Science.gov

Sample records for developmental germ layers

  1. Characterizing the mechanical behavior of the zebrafish germ layers

    NASA Astrophysics Data System (ADS)

    Kealhofer, David; Serwane, Friedhelm; Mongera, Alessandro; Rowghanian, Payam; Lucio, Adam; Campàs, Otger

    Organ morphogenesis and the development of the animal body plan involve complex spatial and temporal control of tissue- and cell-level mechanics. A prime example is the generation of stresses by individual cells to reorganize the tissue. These processes have remained poorly understood due to a lack of techniques to characterize the local constitutive law of the material, which relates local cellular forces to the resulting tissue flows. We have developed a method for quantitative, local in vivo study of material properties in living tissue using magnetic droplet probes. We use this technique to study the material properties of the different zebrafish germ layers using aggregates of zebrafish mesendodermal and ectodermal cells as a model system. These aggregates are ideal for controlled studies of the mechanics of individual germ layers because of the homogeneity of the cell type and the simple spherical geometry. Furthermore, the numerous molecular tools and transgenic lines already developed for this model organism can be applied to these aggregates, allowing us to characterize the contributions of cell cortex tension and cell adhesion to the mechanical properties of the zebrafish germ layers.

  2. An ancient role for nuclear beta-catenin in the evolution of axial polarity and germ layer segregation

    NASA Technical Reports Server (NTRS)

    Wikramanayake, Athula H.; Hong, Melanie; Lee, Patricia N.; Pang, Kevin; Byrum, Christine A.; Bince, Joanna M.; Xu, Ronghui; Martindale, Mark Q.

    2003-01-01

    The human oncogene beta-catenin is a bifunctional protein with critical roles in both cell adhesion and transcriptional regulation in the Wnt pathway. Wnt/beta-catenin signalling has been implicated in developmental processes as diverse as elaboration of embryonic polarity, formation of germ layers, neural patterning, spindle orientation and gap junction communication, but the ancestral function of beta-catenin remains unclear. In many animal embryos, activation of beta-catenin signalling occurs in blastomeres that mark the site of gastrulation and endomesoderm formation, raising the possibility that asymmetric activation of beta-catenin signalling specified embryonic polarity and segregated germ layers in the common ancestor of bilaterally symmetrical animals. To test whether nuclear translocation of beta-catenin is involved in axial identity and/or germ layer formation in 'pre-bilaterians', we examined the in vivo distribution, stability and function of beta-catenin protein in embryos of the sea anemone Nematostella vectensis (Cnidaria, Anthozoa). Here we show that N. vectensis beta-catenin is differentially stabilized along the oral-aboral axis, translocated into nuclei in cells at the site of gastrulation and used to specify entoderm, indicating an evolutionarily ancient role for this protein in early pattern formation.

  3. Tetraploid Embryonic Stem Cells Maintain Pluripotency and Differentiation Potency into Three Germ Layers.

    PubMed

    Imai, Hiroyuki; Kano, Kiyoshi; Fujii, Wataru; Takasawa, Ken; Wakitani, Shoichi; Hiyama, Masato; Nishino, Koichiro; Kusakabe, Ken Takeshi; Kiso, Yasuo

    2015-01-01

    Polyploid amphibians and fishes occur naturally in nature, while polyploid mammals do not. For example, tetraploid mouse embryos normally develop into blastocysts, but exhibit abnormalities and die soon after implantation. Thus, polyploidization is thought to be harmful during early mammalian development. However, the mechanisms through which polyploidization disrupts development are still poorly understood. In this study, we aimed to elucidate how genome duplication affects early mammalian development. To this end, we established tetraploid embryonic stem cells (TESCs) produced from the inner cell masses of tetraploid blastocysts using electrofusion of two-cell embryos in mice and studied the developmental potential of TESCs. We demonstrated that TESCs possessed essential pluripotency and differentiation potency to form teratomas, which differentiated into the three germ layers, including diploid embryonic stem cells. TESCs also contributed to the inner cell masses in aggregated chimeric blastocysts, despite the observation that tetraploid embryos fail in normal development soon after implantation in mice. In TESCs, stability after several passages, colony morphology, and alkaline phosphatase activity were similar to those of diploid ESCs. TESCs also exhibited sufficient expression and localization of pluripotent markers and retained the normal epigenetic status of relevant reprogramming factors. TESCs proliferated at a slower rate than ESCs, indicating that the difference in genomic dosage was responsible for the different growth rates. Thus, our findings suggested that mouse ESCs maintained intrinsic pluripotency and differentiation potential despite tetraploidization, providing insights into our understanding of developmental elimination in polyploid mammals.

  4. Appearance pattern of tooth germs with developmental process in Mylopharyngodon piceus

    NASA Astrophysics Data System (ADS)

    Yue, Pei-Qi; Nakajima, Tsuneo

    1995-06-01

    The pharyngeal dental formula of Mylopharyngodon piceus is 4 5 as a rule, and the dentition is asymmetrical. It is difficult to identify each tooth in the larval dentition. In this paper the appearance pattern of tooth germ with development process in this fish is described in detail. The formation pattern of the left dentition is contrasted with that of the right one. In the developmental process, the left pharyngeal dentition lacks teeth at position An3. Thus the left dentition is D-type as designated by Nakajima (1984), while the right one is A-type.

  5. Correct developmental expression of a cloned alcohol dehydrogenase gene transduced into the Drosophila germ line.

    PubMed

    Goldberg, D A; Posakony, J W; Maniatis, T

    1983-08-01

    We have used P-element-mediated transformation to introduce a cloned Drosophila alcohol dehydrogenase (Adh) gene into the germ line of ADH null flies. Six independent transformants expressing ADH were identified by their acquired resistance to ethanol. Each transformant carries a single copy of the cloned Adh gene in a different chromosomal location. Four of the six transformant lines exhibit normal Adh expression by the following criteria: quantitative levels of ADH enzyme activity in larvae and adults; qualitative tissue specificity; the size of stable Adh mRNA; and the characteristic developmental switch in utilization of two different Adh promoters. The remaining two transformants express ADH enzyme activity with the correct tissue specificity, but at a lower level than wild type. These results demonstrate that an 11.8 kb chromosomal fragment containing the Adh gene includes the cis-acting sequences necessary for its correct developmental expression, and that a variety of chromosomal sites permit proper Adh gene function.

  6. [The theory of germ layers: the debatable aspects].

    PubMed

    Dondua, A K

    1994-01-01

    Data on early embryonic development of animals provided the basis for the following conclusions. In most (if not in all) species, germinal layers are not primitive structures recapitulating the initial organs of ancestral forms. The initial cell differentiation in the embryo is not directly associated with gastrulation, and the common concept of a fundamental relationship between germinal layer formation and cell differentiation is erroneous. Specification of cell types during early development and morphogenetic movements during gastrulation are relatively autonomous processes controlled by different genetic systems. The formation of germinal layers during individual development of different multicellular animals can be understood taking into account that segregation of cell layers is an essential element of epithelial morphogenesis. Movement of cells and cell layers during gastrulation is a specific manifestation of a general morphogenetic principle.

  7. Coco regulates dorsoventral specification of germ layers via inhibition of TGFβ signalling

    PubMed Central

    Bates, Thomas J. D.; Vonica, Alin; Heasman, Janet; Brivanlou, Ali H.; Bell, Esther

    2013-01-01

    One of the earliest steps in embryonic development is the specification of the germ layers, the subdivision of the blastula embryo into endoderm, mesoderm and ectoderm. Maternally expressed members of the Transforming Growth Factor β (TGFβ) family influence all three germ layers; the ligands are required to induce endoderm and mesoderm, whereas inhibitors are required for formation of the ectoderm. Here, we demonstrate a vital role for maternal Coco, a secreted antagonist of TGFβ signalling, in this process. We show that Coco is required to prevent Activin and Nodal signals in the dorsal marginal side of the embryo from invading the prospective ectoderm, thereby restricting endoderm- and mesoderm-inducing signals to the vegetal and marginal zones of the pre-gastrula Xenopus laevis embryo. PMID:24026124

  8. Coco regulates dorsoventral specification of germ layers via inhibition of TGFβ signalling.

    PubMed

    Bates, Thomas J D; Vonica, Alin; Heasman, Janet; Brivanlou, Ali H; Bell, Esther

    2013-10-01

    One of the earliest steps in embryonic development is the specification of the germ layers, the subdivision of the blastula embryo into endoderm, mesoderm and ectoderm. Maternally expressed members of the Transforming Growth Factor β (TGFβ) family influence all three germ layers; the ligands are required to induce endoderm and mesoderm, whereas inhibitors are required for formation of the ectoderm. Here, we demonstrate a vital role for maternal Coco, a secreted antagonist of TGFβ signalling, in this process. We show that Coco is required to prevent Activin and Nodal signals in the dorsal marginal side of the embryo from invading the prospective ectoderm, thereby restricting endoderm- and mesoderm-inducing signals to the vegetal and marginal zones of the pre-gastrula Xenopus laevis embryo.

  9. Autonomous regulation of sex-specific developmental programming in mouse fetal germ cells.

    PubMed

    Iwahashi, Kazuhiro; Yoshioka, Hirotaka; Low, Eleanor W; McCarrey, John R; Yanagimachi, Ryuzo; Yamazaki, Yukiko

    2007-10-01

    In mice, unique events regulating epigenetic programming (e.g., genomic imprinting) and replication state (mitosis versus meiosis) occur during fetal germ cell development. To determine whether these processes are autonomously programmed in fetal germ cells or are dependent upon ongoing instructive interactions with surrounding gonadal somatic cells, we isolated male and female germ cells at 13.5 days postcoitum (dpc) and maintained them in culture for 6 days, either alone or in the presence of feeder cells or gonadal somatic cells. We examined allele-specific DNA methylation in the imprinted H19 and Snrpn genes, and we also determined whether these cells remained mitotic or entered meiosis. Our results show that isolated male germ cells are able to establish a characteristic "paternal" methylation pattern at imprinted genes in the absence of any support from somatic cells. On the other hand, cultured female germ cells maintain a hypomethylated status at these loci, characteristic of the normal "maternal" methylation pattern in endogenous female germ cells before birth. Further, the surviving female germ cells entered first meiotic prophase and reached the pachytene stage, whereas male germ cells entered mitotic arrest. These results indicate that mechanisms controlling both epigenetic programming and replication state are autonomously regulated in fetal germ cells that have been exposed to the genital ridge prior to 13.5 dpc.

  10. Monitoring for potential adverse effects of prenatal gene therapy: mouse models for developmental aberrations and inadvertent germ line transmission.

    PubMed

    Coutelle, Charles; Waddington, Simon N; Themis, Michael

    2012-01-01

    So far no systematic studies have been conducted to investigate developmental aberrations after prenatal gene transfer in mice. Here, we suggest procedures for such observations to be applied, tested and improved in further in utero gene therapy experiments. They are based on our own experience in husbandry for transgenic human diseases mouse models and breading, rearing, and observing mice after fetal gene transfer as well as on the systematic screens for monitoring of knock-out mutant mouse phenotypes established in international mutagenesis projects (EUMORPHIA and EUMODIC and subsequently the International Mouse Phenotyping Consortium). We also describe here the analysis procedures for detection of germ line mutations based on quantitative PCR (qPCR) by sperm-DNA analysis and breeding studies.

  11. Regional repression of a Drosophila POU box gene in the endoderm involves inductive interactions between germ layers.

    PubMed

    Affolter, M; Walldorf, U; Kloter, U; Schier, A F; Gehring, W J

    1993-04-01

    An induction process occurring between the mesodermal and the endodermal germ layers has recently been described in the regulation of the Drosophila homeotic gene labial (lab). We report here that proper spatial regulation of the Drosophila POU box gene pdm-1 products also involves interaction between these two germ layers. pdm-1 transcripts are initially present in both the anterior and the posterior endodermal midgut primordia. Upon fusion of the two primordia, transcripts disappear from two regions in the endoderm, a central domain and an anterior domain. The anterior repression domain of pdm-1 is independent of the expression of known homeotic genes and genes encoding secreted signalling molecules in the visceral mesoderm, both for its positioning and its repression. Repression in the central domain requires both the homeotic gene Ultrabithorax (Ubx) and the decapentaplegic (dpp) gene, which encodes a secreted protein. Both of these genes are also required for lab induction. However, the analysis of pdm-1 expression in various mutant backgrounds indicates that the regulation of lab and pdm-1 across germ layers is controlled by different genetic cascades. Our study indicates that dpp is not the signal that dictates central pdm-1 repression across germ layers and suggests that in the same midgut region, different signalling pathways result in the differential activation or repression of potential transcription factors.

  12. Cell lineage, axis formation, and the origin of germ layers in the amphipod crustacean Orchestia cavimana.

    PubMed

    Wolff, Carsten; Scholtz, Gerhard

    2002-10-01

    Embryos of the amphipod crustacean Orchestia cavimana are examined during cleavage, gastrulation, and segmentation by using in vivo labelling. Single blastomeres of the 8- and 16-cell stages were labelled with DiI to trace cell lineages. Early cleavage follows a distinct pattern and the a/p and d/v body axes are already determined at the 4- and 8-cell stages, respectively. In these stages, the germinal rudiment and the naupliar mesoderm can be traced back to a single blastomere each. In addition, the ectoderm and the postnaupliar mesoderm are separated into right and left components. At the16-cell stage, naupliar ectoderm is divided from the postnaupliar ectoderm, and extraembryonic lineages are separated from postnaupliar mesoderm and endoderm. From our investigation, it is evident that the cleavage pattern and cell lineage of Orchestia cavimana are not of the spiral type. Furthermore, the results of the labelling show many differences to cleavage patterns and cell lineages in other crustaceans, in particular, other Malacostraca. The cleavage and cell lineage patterns of the amphipod Orchestia are certainly derived within Malacostraca, whose ancestral cleavage mode was most likely of the superficial type. On the other hand, Orchestia exhibits a stereotyped cell division pattern during formation and differentiation of the germ band that is typical for malacostracans. Hence, a derived (apomorphic) early cleavage pattern is the ontogenetic basis for an evolutionarily older cell division pattern of advanced developmental stages. O. cavimana offers the possibility to trace the lineages and the fates of cells from early developmental stages up to the formation of segmental structures, including neurogenesis at a level of resolution that is not matched by any other arthropod system.

  13. Fluorescent imaging of endothelial glycocalyx layer with wheat germ agglutinin using intravital microscopy.

    PubMed

    Kataoka, Hanae; Ushiyama, Akira; Kawakami, Hayato; Akimoto, Yoshihiro; Matsubara, Sachie; Iijima, Takehiko

    2016-01-01

    Endothelial glycocalyx (GCX) is located on the apical surface of vascular endothelial cells and is composed of a negatively-charged network of proteoglycans and glycoproteins. The GCX plays an important role in maintaining the integrity of vascular walls and preventing leakage of plasma. Therefore, degradation of the GCX is believed to lead to pathological leakage of plasma. Because the GCX is a very thin layer, its ultrastructural image has been demonstrated on electron microscope. To explore the function of the GCX, it should be visualized by a microscope in vivo. Thus, we developed in vivo visualization technique of the GCX under fluorescence microscopy using a mouse dorsal skinfold chamber (DSC) model. To label and visualize the GCX, we used fluorescein isothiocyanate (FITC)-labeled lectin, which has a high specificity for sugar moieties. We examined the affinity of the different lectins to epivascular regions under an intravital fluorescent microscope. Among seven different lectins we examined, FITC labeled Triticum vulgaris (wheat germ) agglutinin (WGA) delineated the GCX most clearly. Binding of WGA to the GCX was inhibited by chitin hydrolysate, which contained WGA-binding polysaccharide chains. Furthermore, the septic condition attenuated this structure, suggesting structural degradation of endothelial GCX layer. In conclusion, FITC-labeled WGA lectin enabled visualization of endothelial GCX under in vivo fluorescence microscopy.

  14. Symmetry breaking, germ layer specification and axial organisation in aggregates of mouse embryonic stem cells.

    PubMed

    van den Brink, Susanne C; Baillie-Johnson, Peter; Balayo, Tina; Hadjantonakis, Anna-Katerina; Nowotschin, Sonja; Turner, David A; Martinez Arias, Alfonso

    2014-11-01

    Mouse embryonic stem cells (mESCs) are clonal populations derived from preimplantation mouse embryos that can be propagated in vitro and, when placed into blastocysts, contribute to all tissues of the embryo and integrate into the normal morphogenetic processes, i.e. they are pluripotent. However, although they can be steered to differentiate in vitro into all cell types of the organism, they cannot organise themselves into structures that resemble embryos. When aggregated into embryoid bodies they develop disorganised masses of different cell types with little spatial coherence. An exception to this rule is the emergence of retinas and anterior cortex-like structures under minimal culture conditions. These structures emerge from the cultures without any axial organisation. Here, we report that small aggregates of mESCs, of about 300 cells, self-organise into polarised structures that exhibit collective behaviours reminiscent of those that cells exhibit in early mouse embryos, including symmetry breaking, axial organisation, germ layer specification and cell behaviour, as well as axis elongation. The responses are signal specific and uncouple processes that in the embryo are tightly associated, such as specification of the anteroposterior axis and anterior neural development, or endoderm specification and axial elongation. We discuss the meaning and implications of these observations and the potential uses of these structures which, because of their behaviour, we suggest to call 'gastruloids'.

  15. A Pathogenic Mosaic TP53 Mutation in Two Germ Layers Detected by Next Generation Sequencing

    PubMed Central

    Williams, Richard D.; Side, Lucy; Hubank, Mike; West, Rebecca; Pearson, Katie; Sebire, Neil; Tarpey, Patrick; Futreal, Andrew; Brooks, Tony; Stratton, Michael R.; Anderson, John

    2014-01-01

    Background Li-Fraumeni syndrome is caused by germline TP53 mutations and is clinically characterized by a predisposition to a range of cancers, most commonly sarcoma, brain tumours and leukemia. Pathogenic mosaic TP53 mutations have only rarely been described. Methods and Findings We describe a 2 years old child presenting with three separate cancers over a 6 month period; two soft tissue mesenchymal tumors and an aggressive metastatic neuroblastoma. As conventional testing of blood DNA by Sanger sequencing for mutations in TP53, ALK, and SDH was negative, whole exome sequencing of the blood DNA of the patient and both parents was performed to screen more widely for cancer predisposing mutations. In the patient's but not the parents' DNA we found a c.743 G>A, p.Arg248Gln (CCDS11118.1) TP53 mutation in 3–20% of sequencing reads, a level that would not generally be detectable by Sanger sequencing. Homozygosity for this mutation was detected in all tumor samples analyzed, and germline mosaicism was demonstrated by analysis of the child's newborn blood spot DNA. The occurrence of separate tumors derived from different germ layers suggests that this de novo mutation occurred early in embryogenesis, prior to gastrulation. Conclusion The case demonstrates pathogenic mosaicim, detected by next generation deep sequencing, that arose in the early stages of embryogenesis. PMID:24810334

  16. Developmental control of sumoylation pathway proteins in mouse male germ cells.

    PubMed

    La Salle, Sophie; Sun, Fengyun; Zhang, Xiang-Dong; Matunis, Michael J; Handel, Mary Ann

    2008-09-01

    Protein sumoylation regulates a variety of nuclear functions and has been postulated to be involved in meiotic chromosome dynamics as well as other processes of spermatogenesis. Here, the expression and distribution of sumoylation pathway genes and proteins were determined in mouse male germ cells, with a particular emphasis on prophase I of meiosis. Immunofluorescence microscopy revealed that SUMO1, SUMO2/3 and UBE2I (also known as UBC9) were localized to the XY body in pachytene and diplotene spermatocytes, while only SUMO2/3 and UBE2I were detected near centromeres in metaphase I spermatocytes. Quantitative RT-PCR and Western blotting were used to examine the expression of sumoylation pathway genes and proteins in enriched preparations of leptotene/zygotene spermatocytes, prepubertal and adult pachytene spermatocytes, as well as round spermatids. Two general expression profiles emerged from these data. The first profile, where expression was more prominent during meiosis, identified sumoylation pathway participants that could be involved in meiotic chromosome dynamics. The second profile, elevated expression in post-meiotic spermatids, suggested proteins that could be involved in spermiogenesis-related sumoylation events. In addition to revealing differential expression of protein sumoylation mediators, which suggests differential functioning, these data demonstrate the dynamic nature of SUMO metabolism during spermatogenesis.

  17. Genomic Landscape of Developing Male Germ Cells

    PubMed Central

    Lee, Tin-Lap; Pang, Alan Lap-Yin; Rennert, Owen M.; Chan, Wai-Yee

    2010-01-01

    Spermatogenesis is a highly orchestrated developmental process by which spermatogonia develop into mature spermatozoa. This process involves many testis- or male germ cell-specific gene products whose expressions are strictly regulated. In the past decade the advent of high-throughput gene expression analytical techniques has made functional genomic studies of this process, particularly in model animals such as mice and rats, feasible and practical. These studies have just begun to reveal the complexity of the genomic landscape of the developing male germ cells. Over 50% of the mouse and rat genome are expressed during testicular development. Among transcripts present in germ cells, 40% – 60% are uncharacterized. A number of genes, and consequently their associated biological pathways, are differentially expressed at different stages of spermatogenesis. Developing male germ cells present a rich repertoire of genetic processes. Tissue-specific as well as spermatogenesis stage-specific alternative splicing of genes exemplifies the complexity of genome expression. In addition to this layer of control, discoveries of abundant presence of antisense transcripts, expressed psuedogenes, non-coding RNAs (ncRNA) including long ncRNAs, microRNAs (miRNAs) and Piwi-interacting RNAs (piRNAs), and retrogenes all point to the presence of multiple layers of expression and functional regulation in male germ cells. It is anticipated that application of systems biology approaches will further our understanding of the regulatory mechanism of spermatogenesis.† PMID:19306351

  18. Identification of a mouse B-type cyclin which exhibits developmentally regulated expression in the germ line

    NASA Technical Reports Server (NTRS)

    Chapman, D. L.; Wolgemuth, D. J.

    1992-01-01

    To begin to examine the function of cyclins in mammalian germ cells, we have screened an adult mouse testis cDNA library for the presence of B-type cyclins. We have isolated cDNAs that encode a murine B-type cyclin, which has been designated cycB1. cycB1 was shown to be expressed in several adult tissues and in the midgestation mouse embryo. In the adult tissues, the highest levels of cycB1 transcripts were seen in the testis and ovary, which contain germ cells at various stages of differentiation. The major transcripts corresponding to cycB1 are 1.7 and 2.5 kb, with the 1.7 kb species being the predominant testicular transcript and the 2.5 kb species more abundant in the ovary. Examination of cDNAs corresponding to the 2.5 kb and 1.7 kb mRNAs revealed that these transcripts encode identical proteins, differing only in the polyadenylation signal used and therefore in the length of their 3' untranslated regions. Northern blot and in situ hybridization analyses revealed that the predominant sites of cycB1 expression in the testis and ovary were in the germinal compartment, particularly in early round spermatids in the testis and growing oocytes in the ovary. Thus cycB1 is expressed in both meiotic and postmeiotic cells. This pattern of cycB1 expression further suggests that cycB1 may have different functions in the two cell types, only one of which correlates with progression of the cell cycle.

  19. The serpin PN1 is a feedback regulator of FGF signaling in germ layer and primary axis formation.

    PubMed

    Acosta, Helena; Iliev, Dobromir; Grahn, Tan Hooi Min; Gouignard, Nadège; Maccarana, Marco; Griesbach, Julia; Herzmann, Svende; Sagha, Mohsen; Climent, Maria; Pera, Edgar M

    2015-03-15

    Germ layer formation and primary axis development rely on Fibroblast growth factors (FGFs). In Xenopus, the secreted serine protease HtrA1 induces mesoderm and posterior trunk/tail structures by facilitating the spread of FGF signals. Here, we show that the serpin Protease nexin-1 (PN1) is transcriptionally activated by FGF signals, suppresses mesoderm and promotes head development in mRNA-injected embryos. An antisense morpholino oligonucleotide against PN1 has the opposite effect and inhibits ectodermal fate. However, ectoderm and anterior head structures can be restored in PN1-depleted embryos when HtrA1 and FGF receptor activities are diminished, indicating that FGF signals negatively regulate their formation. We show that PN1 binds to and inhibits HtrA1, prevents degradation of the proteoglycan Syndecan 4 and restricts paracrine FGF/Erk signaling. Our data suggest that PN1 is a negative-feedback regulator of FGF signaling and has important roles in ectoderm and head development.

  20. Homeobox gene expression in Brachiopoda: the role of Not and Cdx in bodyplan patterning, neurogenesis, and germ layer specification.

    PubMed

    Altenburger, Andreas; Martinez, Pedro; Wanninger, Andreas

    2011-10-01

    The molecular control that underlies brachiopod ontogeny is largely unknown. In order to contribute to this issue we analyzed the expression pattern of two homeobox containing genes, Not and Cdx, during development of the rhynchonelliform (i.e., articulate) brachiopod Terebratalia transversa. Not is a homeobox containing gene that regulates the formation of the notochord in chordates, while Cdx (caudal) is a ParaHox gene involved in the formation of posterior tissues of various animal phyla. The T. transversa homolog, TtrNot, is expressed in the ectoderm from the beginning of gastrulation until completion of larval development, which is marked by a three-lobed body with larval setae. Expression starts at gastrulation in two areas lateral to the blastopore and subsequently extends over the animal pole of the gastrula. With elongation of the gastrula, expression at the animal pole narrows to a small band, whereas the areas lateral to the blastopore shift slightly towards the future anterior region of the larva. Upon formation of the three larval body lobes, TtrNot expressing cells are present only in the posterior part of the apical lobe. Expression ceases entirely at the onset of larval setae formation. TtrNot expression is absent in unfertilized eggs, in embryos prior to gastrulation, and in settled individuals during and after metamorphosis. Comparison with the expression patterns of Not genes in other metazoan phyla suggests an ancestral role for this gene in gastrulation and germ layer (ectoderm) specification with co-opted functions in notochord formation in chordates and left/right determination in ambulacrarians and vertebrates. The caudal ortholog, TtrCdx, is first expressed in the ectoderm of the gastrulating embryo in the posterior region of the blastopore. Its expression stays stable in that domain until the blastopore is closed. Thereafter, the expression is confined to the ventral portion of the mantle lobe in the fully developed larva. No Ttr

  1. A fetal whole ovarian culture model for the evaluation of CrVI-induced developmental toxicity during germ cell nest breakdown

    PubMed Central

    Stanley, Jone A.; Arosh, Joe A.; Burghardt, Robert C.; Banu, Sakhila K.

    2015-01-01

    Prenatal exposure to endocrine disrupting chemicals (EDCs), including bisphenol A, dioxin, pesticides, and cigarette smoke, has been linked to several ovarian diseases such as premature ovarian failure (POF) and early menopause in women. Hexavalent chromium (CrVI), one of the more toxic heavy metals, is widely used in more than 50 industries. As one of the world’s leading producers of Cr compounds, the U.S. is facing growing challenges in protecting human health against adverse effects of CrVI. Our recent findings demonstrated that in vivo CrVI exposure during gestational period caused POF in F1 offspring. Our current research focus is three-fold: (i) to identify the effect of CrVI on critical windows of great vulnerability of fetal ovarian development; (ii) to understand the molecular mechanism of CrVI-induced POF; (iii) to identify potential intervention strategies to mitigate or inhibit CrVI effects. In order to accomplish these goals we used a fetal whole ovarian culture system. Fetuses were removed from the normal pregnant rats on gestational day 13.5. Fetal ovaries were cultured in vitro for 12 days, and treated with or without 0.1 ppm potassium dichromate (CrVI) from culture day 2-8, which recapitulated embryonic day 14.5 – 20.5, in vivo. Results showed that CrVI increased germ cell/oocyte apoptosis by increasing caspase 3, BAX, p53 and PUMA; decreasing BCL2, BMP15, GDF9 and cKIT; and altering cell cycle regulatory genes and proteins. This model system may serve as a potential tool for high throughput testing of various drugs and/or EDCs in particular to assess developmental toxicity of the ovary. PMID:26348139

  2. Changes of Phosphatidylcholine and Fatty Acids in Germ Cells during Testicular Maturation in Three Developmental Male Morphotypes of Macrobrachium rosenbergii Revealed by Imaging Mass Spectrometry

    PubMed Central

    Siangcham, Tanapan; Chansela, Piyachat; Hayasaka, Takahiro; Masaki, Noritaka; Sroyraya, Morakot; Poljaroen, Jaruwan; Suwansa-ard, Saowaros; Engsusophon, Attakorn; Hanna, Peter J.; Sobhon, Prasert; Setou, Mitsutoshi

    2015-01-01

    Testis maturation, germ cell development and function of sperm, are related to lipid composition. Phosphatidylcholines (PCs) play a key role in the structure and function of testes. As well, increases of polyunsaturated fatty acids (PUFA) and highly unsaturated fatty acids (HUFA), especially arachidonic acid (ARA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) are essential for male fertility. This study is the first report to show the composition and distribution of PCs and total fatty acids (FAs) in three groups of seminiferous tubules (STs) classified by cellular associations [i.e., A (STs with mostly early germ cells), B (STs with mostly spermatids), and C (STs with spermatozoa)], in three morphotypes of Macrobrachium rosenbergii, [i.e., small male (SM), orange claw male (OC), and blue claw male (BC)]. Thin layer chromatography exhibited levels of PCs reaching maxima in STs of group B. Imaging mass spectrometry showed remarkably high signals corresponding to PC (16:0/18:1), PC (18:0/18:2), PC (18:2/20:5), and PC (16:0/22:6) in STs of groups A and B. Moreover, most signals were detected in the early developing cells and the intertubular area, but not at the area containing spermatozoa. Finally, gas chromatography-mass spectrometry indicated that the major FAs present in the testes were composed of 14:0, 16:0, 17:0, 18:0, 16:1, 18:1, 18:2, 20:1, 20:2, 20:4, 20:5, and 22:6. The testes of OC contained the greatest amounts of these FAs while the testes of BC contained the least amounts of these FAs, and there was more EPA (20:5) in the testes of SM and OC than those in the BC. The increasing amounts of FAs in the SM and OC indicate that they are important for spermatogenesis and spermiogenesis. This knowledge will be useful in formulating diets containing PUFA and HUFA for prawn broodstocks in order to improve testis development, and lead to increased male fecundity. PMID:25781176

  3. Reprogramming of germ cells into pluripotency

    PubMed Central

    Sekita, Yoichi; Nakamura, Toshinobu; Kimura, Tohru

    2016-01-01

    Primordial germ cells (PGCs) are precursors of all gametes, and represent the founder cells of the germline. Although developmental potency is restricted to germ-lineage cells, PGCs can be reprogrammed into a pluripotent state. Specifically, PGCs give rise to germ cell tumors, such as testicular teratomas, in vivo, and to pluripotent stem cells known as embryonic germ cells in vitro. In this review, we highlight the current knowledge on signaling pathways, transcriptional controls, and post-transcriptional controls that govern germ cell differentiation and de-differentiation. These regulatory processes are common in the reprogramming of germ cells and somatic cells, and play a role in the pathogenesis of human germ cell tumors. PMID:27621759

  4. Developmental patterning of the sub-epidermal integument cell layer in Arabidopsis seeds.

    PubMed

    Coen, Olivier; Fiume, Elisa; Xu, Wenjia; De Vos, Delphine; Lu, Jing; Pechoux, Christine; Lepiniec, Loïc; Magnani, Enrico

    2017-04-15

    Angiosperm seed development is a paradigm of tissue cross-talk. Proper seed formation requires spatial and temporal coordination of the fertilization products - embryo and endosperm - and the surrounding seed coat maternal tissue. In early Arabidopsis seed development, all seed integuments were thought to respond homogenously to endosperm growth. Here, we show that the sub-epidermal integument cell layer has a unique developmental program. We characterized the cell patterning of the sub-epidermal integument cell layer, which initiates a previously uncharacterized extra cell layer, and identified TRANSPARENT TESTA 16 and SEEDSTICK MADS box transcription factors as master regulators of its polar development and cell architecture. Our data indicate that the differentiation of the sub-epidermal integument cell layer is insensitive to endosperm growth alone and to the repressive mechanism established by FERTILIZATION INDEPENDENT ENDOSPERM and MULTICOPY SUPPRESSOR OF IRA1 Polycomb group proteins. This work demonstrates the different responses of epidermal and sub-epidermal integument cell layers to fertilization.

  5. Developmental maturation of excitation and inhibition balance in principal neurons across four layers of somatosensory cortex

    PubMed Central

    Zhang, Zhi; Jiao, Yuan-Yuan; Sun, Qian-Quan

    2010-01-01

    In adult cortices, the ratio of excitatory and inhibitory conductances (E/I ratio) is presumably balanced across a wide range of stimulus conditions. However, it is unknown how the E/I ratio is postnatally regulated, when the strength of synapses are rapidly changing. Yet, understanding of such a process is critically important, because there are numerous neuropsychological disorders, such as autism, epilepsy and schizophrenia, are associated with disturbed E/I balances. Here we directly measured the E/I ratio underlying locally induced synaptic conductances in principal neurons from postnatal day 8 through 60. We found that 1) within each developmental period, the E/I ratio across 4 major cortical layers was maintained at a similar value under wide range of stimulation intensities; and 2) there was a rapid developmental decrease in the E/I ratio, which occurred within a sensitive period between P8 to P18 with exception of layer II/III. By comparing the excitatory and inhibitory conductances, as well as key synaptic protein expressions, we found a net increase in the number and strength of inhibitory, but not excitatory synapses, is responsible for the developmental decrease in the E/I ratio in the barrel cortex. The inhibitory markers were intrinsically co-regulated, gave rise to a sharp increase in the inhibitory conductance from P8 to P18. These results suggest that the tightly regulated E/I ratios in adults cortex is a result of drastic changes in relative weight of inhibitory but not excitatory synapses during critical period, and the local inhibitory structural changes are the underpinning of altered E/I ratio across postnatal development. PMID:21115101

  6. Rhesus iPSC Safe Harbor Gene-Editing Platform for Stable Expression of Transgenes in Differentiated Cells of All Germ Layers.

    PubMed

    Hong, So Gun; Yada, Ravi Chandra; Choi, Kyujoo; Carpentier, Arnaud; Liang, T Jake; Merling, Randall K; Sweeney, Colin L; Malech, Harry L; Jung, Moonjung; Corat, Marcus A F; AlJanahi, Aisha A; Lin, Yongshun; Liu, Huimin; Tunc, Ilker; Wang, Xujing; Palisoc, Maryknoll; Pittaluga, Stefania; Boehm, Manfred; Winkler, Thomas; Zou, Jizhong; Dunbar, Cynthia E

    2017-01-04

    Nonhuman primate (NHP) induced pluripotent stem cells (iPSCs) offer the opportunity to investigate the safety, feasibility, and efficacy of proposed iPSC-derived cellular delivery in clinically relevant in vivo models. However, there is need for stable, robust, and safe labeling methods for NHP iPSCs and their differentiated lineages to study survival, proliferation, tissue integration, and biodistribution following transplantation. Here we investigate the utility of the adeno-associated virus integration site 1 (AAVS1) as a safe harbor for the addition of transgenes in our rhesus macaque iPSC (RhiPSC) model. A clinically relevant marker gene, human truncated CD19 (hΔCD19), or GFP was inserted into the AAVS1 site in RhiPSCs using the CRISPR/Cas9 system. Genetically modified RhiPSCs maintained normal karyotype and pluripotency, and these clones were able to further differentiate into all three germ layers in vitro and in vivo. In contrast to transgene delivery using randomly integrating viral vectors, AAVS1 targeting allowed stable transgene expression following differentiation. Off-target mutations were observed in some edited clones, highlighting the importance of careful characterization of these cells prior to downstream applications. Genetically marked RhiPSCs will be useful to further advance clinically relevant models for iPSC-based cell therapies.

  7. Epigenetics: a way to understand the origin and biology of testicular germ cell tumors.

    PubMed

    Okamoto, Keisei

    2012-06-01

    Testicular germ cell tumors are neoplasms carrying two unique features. First, testicular germ cell tumors have a pluripotential nature and show protean histology ranging from that of germ cells to embryonal and differentiated somatic cells. Therefore, testicular germ cell tumors are interesting resources positioned at a crossroad in developmental and neoplastic processes. The second unique feature of testicular germ cell tumors is their exquisite sensitivity to cisplatin-based chemotherapy. This review summarizes recent research progress in the epigenetics of testicular germ cell tumors in an attempt to explain the abovementioned biological and clinical characteristics of testicular germ cell tumors.

  8. Wheat germ stabilization by infrared radiation.

    PubMed

    Gili, Renato D; Palavecino, Pablo M; Cecilia Penci, M; Martinez, Marcela L; Ribotta, Pablo D

    2017-01-01

    Wheat germ has an important enzymatic activity, being lipases the enzymes which cause the highest impact in the reduction of shelf life. The objective of this study was to evaluate the effects of infrared radiation on wheat germ stabilization in an attempt to extend the shelf life. The effects of treatment time, gap (sample distance to IR emitters) and infrared radiation intensity on wheat germ were analyzed through response surface methodology. Final moisture content, final temperature, color of germ and germ oil quality parameters: free fatty acid content changes and total tocopherol content were the responses evaluated using a Box-Behnken design. A combination of an infrared radiation intensity of 4800 W/m(2), a 3 min treatment and 0.2 m emitter-sample distance were the best processing condition to stabilize the wheat germ without significantly reduction of the tocopherol content. A confirmatory experiment was conducted with these optimal conditions, and the heat-treated and raw germ samples were stored for 90 days at room temperature in three layer packages to protect them against light and oxygen. The oil quality parameters indicated that the raw germ had a shelf-life of about 15 days, with the heat-treated wheat germ maintaining its quality for at least 90 days under these stored conditions.

  9. Deep Learning and Developmental Learning: Emergence of Fine-to-Coarse Conceptual Categories at Layers of Deep Belief Network.

    PubMed

    Sadeghi, Zahra

    2016-09-01

    In this paper, I investigate conceptual categories derived from developmental processing in a deep neural network. The similarity matrices of deep representation at each layer of neural network are computed and compared with their raw representation. While the clusters generated by raw representation stand at the basic level of abstraction, conceptual categories obtained from deep representation shows a bottom-up transition procedure. Results demonstrate a developmental course of learning from specific to general level of abstraction through learned layers of representations in a deep belief network.

  10. Forest herb layer response to long-term light deficit along a forest developmental series

    NASA Astrophysics Data System (ADS)

    Plue, J.; Van Gils, B.; De Schrijver, A.; Peppler-Lisbach, C.; Verheyen, K.; Hermy, M.

    2013-11-01

    Temperate deciduous forest communities are slow-changing systems, with herbaceous understorey communities displaying a delayed response to overstorey canopy and light dynamics. While light availability constrains herbaceous understorey diversity and composition in space and time, its response in the long-term absence of light has seldom been quantified, particularly as it is often confounded by covariation in soil conditions. We studied a developmental high-forest series in two widespread NW-European temperate deciduous forest communities with different dominant canopy tree species: Stellario-Carpinetum (Oak-hornbeam canopy) and Milio-Fagetum (Beech canopy). All plots had soil conditions which were not significantly different, enabling investigation into the direct effects of the long-term absence of light on the herbaceous understorey, disentangled from the confounding effects of soil variation. Plant species richness measures declined with canopy cover continuity in the herb layer of the oak-hornbeam stands, whereas richness in the herb layer of the beech stands displayed a unimodal response. Nonetheless, in both plant communities, species richness and closed-forest species richness were negatively affected by the extended absence of light in stands with the longest period of continuous canopy cover. The long-term limitation or decline in quantitative and qualitative light availability as a result of extended periods of canopy cover was shown to be the primary driver behind losses in alpha-diversity, community composition turn-over and individual species dynamics. Heliophilous species were lost from both communities, while closed-forest species also declined, as a direct consequence of the prolonged period without ample light on the forest floor. This study demonstrates how the herb layer is affected by the absence of light on the forest floor mediated by long periods of continuous canopy cover. Despite different temporal responses in herb layer richness and

  11. Hematopoietic Stem/Progenitor Cells Express Several Functional Sex Hormone Receptors—Novel Evidence for a Potential Developmental Link Between Hematopoiesis and Primordial Germ Cells

    PubMed Central

    Mierzejewska, Katarzyna; Borkowska, Sylwia; Suszynska, Ewa; Suszynska, Malwina; Poniewierska-Baran, Agata; Maj, Magda; Pedziwiatr, Daniel; Adamiak, Mateusz; Abdel-Latif, Ahmed; Kakar, Sham S.; Ratajczak, Janina; Kucia, Magda

    2015-01-01

    Evidence has accumulated that hematopoietic stem progenitor cells (HSPCs) share several markers with the germline, a connection supported by reports that prolactin, androgens, and estrogens stimulate hematopoiesis. To address this issue more directly, we tested the expression of receptors for pituitary-derived hormones, such as follicle-stimulating hormone (FSH) and luteinizing hormone (LH), on purified murine bone marrow (BM) cells enriched for HSPCs and tested the functionality of these receptors in ex vivo signal transduction studies and in vitro clonogenic assays. We also tested whether administration of pituitary- and gonad-derived sex hormones (SexHs) increases incorporation of bromodeoxyuridine (BrdU) into HSPCs and expansion of hematopoietic clonogenic progenitors in mice and promotes recovery of blood counts in sublethally irradiated animals. We report for the first time that HSPCs express functional FSH and LH receptors and that both proliferate in vivo and in vitro in response to stimulation by pituitary SexHs. Furthermore, based on our observations that at least some of CD45− very small embryonic-like stem cells (VSELs) may become specified into CD45+ HSPCs, we also evaluated the expression of pituitary and gonadal SexHs receptors on these cells and tested whether these quiescent cells may expand in vivo in response to SexHs administration. We found that VSELs express SexHs receptors and respond in vivo to SexHs stimulation, as evidenced by BrdU accumulation. Since at least some VSELs share several markers characteristic of migrating primordial germ cells and can be specified into HSPCs, this observation sheds new light on the BM stem cell hierarchy. PMID:25607657

  12. The Biology of the Germ line in Echinoderms

    PubMed Central

    Wessel, Gary M.; Brayboy, Lynae; Fresques, Tara; Gustafson, Eric A.; Oulhen, Nathalie; Ramos, Isabela; Reich, Adrian; Swartz, S. Zachary; Yajima, Mamiko; Zazueta, Vanessa

    2014-01-01

    SUMMARY The formation of the germ line in an embryo marks a fresh round of reproductive potential. The developmental stage and location within the embryo where the primordial germ cells (PGCs) form, however, differs markedly among species. In many animals, the germ line is formed by an inherited mechanism, in which molecules made and selectively partitioned within the oocyte drive the early development of cells that acquire this material to a germ-line fate. In contrast, the germ line of other animals is fated by an inductive mechanism that involves signaling between cells that directs this specialized fate. In this review, we explore the mechanisms of germ-line determination in echinoderms, an early-branching sister group to the chordates. One member of the phylum, sea urchins, appears to use an inherited mechanism of germ-line formation, whereas their relatives, the sea stars, appear to use an inductive mechanism. We first integrate the experimental results currently available for germ line determination in the sea urchin, for which considerable new information is available, and then broaden the investigation to the lesser-known mechanisms in sea stars and other echinoderms. Even with this limited insight, it appears that sea stars, and perhaps the majority of the echinoderm taxon, rely on inductive mechanisms for germ-line fate determination. This enables a strongly contrasted picture for germ-line determination in this phylum, but one for which transitions between different modes of germ-line determination might now be experimentally addressed. PMID:23900765

  13. The biology of the germ line in echinoderms.

    PubMed

    Wessel, Gary M; Brayboy, Lynae; Fresques, Tara; Gustafson, Eric A; Oulhen, Nathalie; Ramos, Isabela; Reich, Adrian; Swartz, S Zachary; Yajima, Mamiko; Zazueta, Vanessa

    2014-08-01

    The formation of the germ line in an embryo marks a fresh round of reproductive potential. The developmental stage and location within the embryo where the primordial germ cells (PGCs) form, however, differs markedly among species. In many animals, the germ line is formed by an inherited mechanism, in which molecules made and selectively partitioned within the oocyte drive the early development of cells that acquire this material to a germ-line fate. In contrast, the germ line of other animals is fated by an inductive mechanism that involves signaling between cells that directs this specialized fate. In this review, we explore the mechanisms of germ-line determination in echinoderms, an early-branching sister group to the chordates. One member of the phylum, sea urchins, appears to use an inherited mechanism of germ-line formation, whereas their relatives, the sea stars, appear to use an inductive mechanism. We first integrate the experimental results currently available for germ-line determination in the sea urchin, for which considerable new information is available, and then broaden the investigation to the lesser-known mechanisms in sea stars and other echinoderms. Even with this limited insight, it appears that sea stars, and perhaps the majority of the echinoderm taxon, rely on inductive mechanisms for germ-line fate determination. This enables a strongly contrasted picture for germ-line determination in this phylum, but one for which transitions between different modes of germ-line determination might now be experimentally addressed.

  14. Germ line mechanics – and unfinished business

    PubMed Central

    Wessel, Gary M.

    2016-01-01

    Primordial germ cells are usually made early in the development of an organism. These are the mother of all stem cells that are necessary for propagation of the species, yet use highly diverse mechanisms between organisms. How they are specified, and when and where they form, are central to developmental biology. Using diverse organisms to study this development is illuminating for understanding the mechanics these cells use in this essential function, and for identifying the breadth of evolutionary changes that have occurred between species. This essay emphasizes how echinoderms may contribute to the patch-work quilt of our understanding of germ line formation during embryogenesis. PMID:26970000

  15. Germ Line Mechanics--And Unfinished Business.

    PubMed

    Wessel, Gary M

    2016-01-01

    Primordial germ cells are usually made early in the development of an organism. These are the mother of all stem cells that are necessary for propagation of the species, yet use highly diverse mechanisms between organisms. How they are specified, and when and where they form, are central to developmental biology. Using diverse organisms to study this development is illuminating for understanding the mechanics these cells use in this essential function and for identifying the breadth of evolutionary changes that have occurred between species. This essay emphasizes how echinoderms may contribute to the patchwork quilt of our understanding of germ line formation during embryogenesis.

  16. Developmental increases in hypothalamic neuropeptide Y content with the embryonic age of meat- and layer-type chicks.

    PubMed

    Zhou, Weidong; Aoyama, Masato; Yoshizawa, Fumiaki; Sugahara, Kunio

    2006-02-09

    We determined central neuropeptide Y (NPY) content of meat- and layer-type chicks at embryonic days 7, 14, 20, and at post-hatching day 1. The central NPY was detectable at day 7; hypothalamic NPY content developmentally increased with a similar pattern but a different level between both types of chicks. These results were discussed with respect to feeding behavior early period after hatching.

  17. [Germ cell membrane lipids in spermatogenesis].

    PubMed

    Wang, Ting; Shi, Xiao; Quan, Song

    2016-05-01

    Spermatogenesis is a complex developmental process in which a diploid progenitor germ cell transforms into highly specialized spermatozoa. During spermatogenesis, membrane remodeling takes place, and cell membrane permeability and liquidity undergo phase-specific changes, which are all associated with the alteration of membrane lipids. Lipids are important components of the germ cell membrane, whose volume and ratio fluctuate in different phases of spermatogenesis. Abnormal lipid metabolism can cause spermatogenic dysfunction and consequently male infertility. Germ cell membrane lipids are mainly composed of cholesterol, phospholipids and glycolipids, which play critical roles in cell adhesion and signal transduction during spermatogenesis. An insight into the correlation of membrane lipids with spermatogenesis helps us to better understand the mechanisms of spermatogenesis and provide new approaches to the diagnosis and treatment of male infertility.

  18. Developmental Expression Patterns of GABAA Receptor Subunits in Layer 3 and 5 Pyramidal Cells of Monkey Prefrontal Cortex.

    PubMed

    Datta, Dibyadeep; Arion, Dominique; Lewis, David A

    2015-08-01

    Cortical pyramidal neuron activity is regulated in part through inhibitory inputs mediated by GABAA receptors. The subunit composition of these receptors confers distinct functional properties. Thus, developmental shifts in subunit expression will likely influence the characteristics of pyramidal cell firing and the functional maturation of processes that depend on these neurons. We used laser microdissection and PCR to quantify postnatal developmental changes in the expression of GABAA receptor subunits (α1, α2, α5, β2, γ2, and δ) in layer 3 pyramidal cells of monkey prefrontal cortex, which are critical for working memory. To determine the specificity of these changes, we examined glutamate receptor subunits (AMPA Glur1 and NMDA Grin1) and conducted the same analyses in layer 5 pyramidal cells. Expression of GABAA receptor subunit mRNAs changed substantially, whereas glutamate receptor subunit changes were modest over postnatal development. Some transcripts (e.g., GABAA α1) progressively increased from birth until adulthood, whereas others (e.g., GABAA α2) declined with age. Changes in some transcripts were present in only one layer (e.g., GABAA δ). The development of GABAA receptor subunit expression in primate prefrontal pyramidal neurons is protracted and subunit- and layer-specific. These trajectories might contribute to the molecular basis for the maturation of working memory.

  19. Evolutionary crossroads in developmental biology: Cnidaria.

    PubMed

    Technau, Ulrich; Steele, Robert E

    2011-04-01

    There is growing interest in the use of cnidarians (corals, sea anemones, jellyfish and hydroids) to investigate the evolution of key aspects of animal development, such as the formation of the third germ layer (mesoderm), the nervous system and the generation of bilaterality. The recent sequencing of the Nematostella and Hydra genomes, and the establishment of methods for manipulating gene expression, have inspired new research efforts using cnidarians. Here, we present the main features of cnidarian models and their advantages for research, and summarize key recent findings using these models that have informed our understanding of the evolution of the developmental processes underlying metazoan body plan formation.

  20. [Retroperitoneal germ cell tumor].

    PubMed

    Borrell Palanca, A; García Garzón, J; Villamón Fort, R; Domenech Pérez, C; Martínez Lorente, A; Gunthner, S; García Sisamón, F

    1999-03-01

    We report a case of retroperitoneal extragonadal germ-cell tumor in an 17 years old patient who presented with aedema and pain in left inferior extremity asociated with hemopthysis caused by pulmonar metastasis, who was treated with chemotherapy and resection of residual mass and pulmonary nodes. Dyagnosis was stableshed by fine neadle aspiration biopsy of the wass. We comment on the difficult of stableshing differential dyagnosis between retroperitoneal extragonadal germ-cell tumor and metastasis of a testicular tumor. Dyagnosis is stableshed by the finding of a histologically malignant germ-cell tumor with normal testis. We considered physical examination and ecographyc exploration enough for a correct dyagnosis.

  1. What Are Germs?

    MedlinePlus

    ... types of germs are: bacteria, viruses, fungi, and protozoa. They can invade plants, animals, and people, and ... teens and adults sometimes get between their toes. Protozoa (say: pro-toh-ZOH-uh) are one-cell ...

  2. Regulative germ cell specification in axolotl embryos: a primitive trait conserved in the mammalian lineage.

    PubMed Central

    Johnson, Andrew D; Crother, Brian; White, Mary E; Patient, Roger; Bachvarova, Rosemary F; Drum, Matthew; Masi, Thomas

    2003-01-01

    How germ cells are specified in the embryos of animals has been a mystery for decades. Unlike most developmental processes, which are highly conserved, embryos specify germ cells in very different ways. Curiously, in mouse embryos germ cells are specified by extracellular signals; they are not autonomously specified by maternal germ cell determinants (germ plasm), as are the germ cells in most animal model systems. We have developed the axolotl (Ambystoma mexicanum), a salamander, as an experimental system, because classic experiments have shown that the germ cells in this species are induced by extracellular signals in the absence of germ plasm. Here, we provide evidence that the germ cells in axolotls arise from naive mesoderm in response to simple inducing agents. In addition, by analysing the sequences of axolotl germ-cell-specific genes, we provide evidence that mice and urodele amphibians share a common mechanism of germ cell development that is ancestral to tetrapods. Our results imply that germ plasm, as found in species such as frogs and teleosts, is the result of convergent evolution. We discuss the evolutionary implications of our findings. PMID:14511484

  3. Expression of the c-Kit receptor in germ cells of the seminiferous epithelium in rats with hormonal imbalance.

    PubMed

    Misiakiewicz, Kamila; Kolasa, Agnieszka; Kondarewicz, Anna; Marchlewicz, Mariola; Wiszniewska, Barbara

    2013-12-01

    The aim of the study was to investigate the effects of pharmacologically induced hormonal imbalance in adult male rats treated with letrozole and rats exposed to soya isoflavones on the testicular morphology and c-Kit receptor (c-Kit-R) expression in germ cells. The study was conducted during all developmental periods: prenatal period, lactation, youth, and sexual maturity. Morphological and morphometrical analyses were performed on testicular section, and c-Kit-R was identified using immunohistochemistry. In addition, concentration of circulating steroids was measured in mature rats exposed to soya isoflavones. A significant reduction in testosterone level in rats exposed to soya isoflavones, and the sloughing of the premature germ cells into the lumen of the seminiferous tubules in the testes of both groups of rats were observed. Immunohistochemistry showed a decrease in c-Kit-R expression in germ cells of both experimental groups. Morphometric analysis indicated a decreased thickness of the layers occupied by c-Kit-R-positive spermatogonia, and a decreased diameter of the seminiferous tubules in the testes of both experimental groups of animals. In conclusion, the pharmacologically induced reduction of the estradiol level in adult rats and the diminished level of testosterone in rats exposed to soya isoflavones during the prenatal period, lactation and up to maturity caused similar morphological and functional changes associated with the decreased c-Kit-R expression in germ cells in the seminiferous epithelium. These findings demonstrate the importance of the estrogen/androgen balance for normal testicular morphology and spermatogenesis.

  4. [Testicular germ cell tumors].

    PubMed

    Dourthe, L M; Ouachet, M; Fizazi, K; Droz, J P

    1998-09-01

    Testicle germ cells tumors are the most common young men neoplasm. The incidence is maximal in Scandinavian countries. Cryptorchidism is a predisposing factor. Diagnosis is clinic, first treatment is radical orchidectomy by inguinal incision, after study of tumor markers. Histology shows seminoma or non seminomatous tumor. Carcinoma in situ is the precursor of invasive germ cell tumors. Germ cell tumors have no p53 mutation, and have isochrome of the short arm of chromosome 12 as a specific marker. With the results of histological, biochemical and radiographic evaluation, patient are classified as follows: good, intermediate and poor risk prognosis. Standard treatment of stage I seminoma is prophylactic irradiation. Stage II with less than 3 cm lymph node too. Other situations need a cisplatin based chemotherapy. In case of metastatic residuals masses more than 3 cm, surgery need to be discussed. Stage I non seminomatous germ cell tumors are treated by retroperitoneal lymphadenectomy, by surveillance or by two cycles of adjuvant chemotherapy with cisplatin, etoposide and bleomycin (BEP). Standard treatment of good prognosis stage II and III is three cycles of BEP, four for poor prognosis. Residual mass need surgery, adjuvant chemotherapy is necessary in presence of viable germ cell. Standard treatment for relapses is chemotherapy with cisplatin, ifosfamide and vinblastine with a 30% remission rate. The place of high dose chemotherapy with autologous stem cell transplantation is not yet standardised. New drugs, as paclitaxel, are under studies.

  5. Female germ cell loss from radiation and chemical exposures

    SciTech Connect

    Dobson, R.L.; Felton, J.S.

    1983-01-01

    Female germ cells in some mammals are extremely sensitive to killing by ionizing radiation, especially during development. Primordial oocytes in juvenile mice have an LD50 of only 6-7 rad, and the germ cell pool in squirrel monkeys is destroyed by prenatal exposure of 0.7 rad/day. Sensitivity varies greatly with species and germ cell stage. Unusually high sensitivity has not been found in macaques and may not occur in man, but this has not been established for all developmental stages. The exquisite oocyte radiosensitivity in mice apparently reflects vulnerability of the plasma membrane, not DNA, which may have implications for estimating human genetic risks. Germ cells can be killed also by chemicals. Such oocyte loss, with similarities to radiation effects, is under increasing study, including chemotherapy observations in women. More than 75 compounds have been tested in mice, with in vivo toxicity quantified by oocyte loss; certain chemicals apparently act on the membrane.

  6. Impact of gut microbiota on the fly's germ line

    PubMed Central

    Elgart, Michael; Stern, Shay; Salton, Orit; Gnainsky, Yulia; Heifetz, Yael; Soen, Yoav

    2016-01-01

    Unlike vertically transmitted endosymbionts, which have broad effects on their host's germ line, the extracellular gut microbiota is transmitted horizontally and is not known to influence the germ line. Here we provide evidence supporting the influence of these gut bacteria on the germ line of Drosophila melanogaster. Removal of the gut bacteria represses oogenesis, expedites maternal-to-zygotic-transition in the offspring and unmasks hidden phenotypic variation in mutants. We further show that the main impact on oogenesis is linked to the lack of gut Acetobacter species, and we identify the Drosophila Aldehyde dehydrogenase (Aldh) gene as an apparent mediator of repressed oogenesis in Acetobacter-depleted flies. The finding of interactions between the gut microbiota and the germ line has implications for reproduction, developmental robustness and adaptation. PMID:27080728

  7. Multispecies Purification of Testicular Germ Cells.

    PubMed

    Lima, Ana C; Jung, Min; Rusch, Jannette; Usmani, Abul; Lopes, Alexandra; Conrad, Donald F

    2016-08-24

    Advanced methods of cellular purification are required to apply genome technology to the study of spermatogenesis. One approach, based on flow cytometry of murine testicular cells stained with Hoechst-33342 (Ho-FACS), has been extensively optimized and currently allows the isolation of 9 germ cell types. This staining technique is straightforward to implement, highly effective at purifying specific germ cell types and yields sufficient cell numbers for high throughput studies. Ho-FACS is a technique that does not require species-specific markers, but whose applicability to other species is largely unexplored. We hypothesized that, due to the similar cell physiology of spermatogenesis across mammals, Ho-FACS could be used to produce highly purified subpopulations of germ cells in mammals other than mouse. To test this hypothesis, we applied Ho-FACS to 4 mammalian species that are widely used in testis research - Rattus norvegicus, Cavia porcellus, Canis familiaris and Sus scrofa domesticus We successfully isolated 4 germ cell populations from these species with average purity of 79% for spermatocytes, and 90% for spermatids and 66% for spermatogonia. Additionally, we compare the performance of mechanical and chemical dissociation for each species, and propose an optimized gating strategy to better discriminate round and elongating spermatids in the mouse, which can potentially be applied to other species. Our work indicates that spermatogenesis may be uniquely accessible among mammalian developmental systems, as a single set of reagents may be sufficient to isolate germ cell populations from many different mammalian species, opening new avenues in the fields of development and male reproductive biology.

  8. AiGERM: A logic programming front end for GERM

    NASA Technical Reports Server (NTRS)

    Hashim, Safaa H.

    1990-01-01

    AiGerm (Artificially Intelligent Graphical Entity Relation Modeler) is a relational data base query and programming language front end for MCC (Mission Control Center)/STP's (Space Test Program) Germ (Graphical Entity Relational Modeling) system. It is intended as an add-on component of the Germ system to be used for navigating very large networks of information. It can also function as an expert system shell for prototyping knowledge-based systems. AiGerm provides an interface between the programming language and Germ.

  9. Treatment Option Overview (Extragonadal Germ Cell Tumors)

    MedlinePlus

    ... Professional Extragonadal Germ Cell Tumors Treatment Extragonadal Germ Cell Tumors Treatment (PDQ®)–Patient Version General Information About Extragonadal Germ Cell Tumors Go to Health Professional Version Key Points ...

  10. Insights into female germ cell biology: from in vivo development to in vitro derivations

    PubMed Central

    Jung, Dajung; Kee, Kehkooi

    2015-01-01

    Understanding the mechanisms of human germ cell biology is important for developing infertility treatments. However, little is known about the mechanisms that regulate human gametogenesis due to the difficulties in collecting samples, especially germ cells during fetal development. In contrast to the mitotic arrest of spermatogonia stem cells in the fetal testis, female germ cells proceed into meiosis and began folliculogenesis in fetal ovaries. Regulations of these developmental events, including the initiation of meiosis and the endowment of primordial follicles, remain an enigma. Studying the molecular mechanisms of female germ cell biology in the human ovary has been mostly limited to spatiotemporal characterizations of genes or proteins. Recent efforts in utilizing in vitro differentiation system of stem cells to derive germ cells have allowed researchers to begin studying molecular mechanisms during human germ cell development. Meanwhile, the possibility of isolating female germline stem cells in adult ovaries also excites researchers and generates many debates. This review will mainly focus on presenting and discussing recent in vivo and in vitro studies on female germ cell biology in human. The topics will highlight the progress made in understanding the three main stages of germ cell developments: namely, primordial germ cell formation, meiotic initiation, and folliculogenesis. PMID:25652637

  11. Insights into female germ cell biology: from in vivo development to in vitro derivations.

    PubMed

    Jung, Dajung; Kee, Kehkooi

    2015-01-01

    Understanding the mechanisms of human germ cell biology is important for developing infertility treatments. However, little is known about the mechanisms that regulate human gametogenesis due to the difficulties in collecting samples, especially germ cells during fetal development. In contrast to the mitotic arrest of spermatogonia stem cells in the fetal testis, female germ cells proceed into meiosis and began folliculogenesis in fetal ovaries. Regulations of these developmental events, including the initiation of meiosis and the endowment of primordial follicles, remain an enigma. Studying the molecular mechanisms of female germ cell biology in the human ovary has been mostly limited to spatiotemporal characterizations of genes or proteins. Recent efforts in utilizing in vitro differentiation system of stem cells to derive germ cells have allowed researchers to begin studying molecular mechanisms during human germ cell development. Meanwhile, the possibility of isolating female germline stem cells in adult ovaries also excites researchers and generates many debates. This review will mainly focus on presenting and discussing recent in vivo and in vitro studies on female germ cell biology in human. The topics will highlight the progress made in understanding the three main stages of germ cell developments: namely, primordial germ cell formation, meiotic initiation, and folliculogenesis.

  12. A zebrafish homologue of the chemokine receptor Cxcr4 is a germ-cell guidance receptor.

    PubMed

    Knaut, Holger; Werz, Christian; Geisler, Robert; Nüsslein-Volhard, Christiane

    2003-01-16

    Germ cells preserve an individual's genetic information and transmit it to the next generation. Early in development germ cells are set aside and undergo a specialized developmental programme, a hallmark of which is the migration from their site of origin to the future gonad. In Drosophila, several factors have been identified that control germ-cell migration to their target tissues; however, the germ-cell chemoattractant or its receptor have remained unknown. Here we apply genetics and in vivo imaging to show that odysseus, a zebrafish homologue of the G-protein-coupled chemokine receptor Cxcr4, is required specifically in germ cells for their chemotaxis. odysseus mutant germ cells are able to activate the migratory programme, but fail to undergo directed migration towards their target tissue, resulting in randomly dispersed germ cells. SDF-1, the presumptive cognate ligand for Cxcr4, shows a similar loss-of-function phenotype and can recruit germ cells to ectopic sites in the embryo, thus identifying a vertebrate ligand-receptor pair guiding migratory germ cells at all stages of migration towards their target.

  13. HMG-CoA reductase guides migrating primordial germ cells.

    PubMed

    Van Doren, M; Broihier, H T; Moore, L A; Lehmann, R

    1998-12-03

    The enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase is best known for catalysing a rate-limiting step in cholesterol biosynthesis, but it also participates in the production of a wide variety of other compounds. Some clinical benefits attributed to inhibitors of HMG-CoA reductase are now thought to be independent of any serum cholesterol-lowering effect. Here we describe a new cholesterol-independent role for HMG-CoA reductase, in regulating a developmental process: primordial germ cell migration. We show that in Drosophila this enzyme is highly expressed in the somatic gonad and that it is necessary for primordial germ cells to migrate to this tissue. Misexpression of HMG-CoA reductase is sufficient to attract primordial germ cells to tissues other than the gonadal mesoderm. We conclude that the regulated expression of HMG-CoA reductase has a critical developmental function in providing spatial information to guide migrating primordial germ cells.

  14. Refuting the hypothesis that the acquisition of germ plasm accelerates animal evolution

    PubMed Central

    Whittle, Carrie A.; Extavour, Cassandra G.

    2016-01-01

    Primordial germ cells (PGCs) give rise to the germ line in animals. PGCs are specified during embryogenesis either by an ancestral mechanism of cell–cell signalling (induction) or by a derived mechanism of maternally provided germ plasm (preformation). Recently, a hypothesis was set forth purporting that germ plasm liberates selective constraint and accelerates an organism's protein sequence evolution, especially for genes from early developmental stages, thereby leading to animal species radiations; empirical validation has been claimed in vertebrates. Here we present findings from global rates of protein evolution in vertebrates and invertebrates refuting this hypothesis. Contrary to assertions of the hypothesis, we find no effect of preformation on protein sequence evolution, the evolutionary rates of early-stage developmental genes, or on species diversification. We conclude that the hypothesis is mechanistically implausible, and our multi-faceted analysis shows no empirical support for any of its predictions. PMID:27577604

  15. Germ Cell Differentiation from Pluripotent Cells

    PubMed Central

    Medrano, Jose V.; Pera, Renee A. Reijo; Simón, Carlos

    2014-01-01

    Infertility is a medical condition with an increasing impact in Western societies with causes linked to toxins, genetics, and aging (primarily delay of motherhood). Within the different pathologies that can lead to infertility, poor quality or reduced quantity of gametes plays an important role. Gamete donation and therefore demand on donated sperm and eggs in fertility clinics is increasing. It is hoped that a better understanding of the conditions related to poor gamete quality may allow scientists to design rational treatments. However, to date, relatively little is known about human germ cell development in large part due to the inaccessibility of human development to molecular genetic analysis. It is hoped that pluripotent human embryonic stem cells and induced pluripotent stem cells may provide an accessible in vitro model to study germline development; these cells are able to differentiate to cells of all three primary embryonic germ layers, as well as to germ cells in vitro. We review the state of the art in germline differentiation from pluripotent stem cells. PMID:23329632

  16. Developmental origins of epigenetic transgenerational inheritance.

    PubMed

    Hanson, Mark A; Skinner, Michael K

    Environmental factors can induce epigenetic alterations in the germ cells that can potentially be transmitted transgenerationally. This non-genetic form of inheritance is termed epigenetic transgenerational inheritance and has been shown in a variety of species including plants, flies, worms, fish, rodents, pigs, and humans. This phenomenon operates during specific critical windows of exposure, linked to the developmental biology of the germ cells (sperm and eggs). Therefore, concepts of the developmental origins of transgenerational inheritance of phenotypic variation and subsequent disease risk need to include epigenetic processes affecting the developmental biology of the germ cell. These developmental impacts on epigenetic transgenerational inheritance, in contrast to multigenerational exposures, are the focus of this Perspective.

  17. Developmental origins of epigenetic transgenerational inheritance

    PubMed Central

    Hanson, Mark A.; Skinner, Michael K.

    2016-01-01

    Environmental factors can induce epigenetic alterations in the germ cells that can potentially be transmitted transgenerationally. This non-genetic form of inheritance is termed epigenetic transgenerational inheritance and has been shown in a variety of species including plants, flies, worms, fish, rodents, pigs, and humans. This phenomenon operates during specific critical windows of exposure, linked to the developmental biology of the germ cells (sperm and eggs). Therefore, concepts of the developmental origins of transgenerational inheritance of phenotypic variation and subsequent disease risk need to include epigenetic processes affecting the developmental biology of the germ cell. These developmental impacts on epigenetic transgenerational inheritance, in contrast to multigenerational exposures, are the focus of this Perspective. PMID:27390622

  18. Extragonadal Germ Cell Cancer (EGC)

    MedlinePlus

    ... germ cells are first seen outside of the embryo in the yolk sac. At about 4 to ... weeks of development, these cells migrate into the embryo where they populate the developing testes or ovaries. ...

  19. Human somatic cells subjected to genetic induction with six germ line-related factors display meiotic germ cell-like features

    PubMed Central

    Medrano, Jose V.; Martínez-Arroyo, Ana M.; Míguez, Jose M.; Moreno, Inmaculada; Martínez, Sebastián; Quiñonero, Alicia; Díaz-Gimeno, Patricia; Marqués-Marí, Ana I.; Pellicer, Antonio; Remohí, Jose; Simón, Carlos

    2016-01-01

    The in vitro derivation of human germ cells has attracted interest in the last years, but their direct conversion from human somatic cells has not yet been reported. Here we tested the ability of human male somatic cells to directly convert into a meiotic germ cell-like phenotype by inducing them with a combination of selected key germ cell developmental factors. We started with a pool of 12 candidates that were reduced to 6, demonstrating that ectopic expression of the germ line-related genes PRDM1, PRDM14, LIN28A, DAZL, VASA and SYCP3 induced direct conversion of somatic cells (hFSK (46, XY), and hMSC (46, XY)) into a germ cell-like phenotype in vitro. Induced germ cell-like cells showed a marked switch in their transcriptomic profile and expressed several post-meiotic germ line related markers, showed meiotic progression, evidence of epigenetic reprogramming, and approximately 1% were able to complete meiosis as demonstrated by their haploid status and the expression of several post-meiotic markers. Furthermore, xenotransplantation assays demonstrated that a subset of induced cells properly colonize the spermatogonial niche. Knowledge obtained from this work can be used to create in vitro models to study gamete-related diseases in humans. PMID:27112843

  20. Palifosfamide in Treating Patients With Recurrent Germ Cell Tumors

    ClinicalTrials.gov

    2015-06-11

    Adult Central Nervous System Germ Cell Tumor; Adult Teratoma; Malignant Extragonadal Germ Cell Tumor; Malignant Extragonadal Non-Seminomatous Germ Cell Tumor; Extragonadal Seminoma; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Ovarian Germ Cell Tumor; Stage IV Extragonadal Non-Seminomatous Germ Cell Tumor; Stage IV Extragonadal Seminoma; Stage IV Ovarian Germ Cell Tumor

  1. Meiotic germ cells antagonize mesonephric cell migration and testis cord formation in mouse gonads

    PubMed Central

    Yao, Humphrey H.-C.; DiNapoli, Leo; Capel, Blanche

    2014-01-01

    Summary The developmental fate of primordial germ cells in the mammalian gonad depends on their environment. In the XY gonad, Sry induces a cascade of molecular and cellular events leading to the organization of testis cords. Germ cells are sequestered inside testis cords by 12.5 dpc where they arrest in mitosis. If the testis pathway is not initiated, germ cells spontaneously enter meiosis by 13.5 dpc, and the gonad follows the ovarian fate. We have previously shown that some testis-specific events, such as mesonephric cell migration, can be experimentally induced into XX gonads prior to 12.5 dpc. However, after that time, XX gonads are resistant to the induction of cell migration. In current experiments, we provide evidence that this effect is dependent on XX germ cells rather than on XX somatic cells. We show that, although mesonephric cell migration cannot be induced into normal XX gonads at 14.5 dpc, it can be induced into XX gonads depleted of germ cells. We also show that when 14.5 dpc XX somatic cells are recombined with XY somatic cells, testis cord structures form normally; however, when XX germ cells are recombined with XY somatic cells, cord structures are disrupted. Sandwich culture experiments suggest that the inhibitory effect of XX germ cells is mediated through short-range interactions rather than through a long-range diffusible factor. The developmental stage at which XX germ cells show a disruptive effect on the male pathway is the stage at which meiosis is normally initiated, based on the immunodetection of meiotic markers. We suggest that at the stage when germ cells commit to meiosis, they reinforce ovarian fate by antagonizing the testis pathway. PMID:14561636

  2. Developmental Competence of Buffalo (Bubalus bubalis) Pluripotent Embryonic Stem Cells Over Different Homologous Feeder Layers and the Comparative Evaluation with Various Extracellular Matrices

    PubMed Central

    Sharma, Manjinder; Dubey, Pawan K.; Kumar, Rajesh; Nath, Amar; Kumar, G. Sai; Sharma, G. Taru

    2013-01-01

    Background and Objectives Use of somatic cells as a feeder layer to maintain the embryonic stem cells (ESCs) in undifferentiated state limits the stem cell research design, since experimental data may result from a combined ESCs and feeder cell response to various stimuli. Therefore, present study was designed to evaluate the developmental competence of the buffalo ESCs over different homogenous feeders and compare with various extracellular matrices using different concentrations of LIF. Methods and Results Inner cell masses (ICMs) of in vitro hatched blastocysts were cultured onto homologous feeders viz. fetal fibroblast, granulosa and oviductal cell feeder layers and synthetic matrices viz. fibronectin, collagen type I and matrigel in culture medium. Developmental efficiency was found higher for ESCs cultured on fetal fibroblast and granulosa layers (83.33%) followed by fibronectin (77.78%) at 30 ng LIF. Oviductal feeder was found to be the least efficient feeder showing only 11.11% undifferentiated primary ESC colonies at 30 ng LIF. However, neither feeder layer nor synthetic matrix could support the development of primary colonies at 10 ng LIF. Expression of SSEA- 4, TRA-1-60 and Oct-4 were found positive in ESC colonies from all the feeders and synthetic matrices with 20 ng and 30 ng LIF. Conclusions Fetal fibroblast and granulosa cell while, amongst synthetic matrices, fibronectin were found to be equally efficient to support the growth and maintenance of ESCs pluripotency with 30 ng LIF. This well-defined culture conditions may provide an animal model for culturing human embryonic stem cells in the xeno-free or feeder-free conditions for future clinical applications. PMID:24298371

  3. Cholesterol induces proliferation of chicken primordial germ cells.

    PubMed

    Chen, Dongyang; Chen, Meijuan; Lu, Zhenping; Yang, Mengmeng; Xie, Long; Zhang, Wenxin; Xu, Huiyan; Lu, Kehuan; Lu, Yangqing

    2016-08-01

    Primordial germ cells (PGCs) are the precursors of sperm and eggs and may serve as suitable cells for use in research in developmental biology and transgenic animals. However, the long-term propagation of PGCs in vitro has so far been plagued by the loss of their germ cell characteristics. This is largely because of the scarcity of knowledge concerning cell division and proliferation in these cells and the poor optimization of the culture medium. The sonic hedgehog (SHH) signaling pathway is involved in proliferation of many types of cells, but little is known about its role in chicken PGCs. The results of the current study indicate that the proliferation of chicken PGCs increases significantly when cholesterol, a molecule that facilitates the trafficking of HH ligands, is supplemented in the culture medium. This effect was attenuated when an SHH antagonist, cyclopamine was added, suggesting the involvement of SHH signaling in this process. The characterization of PGCs treated with cholesterol has shown that these cells express germ-cell-related markers and retain their capability to colonize the embryonic gonad after re-introduction to vasculature of stage-15 HH embryos, indicating that proliferation of PGCs induced by cholesterol does not alter the germ cell characteristics of these cells.

  4. Germ cells of the centipede Strigamia maritima are specified early in embryonic development.

    PubMed

    Green, Jack E; Akam, Michael

    2014-08-15

    We provide the first systematic description of germ cell development with molecular markers in a myriapod, the centipede Strigamia maritima. By examining the expression of Strigamia vasa and nanos orthologues, we find that the primordial germ cells are specified from at least the blastoderm stage. This is a much earlier embryonic stage than previously described for centipedes, or any other member of the Myriapoda. Using these genes as markers, and taking advantage of the developmental synchrony of Strigamia embryos within single clutches, we are able to track the development of the germ cells throughout embryogenesis. We find that the germ cells accumulate at the blastopore; that the cells do not internalize through the hindgut, but rather through the closing blastopore; and that the cells undergo a long-range migration to the embryonic gonad. This is the first evidence for primordial germ cells displaying these behaviours in any myriapod. The myriapods are a phylogenetically important group in the arthropod radiation for which relatively little developmental data is currently available. Our study provides valuable comparative data that complements the growing number of studies in insects, crustaceans and chelicerates, and is important for the correct reconstruction of ancestral states and a fuller understanding of how germ cell development has evolved in different arthropod lineages.

  5. Generation of germ-line chimera zebrafish using primordial germ cells isolated from cultured blastomeres and cryopreserved embryoids.

    PubMed

    Kawakami, Yutaka; Goto-Kazeto, Rie; Saito, Taiju; Fujimoto, Takafumi; Higaki, Shogo; Takahashi, Yoshiyuki; Arai, Katsutoshi; Yamaha, Etsuro

    2010-01-01

    Primordial germ cells (PGCs) are the only cells in developing embryos with the potential to transmit genetic information to the next generation. In our previous study, a single PGC transplanted into a host differentiated into fertile gametes and produced germ-line chimeras of cyprinid fish, including zebrafish. In this study, we aimed to induce germ-line chimeras by transplanting donor PGCs from various sources (normal embryos at different stages, dissociated blastomeres, embryoids, or embryoids cryopreserved by vitrification) into host blastulae, and compare the migration rates of the PGCs towards the gonadal ridge. Isolated, cultured blastomeres not subject to mesodermal induction were able to differentiate into PGCs that retained their motility. Moreover, these PGCs successfully migrated towards the gonadal ridge of the host and formed viable gametes. Motility depended on developmental stage and culture duration: PGCs obtained at earlier developmental stages and with shorter cultivation periods showed an increased rate of migration to the gonadal ridge. Offspring were obtained from natural spawning between normal females and chimeric males. These results provide the basis for new methods of gene preservation in zebrafish.

  6. Mechano-logical model of C. elegans germ line suggests feedback on the cell cycle

    PubMed Central

    Atwell, Kathryn; Qin, Zhao; Gavaghan, David; Kugler, Hillel; Hubbard, E. Jane Albert; Osborne, James M.

    2015-01-01

    The Caenorhabditis elegans germ line is an outstanding model system in which to study the control of cell division and differentiation. Although many of the molecules that regulate germ cell proliferation and fate decisions have been identified, how these signals interact with cellular dynamics and physical forces within the gonad remains poorly understood. We therefore developed a dynamic, 3D in silico model of the C. elegans germ line, incorporating both the mechanical interactions between cells and the decision-making processes within cells. Our model successfully reproduces key features of the germ line during development and adulthood, including a reasonable ovulation rate, correct sperm count, and appropriate organization of the germ line into stably maintained zones. The model highlights a previously overlooked way in which germ cell pressure may influence gonadogenesis, and also predicts that adult germ cells might be subject to mechanical feedback on the cell cycle akin to contact inhibition. We provide experimental data consistent with the latter hypothesis. Finally, we present cell trajectories and ancestry recorded over the course of a simulation. The novel approaches and software described here link mechanics and cellular decision-making, and are applicable to modeling other developmental and stem cell systems. PMID:26428008

  7. Identification of Potential Germ-Cell Mutagens

    EPA Science Inventory

    The existence of agents that can induce germ-cell mutations in experimental systems has been recognized since 1927 with the discovery of the ability of X-rays to induce such mutations in Drosophila. Various rodent-based germ-cell mutation assays have been developed, and ~50 germ...

  8. Extraction and characterization of corn germ proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our study was conducted to develop methods to extract corn germ protein economically and characterize and identify potential applications of the recovered protein. Protein was extracted from both wet germ and finished (dried) germ using 0.1M NaCl as solvent. The method involved homogenization, sti...

  9. Gove's Curriculum and the GERM

    ERIC Educational Resources Information Center

    Wrigley, Terry

    2015-01-01

    This article examines the complex relationship between England's new National Curriculum and the neoliberal reform of education known as GERM. It explores contradictions between economic functionality and Gove's nostalgic traditionalism. It critiques the new curriculum as narrow, age-inappropriate, obsessed with abstract rules, and poorly focused…

  10. HISTORY OF GERM CELL MUTAGENESIS

    EPA Science Inventory

    Much of the early work on germ cell mutation analysis was conducted with nonmammalian species, but this historical overview will begin with the rodent studies that provided quantitative data on induced mutations. The initial studies of mutation induction utilized the newly develo...

  11. Pluripotent stem cell-derived organoids: using principles of developmental biology to grow human tissues in a dish.

    PubMed

    McCauley, Heather A; Wells, James M

    2017-03-15

    Pluripotent stem cell (PSC)-derived organoids are miniature, three-dimensional human tissues generated by the application of developmental biological principles to PSCs in vitro The approach to generate organoids uses a combination of directed differentiation, morphogenetic processes, and the intrinsically driven self-assembly of cells that mimics organogenesis in the developing embryo. The resulting organoids have remarkable cell type complexity, architecture and function similar to their in vivo counterparts. In the past five years, human PSC-derived organoids with components of all three germ layers have been generated, resulting in the establishment of a new human model system. Here, and in the accompanying poster, we provide an overview of how principles of developmental biology have been essential for generating human organoids in vitro, and how organoids are now being used as a primary research tool to investigate human developmental biology.

  12. Volvox: simple steps to developmental complexity?

    PubMed

    Nishii, Ichiro; Miller, Stephen M

    2010-12-01

    Volvox, Chlamydomonas, and their close relatives - collectively the volvocine green algae - comprise an excellent system for investigating the origins of developmental complexity. Over a relatively short period of time Volvox evolved an impressive suite of developmental traits, including asymmetric cell division, multicellularity with germ-soma division of labor, embryonic morphogenesis, and oogamy. Recent molecular genetic analyses of important developmental genes and comparative analyses of the fully sequenced Volvox and Chlamydomonas genomes have provided important insights into how these and other traits came to be. Surprisingly, the acquisition of much of the developmental innovation in this family seems to have involved relatively minor tinkering with the ancestral unicellular blueprint.

  13. The Geochemical Earth Reference Model (GERM)

    SciTech Connect

    Staudigel, H.; Albarede, F.; Shaw, H.; McDonough, B.; White, W.

    1996-12-01

    The Geochemical Earth Reference Model (GERM) initiative is a grass- roots effort with the goal of establishing a community consensus on a chemical characterization of the Earth, its major reservoirs, and the fluxes between them. Long term goal of GERM is a chemical reservoir characterization analogous to the geophysical effort of the Preliminary Reference Earth Model (PREM). Chemical fluxes between reservoirs are included into GERM to illuminate the long-term chemical evolution of the Earth and to characterize the Earth as a dynamic chemical system. In turn, these fluxes control geological processes and influence hydrosphere-atmosphere-climate dynamics. While these long-term goals are clearly the focus of GERM, the process of establishing GERM itself is just as important as its ultimate goal. The GERM initiative is developed in an open community discussion on the World Wide Web (GERM home page is at http://www-ep.es.llnl. gov/germ/germ-home.html) that is mediated by a series of editors with responsibilities for distinct reservoirs and fluxes. Beginning with the original workshop in Lyons (March 1996) GERM is continued to be developed on the Internet, punctuated by workshops and special sessions at professional meetings. It is planned to complete the first model by mid-1997, followed by a call for papers for a February 1998 GERM conference in La Jolla, California.

  14. A late phase of germ plasm accumulation during Drosophila oogenesis requires lost and rumpelstiltskin.

    PubMed

    Sinsimer, Kristina S; Jain, Roshan A; Chatterjee, Seema; Gavis, Elizabeth R

    2011-08-01

    Asymmetric mRNA localization is an effective mechanism for establishing cellular and developmental polarity. Posterior localization of oskar in the Drosophila oocyte targets the synthesis of Oskar to the posterior, where Oskar initiates the assembly of the germ plasm. In addition to harboring germline determinants, the germ plasm is required for localization and translation of the abdominal determinant nanos. Consequently, failure of oskar localization during oogenesis results in embryos lacking germ cells and abdominal segments. oskar accumulates at the oocyte posterior during mid-oogenesis through a well-studied process involving kinesin-mediated transport. Through live imaging of oskar mRNA, we have uncovered a second, mechanistically distinct phase of oskar localization that occurs during late oogenesis and results in amplification of the germ plasm. Analysis of two newly identified oskar localization factors, Rumpelstiltskin and Lost, that are required specifically for this late phase of oskar localization shows that germ plasm amplification ensures robust abdomen and germ cell formation during embryogenesis. In addition, our results indicate the importance of mechanisms for adapting mRNAs to utilize multiple localization pathways as necessitated by the dramatic changes in ovarian physiology that occur during oogenesis.

  15. The biology of germ cell tumors in disorders of sex development.

    PubMed

    Hersmus, Remko; van Bever, Yolande; Wolffenbuttel, Katja P; Biermann, Katharina; Cools, Martine; Looijenga, Leendert H J

    2017-02-01

    Development of a malignant germ cell tumor, i.e., germ cell cancer (GCC) in individuals with disorders of sex development (DSD) depends on a number of (epi-)genetic factors related to early gonadal- and germ cell development, possibly related to genetic susceptibility. Fetal development of germ cells is orchestrated by strict processes involving specification, migration and the development of a proper gonadal niche. In this review we will discuss the early (epi-)genetic events in normal and aberrant germ cell and gonadal development. Focus will be on the formation of the precursor lesions of GCC in individuals who have DSD. In our view, expression of the different embryonic markers in, and epigenetic profile of the precursor lesions reflects the developmental stage in which these cells are blocked in their maturation. Therefore, these are not a primary pathogenetic driving force. Progression later in life towards a full blown cancer likely depends on additional factors such as a changed endocrine environment in a susceptible individual. Genetic susceptibility is, as evidenced by the presence of specific risk genetic variants (SNPs) in patients with a testicular GCC, related to genes involved in early germ cell and gonadal development.

  16. Dearth and Delayed Maturation of Testicular Germ Cells in Fanconi Anemia E Mutant Male Mice

    PubMed Central

    Fu, Chun; Begum, Khurshida; Jordan, Philip W.; He, Yan; Overbeek, Paul A.

    2016-01-01

    After using a self-inactivating lentivirus for non-targeted insertional mutagenesis in mice, we identified a transgenic family with a recessive mutation that resulted in reduced fertility in homozygous transgenic mice. The lentiviral integration site was amplified by inverse PCR. Sequencing revealed that integration had occurred in intron 8 of the mouse Fance gene, which encodes the Fanconi anemia E (Fance) protein. Fanconi anemia (FA) proteins play pivotal roles in cellular responses to DNA damage and Fance acts as a molecular bridge between the FA core complex and Fancd2. To investigate the reduced fertility in the mutant males, we analyzed postnatal development of testicular germ cells. At one week after birth, most tubules in the mutant testes contained few or no germ cells. Over the next 2–3 weeks, germ cells accumulated in a limited number of tubules, so that some tubules contained germ cells around the full periphery of the tubule. Once sufficient numbers of germ cells had accumulated, they began to undergo the later stages of spermatogenesis. Immunoassays revealed that the Fancd2 protein accumulated around the periphery of the nucleus in normal developing spermatocytes, but we did not detect a similar localization of Fancd2 in the Fance mutant testes. Our assays indicate that although Fance mutant males are germ cell deficient at birth, the extant germ cells can proliferate and, if they reach a threshold density, can differentiate into mature sperm. Analogous to previous studies of FA genes in mice, our results show that the Fance protein plays an important, but not absolutely essential, role in the initial developmental expansion of the male germ line. PMID:27486799

  17. Developmental analysis of the external granular layer in the meander tail mutant mouse: do cerebellar microneurons have independent progenitors?

    PubMed

    Napieralski, J A; Eisenman, L M

    1993-08-01

    The cerebellum of the meander tail mutant mouse (mea/mea) is characterized by an apparently normal cytoarchitecture posteriorly with an abrupt transition to an abnormal anterior region. Anteriorly, there is abnormal foliation, a drastic reduction in the granule cells (GC) population, disorganization of the Purkinje cells (PC), and a virtual absence of Bergmann glial processes. In this paper we analyze the prenatal and postnatal development of the cerebellum in the mea/mea and attempt to determine the phenotypic onset of the mutation in the anterior region. Hematoxylin and eosin stained sections reveal a morphological difference in the cerebellum of the mea/mea as early as embryonic day 16 characterized by a reduction in the external granule cell layer (EGL). The reduction in the EGL becomes increasingly apparent as development proceeds. This deficit in the EGL most probably results in the absence of GC, but it is unclear at this point whether reduced migration, proliferation, and/or increased cell death is the major factor. Interestingly, immunohistochemical staining with a monoclonal antibody against parvalbumin reveals that the basket and stellate cells, which are also thought to arise from the EGL, are present in the anterior region of the mea/mea cerebellum. These results suggest that the lack of GC in the meander tail is due to an early expressed abnormality of the EGL. However, the presence of the basket and/or stellate cells raises some interesting questions concerning the lineage of the cerebellar microneurons.

  18. Developmental Toxicology##

    EPA Science Inventory

    Developmental toxicology encompasses the study of developmental exposures, pharmacokinetics, mechanisms, pathogenesis, and outcomes potentially leading to adverse health effects. Manifestations of developmental toxicity include structural malformations, growth retardation, functi...

  19. Prolonged expression of the c-kit receptor in germ cells of intersex fetal testes.

    PubMed

    Rajpert-De Meyts, E; Jørgensen, N; Müller, J; Skakkebaek, N E

    1996-02-01

    Stem cell factor (SCF) and its receptor Kit encoded by the c-kit proto-oncogene are crucial for the development and migration of primordial germ cells in rodents. The expression of Kit has been examined immunohistochemically in gonads obtained from five specimens of fetal tissues with intersex conditions which included 45,X/46,XY mosaicism; androgen insensitivity syndrome; and 46,XY/iso(p)Y mosaicism. Individuals with such disorders of sexual differentiation and Y-chromosome material carry a very high risk of developing testicular neoplasms. Fetal testicular germ cells of the intersex subjects expressed Kit at a later developmental age than controls, in which no Kit protein was detectable beyond the 15th week of gestation. This finding may indicate a disturbance of the chronology of germ cell development, or it may suggest a change of the regulation of c-kit expression in subjects with disorders of gonadal development.

  20. Microencapsulation of wheat germ oil.

    PubMed

    Yazicioglu, Basak; Sahin, Serpil; Sumnu, Gulum

    2015-06-01

    Wheat germ oil (WGO) is beneficial for health since it is a rich source of omega-3, omega-6 and tocopherol. However, as it contains polyunsaturated fatty acids, it is prone to oxidation. The aim of this study was to encapsulate wheat germ oil and determine the effects of core to coating ratio, coating materials ratio and ultrasonication time on particle size distribution of emulsions and encapsulation efficiency (EE) and surface morphology of capsules. Maltodextrin (MD) and whey protein concentrate (WPC) at different ratios (3:1, 2:2, 1:3) were used as coating materials. Total solid content of samples was 40 % (w/w). Five core to coating ratios (1:8, 1:4, 1:2, 3:4, 1:1) were tried. Ultrasound was used at 320 W and 20 kHz for 2, 5, 10 min to obtain emulsions. Then, emulsions were freeze dried to obtain microcapsules. It was observed that, increasing WPC ratio in the coating resulted in higher encapsulation efficiency and smaller particle size. Microcapsules prepared with MD:WPC ratio of 1:3 were found to have higher EE (74.35-89.62 %). Increase in oil load led to decrease in EE. Thus 1:8 core to coating ratio gave better results. Increasing ultrasonication time also had a positive effect on encapsulation efficiency.

  1. In vitro differentiation of germ cells from stem cells: a comparison between primordial germ cells and in vitro derived primordial germ cell-like cells.

    PubMed

    Ge, W; Chen, C; De Felici, M; Shen, W

    2015-10-15

    Stem cells are unique cell types capable to proliferate, some of them indefinitely, while maintaining the ability to differentiate into a few or any cell lineages. In 2003, a group headed by Hans R. Schöler reported that oocyte-like cells could be produced from mouse embryonic stem (ES) cells in vitro. After more than 10 years, where have these researches reached? Which are the major successes achieved and the problems still remaining to be solved? Although during the last years, many reviews have been published about these topics, in the present work, we will focus on an aspect that has been little considered so far, namely a strict comparison between the in vitro and in vivo developmental capabilities of the primordial germ cells (PGCs) isolated from the embryo and the PGC-like cells (PGC-LCs) produced in vitro from different types of stem cells in the mouse, the species in which most investigation has been carried out. Actually, the formation and differentiation of PGCs are crucial for both male and female gametogenesis, and the faithful production of PGCs in vitro represents the basis for obtaining functional germ cells.

  2. Characterization and Functionality of Corn Germ Proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to evaluate the functional properties of protein extracted from wet-milled corn germ and identify potential applications of the recovered protein. Corn germ comprises 12% of the total weight of normal dent corn and about 29% of the corn protein (moisture-free and oil- free ...

  3. Independent and coordinate trafficking of single Drosophila germ plasm mRNAs

    PubMed Central

    Little, Shawn C.; Sinsimer, Kristina S.; Lee, Jack J.; Wieschaus, Eric F.; Gavis, Elizabeth R.

    2015-01-01

    mRNA localization is a conserved mechanism for spatial control of protein synthesis, with key roles in generating cellular and developmental asymmetry. While different transcripts may be targeted to the same subcellular domain, the extent to which their localization is coordinated is unclear. Using quantitative single molecule imaging, we analyzed the assembly of Drosophila germ plasm mRNA granules inherited by nascent germ cells. We find that the germ cell-destined transcripts nanos, cyclin B, and polar granule component travel within the oocyte as ribonucleoprotein particles containing single mRNA molecules but co-assemble into multi-copy heterogeneous granules selectively at the posterior of the oocyte. The stoichiometry and dynamics of assembly indicate a defined stepwise sequence. Our data suggest that co-packaging of these transcripts ensures their effective segregation to germ cells. In contrast, compartmentalization of the germline determinant oskar mRNA into different granules limits its entry into germ cells. This exclusion is required for proper germline development. PMID:25848747

  4. The epigenetics of germ-line immortality: lessons from an elegant model system.

    PubMed

    Furuhashi, Hirofumi; Kelly, William G

    2010-08-01

    Epigenetic mechanisms are thought to help regulate the unique transcription program that is established in germ cell development. During the germline cycle of many organisms, the epigenome undergoes waves of extensive resetting events, while a part of epigenetic modification remains faithful to specific loci. Little is known about the mechanisms underlying these events, how loci are selected for, or avoid, reprogramming, or even why these events are required. In particular, although the significance of genomic imprinting phenomena involving DNA methylation in mammals is now well accepted, the role of histone modification as a transgenerational epigenetic mechanism has been the subject of debate. Such epigenetic mechanisms may help regulate transcription programs and/or the pluripotent status conferred on germ cells, and contribute to germ line continuity across generations. Recent studies provide new evidence for heritability of histone modifications through germ line cells and its potential effects on transcription regulation both in the soma and germ line of subsequent generations. Unraveling transgenerational epigenetic mechanisms involving highly conserved histone modifications in elegant model systems will accelerate the generation of new paradigms and inspire research in a wide variety of fields, including basic developmental studies and clinical stem cell research.

  5. Germ banking: bet-hedging and variable release from egg and seed dormancy.

    PubMed

    Evans, Margaret E K; Dennehy, John J

    2005-12-01

    Many species produce eggs or seeds that refrain from hatching despite developmental preparedness and favorable environmental conditions. Instead, these propagules hatch in intervals over long periods. Such variable hatch or germination tactics may represent bet-hedging against future catastrophes. Empiricists have independently recognized these approaches in diverse species. Terms such as seed banking, delayed egg hatching, and embryonic diapause have been used to describe these tactics, but connections between fields of study have been rare. Here we suggest a general term, germ banking, to incorporate all previous terms, unifying many seemingly disparate biological strategies under a single definition. We define the phenomenon of germ banking and use several biological examples to illustrate it. We then discuss the different causes of variation in emergence timing, delineate which constitute germ banking, and distinguish between germ banking and optimal timing of diapause. The wide-ranging consequences of germ banking are discussed, including modification of the age structure of a population, the alteration of microevolutionary dynamics, the migration of alleles from the past, the maintenance of genetic and species diversity, and the promotion of species coexistence. We end by posing questions to direct future research.

  6. Autonomy in specification of primordial germ cells and their passive translocation in the sea urchin.

    PubMed

    Yajima, Mamiko; Wessel, Gary M

    2012-10-01

    The process of germ line determination involves many conserved genes, yet is highly variable. Echinoderms are positioned at the base of Deuterostomia and are crucial to understanding these evolutionary transitions, yet the mechanism of germ line specification is not known in any member of the phyla. Here we demonstrate that small micromeres (SMics), which are formed at the fifth cell division of the sea urchin embryo, illustrate many typical features of primordial germ cell (PGC) specification. SMics autonomously express germ line genes in isolated culture, including selective Vasa protein accumulation and transcriptional activation of nanos; their descendants are passively displaced towards the animal pole by secondary mesenchyme cells and the elongating archenteron during gastrulation; Cadherin (G form) has an important role in their development and clustering phenotype; and a left/right integration into the future adult anlagen appears to be controlled by a late developmental mechanism. These results suggest that sea urchin SMics share many more characteristics typical of PGCs than previously thought, and imply a more widely conserved system of germ line development among metazoans.

  7. Simultaneous Gene Deletion of Gata4 and Gata6 Leads to Early Disruption of Follicular Development and Germ Cell Loss in the Murine Ovary1

    PubMed Central

    Padua, Maria B.; Fox, Shawna C.; Jiang, Tianyu; Morse, Deborah A.; Tevosian, Sergei G.

    2014-01-01

    ABSTRACT Granulosa cell formation and subsequent follicular assembly are important for ovarian development and function. Two members of the GATA family of transcription factors, GATA4 and GATA6, are expressed in ovarian somatic cells early in development, and their importance in adult ovarian function has been recently highlighted. In this study, we demonstrated that the embryonic loss of Gata4 and Gata6 expression within the ovary results in a strong down-regulation of genes involved in the ovarian developmental pathway (Fst and Irx3) as well as diminished expression of the pregranulosa and granulosa cell markers SPRR2 and FOXL2, respectively. Postnatal ovaries deficient in both Gata genes show impaired somatic cell proliferation and arrested follicular development at the primordial stage, where oocytes are either enclosed by one layer of squamous granulosa cells or remain in germ cell nests/clusters. Furthermore, germ cell nests and primordial follicles are predominantly localized to the central region of the Sf1Cre; Gata4flox/flox Gata6flox/flox ovaries, where the boundary between the medulla and cortex is almost nonexistent. Lastly, most of the oocytes are lost early in development in conditional double mutant ovaries, which confirms the importance of normally differentiated granulosa cells as supporting cells for oocyte survival. Thus, both GATA4 and GATA6 proteins are fundamental regulators of granulosa cell differentiation and proliferation, and consequently of proper follicular assembly during normal ovarian development and function. PMID:24899573

  8. Stochastic specification of primordial germ cells from mesoderm precursors in axolotl embryos

    PubMed Central

    Chatfield, Jodie; O'Reilly, Marie-Anne; Bachvarova, Rosemary F.; Ferjentsik, Zoltan; Redwood, Catherine; Walmsley, Maggie; Patient, Roger; Loose, Mathew; Johnson, Andrew D.

    2014-01-01

    A common feature of development in most vertebrate models is the early segregation of the germ line from the soma. For example, in Xenopus and zebrafish embryos primordial germ cells (PGCs) are specified by germ plasm that is inherited from the egg; in mice, Blimp1 expression in the epiblast mediates the commitment of cells to the germ line. How these disparate mechanisms of PGC specification evolved is unknown. Here, in order to identify the ancestral mechanism of PGC specification in vertebrates, we studied PGC specification in embryos from the axolotl (Mexican salamander), a model for the tetrapod ancestor. In the axolotl, PGCs develop within mesoderm, and classic studies have reported their induction from primitive ectoderm (animal cap). We used an axolotl animal cap system to demonstrate that signalling through FGF and BMP4 induces PGCs. The role of FGF was then confirmed in vivo. We also showed PGC induction by Brachyury, in the presence of BMP4. These conditions induced pluripotent mesodermal precursors that give rise to a variety of somatic cell types, in addition to PGCs. Irreversible restriction of the germ line did not occur until the mid-tailbud stage, days after the somatic germ layers are established. Before this, germline potential was maintained by MAP kinase signalling. We propose that this stochastic mechanism of PGC specification, from mesodermal precursors, is conserved in vertebrates. PMID:24917499

  9. [Reconsidering the roles of female germ cells in ovarian development and folliculogenesis].

    PubMed

    Guigon, Céline J; Cohen-Tannoudji, Michel

    2011-01-01

    The production of fertilizable ova is the consequence of multiple events that start as soon as ovarian development and culminate at the time of ovulation. Throughout their development, germ cells are associated with companion somatic cells, which ensure germ cell survival, growth and maturation. Data obtained in vitro and in vivo on several animal models of germ cell depletion have led to uncover the many roles of germ cells on both ovarian development and folliculogenesis. During ovarian development, germ cells become progressively enclosed within epithelial structures called "ovigerous cords" constituted by pregranulosa cells, lined by a basement membrane. At the end of ovarian development, ovigerous cords fragment into primordial follicles, which are epithelial units constituted by an oocyte surrounded by a single layer of granulosa cells. Germ cells are necessary for the fragmentation of ovigerous cords into follicles, since in their absence, no follicle will form. Germ cells also ensure the differentiation of the ovarian somatic lineage, and they may inhibit the testis-differentiating pathway by preventing the conversion of pregranulosa cells into Sertoli cells, their counterpart in the testis. Regularly, primordial follicles are recruited into the growing follicle pool and initiate their growth. They develop through primary, preantral, antral and preovulatory stages before being ovulated. Interestingly, the action of the oocyte on companion somatic cells tightly depends on the follicular stage. In primordial follicles, the oocyte prevents the transdifferentiation of granulosa cells into cells resembling Sertoli cells. By contrast, as soon as the follicle enters growth, the oocyte regulates the functional differentiation of granulosa cells and at the latest stages, it prevents their premature maturation into luteal cells. Overall, these data demonstrate that the female germ cell act on companion somatic cells to regulate ovarian development and

  10. In vivo epigenomic profiling of germ cells reveals germ cell molecular signatures.

    PubMed

    Ng, Jia-Hui; Kumar, Vibhor; Muratani, Masafumi; Kraus, Petra; Yeo, Jia-Chi; Yaw, Lai-Ping; Xue, Kun; Lufkin, Thomas; Prabhakar, Shyam; Ng, Huck-Hui

    2013-02-11

    The limited number of in vivo germ cells poses an impediment to genome-wide studies. Here, we applied a small-scale chromatin immunoprecipitation sequencing (ChIP-seq) method on purified mouse fetal germ cells to generate genome-wide maps of four histone modifications (H3K4me3, H3K27me3, H3K27ac, and H2BK20ac). Comparison of active chromatin state between somatic, embryonic stem, and germ cells revealed promoters and enhancers needed for stem cell maintenance and germ cell development. We found the nuclear receptor Nr5a2 motif to be enriched at a subset of germ cell cis-regulatory regions, and our results implicate Nr5a2 in germ cell biology. Interestingly, in germ cells, the H3K27me3 histone modification occurs more frequently at regions that are enriched for retrotransposons and MHC genes, indicating that these loci are specifically silenced in germ cells. Together, our study provides genome-wide histone modification maps of in vivo germ cells and reveals the molecular chromatin signatures of germ cells.

  11. Germ line, stem cells, and epigenetic reprogramming.

    PubMed

    Surani, M A; Durcova-Hills, G; Hajkova, P; Hayashi, K; Tee, W W

    2008-01-01

    The germ cell lineage has the unique attribute of generating the totipotent state. Development of blastocysts from the totipotent zygote results in the establishment of pluripotent primitive ectoderm cells in the inner cell mass of blastocysts, which subsequently develop into epiblast cells in postimplantation embryos. The germ cell lineage in mice originates from these pluripotent epiblast cells of postimplantation embryos in response to specific signals. Pluripotent stem cells and unipotent germ cells share some fundamental properties despite significant phenotypic differences between them. Additionally, early primordial germ cells can be induced to undergo dedifferentiation into pluripotent embryonic germ cells. Investigations on the relationship between germ cells and pluripotent stem cells may further elucidate the nature of the pluripotent state. Furthermore, comprehensive epigenetic reprogramming of the genome in early germ cells, including extensive erasure of epigenetic modifications, is a critical step toward establishment of totipotency. The mechanisms involved may be relevant for gaining insight into events that lead to reprogramming of somatic cells into pluripotent stem cells.

  12. Germ cell specification and regeneration in planarians.

    PubMed

    Newmark, P A; Wang, Y; Chong, T

    2008-01-01

    In metazoans, two apparently distinct mechanisms specify germ cell fate: Determinate specification (observed in animals including Drosophila, Caenorhabditis elegans, zebra fish, and Xenopus) uses cytoplasmic factors localized to specific regions of the egg, whereas epigenetic specification (observed in many basal metazoans, urodeles, and mammals) involves inductive interactions between cells. Much of our understanding of germ cell specification has emerged from studies of model organisms displaying determinate specification. In contrast, our understanding of epigenetic/inductive specification is less advanced and would benefit from studies of additional organisms. Freshwater planarians--widely known for their remarkable powers of regeneration--are well suited for studying the mechanisms by which germ cells can be induced. Classic experiments showed that planarians can regenerate germ cells from body fragments entirely lacking reproductive structures, suggesting that planarian germ cells could be specified by inductive signals. Furthermore, the availability of the genome sequence of the planarian Schmidtea mediterranea, coupled with the animal's susceptibility to systemic RNA interference (RNAi), facilitates functional genomic analyses of germ cell development and regeneration. Here, we describe recent progress in studies of planarian germ cells and frame some of the critical unresolved questions for future work.

  13. Specification of germ cell fate in mice.

    PubMed Central

    Saitou, Mitinori; Payer, Bernhard; Lange, Ulrike C; Erhardt, Sylvia; Barton, Sheila C; Surani, M Azim

    2003-01-01

    An early fundamental event during development is the segregation of germ cells from somatic cells. In many organisms, this is accomplished by the inheritance of preformed germ plasm, which apparently imposes transcriptional repression to prevent somatic cell fate. However, in mammals, pluripotent epiblast cells acquire germ cell fate in response to signalling molecules. We have used single cell analysis to study how epiblast cells acquire germ cell competence and undergo specification. Germ cell competent cells express Fragilis and initially progress towards a somatic mesodermal fate. However, a subset of these cells, the future primordial germ cells (PGCs), then shows rapid upregulation of Fragilis with concomitant transcriptional repression of a number of genes, including Hox and Smad genes. This repression may be a key event associated with germ cell specification. Furthermore, PGCs express Stella and other genes, such as Oct-4 that are associated with pluripotency. While these molecules are also detected in mature oocytes as maternally inherited factors, their early role is to regulate development and maintain pluripotency, and they do not serve the role of classical germline determinants. PMID:14511483

  14. Posterior localization of ApVas1 positions the preformed germ plasm in the sexual oviparous pea aphid Acyrthosiphon pisum

    PubMed Central

    2014-01-01

    Background Germline specification in some animals is driven by the maternally inherited germ plasm during early embryogenesis (inheritance mode), whereas in others it is induced by signals from neighboring cells in mid or late development (induction mode). In the Metazoa, the induction mode appears as a more prevalent and ancestral condition; the inheritance mode is therefore derived. However, regarding germline specification in organisms with asexual and sexual reproduction it has not been clear whether both strategies are used, one for each reproductive phase, or if just one strategy is used for both phases. Previously we have demonstrated that specification of germ cells in the asexual viviparous pea aphid depends on a preformed germ plasm. In this study, we extended this work to investigate how germ cells were specified in the sexual oviparous embryos, aiming to understand whether or not developmental plasticity of germline specification exists in the pea aphid. Results We employed Apvas1, a Drosophila vasa ortholog in the pea aphid, as a germline marker to examine whether germ plasm is preformed during oviparous development, as has already been seen in the viviparous embryos. During oogenesis, Apvas1 mRNA and ApVas1 protein were both evenly distributed. After fertilization, uniform expression of Apvas1 remained in the egg but posterior localization of ApVas1 occurred from the fifth nuclear cycle onward. Posterior co-localization of Apvas1/ApVas1 was first identified in the syncytial blastoderm undergoing cellularization, and later we could detect specific expression of Apvas1/ApVas1 in the morphologically identifiable germ cells of mature embryos. This suggests that Apvas1/ApVas1-positive cells are primordial germ cells and posterior localization of ApVas1 prior to cellularization positions the preformed germ plasm. Conclusions We conclude that both asexual and sexual pea aphids rely on the preformed germ plasm to specify germ cells and that developmental

  15. Advances in genome-wide protein expression using the wheat germ cell-free system.

    PubMed

    Endo, Yaeta; Sawasaki, Tatsuya

    2005-01-01

    In the current post-genomic era, cell-free translation platforms are gaining importance in structural as well as functional genomics. They are based on extracts prepared from Escherichia coli cells, wheat germ, or rabbit reticulocytes, and when programmed with any mRNA in the presence of energy sources and amino acids, can synthesize the respective protein in vitro. Among the cell-free systems, the wheat germ-based translation system is of special interest due to its eukaryotic nature and robustness. This chapter outlines the existing protein production platforms and their limitations, and describes the basic concept of the wheat germ-based cell-free system. It also demonstrates how the conventional wheat germ system can be improved by eliminating endogenous inhibitors, by using an expression vector specially designed for this system and polymerase chain reaction-directed protein synthesis directly from cDNAs in a bi-layer translation system. Finally, a robotic procedure for translation based on the wheat germ extract and bi-layer cell-free translation is described.

  16. Developmental Screening

    MedlinePlus

    Learn More about Your Child’s Development: Developmental Monitoring and Screening Taking a first step, waving “bye-bye,” and pointing to something interesting are all developmental milestones, ...

  17. Developmental Toxicity

    EPA Science Inventory

    This chapter provides an overview the developmental toxicity resulting from exposure to perfluorinated alkyl acids (PFAAs). The majority of studies of PFAA-induced developmental toxicity have examined effects of perfluorooctane sulfonate (PFOS) or perfluorooctanoic acid (PFOA) a...

  18. RhoA/ROCK pathway activity is essential for the correct localization of the germ plasm mRNAs in zebrafish embryos.

    PubMed

    Miranda-Rodríguez, Jerónimo Roberto; Salas-Vidal, Enrique; Lomelí, Hilda; Zurita, Mario; Schnabel, Denhi

    2017-01-01

    Zebrafish germ plasm is composed of mRNAs such as vasa and nanos and of proteins such as Bucky ball, all of which localize symmetrically in four aggregates at the distal region of the first two cleavage furrows. The coordination of actin microfilaments, microtubules and kinesin is essential for the correct localization of the germ plasm. Rho-GTPases, through their effectors, coordinate cytoskeletal dynamics. We address the participation of RhoA and its effector ROCK in germ plasm localization during the transition from two- to eight-cell embryos. We found that active RhoA is enriched along the cleavage furrow during the first two division cycles, whereas ROCK localizes at the distal region of the cleavage furrows in a similar pattern as the germ plasm mRNAs. Specific inhibition of RhoA and ROCK affected microtubules organization at the cleavage furrow; these caused the incorrect localization of the germ plasm mRNAs. The incorrect localization of the germ plasm led to a dramatic change in the number of germ cells during the blastula and 24hpf embryo stages without affecting any other developmental processes. We demonstrate that the Rho/ROCK pathway is intimately related to the determination of germ cells in zebrafish embryos.

  19. Regulation of germ cell function by SUMOylation

    PubMed Central

    Rodriguez, Amanda; Pangas, Stephanie A.

    2015-01-01

    Oogenesis and spermatogenesis are tightly regulated complex processes that are critical for fertility function. Germ cells undergo meiosis to generate haploid cells necessary for reproduction. Errors in meiosis, including the generation of chromosomal abnormalities, can result in reproductive defects and infertility. Meiotic proteins are regulated by post-translational modifications including SUMOylation, the covalent attachment of small ubiquitin-like modifier (SUMO) proteins. Here, we review the role of SUMO proteins in controlling germ cell development and maturation based on recent findings from mouse models. Several studies have characterized the localization of SUMO proteins in male and female germ cells. However, a deeper understanding of how SUMOylation regulates proteins with essential roles in oogenesis and spermatogenesis will provide useful insight into the underlying mechanisms of germ cell development and fertility. PMID:26374733

  20. Gender differences in the induction of chromosomal aberrations and gene mutations in rodent germ cells

    SciTech Connect

    Adler, Ilse-Dore; Carere, Angelo; Eichenlaub-Ritter, Ursula

    2007-05-15

    Germ cell mutagenicity testing provides experimental data to quantify genetic risk for exposed human populations. The majority of tests are performed with exposure of males, and female data are relatively rare. The reason for this paucity lies in the differences between male and female germ cell biology. Male germ cells are produced throughout reproductive life and all developmental stages can be ascertained by appropriate breeding schemes. In contrast, the female germ cell pool is limited, meiosis begins during embryogenesis and oocytes are arrested over long periods of time until maturation processes start for small numbers of oocytes during the oestrus cycle in mature females. The literature data are reviewed to point out possible gender differences of germ cells to exogenous agents such as chemicals or ionizing radiation. From the limited information, it can be concluded that male germ cells are more sensitive than female germ cells to the induction of chromosomal aberrations and gene mutations. However, exceptions are described which shed doubt on the extrapolation of experimental data from male rodents to the genetic risk of the human population. Furthermore, the female genome may be more sensitive to mutation induction during peri-conceptional stages compared to the male genome of the zygote. With few exceptions, germ cell experiments have been carried out under high acute exposure to optimize the effects and to compensate for the limited sample size in animal experiments. Human exposure to environmental agents, on the other hand, is usually chronic and involves low doses. Under these conditions, gender differences may become apparent that have not been studied so far. Additionally, data are reviewed that suggest a false impression of safety when responses are negative under high acute exposure of male rodents while a mutational response is induced by low chronic exposure. The classical (morphological) germ cell mutation tests are not performed anymore

  1. Dynamic changes in DNA modification states during late gestation male germ line development in the rat

    PubMed Central

    2014-01-01

    Background Epigenetic reprogramming of fetal germ cells involves the genome-wide erasure and subsequent re-establishment of DNA methylation. Mouse studies indicate that DNA demethylation may be initiated at embryonic day (e) 8 and completed between e11.5 and e12.5. In the male germline, DNA remethylation begins around e15 and continues for the remainder of gestation whilst this process occurs postnatally in female germ cells. Although 5-methylcytosine (5mC) dynamics have been extensively characterised, a role for the more recently described DNA modifications (5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC)) remains unclear. Moreover, the extent to which the developmental dynamics of 5mC reprogramming is conserved across species remains largely undetermined. Here, we sought to describe this process during late gestation in the male rat. Results Using immunofluorescence, we demonstrate that 5mC is re-established between e18.5 and e21.5 in the rat, subsequent to loss of 5hmC, 5fC and 5caC, which are present in germ cells between e14.5 and e16.5. All of the evaluated DNA methyl forms were expressed in testicular somatic cells throughout late gestation. 5fC and 5caC can potentially be excised through Thymine DNA Glycosylase (TDG) and repaired by the base excision repair (BER) pathway, implicating 5mC oxidation in active DNA demethylation. In support of this potential mechanism, we show that TDG expression is coincident with the presence of 5hmC, 5fC and 5caC in male germ cell development. Conclusion The developmental dependent changes in germ cell DNA methylation patterns suggest that they are linked with key stages of male rat germline progression. PMID:25225576

  2. Dissecting Germ Cell Metabolism through Network Modeling.

    PubMed

    Whitmore, Leanne S; Ye, Ping

    2015-01-01

    Metabolic pathways are increasingly postulated to be vital in programming cell fate, including stemness, differentiation, proliferation, and apoptosis. The commitment to meiosis is a critical fate decision for mammalian germ cells, and requires a metabolic derivative of vitamin A, retinoic acid (RA). Recent evidence showed that a pulse of RA is generated in the testis of male mice thereby triggering meiotic commitment. However, enzymes and reactions that regulate this RA pulse have yet to be identified. We developed a mouse germ cell-specific metabolic network with a curated vitamin A pathway. Using this network, we implemented flux balance analysis throughout the initial wave of spermatogenesis to elucidate important reactions and enzymes for the generation and degradation of RA. Our results indicate that primary RA sources in the germ cell include RA import from the extracellular region, release of RA from binding proteins, and metabolism of retinal to RA. Further, in silico knockouts of genes and reactions in the vitamin A pathway predict that deletion of Lipe, hormone-sensitive lipase, disrupts the RA pulse thereby causing spermatogenic defects. Examination of other metabolic pathways reveals that the citric acid cycle is the most active pathway. In addition, we discover that fatty acid synthesis/oxidation are the primary energy sources in the germ cell. In summary, this study predicts enzymes, reactions, and pathways important for germ cell commitment to meiosis. These findings enhance our understanding of the metabolic control of germ cell differentiation and will help guide future experiments to improve reproductive health.

  3. Removal of wheat-germ agglutinin increases protein synthesis in wheat-germ extracts.

    PubMed

    Abraham, A K; Kolseth, S; Pihl, A

    1982-05-17

    Affinity chromatography of wheat germ extracts on a chitin column increased the rate and extent of protein synthesis, programmed by rabbit globin mRNA. Addition of purified wheat germ agglutinin to the chitin-treated extract reduced the rate of protein synthesis to about the levels seen in the untreated extracts. Experiments where the ratio of messenger to extract and the ratio of supernatant to ribosomes were varied, indicated that addition of wheat germ agglutinin reduced the amount of available ribosomes. Reduced and carboxymethylated wheat germ agglutinin failed to inhibit protein synthesis and was unable to bind to the ribosomes. However, labelled intact agglutinin was found to be bound to ribosomes. The bound agglutinin was not released by acid treatment. The inhibiting effect of wheat germ, agglutinin on protein synthesis could not be counteracted by addition of N-acetyl-D-glucosamine or sialic acid, whereas thiols partially diminished the inhibition. The data indicate that wheat germ agglutinin binds reversibly to ribosomes, probably through mixed disulfide formation, and that chitin treatment increases the ability of wheat germ extracts to support protein synthesis, at least in part, by removing the wheat germ agglutinin. The possibility that chitin treatment also removed other inhibitors of protein synthesis cannot be excluded.

  4. Surgery and Combination Chemotherapy in Treating Children With Extracranial Germ Cell Tumors

    ClinicalTrials.gov

    2016-05-06

    Childhood Embryonal Tumor; Childhood Extracranial Germ Cell Tumor; Childhood Extragonadal Germ Cell Tumor; Childhood Malignant Ovarian Germ Cell Tumor; Childhood Malignant Testicular Germ Cell Tumor; Childhood Teratoma; Ovarian Embryonal Carcinoma; Ovarian Yolk Sac Tumor; Stage II Malignant Testicular Germ Cell Tumor; Stage IIA Ovarian Germ Cell Tumor; Stage IIB Ovarian Germ Cell Tumor; Stage IIC Ovarian Germ Cell Tumor; Stage III Malignant Testicular Germ Cell Tumor; Stage IIIA Ovarian Germ Cell Tumor; Stage IIIB Ovarian Germ Cell Tumor; Stage IIIC Ovarian Germ Cell Tumor; Testicular Choriocarcinoma and Yolk Sac Tumor; Testicular Embryonal Carcinoma

  5. Temporal germ cell development strategy during continuous spermatogenesis within the montane lizard, Sceloporus bicanthalis (Squamata; Phrynosomatidae).

    PubMed

    Gribbins, Kevin; Anzalone, Marla; Collier, Matthew; Granados-González, Gisela; Villagrán-Santa Cruz, Maricela; Hernández-Gallegos, Oswaldo

    2011-10-01

    Sceloporus bicanthalis is a viviparous lizard that lives at higher elevations in Mexico. Adult male S. bicanthalis were collected (n = 36) from the Nevado de Toluca, Mexico (elevation is 4200 m) during August to December, 2007 and January to July, 2008. Testes were extracted, fixed in Trumps, and dehydrated in a graded series of ethanol. Tissues were embedded, sectioned (2 μm), stained, and examined via a light microscope to determine the spermatogenic developmental strategy of S. bicanthalis. In all months examined, the testes were spermiogenically active; based on this, plus the presence of sperm in the lumina of seminiferous tubules, we inferred that S. bicanthalis had year-round or continuous spermatogenesis, unlike most reptiles that occupy a temperate or montane habitat. It was recently reported that seasonally breeding reptiles had a temporal germ cell development strategy similar to amphibians, where germ cells progress through spermatogenesis as a single population, which leads to a single spermiation event. This was much different than spatial development within the testis of other derived amniotes. We hypothesized that germ cell development was temporal in S. bicanthalis. Therefore, we wanted to determine whether reptiles that practice continuous spermatogenesis have a mammalian-like spatial germ cell development, which is different than the typical temperate reptile exhibiting a temporal development. In the present study, S. bicanthalis had a temporal development strategy, despite its continuous spermatogenic cycle, making them similar to tropical anoles.

  6. Differentiation of presumptive primordial germ cell (pPGC)-like cells in explants into PGCs in experimental tadpoles

    SciTech Connect

    Ikenishi, K.; Okuda, T.; Nakazato, S.

    1984-05-01

    A single blastomere containing the ''germ plasm'' of 32-cell stage Xenopus embryos was cultured with (/sup 3/H)thymidine until the control embryos developed to the neurula stage. The explants, showing a spherical mass in which the nuclei of all cells were labeled, were implanted into the prospective place of presumptive primordial germ cells (pPGCs) in the endodermal cell mass of unlabeled host embryos of the neurula stage. Labeled PGCs as well as unlabeled, host PGCs were found in the genital ridges of experimental tadpoles. This indicates that the precursor of germ cells, corresponding to pPGCs in normal embryos of the neurula stage, in the explants migrated to genital ridges just at the right moment to become PGCs, and suggests that the developmental process progressed normally, even in the explants, as far as the differentiation of pPGCs is concerned.

  7. BOULE, a Deleted in Azoospermia Homolog, Is Recruited to Stress Granules in the Mouse Male Germ Cells

    PubMed Central

    Kim, Byunghyuk; Rhee, Kunsoo

    2016-01-01

    High temperature adversely affects normal development of male germ cells in mammals. Acute heat stress induces the formation of stress granules (SGs) in a set of male germ cells, and the SGs have been proposed to protect those cells from heat-induced apoptosis. DAZL, one of DAZ (Deleted in Azoospermia) family proteins, was shown to be an essential component of SGs, which is required for SG formation in the mouse testis. In the present study, we asked whether BOULE, the founding member of DAZ family proteins, is a component of the SGs. We show that BOULE is recruited to the SGs upon heat stress, and that these SGs are developmental stage-specific. These results suggest that DAZ family proteins may have conserved roles in the SGs of male germ cells. PMID:27632217

  8. The new function of two ubiquitin C-terminal hydrolase isozymes as reciprocal modulators of germ cell apoptosis.

    PubMed

    Kwon, Jungkee

    2007-04-01

    Ubiquitination is required throughout all developmental stages of mammalian spermatogenesis. The two ubiquitin C-terminal hydrolase (UCH) enzymes, UCH-L1 and UCH-L3, deubiquitinate ubiquitin-protein conjugates and control the cellular balance of ubiquitin. These two UCH isozymes have 52% amino acid identity and share significant structural similarity. A new function of these two closely related UCH enzymes during spermatogenesis which is associated with germ cell apoptosis has been analyzed. Apoptosis, in general, is thought to be partly regulated by the ubiquitin-proteasome system. During spermatogenesis, apoptosis controls germ cell numbers and eliminates defective germ cells to facilitate testicular homeostasis. In this paper, I review the distinct function of the two UCH isozymes in the testis of gad and Uchl3 knockout mice, which are strongly but reciprocally expressed during spermatogenesis. In addition, the importance of UCHL1-dependent apoptosis for normal spermatogenesis and sperm quality control is discussed.

  9. Developmental Evaluation.

    ERIC Educational Resources Information Center

    Patton, Michael Quinn

    1994-01-01

    Developmental evaluation is proposed as a term to describe certain long-term partnering relationships with clients who are, themselves, engaged in ongoing program development. Rather than a model, developmental evaluation is a relationship founded on a shared purpose and is a way of being useful in innovative settings. (SLD)

  10. Attraction rules: germ cell migration in zebrafish.

    PubMed

    Raz, Erez; Reichman-Fried, Michal

    2006-08-01

    The migration of zebrafish primordial germ cell towards the region where the gonad develops is guided by the chemokine SDF-1a. Recent studies show that soon after their specification, the cells undergo a series of morphological alterations before they become motile and are able to respond to attractive cues. As migratory cells, primordial germ cells move towards their target while correcting their path upon exiting a cyclic phase in which morphological cell polarity is lost. In the following stages, the cells gather at specific locations and move as cell clusters towards their final target. In all of these stages, zebrafish germ cells respond as individual cells to alterations in the shape of the sdf-1a expression domain, by directed migration towards their target - the position where the gonad develops.

  11. "Life in a Germ-Free World":

    PubMed Central

    Kirk, Robert G. W.

    2012-01-01

    Summary: This article examines a specific technology, the germ-free "isolator," tracing its development across three sites: (1) the laboratory for the production of standard laboratory animals, (2) agriculture for the efficient production of farm animals, and (3) the hospital for the control and prevention of cross-infection and the protection of individuals from infection. Germ-free technology traveled across the laboratory sciences, clinical and veterinary medicine, and industry, yet failed to become institutionalized outside the laboratory. That germ-free technology worked was not at issue. Working, however, was not enough. Examining the history of a technology that failed to find widespread application reveals the labor involved in aligning cultural, societal, and material factors necessary for successful medical innovation. PMID:23000838

  12. Male germ cell-specific expression of a novel Patched-domain containing gene Ptchd3

    SciTech Connect

    Fan Jun; Akabane, Hiroto; Zheng Xuehai; Zhou Xuan; Zhang Li; Liu Qiang; Zhang Yonglian; Yang Jing; Zhu Guozhang

    2007-11-23

    The Hedgehog (Hh) signaling pathway plays an important role in various biological processes, including pattern formation, cell fate determination, proliferation, and differentiation. Hh function is mediated through its membrane receptor Patched. Herein, we have characterized a novel Patched-domain containing gene Ptchd3 in mouse. Messenger RNA of Ptchd3 was exclusively detected in the testis, and existed in two isoforms Ptchd3a and Ptchd3b. The expression of these two mRNA isoforms was shown to be developmentally regulated in testes, and specifically found in male germ cells. Further analysis revealed that the Ptchd3 protein was located on the midpiece of mouse, rat and human sperm. Collectively, these results indicate that Ptchd3 is a novel male germ cell-specific gene and may be involved in the Hh signaling to regulate sperm development and/or sperm function.

  13. Germ Cell Origins of Posttraumatic Stress Disorder Risk: The Transgenerational Impact of Parental Stress Experience.

    PubMed

    Rodgers, Ali B; Bale, Tracy L

    2015-09-01

    Altered stress reactivity is a predominant feature of posttraumatic stress disorder (PTSD) and may reflect disease vulnerability, increasing the probability that an individual will develop PTSD following trauma exposure. Environmental factors, particularly prior stress history, contribute to the developmental programming of the hypothalamic-pituitary-adrenal stress axis. Critically, the consequences of stress experiences are transgenerational, with parental stress exposure impacting stress reactivity and PTSD risk in subsequent generations. Potential molecular mechanisms underlying this transmission have been explored in rodent models that specifically examine the paternal lineage, identifying epigenetic signatures in male germ cells as possible substrates of transgenerational programming. Here, we review the role of these germ cell epigenetic marks, including posttranslational histone modifications, DNA methylation, and populations of small noncoding RNAs, in the development of offspring stress axis sensitivity and disease risk.

  14. Murine somatic cell nuclear transfer using reprogrammed donor cells expressing male germ cell-specific genes.

    PubMed

    Kang, Hoin; Park, Jong Im; Roh, Sangho

    2016-01-01

    In vivo-matured mouse oocytes were enucleated, and a single murine embryonic fibroblast (control or reprogrammed by introducing extracts from murine testis tissue, which showed expression of male germ cell-specific genes) was injected into the cytoplasm of the oocytes. The rate of blastocyst development and expression levels of Oct-4, Eomes and Cdx-2 were not significantly different in both experimental groups. However, the expression levels of Nanog, Sox9 and Glut-1 were significantly increased when reprogrammed cells were used as donor nuclei. Increased expression of Nanog can be supportive of complete reprogramming of somatic cell nuclear transfer murine embryos. The present study suggested that donor cells expressing male germ cell-specific genes can be reconstructed and can develop into embryos with normal high expression of developmentally essential genes.

  15. [Role of GAGA Factor in Drosophila Primordial Germ Cell Migration and Gonad Development].

    PubMed

    Dorogova, N V; Khrushcheva, A S; Fedorova, E V; Ogienko, A A; Baricheva, E M

    2016-01-01

    The GAGA protein of drosophila is a factor involved in epigenetic transcription regulation of a large gene group controlling developmental processes. In this paper, the role of GAGA factor in germ cell migration is demonstrated as well as its effect on the gonad development in drosophila embryogenesis. Mutations in the Trl gene, encoding GAGA factor, prematurely induces the active migration program and relocation of the primordial cells inward the embryo before the beginning of gastrulation. The germ cells that prematurely separated from the main group migrate ectopically, lose orientation, and stay out of gonad development. Expression pattern of the Trl gene suggests its activity in epithelial cells of the embryonic blastoderm, part of which contact primordial cells. Thus, GAGA factor influences migration of these cells in an indirect manner via their somatic environment.

  16. GERM as a tool for space station documentation

    NASA Technical Reports Server (NTRS)

    Crouse, Ken; Hardwick, Charles

    1990-01-01

    GERM as a tool for space station documentation is presented in the form of viewgraphs. The following subject areas are covered: problem statement, hypermedia as a tool for documentation, description of GERM, technical approach, application development, and results and conclusions.

  17. Germ cell differentiation and proliferation in the developing testis of the South American plains viscacha, Lagostomus maximus (Mammalia, Rodentia).

    PubMed

    Gonzalez, C R; Muscarsel Isla, M L; Fraunhoffer, N A; Leopardo, N P; Vitullo, A D

    2012-08-01

    Cell proliferation and cell death are essential processes in the physiology of the developing testis that strongly influence the normal adult spermatogenesis. We analysed in this study the morphometry, the expression of the proliferation cell nuclear antigen (PCNA), cell pluripotency marker OCT-4, germ cell marker VASA and apoptosis in the developing testes of Lagostomus maximus, a rodent in which female germ line develops through abolished apoptosis and unrestricted proliferation. Morphometry revealed an increment in the size of the seminiferous cords with increasing developmental age, arising from a significant increase of PCNA-positive germ cells and a stable proportion of PCNA-positive Sertoli cells. VASA showed a widespread cytoplasmic distribution in a great proportion of proliferating gonocytes that increased significantly at late development. In the somatic compartment, Leydig cells increased at mid-development, whereas peritubular cells showed a stable rate of proliferation. In contrast to other mammals, OCT-4 positive gonocytes increased throughout development reaching 90% of germ cells in late-developing testis, associated with a conspicuous increase in circulating FSH from mid- to late-gestation. TUNEL analysis was remarkable negative, and only a few positive cells were detected in the somatic compartment. These results show that the South American plains viscacha displays a distinctive pattern of testis development characterized by a sustained proliferation of germ cells throughout development, with no signs of apoptosis cell demise, in a peculiar endocrine in utero ambiance that seems to promote the increase of spermatogonial number as a primary direct effect of FSH.

  18. Characterization of the functional properties of carob germ proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteins from the carob germ were identified as having gluten-like proteins in 1935. While some biochemical characterization of carob germ proteins and their functionality has been carried out, relatively little has been done when compared to proteins such as gluten. Carob germ proteins were separ...

  19. Improvement of dry fractionation ethanol fermentation by partial germ supplementation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ethanol fermentation of dry fractionated grits (corn endosperm pieces) containing different levels of germ was studied using the dry grind process. Partial removal of germ fraction allows for marketing the germ fraction and potentially more efficient fermentation. Grits obtained from a dry milling p...

  20. Evaluation of corn germ meal as extender in plywood adhesive

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to evaluate the potential of corn germ meal as protein extender in plywood adhesive. Partially defatted dried corn germ, containing 2.1% (dry basis, db) crude oil and 24.7% (db) crude protein, was ground to 40-mesh particle size. The corn germ meal was then substituted (on...

  1. Divergent RNA-Binding Proteins, DAZL and VASA, Induce Meiotic Progression in Human Germ Cells Derived In Vitro

    PubMed Central

    Medrano, Jose v.; Ramathal, Cyril; Nguyen, Ha N.; Simon, Carlos; Pera, Renee A. Reijo

    2013-01-01

    Our understanding of human germ cell development is limited in large part due to inaccessibility of early human development to molecular genetic analysis. Pluripotent human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) have been shown to differentiate to cells of all three embryonic germ layers, as well as germ cells in vitro, and thus may provide a model for the study of the genetics and epigenetics of human germline. Here, we examined whether intrinsic germ cell translational, rather than transcriptional, factors might drive germline formation and/or differentiation from human pluripotent stem cells in vitro. We observed that, with overexpression of VASA (DDX4) and/or DAZL (Deleted in Azoospermia Like), both hESCs and iPSCs differentiated to primordial germ cells, and maturation and progression through meiosis was enhanced. These results demonstrate that evolutionarily unrelated and divergent RNA-binding proteins can promote meiotic progression of human-derived germ cells in vitro. These studies describe an in vitro model for exploring specifics of human meiosis, a process that is remarkably susceptible to errors that lead to different infertility-related diseases. PMID:22162380

  2. Continuous spermatogenesis and the germ cell development strategy within the testis of the Jamaican Gray Anole, Anolis lineatopus.

    PubMed

    Gribbins, K M; Rheubert, J L; Poldemann, E H; Collier, M H; Wilson, B; Wolf, K

    2009-09-01

    Testicular tissues from Anolis lineatopus were examined histologically to determine testicular structure, germ cell morphologies, and the germ cell development strategy employed during spermatogenesis. Anoles (N=36) were collected from southern Jamaica from October 2004 to September 2005. Testes were extracted and fixed in Trump's fixative, dehydrated, embedded in Spurr's plastic, sectioned, and stained with basic fuchsin/toluidine blue. The testes of Jamaican Anoles were composed of seminiferous tubules lined with seminiferous epithelia, similar to birds and mammals, and were spermatogenically active during every month of the year. However, spermatogenic activity fluctuated based on morphometric data for February, May and June, and September-December. Sequential increases for these months and decreases in between months in tubular diameters and epithelial heights were due to fluctuations in number of elongating spermatids and spermiation events. Cellular associations were not observed during spermatogenesis in A. lineatopus, and three or more spermatids coincided with mitotic and meiotic cells within the seminiferous epithelium. Although the germ cell generations were layered within the seminiferous epithelium, similar to birds and mammals, the actual temporal development of germ cells and bursts of sperm release more closely resembled that reported recently for other reptilian taxa. All of these reptiles were temperate species that showed considerable seasonality in terms of testis morphology and spermatogenesis. The Jamaican Gray Anole has continuous spermatogenesis yet maintains this temporal germ cell development pattern. Thus, a lack of seasonal spermatogenesis in this anole seems to have no influence on the germ cell development strategy employed during sperm development.

  3. Histopathology of pineal germ cell tumors.

    PubMed

    Vasiljevic, A; Szathmari, A; Champier, J; Fèvre-Montange, M; Jouvet, A

    2015-01-01

    Germ cell tumors (GCTs) classically occur in gonads. However, they are the most frequent neoplasms in the pineal region. The pineal location of GCTs may be caused by the neoplastic transformation of a primordial germ cell that has mismigrated. The World Health Organization (WHO) recognizes 5 histological types of intracranial GCTs: germinoma and non-germinomatous tumors including embryonal carcinoma, yolk sac tumor, choriocarcinoma and mature or immature teratoma. Germinomas and teratomas are frequently encountered as pure tumors whereas the other types are mostly part of mixed GCTs. In this situation, the neuropathologist has to be able to identify each component of a GCT. When diagnosis is difficult, use of recent immunohistochemical markers such as OCT(octamer-binding transcription factor)3/4, Glypican 3, SALL(sal-like protein)4 may be required. OCT3/4 is helpful in the diagnosis of germinomas, Glypican 3 in the diagnosis of yolk sac tumors and SALL4 in the diagnosis of the germ cell nature of an intracranial tumor. When the germ cell nature of a pineal tumor is doubtful, the finding of an isochromosome 12p suggests the diagnosis of GCT. The final pathological report should always be confronted with the clinical data, especially the serum or cerebrospinal fluid levels of β-human chorionic gonadotropin (HCG) and alpha-fetoprotein.

  4. PC - Working Places and Conjunctival Germs

    DTIC Science & Technology

    2004-06-01

    evaluation of the following germs and their antibiotic resistance was carried out: staphylococcus aureus , coagulase negative staphylococcus, and...the keyboards, staphylococcus aureus was found, in 57% coagulase negative staphylococcus was found, and in 7% citrobacter freundii was found. In 14

  5. Colleges Put the Squeeze on Germs

    ERIC Educational Resources Information Center

    Sander, Libby

    2008-01-01

    A spirited campaign to promote "hand hygiene" is under way at the University of Central Florida Orlando campus, and the urinal toter, known as UCF 5th Guy, is its front line. Like their counterparts at many other institutions, health officials at Central Florida want students to think about the germs that lurk on their hands. And then…

  6. Germ Smart: Children's Activities in Disease Prevention.

    ERIC Educational Resources Information Center

    Scheer, Judith K.

    This booklet is part of the "Children's Activity Series," a set of four supplemental teaching resources that promote awareness about health, family life, and cultural diversity for children in kindergarten through third grade. Nine activities are included in this booklet to help children be "germ smart" help children in kindergarten through third…

  7. UTILIZING CORN GERM MEAL IN PLYWOOD GLUE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to evaluate the potential of corn germ meal as protein extender in plywood adhesive. This research is part of our laboratory’s efforts to develop new uses for the proteinaceous co-products from cereal and soybean processing. We were previously successful in formulating a s...

  8. Developmental Immunotoxicity

    EPA Science Inventory

    Animal models suggest that the immature immune system is more susceptible to xenobiotics than the fully mature system, and sequelae of developmental immunotoxicant exposure may be persistent well into adulthood. Immune maturation may be delayed by xenobiotic exposure and recover...

  9. Environmentally induced transgenerational epigenetic reprogramming of primordial germ cells and the subsequent germ line.

    PubMed

    Skinner, Michael K; Guerrero-Bosagna, Carlos; Haque, M; Nilsson, Eric; Bhandari, Ramji; McCarrey, John R

    2013-01-01

    A number of environmental factors (e.g. toxicants) have been shown to promote the epigenetic transgenerational inheritance of disease and phenotypic variation. Transgenerational inheritance requires the germline transmission of altered epigenetic information between generations in the absence of direct environmental exposures. The primary periods for epigenetic programming of the germ line are those associated with primordial germ cell development and subsequent fetal germline development. The current study examined the actions of an agricultural fungicide vinclozolin on gestating female (F0 generation) progeny in regards to the primordial germ cell (PGC) epigenetic reprogramming of the F3 generation (i.e. great-grandchildren). The F3 generation germline transcriptome and epigenome (DNA methylation) were altered transgenerationally. Interestingly, disruptions in DNA methylation patterns and altered transcriptomes were distinct between germ cells at the onset of gonadal sex determination at embryonic day 13 (E13) and after cord formation in the testis at embryonic day 16 (E16). A larger number of DNA methylation abnormalities (epimutations) and transcriptional alterations were observed in the E13 germ cells than in the E16 germ cells. These observations indicate that altered transgenerational epigenetic reprogramming and function of the male germline is a component of vinclozolin induced epigenetic transgenerational inheritance of disease. Insights into the molecular control of germline transmitted epigenetic inheritance are provided.

  10. Extraction and demulsification of oil from wheat germ, barley germ, and rice bran using an aqueous enzymatic method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An aqueous enzymatic method was developed to extract oil from wheat germ. The parameters that influence oil yield were investigated, including wheat germ pretreatment, comparison of various industrial enzymes, pH, ratio of wheat germ to water, reaction time and demulsification. Pretreatment at 180ºC...

  11. Dazl Functions in Maintenance of Pluripotency and Genetic and Epigenetic Programs of Differentiation in Mouse Primordial Germ Cells In Vivo and In Vitro

    PubMed Central

    Haston, Kelly M.; Tung, Joyce Y.; Reijo Pera, Renee A.

    2009-01-01

    Background Mammalian germ cells progress through a unique developmental program that encompasses proliferation and migration of the nascent primordial germ cell (PGC) population, reprogramming of nuclear DNA to reset imprinted gene expression, and differentiation of mature gametes. Little is known of the genes that regulate quantitative and qualitative aspects of early mammalian germ cell development both in vivo, and during differentiation of germ cells from mouse embryonic stem cells (mESCs) in vitro. Methodology and Principal Findings We used a transgenic mouse system that enabled isolation of small numbers of Oct4ΔPE:GFP-positive germ cells in vivo, and following differentiation from mESCs in vitro, to uncover quantitate and qualitative phenotypes associated with the disruption of a single translational regulator, Dazl. We demonstrate that disruption of Dazl results in a post-migratory, pre-meiotic reduction in PGC number accompanied by aberrant expression of pluripotency genes and failure to erase and re-establish genomic imprints in isolated male and female PGCs, as well as subsequent defect in progression through meiosis. Moreover, the phenotypes observed in vivo were mirrored by those in vitro, with inability of isolated mutant PGCs to establish pluripotent EG (embryonic germ) cell lines and few residual Oct-4-expressing cells remaining after somatic differentiation of mESCs carrying a Dazl null mutation. Finally, we observed that even within undifferentiated mESCs, a nascent germ cell subpopulation exists that was effectively eliminated with ablation of Dazl. Conclusions and Significance This report establishes the translational regulator Dazl as a component of pluripotency, genetic, and epigenetic programs at multiple time points of germ cell development in vivo and in vitro, and validates use of the ESC system to model and explore germ cell biology. PMID:19468308

  12. Epidermal stem cells: interactions in developmental environments.

    PubMed

    Bickenbach, Jackie R; Grinnell, Katie L

    2004-10-01

    Homeostasis of continuously renewing adult tissues, such as the epidermis of the skin, is maintained by epidermal stem cells (EpiSC), which are a small population of undifferentiated, self-renewing basal keratinocyte cells that produce daughter transit amplifying (TA) cells to make up the majority of the proliferative basal cell population in the epidermis. We have isolated EpiSC from neonatal and adult skin, and shown that these cells can regenerate an epidermis that lasts long term in vitro and in vivo, and that permanently expresses a recombinant gene in the regenerated tissue (Bickenbach and Dunnwald, 2000; Dunnwald et al., 2001). When we injected murine EpiSC into the developing blastocyst environment of the mouse, we found that both neonatal and adult EpiSC retained some ability to participate in the formation of tissues from all three germ layers (Liang and Bickenbach, 2002; Bickenbach and Chinnathambi, 2004; Liang et al., 2004). Although it appears evident that EpiSC act as pluripotent stem cells, how this reprogramming takes place is not understood. EpiSC might directly transdifferentiate into other cell types or they might first dedifferentiate into a more primitive cell type, and then proceed to develop along a cell lineage pathway. To begin to unravel this, we co-cultured EpiSC with embryonic stem (ES) cells, and found that EpiSC could alter their cell lineage protein expression to that of a more primitive cell type. We also placed EpiSC in a wounded environment and found that EpiSC interacted with the mesenchymal cells repopulating the wound bed. Our findings indicate that the population of cells that we isolate as EpiSC has a pluripotent capability. This has led us to postulate a paradigm shift for somatic stem cells. We propose that tissues maintain a sequestered population of uncommitted stem cells that retain a regenerative response which is enhanced when the cells are exposed to developmental or stress influences.

  13. Evolutionary Changes in the Developmental Origin of Hatching Gland Cells in Basal Ray-Finned Fishes.

    PubMed

    Nagasawa, Tatsuki; Kawaguchi, Mari; Yano, Tohru; Sano, Kaori; Okabe, Masataka; Yasumasu, Shigeki

    2016-06-01

    Hatching gland cells (HGCs) originate from different germ layers between frogs and teleosts, although the hatching enzyme genes are orthologous. Teleostei HGCs differentiate in the mesoendodermal cells at the anterior end of the involved hypoblast layer (known as the polster) in late gastrula embryos. Conversely, frog HGCs differentiate in the epidermal cells at the neural plate border in early neurula embryos. To infer the transition in the developmental origin of HGCs, we studied two basal ray-finned fishes, bichir (Polypterus) and sturgeon. We observed expression patterns of their hatching enzyme (HE) and that of three transcription factors that are critical for HGC differentiation: KLF17 is common to both teleosts and frogs; whereas FoxA3 and Pax3 are specific to teleosts and frogs, respectively. We then inferred the transition in the developmental origin of HGCs. In sturgeon, the KLF17, FoxA3, and HE genes were expressed during the tailbud stage in the cell mass at the anterior region of the body axis, a region corresponding to the polster in teleost embryos. In contrast, the bichir was suggested to possess both teleost- and amphibian-type HGCs, i.e. the KLF17 and FoxA3 genes were expressed in the anterior cell mass corresponding to the polster, and the KLF17, Pax3 and HE genes were expressed in dorsal epidermal layer of the head. The change in developmental origin is thought to have occurred during the evolution of basal ray-finned fish, because bichir has two HGCs, while sturgeon only has the teleost-type.

  14. Transcriptomic characterization of C57BL/6 mouse embryonic stem cell differentiation and its modulation by developmental toxicants.

    PubMed

    Gao, Xiugong; Yourick, Jeffrey J; Sprando, Robert L

    2014-01-01

    The Tox21 program calls for transforming toxicology testing from traditional in vivo tests to less expensive and higher throughput in vitro methods. In developmental toxicology, a spectrum of alternative methods including cell line based tests has been developed. In particular, embryonic stem cells (ESCs) have received widespread attention as a promising alternative model for developmental toxicity assessment. Here, we characterized gene expression changes during mouse ESC differentiation and their modulation by developmental toxicants. C57BL/6 ESCs were allowed to differentiate spontaneously and RNA of vehicle controls was collected at 0, 24, 48, 72, 96, 120 and 168 h after embryoid body (EB) formation; RNA of compound-exposed EBs were collected at 24 h. Samples were hybridized to Affymetrix Mouse Gene 2.0 ST Array; using stringent cut-off criteria of Bonferroni-adjusted p<0.05 and fold change >2.0, a total of 1996 genes were found differentially expressed among the vehicle controls at different time points. Gene ontology (GO) analysis showed these regulated genes were mostly involved in differentiation-related processes such as development, morphogenesis, metabolism, cell differentiation, cell organization and biogenesis, embryonic development, and reproduction. Biomarkers of all three germ layers or of their derivative early cell types were identified in the gene list. Principal component analysis (PCA) based on these genes showed that the unexposed vehicle controls appeared in chronological order in the PCA plot, and formed a differentiation track when connected. Cultures exposed to thalidomide, monobutyl phthalate, or valproic acid deviated significantly from the differentiation track, manifesting the capacity of the differentiation track to identify the modulating effects of diverse developmental toxicants. The differentiation track defined in this study may be further exploited as a baseline for developmental toxicity testing, with compounds causing

  15. Transcriptomic Characterization of C57BL/6 Mouse Embryonic Stem Cell Differentiation and Its Modulation by Developmental Toxicants

    PubMed Central

    Gao, Xiugong; Yourick, Jeffrey J.; Sprando, Robert L.

    2014-01-01

    The Tox21 program calls for transforming toxicology testing from traditional in vivo tests to less expensive and higher throughput in vitro methods. In developmental toxicology, a spectrum of alternative methods including cell line based tests has been developed. In particular, embryonic stem cells (ESCs) have received widespread attention as a promising alternative model for developmental toxicity assessment. Here, we characterized gene expression changes during mouse ESC differentiation and their modulation by developmental toxicants. C57BL/6 ESCs were allowed to differentiate spontaneously and RNA of vehicle controls was collected at 0, 24, 48, 72, 96, 120 and 168 h after embryoid body (EB) formation; RNA of compound-exposed EBs were collected at 24 h. Samples were hybridized to Affymetrix Mouse Gene 2.0 ST Array; using stringent cut-off criteria of Bonferroni-adjusted p<0.05 and fold change >2.0, a total of 1996 genes were found differentially expressed among the vehicle controls at different time points. Gene ontology (GO) analysis showed these regulated genes were mostly involved in differentiation-related processes such as development, morphogenesis, metabolism, cell differentiation, cell organization and biogenesis, embryonic development, and reproduction. Biomarkers of all three germ layers or of their derivative early cell types were identified in the gene list. Principal component analysis (PCA) based on these genes showed that the unexposed vehicle controls appeared in chronological order in the PCA plot, and formed a differentiation track when connected. Cultures exposed to thalidomide, monobutyl phthalate, or valproic acid deviated significantly from the differentiation track, manifesting the capacity of the differentiation track to identify the modulating effects of diverse developmental toxicants. The differentiation track defined in this study may be further exploited as a baseline for developmental toxicity testing, with compounds causing

  16. Epigenetic reprogramming in the porcine germ line

    PubMed Central

    2011-01-01

    Background Epigenetic reprogramming is critical for genome regulation during germ line development. Genome-wide demethylation in mouse primordial germ cells (PGC) is a unique reprogramming event essential for erasing epigenetic memory and preventing the transmission of epimutations to the next generation. In addition to DNA demethylation, PGC are subject to a major reprogramming of histone marks, and many of these changes are concurrent with a cell cycle arrest in the G2 phase. There is limited information on how well conserved these events are in mammals. Here we report on the dynamic reprogramming of DNA methylation at CpGs of imprinted loci and DNA repeats, and the global changes in H3K27me3 and H3K9me2 in the developing germ line of the domestic pig. Results Our results show loss of DNA methylation in PGC colonizing the genital ridges. Analysis of IGF2-H19 regulatory region showed a gradual demethylation between E22-E42. In contrast, DMR2 of IGF2R was already demethylated in male PGC by E22. In females, IGF2R demethylation was delayed until E29-31, and was de novo methylated by E42. DNA repeats were gradually demethylated from E25 to E29-31, and became de novo methylated by E42. Analysis of histone marks showed strong H3K27me3 staining in migratory PGC between E15 and E21. In contrast, H3K9me2 signal was low in PGC by E15 and completely erased by E21. Cell cycle analysis of gonadal PGC (E22-31) showed a typical pattern of cycling cells, however, migrating PGC (E17) showed an increased proportion of cells in G2. Conclusions Our study demonstrates that epigenetic reprogramming occurs in pig migratory and gonadal PGC, and establishes the window of time for the occurrence of these events. Reprogramming of histone H3K9me2 and H3K27me3 detected between E15-E21 precedes the dynamic DNA demethylation at imprinted loci and DNA repeats between E22-E42. Our findings demonstrate that major epigenetic reprogramming in the pig germ line follows the overall dynamics shown in

  17. Germ cell cluster organization and oogenesis in the tardigrade Dactylobiotus parthenogeneticus Bertolani, 1982 (Eutardigrada, Murrayidae).

    PubMed

    Poprawa, Izabela; Hyra, Marta; Rost-Roszkowska, Magdalena Maria

    2015-07-01

    Germ cell cluster organization and the process of oogenesis in Dactylobiotus parthenogeneticus have been described using transmission electron microscopy and light microscopy. The reproductive system of D. parthenogeneticus is composed of a single, sac-like, meroistic ovary and a single oviduct that opens into the cloaca. Two zones can be distinguished in the ovary: a small germarium that is filled with oogonia and a vitellarium that is filled with germ cell clusters. The germ cell cluster, which has the form of a modified rosette, consists of eight cells that are interconnected by stable cytoplasmic bridges. The cell that has the highest number of stable cytoplasmic bridges (four bridges) finally develops into the oocyte, while the remaining cells become trophocytes. Vitellogenesis of a mixed type occurs in D. parthenogeneticus. One part of the yolk material is produced inside the oocyte (autosynthesis), while the second part is synthesized in the trophocytes and transported to the oocyte through the cytoplasmic bridges. The eggs are covered with two envelopes: a thin vitelline envelope and a three-layered chorion. The surface of the chorion forms small conical processes, the shape of which is characteristic for the species that was examined. In our paper, we present the first report on the rosette type of germ cell clusters in Parachela.

  18. Molecular biology of testicular germ cell tumors.

    PubMed

    Gonzalez-Exposito, R; Merino, M; Aguayo, C

    2016-06-01

    Testicular germ cell tumors (TGCTs) are the most common solid tumors in young adult men. They constitute a unique pathology because of their embryonic and germ origin and their special behavior. Genetic predisposition, environmental factors involved in their development and genetic aberrations have been under study in many works throughout the last years trying to explain the susceptibility and the transformation mechanism of TGCTs. Despite the high rate of cure in this type of tumors because its particular sensitivity to cisplatin, there are tumors resistant to chemotherapy for which it is needed to find new therapies. In the present work, it has been carried out a literature review on the most important molecular aspects involved in the onset and development of such tumors, as well as a review of the major developments regarding prognostic factors, new prognostic biomarkers and the possibility of new targeted therapies.

  19. Combination Chemotherapy in Treating Young Patients With Recurrent or Resistant Malignant Germ Cell Tumors

    ClinicalTrials.gov

    2017-02-07

    Childhood Extracranial Germ Cell Tumor; Childhood Extragonadal Germ Cell Tumor; Childhood Malignant Ovarian Germ Cell Tumor; Childhood Malignant Testicular Germ Cell Tumor; Ovarian Choriocarcinoma; Ovarian Embryonal Carcinoma; Ovarian Yolk Sac Tumor; Recurrent Childhood Malignant Germ Cell Tumor; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Ovarian Germ Cell Tumor; Testicular Choriocarcinoma; Testicular Choriocarcinoma and Embryonal Carcinoma; Testicular Choriocarcinoma and Yolk Sac Tumor; Testicular Embryonal Carcinoma; Testicular Embryonal Carcinoma and Yolk Sac Tumor; Testicular Yolk Sac Tumor

  20. The slice culture method for following development of tooth germs in explant culture.

    PubMed

    Alfaqeeh, Sarah A; Tucker, Abigail S

    2013-11-13

    Explant culture allows manipulation of developing organs at specific time points and is therefore an important method for the developmental biologist. For many organs it is difficult to access developing tissue to allow monitoring during ex vivo culture. The slice culture method allows access to tissue so that morphogenetic movements can be followed and specific cell populations can be targeted for manipulation or lineage tracing. In this paper we describe a method of slice culture that has been very successful for culture of tooth germs in a range of species. The method provides excellent access to the tooth germs, which develop at a similar rate to that observed in vivo, surrounded by the other jaw tissues. This allows tissue interactions between the tooth and surrounding tissue to be monitored. Although this paper concentrates on tooth germs, the same protocol can be applied to follow development of a number of other organs, such as salivary glands, Meckel's cartilage, nasal glands, tongue, and ear.

  1. Life cycle of the mammalian germ cell: implication for spontaneous mutation frequencies.

    PubMed

    Lewis, S E

    1999-04-01

    A brief history of the developmental life cycle of the mammalian germ cell, from fertilization to gametogenesis in the mature gonad, is presented. The differences between gametogenesis in the mature gonad of males and females are also described with regard to properties that may affect their susceptibilities to mutation. It is emphasized that any historical control background rate of necessity will include mutations that occur in germinal tissue at all stages of development and differentiation, although it is not always possible to determine at what stage of germline development a spontaneous mutation has occurred. Studies of induced mutations suggest that the impact on the molecular level and the distribution of mutations among the F1 and F2 progeny may be partly determined by the stage and sex of germ cells in which spontaneous mutations occur. In summary, historical control rates should only be considered the sum total of mutations that occur during the entire life of the individual and cannot represent the control values of any individual germ cell stage. Nonetheless, it is certainly important and valid to use historical control data for calculating human risk, because the primary use of the estimation of mutant frequencies is to access the potential impact of agents in increasing the genetic load in the human population.

  2. Proteome analysis of chicken embryonic gonads: identification of major proteins from cultured gonadal primordial germ cells.

    PubMed

    Han, Beom Ku; Kim, Jin Nam; Shin, Ji Hye; Kim, Jin-Kyoo; Jo, Do Hyun; Kim, Heebal; Han, Jae Yong

    2005-12-01

    The domestic chicken (Gallus gallus) is an important model for research in developmental biology because its embryonic development occurs in ovo. To examine the mechanism of embryonic germ cell development, we constructed proteome map of gonadal primordial germ cells (gPGCs) from chicken embryonic gonads. Embryonic gonads were collected from 500 embryos at 6 days of incubation, and the gPGCs were cultured in vitro until colony formed. After 7-10 days in culture, gPGC colonies were separated from gonadal stroma cells (GSCs). Soluble extracts of cultured gPGCs were then fractionated by two-dimensional gel electrophoresis (pH 4-7). A number of protein spots, including those that displayed significant expression levels, were then identified by use of matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry and LC-MS/MS. Of the 89 gPGC spots examined, 50 yielded mass spectra that matched avian proteins found in on-line databases. Proteome map of this type will serve as an important reference for germ cell biology and transgenic research.

  3. Dnd knockout ablates germ cells and demonstrates germ cell independent sex differentiation in Atlantic salmon.

    PubMed

    Wargelius, Anna; Leininger, Sven; Skaftnesmo, Kai Ove; Kleppe, Lene; Andersson, Eva; Taranger, Geir Lasse; Schulz, Rüdiger W; Edvardsen, Rolf B

    2016-02-18

    Introgression of farmed salmon escapees into wild stocks is a major threat to the genetic integrity of wild populations. Using germ cell-free fish in aquaculture may mitigate this problem. Our study investigated whether it is possible to produce germ cell-free salmon in F0 by using CRISPR-Cas9 to knock out dnd, a factor required for germ cell survival in vertebrates. To avoid studying mosaic animals, sgRNA targeting alb was simultaneously used as a visual tracer since the phenotype of alb KO is complete loss of pigmentation. Induced mutations for the tracer (alb) and the target (dnd) genes were highly correlated and produced germ cell-less fish lacking pigmentation, underlining the suitability of alb KO to serve as tracer for targeted double allelic mutations in F0 animals in species with prohibitively long generation times. This is also the first report describing dnd knockout in any fish species. Analyzing gene expression and histology of dnd KO fish revealed that sex differentiation of the somatic compartment does not depend on the presence of germ cells. However, the organization of the ovarian somatic compartment seems compromised in mutant fish.

  4. Dnd knockout ablates germ cells and demonstrates germ cell independent sex differentiation in Atlantic salmon

    PubMed Central

    Wargelius, Anna; Leininger, Sven; Skaftnesmo, Kai Ove; Kleppe, Lene; Andersson, Eva; Taranger, Geir Lasse; Schulz, Rüdiger W; Edvardsen, Rolf B

    2016-01-01

    Introgression of farmed salmon escapees into wild stocks is a major threat to the genetic integrity of wild populations. Using germ cell-free fish in aquaculture may mitigate this problem. Our study investigated whether it is possible to produce germ cell-free salmon in F0 by using CRISPR-Cas9 to knock out dnd, a factor required for germ cell survival in vertebrates. To avoid studying mosaic animals, sgRNA targeting alb was simultaneously used as a visual tracer since the phenotype of alb KO is complete loss of pigmentation. Induced mutations for the tracer (alb) and the target (dnd) genes were highly correlated and produced germ cell-less fish lacking pigmentation, underlining the suitability of alb KO to serve as tracer for targeted double allelic mutations in F0 animals in species with prohibitively long generation times. This is also the first report describing dnd knockout in any fish species. Analyzing gene expression and histology of dnd KO fish revealed that sex differentiation of the somatic compartment does not depend on the presence of germ cells. However, the organization of the ovarian somatic compartment seems compromised in mutant fish. PMID:26888627

  5. A set of genes critical to development is epigenetically poised in mouse germ cells from fetal stages through completion of meiosis.

    PubMed

    Lesch, Bluma J; Dokshin, Gregoriy A; Young, Richard A; McCarrey, John R; Page, David C

    2013-10-01

    In multicellular organisms, germ cells carry the hereditary material from one generation to the next. Developing germ cells are unipotent gamete precursors, and mature gametes are highly differentiated, specialized cells. However, upon gamete union at fertilization, their genomes drive a totipotent program, giving rise to a complete embryo as well as extraembryonic tissues. The biochemical basis for the ability to transition from differentiated cell to totipotent zygote is unknown. Here we report that a set of developmentally critical genes is maintained in an epigenetically poised (bivalent) state from embryonic stages through the end of meiosis. We performed ChIP-seq and RNA-seq analysis on flow-sorted male and female germ cells during embryogenesis at three time points surrounding sexual differentiation and female meiotic initiation, and then extended our analysis to meiotic and postmeiotic male germ cells. We identified a set of genes that is highly enriched for regulators of differentiation and retains a poised state (high H3K4me3, high H3K27me3, and lack of expression) across sexes and across developmental stages, including in haploid postmeiotic cells. The existence of such a state in embryonic stem cells has been well described. We now demonstrate that a subset of genes is maintained in a poised state in the germ line from the initiation of sexual differentiation during fetal development and into postmeiotic stages. We propose that the epigenetically poised condition of these developmental genes is a fundamental property of the mammalian germ-line nucleus, allowing differentiated gametes to unleash a totipotent program following fertilization.

  6. Transgenic mice in developmental toxicology

    SciTech Connect

    Woychik, R.P.

    1992-01-01

    Advances in molecular biology and embryology are being utilized for the generation of transgenic mice, animals that contain specific additions, deletions, or modifications of genes or sequences in their DNA. Mouse embryonic stem cells and homologous recombination procedures have made it possible to target specific DNA structural alterations to highly localized region in the host chromosomes. The majority of the DNA structural rearrangements in transgenic mice can be passed through the germ line and used to establish new genetic traits in the carrier animals. Since the use of transgenic mice is having such an enormous impact on so many areas of mammalian biological research, including developmental toxicology, the objective of this review is to briefly describe the fundamental methodologies for generating transgenic mice and to describe one particular application that has direct relevance to the field of genetic toxicology.

  7. Transgenic mice in developmental toxicology

    SciTech Connect

    Woychik, R.P.

    1992-12-31

    Advances in molecular biology and embryology are being utilized for the generation of transgenic mice, animals that contain specific additions, deletions, or modifications of genes or sequences in their DNA. Mouse embryonic stem cells and homologous recombination procedures have made it possible to target specific DNA structural alterations to highly localized region in the host chromosomes. The majority of the DNA structural rearrangements in transgenic mice can be passed through the germ line and used to establish new genetic traits in the carrier animals. Since the use of transgenic mice is having such an enormous impact on so many areas of mammalian biological research, including developmental toxicology, the objective of this review is to briefly describe the fundamental methodologies for generating transgenic mice and to describe one particular application that has direct relevance to the field of genetic toxicology.

  8. Regulation of germ line stem cell homeostasis

    PubMed Central

    Garcia, T.X.; Hofmann, M.C.

    2015-01-01

    Mammalian spermatogenesis is a complex process in which spermatogonial stem cells of the testis (SSCs) develop to ultimately form spermatozoa. In the seminiferous epithelium, SSCs self-renew to maintain the pool of stem cells throughout life, or they differentiate to generate a large number of germ cells. A balance between SSC self-renewal and differentiation is therefore essential to maintain normal spermatogenesis and fertility. Stem cell homeostasis is tightly regulated by signals from the surrounding microenvironment, or SSC niche. By physically supporting the SSCs and providing them with these extrinsic molecules, the Sertoli cell is the main component of the niche. Earlier studies have demonstrated that GDNF and CYP26B1, produced by Sertoli cells, are crucial for self-renewal of the SSC pool and maintenance of the undifferentiated state. Down-regulating the production of these molecules is therefore equally important to allow germ cell differentiation. We propose that NOTCH signaling in Sertoli cells is a crucial regulator of germ cell fate by counteracting these stimulatory factors to maintain stem cell homeostasis. Dysregulation of this essential niche component can lead by itself to sterility or facilitate testicular cancer development.

  9. Cancer testis antigen expression in testicular germ cell tumorigenesis.

    PubMed

    Bode, Peter K; Thielken, Andrea; Brandt, Simone; Barghorn, André; Lohe, Bernd; Knuth, Alexander; Moch, Holger

    2014-06-01

    Cancer testis antigens are encoded by germ line-associated genes that are present in normal germ cells of testis and ovary but not in differentiated tissues. Their expression in various human cancer types has been interpreted as 're-expression' or as intratumoral progenitor cell signature. Cancer testis antigen expression patterns have not yet been studied in germ cell tumorigenesis with specific emphasis on intratubular germ cell neoplasia unclassified as a precursor lesion for testicular germ cell tumors. Immunohistochemistry was used to study MAGEA3, MAGEA4, MAGEC1, GAGE1 and CTAG1B expression in 325 primary testicular germ cell tumors, including 94 mixed germ cell tumors. Seminomatous and non-seminomatous components were separately arranged and evaluated on tissue microarrays. Spermatogonia in the normal testis were positive, whereas intratubular germ cell neoplasia unclassified was negative for all five CT antigens. Cancer testis antigen expression was only found in 3% (CTAG1B), 10% (GAGE1, MAGEA4), 33% (MAGEA3) and 40% (MAGEC1) of classic seminoma but not in non-seminomatous testicular germ cell tumors. In contrast, all spermatocytic seminomas were positive for cancer testis antigens. These data are consistent with a different cell origin in spermatocytic seminoma compared with classic seminoma and support a progression model with loss of cancer testis antigens in early tumorigenesis of testicular germ cell tumors and later re-expression in a subset of seminomas.

  10. Developmental Dependencies.

    ERIC Educational Resources Information Center

    Hochhauser, Mark

    Researchers have long focused upon the problems of student/adolescent drug use; however, such a limited perspective may actually provide inaccurate information as to the actual nature and extent of total drug use. It may be more appropriate to emphasize a lifespan developmental perspective regarding drug abuse behaviors, insofar as drug use must…

  11. Developmental dyscalculia.

    PubMed

    Shalev, Ruth S

    2004-10-01

    Developmental dyscalculia is a specific learning disability affecting the normal acquisition of arithmetic skills. Genetic, neurobiologic, and epidemiologic evidence indicates that dyscalculia, like other learning disabilities, is a brain-based disorder. However, poor teaching and environmental deprivation have also been implicated in its etiology. Because the neural network of both hemispheres comprises the substrate of normal arithmetic skills, dyscalculia can result from dysfunction of either hemisphere, although the left parietotemporal area is of particular significance. The prevalence of developmental dyscalculia is 5 to 6% in the school-aged population and is as common in girls as in boys. Dyscalculia can occur as a consequence of prematurity and low birthweight and is frequently encountered in a variety of neurologic disorders, such as attention-deficit hyperactivity disorder (ADHD), developmental language disorder, epilepsy, and fragile X syndrome. Developmental dyscalculia has proven to be a persisting learning disability, at least for the short term, in about half of affected preteen pupils. Educational interventions for dyscalculia range from rote learning of arithmetic facts to developing strategies for solving arithmetic exercises. The long-term prognosis of dyscalculia and the role of remediation in its outcome are yet to be determined.

  12. Standard-Dose Combination Chemotherapy or High-Dose Combination Chemotherapy and Stem Cell Transplant in Treating Patients With Relapsed or Refractory Germ Cell Tumors

    ClinicalTrials.gov

    2017-03-06

    Germ Cell Tumor; Teratoma; Choriocarcinoma; Germinoma; Mixed Germ Cell Tumor; Yolk Sac Tumor; Childhood Teratoma; Malignant Germ Cell Neoplasm; Extragonadal Seminoma; Non-seminomatous Germ Cell Tumor; Seminoma

  13. A process for the aqueous enzymatic extraction of corn oil from dry-milled corn germ and enzymatic wet milled corn germ (E-Germ)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previously, we reported an aqueous enzymatic oil extraction process that achieved oil yields of 80-90% using corn germ from a commercial corn wet mill. Three commercial cellulases were reported to result in similar oil yields when wet milles corn germ was used as a feedstock in this process. When ...

  14. Molecular Characteristics of Malignant Ovarian Germ Cell Tumors and Comparison With Testicular Counterparts: Implications for Pathogenesis

    PubMed Central

    Kraggerud, Sigrid Marie; Hoei-Hansen, Christina E.; Alagaratnam, Sharmini; Skotheim, Rolf I.; Abeler, Vera M.

    2013-01-01

    This review focuses on the molecular characteristics and development of rare malignant ovarian germ cell tumors (mOGCTs). We provide an overview of the genomic aberrations assessed by ploidy, cytogenetic banding, and comparative genomic hybridization. We summarize and discuss the transcriptome profiles of mRNA and microRNA (miRNA), and biomarkers (DNA methylation, gene mutation, individual protein expression) for each mOGCT histological subtype. Parallels between the origin of mOGCT and their male counterpart testicular GCT (TGCT) are discussed from the perspective of germ cell development, endocrinological influences, and pathogenesis, as is the GCT origin in patients with disorders of sex development. Integrated molecular profiles of the 3 main histological subtypes, dysgerminoma (DG), yolk sac tumor (YST), and immature teratoma (IT), are presented. DGs show genomic aberrations comparable to TGCT. In contrast, the genome profiles of YST and IT are different both from each other and from DG/TGCT. Differences between DG and YST are underlined by their miRNA/mRNA expression patterns, suggesting preferential involvement of the WNT/β-catenin and TGF-β/bone morphogenetic protein signaling pathways among YSTs. Characteristic protein expression patterns are observed in DG, YST and IT. We propose that mOGCT develop through different developmental pathways, including one that is likely shared with TGCT and involves insufficient sexual differentiation of the germ cell niche. The molecular features of the mOGCTs underline their similarity to pluripotent precursor cells (primordial germ cells, PGCs) and other stem cells. This similarity combined with the process of ovary development, explain why mOGCTs present so early in life, and with greater histological complexity, than most somatic solid tumors. PMID:23575763

  15. Germ cell dynamics in the testis of the postnatal common marmoset monkey (Callithrix jacchus).

    PubMed

    Albert, S; Ehmcke, J; Wistuba, J; Eildermann, K; Behr, R; Schlatt, S; Gromoll, J

    2010-11-01

    The seminiferous epithelium in the nonhuman primate Callithrix jacchus is similarly organized to man. This monkey has therefore been used as a preclinical model for spermatogenesis and testicular stem cell physiology. However, little is known about the developmental dynamics of germ cells in the postnatal primate testis. In this study, we analyzed testes of newborn, 8-week-old, and adult marmosets employing immunohistochemistry using pluripotent stem cell and germ cell markers DDX4 (VASA), POU5F1 (OCT3/4), and TFAP2C (AP-2γ). Stereological and morphometric techniques were applied for quantitative analysis of germ cell populations and testicular histological changes. Quantitative RT-PCR (qRT-PCR) of testicular mRNA was applied using 16 marker genes establishing the corresponding profiles during postnatal testicular development. Testis size increased during the first 8 weeks of life with the main driver being longitudinal outgrowth of seminiferous cords. The number of DDX4-positive cells per testis doubled between birth and 8 weeks of age whereas TFAP2C- and POU5F1-positive cells remained unchanged. This increase in DDX4-expressing cells indicates dynamic growth of the differentiated A-spermatogonial population. The presence of cells expressing POU5F1 and TFAP2C after 8 weeks reveals the persistence of less differentiated germ cells. The mRNA and protein profiles determined by qRT-PCR and western blot in newborn, 8-week-old, and adult marmosets corroborated the immunohistochemical findings. In conclusion, we demonstrated the presence of distinct spermatogonial subpopulations in the primate testis exhibiting different dynamics during early testicular development. Our study demonstrates the suitability of the marmoset testis as a model for human testicular development.

  16. Lin28a regulates germ cell pool size and fertility

    PubMed Central

    Shinoda, Gen; de Soysa, T. Yvanka; Seligson, Marc T.; Yabuuchi, Akiko; Fujiwara, Yuko; Huang, Pei Yi; Hagan, John P.; Gregory, Richard I.; Moss, Eric G.; Daley, George Q.

    2013-01-01

    Overexpression of LIN28A is associated with human germ cell tumors and promotes primordial germ cell (PGC) development from embryonic stem cells in vitro and in chimeric mice. Knockdown of Lin28a inhibits PGC development in vitro, but how constitutional Lin28a deficiency affects the mammalian reproductive system in vivo remains unknown. Here, we generated Lin28a knockout (KO) mice and found that Lin28a deficiency compromises the size of the germ cell pool in both males and females by affecting PGC proliferation during embryogenesis. Interestingly however, in Lin28a KO males the germ cell pool partially recovers during postnatal expansion, while fertility remains impaired in both males and females mated to wild type mice. Embryonic overexpression of let-7, a microRNA negatively regulated by Lin28a, reduces the germ cell pool, corroborating the role of the Lin28a/let-7 axis in regulating the germ lineage. PMID:23378032

  17. Regulation of germ cell meiosis in the fetal ovary.

    PubMed

    Spiller, Cassy M; Bowles, Josephine; Koopman, Peter

    2012-01-01

    Fertility depends on correct regulation of meiosis, the special form of cell division that gives rise to haploid gametes. In female mammals, germ cells enter meiosis during fetal ovarian development, while germ cells in males avoid entering meiosis until puberty. Decades of research have shown that meiotic entry, and germ cell sex determination, are not initiated intrinsically within the germ cells. Instead, meiosis is induced by signals produced by the surrounding somatic cells. More recently, retinoic acid (RA), the active derivative of vitamin A, has been implicated in meiotic induction during fetal XX and postnatal XY germ cell development. Evidence for an intricate system of RA synthesis and degradation in the fetal ovary and testis has emerged, explaining past observations of infertility in vitamin A-deficient rodents. Here we review how meiosis is triggered in fetal ovarian germ cells, paying special attention to the role of RA in this process.

  18. Developmental biology of the leech Helobdella

    PubMed Central

    WEISBLAT, DAVID A.; KUO, DIAN-HAN

    2015-01-01

    Glossiphoniid leeches of the genus Helobdella provide experimentally tractable models for studies in evolutionary developmental biology (Evo-Devo). Here, after a brief rationale, we will summarize our current understanding of Helobdella development and highlight the near term prospects for future investigations, with respect to the issues of: D quadrant specification; the transition from spiral to bilaterally symmetric cleavage; segmentation, and the connections between segmental and non-segmental tissues; modifications of BMP signaling in dorsoventral patterning and the O-P equivalence group; germ line specification and genome rearrangements. The goal of this contribution is to serve as a summary of, and guide to, published work. PMID:25690960

  19. Delayed fertilization of anuran amphibian (Xenopus) eggs leads to reduced numbers of primordial germ cells

    NASA Technical Reports Server (NTRS)

    Wakahara, M.; Neff, A. W.; Malacinski, G. M.

    1984-01-01

    Several media were tested for the extent to which they promoted high fertilization efficiencies in ovulated, stripped Xenopus eggs. One medium was selected for maintaining eggs in a 'delayed fertilization' (DelF) condition. DelF eggs displayed several unusual characteristics, including shift of the center of gravity, prominent sperm entrance site, and occasional polyspermy. The frequency of normal pattern formation varied according to the length of time eggs were maintained in the DelF condition. Various developmental abnormalities were observed during gastrulation, neurulation, and organogenesis. Most abnormalities appeared, however, to be related to morphogenesis of the endoderm. Primordial germ cell (PGC) development was examined in DelF eggs which displayed normal external morphological features at the swimming tadpole stage. PGC counts were usually normal in short-duration (eg, 5 hr) DelF eggs, but frequently substantially reduced or completely diminished in longer-duration (eg, 25h) tadpoles. Six spawnings were compared and shown to exhibit considerable variability in fertility, morphogenesis, and PGC development. Yolk platelet shifts and developmental parameters were examined in two additional spawnings. The subcortical cytoplasm in which the germ plasm is normally localized appeared to be disrupted in longer duration DelF eggs. That observation may account for low PGC counts in DelF tadpoles.

  20. Delayed fertilization of anuran amphibian (Xenopus) eggs leads to reduced numbers of primordial germ cells.

    PubMed

    Wakahara, M; Neff, A W; Malacinski, G M

    1984-01-01

    Several media were tested for the extent to which they promoted high fertilization efficiencies in ovulated, stripped Xenopus eggs. One medium was selected for maintaining eggs in a 'delayed fertilization' (DelF) condition. DelF eggs displayed several unusual characteristics, including shift of the center of gravity, prominent sperm entrance site, and occasional polyspermy. The frequency of normal pattern formation varied according to the length of time eggs were maintained in the DelF condition. Various developmental abnormalities were observed during gastrulation, neurulation, and organogenesis. Most abnormalities appeared, however, to be related to morphogenesis of the endoderm. Primordial germ cell (PGC) development was examined in DelF eggs which displayed normal external morphological features at the swimming tadpole stage. PGC counts were usually normal in short-duration (eg, 5 hr) DelF eggs, but frequently substantially reduced or completely diminished in longer-duration (eg, 25h) tadpoles. Six spawnings were compared and shown to exhibit considerable variability in fertility, morphogenesis, and PGC development. Yolk platelet shifts and developmental parameters were examined in two additional spawnings. The subcortical cytoplasm in which the germ plasm is normally localized appeared to be disrupted in longer duration DelF eggs. That observation may account for low PGC counts in DelF tadpoles.

  1. Germ tube-specific antigens of Candida albicans cell walls

    SciTech Connect

    Sundstrom, P.R.

    1986-01-01

    Studies were performed to characterize the surface differences between blastospores and germ tubes of the pathogenic, dimorphic yeast, Candida albicans, and to identify components of yeast cells responsible for these differences. Investigation of surfaces differences of the two growth forms was facilitated by the production of rabbit antiserum prepared against Formalin-treated yeast possessing germ tubes. To prepare antiserum specific for germ tubes, this serum was adsorbed with stationary phase blastospores. Whereas the unadsorbed antiserum reacted with both blastospore and germ tube forms by immunofluorescence and Enzyme-Linked Immunosorbent Assay, the adsorbed antiserum did not react with blastospores but detected germ tube-specific antigens in hyphal forms. The differences between blastospores and germ tubes of Candida albicans, were further studied by comparing enzymatic digests of cell walls of both growth forms in radiolabeled organisms. Organisms were labeled either on the surface with /sup 125/I, or metabolically with (/sup 35/S) methionine or (/sup 3/H) mannose. Three-surface-located components (as shown by antibody adsorption and elution experiments) were precipitated from Zymolase digests. All three components were mannoproteins as shown by their ability to bind Concanavalin A, and to be labeled in protein labeling procedures, and two of these (200,000 and 155,000 molecular weight) were germ tube specific, as shown by their ability to be precipitated by germ tube-specific antiserum. Monoclonal antibodies were prepared to C. albicans, using blastospores bearing germ tubes as immunogen.

  2. Germ-line enhancement of humans and non-humans.

    PubMed

    Loftis, J Robert

    2005-03-01

    The current difference in attitude toward germ-line enhancement in humans and nonhumans is unjustified. Society should be more cautious in modifying the genes of nonhumans and more bold in thinking about modifying our own genome. I identify four classes of arguments pertaining to germ-line enhancement: safety arguments, justice arguments, trust arguments, and naturalness arguments. The first three types are compelling, but do not distinguish between human and nonhuman cases. The final class of argument would justify a distinction between human and nonhuman germ-line enhancement; however, this type of argument fails and, therefore, the discrepancy in attitude toward human and nonhuman germ-line enhancement is unjustified.

  3. Eco-Evo-Devo: developmental symbiosis and developmental plasticity as evolutionary agents.

    PubMed

    Gilbert, Scott F; Bosch, Thomas C G; Ledón-Rettig, Cristina

    2015-10-01

    The integration of research from developmental biology and ecology into evolutionary theory has given rise to a relatively new field, ecological evolutionary developmental biology (Eco-Evo-Devo). This field integrates and organizes concepts such as developmental symbiosis, developmental plasticity, genetic accommodation, extragenic inheritance and niche construction. This Review highlights the roles that developmental symbiosis and developmental plasticity have in evolution. Developmental symbiosis can generate particular organs, can produce selectable genetic variation for the entire animal, can provide mechanisms for reproductive isolation, and may have facilitated evolutionary transitions. Developmental plasticity is crucial for generating novel phenotypes, facilitating evolutionary transitions and altered ecosystem dynamics, and promoting adaptive variation through genetic accommodation and niche construction. In emphasizing such non-genomic mechanisms of selectable and heritable variation, Eco-Evo-Devo presents a new layer of evolutionary synthesis.

  4. Human primordial germ cell-derived progenitors give rise to neurons and glia in vivo

    SciTech Connect

    Teng, Yincheng; Chen, Bin; Tao, Minfang

    2009-12-18

    We derived a cell population from cultured human primordial germ cells from early human embryos. The derivates, termed embryoid body-derived (EBD) cells, displayed an extensive capacity for proliferation and expressed a panel of markers in all three germ layers. Interestingly, EBD cells were also positive for markers of neural stem/progenitor cells, such as nestin and glial fibrillary acidic protein. When these cells were transplanted into the brain cavities of fetal sheep and postnatal NOD-SCID mice or nerve-degenerated tibialis anterior muscles, they readily gave rise to neurons or glial cells. To our knowledge, our data are the first to demonstrate that EBD cells can undergo further neurogenesis under suitable environments in vivo. Hence, with the abilities of extensive expansion, self-renewal, and differentiation, EBD cells may provide a useful donor source for neural stem/progenitor cells to be used in cell-replacement therapies for diseases of the nervous system.

  5. Topology of the germ plasm and development of primordial germ cells in inverted amphibian eggs

    NASA Technical Reports Server (NTRS)

    Wakahara, M.; Neff, A. W.; Malacinski, G. M.

    1984-01-01

    Inverted Xenopus eggs have reduced numbers of primordial germ cells (PGCs). The extent of the reduction varies from spawning to spawning. Histologic examination revealed that PGC counts were lowest in inverted eggs which displayed the greatest amount of shift in the vegetal mass of large yolk platelets, although the germ plasm itself always remained localized in the egg's original vegetal hemisphere. Even at blastulation the germ plasm continued to be localized in the egg's original vegetal hemisphere. In many cases, however, it was confined to the periphery of the embryo, which probably accounts for the reduced PGC number in some tadpoles. In other cases it may have been dispersed and therefore not detectable in histologic analyses. Although the altered site of involution in inverted embryos did not influence PGC development, subsequent cell movement patterns apparently did. Those embryos which displayed the largest degree of pattern reversal at the tail-bud stage also exhibited the most extreme reduction in PGC numbers. A brief cold shock (4 degrees C, 10 min) prior to first cleavage leads to a further reduction in PGC numbers in inverted embryos, probably as a result of the displacement of the germ plasm away from its original vegetal pole location.

  6. Intracranial germ cell tumor mimicking anorexia nervosa.

    PubMed

    Andreu Martínez, F J; Martínez Mateu, J M

    2006-12-01

    We report on a case of a 23 year-old female diagnosed as having a germ-cell tumour located in the sellar region. The patient referred anorexia, psychic disorders, weight loss of 15 kilograms and secondary amenorrhea during the previous three years. This is the reason why the patient was diagnosed as having anorexia nervosa. Subsequently, the patient presented some endocrine dysfunction. MRI revealed the existence of a lesion located in suprasellar and hypothalamic regions. This case shows that the presence of intracranial tumours next to the hypothalamus must be borne in mind as a rare but real possibility in cases of anorexia nervosa, specially in those non-typical cases.

  7. Molecular mechanisms of male germ cell differentiation.

    PubMed

    Hecht, N B

    1998-07-01

    During spermatogenesis, diploid stem cells differentiate, undergo meiosis, and transform into haploid spermatozoa. As this precisely timed series of events proceeds, chromosomal ploidy is reduced and the nucleosomes of the chromatin are replaced by a transcriptionally quiescent protamine-containing nucleus. The premature termination of transcription during the haploid phase of spermatogenesis necessitates an especially prominent role for posttranscriptional regulation in the temporal and spatial expression of many testis-specific proteins and isozymes. In this review article, discussion will focus on novel mechanisms regulating gene expression in mammalian male germ cells from genome to protein.

  8. Developmental dyscalculia.

    PubMed

    Price, Gavin R; Ansari, Daniel

    2013-01-01

    Developmental dyscalculia (DD) is a learning disorder affecting the acquisition of school level arithmetic skills present in approximately 3-6% of the population. At the behavioral level DD is characterized by poor retrieval of arithmetic facts from memory, the use of immature calculation procedures and counting strategies, and the atypical representation and processing of numerical magnitude. At the neural level emerging evidence suggests DD is associated with atypical structure and function in brain regions associated with the representation of numerical magnitude. The current state of knowledge points to a core deficit in numerical magnitude representation in DD, but further work is required to elucidate causal mechanisms underlying the disorder.

  9. The Formation of Germ Cell for Organizational Learning

    ERIC Educational Resources Information Center

    Ivaldi, Silvia; Scaratti, Giuseppe

    2016-01-01

    Purpose: The aim of the paper is to analyze the process of "germ cell" formation by framing it as an opportunity for promoting organizational learning and transformation. The paper aims to specifically answer two research questions: Why does the "germ cell" have a pivotal role in organization's transformation? and Which…

  10. Is Tobacco Smoke a Germ-Cell Mutagen?

    EPA Science Inventory

    Although no international organization exists to declare whether an agent is a germ-cell mutagen, tobacco smoke may be a human germ-cell mutagen. In the mouse, tobacco smoke induces a significant increase in the mutation frequency at an expanded simple tandem repeat (ESTR) locus....

  11. Cellular Mechanics of Germ Band Retraction in Drosophila

    PubMed Central

    Lynch, Holley E.; Crews, Sarah M.; Rosenthal, Brett; Kim, Elliott; Gish, Robert; Echiverri, Karl; Hutson, M. Shane

    2013-01-01

    Germ band retraction involves a dramatic rearrangement of the tissues on the surface of the Drosophila embryo. As germ band retraction commences, one tissue, the germ band, wraps around another, the amnioserosa. Through retraction the two tissues move cohesively as the highly elongated cells of the amnioserosa contract and the germ band moves so it is only on one side of the embryo. To understand the mechanical drivers of this process, we designed a series of laser ablations that suggest a mechanical role for the amnioserosa. First, we find that during mid retraction, segments in the curve of the germ band are under anisotropic tension. The largest tensions are in the direction in which the amnioserosa contracts. Second, ablating one lateral flank of the amnioserosa reduces the observed force anisotropy and leads to retraction failures. The other intact flank of amnioserosa is insufficient to drive retraction, but can support some germ band cell elongation and is thus not a full phenocopy of ush mutants. Another ablation-induced failure in retraction can phenocopy mys mutants, and does so by targeting amnioserosa cells in the same region where the mutant fails to adhere to the germ band. We conclude that the amnioserosa must play a key, but assistive, mechanical role that aids uncurling of the germ band. PMID:24135149

  12. Cellular mechanics of germ band retraction in Drosophila.

    PubMed

    Lynch, Holley E; Crews, Sarah M; Rosenthal, Brett; Kim, Elliott; Gish, Robert; Echiverri, Karl; Hutson, M Shane

    2013-12-15

    Germ band retraction involves a dramatic rearrangement of the tissues on the surface of the Drosophila embryo. As germ band retraction commences, one tissue, the germ band, wraps around another, the amnioserosa. Through retraction the two tissues move cohesively as the highly elongated cells of the amnioserosa contract and the germ band moves so it is only on one side of the embryo. To understand the mechanical drivers of this process, we designed a series of laser ablations that suggest a mechanical role for the amnioserosa. First, we find that during mid retraction, segments in the curve of the germ band are under anisotropic tension. The largest tensions are in the direction in which the amnioserosa contracts. Second, ablating one lateral flank of the amnioserosa reduces the observed force anisotropy and leads to retraction failures. The other intact flank of amnioserosa is insufficient to drive retraction, but can support some germ band cell elongation and is thus not a full phenocopy of ush mutants. Another ablation-induced failure in retraction can phenocopy mys mutants, and does so by targeting amnioserosa cells in the same region where the mutant fails to adhere to the germ band. We conclude that the amnioserosa must play a key, but assistive, mechanical role that aids uncurling of the germ band.

  13. Germ band differentiation in the stomatopod Gonodactylaceus falcatus and the origin of the stereotyped cell division pattern in Malacostraca (Crustacea).

    PubMed

    Fischer, Antje H L; Pabst, Tino; Scholtz, Gerhard

    2010-11-01

    We analysed aspects of the embryonic development of the stomatopod crustacean Gonodactylaceus falcatus focusing on the cell division in the ectoderm of the germ band. As in many other malacostracan crustaceans, the growth zone in the caudal papilla is formed by 19 ectoteloblasts and 8 mesoteloblasts arranged in rings. These teloblasts give rise to the cellular material of the largest part of the post-naupliar germ band in a stereotyped cell division pattern. The regularly arranged cells of the genealogical units produced by the ectoteloblast divide twice in longitudinal direction. The intersegmental furrows form within the descendants of one genealogical unit in the ectoderm. Hence, embryos of G. falcatus share some features of the stereotyped cell division pattern with that in other malacostracan crustaceans, which is unique among arthropods. In contrast to the other malacostracan taxa studied so far, stomatopods show slightly oblique spindle direction and a tilted position of the cells within the genealogical units. The inclusion of data on Leptostraca suggests that aspects of stereotyped cell divisions in the germ band must be assumed for the ground pattern of Malacostraca. Moreover, Stomatopoda and Leptostraca share the lateral displacement of cells during the mediolateral divisions of the ectodermal genealogical units in the post-naupliar germ band. The Caridoida within the Eumalacostraca apomorphically evolved the strict longitudinal orientation of spindle axes and cell positions, reaching the highest degree of regularity in the Peracarida. The phylogenetic analysis of the distribution of developmental characters is the prerequisite for the analysis of the evolution of developmental patterns and mechanisms.

  14. Homologous recombination-mediated double-strand break repair in mouse testicular extracts and comparison with different germ cell stages.

    PubMed

    Srivastava, Niloo; Raman, Mercy J

    2007-01-01

    Homologous recombination (HR) is established as a significant contributor to double-strand break (DSB) repair in mammalian somatic cells; however, its role in mammalian germ cells has not been characterized, although being conservative in nature it is anticipated to be the major pathway in germ cells. The germ cell system has inherent limitations by which intact cell approaches are not feasible. The present study, therefore, investigates HR-mediated DSB repair in mouse germ cell extracts by using an in vitro plasmid recombination assay based on functional rescue of a neomycin (neo) gene. A significantly high-fold increase in neo+ (Kan(R)) colonies following incubation of two plasmid substrates (neo delta1 and neo delta2) with testicular extracts demonstrated the extracts' ability to catalyze intermolecular recombination. A significant enhancement in recombinants upon linearization of one of the plasmids suggested the existence of an HR-mediated DSB repair activity. Comparison of the activity at sequential developmental stages, spermatogonia, spermatocytes and spermatids revealed its presence at all the stages; spermatocyte being the most proficient stage. Further, restriction analysis of recombinant plasmids indicated the predominance of gene conversion in enriched spermatocytes (mostly pachytenes), in contrast to gonial and spermatid extracts that showed higher reciprocal exchange. In conclusion, this study demonstrates HR repair activity at all stages of male germ cells, suggesting an important role of HR-mediated DSB repair during mammalian spermatogenesis. Further, the observed preference of gene conversion over reciprocal exchange at spermatocyte stage correlates with the close association of gene conversion with the meiotic recombination program.

  15. Origin and development of the germ line in sea stars

    PubMed Central

    Wessel, Gary M.; Fresques, Tara; Kiyomoto, Masato; Yajima, Mamiko; Zazueta, Vanesa

    2014-01-01

    This review summarizes and integrates our current understanding of how sea stars make gametes. Although little is known of the mechanism of germ line formation in these animals, recent results point to specific cells and to cohorts of molecules in the embryos and larvae that may lay the ground work for future research efforts. A coelomic outpocketing forms in the posterior of the gut in larvae, referred to as the posterior enterocoel (PE), that when removed, significantly reduces the number of germ cell later in larval growth. This same PE structure also selectively accumulates several germ-line associated factors – vasa, nanos, piwi – and excludes factors involved in somatic cell fate. Since its formation is relatively late in development, these germ cells may form by inductive mechanisms. When integrated into the morphological observations of germ cells and gonad development in larvae, juveniles, and adults, the field of germ line determination appears to have a good model system to study inductive germ line determination to complement the recent work on the molecular mechanisms in mice. We hope this review will also guide investigators interested in germ line determination and regulation of the germ line in how these animals can help in this research field. The review is not intended to be comprehensive – sea star reproduction has been studied over 100 years and many reviews are comprehensive in their coverage of, for example, seasonal growth of the gonads in response to light, nutrient, and temperature. Rather the intent of this review is to help the reader focus on new experimental results attached to the historical underpinnings of how the germ cell functions in sea stars with particular emphasis to clarify the important areas of priority for future research. PMID:24648114

  16. A role for Set1/MLL-related components in epigenetic regulation of the Caenorhabditis elegans germ line.

    PubMed

    Li, Tengguo; Kelly, William G

    2011-03-01

    The methylation of lysine 4 of Histone H3 (H3K4me) is an important component of epigenetic regulation. H3K4 methylation is a consequence of transcriptional activity, but also has been shown to contribute to "epigenetic memory"; i.e., it can provide a heritable landmark of previous transcriptional activity that may help promote or maintain such activity in subsequent cell descendants or lineages. A number of multi-protein complexes that control the addition of H3K4me have been described in several organisms. These Set1/MLL or COMPASS complexes often share a common subset of conserved proteins, with other components potentially contributing to tissue-specific or developmental regulation of the methyltransferase activity. Here we show that the normal maintenance of H3K4 di- and tri-methylation in the germ line of Caenorhabditis elegans is dependent on homologs of the Set1/MLL complex components WDR-5.1 and RBBP-5. Different methylation states that are each dependent on wdr-5.1 and rbbp-5 require different methyltransferases. In addition, different subsets of conserved Set1/MLL-like complex components appear to be required for H3K4 methylation in germ cells and somatic lineages at different developmental stages. In adult germ cells, mutations in wdr-5.1 or rbbp-5 dramatically affect both germ line stem cell (GSC) population size and proper germ cell development. RNAi knockdown of RNA Polymerase II does not significantly affect the wdr-5.1-dependent maintenance of H3K4 methylation in either early embryos or adult GSCs, suggesting that the mechanism is not obligately coupled to transcription in these cells. A separate, wdr-5.1-independent mode of H3K4 methylation correlates more directly with transcription in the adult germ line and in embryos. Our results indicate that H3K4 methylation in the germline is regulated by a combination of Set1/MLL component-dependent and -independent modes of epigenetic establishment and maintenance.

  17. Differences between appressoria formed by germ tubes and appressorium-like structures developed by hyphal tips in Magnaporthe oryzae.

    PubMed

    Kong, Ling-An; Li, Guo-Tian; Liu, Yun; Liu, Mei-Gang; Zhang, Shi-Jie; Yang, Jun; Zhou, Xiao-Ying; Peng, You-Liang; Xu, Jin-Rong

    2013-07-01

    Melanized appressoria are highly specialized infection structures formed by germ tubes of the rice blast fungus Magnaporthe oryzae for plant infection. M. oryzae also forms appressorium-like structures on hyphal tips. Whereas appressorium formation by conidial germ tubes has been well characterized, formation of appressorium-like structures by hyphal tips is under-investigated. In a previous study, we found that the chs7 deletion mutant failed to form appressoria on germ tubes but were normal in the development of appressorium-like structures on artificial hydrophobic surfaces. In this study, we compared the differences between the formation of appressoria by germ tubes and appressorium-like structures by hyphal tips in M. oryzae. Structurally, both appressoria and appressorium-like structures had a melanin layer that was absent in the pore region. In general, the latters were 1.4-fold larger in size but had lower turgor pressure than appressoria, which is consistent with its lower efficiency in plant penetration. Treatments with cAMP, IBMX, or a cutin monomer efficiently induced appressorium formation but not the development of appressorium-like structures. In contrast, coating surfaces with waxes stimulated the formation of both infection structures. Studies with various signaling mutants indicate that Osm1 and Mps1 are dispensable but Pmk1 is essential for both appressorium formation and development of appressorium-like structures on hyphal tips. Interestingly, the cpkA mutant was reduced in the differentiation of appressorium-like structures but not appressorium formation. We also observed that the con7 mutant generated in our lab failed to form appressorium-like structures on hyphal tips but still produced appressoria by germ tubes on hydrophobic surfaces. Con7 is a transcription factor regulating the expression of CHS7. Overall, these results indicate that the development of appressorium-like structures by hyphal tips and formation of appressoria by germ

  18. The vegetally localized mRNA fatvg is associated with the germ plasm in the early embryo and is later expressed in the fat body.

    PubMed

    Chan, A P; Kloc, M; Bilinski, S; Etkin, L D

    2001-01-01

    Vegetally localized RNAs in Xenopus oocytes have been implicated in the establishment of the primary germ layers and the formation and development of the primordial germ cells. fatvg mRNA is localized through the late pathway to the vegetal cortex. Like Vg1 mRNA fatvg is distributed throughout the entire cortex; however, unlike Vg1 there is a small fraction of the fatvg mRNA that is associated with the mitochondrial cloud. In early cleavage stage embryos, fatvg mRNA is associated with the germ plasm located at the tips of the vegetal blastomeres of the embryo. While several localized RNAs that follow the Message Transport Organizer (METRO) pathway have been found in the germ plasm in embryos, fatvg is a late pathway RNA that is associated with the germ plasm. In tadpoles, fatvg mRNA shows a novel pattern of expression which is distinct from the germ cell lineage and is detected at the dorso-anterior margin of the endodermal mass along the midline in two clusters of cells. fatvg mRNA expression is also detected later in the developing fat bodies, the major adipose tissues of the frog.

  19. [Developmental dyslexia].

    PubMed

    Galaburda, A M; Cestnick, L

    2003-02-01

    Developmental dyslexia makes up an important proportion of the known learning disorders. Until the late 1970s most research on dyslexia was carried out by educators and educational psychologists, but soon after the publication of some dyslexic cases with focal disorders of neuronal migration to the cerebral cortex, interest in the neurobiological and neurocognitive underpinnings of dyslexia grew, especially in Europe and North America. There are at least two types of developmental dyslexia--phonological and surface. Surface dyslexia refers to a disorder in which the difficulty lies in reading irregular words, whereas phonological dyslexia is characterized by difficulty with pseudowords. Phonological dyslexia is the more common of the two types. Surface dyslexia does not present a major problem in a language such as Spanish, where the number of irregular words is indeed very small. Still, in languages such as English, where irregular words are common, the phonological type of developmental dyslexia is much more common. Phonologic dyslexics have problems with phonological awareness, that is, the conscious knowledge and manipulation of speech sounds, which is the most proximate explanation for their difficulty in reading pseudowords. Many, but not all, phonologic dyslexics also have problems processing rapidly changing sounds, even if not linguistic, and some slow sounds, too. The same group tends to have visual problems, especially involving the so-called magnocellular pathway of the visual system, which, among others, has the role of analyzing movement. Accompanying these perceptual and cognitive deficits, phonologic dyslexics also show abnormal brain activation to phonological tasks, as shown in functional magnetic resonance studies (figure). In addition, dyslexic brains show focal malformations, ectopias and microgyria, of the cerebral cortex, involving mainly the left perisylvian region and the word form area in the temporo-occipital junction. There are also

  20. A model of the anterior esophagus in snakes, with functional and developmental implications.

    PubMed

    Cundall, David; Tuttman, Cassandra; Close, Matthew

    2014-03-01

    The gross anatomy of the mouth of snakes has always been interpreted as an evolutionary response to feeding demands. In most alethinophidian species, their anatomy allows limited functional independence of right and left sides and the roof and floor of the mouth as well as wide separation of the tips of the mandibles. However, locations of the tongue and glottis in snakes suggest extraordinary rearrangement of pharyngeal structures characteristic of all vertebrates. Serial histological sections through the heads of a number of colubroid species show muscularis mucosal smooth muscle fibers appearing in the paratracheal gutter of the lower jaw at varying levels between the eye and ear regions. Incomplete muscularis externa elements appear beneath the paratracheal gutter more caudally but typically at otic levels. Both muscle layers encompass more of the gut wall at more posterior levels, encircling the gut at the level of the atlas or axis. The pattern in snakes suggests developmental dissociation of dorsal and ventral splanchnic derivatives and extensive topological rearrangements of some ventral pharyngeal arch derivatives typical of most tetrapods. When snakes swallow large prey, the effective oral cavity becomes extremely short ventrally. The palatomaxillary arches function as ratchets packing the prey almost directly into the esophagus. Our findings raise questions about germ layer origins and regulation of differentiation of gut regions and derivatives in snakes and suggest that significant aspects of the evolution of lepidosaurs may be difficult to recover from bones or molecular sequence data alone.

  1. Immunocytochemical localization of wheat germ agglutinin in wheat

    PubMed Central

    1982-01-01

    Immunocytological techniques were developed to localize the plant lectin, wheat germ agglutinin (WGA), in the tissues and cells of wheat plants. In a previous study we demonstrated with a radioimmunoassay that the lectin is present in wheat embryos and adult plants both in the roots and at the base of the stem. We have now found, using rhodamine, peroxidase, and ferritin-labeled secondary antibodies, that WGA is located in cells and tissues that establish direct contact with the soil during germination and growth of the plant In the embryo, WGA is found in the surface layer of the radicle, the first adventitious roots, the coleoptile, and the scutellum. Although found throughout the coleorhiza and epiblast, it is at its highest levels within the cells at the surface of these organs. In adult plants, WGA is located only in the caps and tips of adventitious roots. Reaction product for WGA was not visualized in embryonic or adult leaves or in other tissues of adult plants. At the subcellular level, WGA is located at the periphery of protein bodies, within electron-translucent regions of the cytoplasm, and at the cell wall-protoplast interface. Since WGA is found at potential infection sites and is known to have fungicidal properties, it may function in the defense against fungal pathogens. PMID:7045136

  2. Primordial Germ Cells: Current Knowledge and Perspectives

    PubMed Central

    Nikolic, Aleksandar; Volarevic, Vladislav; Armstrong, Lyle; Lako, Majlinda; Stojkovic, Miodrag

    2016-01-01

    Infertility is a condition that occurs very frequently and understanding what defines normal fertility is crucial to helping patients. Causes of infertility are numerous and the treatment often does not lead to desired pregnancy especially when there is a lack of functional gametes. In humans, the primordial germ cell (PGC) is the primary undifferentiated stem cell type that will differentiate towards gametes: spermatozoa or oocytes. With the development of stem cell biology and differentiation protocols, PGC can be obtained from pluripotent stem cells providing a new therapeutic possibility to treat infertile couples. Recent studies demonstrated that viable mouse pups could be obtained from in vitro differentiated stem cells suggesting that translation of these results to human is closer. Therefore, the aim of this review is to summarize current knowledge about PGC indicating the perspective of their use in both research and medical application for the treatment of infertility. PMID:26635880

  3. The making of a germ panic, then and now.

    PubMed Central

    Tomes, N

    2000-01-01

    Over the last 2 decades, a heightened interest in germs has been evident in many aspects of American popular culture, including news coverage, advertisements, and entertainment media. Although clearly a response to the AIDS epidemic and other recent disease outbreaks, current obsessions with germs have some striking parallels with a similar period of intense anxiety about disease germs that occurred between 1900 and 1940. A comparison of these 2 periods of germ "panic" suggests some of the long-term cultural trends that contributed to their making. Both germ panics reflected anxieties about societal incorporation, associated with expanding markets, transportation networks, and mass immigration. They were also shaped by new trends in public health education, journalism, advertising, and entertainment media. In comparison to the first germ panic, the current discourse about the "revenge of the superbugs" is considerably more pessimistic because of increasing worries about the environment, suspicions of governmental authority, and distrust of expert knowledge. Yet, as popular anxieties about infectious disease have increased, public health scientists have been attracting favorable coverage in their role as "medical detectives" on the trail of the "killer germ." PMID:10667179

  4. The effect of wheat germ extract on premenstrual syndrome symptoms.

    PubMed

    Ataollahi, Maryam; Akbari, Sedigheh Amir Ali; Mojab, Faraz; Alavi Majd, Hamid

    2015-01-01

    Pre-menstrual syndrome is one of the most common disorders in women and impairs work and social relationships. Several treatment modalities have been proposed including herbal medicines. Considering the properties of wheat germ, this study aimed to determine the effects of wheat germ extract on the symptoms of premenstrual syndrome. This triple blind clinical trial was conducted on 84 women working in hospitals affiliated to Hamadan University of Medical Sciences. Subjects completed daily symptom record form for two consecutive months. After definitive diagnosis of premenstrual syndrome, they were randomly divided into two groups of 50 people. Then, for two consecutive months, 400 mg capsules of wheat germ extract or placebo were used three times a day, from day 16 until day 5 of the next menstrual cycle. Wheat germ significantly reduced physical symptoms (63.56%), psychological symptoms (66.30%), and the general score (64.99%). Although the severity of symptoms decreased in both groups, this reduction was more significant in the wheat germ extract group (p < 0.001). On the other hand, physical symptoms decreased only in the wheat germ extract (p < 0.001) and there was no statistically significant difference in the placebo group. No complications were observed in any of the groups. It seems that using wheat germ extract reduces general, psychological and physical symptoms.

  5. Meiosis and retrotransposon silencing during germ cell development in mice.

    PubMed

    Ollinger, Rupert; Reichmann, Judith; Adams, Ian R

    2010-03-01

    In mammals, germ cells derive from the pluripotent cells that are present early in embryogenesis, and then differentiate into male sperm or female eggs as development proceeds. Fusion between an egg and a sperm at fertilization allows genetic information from both parents to be transmitted to the next generation, and produces a pluripotent zygote to initiate the next round of embryogenesis. Meiosis is a central event in this self-perpetuating cycle that creates genetic diversity by generating new combinations of existing genetic alleles, and halves the number of chromosomes in the developing male and female germ cells to allow chromosome number to be maintained through successive generations. The developing germ cells also help to maintain genetic and chromosomal stability through the generations by protecting the genome from excessive de novo mutation. Several mouse mutants have recently been characterised whose germ cells exhibit defects in silencing the potentially mutagenic endogenous retroviruses and other retrotransposons that are prevalent in mammalian genomes, and these germ cells also exhibit defects in progression through meiosis. Here we review how mouse germ cells develop and proceed through meiosis, how mouse germ cells silence endogenous retroviruses and other retrotransposons, and discuss why silencing of endogenous retroviruses and other retrotransposons may be required for meiotic progression in mice.

  6. The making of a germ panic, then and now.

    PubMed

    Tomes, N

    2000-02-01

    Over the last 2 decades, a heightened interest in germs has been evident in many aspects of American popular culture, including news coverage, advertisements, and entertainment media. Although clearly a response to the AIDS epidemic and other recent disease outbreaks, current obsessions with germs have some striking parallels with a similar period of intense anxiety about disease germs that occurred between 1900 and 1940. A comparison of these 2 periods of germ "panic" suggests some of the long-term cultural trends that contributed to their making. Both germ panics reflected anxieties about societal incorporation, associated with expanding markets, transportation networks, and mass immigration. They were also shaped by new trends in public health education, journalism, advertising, and entertainment media. In comparison to the first germ panic, the current discourse about the "revenge of the superbugs" is considerably more pessimistic because of increasing worries about the environment, suspicions of governmental authority, and distrust of expert knowledge. Yet, as popular anxieties about infectious disease have increased, public health scientists have been attracting favorable coverage in their role as "medical detectives" on the trail of the "killer germ."

  7. The Effect of Wheat Germ Extract on Premenstrual Syndrome Symptoms

    PubMed Central

    Ataollahi, Maryam; Akbari, Sedigheh Amir Ali; Mojab, Faraz; Alavi Majd, Hamid

    2015-01-01

    Pre-menstrual syndrome is one of the most common disorders in women and impairs work and social relationships. Several treatment modalities have been proposed including herbal medicines. Considering the properties of wheat germ, this study aimed to determine the effects of wheat germ extract on the symptoms of premenstrual syndrome. This triple blind clinical trial was conducted on 84 women working in hospitals affiliated to Hamadan University of Medical Sciences. Subjects completed daily symptom record form for two consecutive months. After definitive diagnosis of premenstrual syndrome, they were randomly divided into two groups of 50 people. Then, for two consecutive months, 400 mg capsules of wheat germ extract or placebo were used three times a day, from day 16 until day 5 of the next menstrual cycle. Wheat germ significantly reduced physical symptoms (63.56%), psychological symptoms (66.30%), and the general score (64.99%). Although the severity of symptoms decreased in both groups, this reduction was more significant in the wheat germ extract group (p < 0.001). On the other hand, physical symptoms decreased only in the wheat germ extract (p < 0.001) and there was no statistically significant difference in the placebo group. No complications were observed in any of the groups. It seems that using wheat germ extract reduces general, psychological and physical symptoms. PMID:25561922

  8. Testicular germ cell tumors: pathogenesis, diagnosis and treatment.

    PubMed

    Winter, Christian; Albers, Peter

    2011-01-01

    Testicular germ cell tumors represent the most common solid malignancy of young men aged 15-40 years. Histopathologically, testicular germ cell tumors are divided into two major groups: pure seminoma and nonseminoma. The pathogenesis of testicular germ cell tumors remains unknown; however, cryptorchidism is the main risk factor, and molecular studies have shown strong evidence of an association between genetic alterations and testicular germ cell tumors. In cases of suspicion for testicular germ cell tumor, a surgical exploration with orchiectomy is obligatory. After completion of diagnostic procedures, levels of serum tumor markers and the clinical stage based on the International Union Against Cancer tumor-node-metastasis classification should be defined. Patients with early-stage testicular germ cell tumors are treated by individualized risk stratification within a multidisciplinary approach. The individual management (surveillance, chemotherapy or radiotherapy) has to be balanced according to clinical features and the risk of short-term and long-term toxic effects. Treatment for metastatic tumors is based on risk stratification according to International Germ Cell Cancer Collaborative Group classification and is performed with cisplatin-based chemotherapy and residual tumor resection in cases of residual tumor lesion. High-dose chemotherapy represents a curative option for patients with second or subsequent relapses.

  9. Detection of differentially expressed genes in the early developmental stage of the mouse mandible.

    PubMed

    Yamaza, H; Matsuo, K; Kiyoshima, T; Shigemura, N; Kobayashi, I; Wada, H; Akamime, A; Sakai, H

    2001-06-01

    We previously examined the development of the mouse mandible, and demonstrated that odontogenesis occurs between embryonic day 10.5 (E10.5) and E12. Based on the histological findings, we performed cDNA subtraction between the E10.5 and E12 mandibles to detect any differentially expressed genes which might be involved in the initiation of odontogenesis. By sequencing, homology search and semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR), we thus found Pgk-1, Ccte, Hsp86, Nucleolin, Hsc73, Frg1, N-ras, Set alpha and Hsj2 from the E10.5 mandible, and E25, ATPase6, Mum2, Thymosin beta4 and L21 from the E12 mandible to be differentially expressed genes. These genes are functionally related to protein transport, signal transduction, transcription, translation and molecular chaperon activity. In situ hybridization analyses of Set alpha and E25 showed that Set alpha was detected in the tooth germ at E12 and E14.5, thus indicating a close relationship of this gene to odontogenesis. Meanwhile, the in situ signal of E25 was found in the muscular layer of the tongue, thus suggesting E25 to be related to the differentiation of muscular tissue. In conclusion, we found 15 differentially expressed genes in the course of the early developmental stage of the mouse mandible using a combination of the cDNA subtraction and semi-quantitative RT-PCR methods, while in addition, two genes were demonstrated to be related to the initiation and the development of both tooth germ and the tongue according to the in situ hybridization technique.

  10. Germ-line and somatic DICER1 mutations in pineoblastoma.

    PubMed

    de Kock, Leanne; Sabbaghian, Nelly; Druker, Harriet; Weber, Evan; Hamel, Nancy; Miller, Suzanne; Choong, Catherine S; Gottardo, Nicholas G; Kees, Ursula R; Rednam, Surya P; van Hest, Liselotte P; Jongmans, Marjolijn C; Jhangiani, Shalini; Lupski, James R; Zacharin, Margaret; Bouron-Dal Soglio, Dorothée; Huang, Annie; Priest, John R; Perry, Arie; Mueller, Sabine; Albrecht, Steffen; Malkin, David; Grundy, Richard G; Foulkes, William D

    2014-10-01

    Germ-line RB-1 mutations predispose to pineoblastoma (PinB), but other predisposing genetic factors are not well established. We recently identified a germ-line DICER1 mutation in a child with a PinB. This was accompanied by loss of heterozygosity (LOH) of the wild-type allele within the tumour. We set out to establish the prevalence of DICER1 mutations in an opportunistically ascertained series of PinBs. Twenty-one PinB cases were studied: Eighteen cases had not undergone previous testing for DICER1 mutations; three patients were known carriers of germ-line DICER1 mutations. The eighteen PinBs were sequenced by Sanger and/or Fluidigm-based next-generation sequencing to identify DICER1 mutations in blood gDNA and/or tumour gDNA. Testing for somatic DICER1 mutations was also conducted on one case with a known germ-line DICER1 mutation. From the eighteen PinBs, we identified four deleterious DICER1 mutations, three of which were germ line in origin, and one for which a germ line versus somatic origin could not be determined; in all four, the second allele was also inactivated leading to complete loss of DICER1 protein. No somatic DICER1 RNase IIIb mutations were identified. One PinB arising in a germ-line DICER1 mutation carrier was found to have LOH. This study suggests that germ-line DICER1 mutations make a clinically significant contribution to PinB, establishing DICER1 as an important susceptibility gene for PinB and demonstrates PinB to be a manifestation of a germ-line DICER1 mutation. The means by which the second allele is inactivated may differ from other DICER1-related tumours.

  11. Lipase inactivation in wheat germ by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Jha, Pankaj Kumar; Kudachikar, V. B.; Kumar, Sourav

    2013-05-01

    An attempt was made to improve the shelf life of wheat germ by optimizing processing conditions involving γ-irradiation. Studies were carried out to investigate the effect of γ-irradiation (0-30 kGy doses) on the chemical composition of wheat germ with respect to variation in moisture, total ash, crude fat, free fatty acid, protein and lipase activity. The results demonstrate that shelf stability of wheat germ was achieved by inactivation of lipase at doses of γ-irradiation greater than 12 kGy.

  12. Epigenetic transitions in germ cell development and meiosis.

    PubMed

    Kota, Satya K; Feil, Robert

    2010-11-16

    Germ cell development is controlled by unique gene expression programs and involves epigenetic reprogramming of histone modifications and DNA methylation. The central event is meiosis, during which homologous chromosomes pair and recombine, processes that involve histone alterations. At unpaired regions, chromatin is repressed by meiotic silencing. After meiosis, male germ cells undergo chromatin remodeling, including histone-to-protamine replacement. Male and female germ cells are also differentially marked by parental imprints, which contribute to sex determination in insects and mediate genomic imprinting in mammals. Here, we review epigenetic transitions during gametogenesis and discuss novel insights from animal and human studies.

  13. Retinoic acid, meiosis and germ cell fate in mammals.

    PubMed

    Bowles, Josephine; Koopman, Peter

    2007-10-01

    Although mammalian sex is determined genetically, the sex-specific development of germ cells as sperm or oocytes is initiated by cues provided by the gonadal environment. During embryogenesis, germ cells in an ovary enter meiosis, thereby committing to oogenesis. By contrast, germ cells in a testicular environment do not enter meiosis until puberty. Recent findings indicate that the key to this sex-specific timing of meiosis entry is the presence or absence of the signaling molecule retinoic acid. Although this knowledge clarifies a long-standing mystery in reproductive biology, it also poses many new questions, which we discuss in this review.

  14. Modeling the Epithelial Morphogenesis of Germ Band Retraction in Three Dimensions

    NASA Astrophysics Data System (ADS)

    McCleery, W. Tyler; Veldhuis, Jim; Brodland, G. Wayne; Crews, Sarah M.; Hutson, M. Shane

    2015-03-01

    Embryogenesis of higher-order organisms is driven by an intricate coordination of cellular mechanics. Mechanical analysis of certain developmental events, e.g., dorsal closure in the fruit fly D. melanogaster, has been sufficiently described using two-dimensional models. Here, we present a three-dimensional modeling technique to investigate germ band retraction (GBR) - a whole-embryo, irreducibly 3D morphogenetic event. At the start of GBR, the epithelial tissue known as the germ band is initially wrapped around the posterior end of an ellipsoidal fly embryo. This tissue then retracts as an adjacent epithelial tissue, the amnioserosa, simultaneously contracts. We hypothesize that proper GBR requires maintenance of cell-cell connectivity in the amnioserosa, as well as both cell and tissue topology on the embryo's ellipsoidal surface. The exact interfacial tensions are less important. We test the dynamic interactions between these two tissues on a 3D ellipsoidal last. To speed simulation run times and focus on the relevant tissues, epithelial cells are defined as polygons constrained to lie on the surface of the ellipsoidal last. These cells have adjustable parameters such as edge tensions and cell pressures. Tissue movements are simulated by balancing these dynamic cell-level forces with viscous resistance and allowing cells to exchange neighbors. This modeling approach helps elucidate the multicellular stress fields in normal and aberrant development, providing deeper insight into the mechanical interdependence of developing tissues.

  15. Bone Formation from Porcine Dental Germ Stem Cells on Surface Modified Polybutylene Succinate Scaffolds

    PubMed Central

    2016-01-01

    Designing and providing a scaffold are very important for the cells in tissue engineering. Polybutylene succinate (PBS) has high potential as a scaffold for bone regeneration due to its capacity in cell proliferation and differentiation. Also, stem cells from 3rd molar tooth germs were favoured in this study due to their developmentally and replicatively immature nature. In this study, porcine dental germ stem cells (pDGSCs) seeded PBS scaffolds were used to investigate the effects of surface modification with fibronectin or laminin on these scaffolds to improve cell attachment, proliferation, and osteogenic differentiation for tissue engineering applications. The osteogenic potentials of pDGSCs on these modified and unmodified foams were examined to heal bone defects and the effects of fibronectin or laminin modified PBS scaffolds on pDGSC differentiation into bone were compared for the first time. For this study, MTS assay was used to assess the cytotoxic effects of modified and unmodified surfaces. For the characterization of pDGSCs, flow cytometry analysis was carried out. Besides, alkaline phosphatase (ALP) assay, von Kossa staining, real-time PCR, CM-Dil, and immunostaining were applied to analyze osteogenic potentials of pDGSCs. The results of these studies demonstrated that pDGSCs were differentiated into osteogenic cells on fibronectin modified PBS foams better than those on unmodified and laminin modified PBS foams. PMID:27413380

  16. Immunoglobulin knockout chickens via efficient homologous recombination in primordial germ cells

    PubMed Central

    Schusser, Benjamin; Collarini, Ellen J.; Yi, Henry; Izquierdo, Shelley Mettler; Fesler, Jeffrey; Pedersen, Darlene; Klasing, Kirk C.; Kaspers, Bernd; Harriman, William D.; van de Lavoir, Marie-Cecile; Etches, Robert J.; Leighton, Philip A.

    2013-01-01

    Gene targeting by homologous recombination or by sequence-specific nucleases allows the precise modification of genomes and genes to elucidate their functions. Although gene targeting has been used extensively to modify the genomes of mammals, fish, and amphibians, a targeting technology has not been available for the avian genome. Many of the principles of humoral immunity were discovered in chickens, yet the lack of gene targeting technologies in birds has limited biomedical research using this species. Here we describe targeting the joining (J) gene segment of the chicken Ig heavy chain gene by homologous recombination in primordial germ cells to establish fully transgenic chickens carrying the knockout. In homozygous knockouts, Ig heavy chain production is eliminated, and no antibody response is elicited on immunization. Migration of B-lineage precursors into the bursa of Fabricius is unaffected, whereas development into mature B cells and migration from the bursa are blocked in the mutants. Other cell types in the immune system appear normal. Chickens lacking the peripheral B-cell population will provide a unique experimental model to study avian immune responses to infectious disease. More generally, gene targeting in avian primordial germ cells will foster advances in diverse fields of biomedical research such as virology, stem cells, and developmental biology, and provide unique approaches in biotechnology, particularly in the field of antibody discovery. PMID:24282302

  17. Identification of superficial Candida albicans germ tube antigens in a rabbit model of disseminated candidiasis. A proteomic approach.

    PubMed

    Sáez-Rosón, Aranzazu; Sevilla, María-Jesús; Moragues, María-Dolores

    2014-03-01

    The diagnosis of invasive candidiasis remains a clinical challenge. The detection by indirect immunofluorescence of Candida albicans germ-tube-specific antibodies (CAGTA), directed against germ-tube surface antigens, is a useful diagnostic tool that discriminates between colonization and invasion. However, the standardization of this technique is complicated by its reliance on subjective interpretation. In this study, the antigenic recognition pattern of CAGTA throughout experimental invasive candidiasis in a rabbit animal model was determined by means of 2D-PAGE, Western blotting, and tandem mass spectrometry (MS/MS). Seven proteins detected by CAGTA were identified as methionine synthase, inositol-3-phosphate synthase, enolase 1, alcohol dehydrogenase 1,3-phosphoglycerate kinase, 14-3-3 (Bmhl), and Egd2. To our knowledge, this is the first report of antibodies reacting with Bmhl and Egd2 proteins in an animal model of invasive candidiasis. Although all of the antigens were recognized by CAGTA in cell-wall dithiothreitol extracts of both germ tubes and blastospores of C. albicans, immunoelectron microscopy study revealed their differential location, as the antigens were exposed on the germ-tube cell-wall surface but hidden in the inner layers of the blastospore cell wall. These findings will contribute to developing more sensitive diagnostic methods that enable the earlier detection of invasive candidiasis.

  18. Embryonic stem cells: testing the germ-cell theory.

    PubMed

    Hochedlinger, Konrad

    2011-10-25

    The exact cellular origin of embryonic stem cells remains elusive. Now a new study provides compelling evidence that embryonic stem cells, established under conventional culture conditions, originate from a transient germ-cell state.

  19. Preventing the Flu: Good Health Habits Can Help Stop Germs

    MedlinePlus

    ... Video Medscape Podcasts Public Service Announcements (PSAs) Toolkits Influenza Types Seasonal Avian Swine/Variant Pandemic Other Get ... What's this? Submit Button Past Newsletters Preventing the Flu: Good Health Habits Can Help Stop Germs Language: ...

  20. Germs and Hygiene: MedlinePlus Health Topic

    MedlinePlus

    ... for Disease Control and Prevention) - PDF Also in Spanish Latest News Nearby Day Cares Don't Pose ... Centers for Disease Control and Prevention) Also in Spanish Related Issues Germs and Staying Healthy (Cystic Fibrosis ...

  1. Don't Let Germs Spoil Your Holiday Getaway

    MedlinePlus

    ... and wheezing as they pass by. Clean shared surfaces. Use a disinfectant wipe to clean seat trays ... germs linger up to three days on plastic surfaces. Check your hotel room. When you arrive, make ...

  2. Childhood Central Nervous System Germ Cell Tumors Treatment

    MedlinePlus

    ... before the cancer is diagnosed and continue for months or years. Childhood CNS germ cell tumors may ... after treatment. Some cancer treatments cause side effects months or years after treatment has ended. Some cancer ...

  3. Aging and the germ line: where mortality and immortality meet.

    PubMed

    Jones, D Leanne

    2007-01-01

    Germ cells are highly specialized cells that form gametes, and they are the only cells within an organism that contribute genes to offspring. Germline stem cells (GSCs) sustain gamete production, both oogenesis (egg production) and spermatogenesis (sperm production), in many organisms. Since the genetic information contained within germ cells is passed from generation to generation, the germ line is often referred to as immortal. Therefore, it is possible that germ cells possess unique strategies to protect and transmit the genetic information contained within them indefinitely. However, aging often leads to a dramatic decrease in gamete production and fecundity. In addition, single gene mutations affecting longevity often have a converse effect on reproduction. Recent studies examining age-related changes in GSC number and activity, as well as changes to the stem cell microenvironment, provide insights into the mechanisms underlying the observed reduction in gametogenesis over the lifetime of an organism.

  4. Mouthwash Helps Kill Gonorrhea Germs in Mouth, Throat: Study

    MedlinePlus

    ... gov/news/fullstory_162649.html Mouthwash Helps Kill Gonorrhea Germs in Mouth, Throat: Study Listerine's maker has ... A commercial brand of mouthwash can help control gonorrhea bacteria in the mouth, and daily use may ...

  5. Could a Germ Link Gum Disease, Rheumatoid Arthritis?

    MedlinePlus

    ... 162571.html Could a Germ Link Gum Disease, Rheumatoid Arthritis? Study may offer new insight into the cause ... the long-noticed connection between gum disease and rheumatoid arthritis, a new study suggests. The discovery might also ...

  6. Expression of vasa and nanos3 during primordial germ cell formation and migration in Atlantic cod (Gadus morhua L.).

    PubMed

    Presslauer, C; Nagasawa, K; Fernandes, J M O; Babiak, I

    2012-10-01

    Primordial germ cells (PGCs), progenitors of gametes, are specified very early in embryonic development and undergo an active migration to the site where the future gonads will form. While the developmental pattern of PGCs during embryogenesis has been documented in few model teleost fishes, there is currently no information available for any representative of Superorder Paracanthopterygii. This includes Atlantic cod (Gadus morhua), which is a historically important food fish in both fisheries and aquaculture industries. In the present study, we cloned and characterized vasa and nanos3 and used them as germ cell markers in Atlantic cod. Sequencing results showed prospective vasa and nanos3 mRNA contained the domains used to describe their respective protein family. Furthermore, phylogenetic analysis using the amino acid sequence placed Atlantic cod Vasa distinct from representatives of three other taxonomic Superorders. Atlantic cod Nanos3 was placed with other homologues from the Nanos3 subfamily. Expression of both genes was detected from the first cleavage division; both were specifically expressed in Atlantic cod PGCs from the 32-cell stage. While nanos3 expression ceased during early somitogenesis, vasa was strongly expressed throughout embryonic development. Using vasa as a marker, we described the Atlantic cod PGC migration pattern. We demonstrated that Atlantic cod PGCs migrate ventral to the trunk mesoderm. With the exception of Pacific herring (Clupea pallasii), PGCs in other described teleost fishes migrate lateral to the trunk. The results from this study are the first step toward understanding germ line formation in Atlantic cod.

  7. Role of Mael in early oogenesis and during germ-cell differentiation from embryonic stem cells in mice in vitro.

    PubMed

    Bahena, I; Xu, E; Betancourt, M; Casas, E; Ducolomb, Y; González, C; Bonilla, E

    2014-11-01

    In a previous study, we have identified a set of conserved spermatogenic genes whose expression is restricted to testis and ovary and that are developmentally regulated. One of these genes, the transcription factor Mael, has been reported to play an essential role in mouse spermatogenesis. Nevertheless, the role of Mael in mouse oogenesis has not been defined. In order to analyse the role of Mael in mouse oogenesis, the expression of this gene was blocked during early oogenesis in mouse in vitro using RNAi technology. In addition, the role of Mael during differentiation of embryonic stem cells (ESC) into germ cells in vitro was analysed. Results show that downregulation of Mael by a specific short interfering RNA disrupted fetal oocyte growth and differentiation in fetal ovary explants in culture and the expression of several germ-cell markers in ESC during their differentiation. These results suggest that there is an important role for Mael in early oogenesis and during germ-cell differentiation from embryonic stem cells in mouse in vitro.

  8. Proliferation in culture of primordial germ cells derived from embryonic stem cell: induction by retinoic acid

    PubMed Central

    Makoolati, Zohreh; Movahedin, Mansoureh; Forouzandeh-Moghadam, Mehdi

    2016-01-01

    An in vitro system that supports primordial germ cells (PGCs) survival and proliferation is useful for enhancement of these cells and efficient transplantation in infertility disorders. One approach is cultivation of PGCs under proper conditions that allow self-renewal and proliferation of PGCs. For this purpose, we compared the effects of different concentrations of retinoic acid (RA), and the effect of PGCs co-culture (Co-C) with SIM mouse embryo-derived thioguanine- and ouabain-resistant (STO) cells on the proliferation of embryonic stem cells (ESCs)-derived PGCs. One-day-old embryoid body (EB) was cultured for 4 days in simple culture system in the presence of 5 ng/ml bone morphogenetic protein-4 (BMP4) (SCB group) for PGC induction. For PGC enrichment, ESCs-derived germ cells were cultured for 7 days in the presence of different doses (0–5  μM) of RA, both in the simple and STO Co-C systems. At the end of the culture period, viability and proliferation rates were assessed and expression of mouse vasa homologue (Mvh),  α6 integrin,  β1 integrin, stimulated by retinoic acid 8 (Stra8) and piwi (Drosophila)-like 2 (Piwil2) was evaluated using quantitative PCR. Also, the inductive effects were investigated immunocytochemically with Mvh and cadherin1 (CDH1) on the selected groups. Immunocytochemistry/PCR results showed higher expression of Mvh, the PGC-specific marker, in 3  μM RA concentrations on the top of the STO feeder layer. Meanwhile, assessment of the Stra8 mRNA and CDH1 protein, the specific makers for spermatogonia, showed no significant differences between groups. Based on the results, it seems that in the presence of 3 μM RA on top of the STO feeder layer cells, the majority of the cells transdifferentiated into germ cells were PGCs. PMID:27834666

  9. Effects of tritiated water on germ cells in medaka embryos.

    PubMed

    Etoh, H; Hyodo-Taguchi, Y

    1983-02-01

    Embryos of medaka, Oryzias latipes, were exposed to tritiated water and 137Cs gamma rays continuously from the one-cell stage until hatching (10 days at 26 degrees C). Germ cells in the gonads of newly hatched fry were counted in histological sections and compared with controls. The accumulated dose for 50% survival of germ cells was 195 rad for tritium beta rays and 350 rad for 137Cs gamma rays. Female progeny were produced using Yamamoto's method. The 50% survival doses for female germ cells treated in a manner similar to that described above were 140 rad for beta rays and 305 rad for gamma rays. When embryos of medaka were irradiated with gamma rays below an accumulated dose of 475 rad or treated with tritiated water at a concentration of 0.2 mCi/ml or lower, the dose response of the germ cells showed an exponential relationship. It appeared that there was no threshold or significant dose-rate effect for either beta or gamma rays on germ cell survival, and that tritium beta rays were more effective than 137Cs gamma rays in germ cell killing.

  10. Transgenic rodent assay for quantifying male germ cell mutant frequency.

    PubMed

    O'Brien, Jason M; Beal, Marc A; Gingerich, John D; Soper, Lynda; Douglas, George R; Yauk, Carole L; Marchetti, Francesco

    2014-08-06

    De novo mutations arise mostly in the male germline and may contribute to adverse health outcomes in subsequent generations. Traditional methods for assessing the induction of germ cell mutations require the use of large numbers of animals, making them impractical. As such, germ cell mutagenicity is rarely assessed during chemical testing and risk assessment. Herein, we describe an in vivo male germ cell mutation assay using a transgenic rodent model that is based on a recently approved Organisation for Economic Co-operation and Development (OECD) test guideline. This method uses an in vitro positive selection assay to measure in vivo mutations induced in a transgenic λgt10 vector bearing a reporter gene directly in the germ cells of exposed males. We further describe how the detection of mutations in the transgene recovered from germ cells can be used to characterize the stage-specific sensitivity of the various spermatogenic cell types to mutagen exposure by controlling three experimental parameters: the duration of exposure (administration time), the time between exposure and sample collection (sampling time), and the cell population collected for analysis. Because a large number of germ cells can be assayed from a single male, this method has superior sensitivity compared with traditional methods, requires fewer animals and therefore much less time and resources.

  11. Transgenic Rodent Assay for Quantifying Male Germ Cell Mutant Frequency

    PubMed Central

    O'Brien, Jason M.; Beal, Marc A.; Gingerich, John D.; Soper, Lynda; Douglas, George R.; Yauk, Carole L.; Marchetti, Francesco

    2014-01-01

    De novo mutations arise mostly in the male germline and may contribute to adverse health outcomes in subsequent generations. Traditional methods for assessing the induction of germ cell mutations require the use of large numbers of animals, making them impractical. As such, germ cell mutagenicity is rarely assessed during chemical testing and risk assessment. Herein, we describe an in vivo male germ cell mutation assay using a transgenic rodent model that is based on a recently approved Organisation for Economic Co-operation and Development (OECD) test guideline. This method uses an in vitro positive selection assay to measure in vivo mutations induced in a transgenic λgt10 vector bearing a reporter gene directly in the germ cells of exposed males. We further describe how the detection of mutations in the transgene recovered from germ cells can be used to characterize the stage-specific sensitivity of the various spermatogenic cell types to mutagen exposure by controlling three experimental parameters: the duration of exposure (administration time), the time between exposure and sample collection (sampling time), and the cell population collected for analysis. Because a large number of germ cells can be assayed from a single male, this method has superior sensitivity compared with traditional methods, requires fewer animals and therefore much less time and resources. PMID:25145276

  12. Control of male germ-cell development in flowering plants.

    PubMed

    Singh, Mohan B; Bhalla, Prem L

    2007-11-01

    Plant reproduction is vital for species survival, and is also central to the production of food for human consumption. Seeds result from the successful fertilization of male and female gametes, but our understanding of the development, differentiation of gamete lineages and fertilization processes in higher plants is limited. Germ cells in animals diverge from somatic cells early in embryo development, whereas plants have distinct vegetative and reproductive phases in which gametes are formed from somatic cells after the plant has made the transition to flowering and the formation of the reproductive organs. Recently, novel insights into the molecular mechanisms underlying male germ-line initiation and male gamete development in plants have been obtained. Transcriptional repression of male germ-line genes in non-male germ-line cells have been identified as a key mechanism for spatial and temporal control of male germ-line development. This review focuses on molecular events controlling male germ-line development especially, on the nature and regulation of gene expression programs operating in male gametes of flowering plants.

  13. Transient translational quiescence in primordial germ cells.

    PubMed

    Oulhen, Nathalie; Swartz, S Zachary; Laird, Jessica; Mascaro, Alexandra; Wessel, Gary

    2017-02-24

    Stem cells in animals often exhibit a slow cell cycle and/or low transcriptional activity referred to as quiescence. Here we report that the translational activity in the primordial germ cells (PGCs) of the sea urchin embryo (Strongylocentrotus purpuratus) is quiescent. We measured new protein synthesis with O-propargyl-puromycin, and L-homopropargylglycine, Click-iT technologies and determined that these cells synthesize protein at only 6% the level of their adjacent somatic cells. Knock-down of translation of the RNA-binding protein Nanos2 by morpholino anti-sense oligonucleotides, or knock-out of the Nanos2 gene by CRISPR/Cas9 resulted in a significant, but partial increase (47%) in general translation specifically in the PGCs. We found that the mRNA of the translation factor eEF1A is excluded from the PGCs in a Nanos2-dependent manner, a consequence of a Nanos/Pumilio response element (PRE) in its 3'UTR. In addition to eEF1A, the cytoplasmic pH of the PGCs appears to repress translation and simply increasing the pH also significantly restores translation selectively in the PGCs. We conclude that the PGCs of this sea urchin institute parallel pathways to quiesce translation thoroughly but transiently.

  14. Germ line transformation and in vivo labeling of nuclei in Diptera: report on Megaselia abdita (Phoridae) and Chironomus riparius (Chironomidae).

    PubMed

    Caroti, Francesca; Urbansky, Silvia; Wosch, Maike; Lemke, Steffen

    2015-06-01

    To understand how and when developmental traits of the fruit fly Drosophila melanogaster originated during the course of insect evolution, similar traits are functionally studied in variably related satellite species. The experimental toolkit available for relevant fly models typically comprises gene expression and loss as well as gain-of-function analyses. Here, we extend the set of available molecular tools to piggyBac-based germ line transformation in two satellite fly models, Megaselia abdita and Chironomus riparius. As proof-of-concept application, we used a Gateway variant of the piggyBac transposon vector pBac{3xP3-eGFPafm} to generate a transgenic line that expresses His2Av-mCherry as fluorescent nuclear reporter ubiquitously in the gastrulating embryo of M. abdita. Our results open two phylogenetically important nodes of the insect order Diptera for advanced developmental evolutionary genetics.

  15. [An initial investigation on the in vitro culture system of primordial germ cells in golden hamsters].

    PubMed

    Li, Hong; Zhang, Hao; Liang, Ying; Zhan, Li; Wu, Desheng

    2006-06-01

    To establish the in vitro culture system of primordial germ cells (PGCs) of golden hamsters, PGCs of hamster were isolated from genital ridge of embryos at 10. 5th dpc (day post coitum), obtained by enzyme-mechanical method, and cultured on feeder cells. Then the PGCs were identified by alkaline phosphatase (ALP) activity staining. In order to induce the PGCs to differentiate in vitro, we removed the differential inhibition factors in the conditioned medium and observed the formation of embryoids and differentiated cells from three layers. The result showed that the pluripotent primordial germ cells could be successfully obtained from the golden hamsters at 10. 5th dpc by the enzyme-mechanical method and that PGCs were identified by both their strong positive reaction in ALP activity staining test and their differentiation into three-layer derived cells in vitro. The result suggests that the establishment of in vitro PGCs culture system of golden hamsters will provide new cell source for biomedical engineering.

  16. Hormonal control of germ cell development and spermatogenesis.

    PubMed

    O'Shaughnessy, Peter J

    2014-05-01

    Spermatogenesis is completely dependent on the pituitary hormone follicle-stimulating hormone (FSH) and androgens locally produced in response to luteinising hormone (LH). This dual control has been known since the 1930s and 1940s but more recent work, particularly using transgenic mice, has allowed us to determine which parts of the spermatogenic pathway are regulated by each hormone. During the first spermatogenic cycle after puberty both FSH and androgen act to limit the massive wave of germ cell apoptosis which occurs at this time. The established role of FSH in all cycles is to increase spermatogonial and subsequent spermatocyte numbers with a likely effect also on spermiation. Mice lacking FSH or its receptor are fertile, albeit with reduced germ cell numbers, and so this hormone is not an essential regulator of spermatogenesis but acts to optimise germ cell production Androgens also appear to regulate spermatogonial proliferation but, crucially, they are also required to allow spermatocytes to complete meiosis and form spermatids. Animals lacking androgen receptors fail to generate post-meiotic germ cells, therefore, and are infertile. There is also strong evidence that androgens act to ensure appropriate spermiation of mature spermatids. Androgen regulation of spermatogenesis is dependent upon action on the Sertoli cell but recent studies have shown that androgenic stimulation of the peritubular myoid cells is also essential for normal germ cells development. While FSH or androgen alone will both stimulate germ cell development, together they act synergistically to maximise germ cell number. The other hormones/local factors which can regulate spermatogenesis include activins and estrogens although their role in normal physiological regulation of this process needs to be more clearly established. Regulation of spermatogenesis in primates appears to be similar to that in rodents although the role of FSH may be greater. While our knowledge of hormone function

  17. In utero bisphenol A exposure disrupts germ cell nest breakdown and reduces fertility with age in the mouse

    SciTech Connect

    Wang, Wei Hafner, Katlyn S. Flaws, Jodi A.

    2014-04-15

    Bisphenol A (BPA) is a known reproductive toxicant in rodents. However, the effects of in utero BPA exposure on early ovarian development and the consequences of such exposure on female reproduction in later reproductive life are unclear. Thus, we determined the effects of in utero BPA exposure during a critical developmental window on germ cell nest breakdown, a process required for establishment of the finite primordial follicle pool, and on female reproduction. Pregnant FVB mice (F0) were orally dosed daily with tocopherol-striped corn oil (vehicle), diethylstilbestrol (DES; 0.05 μg/kg, positive control), or BPA (0.5, 20, and 50 μg/kg) from gestational day 11 until birth. Ovarian morphology and gene expression profiles then were examined in F1 female offspring on postnatal day (PND) 4 and estrous cyclicity was examined daily after weaning for 30 days. F1 females were also subjected to breeding studies with untreated males at three to nine months. The results indicate that BPA inhibits germ cell nest breakdown via altering expression of selected apoptotic factors. BPA also significantly advances the age of first estrus, shortens the time that the females remain in estrus, and increases the time that the females remain in metestrus and diestrus compared to controls. Further, F1 females exposed to low doses of BPA exhibit various fertility problems and have a significantly higher percentage of dead pups compared to controls. These results indicate that in utero exposure to low doses of BPA during a critical ovarian developmental window interferes with early ovarian development and reduces fertility with age. - Highlights: • In utero BPA exposure inhibits germ cell nest breakdown in female mouse offspring. • In utero BPA exposure alters expression of apoptosis regulators in the ovaries of mouse offspring. • In utero BPA exposure advances first estrus age and alters cyclicity in mouse offspring. • In utero BPA exposure causes various fertility problems in

  18. On the formation of germ cells: The good, the bad and the ugly.

    PubMed

    Chuva de Sousa Lopes, Susana M; Roelen, Bernard A J

    2010-03-01

    Mammalian germ cells are powerful cells, the only ones that transmit information to the next generation ensuring the continuation of the species. But "with great power, comes great responsibility", meaning that germ cells are only a few steps away from turning carcinogenic. Despite recent advances little is known about germ cell formation in mammals, predominantly because of the inaccessibility of these cells. Moreover, it is difficult to pin down what in essence is characteristic of a germ cell, as germ cells keep changing place, morphology, expression markers and epigenetic identity. Formation of (primordial) germ cells in primate ES cell cultures would therefore be helpful to identify molecular signalling pathways associated with germ cell differentiation and to study epigenetic changes in germ cells. In addition, the in vitro derivation of functional germ cells from ES cells could be used in combination with therapeutic cloning to generate patient-specific ES cell lines, and can have applications in animal breeding. In this review we present the state-of-the-art on how mouse and human germ cells are formed in vivo (the good), we discuss the link between germ cells, pluripotency and germ cell tumours (the bad) and show that despite continuous progress in trying to differentiate germ cells in vitro (the ugly) the generation of functional germ cells is still a real challenge.

  19. Growing up in a Bubble: Using Germ-Free Animals to Assess the Influence of the Gut Microbiota on Brain and Behavior

    PubMed Central

    Luczynski, Pauline; McVey Neufeld, Karen-Anne; Oriach, Clara Seira; Clarke, Gerard; Dinan, Timothy G.

    2016-01-01

    There is a growing recognition of the importance of the commensal intestinal microbiota in the development and later function of the central nervous system. Research using germ-free mice (mice raised without any exposure to microorganisms) has provided some of the most persuasive evidence for a role of these bacteria in gut-brain signalling. Key findings show that the microbiota is necessary for normal stress responsivity, anxiety-like behaviors, sociability, and cognition. Furthermore, the microbiota maintains central nervous system homeostasis by regulating immune function and blood brain barrier integrity. Studies have also found that the gut microbiota influences neurotransmitter, synaptic, and neurotrophic signalling systems and neurogenesis. The principle advantage of the germ-free mouse model is in proof-of-principle studies and that a complete microbiota or defined consortiums of bacteria can be introduced at various developmental time points. However, a germ-free upbringing can induce permanent neurodevelopmental deficits that may deem the model unsuitable for specific scientific queries that do not involve early-life microbial deficiency. As such, alternatives and complementary strategies to the germ-free model are warranted and include antibiotic treatment to create microbiota-deficient animals at distinct time points across the lifespan. Increasing our understanding of the impact of the gut microbiota on brain and behavior has the potential to inform novel management strategies for stress-related gastrointestinal and neuropsychiatric disorders. PMID:26912607

  20. Growing up in a Bubble: Using Germ-Free Animals to Assess the Influence of the Gut Microbiota on Brain and Behavior.

    PubMed

    Luczynski, Pauline; McVey Neufeld, Karen-Anne; Oriach, Clara Seira; Clarke, Gerard; Dinan, Timothy G; Cryan, John F

    2016-08-01

    There is a growing recognition of the importance of the commensal intestinal microbiota in the development and later function of the central nervous system. Research using germ-free mice (mice raised without any exposure to microorganisms) has provided some of the most persuasive evidence for a role of these bacteria in gut-brain signalling. Key findings show that the microbiota is necessary for normal stress responsivity, anxiety-like behaviors, sociability, and cognition. Furthermore, the microbiota maintains central nervous system homeostasis by regulating immune function and blood brain barrier integrity. Studies have also found that the gut microbiota influences neurotransmitter, synaptic, and neurotrophic signalling systems and neurogenesis. The principle advantage of the germ-free mouse model is in proof-of-principle studies and that a complete microbiota or defined consortiums of bacteria can be introduced at various developmental time points. However, a germ-free upbringing can induce permanent neurodevelopmental deficits that may deem the model unsuitable for specific scientific queries that do not involve early-life microbial deficiency. As such, alternatives and complementary strategies to the germ-free model are warranted and include antibiotic treatment to create microbiota-deficient animals at distinct time points across the lifespan. Increasing our understanding of the impact of the gut microbiota on brain and behavior has the potential to inform novel management strategies for stress-related gastrointestinal and neuropsychiatric disorders.

  1. Composition and molecular weight distribution of carob germ protein fractions.

    PubMed

    Smith, Brennan M; Bean, Scott R; Schober, Tilman J; Tilley, Michael; Herald, Thomas J; Aramouni, Fadi

    2010-07-14

    Biochemical properties of carob germ proteins were analyzed using a combination of selective extraction, reversed-phase high-performance liquid chromatography (RP-HPLC), size exclusion chromatography (SEC) coupled with multiangle laser light scattering (SEC-MALS), and electrophoretic analysis. Using a modified Osborne extraction procedure, carob germ flour proteins were found to contain approximately 32% albumin and globulin and approximately 68% glutelin with no prolamins detected. The albumin and globulin fraction was found to contain low amounts of disulfide-bonded polymers with relatively low M(w) ranging up to 5 x 10(6) Da. The glutelin fraction, however, was found to contain large amounts of high molecular weight disulfide-bonded polymers with M(w) up to 8 x 10(7) Da. When extracted under nonreducing conditions and divided into soluble and insoluble proteins as typically done for wheat gluten, carob germ proteins were found to be almost entirely ( approximately 95%) in the soluble fraction with only ( approximately 5%) in the insoluble fraction. As in wheat, SEC-MALS analysis showed that the insoluble proteins had a greater M(w) than the soluble proteins and ranged up to 8 x 10(7) Da. The lower M(w) distribution of the polymeric proteins of carob germ flour may account for differences in functionality between wheat and carob germ flour.

  2. Mechanisms and chemical induction of aneuploidy in rodent germ cells

    SciTech Connect

    Mailhes, J B; Marchetti, F

    2004-10-15

    The objective of this review is to suggest that the advances being made in our understanding of the molecular events surrounding chromosome segregation in non-mammalian and somatic cell models be considered when designing experiments for studying aneuploidy in mammalian germ cells. Accurate chromosome segregation requires the temporal control and unique interactions among a vast array of proteins and cellular organelles. Abnormal function and temporal disarray among these, and others to be inidentified, biochemical reactions and cellular organelles have the potential for predisposing cells to aneuploidy. Although numerous studies have demonstrated that certain chemicals (mainly those that alter microtubule function) can induce aneuploidy in mammalian germ cells, it seems relevant to point out that such data can be influenced by gender, meiotic stage, and time of cell-fixation post-treatment. Additionally, a consensus has not been reached regarding which of several germ cell aneuploidy assays most accurately reflects the human condition. More recent studies have shown that certain kinase, phosphatase, proteasome, and topoisomerase inhibitors can also induce aneuploidy in rodent germ cells. We suggest that molecular approaches be prudently incorporated into mammalian germ cell aneuploidy research in order to eventually understand the causes and mechanisms of human aneuploidy. Such an enormous undertaking would benefit from collaboration among scientists representing several disciplines.

  3. Physicochemical properties of nixtamalized corn flours with and without germ.

    PubMed

    Vega Rojas, Lineth J; Rojas Molina, Isela; Gutiérrez Cortez, Elsa; Rincón Londoño, Natalia; Acosta Osorio, Andrés A; Del Real López, Alicia; Rodríguez García, Mario E

    2017-04-01

    This research studied the influence of the germ components on the physicochemical properties of cooked corn and nixtamalized corn flours as a function of the calcium hydroxide content (from 0 to 2.1 w/w) and steeping time (between 0 and 9h). A linear relationship was found between calcium content in germ and steeping time used during nixtamalization process. X-ray diffraction analysis showed that calcium carbonate is formed into the germ structure to 2.1 w/w of calcium hydroxide and 9h steeping time. The presence of the germ improves the development of peak viscosity in flours, and it is related to the increases in calcium concentration in germ and the formation of amylose-lipid complexes. No significant changes were observed in palmitic, stearic, oleic and linoleic acids of corn oil. The levels of further corn oil deterioration were 2.1 w/w of calcium hydroxide concentration and 9h of steeping time.

  4. Using Developmental Trajectories to Understand Developmental Disorders

    ERIC Educational Resources Information Center

    Thomas, Michael S. C.; Annaz, Dagmara; Ansari, Daniel; Scerif, Gaia; Jarrold, Chris; Karmiloff-Smith, Annette

    2009-01-01

    Purpose: In this article, the authors present a tutorial on the use of developmental trajectories for studying language and cognitive impairments in developmental disorders and compare this method with the use of matching. Method: The authors assess the strengths, limitations, and practical implications of each method. The contrast between the…

  5. Male-mediated developmental toxicity

    SciTech Connect

    Anderson, Diana . E-mail: d.anderson1@bradford.ac.uk

    2005-09-01

    In recent years, the public has become more aware that exposure of males to certain agents can adversely affect their offspring and cause infertility and cancer. The hazards associated with exposure to ionising radiation have been recognised for nearly a century, but interest was aroused when a cluster of leukaemia cases was identified in young children living in Seascale, close to the nuclear processing plant at Sellafield in West Cumbria. There was a civil court case on behalf of two of the alleged victims of paternal irradiation at Seascale against British Nuclear Fuels. The case foundered on 'the balance of probabilities'. Nevertheless, there was support for paternal exposure from Japanese experimental X-ray studies in mice. The tumours were clearly heritable as shown by F2 transmission. Also, effects of a relatively non-toxic dose of radiation (1Gy) on cell proliferation transmitted to the embryo were manifested in the germ line of adult male mice even after two generations. In addition in humans, smoking fathers appear to give rise to tumours in the F{sub 1} generation. Using rodent models, developmental abnormalities/congenital malformations and tumours can be studied after exposure of males in an extended dominant lethal assay and congenital malformations can be determined which have similar manifestations in humans. The foetuses can also be investigated for skeletal malformations and litters can be allowed to develop to adulthood when tumours, if present, can be observed. Karyotype analysis can be performed on foetuses and adult offspring to determine if induced genetic damage can be transmitted. Using this study design, cyclophosphamide, 1,3-butadiene and urethane have been examined and each compound produced positive responses: cyclophosphamide in all endpoints examined, 1,3-butadiene in some and urethane only produced liver tumours in F{sub 1} male offspring. This suggests the endpoints are determined by independent genetic events. The results from

  6. The induction of recessive mutations in mouse primordial germ cells with N-ethyl-N-nitrosourea.

    PubMed

    Shibuya, T; Murota, T; Horiya, N; Matsuda, H; Hara, T

    1993-12-01

    A specific-locus test was carried out to examine the mutagenic activity of N-ethyl-N-nitrosourea (ENU) on mouse primordial germ cells (PGC). Embryos of C3H/He mice were treated transplacentally with 30 or 50 mg ENU per kg of maternal body weight on day 8.5, 10.5, or 13.5 of gestation (G8.5 day, G10.5 day, or G13.5 day). Male and female mice that had been treated with ENU in embryonic stages were mated with female or male tester PW mice to detect recessive mutations induced in PGC. ENU induced recessive mutations at a relatively high rate in PGC at these developmental stages. The most sensitive stage was G10.5 day. On G8.5 day, the induced mutation rate in males and females was not significantly different. Cluster mutations, which originate from the limited number of PGC and cell killing, were more frequently induced at an earlier developmental stage. The induced mutation rate per unit dose of ENU (1 mg/kg) was higher in G8.5 and G10.5 day PGC than in stem-cell spermatogonia. It can be concluded that mouse PGC are more sensitive than stem-cell spermatogonia to the induction of recessive mutations by ENU.

  7. A rare example of germ-line chromothripsis resulting in large genomic imbalance.

    PubMed

    Anderson, Sarah E; Kamath, Arveen; Pilz, Daniela T; Morgan, Sian M

    2016-04-01

    Chromothripsis is a recently described 'chromosome catastrophe' phenomenon in which multiple genomic rearrangements are generated in a single catastrophic event. Chromothripsis has most frequently been associated with cancer, but there have also been rare reports of chromothripsis in patients with developmental disorders and congenital anomalies. In contrast to the massive DNA loss that often accompanies chromothripsis in cancer, only minimal DNA loss has been reported in the majority of cases of chromothripsis that have occurred in the germ line. Presumably, this is because in most instances, large genomic losses would be lethal in utero. We report on a female patient with developmental delay and dysmorphism. G-banded chromosome analysis detected a subtle, interstitial deletion of chromosome 13 and a complex rearrangement of one X chromosome. Subsequent array comparative genomic hybridisation studies indicated nine deletions on the X chromosome ranging from 327 kb to 8 Mb in size. A 4.4 Mb deletion on chromosome 13 was also confirmed, compatible with the patient's clinical phenotype. We propose that this is a rare example of constitutional chromothripsis in association with relatively large genomic imbalances and that these have been tolerated in this case as they have occurred in a female on the X chromosome, which has undergone preferential X inactivation.

  8. Functional analysis of the Drosophila embryonic germ cell transcriptome by RNA interference.

    PubMed

    Jankovics, Ferenc; Henn, László; Bujna, Ágnes; Vilmos, Péter; Spirohn, Kerstin; Boutros, Michael; Erdélyi, Miklós

    2014-01-01

    In Drosophila melanogaster, primordial germ cells are specified at the posterior pole of the very early embryo. This process is regulated by the posterior localized germ plasm that contains a large number of RNAs of maternal origin. Transcription in the primordial germ cells is actively down-regulated until germ cell fate is established. Bulk expression of the zygotic genes commences concomitantly with the degradation of the maternal transcripts. Thus, during embryogenesis, maternally provided and zygotically transcribed mRNAs determine germ cell development collectively. In an effort to identify novel genes involved in the regulation of germ cell behavior, we carried out a large-scale RNAi screen targeting both maternal and zygotic components of the embryonic germ line transcriptome. We identified 48 genes necessary for distinct stages in germ cell development. We found pebble and fascetto to be essential for germ cell migration and germ cell division, respectively. Our data uncover a previously unanticipated role of mei-P26 in maintenance of embryonic germ cell fate. We also performed systematic co-RNAi experiments, through which we found a low rate of functional redundancy among homologous gene pairs. As our data indicate a high degree of evolutionary conservation in genetic regulation of germ cell development, they are likely to provide valuable insights into the biology of the germ line in general.

  9. Giant Mediastinal Germ Cell Tumour: An Enigma of Surgical Consideration

    PubMed Central

    Ali, Nurayub Mohd; Azizan, Nornazirah; Zakaria, Andee Dzulkarnaen; Rahman, Mohd Ramzisham Abdul

    2016-01-01

    We present a case of 16-year-old male, who was referred from private centre for dyspnoea, fatigue, and orthopnea. The chest radiograph revealed complete opacification of left chest which was confirmed by computed tomography as a large left mediastinal mass measuring 14 × 15 × 18 cm. The diagnostic needle core biopsy revealed mixed germ cell tumour with possible combination of embryonal carcinoma, yolk sac, and teratoma. After 4 cycles of neoadjuvant BEP regime, there was initial response of tumour markers but not tumour bulk. Instead of classic median sternotomy or clamshell incision, posterolateral approach with piecemeal manner was chosen. Histology confirmed mixed germ cell tumour with residual teratomatous component without yolk sac or embryonal carcinoma component. Weighing 3.5 kg, it is one of the largest mediastinal germ cell tumours ever reported. We describe this rare and gigantic intrathoracic tumour and discuss the spectrum of surgical approach and treatment of this exceptional tumour. PMID:27807495

  10. Reproduction of wild birds via interspecies germ cell transplantation.

    PubMed

    Kang, Seok Jin; Choi, Jin Won; Kim, Sun Young; Park, Kyung Je; Kim, Tae Min; Lee, Young Mok; Kim, Heebal; Lim, Jeong Mook; Han, Jae Yong

    2008-11-01

    The present study was conducted to apply an interspecies germ cell transfer technique to wild bird reproduction. Pheasant (Phasianus colchicus) primordial germ cells (PGCs) retrieved from the gonads of 7-day-old embryos were transferred to the bloodstream of 2.5-day-old chicken (Gallus gallus) embryos. Pheasant-to-chicken germline chimeras hatched from the recipient embryos, and 10 pheasants were derived from testcross reproduction of the male chimeras with female pheasants. Gonadal migration of the transferred PGCs, their involvement in spermatogenesis, and production of chimeric semen were confirmed. The phenotype of pheasant progenies derived from the interspecies transfer was identical to that of wild pheasants. The average efficiency of reproduction estimated from the percentage of pheasants to total progenies was 17.5%. In conclusion, interspecies germ cell transfer into a developing embryo can be used for wild bird reproduction, and this reproductive technology may be applicable in conserving endangered bird species.

  11. Isolation and characterization of germ line DNA from mouse sperm.

    PubMed Central

    Shiurba, R; Nandi, S

    1979-01-01

    Mouse germ line DNA was isolated from sperm by a physicochemical procedure that preferentially destroys contaminating somatic cell DNA. The use of reducing conditions and chelating agents in combination with phenol permitted extraction of molecular weight DNA from mature sperm nuclei with approximately 80% efficiency. Less than 0.1% somatic cell DNA contamination remained in sperm DNA prepared by this method. Germ line DNA was characterized by determination of its ultraviolet absorbance spectrum, buoyant density in cesium chloride, and melting profile on a hydroxyapatite column. Contamination by mitochondrial DNA was assessed by cesium chloride/ethidium bromide gradient centrifugation. The significance of the mouse germ line DNA isolation procedure is discussed with respect to the possible genetic transmission of mammary tumor virus and leukemia virus, the origin of antibody diversity, and the origin of testicular teratomas. PMID:291053

  12. Enhanced Genetic Integrity in Mouse Germ Cells1

    PubMed Central

    Murphey, Patricia; McLean, Derek J.; McMahan, C. Alex; Walter, Christi A.; McCarrey, John R.

    2012-01-01

    ABSTRACT Genetically based diseases constitute a major human health burden, and de novo germline mutations represent a source of heritable genetic alterations that can cause such disorders in offspring. The availability of transgenic rodent systems with recoverable, mutation reporter genes has been used to assess the occurrence of spontaneous point mutations in germline cells. Previous studies using the lacI mutation reporter transgenic mouse system showed that the frequency of spontaneous mutations is significantly lower in advanced male germ cells than in somatic cell types from the same individuals. Here we used this same mutation reporter transgene system to show that female germ cells also display a mutation frequency that is lower than that in corresponding somatic cells and similar to that seen in male germ cells, indicating this is a common feature of germ cells in both sexes. In addition, we showed that statistically significant differences in mutation frequencies are evident between germ cells and somatic cells in both sexes as early as mid-fetal stages in the mouse. Finally, a comparison of the mutation frequency in a general population of early type A spermatogonia with that in a population enriched for Thy-1-positive spermatogonia suggests there is heterogeneity among the early spermatogonial population such that a subset of these cells are predestined to form true spermatogonial stem cells. Taken together, these results support the disposable soma theory, which posits that genetic integrity is normally maintained more stringently in the germ line than in the soma and suggests that this is achieved by minimizing the initial occurrence of mutations in early germline cells and their subsequent gametogenic progeny relative to that in somatic cells. PMID:23153565

  13. The Domain of Developmental Psychopathology.

    ERIC Educational Resources Information Center

    Sroufe, L. Alan; Rutter, Michael

    1984-01-01

    Describes how developmental psychopathology differs from related disciplines, including abnormal psychology, psychiatry, clinical child psychology, and developmental psychology. Points out propositions underlying a developmental perspective and discusses implications for research in developmental psychopathology. (Author/RH)

  14. Klinefelter Syndrome with Poor Risk Extragonadal Germ Cell Tumor.

    PubMed

    Konheim, Jeremy A; Israel, Jonathan A; Delacroix, Scott E

    2017-01-01

    Germ cell tumors are the most common malignancy in men aged 15-35 years old, with a small percentage presenting in an extragonadal location. These tumors are seldom identified in the gastrointestinal tract. There is increased risk of extragonadal germ cell tumors (EGCT) in men with Klinefelter syndrome (KS). We report a rare case of a 37-year-old male with KS and EGCT discovered in the duodenum and pelvis. After treatment with Bleomycin-Etoposide-Cisplatin (BEP), he developed growing teratoma syndrome (GTS) and myelodysplasia. Despite surgical excision of the pelvic growing teratoma, he unfortunately died secondary to complications of severe bone marrow suppression.

  15. Extraction of oil from wheat germ by supercritical CO2.

    PubMed

    Piras, Alessandra; Rosa, Antonella; Falconieri, Danilo; Porcedda, Silvia; Dessì, Maria A; Marongiu, Bruno

    2009-07-15

    This study examined the supercritical fluid extraction of wheat germ oil. The effects of pressure (200-300 bar at 40 degrees C) and extraction time on the oil quality/quantity were studied. A comparison was also made between the relative qualities of material obtained by SFE and by organic solvent extraction. The extracts were analyzed for alpha-tocopherol and polyunsaturated fatty acid content. The maximum wheat germ oil yield at about 9% was obtained with supercritical carbon dioxide extraction at 300 bar, while fatty acid and alpha-tocopherol composition of the extracts was not remarkable affected by either pressure or the extraction method.

  16. Inhibition of Vorticella microstoma stalk formation by wheat germ agglutinin.

    PubMed

    Bramucci, Michael G; Nagarajan, Vasantha

    2004-01-01

    Fluorescently labeled conjugates of wheat germ agglutinin and concanavalin A stained the contractile stalk but not the cell body of Vorticella microstoma trophonts. Binding of the fluorescent conjugants did not noticeably alter the activity of the trophonts. However, unconjugated wheat germ agglutinin prevented free swimming telotrochs from adhering to a glass surface and deploying a contractile stalk during differentiation into trophonts. These observations indicated that the stalk, the material that binds the stalk to surfaces, and the precursors for these components have saccharide residues in common.

  17. Chiral discotic columnar germs of nucleosome core particles.

    PubMed Central

    Livolant, F; Leforestier, A

    2000-01-01

    In concentrated solution and in the presence of high concentrations of monovalent cations, nucleosome core particles order into a discotic columnar mesophase. This phase is limited to finite-sized hexagonal germs that further divide into six coiled branches, following an iterative process. We show how the structure of the germs comes from the competition between hexagonal packing and chirality with a combination of dendritic facetting and double-twist configurations. Geometrical considerations lead us to suspect that the chirality of the eukaryotic chromosomes may originate from the same competition. PMID:10777768

  18. A functional genomic screen in planarians identifies novel regulators of germ cell development.

    PubMed

    Wang, Yuying; Stary, Joel M; Wilhelm, James E; Newmark, Phillip A

    2010-09-15

    Germ cells serve as intriguing examples of differentiated cells that retain the capacity to generate all cell types of an organism. Here we used functional genomic approaches in planarians to identify genes required for proper germ cell development. We conducted microarray analyses and in situ hybridization to discover and validate germ cell-enriched transcripts, and then used RNAi to screen for genes required for discrete stages of germ cell development. The majority of genes we identified encode conserved RNA-binding proteins, several of which have not been implicated previously in germ cell development. We also show that a germ cell-specific subunit of the conserved transcription factor CCAAT-binding protein/nuclear factor-Y is required for maintaining spermatogonial stem cells. Our results demonstrate that conserved transcriptional and post-transcriptional mechanisms regulate germ cell development in planarians. These findings suggest that studies of planarians will inform our understanding of germ cell biology in higher organisms.

  19. Developmental Phases of the Seminal Vesicle related to the Spermatogenic Stages in the Testicular Lobules of Neptunea (Barbitonia) cumingii (Gastropoda: Buccinidae)

    PubMed Central

    Kim, Sung Han

    2016-01-01

    Cytological changes of the epithelial cells according to the developmenatal phases of the seminal vesicle related to the spermatogenic stages in the testicular lobules during spermagenesis in male Neptunea (Barbitonia) cumingii (Gastropoda: Buccinidae) were investigated monthly by electron microscopical and histological observations. N. (B) cumingii is dioecious, and an internal fertilization species. The male genital organ is located near the tentacles. The spermatozoon is approximatley 50 μm in length. The axoneme of the tail flagellum consists of nine pairs of microtubles at the periphery and one pair at the center. The process of germ cell development during spermatogenesis can be divided into five succesive stages: (1) spermatogonia, (2) primary spermatocytes, (3) secondary spermatocytes, (4) spermatids, and (5) spermatozoa. A considerable amount of spermatozoa make their appearance in the testicular lobules (or acini) and some of them are tranported from the testis towards the seminal vesicles until late July. In this study, the developmental phases of the epithelial cells of the seminal vesicles of N. (B.) cumingii could be classified into four phases: (1) S-I phase (resting), (2) S-Ⅱphase (early accumulating), (3) S-Ⅲ phase (accumulating), and (4) S-IV phase (spent). However, in case of N. (B.) arthritica cumingii, the developmental phases of the seminal vesicle were devided into three phases: (1) resting, (2) accumulating and (3) spent. Granular bodies in the inner layer of the seminal vesicles are involved in resorption of digestion of residual spermatozoa. PMID:27796006

  20. The EEL-1 ubiquitin ligase promotes DNA damage-induced germ cell apoptosis in C. elegans

    PubMed Central

    Ross, A J; Li, M; Yu, B; Gao, M X; Derry, W B

    2011-01-01

    E3 ubiquitin ligases target a growing number of pro- and anti-apoptotic proteins, including tumour suppressor p53, caspases, and the Bcl-2 family. The core apoptosis pathway is well conserved between mammals and Caenorhabditis elegans, but the extent to which ubiquitin ligases regulate apoptotic cell death is not known. To investigate the role of E3 ligases in apoptosis, we inhibited 108 of the 165 predicted E3 ubiquitin ligase genes by RNA interference and quantified apoptosis in the C. elegans germline after genotoxic stress. From this screen, we identified the homologous to E6-associated protein C terminus-domain E3 ligase EEL-1 as a positive regulator of apoptosis. Intriguingly, the human homologue of EEL-1, Huwe1/ARF-BP1/Mule/HectH9, has been reported to possess both pro- and anti-apoptotic functions through its ability to stimulate Mcl-1 and p53 degradation, respectively. Here, we demonstrate that eel-1 is required to promote DNA damage-induced germ cell apoptosis, but does not have a role in physiological germ cell apoptosis or developmental apoptosis in somatic tissue. Furthermore, eel-1 acts in parallel to the p53-like gene cep-1 and intersects the core apoptosis pathway upstream of the Bcl-2/Mcl-1 orthologue ced-9. Although ee1-1 mutants exhibit hypersensitivity to genotoxic stress they do not appear to be defective in DNA repair, suggesting a distinct role for EEL-1 in promoting damage-induced apoptosis in the germline. PMID:21233842

  1. Detection and characterization of primordial germ cells in pheasant (Phasianus colchicus) embryos.

    PubMed

    Kim, Jin Nam; Lee, Young Mok; Park, Tae Sub; Jung, Jin Gyoung; Cho, Byeong Wook; Lim, Jeong Mook; Han, Jae Yong

    2005-03-01

    The developmental similarity between the chicken and pheasant (Phasianus colchicus) allows the novel biotechnologies developed in the chicken to be applied to the production of transgenic pheasants and interspecies germline chimeras. To detect pheasant primordial germ cells (PGCs) efficiently, which is important for inducing germline transmission, the ultrastructure of PGCs and their reactivity to several antibodies (2C9, QB2, anti-SSEA-1, and QCR1) and periodic acid-Schiff's solution (PAS) were examined. To obtain PGCs, blood was taken from embryos incubated for 62-72 h or from gonads from embryos incubated for 156-216 h. The PGCs collected from both sources had the typical ultrastructure of pluripotent cells: a large nucleus with a distinct nucleolus, a high ratio of nuclear to cytoplasmic volume, and a distinct cytoplasmic membrane. In comparing the morphology of PGCs collected from different sites, more mitochondria and better-developed membrane microvilli were found in gonadal PGCs than in circulating PGCs. The nucleus of gonadal PGCs was flattened and had a large eccentrically positioned nucleolus. Of the antibodies tested, only QCR1 antibody reacted with an epitope in pheasant PGCs, and no specific signal was detected to other antibodies. The temporal change in the PGC populations in the blood and gonads of embryos was examined. In blood, the population was greater (P < 0.0001) in embryos incubated for 64 h than in embryos incubated for 62 or 66-72 h (31.4 versus 5.6-16.2 microL(-1)). In embryonic gonads, the number of PGCs increased continuously from 156 to 216 h of incubation (193-2,718 cells/embryo), although the ratio of PGCs to total gonadal cells did not change significantly (0.50-0.61%). In conclusion, pheasant PGCs have typical germ cell morphology and possess the QCR1 epitope. Circulating blood and the gonads of embryos incubated for 64 and 216 h, respectively, are good sources of PGCs.

  2. Pronounced segregation of donor mitochondria introduced by bovine ooplasmic transfer to the female germ-line.

    PubMed

    Ferreira, Christina Ramires; Burgstaller, Jörg Patrick; Perecin, Felipe; Garcia, Joaquim Mansano; Chiaratti, Marcos Roberto; Méo, Simone Cristina; Müller, Mathias; Smith, Lawrence Charles; Meirelles, Flávio Vieira; Steinborn, Ralf

    2010-03-01

    Ooplasmic transfer (OT) has been used in basic mouse research for studying the segregation of mtDNA, as well as in human assisted reproduction for improving embryo development in cases of persistent developmental failure. Using cattle as a large-animal model, we demonstrate that the moderate amount of mitochondria introduced by OT is transmitted to the offspring's oocytes; e.g., modifies the germ line. The donor mtDNA was detectable in 25% and 65% of oocytes collected from two females. Its high variation in heteroplasmic oocytes, ranging from 1.1% to 33.5% and from 0.4% to 15.5%, can be explained by random genetic drift in the female germ line. Centrifugation-mediated enrichment of mitochondria in the pole zone of the recipient zygote's ooplasm and its substitution by donor ooplasm led to elevated proportions of donor mtDNA in reconstructed zygotes compared with zygotes produced by standard OT (23.6% +/- 9.6% versus 12.1% +/- 4.5%; P < 0.0001). We also characterized the proliferation of mitochondria from the OT parents-the recipient zygote (Bos primigenius taurus type) and the donor ooplasm (B. primigenius indicus type). Regression analysis performed for 57 tissue samples collected from the seven OT fetuses at different points during fetal development found a decreasing proportion of donor mtDNA (r(2) = 0.78). This indicates a preferred proliferation of recipient taurine mitochondria in the context of the nuclear genotype of the OT recipient expressing a B. primigenius indicus phenotype.

  3. The EEL-1 ubiquitin ligase promotes DNA damage-induced germ cell apoptosis in C. elegans.

    PubMed

    Ross, A J; Li, M; Yu, B; Gao, M X; Derry, W B

    2011-07-01

    E3 ubiquitin ligases target a growing number of pro- and anti-apoptotic proteins, including tumour suppressor p53, caspases, and the Bcl-2 family. The core apoptosis pathway is well conserved between mammals and Caenorhabditis elegans, but the extent to which ubiquitin ligases regulate apoptotic cell death is not known. To investigate the role of E3 ligases in apoptosis, we inhibited 108 of the 165 predicted E3 ubiquitin ligase genes by RNA interference and quantified apoptosis in the C. elegans germline after genotoxic stress. From this screen, we identified the homologous to E6-associated protein C terminus-domain E3 ligase EEL-1 as a positive regulator of apoptosis. Intriguingly, the human homologue of EEL-1, Huwe1/ARF-BP1/Mule/HectH9, has been reported to possess both pro- and anti-apoptotic functions through its ability to stimulate Mcl-1 and p53 degradation, respectively. Here, we demonstrate that eel-1 is required to promote DNA damage-induced germ cell apoptosis, but does not have a role in physiological germ cell apoptosis or developmental apoptosis in somatic tissue. Furthermore, eel-1 acts in parallel to the p53-like gene cep-1 and intersects the core apoptosis pathway upstream of the Bcl-2/Mcl-1 orthologue ced-9. Although ee1-1 mutants exhibit hypersensitivity to genotoxic stress they do not appear to be defective in DNA repair, suggesting a distinct role for EEL-1 in promoting damage-induced apoptosis in the germline.

  4. Germ band retraction as a landmark in glucose metabolism during Aedes aegypti embryogenesis

    PubMed Central

    2010-01-01

    Background The mosquito A. aegypti is vector of dengue and other viruses. New methods of vector control are needed and can be achieved by a better understanding of the life cycle of this insect. Embryogenesis is a part of A. aegypty life cycle that is poorly understood. In insects in general and in mosquitoes in particular energetic metabolism is well studied during oogenesis, when the oocyte exhibits fast growth, accumulating carbohydrates, lipids and proteins that will meet the regulatory and metabolic needs of the developing embryo. On the other hand, events related with energetic metabolism during A. aegypti embryogenesis are unknown. Results Glucose metabolism was investigated throughout Aedes aegypti (Diptera) embryonic development. Both cellular blastoderm formation (CBf, 5 h after egg laying - HAE) and germ band retraction (GBr, 24 HAE) may be considered landmarks regarding glucose 6-phosphate (G6P) destination. We observed high levels of glucose 6-phosphate dehydrogenase (G6PDH) activity at the very beginning of embryogenesis, which nevertheless decreased up to 5 HAE. This activity is correlated with the need for nucleotide precursors generated by the pentose phosphate pathway (PPP), of which G6PDH is the key enzyme. We suggest the synchronism of egg metabolism with carbohydrate distribution based on the decreasing levels of phosphoenolpyruvate carboxykinase (PEPCK) activity and on the elevation observed in protein content up to 24 HAE. Concomitantly, increasing levels of hexokinase (HK) and pyruvate kinase (PK) activity were observed, and PEPCK reached a peak around 48 HAE. Glycogen synthase kinase (GSK3) activity was also monitored and shown to be inversely correlated with glycogen distribution during embryogenesis. Conclusions The results herein support the hypothesis that glucose metabolic fate changes according to developmental embryonic stages. Germ band retraction is a moment that was characterized as a landmark in glucose metabolism during Aedes

  5. Evidence against a germ plasm in the milkweed bug Oncopeltus fasciatus, a hemimetabolous insect.

    PubMed

    Ewen-Campen, Ben; Jones, Tamsin E M; Extavour, Cassandra G

    2013-06-15

    Primordial germ cell (PGC) formation in holometabolous insects like Drosophila melanogaster relies on maternally synthesised germ cell determinants that are asymmetrically localised to the oocyte posterior cortex. Embryonic nuclei that inherit this "germ plasm" acquire PGC fate. In contrast, historical studies of basally branching insects (Hemimetabola) suggest that a maternal requirement for germ line genes in PGC specification may be a derived character confined principally to Holometabola. However, there have been remarkably few investigations of germ line gene expression and function in hemimetabolous insects. Here we characterise PGC formation in the milkweed bug Oncopeltus fasciatus, a member of the sister group to Holometabola, thus providing an important evolutionary comparison to members of this clade. We examine the transcript distribution of orthologues of 19 Drosophila germ cell and/or germ plasm marker genes, and show that none of them localise asymmetrically within Oncopeltus oocytes or early embryos. Using multiple molecular and cytological criteria, we provide evidence that PGCs form after cellularisation at the site of gastrulation. Functional studies of vasa and tudor reveal that these genes are not required for germ cell formation, but that vasa is required in adult males for spermatogenesis. Taken together, our results provide evidence that Oncopeltus germ cells may form in the absence of germ plasm, consistent with the hypothesis that germ plasm is a derived strategy of germ cell specification in insects.

  6. DNA Analysis in Samples From Younger Patients With Germ Cell Tumors and Their Parents or Siblings

    ClinicalTrials.gov

    2016-10-05

    Childhood Malignant Ovarian Germ Cell Tumor; Childhood Malignant Testicular Germ Cell Tumor; Ovarian Choriocarcinoma; Ovarian Embryonal Carcinoma; Ovarian Mixed Germ Cell Tumor; Ovarian Teratoma; Ovarian Yolk Sac Tumor; Testicular Choriocarcinoma; Testicular Embryonal Carcinoma; Testicular Seminoma; Testicular Teratoma; Testicular Yolk Sac Tumor

  7. Improved solubility and emulsification of wet-milled corn germ protein recovered by ultrafiltration-diafiltration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluated ultrafiltration-diafiltration (UFDF) as a means to improve the extractability of wet-milled corn germ protein and determined its effects on the functional properties of the recovered protein product. Wet germ (WG) and finished germ (FG) proteins (Pr) were extracted by using 0.1M...

  8. Protein in wet-milled corn germ recovered by ultrafiltration-diafiltration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to evaluate ultrafiltration-diafiltration (UF-DF) as a means to improve the extractability of wet-milled corn germ protein and determine its effects on the functional properties of the recovered protein product. Wet germ and finished (dried) germ proteins were extracted by u...

  9. Quantitation of Alkaline Phosphatase Isoenzymes Using Agarose Containing Wheat Germ Lectin

    DTIC Science & Technology

    1989-07-01

    SIl Quantitation of Alkaline Phosphatase Isoenzymes Using Agarose Containing Wheat Germ Lectin A thesis submitted in partial fulfillment of the...16 Wheat Germ Lectin Electrophoresis to Quantitate Alkaline Phosphatase Isoenzymes ................ 16 Alkaline Phosphatase Isoenzyme...vs Polyacrylamide Gel Electrophoresis ......................... 40 Clinical Correlation Using Wheat Germ Lectin 45 Placental Alkaline Phosphatase

  10. Evidence against a germ plasm in the milkweed bug Oncopeltus fasciatus, a hemimetabolous insect

    PubMed Central

    Ewen-Campen, Ben; Jones, Tamsin E. M.; Extavour, Cassandra G.

    2013-01-01

    Summary Primordial germ cell (PGC) formation in holometabolous insects like Drosophila melanogaster relies on maternally synthesised germ cell determinants that are asymmetrically localised to the oocyte posterior cortex. Embryonic nuclei that inherit this “germ plasm” acquire PGC fate. In contrast, historical studies of basally branching insects (Hemimetabola) suggest that a maternal requirement for germ line genes in PGC specification may be a derived character confined principally to Holometabola. However, there have been remarkably few investigations of germ line gene expression and function in hemimetabolous insects. Here we characterise PGC formation in the milkweed bug Oncopeltus fasciatus, a member of the sister group to Holometabola, thus providing an important evolutionary comparison to members of this clade. We examine the transcript distribution of orthologues of 19 Drosophila germ cell and/or germ plasm marker genes, and show that none of them localise asymmetrically within Oncopeltus oocytes or early embryos. Using multiple molecular and cytological criteria, we provide evidence that PGCs form after cellularisation at the site of gastrulation. Functional studies of vasa and tudor reveal that these genes are not required for germ cell formation, but that vasa is required in adult males for spermatogenesis. Taken together, our results provide evidence that Oncopeltus germ cells may form in the absence of germ plasm, consistent with the hypothesis that germ plasm is a derived strategy of germ cell specification in insects. PMID:23789106

  11. Extraction and functional properties of non-zein proteins in corn germ from wet-milling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to develop methods of extracting corn germ protein and characterize and identify potential applications of the recovered protein. Protein was extracted from both wet germ and finished (dried) germ using 0.1M NaCl as solvent. The method involved homogenization, stirring, cent...

  12. Composition and Molecular Weight Distribution of Carob Germ Proteins Fractions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochemical properties of carob germ proteins were analyzed using a combination of selective extraction, reversed-phase high performance liquid chromatography (RP-HPLC), size exclusion chromatography coupled with multi-angle laser light scattering (SEC-MALS) and electrophoretic analysis. Using a mo...

  13. Declaring the Existence of Human Germ-Cell Mutagens

    EPA Science Inventory

    After more than 80 years of searching for human germ-cell mutagens, I think that sufficient evidence already exists for a number of agents to be so considered, and definitive confirmation seems imminent due to the application ofrecently developed genomic techniques. In preparatio...

  14. Germ cell DNA quantification shortly after IR laser radiation.

    PubMed

    Bermúdez, D; Carrasco, F; Diaz, F; Perez-de-Vargas, I

    1991-01-01

    The immediate effect of IR laser radiation on rat germ cells was studied by cytophotometric quantification of the nuclear DNA content in testicular sections. Two different levels of radiation were studied: one according to clinical application (28.05 J/cm2) and another known to increase the germ cell number (46.80 J/cm2). The laser beam induced changes in the germ cell DNA content depending on the cell type, the cell cycle phase and the doses of radiation energy applied. Following irradiation at both doses the percentage of spermatogonia showing a 4c DNA content was increased, while the percentage of these with a 2c DNA content was decreased. Likewise, the percentages of primary spermatocytes with a DNA content equal to 4c (at 28.05 J/cm2), between 2c and 4c (at 46.80 J/cm2) and higher than 4c (at both doses) were increased. No change in the mean spermatid DNA content was observed. Nevertheless, at 46.80 J/cm2 the percentages of elongated spermatids with a c or 2c DNA content differed from the controls. Data show that, even at laser radiation doses used in therapy, the germ cell DNA content is increased shortly after IR laser radiation.

  15. Distribution pattern of cholinesterase enzymes in human tooth germs.

    PubMed

    Nandasena, T L; Jayawardena, C K; Tilakaratne, W M; Nanayakkara, C D

    2010-08-01

    The two distinct molecular forms of cholinesterase (ChE) are acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Our previous studies have reported that ChE is involved in tooth development. However, further experiments are needed to understand the precise action of ChE in tooth development. This study aimed to localise types of ChE in human tooth germs, and identify their distribution pattern. ChE were localised in frozen sections of jaws which were prepared from dead fetuses, neonates and stillborns who were free from visible abnormalities by Karnovsky and Root method. AChE was identified in the inner and outer enamel epithelia including the cervical loop region, stratum intermedium and preameloblasts of tooth germs at bell stage. Secretory ameloblasts were free from staining. The bud and cap stages of permanent tooth germs showed AChE activity on the lingual aspect and top surface of the epithelial ingrowths, respectively. BuChE activity was localised in the degenerating dental lamina. Our study reported the first evidence of localisation of ChE in human tooth development and identified the possible molecular form of ChE in tooth germs as AChE. Also, our results have provided strong evidence to speculate the action of AChE is on the cells of enamel organ during tooth development.

  16. [Effects of formaldehyde on germ cells of male mice].

    PubMed

    Tang, Mingde; Xie, Ying; Yi, Yizhen; Wang, Wei

    2003-11-01

    General toxicity and genetic materials damage of formaldehyde on germ cells in different stages was studied. In order to discover the toxicity mechanism of formaldehyde on germ cells and the biomarkers of effect after the presence of damage in germ cells and the estimation index, the relationships between the damage of germ cells and the MDA, SDH activity and Cu and Zn. in testicle tissue were investigated. Male mice exposed to formaldehyde by i.p. for 5 days. Formaldehyde doses were: 0.20 mg/kg, 2.00 mg/kg, 20.00 mg/kg. Mice were killed at the 6th day and the 14th day. HE staining was used to study the pathological changes happened in testicle tissue. In order to study the changes in sperm, the sperms and the abnormality of the sperm's heads were observed. In order to study the damage of the genetic material in the germ cells, the frequencies of sister chromosome exchanges and the frequencies of MN cells were studied. MDA was measured by MDA diagnosis box. Copper and zinc were determined by FAAS. US was used to determine the SDH activity in serum and testicle tissue. The results showed that: The main pathological changes in testicle tissue of formaldehyde groups were degeneration; The sperm quantity was decreased and the sperm heads deformation ratio was increased in all formaldehyde groups; There were a significant increase of MN ratio in early spermatogenic cells and SCE ratio in medial and high dose groups; The MDA in testicle tissue significant increased in high dose group. The SDH activity in testicle tissue was declined in all formaldehyde groups; There were a significant decline of copper and zinc in testicle tissue in high dose group. It is suggested that: Formaldehyde could induce genetic materials in spermatogone, primary spermatocyte and caused degeneration and necrosis in secondary spermatocyte, spermatogenic cell, sperm; The damage of LPO, decline of copper and zinc and SDH activity in mice's testicle tissue could be caused by formaldehyde; The effect

  17. Testicular cell-conditioned medium supports embryonic stem cell differentiation toward germ lineage and to spermatocyte- and oocyte-like cells.

    PubMed

    Shah, Syed M; Saini, Neha; Singh, Manoj K; Manik, Radheysham; Singla, Suresh K; Palta, Prabhat; Chauhan, Manmohan S

    2016-08-01

    obtained in monolayer differentiation had a big nucleus and a surrounding ZP4 coat, the unique attributes of a female gamete. These oocyte-like structures, in extended cultures, showed embryonic development and progressed through two-cell, four-cell, eight-cell, morula, and blastocyst-like structures, indicative of their developmental competence. This, as per our knowledge, is first such study in higher mammals, especially farm animals, and assumes significance for its potential use in transgenic animal production, elite animal conservation and propagation, augmentation of reproductive performance in poor breeding buffalo species, and as a model for understanding human germ cell formation.

  18. Wheat germ: not only a by-product.

    PubMed

    Brandolini, Andrea; Hidalgo, Alyssa

    2012-03-01

    The wheat germ (embryonic axis and scutellum) represents about 2.5-3.8% of total seed weight and is an important by-product of the flour milling industry. The germ contains about 10-15% lipids, 26-35% proteins, 17% sugars, 1.5-4.5% fibre and 4% minerals, as well as significant quantities of bioactive compounds such as tocopherols [300-740 mg/kg dry matter (DM)], phytosterols (24-50 mg/kg), policosanols (10 mg/kg), carotenoids (4-38 mg/kg), thiamin (15-23 mg/kg) and riboflavin (6-10 mg/kg). Oil recovery is achieved by mechanical pressing or solvent extraction, which retrieve about 50% or 90% lipids, respectively; innovative approaches, such as supercritical carbon dioxide extraction, are also proposed. The oil is rich in triglycerides (57% of total lipids), mainly linoleic (18:2), palmitic (16:0) and oleic (18:1) acids, but relevant amounts of sterols, mono- and diglycerides, phospho- and glycolipids are present. The lypophilic antioxidants tocopherols and carotenoids are also abundant. The main by-product of oil extraction is defatted germ meal, which has high protein content (30-32%), is rich in albumin (34.5% of total protein) and globulin (15.6%), and thus presents a well-balanced amino acid profile. Its principal mineral constituents are potassium, magnesium, calcium, zinc and manganese, in decreasing order. Total flavonoid content is about 0.35 g rutin equivalent/100 g DM. The wheat germ is therefore a unique source of concentrated nutrients, highly valued as food supplement. While the oil is widely appreciated for its pharmaceutical and nutritional value, the defatted germ meal is a promising source of high-quality vegetable proteins. Better nutrient separation from the kernel and improved fractioning techniques could also provide high-purity molecules with positive health benefits.

  19. [Derivation of germ cells from mouse embryonic stem cells in culture].

    PubMed

    Fuhrmann, G

    2005-10-01

    Mouse embryonic stem cells derive from the inner cell mass of the blastocyst and give rise to the three primitive embryonic layers, which later will form all the different tissue types of an adult. Embryonic stem cells are thus defined as totipotent cells. In vitro, these cells can give rise to all the somatic cells. Different laboratories have now shown that cultured embryonic stem cells can also differentiate into germline cells. By using the transcription factor Oct-4 as a tool for the visualization of germ cells, it has been shown the derivation of oocytes from mouse embryonic stem cells. These works should contribute to various areas, including therapeutic cloning which associates nuclear transfer and selective production of a specific cell type.

  20. Anastomosis of germ tubes and nuclear migration of nuclei in germ tube networks of the soybean rust pathogen, Phakopsora pachyrhizi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Parasexual recombination through hyphal anastomosis is an important mechanism for genetic diversity in filamentous fungi. In this study, we observed fusion of germ tubes in germinating urediniospores of Phakopsora pachyrhizi resulting in a complex hyphal network. Staining of the germinating uredinio...

  1. Germ direct observation by AFM under crystallization of self-organized assemblies of mono-protonated meso-tetraphenylporphine dimers

    NASA Astrophysics Data System (ADS)

    Udal'tsov, Alexander V.

    2016-08-01

    Assemblies consisting of mono-protonated meso-tetraphenylporphine dimers and water have been investigated by UV-vis spectroscopy in solution and atomic force microscopy (AFM) in thin layers. These assemblies self-organized into domains produce microcrystals in thin layer. Morphology of the microcrystals and characteristic features of crystallization germ on the top found by contact AFM indicate that surface tension of an aqueous layer on the domain generates the crystallization process. Estimations of the pressure producing the germ and bulk modulus (Bm) of microcrystals give 26.3±2.6 MPa and 3.72 GPa and Bm=12.7 GPa obtained for dried thin films. The former modulus is comparable with bulk modulus of water (2.174 GPa) that implies liquid crystals formation. Absorptions of longitudinal optical (LO) phonons with ћωLO=0.3761 and 0.3577 eV, which are arisen because of hole polaron moving through water, are found in the electronic spectra of the assemblies. The crystallization is suggested to occur due to Zundel cation (H5O2+) operation like the water-porphyrin matrix self-organization found earlier.

  2. Developmental disturbances of permanent teeth following trauma to the primary dentition.

    PubMed

    von Arx, T

    1993-02-01

    The topographic relationship of the apices of the primary teeth to the permanent tooth germs explains the potential for possible developmental disturbances of the permanent teeth after injuries to their predecessors. The anatomical, histologic and clinical aspects of permanent tooth malformation following trauma to the primary teeth are described. One hundred and fourteen children with originally 255 traumatized primary teeth have been re-examined (with an average period of 5.1 years after the trauma) to assess any developmental disturbances of the corresponding permanent teeth. Twenty-three per cent of partially or completely erupted permanent teeth showed developmental disturbances. The most frequent malformation was enamel hypoplasia including enamel discoloration and/or enamel defects. The highest prevalence of developmental disturbances of permanent teeth was found after intrusive injuries of primary teeth.

  3. Screening for Developmental Disabilities

    PubMed Central

    Foster, Carol; Duran-Flores, Deborah; Dumars, Kenneth W.; Stills, Stanley

    1985-01-01

    Developmental disabilities are responsible for a combination of severe physical, mental, psychological and social deficits. They develop before age 22 years and involve a little more than 1% of the population. Screening for developmental disabilities is the first step in their prevention. Various screening instruments are available for use throughout the developmental years that are designed to detect the wide variety of developmental problems that interfere with a developing person's optimal adaptation to his or her environment. The screening instruments must be inexpensive, reproducible, widely available and cost effective to the child, family and society. PMID:2413633

  4. Prmt5 is required for germ cell survival during spermatogenesis in mice

    PubMed Central

    Wang, Yanbo; Zhu, Tianxiang; Li, Qiuling; Liu, Chunyi; Han, Feng; Chen, Min; Zhang, Lianjun; Cui, Xiuhong; Qin, Yan; Bao, Shilai; Gao, Fei

    2015-01-01

    During germ cell development, epigenetic modifications undergo extensive remodeling. Abnormal epigenetic modifications usually result in germ cell loss and reproductive defect. Prmt5 (Protein arginine methyltransferase 5) encodes a protein arginine methyltransferase which has been demonstrated to play important roles in germ cell development during embryonic stages. In the present study, we found that Prmt5 was also abundantly expressed in male germ cells after birth. Inactivation of this gene by crossing with Stra8-Cre transgenic mice resulted in germ cell loss during spermatogenesis. Further study revealed that the germ cell development was grossly normal before P10. However, most of the germ cells in Prmt5Δ/f; Stra8-Cre mice were blocked at meiotic stage. The expression of meiosis associated genes was reduced in Prmt5Δ/f; Stra8-Cre testes compared to control testes at P10. γH2AX was detected in sex body of control germ cells at P12, whereas multiple foci were observed in Prmt5-deficient germ cells. Further study revealed that H4R3me2s was virtually absent in germ cells after Prmt5 inactivation. The results of this study indicate that Prmt5 also plays important roles in germ cell development during spermatogenesis. PMID:26072710

  5. Induction of Germ Cell-like Cells from Porcine Induced Pluripotent Stem Cells

    PubMed Central

    Wang, Hanning; Xiang, Jinzhu; Zhang, Wei; Li, Junhong; Wei, Qingqing; Zhong, Liang; Ouyang, Hongsheng; Han, Jianyong

    2016-01-01

    The ability to generate germ cells from pluripotent stem cells (PSCs) is valuable for human regenerative medicine and animal breeding. Germ cell-like cells (GCLCs) have been differentiated from mouse and human PSCs, but not from porcine PSCs, which are considered an ideal model for stem cell applications. Here, we developed a defined culture system for the induction of primordial germ cell-like cells (PGCLCs) from porcine induced PSCs (piPSCs). The identity of the PGCLCs was characterized by observing cell morphology, detecting germ cell marker gene expression and evaluating epigenetic properties. PGCLCs could further differentiate into spermatogonial stem cell-like cells (SSCLCs) in vitro. Importantly, meiosis occurred during SSCLC induction. Xenotransplantation of GCLCs into seminiferous tubules of infertile immunodeficient mice resulted in immunohistochemically identifiable germ cells in vivo. Overall, our study provides a feasible strategy for directing piPSCs to the germ cell fate and lays a foundation for exploring germ cell development mechanisms. PMID:27264660

  6. Histological observation of germ cell development and discovery of spermatophores in ovoviviparous black rockfish ( Sebastes schlegeli Hilgendorf) in reproductive season

    NASA Astrophysics Data System (ADS)

    Feng, Junrong; Liu, Liming; Jiang, Haibin; Wang, Maojian; Du, Rongbin

    2014-10-01

    Black rockfish ( Sebastes schlegeli) is an important species for culture; however, its reproductive characteristics have not been fully documented. In this study, we investigated the morphology and developmental process of germ cells in this ovoviviparous rockfish in reproductive season (October 2011-November 2012) with histological methods. We found that the gonad of mature fish showed notable seasonal changes in developmental characteristics and morphological structure. The sperm cells matured during a period lasting from October to December, significantly earlier than the oocytes did. A large number of spermatozoa and other cells occurred in testis at different developmental stages. Vitellogenesis in oocytes began in October, and gestation appeared in April next year. Spermatophores were discovered for the first time in Sebastes, which assembled in testis, main sperm duct, oviduct and genital tract, as well as ovarian cavity in October and April. These organs may serve either as production or hiding places for spermatophores and spermatozoa which were stored and transported in form of spermatophores. Testicular degeneration started from the distal part of testis in April, with spermatophores assembled in degenerating testis and waiting for transportation. The copulation probably lasted for a long period, during which the spermatozoa were discharged in batches as spermatophores. These spermatophores were coated with sticky materials secreted from the interstitial areas of testis and the main sperm duct, then transported into ovary.

  7. Locus- and domain-dependent control of DNA methylation at mouse B1 retrotransposons during male germ cell development.

    PubMed

    Ichiyanagi, Kenji; Li, Yufeng; Li, Yungfeng; Watanabe, Toshiaki; Ichiyanagi, Tomoko; Fukuda, Kei; Kitayama, Junko; Yamamoto, Yasuhiro; Kuramochi-Miyagawa, Satomi; Nakano, Toru; Yabuta, Yukihiro; Seki, Yoshiyuki; Saitou, Mitinori; Sasaki, Hiroyuki

    2011-12-01

    In mammals, germ cells undergo striking dynamic changes in DNA methylation during their development. However, the dynamics and mode of methylation are poorly understood for short interspersed elements (SINEs) dispersed throughout the genome. We investigated the DNA methylation status of mouse B1 SINEs in male germ cells at different developmental stages. B1 elements showed a large locus-to-locus variation in methylation; loci close to RNA polymerase II promoters were hypomethylated, while most others were hypermethylated. Interestingly, a mutation that eliminates Piwi-interacting RNAs (piRNAs), which are involved in methylation of long interspersed elements (LINEs), did not affect the level of B1 methylation, implying a piRNA-independent mechanism. Methylation at B1 loci in SINE-poor genomic domains showed a higher dependency on the de novo DNA methyltransferase DNMT3A but not on DNMT3B, suggesting that DNMT3A plays a major role in methylation of these domains. We also found that many genes specifically expressed in the testis possess B1 elements in their promoters, suggesting the involvement of B1 methylation in transcriptional regulation. Taken altogether, our results not only reveal the dynamics and mode of SINE methylation but also suggest how the DNA methylation profile is created in the germline by a pair of DNA methyltransferases.

  8. A Structural Investigation into Oct4 Regulation by Orphan Nuclear Receptors, Germ Cell Nuclear Factor (GCNF) and Liver Receptor Homolog-1 (LRH-1).

    PubMed

    Weikum, Emily R; Tuntland, Micheal L; Murphy, Michael N; Ortlund, Eric A

    2016-10-27

    Oct4 is a transcription factor required for maintaining pluripotency and self-renewal in stem cells. Prior to differentiation, Oct4 must be silenced to allow for the development of the three germ layers in the developing embryo. This fine-tuning is controlled by the nuclear receptors, liver receptor homolog-1 and germ cell nuclear factor. Liver receptor homolog-1 is responsible for driving the expression of Oct4 where germ cell nuclear factor represses its expression upon differentiation. Both receptors bind to a DR0 motif located within the Oct4 promoter. Here, we present the first structure of mouse germ cell nuclear factor DNA binding domain in complex with the Oct4 DR0. The overall structure revealed two molecules bound in a head-to-tail fashion on opposite sides of the DNA. Additionally, we solved the structure of the human liver receptor homolog-1 DNA binding domain bound to the same element. We explore the structural elements that govern Oct4 recognition by these two nuclear receptors.

  9. Human Pluripotent Stem Cell Based Developmental Toxicity Assays for Chemical Safety Screening and Systems Biology Data Generation.

    PubMed

    Shinde, Vaibhav; Klima, Stefanie; Sureshkumar, Perumal Srinivasan; Meganathan, Kesavan; Jagtap, Smita; Rempel, Eugen; Rahnenführer, Jörg; Hengstler, Jan Georg; Waldmann, Tanja; Hescheler, Jürgen; Leist, Marcel; Sachinidis, Agapios

    2015-06-17

    Efficient protocols to differentiate human pluripotent stem cells to various tissues in combination with -omics technologies opened up new horizons for in vitro toxicity testing of potential drugs. To provide a solid scientific basis for such assays, it will be important to gain quantitative information on the time course of development and on the underlying regulatory mechanisms by systems biology approaches. Two assays have therefore been tuned here for these requirements. In the UKK test system, human embryonic stem cells (hESC) (or other pluripotent cells) are left to spontaneously differentiate for 14 days in embryoid bodies, to allow generation of cells of all three germ layers. This system recapitulates key steps of early human embryonic development, and it can predict human-specific early embryonic toxicity/teratogenicity, if cells are exposed to chemicals during differentiation. The UKN1 test system is based on hESC differentiating to a population of neuroectodermal progenitor (NEP) cells for 6 days. This system recapitulates early neural development and predicts early developmental neurotoxicity and epigenetic changes triggered by chemicals. Both systems, in combination with transcriptome microarray studies, are suitable for identifying toxicity biomarkers. Moreover, they may be used in combination to generate input data for systems biology analysis. These test systems have advantages over the traditional toxicological studies requiring large amounts of animals. The test systems may contribute to a reduction of the costs for drug development and chemical safety evaluation. Their combination sheds light especially on compounds that may influence neurodevelopment specifically.

  10. Trisomy 14pter --> q21: a case with associated ovarian germ cell tumor and review of the literature.

    PubMed

    Lee-Jones, Lisa; Williams, Tom; Little, Elizabeth; Sampson, Julian

    2004-07-01

    We report a patient with trisomy X and a supernumerary marker chromosome. The marker chromosome was characterized by comparative genomic hybridization and shown to be derived from chromosome 14, resulting in trisomy for 14pter --> q21. The karyotype was thus redefined as 48,XXX,+mar.rev ish enh(14pterq21). The patient presented with facial dysmorphism and a high-pitched cry, exhibited severe developmental delay, and developed an aggressive ovarian immature teratoma. In this paper, we also review reports of 11 other patients with constitutional trisomy of the same chromosomal region. Previous studies have identified somatic gains of chromosome 14 in ovarian germ cell tumors. We propose that the constitutional gain of chromosomal 14 material may have predisposed to the development of this tumor.

  11. Genetics and Developmental Psychology

    ERIC Educational Resources Information Center

    Plomin, Robert

    2004-01-01

    One of the major changes in developmental psychology during the past 50 years has been the acceptance of the important role of nature (genetics) as well as nurture (environment). Past research consisting of twin and adoption studies has shown that genetic influence is substantial for most domains of developmental psychology. Present research…

  12. Management of Pediatric Malignant Germ Cell Tumors: ICMR Consensus Document.

    PubMed

    Agarwala, Sandeep; Mitra, Aparajita; Bansal, Deepak; Kapoor, Gauri; Vora, Tushar; Prasad, Maya; Chinnaswamy, Girish; Arora, Brijesh; Radhakrishnan, Venkatraman; Laskar, Siddharth; Kaur, Tanvir; Dhaliwal, Rupinder Singh; Rath, G K; Bakhshi, Sameer

    2017-04-01

    With the introduction of cisplatin, the outcome of children with malignant germ cell tumors (MGCT) has improved to nearly 90% 5 year survival. Over the years, through the results of various multinational co-operative trials, the chemotherapy and surgical guidelines for both the gonadal and extra-gonadal MGCTs have been refined to decrease the early and late morbidities and at the same time improve survival. Introduction of risk categorization has further added to this effort. There has been no recommendation on how the children with malignant germ cell tumors should be treated in India. The current manuscript is written with the objective of developing a consensus guideline for practitioners at a National level. Based on extensively reviewed literature and personal experience of the major pediatric oncology centres in India, the ICMR Expert group has made recommendations for management of children with MGCT India.

  13. High efficiency germ-line transformation of mosquitoes.

    PubMed

    Lobo, Neil F; Clayton, John R; Fraser, Malcolm J; Kafatos, Fotis C; Collins, Frank H

    2006-01-01

    The ability to manipulate the mosquito genome through germ-line transformation provides us with a powerful tool for investigating gene structure and function. It is also a valuable method for the development of novel approaches to combating the spread of mosquito-vectored diseases. To date, germ-line transformation has been demonstrated in several mosquito species. Transgenes are introduced into pre-blastocyst mosquito embryos using microinjection techniques that take a few hours, and progeny are screened for the presence of a marker gene. The microinjection protocol presented here can be applied to most mosquitoes and contains several improvements over other published methods that increase the survival of injected embryos and, therefore, the number of transformants. Transgenic lines can be established in approximately 1 month using this technique.

  14. Mediastinal germ cell tumors: a radiologic-pathologic review.

    PubMed

    Drevelegas, A; Palladas, P; Scordalaki, A

    2001-01-01

    Germ cell tumors of the mediastinum are histologically identical to those found in the testes and ovaries. Early diagnosis and treatment improve the survival rate. Imaging studies of teratoma demonstrate a rounded, often lobulated heterogeneous mass containing soft tissue elements with fluid and fat attenuation. Calcification is present in 20-43% of cases. Seminomas are large masses of homogeneous soft tissue attenuation. Malignant nonseminomatous germ cell tumors are heterogeneous tumors with irregular borders due to invasion of adjacent structures. CT shows the location and extent of the tumors as well as intrinsic elements including soft tissue, fat, fluid, and calcification. CT is the modality of choice for the diagnostic evaluation of these tumors. MRI reveals masses of heterogeneous signal intensity, is more sensitive in depicting infiltration of the adjacent structures by fat plane obliteration, and is performed as an ancillary study.

  15. Lifetime stress experience: transgenerational epigenetics and germ cell programming

    PubMed Central

    Bale, Tracy L.

    2014-01-01

    The transgenerational epigenetic programming involved in the passage of environmental exposures to stressful periods from one generation to the next has been examined in human populations, and mechanistically in animal models. Epidemiological studies suggest that gestational exposures to environmental factors including stress are strongly associated with an increased risk of neurodevelopmental disorders, including attention deficit-hyperactivity disorder, schizophrenia, and autism spectrum disorders. Both maternal and paternal life experiences with stress can be passed on to offspring directly during pregnancy or through epigenetic marks in the germ cell. Animal models of parental stress have examined relevant offspring phenotypes and transgenerational outcomes, and provided unique insight into the germ cell epigenetic changes associated with disruptions in neurodevelopment. Understanding germline susceptibility to exogenous signals during stress exposure and the identification of the types of epigenetic marks is critical for defining mechanisms underlying disease risk. PMID:25364281

  16. Lifetime stress experience: transgenerational epigenetics and germ cell programming.

    PubMed

    Bale, Tracy L

    2014-09-01

    The transgenerational epigenetic programming involved in the passage of environmental exposures to stressful periods from one generation to the next has been examined in human populations, and mechanistically in animal models. Epidemiological studies suggest that gestational exposures to environmental factors including stress are strongly associated with an increased risk of neurodevelopmental disorders, including attention deficit-hyperactivity disorder, schizophrenia, and autism spectrum disorders. Both maternal and paternal life experiences with stress can be passed on to offspring directly during pregnancy or through epigenetic marks in the germ cell. Animal models of parental stress have examined relevant offspring phenotypes and transgenerational outcomes, and provided unique insight into the germ cell epigenetic changes associated with disruptions in neurodevelopment. Understanding germline susceptibility to exogenous signals during stress exposure and the identification of the types of epigenetic marks is critical for defining mechanisms underlying disease risk.

  17. Paraneoplastic tumefactive demyelination with underlying combined germ cell cancer.

    PubMed

    Broadfoot, Jack R; Archer, Hilary A; Coulthard, Elizabeth; Appelman, Auke P A; Sutak, Judit; Braybrooke, Jeremy P; Love, Seth

    2015-12-01

    Paraneoplastic demyelination is a rare disorder of the central nervous system. We describe a 60-year-old man with tumefactive demyelination who had an underlying retroperitoneal germ cell cancer. He presented with visuospatial problems and memory loss and had a visual field defect. His MRI was interpreted as a glioma but stereotactic biopsy showed active demyelination. Investigation for multiple sclerosis was negative but CT imaging showed retroperitoneal lymphadenopathy, and nodal biopsy confirmed a combined germ cell cancer. He responded poorly to corticosteroid treatment, and his visual field defect progressed. However, 6 months after plasma exchange and successful chemotherapy, he has partially improved clinically and radiographically. Tumefactive demyelination is typically associated with multiple sclerosis but may be paraneoplastic. It is important to recognise paraneoplastic tumefactive demyelination early, as the neurological outcome relies on treating the associated malignancy.

  18. In Search of a Germ Theory Equivalent for Chronic Disease

    PubMed Central

    2012-01-01

    The fight against infectious disease advanced dramatically with the consolidation of the germ theory in the 19th century. This focus on a predominant cause of infections (ie, microbial pathogens) ultimately led to medical and public health advances (eg, immunization, pasteurization, antibiotics). However, the resulting declines in infections in the 20th century were matched by a rise in chronic, noncommunicable diseases, for which there is no single underlying etiology. The discovery of a form of low-grade systemic and chronic inflammation (“metaflammation”), linked to inducers (broadly termed “anthropogens”) associated with modern man-made environments and lifestyles, suggests an underlying basis for chronic disease that could provide a 21st-century equivalent of the germ theory. PMID:22575080

  19. Bile salts of germ-free domestic fowl and pigs

    PubMed Central

    Haslewood, G. A. D.

    1971-01-01

    1. The bile of germ-free domestic fowl contains taurine conjugates of 3α,7α-dihydroxy-5β-cholan-24-oic acid (chenodeoxycholic acid), 3α,7α,12α-trihydroxy-5β-cholan-24-oic acid (cholic acid) and its 5α-epimer (allocholic acid): that of germ-free pigs contains glycine and taurine conjugates of chenodeoxycholic acid, 3α,6α-dihydroxy-5β-cholan-24-oic acid (hyodeoxycholic acid), 3α,6α,7α-trihydroxy-5β-cholan-24-oic acid (hyocholic acid) and (probably) cholic acid. Keto acids were not found. 2. Allocholic acid and hyodeoxycholic acid are thus proved to be primary bile acids in intact animals. 3. The evolutionary and biochemical implications of these findings are briefly considered. PMID:5128663

  20. DEVELOPMENTAL DIVERSITY OF AMPHIBIANS

    PubMed Central

    Elinson, Richard P.; del Pino, Eugenia M.

    2011-01-01

    The current model amphibian, Xenopus laevis, develops rapidly in water to a tadpole which metamorphoses into a frog. Many amphibians deviate from the X. laevis developmental pattern. Among other adaptations, their embryos develop in foam nests on land or in pouches on their mother’s back or on a leaf guarded by a parent. The diversity of developmental patterns includes multinucleated oogenesis, lack of RNA localization, huge non-pigmented eggs, and asynchronous, irregular early cleavages. Variations in patterns of gastrulation highlight the modularity of this critical developmental period. Many species have eliminated the larva or tadpole and directly develop to the adult. The wealth of developmental diversity among amphibians coupled with the wealth of mechanistic information from X. laevis permit comparisons that provide deeper insights into developmental processes. PMID:22662314

  1. Comparison of methods for detecting mitomycin C- and ethyl nitrosourea-induced germ cell damage in mice: sperm enzyme activities, sperm motility, and testis weight

    SciTech Connect

    Ficsor, G.; Oldford, G.M.; Loughlin, K.R.; Panda, B.B.; Dubien, J.L.; Ginsberg, L.C.

    1984-01-01

    Testes weights, sperm motility and enzyme activities in single sperm were compared with respect to their ability to detect either developmental or mutational damage to germ cells. Male mice were injected i.p. with 2.5 mg/kg mitomycin C (MC) or 50 or 100 mg/kg ethylnitrosourea (ENU) or saline and were then killed at times such that sperm derived from treated vas sperm (SZ), spermatids (ST), preleptotene-late-spermatogonial cells (PLSG), spermatogonial cells (SG), or spermatogonial stem cells (SGS) could be evaluated. The authors conclude that testis weight, which is easily obtained, is a sensitive indicator of germ cell damage by these agents. Sperm from each animal were evaluated for sperm motility, acrosin activity, succinic dehydrogenase (SDH) activity with or without the competitive inhibitor malonate or after exposure to 60/sup 8/C for 10 min. The latter two assays were to detect sperm enzymes resistant to the inhibitor or heat. The presence of the acrosin protein was also detected immunologically. Of the sperm assays, acrosin activity proved to be the most sensitive indicator of germ cell damage and was the simplest to measure.

  2. Prepubertal male rats with high rates of germ-cell apoptosis present exacerbated rates of germ-cell apoptosis after serotonin depletion.

    PubMed

    Méndez Palacios, Néstor; Escobar, María Elena Ayala; Mendoza, Maximino Méndez; Crispín, Rubén Huerta; Andrade, Octavio Guerrero; Melández, Javier Hernández; Martínez, Andrés Aragón

    2016-04-01

    Male germ-cell apoptosis occurs naturally and can be increased by exposure to drugs and toxic chemicals. Individuals may have different rates of apoptosis and are likely to also exhibit differential sensitivity to outside influences. Previously, we reported that p-chloroamphetamine (pCA), a substance that inhibits serotonin synthesis, induced germ-cell apoptosis in prepubertal male rats. Here, we identified prepubertal rats with naturally high or low rates of germ-cell apoptosis and evaluated gene expression in both groups. Bax and Shbg mRNA levels were higher in rats with high rates of germ-cell apoptosis. Rats were then treated with pCA and the neuro-hormonal response and gene expression were evaluated. Treatment with pCA induced a reduction in serotonin concentrations but levels of sex hormones and gonadotrophins were not changed. Rats with initially high rates of germ-cell apoptosis had even higher rates of germ-cell apoptosis after treatment with pCA. In rats with high rates of germ-cell apoptosis Bax mRNA expression remained high after treatment with pCA. On the basis of category, an inverse relationship between mRNA expression of Bax and Bcl2, Bax and AR and Bax and Hsd3b2 was found. Here we provide evidence that innate levels of germ-cell apoptosis could be explained by the level of mRNA expression of genes involved with apoptosis and spermatogenesis.

  3. Wheat germ systems for cell-free protein expression.

    PubMed

    Harbers, Matthias

    2014-08-25

    Cell-free protein expression plays an important role in biochemical research. However, only recent developments led to new methods to rapidly synthesize preparative amounts of protein that make cell-free protein expression an attractive alternative to cell-based methods. In particular the wheat germ system provides the highest translation efficiency among eukaryotic cell-free protein expression approaches and has a very high success rate for the expression of soluble proteins of good quality. As an open in vitro method, the wheat germ system is a preferable choice for many applications in protein research including options for protein labeling and the expression of difficult-to-express proteins like membrane proteins and multiple protein complexes. Here I describe wheat germ cell-free protein expression systems and give examples how they have been used in genome-wide expression studies, preparation of labeled proteins for structural genomics and protein mass spectroscopy, automated protein synthesis, and screening of enzymatic activities. Future directions for the use of cell-free expression methods are discussed.

  4. DAZ Family Proteins, Key Players for Germ Cell Development.

    PubMed

    Fu, Xia-Fei; Cheng, Shun-Feng; Wang, Lin-Qing; Yin, Shen; De Felici, Massimo; Shen, Wei

    2015-01-01

    DAZ family proteins are found almost exclusively in germ cells in distant animal species. Deletion or mutations of their encoding genes usually severely impair either oogenesis or spermatogenesis or both. The family includes Boule (or Boll), Dazl (or Dazla) and DAZ genes. Boule and Dazl are situated on autosomes while DAZ, exclusive of higher primates, is located on the Y chromosome. Deletion of DAZ gene is the most common causes of infertility in humans. These genes, encoding for RNA binding proteins, contain a highly conserved RNA recognition motif and at least one DAZ repeat encoding for a 24 amino acids sequence able to bind other mRNA binding proteins. Basically, Daz family proteins function as adaptors for target mRNA transport and activators of their translation. In some invertebrate species, BOULE protein play a pivotal role in germline specification and a conserved regulatory role in meiosis. Depending on the species, DAZL is expressed in primordial germ cells (PGCs) and/or pre-meiotic and meiotic germ cells of both sexes. Daz is found in fetal gonocytes, spermatogonia and spermatocytes of adult testes. Here we discuss DAZ family genes in a phylogenic perspective, focusing on the common and distinct features of these genes, and their pivotal roles during gametogenesis evolved during evolution.

  5. Formation and cultivation of medaka primordial germ cells.

    PubMed

    Li, Zhendong; Li, Mingyou; Hong, Ni; Yi, Meisheng; Hong, Yunhan

    2014-07-01

    Primordial germ cell (PGC) formation is pivotal for fertility. Mammalian PGCs are epigenetically induced without the need for maternal factors and can also be derived in culture from pluripotent stem cells. In egg-laying animals such as Drosophila and zebrafish, PGCs are specified by maternal germ plasm factors without the need for inducing factors. In these organisms, PGC formation and cultivation in vitro from indeterminate embryonic cells have not been possible. Here, we report PGC formation and cultivation in vitro from blastomeres dissociated from midblastula embryos (MBEs) of the fish medaka (Oryzias latipes). PGCs were identified by using germ-cell-specific green fluorescent protein (GFP) expression from a transgene under the control of the vasa promoter. Embryo perturbation was exploited to study PGC formation in vivo, and dissociated MBE cells were cultivated under various conditions to study PGC formation in vitro. Perturbation of somatic development did not prevent PGC formation in live embryos. Dissociated MBE blastomeres formed PGCs in the absence of normal somatic structures and of known inducing factors. Most importantly, under culture conditions conducive to stem cell derivation, some dissociated MBE blastomeres produced GFP-positive PGC-like cells. These GFP-positive cells contained genuine PGCs, as they expressed PGC markers and migrated into the embryonic gonad to generate germline chimeras. Our data thus provide evidence for PGC preformation in medaka and demonstrate, for the first time, that PGC formation and derivation can be obtained in culture from early embryos of medaka as a lower vertebrate model.

  6. Telomere homeostasis in mammalian germ cells: a review.

    PubMed

    Reig-Viader, Rita; Garcia-Caldés, Montserrat; Ruiz-Herrera, Aurora

    2016-06-01

    Telomeres protect against genome instability and participate in chromosomal movements during gametogenesis, especially in meiosis. Thus, maintaining telomere structure and telomeric length is essential to both cell integrity and the production of germ cells. As a result, alteration of telomere homeostasis in the germ line may result in the generation of aneuploid gametes or gametogenesis disruption, triggering fertility problems. In this work, we provide an overview on fundamental aspects of the literature regarding the organization of telomeres in mammalian germ cells, paying special attention to telomere structure and function, as well as the maintenance of telomeric length during gametogenesis. Moreover, we discuss the different roles recently described for telomerase and TERRA in maintaining telomere functionality. Finally, we review how new findings in the field of reproductive biology underscore the role of telomere homeostasis as a potential biomarker for infertility. Overall, we anticipate that the study of telomere stability and equilibrium will contribute to improve diagnoses of patients; assess the risk of infertility in the offspring; and in turn, find new treatments.

  7. Distribution of Wheat Germ Agglutinin in Young Wheat Plants 12

    PubMed Central

    Mishkind, Michael; Keegstra, Kenneth; Palevitz, Barry A.

    1980-01-01

    A liquid phase, competition-binding radioimmunoassay for wheat germ agglutinin, with a detection limit of 10 nanograms, was developed in order to determine the distribution of this lectin in young wheat plants. Affinity columns for wheat germ agglutinin removed all antigenically detectable activity from crude extracts of wheat tissue; thus, the antigenic cross-reactivity detected by the assay possesses sugar-binding specificity similar to the wheat germ-derived lectin. The amount of lectin per dry grain is approximately 1 microgram, all associated with the embryo. At 34 days of growth, the level of lectin per plant was reduced by about 50%, with approximately one-third in the roots and two-thirds in the shoot. The data also indicate that actively growing regions of the plant (the bases of the leaves and rapidly growing adventitious roots) contain the highest levels of lectin. Half of the lectin associated with the roots could be solubilized by washing intact roots in buffer containing oligomers of N-acetylglucosamine, whereas the remainder is liberated only upon homogenization of the tissue. Images PMID:16661559

  8. Generation of Germ-Free Ciona intestinalis for Studies of Gut-Microbe Interactions.

    PubMed

    Leigh, Brittany A; Liberti, Assunta; Dishaw, Larry J

    2016-01-01

    Microbes associate with animal hosts, often providing shelter in a nutrient-rich environment. The gut, however, can be a harsh environment with members of the microbiome settling in distinct niches resulting in more stable, adherent biofilms. These diverse communities can provide orders of magnitude more gene products than the host genome; selection and maintenance of a functionally relevant and useful microbiome is now recognized to be an essential component of homeostasis. Germ-free (GF) model systems allow dissection of host-microbe interactions in a simple and direct way where each member of the symbiosis can be studied in isolation. In addition, because immune defenses in the gut are often naïve in GF animals, host immune recognition and responses during the process of colonization can be studied. Ciona intestinalis, a basal chordate, is a well-characterized developmental model system and holds promise for addressing some of these important questions. With transparent juveniles, Ciona can be exposed to distinct bacterial isolates by inoculating GF artificial seawater; concentrated bacteria can subsequently be visualized in vivo if fluorescent stains are utilized. Rearing GF Ciona is a first step in untangling the complex dialogue between bacteria and innate immunity during colonization.

  9. Antibiotic-treated versus germ-free rodents for microbiota transplantation studies

    PubMed Central

    Lundberg, Randi; Toft, Martin F.; August, Benjamin; Hansen, Axel K.; Hansen, Camilla H. F.

    2016-01-01

    ABSTRACT We recently investigated the applicability of antibiotic-treated recipient mice for transfer of different gut microbiota profiles. With this addendum we elaborate on perspectives and limitations of using antibiotics as an alternative to germ-free (GF) technology in microbial transplantation studies, and we speculate on the housing effect. It is possible to transfer host phenotypes via fecal transplantation to antibiotic-treated animals, but problems with reproducibility, baseline values, and antibiotic resistance genes should be considered. GF animals maintained in isolators still seem to be the best controlled models for long-term microbial transplantation, but antibiotic-treated recipients are also commonly utilized. We identify a need for systematic experiments investigating the stability of microbial transplantations by addressing 1) the recipient status as either GF, antibiotic-treated or specific pathogen free and 2) different levels of protected housing systems. In addition, the developmental effect of microbes on host physiological functions should be evaluated in the different scenarios. PMID:26744774

  10. 14-3-3ε Is Required for Germ Cell Migration in Drosophila

    PubMed Central

    Tsigkari, K. Kirki; Acevedo, Summer F.; Skoulakis, Efthimios M. C.

    2012-01-01

    Although 14-3-3 proteins participate in multiple biological processes, isoform-specific specialized functions, as well as functional redundancy are emerging with tissue and developmental stage-specificity. Accordingly, the two 14-3-3ε proteins in Drosophila exhibit functional specificity and redundancy. Homozygotes for loss of function alleles of D14-3-3ε contain significantly fewer germ line cells (pole cells) in their gonads, a phenotype not shared by mutants in the other 14-3-3 gene leo. We show that although D14-3-3ε is enriched within pole cells it is required in mesodermal somatic gonad precursor cells which guide pole cells in their migration through the mesoderm and coalesce with them to form the embryonic gonad. Loss of D14-3-3ε results in defective pole cell migration, reduced pole cell number. We present evidence that D14-3-3ε loss results in reduction or loss of the transcription factor Zfh-1, one of the main regulatory molecules of the pole cell migration, from the somatic gonad precursor cells. PMID:22666326

  11. MicroRNAs: From Female Fertility, Germ Cells, and Stem Cells to Cancer in Humans

    PubMed Central

    Virant-Klun, Irma; Ståhlberg, Anders; Kubista, Mikael; Skutella, Thomas

    2016-01-01

    MicroRNAs are a family of naturally occurring small noncoding RNA molecules that play an important regulatory role in gene expression. They are suggested to regulate a large proportion of protein encoding genes by mediating the translational suppression and posttranscriptional control of gene expression. Recent findings show that microRNAs are emerging as important regulators of cellular differentiation and dedifferentiation, and are deeply involved in developmental processes including human preimplantation development. They keep a balance between pluripotency and differentiation in the embryo and embryonic stem cells. Moreover, it became evident that dysregulation of microRNA expression may play a fundamental role in progression and dissemination of different cancers including ovarian cancer. The interest is still increased by the discovery of exosomes, that is, cell-derived vesicles, which can carry different proteins but also microRNAs between different cells and are involved in cell-to-cell communication. MicroRNAs, together with exosomes, have a great potential to be used for prognosis, therapy, and biomarkers of different diseases including infertility. The aim of this review paper is to summarize the existent knowledge on microRNAs related to female fertility and cancer: from primordial germ cells and ovarian function, germinal stem cells, oocytes, and embryos to embryonic stem cells. PMID:26664407

  12. Cell differentiation and germ-soma separation in Ediacaran animal embryo-like fossils.

    PubMed

    Chen, Lei; Xiao, Shuhai; Pang, Ke; Zhou, Chuanming; Yuan, Xunlai

    2014-12-11

    Phosphorites of the Ediacaran Doushantuo Formation (∼600 million years old) yield spheroidal microfossils with a palintomic cell cleavage pattern. These fossils have been variously interpreted as sulphur-oxidizing bacteria, unicellular protists, mesomycetozoean-like holozoans, green algae akin to Volvox, and blastula embryos of early metazoans or bilaterian animals. However, their complete life cycle is unknown and it is uncertain whether they had a cellularly differentiated ontogenetic stage, making it difficult to test their various phylogenetic interpretations. Here we describe new spheroidal fossils from black phosphorites of the Doushantuo Formation that have been overlooked in previous studies. These fossils represent later developmental stages of previously published blastula-like fossils, and they show evidence for cell differentiation, germ-soma separation, and programmed cell death. Their complex multicellularity is inconsistent with a phylogenetic affinity with bacteria, unicellular protists, or mesomycetozoean-like holozoans. Available evidence also indicates that the Doushantuo fossils are unlikely crown-group animals or volvocine green algae. We conclude that an affinity with cellularly differentiated multicellular eukaryotes, including stem-group animals or algae, is likely but more data are needed to constrain further the exact phylogenetic affinity of the Doushantuo fossils.

  13. MicroRNAs: From Female Fertility, Germ Cells, and Stem Cells to Cancer in Humans.

    PubMed

    Virant-Klun, Irma; Ståhlberg, Anders; Kubista, Mikael; Skutella, Thomas

    2016-01-01

    MicroRNAs are a family of naturally occurring small noncoding RNA molecules that play an important regulatory role in gene expression. They are suggested to regulate a large proportion of protein encoding genes by mediating the translational suppression and posttranscriptional control of gene expression. Recent findings show that microRNAs are emerging as important regulators of cellular differentiation and dedifferentiation, and are deeply involved in developmental processes including human preimplantation development. They keep a balance between pluripotency and differentiation in the embryo and embryonic stem cells. Moreover, it became evident that dysregulation of microRNA expression may play a fundamental role in progression and dissemination of different cancers including ovarian cancer. The interest is still increased by the discovery of exosomes, that is, cell-derived vesicles, which can carry different proteins but also microRNAs between different cells and are involved in cell-to-cell communication. MicroRNAs, together with exosomes, have a great potential to be used for prognosis, therapy, and biomarkers of different diseases including infertility. The aim of this review paper is to summarize the existent knowledge on microRNAs related to female fertility and cancer: from primordial germ cells and ovarian function, germinal stem cells, oocytes, and embryos to embryonic stem cells.

  14. Reduction of germ cells in the Odysseus null mutant causes male fertility defect in Drosophila melanogaster.

    PubMed

    Cheng, Ya-Jen; Fang, Shu; Tsaur, Shun-Chern; Chen, Yi-Ling; Fu, Hua-Wen; Patel, Nipam H; Ting, Chau-Ti

    2012-01-01

    Odysseus (OdsH) has been identified as a hybrid male sterility gene between Drosophila mauritiana and D. simulans with accelerated evolutionary rate in both expression and DNA sequence. Loss of a testis-specific expression of OdsH causes male fertility defect in D. melanogaster. Yet, the underlying mechanisms at the cellular level are unknown. In an attempt to identify the possible mechanisms and functional roles of OdsH in spermatogenesis, the cell numbers at different developmental stages during spermatogenesis between the OdsH null mutant and wild-type flies were compared. The results showed that the early developing germ cells, including spermatogonia and spermatocytes, were reduced in the OdsH mutant males. In addition, the number of germline stem cells in aged males was also reduced, presumably due to the disruption of germline stem cell maintenance, which resulted in more severe fertility defect. These results suggest that the function of the enhancement of sperm production by OdsH acted across males of all ages.

  15. Identification of an IL-4-Inducible Gene Expressed in Differentiating Lymphocytes and Male Germ Cells

    PubMed Central

    Nabavi, Nasrin; Grusby, Michael J.; Finn, Patricia W.; Wolgemuth, Debra J.; Glimcher, Laurie H.

    1990-01-01

    Interleukin 4 (IL-4) is a cytokine that is involved in the differentiation of B and T lymphocytes. In this report, we describe the identification of a novel gene, N.52, which was cloned from the murine pre-B cell line R8205 grown in the presence of IL-4 for 48 hr. Although N.52 expression is detectable at low levels in unstimulated R8205 cells, the level of N.52 dramatically increases after only .4 hr exposure to IL-4 and remains at a high .level up to 48 hr. Although N.52 expression is low or absent in normal spleen B and T cells, its expression can be induced by the differentiation signals delivered by LPS in B cells and by Con A in T-cell hybrids. While N.52 mRNA is absent in all highly differentiated organs, it is detectable in stem cell harboring lymphoid tissues such as bone marrow, fetal liver, and thymus. Furthermore, N.52 mRNA is expressed at strikingly high levels in the testis, specifically in differentiating male germ cells. It is induced by differentiation signals triggered by the combination of cyclic AMP and retinoic acid in teratocarcinoma F9 cells. Taken together, these data suggest that N.52 is a developmentally regulated gene whose expression in cells of the immune and reproductive systems may be controlled by stimuli that induce differentiation. PMID:2136202

  16. Generation of Germ-Free Ciona intestinalis for Studies of Gut-Microbe Interactions

    PubMed Central

    Leigh, Brittany A.; Liberti, Assunta; Dishaw, Larry J.

    2016-01-01

    Microbes associate with animal hosts, often providing shelter in a nutrient-rich environment. The gut, however, can be a harsh environment with members of the microbiome settling in distinct niches resulting in more stable, adherent biofilms. These diverse communities can provide orders of magnitude more gene products than the host genome; selection and maintenance of a functionally relevant and useful microbiome is now recognized to be an essential component of homeostasis. Germ-free (GF) model systems allow dissection of host-microbe interactions in a simple and direct way where each member of the symbiosis can be studied in isolation. In addition, because immune defenses in the gut are often naïve in GF animals, host immune recognition and responses during the process of colonization can be studied. Ciona intestinalis, a basal chordate, is a well-characterized developmental model system and holds promise for addressing some of these important questions. With transparent juveniles, Ciona can be exposed to distinct bacterial isolates by inoculating GF artificial seawater; concentrated bacteria can subsequently be visualized in vivo if fluorescent stains are utilized. Rearing GF Ciona is a first step in untangling the complex dialogue between bacteria and innate immunity during colonization. PMID:28082961

  17. Transpositional shuffling and quality control in male germ cells to enhance evolution of complex organisms

    PubMed Central

    Werner, Andreas; Piatek, Monica J; Mattick, John S

    2015-01-01

    Complex organisms, particularly mammals, have long generation times and produce small numbers of progeny that undergo increasingly entangled developmental programs. This reduces the ability of such organisms to explore evolutionary space, and, consequently, strategies that mitigate this problem likely have a strategic advantage. Here, we suggest that animals exploit the controlled shuffling of transposons to enhance genomic variability in conjunction with a molecular screening mechanism to exclude deleterious events. Accordingly, the removal of repressive DNA-methylation marks during male germ cell development is an evolved function that exploits the mutagenic potential of transposable elements. A wave of transcription during the meiotic phase of spermatogenesis produces the most complex transcriptome of all mammalian cells, including genic and noncoding sense–antisense RNA pairs that enable a genome-wide quality-control mechanism. Cells that fail the genomic quality test are excluded from further development, eventually resulting in a positively selected mature sperm population. We suggest that these processes, enhanced variability and stringent molecular quality control, compensate for the apparent reduced potential of complex animals to adapt and evolve. PMID:25557795

  18. Cell differentiation and germ-soma separation in Ediacaran animal embryo-like fossils

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Xiao, Shuhai; Pang, Ke; Zhou, Chuanming; Yuan, Xunlai

    2014-12-01

    Phosphorites of the Ediacaran Doushantuo Formation (~600 million years old) yield spheroidal microfossils with a palintomic cell cleavage pattern. These fossils have been variously interpreted as sulphur-oxidizing bacteria, unicellular protists, mesomycetozoean-like holozoans, green algae akin to Volvox, and blastula embryos of early metazoans or bilaterian animals. However, their complete life cycle is unknown and it is uncertain whether they had a cellularly differentiated ontogenetic stage, making it difficult to test their various phylogenetic interpretations. Here we describe new spheroidal fossils from black phosphorites of the Doushantuo Formation that have been overlooked in previous studies. These fossils represent later developmental stages of previously published blastula-like fossils, and they show evidence for cell differentiation, germ-soma separation, and programmed cell death. Their complex multicellularity is inconsistent with a phylogenetic affinity with bacteria, unicellular protists, or mesomycetozoean-like holozoans. Available evidence also indicates that the Doushantuo fossils are unlikely crown-group animals or volvocine green algae. We conclude that an affinity with cellularly differentiated multicellular eukaryotes, including stem-group animals or algae, is likely but more data are needed to constrain further the exact phylogenetic affinity of the Doushantuo fossils.

  19. Tre1, a G Protein-Coupled Receptor, Directs Transepithelial Migration of Drosophila Germ Cells

    PubMed Central

    Bainton, Roland J; Heberlein, Ulrike

    2003-01-01

    In most organisms, germ cells are formed distant from the somatic part of the gonad and thus have to migrate along and through a variety of tissues to reach the gonad. Transepithelial migration through the posterior midgut (PMG) is the first active step during Drosophila germ cell migration. Here we report the identification of a novel G protein-coupled receptor (GPCR), Tre1, that is essential for this migration step. Maternal tre1 RNA is localized to germ cells, and tre1 is required cell autonomously in germ cells. In tre1 mutant embryos, most germ cells do not exit the PMG. The few germ cells that do leave the midgut early migrate normally to the gonad, suggesting that this gene is specifically required for transepithelial migration and that mutant germ cells are still able to recognize other guidance cues. Additionally, inhibiting small Rho GTPases in germ cells affects transepithelial migration, suggesting that Tre1 signals through Rho1. We propose that Tre1 acts in a manner similar to chemokine receptors required during transepithelial migration of leukocytes, implying an evolutionarily conserved mechanism of transepithelial migration. Recently, the chemokine receptor CXCR4 was shown to direct migration in vertebrate germ cells. Thus, germ cells may more generally use GPCR signaling to navigate the embryo toward their target. PMID:14691551

  20. Methods to study maternal regulation of germ cell specification in zebrafish

    PubMed Central

    Kaufman, O.H.; Marlow, F.L.

    2016-01-01

    The process by which the germ line is specified in the zebrafish embryo is under the control of maternal gene products that were produced during oogenesis. Zebrafish are highly amenable to microscopic observation of the processes governing maternal germ cell specification because early embryos are transparent, and the germ line is specified rapidly (within 4–5 h post fertilization). Advantages of zebrafish over other models used to study vertebrate germ cell formation include their genetic tractability, the large numbers of progeny, and the easily manipulable genome, all of which make zebrafish an ideal system for studying the genetic regulators and cellular basis of germ cell formation and maintenance. Classical molecular biology techniques, including expression analysis through in situ hybridization and forward genetic screens, have laid the foundation for our understanding of germ cell development in zebrafish. In this chapter, we discuss some of these classic techniques, as well as recent cutting-edge methodologies that have improved our ability to visualize the process of germ cell specification and differentiation, and the tracking of specific molecules involved in these processes. Additionally, we discuss traditional and novel technologies for manipulating the zebrafish genome to identify new components through loss-of-function studies of putative germ cell regulators. Together with the numerous aforementioned advantages of zebrafish as a genetic model for studying development, we believe these new techniques will continue to advance zebrafish to the forefront for investigation of the molecular regulators of germ cell specification and germ line biology. PMID:27312489

  1. Reevaluation of whether a soma–to–germ-line transformation extends lifespan in Caenorhabditis elegans

    PubMed Central

    Knutson, Andrew Kekūpa'a; Rechtsteiner, Andreas; Strome, Susan

    2016-01-01

    The germ lineage is considered to be immortal. In the quest to extend lifespan, a possible strategy is to drive germ-line traits in somatic cells, to try to confer some of the germ lineage’s immortality on the somatic body. Notably, a study in Caenorhabditis elegans suggested that expression of germ-line genes in the somatic cells of long-lived daf-2 mutants confers some of daf-2’s long lifespan. Specifically, mRNAs encoding components of C. elegans germ granules (P granules) were up-regulated in daf-2 mutant worms, and knockdown of individual P-granule and other germ-line genes in daf-2 young adults modestly reduced their lifespan. We investigated the contribution of a germ-line program to daf-2’s long lifespan and also tested whether other mutants known to express germ-line genes in their somatic cells are long-lived. Our key findings are as follows. (i) We could not detect P-granule proteins in the somatic cells of daf-2 mutants by immunostaining or by expression of a P-granule transgene. (ii) Whole-genome transcript profiling of animals lacking a germ line revealed that germ-line transcripts are not up-regulated in the soma of daf-2 worms compared with the soma of control worms. (iii) Simultaneous removal of multiple P-granule proteins or the entire germ-line program from daf-2 worms did not reduce their lifespan. (iv) Several mutants that robustly express a broad spectrum of germ-line genes in their somatic cells are not long-lived. Together, our findings argue against the hypothesis that acquisition of a germ-cell program in somatic cells increases lifespan and contributes to daf-2’s long lifespan. PMID:26976573

  2. Presence of Germ Cells in Disorders of Sex Development: Implications for Fertility Potential and Preservation

    PubMed Central

    Finlayson, Courtney; Fritsch, Michael K.; Johnson, Emilie K.; Rosoklija, Ilina; Gosiengfiao, Yasmin; Yerkes, Elizabeth; Madonna, Mary Beth; Woodruff, Teresa K.; Cheng, Earl

    2017-01-01

    Purpose We sought to determine the presence of germ cells in the gonads of patients with disorders of sex development to establish whether preservation of germ cells for future fertility potential is possible. We hypothesized that germ cells are present but vary by age and diagnosis. Materials and Methods We reviewed histology from patients with disorders of sex development who underwent gonadectomy/biopsy from 2002 to 2014 at a single institution for pathological classification of the gonad, composition of gonadal stroma and germ cell presence. Results A total of 44 patients were identified and germ cells were present in 68%. The presence and average number of germ cells per mm2 were analyzed by gonad type and diagnosis. By gonad type all ovotestes, most testes, ovaries and dysgenetic testes, and 15% of streak gonads had germ cells present. By diagnosis germ cells were present in all patients with complete androgen insensitivity syndrome, Denys-Drash syndrome, SRY mutation, mixed gonadal dysgenesis, ovotesticular conditions and StAR (steroid acute regulatory protein) deficiency, in some patients with persistent müllerian duct syndrome, XO/XY Turner syndrome and disorders of sex development not otherwise specified, and in none with complete or partial gonadal dysgenesis. Germ cells were present in the gonads of 88% of patients 0 to 3 years old, 50% of those 4 to 11 years old and 43% of those older than 12 years. Conclusions Germ cells were present in the majority of our cohort and the presence decreased with age. This novel, fertility driven evaluation of germ cell quantity in a variety of disorders of sex development suggests that fertility potential may be greater than previously thought. Further studies must be done to evaluate a larger population and examine germ cell quality to determine the viability of these germ cells. PMID:27840018

  3. Porcine reproductive and respiratory syndrome virus replicates in testicular germ cells, alters spermatogenesis, and induces germ cell death by apoptosis.

    PubMed Central

    Sur, J H; Doster, A R; Christian, J S; Galeota, J A; Wills, R W; Zimmerman, J J; Osorio, F A

    1997-01-01

    Like other arteriviruses, porcine reproductive and respiratory syndrome virus (PRRSV) is shed in semen, a feature that is critical for the venereal transmission of this group of viruses. In spite of its epidemiological importance, little is known of the association of PRRSV or other arteriviruses with gonadal tissues. We experimentally infected a group of boars with PRRSV 12068-96, a virulent field strain. By combined use of in situ hybridization and immunohistochemistry, we detected infection by PRRSV in the testes of these boars. The PRRSV testicular replication in testis centers on two types of cells: (i) epithelial germ cells of the seminiferous tubules, primarily spermatids and spermatocytes, and (ii) macrophages, which are located in the interstitium of the testis. Histopathologically, hypospermatogenesis, formation of multinucleated giant cells (MGCs), and abundant germ cell depletion and death were observed. We obtained evidence that such germ cell death occurs by apoptosis, as determined by a characteristic histologic pattern and evidence of massive DNA fragmentation detected in situ (TUNEL [terminal deoxynucleotidyltransferase-mediated digoxigenin-UTP nick end labeling] assay). Simultaneously with these testicular alterations, we observed that there is a significant increase in the number of immature sperm cells (mainly MGCs, spermatids, and spermatocytes) in the ejaculates of the PRRSV-inoculated boars and that these cells are infected with PRRSV. Our results indicate that PRRSV may infect target cells other than macrophages, that these infected cells can be primarily responsible for the excretion of infectious PRRSV in semen, and that PRRSV induces apoptosis in these germ cells in vivo. PMID:9371575

  4. Altered gene expression signature of early stages of the germ line supports the pre-meiotic origin of human spermatogenic failure.

    PubMed

    Bonache, S; Algaba, F; Franco, E; Bassas, L; Larriba, S

    2014-07-01

    The molecular basis of spermatogenic failure (SpF) is still largely unknown. Accumulating evidence suggests that a series of specific events such as meiosis, are determined at the early stage of spermatogenesis. This study aims to assess the expression profile of pre-meiotic genes of infertile testicular biopsies that might help to define the molecular phenotype associated with human deficiency of sperm production. An accurate quantification of testicular mRNA levels of genes expressed in spermatogonia was carried out by RT-qPCR in individuals showing SpF owing to germ cell maturation defects, Sertoli cell-only syndrome or conserved spermatogenesis. In addition, the gene expression profile of SpF was compared with that of testicular tumour, which is considered to be a severe developmental disease of germ cell differentiation. Protein expression from selected genes was evaluated by immunohistochemistry. Our results indicate that SpF is accompanied by differences in expression of certain genes associated with spermatogonia in the absence of any apparent morphological and/or numerical change in this specific cell type. In SpF testicular samples, we observed down-regulation of genes involved in cell cycle (CCNE1 and POLD1), transcription and post-transcription regulation (DAZL, RBM15 and DICER1), protein degradation (FBXO32 and TM9SF2) and homologous recombination in meiosis (MRE11A and RAD50) which suggests that the expression of these genes is critical for a proper germ cell development. Interestingly, a decrease in the CCNE1, DAZL, RBM15 and STRA8 cellular transcript levels was also observed, suggesting that the gene expression capacity of spermatogonia is altered in SpF contributing to an unsuccessful sperm production. Altogether, these data point to the spermatogenic derangement being already determined at, or arising in, the initial stages of the germ line.

  5. Germ-line gene modification and disease prevention: some medical and ethical perspectives.

    PubMed

    Wivel, N A; Walters, L

    1993-10-22

    There has been considerable debate about the ethics of human germ-line gene modification. As a result of recent advances in the micromanipulation of embryos and the laboratory development of transgenic mice, a lively discussion has begun concerning both the technical feasibility and the ethical acceptability of human germ-line modification for the prevention of serious disease. This article summarizes some of the recent research on germ-line gene modification in animal models. Certain monogenic deficiency diseases that ultimately might be candidates for correction by germ-line intervention are identified. Several of the most frequently considered ethical issues relative to human germ-line gene modification are considered in the context of professional ethics, parental responsibility, and public policy. Finally, it is suggested that there is merit in continuing the discussion about human germ-line intervention, so that this technique can be carefully compared with alternative strategies for preventing genetic disease.

  6. Primordial germ cells: the first cell lineage or the last cells standing?

    PubMed Central

    Johnson, Andrew D.; Alberio, Ramiro

    2015-01-01

    Embryos of many animal models express germ line determinants that suppress transcription and mediate early germ line commitment, which occurs before the somatic cell lineages are established. However, not all animals segregate their germ line in this manner. The ‘last cell standing’ model describes primordial germ cell (PGC) development in axolotls, in which PGCs are maintained by an extracellular signalling niche, and germ line commitment occurs after gastrulation. Here, we propose that this ‘stochastic’ mode of PGC specification is conserved in vertebrates, including non-rodent mammals. We postulate that early germ line segregation liberates genetic regulatory networks for somatic development to evolve, and that it therefore emerged repeatedly in the animal kingdom in response to natural selection. PMID:26286941

  7. Generation of exogenous germ cells in the ovaries of sterile NANOS3-null beef cattle

    PubMed Central

    Ideta, Atsushi; Yamashita, Shiro; Seki-Soma, Marie; Yamaguchi, Ryosaku; Chiba, Shiori; Komaki, Haruna; Ito, Tetsuya; Konishi, Masato; Aoyagi, Yoshito; Sendai, Yutaka

    2016-01-01

    Blastocyst complementation (BC) systems have enabled in vivo generation of organs from allogeneic pluripotent cells, compensating for an empty germ cell niche in gene knockout (KO) animals. Here, we succeeded in producing chimeric beef cattle (Wagyu) by transferring allogenic germ cells into ovaries using somatic cell nuclear transfer and BC technology. The KO of NANOS3 (NANOS3−/−) in Wagyu bovine ovaries produced a complete loss of germ cells. Holstein blastomeres (NANOS3+/+) were injected into NANOS3−/− Wagyu embryos. Subsequently, exogenous germ cells (NANOS3+/+) were identified in the NANOS3−/− ovary. These results clearly indicate that allogeneic germ cells can be generated in recipient germ cell-free gonads using cloning and BC technologies. PMID:27117862

  8. Generation of exogenous germ cells in the ovaries of sterile NANOS3-null beef cattle.

    PubMed

    Ideta, Atsushi; Yamashita, Shiro; Seki-Soma, Marie; Yamaguchi, Ryosaku; Chiba, Shiori; Komaki, Haruna; Ito, Tetsuya; Konishi, Masato; Aoyagi, Yoshito; Sendai, Yutaka

    2016-04-27

    Blastocyst complementation (BC) systems have enabled in vivo generation of organs from allogeneic pluripotent cells, compensating for an empty germ cell niche in gene knockout (KO) animals. Here, we succeeded in producing chimeric beef cattle (Wagyu) by transferring allogenic germ cells into ovaries using somatic cell nuclear transfer and BC technology. The KO of NANOS3 (NANOS3(-/-)) in Wagyu bovine ovaries produced a complete loss of germ cells. Holstein blastomeres (NANOS3(+/+)) were injected into NANOS3(-/-) Wagyu embryos. Subsequently, exogenous germ cells (NANOS3(+/+)) were identified in the NANOS3(-/-) ovary. These results clearly indicate that allogeneic germ cells can be generated in recipient germ cell-free gonads using cloning and BC technologies.

  9. Developmental coordination disorder

    MedlinePlus

    ... with visual or fine motor coordination (for example, writing, using scissors, tying shoelaces, or tapping one finger ... take notes may help children who have trouble writing. Children with developmental coordination disorder are more likely ...

  10. Developmental milestones record

    MedlinePlus

    ... in the early years is to follow your child's development. Most parents also watch for different milestones. Talk ... child's provider if you have concerns about your child's development. Closely watching a "checklist" or calendar of developmental ...

  11. Plants: Novel Developmental Processes.

    ERIC Educational Resources Information Center

    Goldberg, Robert B.

    1988-01-01

    Describes the diversity of plants. Outlines novel developmental and complex genetic processes that are specific to plants. Identifies approaches that can be used to solve problems in plant biology. Cites the advantages of using higher plants for experimental systems. (RT)

  12. Ultrastructure of putative germ granules in the penaeid shrimp Marsupenaeus japonicus.

    PubMed

    Grattan, R M; McCulloch, R J; Sellars, M J; Hertzler, P L

    2013-03-01

    Knowledge about the specification of the germ line in penaeid shrimp would allow development of techniques to control germ cell formation and/or fate to produce reproductively sterile shrimp for genetic copyright purposes. Recent studies have traced the localization of an RNA-enriched intracellular body (ICB) in the putative germ line of four penaeid shrimp species. It is hypothesized that the ICB may serve as a putative germ granule and marker of germ line fate. In this study semi-thin and ultra-thin sections of Marsupenaeus japonicus embryos were prepared, and the dimensions and ultrastructure of the ICB was examined at different stages of embryogenesis. The ICB was an aggregation of electron dense granules, small vesicles and multi-vesicular bodies (MVBs), similar to germ granules from other species. Lamellar membranes and mitochondria were localized at the periphery of the ICB. Using fluorescence microscopy, microtubules were also observed between the centrosome and the ICB. The localization of the ICB in the D lineage and putative germ cell line, the enrichment of RNA in the ICB, and the ultrastructural similarities to other germ granules characterized in this study support the hypothesis that the ICB contains germ granules.

  13. Nutritional, microstructural, rheological and quality characteristics of biscuits using processed wheat germ.

    PubMed

    Bansal, Shivani; Sudha, M L

    2011-08-01

    Stabilizing wheat germ by defatting increased the protein content to 38% and also increased the soluble fiber from 2.07 to 3.01% and insoluble fiber increased from 14.4 to 24.49%, whereas steaming was highly effective in completely inactivating the lipase activity and most of the lipoxygenase activity. Addition of defatted germ had more weakening effects on the rheological characteristics of the dough than the steamed germ. Biscuits with higher protein and dietary fiber content could be prepared by replacing wheat flour with either steamed or defatted wheat germ at a 40% level.

  14. A new glycosylated dihydrophaseic acid from cacao germs (Theobroma cacao L.).

    PubMed

    Sannohe, Yumiko; Gomi, Shuichi; Murata, Takashi; Ohyama, Makoto; Yonekura, Kumiko; Kanegae, Minoru; Koga, Jinichiro

    2011-01-01

    Cacao beans are composed of cacao nibs and germs. Although numerous chemical and physiological studies on cacao nib compounds have been reported, there is little information on cacao germ compounds. We therefore analyzed an extract from the cacao germ, and found two compounds that were specific to the germ. One of these two compounds was identified as the new glycosylated abscisic acid metabolite, dihydrophaseic acid-4'-O-6″-(β-ribofuranosyl)-β-glucopyranoside, and the other as the known compound, dihydrophaseic acid-4'-O-β-D-glucopyranoside.

  15. Parthenogenesis in non-rodent species: developmental competence and differentiation plasticity.

    PubMed

    Brevini, T A L; Pennarossa, G; Vanelli, A; Maffei, S; Gandolfi, F

    2012-03-01

    An oocyte can activate its developmental process without the intervention of the male counterpart. This form of reproduction, known as parthenogenesis, occurs spontaneously in a variety of lower organisms, but not in mammals. However, it must be noted that mammalian oocytes can be activated in vitro, mimicking the intracellular calcium wave induced by the spermatozoon at fertilization, which triggers cleavage divisions and embryonic development. The resultant parthenotes are not capable of developing to term and arrest their growth at different stages, depending on the species. It is believed that this arrest is due to genomic imprinting, which causes the repression of genes normally expressed by the paternal allele. Human parthenogenetic embryos have recently been proposed as an alternative, less controversial source of embryonic stem cell lines, based on their inherent inability to form a new individual. However many aspects related to the biology of parthenogenetic embryos and parthenogenetically derived cell lines still need to be elucidated. Limited information is available in particular on the consequences of the lack of centrioles and on the parthenote's ability to assemble a new embryonic centrosome in the absence of the sperm centriole. Indeed, in lower species, successful parthenogenesis largely depends upon the oocyte's ability to regenerate complete and functional centrosomes in the absence of the material supplied by a male gamete, while the control of this event appears to be less stringent in mammalian cells. In an attempt to better elucidate some of these aspects, parthenogenetic cell lines, recently derived in our laboratory, have been characterized for their pluripotency. In vitro and in vivo differentiation plasticity have been assessed, demonstrating the ability of these cells to differentiate into cell types derived from the three germ layers. These results confirmed common features between uni- and bi-parental embryonic stem cells. However

  16. Galactic Cosmic Ray Event-Based Risk Model (GERM) Code

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Plante, Ianik; Ponomarev, Artem L.; Kim, Myung-Hee Y.

    2013-01-01

    This software describes the transport and energy deposition of the passage of galactic cosmic rays in astronaut tissues during space travel, or heavy ion beams in patients in cancer therapy. Space radiation risk is a probability distribution, and time-dependent biological events must be accounted for physical description of space radiation transport in tissues and cells. A stochastic model can calculate the probability density directly without unverified assumptions about shape of probability density function. The prior art of transport codes calculates the average flux and dose of particles behind spacecraft and tissue shielding. Because of the signaling times for activation and relaxation in the cell and tissue, transport code must describe temporal and microspatial density of functions to correlate DNA and oxidative damage with non-targeted effects of signals, bystander, etc. These are absolutely ignored or impossible in the prior art. The GERM code provides scientists data interpretation of experiments; modeling of beam line, shielding of target samples, and sample holders; and estimation of basic physical and biological outputs of their experiments. For mono-energetic ion beams, basic physical and biological properties are calculated for a selected ion type, such as kinetic energy, mass, charge number, absorbed dose, or fluence. Evaluated quantities are linear energy transfer (LET), range (R), absorption and fragmentation cross-sections, and the probability of nuclear interactions after 1 or 5 cm of water equivalent material. In addition, a set of biophysical properties is evaluated, such as the Poisson distribution for a specified cellular area, cell survival curves, and DNA damage yields per cell. Also, the GERM code calculates the radiation transport of the beam line for either a fixed number of user-specified depths or at multiple positions along the Bragg curve of the particle in a selected material. The GERM code makes the numerical estimates of basic

  17. LINEing germ and embryonic stem cells' silencing of retrotransposons.

    PubMed

    Ishiuchi, Takashi; Torres-Padilla, Maria-Elena

    2014-07-01

    Almost half of our genome is occupied by transposable elements. Although most of them are inactive, one type of non-long terminal repeat (LTR) retrotransposon, long interspersed nuclear element 1 (LINE1), is capable of retrotransposition. Two studies in this issue, Pezic and colleagues (pp. 1410-1428) and Castro-Diaz and colleagues (pp. 1397-1409), provide novel insight into the regulation of LINE1s in human embryonic stem cells and mouse germ cells and shed new light on the conservation of complex mechanisms to ensure silencing of transposable elements in mammals.

  18. HIPSTR and thousands of lncRNAs are heterogeneously expressed in human embryos, primordial germ cells and stable cell lines

    PubMed Central

    Yunusov, Dinar; Anderson, Leticia; DaSilva, Lucas Ferreira; Wysocka, Joanna; Ezashi, Toshihiko; Roberts, R. Michael; Verjovski-Almeida, Sergio

    2016-01-01

    Eukaryotic genomes are transcribed into numerous regulatory long non-coding RNAs (lncRNAs). Compared to mRNAs, lncRNAs display higher developmental stage-, tissue-, and cell-subtype-specificity of expression, and are generally less abundant in a population of cells. Despite the progress in single-cell-focused research, the origins of low population-level expression of lncRNAs in homogeneous populations of cells are poorly understood. Here, we identify HIPSTR (Heterogeneously expressed from the Intronic Plus Strand of the TFAP2A-locus RNA), a novel lncRNA gene in the developmentally regulated TFAP2A locus. HIPSTR has evolutionarily conserved expression patterns, its promoter is most active in undifferentiated cells, and depletion of HIPSTR in HEK293 and in pluripotent H1BP cells predominantly affects the genes involved in early organismal development and cell differentiation. Most importantly, we find that HIPSTR is specifically induced and heterogeneously expressed in the 8-cell-stage human embryos during the major wave of embryonic genome activation. We systematically explore the phenomenon of cell-to-cell variation of gene expression and link it to low population-level expression of lncRNAs, showing that, similar to HIPSTR, the expression of thousands of lncRNAs is more highly heterogeneous than the expression of mRNAs in the individual, otherwise indistinguishable cells of totipotent human embryos, primordial germ cells, and stable cell lines. PMID:27605307

  19. Dose-dependent induction of recessive mutations with N-ethyl-N-nitrosourea in primordial germ cells of male mice.

    PubMed

    Shibuya, T; Horiya, N; Matsuda, H; Sakamoto, K; Hara, T

    1996-10-25

    Using a specific locus test, we previously found that N-ethyl-N-nitrosourea (ENU) induces recessive mutations at a relatively high rate in male mouse primordial germ cells (PGC) at 8.5, 10.5 and 13.5 days of development (G8.5, G10.5 and G13.5). A large difference was observed on the induced mutation rate between 30 and 50 mg/kg ENU in 10.5-day PGC. We therefore carried out specific locus tests to ascertain whether ENU induces recessive mutations in a dose-dependent manner in G8.5 and G10.5 PGC. We also gave multiple doses of 25 mg/kg ENU using an 18-h interval, the approximate doubling time of PGC at these developmental stages, to test for an additive effect on the induced mutations rate. A dose-dependent induction of recessive mutations by ENU was observed in both G8.5 and G10.5 PGC, and multiple dosing of 25 mg/kg ENU showed an additive effect. Comparing these results to data on spermatogonial stem cells, we conclude the capacity to repair ENU-induced premutagenic damages is less effective in male mouse PGC at these developmental stages than in spermatogonial stem cells.

  20. Cell cycle analysis of fetal germ cells during sex differentiation in mice

    PubMed Central

    Spiller, Cassy; Wilhelm, Dagmar; Koopman, Peter

    2009-01-01

    Background information. Primordial germ cells in developing male and female gonads are responsive to somatic cell cues that direct their sex-specific differentiation into functional gametes. The first divergence of the male and female pathways is a change in cell cycle state observed from 12.5 dpc (days post coitum) in mice. At this time XY and XX germ cells cease mitotic division and enter G1/G0 arrest and meiosis prophase I respectively. Aberrant cell cycle regulation at this time can lead to disrupted ovarian development, germ cell apoptosis, reduced fertility and/or the formation of germ cell tumours. Results. In order to unravel the mechanisms utilized by germ cells to achieve and maintain the correct cell cycle states, we analysed the expression of a large number of cell cycle genes in purified germ cells across the crucial time of sex differentiation. Our results revealed common signalling for both XX and XY germ cell survival involving calcium signalling. A robust mechanism for apoptosis and checkpoint control was observed in XY germ cells, characterized by p53 and Atm (ataxia telangiectasia mutated) expression. Additionally, a member of the retinoblastoma family and p21 were identified, linking these factors to XY germ cell G1/G0 arrest. Lastly, in XX germ cells we observed a down-regulation of genes involved in both G1- and G2-phases of the cell cycle consistent with their entry into meiosis. Conclusion. The present study has provided a detailed analysis of cell cycle gene expression during fetal germ cell development and identified candidate factors warranting further investigation in order to understand cases of aberrant cell cycle control in these specialized cells. PMID:19419345

  1. nanos function is essential for development and regeneration of planarian germ cells.

    PubMed

    Wang, Yuying; Zayas, Ricardo M; Guo, Tingxia; Newmark, Phillip A

    2007-04-03

    Germ cells are required for the successful propagation of sexually reproducing species. Understanding the mechanisms by which these cells are specified and how their totipotency is established and maintained has important biomedical and evolutionary implications. Freshwater planarians serve as fascinating models for studying these questions. They can regenerate germ cells from fragments of adult tissues that lack reproductive structures, suggesting that inductive signaling is involved in planarian germ cell specification. To study the development and regeneration of planarian germ cells, we have functionally characterized an ortholog of nanos, a gene required for germ cell development in diverse organisms, from Schmidtea mediterranea. In the hermaphroditic strain of this species, Smed-nanos mRNA is detected in developing, regenerating, and mature ovaries and testes. However, it is not detected in the vast majority of newly hatched planarians or in small tissue fragments that will ultimately regenerate germ cells, consistent with an epigenetic origin of germ cells. We show that Smed-nanos RNA interference (RNAi) results in failure to develop, regenerate, or maintain gonads in sexual planarians. Unexpectedly, Smed-nanos mRNA is also detected in presumptive testes primordia of asexual individuals that reproduce strictly by fission. These presumptive germ cells are lost after Smed-nanos RNAi, suggesting that asexual planarians specify germ cells, but their differentiation is blocked downstream of Smed-nanos function. Our results reveal a conserved function of nanos in germ cell development in planarians and suggest that these animals will serve as useful models for dissecting the molecular basis of epigenetic germ cell specification.

  2. MASTL is essential for anaphase entry of proliferating primordial germ cells and establishment of female germ cells in mice

    PubMed Central

    Risal, Sanjiv; Zhang, Jingjing; Adhikari, Deepak; Liu, Xiaoman; Shao, Jingchen; Hu, Mengwen; Busayavalasa, Kiran; Tu, Zhaowei; Chen, Zijiang; Kaldis, Philipp; Liu, Kui

    2017-01-01

    In mammals, primordial germ cells (PGCs) are the embryonic cell population that serve as germ cell precursors in both females and males. During mouse embryonic development, the majority of PGCs are arrested at the G2 phase when they migrate into the hindgut at 7.75–8.75 dpc (days post coitum). It is after 9.5 dpc that the PGCs undergo proliferation with a doubling time of 12.6 h. The molecular mechanisms underlying PGC proliferation are however not well studied. In this work. Here we studied how MASTL (microtubule-associated serine/threonine kinase-like)/Greatwall kinase regulates the rapid proliferation of PGCs. We generated a mouse model where we specifically deleted Mastl in PGCs and found a significant loss of PGCs before the onset of meiosis in female PGCs. We further revealed that the deletion of Mastl in PGCs did not prevent mitotic entry, but led to a failure of the cells to proceed beyond metaphase-like stage, indicating that MASTL-mediated molecular events are indispensable for anaphase entry in PGCs. These mitotic defects further led to the death of Mastl-null PGCs by 12.5 dpc. Moreover, the defect in mitotic progression observed in the Mastl-null PGCs was rescued by simultaneous deletion of Ppp2r1a (α subunit of PP2A). Thus, our results demonstrate that MASTL, PP2A, and therefore regulated phosphatase activity have a fundamental role in establishing female germ cell population in gonads by controlling PGC proliferation during embryogenesis. PMID:28224044

  3. CHEMICAL PRIORITIZATION FOR DEVELOPMENTAL ...

    EPA Pesticide Factsheets

    Defining a predictive model of developmental toxicity from in vitro and high-throughput screening (HTS) assays can be limited by the availability of developmental defects data. ToxRefDB (www.epa.gov/ncct/todrefdb) was built from animal studies on data-rich environmental chemicals, and has been used as an anchor for predictive modeling of ToxCast™ data. Scaling to thousands of untested chemicals requires another approach. ToxPlorer™ was developed as a tool to query and extract specific facts about defined biological entities from the open scientific literature and to coherently synthesize relevant knowledge about relationships, pathways and processes in toxicity. Here, we investigated the specific application of ToxPlorer to weighting HTS assay targets for relevance to developmental defects as defined in the literature. First, we systemically analyzed 88,193 Pubmed abstracts selected by bulk query using harmonized terminology for 862 developmental endpoints (www.devtox.net) and 364,334 dictionary term entities in our VT-KB (virtual tissues knowledgebase). We specifically focused on entities corresponding to genes/proteins mapped across of >500 ToxCast HTS assays. The 88,193 devtox abstracts mentioned 244 gene/protein entities in an aggregated total of ~8,000 occurrences. Each of the 244 assays was scored and weighted by the number of devtox articles and relevance to developmental processes. This score was used as a feature for chemical prioritization by Toxic

  4. Management of poor-prognosis testicular germ cell tumors

    PubMed Central

    Khurana, Kiranpreet; Gilligan, Timothy D.; Stephenson, Andrew J.

    2010-01-01

    Currently, the outcome of patients with intermediate-and poor-risk germ cell tumors at diagnosis is optimized by the use of risk-appropriate chemotherapy and post-chemotherapy surgical resection of residual masses. Currently, there is no role for high-dose chemotherapy in the first-line setting. Patients who progress on first-line chemotherapy or who relapse after an initial complete response also have a poor prognosis. In the setting of early relapse, the standard approach at most centers is conventional-dose, ifosfamide-based regimens and post-chemotherapy resection of residual masses. The treatment of patients with late relapse is complete surgical resection whenever feasible. Salvage chemotherapy for late relapse may be used prior to surgery in patients where a complete resection is not feasible. A complete surgical resection of all residual sites of disease after chemotherapy is critical for the prevention of relapse and the long-term survival of patients with advanced germ cell tumors. PMID:20535296

  5. Issues in identifying germ tube positive yeasts by conventional methods.

    PubMed

    Yazdanpanah, Atta; Khaithir, Tzar Mohd Nizam

    2014-01-01

    Candida speciation is vital for epidemiology and management of candidiasis. Nonmolecular conventional methods often fail to identify closely related germ tube positive yeasts from clinical specimens. The present study was conducted to identify these yeasts and to highlight issues in conventional versus molecular methods of identification. A total of 98 germ tube positive yeasts from high vaginal swabs were studied over a 12-month period. Isolates were examined with various methods including growth at 42 °C and 45 °C on Sabouraud dextrose agar (SDA), color development on CHROMagar Candida medium, chlamydospore production on corn meal agar at 25 °C, carbohydrate assimilation using ID 32C system, and polymerase chain reaction using a single pair of primers targeting the hyphal wall protein 1 (Hwp1) gene. Of all the isolates studied, 97 were molecularly confirmed as C. albicans and one isolate was identified as C. dubliniensis. No C. africana was detected in this study. The molecular method used in our study was an accurate and useful tool for discriminating C. albicans, C. dubliniensis, and C. africana. The conventional methods, however, were less accurate and riddled with many issues that will be discussed in further details.

  6. Avemar (wheat germ extract) in cancer prevention and treatment.

    PubMed

    Telekes, András; Hegedus, Márta; Chae, Chang-Hoon; Vékey, Károly

    2009-01-01

    Many healthy foods are derived from wheat germ. The molecular composition of these products, however, greatly differs as shown by normal-phase HPLC-mass spectrometry analysis; thus, experimental data obtained by one of them is not necessarily true for the other. Avemar is a nontoxic wheat germ extract registered as a special nutriment for cancer patients in Hungary. It shows potent anticancer activity on cell lines by deeply interfering with glucose metabolism and affecting expressions of several kinases. In in vivo experimental models, Avemar is also effective by enhancing the activity of the immune system such as stimulating NK cell activity (by reducing MHC I molecule expression), enhancing TNF secretion of the macrophages, increasing ICAM 1 molecule expression on the vascular endothelial cells. All of these lead to apoptosis of tumor cells. The wide range of biological activity of Avemar probably cannot be explained by only one active ingredient. Since there are numerous experimental data and the clinical benefit repeatedly confirmed Avemar can be one of the most potent and best researched food supplements available for cancer patients.

  7. The effects of steel mutation on testicular germ cell differentiation.

    PubMed

    Nishimune, Y; Haneji, T; Kitamura, Y

    1980-10-01

    The effects of artificial cryptorchidism and its surgical reversal on spermatogenesis were examined in germ cell mutant, S1/+ and wild type, +/+, mice. In cryptorchid testes no difference was found between S1/+ and +/+ mice in the number of undifferentiated type A spermatogonia. The activity of type A spermatogonia in mutant mice appeared normal as judged by its mitotic cell number and DNA synthesis. The surgical reversal of cryptorchidism resulted in regenerative differentiation of mature germ cells in both types of mice, but the pattern of cellular differentiation in the mutant testes was completely different from that of the wild type testes. At two steps of cellular differentiation, intermediate or type B spermatogonia and spermatid, the numbers of cells were much smaller in the S1/+ testes than those in the +/+ testes. The steel gene was therefore suggested to exert its effects on the differentiation of type A spermatogonia to intermediate or type B spermatogonia, on meiotic division and/or the survival rate of these cells, but not on the undifferentiated type A spermatogonia or stem cells.

  8. Control of mammalian germ cell entry into meiosis.

    PubMed

    Feng, Chun-Wei; Bowles, Josephine; Koopman, Peter

    2014-01-25

    Germ cells are unique in undergoing meiosis to generate oocytes and sperm. In mammals, meiosis onset is before birth in females, or at puberty in males, and recent studies have uncovered several regulatory steps involved in initiating meiosis in each sex. Evidence suggests that retinoic acid (RA) induces expression of the critical pre-meiosis gene Stra8 in germ cells of the fetal ovary, pubertal testis and adult testis. In the fetal testis, CYP26B1 degrades RA, while FGF9 further antagonises RA signalling to suppress meiosis. Failsafe mechanisms involving Nanos2 may further suppress meiosis in the fetal testis. Here, we draw together the growing knowledge relating to these meiotic control mechanisms, and present evidence that they are co-ordinately regulated and that additional factors remain to be identified. Understanding this regulatory network will illuminate not only how the foundations of mammalian reproduction are laid, but also how mis-regulation of these steps can result in infertility or germline tumours.

  9. Chlorambucil effectively induces deletion mutations in mouse germ cells

    SciTech Connect

    Russell, L.B.; Hunsicker, P.R.; Cacheiro, N.L.A.; Bangham, J.W.; Russell, W.L.; Shelby, M.D. )

    1989-05-01

    The chemotherapeutic agent chlorambucil was found to be more effective than x-rays or any chemical investigated to data in inducing high yields of mouse germ-line mutations that appear to be deletions or other structural changes. Induction of mutations involving seven specific loci was studied after exposures of various male germ-cell stages to chlorambucil at 10-25 mg/kg. A total of 60,750 offspring was scored. Mutation rates in spermatogonial stem cells were not significantly increased over control values; this negative result is not attributable to selective elimination of mutant cells. Mutations were, however, clearly induced in treated post-stem-cell stages, among which marked variations in mutational response were found. Maximum yield occurred after exposure of early spermatids, with {approx} 1% of all offspring carrying a specific-locus mutation in the 10 mg/kg group. The stage-response pattern for chlorambucil differs from that of all other chemicals investigated to date in the specific-locus test. Thus far, all but one of the tested mutations induced by chlorambucil in post-stem-cell stages have been proved deletions or other structural changes by genetic, cytogenetic, and/or molecular criteria. Deletion mutations have recently been useful for molecular mapping and for structure-function correlations of genomic regions. For generating presumed large-lesion germline mutations at highest frequencies, chlorambucil may be the mutagen of choice.

  10. Nanog regulates primordial germ cell migration through Cxcr4b.

    PubMed

    Sánchez-Sánchez, Ana Virginia; Camp, Esther; Leal-Tassias, Aránzazu; Atkinson, Stuart P; Armstrong, Lyle; Díaz-Llopis, Manuel; Mullor, José L

    2010-09-01

    Gonadal development in vertebrates depends on the early determination of primordial germ cells (PGCs) and their correct migration to the sites where the gonads develop. Several genes have been implicated in PGC specification and migration in vertebrates. Additionally, some of the genes associated with pluripotency, such as Oct4 and Nanog, are expressed in PGCs and gonads, suggesting a role for these genes in maintaining pluripotency of the germ lineage, which may be considered the only cell type that perpetually maintains stemness properties. Here, we report that medaka Nanog (Ol-Nanog) is expressed in the developing PGCs. Depletion of Ol-Nanog protein causes aberrant migration of PGCs and inhibits expression of Cxcr4b in PGCs, where it normally serves as the receptor of Sdf1a to guide PGC migration. Moreover, chromatin immunoprecipitation analysis demonstrates that Ol-Nanog protein binds to the promoter region of Cxcr4b, suggesting a direct regulation of Cxcr4b by Ol-Nanog. Simultaneous overexpression of Cxcr4b mRNA and depletion of Ol-Nanog protein in PGCs rescues the migration defective phenotype induced by a loss of Ol-Nanog, whereas overexpression of Sdf1a, the ligand for Cxcr4b, does not restore proper PGC migration. These results indicate that Ol-Nanog mediates PGC migration by regulating Cxcr4b expression.

  11. Endogenous interleukin 18 regulates testicular germ cell apoptosis during endotoxemia.

    PubMed

    Inoue, Taketo; Aoyama-Ishikawa, Michiko; Kamoshida, Shingo; Nishino, Satoshi; Sasano, Maki; Oka, Nobuki; Yamashita, Hayato; Kai, Motoki; Nakao, Atsunori; Kotani, Joji; Usami, Makoto

    2015-08-01

    Orchitis (testicular swelling) often occurs during systemic inflammatory conditions, such as sepsis. Interleukin 18 (IL18) is a proinflammatory cytokine and is an apoptotic mediator during endotoxemia, but the role of IL18 in response to inflammation in the testes was unclear. WT and IL18 knockout (KO) mice were injected lipopolysaccharide (LPS) to induce endotoxemia and examined 12 and 48  h after LPS administration to model the acute and recovery phases of endotoxemia. Caspase activation was assessed using immunohistochemistry. Protein and mRNA expression were examined by western blot and quantitative real-time RT-PCR respectively. During the acute phase of endotoxemia, apoptosis (as indicated by caspase-3 cleavage) was increased in WT mice but not in IL18 KO mice. The death receptor-mediated and mitochondrial-mediated apoptotic pathways were both activated in the WT mice but not in the KO mice. During the recovery phase of endotoxemia, apoptosis was observed in the IL18 KO mice but not in the WT mice. Activation of the death-receptor mediated apoptotic pathway could be seen in the IL18 KO mice but not the WT mice. These results suggested that endogenous IL18 induces germ cell apoptosis via death receptor mediated- and mitochondrial-mediated pathways during the acute phase of endotoxemia and suppresses germ cell apoptosis via death-receptor mediated pathways during recovery from endotoxemia. Taken together, IL18 could be a new therapeutic target to prevent orchitis during endotoxemia.

  12. Phosphorylation of Cytokinin by Adenosine Kinase from Wheat Germ 1

    PubMed Central

    Chen, Chong-Maw; Eckert, Richard L.

    1977-01-01

    Adenosine kinase was partially purified from wheat germ. This enzyme preparation, which was devoid of adenine phosphoribosyltransferase and nearly free of adenosine deaminase but contained adenylate kinase, rapidly phosphorylated adenosine and a cytokinin, N6-(δ2-isopentenyl)adenosine. Electrophoretic analysis indicated that only N6-(δ2-isopentenyl)adenosine-monophosphate was formed from the cytokinin while about 55% AMP, 45% ADP, and a trace of ATP were formed from adenosine. The biosynthesized nucleoside monophosphates were quantitatively hydrolyzed to the corresponding nucleosides by 5′-nucleotidase and the isopentenyl side chain of the phosphorylated cytokinin was not cleaved. The enzyme did not catalyze phosphorylation of inosine. The phosphorylation of the cytokinin and adenosine required ATP and Mg2+. The pH optimum was from 6.8 to 7.2 for both the cytokinin and adenosine. At pH 7 and 37 C the Km and Vmax for the cytokinin were 31 μm and 8.3 nmoles per mg protein per minute, and the values for adenosine were 8.7 μm and 46 nmoles per mg protein per minute. Crude enzyme preparations from tobacco callus tissue and wheat germ phosphorylated N6-(δ2-isopentenyl)adenosine. These preparations also phosphorylated N6-(δ2-isopentenyl)adenine when 5-phosphorylribose-1-pyrophosphate was present. PMID:16659870

  13. Apomixis: a developmental perspective.

    PubMed

    Koltunow, Anna M; Grossniklaus, Ueli

    2003-01-01

    The term apomixis encompasses a suite of processes whereby seeds form asexually in plants. In contrast to sexual reproduction, seedlings arising from apomixis retain the genotype of the maternal parent. The transfer of apomixis and its effective utilization in crop plants (where it is largely absent) has major advantages in agriculture. The hallmark components of apomixis include female gamete formation without meiosis (apomeiosis), fertilization-independent embryo development (parthenogenesis), and developmental adaptations to ensure functional endosperm formation. Understanding the molecular mechanisms underlying apomixis, a developmentally fascinating phenomenon in plants, is critical for the successful induction and utilization of apomixis in crop plants. This review draws together knowledge gained from analyzing ovule, embryo, and endosperm development in sexual and apomictic plants. It consolidates the view that apomixis and sexuality are closely interrelated developmental pathways where apomixis can be viewed as a deregulation of the sexual process in both time and space.

  14. Mixed Malignant Germ Cell Tumour of Third Ventricle with Hydrocephalus: A Rare Case with Recurrence

    PubMed Central

    Monappa, Vidya; Rao, Lakshmi; Kudva, Ranjini

    2014-01-01

    Malignant Germ Cell Tumours (GCTs) are rare, accounting for 3% of intracranial tumours and just like their extracranial counterparts represent a wide array of disease. Combination of Germinoma with Teratoma is very rare. Here in, we describe a case of Mixed Malignant Germ cell tumor of third ventricle with recurrence with emphasis on histopathological and radiological findings. PMID:25584231

  15. [Auto-transplantation of tooth germs. Discussion and presentation of 3 treated cases].

    PubMed

    Massei, G; Cardesi, E

    1997-01-01

    The authors examine the theoretical possibilities of human dental transplants: autologous, homologous and heterologous. They, then discuss-with reference to autologous transplants-an autotransplant as an alternative to prosthodontic treatment. This would apply both to traditional prosthodontic treatment and on implants or orthodontic treatment aiming at filling dental gaps. They show both general and local counterindications against this operational method the knowledge of which is necessary for an adequate selection of patients. They stress the determining factors for a successful autotransplant: 1) particular care with the choice of the germ to be transplanted taking into account its morphology and the stage of root development; 2) adequate surgical preparation of the receiving site in relation to the size of the germ to be transplanted; 3) suitable surgical technique entailing a particular care in the manipulation of soft and hard tissues and of the germ and appropriate conditions of sterilization; 4) use of appropriate retention means to ensure stability of the transplanted germ so as to favour cellular proliferation and reduce osteoclastic activity; 5) reduction of occlusal pressure on the transplanted germ. The authors describe for example's sake 3 out of 32 cases treated with the documentation of the achieved long-term success. They also analyse the possible causes of failure of such operational method (careless manipulation of the germ, incorrect surgical technique, removal of the germ in a too early stage of its development, too long exposure of the germ outside the oral cavity, poor oral hygiene, caries, periodontal disease, occlusal trauma.

  16. On the analysis of neonatal hamster tooth germs with the photon microprobe at Daresbury, UK

    NASA Astrophysics Data System (ADS)

    Tros, G. H. J.; Van Langevelde, F.; Vis, R. D.

    1990-04-01

    Complementary to the micro-PIXE experiments performed on hamster tooth germs to elucidate the role of fluoride during the growth, the photon microprobe at Daresbury was used to obtain information on the distribution of Zn. The germs of fluoride-administered hamsters, together with a control group, were analyzed with the micro-synchrotron radiation fluorescence method (micro-SXRF).

  17. Germ Cells Are Not Required to Establish the Female Pathway in Mouse Fetal Gonads

    PubMed Central

    Maatouk, Danielle M.; Mork, Lindsey; Hinson, Ashley; Kobayashi, Akio; McMahon, Andrew P.; Capel, Blanche

    2012-01-01

    The fetal gonad is composed of a mixture of somatic cell lineages and germ cells. The fate of the gonad, male or female, is determined by a population of somatic cells that differentiate into Sertoli or granulosa cells and direct testis or ovary development. It is well established that germ cells are not required for the establishment or maintenance of Sertoli cells or testis cords in the male gonad. However, in the agametic ovary, follicles do not form suggesting that germ cells may influence granulosa cell development. Prior investigations of ovaries in which pre-meiotic germ cells were ablated during fetal life reported no histological changes during stages prior to birth. However, whether granulosa cells underwent normal molecular differentiation was not investigated. In cases where germ cell loss occurred secondary to other mutations, transdifferentiation of granulosa cells towards a Sertoli cell fate was observed, raising questions about whether germ cells play an active role in establishing or maintaining the fate of granulosa cells. We developed a group of molecular markers associated with ovarian development, and show here that the loss of pre-meiotic germ cells does not disrupt the somatic ovarian differentiation program during fetal life, or cause transdifferentiation as defined by expression of Sertoli markers. Since we do not find defects in the ovarian somatic program, the subsequent failure to form follicles at perinatal stages is likely attributable to the absence of germ cells rather than to defects in the somatic cells. PMID:23091613

  18. Are There Human Germ-Cell Mutagens? We May Know Soon

    EPA Science Inventory

    The existence of agents that can induce germ-cell mutations in experimental systems has been recognized since 1927 with the discovery of the ability of X-rays to induce such mutations in Drosophila. Since then, various rodent-based assays have been used to identify ~50 germ-cell...

  19. From Young Children's Ideas about Germs to Ideas Shaping a Learning Environment

    ERIC Educational Resources Information Center

    Ergazaki, Marida; Saltapida, Konstantina; Zogza, Vassiliki

    2010-01-01

    This paper is concerned with highlighting young children's ideas about the nature, location and appearance of germs, as well as their reasoning strands about germs' ontological category and biological functions. Moreover, it is concerned with exploring how all these could be taken into account for shaping a potentially fruitful learning…

  20. Developmental disorders of vision.

    PubMed

    Galaburda, Albert M; Duchaine, Bradley C

    2003-08-01

    This review of developmental disorders of vision focuses on only a few of the many disorders that disrupt visual development. Given the enormity of the human visual system in the primate brain and complexity of visual development, however, there are likely hundreds or thousands of types of disorders affecting high-level vision. The rapid progress seen in developmental dyslexia and WMS demonstrates the possibilities and difficulties inherent in researching such disorders, and the authors hope that similar progress will be made for congenital prosopagnosia and other disorders in the near future.

  1. Intratubular germ cell neoplasia of the human testis: heterogeneous protein expression and relation to invasive potential.

    PubMed

    Mitchell, Rod T; E Camacho-Moll, Maria; Macdonald, Joni; Anderson, Richard A; Kelnar, Christopher J H; O'Donnell, Marie; Sharpe, Richard M; Smith, Lee B; Grigor, Ken M; Wallace, W Hamish B; Stoop, Hans; Wolffenbuttel, Katja P; Donat, Roland; Saunders, Philippa Tk; Looijenga, Leendert Hj

    2014-09-01

    Testicular germ cell cancer develops from premalignant intratubular germ cell neoplasia, unclassified cells that are believed to arise from failure of normal maturation of fetal germ cells from gonocytes (OCT4(+)/MAGEA4(-)) into pre-spermatogonia (OCT4(-)/MAGEA4(+)). Intratubular germ cell neoplasia cell subpopulations based on stage of germ cell differentiation have been described, however the importance of these subpopulations in terms of invasive potential has not been reported. We hypothesized that cells expressing an immature (OCT4(+)/MAGEA4(-)) germ cell profile would exhibit an increased proliferation rate compared with those with a mature profile (OCT4(+)/MAGEA4(+)). Therefore, we performed triple immunofluorescence and stereology to quantify the different intratubular germ cell neoplasia cell subpopulations, based on expression of germ cell (OCT4, PLAP, AP2γ, MAGEA4, VASA) and proliferation (Ki67) markers, in testis sections from patients with preinvasive disease, seminoma, and non-seminoma. We compared these subpopulations with normal human fetal testis and with seminoma cells. Heterogeneity of protein expression was demonstrated in intratubular germ cell neoplasia cells with respect to gonocyte and spermatogonial markers. It included an embryonic/fetal germ cell subpopulation lacking expression of the definitive intratubular germ cell neoplasia marker OCT4, that did not correspond to a physiological (fetal) germ cell subpopulation. OCT4(+)/MAGEA4(-) cells showed a significantly increased rate of proliferation compared with the OCT4(+)/MAGEA4(+) population (12.8 versus 3.4%, P<0.0001) irrespective of histological tumor type, reflected in the predominance of OCT4(+)/MAGEA4(-) cells in the invasive tumor component. Surprisingly, OCT4(+)/MAGEA4(-) cells in patients with preinvasive disease showed significantly higher proliferation compared to those with seminoma or non-seminoma (18.1 versus 10.2 versus 7.2%, P<0.05, respectively). In conclusion, this study

  2. Complete androgen insensitivity syndrome: factors influencing gonadal histology including germ cell pathology.

    PubMed

    Kaprova-Pleskacova, Jana; Stoop, Hans; Brüggenwirth, Hennie; Cools, Martine; Wolffenbuttel, Katja P; Drop, Stenvert L S; Snajderova, Marta; Lebl, Jan; Oosterhuis, J Wolter; Looijenga, Leendert H J

    2014-05-01

    Patients with complete androgen insensitivity syndrome are at an increased risk for the development of gonadal germ cell cancer. Residual androgen receptor (AR) activity and abnormal gonadal location may influence the survival of atypical germ cells and the development of other histopathological features. To assess this, we evaluated 37 gonads from 19 patients with complete androgen insensitivity (ranging in age from 3 months to 18 years). Histological abnormalities were examined using hematoxylin and eosin-stained sections and sections stained for POU5F1 and KITLG, markers of early changes in germ cells at risk for malignant transformation. Hamartomatous nodules (HNs), Leydig cell hyperplasia (LCH), decreased germ cells, tubular atrophy and stromal fibrosis were more pronounced as age increased (P<0.001). Expected residual AR activity acted as a positive predictor only for non-malignant germ cell survival in (post)pubertal patients (P<0.05). Immunohistochemical studies indicated that delayed maturation of germ cells was present in three patients, whereas intermediate changes that occurred between delayed maturation and intratubular germ cell neoplasia, designated pre-intratubular germ cell neoplasia, were identified in four cases. Intratubular germ cell neoplasia was observed in one patient. Neither POU5F1 nor KITLG expression was dependent on expected residual AR activity. An independent effect of inguinal versus abdominal position of the gonads was difficult to assess because inguinal gonads were present primarily in the youngest individuals. In conclusion, many histological changes occur increasingly with age. Expected residual AR activity contributes to better survival of the general germ cell population in (post)pubertal age; however, it did not seem to have an important role in the survival of the germ cells at risk for malignant transformation (defined by POU5F1 positivity and KITLG overexpression) in complete androgen insensitivity. Comparison of the high

  3. Germ cell regeneration-mediated, enhanced mutagenesis in the ascidian Ciona intestinalis reveals flexible germ cell formation from different somatic cells.

    PubMed

    Yoshida, Keita; Hozumi, Akiko; Treen, Nicholas; Sakuma, Tetsushi; Yamamoto, Takashi; Shirae-Kurabayashi, Maki; Sasakura, Yasunori

    2017-03-15

    The ascidian Ciona intestinalis has a high regeneration capacity that enables the regeneration of artificially removed primordial germ cells (PGCs) from somatic cells. We utilized PGC regeneration to establish efficient methods of germ line mutagenesis with transcription activator-like effector nucleases (TALENs). When PGCs were artificially removed from animals in which a TALEN pair was expressed, somatic cells harboring mutations in the target gene were converted into germ cells, this germ cell population exhibited higher mutation rates than animals not subjected to PGC removal. PGC regeneration enables us to use TALEN expression vectors of specific somatic tissues for germ cell mutagenesis. Unexpectedly, cis elements for epidermis, neural tissue and muscle could be used for germ cell mutagenesis, indicating there are multiple sources of regenerated PGCs, suggesting a flexibility of differentiated Ciona somatic cells to regain totipotency. Sperm and eggs of a single hermaphroditic, PGC regenerated animal typically have different mutations, suggesting they arise from different cells. PGCs can be generated from somatic cells even though the maternal PGCs are not removed, suggesting that the PGC regeneration is not solely an artificial event but could have an endogenous function in Ciona. This study provides a technical innovation in the genome-editing methods, including easy establishment of mutant lines. Moreover, this study suggests cellular mechanisms and the potential evolutionary significance of PGC regeneration in Ciona.

  4. The role of sex chromosomes in mammalian germ cell differentiation: can the germ cells carrying X and Y chromosomes differentiate into fertile oocytes?

    PubMed

    Taketo, Teruko

    2015-01-01

    The sexual differentiation of germ cells into spermatozoa or oocytes is strictly regulated by their gonadal environment, testis or ovary, which is determined by the presence or absence of the Y chromosome, respectively. Hence, in normal mammalian development, male germ cells differentiate in the presence of X and Y chromosomes, and female germ cells do so in the presence of two X chromosomes. However, gonadal sex reversal occurs in humans as well as in other mammalian species, and the resultant XX males and XY females can lead healthy lives, except for a complete or partial loss of fertility. Germ cells carrying an abnormal set of sex chromosomes are efficiently eliminated by multilayered surveillance mechanisms in the testis, and also, though more variably, in the ovary. Studying the molecular basis for sex-specific responses to a set of sex chromosomes during gametogenesis will promote our understanding of meiotic processes contributing to the evolution of sex determining mechanisms. This review discusses the fate of germ cells carrying various sex chromosomal compositions in mouse models, the limitation of which may be overcome by recent successes in the differentiation of functional germ cells from embryonic stem cells under experimental conditions.

  5. The mouse dead-end gene isoform α is necessary for germ cell and embryonic viability

    PubMed Central

    Bhattacharya, Chitralekha; Aggarwal, Sita; Zhu, Rui; Kumar, Madhu; Zhao, Ming; Meistrich, Marvin L.; Matin, Angabin

    2007-01-01

    Inactivation of the dead-end (Dnd1) gene in the Ter mouse strain results in depletion of primordial germ cells (PGCs) so that mice become sterile. However, on the 129 mouse strain background, loss of Dnd1 also increases testicular germ cell tumor incidence in parallel to PGC depletion. We report that inactivation of Dnd1 also affects embryonic viability in the 129 strain. Mouse Dnd1 encodes two protein isoforms, DND1-isoform α (DND1- α) and DND1-isoform β (DND1-β). Using isoform specific antibodies, we determined DND1-α is expressed in embryos and embryonic gonads whereas DND1-β expression is restricted to germ cells of the adult testis. Our data implicates DND1-α isoform to be necessary for germ cell viability and therefore its loss in Ter mice results in PGC depletion, germ cell tumor development and partial embryonic lethality in the 129 strain. PMID:17291453

  6. The Ter Mutation In The Dead End Gene Causes Germ Cell Loss And Testicular Germ Cell Tumours

    SciTech Connect

    Youngren, Kirsten K.; Coveney, Douglas; Peng, Xiaoning; Bhattacharya, Chitralekha; Schmidt, Laura S.; Nickerson, Michael L.; Lamb, Bruce T.; Deng Jian Min; Behringer, Richard R.; Capel, Blanche; Rubin, Edward M.; Nadeau, Joseph H.; Matin, Angabin

    2005-01-01

    In mice, the Ter mutation causes primordial germ cell (PGC) loss in all genetic backgrounds1. Ter is also a potent modifier of spontaneous testicular germ cell tumour (TGCT) susceptibility in the 129 family of inbred strains, and markedly increases TGCT incidence in 129-Ter/Ter males2 4. In 129-Ter/Ter mice, some of the remaining PGCs transform into undifferentiated pluripotent embryonal carcinoma cells2 6, and after birth differentiate into various cells and tissues that compose TGCTs. Here, we report the positional cloning of Ter, revealing a point mutation that introduces a termination codon in the mouse orthologue (Dnd1) of the zebrafish dead end (dnd) gene. PGC deficiency is corrected both with bacterial artificial chromosomes that contain Dnd1 and with a Dnd1-encoding transgene. Dnd1 is expressed in fetal gonads during the critical period when TGCTs originate. DND1 has an RNA recognition motif and is most similar to the apobec complementation factor, a component of the cytidine t o uridine RNA-editing complex. These results suggest that Ter may adversely affect essential aspects of RNA biology during PGC development. DND1 is the first protein known to have an RNA recognition motif directly implicated as a heritable cause of spontaneous tumorigenesis. TGCT development in the 129-Ter mouse strain models paediatric TGCT in humans. This work will have important implications for our understanding of the genetic control of TGCT pathogenesis and PGC biology.

  7. Tests for urethane induction of germ-cell mutations and germ-cell killing in the mouse.

    PubMed

    Russell, L B; Hunsicker, P R; Oakberg, E F; Cummings, C C; Schmoyer, R L

    1987-08-01

    Urethane, a chemical that has given varied results in mutagenesis assays, was tested in the mouse specific-locus test, and its effect on germ-cell survival was explored. Altogether 32,828 offspring were observed from successive weekly matings of males exposed to the maximum tolerated i.p. dose of 1750 mg urethane/kg. The combined data rule out (at the 5% significance level) an induced mutation rate greater than 1.7 times the historical control rate. For spermatogonial stem cells alone, the multiple ruled out is 3.2, and for poststem-cell stages, 3.5. Litter sizes from successive conceptions made in any of the first 7 weeks give no indication of induced dominant lethality, confirming results of past dominant-lethal assays. That urethane (or an active metabolite) reaches germ cells is indicated by SCE induction in spermatogonia demonstrated by other investigators. Cytotoxic effects in spermatogonia are suggested by our finding of a slight reduction in numbers of certain types of spermatogonia in seminiferous tubule cross-sections and of a borderline decrease in the number of litters conceived during the 8th and 9th posttreatment weeks. The negative results for induction of gene mutations as well as clastogenic damage are at variance with Nomura's reports of dominant effects (F1 cancers and malformations) produced by urethane.

  8. Genome-wide methylation profiles in primary intracranial germ cell tumors indicate a primordial germ cell origin for germinomas.

    PubMed

    Fukushima, Shintaro; Yamashita, Satoshi; Kobayashi, Hisato; Takami, Hirokazu; Fukuoka, Kohei; Nakamura, Taishi; Yamasaki, Kai; Matsushita, Yuko; Nakamura, Hiromi; Totoki, Yasushi; Kato, Mamoru; Suzuki, Tomonari; Mishima, Kazuhiko; Yanagisawa, Takaaki; Mukasa, Akitake; Saito, Nobuhito; Kanamori, Masayuki; Kumabe, Toshihiro; Tominaga, Teiji; Nagane, Motoo; Iuchi, Toshihiko; Yoshimoto, Koji; Mizoguchi, Masahiro; Tamura, Kaoru; Sakai, Keiichi; Sugiyama, Kazuhiko; Nakada, Mitsutoshi; Yokogami, Kiyotaka; Takeshima, Hideo; Kanemura, Yonehiro; Matsuda, Masahide; Matsumura, Akira; Kurozumi, Kazuhiko; Ueki, Keisuke; Nonaka, Masahiro; Asai, Akio; Kawahara, Nobutaka; Hirose, Yuichi; Takayama, Tatusya; Nakazato, Yoichi; Narita, Yoshitaka; Shibata, Tatsuhiro; Matsutani, Masao; Ushijima, Toshikazu; Nishikawa, Ryo; Ichimura, Koichi

    2017-03-01

    Intracranial germ cell tumors (iGCTs) are the second most common brain tumors among children under 14 in Japan. The World Health Organization classification recognizes several subtypes of iGCTs, which are conventionally subclassified into pure germinoma or non-germinomatous GCTs. Recent exhaustive genomic studies showed that mutations of the genes involved in the MAPK and/or PI3K pathways are common in iGCTs; however, the mechanisms of how different subtypes develop, often as a mixed-GCT, are unknown. To elucidate the pathogenesis of iGCTs, we investigated 61 GCTs of various subtypes by genome-wide DNA methylation profiling. We showed that pure germinomas are characterized by global low DNA methylation, a unique epigenetic feature making them distinct from all other iGCTs subtypes. The patterns of methylation strongly resemble that of primordial germ cells (PGC) at the migration phase, possibly indicating the cell of origin for these tumors. Unlike PGC, however, hypomethylation extends to long interspersed nuclear element retrotransposons. Histologically and epigenetically distinct microdissected components of mixed-GCTs shared identical somatic mutations in the MAPK or PI3K pathways, indicating that they developed from a common ancestral cell.

  9. Developmental Neurotoxicology: History and Outline of Developmental Neurotoxicity Study Guidelines.

    EPA Science Inventory

    The present work provides a brief review of basic concepts in developmental neurotoxicology, as well as current representative testing guidelines for evaluating developmental neurotoxicity (DNT) of xenobiotics. Historically, DNT was initially recognized as a “functional” teratoge...

  10. Germ-line transmission of lentiviral PGK-EGFP integrants in transgenic cattle: new perspectives for experimental embryology.

    PubMed

    Reichenbach, Myriam; Lim, Tiongti; Reichenbach, Horst-Dieter; Guengoer, Tuna; Habermann, Felix A; Matthiesen, Marieke; Hofmann, Andreas; Weber, Frank; Zerbe, Holm; Grupp, Thomas; Sinowatz, Fred; Pfeifer, Alexander; Wolf, Eckhard

    2010-08-01

    Lentiviral vectors are a powerful tool for the genetic modification of livestock species. We previously generated transgenic founder cattle with lentiviral integrants carrying enhanced green fluorescent protein (EGFP) under the control of the phosphoglycerate kinase (PGK) promoter. In this study, we investigated the transmission of LV-PGK-EGFP integrants through the female and male germ line in cattle. A transgenic founder heifer (#562, Kiki) was subjected to superovulation treatment and inseminated with semen from a non-transgenic bull. Embryos were recovered and transferred to synchronized recipient heifers, resulting in the birth of a healthy male transgenic calf expressing EGFP as detected by in vivo imaging. Semen from a transgenic founder bull (#561, Jojo) was used for in vitro fertilization (IVF) of in vitro matured (IVM) oocytes from non-transgenic cows. The rates of cleavage and development to blastocyst in vitro corresponded to 52.0 +/- 4.1 and 24.5 +/- 4.4%, respectively. Expression of EGFP was observed at blastocyst stage (day 7 after IVF) and was seen in 93.0% (281/302) of the embryos. 24 EGFP-expressing embryos were transferred to 9 synchronized recipients. Analysis of 2 embryos, flushed from the uterus on day 15, two fetuses recovered on day 45, and a healthy male transgenic calf revealed consistent high-level expression of EGFP in all tissues investigated. Our study shows for the first time transmission of lentiviral integrants through the germ line of female and male transgenic founder cattle. The pattern of inheritance was consistent with Mendelian rules. Importantly, high fidelity expression of EGFP in embryos, fetuses, and offspring of founder #561 provides interesting tools for developmental studies in cattle, including interactions of gametes, embryos and fetuses with their maternal environment.

  11. Novel technique for visualizing primordial germ cells in sturgeons (Acipenser ruthenus, A. gueldenstaedtii, A. baerii, and Huso huso).

    PubMed

    Saito, Taiju; Psenicka, Martin

    2015-10-01

    Primordial germ cells (PGCs) are the origin of all germ cells in developing embryos. In the sturgeon embryo, PGCs develop from the vegetal hemisphere, which mainly acts as an extraembryonic source of nutrition. Current methods for studying sturgeon PGCs require either killing the fish or using costly and time-consuming histological procedures. Here, we demonstrate that visualization of sterlet (Acipenser ruthenus>) PGCs in vivo is feasible by simply labeling the vegetal hemisphere with fluorescein isothiocyanate (FITC)-dextran. We injected FITC-dextrans, with molecular weights varying between 10 000 and 2 000 000, into the vegetal pole of 1- to 4-cell stage embryos. At the neurula to tail-bud developmental stages, FITC-positive PGC-like cells appeared ventrally around the developing tail bud in the experimental group that received a high-molecular-weight FITC-dextran. The highest average number of FITC-positive PGC-like cells was observed in embryos injected with FITC-dextran having a molecular weight of 500 000 (FD-500). The pattern of migration of the labeled cells was identical to that of PGCs, clearly indicating that the FITC-positive PGC-like cells were PGCs. Labeled vegetal cells, except for the PGCs, were digested and excreted before the embryos starting feeding. FITC-labeled PGCs were observed in the developing gonads of fish for at least 3 mo after injection. We also found that FD-500 could be used to visualize PGCs in other sturgeon species. To the best of our knowledge, this report is the first to demonstrate in any animal species that PGCs can be visualized in vivo for a long period by the injection of a simple reagent.

  12. RNA-binding protein TIAR is essential for primordial germ cell development.

    PubMed

    Beck, A R; Miller, I J; Anderson, P; Streuli, M

    1998-03-03

    Primordial germ cells (PGCs) give rise to both eggs and sperm via complex maturational processes that require both cell migration and proliferation. However, little is known about the genes controlling gamete formation during the early stages of PGC development. Although several mutations are known to severely reduce the number of PGCs reaching and populating the genital ridges, the molecular identity of only two of these genes is known: the c-kit receptor protein tyrosine kinase and the c-kit ligand (the steel factor). Herein, we report that mutant mice lacking TIAR, an RNA recognition motif/ribonucleoprotein-type RNA-binding protein highly expressed in PGCs, fail to develop spermatogonia or oogonia. This developmental defect is a consequence of reduced survival of PGCs that migrate to the genital ridge around embryonic day 11.5 (E11.5). The numbers of PGCs populating the genital ridge in TIAR-deficient embryos are severely reduced compared to wild-type embryos by E11.5 and in the mutants PGCs are completely absent at E13.5. Furthermore, TIAR-deficient embryonic stem cells do not proliferate in the absence of exogenous leukemia inhibitory factor in an in vitro methylcellulose culture assay, supporting a role for TIAR in regulating cell proliferation. Because the development of PGCs relies on the action of several growth factors, these results are consistent with a role for TIAR in the expression of a survival factor or survival factor receptor that is essential for PGC development. TIAR-deficient mice thus provide a model system to study molecular mechanisms of PGC development and possibly the basis for some forms of idiopathic infertility.

  13. From Young Children's Ideas about Germs to Ideas Shaping a Learning Environment

    NASA Astrophysics Data System (ADS)

    Ergazaki, Marida; Saltapida, Konstantina; Zogza, Vassiliki

    2010-11-01

    This paper is concerned with highlighting young children’s ideas about the nature, location and appearance of germs, as well as their reasoning strands about germs’ ontological category and biological functions. Moreover, it is concerned with exploring how all these could be taken into account for shaping a potentially fruitful learning environment. Conducting individual, semi-structured interviews with 35 preschoolers (age 4.5-5.5) of public kindergartens in the broader area of Patras, we attempted to trace their ideas about what germs are, where they may be found, whether they are good or bad and living or non-living and how they might look like in a drawing. Moreover, children were required to attribute a series of biological functions to dogs, chairs and germs, and finally to create a story with germs holding a key-role. The analysis of our qualitative data within the “NVivo” software showed that the informants make a strong association of germs with health and hygiene issues, locate germs mostly in our body and the external environment, are not familiar with the ‘good germs’-idea, and draw germs as ‘human-like’, ‘animal-like’ or ‘abstract’ entities. Moreover, they have significant difficulties not only in employing biological functions as criteria for classifying germs in the category of ‘living’, but also in just attributing such functions to germs using a warrant. Finally, the shift from our findings to a 3-part learning environment aiming at supporting preschoolers in refining their initial conceptualization of germs is thoroughly discussed in the paper.

  14. Removal and isolation of germ-rich fractions from hull-less barley using a fitzpatrick comminuting mill

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A process was developed to produce a germ-enriched fraction from hull-less barley using a Fitzpatrick Comminuting Mill followed by sieving. Hulled and hull-less barleys contain 1.5-2.5% oil and, like wheat kernels which contain wheat germ oil, much of the oil in barley kernels is in the germ fracti...

  15. Melphalan, Carboplatin, Mannitol, and Sodium Thiosulfate in Treating Patients With Recurrent or Progressive CNS Embryonal or Germ Cell Tumors

    ClinicalTrials.gov

    2016-11-07

    Adult Central Nervous System Germ Cell Tumor; Adult Ependymoblastoma; Adult Medulloblastoma; Adult Pineoblastoma; Adult Supratentorial Primitive Neuroectodermal Tumor; Childhood Atypical Teratoid/Rhabdoid Tumor; Childhood Central Nervous System Germ Cell Tumor; Childhood Ependymoblastoma; Medulloepithelioma; Ototoxicity; Recurrent Adult Brain Neoplasm; Recurrent Childhood Central Nervous System Embryonal Neoplasm; Recurrent Childhood Malignant Germ Cell Tumor; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor

  16. Trends in Developmental Education.

    ERIC Educational Resources Information Center

    Arendale, David

    This paper contains an overview of policy decisions being made at the state and national levels about learning assistance activities in higher education and developmental education. The principles driving those decisions are also outlined. Some policymakers want to fine the high schools from which under prepared students have graduated; others…

  17. Proposal: Developmental Education Program.

    ERIC Educational Resources Information Center

    Helm, Phoebe

    Three program objectives are articulated for establishing a developmental education program to increase retention and graduation rates among academically disadvantaged students at Triton College: (1) instituting horizontal (teaching basic skills) and vertical (assisting in the transfer of basic skills to students' total educational programs)…

  18. Evolutionary Developmental Psychology.

    ERIC Educational Resources Information Center

    Geary, David C.; Bjorklund, David F.

    2000-01-01

    Describes evolutionary developmental psychology as the study of the genetic and ecological mechanisms that govern the development of social and cognitive competencies common to all human beings and the epigenetic (gene-environment interactions) processes that adapt these competencies to local conditions. Outlines basic assumptions and domains of…

  19. Alcoholism: A Developmental Disorder.

    ERIC Educational Resources Information Center

    Tarter, Ralph E.; Vanyukov, Michael

    1994-01-01

    Alcoholism etiology is discussed from developmental behavior genetic perspective. Temperament features that appear to be associated with heightened risk for alcoholism are examined. Their interactions with the environment during course of development are considered within epigenetic framework and, as discussed, have ramifications for improving…

  20. Handbook of Developmental Disabilities

    ERIC Educational Resources Information Center

    Odom, Samuel L., Ed.; Horner, Robert H., Ed.; Snell, Martha E., Ed.; Blacher, Jan, Ed.

    2007-01-01

    This authoritative handbook reviews the breadth of current knowledge about developmental disabilities: neuroscientific and genetic foundations; the impact on health, learning, and behavior; and effective educational and clinical practices. Leading authorities analyze what works in intervening with diverse children and families, from infancy…

  1. Standardized Developmental Ratings.

    ERIC Educational Resources Information Center

    Dirlam, David; Byrne, Maureen

    The feasibility of standardized assessment of features of children's organization of knowledge and the demonstration of differences in organization between stages of development were investigated. It was possible to standardize developmentally derived instruments, in the same way as empirically derived tests because such evaluations concern the…

  2. Developmental Composition in College.

    ERIC Educational Resources Information Center

    Vik, Gretchen Nadeen

    This thesis was a descriptive study of developmental writing programs in two- and four-year colleges. The following areas were investigated: identifying students who need extra language skills help; placing students in flexible programs so they can learn what they individually need to know; evaluating materials to teach skills; evaluating…

  3. Arguments from Developmental Order

    PubMed Central

    Stöckle-Schobel, Richard

    2016-01-01

    In this article1, I investigate a special type of argument regarding the role of development in theorizing about psychological processes and cognitive capacities. Among the issues that developmental psychologists study, discovering the ontogenetic trajectory of mechanisms or capacities underpinning our cognitive functions ranks highly. The order in which functions are developed or capacities are acquired is a matter of debate between competing psychological theories, and also philosophical conceptions of the mind – getting the role and the significance of the different steps in this order right could be seen as an important virtue of such theories. Thus, a special kind of strategy in arguments between competing philosophical or psychological theories is using developmental order in arguing for or against a given psychological claim. In this article, I will introduce an analysis of arguments from developmental order, which come in two general types: arguments emphasizing the importance of the early cognitive processes and arguments emphasizing the late cognitive processes. I will discuss their role in one of the central tools for evaluating scientific theories, namely in making inferences to the best explanation. I will argue that appeal to developmental order is, by itself, an insufficient criterion for theory choice and has to be part of an argument based on other core explanatory or empirical virtues. I will end by proposing a more concerted study of philosophical issues concerning (cognitive) development, and I will present some topics that also pertain to a full-fledged ‘philosophy of development.’ PMID:27242648

  4. Learning Developmental Coaching

    ERIC Educational Resources Information Center

    Hunt, James M.; Weintraub, Joseph R.

    2004-01-01

    This article describes an educational intervention designed to promote the ability and willingness of MBA students to lead through coaching. MBA leadership students are trained to serve as coaches for undergraduate business students in a developmental assessment center. In this compelling context, their main source of influence is the ability to…

  5. Developmental Purposes of Commercial Games.

    ERIC Educational Resources Information Center

    Practical Pointers, 1977

    1977-01-01

    Listed are 45 table, target, manipulative, active, and creative games with such developmental purposes as associative learning, tactile discrimination, and visual motor integration. Information includes the name of the item, distributor, price, description, and developmental purpose. (JYC)

  6. Evaluation of corn germ from ethanol production as an alternative fat source in dairy cow diets.

    PubMed

    Abdelqader, M M; Hippen, A R; Kalscheur, K F; Schingoethe, D J; Karges, K; Gibson, M L

    2009-03-01

    Sixteen multiparous cows (12 Holstein and 4 Brown Swiss, 132 +/- 20 d in milk) were used in a replicated 4 x 4 Latin square design with 4-wk periods to determine the effects of feeding corn germ on dairy cow performance. Diets were formulated with increasing concentrations of corn germ (Dakota Germ, Poet Nutrition, Sioux Falls, SD) at 0, 7, 14, and 21% of the diet dry matter (DM). All diets had a 55:45 forage to concentrate ratio, where forage was 55% corn silage and 45% alfalfa hay. Dietary fat increased from 4.8% in the control diet to 8.2% at the greatest inclusion level of corn germ. The addition of corn germ resulted in a quadratic response in DM intake with numerically greater intake at 14% of diet DM. Feeding corn germ at 7 and 14% of diet DM increased milk yield and energy-corrected milk as well as fat percentage and yield. Milk protein yield tended to decrease as the concentration of corn germ increased in the diet. Dietary treatments had no effect on feed efficiency, which averaged 1.40 kg of energy-corrected milk/kg of DMI. Increasing the dietary concentration of corn germ resulted in a linear increase in milk fat concentrations of monounsaturated and polyunsaturated fatty acids at the expense of saturated fatty acids. Milk fat concentration and yield of cis-9, trans-11 and trans-10, cis-12 conjugated linoleic acid were increased with increased dietary concentrations of corn germ. Although milk fat concentrations of both total trans-18:1 and cis-18:1 fatty acids increased linearly, a marked numeric increase in the concentration of trans-10 C18:1 was observed in milk from cows fed the 21% corn germ diet. A similar response was observed in plasma concentration of trans-10 C18:1. Feeding increasing concentrations of corn germ had no effect on plasma concentrations of glucose, triglyceride, or beta-hydroxybutyrate; however, the concentration of nonesterified fatty acids increased linearly, with plasma cholesterol concentration demonstrating a similar trend

  7. Engineering musculoskeletal tissues with human embryonic germ cell derivatives.

    PubMed

    Varghese, Shyni; Hwang, Nathaniel S; Ferran, Angela; Hillel, Alexander; Theprungsirikul, Parnduangjai; Canver, Adam C; Zhang, Zijun; Gearhart, John; Elisseeff, Jennifer

    2010-04-01

    The cells derived from differentiating embryoid bodies of human embryonic germ (hEG) cells express a broad spectrum of gene markers and have been induced toward ecto- and endodermal lineages. We describe here in vitro and in vivo differentiation of hEG-derived cells (LVEC line) toward mesenchymal tissues. The LVEC cells express many surface marker proteins characteristic of mesenchymal stem cells and differentiated into cartilage, bone, and fat. Homogenous hyaline cartilage was generated from cells after 63 population doublings. In vivo results demonstrate cell survival, differentiation, and tissue formation. The high proliferative capacity of hEG-derived cells and their ability to differentiate and form three-dimensional mesenchymal tissues without teratoma formation underscores their significant potential for regenerative medicine. The adopted coculture system also provides new insights into how a microenvironment comprised of extracellular and cellular components may be harnessed to generate hierarchically complex tissues from pluripotent cells.

  8. An Overview on Predictive Biomarkers of Testicular Germ Cell Tumors.

    PubMed

    Chieffi, Paolo

    2017-02-01

    Testicular germ cell tumors (TGCTs) are frequent solid malignant tumors and cause of death in men between 20-40 years of age. Genetic and environmental factors play an important role in the origin and development of TGCTs. Although the majority of TGCTs are responsive to chemotherapy, about 20% of patient presents incomplete response or tumors relapse. In addition, the current treatments cause acute toxicity and several chronic collateral effects, including sterility. The present mini-review collectively summarize the most recent findings on the new discovered molecular biomarkers such as tyrosine kinases, HMGAs, Aurora B kinase, and GPR30 receptor predictive of TGCTs and as emerging new possible molecular targets for therapeutic strategies. J. Cell. Physiol. 232: 276-280, 2017. © 2016 Wiley Periodicals, Inc.

  9. The cell-free protein synthesis system from wheat germ.

    PubMed

    Takai, Kazuyuki; Endo, Yaeta

    2010-01-01

    The wheat-germ cell-free protein synthesis system had been one of the most efficient eukaryotic cell-free systems since it was first developed in 1964. However, radio-labeled amino acids had long been essential for detection of the products. Since the discovery of a method for prevention of the contamination by a protein synthesis inhibitor originated from endosperm, the wheat cell-free system has found a wide variety of applications in postgenomic high-throughput screening, structural biology, medicine, and so on. In this chapter, we describe a method for preparation of the cell-free extract and a standard protein synthesis method, as the methods for the applications are found in later chapters.

  10. Possibilities in Germ Cell Research: An Engineering Insight.

    PubMed

    Esfandiari, Fereshteh; Mashinchian, Omid; Ashtiani, Mohammad Kazemi; Ghanian, Mohammad Hossein; Hayashi, Katsuhiko; Saei, Amir Ata; Mahmoudi, Morteza; Baharvand, Hossein

    2015-12-01

    Germ cells (GCs) are responsible for fertility and disruptions in their development or function cause infertility. However, current knowledge about the diverse mechanisms involved in GC development and function is still in its infancy. This is mainly because there are low numbers of GCs, especially during embryonic development. A deeper understanding of GCs would enhance our ability to produce them from stem cells. In addition, such information would enable the production of healthy gametes for infertile couples. In this regard, pluripotent stem cells (PSCs) demonstrated a promising ability to produce GCs in vitro. In this review, we highlight recent advances in the field of tissue engineering that suggest novel strategies to enhance GC research.

  11. Germ cell mutagenicity of phthalic acid in mice.

    PubMed

    Jha, A M; Singh, A C; Bharti, M

    1998-12-03

    Mutagenicity of phthalic acid was evaluated by employing dominant lethal mutation and sperm head abnormality assays in male Swiss albino mice. For the dominant lethal mutation assay, adult male mice received a single intraperitoneal (i.p.) injection of either 40 mg or 80 mg/kg b.w. of phthalic acid for 5 consecutive days. For the sperm head abnormality assay, the mice were treated with 50, 100, 150, 200 and 300 mg/kg b.w. as a single i.p. injection. Treatment of adult male mice with phthalic acid resulted in induction of dominant lethal mutations and abnormal sperm heads. The results obtained indicate that phthalic acid is a germ cell mutagen.

  12. Oct4 is required for primordial germ cell survival

    PubMed Central

    Kehler, James; Tolkunova, Elena; Koschorz, Birgit; Pesce, Maurizio; Gentile, Luca; Boiani, Michele; Lomelí, Hilda; Nagy, Andras; McLaughlin, K John; Schöler, Hans R; Tomilin, Alexey

    2004-01-01

    Previous studies have shown that Oct4 has an essential role in maintaining pluripotency of cells of the inner cell mass (ICM) and embryonic stem cells. However, Oct4 null homozygous embryos die around the time of implantation, thus precluding further analysis of gene function during development. We have used the conditional Cre/loxP gene targeting strategy to assess Oct4 function in primordial germ cells (PGCs). Loss of Oct4 function leads to apoptosis of PGCs rather than to differentiation into a trophectodermal lineage, as has been described for Oct4-deficient ICM cells. These new results suggest a previously unknown function of Oct4 in maintaining viability of mammalian germline. PMID:15486564

  13. The challenge of poor-prognosis germ cell tumors.

    PubMed

    Toner, Guy C

    2007-05-01

    Patients who have a poor prognosis can be identified at presentation by well-defined prognostic factors. Prognostic groups as defined by the International Germ Cell Consensus Classification should be used in the clinic, in clinical trials, and when reporting results. No systemic treatment has been shown to improve outcome compared with four cycles of chemotherapy composed of bleomycin, etoposide, and cisplatin, which remains the standard of care. Surgery to resect residual masses after chemotherapy and in the salvage setting is a vital component of optimal care. The best outcomes occur with treatment at a center with experience and expertise in their management. Further major improvements are likely to require novel systemic therapies rather than modifications of existing approaches.

  14. Development of interspecies testicular germ-cell transplantation in flatfish.

    PubMed

    Pacchiarini, Tiziana; Sarasquete, Carmen; Cabrita, Elsa

    2014-06-01

    Interspecific testicular germ cell (TGC) transplantation was investigated in two commercial flatfish species. Testes from donor species (Senegalese sole) were evaluated using classical histological techniques (haematoxylin-eosin staining and haematoxylin-light green-orange G-acid fuchsine staining), in situ hybridisation and immunohistochemical analysis. Both Ssvasa1-2 mRNAs and SsVasa protein allowed the characterisation of TGCs, confirming the usefulness of the vasa gene in the detection of Senegalese sole TGCs. Xenogenic transplants were carried out using TGCs from one-year-old Senegalese sole into turbot larvae. Propidium iodide-SYBR-14 and 4',6'-diamidino-2-phenylindole (DAPI) staining showed that 87.98% of the extracted testicular cells were viable for microinjection and that 15.63% of the total recovered cells were spermatogonia. The vasa gene was characterised in turbot recipients using cDNA cloning. Smvasa mRNA was confirmed as a germ cell-specific molecular marker in this species. Smvasa expression analysis during turbot ontogeny was carried out before Senegalese sole TGC transplants into turbot larvae. Turbot larvae at 18 days after hatching (DAH) proved to be susceptible to manipulation procedures. High survival rates (83.75±15.90-100%) were obtained for turbot larvae at 27, 34 and 42 DAH. These data highlight the huge potential of this species for transplantation studies. Quantitative PCR was employed to detect Senegalese sole vasa mRNAs (Ssvasa1-2) in the recipient turbot larvae. The Ssvasa mRNAs showed a significant increase in relative expression in 42-DAH microinjected larvae three weeks after treatment, showing the proliferation of Senegalese sole spermatogonia in transplanted turbot larvae.

  15. Developmental Dysplasia of the Hip

    MedlinePlus

    ... to 2-Year-Old Developmental Dysplasia of the Hip KidsHealth > For Parents > Developmental Dysplasia of the Hip A A A What's in this article? What ... Symptoms Diagnosis Treatment Outlook Developmental dysplasia of the hip (DDH) is a problem with the way a ...

  16. Involvement of Fas/Fas-L and Bax/Bcl-2 systems in germ cell death following immunization with syngeneic testicular germ cells in mice.

    PubMed

    Kuerban, Maimaiti; Naito, Munekazu; Hirai, Shuichi; Terayama, Hayato; Qu, Ning; Musha, Muhetaerjiang; Ikeda, Ayumi; Koji, Takehiko; Itoh, Masahiro

    2012-01-01

    Experimental autoimmune orchitis (EAO) is characterized by T cell-dependent lymphocytic inflammation and seminiferous tubule damage, which can result in the death of germ cells. The aim of the present study is to investigate the roles of the Fas/Fas-L and Bax/Bcl-2 systems in the death of germ cells in mice with EAO that is induced by immunization with syngeneic testicular germ cells (TGC). The results using real-time reverse transcription-polymerase chain reaction and immunostaining show that many terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining germ cells were present in seminiferous tubules during the active inflammation stage, and these cells were persistently observed in the seminiferous epithelium until the postactive inflammation stage. Intratesticular mRNA expression levels of both Fas and Bax were increased during the active inflammation stage and were dramatically decreased during the post-active inflammation stage. In contrast, the intratesticular mRNA expression levels of both Fas-L and Bcl-2 did not show significant changes during the active inflammation stage but showed extreme increases during the post-active inflammation stage. Immunohistochemically, some Fas- and Bax-positive germ cells were detected during the active inflammation stage, but these were hardly found during the post-active inflammation stage. In contrast, some Fas-L- and Bcl-2-positive germ cells were found during the active inflammation stage, and many of these were also observed during the post-active inflammation stage. These results indicate that germ cell death during TGC-induced EAO is mediated by the Fas/Fas-L and Bax/Bcl-2 systems during the active inflammation stage but not during the post-active inflammation stage.

  17. DNA damage in germ cells induces an innate immune response that triggers systemic stress resistance.

    PubMed

    Ermolaeva, Maria A; Segref, Alexandra; Dakhovnik, Alexander; Ou, Hui-Ling; Schneider, Jennifer I; Utermöhlen, Olaf; Hoppe, Thorsten; Schumacher, Björn

    2013-09-19

    DNA damage responses have been well characterized with regard to their cell-autonomous checkpoint functions leading to cell cycle arrest, senescence and apoptosis. In contrast, systemic responses to tissue-specific genome instability remain poorly understood. In adult Caenorhabditis elegans worms germ cells undergo mitotic and meiotic cell divisions, whereas somatic tissues are entirely post-mitotic. Consequently, DNA damage checkpoints function specifically in the germ line, whereas somatic tissues in adult C. elegans are highly radio-resistant. Some DNA repair systems such as global-genome nucleotide excision repair (GG-NER) remove lesions specifically in germ cells. Here we investigated how genome instability in germ cells affects somatic tissues in C. elegans. We show that exogenous and endogenous DNA damage in germ cells evokes elevated resistance to heat and oxidative stress. The somatic stress resistance is mediated by the ERK MAP kinase MPK-1 in germ cells that triggers the induction of putative secreted peptides associated with innate immunity. The innate immune response leads to activation of the ubiquitin-proteasome system (UPS) in somatic tissues, which confers enhanced proteostasis and systemic stress resistance. We propose that elevated systemic stress resistance promotes endurance of somatic tissues to allow delay of progeny production when germ cells are genomically compromised.

  18. Control over the morphology and segregation of Zebrafish germ cell granules during embryonic development

    PubMed Central

    Strasser, Markus J; Mackenzie, Natalia C; Dumstrei, Karin; Nakkrasae, La-Iad; Stebler, Jürg; Raz, Erez

    2008-01-01

    Background Zebrafish germ cells contain granular-like structures, organized around the cell nucleus. These structures share common features with polar granules in Drosophila, germinal granules in Xenopus and chromatoid bodies in mice germ cells, such as the localization of the zebrafish Vasa, Piwi and Nanos proteins, among others. Little is known about the structure of these granules as well as their segregation in mitosis during early germ-cell development. Results Using transgenic fish expressing a fluorescently labeled novel component of Zebrafish germ cell granules termed Granulito, we followed the morphology and distribution of the granules. We show that whereas these granules initially exhibit a wide size variation, by the end of the first day of development they become a homogeneous population of medium size granules. We investigated this resizing event and demonstrated the role of microtubules and the minus-end microtubule dependent motor protein Dynein in the process. Last, we show that the function of the germ cell granule resident protein the Tudor domain containing protein-7 (Tdrd7) is required for determination of granule morphology and number. Conclusion Our results suggest that Zebrafish germ cell granules undergo a transformation process, which involves germ cell specific proteins as well as the microtubular network. PMID:18507824

  19. Regulatory mechanism of protein metabolic pathway during the differentiation process of chicken male germ cell.

    PubMed

    Li, Dong; Zuo, Qisheng; Lian, Chao; Zhang, Lei; Shi, Qingqing; Zhang, Zhentao; Wang, Yingjie; Ahmed, Mahmoud F; Tang, Beibei; Xiao, Tianrong; Zhang, Yani; Li, Bichun

    2015-08-01

    We explored the regulatory mechanism of protein metabolism during the differentiation process of chicken male germ cells and provide a basis for improving the induction system of embryonic stem cell differentiation to male germ cells in vitro. We sequenced the transcriptome of embryonic stem cells, primordial germ cells, and spermatogonial stem cells with RNA sequencing (RNA-Seq), bioinformatics analysis methods, and detection of the key genes by quantitative reverse transcription PCR (qRT-PCR). Finally, we found 16 amino acid metabolic pathways enriched in the biological metabolism during the differentiation process of embryonic stem cells to primordial germ cells and 15 amino acid metabolic pathways enriched in the differentiation stage of primordial germ cells to spermatogonial stem cells. We found three pathways, arginine-proline metabolic pathway, tyrosine metabolic pathway, and tryptophan metabolic pathway, significantly enriched in the whole differentiation process of embryonic stem cells to spermatogonial stem cells. Moreover, for these three pathways, we screened key genes such as NOS2, ADC, FAH, and IDO. qRT-PCR results showed that the expression trend of these genes were the same to RNA-Seq. Our findings showed that the three pathways and these key genes play an important role in the differentiation process of embryonic stem cells to male germ cells. These results provide basic information for improving the induction system of embryonic stem cell differentiation to male germ cells in vitro.

  20. The fog-3 gene and regulation of cell fate in the germ line of Caenorhabditis elegans

    SciTech Connect

    Ellis, R.; Kimble, J.

    1995-02-01

    In the nematode Caenorhabditis elegans, germ cells normally adopt one of three fates: mitosis, spermatogenesis or oogenesis. We have identified and characterized the gene fog-3, which is required for germ cells to differentiate as sperm rather than as oocytes. Analysis of double mutants suggests that fog-3 is absolutely required for spermatogenesis and acts at the end of the regulatory hierarchy controlling sex determination for the germ line. By contrast, mutations in fog-3 do not alter the sexual identity of other tissues. We also have characterized the null phenotype of fog-1, another gene required for spermatogenesis; we demonstrate that it too controls the sexual identity of germ cells but not of other tissues. Finally, we have studied the same interaction of these two fog genes with gld-1, a gene required for germ cells to undergo oogenesis rather than mitosis. On the basis of these results, we propose that germ-cell fate might be controlled by a set of inhibitory interactions among genes that specify one of three fates: mitosis, spermatogenesis or oogenesis. Such a regulatory network would link the adoption of one germ-cell fate to the suppression of the other two. 68 refs., 7 figs., 6 tabs.

  1. Augmented Binary Substitution: Single-pass CDR germ-lining and stabilization of therapeutic antibodies

    PubMed Central

    Townsend, Sue; Fennell, Brian J.; Apgar, James R.; Lambert, Matthew; McDonnell, Barry; Grant, Joanne; Wade, Jason; Franklin, Edward; Foy, Niall; Ní Shúilleabháin, Deirdre; Fields, Conor; Darmanin-Sheehan, Alfredo; King, Amy; Paulsen, Janet E.; Tchistiakova, Lioudmila; Cunningham, Orla; Finlay, William J. J.

    2015-01-01

    Although humanized antibodies have been highly successful in the clinic, all current humanization techniques have potential limitations, such as: reliance on rodent hosts, immunogenicity due to high non-germ-line amino acid content, v-domain destabilization, expression and formulation issues. This study presents a technology that generates stable, soluble, ultrahumanized antibodies via single-step complementarity-determining region (CDR) germ-lining. For three antibodies from three separate key immune host species, binary substitution CDR cassettes were inserted into preferred human frameworks to form libraries in which only the parental or human germ-line destination residue was encoded at each position. The CDR-H3 in each case was also augmented with 1 ± 1 random substitution per clone. Each library was then screened for clones with restored antigen binding capacity. Lead ultrahumanized clones demonstrated high stability, with affinity and specificity equivalent to, or better than, the parental IgG. Critically, this was mainly achieved on germ-line frameworks by simultaneously subtracting up to 19 redundant non-germ-line residues in the CDRs. This process significantly lowered non-germ-line sequence content, minimized immunogenicity risk in the final molecules and provided a heat map for the essential non-germ-line CDR residue content of each antibody. The ABS technology therefore fully optimizes the clinical potential of antibodies from rodents and alternative immune hosts, rendering them indistinguishable from fully human in a simple, single-pass process. PMID:26621728

  2. The cytogenetic theory of the pathogenesis of human adult male germ cell tumors. Review article.

    PubMed

    Chaganti, R S; Houldsworth, J

    1998-01-01

    Human male germ cell tumors (GCTs) represent a biological paradox because, in order to develop into a pluripotential tumor, a germ cell destined to a path of limited or no proliferation must acquire the potential for unlimited proliferation. In addition, it must acquire the ability to elicit embryonal differentiation patterns without the reciprocal inputs from fertilization and the imprinting-associated genomic changes which are a part of normal embryonal development. Although much speculated about, the genetic mechanisms underlying these properties of male GCTs remain enigmatic. Recent cytogenetic and molecular genetic analyses of these tumors are providing new insights and new testable hypotheses. Based on our recent work, we propose two such hypotheses. One relates to the mechanism of germ cell transformation and germ cell tumor development. We suggest that the invariable 12p amplification noted as early as in carcinoma in situ/intratubular germ cell neoplasia (CIS/ITGCN) lesions leads to deregulated overexpression of cyclin D2, a cell cycle G1/S checkpoint regulator with oncogeneic potential. Such overexpression reinitiates the cell cycle. We visualize this happening during the pachytene stage of meiosis through aberrant recombinational events which lead to 12p amplification. The other hypothesis relates to the origin of primary extragonadal GCTs. By comparing cytogenetic changes in primary mediastinal versus gonadal lesions, we propose that, in contrast to long-standing speculation that primary extra-gonadal tumors arise from embryonally misplaced primordial germ cells, these lesions arise from migration of transformed gonadal germ cells.

  3. The Fog-3 Gene and Regulation of Cell Fate in the Germ Line of Caenorhabditis Elegans

    PubMed Central

    Ellis, R. E.; Kimble, J.

    1995-01-01

    In the nematode Caenorhabditis elegans, germ cells normally adopt one of three fates: mitosis, spermatogenesis or oogenesis. We have identified and characterized the gene fog-3, which is required for germ cells to differentiate as sperm rather than as oocytes. Analysis of double mutants suggests that fog-3 is absolutely required for spermatogenesis and acts at the end of the regulatory hierarchy controlling sex determination for the germ line. By contrast, mutations in fog-3 do not alter the sexual identity of other tissues. We also have characterized the null phenotype of fog-1, another gene required for spermatogenesis; we demonstrate that it too controls the sexual identity of germ cells but not of other tissues. Finally, we have studied the interaction of these two fog genes with gld-1, a gene required for germ cells to undergo oogenesis rather than mitosis. On the basis of these results, we propose that germ-cell fate might be controlled by a set of inhibitory interactions among genes that specify one of three fates: mitosis, spermatogenesis or oogenesis. Such a regulatory network would link the adoption of one germ-cell fate to the suppression of the other two. PMID:7713418

  4. Germ Tube Mediated Invasion of Batrachochytrium dendrobatidis in Amphibian Skin Is Host Dependent

    PubMed Central

    Van Rooij, Pascale; Martel, An; D'Herde, Katharina; Brutyn, Melanie; Croubels, Siska; Ducatelle, Richard; Haesebrouck, Freddy; Pasmans, Frank

    2012-01-01

    Batrachochytrium dendrobatidis (Bd) is the causative agent of chytridiomycosis, a fungal skin disease in amphibians and driver of worldwide amphibian declines. We focussed on the early stages of infection by Bd in 3 amphibian species with a differential susceptibility to chytridiomycosis. Skin explants of Alytes muletensis, Litoria caerulea and Xenopus leavis were exposed to Bd in an Ussing chamber for 3 to 5 days. Early interactions of Bd with amphibian skin were observed using light microscopy and transmission electron microscopy. To validate the observations in vitro, comparison was made with skin from experimentally infected frogs. Additional in vitro experiments were performed to elucidate the process of intracellular colonization in L. caerulea. Early interactions of Bd with amphibian skin are: attachment of zoospores to host skin, zoospore germination, germ tube development, penetration into skin cells, invasive growth in the host skin, resulting in the loss of host cell cytoplasm. Inoculation of A. muletensis and L. caerulea skin was followed within 24 h by endobiotic development, with sporangia located intracellularly in the skin. Evidence is provided of how intracellular colonization is established and how colonization by Bd proceeds to deeper skin layers. Older thalli develop rhizoid-like structures that spread to deeper skin layers, form a swelling inside the host cell to finally give rise to a new thallus. In X. laevis, interaction of Bd with skin was limited to an epibiotic state, with sporangia developing upon the skin. Only the superficial epidermis was affected. Epidermal cells seemed to be used as a nutrient source without development of intracellular thalli. The in vitro data agreed with the results obtained after experimental infection of the studied frog species. These data suggest that the colonization strategy of B. dendrobatidis is host dependent, with the extent of colonization most likely determined by inherent characteristics of the host

  5. Germ tube mediated invasion of Batrachochytrium dendrobatidis in amphibian skin is host dependent.

    PubMed

    Van Rooij, Pascale; Martel, An; D'Herde, Katharina; Brutyn, Melanie; Croubels, Siska; Ducatelle, Richard; Haesebrouck, Freddy; Pasmans, Frank

    2012-01-01

    Batrachochytrium dendrobatidis (Bd) is the causative agent of chytridiomycosis, a fungal skin disease in amphibians and driver of worldwide amphibian declines.We focussed on the early stages of infection by Bd in 3 amphibian species with a differential susceptibility to chytridiomycosis. Skin explants of Alytes muletensis, Litoria caerulea and Xenopus leavis were exposed to Bd in an Ussing chamber for 3 to 5 days. Early interactions of Bd with amphibian skin were observed using light microscopy and transmission electron microscopy. To validate the observations in vitro, comparison was made with skin from experimentally infected frogs. Additional in vitro experiments were performed to elucidate the process of intracellular colonization in L. caerulea. Early interactions of Bd with amphibian skin are: attachment of zoospores to host skin, zoospore germination, germ tube development, penetration into skin cells, invasive growth in the host skin, resulting in the loss of host cell cytoplasm. Inoculation of A. muletensis and L. caerulea skin was followed within 24 h by endobiotic development, with sporangia located intracellularly in the skin. Evidence is provided of how intracellular colonization is established and how colonization by Bd proceeds to deeper skin layers. Older thalli develop rhizoid-like structures that spread to deeper skin layers, form a swelling inside the host cell to finally give rise to a new thallus. In X. laevis, interaction of Bd with skin was limited to an epibiotic state, with sporangia developing upon the skin. Only the superficial epidermis was affected. Epidermal cells seemed to be used as a nutrient source without development of intracellular thalli. The in vitro data agreed with the results obtained after experimental infection of the studied frog species. These data suggest that the colonization strategy of B. dendrobatidis is host dependent, with the extent of colonization most likely determined by inherent characteristics of the host

  6. Role of mouse germ-cell mutagenesis in understanding genetic risk and in generating mutations that are prime tools for studies in modern biology.

    PubMed

    Russell, L B

    1994-01-01

    Highlights are presented on (1) the role mouse germ-cell mutagenesis has played in assessing the genetic harm from radiations and chemicals, and (2) the contributions to the field of modern biology that are being made by the products of this research--the propagated mutations. Among the numerous findings in radiation mutagenesis were the humped dose-effect curve for spermatogonial stem cells, the major differences between the sexes and between germ-cell stages of each sex in both yield and nature of mutations, the dose-rate effect, which provided the first evidence for repair of mutational (or premutational) damage, the augmenting effect of certain regimes of dose fractionation, and many others. Chemical mutagenesis studies that followed revealed at least three patterns of mutation yield and demonstrated that germ-cell stage--much more than the nature of the chemical--governs the nature of the DNA lesions induced. Two "supermutagens," one for intragenic mutations and one for deletions and other rearrangements, have become very useful in the manufacture of mutations for specific purposes. The mutations propagated from radiation- and chemical-mutagenesis experiments are providing prime resources for basic studies in genome organization, gene structure, and function. DNA lesions that involve specific loci have made possible increasingly detailed characterization of extensive deletion complexes that facilitate high-intensity physical and functional mapping within them. Numerous loci associated with interesting developmental anomalies have been identified and have become accessible to positional cloning. Several of the genes accessed with the aid of induced mutations (deletions, other rearrangements, and point mutations) are furnishing prime reagents for elucidating human disease conditions.

  7. Developmental effects of dioxins.

    PubMed Central

    Birnbaum, L S

    1995-01-01

    The potent developmental toxicity of dioxin in multiple species has been known for a number of years. However, recent studies have indicated that dioxin also induces functional developmental defects, many of which are delayed. Subtle structural deficits, not detectable at birth, have also been described in multiple species and in both sexes. Certain defects have been reported not only in animals but also in children prenatally exposed to complex mixtures containing dioxinlike compounds. None of the effects can be attributed to modulation of any one endocrine system. For example, dioxin does not bind to the estrogen receptor, but it can cause effects that are both estrogenic and antiestrogenic. However, viewing dioxin and related compounds as endocrine disruptors that may alter multiple pathways sheds some light on the complexities of this potent class of growth dysregulators. PMID:8593882

  8. Rethinking Developmental Science

    PubMed Central

    Aldwin, Carolyn M.

    2014-01-01

    The articles in this issue are all based on the invited addresses given by the authors at the 2013 biennial meeting of the Society for the Study of Human Development. All of the authors address the unfolding paradigm shift in developmental sciences, from reductionism to relational developmental system theories. This theoretical stance involves the recognition of Individual ↔ context transactions, with multiple co-acting partners existing in dynamic relationships across the lifespan and life course. The articles address not only theoretical issues, but also methodological advances and their applications. While acknowledging the importance of new data collection and analytical techniques that permit the testing of more complex theoretical models, the articles demonstrate that well-designed questions from this theoretical perspective can also yield novel findings which are highly relevant to current real-world problems and social policy issues. PMID:25598750

  9. Developmental Gerstmann's syndrome.

    PubMed

    PeBenito, R; Fisch, C B; Fisch, M L

    1988-09-01

    The tetrad of finger agnosia, dysgraphia, dyscalculia, and right-left disorientation make up Gerstmann's syndrome. The tetrad has been infrequently described in children with learning disability and has been called developmental Gerstmann's syndrome (DGS). Developmental Gerstmann's syndrome may occur in brain-damaged and apparently normal children. Five children in whom DGS occurred in association with brain abnormalities underwent long-term observation, which indicated persistence of the deficits. The identification of these cases suggests that DGS may not be as rare as previously thought and may often be unrecognized. Testing for the Gerstmann elements in learning-disabled children may identify otherwise undiagnosed cases of DGS and should be routinely employed in the neurologic examination. Until appropriate teaching methods for DGS are found, "bypassing" the deficits and utilizing the child's strengths, plus counseling, seem to offer an effective treatment approach.

  10. Identification and Genetic Analysis of Wunen, a Gene Guiding Drosophila Melanogaster Germ Cell Migration

    PubMed Central

    Zhang, N.; Zhang, J.; Cheng, Y.; Howard, K.

    1996-01-01

    We describe a novel genetic locus, wunen (wun), required for guidance of germ cell migration in early Drosophila development. Loss of wun function does not abolish movement but disrupts the orientation of the motion causing the germ cells to disperse even though their normal target, the somatic gonad, is well formed. We demonstrate that the product of this gene enables a signal to pass from the soma to the germ line and propose that the function of this signal is to selectively stabilize certain cytoplasmic extensions resulting in oriented movement. To characterize this guidance factor, we have mapped wun to within 100 kb of cloned DNA. PMID:8807296

  11. The C. elegans germ line: a model for stem cell biology

    PubMed Central

    Hubbard, E. Jane Albert

    2009-01-01

    Like many stem cell systems, the C. elegans germ line contains a self-renewing germ cell population that is maintained by a niche. Although the exact cellular mechanism for self-renewal is not yet known, three recent studies shed considerable light on the cell-cycle behavior of germ cells, including a support for significant and plastic renewal potential. This review brings together the results of the three recent cell-based studies, places them in the context of previous work, and discusses future perspectives for the field. PMID:17948315

  12. Chemotherapy for Good-Risk Nonseminomatous Germ Cell Tumors: Current Concepts and Controversies.

    PubMed

    In, Gino; Dorff, Tanya

    2015-08-01

    The rate of diagnosis of germ cell tumors has remained fairly constant. By the International Germ Cell Cancer Consensus Classification, roughly 60% of all metastatic germ cell tumors are classified as good risk. This group of patients has an excellent prognosis, with greater than 90% expectation of cure. Treatment standards have not changed much in recent years. This article focuses on key concepts in the development of the currently accepted first-line regimens and addresses some evolving areas of interest, if not controversy.

  13. In vivo analysis of germ cell apoptosis reveals the existence of stage-specific 'social' control of germ cell death in the seminiferous epithelium.

    PubMed

    Blanco-Rodríguez, J; Martínez-García, C

    1997-12-01

    It has become clear in recent years that programmed cell death is regulated during development by signals from other cells. Nevertheless, compared to the 'social' control of cell proliferation, relatively little is known about the 'social' control of cell death in other systems. Since in a previous study we showed that induced germ cell apoptosis occurs at specific stages of the spermatogenic cycle, in this study we aimed to ascertain the existence of supracellular control of germ cell death during spermatogenesis. Therefore, the TUNEL technique has been used to analyse whether all of the different germ cell types are induced to die at these specific stages in animals injected intratesticularly with one of several inducers of apoptosis. Our findings suggest that all of the investigated agents trigger apoptosis in all the diverse progenies of germ cells existing at stages I, XII or XIV of the spermatogenic cycle. In contrast, at most other stages the number of apoptotic cells was similar to that found in control animals. These data are consistent with the existence of an intercellular control of germ cell death during spermatogenesis. We conclude that the seminiferous epithelium provides a suitable in vivo model to study the mechanisms underlying the 'social' control of apoptosis.

  14. Evolutionary and Developmental Modules

    PubMed Central

    Lacquaniti, Francesco; Ivanenko, Yuri P.; d’Avella, Andrea; Zelik, Karl E.; Zago, Myrka

    2013-01-01

    The identification of biological modules at the systems level often follows top-down decomposition of a task goal, or bottom-up decomposition of multidimensional data arrays into basic elements or patterns representing shared features. These approaches traditionally have been applied to mature, fully developed systems. Here we review some results from two other perspectives on modularity, namely the developmental and evolutionary perspective. There is growing evidence that modular units of development were highly preserved and recombined during evolution. We first consider a few examples of modules well identifiable from morphology. Next we consider the more difficult issue of identifying functional developmental modules. We dwell especially on modular control of locomotion to argue that the building blocks used to construct different locomotor behaviors are similar across several animal species, presumably related to ancestral neural networks of command. A recurrent theme from comparative studies is that the developmental addition of new premotor modules underlies the postnatal acquisition and refinement of several different motor behaviors in vertebrates. PMID:23730285

  15. Developmental letter position dyslexia.

    PubMed

    Friedmann, Naama; Rahamim, Einav

    2007-09-01

    Letter position dyslexia (LPD) is a peripheral dyslexia that causes errors of letter order within words. So far, only cases of acquired LPD have been reported. This study presents selective LPD in its developmental form, via the testing of II Hebrew-speaking individuals with developmental dyslexia. The study explores the types of errors and effects on reading in this dyslexia, using a variety of tests: reading aloud, lexical decision, same-different decision, definition and letter naming. The findings indicate that individuals with developmental LPD have a deficit in the letter position encoding function of the orthographic visual analyser, which leads to underspecification of letter position within words. Letter position errors occur mainly in adjacent middle letters, when the error creates another existing word. The participants did not show an output deficit or phonemic awareness deficit. The selectivity of the deficit, causing letter position errors but no letter identity errors and no migrations between words, supports the existence of letter position encoding function as separate from letter identification and letter-to-word binding.

  16. Copper in developmental stuttering.

    PubMed

    Alm, Per A

    2005-01-01

    It has previously been reported that men with developmental stuttering showed reduced concentration of copper in the blood, and a negative correlation between the copper level and the severity of stuttering. Disorders of copper metabolism may result in dysfunction of the basal ganglia system and dystonia, a motor disorder sharing some traits of stuttering. It has been shown that copper ions affect the dopamine and the GABA systems. With this background we investigated the plasma level of copper, the copper binding protein ceruloplasmin, and the estimated level of free copper in stuttering adults. Sixteen men with developmental stuttering were compared with 16 men without speech problems. The samples were assayed in one batch in a pseudorandom and counterbalanced order. No significant differences were found between stuttering men and the control group in any of the biological variables, and no negative correlation between copper and the general severity of stuttering was shown. On the contrary, an explorative analysis resulted in a positive correlation between high plasma copper and superfluous muscular activity during stuttering (r=0.51, p=0.04). This result indicates that there is no relation between developmental stuttering and low plasma copper in the main population of stuttering adults.

  17. Evolutionary developmental psychology.

    PubMed

    King, Ashley C; Bjorklund, David F

    2010-02-01

    The field of evolutionary developmental psychology can potentially broaden the horizons of mainstream evolutionary psychology by combining the principles of Darwinian evolution by natural selection with the study of human development, focusing on the epigenetic effects that occur between humans and their environment in a way that attempts to explain how evolved psychological mechanisms become expressed in the phenotypes of adults. An evolutionary developmental perspective includes an appreciation of comparative research and we, among others, argue that contrasting the cognition of humans with that of nonhuman primates can provide a framework with which to understand how human cognitive abilities and intelligence evolved. Furthermore, we argue that several aspects of childhood (e.g., play and immature cognition) serve both as deferred adaptations as well as imparting immediate benefits. Intense selection pressure was surely exerted on childhood over human evolutionary history and, as a result, neglecting to consider the early developmental period of children when studying their later adulthood produces an incomplete picture of the evolved adaptations expressed through human behavior and cognition.

  18. Wheat Germ Agglutinin Functionalized Complexation Hydrogels for Oral Insulin Delivery

    PubMed Central

    Wood, Kristy M.; Stone, Gregory M.; Peppas, Nicholas A.

    2011-01-01

    Insulin was loaded into hydrogel microparticles after two hours with loading efficiencies greater than 70% for both poly(methacrylic acid-grafted-ethylene glycol) (P(MAA-g-EG)) and poly(methacrylic acid-grafted-ethylene glycol) functionalized with wheat germ agglutinin (P(MAA-g-EG) WGA). The pH-responsive release results demonstrated that the pH shift from the stomach to the small intestine can be used as a physiologic trigger to release insulin from P(MAA-g-EG) and P(MAA-g-EG) WGA microparticles, thus limiting release of insulin into the acidic environment of the stomach. Microplates were successfully treated with PGM to create a surface that allowed for specific binding between mucins and lectins. The 1% PGM treatment followed by a 2 h BSA blocking step gave the most consistent results when incubated with F-WGA. In addition, the PGM-treated microplates were shown to create specific interactions between F-WGA and the PGM by use of a competitive carbohydrate. The 1% PGM treated microplates were also used to show that adhesion was improved in the P(MAA-g-EG) WGA microparticles over the P(MAA-g-EG) microparticles. The interaction between the PGM-treated microplate and P(MAA-g-EG) WGA was again shown to be specific by adding a competitive carbohydrate, whilethe interaction between P(MAA-g-EG) and the PGM-treated microplate was nonspecific. Cellular monolayers were used as another method for demonstrating that the functionalized microparticles increase adhesion over the nonfunctionalized microparticles. This work has focused on improving the mucoadhesive nature of P(MAA-g-EG) by functionalizing these hydrogel carriers with wheat germ agglutinin (WGA) to create a specific mucosal interaction and then evaluating the potential of these carriers as oral insulin delivery systems by in vitro methods. From these studies, it is concluded that the addition of the WGA on the microparticles produces a specific adhesion to carbohydrate-containing surfaces and that P(MAA-g-EG) WGA

  19. Gonadal germ cell tumors in children and adolescents

    PubMed Central

    Cecchetto, Giovanni

    2014-01-01

    Pediatric germ cell tumors (GCT) are rare tumors: 80% are benign, 20% malignant (2-3% of all malignant pediatric tumors). The gonadal sites (ovary and testis) account for 40% of cases. Ovarian GCTs: Represent 30% of GCTs and 70% of neoplastic ovarian masses, being the most common ovarian neoplasms in children and teenagers. Benign and immature forms (teratomas) constitute about 80% of all ovarian GCTs, malignant forms represent 20% increasing during adolescence. The most common malignant entity in children is the yolk sac tumors (YST); dysgerminoma is frequent during adolescence and being bilateral in 10% of cases. Presentation is similar in malignant and benign lesions; abdominal pain (70-80%) and lower abdominal mass are common symptoms. Evaluation of alpha-fetoprotein (αFP) or beta subunit of human chorionic gonadotropin (βHCG) is essential to address the nature of the tumors: Their elevation means presence of malignancy. Surgery includes intraoperative staging procedures and requires ovariectomy or ovarosalpingectomy for malignant lesions, but may be conservative in selected benign tumors. Since malignant GCTs are very chemosensitive, primary chemotherapy is recommended in metastatic or locally advanced tumors. Testicular GCT: Represent 10% of pediatric GCT, and about 30% of malignant GCT with two age peaks: Children <3 years may experience mature teratoma and malignant GCTs, represented almost exclusively by YST, while adolescents may also show seminomas or other mixed tumors. The main clinical feature is a painless scrotal mass. Surgery represents the cornerstone of the management of testicular GCTs, with an inguinal approach and a primary high orchidectomy for malignant tumors, while a testis-sparing surgery can be considered for benign lesions. A retroperitoneal lymph node (LN) biopsy may be necessary to define the staging when the involvement of retroperitoneal LN is uncertain at imaging investigations. Conclusion: Patients with gonadal malignant GCTs

  20. Examination of plants in lunar (germ free) soil in Plant Laboratory

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Dr. Charles Walkenshaw, Manned Spacecraft Center botanist, examines sorghum and tobacco plants in lunar (germ free) soil in the Plant Laboratory of the Lunar Receiving Laboratory. The soil was brought back from the Moon by the Apollo 11 astronauts.

  1. Germ cell mutations of the ascidian Ciona intestinalis with TALE nucleases.

    PubMed

    Yoshida, Keita; Treen, Nicholas; Hozumi, Akiko; Sakuma, Tetsushi; Yamamoto, Takashi; Sasakura, Yasunori

    2014-05-01

    Targeted mutagenesis of genes-of-interest, or gene-knockout, is a powerful method to address the functions of genes. Engineered nucleases have enabled this approach in various organisms because of their ease of use. The ascidian Ciona intestinalis is an excellent organism to analyze gene functions by means of genetic technologies. In our previous study, we reported mutagenesis of Ciona somatic cells with TALE nucleases (TALENs) by electroporating expression constructs. In this study, we report germ cell mutagenesis of Ciona by microinjecting mRNAs encoding TALENs. TALEN mRNAs introduced mutations to target genes in both somatic and germ cells. TALEN-mediated mutations in the germ cell genome were inherited by the next generation. We conclude that knockout lines of Ciona that have disrupted target genes can be established through TALEN-mediated germ cell mutagenesis.

  2. Accidental germ-line modifications through somatic cell gene therapies: some ethical considerations.

    PubMed

    Kaplan, J M; Roy, I

    2001-01-01

    Proposed somatic cell gene-therapies (especially those involving in utero therapies) may involve a small risk of germ-line modifications; this risk has engendered serious concern, and arguments have been made that such therapies ought not be pursued if such risks exists. We argue here that while pursuing deliberate germ-line modifications in humans would be inappropriate given the current state of the art, the risk of accidental germ-line modifications from most currently proposed in utero gene therapy is no different in kind or degree from other risks regularly taken in medical procedures. Given the possible benefits of such therapies, we argue that the risk of accidental germ-line modifications is well worth taking in these cases.

  3. Effect of Monascus aged vinegar on isoflavone conversion in soy germ by soaking treatment.

    PubMed

    Chen, Ji-Cheng; Wang, Jie; Wang, Zhi-Jiang; Li, Yan-Jie; Pang, Jie; Lin, He-Tong; Yin, Shou-Wei

    2015-11-01

    Soy germ rich in isoflavones has attracted much attention for health-promoting characteristics. An effective approach via Monascus aged vinegar soaking was adopted to enhance the aglycone amount. The profiles and interconversion of soy germ isoflavones via Monascus aged vinegar soaking were investigated, and the distribution in vinegars were also explored. The aglycones were dramatically increased by 40.76 times. Concomitantly, β-glycosides and malonylglycosides were significantly decreased. The proportion of aglycones presented a sharp increase with the endogenous β-glucosidase activity at the initial 4h incubation. There appeared to be correlations between β-glucosidase activity and the hydrolysis of conjugated isoflavones. The results demonstrated that the reactions of decarboxylation, de-esterification and de-glycosylation were involved in the Monascus aged vinegar soaking, supporting synergistic effects of enzymolysis by endogenous β-glucosidase from soy germ and acid hydrolysis of vinegars. Soaking by vinegar is a promising pathway for preparing aglycone-rich soy germ.

  4. Practical whole-tooth restoration utilizing autologous bioengineered tooth germ transplantation in a postnatal canine model

    PubMed Central

    Ono, Mitsuaki; Oshima, Masamitsu; Ogawa, Miho; Sonoyama, Wataru; Hara, Emilio Satoshi; Oida, Yasutaka; Shinkawa, Shigehiko; Nakajima, Ryu; Mine, Atsushi; Hayano, Satoru; Fukumoto, Satoshi; Kasugai, Shohei; Yamaguchi, Akira; Tsuji, Takashi; Kuboki, Takuo

    2017-01-01

    Whole-organ regeneration has great potential for the replacement of dysfunctional organs through the reconstruction of a fully functional bioengineered organ using three-dimensional cell manipulation in vitro. Recently, many basic studies of whole-tooth replacement using three-dimensional cell manipulation have been conducted in a mouse model. Further evidence of the practical application to human medicine is required to demonstrate tooth restoration by reconstructing bioengineered tooth germ using a postnatal large-animal model. Herein, we demonstrate functional tooth restoration through the autologous transplantation of bioengineered tooth germ in a postnatal canine model. The bioengineered tooth, which was reconstructed using permanent tooth germ cells, erupted into the jawbone after autologous transplantation and achieved physiological function equivalent to that of a natural tooth. This study represents a substantial advancement in whole-organ replacement therapy through the transplantation of bioengineered organ germ as a practical model for future clinical regenerative medicine. PMID:28300208

  5. CDC Vital Signs: Making Health Care Safer -- Stop Infections from Lethal CRE Germs Now

    MedlinePlus

    ... 62 MB] Read the MMWR Science Clips Making Health Care Safer Stop Infections from Lethal CRE Germs Now ... to otherwise healthy people outside of medical facilities. Health Care Providers can Know if patients in your facility ...

  6. Functional tooth restoration utilising split germs through re-regionalisation of the tooth-forming field

    PubMed Central

    Yamamoto, Naomi; Oshima, Masamitsu; Tanaka, Chie; Ogawa, Miho; Nakajima, Kei; Ishida, Kentaro; Moriyama, Keiji; Tsuji, Takashi

    2015-01-01

    The tooth is an ectodermal organ that arises from a tooth germ under the regulation of reciprocal epithelial-mesenchymal interactions. Tooth morphogenesis occurs in the tooth-forming field as a result of reaction-diffusion waves of specific gene expression patterns. Here, we developed a novel mechanical ligation method for splitting tooth germs to artificially regulate the molecules that control tooth morphology. The split tooth germs successfully developed into multiple correct teeth through the re-regionalisation of the tooth-forming field, which is regulated by reaction-diffusion waves in response to mechanical force. Furthermore, split teeth erupted into the oral cavity and restored physiological tooth function, including mastication, periodontal ligament function and responsiveness to noxious stimuli. Thus, this study presents a novel tooth regenerative technology based on split tooth germs and the re-regionalisation of the tooth-forming field by artificial mechanical force. PMID:26673152

  7. Modeling cell elongation during germ band retraction: cell autonomy versus applied anisotropic stress

    PubMed Central

    Lynch, Holley E.; Veldhuis, Jim; Brodland, G. Wayne; Hutson, M. Shane

    2014-01-01

    The morphogenetic process of germ band retraction in Drosophila embryos involves coordinated movements of two epithelial tissues – germ band and amnioserosa. The germ band shortens along its rostral-caudal or head-to-tail axis, widens along its perpendicular dorsal-ventral axis, and uncurls from an initial ‘U’ shape. The amnioserosa mechanically assists this process by pulling on the crook of the U-shaped germ band. The amnioserosa may also provide biochemical signals that drive germ band cells to change shape in a mechanically autonomous fashion. Here, we use a finite-element model to investigate how these two contributions reshape the germ band. We do so by modeling the response to laser-induced wounds in each of the germ band’s spatially distinct segments (T1-T3, A1-A9) during the middle of retraction when segments T1-A3 form the ventral arm of the ‘U’, A4-A7 form its crook, and A8-A9 complete the dorsal arm. We explore these responses under a range of externally applied stresses and internal anisotropy of cell edge tensions – akin to a planar cell polarity that can drive elongation of cells in a direction parallel to the minimum edge tension – and identify regions of parameter space (edge-tension anisotropy versus stress anisotropy) that best match previous experiments for each germ band segment. All but three germ band segments are best fit when the applied stress anisotropy and the edge-tension anisotropy work against one another – i.e., when the isolated effects would elongate cells in perpendicular directions. Segments in the crook of the germ band (A4-A7) have cells that elongate in the direction of maximum external stress, i.e., external stress anisotropy is dominant. In most other segments, the dominant factor is internal edge-tension anisotropy. These results are consistent with models in which the amnioserosa pulls on the crook of the germ band to mechanically assist retraction. In addition, they suggest a mechanical cue for edge

  8. Multidimensional representations: The knowledge domain of germs held by students, teachers and medical professionals

    NASA Astrophysics Data System (ADS)

    Rua, Melissa Jo

    The present study examined the understandings held by 5th, 8th, and 11th-grade students, their teachers and medical professionals about germs. Specifically, this study describes the content and structure of students' and adults' conceptions in the areas of germ contraction, transmission, and treatment of infectious and non-infectious diseases caused by microorganisms. Naturalistic and empirical research methods were used to investigate participants' conceptions. Between and within group similarities were found using data from concept maps on the topic "flu," drawings of germs, a 20 word card sort related to germs and illness, and a semi-structured interview. Concept maps were coded according to techniques by Novak and Gowan (1984). Drawings of germs were coded into four main categories (bacteria, viruses, animal cell, other) and five subcategories (disease, caricature, insect, protozoa, unclassified). Cluster patterns for the card sorts of each group were found using multidimensional scaling techniques. Six coding categories emerged from the interview transcripts: (a) transmission, (b) treatment, (c) effect of weather on illness, (d) immune response, (e) location of germs, and (f) similarities and differences between bacteria and viruses. The findings showed students, teachers and medical professionals have different understandings about bacteria and viruses and the structures of those understandings vary. Gaps or holes in the participants knowledge were found in areas such as: (a) how germs are transmitted, (b) where germs are found, (c) how the body transports and uses medicine, (d) how the immune system functions, (e) the difference between vaccines and non-prescription medicines, (f) differences that exist between bacteria and viruses, and (g) bacterial resistance to medication. The youngest students relied heavily upon personal experiences with germs rather than formal instruction when explaining their conceptions. As a result, the influence of media was

  9. Automatic classification of fish germ cells through optimum-path forest.

    PubMed

    Papa, João P; Gutierrez, Mario E M; Nakamura, Rodrigo Y M; Papa, Luciene P; Vicentini, Irene B F; Vicentini, Carlos A

    2011-01-01

    The spermatogenesis is crucial to the species reproduction, and its monitoring may shed light over some important information of such process. Thus, the germ cells quantification can provide useful tools to improve the reproduction cycle. In this paper, we present the first work that address this problem in fishes with machine learning techniques. We show here how to obtain high recognition accuracies in order to identify fish germ cells with several state-of-the-art supervised pattern recognition techniques.

  10. Germ line versus soma in the transition from egg to embryo

    PubMed Central

    Swartz, S. Zachary; Wessel, Gary M.

    2016-01-01

    With few exceptions, all animals acquire the ability to produce eggs or sperm at some point in their lifecycle. Despite this near universal requirement for sexual reproduction, there exists an incredible diversity in germ-line development. For example, animals exhibit a vast range of differences in the timing at which the germ line, which retains reproductive potential, separates from the soma, or terminally differentiated, non-reproductive cells. This separation may occur during embryonic development, after gastrulation, or even in adults, depending on the organism. The molecular mechanisms of germ line segregation are also highly diverse, and intimately intertwined with the overall transition from a fertilized egg to an embryo. The earliest embryonic stages of many species are largely controlled by maternally supplied factors. Later in development, patterning control shifts to the embryonic genome and, concomitantly with this transition, the maternally supplied factors are broadly degraded. This chapter attempts to integrate these processes – germ line segregation, and how the divergence of germ line and soma may utilize the egg to embryo transitions differently. In some embryos, this difference is subtle or maybe lacking altogether, whereas in other embryos, this difference in utilization may be a key step in the divergence of the two lineages. Here we will focus our discussion on the echinoderms, and in particular the sea urchins, in which recent studies have provided mechanistic understanding in germ line determination. We propose that the germ line in sea urchins requires an acquisition of maternal factors from the egg and, when compared to other members of the taxon, this appears to be a derived mechanism. The acquisition is early – at the 32 cell stage – and involves active protection of maternal mRNAs, which are instead degraded in somatic cells with the maternal to embryonic transition. We collectively refer to this model as the Time Capsule method

  11. Unusual liver locations of growing teratoma syndrome in ovarian malignant germ cell tumors.

    PubMed

    Lorusso, Domenica; Malaguti, Paola; Trivellizzi, Ilaria Nausica; Scambia, Giovanni

    2011-01-01

    ► Growing teratoma syndrome (GTS) with unusual liver locations are described after fertility preserving surgery and chemotherapy treatment for mixed malignant ovarian germ cell tumors (MGCT). ► It's a rare syndrome of mixed malignant ovarian germ cell tumors and in both cases enlarged and growing liver masses appeared during cisplatin-etoposide-bleomicin (BEP) chemotherapy. ► Radiological exams (CT scan and MRI) were suggestive for secondary metastasis and serum markers became negative during chemotherapy.

  12. Germ Line Versus Soma in the Transition from Egg to Embryo.

    PubMed

    Swartz, S Zachary; Wessel, Gary M

    2015-01-01

    With few exceptions, all animals acquire the ability to produce eggs or sperm at some point in their life cycle. Despite this near-universal requirement for sexual reproduction, there exists an incredible diversity in germ line development. For example, animals exhibit a vast range of differences in the timing at which the germ line, which retains reproductive potential, separates from the soma, or terminally differentiated, nonreproductive cells. This separation may occur during embryonic development, after gastrulation, or even in adults, depending on the organism. The molecular mechanisms of germ line segregation are also highly diverse, and intimately intertwined with the overall transition from a fertilized egg to an embryo. The earliest embryonic stages of many species are largely controlled by maternally supplied factors. Later in development, patterning control shifts to the embryonic genome and, concomitantly with this transition, the maternally supplied factors are broadly degraded. This chapter attempts to integrate these processes--germ line segregation, and how the divergence of germ line and soma may utilize the egg to embryo transitions differently. In some embryos, this difference is subtle or maybe lacking altogether, whereas in other embryos, this difference in utilization may be a key step in the divergence of the two lineages. Here, we will focus our discussion on the echinoderms, and in particular the sea urchins, in which recent studies have provided mechanistic understanding in germ line determination. We propose that the germ line in sea urchins requires an acquisition of maternal factors from the egg and, when compared to other members of the taxon, this appears to be a derived mechanism. The acquisition is early--at the 32-cell stage--and involves active protection of maternal mRNAs, which are instead degraded in somatic cells with the maternal-to-embryonic transition. We collectively refer to this model as the Time Capsule method for germ

  13. Sertoli cell condition medium can induce germ like cells from bone marrow derived mesenchymal stem cells

    PubMed Central

    Monfared, Mahdieh Hajian; Minaee, Bagher; Rastegar, Tayebeh; Khrazinejad, Ebrahim; Barbarestani, Mohammad

    2016-01-01

    Objective(s): Although many researchers have confirmed induction of germ cells from bone marrow mesenchymal stem cells (BMMSCs), there are no reports that confirm spontaneous differentiation of germ cells from BMMSCs. In this study, we have evaluated the effect of adult Sertoli cell condition medium (SCCM) as a mutative factor in the induction of germ cells from BMMSCs. Materials and Methods: BMMSCs were collected from the bone marrow of 6-8-week old NMRI mice and their mesenchymal entities were proven using superficial markers (expression of CD44 and CD73 and non-expresion of CD45 and CD11b) by fow cytometry. Their multi-potential entities were proved with differentiation to osteogenic and adipogenic cells for 21 days. Also isolated Sertoli cells were enriched using lectin coated plates and Sertoli cell condition medium (SCCM) was collected. Sertoli cells were identified by immunocytochemistry and Vimentin marker. The cells were then differentiated into germ cells with SCCM for 2 weeks. Finally induced cells were evaluated by RT-PCR and immunocytochemistry. Results: Differentiation of mesenchymal stem cells to osteoblast and adipocyte showed their multi-potential property. Expression of CD44 and CD73 and non-expression of CD45 and CD11b confirmed mesenchyme cells. Immunocytochemistry and RT-PCR results showed expression of germ cells specific marker (Mvh). Conclusion: This study confirmed the effect of SCCM as a motivational factor that can used for differentiation of germ cells from BMMSCs. PMID:27917274

  14. Beyond the Mouse Monopoly: Studying the Male Germ Line in Domestic Animal Models

    PubMed Central

    González, Raquel; Dobrinski, Ina

    2015-01-01

    Spermatogonial stem cells (SSCs) are the foundation of spermatogenesis and essential to maintain the continuous production of spermatozoa after the onset of puberty in the male. The study of the male germ line is important for understanding the process of spermatogenesis, unravelling mechanisms of stemness maintenance, cell differentiation, and cell-to-cell interactions. The transplantation of SSCs can contribute to the preservation of the genome of valuable individuals in assisted reproduction programs. In addition to the importance of SSCs for male fertility, their study has recently stimulated interest in the generation of genetically modified animals because manipulations of the male germ line at the SSC stage will be maintained in the long term and transmitted to the offspring. Studies performed mainly in the mouse model have laid the groundwork for facilitating advancements in the field of male germ line biology, but more progress is needed in nonrodent species in order to translate the technology to the agricultural and biomedical fields. The lack of reliable markers for isolating germ cells from testicular somatic cells and the lack of knowledge of the requirements for germ cell maintenance have precluded their long-term maintenance in domestic animals. Nevertheless, some progress has been made. In this review, we will focus on the state of the art in the isolation, characterization, culture, and manipulation of SSCs and the use of germ cell transplantation in domestic animals. PMID:25991701

  15. Regulating germ-line gene therapy to avoid sliding down the slippery slope.

    PubMed

    Pattinson, S D

    2000-01-01

    Many arguments can be made for or against various regulatory approaches towards germ-line gene therapy and its associated research. A popular conclusion is that it ought to be prohibited, and this is commonly defended by use of a slippery slope argument. This paper will begin by outlining the regulatory approaches adopted towards germ-line gene therapy in EU countries, demonstrating the popularity of the restrictive approach. The slippery slope argument will then be examined. A number of variants of the slippery slope argument will be distinguished, highlighting the conceptually different claims made by each. Finally, examples of slippery slope arguments often invoked to support the prohibition of germ-line gene therapy will be examined with regard to the conditions that each must satisfy to form a theoretically sound argument. I will argue that these conditions are rarely given sufficient consideration. For the purposes of this paper, "germ-line gene therapy" is defined as the deliberate genetic modification of germ cells (sperm or oocytes), their precursors, or the cells of early embryos where the germ-line has yet to be segregated.

  16. RNF17, a component of the mammalian germ cell nuage, is essential for spermiogenesis.

    PubMed

    Pan, Jieyan; Goodheart, Mary; Chuma, Shinichiro; Nakatsuji, Norio; Page, David C; Wang, P Jeremy

    2005-09-01

    Nuages are found in the germ cells of diverse organisms. However, nuages in postnatal male germ cells of mice are poorly studied. Previously, we cloned a germ cell-specific gene named Rnf17, which encodes a protein containing both a RING finger and tudor domains. Here, we report that RNF17 is a component of a novel nuage in male germ cells--the RNF17 granule, which is an electron-dense non-membrane bound spherical organelle with a diameter of 0.5 mum. RNF17 granules are prominent in late pachytene and diplotene spermatocytes, and in elongating spermatids. RNF17 granules are distinguishable from other known nuages, such as chromatoid bodies. RNF17 is able to form dimers or polymers both in vitro and in vivo, indicating that it may play a role in the assembly of RNF17 granules. Rnf17-deficient male mice were sterile and exhibited a complete arrest in round spermatids, demonstrating that Rnf17 encodes a novel key regulator of spermiogenesis. Rnf17-null round spermatids advanced to step 4 but failed to produce sperm. These results have shown that RNF17 is a component of a novel germ cell nuage and is required for differentiation of male germ cells.

  17. DNA methylation and chromatin accessibility profiling of mouse and human fetal germ cells

    PubMed Central

    Guo, Hongshan; Hu, Boqiang; Yan, Liying; Yong, Jun; Wu, Yan; Gao, Yun; Guo, Fan; Hou, Yu; Fan, Xiaoying; Dong, Ji; Wang, Xiaoye; Zhu, Xiaohui; Yan, Jie; Wei, Yuan; Jin, Hongyan; Zhang, Wenxin; Wen, Lu; Tang, Fuchou; Qiao, Jie

    2017-01-01

    Chromatin remodeling is important for the epigenetic reprogramming of human primordial germ cells. However, the comprehensive chromatin state has not yet been analyzed for human fetal germ cells (FGCs). Here we use nucleosome occupancy and methylation sequencing method to analyze both the genome-wide chromatin accessibility and DNA methylome at a series of crucial time points during fetal germ cell development in both human and mouse. We find 116 887 and 137 557 nucleosome-depleted regions (NDRs) in human and mouse FGCs, covering a large set of germline-specific and highly dynamic regulatory genomic elements, such as enhancers. Moreover, we find that the distal NDRs are enriched specifically for binding motifs of the pluripotency and germ cell master regulators such as NANOG, SOX17, AP2γ and OCT4 in human FGCs, indicating the existence of a delicate regulatory balance between pluripotency-related genes and germ cell-specific genes in human FGCs, and the functional significance of these genes for germ cell development in vivo. Our work offers a comprehensive and high-resolution roadmap for dissecting chromatin state transition dynamics during the epigenomic reprogramming of human and mouse FGCs. PMID:27824029

  18. Occurrence and exposure assessment of Fusarium mycotoxins in maize germ, refined corn oil and margarine.

    PubMed

    Escobar, Jacqueline; Lorán, Susana; Giménez, Isabel; Ferruz, Elena; Herrera, Marta; Herrera, Antonio; Ariño, Agustín

    2013-12-01

    Analytical methods were validated for the analysis of fumonisins (FB1 and FB2), deoxynivalenol (DON) and zearalenone (ZEA) in maize germ, corn oil and margarine. A survey of 74 samples consisting of 12 wet-milled maize germ, 12 dry-milled maize germ, 25 refined corn oil, and 25 corn oil margarine was conducted. Results revealed that 100% and 87.5% of maize germ samples presented FB1 and FB2, respectively, attaining concentrations for the sum of both toxins of 1302±541 μg kg(-1) in wet-milled and 820±831 μg kg(-1) in dry-milled maize germ. The lower incidence of FB1, FB2 and DON in edible oil and margarine (4-8%) may be related with the industrial processes for their obtaining besides the high water-solubility of these mycotoxins. In contrast, 25% of maize germ samples were positive for ZEA as well as 32% of corn oil and 24% of margarine, which may be related with its lipophilic nature. A number of samples exceeded the maximum limits indicating that strict control is needed, though estimated dietary exposure was less than 0.2% tolerable daily intakes in all cases.

  19. Germ cell transplantation as a potential biotechnological approach to fish reproduction.

    PubMed

    Lacerda, S M S N; Costa, G M J; Campos-Junior, P H A; Segatelli, T M; Yazawa, R; Takeuchi, Y; Morita, T; Yoshizaki, G; França, L R

    2013-02-01

    Although the use of germ cell transplantation has been relatively well established in mammals, the technique has only been adapted for use in fish after entering the 2000s. During the last decade, several different approaches have been developed for germ cell transplantation in fish using recipients of various ages and life stages, such as blastula-stage embryos, newly hatched larvae and sexually mature specimens. As germ cells can develop into live organisms through maturation and fertilization processes, germ cell transplantation in fish has opened up new avenues of research in reproductive biotechnology and aquaculture. For instance, the use of xenotransplantation in fish has lead to advances in the conservation of endangered species and the production of commercially valuable fish using surrogated recipients. Further, this could also facilitate the engineering of transgenic fish. However, as is the case with mammals, knowledge regarding the basic biology and physiology of germline stem cells in fish remains incomplete, imposing a considerable limitation on the application of germ cell transplantation in fish. Furthering our understanding of germline stem cells would contribute significantly to advances regarding germ cell transplantation in fish.

  20. Reciprocal relationship between mouse germ-cell mutagenesis and basic genetics: from early beginnings to future opportunities.

    PubMed

    Russell, L B

    1989-01-01

    The scientific foundations for several mammalian germ-line mutagenesis tests in common use today were laid in the 1930s, 1940s, and early 1950s. Subsequent developments in the field have had multiple objectives: detection of mutagenicity of environmental agents (which has led to the development of numerous methodologies), identification of biological and physical factors that affect mutation yield, analysis of the structural nature of the genetic alterations, and assessment of the organismic effects of various types of mutations. Mutagenesis studies have made numerous contributions to basic genetics by generating mutant types that led to elucidation of sex-determining mechanisms in mammals; formulation of the single-active-, or inactive-, X-chromosome hypothesis; correlation of genetic and cytological maps; discovery of genetic "imprinting" phenomena; study of developmental pathways and cell lineages, etc. Particularly useful are sets of complexly overlapping deletions that have been recovered in radiation mutagenesis studies, propagated in breeding stocks, and genetically analyzed; these have constituted prerequisites for molecular genetic studies aimed at development of the DNA structure-function relationships for important genomic regions. Mutagenesis experiments have also served to identify mutagens that are particularly effective in inducing specific types of genetic lesions desired for basic studies. Reciprocally, basic genetics has contributed to the development of mutagenesis tests and has enhanced the value of the specific-locus test by adding to its quantitative capabilities the capability for qualitatively characterizing the actions of mutagens.

  1. Development of a new approach for targeted gene editing in primordial germ cells using TALENs in Xenopus.

    PubMed

    Nakajima, Keisuke; Yaoita, Yoshio

    2015-02-06

    A gene of interest can be efficiently modified using transcription activator-like effector nucleases (TALENs) (Christian et al., 2010;Li et al., 2011). However, if a target gene is essential for development, growth and fertility, use of TALENs with high mutagenic activity in F0 frogs could result in developmental disorders or sterility, which would reduce the number of F1 progeny and make F1 phenotypical analysis difficult. We used the 3' untranslated region of DEADSouth gene (DS-3') of Xenopus tropicalis to solve this problem, because the addition of the DS-3' to mRNA is known to induce primordial germ cell (PGC)-specific expression and reduce the stability in somatic cells of mRNA in Xenopus laevis. At first, we inserted the X. tropicalis DS-3' downstream of the EGFP termination codon and confirmed that the EGFP expression was specifically detected in PGCs for three weeks. Therefore, we inserted the DS-3' downstream of the termination codon of the TALEN coding sequence. The tyrosinase gene was selected as the target gene for TALEN because the bi-allelic mutation of this gene is easily discernible by the albino phenotype. When fertilized eggs were microinjected with TALEN mRNAs fused to the DS-3', their sperm and oocytes had a high rate (84-100%) of target-gene modification in contrast to the lower rate (0-45%) of nucleotide alteration observed in somatic cells.

  2. Poultry genetic resource conservation using primordial germ cells.

    PubMed

    Nakamura, Yoshiaki

    2016-10-18

    The majority of poultry genetic resources are maintained in situ in living populations. However, in situ conservation of poultry genetic resources always carries the risk of loss owing to pathogen outbreaks, genetic problems, breeding cessation, or natural disasters. Cryobanking of germplasm in birds has been limited to the use of semen, preventing conservation of the W chromosome and mitochondrial DNA. A further challenge is posed by the structure of avian eggs, which restricts the cryopreservation of ova and fertilized embryos, a technique widely used for mammalian species. By using a unique biological property and accessibility of avian primordial germ cells (PGCs), precursor cells for gametes, which temporally circulate in the vasculature during early development, an avian PGC transplantation technique has been established. To date, several techniques for PGC manipulation including purification, cryopreservation, depletion, and long-term culture have been developed in chickens. PGC transplantation combined with recent advanced PGC manipulation techniques have enabled ex situ conservation of poultry genetic resources in their complete form. Here, the updated technologies for avian PGC manipulation are introduced, and then the concept of a poultry PGC-bank is proposed by considering the biological properties of avian PGCs.

  3. Testicular structure and germ cells morphology in salamanders

    PubMed Central

    Uribe, Mari Carmen; Mejía-Roa, Víctor

    2014-01-01

    Testes of salamanders or urodeles are paired elongated organs that are attached to the dorsal wall of the body by a mesorchium. The testes are composed of one or several lobes. Each lobe is morphologically and functionally a similar testicular unit. The lobes of the testis are joined by cords covered by a single peritoneal epithelium and subjacent connective tissue. The cords contain spermatogonia. Spermatogonia associate with Sertoli cells to form spermatocysts or cysts. The spermatogenic cells in a cyst undergo their development through spermatogenesis synchronously. The distribution of cysts displays the cephalo-caudal gradient in respect to the stage of spermatogenesis. The formation of cysts at cephalic end of the testis causes their migration along the lobules to the caudal end. Consequently, the disposition in cephalo-caudal regions of spermatogenesis can be observed in longitudinal sections of the testis. The germ cells are spermatogonia, diploid cells with mitotic activity; primary and second spermatocytes characterized by meiotic divisions that develop haploid spermatids; during spermiogenesis the spermatids differentiate to spermatozoa. During spermiation the cysts open and spermatozoa leave the testicular lobules. After spermiation occurs the development of Leydig cells into glandular tissue. This glandular tissue regressed at the end of the reproductive cycle. PMID:26413406

  4. Stable, germ-line transformation of Culex quinquefasciatus (Diptera: Culicidae).

    PubMed

    Allen, M L; O'Brochta, D A; Atkinson, P W; Levesque, C S

    2001-09-01

    A Hermes-based transposable element transformation system incorporating an enhanced green fluorescent protein (EGFP) marker was used to produce two transgenic lines of Culex quinquefasciatus (Say). The transformation frequency was approximately 12% and transformation of Culex was shown to be dependent on the presence of Hermes transposase. Injected Culex embryos were treated with four different heat shock regimes, two of which produced transformed individuals. These individuals were mated with wild-type mosquitoes and produced offspring which expressed the dominant EGFP gene in Mendelian ratios predicted for the stable integration of a gene at a single locus. The two transformed lines displayed distinct patterns of phenotypic expression, the expression of which has remained stable after fifteen generations. In these transgenic lines both the Hermes element and flanking plasmid DNA integrated into the Culex genome, as has been previously seen in Hermes-mediated transgenic strains of Aedes aegypti (L.). The high frequency of Culex transformation together with the dependence on the presence of Hermes transposase suggests that, as for Ae. aegypti, this mode of transposition into the germ-line genome occurs by an alternate mechanisms to the cut and paste type of transposition seen for this element in other insect species and in the somatic nuclei of mosquitoes. This is the first report of the genetic transformation of a species in the genus Culex and demonstrates that this medically important mosquito species can now, along with several other Culicine and Anopheline mosquito species, be genetically manipulated.

  5. Poultry genetic resource conservation using primordial germ cells

    PubMed Central

    NAKAMURA, Yoshiaki

    2016-01-01

    The majority of poultry genetic resources are maintained in situ in living populations. However, in situ conservation of poultry genetic resources always carries the risk of loss owing to pathogen outbreaks, genetic problems, breeding cessation, or natural disasters. Cryobanking of germplasm in birds has been limited to the use of semen, preventing conservation of the W chromosome and mitochondrial DNA. A further challenge is posed by the structure of avian eggs, which restricts the cryopreservation of ova and fertilized embryos, a technique widely used for mammalian species. By using a unique biological property and accessibility of avian primordial germ cells (PGCs), precursor cells for gametes, which temporally circulate in the vasculature during early development, an avian PGC transplantation technique has been established. To date, several techniques for PGC manipulation including purification, cryopreservation, depletion, and long-term culture have been developed in chickens. PGC transplantation combined with recent advanced PGC manipulation techniques have enabled ex situ conservation of poultry genetic resources in their complete form. Here, the updated technologies for avian PGC manipulation are introduced, and then the concept of a poultry PGC-bank is proposed by considering the biological properties of avian PGCs. PMID:27210834

  6. Fermented wheat germ extract (avemar) inhibits adjuvant arthritis.

    PubMed

    Telekes, Andras; Resetar, Akos; Balint, Geza; Blazso, Gabor; Falkay, Gyorgy; Lapis, Karoly; Raso, Erzsebet; Szende, Bela; Ehrenfeld, Michael; Shoenfeld, Yehuda; Hidvegi, Mate

    2007-09-01

    Anti-inflammatory efficacy of the fermented wheat germ extract (FWGE, Avemar) in the rat adjuvant arthritis (AA) model was examined. To Wistar rats with AA, different doses of FWGE and anti-inflammatory drugs (indomethacin, dexamethasone) as monotherapies were administered and FWGE and either diclofenac or dexamethasone were also given in combination. Besides plethysmographies of the paws, histological investigations of synovial tissues were also performed along with detection of CD4+ and CD8+ T lymphocytes. Gene expressions of COX-1 and 2 were determined by real-time polymerase chain reaction (PCR). FWGE monotherapy significantly inhibited the development of the secondary (immune-mediated) response in AA, and dexamethasone and indomethacin exerted inhibitory effects in a degree comparable to that of FWGE. Histological analysis of the affected joints confirmed the results. FWGE inhibited COX-1 and -2, while indomethacin enhanced COX-2 gene expressions. FWGE had an additive interaction with diclofenac. It is concluded that FWGE has significant anti-inflammatory efficacy confirmed by plethysmography, histology, and real-time PCR.

  7. Safety studies regarding a standardized extract of fermented wheat germ.

    PubMed

    Heimbach, James T; Sebestyen, Gyula; Semjen, Gabor; Kennepohl, Elke

    2007-01-01

    "Avemar pulvis" is a powder consisting of an aqueous extract of fermented wheat germ, with the drying aids maltodextrin and silicon dioxide, standardized to contain approximately 200 microg/g of the natural constituent 2,6-dimethoxy-p-benzoquinone. The results of toxicological and clinical studies of this product demonstrate its safety for its intended use as a dietary supplement ingredient in the United States. Avemar pulvis has been used in Hungary since 1998 and is approved in that country, as well as in the Czech Republic, Bulgaria, and Romania, as a "medical nutriment for cancer patients." Acute and subacute toxicity studies using rodents orally administered Avemar pulvis showed that dose levels (2000 to 3000 mg/kg body weight [bw]/day) exceeding the normal recommended oral dosage (8.5 g/day or 121 mg/kg bw/day for a 70-kg individual) by up to approximately 25-fold caused no adverse effects. The test substance showed no evidence of mutagenicity or genotoxicity in vitro or in vivo. Clinical studies using Avemar pulvis as a supplement to drug therapy in cancer patients at doses of 8.5 g/day not only showed no evidence of toxicity, but also showed a reduction in the side effects of chemotherapy. Overall, it was concluded that Avemar pulvis would not be expected to cause adverse effects under the conditions of its intended use as an ingredient in dietary supplements.

  8. Familial testicular germ cell tumor: no associated syndromic pattern identified

    PubMed Central

    2014-01-01

    Background Testicular germ cell tumor (TGCT) is the most common malignancy in young men. Familial clustering, epidemiologic evidence of increased risk with family or personal history, and the association of TGCT with genitourinary (GU) tract anomalies have suggested an underlying genetic predisposition. Linkage data have not identified a rare, highly-penetrant, single gene in familial TGCT (FTGCT) cases. Based on its association with congenital GU tract anomalies and suggestions that there is an intrauterine origin to TGCT, we hypothesized the existence of unrecognized dysmorphic features in FTGCT. Methods We evaluated 38 FTGCT individuals and 41 first-degree relatives from 22 multiple-case families with detailed dysmorphology examinations, physician-based medical history and physical examination, laboratory testing, and genitourinary imaging studies. Results The prevalence of major abnormalities and minor variants did not significantly differ between either FTGCT individuals or their first-degree relatives when compared with normal population controls, except for tall stature, macrocephaly, flat midface, and retro-/micrognathia. However, these four traits were not manifest as a constellation of features in any one individual or family. We did detect an excess prevalence of the genitourinary anomalies cryptorchidism and congenital inguinal hernia in our population, as previously described in sporadic TGCT, but no congenital renal, retroperitoneal or mediastinal anomalies were detected. Conclusions Overall, our study did not identify a constellation of dysmorphic features in FTGCT individuals, which is consistent with results of genetic studies suggesting that multiple low-penetrance genes are likely responsible for FTGCT susceptibility. PMID:24559313

  9. Inguinal lymph node metastases from germ cell testicular tumors.

    PubMed

    Klein, F A; Whitmore, W F; Sogani, P C; Batata, M; Fisher, H; Herr, H W

    1984-03-01

    Between 1948 and 1982, 22 patients were seen with metastasis to the inguinal nodes from testicular germ cell tumors: 8 had a history of unilateral or bilateral orchiopexy with or without herniorrhaphy, 4 had nonsurgically corrected or uncorrected cryptorchidism, 9 had a history of herniorrhaphy, hydrocelectomy or transscrotal orchiectomy and 1 had no history of scrotal, iliac or inguinal surgery, or of tunica vaginalis or scrotal wall involvement by tumor. The histological type was pure seminoma in 5 patients, embryonal carcinoma in 7 and mixed tumor in 10. Treatment was individualized for tumor type and mode of presentation, and varied during the years according to the modalities available. At the time of this report 8 of 22 patients (36 per cent) are alive without evidence of disease from 2 to 29.5 years, 3 (16 per cent) have died without evidence of disease 10 to 17 years after treatment, 10 (45 per cent) have died of metastases 10 months to 6 years after treatment and 1 has been lost to followup. The over-all incidence of groin metastases from testicular carcinoma is low, even with a history of scrotal or inguinal surgery.

  10. Management of primary germ cell tumors of the mediastinum.

    PubMed

    Economou, J S; Trump, D L; Holmes, E C; Eggleston, J E

    1982-05-01

    Twenty-eight patients with primary malignant germ cell tumors (GCT) of the mediastinum were treated at the University of California at Los Angeles and The Johns Hopkins Hospital in the past 30 years. Of 11 patients with pure seminomas, nine (82%) are free of disease from 6 months to 15 years following therapy. The primary treatment modality in these patients was mediastinal radiation; one patient with metastatic disease had a complete remission and prolonged survival following combination chemotherapy. Seventeen patients had GCT with nonseminomatous elements. Only three (18%) are alive and free of disease. One patient treated only surgically is alive at 15 years and two patients treated with combination chemotherapy and operation are alive and free of disease at 6 months and 3 years. When analyzed by a Kaplan-Meier actuarial survival estimate, patients with nonseminomatous GCT who were treated with cisplatin-bleomycin-based chemotherapy had a median survival of 14.0 months whereas those treated with chemotherapy regimens not employing these agents had a median survival of 4.0 months (generalized Wilcoxon test, p = 0.0495). Patients with pure seminomas are effectively treated with radiation therapy. Patients with nonseminomatous tumors have a much poorer prognosis and deserve aggressive multimodality therapy with cisplatin-bleomycin-based chemotherapy.

  11. The transcriptional repressor Blimp-1 acts downstream of BMP signaling to generate primordial germ cells in the cricket Gryllus bimaculatus.

    PubMed

    Nakamura, Taro; Extavour, Cassandra G

    2016-01-15

    Segregation of the germ line from the soma is an essential event for transmission of genetic information across generations in all sexually reproducing animals. Although some well-studied systems such as Drosophila and Xenopus use maternally inherited germ determinants to specify germ cells, most animals, including mice, appear to utilize zygotic inductive cell signals to specify germ cells during later embryogenesis. Such inductive germ cell specification is thought to be an ancestral trait of Bilateria, but major questions remain as to the nature of an ancestral mechanism to induce germ cells, and how that mechanism evolved. We previously reported that BMP signaling-based germ cell induction is conserved in both the mouse Mus musculus and the cricket Gryllus bimaculatus, which is an emerging model organism for functional studies of induction-based germ cell formation. In order to gain further insight into the functional evolution of germ cell specification, here we examined the Gryllus ortholog of the transcription factor Blimp-1 (also known as Prdm1), which is a widely conserved bilaterian gene known to play a crucial role in the specification of germ cells in mice. Our functional analyses of the Gryllus Blimp-1 ortholog revealed that it is essential for Gryllus primordial germ cell development, and is regulated by upstream input from the BMP signaling pathway. This functional conservation of the epistatic relationship between BMP signaling and Blimp-1 in inductive germ cell specification between mouse and cricket supports the hypothesis that this molecular mechanism regulated primordial germ cell specification in a last common bilaterian ancestor.

  12. Developmental programming and hypertension

    PubMed Central

    Nuyt, Anne Monique; Alexander, Barbara T.

    2009-01-01

    Purpose of review There is a growing body of evidence linking adverse events or exposures during early life and adult-onset diseases. After important epidemiological studies from many parts of the world, research now focuses on mechanisms of organ dysfunction and on refining the understanding of the interaction between common elements of adverse perinatal conditions, such as nutrition, oxidants, and toxins exposures. This review will focus on advances in our comprehension of developmental programming of hypertension. Recent findings Recent studies have unraveled important mechanisms of oligonephronia and impaired renal function, altered vascular function and structure as well as sympathetic regulation of the cardiovascular system. Furthermore, interactions between prenatal insults and postnatal conditions are the subject of intensive research. Prematurity vs. intrauterine growth restriction modulate differently programming of high blood pressure. Along with antenatal exposure to glucocorticoids and imbalanced nutrition, a critical role for perinatal oxidative stress is emerging. Summary While the complexity of the interactions between antenatal and postnatal influences on adult blood pressure is increasingly recognized, the importance of postnatal life in (positively) modulating developmental programming offers the hope of a critical window of opportunity to reverse programming and prevent or reduce related adult-onset diseases. PMID:19434052

  13. Phagocytosis genes nonautonomously promote developmental cell death in the Drosophila ovary

    PubMed Central

    Timmons, Allison K.; Mondragon, Albert A.; Schenkel, Claire E.; Yalonetskaya, Alla; Taylor, Jeffrey D.; Moynihan, Katherine E.; Etchegaray, Jon Iker; Meehan, Tracy L.; McCall, Kimberly

    2016-01-01

    Programmed cell death (PCD) is usually considered a cell-autonomous suicide program, synonymous with apoptosis. Recent research has revealed that PCD is complex, with at least a dozen cell death modalities. Here, we demonstrate that the large-scale nonapoptotic developmental PCD in the Drosophila ovary occurs by an alternative cell death program where the surrounding follicle cells nonautonomously promote death of the germ line. The phagocytic machinery of the follicle cells, including Draper, cell death abnormality (Ced)-12, and c-Jun N-terminal kinase (JNK), is essential for the death and removal of germ-line–derived nurse cells during late oogenesis. Cell death events including acidification, nuclear envelope permeabilization, and DNA fragmentation of the nurse cells are impaired when phagocytosis is inhibited. Moreover, elimination of a small subset of follicle cells prevents nurse cell death and cytoplasmic dumping. Developmental PCD in the Drosophila ovary is an intriguing example of nonapoptotic, nonautonomous PCD, providing insight on the diversity of cell death mechanisms. PMID:26884181

  14. Chicken stem cell factor enhances primordial germ cell proliferation cooperatively with fibroblast growth factor 2

    PubMed Central

    MIYAHARA, Daichi; OISHI, Isao; MAKINO, Ryuichi; KURUMISAWA, Nozomi; NAKAYA, Ryuma; ONO, Tamao; KAGAMI, Hiroshi; TAGAMI, Takahiro

    2015-01-01

    An in vitro culture system of chicken primordial germ cells (PGCs) has been recently developed, but the growth factor involved in the proliferation of PGCs is largely unknown. In the present study, we investigated the growth effects of chicken stem cell factor (chSCF) on the in vitro proliferation of chicken PGCs. We established two feeder cell lines (buffalo rat liver cells; BRL cells) that stably express the putative secreted form of chSCF (chSCF1-BRL) and membrane bound form of chSCF (chSCF2-BRL). Cultured PGC lines were incubated on chSCF1 or chSCF2-BRL feeder cells with fibroblast growth factor 2 (FGF2), and growth effects of each chSCF isoform were investigated. The in vitro proliferation rate of the PGCs cultured on chSCF2-BRL at 20 days of culture was more than threefold higher than those cultured on chSCF1-BRL cells and more than fivefold higher than those cultured on normal BRL cells. Thus, use of chSCF2-BRL feeder layer was effective for in vitro proliferation of chicken PGCs. However, the acceleration of PGC proliferation on chSCF2-BRL was not observed without FGF2, suggesting that chSCF2 would act as a proliferation co-factor of FGF2. We transferred the PGCs cultured on chSCF2-BRL cells to recipient embryos, generated germline chimeric chickens and assessed the germline competency of cultured PGCs by progeny test. Donor-derived progenies were obtained, and the frequency of germline transmission was 3.39%. The results of this study demonstrate that chSCF2 induces hyperproliferation of chicken PGCs retaining germline competency in vitro in cooperation with FGF2. PMID:26727404

  15. In vitro production of haploid sperm cells from male germ cells of foetal cattle.

    PubMed

    Dong, Wu-Zi; Hua, Jin-Lian; Shen, Wen-Zheng; Dou, Zhong-Ying

    2010-04-01

    The purpose of this study was to isolate the foetal cattle male germ cells (mGCs) and then induce them into sperm cells. The mGCs were purified and enriched by a two-step plating method based on the different adherence velocities of mGCs and somatic cells. The percentage of the vasa and the c-kit positive cells were 95.34+/-2.25% and 53.3+/-1.03% by using flow cytometry analysis (FCA), respectively. In feeder-free culture system, the half-suspending cells appeared and formed a 16-cell rosary in medium after the mGCs were cultured for 6-8 days. On immunocytochemical staining during the second passage, some single cells adhering to the plate appeared to be both Oct-4 and alpha6-integrin positive. During the third passage, the mGCs were induced for 48 h by retinol acid (RA) on Sertoli cell-feeder layer, followed by 5-7 days culture in an RA-free medium. Some elongated sperm-like cells appeared in the medium at this stage. We found that the most effective concentration of RA for the inducement was 10(-7)moll(-1) (P<0.01). The haploid cells in suspension were identified by FCA. The elongated sperm-like cells showed proacrosome-like structure and the flagellum with fibre construct under electron microscopy. The mRNA of outer dense fibre-3 (ODF-3) and transcription protein-1 (TP-1) could be detected in the suspended cells by using reverse transcription polymerase chain reaction (RT-PCR). About 23.1% bovine oocytes could be activated to perform cleavage by intracytoplasmic injection with the sperm-like cells, but embryos did not further develop. Our investigation further demonstrated that foetal cattle mGCs could be induced in vitro into haploid sperm in the short term.

  16. Time series analysis supporting the hypothesis that enhanced cosmic radiation during germ cell formation can increase breast cancer mortality in germ cell cohorts

    NASA Astrophysics Data System (ADS)

    Juckett, D. A.; Rosenberg, Barnett

    Techniques from cancer epidemiology and time series analysis were used to explore the hypothesis that cosmic radiation can induce germ cell changes leading to increases in future breast cancer mortality. A birth cohort time series for female breast cancer mortality was obtained using a model-independent, age-period-cohort analysis on age-specific mortality data for 1940-1990. The birth cohort series contained several oscillatory components, which were isolated and compared to the corresponding frequency components of a cosmic ray surrogate time series - Greenland ice-core 10Be concentrations. A technique, referred to as component wave-train alignment, was used to show that the breast cancer and cosmic ray oscillations were phase-locked approx. 25 years before the time of birth. This is consistent with the time of germ cell formation, which occurs during the fetal development stage of the preceding generation. Evidence is presented that the observable oscillations in the birth cohort series were residues of oscillations of much larger amplitude in the germ cell cohort, which were attenuated by the effect of the broad maternal age distribution. It is predicted that a minimum of 50% of breast cancer risk is associated with germ cell damage by cosmic radiation (priming event), which leads to the development of individuals with a higher risk of breast cancer. It is proposed that the priming event, by preceding other steps of carcinogenesis, works in concert with risk factor exposure during life. The priming event is consistent with epigenetic changes such as imprinting.

  17. Constructivist developmental theory is needed in developmental neuroscience

    NASA Astrophysics Data System (ADS)

    Arsalidou, Marie; Pascual-Leone, Juan

    2016-12-01

    Neuroscience techniques provide an open window previously unavailable to the origin of thoughts and actions in children. Developmental cognitive neuroscience is booming, and knowledge from human brain mapping is finding its way into education and pediatric practice. Promises of application in developmental cognitive neuroscience rests however on better theory-guided data interpretation. Massive amounts of neuroimaging data from children are being processed, yet published studies often do not frame their work within developmental models—in detriment, we believe, to progress in this field. Here we describe some core challenges in interpreting the data from developmental cognitive neuroscience, and advocate the use of constructivist developmental theories of human cognition with a neuroscience interpretation.

  18. Uncoupling of pathways that promote postmitotic life span and apoptosis from replicative immortality of Caenorhabditis elegans germ cells.

    PubMed

    Ahmed, Shawn

    2006-12-01

    A dichotomy exists between germ and somatic cells in most organisms, such that somatic cell lineages proliferate for a single generation, whereas the germ cell lineage has the capacity to proliferate from one generation to the next, indefinitely. Several theories have been proposed to explain the unlimited replicative life span of germ cells, including the elimination of damaged germ cells by apoptosis or expression of high levels of gene products that prevent aging in somatic cells. These theories were tested in the nematode Caenorhabditis elegans by examining the consequences of eliminating either apoptosis or the daf-16, daf-18 or sir-2.1 genes that promote longevity of postmitotic somatic cells. However, germ cells of strains deficient for these activities displayed an unlimited proliferative capacity. Thus, C. elegans germ cells retain their youthful character via alternative pathways that prevent or eliminate damage that accumulates as a consequence of cell proliferation.

  19. Comparison of the validity of direct pediatric developmental evaluation versus developmental screening by parent report

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To compare the validity of direct pediatric developmental evaluation with developmental screening by parent report, parents completed a developmental screen (the Child Development Review), a pediatrician performed a direct developmental evaluation (Capute Scales), and a psychologist administered the...

  20. Germ Cell-Specific Excision of loxP-Flanked Transgenes in Rainbow Trout Oncorhynchus mykiss.

    PubMed

    Katayama, Naoto; Kume, Sachi; Hattori-Ihara, Shoko; Sadaie, Sakiko; Hayashi, Makoto; Yoshizaki, Goro

    2016-04-01

    Cre/loxP-mediated DNA excision in germ cell lineages could contribute substantially to the study of germ cell biology in salmonids, which are emerging as a model species in this field. However, a cell type-specific Cre/loxPsystem has not been successfully developed for any salmonid species. Therefore, we examined the feasibility of Cre/loxP-mediated, germ cell-specific gene excision and transgene activation in rainbow trout. Double-transgenic (wTg) progeny were obtained by mating a transgenic male carryingcrewith a transgenic female carrying thehsc-LRLGgene;crewas driven by rainbow troutvasaregulatory regions and thehsc-LRLGgene was made up of the rainbow troutheat-shock-cognate71promoter, theDsRedgene flanked by twoloxPsites, and theEgfpgene. PCR analysis, fluorescence imaging, and histological analysis revealed that excision of theloxP-flanked sequence and activation ofEgfpoccurred only in germ cells of wTg fish. However, progeny tests revealed that the excision efficiency ofloxP-flanked sequence in germ cells was low (≤3.27%). In contrast, the other wTg fish derived from two differentcre-transgenic males frequently excised theloxP-flanked sequence in germ cells (≤89.25%). Thus, we showed for the first time successful germ cell-specific transgene manipulation via the Cre/loxPsystem in rainbow trout. We anticipate that this technology will be suitable for studies of cell function through cell targeting, cell-linage tracing, and generating cell type-specific conditional gene knockouts and separately for developing sterile rainbow trout in aquaculture.

  1. Model of the biotic cycle "plants germs - microorganisms" by affect heavy metal salts

    NASA Astrophysics Data System (ADS)

    Pisman, Tamara

    The growth of wheat germ roots exposed to heavy metal salts (ZnSO4) was studied experimentally and theoretically. During the experiment the plant seeds were preliminarily treated with an experimental microbial association. As a result, data were obtained about the decrease of the inhibiting effect of zinc on the growth of wheat germ roots where the seeds had been treated with the microbial association. To understand such effect, calculations were made to reveal the specific growth rate of a germ root depending on the inhibitor concentration with and without microorganism association treatment. It was shown that in case with the wheat germ roots the seeds of which had been treated with the microorganisms the inhibition constant (kI = 45 MPC (Maximum Permissible Concentration) was higher than in the case with the roots growing out of the seeds that hadn't been treated with the microorganisms (kI = 32 MPC). One of possible reasons for the decrease of growth inhibition of wheat germ roots by zinc salt is the protective function of microorganism's treatment of the seeds. To verify and confirm the experimental results, a mathematical model was created imitating the interaction between wheat germ roots and microbial association exposed to an inhibitor. Investigation of the model proved that the microbial association has a positive effect on the growth of wheat germ roots exposed to an inhibitor. The experimental and theoretical results agreed quantitatively. It was found out that the increase of the inhibitor concentration led to the effect of maximum relief of zinc inhibiting impact. The work is supported by grants Yenissei 07-04-96806.

  2. Pathogenesis of germ cell neoplasia in testicular dysgenesis and disorders of sex development.

    PubMed

    Jørgensen, Anne; Lindhardt Johansen, Marie; Juul, Anders; Skakkebaek, Niels E; Main, Katharina M; Rajpert-De Meyts, Ewa

    2015-09-01

    Development of human gonads is a sex-dimorphic process which evolved to produce sex-specific types of germ cells. The process of gonadal sex differentiation is directed by the action of the somatic cells and ultimately results in germ cells differentiating to become functional gametes through spermatogenesis or oogenesis. This tightly controlled process depends on the proper sequential expression of many genes and signalling pathways. Disturbances of this process can be manifested as a large spectrum of disorders, ranging from severe disorders of sex development (DSD) to - in the genetic male - mild reproductive problems within the testicular dysgenesis syndrome (TDS), with large overlap between the syndromes. These disorders carry an increased but variable risk of germ cell neoplasia. In this review, we discuss the pathogenesis of germ cell neoplasia associated with gonadal dysgenesis, especially in individuals with 46,XY DSD. We summarise knowledge concerning development and sex differentiation of human gonads, with focus on sex-dimorphic steps of germ cell maturation, including meiosis. We also briefly outline the histopathology of germ cell neoplasia in situ (GCNIS) and gonadoblastoma (GDB), which are essentially the same precursor lesion but with different morphological structure dependent upon the masculinisation of the somatic niche. To assess the risk of germ cell neoplasia in different types of DSD, we have performed a PubMed search and provide here a synthesis of the evidence from studies published since 2006. We present a model for pathogenesis of GCNIS/GDB in TDS/DSD, with the risk of malignancy determined by the presence of the testis-inducing Y chromosome and the degree of masculinisation. The associations between phenotype and the risk of neoplasia are likely further modulated in each individual by the constellation of the gene polymorphisms and environmental factors.

  3. The effects of humanin and its analogues on male germ cell apoptosis induced by chemotherapeutic drugs.

    PubMed

    Jia, Yue; Ohanyan, Aikoui; Lue, Yan-He; Swerdloff, Ronald S; Liu, Peter Y; Cohen, Pinchas; Wang, Christina

    2015-04-01

    Human (HN) prevents stress-induced apoptosis in many cells/tissues. In this study we showed that HN ameliorated chemotherapy [cyclophosphamide (CP) and Doxorubicin (DOX)]-induced male germ cell apoptosis both ex vivo in seminiferous tubule cultures and in vivo in the testis. HN acts by several putative mechanisms via binding to: an IL-12 like trimeric membrane receptor; BAX; or insulin-like growth factor binding protein-3 (IGFBP-3, a proapoptotic factor). To understand the mechanisms of HN on male germ cell apoptosis, we studied five HN analogues including: HNG (HN-S14G, a potent agonist), HNG-F6A (no binding to IGFBP-3), HN-S7A (no self-dimerization), HN-C8P (no binding to BAX), and HN-L12A (a HN antagonist) on CP-induced male germ cell apoptosis in mice. CP-induced germ cell apoptosis was inhibited by HN, HNG, HNG-F6A, HN-S7A, and HN-C8P (less effective); but not by HN-L12A. HN-L12A, but not HN-S7A or HN-C8P, blocked the protective effect of HN against CP-induced male germ cell apoptosis. HN, HN-S7A, and HN-C8P restored CP-suppressed STAT3 phosphorylation. These results suggest that HN: (1) decreases DOX (ex vivo) and CP (in vivo) induced male germ cell apoptosis; (2) action is mediated by the membrane receptor/STAT3 with minor contribution by BAX-binding pathway; (3) self-dimerization or binding to IGFBP-3 may not be involved in HN's effect in testis. HN is an important molecule in the regulation of germ cell homeostasis after injury and agonistic analogues may be developed for treating male infertility or protection against chemotherapy side effects.

  4. The Effects of Humanin and Its Analogues on Male Germ Cell Apoptosis Induced by Chemotherapeutic Drugs

    PubMed Central

    Jia, Yue; Ohanyan, Aikoui; Lue, Yan-He; Swerdloff, Ronald S.; Liu, Peter Y.; Cohen, Pinchas; Wang, Christina

    2015-01-01

    Human (HN) prevents stress-induced apoptosis in many cells/tissues. In this study we showed that HN ameliorated chemotherapy (Cyclophosphamide, CP and Doxorubicin, DOX)-induced male germ cell apoptosis both ex vivo in seminiferous tubule cultures and in vivo in the testis. HN acts by several putative mechanisms via binding to: an IL-12 like trimeric membrane receptor; BAX; or Insulin-Like Growth Factor Binding Protein-3 (IGFBP-3, a proapoptotic factor). To understand the mechanisms of HN on male germ cell apoptosis, we studied five HN analogues including: HNG (HN-S14G, a potent agonist), HNG-F6A (no binding to IGFBP-3), HN-S7A (no self-dimerization), HN-C8P (no binding to BAX), and HN-L12A (a HN antagonist) on CP-induced male germ cell apoptosis in mice. CP-induced germ cell apoptosis was inhibited by HN, HNG, HNG-F6A, HN-S7A, and HN-C8P (less effective); but not by HN-L12A. HN-L12A, but not HN-S7A or HN-C8P, blocked the protective effect of HN against CP-induced male germ cell apoptosis. HN, HN-S7A, and HN-C8P restored CP-suppressed STAT3 phosphorylation. These results suggest that HN: 1) decreases DOX (ex vivo) and CP (in vivo) induced male germ cell apoptosis; 2) action is mediated by the membrane receptor/STAT3 with minor contribution by BAX-binding pathway; 3) self-dimerization or binding to IGFBP-3 may not be involved in HN’s effect in testis. HN is an important molecule in the regulation of germ cell homeostasis after injury and agonistic analogues may be developed for treating male infertility or protection against chemotherapy side effects. PMID:25666707

  5. Risk estimation based on germ-cell mutations in animals.

    PubMed

    Favor, J

    1989-01-01

    The set of mouse germ cell mutation rate results following spermatogonial exposure to high dose rate irradiation have been presented as the most relevant experimental results upon which to extrapolate the expected genetic risk of offspring of the survivors of the Hiroshima and Nagasaki atomic bombings. Results include mutation rates to recessive specific-locus, dominant cataract, protein-charge, and enzyme-activity alleles. The mutability as determined by the various genetic end points differed: the mutation rates to recessive specific-locus alleles and enzyme-activity alleles were similar and greater than the mutation rates to dominant cataract and protein-charge alleles. It is argued that the type of mutation event scored by a particular test will determine the mutability of the genetic end point screened. When the loss of functional gene product can be scored in a particular mutation test, as in the recessive specific-locus and enzyme-activity tests, a wide spectrum of DNA alterations may result in a loss of and a higher mutation rate is observed. When an altered gene product is scored, as in the dominant cataract and protein-charge tests, a narrower spectrum of DNA alterations is screened and a lower mutation rate is observed. The radiation doubling dose, defined as the dose that induces as many mutations as occur spontaneously per generation, was shown to be four times higher in the dominant cataract test than the specific-locus test. These results indicate that to extrapolate to genetic risks in humans using the doubling-dose method, the extrapolation must be based on experimental mutation rate results for the same genetic end point.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. The PUF binding landscape in metazoan germ cells

    PubMed Central

    Prasad, Aman; Porter, Douglas F.; Kroll-Conner, Peggy L.; Mohanty, Ipsita; Ryan, Anne R.; Crittenden, Sarah L.; Wickens, Marvin; Kimble, Judith

    2016-01-01

    PUF (Pumilio/FBF) proteins are RNA-binding proteins and conserved stem cell regulators. The Caenorhabditis elegans PUF proteins FBF-1 and FBF-2 (collectively FBF) regulate mRNAs in germ cells. Without FBF, adult germlines lose all stem cells. A major gap in our understanding of PUF proteins, including FBF, is a global view of their binding sites in their native context (i.e., their “binding landscape”). To understand the interactions underlying FBF function, we used iCLIP (individual-nucleotide resolution UV crosslinking and immunoprecipitation) to determine binding landscapes of C. elegans FBF-1 and FBF-2 in the germline tissue of intact animals. Multiple iCLIP peak-calling methods were compared to maximize identification of both established FBF binding sites and positive control target mRNAs in our iCLIP data. We discovered that FBF-1 and FBF-2 bind to RNAs through canonical as well as alternate motifs. We also analyzed crosslinking-induced mutations to map binding sites precisely and to identify key nucleotides that may be critical for FBF–RNA interactions. FBF-1 and FBF-2 can bind sites in the 5′UTR, coding region, or 3′UTR, but have a strong bias for the 3′ end of transcripts. FBF-1 and FBF-2 have strongly overlapping target profiles, including mRNAs and noncoding RNAs. From a statistically robust list of 1404 common FBF targets, 847 were previously unknown, 154 were related to cell cycle regulation, three were lincRNAs, and 335 were shared with the human PUF protein PUM2. PMID:27165521

  7. Endogenous DNA Damage and Risk of Testicular Germ Cell Tumors

    SciTech Connect

    Cook, M B; Sigurdson, A J; Jones, I M; Thomas, C B; Graubard, B I; Korde, L; Greene, M H; McGlynn, K A

    2008-01-18

    Testicular germ cell tumors (TGCT) are comprised of two histologic groups, seminomas and nonseminomas. We postulated that the possible divergent pathogeneses of these histologies may be partially explained by variable endogenous DNA damage. To assess our hypothesis, we conducted a case-case analysis of seminomas and nonseminomas using the alkaline comet assay to quantify single-strand DNA breaks and alkali-labile sites. The Familial Testicular Cancer study and the U.S. Radiologic Technologists cohort provided 112 TGCT cases (51 seminomas & 61 nonseminomas). A lymphoblastoid cell line was cultured for each patient and the alkaline comet assay was used to determine four parameters: tail DNA, tail length, comet distributed moment (CDM) and Olive tail moment (OTM). Odds ratios (OR) and 95% confidence intervals (95%CI) were estimated using logistic regression. Values for tail length, tail DNA, CDM and OTM were modeled as categorical variables using the 50th and 75th percentiles of the seminoma group. Tail DNA was significantly associated with nonseminoma compared to seminoma (OR{sub 50th percentile} = 3.31, 95%CI: 1.00, 10.98; OR{sub 75th percentile} = 3.71, 95%CI: 1.04, 13.20; p for trend=0.039). OTM exhibited similar, albeit statistically non-significant, risk estimates (OR{sub 50th percentile} = 2.27, 95%CI: 0.75, 6.87; OR{sub 75th percentile} = 2.40, 95%CI: 0.75, 7.71; p for trend=0.12) whereas tail length and CDM showed no association. In conclusion, the results for tail DNA and OTM indicate that endogenous DNA damage levels are higher in patients who develop nonseminoma compared with seminoma. This may partly explain the more aggressive biology and younger age-of-onset of this histologic subgroup compared with the relatively less aggressive, later-onset seminoma.

  8. Scrotal Involvement with Testicular Nonseminomatous Germ Cell Tumour

    PubMed Central

    Allen, J. A.; O'Brien, F.; Tuthill, A.; Power, D. G.

    2016-01-01

    A 37-year-old male presented with a traumatic injury to the scrotal region necessitating emergency surgery. Evacuation of a haematoma and bilateral orchidectomy were performed. A left sided nonseminomatous germ cell tumour (NSGCT), predominantly yolk sac, was identified. Microscopic margins were positive for tumour. Initial tumour markers revealed an AFP of 22,854 ng/mL, HCG of <1 mIU/mL, and LDH of 463 IU/L. Eight weeks after surgery, AFP levels remained elevated at 11,646 ng/mL. Computed tomography (CT) scanning demonstrated left inguinal adenopathy, 1.5 cm in max dimension. On review, extensive evidence of scrotal involvement was evident. His tumour was staged as stage IIIC, poor risk NSGCT. He was treated with 4 cycles of bleomycin, etoposide, and cisplatin over a 12-week period. His tumour markers normalised after 3 cycles. There was a marked improvement noted clinically. Follow-up CT scans demonstrated complete resolution of his tumour. He later underwent further surgery to remove a small amount of remaining spermatic cord. Histology revealed no malignant tissue. The patient suffered many complications including testosterone deficiency, osteopenia, infertility, and psychological distress. Discussion. A small proportion of testicular cancer may present in an atypical manner. The scrotum and testicle have markedly different embryonic origins and therefore a distinct anatomic separation. As a result the scrotum is not a typical site of spread of testicular cancer. Case reports have been described that were managed in a similar manner with good outcomes. Therefore, even with significant scrotal involvement, if timely and appropriate treatment is administered, complete resolution of the tumour may be achieved. PMID:27830100

  9. Novel somatic and germline mutations in intracranial germ cell tumors

    PubMed Central

    Wang, Linghua; Yamaguchi, Shigeru; Burstein, Matthew D.; Terashima, Keita; Chang, Kyle; Ng, Ho-Keung; Nakamura, Hideo; He, Zongxiao; Doddapaneni, Harshavardhan; Lewis, Lora; Wang, Mark; Suzuki, Tomonari; Nishikawa, Ryo; Natsume, Atsushi; Terasaka, Shunsuke; Dauser, Robert; Whitehead, William; Adekunle, Adesina; Sun, Jiayi; Qiao, Yi; Marth, Gábor; Muzny, Donna M.; Gibbs, Richard A.; Leal, Suzanne M.; Wheeler, David A.; Lau, Ching C.

    2015-01-01

    Intracranial germ cell tumors (IGCTs) are a group of rare heterogeneous brain tumors which are clinically and histologically similar to the more common gonadal GCTs. IGCTs show great variation in their geographic and gender distribution, histological composition and treatment outcomes. The incidence of IGCTs is historically 5–8 fold greater in Japan and other East Asian countries than in Western countries1 with peak incidence near the time of puberty2. About half of the tumors are located in the pineal region. The male-to-female incidence ratio is approximately 3–4:1 overall but even higher for tumors located in the pineal region3. Due to the scarcity of tumor specimens available for research, little is currently known about this rare disease. Here we report the analysis of 62 cases by next generation sequencing, SNP array and expression array. We find the KIT/RAS signaling pathway frequently mutated in over 50% of IGCTs including novel recurrent somatic mutations in KIT, its downstream mediators KRAS and NRAS, and its negative regulator CBL. Novel somatic alterations in the AKT/mTOR pathway included copy number gain of the AKT1 locus at 14q32.33 in 19% of patients, with corresponding upregulation of AKT1 expression. We identified loss-of-function mutations in BCORL1, a transcriptional corepressor and tumor suppressor. We report significant enrichment of novel and rare germline variants in JMJD1C, a histone demethylase and coactivator of the androgen receptor, among Japanese IGCT patients. This study establishes a molecular foundation for understanding the biology of IGCTs and suggests potentially promising therapeutic strategies focusing on the inhibition of KIT/RAS activation and the AKT1/mTOR pathway. PMID:24896186

  10. Sequence-dependent but not sequence-specific piRNA adhesion traps mRNAs to the germ plasm

    PubMed Central

    Vrettos, Nicholas; Maragkakis, Manolis; Mourelatos, Zissimos

    2016-01-01

    The conserved Piwi family of proteins and piwi-interacting RNAs (piRNAs) play a central role in genomic stability, which is inextricably tied with germ cell formation, by forming ribonucleoproteins (piRNPs) that silence transposable elements (TEs)1. In Drosophila melanogaster and other animals, primordial germ cell (PGC) specification in the developing embryo is driven by maternal mRNAs and proteins that assemble into specialized mRNPs localized in the germ (pole) plasm at the posterior of the oocyte2,3. Maternal piRNPs, especially those loaded on Aubergine (Aub), a Piwi protein, are transmitted to the germ plasm to initiate transposon silencing in the offspring germline4–7. Transport of mRNAs to the oocyte by midoogenesis is an active, microtubule-dependent process8; mRNAs necessary for PGC formation are enriched in the germ plasm at late oogenesis via a diffusion and entrapment mechanism, whose molecular identity remains unknown8,9. Aub is a central component of germ granule RNPs, which house mRNAs in the germ plasm10–12 and interactions between Aub and Tudor are essential for the formation of germ granules13–16. Here we show that Aub-loaded piRNAs use partial base pairing characteristic of Argonaute RNPs to bind mRNAs randomly, acting as an adhesive trap that captures mRNAs in the germ plasm, in a Tudor-dependent manner. Strikingly, germ plasm mRNAs in Drosophilids are generally longer and more abundant than other mRNAs, suggesting that they provide more target sites for piRNAs to promote their preferential tethering in germ granules. Thus complexes containing Tudor, Aub piRNPs and mRNAs couple piRNA inheritance with germline specification. Our findings reveal an unexpected function for Piwi ribonucleoprotein complexes in mRNA trapping that may be generally relevant to the function of animal germ granules. PMID:26950602

  11. Anti-Oxidant and Anti-Adipogenic Effects of Ethanol Extracts from Wheat Germ and Wheat Germ Fermented with Aspergillus oryzae.

    PubMed

    Park, Euna; Kim, Hae Ok; Kim, Gyo-Nam; Song, Ji-Hye

    2015-03-01

    Most of the wheat germ in cereal grains is removed during the milling process. Various physiological effects have been reported for bioactive substances in wheat germ such as phenolic acids and flavonoids. In this study, the anti-oxidant and anti-adipogenic effects of ethanol extracts from wheat germ (WGE) and wheat germ fermented with Aspergillus oryzae (F-WGE) were investigated in HepG2 and 3T3-L1 cells. The anti-oxidant activity of F-WGE was demonstrated by a dose-dependent increase in the enhanced scavenging capacity of hydroxyl radicals and Cu(2+)-chelating activity compared to WGE. WGE and F-WGE treatment at doses between 10 and 400 μg/mL did not affect the viability of HepG2 and 3T3-L1 cells. Intracellular ROS levels from Cu(2+)-induced oxidative stress were significantly decreased by F-WGE treatment in HepG2 cells compared to WGE. Lipid accumulation was increased in 3T3-L1 adipocytes by 100 μM Fe(2+) treatment, but the accumulation was strongly inhibited by 100 μg/mL of WGE and F-WGE treatment. These results suggest that changes in bioactive substances during the fermentation of wheat germ can potentiate scavenging activities against transition metal-induced oxidative stress and lipid accumulation in 3T3-L1 adipocytes. Therefore, we propose that F-WGE is a novel food materials and provided scientific evidences for its efficacy in the development of functional foods.

  12. "Developmental Review's" Most Influential Articles

    ERIC Educational Resources Information Center

    Brainerd, C. J.

    2006-01-01

    "Developmental Review" is a journal of literature reviews and theoretical analyses for developmental scientists. During its first quarter-century of publication, the quality of those articles resulted in a journal whose level of impact on the scientific literature is extremely high, currently in the top 10% of all journals indexed by "Social…

  13. Developmental Math: What's the Answer?

    ERIC Educational Resources Information Center

    Cafarella, Brian

    2016-01-01

    Developmental mathematics has been under the radar within higher education for some time. The reality is that there are many proven best practices in developmental math. Unfortunately, there are many obstacles that prevent student success. Moreover, the high rates of attrition and failure have led state legislators and college administrators to…

  14. Developmental Sentence Scoring for Japanese

    ERIC Educational Resources Information Center

    Miyata, Susanne; MacWhinney, Brian; Otomo, Kiyoshi; Sirai, Hidetosi; Oshima-Takane, Yuriko; Hirakawa, Makiko; Shirai, Yasuhiro; Sugiura, Masatoshi; Itoh, Keiko

    2013-01-01

    This article reports on the development and use of the Developmental Sentence Scoring for Japanese (DSSJ), a new morpho-syntactical measure for Japanese constructed after the model of Lee's English Developmental Sentence Scoring model. Using this measure, the authors calculated DSSJ scores for 84 children divided into six age groups between 2;8…

  15. [Developmental Placement.] Collected Research References.

    ERIC Educational Resources Information Center

    Bjorklund, Gail

    Drawing on information and references in the ERIC system, this literature review describes research related to a child's developmental placement. The issues examined include school entrance age; predictive validity, reliability, and features of Gesell School Readiness Assessment; retention; and the effectiveness of developmental placement. A…

  16. Promoting Multiculturalism in Developmental Education.

    ERIC Educational Resources Information Center

    Higbee, Jeanne L.

    2001-01-01

    Asserts that the teaching profession needs to recognize the natural connections between multicultural and developmental education. Presents eight steps developmental educators can take to promote pluralism, including (1) establishing a clear link between cultural pluralism and institutional and programmatic mission and goals; (2) striving for…

  17. Developmental monitoring in primary care.

    PubMed Central

    Goldfarb, C. E.; Roberts, W.

    1996-01-01

    Monitoring child development is an essential part of primary health care. Successful surveillance depends on physicians' thorough knowledge of normal progress along the four developmental streams: motor, language, cognitive, and social and emotional. Being alert to "red flags" that suggest problems is important. Effective interventions can minimize developmental problems. PMID:8792021

  18. Developmental prosopagnosia in childhood

    PubMed Central

    Dalrymple, Kirsten A.; Corrow, Sherryse; Yonas, Albert; Duchaine, Brad

    2015-01-01

    Developmental prosopagnosia (DP) is defined by severe face recognition problems resulting from a failure to develop the necessary visual mechanisms for processing faces. While there is a growing literature on DP in adults, little has been done to study this disorder in children. The profound impact of abnormal face perception on social functioning and the general lack of awareness of childhood DP can result in severe social and psychological consequences for children. This review discusses possible etiologies of DP and summarizes the few cases of childhood DP that have been reported. It also outlines key objectives for the growth of this emerging research area and special considerations for studying DP in children. With clear goals and concerted efforts, the study of DP in childhood will be an exciting avenue for enhancing our understanding of normal and abnormal face perception for all age groups. PMID:23140142

  19. Developmental anatomy of lampreys.

    PubMed

    Richardson, Michael K; Admiraal, Jeroen; Wright, Glenda M

    2010-02-01

    Lampreys are a group of aquatic chordates whose relationships to hagfishes and jawed vertebrates are still debated. Lamprey embryology is of interest to evolutionary biologists because it may shed light on vertebrate origins. For this and other reasons, lamprey embryology has been extensively researched by biologists from a range of disciplines. However, many of the key studies of lamprey comparative embryology are relatively inaccessible to the modern scientist. Therefore, in view of the current resurgence of interest in lamprey evolution and development, we present here a review of lamprey developmental anatomy. We identify several features of early organogenesis, including the origin of the nephric duct, that need to be re-examined with modern techniques. The homologies of several structures are also unclear, including the intriguing subendothelial pads in the heart. We hope that this review will form the basis for future studies into the phylogenetic embryology of this interesting group of animals.

  20. Deconstructing Pancreas Developmental Biology

    PubMed Central

    Benitez, Cecil M.; Goodyer, William R.

    2012-01-01

    The relentless nature and increasing prevalence of human pancreatic diseases, in particular, diabetes mellitus and adenocarcinoma, has motivated further understanding of pancreas organogenesis. The pancreas is a multifunctional organ whose epithelial cells govern a diversity of physiologically vital endocrine and exocrine functions. The mechanisms governing the birth, differentiation, morphogenesis, growth, maturation, and maintenance of the endocrine and exocrine components in the pancreas have been discovered recently with increasing tempo. This includes recent studies unveiling mechanisms permitting unexpected flexibility in the developmental potential of immature and mature pancreatic cell subsets, including the ability to interconvert fates. In this article, we describe how classical cell biology, genetic analysis, lineage tracing, and embryological investigations are being complemented by powerful modern methods including epigenetic analysis, time-lapse imaging, and flow cytometry-based cell purification to dissect fundamental processes of pancreas development. PMID:22587935

  1. Developmental colour agnosia.

    PubMed

    van Zandvoort, Martine J E; Nijboer, Tanja C W; de Haan, Edward

    2007-08-01

    Colour agnosia concerns the inability to recognise colours despite intact colour perception, semantic memory for colour information, and colour naming. Patients with selective colour agnosia have been described and the deficit is associated with left hemisphere damage. Here we report a case study of a 43-year-old man who was referred to us with a stroke in his right cerebellar hemisphere. During the standard assessment it transpired that he was unable to name coloured patches. Detailed assessment of his colour processing showed that he suffers from a selective colour agnosia. As he claimed to have had this problem all his life, and the fact that the infratentorial infarct that he had incurred was in an area far away from the brain structures that are known to be involved in colour processing, we suggest that he is the first reported case of developmental colour agnosia.

  2. Developmental prosopagnosia in childhood.

    PubMed

    Dalrymple, Kirsten A; Corrow, Sherryse; Yonas, Albert; Duchaine, Brad

    2012-01-01

    Developmental prosopagnosia (DP) is defined by severe face recognition problems resulting from a failure to develop the necessary visual mechanisms for processing faces. While there is a growing literature on DP in adults, little has been done to study this disorder in children. The profound impact of abnormal face perception on social functioning and the general lack of awareness of childhood DP can result in severe social and psychological consequences for children. This review discusses possible aetiologies of DP and summarizes the few cases of childhood DP that have been reported. It also outlines key objectives for the growth of this emerging research area and special considerations for studying DP in children. With clear goals and concerted efforts, the study of DP in childhood will be an exciting avenue for enhancing our understanding of normal and abnormal face perception for all age groups.

  3. Effects of dried full-fat corn germ and vitamin E on growth performance and carcass characteristics of finishing cattle.

    PubMed

    Montgomery, S P; Drouillard, J S; Sindt, J J; Greenquist, M A; Depenbusch, B E; Good, E J; Loe, E R; Sulpizio, M J; Kessen, T J; Ethington, R T

    2005-10-01

    Two experiments were conducted to evaluate dried full-fat corn germ (GERM) as a supplemental fat source in cattle finishing diets. In Exp. 1, 24 pens totaling 358 crossbred beef steers with an initial BW of 319 kg were allowed ad libitum access to diets containing dry-rolled corn, 35% wet corn gluten feed, and 0, 5, 10, or 15% GERM on a DM basis. Increasing GERM decreased (linear; P < 0.02) DMI and increased (quadratic; P < 0.02) ADG. Steers fed 10% GERM had the greatest ADG (quadratic; P < 0.02) and G:F (quadratic; P < 0.05). The addition of GERM increased (linear; P < 0.05) fat thickness, KPH, and the percentage of USDA Yield Grade 4 carcasses (quadratic; P < 0.03), with steers fed 15% GERM having the greatest percentage of USDA Yield Grade 4 carcasses. In Exp. 2, 48 pens totaling 888 crossbred beef heifers with an initial BW of 380 kg were allowed ad libitum access to diets containing steam-flaked corn, 35% wet corn gluten feed, and either no added fat (control), 4% tallow (TALLOW), or 10 or 15% GERM on a DM basis, with or without 224 IU of added vitamin E/kg of diet DM. No fat x vitamin E (P > or = 0.08) interactions were detected. Fat addition, regardless of source, decreased (P < 0.01) DMI, marbling score, and the number of carcasses grading USDA Choice. Among heifers fed finishing diets containing TALLOW or 10% GERM, supplemental fat source did not affect DMI (P = 0.76), ADG (P = 0.54), G:F (P = 0.62), or carcass characteristics (P > or = 0.06). Increasing GERM decreased DMI (linear; P < 0.01) and ADG (quadratic; P < 0.02), with ADG by heifers fed 10% GERM slightly greater than those fed control but least for heifers fed 15% GERM. Increasing GERM improved (quadratic; P < 0.03) G:F of heifers, with heifers fed 10% GERM having the greatest G:F. Increasing GERM decreased HCW (linear; P < 0.02), marbling score (linear; P < 0.01), and the percentage of carcasses grading USDA Choice (linear; P < 0.01). The addition of vitamin E increased (P < 0.04) the percentage

  4. Sexual dimorphism of gonadal structure and gene expression in germ cell-deficient loach, a teleost fish.

    PubMed

    Fujimoto, Takafumi; Nishimura, Toshiya; Goto-Kazeto, Rie; Kawakami, Yutaka; Yamaha, Etsuro; Arai, Katsutoshi

    2010-10-05

    Germ cell-deficient fish usually develop as phenotypic males. Thus, the presence of germ cells is generally considered to be essential for female gonadal differentiation or the maintenance of ovarian structure. However, little is known of the role of germ cells in the determination of the sexual fate of gonadal somatic cells. We have established an inducible germ cell deficiency system in the loach (Misgurnus anguillicaudatus, Cypriniformes: Cobitidae), a small freshwater fish, using knockdown of the dead end gene with a morpholino antisense oligonucleotide. Interestingly, loach lacking germ cells could develop as either phenotypic males or females, as characterized morphologically by the presence or absence of bony plates in the pectoral fins, respectively. The phenotypic males and females had testicular and ovarian structures, respectively, but lacked germ cells. Gene expression patterns in these male and female germ cell-deficient gonads were essentially the same as those in gonads of normal fish. Our observations indicate that sexually dimorphic gonads can develop in germ cell-deficient loach. In contrast to the situation in other model fish species, the gonadal somatic cells in phenotypic females autonomously differentiated into ovarian tissues and also played a role in the maintenance of gonadal structure. On the basis of our observations, we propose two possible models to explain the role of germ cells in sex determination in fish.

  5. Localization of axonally transported 125I-wheat germ agglutinin beneath the plasma membrane of chick retinal ganglion cells

    PubMed Central

    1983-01-01

    The distribution of 125I-wheat germ agglutinin (WGA) transported by axons of chick retinal ganglion cells to layer d of the optic tectum was studied by electron microscopic autoradiography. We found that 52% of the radioactivity was located in axons and axon terminals in the contralateral optic tectum 22 h after intravitreal injection of affinity-purified 125I-WGA. Axons comprised 43% of the volume of layer d. Dendrites, glial cells, and neuron cell bodies contained 20%, 17%, and 3% of the label, whereas these structures comprised 24%, 21%, and 2% of the tissue volume, respectively. We also measured the distances between the autoradiographic silver grains and the plasma membranes of these profiles, and compared observed distributions of grains to theoretical distributions computed for band-shaped sources at various distances from the plasma membranes. This analysis revealed that the radioactive source within axons was distributed in a band of cytoplasm extending in from the plasma membrane a distance of 63 nm. Because WGA is known to bind to specific membrane glycoconjugates, we infer that at least some glycoconjugates may be concentrated within an annular region of cytoplasm just beneath the axonal plasma membrane after axoplasmic transport from the neuron cell body. PMID:6187749

  6. Receptors for the lectins wheat germ. Ricinus communis I and soybean in ameloblastomas and normal oral mucosa.

    PubMed

    Vedtofte, P; Dabelsteen, E

    1981-11-01

    The histological distribution of receptors for the lectins Wheat germ (WGA). Ricinus communis I (RCA I) and Soybean (SBA) was examined in ameloblastomas and normal oral mucosa from 12 patients. The study utilized fluorescein-conjugated WGA, RCA I and SBA. Cell-membrane bound receptors for these 3 lectins were demonstrated in the spinous cell layer of the normal oral mucosa. WGA and RCA I receptors were also located in the basal cell layer, whereas SBA receptors were not detectable there. Cell-membrane bound WGA receptors were shown in the epithelial cells of the ameloblastomas. Titrations showed significant differences in staining reactivity related to the morphology of the peripheral epithelial cells of the ameloblastomas. The distribution of RCA I and SBA receptors in the peripheral cells was also related to the morphology of these cells and was independent of the histological types of the tumours. It is suggested that the distribution of these receptors is related to cellular activities such as cell differentiation and cell migration in the tumour and therefore possibly reflects the biological behavior of the tumours.

  7. Effects of specific and prolonged expression of zebrafish growth factors, Fgf2 and Lif in primordial germ cells in vivo

    SciTech Connect

    Wong, Ten-Tsao; Collodi, Paul

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer We discovered that nanos3 3 Prime UTR prolonged PGC-specific protein expression up to 26 days. Black-Right-Pointing-Pointer Expression of Fgf2 in PGCs significantly increased PGC number at later developmental stages. Black-Right-Pointing-Pointer Expression of Lif in PGCs resulted in a significant disruption of PGC migration. Black-Right-Pointing-Pointer Lif illicited its effect on PGC migration through Lif receptor a. Black-Right-Pointing-Pointer Our approach could be used to achieve prolonged PGC-specific expression of other proteins. -- Abstract: Primordial germ cells (PGCs), specified early in development, proliferate and migrate to the developing gonad before sexual differentiation occurs in the embryo and eventually give rise to spermatogonia or oogonia. In this study, we discovered that nanos3 3 Prime UTR, a common method used to label PGCs, not only directed PGC-specific expression of DsRed but also prolonged this expression up to 26 days post fertilization (dpf) when DsRed-nanos3 3 Prime UTR hybrid mRNAs were introduced into 1- to 2-cell-stage embryos. As such, we employed this knowledge to express zebrafish leukemia inhibitory factor (Lif), basic fibroblast growth factor (Fgf2) and bone morphogenetic protein 4 (Bmp4) in the PGCs and evaluate their effects on PGC development in vivo for over a period of 3 weeks. The results show that expression of Fgf2 significantly increased PGC number at 14- and 21-dpf while Bmp4 resulted in severe ventralization and death of the embryos by 3 days. Expression of Lif resulted in a significant disruption of PGC migration. Mopholino knockdown experiments indicated that Lif illicited its effect on PGC migration through Lif receptor a (Lifra) but not Lifrb. The general approach described in this study could be used to achieve prolonged PGC-specific expression of other proteins to investigate their roles in germ cell and gonad development. The results also indicate that zebrafish PGCs

  8. [Fermented wheat germ extract in the supportive therapy of colorectal cancer].

    PubMed

    Farkas, Elek

    2005-09-11

    The role of the product in the treatment of colorectal cancer is reviewed in the light of experimental and clinical results to date. The fermented wheat germ extract (code name: MSC, trade name: Avemar) registered as a dietary food for special medical purposes for cancer patients to complement the active oncotherapy, exerted a growth inhibitory effect in HCR-25 human colon carcinoma xenograft, and had a synergistic effect with 5-FU in mouse C-38 colorectal carcinoma. The product is capable of chemoprevention of colon carcinoma in F-344 rats. One of the most significant underlying mechanism is a highly cancer cell specific induction of caspase-3 mediated cleavage of PARP. In the frame of supportive therapy, fermented wheat germ extract proved to be efficient in the treatment of colorectal cancer in humans. 30 patients following radical operation were treated with standard postoperative therapy, 12 of them were given fermented wheat germ extract as additive treatment: following a 9 month long administration, no new distant metastases were detected, in contrast to 4 out 18 treated with standard therapy alone. Out of 34 patients following radical surgery and treated with chemotherapy, 17 who were given fermented wheat germ extract, achieved an improved survival rate. In the frame of a controlled multicenter open label cohort study, 170 colorectal cancer patients received anticancer therapies (chemo/radiotherapy) completed with fermented wheat germ extract in 66 of them. Results (fermented wheat germ extract vs. control): new recurrences: 3.0% vs. 17.3% (p < 0.01); new metastases: 7.6% vs. 23.1% (p < 0.01); deaths: 12.1% vs. 31.7% (p < 0.01), progression-related events in total: 16.7% vs. 42.3% (p < 0.001). Survival analysis showed significant improvements in the fermented wheat germ extract group, regarding progression-free (p = 0.0184) and overall survival probabilities (p = 0.0278). Strong predictors of survival determined by Cox's proportional hazards were UICC

  9. Mechanism of neutrophil chemiluminescence induced by wheat germ agglutinin: partial characterization of the antigens recognized by wheat germ agglutinin

    SciTech Connect

    Ozaki, Y.; Iwata, J.; Ohashi, T.

    1984-11-01

    Wheat germ agglutinin (WGA) stimulated neutrophils to produce significant levels of luminol-dependent chemiluminescence (CL). Since WGA is known to bind N-acetylglucosamine (GlcNAc) oligomers and N-acetylneuraminic acid (NANA), we attempted to determine which binding property of WGA is essential for induction of CL. The succinylated form of WGA (SuWGA), which is no longer able to bind NANA, was still able to induce CL. N-Acetylglucosamine at a concentration of 20 mmol/L almost completely inhibited WGA-induced CL production by neutrophils, whereas bovine submaxillary gland mucin, a potent blocker of NANA binding of WGA, failed to inhibit CL production. Lectins with the GlcNAc-binding property were examined for their ability to induce CL. Those that have higher valences and have a tendency to bind GlcNAc oligomers in the internal portion of glycoconjugates were able to induce CL, whereas those that have low valences and bind terminal GlcNAc of glycoconjugates failed to induce CL even at high concentrations. Attempts were made to characterize the neutrophil membrane proteins recognized by WGA. Glycoproteins with a molecular weight of 25,000 daltons were identified by a 50 mmol/L GlcNAc elution of WGA gels loaded with /sup 125/I-labeled neutrophil membrane proteins. Elution with 500 mumol/L GlcNAc trimer produced several glycoproteins of different molecular weights in addition to the glycoproteins of 25,000 daltons. /sup 125/I-labeled WGA and SuWGA were used for autoradiographic analysis of cell extracts of the neutrophils separated on sodium dodecyl sulfate polyacrylamide gels. WGA recognized multiple glycoproteins of different molecular weights, whereas SuWGA bound only a few of them. Glycoproteins of 25,000 daltons, probably corresponding to those identified by 50 mmol/L GlcNAc elution, were also recognized.

  10. Human germ cell formation in xenotransplants of induced pluripotent stem cells carrying X chromosome aneuploidies

    PubMed Central

    Dominguez, Antonia A.; Chiang, H. Rosaria; Sukhwani, Meena; Orwig, Kyle E.; Reijo Pera, Renee A.

    2014-01-01

    Turner syndrome is caused by complete or partial loss of the second sex chromosome and is characterized by spontaneous fetal loss in >90% of conceptions. Survivors possess an array of somatic and germline clinical characteristics. Induced pluripotent stem cells (iPSCs) offer an opportunity for insight into genetic requirements of the X chromosome linked to Turner syndrome. We derived iPSCs from Turner syndrome and control individuals and examined germ cell development as a function of X chromosome composition. We demonstrate that two X chromosomes are not necessary for reprogramming or maintenance of pluripotency and that there are minimal differences in gene expression, at the single cell level, linked to X chromosome aneuploidies. Formation of germ cells, as assessed in vivo through a murine xenotransplantation model, indicated that undifferentiated iPSCs, independent of X chromosome composition, are capable of forming germ-cell-like cells (GCLCs) in vivo. In combination with clinical data regarding infertility in women with X chromosome aneuploidies, results suggest that two intact X chromosomes are not required for human germ cell formation, qualitatively or quantitatively, but rather are likely to be required for maintenance of human germ cells to adulthood. PMID:25242416

  11. Effect of 4-octylphenol on germ cell number in cultured human fetal gonads.

    PubMed

    Bendsen, E; Laursen, S; Olesen, C; Westergaard, L; Andersen, C; Byskov, A

    2001-02-01

    This study evaluates whether a hormone disruptor found in environment, 4-octylphenol, affects the rate of proliferation of germ cells from human fetal gonads during a 3 week culture period. Five testis and five ovaries were obtained from fetuses of women undergoing legal abortions between the 6th and 9th week of fetal life, representing the period where early gonadal differentiation takes place. Each gonad was divided into equal sized test and control tissue. The test tissue was exposed to a continued presence of 10 micromol/l 4-octylphenol in the culture medium. The cultures were terminated by fixation of the tissues, which where then processed for histology and serially sectioned. The mitotic index of the germ cells (i.e. number of mitosis per 100 germ cells) and the number of germ cells per area was determined. Each of the five testes cultured in 4-octylphenol exhibited a significantly reduced mitotic index and number of pre-spermatogonia compared to the control, whereas none of the five ovaries exposed to 4-octylphenol revealed any difference compared to the control. It is concluded that 4-octylphenol exerts a sex-specific effect on male germ cells.

  12. Human germ cell formation in xenotransplants of induced pluripotent stem cells carrying X chromosome aneuploidies.

    PubMed

    Dominguez, Antonia A; Chiang, H Rosaria; Sukhwani, Meena; Orwig, Kyle E; Reijo Pera, Renee A

    2014-09-22

    Turner syndrome is caused by complete or partial loss of the second sex chromosome and is characterized by spontaneous fetal loss in >90% of conceptions. Survivors possess an array of somatic and germline clinical characteristics. Induced pluripotent stem cells (iPSCs) offer an opportunity for insight into genetic requirements of the X chromosome linked to Turner syndrome. We derived iPSCs from Turner syndrome and control individuals and examined germ cell development as a function of X chromosome composition. We demonstrate that two X chromosomes are not necessary for reprogramming or maintenance of pluripotency and that there are minimal differences in gene expression, at the single cell level, linked to X chromosome aneuploidies. Formation of germ cells, as assessed in vivo through a murine xenotransplantation model, indicated that undifferentiated iPSCs, independent of X chromosome composition, are capable of forming germ-cell-like cells (GCLCs) in vivo. In combination with clinical data regarding infertility in women with X chromosome aneuploidies, results suggest that two intact X chromosomes are not required for human germ cell formation, qualitatively or quantitatively, but rather are likely to be required for maintenance of human germ cells to adulthood.

  13. A seamless trespass: germ cell migration across the seminiferous epithelium during spermatogenesis

    PubMed Central

    Wang, Claire Q.F.; Cheng, C. Yan

    2007-01-01

    During spermatogenesis, preleptotene spermatocytes traverse the blood–testis barrier (BTB) in the seminiferous epithelium, which is reminiscent of viral pathogens breaking through the tight junctions of host epithelial cells. The process also closely resembles the migration of leukocytes across endothelial tight junctions to reach inflammation sites. Cell adhesion molecules of the immunoglobulin superfamily (e.g., JAM/CAR/nectin) participate in germ cell migration by conferring transient adhesion between Sertoli and germ cells through homophilic and heterophilic interactions. The same molecules also comprise the junctional complexes at the BTB. Interestingly, JAM/CAR/nectin molecules mediate virus uptake and leukocyte transmigration in strikingly similar manners. It is likely that the strategy used by viruses and leukocytes to break through junctional barriers is used by germ cells to open up the inter–Sertoli cell junctions. In associating these diverse cellular events, we highlight the “guiding” role of JAM/CAR/nectin molecules for germ cell passage. Knowledge on viral invasion and leukocyte transmigration has also shed insights into germ cell movement during spermatogenesis. PMID:17698604

  14. DDX4 (VASA) is conserved in germ cell development in marsupials and monotremes.

    PubMed

    Hickford, Danielle E; Frankenberg, Stephen; Pask, Andrew J; Shaw, Geoff; Renfree, Marilyn B

    2011-10-01

    DDX4 (VASA) is an RNA helicase expressed in the germ cells of all animals. To gain greater insight into the role of this gene in mammalian germ cell development, we characterized DDX4 in both a marsupial (the tammar wallaby) and a monotreme (the platypus). DDX4 is highly conserved between eutherian, marsupial, and monotreme mammals. DDX4 protein is absent from tammar fetal germ cells but is present from Day 1 postpartum in both sexes. The distribution of DDX4 protein during oogenesis and spermatogenesis in the tammar is similar to eutherians. Female tammar germ cells contain DDX4 protein throughout all stages of postnatal oogenesis. In males, DDX4 is in gonocytes, and during spermatogenesis it is present in spermatocytes and round spermatids. A similar distribution of DDX4 occurs in the platypus during spermatogenesis. There are several DDX4 isoforms in the tammar, resulting from both pre- and posttranslational modifications. DDX4 in marsupials and monotremes has multiple splice variants and polyadenylation motifs. Using in silico analyses of genomic databases, we found that these previously unreported splice variants also occur in eutherians. In addition, several elements implicated in the control of Ddx4 expression in the mouse, including RGG (arginine-glycine-glycine) and dimethylation of arginine motifs and CpG islands within the Ddx4 promoter, are also highly conserved. Collectively these data suggest that DDX4 is essential for the regulation of germ cell proliferation and differentiation across all three extant mammalian groups-eutherians, marsupials, and monotremes.

  15. Germline stem cells are critical for sexual fate decision of germ cells

    PubMed Central

    2016-01-01

    Egg or sperm? The mechanism of sexual fate decision in germ cells has been a long‐standing issue in biology. A recent analysis identified foxl3 as a gene that determines the sexual fate decision of germ cells in the teleost fish, medaka. foxl3/Foxl3 acts in female germline stem cells to repress commitment into male fate (spermatogenesis), indicating that the presence of mitotic germ cells in the female is critical for continuous sexual fate decision of germ cells in medaka gonads. Interestingly, foxl3 is found in most vertebrate genomes except for mammals. This provides the interesting possibility that the sexual fate of germ cells in mammals is determined in a different way compared to foxl3‐possessing vertebrates. Considering the fact that germline stem cells are the cells where foxl3 begins to express and sexual fate decision initiates and mammalian ovary does not have typical germline stem cells, the mechanism in mammals may have been co‐evolved with germline stem cell loss in mammalian ovary. PMID:27699806

  16. [Testicular cancer - a matter of geography? Epidemiology and etiopathogenesis of germ cell tumors].

    PubMed

    Mikuz, G

    2014-05-01

    More than 90 % of testicular tumors are germ cell tumors. There is no doubt that ethnicity is one of the single overriding etiological factors in the development of these tumors. White males living in western industrialized countries, particularly in northern Europe show the highest incidence rates, whereas black males in Africa show the lowest. These differences are the result of interaction of genetic factors and exogenous noxious agents. Some of these agents are chemical substances with an estrogen-like effect. Many exogenous substances have been blamed for causing testicular cancer, but clear epidemiological evidence is lacking for most cases. Some well-established risk factors prevail, such as cryptorchidism, familial association, gonadal dysgenesis (intersex) and germ cell tumor in the contralateral testis. In terms of importance, overalimentation appears to outweigh occupation. The development of germ cell tumors is assumed to have an intrauterine origin through defect gonocytes which evolve into atypical germ cells of unclassified intratubular germ cell neoplasms. The trigger event is, however, the appearance of isochromosome 12p, which makes these cells aggressive and results in overt invasive testicular cancer.

  17. Treatment of GABA from Fermented Rice Germ Ameliorates Caffeine-Induced Sleep Disturbance in Mice

    PubMed Central

    Mabunga, Darine Froy N.; Gonzales, Edson Luck T.; Kim, Hee Jin; Choung, Se Young

    2015-01-01

    γ-Aminobutyric acid (GABA), a major inhibitory neurotransmitter in the mammalian central nervous system, is involved in sleep physiology. Caffeine is widely used psychoactive substance known to induce wakefulness and insomnia to its consumers. This study was performed to examine whether GABA extracts from fermented rice germ ameliorates caffeine-induced sleep disturbance in mice, without affecting spontaneous locomotor activity and motor coordination. Indeed, caffeine (10 mg/kg, i.p.) delayed sleep onset and reduced sleep duration of mice. Conversely, rice germ ferment extracts-GABA treatment (10, 30, or 100 mg/kg, p.o.), especially at 100 mg/kg, normalized the sleep disturbance induced by caffeine. In locomotor tests, rice germ ferment extracts-GABA slightly but not significantly reduced the caffeine-induced increase in locomotor activity without affecting motor coordination. Additionally, rice germ ferment extracts-GABA per se did not affect the spontaneous locomotor activity and motor coordination of mice. In conclusion, rice germ ferment extracts-GABA supplementation can counter the sleep disturbance induced by caffeine, without affecting the general locomotor activities of mice. PMID:25995826

  18. Germ-cell culture conditions facilitate the production of mouse embryonic stem cells.

    PubMed

    Ramos-Ibeas, Priscila; Pericuesta, Eva; Fernández-González, Raúl; Gutiérrez-Adán, Alfonso; Ramírez, Miguel Ángel

    2014-09-01

    The derivation of embryonic stem-cell (ESC) lines from blastocysts is a very inefficient process. Murine ESCs are thought to arise from epiblast cells that are already predisposed to a primordial-germ-cell fate. During the process of ESC derivation from B6D2 F1 hybrid mice, if we first culture the embryo from the two-cell stage in medium supplemented with LIF, we improve the quality of the blastocyst. When the blastocyst is then cultured in a germ-line stem-cell culture medium (GSCm), we are able to more efficiently (28.3%) obtain quality ESC lines that have a normal karyotype, proper degree of chimerism, and exhibit germ-line transmission when microinjected into blastocysts. Although germ-cell-specific genes were expressed in all culture medium conditions, GSCm did not shift the transcriptome towards germ-cell specification. A correlation was further observed between ESC derivation efficiency and the expression of some imprinted genes and retrotransposable elements. In conclusion, the combination of LIF supplementation followed by culture in GSCm establishes a higher efficiency method for ESC derivation.

  19. Transmitted mutational events induced in mouse germ cells following acrylamide or glycidamide exposure.

    PubMed

    Favor, Jack; Shelby, Michael D

    2005-02-07

    An increase in the germ line mutation rate in humans will result in an increase in the incidence of genetically determined diseases in subsequent generations. Thus, it is important to identify those agents that are mutagenic in mammalian germ cells. Acrylamide is water soluble, absorbed and distributed in the body, chemically reactive with nucleophilic sites, and there are known sources of human exposure. Here we review all seven published studies that assessed the effectiveness of acrylamide or its active metabolite, glycidamide, in inducing transmitted reciprocal translocations or gene mutations in the mouse. Major conclusions were (a) acrylamide is mutagenic in spermatozoa and spermatid stages of the male germ line; (b) in these spermatogenic stages acrylamide is mainly or exclusively a clastogen; (c) per unit dose, i.p. exposure is more effective than dermal exposure; and (d) per unit dose, glycidamide is more effective than acrylamide. Since stem cell spermatogonia persist and may accumulate mutations throughout the reproductive life of males, assessment of induced mutations in this germ cell stage is critical for the assessment of genetic risk associated with exposure to a mutagen. The two specific-locus mutation experiments which studied the stem cell spermatogonial stage yielded conflicting results. This discrepancy should be resolved. Finally, it is noted that no experiments have studied the mutagenic potential of acrylamide to increase the frequency of transmitted mutational events following exposure in the female germ line.

  20. Retinoic acid derived from the fetal ovary initiates meiosis in mouse germ cells.

    PubMed

    Mu, Xinyi; Wen, Jing; Guo, Meng; Wang, Jianwei; Li, Ge; Wang, Zhengpin; Wang, Yijing; Teng, Zhen; Cui, Yan; Xia, Guoliang

    2013-03-01

    Meiotic initiation of germ cells at 13.5 dpc (days post-coitus) indicates female sex determination in mice. Recent studies reveal that mesonephroi-derived retinoic acid (RA) is the key signal for induction of meiosis. However, whether the mesonephroi is dispensable for meiosis is unclear and the role of the ovary in this meiotic process remains to be clarified. This study provides data that RA derived from fetal ovaries is sufficient to induce germ cell meiosis in a fetal ovary culture system. When fetal ovaries were collected from 11.5 to 13.5 dpc fetuses, isolated and cultured in vitro, germ cells enter meiosis in the absence of mesonephroi. To exclude RA sourcing from mesonephroi, 11.5 dpc urogenital ridges (UGRs; mesonephroi and ovary complexes) were treated with diethylaminobenzaldehyde (DEAB) to block retinaldehyde dehydrogenase (RALDH) activity in the mesonephros and the ovary. Meiosis occurred when DEAB was withdrawn and the mesonephros was removed 2 days later. Furthermore, RALDH1, rather than RALDH2, serves as the major RA synthetase in UGRs from 12.5 to 15.5 dpc. DEAB treatment to the ovary alone was able to block germ cell meiotic entry. We also found that exogenously supplied RA dose-dependently reduced germ cell numbers in ovaries by accelerating the entry into meiosis. These results suggest that ovary-derived RA is responsible for meiosis initiation.

  1. Loss of Dnd1 facilitates the cultivation of genital ridge-derived rat embryonic germ cells.

    PubMed

    Northrup, Emily; Eisenblätter, Regina; Glage, Silke; Rudolph, Cornelia; Dorsch, Martina; Schlegelberger, Brigitte; Hedrich, Hans-Jürgen; Zschemisch, Nils-Holger

    2011-08-01

    Pluripotent cells referred to as embryonic germ cells (EGCs) can be derived from the embryonic precursors of the mature gametes: the primordial germ cells (PGCs). A homozygous mutation (ter) of the dead-end homolog 1 gene (Dnd1) in the rat causes gonadal teratocarcinogenesis and sterility due to neoplastic transformation and loss of germ cells. We mated heterozygous ter/+ WKY-Dnd1(ter)/Ztm rats and were able to cultivate the first genital ridge-derived EGCs of the rat embryo at day 14.5 post coitum (pc). Genotyping revealed that ten EGC lines were Dnd1 deficient, while only one wild type cell line had survived in culture. This suggests that the inactivation of the putative tumor suppressor gene Dnd1 facilitates the immortalization of late EGCs in vitro. Injection of the wild type EGCs into blastocysts resulted in the first germ-line competent chimeras. These new pluripotent rat EGCs offer an innovative approach for studies on germ cell tumor development as well as a new tool for genetic manipulations in rats.

  2. Female mice lack adult germ-line stem cells but sustain oogenesis using stable primordial follicles.

    PubMed

    Lei, Lei; Spradling, Allan C

    2013-05-21

    Whether or not mammalian females generate new oocytes during adulthood from germ-line stem cells to sustain the ovarian follicle pool has recently generated controversy. We used a sensitive lineage-labeling system to determine whether stem cells are needed in female adult mice to compensate for follicular losses and to directly identify active germ-line stem cells. Primordial follicles generated during fetal life are highly stable, with a half-life during adulthood of 10 mo, and thus are sufficient to sustain adult oogenesis without a source of renewal. Moreover, in normal mice or following germ-cell depletion with Busulfan, only stable, single oocytes are lineage-labeled, rather than cell clusters indicative of new oocyte formation. Even one germ-line stem cell division per 2 wk would have been detected by our method, based on the kinetics of fetal follicle formation. Thus, adult female mice neither require nor contain active germ-line stem cells or produce new oocytes in vivo.

  3. Defective autophagy through epg5 mutation results in failure to reduce germ plasm and mitochondria.

    PubMed

    Herpin, Amaury; Englberger, Eva; Zehner, Mario; Wacker, Robin; Gessler, Manfred; Schartl, Manfred

    2015-10-01

    Autophagy is an evolutionarily conserved catabolic process that transports cytoplasmic components to lysosomes for degradation. In addition to the canonical view of strict stress-response-induced autophagy, selectively programmed autophagy was recently reported in the context of gonad development of flies and worms, where autophagy seems to be necessary for clearance of germ plasm components. Similar functions have not been described in vertebrates. We used the medaka fish to study the role of autophagy in gonad formation and gametogenesis for the first time in a vertebrate organism for which the germ line is specified by germ plasm. Using a transgenic line deficient in the Ol-epg5 gene—a new critical component of the autophagy pathway—we show that such deficiency leads to an impaired autophagic flux, possibly attributed to compromised maturation or processing of the autophagosomes. Ol-epg5 deficiency correlates with selectively impaired spermatogenesis and low allele transmission rates of the mutant allele caused by failure of germ plasm and mitochondria clearance during the process of germ cell specification and in the adult gonads. The mouse epg-5 homolog is similarly expressed in the maturating and adult testes, suggesting an at least partially conserved function of this process during spermatogenesis in vertebrates.

  4. Vasa identifies germ cells and critical stages of oogenesis in the Asian seabass.

    PubMed

    Xu, Hongyan; Lim, Menghuat; Dwarakanath, Manali; Hong, Yunhan

    2014-01-01

    Germ cells produce sperm and eggs for reproduction and fertility. The Asian seabass (Lates calcarifer), a protandrous marine fish, undergoes male-female sex reversal and thus offers an excellent model to study the role of germ cells in sex differentiation and sex reversal. Here we report the cloning and expression of vasa as a first germ cell marker in this organism. A 2241-bp cDNA was cloned by PCR using degenerate primers of conserved sequences and gene-specific primers. This cDNA contains a polyadenylation signal and a full open reading frame for 645 amino acid residues, which was designated as Lcvasa for the seabass vasa, as its predicted protein is homologous to Vasa proteins. The Lcvasa RNA is maternally supplied and specific to gonads in adulthood. By chromogenic and fluorescent in situ hybridization we revealed germ cell-specific Lcvasa expression in both the testis and ovary. Importantly, Lcvasa shows dynamic patterns of temporospatial expression and subcellular distribution during gametogenesis. At different stages of oogenesis, for example, Lcvasa undergoes nuclear-cytoplasmic redistribution and becomes concentrated preferentially in the Balbiani body of stage-II~III oocytes. Thus, the vasa RNA identifies both female and male germ cells in the Asian seabass, and its expression and distribution delineate critical stages of gametogenesis.

  5. Dazl is a target RNA suppressed by mammalian NANOS2 in sexually differentiating male germ cells

    PubMed Central

    Kato, Yuzuru; Katsuki, Takeo; Kokubo, Hiroki; Masuda, Aki; Saga, Yumiko

    2016-01-01

    Evolutionally conserved Nanos RNA-binding proteins play crucial roles in germ cell development. While a mammalian Nanos family protein, NANOS2, is required for sexual differentiation of male (XY) germ cells in mice, the underlying mechanisms and the identities of its target RNAs in vivo remain elusive. Using comprehensive microarray analysis and a bacterial artificial chromosome transgenic system, here we identify Dazl, a germ cell-specific gene encoding an RNA-binding protein implicated in translation, as a crucial target of NANOS2. Importantly, removal of the Dazl 3′-untranslated region in XY germ cells stabilizes the Dazl mRNA, resulting in elevated meiotic gene expression, abnormal resumption of the cell cycle and impaired processing-body formation, reminiscent of Nanos2-knockout phenotypes. Furthermore, our data suggest that NANOS2 acts as an antagonist of the DAZL protein. We propose a dual system of NANOS2-mediated suppression of Dazl expression as a pivotal molecular mechanism promoting sexual differentiation of XY germ cells. PMID:27072294

  6. Nonmixing layers

    NASA Astrophysics Data System (ADS)

    Gaillard, Pierre; Giovangigli, Vincent; Matuszewski, Lionel

    2016-12-01

    We investigate the impact of nonideal diffusion on the structure of supercritical cryogenic binary mixing layers. This situation is typical of liquid fuel injection in high-pressure rocket engines. Nonideal diffusion has a dramatic impact in the neighborhood of chemical thermodynamic stability limits where the components become quasi-immiscible and ultimately form a nonmixing layer. Numerical simulations are performed for mixing layers of H2 and N2 at a pressure of 100 atm and temperature around 120-150 K near chemical thermodynamic stability limits.

  7. Attentional networks in developmental dyscalculia

    PubMed Central

    2010-01-01

    Background Very little is known about attention deficits in developmental dyscalculia, hence, this study was designed to provide the missing information. We examined attention abilities of participants suffering from developmental dyscalculia using the attention networks test - interactions. This test was designed to examine three different attention networks--executive function, orienting and alerting--and the interactions between them. Methods Fourteen university students that were diagnosed as suffering from developmental dyscalculia--intelligence and reading abilities in the normal range and no indication of attention-deficit hyperactivity disorder--and 14 matched controls were tested using the attention networks test - interactions. All participants were given preliminary tests to measure mathematical abilities, reading, attention and intelligence. Results The results revealed deficits in the alerting network--a larger alerting effect--and in the executive function networks--a larger congruity effect in developmental dyscalculia participants. The interaction between the alerting and executive function networks was also modulated by group. In addition, developmental dyscalculia participants were slower to respond in the non-cued conditions. Conclusions These results imply specific attentional deficits in pure developmental dyscalculia. Namely, those with developmental dyscalculia seem to be deficient in the executive function and alertness networks. They suffer from difficulty in recruiting attention, in addition to the deficits in numerical processing. PMID:20157427

  8. Schizotypy From a Developmental Perspective

    PubMed Central

    Debbané, Martin; Barrantes-Vidal, Neus

    2015-01-01

    The schizotypy construct focuses attention on the liability to develop schizophrenia-spectrum disorders, yet traditionally, the schizotypy models have put more emphasis on stress-vulnerability interactions rather than developmental dynamics of emerging risk for psychopathology. Indeed, developmental accounts of this emerging personality trait have rarely been explicitly formulated. In this position article, we wish to convey some of the basic developmental tenets of schizotypy, and how they can inform high-risk research. Firstly, we tackle the state vs trait issue to outline the possible relationship between high-risk states and trait schizotypy. Second, we review the evidence suggesting that the consolidation of schizotypy, encompassing its 3 main dimensions, could be considered as a developmental mediator between very early risk factors and transition into high-risk states. Importantly, developmental dynamics between endophenotypes, as well as transactional and epigenetics mechanisms should enter modern conceptualizations of schizotypy. Finally, we present a developmental psychopathology perspective of schizotypy sensitive to both the multifinality and equifinality of schizophrenia-spectrum disorders. We conclude that schizotypy represents a crucial construct in a fully-developmental study of schizophrenia-spectrum disorders. PMID:25548385

  9. Structural basis of multivalent binding to wheat germ agglutinin.

    PubMed

    Schwefel, David; Maierhofer, Caroline; Beck, Johannes G; Seeberger, Sonja; Diederichs, Kay; Möller, Heiko M; Welte, Wolfram; Wittmann, Valentin

    2010-06-30

    The inhibition of carbohydrate-protein interactions by tailored multivalent ligands is a powerful strategy for the treatment of many human diseases. Crucial for the success of this approach is an understanding of the molecular mechanisms as to how a binding enhancement of a multivalent ligand is achieved. We have synthesized a series of multivalent N-acetylglucosamine (GlcNAc) derivatives and studied their interaction with the plant lectin wheat germ agglutinin (WGA) by an enzyme-linked lectin assay (ELLA) and X-ray crystallography. The solution conformation of one ligand was determined by NMR spectroscopy. Employing a GlcNAc carbamate motif with alpha-configuration and by systematic variation of the spacer length, we were able to identify divalent ligands with unprecedented high WGA binding potency. The best divalent ligand has an IC(50) value of 9.8 microM (ELLA) corresponding to a relative potency of 2350 (1170 on a valency-corrected basis, i.e., per mol sugar contained) compared to free GlcNAc. X-ray crystallography of the complex of WGA and the second best, closely related divalent ligand explains this activity. Four divalent molecules simultaneously bind to WGA with each ligand bridging adjacent binding sites. This shows for the first time that all eight sugar binding sites of the WGA dimer are simultaneously functional. We also report a tetravalent neoglycopeptide with an IC(50) value of 0.9 microM being 25,500 times higher than that of GlcNAc (6400 times per contained sugar) and the X-ray structure analysis of its complex with glutaraldehyde-cross-linked WGA. Comparison of the crystal structure and the solution NMR structure of the neoglycopeptide as well as results from the ELLA suggest that the conformation of the glycopeptide in solution is already preorganized in a way supporting multivalent binding to the protein. Our findings show that bridging adjacent protein binding sites by multivalent ligands is a valid strategy to find high-affinity protein

  10. Spallanzani Layers

    NASA Technical Reports Server (NTRS)

    2006-01-01

    31 March 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a layered, light-toned mesa among other layered materials exposed in a mound that covers much of the floor of Spallanzani Crater.

    Location near: 58.3oS, 273.9oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  11. De novo spinal teratoma after treatment of an intracranial germ cell tumor.

    PubMed

    Tohma, Y; Kaneko, T; Kita, D; Iwato, M; Hayashi, Y; Tachibana, O; Hasegawa, M; Yamashita, J

    2000-11-01

    The authors report an extremely rare case of de novo spinal teratoma after treatment for intracranial germ cell tumor. A 17-year-old male developed pain of bilateral lower extremities and urinary retention 18 months after complete remission of intracranial mixed germ cell tumor. Magnetic resonance imaging revealed a huge spinal tumor associated with spina bifida occulta. Total resection was performed, and histogenetical findings led to the diagnosis of a mature teratoma with normal p16 gene, whereas analysis of intracranial tumor showed p16 deletion. The spinal anomaly and genetic analysis strongly suggest that the spinal teratoma was a de novo tumor rather than a metastasis or dissemination of the original intracranial germ cell tumor.

  12. Heterozygosity for a Bub1 mutation causes female-specific germ cell aneuploidy in mice

    SciTech Connect

    Leland, Shawn; Nagarajan, Prabakaran; Polyzos, Aris; Thomas, Sharon; Samaan, George; Donnell, Robert; Marchetti, Francesco; Venkatachalam, Sundaresan

    2009-06-24

    Aneuploidy, the most common chromosomal abnormality at birth and the main ascertained cause of pregnancy loss in humans, originates primarily from chromosome segregation errors during oogenesis. Here we report that heterozygosity for a mutation in the mitotic checkpoint kinase gene, Bub1, induces aneuploidy in female germ cells of mice, and that the effect increases with advancing maternal age. Analysis of Bub1 heterozygous oocytes showed that aneuploidy occurred primarily during the first meiotic division and involved premature sister chromatid separation. Furthermore, aneuploidy was inherited in zygotes and resulted in the loss of embryos after implantation. The incidence of aneuploidy in zygotes was sufficient to explain the reduced litter size in matings with Bub1 heterozygous females. No effects were seen in germ cells from heterozygous males. These findings show that Bub1 dysfunction is linked to inherited aneuploidy in female germ cells and may contribute to the maternal age-related increase in aneuploidy and pregnancy loss.

  13. Functional lacrimal gland regeneration by transplantation of a bioengineered organ germ

    PubMed Central

    Hirayama, Masatoshi; Ogawa, Miho; Oshima, Masamitsu; Sekine, Yurie; Ishida, Kentaro; Yamashita, Kentaro; Ikeda, Kazutaka; Shimmura, Shigeto; Kawakita, Tetsuya; Tsubota, Kazuo; Tsuji, Takashi

    2013-01-01

    The lacrimal gland has a multifaceted role in maintaining a homeostatic microenvironment for a healthy ocular surface via tear secretion. Dry-eye disease, which is caused by lacrimal gland dysfunction, is one of the most prevalent eye diseases that cause corneal epithelial damage and results in significant loss of vision and a reduction in the quality of life. Here we demonstrate orthotopic transplantation of bioengineered lacrimal gland germs into adult mice with an extra-orbital lacrimal gland defect, a mouse model that mimics the corneal epithelial damage caused by lacrimal gland dysfunction. The bioengineered lacrimal gland germs and harderian gland germs both develop in vivo and achieve sufficient physiological functionality, including tear production in response to nervous stimulation and ocular surface protection. This study demonstrates the potential for bioengineered organ replacement to functionally restore the lacrimal gland. PMID:24084941

  14. Human germ-line therapy: the case for its development and use.

    PubMed

    Zimmerman, B K

    1991-12-01

    The rationale for pursuing the development and use of germ-line selection and modification techniques is examined in this essay. The argument is put forth that it is the moral obligation of the medical profession to make available to the public any technology that can cure or prevent pathology leading to death and disability, in both the present and future generations. Society should pursue the development of strategies for preventing or correcting, at the germ-line level, genetic features that will lead to, or enhance, pathological conditions. Because prenatal screening and even early embryo screening and selection can prevent only a subset of known genetic disorders, direct genetic intervention is the only way in which certain couples can exercise their rights to reproductive health. Finally, the arguments most often raised against the pursuit of and use of methods for germ-line intervention shall be discussed.

  15. Germ cell formation from embryonic stem cells and the use of somatic cell nuclei in oocytes.

    PubMed

    Pelosi, Emanuele; Forabosco, Antonino; Schlessinger, David

    2011-03-01

    Embryonic stem cells (ESCs) have remarkable properties of pluripotency and self-renewal, along with the retention of chromosomal integrity. Germ cells function as a kind of "transgenerational stem cells," transmitting genetic information from one generation to the next. The formation of putative primordial germ cells (PGCs) and germ cells from mouse and human ESCs (hESCs) has, in fact, been shown, and the apparent derivation of functional mouse male gametes has also been described. Additionally, investigators have successfully reprogrammed somatic nuclei into a pluripotent state by inserting them into ESCs or oocytes. This would enable the generation of ESCs genetically identical to the somatic cell donor and their use in cell therapy. However, these methodologies are still inefficient and their mechanisms poorly understood. Until full comprehension of these processes is obtained, clinical applications remain remote. Nevertheless, they represent promising tools in the future, enhancing methods of therapeutic cloning and infertility treatment.

  16. An ABC transporter controls export of a Drosophila germ cell attractant.

    PubMed

    Ricardo, Sara; Lehmann, Ruth

    2009-02-13

    Directed cell migration, which is critical for embryonic development, leukocyte trafficking, and cell metastasis, depends on chemoattraction. 3-hydroxy-3-methylglutaryl coenzyme A reductase regulates the production of an attractant for Drosophila germ cells that may itself be geranylated. Chemoattractants are commonly secreted through a classical, signal peptide-dependent pathway, but a geranyl-modified attractant would require an alternative pathway. In budding yeast, pheromones produced by a-cells are farnesylated and secreted in a signal peptide-independent manner, requiring the adenosine triphosphate-binding cassette (ABC) transporter Ste6p. Here we show that Drosophila germ cell migration uses a similar pathway, demonstrating that invertebrate germ cells, like yeast cells, are attracted to lipid-modified peptides. Components of this unconventional export pathway are highly conserved, suggesting that this pathway may control the production of similarly modified chemoattractants in organisms ranging from yeast to humans.

  17. Efficient TALEN-mediated gene targeting of chicken primordial germ cells

    PubMed Central

    Taylor, Lorna; Carlson, Daniel F.; Nandi, Sunil; Sherman, Adrian; Fahrenkrug, Scott C.

    2017-01-01

    In this work we use TALE nucleases (TALENs) to target a reporter construct to the DDX4 (vasa) locus in chicken primordial germ cells (PGCs). Vasa is a key germ cell determinant in many animal species and is posited to control avian germ cell formation. We show that TALENs mediate homology-directed repair of the DDX4 locus on the Z sex chromosome at high (8.1%) efficiencies. Large genetic deletions of 30 kb encompassing the entire DDX4 locus were also created using a single TALEN pair. The targeted PGCs were germline competent and were used to produce DDX4 null offspring. In DDX4 knockout chickens, PGCs are initially formed but are lost during meiosis in the developing ovary, leading to adult female sterility. TALEN-mediated gene targeting in avian PGCs is therefore an efficient process. PMID:28174243

  18. Recent advances in molecular and cell biology of testicular germ-cell tumors.

    PubMed

    Chieffi, Paolo

    2014-01-01

    Testicular germ-cell tumors (TGCTs) are the most frequent solid malignant tumors in men 20-40 years of age and the most frequent cause of death from solid tumors in this age group. TGCTs comprise two major histologic groups: seminomas and nonseminomas germ-cell tumors (NSGCTs). NSGCTs can be further divided into embryonal, carcinoma, Teratoma, yolk sac tumor, and choriocarcinoma. Seminomas and NSGCTs present significant differences in clinical features, therapy, and prognosis, and both show characteristics of the primordial germ cells. Many discovered biomarkers including OCT3/4, SOX2, SOX17, HMGA1, Nek2, GPR30, Aurora-B, estrogen receptor β, and others have given further advantages to discriminate between histological subgroups and could represent useful novel molecular targets for antineoplastic strategies. More insight into the pathogenesis of TGCTs is likely to improve disease management not only to better treatment of these tumors but also to a better understanding of stem cells and oncogenesis.

  19. Molecular biology of testicular germ cell tumors: unique features awaiting clinical application.

    PubMed

    Boublikova, Ludmila; Buchler, Tomas; Stary, Jan; Abrahamova, Jitka; Trka, Jan

    2014-03-01

    Testicular germ cell tumors (TGCTs) are the most common solid tumors in young adult men characterized by distinct biologic features and clinical behavior. Both genetic predispositions and environmental factors probably play a substantial role in their etiology. TGTCs arise from a malignant transformation of primordial germ cells in a process that starts prenatally, is often associated with a certain degree of gonadal dysgenesis, and involves the acquirement of several specific aberrations, including activation of SCF-CKIT, amplification of 12p with up-regulation of stem cell genes, and subsequent genetic and epigenetic alterations. Their embryonic and germ origin determines the unique sensitivity of TGCTs to platinum-based chemotherapy. Contrary to the vast majority of other malignancies, no molecular prognostic/predictive factors nor targeted therapy is available for patients with these tumors. This review summarizes the principal molecular characteristics of TGCTs that could represent a potential basis for development of novel diagnostic and treatment approaches.

  20. Dnd Is a Critical Specifier of Primordial Germ Cells in the Medaka Fish.

    PubMed

    Hong, Ni; Li, Mingyou; Yuan, Yongming; Wang, Tiansu; Yi, Meisheng; Xu, Hongyan; Zeng, Huaqiang; Song, Jianxing; Hong, Yunhan

    2016-03-08

    Primordial germ cell (PGC) specification occurs early in development. PGC specifiers have been identified in Drosophila, mouse, and human but remained elusive in most animals. Here we identify the RNA-binding protein Dnd as a critical PGC specifier in the medaka fish (Oryzias latipes). Dnd depletion specifically abolished PGCs, and its overexpression boosted PGCs. We established a single-cell culture procedure enabling lineage tracing in vitro. We show that individual blastomeres from cleavage embryos at the 32- and 64-cell stages are capable of PGC production in culture. Importantly, Dnd overexpression increases PGCs via increasing PGC precursors. Strikingly, dnd RNA forms prominent particles that segregate asymmetrically. Dnd concentrates in germ plasm and stabilizes germ plasm RNA. Therefore, Dnd is a critical specifier of fish PGCs and utilizes particle partition as a previously unidentified mechanism for asymmetric segregation. These findings offer insights into PGC specification and manipulation in medaka as a lower vertebrate model.