper disc). According to these results, extracts of C. fulvescens can be used to develop natural herbicidal agents and manage terrestrial weeds.
Disentangling the role of heat and smoke as germination cues in Mediterranean Basin flora.
Moreira, B; Tormo, J; Estrelles, E; Pausas, J G
2010-04-01
The role of fire as a germination cue for Mediterranean Basin (MB) plants is still unclear. The current idea is that heat stimulates germination mainly in Cistaceae and Fabaceae and that smoke has a limited role as a post-fire germination cue, in comparison with other Mediterranean-type ecosystems (MTEs), suggesting that fire-stimulated germination is less relevant in the MB than in other MTEs. However, recent studies showed that the assembly of Mediterranean plant communities is strongly driven by post-fire germination, suggesting an important role for fire as a germination cue. We hypothesize that both heat and smoke have important effects on the different post-fire recruitment processes of MB species (e.g. level and rate of germination and initial seedling growth). To ascertain the role of heat and smoke in the post-fire germination response of MB woody plants, a germination experiment was performed with seven heat and two smoke treatments on 30 MB woody species from seven different families, including species with water-permeable seeds and species with water-impermeable seeds. Heat stimulated the germination (probability and rate) of 21 species and smoke in eight species, out of the 30 species studied. In addition, six species showed enhanced initial seedling growth after the smoke treatments. The results suggest that both heat and smoke are important germination cues in a wide range of MB woody species and that fire-cued germination in woody plants of the MB may be as important as in other MTEs.
Germinal and Somatic Activity of the Maize Element Activator (Ac) in Arabidopsis
Keller, J.; Lim, E.; James-Jr., D. W.; Dooner, H. K.
1992-01-01
We have investigated the germinal and somatic activity of the maize Activator (Ac) element in Arabidopsis with the objective of developing an efficient transposon-based system for gene isolation in that plant. Transposition activity was assayed with a chimeric marker that consists of the cauliflower mosaic virus 35S promoter and a bacterial streptomycin phosphotransferase gene (SPT). Somatic activity was detected in seedlings germinated on plates containing streptomycin as green-resistant sectors against a background of white-sensitive cells. Germinal excisions resulted in fully green seedlings. The transposition frequency was extremely low when a single copy of the transposon was present, but appeared to increase with an increase in Ac copy number. Plants that were selected as variegated produced an increased number of green progeny. The methylation state of the Ac elements in lines with either low or high levels of excision was assessed by restriction analysis. No difference was found between these lines, indicating that the degree of methylation did not contribute to the level of Ac activity. Germinal excision events were analyzed molecularly and shown to carry reinserted transposons in about 50% of the cases. In several instances, streptomycin-resistant siblings carried the same transposed Ac element, indicating that excision had occurred prior to meiosis in the parent. We discuss parameters that need to be considered to optimize the use of Ac as a transposon tag in Arabidopsis. PMID:1322854
Ninth workshop on seedling physiology and growth problems in oak plantings (abstracts)
D.R. Weigel; J.W. Van Sambeek; C.H., eds. Michler
2005-01-01
Research results and ongoing research activities in field performance of oak plantings, seedling propagation, genetics, acorn germination, and natural regeneration of oaks are described in 26 abstracts.
Hu, Xiao Wen; Wu, Yan Pei; Ding, Xing Yu; Zhang, Rui; Wang, Yan Rong; Baskin, Jerry M.; Baskin, Carol C.
2014-01-01
Studying seed dormancy and its consequent effect can provide important information for vegetation restoration and management. The present study investigated seed dormancy, seedling emergence and seed survival in the soil seed bank of Stipa bungeana, a grass species used in restoration of degraded land on the Loess Plateau in northwest China. Dormancy of fresh seeds was determined by incubation of seeds over a range of temperatures in both light and dark. Seed germination was evaluated after mechanical removal of palea and lemma (hulls), chemical scarification and dry storage. Fresh and one-year-stored seeds were sown in the field, and seedling emergence was monitored weekly for 8 weeks. Furthermore, seeds were buried at different soil depths, and then retrieved every 1 or 2 months to determine seed dormancy and seed viability in the laboratory. Fresh seeds (caryopses enclosed by palea and lemma) had non-deep physiological dormancy. Removal of palea and lemma, chemical scarification, dry storage (afterripening), gibberellin (GA3) and potassium nitrate (KNO3) significantly improved germination. Dormancy was completely released by removal of the hulls, but seeds on which hulls were put back to their original position germinated to only 46%. Pretreatment of seeds with a 30% NaOH solution for 60 min increased germination from 25% to 82%. Speed of seedling emergence from fresh seeds was significantly lower than that of seeds stored for 1 year. However, final percentage of seedling emergence did not differ significantly for seeds sown at depths of 0 and 1 cm. Most fresh seeds of S. bungeana buried in the field in early July either had germinated or lost viability by September. All seeds buried at a depth of 5 cm had lost viability after 5 months, whereas 12% and 4% seeds of those sown on the soil surface were viable after 5 and 12 months, respectively. PMID:25396423
Hossain, M Mohitul
2012-12-01
The destruction of natural forest is increasing due to urbanization, industrialization, settlement and for the agricultural expansion over last few decades, and studies for their recovery need to be undertaken. With this aim, this comparative study was designed to see the effects of deforested soil on germination and growth performance of five different tree species. In the experiment, five species namely Gmelina arborea, Swietenia mahagoni, Dipterocarpus turbinatus, Acacia auriculiformis and Syzygium grande were germinated for six weeks on seedbeds and raised in pots (25cm diameter, 30cm height), that were filled with two soil and type of land use: deforested and adjacent natural forest of Dulhazara Safari Park. Growth performance of seedling was observed up to 15 months based on height, collar diameter and biomass production at the end. Our results showed that the germination rate was almost similar in both type of land uses. Height growth of D. turbinatus, G. arborea and S. mahagoni seedlings was almost similar and A. auriculi formis and S. grande lower in deforested soil compared to natural forest soil, while collar diameter ofA. auriculi formis, G. arborea, S. grande and S. mahagoni lower and D. turbinatus similar in deforested soil compared to natural forest soil. After uprooting at 19 months, S. mahagoni seedlings were showed significantly (p< or =0.05) higher oven dry biomass, D. turbinatus and A. auriculiformis higher, while G. arborea showed significantly (p< or =0.05) lower and S. grande almost similar oven dry biomass in deforested soil compared to natural forest soil. Oven dry biomass of D. turbinatus seedlings at 19 month age in deforested soil was 21.96g (n=5) and in natural forest soil 18.86g (n=5). However, differences in germination rate and growth performance for different tree species indicated that soil are not too much deteriorated through deforestation at Dulhazara and without any failure such deforested lands would be possible to bring under forest through plantation.
Wang, Ming; Schoettner, Matthias; Xu, Shuqing; Paetz, Christian; Wilde, Julia; Baldwin, Ian T; Groten, Karin
2017-03-01
Nicotiana attenuata germinates from long-lived seedbanks in native soils after fires. Although smoke signals have been known to break seed dormancy, whether they also affect seedling establishment and root development remains unclear. In order to test this, seedlings were treated with smoke solutions. Seedlings responded in a dose-dependent manner with significantly increased primary root lengths, due mainly to longitudinal cell elongation, increased numbers of lateral roots and impaired root hair development. Bioassay-driven fractionations and NMR were used to identify catechol as the main active compound for the smoke-induced root phenotype. The transcriptome analysis revealed that mainly genes related to auxin biosynthesis and redox homeostasis were altered after catechol treatment. However, histochemical analyses of reactive oxygen species (ROS) and the inability of auxin applications to rescue the phenotype clearly indicated that highly localized changes in the root's redox-status, rather than in levels of auxin, are the primary effector. Moreover, H 2 O 2 application rescued the phenotype in a dose-dependent manner. Chemical cues in smoke not only initiate seed germination, but also influence seedling root growth; understanding how these cues work provides new insights into the molecular mechanisms by which plants adapt to post-fire environments. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Regeneration of coastal marsh vegetation impacted by hurricanes Katrina and Rita
Middleton, B.A.
2009-01-01
The dynamics of plant regeneration via seed and vegetative spread in coastal wetlands dictate the nature of community reassembly that takes place after hurricanes or sea level rise. The objectives of my project were to evaluate the potential effects of saltwater intrusion and flooding of Hurricanes Katrina and Rita on seedling regeneration in coastal wetlands of the Gulf Coast. Specifically I tested hypotheses to determine for species in fresh, brackish and salt marshes of the Gulf Coast if 1) the pattern of seed germination and seedling recruitment differed with distance from the shoreline, and 2) seed germination and seedling recruitment for various species were reduced in higher levels of water depth and salinity. Regarding Hypothesis 1, seedling densities increased with distance from the shoreline in fresh and brackish water marshes while decreasing with distance from the shoreline in salt marshes. Also to test Hypothesis 1, I used a greenhouse seed bank assay to examine seed germination from seed banks collected at distances from the shoreline in response to various water depths and salinity levels using a nested factorial design. For all marsh types, the influence of water level and salinity on seed germination shifted with distance from the shoreline (i.e., three way interaction of the main effects of distance nested within site, water depth, and salinity). Data from the seed bank assay were also used to test Hypothesis 2. The regeneration of species from fresh, brackish, and salt marshes were reduced in conditions of high salinity and/or water, so that following hurricanes or sea level rise, seedling regeneration could be reduced. Among the species of these coastal marshes, there was some flexibility of response, so that at least some species were able to germinate in either high or low salinity. Salt marshes had a few fresher marsh species in the seed bank that would not germinate without a period of fresh water input (e.g., Sagittaria lancifolia) as well as salt water species (e.g., Avicennia germinans, Salicornia bigelovii). Nevertheless, the species richness of seeds germinating from the seed bank of freshwater marshes was reduced more than in salt marshes, indicating that freshwater marsh regeneration may be more affected by hurricanes and/or sea level rise than salt marshes. From the perspective of short-term seed germination and recruitment following hurricanes, species recruitment is dependent on the post-disturbance conditions of water and salinity. ?? 2009 The Society of Wetland Scientists.
Guan, Yajing; Wang, Jianchen; Tian, Yixin; Hu, Weimin; Zhu, Liwei; Zhu, Shuijin; Hu, Jin
2013-01-01
Seed security is of prime importance for agriculture. To protect true seeds from being faked, more secure dual anti-counterfeiting technologies for tobacco (Nicotiana tabacum L.) pelleted seed were developed in this paper. Fluorescein (FR), rhodamine B (RB), and magnetic powder (MP) were used as anti-counterfeiting labels. According to their different properties and the special seed pelleting process, four dual-labeling treatments were conducted for two tobacco varieties, MS Yunyan85 (MSYY85) and Honghua Dajinyuan (HHDJY). Then the seed germination and seedling growth status were investigated, and the fluorescence in cracked pellets and developing seedlings was observed under different excitation lights. The results showed that FR, RB, and MP had no negative effects on the germination, seedling growth, and MDA content of the pelleted seeds, and even some treatments significantly enhanced seedling dry weight, vigor index, and shoot height in MS YY85, and increased SOD activity and chlorophyll content in HHDJY as compared to the control. In addition, the cotyledon tip of seedlings treated with FR and MP together represented bright green fluorescence under illumination of blue light (478 nm). And the seedling cotyledon vein treated with RB and MP together showed red fluorescence under green light (546 nm). All seeds pelleted with magnetic powder of proper concentration could be attracted by a magnet. Thus, it indicated that those new dual-labeling methods that fluorescent compound and magnetic powder simultaneously applied in the same seed pellets definitely improved anti-counterfeiting technology and enhanced the seed security. This technology will ensure that high quality seed will be used in the crop production. PMID:23468953
Fifth workshop on seedling physiology and growth problems in oak plantings (abstracts).
Janette R. Thompson; Richard C. Schultz; J.W. Van Sambeek
1993-01-01
Research results and ongoing research activities in field performance of planted trees, seedling propagation, physiology, genetics, acorn germination, and natural regeneration for oaks are described in 30 abstracts.
[Response of alfalfa seed to stress storage conditions].
Li, Chunjie; Wang, Yanrong; Zhu, Tingheng; Yu, Ling
2002-08-01
The seed germination rate, seed mortality, seedling length, and infection rate of alfalfa (Medicago sativa L. cv. 'Longdong') were measured at constant temperature 20 degrees C every 60 days during one year storage period after inoculated or no inoculated by Fusarium avenaceum under room temperature (RT), 35 degrees C, and 35 degrees C and +10% seed moisture content (SMC) conditions. Field emergence rates of seeds under above treatments were also observed, and seed-borne fungi were detected under the conditions mentioned above and controlled deterioration (CD) as well. The results showed that the percentage of isolated alfalfa seed-borne fungi was increased from 10% under room temperature and 35 degrees C to 29% under 35 degrees C + 10% SMC. Disease resistance was declined, and seed mortality and seedling infection rate under 35 degrees C + 10% SMC were significantly higher than those under room temperature and 35 degrees C respectively (P < 0.05). The seed germination rate and field emergence rate were also decreased significantly (P < 0.05). Seedling shoot and root length under 35 degrees C + 10% SMC were significantly less than those under RT and 35 degrees C respectively (P < 0.05). The percentages of both seed-borne fungi isolated and field emergence were decreased, and that of seedling infection was increased with storage period extending from 60 to 360 days. Compared to no inoculated control, the percentage of seed germination, seedling shoot and root length were decreased, and seed mortality and seedling infection rate were increased after inoculated by F. avenaceum.
Fungal endophytes in germinated seeds of the common bean, Phaseolus vulgaris
Parsa, Soroush; García-Lemos, Adriana M.; Castillo, Katherine; Ortiz, Viviana; López-Lavalle, Luis Augusto Becerra; Braun, Jerome; Vega, Fernando E.
2016-01-01
We conducted a survey of fungal endophytes in 582 germinated seeds belonging to 11 Colombian cultivars of the common bean (Phaseolus vulgaris). The survey yielded 394 endophytic isolates belonging to 42 taxa, as identified by sequence analysis of the ribosomal DNA internal transcribed spacer (ITS) region. Aureobasidium pullulans was the dominant endophyte, isolated from 46.7 % of the samples. Also common were Fusarium oxysporum, Xylaria sp., and Cladosporium cladosporioides, but found in only 13.4 %, 11.7 %, and 7.6 % of seedlings, respectively. Endophytic colonization differed significantly among common bean cultivars and seedling parts, with the highest colonization occurring in the first true leaves of the seedlings. PMID:27109374
7 CFR 201.56-1 - Goosefoot family, Chenopodiaceae, and Carpetweed family, Aizoaceae.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) General description. (1) Germination habit: Epigeal dicot. (2) Food reserves: Leaf-like cotyledons and... epicotyl usually does not show any development within the test period. (4) Root system: A primary root; secondary roots may develop within the test period. (5) Seedling: Frequent counts should be made on...
7 CFR 201.56-1 - Goosefoot family, Chenopodiaceae, and Carpetweed family, Aizoaceae.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) General description. (1) Germination habit: Epigeal dicot. (2) Food reserves: Leaf-like cotyledons and... epicotyl usually does not show any development within the test period. (4) Root system: A primary root; secondary roots may develop within the test period. (5) Seedling: Frequent counts should be made on...
Xiong, Bo; Gu, Xianjie; Qiu, Xia; Dong, Zhixiang; Ye, Shuang; Sun, Guochao; Huang, Shengjia; Liu, Xinya; Xi, Lijuan
2017-01-01
Considering the known effects of xyloglucan endotransglycosylase (XET) on plant growth and development, we aimed to determine whether XETs help to regulate the growth and elongation of Huangguogan shoots and roots. We confirmed a possible role for XET during seedling etiolation. Our results revealed that the roots of etiolated seedlings (H-E) were longer than those of green seedlings (H-G). However, shoot length exhibited the opposite pattern. We also observed positive and negative effects on the xyloglucan-degrading activity of XET in the root sub-apical region and shoots of etiolated Huangguogan seedling, respectively. There was a significant down-regulation in CitXET expression in the etiolated shoots at 15 days after seed germination. On the contrary, it was significantly increased in the root sub-apical region of etiolated and multicolored seedlings at 15 days after seed germination. The XET coding sequence (i.e., CitXET) was cloned from Huangguogan seedlings using gene-specific primers. The encoded amino acid sequence was predicted by using bioinformatics-based methods. The 990-bp CitXET gene was highly homologous to other XET genes. The CitXET protein was predicted to contain 319 amino acids, with a molecular mass of 37.45 kDa and an isoelectric point of 9.05. The predicted molecular formula was C1724H2548N448O466S14, and the resulting protein included only one transmembrane structure. The CitXET secondary structure consisted of four main structures (i.e., 21% α-helix, 30.72% extended strand, 9.09% β-turn, and 39.18% random coil). Analyses involving the NCBI Conserved Domains Database (NCBI-CDD), InterPro, and ScanProsite revealed that CitXET was a member of the glycosyl hydrolase family 16 (GH16), and included the DEIDFEFLG motif. Our results indicate that the differed degrees of etiolation influenced the CitXET expression pattern and XET activity in Huangguogan seedlings. The differential changes in XET activity and CitXET expression levels in Huangguogan seedlings may influence the regulation of root and shoot development, and may be important for seedling etiolation. PMID:28617857
Sabiel, Salih A I; Huang, Sisi; Hu, Xin; Ren, Xifeng; Fu, Chunjie; Peng, Junhua; Sun, Dongfa
2017-03-01
In the present study, 150 accessions of worldwide originated durum wheat germplasm ( Triticum turgidum spp. durum ) were observed for major seedling traits and their growth. The accessions were evaluated for major seedling traits under controlled conditions of hydroponics at the 13 th , 20 th , 27 th and 34 th day-after germination. Biomass traits were measured at the 34 th day-after germination. Correlation analysis was conducted among the seedling traits and three field traits at maturity, plant height, grain weight and 1000-grain weight observed in four consecutive years. Associations of the measured seedling traits and SNP markers were analyzed based on the mixed linear model (MLM). The results indicated that highly significant genetic variation and robust heritability were found for the seedling and field mature traits. In total, 259 significant associations were detected for all the traits and four growth stages. The phenotypic variation explained (R2) by a single SNP marker is higher than 10% for most (84%) of the significant SNP markers. Forty-six SNP markers associated with multiple traits, indicating non-neglectable pleiotropy in seedling stage. The associated SNP markers could be helpful for genetic analysis of seedling traits, and marker-assisted breeding of new wheat varieties with strong seedling vigor.
Kochanek, Jitka; Flematti, Gavin R.
2016-01-01
Background Karrikins are smoke-derived compounds that provide strong chemical cues to stimulate seed germination and seedling growth. The recent discovery in Arabidopsis that the karrikin perception system may be present throughout angiosperms implies a fundamental plant function. Here, we identify the most potent karrikin, karrikinolide (KAR1), in biochars and determine its role in species unique plant responses. Methods Biochars were prepared by three distinct commercial-scale pyrolysis technologies using systematically selected source material and their chemical properties, including karrikinolide, were quantified. Dose-response assays determined the effects of biochar on seed germination for two model species that require karrikinolide to break dormancy (Solanum orbiculatum, Brassica tourneforttii) and on seedling growth using two species that display plasticity to karrikins, biochar and phytotoxins (Lactuca sativa, Lycopersicon esculentum). Multivariate analysis examined relationships between biochar properties and the plant phenotype. Findings and Conclusions Results showed that karrikin abundant biochars stimulated dormant seed germination and seedling growth via mechanisms analogous to post-fire chemical cues. The individual species response was associated with its sensitivity to karrikinolide and inhibitory compounds within the biochars. These findings are critical for understanding why biochar influences community composition and plant physiology uniquely for different species and reaffirms that future pyrolysis technologies promise by-products that concomitantly sequester carbon and enhance plant growth for ecological and broader plant related applications. PMID:27536995
Kochanek, Jitka; Long, Rowena L; Lisle, Allan T; Flematti, Gavin R
2016-01-01
Karrikins are smoke-derived compounds that provide strong chemical cues to stimulate seed germination and seedling growth. The recent discovery in Arabidopsis that the karrikin perception system may be present throughout angiosperms implies a fundamental plant function. Here, we identify the most potent karrikin, karrikinolide (KAR1), in biochars and determine its role in species unique plant responses. Biochars were prepared by three distinct commercial-scale pyrolysis technologies using systematically selected source material and their chemical properties, including karrikinolide, were quantified. Dose-response assays determined the effects of biochar on seed germination for two model species that require karrikinolide to break dormancy (Solanum orbiculatum, Brassica tourneforttii) and on seedling growth using two species that display plasticity to karrikins, biochar and phytotoxins (Lactuca sativa, Lycopersicon esculentum). Multivariate analysis examined relationships between biochar properties and the plant phenotype. Results showed that karrikin abundant biochars stimulated dormant seed germination and seedling growth via mechanisms analogous to post-fire chemical cues. The individual species response was associated with its sensitivity to karrikinolide and inhibitory compounds within the biochars. These findings are critical for understanding why biochar influences community composition and plant physiology uniquely for different species and reaffirms that future pyrolysis technologies promise by-products that concomitantly sequester carbon and enhance plant growth for ecological and broader plant related applications.
Wang, Lu; Waters, Mark T; Smith, Steven M
2018-07-01
The control of seed germination in response to environmental conditions is important for plant success. We investigated the role of the karrikin receptor KARRIKIN INSENSITIVE2 (KAI2) in the response of Arabidopsis seeds to osmotic stress, salinity and high temperature. Germination of the kai2 mutant was examined in response to NaCl, mannitol and elevated temperature. The effect of karrikin on germination of wild-type seeds, hypocotyl elongation and the expression of karrikin-responsive genes was also examined in response to such stresses. The kai2 seeds germinated less readily than wild-type seeds and germination was more sensitive to inhibition by abiotic stress. Karrikin-induced KAI2 signalling stimulated germination of wild-type seeds under favourable conditions, but, surprisingly, inhibited germination in the presence of osmolytes or at elevated temperature. By contrast, GA stimulated germination of wild-type seeds and mutants under all conditions. Karrikin induced expression of DLK2 and KUF1 genes and inhibited hypocotyl elongation independently of osmotic stress. Under mild osmotic stress, karrikin enhanced expression of DREB2A, WRKY33 and ERF5 genes, but not ABA signalling genes. Thus, the karrikin-KAI2 signalling system can protect against abiotic stress, first by providing stress tolerance, and second by inhibiting germination under conditions unfavourable to seedling establishment. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Tao, Jinghe; Zhang, Wenxu; Liang, Li; Lei, Ziqiang
2018-02-01
Desertification is the degradation of land in arid and semi-arid areas. Nowadays, lack of water and desertification are extreme problems for plant survival and growth in the arid and semi-arid areas of the world. It becomes increasingly important as to how to let the plant absorb moisture more effectively for keeping growth strong. We synthesized superabsorbent polymers (SAPs) with carbohydrate and characterized them by Fourier transform infrared spectra analyses, scanning electron microscopy and thermogravimetric/differential thermal analyses. Then, a completely randomized experiment was conducted to assess the effect of carbohydrate-based SAPs on seed germination and seedling growth of maize in an artificial climate chest. The results showed that adding an appropriate amount of SAPs could improve root length, shoot length, total biomass, germination potential and germination rate. It indicates that this SAP is not toxic to plants and can promote seed germination, and at the same time provides a possibility of replacing other substrates.
NASA Astrophysics Data System (ADS)
Tao, Jinghe; Zhang, Wenxu; Liang, Li; Lei, Ziqiang
2018-02-01
Desertification is the degradation of land in arid and semi-arid areas. Nowadays, lack of water and desertification are extreme problems for plant survival and growth in the arid and semi-arid areas of the world. It becomes increasingly important as to how to let the plant absorb moisture more effectively for keeping growth strong. We synthesized superabsorbent polymers (SAPs) with carbohydrate and characterized them by Fourier transform infrared spectra analyses, scanning electron microscopy and thermogravimetric/differential thermal analyses. Then, a completely randomized experiment was conducted to assess the effect of carbohydrate-based SAPs on seed germination and seedling growth of maize in an artificial climate chest. The results showed that adding an appropriate amount of SAPs could improve root length, shoot length, total biomass, germination potential and germination rate. It indicates that this SAP is not toxic to plants and can promote seed germination, and at the same time provides a possibility of replacing other substrates.
Tao, Jinghe; Liang, Li; Lei, Ziqiang
2018-01-01
Desertification is the degradation of land in arid and semi-arid areas. Nowadays, lack of water and desertification are extreme problems for plant survival and growth in the arid and semi-arid areas of the world. It becomes increasingly important as to how to let the plant absorb moisture more effectively for keeping growth strong. We synthesized superabsorbent polymers (SAPs) with carbohydrate and characterized them by Fourier transform infrared spectra analyses, scanning electron microscopy and thermogravimetric/differential thermal analyses. Then, a completely randomized experiment was conducted to assess the effect of carbohydrate-based SAPs on seed germination and seedling growth of maize in an artificial climate chest. The results showed that adding an appropriate amount of SAPs could improve root length, shoot length, total biomass, germination potential and germination rate. It indicates that this SAP is not toxic to plants and can promote seed germination, and at the same time provides a possibility of replacing other substrates. PMID:29515838
Ma (马谦), Qian; Hedden, Peter; Zhang (张启发), Qifa
2011-01-01
Despite the accumulation of data on the genetic and molecular understanding of heterosis, there is little information on the regulation of heterosis at the physiological level. In this study, we performed a quantitative analysis of endogenous gibberellin (GA) content and expression profiling of the GA metabolism and signaling genes to investigate the possible relationship between GA signaling and heterosis for seedling development in rice (Oryza sativa). The materials used were an incomplete diallele set of 3 × 3 crosses and the six parents. In the growing shoots of the seedlings at 20 d after sowing, significant positive correlations between the contents of some GA species and performance and heterosis based on shoot dry mass were detected. Expression analyses of GA-related genes by real-time reverse transcription-polymerase chain reaction revealed that 13 out of the 16 GA-related genes examined exhibited significant differential expression among the F1 hybrid and its parents, acting predominantly in the modes of overdominance and positive dominance. Expression levels of nine genes in the hybrids displayed significant positive correlations with the heterosis of shoot dry mass. These results imply that GAs play a positive role in the regulation of heterosis for rice seedling development. In shoots plus root axes of 4-d-old germinating seeds that had undergone the deetiolation, mimicking normal germination in soil, the axis dry mass was positively correlated with the content of GA29 but negatively correlated with that of GA19. Our findings provide supporting evidence for GAs playing an important regulatory role in heterosis for rice seedling development. PMID:21693671
Natural regeneration processes in big sagebrush (Artemisia tridentata)
Schlaepfer, Daniel R.; Lauenroth, William K.; Bradford, John B.
2014-01-01
Big sagebrush, Artemisia tridentata Nuttall (Asteraceae), is the dominant plant species of large portions of semiarid western North America. However, much of historical big sagebrush vegetation has been removed or modified. Thus, regeneration is recognized as an important component for land management. Limited knowledge about key regeneration processes, however, represents an obstacle to identifying successful management practices and to gaining greater insight into the consequences of increasing disturbance frequency and global change. Therefore, our objective is to synthesize knowledge about natural big sagebrush regeneration. We identified and characterized the controls of big sagebrush seed production, germination, and establishment. The largest knowledge gaps and associated research needs include quiescence and dormancy of embryos and seedlings; variation in seed production and germination percentages; wet-thermal time model of germination; responses to frost events (including freezing/thawing of soils), CO2 concentration, and nutrients in combination with water availability; suitability of microsite vs. site conditions; competitive ability as well as seedling growth responses; and differences among subspecies and ecoregions. Potential impacts of climate change on big sagebrush regeneration could include that temperature increases may not have a large direct influence on regeneration due to the broad temperature optimum for regeneration, whereas indirect effects could include selection for populations with less stringent seed dormancy. Drier conditions will have direct negative effects on germination and seedling survival and could also lead to lighter seeds, which lowers germination success further. The short seed dispersal distance of big sagebrush may limit its tracking of suitable climate; whereas, the low competitive ability of big sagebrush seedlings may limit successful competition with species that track climate. An improved understanding of the ecology of big sagebrush regeneration should benefit resource management activities and increase the ability of land managers to anticipate global change impacts.
NASA Astrophysics Data System (ADS)
Shao, Lingzhi; Fu, Wenting; Liu, Hong; Yan, Min; Li, Leyuan
Rice and wheat are the main candidate crops in the bioregenerative life support system (BLSS) of China, for they are traditional food in Asia. Thus the recycling of their straws is an important issue in our BLSS, and it is a vital way to biologically process them into the soil like substrate (SLS) first and then reuse them in the plant cultivation system to achieve their recycle in BLSS. However, rice is a plant with strong allelopathic effects. And so far, it is also not clear that what kind of raw materials can be processed into proper SLS to grow rice in the BLSS. Therefore, in this study, the extract liquid of SLS made from three different materials including rice straw, wheat straw and rice-wheat mixed straw was utilized to investigate its effects on the seed germination and seedling growth of rice. The gradients of the extract concentrations (soil: water) were 1:3, 1:5, 1:9, and 1:15 with the deionized water used as control. The effects of different types of SLS on seed germination and seedling vitality of rice were confirmed by analyzing the germination rate, seedling length, root length, root fresh weight, seedling fresh weight and other indicates. In addition, based on the analysis towards pH, organic matter composition and other factors of the SLS as well as the chlorophyll and hormone content of rice, the mechanism of the inhibition was speculated and the preventive methods of this phenomenon was explored. Finally, the feasibility of cultivating rice on the SLS made from the above three kinds of raw materials was evaluated and the proper raw materials to be processed into SLS to grow rice were determined.
Mackenzie, Berin D E; Auld, Tony D; Keith, David A; Hui, Francis K C; Ooi, Mark K J
2016-01-01
Dormancy and germination requirements determine the timing and magnitude of seedling emergence, with important consequences for seedling survival and growth. Physiological dormancy is the most widespread form of dormancy in flowering plants, yet the seed ecology of species with this dormancy type is poorly understood in fire-prone vegetation. The role of seasonal temperatures as germination cues in these habitats is often overlooked due to a focus on direct fire cues such as heat shock and smoke, and little is known about the combined effects of multiple fire-related cues and environmental cues as these are seldom assessed in combination. We aimed to improve understanding of the germination requirements of species with physiological dormancy in fire-prone floras by investigating germination responses across members of the Rutaceae from south eastern Australia. We used a fully factorial experimental design to quantify the individual and combined effects of heat shock, smoke and seasonal ambient temperatures on germination of freshly dispersed seeds of seven species of Boronia, a large and difficult-to-germinate genus. Germination syndromes were highly variable but correlated with broad patterns in seed morphology and phylogenetic relationships between species. Seasonal temperatures influenced the rate and/or magnitude of germination responses in six species, and interacted with fire cues in complex ways. The combined effects of heat shock and smoke ranged from neutral to additive, synergistic, unitive or negative and varied with species, seasonal temperatures and duration of incubation. These responses could not be reliably predicted from the effect of the application of single cues. Based on these findings, fire season and fire intensity are predicted to affect both the magnitude and timing of seedling emergence in wild populations of species with physiological dormancy, with important implications for current fire management practices and for population persistence under climate change.
Auld, Tony D.; Keith, David A.; Hui, Francis K. C.; Ooi, Mark K. J.
2016-01-01
Dormancy and germination requirements determine the timing and magnitude of seedling emergence, with important consequences for seedling survival and growth. Physiological dormancy is the most widespread form of dormancy in flowering plants, yet the seed ecology of species with this dormancy type is poorly understood in fire-prone vegetation. The role of seasonal temperatures as germination cues in these habitats is often overlooked due to a focus on direct fire cues such as heat shock and smoke, and little is known about the combined effects of multiple fire-related cues and environmental cues as these are seldom assessed in combination. We aimed to improve understanding of the germination requirements of species with physiological dormancy in fire-prone floras by investigating germination responses across members of the Rutaceae from south eastern Australia. We used a fully factorial experimental design to quantify the individual and combined effects of heat shock, smoke and seasonal ambient temperatures on germination of freshly dispersed seeds of seven species of Boronia, a large and difficult-to-germinate genus. Germination syndromes were highly variable but correlated with broad patterns in seed morphology and phylogenetic relationships between species. Seasonal temperatures influenced the rate and/or magnitude of germination responses in six species, and interacted with fire cues in complex ways. The combined effects of heat shock and smoke ranged from neutral to additive, synergistic, unitive or negative and varied with species, seasonal temperatures and duration of incubation. These responses could not be reliably predicted from the effect of the application of single cues. Based on these findings, fire season and fire intensity are predicted to affect both the magnitude and timing of seedling emergence in wild populations of species with physiological dormancy, with important implications for current fire management practices and for population persistence under climate change. PMID:27218652
Inhibition of seedling survival under Rhodendron maximum (Ericaceae): could allelopathy be a cause?
Erik T. Nilsen; John F. Walker; Orson K. Miller; Shawn W. Semones; Thomas T. Lei; Barton D. Clinton
1999-01-01
In the Southern Appalachian Mountains a subcanopy species, Rhododendron maximum, inhibits the establishment and survival of canopy tree seedlings. One of the mechanisms by which seedlings could be inhibited is an allelopathic effect of decomposing litter or leachate from the canopy of R. maximum (R.m.) on seed germination, root...
Omezzine, Faten; Bouaziz, Mohamed; Simmonds, Monique S J; Haouala, Rabiaa
2014-04-01
This study was conducted to evaluate the influence of developmental stages (vegetative, flowering and fruiting) of mixoploid fenugreek aerial parts on their chemical composition and allelopathic potential, assessed on lettuce germination and seedling growth. Aqueous and organic extracts significantly delayed germination, reduced its rate and affected seedling growth. Ethyl acetate and methanol extracts of aerial parts harvested at vegetative stage were the most toxic for lettuce germination and seedling growth, respectively. LC-MS/MS analysis of T. foenum-graecum aerial parts methanolic extract showed nine different flavonol glycosides (quercetin and kaempferol glucosides). Chemical composition of aerial parts differed with the developmental stage; indeed, at the vegetative and fruiting stages, analysis revealed the presence of 9 compounds as compared to only 6 compounds at the flowering stage. Thus, it is necessary to follow the qualitative changes of allelochemicals production at different developmental stages to identify the most productive one. Copyright © 2013 Elsevier Ltd. All rights reserved.
Cao, Dechang; Baskin, Carol C.; Baskin, Jerry M.; Yang, Fan; Huang, Zhenying
2012-01-01
Background and Aims Differences in dormancy and germination requirements have been documented in heteromorphic seeds of many species, but it is unknown how this difference contributes to maintenance and regeneration of populations. The primary aim of this study was to compare the seed bank dynamics, including dormancy cycling, of the two seed morphs (black and brown) of the cold desert halophyte Suaeda corniculata and, if differences were found, to determine their influence on regeneration of the species. Method Seeds of the two seed morphs were buried, exhumed and tested monthly for 24 months over a range of temperatures and salinities, and germination recovery and viability were determined after exposure to salinity and water stress. Seedling emergence and dynamics of the soil seed bank were also investigated for the two morphs. Key Results Black seeds had an annual dormancy/non-dormancy cycle, while brown seeds, which were non-dormant at maturity, remained non-dormant. Black seeds also exhibited an annual cycle in sensitivity of germination to salinity. Seedlings derived from black seeds emerged in July and August and those from brown seeds in May. Seedlings were recruited from 2·6 % of the black seeds and from 2·8 % of the brown seeds in the soil, and only 0·5 % and 0·4 % of the total number of black and brown seeds in the soil, respectively, gave rise to seedlings that survived to produce seeds. Salinity and water stress induced dormancy in black seeds and decreased viability of brown seeds. Brown seeds formed only a transient soil seed bank and black seeds a persistent seed bank. Conclusions The presence of a dormancy cycle in black but not in brown seeds of S. corniculata and differences in germination requirements of the two morphs cause them to differ in their germination dynamics. The study contributes to our limited knowledge of dormancy cycling and seed bank formation in species producing heteromorphic seeds. PMID:22975287
Cao, Dechang; Baskin, Carol C; Baskin, Jerry M; Yang, Fan; Huang, Zhenying
2012-12-01
Differences in dormancy and germination requirements have been documented in heteromorphic seeds of many species, but it is unknown how this difference contributes to maintenance and regeneration of populations. The primary aim of this study was to compare the seed bank dynamics, including dormancy cycling, of the two seed morphs (black and brown) of the cold desert halophyte Suaeda corniculata and, if differences were found, to determine their influence on regeneration of the species. Seeds of the two seed morphs were buried, exhumed and tested monthly for 24 months over a range of temperatures and salinities, and germination recovery and viability were determined after exposure to salinity and water stress. Seedling emergence and dynamics of the soil seed bank were also investigated for the two morphs. Black seeds had an annual dormancy/non-dormancy cycle, while brown seeds, which were non-dormant at maturity, remained non-dormant. Black seeds also exhibited an annual cycle in sensitivity of germination to salinity. Seedlings derived from black seeds emerged in July and August and those from brown seeds in May. Seedlings were recruited from 2·6 % of the black seeds and from 2·8 % of the brown seeds in the soil, and only 0·5 % and 0·4 % of the total number of black and brown seeds in the soil, respectively, gave rise to seedlings that survived to produce seeds. Salinity and water stress induced dormancy in black seeds and decreased viability of brown seeds. Brown seeds formed only a transient soil seed bank and black seeds a persistent seed bank. The presence of a dormancy cycle in black but not in brown seeds of S. corniculata and differences in germination requirements of the two morphs cause them to differ in their germination dynamics. The study contributes to our limited knowledge of dormancy cycling and seed bank formation in species producing heteromorphic seeds.
GROWING SEEDS, TEACHER'S GUIDE.
ERIC Educational Resources Information Center
Elementary Science Study, Newton, MA.
THIS TEACHER'S GUIDE IS DESIGNED FOR USE WITH AN ELEMENTARY SCIENCE STUDY UNIT, "GROWING SEEDS," IN WHICH SUCH BASIC SCIENCE SKILLS AND PROCESSES AS MEASUREMENT, OBSERVATION, AND HYPOTHESIS FORMATION ARE INTRODUCED THROUGH STUDENT ACTIVITIES INVOLVING SEEDS, GERMINATION, AND SEEDLING GROWTH. THE MATERIALS WERE DEVELOPED FOR USE IN…
Effects of industrial wastewater on growth and biomass production in commonly grown vegetables.
Uzma, Syeda; Azizullah, Azizullah; Bibi, Roqaia; Nabeela, Farhat; Muhammad, Uzair; Ali, Imran; Rehman, Zia Ur; Häder, Donat-Peter
2016-06-01
In developing countries like Pakistan, irrigation of crops with industrial and municipal wastewater is a common practice. However, the impact of wastewater irrigation on vegetables growth has rarely been studied. Therefore, the present study was conducted to determine the effect of industrial wastewater on the germination and seedling growth of some commonly grown vegetables in Pakistan. Wastewater samples were collected from two different industries (marble industry and match alam factory) at Hayatabad Industrial Estate (HIE) in Peshawar, Pakistan, and their effect on different growth parameters of four vegetables including Hibiscus esculentus, Lactuca sativa, Cucumis sativus, and Cucumis melo was investigated. The obtained results revealed that wastewater from marble industry did not affect seed germination except a minor inhibition in H. esculentus. Effluents from match alam factory stimulated seed germination in C. melo and C. sativus but had no effect on seed germination in the other two vegetables. Wastewater increased root and shoot length in H. esculentus, L. sativa and C. melo, but decreased it in C. sativus. Similarly, differential effects of wastewater were observed on fresh and dry biomass of seedlings in all vegetables. It can be concluded that wastewater may have different effects on different crops, depending upon the nature of wastewater and sensitivity of a plant species to wastewater.
Proteomic Dissection of Seed Germination and Seedling Establishment in Brassica napus
Gu, Jianwei; Chao, Hongbo; Gan, Lu; Guo, Liangxing; Zhang, Kai; Li, Yonghong; Wang, Hao; Raboanatahiry, Nadia; Li, Maoteng
2016-01-01
The success of seed germination and establishment of a normal seedling are key determinants of plant species propagation. At present, only a few studies have focused on the genetic control of seed germination by using a proteomic approach in Brassica napus. In the present study, the protein expression pattern of seed germination was investigated using differential fluorescence two-dimensional gel electrophoresis in B. napus. One hundred and thirteen differentially expressed proteins (DEPs) that were mainly involved in storage (23.4%), energy metabolism (18.9%), protein metabolism (16.2%), defense/disease (12.6%), seed maturation (11.7%), carbohydrate metabolism (4.5%), lipid metabolism (4.5%), amino acids metabolism (3.6%), cell growth/division (3.6%), and some unclear functions (2.7%) were observed by proteomic analysis. Seventeen genes corresponding to 11 DEPs were identified within or near the associated linkage disequilibrium regions related to seed germination and vigor quantitative traits reported in B. napus in previous studies. The expression pattern of proteins showed that heterotrophic metabolism could be activated in the process of seed germination and that the onset of defense mechanisms might start during seed germination. These findings will help generate a more in-depth understanding of the mobilization of seed storage reserves and regulation mechanisms of the germination process in B. napus. PMID:27822216
Alencar, Nara L M; Innecco, Renato; Gomes-Filho, Enéas; Gallão, Maria Izabel; Alvarez-Pizarro, Juan C; Prisco, José T; Oliveira, Alexandre B De
2012-09-01
Cereus jamacaru, a Cactaceae found throughout northeast Brazil, is widely used as cattle food and as an ornamental and medicinal plant. However, there has been little information about the physiological and biochemical aspects involved in its germination. The aim of this study was to investigate its reserve mobilization during germination and early seedling growth. For this, C. jamacaru seeds were germinated in a growth chamber and collected at 0, 2, 4, 5, 6, 8 and 12 days after imbibition for morphological and biochemical analyses. Dry seeds had wrinkled seed coats and large, curved embryos. Lipids were the most abundant reserve, comprising approximately 55% and 65% of the dry mass for cotyledons and the hypocotylradicle axis, respectively. Soluble sugars and starch were the minor reserves, corresponding to approximately 2.2% of the cotyledons' dry mass, although their levels showed significant changes during germination. Soluble proteins corresponded to 40% of the cotyledons' dry mass, which was reduced by 81% at the final period of germination compared to dry seeds. C. jamacaru seed can be classified as an oil seed due to its high lipid content. Moreover, lipids were the main reserve mobilized during germination because their levels were strongly reduced after seed germination, while proteins were the second most utilized reserve in this process.
NASA Astrophysics Data System (ADS)
Shao, Lingzhi; Fu, Yuming; Fu, Wenting; Yan, Min; Li, Leyuan; Liu, Hong
2014-03-01
Biologically processing rice and wheat straws into soil-like substrate (SLS) and then reusing them in plant cultivation system to achieve waste recycle is very crucially important in Bioregenerative life support system (BLSS). However, rice is a plant with strong allelopathic potential. It is not clear yet that what kinds of raw materials can be processed into proper SLS to grow rice in BLSS. Therefore, in this study, the aqueous extract of SLS made from three different materials including rice straw, wheat straw and rice-wheat straw mixture was utilized to investigate its effects on the seed germination and seedling growth of rice. The gradients of the extract concentrations (soil:water) were 1:3, 1:5, 1:9, and 1:15 with deionized water used as control. The effects of different types of SLS on seed germination and seedling vitality of rice were confirmed by analyzing the germination rate, seedling length, root length, the fresh weight and other indicants. In addition, based on the analysis towards pH, organic matter composition and other factors of the SLS as well as the chlorophyll, hormone content of rice, and the mechanism of the inhibition was speculated in order to explore the preventive methods of the phenomenon. Finally, the feasibility of cultivating rice on SLSs made from the raw materials mentioned above was evaluated and wheat raw was determined as the most appropriate material for growing rice.
Long, Ruicai; Yang, Qingchuan; Kang, Junmei; Zhang, Tiejun; Wang, Huimin; Li, Mingna; Zhang, Ze
2013-08-01
We cloned a novel salt stress-induced glycine-rich protein gene ( MsGRP ) from alfalfa. Its overexpression retards seed germination and seedling growth of transgenic Arabidopsis after salt and ABA treatments. Since soil salinity is one of the most significant abiotic stresses, salt tolerance is required to overcome salinity-induced reductions in crop productivity. Many glycine-rich proteins (GRPs) have been implicated in plant responses to environmental stresses, but the function and importance of some GRPs in stress responses remain largely unknown. Here, we report on a novel salt stress-induced GRP gene (MsGRP) that we isolated from alfalfa. Compared with some glycine-rich RNA-binding proteins, MsGRP contains no RNA recognition motifs and localizes in the cell membrane or cell wall according to the subcellular localization result. MsGRP mRNA is induced by salt, abscisic acid (ABA), and drought stresses in alfalfa seedlings, and its overexpression driven by a constitutive cauliflower mosaic virus-35S promoter in Arabidopsis plants confers salinity and ABA sensitivity compared with WT plants. MsGRP retards seed germination and seedling growth of transgenic Arabidopsis plants after salt and ABA treatments, which implies that MsGRP may affect germination and growth through an ABA-dependent regulation pathway. These results provide indirect evidence that MsGRP plays important roles in seed germination and seedling growth of alfalfa under some abiotic stress conditions.
β-Amino-n-butyric Acid Regulates Seedling Growth and Disease Resistance of Kimchi Cabbage
Kim, Yeong Chae; Kim, Yeon Hwa; Lee, Young Hee; Lee, Sang Woo; Chae, Yun-Soek; Kang, Hyun-Kyung; Yun, Byung-Wook; Hong, Jeum Kyu
2013-01-01
Non-protein amino acid, β-amino-n-butyric acid (BABA), has been involved in diverse physiological processes including seedling growth, stress tolerance and disease resistance of many plant species. In the current study, treatment of kimchi cabbage seedlings with BABA significantly reduced primary root elongation and cotyledon development in a dose-dependent manner, which adverse effects were similar to the plant response to exogenous abscisic acid (ABA) application. BABA was synergistically contributing ABA-induced growth arrest during the early seedling development. Kimchi cabbage leaves were highly damaged and seedling growth was delayed by foliar spraying with high concentrations of BABA (10 to 20 mM). BABA played roles differentially in in vitro fungal conidial germination, mycelial growth and conidation of necrotroph Alternaria brassicicola causing black spot disease and hemibiotroph Colletotrichum higginsianum causing anthracnose. Pretreatment with BABA conferred induced resistance of the kimchi cabbage against challenges by the two different classes of fungal pathogens in a dose-dependent manner. These results suggest that BABA is involved in plant development, fungal development as well as induced fungal disease resistance of kimchi cabbage plant. PMID:25288957
Effect of some Evaporation Matters on Storability of Sunflower ( Helianthus annuus L.) Seed.
El-Saidy, Aml E A; El-Hai, K M Abd
This study focuses on finding compounds that are safe to humans and environment, such as propionic and acetic acids that may provide an alternative control of seed-borne pathogens and decrease seed deterioration during storage. The objectives of this study were to reduce sunflower seed deterioration and improve the viability of sunflower seed using environmentally safe organic acids. Propionic and acetic acids were applied on sunflower seed at different concentrations under laboratory conditions during different storage periods. After 6 months storage period, the viability of sunflower seed as well as morphological and physiological characteristics of seedlings were evaluated under greenhouse conditions. Laboratory experiment was conducted in a factorial completely randomized design and randomized complete block design for greenhouse experiment. Propionic and acetic acids at different concentrations showed inhibitory effects on the presence of different fungal genera in all storage periods. Propionic acid was most effective followed by acetic acid. Increasing storage periods from 0-6 months significantly decreased germination percentage, germination energy, seedling characters, survived healthy seedlings and seed oil and protein percentages but dead and rotted seeds, as well as rotted seedlings were increased. Treating sunflower seeds with propionic acid (100%) improved germination criteria, seedling characters and seed chemical characters as well as survival seedlings and minimized the dead seeds, rotted seeds and rotted seedlings as compared with the control under all storage periods. Under greenhouse conditions, the maximum growth parameter and physiological characters (chlorophylls a, b, carotenoids and total phenols) were recorded from seed treated with 100% propionic acid after 6 months of storage. It may be concluded that propionic and acetic acids vapors can have considerable fungicidal activity against sunflower pathogens and improve seed viability. Therefore, it is recommended using 100% propionic acid to reduce deterioration and seed-borne pathogens of sunflower under storage conditions.
Guo, Xiaoli; Hou, Xiaomei; Fang, Jun; Wei, Piwei; Xu, Bo; Chen, Mingluan; Feng, Yuqi; Chu, Chengcai
2013-01-01
It has been shown that seed development is regulated by a network of transcription factors in Arabidopsis including LEC1 (LEAFY COTYLEDON1), L1L (LEC1-like) and the B3 domain factors LEC2, FUS3 (FUSCA3) and ABI3 (ABA-INSENSITIVE3); however, molecular and genetic regulation of seed development in cereals is poorly understood. To understand seed development and seed germination in cereals, a large-scale screen was performed using our T–DNA mutant population, and a mutant germination-defective1 (gd1) was identified. In addition to the severe germination defect, the gd1 mutant also shows a dwarf phenotype and abnormal flower development. Molecular and biochemical analyses revealed that GD1 encodes a B3 domain-containing transcription factor with repression activity. Consistent with the dwarf phenotype of gd1, expression of the gibberelic acid (GA) inactivation gene OsGA2ox3 is increased dramatically, accompanied by reduced expression of GA biosynthetic genes including OsGA20ox1, OsGA20ox2 and OsGA3ox2 in gd1, resulting in a decreased endogenous GA4 level. Exogenous application of GA not only induced GD1 expression, but also partially rescued the dwarf phenotype of gd1. Furthermore, GD1 binds to the promoter of OsLFL1, a LEC2/FUS3-like gene of rice, via an RY element, leading to significant up-regulation of OsLFL1 and a large subset of seed maturation genes in the gd1 mutant. Plants over-expressing OsLFL1 partly mimic the gd1 mutant. In addition, expression of GD1 was induced under sugar treatment, and the contents of starch and soluble sugar are altered in the gd1 mutant. These data indicate that GD1 participates directly or indirectly in regulating GA and carbohydrate homeostasis, and further regulates rice seed germination and seedling development. PMID:23581288
Zhang, Shanshan; Kang, Hongmei; Yang, Wenzhong
2017-01-01
Climatic change-induced water stress has been found to threaten the viability of trees, especially endangered species, through inhibiting their recruitment. Nyssa yunnanensis, a plant species with extremely small populations (PSESP), consists of only two small populations of eight mature individuals remaining in southwestern China. In order to determine the barriers to regeneration, both in situ and laboratory experiments were performed to examine the critical factors hindering seed germination and seedling establishment. The results of in situ field experiments demonstrated that soil water potentials lower than -5.40 MPa (experienced in December) had significantly inhibitory effects on seedling survival, and all seedlings perished at a soil water potential of -5.60 MPa (January). Laboratory experiments verified that N. yunnanensis seedlings could not survive at a 20% PEG 6000 concentration (-5.34 MPa) or 1/5 water-holding capacity (WHC; -5.64 MPa), and seed germination was inhibited in the field from September (-1.10 MPa) to November (-4.30 MPa). Our results suggested that soil water potentials between -5.34 and -5.64 MPa constituted the range of soil water potentials in which N. yunnanensis seedlings could not survive. In addition to water deficit, intensified autotoxicity, which is concentration-dependent, resulted in lower seed germination and seedling survival. Thus, seed establishment was probably simultaneously impacted by water deficit and aggravated autotoxicity. Meteorological records from the natural distribution areas of N. yunnanensis indicated that mean annual rainfall and relative humidity have declined by 21.7% and 6.3% respectively over past 55 years, while the temperature has increased by 6.0%. Climate change-induced drought, along with a poor resistance and adaptability to drought stress, has severely impacted the natural regeneration of N. yunnanensis. In conclusion, climate change-induced drought has been implicated as a regulating factor in the natural regeneration of N. yunnanensis through suppressing seed germination and screening out seedlings in the dry season. Based on the experimental findings, habitat restoration and microclimate improvement should both be highlighted in the conservation of this particular plant species. PMID:28763476
Recurrent selection for increased seed germination in sand bluestem (Andropogon hallii)
USDA-ARS?s Scientific Manuscript database
Water is essential for plant growth and under field conditions is often inadequate for satisfactory seed germination and seedling growth. The objective of this research was to improve the seed germination of sand bluestem (Andropogon hallii Hack.) lines ‘AB-medium Syn-0’ and ‘CD-tall Syn-0’ at low ...
Millipede damage to germinating acorns of northern red oak
Jimmy R. Galford; L. R. Auchmoody; Russell S. Walters; H. Clay. Smith; H. Clay. Smith
1992-01-01
Millipedes have not been reported as pests of germinating acorns. Studies in Pennsylvania on the impact of insects on northern red (Quercus rubra L. seedling establishment revealed that the millipede Ptyoiulus impressus (Say) damaged the radicles of germinating acorns. Up to 17 percent of the acorn radicles in areas with heavy acorn crops were damaged in 1'991....
NASA Astrophysics Data System (ADS)
Bateman, Amber; E Erickson, Todd; Merritt, David J.; Muñoz-Rojas, Miriam
2017-04-01
Introduction Soil health and functionality are major determining factors for restoration of degraded arid and semi-arid ecosystems. These highly nutrient impoverished soil substrates with low water retention capabilities dictate plant growth and survival in these landscapes that are subject to variable rainfall event and high temperatures (Muñoz-Rojas et al., 2016). Anthropogenic disturbances derived from mining activities have contributed to the degradation of soil functionality and have altered plant-soil-water interactions. With unknown positive or negative rehabilitation outcomes, inorganic amendments in the form of urea and gypsum are commonly added to reconstructed soil substrates disturbed by mining to replenish soil nutrients (nitrogen) and improve soil water holding capacity to improve seedling establishment and survival. Methods Using existing protocols for amendment addition to soil substrates, two experiments assessed the effects of urea and gypsum at multiple doses in reconstructed soil substrates (topsoil (TS), waste (W) and, 50:50 blend of both materials (TW) to evaluate its effectiveness as a supplement to improve seed germination, seedling recruitment and plant growth. In the first experiment, 20 species native to the resource-rich biodiverse Pilbara region of Western Australia were grown in 30 °C glasshouse facilities under well-watered conditions for three weeks with seedling emergence scored daily. At the end of the trial, seedlings were harvested and biomass was assessed. In the second experiment, five of the original 20 species (e.g. Acacia bivenosa, Gossypium robinsonii, Eucalyptus gamophylla, Triodia wiseana and, Senna notabilis) were assessed for germination in amended soils by burying nylon sachets in the reconstructed substrates. After three weeks, the sachets were retrieved and seeds were assessed for germination (i.e. radicle emergence was evident). Results and Discussion Total emergence and biomass of seedlings was negatively affected by higher doses of gypsum and urea amendments. In the lower dose treatments, however, the total biomass of seedlings showed a positive effect for species from the Amaranthaceae. There was no apparent effect on species from the Fabaceae, Malvaeceae, Myrtaceae, and Poaceae families. Small doses of the amendments had a positive impact on the seed germination for three of the five evaluated species (Acacia bivenosa, Triodia wiseana and, Senna notabilis). Yet, despite the addition of soil amendments there was a high rate of mortality between the germination and emergence phases, a common occurrence in arid zone species subject to extreme environmental conditions (James et al., 2011). Seedling emergence of Acacia bivenosa and Triodia wiseana in TW and W substrates with low doses of urea achieved levels comparable to emergence in topsoil. Overall, responses to the inorganic amendments varied considerably across species and long-term field studies are required to assess plant responses in a restoration setting. Nevertheless, the findings of this suggest that the addition of these N-based inorganic amendments at low concentrations will benefit some plant species and improve arid zone restoration. References James JJ, Svejcar TJ, Rinella MJ. 2011. Demographic processes limiting seedling recruitment in arid grassland restoration. Journal of Applied Ecology, 48, 961-969 Muñoz-Rojas M, Erickson TE, Martini D, Dixon KW, Merritt DJ. 2016. Climate and soil factors influencing seedling recruitment of plant species used for dryland restoration. SOIL, 2, 1-11, DOI: 10.5194/soil-2016-25
Bryant, M.; Reynolds, J.; DeFalco, Lesley A.; Esque, Todd C.
2012-01-01
PREMISE OF THE STUDY: The future of long-lived stand-forming desert plants such as Yucca brevifolia (Joshua tree) has come into question in light of climate variation and landscape-scale disturbances such as wildfire. Understanding plant establishment dynamics is important for mitigating the impacts of disturbances and promoting revegetation. • METHODS: We placed Y. brevifolia seeds in shallow caches and manipulated granivore access, nurse shrub effects, and the season of cache placement to determine conditions for seed germination and seedling establishment. • KEY RESULTS: Greatest seedling emergence occurred during spring and summer, when increased soil moisture was accompanied by warm soil temperatures. Late winter-spring emergence for cached seeds was enhanced beneath shrub canopies, but seedling survival declined beneath shrubs as temperatures increased in spring. Germinability of seed remaining in the soil was reduced from 50-68% after 12 mo residence time in soil and declined to <3% after 40 mo. Following dispersal from parent plants, seeds are either removed by granivores or lose germinability, imposing substantial losses of potential germinants. • CONCLUSIONS: Specific germination and establishment requirements impose stringent limits on recruitment rates for Y. brevifolia. Coupled with infrequent seed availability, the return rates to prefire densities and demographic structure may require decades to centuries, especially in light of potential changes to regional desert climate in combination with the potential for fire recurrence. Demographic patterns are predicted to vary spatially in response to environmental variability that limits recruitment and may already be apparent among extant populations.
Luo, Yongqing; Zhao, Xueyong; Li, Yuqiang; Wang, Tao
2017-11-01
Vegetation recovery during succession is an important process for ecological restoration of the soil, especially in degraded sandy land. However, the driving mechanisms, such as how a pioneer species competes with other species, is uncertain. In China's Horqin Sandy Land, Artemisia halodendron is an important shrub that is common on semi-fixed dunes, where it replaces Agriophyllum squarrosum during succession, and is an important indicator species of the second stage of dune stabilization. However, how it outcompetes other species is still unclear. In this study, we conducted a seed bank germination experiment using soil from the native habitats of A. halodendron on semi-fixed dunes. We covered the soil with foliage litter of A. halodendron at a range of concentrations. Seed germination and seedling growth were strongly affected by the foliage litter. Seed germination and seedling growth were not harmed by a low concentration (≤50 g m -2 ) of the foliage litter but severely inhibited by high concentrations (≥100 g m -2 ). Strong allelopathy, indicated by decreased germination, increased seedling loss, and decreased plant biomass, appeared during the later stages of germination (after about 20 days of incubation). Our results suggest that as a pioneer shrub during the vegetation succession that occurs during dune stabilization, A. halodendron outcompeted other species through the allelopathic effect of its foliage litter. This helps to explain the patchy distribution and heterogeneity of vegetation communities in the Horqin Sandy Land.
Determination of carbohydrate profile in sugarbeet (Beta vulgaris) cell walls
USDA-ARS?s Scientific Manuscript database
Sugarbeet germplasms USH20, C869, EL55, EL54 were used, and different tissues at different developmental stages were sampled, including dry seeds, germinating seedlings, developing leaves, mature leaves, petioles, hypocotyls, mature roots, flowering stems and inflorescences. Cell Wall Composition An...
Kenaf’s allelopathic impact on seedling growth
USDA-ARS?s Scientific Manuscript database
Allelopathy is the chemical interaction between plants, which may result in the inhibition of plant growth and development. Research was conducted to determine the impact of kenaf (Hibiscus cannabinus L.) plant extracts on the post-germination growth of five plant species. Four concentrations (0, 16...
Julian M. Norghauer; James Grogan; Jay R. Malcolm; Jeanine M. Felfili
2010-01-01
Herbivores and pathogens with acute host specificity may promote high tree diversity in tropical forests by causing distance- and density-dependent mortality of seedlings, but evidence is scarce. Although Lepidoptera larvae are the most abundant and host-specific guild of herbivores in these forests, their impact upon seedling distributions remains largely unknown. A...
Quercus lobata seedlings and conspecific neighbors: Competitors or allies?
Claudia Tyler; Shelly Cole Moritz
2015-01-01
In conducting oak restoration, it is common to plant at least two acorns per location to increase the probability that at least one will germinate and produce a seedling. If both seedlings successfully establish, one is generally removed to reduce possible competition. To test the assumption that the near neighbors are competing, we examined several cohorts of valley...
Homothallic sexual reproduction of Pustula helianthicola and germination of oospores.
Lava, Sukanya Soonagahalli; Spring, Otmar
2012-09-01
Sunflower white blister rust has become an important disease in many countries with intensive cultivation of the important oil crop. The biology of the pathogen is still partly unclear, particular with respect to its sexual reproduction and primary mode of infection. Zoospores released from sporangia of Pustula helianthicola were isolated individually and used for the inoculation of sunflower in order to generate unithallic, genetically homogenous infections. Single zoospore inoculation of young seedlings resulted in mitotic sporulation within subepidermal blisters on cotyledons and true leaves after approximately 2 weeks. Three weeks postinoculation, the infected plants started forming oospores, hence indicating homothallic sexual reproduction of the pathogen. The development of oogonia and antheridia was studied using light and fluorescence microscopy. Oospores were isolated from infected plant tissue and used for infection and germination studies. Microscopic observation of isolated oospores showed germination that formed sessile vesicle-like structures, germ sporangia or only germ tubes. The rate of germination reached approximately 40 %. Germination was not dependant on a resting phase after oospore formation. Oospores applied to the above ground parts of sunflower seedlings lead to infections within a similar time frame as was achieved with mitotic sporangia. The results underline the importance of oospores for primary infection at the beginning of the season and for long-distance dispersal of the pathogen with sunflower seeds contaminated by oospores. Copyright © 2012 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Effects of pre-harvest chemical application on rice desiccation and seed quality*
HE, Yong-qi; CHENG, Jin-ping; LIU, Liang-feng; LI, Xiao-dan; YANG, Bin; ZHANG, Hong-sheng; WANG, Zhou-fei
2015-01-01
Pre-harvest desiccation may increase the efficiency of seed production. Field studies were conducted to determine the effects of diquat, paraquat, and ethephon applications on grain moisture, grain weight, and seed germination of hybrid rice Yanliangyou 88 (Oryza sativa ssp. indica) and conventional rice Wuyunjing 7 (Oryza sativa ssp. japonica). In 2013, we tested 12 treatments applied at four weeks (Yanliangyou 88) and six weeks (Wuyunjing 7) after heading. Results showed that reductions in moisture content were significant two and four days after chemical application. Chemical applications had no adverse effects on 1000-grain weight, germination percentage, or germination index, but there were negative effects on the percentage of normal seedlings. Desiccation effects increased with increase in the period after application, while the effect of ethephon combined with diquat or paraquat on desiccation was limited compared with that of diquat or paraquat alone in a short period after application. In 2013, chemical applications reduced the moisture content by from 0.5% to 6.4%, the germination percentage by from 0% to 3.3%, and the percentage of normal seedlings by from 13.3% to 100.0%. Among the treatments, diquat applied at 120 g/ha resulted in effective desiccation with fewer negative effects on grain weight and seed germination in 2013 and 2014. Therefore, diquat may have potential as a pre-harvest chemical desiccation treatment for rice. These results may provide a basis for developing and implementing protocols for large scale field trials. PMID:26465129
Effects of pre-harvest chemical application on rice desiccation and seed quality.
He, Yong-qi; Cheng, Jin-ping; Liu, Liang-feng; Li, Xiao-dan; Yang, Bin; Zhang, Hong-sheng; Wang, Zhou-fei
2015-10-01
Pre-harvest desiccation may increase the efficiency of seed production. Field studies were conducted to determine the effects of diquat, paraquat, and ethephon applications on grain moisture, grain weight, and seed germination of hybrid rice Yanliangyou 88 (Oryza sativa ssp. indica) and conventional rice Wuyunjing 7 (Oryza sativa ssp. japonica). In 2013, we tested 12 treatments applied at four weeks (Yanliangyou 88) and six weeks (Wuyunjing 7) after heading. Results showed that reductions in moisture content were significant two and four days after chemical application. Chemical applications had no adverse effects on 1000-grain weight, germination percentage, or germination index, but there were negative effects on the percentage of normal seedlings. Desiccation effects increased with increase in the period after application, while the effect of ethephon combined with diquat or paraquat on desiccation was limited compared with that of diquat or paraquat alone in a short period after application. In 2013, chemical applications reduced the moisture content by from 0.5% to 6.4%, the germination percentage by from 0% to 3.3%, and the percentage of normal seedlings by from 13.3% to 100.0%. Among the treatments, diquat applied at 120 g/ha resulted in effective desiccation with fewer negative effects on grain weight and seed germination in 2013 and 2014. Therefore, diquat may have potential as a pre-harvest chemical desiccation treatment for rice. These results may provide a basis for developing and implementing protocols for large scale field trials.
S. Sung; P.P. Kormanik; W.J. Ostrosina; J.G. Isebrands
2002-01-01
Research results and ongoing research activities in field performance of planted trees, seedling propagation, physiology, genetics, acorn germination, and natural regeneration for oaks are described in 21 abstracts.
Ronald M. Teclaw
1996-01-01
Research results and ongoing research activities in field performance of planted trees, seedling propagation, physiology, genetics, acorn germination ,and natural regeneration for oaks are described in 29 abstracts.
Pérez-Arcoiza, Adrián; Prieto, José Alberto; Díaz, Tomás E.
2017-01-01
Abstract Background and Aims A phylogenetic comparative analysis of the seed germination niche was conducted in coastal plant communities of western Europe. Two hypotheses were tested, that (1) the germination niche shape (i.e. the preference for a set of germination cues as opposed to another) would differ between beaches and cliffs to prevent seedling emergence in the less favourable season (winter and summer, respectively); and (2) the germination niche breadth (i.e. the amplitude of germination cues) would be narrower in the seawards communities, where environmental filtering is stronger. Methods Seeds of 30 specialist species of coastal plant communities were collected in natural populations of northern Spain. Their germination was measured in six laboratory treatments based on field temperatures. Germination niche shape was estimated as the best germination temperature. Germination niche breadth was calculated using Pielou’s evenness index. Differences between plant communities in their germination niche shape and breadth were tested using phylogenetic generalized least squares regression (PGLS). Key Results Germination niche shape differed between communities, being warm-cued in beaches (best germination temperature = 20 °C) and cold-cued in cliffs (14 °C). Germination niche was narrowest in seawards beaches (Pielou’s index = 0·89) and broadest in landwards beaches (0·99). Cliffs had an intermediate germination niche breadth (0·95). The relationship between niche and plant community had a positive phylogenetic signal for shape (Pagel’s λ = 0·64) and a negative one for breadth (Pagel’s λ = −1·71). Conclusion Environmental filters shape the germination niche to prevent emergence in the season of highest threat for seedling establishment. The germination niche breadth is narrower in the communities with stronger environmental filters, but only in beaches. This study provides empirical support to a community-level generalization of the hypotheses about the environmental drivers of the germination niche. It highlights the role of germination traits in community assembly. PMID:28334139
Finocchiaro, R.G.; Kremer, R.J.; Fredrickson, L.H.
2009-01-01
Intensive management of wetlands to improve wildlife habitat typically includes the manipulation of water depth, duration, and timing to promote desired vegetation communities. Increased societal, industrial, and agricultural demands for water may encourage the use of alternative sources such as wastewater effluents in managed wetlands. However, water quality is commonly overlooked as an influence on wetland soil seed banks and soils. In four separate greenhouse trials conducted over a 2-yr period, we examined the effects of municipal wastewater effluent (WWE) on vegetation of wetland seed banks and soils excavated from a wildlife management area in Missouri, USA. We used microcosms filled with one of two soil materials and irrigated with WWE, Missouri River water, or deionized water to simulate moist-soil conditions. Vegetation that germinated from the soil seed bank was allowed to grow in microcosms for approximately 100 d. Vegetative taxa richness, plant density, and biomass were significantly reduced in WWE-irrigated soil materials compared with other water sources. Salinity and sodicity rapidly increased in WWE-irrigated microcosms and probably was responsible for inhibiting germination or interfering with seedling development. Our results indicate that irrigation with WWE promoted saline-sodic soil conditions, which alters the vegetation community by inhibiting germination or seedling development. ?? 2009, The Society of Wetland Scientists.
Brechú-Franco, A.E.; Laguna-Hernández, G.; De la Cruz-Chacón, I.; González-Esquinca, A.R.
2016-01-01
Currently, the Annonaceae family is characterised by the production of acetogenins (ACGs), and also by the biosynthesis of alkaloids, primarily benzylisoquinolines derived from tyrosine. The objective of this study was to confirm the presence of alkaloids and acetogenins in the idioblasts of the endosperm and the embryonic axis of A. macroprophyllata seeds in germination. The Dragendorff, Dittmar, Ellram, and Lugol reagents were used to test for alkaloids, and Kedde’s reagent was used to determine the presence of acetogenins in fresh sections of the endosperm and embryonic axis of seeds after twelve days of germination. A positive reaction was observed for all the reagents, and the presence of alkaloids and acetogenins was confirmed in the idioblasts of the endosperm and those involved in the differentiation of the embryonic axis of the developing seedling. We concluded that the idioblasts store both metabolites, acetogenins and alkaloids. Beginning at differentiation, the idioblasts of the embryonic axis simultaneously biosynthesise acetogenins and alkaloids that are characteristic of the species during the development of the seedling. The method used here can be applied to histochemically confirm the presence of acetogenins and alkaloids in tissues and structures of the plant in different stages of its life cycle. PMID:26972713
Sadeghipour, Hamid Reza; Bhatla, Satish Chander
2002-10-01
Until now, there has been no conclusive demonstration of any in vivo oleosin degradation at the early stages of oil body mobilization. The present work on sunflower (Helianthus annuus L.) has demonstrated limited oleosin degradation during seed germination. Seedling cotyledon homogenization in Tris-urea buffer, followed by SDS-PAGE, revealed three oleosins (16, 17.5 and 20 kDa). Incubation of oil bodies with total soluble protein from 4-day-old seedlings resulted in oleosin degradation. In vitro and in vivo degradation of the 17.5-kDa oleosin was faster than the other two, indicating its greater susceptibility to proteolysis. Oleosin degradation by the total soluble protein resulted in a transient 14.5-kDa polypeptide, followed by an 11-kDa protease-protected fragment, which appeared post-germinatively and accumulated corresponding to increased rate of lipid mobilization. A 65-kDa protease, active at pH 7.5-9.5, was zymographically detected in the total soluble protein. Its activity increased along with in vivo accumulation of the protease-protected fragment during seed germination and accompanying lipid mobilization. Protease-treated oil bodies were more susceptible to maize lipase action. Differential proteolytic sensitivity of different oleosins in the oil body membranes could be a determinant of oil body longevity during seed germination.
Biological effects of low energy nitrogen ion implantation on Jatropha curcas L. seed germination
NASA Astrophysics Data System (ADS)
Xu, Gang; Wang, Xiao-teng; Gan, Cai-ling; Fang, Yan-qiong; Zhang, Meng
2012-09-01
To explore the biological effects of nitrogen ion beam implantation on dry Jatropha curcas seed, a beam of N+ with energy of 25 keV was applied to treat the dry seed at six different doses. N+ beam implantation greatly decreased germination rate and seedling survival rate. The doses within the range of 12 × 1016 to 15 × 1016 ions cm-2 severely damaged the seeds: total antioxidant capacity (TAC), germination rate, seedling survival rate, reduced ascorbate acid (HAsA) and reduced glutathione (GSH) contents, and most of the tested antioxidases activity (i.e. catalase (CAT), ascorbate peroxidase (APX) and superoxide dismutase (SOD)) reached their lowest levels. At a dose of 18 × 1016 ion cm-2, biological repair took place: moderate increases were found in TAC, germination rate, seedling survival rate, HAsA and GSH contents, and some antioxidant enzyme activities (i.e. CAT, APX, SOD and GPX). The dose of 18 × 1016 ions cm-2 may be the optimum dose for use in dry J. curcas seed mutation breeding. CAT, HAsA and GSH contributed to the increase of TAC, but CAT was the most important. POD performed its important role as seed was severely damaged. The main role of the HAsA-GSH cycle appeared to be for regeneration of HAsA.
Effect of new organic supplement (Panchgavya) on seed germination and soil quality.
Jain, Paras; Sharma, Ravi Chandra; Bhattacharyya, Pradip; Banik, Pabitra
2014-04-01
We studied the suitability of Panchgavya (five products of cow), new organic amendment, application on seed germination, plant growth, and soil health. After characterization, Panchgavya was mixed with water to form different concentration and was tested for seed germination, germination index, and root and shoot growth of different seedlings. Four percent solution of Panchgavya was applied to different plants to test its efficacy. Panchgavya and other two organic amendments were incorporated in soil to test the change of soil chemical and microbiological parameters. Panchgavya contained higher nutrients as compared to farm yard manure (FYM) and vermicompost. Its application on different seeds has positively influenced germination percentage, germination index, root and shoot length, and fresh and dry weight of the seedling. Water-soluble macronutrients including pH and metal were positively and negatively correlated with the growth parameters, respectively. Four percent solution of Panchgavya application on some plants showed superiority in terms of plant height and chlorophyll content. Panchgavya-applied soil had higher values of macro and micronutrients (zinc, copper, and manganese), microbial activity as compared to FYM, and vermicompost applied soils. Application of Panchgavya can be gainfully used as an alternative organic supplement in agriculture.
Zayneb, Chaâbene; Lamia, Khanous; Olfa, Ellouze; Naïma, Jebahi; Grubb, C Douglas; Bassem, Khemakhem; Hafedh, Mejdoub; Amine, Elleuch
2015-11-01
The present study focuses on effects of untreated and treated ink industry wastewater on germination of maize, barley and sorghum. Wastewater had a high chemical oxygen demand (COD) and metal content compared to treated effluent. Germination decreased with increasing COD concentration. Speed of germination also followed the same trend, except for maize seeds exposed to untreated effluent (E), which germinated slightly faster than controls. These alterations of seedling development were mirrored by changes in soluble protein content. E exerted a positive effect on soluble protein content and maximum levels occurred after 10 days with treated effluent using coagulation/flocculation (TEc/f) process and treated effluent using combined process (coagulation/flocculation/biosorption) (TEc/f/b). Likewise, activity of α-amylase was influenced by effluent composition. Its expression depended on the species, exposure time and applied treatment. Nevertheless, current results indicated TEc/f/b had no observable toxic effects on germination and could be a beneficial alternative resource to irrigation water.
Mahakham, Wuttipong; Sarmah, Ajit K; Maensiri, Santi; Theerakulpisut, Piyada
2017-08-15
Application of nanomaterials for agriculture is relatively new as compared to their use in biomedical and industrial sectors. In order to promote sustainable nanoagriculture, biocompatible silver nanoparticles (AgNPs) have been synthesized through green route using kaffir lime leaf extract for use as nanopriming agent for enhancing seed germination of rice aged seeds. Results of various characterization techniques showed the successful formation of AgNPs which were capped with phytochemicals present in the plant extract. Rice aged seeds primed with phytosynthesized AgNPs at 5 and 10 ppm significantly improved germination performance and seedling vigor compared to unprimed control, AgNO 3 priming, and conventional hydropriming. Nanopriming could enhance α-amylase activity, resulting in higher soluble sugar content for supporting seedlings growth. Furthermore, nanopriming stimulated the up-regulation of aquaporin genes in germinating seeds. Meanwhile, more ROS production was observed in germinating seeds of nanopriming treatment compared to unprimed control and other priming treatments, suggesting that both ROS and aquaporins play important roles in enhancing seed germination. Different mechanisms underlying nanopriming-induced seed germination were proposed, including creation of nanopores for enhanced water uptake, rebooting ROS/antioxidant systems in seeds, generation of hydroxyl radicals for cell wall loosening, and nanocatalyst for fastening starch hydrolysis.
7 CFR 201.56-4 - Cucurbit family, (Cucurbitaceae).
Code of Federal Regulations, 2010 CFR
2010-01-01
..., squash, and watermelon. (a) General description. (1) Germination habit: Epigeal dicot. (2) Food reserves... does not show any development within the test period. (4) Root system: A long primary root with numerous secondary roots. (b) Abnormal seedling description. (1) Cotyledons: (i) Less than half of the...
7 CFR 201.56-4 - Cucurbit family, (Cucurbitaceae).
Code of Federal Regulations, 2011 CFR
2011-01-01
..., squash, and watermelon. (a) General description. (1) Germination habit: Epigeal dicot. (2) Food reserves... does not show any development within the test period. (4) Root system: A long primary root with numerous secondary roots. (b) Abnormal seedling description. (1) Cotyledons: (i) Less than half of the...
Gluconeogenesis from storage wax in the cotyledons of jojoba seedlings.
Moreau, R A; Huang, A H
1977-08-01
The cotyledons of jojoba (Simmondsia chinensis) seeds contained 50 to 60% of their weight as intracellular wax esters. During germination there was a gradual decrease in the wax content with a concomitant rise in soluble carbohydrates, suggesting that the wax played the role of a food reserve. Thin layer chromatography revealed that both the fatty alcohol and fatty acid were metabolized. The disappearance of wax was matched with an increase of catalase, a marker enzyme of the gluconeogenic process in other fatty seedlings. Subcellular organelles were isolated by sucrose gradient centrifugation from the cotyledons at the peak stage of germination. The enzymes of the beta oxidation of fatty acid and of the glyoxylate cycle were localized in the glyoxysomes but not in the mitochondria. The glyoxysomes had specific activities of individual enzymes similar to those of the castor bean glyoxysomes. An active alkaline lipase was detected in the wax bodies at the peak stage of germination but not in the ungerminated seeds. No lipase was detected in glyoxysomes or mitochondria. After the wax in the wax bodies had been extracted with diethyl ether, the organelle membrane was isolated and it still retained the alkaline lipase. The gluconeogenesis from wax in the jojoba seedling appears to be similar, but with modification, to that from triglyceride in other fatty seedlings.
Biosynthesis of Nonspecific Lipid Transfer Proteins in Germinating Castor Bean Seeds 1
Tsuboi, Shigeru; Watanabe, Shin-ichiro; Ozeki, Yoshihiro; Yamada, Mitsuhiro
1989-01-01
The biosynthesis of nonspecific lipid transfer proteins (ns-LTPs) in germinating castor bean (Ricinus communis L.) seeds were investigated. Lipid transfer activities of ns-LTPs in the cotyledons, axis, and endosperm increased with growth after germination. The activity increases were accompanied by increased amounts of ns-LTPs in each tissue, as measured by immunoblot using anti-ns-LTP serum. These results suggest that the ns-LTPs are synthesized de novo in each tissue after germination and not activated from inactive proteins synthesized before germination. Comparison of the immunoblot products in each tissue from 4-day-old seedlings indicate the occurrence of tissue-specific isoforms of ns-LTPs; 9 kilodaltons (major) and 7 kilodaltons (minor) in the cotyledons, and 7 kilodaltons (major) and 9 kilodaltons (minor) in the axis, whereas only the 8-kilodalton ns-LTP is present in the endosperm. In vitro translation from poly(A)+ RNAs from three tissues of castor bean seedlings and the detection of immunoprecipitated products indicate that translatable mRNAs for ns-LTPs exist in the three tissues a day before the synthesis of ns-LTPs; the translation products, which are 3.5 to 4.0 kilodaltons larger than ns-LTPs, were processed to the mature ns-LTPs. The production of mature ns-LTPs from translatable mRNAs without any delay suggests that gene expression of ns-LTPs in castor bean seedlings is controlled at a step before the formation of translatable mRNAs. Images Figure 3 Figure 4 Figure 5 PMID:16666886
Effects of a warmer climate on seed germination in the subarctic
Milbau, Ann; Graae, Bente Jessen; Shevtsova, Anna; Nijs, Ivan
2009-01-01
Background and Aims In a future warmer subarctic climate, the soil temperatures experienced by dispersed seeds are likely to increase during summer but may decrease during winter due to expected changes in snow depth, duration and quality. Because little is known about the dormancy-breaking and germination requirements of subarctic species, how warming may influence the timing and level of germination in these species was examined. Methods Under controlled conditions, how colder winter and warmer summer soil temperatures influenced germination was tested in 23 subarctic species. The cold stratification and warm incubation temperatures were derived from real soil temperature measurements in subarctic tundra and the temperatures were gradually changed over time to simulate different months of the year. Key Results Moderate summer warming (+2·5 °C) substantially accelerated germination in all but four species but did not affect germination percentages. Optimum germination temperatures (20/10°C) further decreased germination time and increased germination percentages in three species. Colder winter soil temperatures delayed the germination in ten species and decreased the germination percentage in four species, whereas the opposite was found in Silene acaulis. In most species, the combined effect of a reduced snow cover and summer warming resulted in earlier germination and thus a longer first growing season, which improves the chance of seedling survival. In particular the recruitment of (dwarf) shrubs (Vaccinium myrtillus, V. vitis-idaea, Betula nana), trees (Alnus incana, Betula pubescens) and grasses (Calamagrostis lapponica, C. purpurea) is likely to benefit from a warmer subarctic climate. Conclusions Seedling establishment is expected to improve in a future warmer subarctic climate, mainly by considerably earlier germination. The magnitudes of the responses are species-specific, which should be taken into account when modelling population growth and migration of subarctic species. PMID:19443459
D.D. McCreary; J.G. Isebrands
1999-01-01
Research results and ongoing research activities in field performance of planted trees, seedling propagation, physiology, genetics, acorn germination, and natural regeneration for oaks are described in 17 abstracts.
Gao, Ruiru; Yang, Xuejun; Yang, Fan; Wei, Lingling; Huang, Zhenying; Walck, Jeffrey L.
2014-01-01
Background and Aims Simultaneous formation of aerial and soil seed banks by a species provides a mechanism for population maintenance in unpredictable environments. Eolian activity greatly affects growth and regeneration of plants in a sand dune system, but we know little about the difference in the contributions of these two seed banks to population dynamics in sand dunes. Methods Seed release, germination, seedling emergence and survival of a desert annual, Agriophyllum squarrosum (Chenopodiaceae), inhabiting the Ordos Sandland in China, were determined in order to explore the different functions of the aerial and soil seed banks. Key Results The size of the aerial seed bank was higher than that of the soil seed bank throughout the growing season. Seed release was positively related to wind velocity. Compared with the soil seed bank, seed germination from the aerial seed bank was lower at low temperature (5/15 °C night/day) but higher in the light. Seedling emergence from the soil seed bank was earlier than that from the aerial seed bank. Early-emerged (15 April–15 May) seedlings died due to frost, but seedlings that emerged during the following months survived to reproduce successfully. Conclusions The timing of seed release and different germination behaviour resulted in a temporal heterogeneity of seedling emergence and establishment between the two seed banks. The study suggests that a bet-hedging strategy for the two seed banks enables A. squarrosum populations to cope successfully with the unpredictable desert environment. PMID:24918206
James Grogan; Jurandir Galvao
2006-01-01
Post-logging seedling regeneration density by big-leaf mahogany (Swietenia macrophylla), a nonpioneer light-demanding timber species, is generally reported to be low to nonexistent. To investigate factors limiting seedling density following logging within the study region, we quantified seed production rates, germinability, dispersal patterns, and seed fates on the...
Radhakrishnan, Ramalingam; Kumari, Bollipo Dyana Ranjitha
2013-08-01
The effects of pulsed magnetic field (PMF) treatment of soybean (Glycine max L. cv CO3) seeds were investigated on rate of seed germination, seedling growth, physico-chemical properties of seed leachates and soil microbial population under laboratory conditions. Seeds were exposed to PMF of 1500 nT at 0.1, 1.0 10.0 and 100.0 Hz for 5 h per day for 20 days, induced by enclosure coil systems. Non-treated seeds were considered as controls. All PMF treatments significantly increased the rate of seed germination, while 10 and 100 Hz PMFs showed the most effective response. The 1.0 and 10 Hz PMFs remarkably improved the fresh weight of shoots and roots, leaf area and plant height from seedlings from magnetically-exposed seeds compared to the control, while 10 Hz PMF increased the total soluble sugar, total protein and phenol contents. The leaf chlorophyll a, b and total chlorophyll were higher in PMF (10 and 100 Hz) pretreated plants, as compared to other treatments. In addition, activities of alpha-amylase, acid phosphatase, alkaline phosphatase, nitrate reductase, peroxidase and polyphenoloxidase were increased, while beta-amylase and protease activities were declined in PMF (10 Hz)-exposed soybean plants. Similarly, the capacity of absorbance of water by seeds and electrical conductivity of seed leachates were significantly enhanced by 10 Hz PMF exposure, whereas PMF (10 Hz) pretreated plants did not affect the microbial population in rhizosphere soil. The results suggested the potential of 10 Hz PMF treatment to enhance the germination and seedling growth of soybean.
Liu, Ting-Wu; Wu, Fei-Hua; Wang, Wen-Hua; Chen, Juan; Li, Zhen-Ji; Dong, Xue-Jun; Patton, Janet; Pei, Zhen-Ming; Zheng, Hai-Lei
2011-04-01
We selected six tree species, Pinus massoniana Lamb., Cryptomeria fortunei Hooibr. ex Otto et Dietr., Cunninghamia lanceolata (Lamb.) Hook., Liquidambar formosana Hance, Pinus armandii Franch. and Castanopsis chinensis Hance, which are widely distributed as dominant species in the forest of southern China where acid deposition is becoming more and more serious in recent years. We investigated the effects and potential interactions between simulated acid rain (SiAR) and three calcium (Ca) levels on seed germination, radicle length, seedling growth, chlorophyll content, photosynthesis and Ca content in leaves of these six species. We found that the six species showed different responses to SiAR and different Ca levels. Pinus armandii and C. chinensis were very tolerant to SiAR, whereas the others were more sensitive. The results of significant SiAR × Ca interactions on different physiological parameters of the six species demonstrate that additional Ca had a dramatic rescue effect on the seed germination and seedling growth for the sensitive species under SiAR. Altogether, we conclude that the negative effects of SiAR on seed germination, seedling growth and photosynthesis of the four sensitive species could be ameliorated by Ca addition. In contrast, the physiological processes of the two tolerant species were much less affected by both SiAR and Ca treatments. This conclusion implies that the degree of forest decline caused by long-term acid deposition may be attributed not only to the sensitivity of tree species to acid deposition, but also to the Ca level in the soil.
[Allelopathic effects of Lycoris radiate on radish, cucumber, tomato and rape seedlings].
Jiang, Hongyun; Zhang, Yanning; Feng, Pingzhang; Zhang, Heng
2006-09-01
The laboratory test showed that Lycoris radiate water extract had a stronger inhibitory effect on the seed germination and seedling growth of radish, cucumber, tomato and rape. After treated with 0.0125 g x ml(-1) of the extract, tomato seed could not germinate, but the seed germination inhibition rate of rape, radish and cucumber was only 17.73%, 14.97% and 2.65%, respectively. Under the same concentrations of the extract, sprout growth was inhibited more strongly than root growth. L. radiate methanol extract could inhibit the sprout and root growth of endosperm-removed wheat and sorghum, and the effect was stronger for sorghum than for wheat. All of these illustrated that L. radiate extracts mainly inhibited non-photosynthesis activity, but could also inhibit photosynthesis activity to some degree.
White, James F.; Kingsley, Katheryn I; Kowalski, Kurt P.; Irizarry, Ivelisse; Micci, April; Soares, Marcos Antonio; Bergen, Marshall S.
2018-01-01
Background and aimsNon-native Phragmites australis (haplotype M) is an invasive grass that decreases biodiversity and produces dense stands. We hypothesized that seeds of Phragmites carry microbes that improve seedling growth, defend against pathogens and maximize capacity of seedlings to compete with other plants.MethodsWe isolated bacteria from seeds of Phragmites, then evaluated representatives for their capacities to become intracellular in root cells, and their effects on: 1.) germination rates and seedling growth, 2.) susceptibility to damping-off disease, and 3.) mortality and growth of competitor plant seedlings (dandelion (Taraxacum officionale F. H. Wigg) and curly dock (Rumex crispus L.)).ResultsTen strains (of 23 total) were identified and characterized; seven were identified as Pseudomonas spp. Strains Sandy LB4 (Pseudomonas fluorescens) and West 9 (Pseudomonas sp.) entered root meristems and became intracellular. These bacteria improved seed germination in Phragmites and increased seedling root branching in Poa annua. They increased plant growth and protected plants from damping off disease. Sandy LB4 increased mortality and reduced growth rates in seedlings of dandelion and curly dock.ConclusionsPhragmites plants associate with endophytes to increase growth and disease resistance, and release bacteria into the soil to create an environment that is favorable to their seedlings and less favorable to competitor plants.
Synthesis and biological activity of amino acid conjugates of abscisic acid.
Todoroki, Yasushi; Narita, Kenta; Muramatsu, Taku; Shimomura, Hajime; Ohnishi, Toshiyuki; Mizutani, Masaharu; Ueno, Kotomi; Hirai, Nobuhiro
2011-03-01
We prepared 19 amino acid conjugates of the plant hormone abscisic acid (ABA) and investigated their biological activity, enzymatic hydrolysis by a recombinant Arabidopsis amidohydrolases GST-ILR1 and GST-IAR3, and metabolic fate in rice seedlings. Different sets of ABA-amino acids induced ABA-like responses in different plants. Some ABA-amino acids, including some that were active in bioassays, were hydrolyzed by recombinant Arabidopsis GST-IAR3, although GST-ILR1 did not show hydrolysis activity for any of the ABA-amino acids. ABA-L-Ala, which was active in all the bioassays, an Arabidopsis seed germination, spinach seed germination, and rice seedling elongation assays, except in a lettuce seed germination assay and was hydrolyzed by GST-IAR3, was hydrolyzed to free ABA in rice seedlings. These findings suggest that some plant amidohydrolases hydrolyze some ABA-amino acid conjugates. Because our study indicates the possibility that different plants have hydrolyzing activity toward different ABA-amino acids, an ABA-amino acid may function as a species-selective pro-hormone of ABA. Copyright © 2011 Elsevier Ltd. All rights reserved.
Wante, Solomon Peter; Leung, David W M
2018-06-17
Tagetes patula (marigold) and Petunia grandiflora (petunia) have been shown to exhibit potential in phytoremediation of environmental pollutants including heavy metals and textile dyes. To investigate their phytoremediation potential of diesel, it was necessary to evaluate diesel phytotoxicity of these two ornamental plants. Marigold and petunia seeds were incubated, for 10 and 15 days, respectively, in deionised water contaminated with 0 to 4%, v/v, diesel in Petri dishes in a growth room with continuous lighting at 25 °C. It was found that as far as seed germination was concerned, petunia was less sensitive than marigold to 4% diesel in water. In contrast, petunia exhibited poorer seedling root growth than marigold in the presence of diesel contamination. This finding of differential sensitivity of these two ornamental plants to diesel-contaminated water during germination and seedling growth has not been reported before. Therefore, the implications of phytotoxicity evaluation and comparison between different species or genotypes of plants at both seed germination and postgermination seedling growth should both be taken into consideration in screening tolerant plants for phytoremediation.
Tsai, Allen Yi-Lun; Gazzarrini, Sonia
2012-10-01
The Arabidopsis B3-domain transcription factor FUSCA3 (FUS3) is a master regulator of seed maturation and also a central modulator of hormonal responses during late embryogenesis and germination. Recently, we have identified AKIN10, the Arabidopsis ortholog of Snf1 (Sucrose Non-Fermenting-1)-Related Kinase1 (SnRK1), as a FUS3-interacting protein. We demonstrated that AKIN10 physically interacts with and phosphorylates FUS3 at its N-terminal region, and genetically interacts with FUS3 to regulate developmental phase transition and lateral organ growth. Snf1/AMPK/SnRK1 kinases are important sensors of the cellular energy level, and they are activated in response to starvation and cellular stress. Here we present findings that indicate FUS3 and AKIN10 functionally overlap in ABA signaling, but play different roles in sugar responses during germination. Seeds overexpressing FUS3 and AKIN10 both display ABA-hypersensitivity and delayed germination. The latter is partly dependent on de novo ABA synthesis in both genotypes, as delayed germination can be partially rescued by the ABA biosynthesis inhibitor, fluridone. However, seeds and seedlings overexpressing FUS3 and AKIN10 show different sugar responses. AKIN10-overexpressing seeds and seedlings are hypersensitive to glucose, while those overexpressing FUS3 display overall defects in osmotic stress, primarily during seedling growth, as they show increased sensitivity toward sorbitol and glucose. Hypersensitivity to sugar and/or osmotic stress during germination are partly dependent on de novo ABA synthesis for both genotypes, although are likely to act through distinct pathways. This data suggests that AKIN10 and FUS3 both act as positive regulators of seed responses to ABA, and that AKIN10 regulates sugar signaling while FUS3 mediates osmotic stress responses.
Wang, Ai Bo; Tan, Dun Yan; Baskin, Carol C; Baskin, Jerry M
2010-07-01
Most studies on seed position-dependent effects have focused on germination characteristics. Our aim was to determine the effects of seed position in the spikelet on differences in timing of germination and on the ecological life history of the grass Eremopyrum distans in its cold desert habitat. For seeds in three spikelet positions, morphology, mass and dormancy/germination characteristics were determined in the laboratory, and seeds planted in field plots with and without watering were followed to reproduction to investigate seedling emergence and survival, plant size and seed production. After maturation, of the seeds within the spikelet, basal ones (group 1) are the largest and have the highest proportion with physiological dormancy, while distal ones (group 3) are the smallest and have the highest proportion of non-dormant seeds. A higher percentage of seeds after-ripened in groups 2 and 3 than in group 1. Seeds sown in the field in early summer and watered at short, regular intervals germinated primarily in autumn, while those under natural soil moisture conditions germinated only in spring. Both cohorts completed their life cycle in early summer. Seeds in group 1 had lower percentages of seedling emergence and higher percentages of seedling survival than those in groups 2 and 3. Also, plants from group 1 seeds were larger and produced more seeds per plant than those from groups 2 and 3. Seed position-dependent mass was associated with quantitative differences in several life history traits of E. distans. The environmentally enforced (low soil moisture) delay of germination from autumn to spring results in a reduction in fitness via reduction in number of seeds produced per plant.
Germination, survival and early growth of conifer seedlings in two habitat types.
Don Minore
1986-01-01
Conifer seeds were sown in clearcut Abies amabilis/Achlys triphylla and Abies amabilis/Vaccinium membranaceum/Xerophyllum tenax habitat types in the McKenzie River basin in Oregon to determine ratios of seeds to established seedlings. Protection from animal...
Diversity of epicotyl dormancy among tropical montane forest species in Sri Lanka.
Athugala, Yasoja S; Jayasuriya, K M G G; Gunarathne, A M T A; Baskin, Carol C
2018-05-20
Fruiting season of many Sri Lankan tropical montane species is not synchronized and may not occur when conditions are favorable for seedling establishment. We hypothesized that species with different fruiting seasons have different seed dormancy mechanisms to synchronize timing of germination with a favorable season for establishment. Using six species with different fruiting seasons, we tested this hypothesis. Germination and imbibition of intact and manually-scarified seeds were studied. Effect of GA 3 on germination was examined. Embryo length: seed length (E:S) ratio of freshly-matured seeds and of those with a split seed coat was determined. Time taken for radicle and plumule emergence and morphological changes of the embryos were recorded. The radicle emerged from Ardisia missionis, Bheza nitidissima and Gaetnera walkeri seeds within 30 days, whereas it took > 30 days in other species. Embryos grew in seeds of B. nitidissima and G. walkeri prior to radicle emergence but not in Microtropis wallichiana, Nothapodytes nimmoniana and Symplocos cochinchinensis. A considerable delay was observed between radicle and plumule emergence in all six species. Warm stratification and/or GA 3 promoted germination of all species. All the tested species have epicotyl dormancy. Seeds of B. nitidissima and G. walkeri have nondeep simple morphophysiological epicotyl dormancy, and other four species have nondeep physiological epicotyl dormancy. Differences in radicle and epicotyl dormancy promote synchronization of germination to a favorable time for seedling development. Therefore, information on dormancy-breaking and germination requirements of both radicle and epicotyl are needed to determine the kind of dormancy of a particular species. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Impact of bio-nanogold on seed germination and seedling growth in Pennisetum glaucum.
Parveen, Asra; Mazhari, Bi Bi Zainab; Rao, Srinath
2016-12-01
Nanotechnology is leading towards the development of low cost applications to improve the cultivation and growth of plants. The use of nanotechnology in agriculture will leads to a significant effect on food industry along with opening a new area of research in agroecosystem. In this paper gold nanoparticles were biosynthesized with Cassia auriculata leaf extract at room temperature and characterized by UV-vis spectroscopy, X-ray diffraction and transmission electron microscopy. The objective of this study was to investigate effect of synthesized bio-nanogold on an important food and biofuel producing plant Pennisetum glaucum. Positive effects were observed on percentage of seed germination and growth of seedlings. Improved germination and increased plant biomass have high economic importance in production of biofuel or raw materials, agriculture and horticulture. Although the impact of nanoparticles on plants depends on concentration, size and shape. The biological synthesized AuNPs can replace the chemically synthesized AuNPs used in gene transfer method. The study gives brief insight on nanoparticles effects on plants, brings attention on both positive and negative side of nanomaterial which can resolve phytopathological infections by stimulating nutrition and growth. Copyright © 2016 Elsevier Inc. All rights reserved.
Marques, M C M; Oliveira, P E A M
2008-09-01
Seasonal tropical forests show rhythms in reproductive activities due to water stress during dry seasons. If both seed dispersal and seed germination occur in the best environmental conditions, mortality will be minimised and forest regeneration will occur. To evaluate whether non-seasonal forests also show rhythms, for 2 years we studied the seed rain and seedling emergence in two sandy coastal forests (flooded and unflooded) in southern Brazil. In each forest, one 100 x 30-m grid was marked and inside it 30 stations comprising two seed traps (0.5 x 0.5 m each) and one plot (2 x 2 m) were established for monthly monitoring of seed rain and a seedling emergence study, respectively. Despite differences in soil moisture and incident light on the understorey, flooded and unflooded forests had similar dispersal and germination patterns. Seed rain was seasonal and bimodal (peaks at the end of the wetter season and in the less wet season) and seedling emergence was seasonal and unimodal (peaking in the wetter season). Approximately 57% of the total species number had seedling emergence 4 or more months after dispersal. Therefore, both seed dormancy and the timing of seed dispersal drive the rhythm of seedling emergence in these forests. The peak in germination occurs in the wetter season, when soil fertility is higher and other phenological events also occur. The strong seasonality in these plant communities, even in this weakly seasonal climate, suggests that factors such as daylength, plant sensitivity to small changes in the environment (e.g. water and nutrient availability) or phylogenetic constraints cause seasonal rhythms in the plants.
Vilhena, Karyme S S; Guilhon, Giselle Maria Skelding Pinheiro; Zoghbi, Maria das Graças B; Santos, Lourivaldo Silva; Souza Filho, Antonio Pedro Silva
2014-01-01
Chemical investigation of the rhizomes of Cyperus distans (Cyperaceae) led to the identification of α-ciperone, cyperotundone and scabequinone, besides other common constituents. Complete assignment of the (13)C NMR data of scabequinone is being published for the first time. The inhibitory effects of C. distans extracts and scabequinone on the seed germination and seedling growth of Mimosa pudica, Senna obtusifolia and Pueraria phaseoloides were evaluated. Seed germination inhibition bioassay revealed that S. obtusifolia (52-53%) was more sensitive to the hexane and the methanol extracts at 1% than M. pudica (0-10%). Scabequinone at 250 mg L⁻¹ displayed seed germination inhibitions more than 50% and radicle growth reduction of more than 35% of the test species S. obtusifolia and P. phaseoloides, while the hypocotyl growth of M. pudica was significantly affected (>50%) by the quinone at the same concentration. These results demonstrate that scabequinone contributes to the overall inhibitory activities of C. distans.
Habrova, Hana; Pavlis, Jindrich
2017-02-01
Woody vegetation dynamics and Dracaena cinnabari regeneration have been studied for five years in the conditions of Socotra Island. Woody plants were measured regularly inside and outside the exclosure area, and the growth and survival of D. cinnabari seedlings were observed. In the exclosure of about 1000 m 2 a total of 49 species were identified, including 23 endemics, growing in the average density of 3.82 specimens per m 2 . The fenced area was overgrown relatively rapidly by dense grass cover - reaching approx. 2.7 t/ha. Species growth dynamics inside and outside the exclosure shows that grazing had a marked impact, leading to the elimination of trees and shrubs. All grazed species grew noticeably in the exclosure, in the average of 50 cm in 5 years. D. cinnabari as the dominant flagship species of Socotra has been studied with regards to regeneration dynamics. Observations indicate that probability of its seedlings survival increases with their age. No seedlings germinated from the seeds sown in the experiment, however, outplanted seedlings performed relatively well. Field observations show that D. cinnabari seed germination is triggered when the seed reaches a protected micro-habitat with a developed humus layer and high relative humidity in the soil lasts for at least two days.
Genetic variation of germination cold tolerance in Japanese rice germplasm
Bosetti, Fátima; Montebelli, Camila; Novembre, Ana Dionísia L.C.; Chamma, Helena Pescarin; Pinheiro, José Baldin
2012-01-01
Low temperatures at the initial stages of rice development prevent fast germination and seedling establishment and may cause significant productivity losses. In order to develop rice cultivars exhibiting cold tolerance, it is necessary to investigate genetic resources, providing basic knowledge to allow the introduction of genes involved in low temperature germination ability from accessions into elite cultivars. Japanese rice accessions were evaluated at the germination under two conditions: 13°C for 28 days (cold stress) and 28°C for seven days (optimal temperature). The traits studied were coleoptile and radicle length under optimal temperature, coleoptile and radicle length under cold and percentage of the reduction in coleptile and radicle length due to low temperature. Among the accessions studied, genetic variation for traits related to germination under low temperatures was observed and accessions exhibiting adequate performance for all investigated traits were identified. The use of multivariate analysis allowed the identification of the genotypes displaying cold tolerance by smaller reductions in coleoptile and radicle lenght in the presence of cold and high vigour, by higher coleoptile and radicle growth under cold. PMID:23226080
Genetic variation of germination cold tolerance in Japanese rice germplasm.
Bosetti, Fátima; Montebelli, Camila; Novembre, Ana Dionísia L C; Chamma, Helena Pescarin; Pinheiro, José Baldin
2012-09-01
Low temperatures at the initial stages of rice development prevent fast germination and seedling establishment and may cause significant productivity losses. In order to develop rice cultivars exhibiting cold tolerance, it is necessary to investigate genetic resources, providing basic knowledge to allow the introduction of genes involved in low temperature germination ability from accessions into elite cultivars. Japanese rice accessions were evaluated at the germination under two conditions: 13°C for 28 days (cold stress) and 28°C for seven days (optimal temperature). The traits studied were coleoptile and radicle length under optimal temperature, coleoptile and radicle length under cold and percentage of the reduction in coleptile and radicle length due to low temperature. Among the accessions studied, genetic variation for traits related to germination under low temperatures was observed and accessions exhibiting adequate performance for all investigated traits were identified. The use of multivariate analysis allowed the identification of the genotypes displaying cold tolerance by smaller reductions in coleoptile and radicle lenght in the presence of cold and high vigour, by higher coleoptile and radicle growth under cold.
Koné, Mongomaké; Koné, Tchoa; Silué, Nakpalo; Soumahoro, André Brahima; Kouakou, Tanoh Hilaire
2015-01-01
Bambara groundnut (Vigna subterranea (L.) Verdc.) is an indigenous grain legume. It occupies a prominent place in the strategies to ensure food security in sub-Saharan Africa. Development of an efficient in vitro regeneration system, a prerequisite for genetic transformation application, requires the establishment of optimal conditions for seeds germination and plantlets development. Three types of seeds were inoculated on different basal media devoid of growth regulators. Various strengths of the medium of choice and the type and concentration of carbon source were also investigated. Responses to germination varied with the type of seed. Embryonic axis (EA) followed by seeds without coat (SWtC) germinated rapidly and expressed a high rate of germination. The growth performances of plantlets varied with the basal medium composition and the seeds type. The optimal growth performances of plants were displayed on half strength MS basal medium with SWtC and EA as source of seeds. Addition of 3% sucrose in the culture medium was more suitable for a maximum growth of plantlets derived from EA.
Cross, Adam T.; Turner, Shane R.; Renton, Michael; Baskin, Jerry M.; Dixon, Kingsley W.; Merritt, David J.
2015-01-01
Background and Aims Rock pools are small, geologically stable freshwater ecosystems that are both hydrologically and biologically isolated. They harbour high levels of plant endemism and experience environmental unpredictability driven by the presence of water over variable temporal scales. This study examined the hypothesis that the sediment seed bank in monsoon tropical freshwater rock pools would persist through one or more periods of desiccation, with seed dormancy regulating germination timing in response to rock pool inundation and drying events. Methods Seeds were collected from seven dominant rock pool species, and germination biology and seed dormancy were assessed under laboratory conditions in response to light, temperature and germination stimulators (gibberellic acid, karrikinolide and ethylene). Field surveys of seedling emergence from freshwater rock pools in the Kimberley region of Western Australia were undertaken, and sediment samples were collected from 41 vegetated rock pools. Seedling emergence and seed bank persistence in response to multiple wetting and drying cycles were determined. Key Results The sediment seed bank of individual rock pools was large (13 824 ± 307 to 218 320 ± 42 412 seeds m−2 for the five species investigated) and spatially variable. Seedling density for these same species in the field ranged from 13 696 to 87 232 seedlings m−2. Seeds of rock pool taxa were physiologically dormant, with germination promoted by after-ripening and exposure to ethylene or karrikinolide. Patterns of seedling emergence varied between species and were finely tuned to seasonal temperature and moisture conditions, with the proportions of emergent seedlings differing between species through multiple inundation events. A viable seed bank persisted after ten consecutive laboratory inundation events, and seeds retained viability in dry sediments for at least 3 years. Conclusions The persistent seed bank in freshwater rock pools is likely to provide resilience to plant communities against environmental stochasticity. Since rock pool communities are often comprised of highly specialized endemic and range-restricted species, sediment seed banks may represent significant drivers of species persistence and diversification in these ecosystems. PMID:25660345
Survival and growth of yellow-poplar seedlings depend on date of germination
George R., Jr. Trimble; E. H. Tryon
1969-01-01
A study of yellow-poplar seedlings showed that early survival and growth were best among stems that originated in May and early June. Few, if any, seedlings that emerged after 1 July were in favorable competitive condition 3 years later. This indicates that clearcuttings made for maximum natural regeneration of yellow-poplar should be carried out in fall and winter to...
Release Accelerates Growth of Yellow-Poplar -- an 18-Year Look
Robert D. Williams
1976-01-01
Yellow-poplar seedlings that germinated and were completely released from woody competition in 1957 (the first year after a harvest cut) were four times taller and five times larger in diameter after the 1973 growing season than seedlings that were not released.
Modeling the Effect of Density-Dependent Chemical Interference Upon Seed Germination
Sinkkonen, Aki
2005-01-01
A mathematical model is presented to estimate the effects of phytochemicals on seed germination. According to the model, phytochemicals tend to prevent germination at low seed densities. The model predicts that at high seed densities they may increase the probability of seed germination and the number of germinating seeds. Hence, the effects are reminiscent of the density-dependent effects of allelochemicals on plant growth, but the involved variables are germination probability and seedling number. The results imply that it should be possible to bypass inhibitory effects of allelopathy in certain agricultural practices and to increase the efficiency of nature conservation in several plant communities. PMID:19330163
Modeling the Effect of Density-Dependent Chemical Interference upon Seed Germination
Sinkkonen, Aki
2006-01-01
A mathematical model is presented to estimate the effects of phytochemicals on seed germination. According to the model, phytochemicals tend to prevent germination at low seed densities. The model predicts that at high seed densities they may increase the probability of seed germination and the number of germinating seeds. Hence, the effects are reminiscent of the density-dependent effects of allelochemicals on plant growth, but the involved variables are germination probability and seedling number. The results imply that it should be possible to bypass inhibitory effects of allelopathy in certain agricultural practices and to increase the efficiency of nature conservation in several plant communities. PMID:18648596
Galland, Marc; Huguet, Romain; Arc, Erwann; Cueff, Gwendal; Job, Dominique; Rajjou, Loïc
2014-01-01
During seed germination, the transition from a quiescent metabolic state in a dry mature seed to a proliferative metabolic state in a vigorous seedling is crucial for plant propagation as well as for optimizing crop yield. This work provides a detailed description of the dynamics of protein synthesis during the time course of germination, demonstrating that mRNA translation is both sequential and selective during this process. The complete inhibition of the germination process in the presence of the translation inhibitor cycloheximide established that mRNA translation is critical for Arabidopsis seed germination. However, the dynamics of protein turnover and the selectivity of protein synthesis (mRNA translation) during Arabidopsis seed germination have not been addressed yet. Based on our detailed knowledge of the Arabidopsis seed proteome, we have deepened our understanding of seed mRNA translation during germination by combining two-dimensional gel-based proteomics with dynamic radiolabeled proteomics using a radiolabeled amino acid precursor, namely [(35)S]-methionine, in order to highlight de novo protein synthesis, stability, and turnover. Our data confirm that during early imbibition, the Arabidopsis translatome keeps reflecting an embryonic maturation program until a certain developmental checkpoint. Furthermore, by dividing the seed germination time lapse into discrete time windows, we highlight precise and specific patterns of protein synthesis. These data refine and deepen our knowledge of the three classical phases of seed germination based on seed water uptake during imbibition and reveal that selective mRNA translation is a key feature of seed germination. Beyond the quantitative control of translational activity, both the selectivity of mRNA translation and protein turnover appear as specific regulatory systems, critical for timing the molecular events leading to successful germination and seedling establishment.
Galland, Marc; Huguet, Romain; Arc, Erwann; Cueff, Gwendal; Job, Dominique; Rajjou, Loïc
2014-01-01
During seed germination, the transition from a quiescent metabolic state in a dry mature seed to a proliferative metabolic state in a vigorous seedling is crucial for plant propagation as well as for optimizing crop yield. This work provides a detailed description of the dynamics of protein synthesis during the time course of germination, demonstrating that mRNA translation is both sequential and selective during this process. The complete inhibition of the germination process in the presence of the translation inhibitor cycloheximide established that mRNA translation is critical for Arabidopsis seed germination. However, the dynamics of protein turnover and the selectivity of protein synthesis (mRNA translation) during Arabidopsis seed germination have not been addressed yet. Based on our detailed knowledge of the Arabidopsis seed proteome, we have deepened our understanding of seed mRNA translation during germination by combining two-dimensional gel-based proteomics with dynamic radiolabeled proteomics using a radiolabeled amino acid precursor, namely [35S]-methionine, in order to highlight de novo protein synthesis, stability, and turnover. Our data confirm that during early imbibition, the Arabidopsis translatome keeps reflecting an embryonic maturation program until a certain developmental checkpoint. Furthermore, by dividing the seed germination time lapse into discrete time windows, we highlight precise and specific patterns of protein synthesis. These data refine and deepen our knowledge of the three classical phases of seed germination based on seed water uptake during imbibition and reveal that selective mRNA translation is a key feature of seed germination. Beyond the quantitative control of translational activity, both the selectivity of mRNA translation and protein turnover appear as specific regulatory systems, critical for timing the molecular events leading to successful germination and seedling establishment. PMID:24198433
Synthesis of tricyclic butenolides and comparison their effects with known smoke-butenolide, KAR1.
Krawczyk, Ewa; Koprowski, Marek; Cembrowska-Lech, Danuta; Wójcik, Agata; Kępczyński, Jan
2017-08-01
Plant-derived smoke - butenolide, called at present karrikin 1 (KAR 1 ) is known as an important inductor of seed germination and seedling growth. In this study, tricyclic butenolides were synthesized and their effects on germination of dormant and non-dormant Avena fatua caryopses were compared, as were also their effects versus those of KAR 1 on seedling growth. KAR 1 was found to be most effective and to completely remove dormancy. Butenolides, rac-8 and (S)-8a, showed a low stimulatory effect on germination of dormant caryopses, visible only when applied at very high concentrations. These compounds used at concentrations 100 times those of KAR 1 similarly increased the speed of germination and vigor of non-dormant caryopses. Likewise, growth of coleoptiles and their fresh weight were increased by KAR 1 as well as by rac-8 and (S)-8a to a similar value. KAR 1 and rac-8 were more effective than (S)-8a in increasing root growth. The results shown indicate that the presence of an aromatic ring in the absence of methyl group at C3 induced a much lower, or a similar, effect on germination of dormant and non-dormant Avena fatua caryopses and seedling growth compared to KAR 1 , but only when used at much higher concentrations. The simultaneous presence of a methyl group at C3 and an aromatic ring in the compound rac-7 exerted only a slight effect on the root growth. Copyright © 2017 Elsevier GmbH. All rights reserved.
Formation and early development of tetraspores of Polysiphonia urceolata (Rhodomelaceae, Rhodophyta)
NASA Astrophysics Data System (ADS)
Yao, Jianting; Li, Dapeng; Yu, Shenhui; Liu, Jidong; Duan, Delin
2009-05-01
Polysiphonia urceolata is one type of potential commercial red seaweeds used for breeding and cultivation, because of its significant biochemical and biomedical application. However, the information of breeding and seedling incubation for cultivation is limited, especially the early development. In this study, tetrasporohyte and gametophyte of P. urceolata were taken as the study materials in Huiquan Bay, Qingdao, China. The cleaned and sterilized tetrasporophytes and gametophytes were pre-cultured in sterilized seawater, then nurtured at 18°C, 25 μmol photons m-2 s-1 in 12:12 h (light:dark) photoperiod. Continuous observation under microscope showed that the early development consists of bipolar division stage and seedling stage. In the division stage, tetraspores germinate into bipolar sporelings that further differentiate into a colorless rhizoidal portion and a lightly pigmented upright shoot. The lightly pigmented rhizoidal cell develops to a rhizoid and the larger pigmented cell transforms to an erect axis. In the seedling stage, several quasi-protuberances appear on the erect axis and form juvenile seedlings. The results demonstrate the culture of P. urceolata from tetraspores under laboratory conditions.
Zhang, Lu; Peng, Xue; Liu, Biyun; Zhang, Yi; Zhou, Qiaohong; Wu, Zhenbin
2018-08-15
Excessive proliferation of filamentous green algae (FGA) has been considered an important factor resulting in the poor growth or even decline of submerged macrophytes. However, there is a lack of detailed information regarding the effect of decaying FGA on submerged macrophytes. This study aimed to investigate whether the decomposing liquid from Cladophora oligoclona negatively affects Hydrilla verticillata turion germination and seedling growth. The results showed that the highest concentrations of decomposing liquid treatments inhibited the turion germination rate, which was the lowest than other treatments, at only 84%. The chlorophyll a fluorescence (JIP test) and physiological indicators (chlorophyll a content, soluble sugars, Ca 2+ /Mg 2+ -ATPase and PAL activity) were also measured. The chlorophyll a content in the highest concentration (40% of original decomposing liquid) treatment group decreased by 43.53% than that of the control; however, soluble sugars, Ca 2+ /Mg 2+ -ATPase, and PAL activity increased by 172.46%, 271.19%, and 26.43% respectively. The overall results indicated that FGA decay has a considerable effect on submerged macrophyte turion germination and seedling growth, which could inhibit their expansion and reproduction. This study emphasized the need to focus on effects of FGA decomposition on the early growth stages of submerged macrophytes and offered technological guidance for submerged vegetation restoration in lakes and shallow waters. Copyright © 2018 Elsevier Inc. All rights reserved.
Operations of a spaceflight experiment to investigate plant tropisms
NASA Astrophysics Data System (ADS)
Kiss, John Z.; Kumar, Prem; Millar, Katherine D. L.; Edelmann, Richard E.; Correll, Melanie J.
2009-10-01
Plants will be an important component in bioregenerative systems for long-term missions to the Moon and Mars. Since gravity is reduced both on the Moon and Mars, studies that identify the basic mechanisms of plant growth and development in altered gravity are required to ensure successful plant production on these space colonization missions. To address these issues, we have developed a project on the International Space Station (ISS) to study the interaction between gravitropism and phototropism in Arabidopsis thaliana. These experiments were termed TROPI (for tropisms) and were performed on the European Modular Cultivation System (EMCS) in 2006. In this paper, we provide an operational summary of TROPI and preliminary results on studies of tropistic curvature of seedlings grown in space. Seed germination in TROPI was lower compared to previous space experiments, and this was likely due to extended storage in hardware for up to 8 months. Video downlinks provided an important quality check on the automated experimental time line that also was monitored with telemetry. Good quality images of seedlings were obtained, but the use of analog video tapes resulted in delays in image processing and analysis procedures. Seedlings that germinated exhibited robust phototropic curvature. Frozen plant samples were returned on three space shuttle missions, and improvements in cold stowage and handing procedures in the second and third missions resulted in quality RNA extracted from the seedlings that was used in subsequent microarray analyses. While the TROPI experiment had technical and logistical difficulties, most of the procedures worked well due to refinement during the project.
USDA-ARS?s Scientific Manuscript database
Plant recovery status after cryopreservation by vitrification had a negative relationship to the oxidative stress induced by reactive oxygen species (ROS). Arabidopsis thaliana seedlings germinated for 48-h or 72-h with different cryopreservation survival tolerances were examined at five steps of a ...
USDA-ARS?s Scientific Manuscript database
Positive interactions among individual plants (facilitation) may often enhance seedling survival in stressful environments. Many granivorous small mammal species cache groups of seeds for future consumption in shallowly buried scatterhoards, and seeds of many plant species germinate and establish ag...
Asghar, Tehseen; Iqbal, Munawar; Jamil, Yasir; Zia-Ul-Haq; Nisar, Jan; Shahid, Muhammad
2017-01-01
Recently, laser and magnetic field pre-sowing seed treatments attracted the attention of the scientific community in response to their positive effect on plant characteristics and the present study was exemplified for Glycine max Var 90-I. Seeds were exposed to laser (HeNe-wave length 632nm and density power of 1mW/cm 2 ) and magnetic field (sinusoidal non-uniform-50, 75 and 100mT for 3, 5min with exposure) and seed germination, seedling growth and yield attributes were compared. The germination (mean germination, germination percentage, emergence index, germination speed, relative germination coefficient, emergence coefficient of uniformity) growth (root dry weight, root length, shoot fresh weight and shoot dry weight, leaf dry & fresh weight, root fresh weight, leaf area, shoot length, plant total dry weight at different stages, stem diameter, number of leaves, vigor index I & II), biochemical (essential oil) and yield attributes (seed weight, count) were enhanced significantly in response to both laser and magnetic field treatments. However, magnetic field treatment furnished slightly higher response versus laser except relative water contents, whole plant weight and shoot length. Results revealed that both laser and magnetic field pre-sowing seed treatments affect the germination, seedling growth, and yield characteristics positively and could possibly be used to enhance Glycine max productivity. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Gallegos, Gregory L.; Odom, William R.; Guikema, James A.
1995-01-01
The study of higher plant growth and development in the microgravity (micro-g) environment continues to be a challenge. This is in part a result of the available flight qualified hardware with restrictive closed gas environments. This point is underscored by considering that gas exchange of seedlings grown in microgravity may be further limited owing to a thicker layer of water wicked onto the roots and to the absence of convective mixing. We hypothesized that seedlings grown under such conditions will experience greater hypoxia in microgravity than at Earth gravity, and thus produce greater stress ethylene. We compared flight and ground samples of sweet clover seedlings grown in the Fluid Processing Apparatus (FPA) during STS-57 and found them to contain extremely high levels of carbon dioxide (CO2) and stress ethylene. There were time dependent increases for both gases, and seedling growth was greatly inhibited. We repeated these experiments aboard STS-60 using modified chambers which increased, by fifty fold, the air available to the developing seedlings. Sweet clover seed germination and subsequent seedling growth to eight days within the FPA modified with a gas permeable membrane is not compromised by the microgravity environment.
Gluconeogenesis from Storage Wax in the Cotyledons of Jojoba Seedlings 1
Moreau, Robert A.; Huang, Anthony H. C.
1977-01-01
The cotyledons of jojoba (Simmondsia chinensis) seeds contained 50 to 60% of their weight as intracellular wax esters. During germination there was a gradual decrease in the wax content with a concomitant rise in soluble carbohydrates, suggesting that the wax played the role of a food reserve. Thin layer chromatography revealed that both the fatty alcohol and fatty acid were metabolized. The disappearance of wax was matched with an increase of catalase, a marker enzyme of the gluconeogenic process in other fatty seedlings. Subcellular organelles were isolated by sucrose gradient centrifugation from the cotyledons at the peak stage of germination. The enzymes of the β oxidation of fatty acid and of the glyoxylate cycle were localized in the glyoxysomes but not in the mitochondria. The glyoxysomes had specific activities of individual enzymes similar to those of the castor bean glyoxysomes. An active alkaline lipase was detected in the wax bodies at the peak stage of germination but not in the ungerminated seeds. No lipase was detected in glyoxysomes or mitochondria. After the wax in the wax bodies had been extracted with diethyl ether, the organelle membrane was isolated and it still retained the alkaline lipase. The gluconeogenesis from wax in the jojoba seedling appears to be similar, but with modification, to that from triglyceride in other fatty seedlings. Images PMID:16660087
Sudden changes in environmental conditions do not increase invasion risk in grassland
NASA Astrophysics Data System (ADS)
Ruprecht, Eszter; Fenesi, Annamária; Nijs, Ivan
2013-02-01
After direct habitat transformation, biological invasions are considered to be the second most important threat to biodiversity. A better understanding of the factors affecting invasion success in new areas is crucial, and may provide insight into potential control actions. We hypothesized that invasion risk increases in habitats undergoing a sudden change in the disturbance regime or environmental conditions. For testing this assumption we initiated a seed sowing experiment while introducing two novel treatments, mowing twice and fertilizer application, in two grassland sites (one dryer and one mesic) in Romania. The seeds of two invasive species, Solidago canadensis and Rudbeckia laciniata, and two resident natives of similar seed sizes, life-forms and strategies were sowed in treated and control plots, and seed germination, seedling establishment and growth were followed during four months. Contrary to our expectations, there was no difference in the treatment effects on seed germination and seedling establishment between species, while there was on seedling vigour of the larger seeded species in the dryer grassland site, where the native had a higher performance especially in increased nutrient conditions. Indifferently from applied treatments, invasive species had greater cumulative germination in the mesic site, while natives were far more successful in seedling establishment in the drier site. At the same time, seed size was found to be a very important factor explaining germination and establishment success, with large seeded species outperforming small seeded species in any circumstances. Our results call the attention upon management interventions in mesic, productive grassland sites opening colonization windows for the recruitment of those invasive species of which ecological requirements correspond to local environmental conditions.
Phytotoxic Activity and Chemical Composition of Aqueous Volatile Fractions from Eucalyptus Species
Zhang, Jinbiao; An, Min; Wu, Hanwen; Liu, De Li; Stanton, Rex
2014-01-01
The essential oils from four Eucalyptus species (E. spathulata, E. salubris, E. brockwayii and E. dundasii) have been previously confirmed to have stronger inhibitory effects on germination and seedling growth of silverleaf nightshade (Solanum elaeagnifolium Cav.). The aqueous volatile fractions (AVFs) were the water soluble volatile fractions produced together with the essential oils (water insoluble fractions) during the steam distillation process. The aim of this study was to further assess the phytotoxicity of AVFs from the four Eucalyptus species and their chemical composition. The fresh leaves of the four Eucalyptus species were used for the extraction of AVFs. The AVFs were tested for their phytotoxic effects on the perennial weed, silverleaf nightshade under laboratory conditions. The chemical compositions of the AVFs were determined by gas chromatograph–mass spectrometry (GC-MS). Our results showed that the AVFs had strong inhibition on the germination and seedling growth of silverleaf nightshade. The inhibition index increased with the increasing concentrations of AVFs. The inhibitory effects of the AVFs varied between different Eucalyptus species. The AVF from E. salubris demonstrated the highest inhibitory activity on the weed tested, with complete inhibition on germination and seedling growth at a concentration of 75%. The GC-MS analysis revealed that 1,8-cineole, isopentyl isovalerate, isomenthol, pinocarvone, trans-pinocarveol, alpha-terpineol and globulol were the main compounds in the AVFs. These results indicated that all AVFs tested had differential inhibition on the germination and seedling growth of silverleaf nightshade, which could be due to the joint effects of compounds present in the AVFs as these compounds were present in different quantities and ratio between Eucalyptus species. PMID:24681490
CASTELLS, EVA; PEÑUELAS, JOSEP; VALENTINE, DAVID W.
2005-01-01
• Background and Aims Natural regeneration of white spruce (Picea glauca) after disturbance has been reported to be very poor. Here a study was made to determine whether C compounds released from understorey species growing together with white spruce could be involved in this regeneration failure, either by (1) changing soil nutrient dynamics, (2) inhibiting germination, and/or (3) delaying seedling growth. • Methods Foliage leachates were obtained from two shrubs (Ledum palustre and Empetrum hermaphroditum) and one bryophyte (Sphagnum sp.) with high phenolic compound concentrations that have been reported to depress growth of conifers in boreal forests, and, as a comparison, one bryophyte (Hylocomium splendens) with negligible phenolic compounds. Mineral soil from a white spruce forest was amended with plant leachates to examine the effect of each species on net N mineralization. Additionally, white spruce seeds and seedlings were watered with plant leachates to determine their effects on germination and growth. • Key Results Leachates from the shrubs L. palustre and E. hermaphroditum contained high phenolic compound concentrations and dissolved organic carbon (DOC), while no detectable levels of C compounds were released from the bryophytes Sphagnum sp. or H. splendens. A decrease in net N mineralization was determined in soils amended with L. palustre or E. hermaphroditum leachates, and this effect was inversely proportional to the phenolic concentrations, DOC and leachate C/N ratio. The total percentage of white spruce germination and the growth of white spruce seedlings were similar among treatments. • Conclusions These results suggest that the shrubs L. palustre and E. hermaphroditum could negatively affect the performance of white spruce due to a decrease in soil N availability, but not by direct effects on plant physiology. PMID:15802310
Castells, Eva; Peñuelas, Josep; Valentine, David W
2005-06-01
Natural regeneration of white spruce (Picea glauca) after disturbance has been reported to be very poor. Here a study was made to determine whether C compounds released from understorey species growing together with white spruce could be involved in this regeneration failure, either by (1) changing soil nutrient dynamics, (2) inhibiting germination, and/or (3) delaying seedling growth. Foliage leachates were obtained from two shrubs (Ledum palustre and Empetrum hermaphroditum) and one bryophyte (Sphagnum sp.) with high phenolic compound concentrations that have been reported to depress growth of conifers in boreal forests, and, as a comparison, one bryophyte (Hylocomium splendens) with negligible phenolic compounds. Mineral soil from a white spruce forest was amended with plant leachates to examine the effect of each species on net N mineralization. Additionally, white spruce seeds and seedlings were watered with plant leachates to determine their effects on germination and growth. Leachates from the shrubs L. palustre and E. hermaphroditum contained high phenolic compound concentrations and dissolved organic carbon (DOC), while no detectable levels of C compounds were released from the bryophytes Sphagnum sp. or H. splendens. A decrease in net N mineralization was determined in soils amended with L. palustre or E. hermaphroditum leachates, and this effect was inversely proportional to the phenolic concentrations, DOC and leachate C/N ratio. The total percentage of white spruce germination and the growth of white spruce seedlings were similar among treatments. These results suggest that the shrubs L. palustre and E. hermaphroditum could negatively affect the performance of white spruce due to a decrease in soil N availability, but not by direct effects on plant physiology.
Dufour-Tremblay, Geneviève; De Vriendt, Laurent; Lévesque, Esther; Boudreau, Stéphane
2012-10-01
Treelines are temperature-sensitive ecotones that should be able to expand in response to global warming; however, they are also controlled by ecological constraints. These constraints can create bottlenecks for tree regeneration, hindering treeline advances. Near Kangiqsualujjuaq (Nunavik, subarctic Québec), previous studies suggested successful recruitment of Larix laricina above the altitudinal treeline, while Picea mariana establishment remains scarce. We studied regeneration of both species to identify factors responsible for such contrasting responses. • We measured seeds and wings to evaluate species dispersal potential. We compared seed viability and tolerance to shrub leachates with germination trials. To evaluate seedbed preferences, we compared seedling occurrence on the different seedbeds with seedbed relative abundance in the field. • Seed germination was similar between L. laricina and P. mariana, whereas dispersal potential was higher for the latter. Germination of P. mariana seeds was more strongly inhibited by shrub leachates than were L. laricina seeds. In the field, we found only a few Picea seedlings, but numerous seedlings of Larix had established disproportionally on several seedbeds. While Betula glandulosa, mosses, and Vaccinium uliginosim impeded Larix establishment, numerous seedlings were found on lichens, mineral soil, and liverworts. The low occurrence of suitable seedbeds for Picea, mainly mineral soil, could explain the seedling scarcity of this species. • This study highlighted that allelopathy and unsuitable seedbeds could contribute to regeneration failure of P. mariana in eastern Nunavik and emphasizes the need to consider ecological preferences of species before predicting treeline expansion under a warmer climate.
Shi, Li-Ping; Ou, Qiao-Ming; Cui, Wen-Juan; Chen, Yu-Liang
2014-04-01
To break the hard testa and improve seed germination situation of Astragalus membranaceus var. mongholicus, in order to solve the problems of low success rate of seed germination and seedling. Longxi Astragalus membranaceus var. mongholicus seed was treated by soaking seed with 75% alcohol and concentrated sulfuric acid, warm-water incubating, grinding and comprehensive treating with warm-water incubating, grinding and sand culture. Its seed germination situation was evaluated by germination potential, germination rate and germination index. Different processing methods significantly improved seed germination with different effect. Comprehensive treatment with warm-water incubating, grinding and sand culture was the best one on Astragalus membranaceus var. mongholicus seed germination. Its germination potential, germination rate and germination index was 66.04%, 87.70% and 1.34,respectively. Comprehensive treatment with warm-water incubating, grinding and sand culture is an economic and effective processing method, which is suitable for actual production.
Label-free in situ imaging of oil body dynamics and chemistry in germination
Waschatko, Gustav; Billecke, Nils; Schwendy, Sascha; Jaurich, Henriette; Bonn, Mischa; Vilgis, Thomas A.
2016-01-01
Plant oleosomes are uniquely emulsified lipid reservoirs that serve as the primary energy source during seed germination. These oil bodies undergo significant changes regarding their size, composition and structure during normal seedling development; however, a detailed characterization of these oil body dynamics, which critically affect oil body extractability and nutritional value, has remained challenging because of a limited ability to monitor oil body location and composition during germination in situ. Here, we demonstrate via in situ, label-free imaging that oil bodies are highly dynamic intracellular organelles that are morphologically and biochemically remodelled extensively during germination. Label-free, coherent Raman microscopy (CRM) combined with bulk biochemical measurements revealed the temporal and spatial regulation of oil bodies in native soya bean cotyledons during the first eight days of germination. Oil bodies undergo a cycle of growth and shrinkage that is paralleled by lipid and protein compositional changes. Specifically, the total protein concentration associated with oil bodies increases in the first phase of germination and subsequently decreases. Lipids contained within the oil bodies change in saturation and chain length during germination. Our results show that CRM is a well-suited platform to monitor in situ lipid dynamics and local chemistry and that oil bodies are actively remodelled during germination. This underscores the dynamic role of lipid reservoirs in plant development. PMID:27798279
Effects of various treatments on seed germination and growth of carob (Ceratonia siliqua L.)
USDA-ARS?s Scientific Manuscript database
Carob (Ceratonia siliqua L.) plays an important role in Mediterranean landscape. It is commercially propagated by grafting which requires the generation of seedlings. However, its seeds are very recalcitrant and need pretreatment for germination. In this study, carob seeds harvested from both wild a...
Effects of Disinfectants in Water on Mir- and Earth-Grown Wheat
NASA Technical Reports Server (NTRS)
Campbell, William .F.; Bubenheim, D. L.; Bugbee, B.; Salisbury, F. B.; Bingham, G. E.; Levinskikh, M.; Sytchev, V. N.; Ivanova, I.; Chernova, L.; Podolsky, I.
2002-01-01
Iodine and silver fluoride are used to purify water onboard U. S. Shuttles and the Russian Space Station, Mir, respectively. In 1995, iodine-treated water, which ranged from 1.0-4.0 mg x kg(exp -1) with a mean of 2.9 mg x kg(exp -1), was applied to Super Dwarf wheat (Triticum aestivum L.) plants when Mir water (grey or tech grade) became scarce. The potential phytotoxicity of iodine on Super Dwarf wheat is an unknown. Since use of iodine-treated water was not part of the experiment, we sought to determine whether it accounted for the subsequent poor wheat seedling growth and floral development onboard the Mir. Super Dwarf wheat seeds were imbibed in iodine or silver fluoride concentrations of 0.0, 1.0, 2.0, 4.0, 8.0 or 16.0 mg x kg(exp -1) for 96 h at 4 C. Five seeds were then planted per 13.3 cm x 13.3 cm pots containing a granular clinoptilolite (Cp) zeolite (1 -2 mm dia.) and placed in Percival(TM) growth chambers programmed for 20/15 C and 18/6 h d/n regime. Plants were irrigated with distilled water, and Iodine- or silver fluoride-treated distilled water. In separate experiments, seeds were treated as above and germination and early seedling growth were determined by examining seedling responses to disinfectants in rolled paper towels. Silver fluoride had very little effect on wheat seed germination. By contrast, iodine reduced germination at all treatment levels. Seedlings exposed to 1.0, 2.0, and 4.0 mg x kg(exp -1) of iodine or silver fluoride levels exhibited a slight stimulation in shoot and root growth. Both disinfectants at 8 and 16 mg x kg(exp -1) showed significantly (p is less than or equal to 0.01) reduced seedling shoot and root lengths and fresh biomasses compared to the control and lower disinfectant levels. The number of spikelets per spike, florets per spikelet, seeds per spike and seed weight were also significantly reduced at the 8 and 16 mg x kg(exp -1) compared to the control and lower levels of disinfectant. Based on these ground-based post-flight analyses, the levels of iodine- and/or silver fluoride-treated water used on Mir-grown plants onboard the Mir did not cause the poor growth and development of the wheat plants.
Seed germination and life history syndromes in the California chaparral
Keeley, J.E.
1991-01-01
Syndromes are life history responses that are correlated to environmental regimes and are shared by a group of species (Stebbins, 1974). In the California chaparral there are two syndromes contrasted by the timing of seedling recruitment relative to wildfires. One syndrome, here called the fire-recruiter or refractory seed syndrome, includes species (both resprouting and non-resprouting) which share the feature that the timing of seedling establishment is specialized to the first rainy season after fire. Included are woody, suffrutescent and annual life forms but no geophytes have this syndrome. These species are linked by the characteristic that their seeds have a dormancy which is readily broken by environmental stimuli such as intense heat shock or chemicals leached from charred wood. Such seeds are referred to as “refractory” and dormancy, in some cases, is due to seed coat impermeability (such seeds are commonly called hardseeded), but in other cases the mechanism is unknown. Seeds of some may require cold stratification and/or light in addition to fire related stimuli. In the absence of fire related cues, a portion or all of a species’ seed pool remains dormant. Most have locally dispersed seeds that persist in the soil seed bank until the site burns. Dispersal of propagules is largely during spring and summer which facilitates the avoidance of flowering and fruiting during the summer and fall drought. Within a life form (e.g., shrub, suffrutescent, etc.), the seeds of these species have less mass than those of species with non-refractory seeds and this possibly reflects the environmental favorableness of the postfire environment for seedling establishment. Regardless of when fire occurs, germination is normally delayed until late winter or early spring. In the absence of fire, or other disturbance, opportunities for population expansion are largely lacking for species with this syndrome. The other syndrome, here called the fire-resister or non-refractory seed syndrome, includes species that are resilient to frequent fires (mostly by vegetative resprouting), but require fire-free periods for recruiting new seedlings. Included are shrubs, subshrubs, suffrutescents, lianas, geophytes and annuals. All are linked by the characteristic that their seeds germinate in the absence of cues related to wildfires. In many cases no form of seed dormancy is present and the seeds germinate soon after dispersal; consequently these species do not accumulate a persistent seed bank. Germination and seedling establishment is independent of fire and thus opportunities for population expansion are also independent of fire. The demographic pattern of seedling recruitment varies with the life form. For shrubs, seedling recruitment may be restricted to sites free of fire for periods of a hundred years or more. Recruitment appears to require relatively mesic conditions and this may account for the patchy distribution of these species within the matrix of relatively arid sites. Finding such sites has selected for propagules specialized for wind or animal dispersal; the majority are bird dispersed. These shrub species all disperse fruits in fall and winter and this may have been selected to take advantage of migratory birds as well as to time dispersal to the winter rains typical of the mediterranean-climate. Germination typically occurs within several weeks of the first fall or winter rains. Maturation of flowers and fruits during the summer and fall drought may account for the distribution of these species on more mesic sites. Seed mass of these species is large and this may have been selected to provide an advantage to seedlings establishing under the canopy of this dense shrub community.
NASA Astrophysics Data System (ADS)
Janeček, Štěpán; Lepš, Jan
2005-09-01
The effects of litter removal, leaf cover of established plants and cover of basal internodes of a dominant species Molinia caerulea on seedling germination and the dynamics of established plants were studied in a field experiment in an oligotrophic wet meadow. Although the negative influence of litter on total seedling number and seedling species composition was non-significant, litter significantly affected the dynamics of the established vegetation and caused inhibition of total leaf cover development. The effects of total leaf cover of established plants on seedling establishment changed during the vegetation season. Whereas the effect of total leaf cover was positive at the start and in the middle of the vegetation season, at the end the total leaf cover negatively affected seedling establishment. Both total leaf cover and cover of basal internodes affected seedling composition. Effects of these two variables were statistically separable suggesting that they are based on different mechanisms. The response of seedling establishment to these factors was species specific and, consequently, our data support the hypothesis that that biotically generated spatial heterogeneity can promote species co-existence through the differentiation of species regeneration niches.
Natural regeneration of white and red fir. . . influence of several factors
Donald T. Gordon
1970-01-01
In a group of studies at Swain Mountain Experimental Forest in northeastern California, seedling survival and mortality were analyzed within the general framework of seed production and dispersal, germination, seedbed condition, soil surface temperature, insolation, soil moisture, and vegetative competition. Factors found to favor seedling establishment were abundance...
Seedling vigor in Beta vulgaris: The artistry of germination
USDA-ARS?s Scientific Manuscript database
Emergence and stand establishment through the first 10 weeks after planting continue to be primary concerns of sugar beet growers. Our goal is to understand the genes and genetics of seedling vigor in order to overcome beet’s inherent disadvantages of small seed size and encapsulation in a corky fru...
Observations on root disease of container whitebark pine seedlings treated with biological controls
R. Kasten Dumroese
2008-01-01
I observed that whitebark pine (Pinus albicaulis Engelm. [Pinaceae]) germinants treated with biological controls, one commercially available (Trichoderma harzianum strain T-22), and the other being studied for potential efficacy (Fusarium oxysporum isolate Q12), experienced less seedling mortality caused by root disease than did a...
Effects of Salinity and Nutrient Addition on Mangrove Excoecaria agallocha
Chen, Yaping; Ye, Yong
2014-01-01
Effects of salinity on seed germination and growth of young (1 month old) and old (2-year old) seedlings of Excoecaria agallocha were investigated. Combined effects of salinity and nutrient level were also examined on old seedlings. Seed germination was best at 0 and 5 psu salinity. 15 psu salinity significantly delayed root initiation and decreased final establishment rate. All seeds failed to establish at 25 psu salinity. Young seedlings performed best at 0 and 5 psu, but growth was stunned at 15 psu, and all seedlings died within 90 days at 25 psu. Old seedlings grew best at salinities below 5 psu and they survived the whole cultivation at 25 psu. This indicated that E. agallocha increased salt tolerance over time. Gas exchange was significantly compromised by salinities above 15 psu but evidently promoted by high nutrient. Proline accumulated considerably at high nutrient, and its contents increased from 0 to 15 psu but decreased at 25 psu salinity. Lipid peroxidation was aggravated by increasing salinity beyond 15 psu but markedly alleviated by nutrient addition. These responses indicated that E. agallocha was intolerant to high salinity but it can be greatly enhanced by nutrient addition. PMID:24691495
Wang, Junqi; Li, Yubing; Lo, Sze Wan; Hillmer, Stefan; Sun, Samuel S.M.; Robinson, David G.; Jiang, Liwen
2007-01-01
Plants accumulate and store proteins in protein storage vacuoles (PSVs) during seed development and maturation. Upon seed germination, these storage proteins are mobilized to provide nutrients for seedling growth. However, little is known about the molecular mechanisms of protein degradation during seed germination. Here we test the hypothesis that vacuolar sorting receptor (VSR) proteins play a role in mediating protein degradation in germinating seeds. We demonstrate that both VSR proteins and hydrolytic enzymes are synthesized de novo during mung bean (Vigna radiata) seed germination. Immunogold electron microscopy with VSR antibodies demonstrate that VSRs mainly locate to the peripheral membrane of multivesicular bodies (MVBs), presumably as recycling receptors in day 1 germinating seeds, but become internalized to the MVB lumen, presumably for degradation at day 3 germination. Chemical cross-linking and immunoprecipitation with VSR antibodies have identified the cysteine protease aleurain as a specific VSR-interacting protein in germinating seeds. Further confocal immunofluorescence and immunogold electron microscopy studies demonstrate that VSR and aleurain colocalize to MVBs as well as PSVs in germinating seeds. Thus, MVBs in germinating seeds exercise dual functions: as a storage compartment for proteases that are physically separated from PSVs in the mature seed and as an intermediate compartment for VSR-mediated delivery of proteases from the Golgi apparatus to the PSV for protein degradation during seed germination. PMID:17322331
Gilbert, Gregory S; Harms, Kyle E; Hamill, David N; Hubbell, Stephen P
2001-05-01
We present an analysis of the long-term survival of two cohorts of seedlings of the tropical canopy tree Ocotea whitei (Lauraceae) on a 1-ha plot of mature, lowland moist forest on Barro Colorado Island, Panamá. In 1980, we counted an even-aged cohort of seedlings that germinated in 1979, then measured and tagged survivors in 1981. We also measured and tagged a second, smaller cohort of seedlings that germinated in 1981. We followed the subsequent survival of all seedlings through 1985. Seedling mortality was phenotypically, temporally, and spatially non-random. Important correlates of non-random mortality included: (1) seedling size and age, (2) an El Niño drought, and (3) biotic neighborhood. Larger and older seedlings survived better than smaller and younger seedlings, respectively, and the El Niño-related drought of 1982-1983 was associated with elevated mortality rates. Seedling density, which was strongly correlated with the proximity to the nearest conspecific adult, increased mortality. The observed mortality patterns suggest that processes consistent with the Janzen-Connell hypothesis operate during the recruitment phase of O. whitei population dynamics. However, the processes causing the observed density- and distance-dependent mortality may vary with factors such as total seed number, seedling size, and climatic variation, making it difficult to determine whether time-integrated seedling-to-adult spacing mechanisms other than self-thinning operate on a given plant population. After 6 years in the hectare studied, survivors remained densest and most numerous underneath the adult trees. We conclude that only long-term demographic data, collected at a variety of scales on a variety of species, will ultimately answer the question: do Janzen-Connell effects contribute substantially to structuring tropical forests?
Effect of cold plasma treatment on seedling growth and nutrient absorption of tomato
NASA Astrophysics Data System (ADS)
Jiafeng, JIANG; Jiangang, LI; Yuanhua, DONG
2018-04-01
The effects of cold plasma (CP) treatment on seed germination, seedling growth, root morphology, and nutrient uptake of a tomato were investigated. The results showed that 80 W of CP treatment significantly increased tomato nitrogen (N) and phosphorus (P) absorption by 12.7% and 19.1%, respectively. CP treatment significantly improved the germination potential of tomato seed by 11.1% and the germination rate by 13.8%. Seedling growth characteristics, including total dry weight, root dry weight, root shoot rate, and leaf area, significantly increased after 80 W of CP treatment. Root activity was increased by 15.7% with 80 W of CP treatment, and 12.6% with 100 W of CP treatment. CP treatment (80 W) markedly ameliorated tomato root morphology, and root length, surface area, and volume, which increased 21.3%, 23.6%, and 29.0%, respectively. Our results suggested that CP treatment improved tomato N and P absorption by promoting the accumulation of shoot and root biomass, increasing the leaf area and root activity, and improving the length, surface area, and volume of root growth. Thus, CP treatment could be used in an ameliorative way to improve tomato nutrient absorption.
Meena, Kamlesh K; Kumar, Manish; Kalyuzhnaya, Marina G; Yandigeri, Mahesh S; Singh, Dhananjaya P; Saxena, Anil K; Arora, Dilip K
2012-05-01
Methylotrophic bacteria were isolated from the phyllosphere of different crop plants such as sugarcane, pigeonpea, mustard, potato and radish. The methylotrophic isolates were differentiated based on growth characteristics and colony morphology on methanol supplemented ammonium mineral salts medium. Amplification of the mxaF gene helped in the identification of the methylotrophic isolates as belonging to the genus Methylobacterium. Cell-free culture filtrates of these strains enhanced seed germination of wheat (Triticum aestivum) with highest values of 98.3% observed using Methylobacterium sp. (NC4). Highest values of seedling length and vigour were recorded with Methylobacterium sp. (NC28). HPLC analysis of production by bacterial strains ranged from 1.09 to 9.89 μg ml(-1) of cytokinins in the culture filtrate. Such cytokinin producing beneficial methylotrophs can be useful in developing bio-inoculants through co-inoculation of pink-pigmented facultative methylotrophs with other compatible bacterial strains, for improving plant growth and productivity, in an environment-friendly manner.
Shakiba, Ehsan; Edwards, Jeremy D.; Jodari, Farman; Duke, Sara E.; Baldo, Angela M.; Korniliev, Pavel; McCouch, Susan R.; Eizenga, Georgia C.
2017-01-01
Cold temperature is an important abiotic stress which negatively affects morphological development and seed production in rice (Oryza sativa L.). At the seedling stage, cold stress causes poor germination, seedling injury and poor stand establishment; and at the reproductive stage cold decreases seed yield. The Rice Diversity Panel 1 (RDP1) is a global collection of over 400 O. sativa accessions representing the five major subpopulations from the INDICA and JAPONICA varietal groups, with a genotypic dataset consisting of 700,000 SNP markers. The objectives of this study were to evaluate the RDP1 accessions for the complex, quantitatively inherited cold tolerance traits at the germination and reproductive stages, and to conduct genome-wide association (GWA) mapping to identify SNPs and candidate genes associated with cold stress at these stages. GWA mapping of the germination index (calculated as percent germination in cold divided by warm treatment) revealed 42 quantitative trait loci (QTLs) associated with cold tolerance at the seedling stage, including 18 in the panel as a whole, seven in temperate japonica, six in tropical japonica, 14 in JAPONICA, and nine in INDICA, with five shared across all subpopulations. Twenty-two of these QTLs co-localized with 32 previously reported cold tolerance QTLs. GWA mapping of cold tolerance at the reproductive stage detected 29 QTLs, including seven associated with percent sterility, ten with seed weight per panicle, 14 with seed weight per plant and one region overlapping for two traits. Fifteen co-localized with previously reported QTLs for cold tolerance or yield components. Candidate gene ontology searches revealed these QTLs were associated with significant enrichment for genes related to with lipid metabolism, response to stimuli, response to biotic stimuli (suggesting cross-talk between biotic and abiotic stresses), and oxygen binding. Overall the JAPONICA accessions were more tolerant to cold stress than INDICA accessions. PMID:28282385
Kircher, Stefan; Schopfer, Peter
2012-01-01
The most hazardous span in the life of green plants is the period after germination when the developing seedling must reach the state of autotrophy before the nutrients stored in the seed are exhausted. The need for an economically optimized utilization of limited resources in this critical period is particularly obvious in species adopting the dispersal strategy of producing a large amount of tiny seeds. The model plant Arabidopsis thaliana belongs to this category. Arabidopsis seedlings promote root development only in the light. This response to light has long been recognized and recently discussed in terms of an organ-autonomous feature of photomorphogenesis directed by the red/blue light absorbing photoreceptors phytochrome and cryptochrome and mediated by hormones such as auxin and/or gibberellin. Here we show that the primary root of young Arabidopsis seedlings responds to an interorgan signal from the cotyledons and that phloem transport of photosynthesis-derived sugar into the root tip is necessary and sufficient for the regulation of root elongation growth by light. PMID:22733756
Smoke signals and seed dormancy
Waters, Mark T; Nelson, David C
2011-01-01
The Arabidopsis thaliana F-box protein MAX2 has been discovered in four separate genetic screens, indicating that it has roles in leaf senescence, seedling photosensitivity, shoot outgrowth and seed germination. Both strigolactones and karrikins can regulate A. thaliana seed germination and seedling photomorphogenesis in a MAX2-dependent manner, but only strigolactones inhibit shoot branching. How MAX2 mediates specific responses to both classes of structurally-related signals, and the origin of its dual role remains unknown. The moss Physcomitrella patens utilizes strigolactones and MAX2 orthologs are present across the land plants, suggesting that this signaling system could have an ancient origin. The seed of parasitic Orobanchaceae species germinate preferentially in response to strigolactones over karrikins, and putative Orobanchaceae MAX2 orthologs form a sub-clade distinct from those of other dicots. These observations suggest that lineage-specific evolution of MAX2 may have given rise to specialized responses to these signaling molecules. PMID:22019642
Zhang, Hao; Yang, Minmin; Luan, Qian; Tang, Hu; Huang, Fenghong; Xiang, Xia; Yang, Chen; Bao, Yuping
2017-05-17
Cellulose anionic hydrogels were successfully prepared by dissolving TEMPO-oxidized cellulose nanofibers in NaOH/urea aqueous solution and being cross-linked with epichlorohydrin. The hydrogels exhibited microporous structure and high hydrophilicity, which contribute to the excellent water absorption property. The growth indexes, including the germination rate, root length, shoot length, fresh weight, and dry weight of the seedlings, were investigated. The results showed that cellulose anionic hydrogels with suitable carboxylate contents as plant growth regulators could be beneficial for seed germination and growth. Moreover, they presented preferable antifungal activity during the breeding and growth of the sesame seed breeding. Thus, the cellulose anionic hydrogels with suitable carboxylate contents could be applied as soilless culture mediums for plant growth. This research provided a simple and effective method for the fabrication of cellulose anionic hydrogel and evaluated its application in agriculture.
Annual variation in seedfall, postdispersal predation, and recruitment of a neotropical tree
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schupp, E.W.
1990-04-01
Knowledge of the dynamics of seed production and seedling recruitment of individual tree species is crucial for a complete understanding of tropical forest dynamics, yet multiyear studies on the seed and young seedling stages of tropical trees are virtually nonexistent. In a 4-yr study of the understory tree Faramea occidentalis on Barro Colorado Island, Panama, the author quantified natural levels of viable seedfall, seedling emergence, and seedling establishment, and experimentally estimated postdispersal seed predation. The levels of viable seedfall, seed predation, seedling emergence, early seedling survival, and seedling recruitment all differed significantly among years. The proportion of fallen seeds destroyedmore » by predators before germination was not related to the quantity of F. occidentalis seedfall. Within a year, however, F. occidentalis seed predation appeared to be influenced by community-wide seedfall, with high predation rates during times of low seed abundance and very low predation during the late dry season peak in seedfall by the community. Most of the annual variation in recruitment can be explained by the combination of seedfall and seed predation; in 3 of the 4 yr seedling emergence could be predicted from a knowledge of viable seedfall and the probability of a seed surviving until the peak of germination. The 4th yr, however, demonstrated that environmental conditions provide a sporadic, though important, limitation to recruitment. In comparison to many tree species, early seedling survival was relatively high, as was the ratio of seedlings recruited per seed falling. The highly successful recruitment of F. occidentalis is associated with a high population density of both saplings and adults in the study area.« less
Seedling growth and development on space shuttle
NASA Astrophysics Data System (ADS)
Cowles, J.; Lemay, R.; Jahns, G.
1994-11-01
Young pine seedlings, and mung bean and oat seeds were flown on shuttle flights, STS-3 and STS-51F, in March, 1982 and July/August, 1985, respectively. The plant growth units built to support the two experiments functioned mechanically as anticipated and provided the necessary support data. Pine seedlings exposed to the microgravity environment of the space shuttle for 8 days continued to grow at a rate similar to ground controls. Pine stems in flight seedlings, however, averaged 10 to 12% less lignin than controls. Flight mung beans grew slower than control beans and their stems contained about 25% less lignin than control seedlings. Reduced mung bean growth in microgravity was partly due to slower germination rate. Lignin also was reduced in flight oats as compared to controls. Oats and mung beans exhibited upward growing roots which were not observed in control seedlings. Chlorophll A/B ratios were lower in flight tissues than controls. The sealed PGCs exhibited large variations in atmospheric gas composition but the changes were similar between flight and ground controls. Ethylene was present in low concentrations in all chambers.
Seedling growth and development on space shuttle
NASA Technical Reports Server (NTRS)
Cowles, J.; Lemay, R.; Jahns, G.
1994-01-01
Young pine seedlings, and mung bean and oat seeds were flown on shuttle flights, STS-3 and STS-51F, in March, 1982 and July/August, 1985, respectively. The plant growth units built to support the two experiments functioned mechanically as anticipated and provided the necessary support data. Pine seedlings exposed to the microgravity environment of the space shuttle for 8 days continued to grow at a rate similar to ground controls. Pine stems in flight seedlings, however, averaged 10 to 12% less lignin than controls. Flight mung beans grew slower than control beans and their stems contained about 25% less lignin than control seedlings. Reduced mung bean growth in microgravity was partly due to slower germination rate. Lignin also was reduced in flight oats as compared to controls. Oats and mung beans exhibited upward growing roots which were not observed in control seedlings. Chlorophyll A/B ratios were lower in flight tissues than controls. The sealed PGCs exhibited large variations in atmospheric gas composition but the changes were similar between flight and ground controls. Ethylene was present in low concentrations in all chambers.
Sano, Naoto; Ono, Hanako; Murata, Kazumasa; Yamada, Tetsuya; Hirasawa, Tadashi; Kanekatsu, Motoki
2015-01-01
Mature dry seeds contain translatable mRNAs called long-lived mRNAs. Early studies have shown that protein synthesis during the initial phase of seed germination occurs from long-lived mRNAs, without de novo transcription. However, the gene expression systems that generate long-lived mRNAs in seeds are not well understood. To examine the accumulation of long-lived mRNAs in developing rice embryos, germination tests using the transcriptional inhibitor actinomycin D (Act D) were performed with the Japonica rice cultivar Nipponbare. Although over 70% of embryos at 10 days after flowering (DAF) germinated in the absence of the inhibitor, germination was remarkably impaired in embryos treated with Act D. In contrast, more than 70% of embryos at 20, 25, 30 and 40 DAF germinated in the presence of Act D. The same results were obtained when another cultivar, Koshihikari, was used, indicating that the long-lived mRNAs required for germination predominantly accumulate in embryos between 10 and 20 DAF during seed development. RNA-Seq identified 529 long-lived mRNA candidates, encoding proteins such as ABA, calcium ion and phospholipid signalling-related proteins, and HSP DNA J, increased from 10 to 20 DAF and were highly abundant in 40 DAF embryos of Nipponbare and Koshihikari. We also revealed that these long-lived mRNA candidates are clearly up-regulated in 10 DAF germinating embryos after imbibition, suggesting that the accumulation of these mRNAs in embryos is indispensable for the induction of germination. The findings presented here may facilitate in overcoming irregular seed germination or producing more vigorous seedlings. PMID:25941326
Hydrothermal assessment of temporal variability in seedbed microclimate
Stuart P. Hardegree; Corey A. Moffet; Gerald N. Flerchinger; Jaepil Cho; Bruce A. Roundy; Thomas A. Jones; Jeremy J. James; Patrick E. Clark; Frederick B. Pierson
2013-01-01
The microclimatic requirements for successful seedling establishment are much more restrictive than those required for adult plant survival. The purpose of the current study was to use hydrothermal germination models and a soil energy and water flux model to evaluate intra- and interannual variability in seedbed microclimate relative to potential germination response...
Nuclear behavior during basidiospore germination in Cronartium quercuum f. sp. fusiforme
P.C. Spaine; Shigeru Kaneko
1996-01-01
Nuclear behavior during basidiospore germination in Cronartiunz quercuum f. sp. fusiforme was examined on glass slides and host seedlings using 4,6-diamidino-2-phenylindolestaining. Mononucleate basidiospores of Cronartium quercuum f. sp. fusiforme normally were produced following meiosis in the teliospore. However, a subsequent mitotic division often occurred within...
USDA-ARS?s Scientific Manuscript database
Seeds employ sensory systems that assess various environmental cues over time to maximize the successful transition from embryo to seedling. Here, we show that the Arabidopsis F-Box protein Cold Temperature-Germinating (CTG)-10, identified by activation tagging, is a positive regulator during this p...
NASA Astrophysics Data System (ADS)
De Micco, Veronica; Aronne, Giovanna
2008-04-01
During the evolution of higher plants on Earth, changes in numerous environmental factors occurred, but gravity has been a steady and unchanging force. The alteration of gravitational stimulus can cause modification of plant growth in various aspects that need to be investigated before the establishment of self-sustaining human colonies in Space, supported by bio-regenerative systems. This paper reports the results of an experiment conducted onboard of Foton-M2 satellite where soy seedlings grew during a 5-days period. The experiment was aimed to investigate the effect of microgravity on seed germination, seedling development, morphology and anatomy. The environmental conditions, other than gravity, of the ground control were repeated as identical as possible to those experienced on orbit. Seedlings developed in Space were compared with those grown in 1 g on the basis of numerous anatomical and cytological parameters, such as size and shape of cells and intercellular spaces, amount and distribution of starch and phenolics in different organs and tissues. The observations made through light and fluorescence microscopy, together with the quantification of structural features, by means of digital image analysis, allowed to evidence that the various organs and tissues of soy seedlings show different degrees of alteration after the development in microgravity.
Chen, Defu; Li, Yanlan; Fang, Tao; Shi, Xiaoli; Chen, Xiwen
2016-03-01
Tocopherols and tocotrienols are lipophilic antioxidants that are abundant in plant seeds. Although their roles have been extensively studied, our understanding of their functions in rice seeds is still limited. In this study, on the basis of available RNAi rice plants constitutively silenced for homogentisate phytyltransferase (HPT) and tocopherol cyclase (TC), we developed transgenic plants that silenced homogentisate geranylgeranyl transferase (HGGT). All the RNAi plants showed significantly reduced germination percentages and a higher proportion of abnormal seedlings than the control plants, with HGGT transgenics showing the most severe phenotype. The accelerated aging phenotype corresponded well with the amount of H2O2 accumulated in the embryo, glucose level, and ion leakage, but not with the amount of O(2-) accumulated in the embryo and lipid hydroperoxides levels in these genotypes. Under abiotic stress conditions, HPT and TC transgenics showed lower germination percentage and seedling growth than HGGT transgenics, while HGGT transgenics showed almost the same status as the wild type. Therefore, we proposed that tocopherols in the germ may protect the embryo from reactive oxygen species under both accelerated aging and stress conditions, whereas tocotrienols in the pericarp may exclusively help in reducing the metabolic activity of the seed during accelerated aging. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Changes in the germination process and growth of pea in effect of laser seed irradiation
NASA Astrophysics Data System (ADS)
Podleśna, Anna; Gładyszewska, Bożena; Podleśny, Janusz; Zgrajka, Wojciech
2015-10-01
The aim of this study was to determine the effect of pre-sowing helium-neon (He-Ne) laser irradiation of pea seeds on changes in seed biochemical processes, germination rate, seedling emergence, growth rate, and yield. The first experimental factor was exposure to laser radiation: D0 - no irradiation, D3 - three exposures, D5 - five exposures, and the harvest dates were the second factor. Pre-sowing treatment of pea seeds with He-Ne laser light increased the concentrations of amylolytic enzymes and the content of indole-3-acetic acid (IAA) in pea seeds and seedlings. The exposure of seeds to He-Ne laser light improved the germination rate and uniformity and modified growth stages, which caused acceleration of flowering and ripening of pea plants. Laser light stimulation improved the morphological characteristics of plants by increasing plant height and leaf surface area. Irradiation improved the yield of vegetative and reproductive organs of pea, although the effects varied at the different growth stages. The increase in the seed yield resulted from a higher number of pods and seeds per plant, whereas no significant changes were observed in the number of seeds per pod. Both radiation doses exerted similarly stimulating effects on pea growth, development, and yield.
NASA Technical Reports Server (NTRS)
Johnson, Corinne F.; Dreschel, Thomas W.; Brown, Christopher S.; Wheeler, Raymond M.
1994-01-01
The Porous Tube Plant Nutrient Delivery System (PTPNDS), a hydrophilic, microporous ceramic tube hydroponic system designed for microgravity, will be tested in a middeck locker of the Space Shuttle. The flight experiment will focus on hardware operation and assess its ability to support seed germination and early seedling growth in microgravity. The water controlling system of the PTPNDS hardware has been successfully tested during the parabolic flight of the KC-135. One challenge to the development of the spaceflight experiment was to devise a method of holding seeds to the cylindrical porous tube. The seed holder must provide water and air to the seed, absorb water from the porous tube, withstand sterilization, provide a clear path for shoots and roots to emerge, and be composed of flight qualified materials. In preparation for the flight experiment, a wheat seed-holder has been designed that utilizes a cellulose acetate plug to facilitate imbibition and to hold the wheat seeds in contact with the porous tube in the correct orientation during the vibration of launch and the microgravity environment of orbit. Germination and growth studies with wheat at a range of temperatures showed that optimal moisture was 78% (by weight) in the cellulose acetate seed holders. These and other design considerations are discussed.
NASA Technical Reports Server (NTRS)
Johnson, C. F.; Dreschel, T. W.; Brown, C. S.; Wheeler, R. M.
1996-01-01
The Porous Tube Plant Nutrient Delivery System (PTPNDS), a hydrophilic, microporous ceramic tube hydroponic system designed for microgravity, will be tested in a middeck locker of the Space Shuttle. The flight experiment will focus on hardware operation and assess its ability to support seed germination and early seedling growth in microgravity. The water controlling system of the PTPNDS hardware has been successfully tested during the parabolic flight of the KC-135. One challenge to the development of the space flight experiment was to devise a method of holding seeds to the cylindrical porous tube. The seed-holder must provide water and air to the seed, absorb water from the porous tube, withstand sterilization, provide a clear path for shoots and roots to emerge, and be composed of flight qualified materials. In preparation for the flight experiment, a wheat seed-holder has been designed that utilizes a cellulose acetate plug to facilitate imbibition and to hold the wheat seeds in contact with the porous tube in the correct orientation during the vibration of launch and the microgravity environment of orbit. Germination and growth studies with wheat at a range of temperatures showed that optimal moisture was 78% (by weight) in the cellulose acetate seed holders. These and other design considerations are discussed.
Shine, M B; Guruprasad, K N; Anand, Anjali
2011-09-01
Experiments were conducted to study the effect of static magnetic fields on the seeds of soybean (Glycine max (L.) Merr. var: JS-335) by exposing the seeds to different magnetic field strengths from 0 to 300 mT in steps of 50 mT for 30, 60, and 90 min. Treatment with magnetic fields improved germination-related parameters like water uptake, speed of germination, seedling length, fresh weight, dry weight and vigor indices of soybean seeds under laboratory conditions. Improvement over untreated control was 5-42% for speed of germination, 4-73% for seedling length, 9-53% for fresh weight, 5-16% for dry weight, and 3-88% and 4-27% for vigor indices I and II, respectively. Treatment of 200 mT (60 min) and 150 mT (60 min), which were more effective than others in increasing most of the seedling parameters, were further explored for their effect on plant growth, leaf photosynthetic efficiency, and leaf protein content under field conditions. Among different growth parameters, leaf area, and leaf fresh weight showed maximum enhancement (more than twofold) in 1-month-old plants. Polyphasic chlorophyll a fluorescence (OJIP) transients from magnetically treated plants gave a higher fluorescence yield at the J-I-P phase. The total soluble protein map (SDS-polyacrylamide gel) of leaves showed increased intensities of the bands corresponding to a larger subunit (53 KDa) and smaller subunit (14 KDa) of Rubisco in the treated plants. We report here the beneficial effect of pre-sowing magnetic treatment for improving germination parameters and biomass accumulation in soybean. Copyright © 2011 Wiley-Liss, Inc.
Sensitivity to high temperature and water stress in recalcitrant Baccaurea ramiflora seeds.
Wen, Bin; Liu, Minghang; Tan, Yunhong; Liu, Qiang
2016-07-01
Southeast Asia experiences one of the highest rates of deforestation in the tropics due to agricultural expansion, logging, habitat fragmentation and urbanization. As tropical rainforests harbour abundant recalcitrant-seeded species, it is important to understand how recalcitrant seeds respond to deforestation and fragmentation. Baccaurea ramiflora is a recalcitrant-seeded species, widely distributed in Southeast Asian tropical rainforest. In this study, B. ramiflora seeds were sown in three plots, one in a nature reserve and two in disturbed holy hill forests, to investigate seed germination and seedling establishment in the field, while laboratory experiments were conducted to investigate the effects of high temperature and water stress on germination. It was found that seed germination and seedling establishment in B. ramiflora were clearly reduced in holy hills compared to the nature reserve, although the seeds were only moderately to minimally recalcitrant. This was potentially caused by increased temperature and decreased moisture in holy hills, for laboratory experiments showed that seed germination was greatly inhibited by temperatures ≥35 °C or water potentials ≤-0.5 MPa, and depressed by heat treatment at 40 °C when the continuous heating period lasted for 240 h or daily periodic heating exceeded 10 h. Unlike orthodox seeds, which can endure much higher temperatures in the air-dried state than in the imbibed state, both blotted and immersed B. ramiflora seeds lost viability within a narrow temperature range between 50 and 60 °C. As recalcitrant seeds can be neither air-dried nor heated, species producing recalcitrant seeds will suffer more than those producing orthodox seeds in germination and seedling establishment from increased temperature and decreased moisture in fragmented rainforests, which results in sensitivity of recalcitrant-seeded species to rainforest fragmentation.
Subedi, Maya; Willenborg, Christian J; Vandenberg, Albert
2017-01-01
Most red lentil produced worldwide is consumed in dehulled form, and post-harvest milling and splitting qualities are major concerns in the secondary processing industry. Lentil producers in northern temperate regions usually apply pre-harvest desiccants as harvest aids to accelerate the lentil crop drying process and facilitate harvesting operations. This paper reports on field studies conducted at Scott and Saskatoon, Saskatchewan, Canada in the 2012 and 2013 cropping seasons to evaluate whether herbicides applied as harvest aids alone or tank mixed with glyphosate affect seed germination, seedling vigor, milling, and splitting qualities. The site-year by desiccant treatment interaction for seed germination, vigor, and milling recovery yields was significant. Glyphosate applied alone or as tank mix with other herbicides (except diquat) reduced seed germination and seedling vigor at Saskatoon and Scott in 2012 only. Pyraflufen-ethyl (20 g ai ha -1 ) applied with glyphosate as well as saflufenacil (36 g ai ha -1 ) decreased dehulling efficiency, while saflufenacil and/or glufosinate with glyphosate reduced milling recovery and football recovery, although these effects were inconsistent. Application of diquat alone or in combination with glyphosate exhibited more consistent dehulling efficiency gains and increases in milling recovery yield. Significant but negative associations were observed between glyphosate residue in seeds and seed germination ( r = -0.84, p < 0.001), seed vigor ( r = -0.62, p < 0.001), dehulling efficiency ( r = -0.55, p < 0.001), and milling recovery ( r = -0.62, p < 0.001). These results indicate application of diquat alone or in combination with glyphosate may be a preferred option for lentil growers to improve milling recovery yield.
Subedi, Maya; Willenborg, Christian J.; Vandenberg, Albert
2017-01-01
Most red lentil produced worldwide is consumed in dehulled form, and post-harvest milling and splitting qualities are major concerns in the secondary processing industry. Lentil producers in northern temperate regions usually apply pre-harvest desiccants as harvest aids to accelerate the lentil crop drying process and facilitate harvesting operations. This paper reports on field studies conducted at Scott and Saskatoon, Saskatchewan, Canada in the 2012 and 2013 cropping seasons to evaluate whether herbicides applied as harvest aids alone or tank mixed with glyphosate affect seed germination, seedling vigor, milling, and splitting qualities. The site-year by desiccant treatment interaction for seed germination, vigor, and milling recovery yields was significant. Glyphosate applied alone or as tank mix with other herbicides (except diquat) reduced seed germination and seedling vigor at Saskatoon and Scott in 2012 only. Pyraflufen-ethyl (20 g ai ha−1) applied with glyphosate as well as saflufenacil (36 g ai ha−1) decreased dehulling efficiency, while saflufenacil and/or glufosinate with glyphosate reduced milling recovery and football recovery, although these effects were inconsistent. Application of diquat alone or in combination with glyphosate exhibited more consistent dehulling efficiency gains and increases in milling recovery yield. Significant but negative associations were observed between glyphosate residue in seeds and seed germination (r = −0.84, p < 0.001), seed vigor (r = −0.62, p < 0.001), dehulling efficiency (r = −0.55, p < 0.001), and milling recovery (r = −0.62, p < 0.001). These results indicate application of diquat alone or in combination with glyphosate may be a preferred option for lentil growers to improve milling recovery yield. PMID:28352275
Kołodziejek, Jeremi; Patykowski, Jacek
2015-01-01
Rumex confertus is a biennial species native to Eastern Europe and Asia, where it thrives on meadow-steppes and glades in forest-steppe. This species has increased its range rapidly within central Europe, yet its biology is not well understood, which has led to poorly timed management. Effects of temperature, light, sodium chloride (NaCl), hydrogen ion concentration (pH), potassium nitrate (KNO3), and polyethylene glycol 6000 on seed germination were examined. Seedling emergence was examined for seeds sown at different depths in sand-filled pots. Seeds of R. confertus were nondormant at maturity. The germination percentage and rate of germination were significantly higher in light than in darkness. Secondary dormancy was induced in these seeds by 12 weeks of dark incubation at 4°C. The seeds of R. confertus undergo a seasonal dormancy cycle with deep dormancy in winter and early spring and a low level of dormancy in early autumn. Germination decreased as soil salinity increased. NO3 − increased the percentage and rate of germination in the studied species. Decrease in seedling emergence from the seeds buried at >0.5 cm may be due to deficiency of light. From our experiments, we conclude that the weed R. confertus normally becomes established in vegetation gaps or due to disturbance of the uppermost soil layer during the growing season through the germination of seeds originating from a long-lived seed bank. PMID:26229977
de Souza, Paulo S A; Cerqueira, Alexandre A; Rigo, Michelle M; de Paiva, Julieta L; Couto, Rafael S P; Merçon, Fábio; Perez, Daniel V; Marques, Monica R C
2017-05-01
This study aims to evaluate the effects of oilfield water (OW), treated by a hybrid process of electrocoagulation and reverse osmosis (EC-RO), on seed germination and early growth characteristics of sunflower (Heliantus annus L.). In the EC step, tests were conducted with 28.6 A m -2 current density and 4 min. reaction time. In the RO step, the system was operated with 1 L min -1 constant flow and 2 MPa, 2.5 MPa and 3 MPa feed pressures. In all feed pressures, RO polymeric membranes achieved very high removals of chemical oxygen demand (up to 89%) and oils and greases (100%) from EC-treated effluent. In best feed pressure (2.5 MPa), turbidity, total dissolved salts, electrical conductivity, salinity, toxic ions and sodium adsorption ratio values attained internationally recognized standards for irrigation water. Using EC-RO (feed pressure:2.5 MPa) treated OW, germinated sunflower seeds percentage (86 ± 6%), speed of germination (30 ± 2) and biomass production (49 ± 5 mg) were statistically similar to control (distilled water) results. Vigor index average values obtained using OW treated by EC-RO (3871)were higher than that obtained by OW water treated by EC (3300). The results of this study indicate that EC-RO seems to be a promising alternative for treatment of OW aiming sunflower crops irrigation, since the use of this treated effluent did not affect adversely seed germination and seedling development, and improved seedling vigor. Furthermore, OW treatment by EC-RO reduces sodium levels into acceptable standards values avoiding soil degradation.
Myers, Ronald L
2013-09-01
In the marshes dominated by palms, seeds face anaerobic substrates and long flooding periods. Some tree species are capable of growing both in flooded swamps and in areas with lower influence of the flood. I studied the potential settlement of various tree species in different macrohabitats in the Tortuguero floodplain using three experiments: (1) Manicaria saccifera and Raphia taedigera seed germination in palm-swamps and forests of slopes; (2) germination of R. taedigera seeds along a microtopographic gradient; and (3) seed germination and seedling height growth of six woody species (Dipteryx oleifera, Pterocarpus officinalis, Prioria copaifera, Pentaclethra macroloba, Carapa guianensis and Crudia acuminata) and two palms (R. taedigera and Manicaria saccifera) under different forest and swamp habitats. In the first experiment, I found that the palms germinated much earlier in the slope forest than in the palm-swamp. In the second experiment, in drier plots (less effect of flooding) germination began earlier than in the more humid plots. In the third experiment, woody species germinated faster than the studied palms, and some species do not tolerate flooded areas (marshes and swamps), so they cannot germinate or survive in them. Other woody species were removed from the slope forest, probably due to seed predators. Based on the presence or absence of these species in the environment of study were divided into: (1) obliged swamp species (R. taedigera and M saccifera), (2) swamp intolerant (D. oleifera), and (3) facultative wetland species (P officinalis, P copaifera, P macroloba, C. guianensis). Crudia acuminata does not seem to follow any of these categories.
Anaerobic metabolism in Brassica seedlings
NASA Astrophysics Data System (ADS)
Park, Myoung-Ryoul; Hasenstein, Karl H.
Germination typically depends on oxidative respiration. The lack of convection under space conditions may create hypoxic or conditions during seed germination. We investigated the effect of reduced oxygen on seed germination and metabolism to understand how metabolic constraints affect seed growth and responsiveness to reorientation. Germination was completely inhibited when seeds were imbibed in the absence of oxygen; germination occurred at 5% oxygen and higher levels. Adding oxygen after 72 h resulted in immediate germination (protrusion of the radicle). Hypoxia typically activates alcohol dehydrogenase (ADH, EC 1.1.1.1) and lactate dehydrogenase (LDH, EC 1.1.1.27) which produce ethanol and/or L-lactate, respectively. We report on the expression of ADH1 and LDH1, and changes in total soluble sugars, starch, pH, and L-lactate in seedlings grown at 28°C in 0, 2.5, 5, 10% and ambient (21%) oxygen conditions as controls. The highest consumption (lowest level) of sugars was seen at 0% oxygen but the lowest level of starch occurred 24 h after imbibition under ambient condition. Expression levels of ADH1 in ambient oxygen condition increased within 24 h but increased threefold under hypoxic conditions; LDH1 increased up to 8-fold under hypoxia compared to controls but ADH1 and LDH1 were less expressed as the oxygen levels increased. The intracellular pH of seeds decreased as the content of L-lactate increased for all oxygen concentrations. These results indicate that germination of Brassica is sensitive to oxygen levels and that oxygen availability during germination is an important factor for metabolic activities. (Supported by NASA grant NNX10AP91G)
Milotić, T; Hoffmann, M
2016-11-01
Endozoochory is one of the main drivers shaping temperate grassland communities by maintaining plant populations of its constituents and enabling plants to colonize new habitats. Successful endozoochorous dispersal implies that seeds not only get consumed and survive the digestive tract but are also able to develop into viable seedlings in a dung environment. We experimentally assessed the germination probability and timing of 15 annual and perennial temperate European grassland species in cattle and horse dung and in different climatic conditions (greenhouse and outdoor conditions). Interspecific variation in germinability and germination timing are found, while life strategy had only an effect on germination timing. We found adverse effects of both cattle and horse dung on the germination characteristics of all tested grassland species, but the effects of cattle dung were more pronounced. In comparison with the control treatment, fewer seeds emerged in dung and more time was needed to germinate. Also, germination metrics clearly differed between the artificial greenhouse and outdoor conditions, with generally a lower germinability in outdoor conditions. According to our results, a large cost seems to be associated with endozoochorous dispersal in this stage of the life cycle, as seed dispersal effectiveness strongly depends on the quality of the deposition site with a lowered survival and germination probability when seeds are deposited in dung. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.
Yang, Li; Ma, Xiao-Yan; Ruan, Xiao; Jiang, De-An; Pan, Cun-De; Wang, Qiang
2016-04-22
As a candidate for bioherbicide, 4,8-dihydroxy-1-tetralone (4,8-DHT) was isolated from Caryospora callicarpa epicarp and its two enantiomers, S-(+)-isosclerone and R-(-)-regiolone, were separated by chiral high-performance liquid chromatography (HPLC) on a Chiralcel OD column with chiral stationary phase (CSP)-coated cellulose-tris(3,5-dimethylphenylcarbamate). Then, the phytotoxicity of 4,8-DHT and its enantiomers toward the seeds germination and seedling growth of the five tested plant species, including lettuce (Latuca sativa), radish (Raphanus sativus), cucumber (Cucumis sativus), onion (Allium cepa), and wheat (Triticum aestivum), were investigated and the results indicated a hormesis at low concentration of 4,8-DHT and its enantiomers, but a retardant effect at high concentration. Between the two enantiomers of 4,8-DHT, the S-(+)-isosclerone was more toxic to seeds germination and seedling growth of the five tested plant species than the R-(-)-regiolone, and also the phytotoxicity of S-(+)-isosclerone varied with different plants. For example, S-(+)-isosclerone was the most active to seedling growth of lettuce, indicating that S-(+)-isosclerone had specific effects on different organisms. Thus, all of the chirality and concentration of 4,8-DHT, as well as the affected plant species, need to be taken into consideration in the development and utilization of 4,8-DHT.
Airaki, Morad; Leterrier, Marina; Valderrama, Raquel; Chaki, Mounira; Begara-Morales, Juan C.; Barroso, Juan B.; del Río, Luis A.; Palma, José M.; Corpas, Francisco J.
2015-01-01
Background and Aims The development of seedlings involves many morphological, physiological and biochemical processes, which are controlled by many factors. Some reactive oxygen and nitrogen species (ROS and RNS, respectively) are implicated as signal molecules in physiological and phytopathological processes. Pepper (Capsicum annuum) is a very important crop and the goal of this work was to provide a framework of the behaviour of the key elements in the metabolism of ROS and RNS in the main organs of pepper during its development. Methods The main seedling organs (roots, hypocotyls and green cotyledons) of pepper seedlings were analysed 7, 10 and 14 d after germination. Activity and gene expression of the main enzymatic antioxidants (catalase, ascorbate–glutathione cycle enzymes), NADP-generating dehydrogenases and S-nitrosoglutathione reductase were determined. Cellular distribution of nitric oxide (·NO), superoxide radical (O2·–) and peroxynitrite (ONOO–) was investigated using confocal laser scanning microscopy. Key Results The metabolism of ROS and RNS during pepper seedling development was highly regulated and showed significant plasticity, which was co-ordinated among the main seedling organs, resulting in correct development. Catalase showed higher activity in the aerial parts of the seedling (hypocotyls and green cotyledons) whereas roots of 7-d-old seedlings contained higher activity of the enzymatic components of the ascorbate glutathione cycle, NADP-isocitrate dehydrogenase and NADP-malic enzyme. Conclusions There is differential regulation of the metabolism of ROS, nitric oxide and NADP dehydrogenases in the different plant organs during seedling development in pepper in the absence of stress. The metabolism of ROS and RNS seems to contribute significantly to plant development since their components are involved directly or indirectly in many metabolic pathways. Thus, specific molecules such as H2O2 and NO have implications for signalling, and their temporal and spatial regulation contributes to the success of seedling establishment. PMID:25808658
Joanne Rebbeck; Kurt Gottschalk; Amy Scherzer
2011-01-01
Northern red oak (Quercus rubra L.) seedling growth has been extensively studied. White oak (Quercus alba L.) and chestnut oak (Quercus prinus L.), however, are far less investigated despite their importance among upland oak species in eastern North American forests. We characterized white and chestnut oak...
USDA-ARS?s Scientific Manuscript database
Direct-seeding of rice without prior pre-germination is gaining popularity in rice growing countries because it requires less water and is less labor than transplanting rice seedlings. Slow emergence and poor seedling establishment of direct-seeded rice are the primary drawback of this method. Adeq...
Pondberry (Lindera melissifolia, Lauraceae) seed and seedling dispersers and predators
Andreza M. Martins; Fernanda M. Abilio; Plinio Gonçalves de Oliveira; Raquel Partelli Feltrin; Fernanda Scheffer Alves de Lima; Priscilla de O. Antonelli; Daniela Teixeira Vilela; Carl G. Smith III; Collin Tidwell; Paul Hamel; Margaret Devall; Kristina Connor; Theodor Leininger; Nathan Schiff; A. Dan Wilson
2015-01-01
Pondberry (Lindera melissifolia(Walter) Blume) is an endangered dioecious, clonal shrub that grows in periodically flooded forests of the southeastern United States. The probability of survival of dispersed pondberry seeds and new germinants is unknown, but few seedlings are noted in the forest. This study was undertaken to: (1) identify herbivores...
USDA-ARS?s Scientific Manuscript database
Although recently introduced, film-coating of agronomic seeds is now widely accepted in modern agriculture as an effective technology for protecting germinating seeds and seedlings. These experiments explored the possibility of using a bioplastic-based formulation to film-coat corn (maize) and cano...
James G. Conklin
1969-01-01
Native birches are subject to attack by insects at all stages of growth from the germinating seedling to the mature tree. All parts of the treeroots, stem, branches, foliage, and even the developing seedmay be utilized as feeding sites by insects of one kind or another. An enumeration of the many insects recorded in the literature as feeders on...
M. Hussain; M. E. Kubiske; K. F. Connor
2001-01-01
Increasing atmospheric carbon dioxide concentration, [CO2], has profound effects on growth and development of trees. Adoubling of [C02] generally stimulates photosynthesis (Murray 1995; Saxe, Ellsworth & Heath 1998) and can lead to a substantial increase in tree growth (Poorter 1993). For example, doubling [C0
Liddycoat, Scott M; Greenberg, Bruce M; Wolyn, David J
2009-04-01
Plant growth-promoting rhizobacteria (PGPR) can have positive effects on vigour and productivity, especially under stress conditions. In asparagus (Asparagus officinalis L.) field culture, seeds are planted in high-density nurseries, and 1-year-old crowns are transplanted to production fields. Performance can be negatively affected by water stress, transplant shock, and disease pressure on wounded roots. PGPR inoculation has the potential to alleviate some of the stresses incurred in the production system. In this study, the effects of PGPR (Pseudomonas spp.) treatment were determined on 3-week-old greenhouse-grown seedlings and germinating seeds of 2 asparagus cultivars. The pots were irrigated to a predetermined level that resulted in optimum growth or the plants were subjected to drought or flooding stress for 8 weeks. The cultivars responded differently to PGPR: single inoculations of seedlings enhanced growth of 'Guelph Millennium' under optimum conditions and 'Jersey Giant' seedlings under drought stress. Seed inoculations with PGPR resulted in a positive response only for 'Guelph Millennium', for which both single or multiple inoculations enhanced plant growth under drought stress.
Aboveground mechanical stimuli affect belowground plant-plant communication.
Elhakeem, Ali; Markovic, Dimitrije; Broberg, Anders; Anten, Niels P R; Ninkovic, Velemir
2018-01-01
Plants can detect the presence of their neighbours and modify their growth behaviour accordingly. But the extent to which this neighbour detection is mediated by abiotic stressors is not well known. In this study we tested the acclimation response of Zea mays L. seedlings through belowground interactions to the presence of their siblings exposed to brief mechano stimuli. Maize seedling simultaneously shared the growth solution of touched plants or they were transferred to the growth solution of previously touched plants. We tested the growth preferences of newly germinated seedlings toward the growth solution of touched (T_solution) or untouched plants (C_solution). The primary root of the newly germinated seedlings grew significantly less towards T_solution than to C_solution. Plants transferred to T_solution allocated more biomass to shoots and less to roots. While plants that simultaneously shared their growth solution with the touched plants produced more biomass. Results show that plant responses to neighbours can be modified by aboveground abiotic stress to those neighbours and suggest that these modifications are mediated by belowground interactions.
NASA Astrophysics Data System (ADS)
Jablkowski, P.; Johnson, E. A.; Martin, Y. E.
2017-10-01
Climatic, hydraulics, hydrologic, and fluvial geomorphic processes are the main drivers of riparian white alder (Alnus rhombifolia Nutt.) distribution in northern California. The Mediterranean climate and canyon bound, bedrock-gravel morphology of the South Fork Eel have a distinct effect on these processes. White alder seeds are preferentially deposited on river bars where river hydraulics create eddies coinciding with the downstream part of riffles and the upstream part of pools. Seeds are generally deposited below bankfull elevations by the descending hydrograph during the spring season in this Mediterranean climate. For successful germination and establishment, the seeds must be deposited at a location such that they are not remobilized by late spring flows. The summer establishment period is defined from the date of seed deposition and germination to the fall/winter date of river sediment mobilization. Seedling root growth rate decreases exponentially with decreasing water potential. However, seedlings are shown not to be generally limited by water availability at the elevations they are most commonly deposited. The establishment of white alder seedlings following the first summer will therefore depend on their ability to resist fall/winter high flows. The method proposed here compares the predicted rooting depth to predicted sediment scour rates. The length of the establishment period rather than water availability determines final seedling rooting depth. Over the past 40 years, very few years had establishment periods that were long enough or had fast enough alder growth rates to survive winter floods that often scour deeper than the total root length. The low survival of seedlings in the first autumn season following germination is believed to be a principal reason for the missing age classes often found in alder distributions along rivers.
Plastid Located WHIRLY1 Enhances the Responsiveness of Arabidopsis Seedlings Toward Abscisic Acid
Isemer, Rena; Krause, Kirsten; Grabe, Nils; Kitahata, Nobutaka; Asami, Tadao; Krupinska, Karin
2012-01-01
WHIRLY1 is a protein that can be translocated from the plastids to the nucleus, making it an ideal candidate for communicating information between these two compartments. Mutants of Arabidopsis thaliana lacking WHIRLY1 (why1) were shown to have a reduced sensitivity toward salicylic acid (SA) and abscisic acid (ABA) during germination. Germination assays in the presence of abamine, an inhibitor of ABA biosynthesis, revealed that the effect of SA on germination was in fact caused by a concomitant stimulation of ABA biosynthesis. In order to distinguish whether the plastid or the nuclear isoform of WHIRLY1 is adjusting the responsiveness toward ABA, sequences encoding either the complete WHIRLY1 protein or a truncated form lacking the plastid transit peptide were overexpressed in the why1 mutant background. In plants overexpressing the full-length sequence, WHIRLY1 accumulated in both plastids and the nucleus, whereas in plants overexpressing the truncated sequence, WHIRLY1 accumulated exclusively in the nucleus. Seedlings containing recombinant WHIRLY1 in both compartments were hypersensitive toward ABA. In contrast, seedlings possessing only the nuclear form of WHIRLY1 were as insensitive toward ABA as the why1 mutants. ABA was furthermore shown to lower the rate of germination of wildtype seeds even in the presence of abamine which is known to inhibit the formation of xanthoxin, the plastid located precursor of ABA. From this we conclude that plastid located WHIRLY1 enhances the responsiveness of seeds toward ABA even when ABA is supplied exogenously. PMID:23269926
NASA Astrophysics Data System (ADS)
Vidyasagar, Pandit B.; Jagtap, Sagar S.; Dixit, Jyotsana P.; Kamble, Shailendra M.; Dhepe, Aarti P.
2014-12-01
Numerous studies have been carried out to investigate the hypergravity effect on plants, where seedlings (4-5 days old) were continuously exposed and grown under hypergravity condition. Here, we have used a novel `shortterm hypergravity exposure experimental method' where imbibed caryopses (instead of seedlings) were exposed to higher hypergravity values ranging from 500 g to 2500 g for a short interval time of 10 minutes and post short-term hypergravity treated caryopses were grown under 1 g conditions for five days. Changing patterns in caryopsis germination and growth, along with various photosynthetic and biochemical parameters were studied. Results revealed the significant inhibition of caryopsis germination and growth in short-term hypergravity treated seeds over control. Photosynthesis parameters such as chlorophyll content, rate of photosynthesis (PN), transpiration rate (Evap) and stomatal conductance (Gs), along with intracellular CO2 concentration (Cint) were found to be affected significantly in 5 days old seedlings exposed to short-term hypergravity treatment. In order to investigate the cause of observed inhibition, we examined the α-amylase activity and antioxidative enzyme activities. α-amylase activity was found to be inhibited, along with the reduction of sugars necessary for germination and earlier growth in short-term hypergravity treated caryopses. The activities of antioxidant enzymes such as catalase and guaiacol peroxidase were increased in short-term hypergravity treated caryopses, suggesting that caryopses might have experienced oxidative stress upon short-term hypergravity exposure.
Ozaslan, Cumali; Farooq, Shahid; Onen, Huseyin; Ozcan, Selcuk; Bukun, Bekir; Gunal, Hikmet
2017-12-05
Two Solanaceae invasive plant species (Physalis angulata L. and P. philadelphica Lam. var. immaculata Waterfall) infest several arable crops and natural habitats in Southeastern Anatolia region, Turkey. However, almost no information is available regarding germination biology of both species. We performed several experiments to infer the effects of environmental factors on seed germination and seedling emergence of different populations of both species collected from various locations with different elevations and habitat characteristics. Seed dormancy level of all populations was decreased with increasing age of the seeds. Seed dormancy of freshly harvested and aged seeds of all populations was effectively released by running tap water. Germination was slightly affected by photoperiods, which suggests that seeds are slightly photoblastic. All seeds germinated under wide range of temperature (15-40 °C), pH (4-10), osmotic potential (0 to -1.2 MPa) and salinity (0-400 mM sodium chloride) levels. The germination ability of both plant species under wide range of environmental conditions suggests further invasion potential towards non-infested areas in the country. Increasing seed burial depth significantly reduced the seedling emergence, and seeds buried below 4 cm of soil surface were unable to emerge. In arable lands, soil inversion to maximum depth of emergence (i.e., 6 cm) followed by conservational tillage could be utilized as a viable management option.
Yuan, Xia; Wen, Bin
2018-01-01
Crassocephalum crepidioides, Conyza canadensis, and Ageratum conyzoides are alien annuals naturalized in China, which produce a large number of viable seeds every year. They widely grow in Xishuangbanna, becoming troublesome weeds that compete with crops for water and nutrients. As seed germination is among the most important life-stages which contribute to plant distribution and invasiveness, its adaptation to temperature and water stress were investigated in these three species. Results showed that: (1) These three species have wide temperature ranges to allow seed germination, i.e., high germination and seedling percentages were achieved between 15°C and 30°C, but germination was seriously inhibited at 35°C; only A. conyzoides demonstrated relative preference for warmer temperatures with approximately 25% germination and seedling percentage at 35°C; (2) light was a vital germination prerequisite for C. crepidioides and A. conyzoides, whereas most C. canadensis seeds germinated in full darkness; (3) Although all three species have good adaptation to bare ground habitat characterized by high temperatures and water stress, including their tolerance to soil surface temperatures of 70°C in air-dried seeds, A. conyzoides seeds exhibited higher tolerance to both continuous and daily periodic high-temperature treatment at 40°C, and to water restriction (e.g., ca. 65% seeds germinated to -0.8 MPa created by NaCl), which is consistent with their field behavior in Xishuangbanna. This study suggests that seed high-temperature tolerance contributes to the weed attributes of these three species, and that adaptation to local micro-habitats is a critical determinant for invasiveness of an alien plant.
Yuan, Xia
2018-01-01
Crassocephalum crepidioides, Conyza canadensis, and Ageratum conyzoides are alien annuals naturalized in China, which produce a large number of viable seeds every year. They widely grow in Xishuangbanna, becoming troublesome weeds that compete with crops for water and nutrients. As seed germination is among the most important life-stages which contribute to plant distribution and invasiveness, its adaptation to temperature and water stress were investigated in these three species. Results showed that: (1) These three species have wide temperature ranges to allow seed germination, i.e., high germination and seedling percentages were achieved between 15°C and 30°C, but germination was seriously inhibited at 35°C; only A. conyzoides demonstrated relative preference for warmer temperatures with approximately 25% germination and seedling percentage at 35°C; (2) light was a vital germination prerequisite for C. crepidioides and A. conyzoides, whereas most C. canadensis seeds germinated in full darkness; (3) Although all three species have good adaptation to bare ground habitat characterized by high temperatures and water stress, including their tolerance to soil surface temperatures of 70°C in air-dried seeds, A. conyzoides seeds exhibited higher tolerance to both continuous and daily periodic high-temperature treatment at 40°C, and to water restriction (e.g., ca. 65% seeds germinated to -0.8 MPa created by NaCl), which is consistent with their field behavior in Xishuangbanna. This study suggests that seed high-temperature tolerance contributes to the weed attributes of these three species, and that adaptation to local micro-habitats is a critical determinant for invasiveness of an alien plant. PMID:29364942
Tsai, Allen Yi-Lun; Gazzarrini, Sonia
2012-01-01
The Arabidopsis B3-domain transcription factor FUSCA3 (FUS3) is a master regulator of seed maturation and also a central modulator of hormonal responses during late embryogenesis and germination. Recently, we have identified AKIN10, the Arabidopsis ortholog of Snf1 (Sucrose Non-Fermenting-1)–Related Kinase1 (SnRK1), as a FUS3-interacting protein. We demonstrated that AKIN10 physically interacts with and phosphorylates FUS3 at its N-terminal region, and genetically interacts with FUS3 to regulate developmental phase transition and lateral organ growth. Snf1/AMPK/SnRK1 kinases are important sensors of the cellular energy level, and they are activated in response to starvation and cellular stress. Here we present findings that indicate FUS3 and AKIN10 functionally overlap in ABA signaling, but play different roles in sugar responses during germination. Seeds overexpressing FUS3 and AKIN10 both display ABA-hypersensitivity and delayed germination. The latter is partly dependent on de novo ABA synthesis in both genotypes, as delayed germination can be partially rescued by the ABA biosynthesis inhibitor, fluridone. However, seeds and seedlings overexpressing FUS3 and AKIN10 show different sugar responses. AKIN10-overexpressing seeds and seedlings are hypersensitive to glucose, while those overexpressing FUS3 display overall defects in osmotic stress, primarily during seedling growth, as they show increased sensitivity toward sorbitol and glucose. Hypersensitivity to sugar and/or osmotic stress during germination are partly dependent on de novo ABA synthesis for both genotypes, although are likely to act through distinct pathways. This data suggests that AKIN10 and FUS3 both act as positive regulators of seed responses to ABA, and that AKIN10 regulates sugar signaling while FUS3 mediates osmotic stress responses. PMID:22902692
Cerium enhances germination and shoot growth, and alters mineral nutrient concentration in rice
García-Morales, Soledad; Pérez-Sato, Juan Antonio
2018-01-01
Cerium (Ce) belongs to the rare earth elements (REEs), and although it is not essential for plants, it can stimulate growth and other physiological processes. The objective of this research was to evaluate the effect of Ce on seed germination, initial seedling growth, and vegetative growth in rice (Oryza sativa L.) cv. Morelos A-98. During the germination process, the seeds were treated with Ce concentrations of 0, 4, 8, and 12 μM; after 5 d, germination percentage was recorded and after 10 d seedling growth was measured. For vegetative growth, a hydroponic system was established where 14-d-old plants without previous Ce treatment were transferred into nutrient solution. After two weeks of acclimatizing, 0, 25, 50, and 100 μM Ce were added to the nutrient solution for 28 d. Ce significantly increased germination and the initial growth variables of the seedlings. During vegetative growth, Ce increased plant height, number of tillers, root volume, and shoot fresh and dry biomass, without affecting root biomass weight. With low Ce concentrations (25 and 50 μM), the concentrations of chlorophylls and amino acids in the shoots were similar to those in the control, like amino acid concentration in the roots at a concentration of 25 μM Ce. Conversely, the concentration of total sugars increased in the shoot with the application of 25, 50, and 100 μM Ce, and in the roots with the application of 50 μM Ce. Also, Ce did not affect the concentration of macro or micronutrients in the shoots. However, in the roots, the high Ce concentration decreased the concentrations of Ca, Fe, Mn, and Zn, while the Mg concentration increased. Our results indicate that Ce, at the right concentrations, can function as a biostimulant in rice germination and growth. PMID:29579100
Du, W; Cheng, J; Cheng, Y; Wang, L; He, Y; Wang, Z; Zhang, H
2015-11-01
After-ripening is a common method used for dormancy release in rice. In this study, the rice variety Jiucaiqing (Oryza sativa L. subsp. japonica) was used to determine dormancy release following different after-ripening times (1, 2 and 3 months). Germination speed, germination percentage and seedling emergence increased with after-ripening; more than 95% germination and 85% seedling emergence were observed following 1 month of after-ripening within 10 days of imbibition, compared with <45% germination and 20% seedling emergence in freshly harvested seed. Hence, 3 months of after-ripening could be considered a suitable treatment period for rice dormancy release. Dormancy release by after-ripening is mainly correlated with a rapid decline in ABA content and increase in IAA content during imbibition. Subsequently, GA(1)/ABA, GA(7)/ABA, GA(12)/ABA, GA(20)/ABA and IAA/ABA ratios significantly increased, while GA(3)/ABA, GA(4)/ABA and GAs/IAA ratio significantly decreased in imbibed seeds following 3 months of after-ripening, thereby altering α-amylase activity during seed germination. Peak α-amylase activity occurred at an earlier germination stage in after-ripened seeds than in freshly harvested seeds. Expression of ABA, GA and IAA metabolism genes and dormancy-related genes was regulated by after-ripening time upon imbibition. Expression of OsCYP707A5, OsGA2ox1, OsGA2ox2, OsGA2ox3, OsILR1, OsGH3-2, qLTG3-1 and OsVP1 increased, while expression of Sdr4 decreased in imbibed seeds following 3 months of after-ripening. Dormancy release through after-ripening might be involved in weakening tissues covering the embryo via qLTG3-1 and decreased ABA signalling and sensitivity via Sdr4 and OsVP1. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.
Arbuscular mycorrhiza fungi facilitate rapid adaptation of Elsholtzia splendens to copper.
Li, Junmin; Liang, Huijuan; Yan, Ming; Chen, Luxi; Zhang, Huating; Liu, Jie; Wang, Suizi; Jin, Zexin
2017-12-01
Closely associated microbes have been shown to drive local adaptation of plants. However, few studies provide direct evidence, disclosing the role of arbuscular mycorrhiza fungi (AMF) in their rapid adaptation of plants toward heavy metal tolerance. Elsholtzia splendens is a Cu-tolerant plant that was used as a model plant to study seed morphological traits as well as traits related to seed germination and seedling growth. This was achieved after acclimation for two generations with 1000mg/kg CuSO 4 in either absence or presence of AMF. In the absence of AMF, acclimation to Cu for two generations significantly decreased surface area, perimeter length, and perimeter width of E. splendens seeds, as well as seedling survival rate and fresh weight of the radicle of seedlings. However, in the presence of AMF, both the germination rate and the germination index of E. splendens seeds as well as the fresh weights of hypocotyl and radicle significantly increased. These results revealed that after Cu acclimation treatment, seeds and seedlings that had been inoculated with AMF outperformed those without AMF inoculation under Cu addition, indicating that AMF can facilitate rapid adaptation of E. splendens to Cu stress. In addition, two generations of Cu acclimation under AMF absence significantly increased radicle length, while amplitude increased under AMF presence, indicating that the direct adaptive plasticity response of radicle length to Cu stress helps with the Cu stress adaptation of E. splendens. Copyright © 2017 Elsevier B.V. All rights reserved.
Radiation Genetics in Wheat, VI
DOE Office of Scientific and Technical Information (OSTI.GOV)
MATSUMURA, Seiji
1961-01-01
The thermal and fast neutron irradiations of dormant seeds of Triticum monococcum flavescens were conducted in the Japan Atomic Energy Research Institute's Nuclear Reactor, JRR-1, and in the Oak Ridge National Laboratory's accelerator (14 Mev), respectively. The higher the dosage of the thermal and fast neutrons, the more delayed were germination and growth of seedlings. The seeds were almost uniformly injured in each treatment. There was almost no germination at 37.5 x 10 12 n th/cm 2 of thermal neutrons and at 5 krad fast neutrons. Even at about 30 x 10 12 n th/cm 2 and at 2.5 kradmore » the seedlings did not grow and died in early stage. Also the higher the dosage, the more reduced were survival rate, height of mature plants, and seed fertility. The frequency of chromosome aberrations and chlorophyll and other mutations increased with the increase of dosage, as expected. In comparison with the resuils obtained from x and gamma-irradiations, 1 r equivalent effects of x rays are produced by about 2 x 10 9 n th/cm 2 of thermal neutrons for seedling length and seed fertility. Also the 1 r equivalent effects correspond roughly to those of the order of 10 n th/cm 2 for chromosome aberrations and chlorophyll mutations. The relative biological effectiveness (RBE) of fast neutrons to x rays was found to be for germination rate 4, for seedling length 10, for seed fertility 12, for chromosome aberrations 8, and for chlorophyll mutations 10.« less
Shimizu, Minobu; Miyazawa, Yutaka; Fujii, Nobuharu; Takahashi, Hideyuki
2008-01-01
Cucumber (Cucumis sativus L.) seedlings form a specialized protuberance, the peg, on the transition zone between the hypocotyl and the root. When cucumber seeds germinate in a horizontal position, the seedlings develop a peg on the lower side of the transition zone. To verify the role of auxin action in peg formation, we examined the effect of the anti-auxin, p-chlorophenoxyisobutyric acid (PCIB), on peg formation and mRNA accumulation of auxin-regulated genes. Application of PCIB to cucumber seedlings inhibited peg formation. The application of indole-3-acetic acid (IAA) competed with PCIB and induced peg formation. Furthermore, application of PCIB decreased auxin-inducible CsIAA1 mRNA and increased auxin-repressible CsGRP1 mRNA in the lower side of the transition zone. The differential accumulation of CsIAA1 and CsGRP1 mRNAs in the transition zone of cucumber seedlings grown in a horizontal position was smaller in the PCIB-treated seedlings. These results demonstrate that endogenous auxin redistributes and induces the differential expression of auxin-regulated genes, and ultimately results in the suppression or induction of peg formation in the gravistimulated transition zone of cucumber seedlings.
NASA Technical Reports Server (NTRS)
Musgrave, M. E.; Gerth, W. A.; Scheld, H. W.; Strain, B. R.
1988-01-01
Mungbean (Phaseolus aureus Roxb.) seedlings were grown hypobarically to assess the effects of low pressure (21-24 kilopascals) on growth and mitochondrial respiration. Control seedlings grown at ambient pressure (101 kilopascals) were provided amounts of O2 equivalent to those provided experimental seedlings at reduced pressure to factor out responses to O2 concentration and to total pressure. Respiration was assayed using washed mitochondria, and was found to respond only to O2 concentration. Regardless of total pressure, seedlings grown at 2 millimoles O2 per liter had higher state 3 respiration rates and decreased percentages of alternative respiration compared to ambient (8.4 millimoles O2 per liter) controls. In contrast, seedling growth responded to total pressure but not to O2 concentration. Seedlings were significantly larger when grown under low pressure. While low O2 (2 millimoles O2 per liter) diminished growth at ambient pressure, growth at low pressure in the same oxygen concentration was enhanced. Respiratory development and growth of mungbean seedlings under low pressure is unimpaired whether oxygen or air is used as the chamber gas, and further, low pressure can improve growth under conditions of poor aeration.
Cross, Adam T; Turner, Shane R; Renton, Michael; Baskin, Jerry M; Dixon, Kingsley W; Merritt, David J
2015-04-01
Rock pools are small, geologically stable freshwater ecosystems that are both hydrologically and biologically isolated. They harbour high levels of plant endemism and experience environmental unpredictability driven by the presence of water over variable temporal scales. This study examined the hypothesis that the sediment seed bank in monsoon tropical freshwater rock pools would persist through one or more periods of desiccation, with seed dormancy regulating germination timing in response to rock pool inundation and drying events. Seeds were collected from seven dominant rock pool species, and germination biology and seed dormancy were assessed under laboratory conditions in response to light, temperature and germination stimulators (gibberellic acid, karrikinolide and ethylene). Field surveys of seedling emergence from freshwater rock pools in the Kimberley region of Western Australia were undertaken, and sediment samples were collected from 41 vegetated rock pools. Seedling emergence and seed bank persistence in response to multiple wetting and drying cycles were determined. The sediment seed bank of individual rock pools was large (13 824 ± 307 to 218 320 ± 42 412 seeds m(-2) for the five species investigated) and spatially variable. Seedling density for these same species in the field ranged from 13 696 to 87 232 seedlings m(-2). Seeds of rock pool taxa were physiologically dormant, with germination promoted by after-ripening and exposure to ethylene or karrikinolide. Patterns of seedling emergence varied between species and were finely tuned to seasonal temperature and moisture conditions, with the proportions of emergent seedlings differing between species through multiple inundation events. A viable seed bank persisted after ten consecutive laboratory inundation events, and seeds retained viability in dry sediments for at least 3 years. The persistent seed bank in freshwater rock pools is likely to provide resilience to plant communities against environmental stochasticity. Since rock pool communities are often comprised of highly specialized endemic and range-restricted species, sediment seed banks may represent significant drivers of species persistence and diversification in these ecosystems. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Factors controlling the establishment of Fremont cottonwood seedlings on the Upper Green River, USA
Cooper, David J.; Merritt, David M.; Andersen, Douglas C.; Chimner, Rodney A.
1999-01-01
Declines in cottonwood (Populus spp.) recruitment along alluvial reaches of large rivers in arid regions of the western United States have been attributed to modified flow regimes, lack of suitable substrate, insufficient seed rain, and increased interspecific competition. We evaluated whether and how these factors were operating during 1993–1996 to influence demographics of Fremont cottonwood (P. deltoides Marshall subsp. wislizenii (Watson) Eckenwalder) along reaches of the Green and Yampa Rivers near their confluence in northwestern Colorado. We examined seedling establishment, defined as survival through three growing seasons, at three alluvial reaches that differed primarily in the level of flow regulation: a site on the unregulated Yampa, an upper Green River site regulated by Flaming Gorge Dam, and a lower Green River site below the Green–Yampa confluence. Seed rain was abundant in all sites, and led to large numbers of germinants (first-year seedlings) appearing each year at all sites. The regulated flow in the upper Green River reach restricted germination to islands and cut banks that were later inundated or eroded; no seedlings survived there. Mortality at the lower Green River site was due largely to desiccation or substrate erosion; 23% of 1993 germinants survived their first growing season, but at most 2% survived through their second. At the Yampa River site, germinants appeared on vegetated and unvegetated surfaces up to 2.5 m above base flow stage, but survived to autumn only on bare surfaces at least 1.25 m above base flow stage, and where at least 10 of the upper 40 cm of the alluvium was fine-textured. Our studies of rooting depths and the stable isotopic composition of xylem water showed that seedlings in the most favorable locations for establishment at the Yampa site do not become phreatophytic until their third or fourth growing season. Further, the results of experimental field studies examining effects of shade and competition supported the hypothesis that insufficient soil moisture, possibly in combination with insufficient light, restricts establishment to unvegetated sites. Collectively, the demographic and experimental studies suggest that, in arid regions, soil water availability is at least as important as light level in limiting establishment of Fremont cottonwood seedlings. We hypothesize that in cases where arid land rivers experience large spring stage changes, recruitment is further constrained within bare areas to those sites that contain sufficient fine-textured alluvium, saturated during the spring flood, to provide the flood-derived soil moisture normally necessary for late-summer seedling survival.
A large-scale environmental flow experiment for riparian restoration in the Colorado River delta
Shafroth, Patrick B.; Schlatter, Karen; Gomez-Sapiens, Martha; Lundgren, Erick; Grabau, Matthew R.; Ramirez-Hernandez, Jorge; Rodriguez-Burgeueno, J. Eliana; Flessa, Karl W.
2017-01-01
Managing streamflow is a widely-advocated approach to provide conditions necessary for seed germination and seedling establishment of trees in the willow family (Salicaceae). Experimental flow releases to the Colorado River delta in 2014 had a primary objective of promoting seedling establishment of Fremont cottonwood (Populus fremontii) and Goodding's willow (Salix gooddingii). We assessed seed germination and seedling establishment of these taxa as well as the non-native tamarisk (Tamarix spp.) and native seepwillow shrubs (Baccharis spp.) in the context of seedling requirements and active land management (land grading, vegetation removal) at 23 study sites along 87 river km. In the absence of associated active land management, experimental flows to the Colorado River delta were minimally successful at promoting establishment of new woody riparian seedlings, except for non-native Tamarix. Our results suggest that the primary factors contributing to low seedling establishment varied across space, but included low or no seed availability in some locations for some taxa, insufficient soil moisture availability during the growing season indicated by deep groundwater tables, and competition from adjacent vegetation (and, conversely, availability of bare ground). Active land management to create bare ground and favorable land grades contributed to significantly higher rates of Salicaceae seedling establishment in a river reach with high groundwater tables. Our results provide insights that can inform future environmental flow deliveries to the Colorado River delta and its ecosystems and other similar efforts to restore Salicaceae taxa around the world.
NASA Astrophysics Data System (ADS)
Kueppers, L. M.
2010-12-01
Niche models and paleoecological studies indicate that future climate change will alter the geographic distributions of plant species. Changes in temperature, snowmelt timing, or moisture conditions at one edge of a species’ range may have different consequences for recruitment, carbon exchange, phenology, and survival than changes at another edge. Similarly, local genetic adaptation may constrain species and community responses to climate change. We have established a new experiment to investigate potential shifts in the distribution of subalpine tree species, and the alpine species they might replace. We are asking how tree species recruitment and alpine species growth and reproduction vary within their current ranges, and in response to temperature and soil moisture manipulations. We are also examining whether genetic provenance and ecosystem processes constrain tree seedling and alpine herb responses. Our Alpine Treeline Warming Experiment is located across three sites at Niwot Ridge, CO, ranging from near the lower limit of subalpine forest to alpine tundra. We use infrared heaters to raise growing season surface soil temperatures by 4-5°C, and to lengthen the growing season. The warming treatment is crossed with a soil moisture manipulation to distinguish effects due to higher temperatures from those due to drier soil. Each plot is a common garden sown with high and low elevation provenances of limber pine (Pinus flexilis) and Engelmann spruce (Picea engelmannii). We established an additional set of experimental plots to examine treatment effects on alpine species phenology, growth and reproduction. Under ambient conditions in 2009, tree seedling germination rate, lifespan, and first season survival was higher within the species’ current range than in the alpine, and for Engelmann spruce, was higher at the low elevation limit than the high elevation limit. Source population (low vs. high elevation) was a significant factor explaining natural variation in germination rates and timing, seedling physiology, and seedling survival. In 2010, the first season with experimental effects data, the timing of germination was substantially advanced with warming for both species, and warming appeared to increase germination rates for limber pine, but to depress rates for Engelmann spruce at treeline. Seedling carbon balance was negative at the warmest leaf temperatures and there is some indication that the low elevation provenance has a higher total assimilation rate and net carbon gain than the high elevation provenance. Water availability was an important driver of variation in carbon assimilation through the growing season. Our early results suggest that with higher germination rates and lower mortality rates, limber pine is better able to recruit into the alpine than Engelmann spruce, and that lower elevation provenances of limber pine are better at assimilating carbon for growth regardless of site. Ultimate success in seedling establishment may be more contingent on water availability than temperature, even at these high elevations.
da Silva Ferreira, Cristiane; Piedade, Maria Teresa Fernandez; Tiné, Marco Aurélio Silva; Rossatto, Davi Rodrigo; Parolin, Pia; Buckeridge, Marcos Silveira
2009-01-01
Background and Aims In the Amazonian floodplains plants withstand annual periods of flooding which can last 7 months. Under these conditions seedlings remain submerged in the dark for long periods since light penetration in the water is limited. Himatanthus sucuuba is a tree species found in the ‘várzea’ (VZ) floodplains and adjacent non-flooded ‘terra-firme’ (TF) forests. Biochemical traits which enhance flood tolerance and colonization success of H. sucuuba in periodically flooded environments were investigated. Methods Storage carbohydrates of seeds of VZ and TF populations were extracted and analysed by HPAEC/PAD. Starch was analysed by enzyme (glucoamylase) degradation followed by quantification of glucose oxidase. Carbohydrate composition of roots of VZ and TF seedlings was studied after experimental exposure to a 15-d period of submersion in light versus darkness. Key Results The endosperm contains a large proportion of the seed reserves, raffinose being the main non-structural carbohydrate. Around 93 % of the cell wall storage polysaccharides (percentage dry weight basis) in the endosperm of VZ seeds was composed of mannose, while soluble sugars accounted for 2·5%. In contrast, 74 % of the endosperm in TF seeds was composed of galactomannans, while 22 % of the endosperm was soluble sugars. This suggested a larger carbohydrate allocation to germination in TF populations whereas VZ populations allocate comparatively more to carbohydrates mobilized during seedling development. The concentration of root non-structural carbohydrates in non-flooded seedlings strongly decreased after a 15-d period of darkness, whereas flooded seedlings were less affected. These effects were more pronounced in TF seedlings, which showed significantly lower root non-structural carbohydrate concentrations. Conclusions There seem to be metabolic adjustments in VZ but not TF seedlings that lead to adaptation to the combined stresses of darkness and flooding. This seems to be important for the survival of the species in these contrasting environments, leading these populations to different directions during evolution. PMID:19770164
Müller, Kerstin; Linkies, Ada; Vreeburg, Robert A.M.; Fry, Stephen C.; Krieger-Liszkay, Anja; Leubner-Metzger, Gerhard
2009-01-01
Loosening of cell walls is an important developmental process in key stages of the plant life cycle, including seed germination, elongation growth, and fruit ripening. Here, we report direct in vivo evidence for hydroxyl radical (·OH)-mediated cell wall loosening during plant seed germination and seedling growth. We used electron paramagnetic resonance spectroscopy to show that ·OH is generated in the cell wall during radicle elongation and weakening of the endosperm of cress (Lepidium sativum; Brassicaceae) seeds. Endosperm weakening precedes radicle emergence, as demonstrated by direct biomechanical measurements. By 3H fingerprinting, we showed that wall polysaccharides are oxidized in vivo by the developmentally regulated action of apoplastic ·OH in radicles and endosperm caps: the production and action of ·OH increased during endosperm weakening and radicle elongation and were inhibited by the germination-inhibiting hormone abscisic acid. Both effects were reversed by gibberellin. Distinct and tissue-specific target sites of ·OH attack on polysaccharides were evident. In vivo ·OH attack on cell wall polysaccharides were evident not only in germinating seeds but also in elongating maize (Zea mays; Poaceae) seedling coleoptiles. We conclude that plant cell wall loosening by ·OH is a controlled action of this type of reactive oxygen species. PMID:19493972
Silva Matos, D M; Belinato, T A
2010-05-01
In order to identify the effect of P. arachnoideum, we studied 11 native tree species commonly used in reforestation projects. Bioassays were conducted in laboratory to evaluate the effect of bracken leachate on the germination and morphology of seedlings. Juveniles of some of these species were planted in two adjacent but contrasting areas in relation to the dominance of P. arachnoideum. The evaluation of growth and survivorship was performed after six and twelve months. This study reveals that for some pioneer and secondary trees P. arachnoideum leachate exerted an inhibitory effect on seed germination and seedling morphology. Field experiments revealed that pioneers are apparently more resistant to P. arachnoideum leachate than secondary species.
Germination and Seed Bank Studies of Macbridea alba (Lamiaceae), a Federally Theatened Plant
Dana Madsen Schulze; John L. Walker; Timothy P. Spira
2002-01-01
Macbridea alba (Lamiaceae) is a Federally threatened plant endemic to Florida. Seedlings are rarely observed in natural populations, but seed production has been documented. We assessed the germinability of dry-stored seeds and of experimentally buried seeds, and sampled soil to detect a persistent seed bank.More than 20% of recorded seeds...
Field Germination of Nuttall Oak Acorns
R. L. Johnson
1970-01-01
In newly cleared plots on Sharkey clay near Stoneville, Mississippi, germination was as high as 79 percent for Nuttall oak (Quercus nuttallii Palmer) acorns sown unstratified in January and 86 percent for those stratified and sown in April. Most seedlings appeared in June and July , when soil temperatures were usually between 80° and 90° F....
Methyl tert-butyl ether (MTBE) is a widespread contaminant in surface and ground water in the United States. Frequently irrigation is used to water fields to germinate planted seeds and sustain plant growth. A likely possibility exists that water used may have some MTBE. Our s...
A tree from waste: Decontaminated dredged sediments for growing forest tree seedlings.
Ugolini, Francesca; Mariotti, Barbara; Maltoni, Alberto; Tani, Andrea; Salbitano, Fabio; Izquierdo, Carlos García; Macci, Cristina; Masciandaro, Graziana; Tognetti, Roberto
2018-04-01
The sediments dredged from a waterway and decontaminated through a phytoremediation process have been used as substrates alternatively to the traditional forest nursery substrate for pot productions of holm oak (Quercus ilex L.) planting stocks. The substrates, made by mixing decontaminated sediments to agricultural soil at different degrees, were tested in order to evaluate their suitability as growth substrates. The experiment was carried out at the nursery of the Department of Agricultural, Food and Forestry Systems of the University of Florence (Italy). The experimental design consisted of four randomized blocks with six pots as replicates for each of the following treatments: 100% sediments, 66% sediments, 33% sediments, 100% agronomic soil and 100% traditional peat based substrate. In each pot, one holm oak acorn was seeded. Germination and both physiological and morphological traits of the seedlings were analysed during and at the end of the first growing season. Holm oak grown in phytoremediated sediments at higher concentrations showed germination levels comparable to those in the traditional substrate, and survival capacity (especially in 66% sediments) slightly higher than in 100% soil. Physiological performance of seedlings resembled that on the traditional substrate which required the addition of fertilizer, at least for the first growing season. Seedlings grown in mixed substrates with higher sediment concentrations occasionally showed better photosynthetic capacity with improved connectivity between the units of the photosystem II. At the end of the first growing season, height as well as the number of growth flushes of the seedlings grown in sole sediment or soil-sediment substrates were similar to what generally is observed for forest nursery stock of Quercus spp.. Regarding the root-system articulation and growth in depth, results in the mixed substrates were comparable to those for seedlings grown in the traditional forest nursery media, and higher than seedlings grown in 100% agronomic soil. According to our results, the reclamation of dredged sediments can provide appropriate nursery substrate for germination beds for forestry species. Copyright © 2018 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The life stage from seed dispersal to seedling emergence is often critical in determining the regeneration success of plants. During this period seeds must survive an array of seed predators and pathogens and germinate under conditions favorable for seedling establishment. To maximise recruitment s...
USDA-ARS?s Scientific Manuscript database
Cultivars with quick seedling emergence and stand establishment at early spring cold conditions may be planted early in the same region with an extended period of plant growth and can potentially increase either grain yield, stem sugar yield, or biomass production of sorghum. Planting cultivars with...
Mary Anne Sword; Harold E. Garrett
1994-01-01
At germination, container-grown shortleaf pine seedlings were inoculated with Pisolithus tinctorius (Pers.) Coker & Couch or left uninoculated, and both groups were fertilized semiweekly with a modified Hoaglandâs solution supplemented with 0 or 0.4 mM boric acid. After 12, 16 and 24 weeks, seedling root tissue was analyzed for...
Multiwalled carbon nanotubes in alfalfa and wheat: toxicology and uptake.
Miralles, Pola; Johnson, Errin; Church, Tamara L; Harris, Andrew T
2012-12-07
Data on the bioavailability and toxicity of carbon nanotubes (CNTs) in the environment, and, in particular, on their interactions with vascular plants, are limited. We investigated the effects of industrial-grade multiwalled CNTs (75 wt% CNTs) and their impurities on alfalfa and wheat. Phytotoxicity assays were performed during both seed germination and seedling growth. The germinations of both species were tolerant of up to 2560 mg l(-1) CNTs, and root elongation was enhanced in alfalfa and wheat seedlings exposed to CNTs. Remarkably, catalyst impurities also enhanced root elongation in alfalfa seedlings as well as wheat germination. Thus the impurities, not solely the CNTs, impacted the plants. CNT internalization by plants was investigated using electron microscopy and two-dimensional Raman mapping. The latter showed that CNTs were adsorbed onto the root surfaces of alfalfa and wheat without significant uptake or translocation. Electron microscopy investigations of internalization were inconclusive owing to poor contrast, so Fe(3)O(4)-functionalized CNTs were prepared and studied using energy-filter mapping of Fe(3)O(4). CNTs bearing Fe(3)O(4) nanoparticles were detected in the epidermis of one wheat root tip only, suggesting that internalization was possible but unusual. Thus, alfalfa and wheat tolerated high concentrations of industrial-grade multiwalled CNTs, which adsorbed onto their roots but were rarely taken up.
Multiwalled carbon nanotubes in alfalfa and wheat: toxicology and uptake
Miralles, Pola; Johnson, Errin; Church, Tamara L.; Harris, Andrew T.
2012-01-01
Data on the bioavailability and toxicity of carbon nanotubes (CNTs) in the environment, and, in particular, on their interactions with vascular plants, are limited. We investigated the effects of industrial-grade multiwalled CNTs (75 wt% CNTs) and their impurities on alfalfa and wheat. Phytotoxicity assays were performed during both seed germination and seedling growth. The germinations of both species were tolerant of up to 2560 mg l−1 CNTs, and root elongation was enhanced in alfalfa and wheat seedlings exposed to CNTs. Remarkably, catalyst impurities also enhanced root elongation in alfalfa seedlings as well as wheat germination. Thus the impurities, not solely the CNTs, impacted the plants. CNT internalization by plants was investigated using electron microscopy and two-dimensional Raman mapping. The latter showed that CNTs were adsorbed onto the root surfaces of alfalfa and wheat without significant uptake or translocation. Electron microscopy investigations of internalization were inconclusive owing to poor contrast, so Fe3O4-functionalized CNTs were prepared and studied using energy-filter mapping of Fe3O4. CNTs bearing Fe3O4 nanoparticles were detected in the epidermis of one wheat root tip only, suggesting that internalization was possible but unusual. Thus, alfalfa and wheat tolerated high concentrations of industrial-grade multiwalled CNTs, which adsorbed onto their roots but were rarely taken up. PMID:22977097
Lim, Charlemagne Alexander A; Awan, Tahir Hussain; Sta Cruz, Pompe C; Chauhan, Bhagirath Singh
2015-01-01
Ischaemum rugosum Salisb. (Saramolla grass) is a noxious weed of rice that is difficult to control by chemical or mechanical means once established. A study was conducted to determine the effect of light, temperature, salt, drought, flooding, rice residue mulch, burial depth, and pre-emergence herbicides on seed germination and emergence of I. rugosum. Germination was stimulated by light and inhibited under complete darkness. Optimum temperature for germination was 30/20°C (97.5% germination). Germination reduced from 31 to 3.5% when the osmotic potential of the growing medium decreased from -0.1 to -0.6 MPa and no germination occurred at -0.8 MPa. Germination was 18 and 0.5% at 50 and 100 mM NaCl concentrations, respectively, but was completely inhibited at 150 mM or higher. Residue application at 1-6 t ha-1 reduced weed emergence by 35-88% and shoot biomass by 55-95%. The efficacy of pre-emergence herbicides increased with increasing application rates and decreased with increasing rice residue mulching. The efficacy of herbicides was in the order of oxadiazon> pendimethalin> pretilachlor. At 6 t ha-1, all herbicides, regardless of rates, did not differ from the control treatment. I. rugosum seeds buried at 2 cm or deeper did not emerge; however, they emerged by 4.5 and 0.5% at 0.5 and 1 cm depths, respectively, compared to the 39% germination for soil surface seeding. Flooding at 4 DAS or earlier reduced seedling emergence and shoot biomass while flooding at 8 DAS reduced only seedling emergence. The depth and timing of flooding independently reduced root biomass. Flooding at 4 and 6 cm depths reduced the root biomass. Relative to flooding on the day of sowing, flooding at 8 DAS increased root biomass by 89%. Similarly, flooding on the day of sowing and at 2 DAS reduced the root-shoot biomass ratio. Under the no-flood treatment, increasing rates of pretilachlor from 0.075 to 0.3 kg ai ha-1 reduced weed emergence by 61-79%. At the flooding depth of 2-4 cm, pretilachlor reduced weed emergence and shoot and root biomass, but the differences across rates were non-significant. Information generated in this study will be helpful in developing integrated weed management strategies for managing this weed.
Tree planters` notes, Volume 46, Number 1, Winter 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nisley, R.
1995-12-31
;Contents: Will We Run Out of Wood in the South; Effectiveness of Big Game Repellent - Powder(R) (BGR-P) and Garlic in Inhibiting Browsing of Western Redclear by Black-Tailed Deer; Germinant Sowing in South Africa; A New Greenhouse Photoperiod Lighting System for Prevention of Seedling Dormancy; Nitrogen Fertilization Requirements of Douglas-fir Container Seedlings Vary by Seed Source; Legume Seeding Trials in a Forested Area of North-Central Washington; and Survival and Growth of Planted Loblolly Pine Seedlings on a Severely Rutted Site.
A. David; E. Humenberger
2017-01-01
Because jack pine (Pinus banksiana Lamb.) is serotinous, it retains multiple years of cones until environmental conditions are favorable for releasing seed. These cones, which contain seed cohorts that developed under a variety of growing seasons, can be accurately aged using bud scale scars on twigs and branches. By calculating the average daily...
Structural variability and species diversity of a dwarf Caribbean dry forest
E. Medina; E. Cuevas; S. Molina; A.E. Lugo; O. Ramos
2010-01-01
Low stature woody vegetation of the south-west coast of Puerto Rico grows on a rocky calcareous substrate where plants can only root in holes, cracks, and crevices accumulating water and sediments that allow seed germination and seedling development. Being in a coastal location these communities are influenced by steady onshore winds, high solar radiation, and salt...
Two MYB-related transcription factors play opposite roles in sugar signaling in Arabidopsis.
Chen, Yi-Shih; Chao, Yi-Chi; Tseng, Tzu-Wei; Huang, Chun-Kai; Lo, Pei-Ching; Lu, Chung-An
2017-02-01
Sugar regulation of gene expression has profound effects at all stages of the plant life cycle. Although regulation at the transcriptional level is one of the most prominent mechanisms by which gene expression is regulated, only a few transcription factors have been identified and demonstrated to be involved in the regulation of sugar-regulated gene expression. OsMYBS1, an R1/2-type MYB transcription factor, has been demonstrated to be involved in sugar- and hormone-regulated α-amylase gene expression in rice. Arabidopsis contains two OsMYBS1 homologs. In the present study, we investigate MYBS1 and MYBS2 in sugar signaling in Arabidopsis. Our results indicate that MYBS1 and MYBS2 play opposite roles in regulating glucose and ABA signaling in Arabidopsis during seed germination and early seedling development. MYB proteins have been classified into four subfamilies: R2R3-MYB, R1/2-MYB, 3R-MYB, and 4R-MYB. An R1/2-type MYB transcription factor, OsMYBS1, has been demonstrated to be involved in sugar- and hormone-regulated α-amylase genes expression in rice. In this study, two genes homologous to OsMYBS1, MYBS1 and MYBS2, were investigated in Arabidopsis. Subcellular localization analysis showed that MYBS1 and MYBS2 were localized in the nucleus. Rice embryo transient expression assays indicated that both MYBS1 and MYBS2 could recognize the sugar response element, TA-box, in the promoter and induced promoter activity. mybs1 mutant exhibited hypersensitivity to glucose, whereas mybs2 seedlings were hyposensitive to it. MYBS1 and MYBS2 are involved in the control of glucose-responsive gene expression, as the mybs1 mutant displayed increased expression of a hexokinase gene (HXK1), chlorophyll a/b-binding protein gene (CAB1), ADP-glucose pyrophosphorylase gene (APL3), and chalcone synthase gene (CHS), whereas the mybs2 mutant exhibited decreased expression of these genes. mybs1 also showed an enhanced response to abscisic acid (ABA) in the seed germination and seedling growth stages, while mybs2 showed reduced responses. The ABA biosynthesis inhibitor fluridone rescued the mybs1 glucose-hypersensitive phenotype. Moreover, the mRNA levels of three ABA biosynthesis genes, ABA1, NCED9, and AAO3, and three ABA signaling genes, ABI3, ABI4, and ABI5, were increased upon glucose treatment of mybs1 seedlings, but were decreased in mybs2 seedlings. These results indicate that MYBS1 and MYBS2 play opposite roles in regulating glucose and ABA signaling in Arabidopsis during seed germination and early seedling development.
Hatami, Mehrnaz
2017-08-01
The rapid increase in the production and application of various types of nanomaterials increases the possibility of their presence in total environment, which subsequently raises concerns about their potential threats to the first trophic level of organisms, specifically under varying environmental constraints. In this work, seeds of Cucurbita pepo L. were cultured in MS basal medium exposed to multi-walled carbon nanotubes (MWCNTs) at different concentrations (0, 125, 250, 500 and 1000μgmL -1 ) under two levels of water potential, well-watered (0MPa) and water stress (-1.5MPa) induced by polyethylene glycol (PEG 6000) for 14 days. Seeds exposed to MWCNTs showed reduction in germination percentage, root and shoot length, biomass accumulation and vigor index in a dose-dependent manner. However, seedlings germinated in MWCNTs-fortified media had significantly lower germination and growth attributes than those of control under water stress conditions. This happened due to increased oxidative injury indices including hydrogen peroxide (H 2 O 2 ), and malondialdehyde (MDA) contents, as well as electrolyte leakage index (ELI) of tissues. The impaired morpho-physiological and biochemical processes of seedlings exposed to different concentrations of MWCNTs under both PEG-induced stress and non-stress growing conditions were consequence of changes in the activation of various cellular antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (POD). Taken together, our findings reveal that MWCNTs played negative role on seed germination and subsequent growth of C. pepo L. seedlings under both levels of water potential. Copyright © 2017 Elsevier Inc. All rights reserved.
Bhattacharjee, Soumen
2009-07-01
Both heat and chilling caused reduction in membrane protein thiol level and increased accumulation of thiobarbituric acid reactive substances in 72 hr old germinating tissues (indicators of oxidative stress) and reduced germination and early growth performances. Calcium chelator EGTA [Ethylene glycol-bis (2-aminoethylether)-N, N,N',N, tetra acetic acid] calcium channel blocker LaCI3 (Lanthanum chloride) and calmodulin inhibitor TFP (trifluroperazine) aggravated these effects of heat and chilling and added calcium reversed them. Imposition of heat and chilling stress during early germination also causes accumulation of reactive oxygen species (ROS) like 02(-) and H2O2. Calcium treatment significantly reduced the accumulation of both the toxic ROS, while EGTA, LaCl3 and TFP treatment enhanced the accumulation. Activities of antioxidative enzymes catalase (CAT), ascorbate peroxidase (APOX) and glutathione reductase (GR) and total thiol content decreased significantly under both heat and chilling stress in germinating Amaranthus seedlings. Seedlings raised with Ca2+ treatment under heat and chilling stress exhibit higher activities of CAT7 GR and APOX and total thiol level than the untreated plants. EGTA, LaCl3 and TFP treatment, on the other hand significantly reduce the activities of all anti-oxidative enzymes and total thiol level. The work clearly supports the view that Ca2+-signalling pathway plays significant role in limiting heat and chilling induced oxidative stress by upregulating antioxidative defense during recovery phase of post-germination event in Amaranthus lividus.
Growth Response of Seedling Yellow Birch to Humus-Soil Mixtures
Carl H. Tubbs; Robert R. Oberg
1966-01-01
Previous observations of the establishment of yellow birch have cited the importance of mixed humus-mineral soil seedbeds. Godman and Krefting pointed out that both germination and growth were enhanced. Subsequent studies have shown that while germination in the absence of competition is adequate on mineral soil of a Podzol A under a wide variety of light and...
Role of fire in regeneration from seed: Chapter 14
Keeley, Jon E.; Fotheringham, C.J.; Fenner, M.
2000-01-01
The effects of fire on seed germination and plant regeneration are discussed. Among the topics considered are the triggering of opening of serotinous fruits or cones by fire, the breaking of dormancy in seeds in the soil seed bank, the effects of smoke on germination, and the role of fire in initiating seedling recruitment by opening gaps in closed vegetation.
Germination and seedling vigor in Beta vulgaris
USDA-ARS?s Scientific Manuscript database
One former commercial variety, EL-A012206 (ACH185), and the pollen parent for the commercial variety USH20, EL-A015030 (SP7622) were germinated in H2O and 0.3% H2O2. Samples were collected at 0, 3, 6, 12, 18 and 24 hours of treatment for both varieties. RNA was extracted from the tissue and RT-PCR w...
Germination and early growth of coastal tree species on organic seed beds.
Don Minore
1972-01-01
Germination and early growth on rotten wood and duff under several shade levels were observed for Douglas-fir, Sitka spruce, western hemlock, western redcedar, lodgepole pine, Pacific silver fir, and red alder. Nutrients were more abundant in duff than in rotten wood. Seedlings usually were larger and more abundant on duff-covered rotten logs than on duff-covered...
Ibrahim, Muhammad; Ahmed, Naseer; Ullah, Faizan; Shinwari, Zabta Khan; Bano, Asghari
2016-04-01
This research work documents the comparative impact of genetically modified (GM) (insect resistance) and non modified maize (Zea mays L.) on growth and germination of succeeding crop wheat (Triticum aestivum L.) and associated weed (Avena fatua L.). The aqueous extracts of both the GM and non-GM maize exhibited higher phenolic content than that of methanolic extracts. Germination percentage and germination index of wheat was significantly decreased by GM methanolic extract (10%) as well as that of non-GM maize at 3% aqueous extract. Similarly germination percentage of weed (Avena fatua L.) was significantly reduced by application of 3% and 5% methanolic GM extracts. All extracts of GM maize showed non-significant effect on the number of roots, root length and shoot length per plant but 5% and 10% methanolic extracts of non-GM maize significantly increased the number of roots per plant of wheat seedling. Similarly, 10% methanolic extract of GM maize significantly increased the number of roots per plant of weed seedling. Methanolic extracts of GM and non-GM maize (3% and 5%) significantly decreased the protease activity in wheat as compared to untreated control. © The Author(s) 2013.
Shine, M B; Guruprasad, K N; Anand, Anjali
2012-07-01
Our previous investigation reported the beneficial effect of pre-sowing magnetic treatment for improving germination parameters and biomass accumulation in soybean. In this study, soybean seeds treated with static magnetic fields of 150 and 200 mT for 1 h were evaluated for reactive oxygen species (ROS) and activity of antioxidant enzymes. Superoxide and hydroxyl radicals were measured in embryos and hypocotyls of germinating seeds by electron paramagnetic resonance spectroscopy and kinetics of superoxide production; hydrogen peroxide and antioxidant activities were estimated spectrophotometrically. Magnetic field treatment resulted in enhanced production of ROS mediated by cell wall peroxidase while ascorbic acid content, superoxide dismutase and ascorbate peroxidase activity decreased in the hypocotyl of germinating seeds. An increase in the cytosolic peroxidase activity indicated that this antioxidant enzyme had a vital role in scavenging the increased H(2)O(2) produced in seedlings from the magnetically treated seeds. Hence, these studies contribute to our first report on the biochemical basis of enhanced germination and seedling growth in magnetically treated seeds of soybean in relation to increased production of ROS. Copyright © 2012 Wiley Periodicals, Inc.
Hilf, Mark E
2011-10-01
Huanglongbing is an economically damaging disease of citrus associated with infection by 'Candidatus Liberibacter asiaticus'. Transmission of the organism via infection of seeds has not been demonstrated but is a concern since some citrus varieties, particularly those used as rootstocks in commercial plantings are propagated from seed. We compared the incidence of detection of 'Ca. Liberibacter asiaticus' DNA in individual fruit peduncles, seed coats, seeds, and in germinated seedlings from 'Sanguenelli' sweet orange and 'Conners' grapefruit fruits sampled from infected trees. Using real-time quantitative PCR (qPCR) we detected pathogen DNA in nucleic acid extracts of 36 and 100% of peduncles from 'Sanguenelli' and from 'Conners' fruits, respectively. We also detected pathogen DNA in extracts of 37 and 98% of seed coats and in 1.6 and 4% of extracts from the corresponding seeds of 'Sanguenelli' and 'Conners', respectively. Small amounts of pathogen DNA were detected in 10% of 'Sanguenelli' seedlings grown in the greenhouse, but in none of 204 extracts from 'Conners' seedlings. Pathogen DNA was detected in 4.9% and in 89% of seed coats peeled from seeds of 'Sanguenelli' and 'Conners' which were germinated on agar, and in 5% of 'Sanguenelli' but in none of 164 'Conners' seedlings which grew from these seeds on agar. No pathogen DNA was detected in 'Ridge Pineapple' tissue at 3 months post-grafting onto 'Sanguenelli' seedlings, even when pathogen DNA had been detected initially in the 'Sanguenelli' seedling. Though the apparent colonization of 'Conners' seeds was more extensive and nearly uniform compared with 'Sanguenelli' seeds, no pathogen DNA was detected in 'Conners' seedlings grown from these seeds. For either variety, no association was established between the presence of pathogen DNA in fruit peduncles and seed coats and in seedlings.
Xu, Tao; Gu, Lili; Choi, Min Ji; Kim, Ryeo Jin; Suh, Mi Chung; Kang, Hunseung
2014-01-01
Although the functional roles of zinc finger-containing glycine-rich RNA-binding proteins (RZs) have been characterized in several plant species, including Arabidopsis thaliana and rice (Oryza sativa), the physiological functions of RZs in wheat (Triticum aestivum) remain largely unknown. Here, the functional roles of the three wheat RZ family members, named TaRZ1, TaRZ2, and TaRZ3, were investigated using transgenic Arabidopsis plants under various abiotic stress conditions. Expression of TaRZs was markedly regulated by salt, dehydration, or cold stress. The TaRZ1 and TaRZ3 proteins were localized to the nucleus, whereas the TaRZ2 protein was localized to the nucleus, endoplasmic reticulum, and cytoplasm. Germination of all three TaRZ-expressing transgenic Arabidopsis seeds was retarded compared with that of wild-type seeds under salt stress conditions, whereas germination of TaRZ2- or TaRZ3-expressing transgenic Arabidopsis seeds was retarded under dehydration stress conditions. Seedling growth of TaRZ1-expressing transgenic plants was severely inhibited under cold or salt stress conditions, and seedling growth of TaRZ2-expressing plants was inhibited under salt stress conditions. By contrast, expression of TaRZ3 did not affect seedling growth of transgenic plants under any of the stress conditions. In addition, expression of TaRZ2 conferred freeze tolerance in Arabidopsis. Taken together, these results suggest that different TaRZ family members play various roles in seed germination, seedling growth, and freeze tolerance in plants under abiotic stress.
Lead phytotoxicity on wheat (Triticum aestivum L.) seed germination and seedlings growth.
Lamhamdi, Mostafa; Bakrim, Ahmed; Aarab, Ahmed; Lafont, René; Sayah, Fouad
2011-02-01
Lead (Pb) is an environmental pollutant extremely toxic to plants and other living organisms including humans. To assess Pb phytotoxicity, experiments focusing on germination of wheat seeds were germinated in a solution containing Pb (NO(3))(2) (0.05; 0.1; 0.5; 1g/L) during 6 days. Lead accumulation in seedlings was positively correlated with the external concentrations, and negatively correlated with morphological parameters of plant growth. Lead increased lipid peroxidation, enhanced soluble protein concentrations and induced a significant accumulation of proline in roots. Esterase activity was enhanced in the presence of lead, whereas α-amylase activity was significantly inhibited. Antioxidant enzymes activities, such as, ascorbate peroxidase, peroxidase, superoxide dismutase, catalase and glutathione S-transferase were generally significantly increased in the presence of lead in a dose-dependent manner. The present results thus provide a model system to screen for natural compounds able to counteract the deleterious effects of lead. Copyright © 2010 Académie des sciences. Published by Elsevier SAS. All rights reserved.
de Bruijn, Wouter J C; Vincken, Jean-Paul; Duran, Katharina; Gruppen, Harry
2016-08-17
Benzoxazinoids function as defense compounds and have been suggested to possess health-promoting effects. In this work, the mass spectrometric behavior of benzoxazinoids from the classes benzoxazin-3-ones (with subclasses lactams, hydroxamic acids, and methyl derivatives) and benzoxazolinones was studied. Wheat seeds were germinated with simultaneous elicitation by Rhizopus. The seedling extract was screened for the presence of benzoxazinoid (glycosides) using reversed-phase ultra-high-performance liquid chromatography with photodiode array detection coupled in line to multiple-stage mass spectrometry (RP-UHPLC-PDA-MS(n)). Benzoxazin-3-ones from the different subclasses showed distinctly different ionization and fragmentation behaviors. These features were incorporated into a newly proposed decision guideline to aid the classification of benzoxazinoids. Glycosides of the methyl derivative 2-hydroxy-4-methoxy-1,4-benzoxazin-3-one were tentatively identified for the first time in wheat. We conclude that wheat seedlings germinated with simultaneous fungal elicitation contain a diverse array of benzoxazinoids, mainly constituted by benzoxazin-3-one glycosides.
Martínez-de la Cruz, Enrique; García-Ramírez, Elpidio; Vázquez-Ramos, Jorge M; Reyes de la Cruz, Homero; López-Bucio, José
2015-03-15
Maize (Zea mays) root system architecture has a complex organization, with adventitious and lateral roots determining its overall absorptive capacity. To generate basic information about the earlier stages of root development, we compared the post-embryonic growth of maize seedlings germinated in water-embedded cotton beds with that of plants obtained from embryonic axes cultivated in liquid medium. In addition, the effect of four different auxins, namely indole-3-acetic acid (IAA), 1-naphthaleneacetic acid (NAA), indole-3-butyric acid (IBA) and 2,4-dichlorophenoxyacetic acid (2,4-D) on root architecture and levels of the heat shock protein HSP101 and the cell cycle proteins CKS1, CYCA1 and CDKA1 were analyzed. Our data show that during the first days after germination, maize seedlings develop several root types with a simultaneous and/or continuous growth. The post-embryonic root development started with the formation of the primary root (PR) and seminal scutellar roots (SSR) and then continued with the formation of adventitious crown roots (CR), brace roots (BR) and lateral roots (LR). Auxins affected root architecture in a dose-response fashion; whereas NAA and IBA mostly stimulated crown root formation, 2,4-D showed a strong repressing effect on growth. The levels of HSP101, CKS1, CYCA1 and CDKA in root and leaf tissues were differentially affected by auxins and interestingly, HSP101 registered an auxin-inducible and root specific expression pattern. Taken together, our results show the timing of early branching patterns of maize and indicate that auxins regulate root development likely through modulation of the HSP101 and cell cycle proteins. Copyright © 2014 Elsevier GmbH. All rights reserved.
Age and stem origin of Appalachian hardwood reproduction following a clearcut-herbicide treatment
G.R., Jr. Trimble; E.H. Tryon; H. Clay Smith; J.D. Hillier; J.D. Hillier
1986-01-01
Seven years after a clearcut-herbicide treatment in a West Virginia Appalachian hardwood stand, root-stem age was determined for sugar maple, black cherry, and white ash. Sugar maple stems originated from advanced reproduction, black cherry originated primarily from seedlings that germinated during or after treatment, and white ash stems were a mixture of seedlings,...
Insects affecting establishment of northern red oak seedlings in central Pennsylvania
J. Galford; L.R. Auchmoody; H.C. Smith; R.S. Walters
1991-01-01
Studies to evaluate the impact of insects on the establishment of advance oak regeneration in Pennsylvania were initiated in 1989. The populations and species of insects feeding on germinating acorns and new seedlings, their activity periods, and the damage caused by these insects were studied in relation to overstory-density (40, 60, and 100 percent relative density)...
An eight-acre black walnut plantation: history and observations 1982 - 1994
Charles J. Saboites
1995-01-01
In 1982 a black walnut (Juglans nigra) plantation was partly established by planting 200 1-0 seedlings on the first bench adjacent to Copper Creek near its mouth draining into the Clinch River, Scott County, Virginia. In the following years, 50-500 1-0 black walnut seedlings, supplemented by transplanting germinated nuts in failed spots, were planted...
Susan Kloss; Joe R. McBride
2002-01-01
This study characterized the distribution of geographic variation in water relations traits for six populations of California blue oak along a precipitation gradient (two each from high, medium and low precipitation environments). Acorns were collected from each population, germinated and the resulting seedlings were experimentally treated with three different watering...
Eric van Steenis
2013-01-01
This paper illustrates how to use an excel spreadsheet as a decision-making tool to determine optimum sowing factor to minimize seedling production cost. Factors incorporated into the spreadsheet calculations include germination percentage, seeder accuracy, cost per seed, cavities per block, costs of handling, thinning, and transplanting labor, and more. In addition to...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winter, H.C.; Dekker, E.E.
1987-04-01
The authors measured the levels of 4-methyleneglutamic acid (Meglu), 4-methyleneglutamine (Megln), erythro-4-methylglutamic acid (e-Mglu), and threo-4-methylglutamic acid (t-Mglu) in seedlings of various species of legumes by HPLC and ion exchange chromatography. High levels of e-Mglu and Megln but no t-Mglu or Meglu are present in Sophora japonica. Peanut seedling contain both e-Mglu and t-Mglu at 20-50% and 5%, resp., of the level of Meglu whereas only traces of Meglu and Mglu occur in soybean seedlings. Excised peanut embryos germinated on Linsmaier and Skoog medium + (U-/sup 14/C)-leucine incorporated isotope into e-Mglu, Meglu, and Megln; (U-/sup 14/C)-proline or glycine was notmore » so incorporated. Soybean embryos rapidly converted added (2-/sup 14/C)-Meglu to a variety of non-amino acid products; peanut embryos, in contrast, retain 25% of added Meglu unchanged and 50% as Megln. These results suggest that in a variety of legumes leucine may serve as a precursor of Mglu and Meglu during germination; also, whereas Meglu remains as such or as Megln in some species, it is rapidly metabolized in others.« less
Loss of desiccation tolerance in Copaifera langsdorffii Desf. seeds during germination.
Pereira, W V S; Faria, J M R; Tonetti, O A O; Silva, E A A
2014-05-01
This study evaluated the loss of desiccation tolerance in C. langsdorffii seeds during the germination process. Seeds were imbibed for 24, 48, 72, 96, 120 and 144 hours and dried to the initial moisture content, kept in this state for 3 days after which they were submitted to pre-humidification and rehydration. Ultraestructural evaluations were done aiming to observe the cell damage caused by the dry process. Desiccation tolerance was evaluated in terms of the percentage of normal seedlings. Seeds not submitted to the drying process presented 61% of normal seedlings, and after 24 hours of imbibition, followed by drying, the seeds presented the same percentage of survival. However, after 48 hours of imbibition, seeds started to lose the desiccation tolerance. There was twenty six percent of normal seedlings formed from seeds imbibed for 96 hours and later dried and rehydrated. Only 5% of seeds imbibed for 144 hours, dried and rehydrated formed normal seedlings. At 144 hours of imbibition followed the dry process, there was damage into the cell structure, indicating that the seeds were unable to keep the cell structure during the drying process. Copaifera langsdorffii seeds loses the desiccation tolerance at the start of Phase 2 of imbibition.
Fernandes-Silva, Caroline C; Lima, Carolina A; Negri, Giuseppina; Salatino, Maria L F; Salatino, Antonio; Mayworm, Marco A S
2015-12-01
Propolis is a resinous material produced by honeybees, containing mainly beeswax and plant material. Despite the wide spectrum of biological activity of propolis, to our knowledge no studies have been carried out about phytotoxic properties of Brazilian propolis and its constituents. The aims of this study were to analyze the chemical composition and to evaluate the phytotoxic activity of the volatile fraction of a sample of Brazilian green propolis. Main constituents are the phenylpropanoid 3-prenylcinnamic acid allyl ester (26.3%) and the sesquiterpene spathulenol (23.4%). Several other sesquiterpenes and phenylpropanoids, in addition to linalool and α-terpineol (monoterpenes), were also detected. The activity of solutions of the volatile fraction at 1.0, 0.5 and 0.1% was tested on lettuce seeds and seedlings. The solution at 1% inhibited completely the seed germination and solutions at 0.1 and 0.5% reduced the germination rate index. The solution at 0.5% reduced the growth of the hypocotyl-radicle axis and the development of the cotyledon leaf. The chemical composition of the volatile fraction of this Brazilian green propolis is different from those previously described, and these results may contribute to a better understanding about the chemical variations in propolis. The volatile fraction of Brazilian green propolis influences both germination of seed lettuce and the growth of its seedlings, showing an phytotoxic potential. © 2014 Society of Chemical Industry.
Giménez-Benavides, Luis; Escudero, Adrián; Iriondo, José M.
2007-01-01
Background and Aims Germination and seedling establishment, which are critical stages in the regeneration process of plant populations, may be subjected to natural selection and adaptive evolution. The aims of this work were to assess the main limitations on offspring performance of Silene ciliata, a high mountain Mediterranean plant, and to test whether local adaptation at small spatial scales has a significant effect on the success of establishment. Methods Reciprocal sowing experiments were carried out among three populations of the species to test for evidence of local adaptation on seedling emergence, survival and size. Studied populations were located at the southernmost margin of the species' range, along the local elevation gradient that leads to a drought stress gradient. Key Results Drought stress in summer was the main cause of seedling mortality even though germination mainly occurred immediately after snowmelt to make the best use of soil moisture. The results support the hypothesis that species perform better at the centre of their altitudinal range than at the boundaries. Evidence was also found of local adaptation in seedling survival and growth along the whole gradient. Conclusions The local adaptation acting on seedling emergence and survival favours the persistence of remnant populations on the altitudinal and latitudinal margins of mountain species. In a global warming context, such processes may help to counteract the contraction of this species' ranges and the consequent loss of habitat area. PMID:17307775
Krishnadas, Meghna; Comita, Liza S
2018-01-01
Soil fungi are key mediators of negative density-dependent mortality in seeds and seedlings, and the ability to withstand pathogens in the shaded understory of closed-canopy forests could reinforce light gradient partitioning by tree species. For four species of tropical rainforest trees-two shade-tolerant and two shade-intolerant-we conducted a field experiment to examine the interactive effects of fungal pathogens, light, and seed density on germination and early seedling establishment. In a fully factorial design, seeds were sown into 1 m 2 plots containing soil collected from underneath conspecific adult trees, with plots assigned to forest edge (high light) or shaded understory, high or low density, and fungicide or no fungicide application. We monitored total seed germination and final seedling survival over 15 weeks. Shade-intolerant species were strongly constrained by light; their seedlings survived only at the edge. Fungicide application significantly improved seedling emergence and/or survival for three of the four focal species. There were no significant interactions between fungicide and seed density, suggesting that pathogen spread with increased aggregation of seeds and seedlings did not contribute to pathogen-mediated mortality. Two species experienced significant edge-fungicide interactions, but fungicide effects in edge vs. interior forest varied with species and recruitment stage. Our results suggest that changes to plant-pathogen interactions could affect plant recruitment in human-impacted forests subject to fragmentation and edge-effects.
Munguía-Rosas, Miguel Angel; Sosa, Vinicio J.
2008-01-01
Background and Aims Most studies on cactus recruitment have focused on the role of woody plants as seedling facilitators. Although the spatial association of cacti with objects had been described, the mechanisms underlying this association remain unknown. The aims of this study were to identify which mechanisms facilitate the establishment of a columnar cactus under the shade and protection of objects and to compare these mechanisms with those involved in plant–plant facilitation. Methods Three split-split-plot field experiments were conducted to compare the effects of two microhabitats (inside rocky cavities and beneath plant canopies) on seed removal, germination, seedling survivorship and dry weight. Flat, open spaces were used as the control. For each microhabitat, the effect of seed or seedling protection and substrate limitation were explored; aboveground microclimate and some soil properties were also characterized. Key Results The permanence of superficial seeds was greater inside rocky cavities than beneath woody plant canopies or on flat, open areas. Germination was similar in cavities and beneath plant canopies, but significantly higher than on flat, open areas. Seedling survivorship was greater beneath plant canopies than inside cavities or on flat, open spaces. Conclusions The mechanisms of plant facilitation are different from those of object facilitation. There are seed–seedling conflicts involved in the recruitment of P. leucocephalus: nurse plants favour mainly seedling survivorship by providing a suitable microenvironment, while nurse objects mainly favour seed permanence, by protecting them from predators. PMID:18056054
Abanda-Nkpwatt, Daniel; Müsch, Martina; Tschiersch, Jochen; Boettner, Mewes; Schwab, Wilfried
2006-01-01
Four Methylobacterium extorquens strains were isolated from strawberry (Fragaria x ananassa cv. Elsanta) leaves, and one strain, called ME4, was tested for its ability to promote the growth of various plant seedlings. Seedling weight and shoot length of Nicotiana tabacum, Lycopersicon esculentum, Sinapis alba, and Fragaria vesca increased significantly in the presence of the pink-pigmented facultative methylotroph (PPFM), but the germination behaviour of seeds from six other plants was not affected. The cell-free supernatant of the bacterial culture stimulated germination, suggesting the production of a growth-promoting agent by the methylotroph. Methanol emitted from N. tabacum seedlings, as determined by proton-transfer-reaction mass spectrometry (PTR-MS), ranged from 0.4 to 0.7 ppbv (parts per billion by volume), while significantly lower levels (0.005 to 0.01 ppbv) of the volatile alcohol were measured when the seedlings were co-cultivated with M. extorquens ME4, demonstrating the consumption of the gaseous methanol by the bacteria. Additionally, by using cells of the methylotrophic yeast Pichia pastoris transformed with the pPICHS/GFP vector harbouring a methanol-sensitive promoter in combination with the green fluorescence protein (GFP) reporter gene, stomata were identified as the main source of the methanol emission on tobacco cotyledons. Methylobacterium extorquens strains can nourish themselves using the methanol released by the stomata and release an agent promoting the growth of the seedlings of some crop plants.
Study on allelopathic effects of Rice and Wheat Soil-Like Substrate on several plants
NASA Astrophysics Data System (ADS)
Li, Leyuan; Fu, Wenting; He, Wenting; Liu, Hong
Rice and wheat are the traditional food of Chinese people, and therefore the main crop candidates for bio-regenerative life-support systems. Recycling rice and wheat straw is an important issue concerning the system. In order to decide if the mixed-substrate made of rice and wheat straw is suitable of plant cultivation, Rice and Wheat Soil-Like Substrate was tested in an aqueous extract germination experiment. The effects of different concentrations of aqueous extract on seed vigor, seedling growth and development situations and the physiological and biochemical characteristics of wheat, lettuce and pumpkin were studied, and the presence and degrees of allelopathic effects were analyzed. The test results showed that this type of SLS exerted different degrees of allelopathic effect on wheat and lettuce; this allelopathic effect was related to the concentration of SLS aqueous extract. The most significant phenomenon is that with the increase of aqueous extract concentration, the seed germination, root length and shoot fresh weight of wheat decreased; and every concentration of aqueous extract showed significant inhibition on the root length and root fresh weight of lettuce. However, this type of SLS showed little effect on the growth of pumpkin seedlings. Contents changes of chlorophyll and endogenous hormones in wheat and lettuce seedlings, and the chemical compositions of SLS were measured, and the mechanism of allelopathic effect was preliminarily analyzed.
Goggin, Danica E.; Powles, Stephen B.
2012-01-01
Background and Aims α-Amylase in grass caryopses (seeds) is usually expressed upon commencement of germination and is rarely seen in dry, mature seeds. A heat-stable α-amylase activity was unexpectedly selected for expression in dry annual ryegrass (Lolium rigidum) seeds during targeted selection for low primary dormancy. The aim of this study was to characterize this constitutive activity biochemically and determine if its presence conferred insensitivity to the germination inhibitors abscisic acid and benzoxazolinone. Methods α-Amylase activity in developing, mature and germinating seeds from the selected (low-dormancy) and a field-collected (dormant) population was characterized by native activity PAGE. The response of seed germination and α-amylase activity to abscisic acid and benzoxazolinone was assessed. Using an alginate affinity matrix, α-amylase was purified from dry and germinating seeds for analysis of its enzymatic properties. Key Results The constitutive α-amylase activity appeared late during seed development and was mainly localized in the aleurone; in germinating seeds, this activity was responsive to both glucose and gibberellin. It migrated differently on native PAGE compared with the major activities in germinating seeds of the dormant population, but the enzymatic properties of α-amylase purified from the low-dormancy and dormant seeds were largely indistinguishable. Seed imbibition on benzoxazolinone had little effect on the low-dormancy seeds but greatly inhibited germination and α-amylase activity in the dormant population. Conclusions The constitutive α-amylase activity in annual ryegrass seeds selected for low dormancy is electrophoretically different from that in germinating seeds and its presence confers insensitivity to benzoxazolinone. The concurrent selection of low dormancy and constitutive α-amylase activity may help to enhance seedling establishment under competitive conditions. PMID:23002268
Airaki, Morad; Leterrier, Marina; Valderrama, Raquel; Chaki, Mounira; Begara-Morales, Juan C; Barroso, Juan B; del Río, Luis A; Palma, José M; Corpas, Francisco J
2015-09-01
The development of seedlings involves many morphological, physiological and biochemical processes, which are controlled by many factors. Some reactive oxygen and nitrogen species (ROS and RNS, respectively) are implicated as signal molecules in physiological and phytopathological processes. Pepper (Capsicum annuum) is a very important crop and the goal of this work was to provide a framework of the behaviour of the key elements in the metabolism of ROS and RNS in the main organs of pepper during its development. The main seedling organs (roots, hypocotyls and green cotyledons) of pepper seedlings were analysed 7, 10 and 14 d after germination. Activity and gene expression of the main enzymatic antioxidants (catalase, ascorbate-glutathione cycle enzymes), NADP-generating dehydrogenases and S-nitrosoglutathione reductase were determined. Cellular distribution of nitric oxide ((·)NO), superoxide radical (O2 (·-)) and peroxynitrite (ONOO(-)) was investigated using confocal laser scanning microscopy. The metabolism of ROS and RNS during pepper seedling development was highly regulated and showed significant plasticity, which was co-ordinated among the main seedling organs, resulting in correct development. Catalase showed higher activity in the aerial parts of the seedling (hypocotyls and green cotyledons) whereas roots of 7-d-old seedlings contained higher activity of the enzymatic components of the ascorbate glutathione cycle, NADP-isocitrate dehydrogenase and NADP-malic enzyme. There is differential regulation of the metabolism of ROS, nitric oxide and NADP dehydrogenases in the different plant organs during seedling development in pepper in the absence of stress. The metabolism of ROS and RNS seems to contribute significantly to plant development since their components are involved directly or indirectly in many metabolic pathways. Thus, specific molecules such as H2O2 and NO have implications for signalling, and their temporal and spatial regulation contributes to the success of seedling establishment. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Motes, Christy M; Pechter, Priit; Yoo, Cheol Min; Wang, Yuh-Shuh; Chapman, Kent D; Blancaflor, Elison B
2005-12-01
Plant development is regulated by numerous chemicals derived from a multitude of metabolic pathways. However, we know very little about the biological effects and functions of many of these metabolites in the cell. N-Acylethanolamines (NAEs) are a group of lipid mediators that play important roles in mammalian physiology. Despite the intriguing similarities between animals and plants in NAE metabolism and perception, not much is known about the precise function of these metabolites in plant physiology. In plants, NAEs have been shown to inhibit phospholipase Dalpha (PLDalpha) activity, interfere with abscisic acid-induced stomatal closure, and retard Arabidopsis seedling development. 1-Butanol, an antagonist of PLD-dependent phosphatidic acid production, was reported to induce defects in Arabidopsis seedling development that were somewhat similar to effects induced by elevated levels of NAE. This raised the possibility that the impact of NAE on seedling growth could be mediated in part via its influence on PLD activity. To begin to address this possibility, we conducted a detailed, comparative analysis of the effects of 1-butanol and N-lauroylethanolamine (NAE 12:0) on Arabidopsis root cell division, in vivo cytoskeletal organization, seed germination, and seedling growth. Although both NAE 12:0 and 1-butanol induced profound cytoskeletal and morphological alterations in seedlings, there were distinct differences in their overall effects. 1-Butanol induced more pronounced modifications in cytoskeletal organization, seedling growth, and cell division at concentrations severalfold higher than NAE 12:0. We propose that these compounds mediate their differential effects on cellular organization and seedling growth, in part through the differential modulation of specific PLD isoforms.
Read, J J; Jensen, E H
1989-02-01
Problems associated with continuously planting alfalfa (Medicago saliva L.) or seeding to thicken depleted alfalfa stands may be due to autotoxicity, an intraspecific form of allelopathy. A bioassay approach was utilized to characterize the specificity and chemical nature of phytotoxins in extracts of alfalfa soils as compared to fallow soil or soil where a cereal was the previous crop. In germination chamber experiments, water-soluble substances present in methanol extracts of soil cropped to alfalfa or barley (Hordeum vulgare L.) decreased seedling root length of alfalfa L-720, winter wheat (Triticum aestivum L. Nugaines) and radish (Raphanus sativa L. Crimson Giant). Five days after germination, seedling dry weights of alfalfa and radish in alfalfa soil extracts were lower compared to wheat or red clover (Trifolium pralense L. Kenland). Growth of red clover was not significantly reduced by soil extracts from cropped soil. Extracts of crop residue screened from soil cropped to alfalfa or barley significantly reduced seedling root length; extracts of alfalfa residue caused a greater inhibition of seedling dry weight than extracts of barely residue. A phytotoxic, unidentified substance present in extracts of crop residue screened from alfalfa soil, which inhibited seedling root length of alfalfa, was isolated by thin-layer chromatography (TLC). Residues from a soil cropped continuously to alfalfa for 10 years had the greatest phytotoxic activity.
Influence of laser radiation on the growth and development of seeds of agricultural plants
NASA Astrophysics Data System (ADS)
Grishkanich, Alexander; Zhevlakov, Alexander; Polyakov, Vadim; Kascheev, Sergey; Sidorov, Igor; Ruzankina, Julia; Yakovlev, Alexey; Mak, Andrey
2016-04-01
The experimental results presented in this study focused on the study of biological processes caused by exposure to the coating layers of the laser green light seed (λ = 532 nm) range for the larch, violet (λ = 405 nm) and red (λ = 640 nm) for spruce. Spend a series of experiments to study the dependence of crop seed quality (spruce and larch from the pine family) from exposure to laser radiation under different conditions. In all the analyzed groups studied seed germination and growth of seedlings exposed to laser exposure, compared with the control group. The results showed that the higher percentage of germination than seeds of the control group.
Qu, Xiao-Xia; Huang, Zhen-Ying; Baskin, Jerry M.; Baskin, Carol C.
2008-01-01
Background and Aims The small leafy succulent shrub Halocnemum strobilaceum occurs in saline habitats from northern Africa and Mediterranean Europe to western Asia, and it is a dominant species in salt deserts such as those of north-west China. The effects of temperature, light/darkness and NaCl salinity were tested on seed germination, and the effects of salinity were tested on seed germination recovery, radicle growth and radicle elongation recovery, using seeds from north-west China; the results were compared with those previously reported on this species from ‘salt steppes’ in the Mediterranean region of Spain. Methods Seed germination was tested over a range of temperatures in light and in darkness and over a range of salinities at 25 °C in the light. Seeds that did not germinate in the NaCl solutions were tested for germination in deionized water. Seeds from which radicles had barely emerged in deionized water were transferred to NaCl solutions for 10 d and then back to deionized water for 10 d to test for radicle growth and recovery. Key Results Seeds germinated to higher percentages in light than in darkness and at high than at low temperatures. Germination percentages decreased with an increase in salinity from 0·1 to 0·75 m NaCl. Seeds that did not germinate in NaCl solutions did so after transfer to deionized water. Radicle elongation was increased by low salinity, and then it decreased with an increase in salinity, being completely inhibited by ≥2·0 m NaCl. Elongation of radicles from salt solutions <3·0 m resumed after seedlings were transferred to deionized water. Conclusions The seed and early seedling growth stages of the life cycle of H. strobilaceum are very salt tolerant, and their physiological responses differ somewhat between the Mediterranean ‘salt steppe’ of Spain and the inland cold salt desert of north-west China. PMID:17428834
Qu, Xiao-Xia; Huang, Zhen-Ying; Baskin, Jerry M; Baskin, Carol C
2008-01-01
The small leafy succulent shrub Halocnemum strobilaceum occurs in saline habitats from northern Africa and Mediterranean Europe to western Asia, and it is a dominant species in salt deserts such as those of north-west China. The effects of temperature, light/darkness and NaCl salinity were tested on seed germination, and the effects of salinity were tested on seed germination recovery, radicle growth and radicle elongation recovery, using seeds from north-west China; the results were compared with those previously reported on this species from 'salt steppes' in the Mediterranean region of Spain. Seed germination was tested over a range of temperatures in light and in darkness and over a range of salinities at 25 degrees C in the light. Seeds that did not germinate in the NaCl solutions were tested for germination in deionized water. Seeds from which radicles had barely emerged in deionized water were transferred to NaCl solutions for 10 d and then back to deionized water for 10 d to test for radicle growth and recovery. Seeds germinated to higher percentages in light than in darkness and at high than at low temperatures. Germination percentages decreased with an increase in salinity from 0.1 to 0.75 M NaCl. Seeds that did not germinate in NaCl solutions did so after transfer to deionized water. Radicle elongation was increased by low salinity, and then it decreased with an increase in salinity, being completely inhibited by > or = 2.0 M NaCl. Elongation of radicles from salt solutions < 3.0 M resumed after seedlings were transferred to deionized water. The seed and early seedling growth stages of the life cycle of H. strobilaceum are very salt tolerant, and their physiological responses differ somewhat between the Mediterranean 'salt steppe' of Spain and the inland cold salt desert of north-west China.
Effects of Autumn and Spring Heat Waves on Seed Germination of High Mountain Plants.
Orsenigo, Simone; Abeli, Thomas; Rossi, Graziano; Bonasoni, Paolo; Pasquaretta, Cristian; Gandini, Maurizia; Mondoni, Andrea
2015-01-01
Alpine plants are considered to be particularly vulnerable to climate change and related extreme episodes, such as heat waves. Despite growing interest in the impact of heat waves on alpine plants, knowledge about their effects on regeneration is still fragmentary. Recruitment from seeds will be crucial for the successful migration and survival of these species and will play a key role in their future adaptation to climate change. In this study, we assessed the impacts of heat waves on the seed germination of 53 high mountain plants from the Northern Apennines (Italy). The seeds were exposed to laboratory simulations of three seasonal temperature treatments, derived from real data recorded at a meteorological station near the species growing site, which included two heat wave episodes that occurred both in spring 2003 and in autumn 2011. Moreover, to consider the effect of increasing drought conditions related to heat waves, seed germination was also investigated under four different water potentials. In the absence of heat waves, seed germination mainly occurred in spring, after seeds had experienced autumn and winter seasons. However, heat waves resulted in a significant increase of spring germination in c. 30% of the species and elicited autumn germination in 50%. When heat waves were coupled with drought, seed germination decreased in all species, but did not stop completely. Our results suggest that in the future, heat waves will affect the germination phenology of alpine plants, especially conditionally dormant and strictly cold-adapted chorotypes, by shifting the emergence time from spring to autumn and by increasing the proportion of emerged seedlings. The detrimental effects of heat waves on recruitment success is less likely to be due to the inhibition of seed germination per se, but rather due to seedling survival in seasons, and temperature and water conditions that they are not used to experiencing. Changes in the proportion and timing of emergence suggest that there may be major implications for future plant population size and structure.
Délye, Christophe; Menchari, Yosra; Michel, Séverine; Cadet, Emilie; Le Corre, Valérie
2013-04-01
Selective pressures exerted by agriculture on populations of arable weeds foster the evolution of adaptive traits. Germination and emergence dynamics and herbicide resistance are key adaptive traits. Herbicide resistance alleles can have pleiotropic effects on a weed's life cycle. This study investigated the pleiotropic effects of three acetyl-coenzyme A carboxylase (ACCase) alleles endowing herbicide resistance on the seed-to-plant part of the life cycle of the grass weed Alopecurus myosuroides. In each of two series of experiments, A. myosuroides populations with homogenized genetic backgrounds and segregating for Leu1781, Asn2041 or Gly2078 ACCase mutations which arose independently were used to compare germination dynamics, survival in the soil and seedling pre-emergence growth among seeds containing wild-type, heterozygous and homozygous mutant ACCase embryos. Asn2041 ACCase caused no significant effects. Gly2078 ACCase major effects were a co-dominant acceleration in seed germination (1·25- and 1·10-fold decrease in the time to reach 50 % germination (T50) for homozygous and heterozygous mutant embryos, respectively). Segregation distortion against homozygous mutant embryos or a co-dominant increase in fatal germination was observed in one series of experiments. Leu1781 ACCase major effects were a co-dominant delay in seed germination (1·41- and 1·22-fold increase in T50 for homozygous and heterozygous mutant embryos, respectively) associated with a substantial co-dominant decrease in fatal germination. Under current agricultural systems, plants carrying Leu1781 or Gly2078 ACCase have a fitness advantage conferred by herbicide resistance that is enhanced or counterbalanced, respectively, by direct pleiotropic effects on the plant phenology. Pleiotropic effects associated with mutations endowing herbicide resistance undoubtedly play a significant role in the evolutionary dynamics of herbicide resistance in weed populations. Mutant ACCase alleles should also prove useful to investigate the role played by seed storage lipids in the control of seed dormancy and germination.
Effects of Autumn and Spring Heat Waves on Seed Germination of High Mountain Plants
Orsenigo, Simone; Abeli, Thomas; Rossi, Graziano; Bonasoni, Paolo; Pasquaretta, Cristian; Gandini, Maurizia; Mondoni, Andrea
2015-01-01
Alpine plants are considered to be particularly vulnerable to climate change and related extreme episodes, such as heat waves. Despite growing interest in the impact of heat waves on alpine plants, knowledge about their effects on regeneration is still fragmentary. Recruitment from seeds will be crucial for the successful migration and survival of these species and will play a key role in their future adaptation to climate change. In this study, we assessed the impacts of heat waves on the seed germination of 53 high mountain plants from the Northern Apennines (Italy). The seeds were exposed to laboratory simulations of three seasonal temperature treatments, derived from real data recorded at a meteorological station near the species growing site, which included two heat wave episodes that occurred both in spring 2003 and in autumn 2011. Moreover, to consider the effect of increasing drought conditions related to heat waves, seed germination was also investigated under four different water potentials. In the absence of heat waves, seed germination mainly occurred in spring, after seeds had experienced autumn and winter seasons. However, heat waves resulted in a significant increase of spring germination in c. 30% of the species and elicited autumn germination in 50%. When heat waves were coupled with drought, seed germination decreased in all species, but did not stop completely. Our results suggest that in the future, heat waves will affect the germination phenology of alpine plants, especially conditionally dormant and strictly cold-adapted chorotypes, by shifting the emergence time from spring to autumn and by increasing the proportion of emerged seedlings. The detrimental effects of heat waves on recruitment success is less likely to be due to the inhibition of seed germination per se, but rather due to seedling survival in seasons, and temperature and water conditions that they are not used to experiencing. Changes in the proportion and timing of emergence suggest that there may be major implications for future plant population size and structure. PMID:26197387
A Direct Screening Procedure for Gravitropism Mutants in Arabidopsis thaliana (L.) Heynh. 1
Bullen, Bertha L.; Best, Thérèse R.; Gregg, Mary M.; Barsel, Sara-Ellen; Poff, Kenneth L.
1990-01-01
In order to isolate gravitropism mutants of Arabidopsis thaliana (L.) Heynh. var Estland for the genetic dissection of the gravitropism pathway, a direct screening procedure has been developed in which mutants are selected on the basis of their gravitropic response. Variability in hypocotyl curvature was dependent on the germination time of each seed stock, resulting in the incorrect identification of several lines as gravitropism mutants when a standard protocol for the potentiation of germination was used. When the protocol was adjusted to allow for differences in germination time, these lines were eliminated from the collection. Out of the 60,000 M2 seedlings screened, 0.3 to 0.4% exhibited altered gravitropism. In approximately 40% of these mutant lines, only gravitropism by the root or the hypocotyl was altered, while the response of the other organ was unaffected. These data support the hypothesis that root and hypocotyl gravitropism are genetically separable. PMID:11537704
A direct screening procedure for gravitropism mutants in Arabidopsis thaliana (L.) Heynh
NASA Technical Reports Server (NTRS)
Bullen, B. L.; Best, T. R.; Gregg, M. M.; Poff, K. L.; Barsel, S-E (Principal Investigator)
1990-01-01
In order to isolate gravitropism mutants of Arabidopsis thaliana (L.) Heynh. var Estland for the genetic dissection of the gravitropism pathway, a direct screening procedure has been developed in which mutants are selected on the basis of their gravitropic response. Variability in hypocotyl curvature was dependent on the germination time of each seed stock, resulting in the incorrect identification of several lines as gravitropism mutants when a standard protocol for the potentiation of germination was used. When the protocol was adjusted to allow for differences in germination time, these lines were eliminated from the collection. Out of the 60,000 M2 seedlings screened, 0.3 to 0.4% exhibited altered gravitropism. In approximately 40% of these mutant lines, only gravitropism by the root or the hypocotyl was altered, while the response of the other organ was unaffected. These data support the hypothesis that root and hypocotyl gravitropism are genetically separable.
A Gate-to-gate Case Study of the Life Cycle Assessment of an Oil Palm Seedling
Muhamad, Halimah; Sahid, Ismail Bin; Surif, Salmijah; Ai, Tan Yew; May, Choo Yuen
2012-01-01
The palm oil industry has played an important role in the economic development of Malaysia and has enhanced the economic welfare of its people. To determine the environmental impact of the oil palm seedling at the nursery stage, information on inputs and outputs need to be assessed. The oil palm nursery is the first link in the palm oil supply chain. A gate-to-gate study was carried out whereby the system boundary was set to only include the process of the oil palm seedling. The starting point was a germinated seed in a small polyethylene bag (6 in × 9 in) in which it remained until the seedling was approximately 3 to 4 months old. The seedling was then transferred into a larger polyethylene bag (12 in × 15 in), where it remained until it was 10–12 months old, when it was planted in the field (plantation). The functional unit for this life cycle inventory (LCI) is based on the production of one seedling. Generally, within the system boundary, the production of an oil palm seedling has only two major environmental impact points, the polybags used to grow the seedling and the fungicide (dithiocarbamate) used to control pathogenic fungi, as both the polybags and the dithiocarbamate are derived from fossil fuel. PMID:24575222
White oak epicotyl emergence and 1-0 seedling growth from surgically altered germinating acorns
Shi-Jean Susana Sung; Paul P. Kormanik; Stanley J. Zarnoch
2010-01-01
Open-pollinated white oak (Quercus alba L.) acorns were collected and stored at 4 °C in November 2004. Three days before sowing in early December, we treated germinating acorns in five ways: no surgery (C); one half of the radical cut off (HR); whole radicle cut off (WR); one cotyledonary petiole severed (OP); and both cotyledonary petioles severed,...
Topographic separation of two sympatric palms in the central Amazon - does dispersal play a role?
NASA Astrophysics Data System (ADS)
Gomes de Freitas, Cintia; Capellotto Costa, Flávia Regina; Svenning, Jens-Christian; Balslev, Henrik
2012-02-01
Despite broadly overlapping geographic distributions in the central Amazon basin, two congeneric palm species (Attalea attaleoides and Attalea microcarpa) have topographically separated distributions on a local scale in Reserva Ducke near Manaus. Our aim here was to determine if this local scale separation can be linked to (1) seedling stage specialization to different habitat conditions of the two species, and/or (2) environmentally-controlled seed dispersal. We assessed the role of these potential drivers by mapping the local distribution of the two species over a 25-km2 grid and testing for correlation to seed removal and seed germination patterns using seed sowing experiments. 360 seeds of each species were sown in 30 uniformly distributed plots (12 seeds of each species in each plot), and seed removal and germination were subsequently monitored. Adult populations of the two species showed opposite distribution patterns linked to topography. However, there was little evidence for specialization to different habitat conditions at the seedling stage: after 11 months, 26.1% of seeds of A. microcarpa had germinated along the entire topographic gradient, albeit with a tendency toward higher germination in more inclined areas. For A. attaleoides, only 2.2% seeds had germinated, and again along the entire topographic gradient. In contrast, there was evidence for environmentally-controlled seed dispersal: for both species, seed removal was higher in flat areas. Presence of adults did not affect germination or seed removal. Our results suggest that topographically differentiated distributions of A. attaleoides and A. microcarpa may be reinforced by steep slope avoidance by their seed dispersers. A direct environmental control mechanism remains to be identified to explain the consistent topographic associations, but our results show that this mechanism does not work at the seed germination stage.
Danielle E. Marias; Frederick C. Meinzer; David R. Woodruff; Katherine A. McCulloh; David Tissue
2016-01-01
Temperature and the frequency and intensity of heat waves are predicted to increase throughout the 21st century. Germinant seedlings are expected to be particularly vulnerable to heat stress because they are in the boundary layer close to the soil surface where intense heating occurs in open habitats. We quantified leaf thermotolerance and whole-plant physiological...
Germinant size of jack pine in relation to seed size and geographic origin
C.W. Yeatman
1966-01-01
The initial size of conifer seedlings is closely related to seed size (Hadders 1963), and seed size is a maternal characteristic that is highly subject to environmental modification (Mergen et al. 1964; Righter 1945). The effect of seed weight must be accounted for in critical studies of seedlings which attempt to attribute differences in growth to specific genetic or...
Sarmiento, Carolina; Zalamea, Paul-Camilo; Dalling, James W; Davis, Adam S; Stump, Simon M; U'Ren, Jana M; Arnold, A Elizabeth
2017-10-24
The Janzen-Connell (JC) hypothesis provides a conceptual framework for explaining the maintenance of tree diversity in tropical forests. Its central tenet-that recruits experience high mortality near conspecifics and at high densities-assumes a degree of host specialization in interactions between plants and natural enemies. Studies confirming JC effects have focused primarily on spatial distributions of seedlings and saplings, leaving major knowledge gaps regarding the fate of seeds in soil and the specificity of the soilborne fungi that are their most important antagonists. Here we use a common garden experiment in a lowland tropical forest in Panama to show that communities of seed-infecting fungi are structured predominantly by plant species, with only minor influences of factors such as local soil type, forest characteristics, or time in soil (1-12 months). Inoculation experiments confirmed that fungi affected seed viability and germination in a host-specific manner and that effects on seed viability preceded seedling emergence. Seeds are critical components of reproduction for tropical trees, and the factors influencing their persistence, survival, and germination shape the populations of seedlings and saplings on which current perspectives regarding forest dynamics are based. Together these findings bring seed dynamics to light in the context of the JC hypothesis, implicating them directly in the processes that have emerged as critical for diversity maintenance in species-rich tropical forests.
Dalling, James W.; Stump, Simon M.; U’Ren, Jana M.; Arnold, A. Elizabeth
2017-01-01
The Janzen–Connell (JC) hypothesis provides a conceptual framework for explaining the maintenance of tree diversity in tropical forests. Its central tenet—that recruits experience high mortality near conspecifics and at high densities—assumes a degree of host specialization in interactions between plants and natural enemies. Studies confirming JC effects have focused primarily on spatial distributions of seedlings and saplings, leaving major knowledge gaps regarding the fate of seeds in soil and the specificity of the soilborne fungi that are their most important antagonists. Here we use a common garden experiment in a lowland tropical forest in Panama to show that communities of seed-infecting fungi are structured predominantly by plant species, with only minor influences of factors such as local soil type, forest characteristics, or time in soil (1–12 months). Inoculation experiments confirmed that fungi affected seed viability and germination in a host-specific manner and that effects on seed viability preceded seedling emergence. Seeds are critical components of reproduction for tropical trees, and the factors influencing their persistence, survival, and germination shape the populations of seedlings and saplings on which current perspectives regarding forest dynamics are based. Together these findings bring seed dynamics to light in the context of the JC hypothesis, implicating them directly in the processes that have emerged as critical for diversity maintenance in species-rich tropical forests. PMID:28973927