Label-free proteome profiling reveals developmental-dependent patterns in young barley grains.
Kaspar-Schoenefeld, Stephanie; Merx, Kathleen; Jozefowicz, Anna Maria; Hartmann, Anja; Seiffert, Udo; Weschke, Winfriede; Matros, Andrea; Mock, Hans-Peter
2016-06-30
Due to its importance as a cereal crop worldwide, high interest in the determination of factors influencing barley grain quality exists. This study focusses on the elucidation of protein networks affecting early grain developmental processes. NanoLC-based separation coupled to label-free MS detection was applied to gain insights into biochemical processes during five different grain developmental phases (pre-storage until storage phase, 3days to 16days after flowering). Multivariate statistics revealed two distinct developmental patterns during the analysed grain developmental phases: proteins showed either highest abundance in the middle phase of development - in the transition phase - or at later developmental stages - within the storage phase. Verification of developmental patterns observed by proteomic analysis was done by applying hypothesis-driven approaches, namely Western Blot analysis and enzyme assays. High general metabolic activity of the grain with regard to protein synthesis, cell cycle regulation, defence against oxidative stress, and energy production via photosynthesis was observed in the transition phase. Proteins upregulated in the storage phase are related towards storage protein accumulation, and interestingly to the defence of storage reserves against pathogens. A mixed regulatory pattern for most enzymes detected in our study points to regulatory mechanisms at the level of protein isoforms. In-depth understanding of early grain developmental processes of cereal caryopses is of high importance as they influence final grain weight and quality. Our knowledge about these processes is still limited, especially on proteome level. To identify key mechanisms in early barley grain development, a label-free data-independent proteomics acquisition approach has been applied. Our data clearly show, that proteins either exhibit highest expression during cellularization and the switch to the storage phase (transition phase, 5-7 DAF), or during storage product accumulation (10-16 DAF). The results highlight versatile cellular metabolic activity in the transition phase and strong convergence towards storage product accumulation in the storage phase. Notably, both phases are characterized by particular protective mechanism, such as scavenging of oxidative stress and defence against pathogens, during the transition and the storage phase, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
The mid-developmental transition and the evolution of animal body plans
Cole, Alison G.; Winter, Eitan; Mostov, Natalia; Khair, Sally; Senderovich, Naftalie; Kovalev, Ekaterina; Silver, David H.; Feder, Martin; Fernandez-Valverde, Selene L.; Nakanishi, Nagayasu; Simmons, David; Simakov, Oleg; Larsson, Tomas; Liu, Shang-Yun; Jerafi-Vider, Ayelet; Yaniv, Karina; Ryan, Joseph F.; Martindale, Mark Q.; Rink, Jochen C.; Arendt, Detlev; Degnan, Sandie M.; Degnan, Bernard M.; Hashimshony, Tamar; Yanai, Itai
2016-01-01
Animals are grouped into ~35 ‘phyla’ based upon the notion of distinct body plans1–4. Morphological and molecular analyses have revealed that a stage in the middle of development—known as the phylotypic period—is conserved among species within some phyla5–9. Although these analyses provide evidence for their existence, phyla have also been criticized as lacking an objective definition, and consequently based on arbitrary groupings of animals10. Here we compare the developmental transcriptomes of ten species, each annotated to a different phylum, with a wide range of life histories and embryonic forms. We find that in all ten species, development comprises the coupling of early and late phases of conserved gene expression. These phases are linked by a divergent ‘mid-developmental transition’ that uses species-specific suites of signalling pathways and transcription factors. This mid-developmental transition overlaps with the phylotypic period that has been defined previously for three of the ten phyla, suggesting that transcriptional circuits and signalling mechanisms active during this transition are crucial for defining the phyletic body plan and that the mid-developmental transition may be used to define phylotypic periods in other phyla. Placing these observations alongside the reported conservation of mid-development within phyla, we propose that a phylum may be defined as a collection of species whose gene expression at the mid-developmental transition is both highly conserved among them, yet divergent relative to other species. PMID:26886793
ERIC Educational Resources Information Center
Bakkaloglu, Hatice
2008-01-01
Seven children aging between 3 and 6 years with developmental disabilities were participated in this study, which examined the effects of the Activity-Based Intervention Program (ABIP) on the transition skills. The study used time series design and the implementation process was composed of "before instruction phase", "instruction…
Phase-Adequate Engagement at the Post-School Transition
ERIC Educational Resources Information Center
Dietrich, Julia; Parker, Philip; Salmela-Aro, Katariina
2012-01-01
The transition from general education (e.g., high school) to vocational and tertiary education (e.g., college, vocational school) or to the labor market presents a number of developmental challenges. These challenges include making career choices and, more broadly, managing the transition. Coping with these challenges depends on the individual,…
Signaling molecules involved in the transition of growth to development of Dictyostelium discoideum.
Mir, Hina A; Rajawat, Jyotika; Pradhan, Shalmali; Begum, Rasheedunnisa
2007-03-01
The social amoeba Dictyostelium discoideum, a powerful paradigm provides clear insights into the regulation of growth and development. In addition to possessing complex individual cellular functions like a unicellular eukaryote, D. discoideum cells face the challenge of multicellular development. D. discoideum undergoes a relatively simple differentiation process mainly by cAMP mediated pathway. Despite this relative simplicity, the regulatory signaling pathways are as complex as those seen in metazoan development. However, the introduction of restriction-enzyme-mediated integration (REMI) technique to produce developmental gene knockouts has provided novel insights into the discovery of signaling molecules and their role in D. discoideum development. Cell cycle phase is an important aspect for differentiation of D. discoideum, as cells must reach a specific stage to enter into developmental phase and specific cell cycle regulators are involved in arresting growth phase genes and inducing the developmental genes. In this review, we present an overview of the signaling molecules involved in the regulation of growth to differentiation transition (GDT), molecular mechanism of early developmental events leading to generation of cAMP signal and components of cAMP relay system that operate in this paradigm.
Goal Engagement during the School-Work Transition: Beneficial for All, Particularly for Girls
ERIC Educational Resources Information Center
Haase, Claudia M.; Heckhausen, Jutta; Koller, Olaf
2008-01-01
The school-to-work transition presents a substantial regulatory challenge for youth in modern societies. Based on the action-phase model of developmental regulation, we investigated the effects of goal engagement on transition outcomes in a high-density longitudinal study of noncollege-bound German adolescents (N = 362). Career-related goal…
Learning To Breathe: Developmental Phase Transitions in Oxygen Status.
Considine, Michael J; Diaz-Vivancos, Pedro; Kerchev, Pavel; Signorelli, Santiago; Agudelo-Romero, Patricia; Gibbs, Daniel J; Foyer, Christine H
2017-02-01
Plants are developmentally disposed to significant changes in oxygen availability, but our understanding of the importance of hypoxia is almost entirely limited to stress biology. Differential patterns of the abundance of oxygen, nitric oxide ( • NO), and reactive oxygen species (ROS), as well as of redox potential, occur in organs and meristems, and examples are emerging in the literature of mechanistic relationships of these to development. We describe here the convergence of these cues in meristematic and reproductive tissues, and discuss the evidence for regulated hypoxic niches within which oxygen-, ROS-, • NO-, and redox-dependent signalling curate developmental transitions in plants. Copyright © 2017 Elsevier Ltd. All rights reserved.
2013-01-01
Background MADS-domain transcription factors play important roles during plant development. The Arabidopsis MADS-box gene SHORT VEGETATIVE PHASE (SVP) is a key regulator of two developmental phases. It functions as a repressor of the floral transition during the vegetative phase and later it contributes to the specification of floral meristems. How these distinct activities are conferred by a single transcription factor is unclear, but interactions with other MADS domain proteins which specify binding to different genomic regions is likely one mechanism. Results To compare the genome-wide DNA binding profile of SVP during vegetative and reproductive development we performed ChIP-seq analyses. These ChIP-seq data were combined with tiling array expression analysis, induction experiments and qRT-PCR to identify biologically relevant binding sites. In addition, we compared genome-wide target genes of SVP with those published for the MADS domain transcription factors FLC and AP1, which interact with SVP during the vegetative and reproductive phases, respectively. Conclusions Our analyses resulted in the identification of pathways that are regulated by SVP including those controlling meristem development during vegetative growth and flower development whereas floral transition pathways and hormonal signaling were regulated predominantly during the vegetative phase. Thus, SVP regulates many developmental pathways, some of which are common to both of its developmental roles whereas others are specific to only one of them. PMID:23759218
Barau, Joan; Grandis, Adriana; Carvalho, Vinicius Miessler de Andrade; Teixeira, Gleidson Silva; Zaparoli, Gustavo Henrique Alcalá; do Rio, Maria Carolina Scatolin; Rincones, Johana; Buckeridge, Marcos Silveira; Pereira, Gonçalo Amarante Guimarães
2015-01-01
Witches’ broom disease (WBD) of cacao differs from other typical hemibiotrophic plant diseases by its unusually long biotrophic phase. Plant carbon sources have been proposed to regulate WBD developmental transitions; however, nothing is known about their availability at the plant–fungus interface, the apoplastic fluid of cacao. Data are provided supporting a role for the dynamics of soluble carbon in the apoplastic fluid in prompting the end of the biotrophic phase of infection. Carbon depletion and the consequent fungal sensing of starvation were identified as key signalling factors at the apoplast. MpNEP2, a fungal effector of host necrosis, was found to be up-regulated in an autophagic-like response to carbon starvation in vitro. In addition, the in vivo artificial manipulation of carbon availability in the apoplastic fluid considerably modulated both its expression and plant necrosis rate. Strikingly, infected cacao tissues accumulated intracellular hexoses, and showed stunted photosynthesis and the up-regulation of senescence markers immediately prior to the transition to the necrotrophic phase. These opposite findings of carbon depletion and accumulation in different host cell compartments are discussed within the frame of WBD development. A model is suggested to explain phase transition as a synergic outcome of fungal-related factors released upon sensing of extracellular carbon starvation, and an early senescence of infected tissues probably triggered by intracellular sugar accumulation. PMID:25540440
Cyclical parthenogenesis and viviparity in aphids as evolutionary novelties.
Davis, Gregory K
2012-09-01
Evolutionary novelties represent challenges to biologists, particularly those who would like to understand the developmental and genetic changes responsible for their appearance. Most modern aphids possess two apparent evolutionary novelties: cyclical parthenogenesis (a life cycle with both sexual and asexual phases) and viviparity (internal development and live birth of progeny) in their asexual phase. Here I discuss the evolution of these apparent novelties from a developmental standpoint. Although a full understanding of the evolution of cyclical parthenogenesis and viviparity in aphids can seem a daunting task, these complex transitions can at least be broken down into a handful of steps. I argue that these should include the following: a differentiation of two developmentally distinct oocytes; de novo synthesis of centrosomes and modification of meiosis during asexual oogenesis; a loss or bypass of any cell cycle arrest and changes in key developmental events during viviparous oogenesis; and a change in how mothers specify the sexual vs. asexual fates of their progeny. Grappling with the nature of such steps and the order in which they occurred ought to increase our understanding and reduce the apparent novelty of complex evolutionary transitions. © 2012 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Oglesby, Michael L.
This study examines the efficacy in correcting student misconceptions about science concepts by using the pedagogical method of asking students to make a prediction in science laboratory lessons for students within pre-formal, transitional, or formal stages of cognitive development. The subjects were students (n = 235) enrolled in ninth grade physical science classes (n=15) in one high school of an urban profile school district. The four freshmen physical science teachers who were part of the study routinely taught the concepts in the study as a part of the normal curriculum during the time of the school year in which the research was conducted. Classrooms representing approximately half of the students were presented with a prediction phase at the start of each of ten learning cycle lesson. The other classrooms were not presented with a prediction phase. Students were pre and post tested using a 40 question instrument based on the Force Concept Inventory augmented with questions on the concepts taught during the period of the study. Students were also tested using the Test of Scientific Reasoning to determine their cognitive developmental level. Results showed 182 of the students to be cognitively pre-formal, 50 to be transitional, and only 3 to be cognitively formal. There were significantly higher gains (p < .05) for the formal group over the transitional group and for the transitional group over the Pre-formal group. However, there were not significantly higher gains (p > .05) for the total students having a prediction phase compared to those not having a prediction phase. Neither were there significant gains (p > .05) within the pre-formal group or within the transitional group. There were too few students within the formal group for meaningful results.
Barau, Joan; Grandis, Adriana; Carvalho, Vinicius Miessler de Andrade; Teixeira, Gleidson Silva; Zaparoli, Gustavo Henrique Alcalá; do Rio, Maria Carolina Scatolin; Rincones, Johana; Buckeridge, Marcos Silveira; Pereira, Gonçalo Amarante Guimarães
2015-03-01
Witches' broom disease (WBD) of cacao differs from other typical hemibiotrophic plant diseases by its unusually long biotrophic phase. Plant carbon sources have been proposed to regulate WBD developmental transitions; however, nothing is known about their availability at the plant-fungus interface, the apoplastic fluid of cacao. Data are provided supporting a role for the dynamics of soluble carbon in the apoplastic fluid in prompting the end of the biotrophic phase of infection. Carbon depletion and the consequent fungal sensing of starvation were identified as key signalling factors at the apoplast. MpNEP2, a fungal effector of host necrosis, was found to be up-regulated in an autophagic-like response to carbon starvation in vitro. In addition, the in vivo artificial manipulation of carbon availability in the apoplastic fluid considerably modulated both its expression and plant necrosis rate. Strikingly, infected cacao tissues accumulated intracellular hexoses, and showed stunted photosynthesis and the up-regulation of senescence markers immediately prior to the transition to the necrotrophic phase. These opposite findings of carbon depletion and accumulation in different host cell compartments are discussed within the frame of WBD development. A model is suggested to explain phase transition as a synergic outcome of fungal-related factors released upon sensing of extracellular carbon starvation, and an early senescence of infected tissues probably triggered by intracellular sugar accumulation. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Age-related changes in tree growth and physiology
Andrew Groover
2017-01-01
Trees pass through specific developmental phases as they age, including juvenile to adult, and vegetative to reproductive phases. The timing of these transitions is regulated genetically but is also highly influenced by the environment. Tree species have evolved different strategies and life histories that affect how they age â for example some pioneer species are fast...
Is Speech Learning "Gated" by the Social Brain?
ERIC Educational Resources Information Center
Kuhl, Patricia K.
2007-01-01
I advance the hypothesis that the earliest phases of language acquisition--the developmental transition from an initial universal state of language processing to one that is language-specific--requires social interaction. Relating human language learning to a broader set of neurobiological cases of communicative development, I argue that the…
Child Health, Developmental Plasticity, and Epigenetic Programming
Feil, R.; Constancia, M.; Fraga, M.; Junien, C.; Carel, J.-C.; Boileau, P.; Le Bouc, Y.; Deal, C. L.; Lillycrop, K.; Scharfmann, R.; Sheppard, A.; Skinner, M.; Szyf, M.; Waterland, R. A.; Waxman, D. J.; Whitelaw, E.; Ong, K.; Albertsson-Wikland, K.
2011-01-01
Plasticity in developmental programming has evolved in order to provide the best chances of survival and reproductive success to the organism under changing environments. Environmental conditions that are experienced in early life can profoundly influence human biology and long-term health. Developmental origins of health and disease and life-history transitions are purported to use placental, nutritional, and endocrine cues for setting long-term biological, mental, and behavioral strategies in response to local ecological and/or social conditions. The window of developmental plasticity extends from preconception to early childhood and involves epigenetic responses to environmental changes, which exert their effects during life-history phase transitions. These epigenetic responses influence development, cell- and tissue-specific gene expression, and sexual dimorphism, and, in exceptional cases, could be transmitted transgenerationally. Translational epigenetic research in child health is a reiterative process that ranges from research in the basic sciences, preclinical research, and pediatric clinical research. Identifying the epigenetic consequences of fetal programming creates potential applications in clinical practice: the development of epigenetic biomarkers for early diagnosis of disease, the ability to identify susceptible individuals at risk for adult diseases, and the development of novel preventive and curative measures that are based on diet and/or novel epigenetic drugs. PMID:20971919
ERIC Educational Resources Information Center
Frydman, Jason Scott; Mayor, Christine
2017-01-01
Middle-school-age children are faced with a variety of developmental tasks, including the beginning phases of individuation from the family, building peer groups, social and emotional transitions, and cognitive shifts associated with the maturation process. This article summarizes how traumatic events impair and complicate these developmental…
The Evolution from Integration to Inclusion: The Hong Kong Tale
ERIC Educational Resources Information Center
Poon-McBrayer, Kim Fong
2014-01-01
As a worldwide movement, some forms or stages of inclusive education have been experimented and/or mandated in various countries since the mid-1970s. Integration was piloted in Hong Kong in 1997 and remains the official rhetoric and policy. Three developmental phases of inclusive education, namely, integration, integration in transition to…
Zhou, Ying-Ying; Shao, Ran; Liang, Chuan-Cheng; Wang, Yong; Wang, Li-Wen
2009-08-01
To investigate the telencephalon developmental characteristics of Hynobius leehii, and enrich the research data of comparable neurobiology and nervous system development of amphibian. HE staining and Nissl staining methods were used to study the telencephalon histological structure of Hynobius leechii at both the metamorphosis and the adult phases, and to explore the developmental phases of telencephalon. The olfactory bulb could be roughly divided into 6 layers from lateral to medial. The lateral cerebral ventricles at the metamorphosis phase were smaller than those at the adult phase, and there were no clear borderlines between the primordial pallium and the primordial hippocampus, or between the primordial pallium and the primordial piriform area. Moreover, the cells in the primordial piriform area were more closely distributed than those in the primordial hippocampus or the primordial pallium. Compared with those at the adult phase, cells in nucleuses at the metamorphosis phase were larger in number and more closely distributed. The telencephalon of Hynobius leehii at the metamorphosis phase has generally formed the adult structure. However, it is still at a transition state of differentiation to maturity during the development of Hynobius leehii.
ERIC Educational Resources Information Center
Simonsen, Monica L.; Neubert, Debra A.
2013-01-01
Community employment outcomes were examined for 338 transitioning youth with intellectual and other developmental disabilities in one state 18 months after exiting public school. All transitioning youth received ongoing Developmental Disability agency funding. The majority of transitioning youth (57.1%) were engaged in sheltered or nonwork…
Ogura, Yosuke; Sasakura, Yasunori
2016-04-18
During neurulation of chordate ascidians, the 11th mitotic division within the epidermal layer shows a posterior-to-anterior wave that is precisely coordinated with the unidirectional progression of the morphogenetic movement. Here we show that the first sign of this patterned mitosis is an asynchronous anterior-to-posterior S-phase length and that mitotic synchrony is reestablished by a compensatory asynchronous G2-phase length. Live imaging combined with genetic experiments demonstrated that compensatory G2-phase regulation requires transcriptional activation of the G2/M regulator cdc25 by the patterning genes GATA and AP-2. The downregulation of GATA and AP-2 at the onset of neurulation leads to loss of compensatory G2-phase regulation and promotes the transition to patterned mitosis. We propose that such developmentally regulated cell-cycle compensation provides an abrupt switch to spatially patterned mitosis in order to achieve the coordination between mitotic timing and morphogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.
Analysis of Rhizome Development in Oryza longistaminata, a Wild Rice Species.
Yoshida, Akiko; Terada, Yasuhiko; Toriba, Taiyo; Kose, Katsumi; Ashikari, Motoyuki; Kyozuka, Junko
2016-10-01
Vegetative reproduction is a form of asexual propagation in plants. A wide range of plants develop rhizomes, modified stems that grow underground horizontally, as a means of vegetative reproduction. In rhizomatous species, despite their distinct developmental patterns, both rhizomes and aerial shoots derive from axillary buds. Therefore, it is of interest to understand the basis of rhizome initiation and development. Oryza longistaminata, a wild rice species, develops rhizomes. We analyzed bud initiation and growth of O. longistaminata rhizomes using various methods of morphological observation. We show that, unlike aerial shoot buds that contain a few leaves only, rhizome buds initiate several leaves and bend to grow at right angles to the original rhizome. Rhizomes are maintained in the juvenile phase irrespective of the developmental phase of the aerial shoot. Stem elongation and reproductive transition are tightly linked in the aerial shoots, but are uncoupled in the rhizome. Our findings indicate that developmental programs operate independently in the rhizomes and aerial shoots. Temporal modification of the developmental pathways that are common to rhizomes and aerial shoots may be the source of developmental plasticity. Furthermore, the creation of new developmental systems appears to be necessary for rhizome development. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
ERIC Educational Resources Information Center
Vander Zee, Anton; Folds-Bennett, Trisha; Meyer-Bernstein, Elizabeth; Reardon, Brendan
2016-01-01
The transition into college remains one of the most formative and complex phases in an individual's life. Institutions of higher learning have responded to the challenges facing first-year students in myriad ways, most often by offering summer orientation programs, dynamic living-learning environments, tailored academic and psychological support…
Sucrose affects the developmental transition of rhizomes in Oryza longistaminata.
Bessho-Uehara, Kanako; Nugroho, Jovano Erris; Kondo, Hirono; Angeles-Shim, Rosalyn B; Ashikari, Motoyuki
2018-05-08
Oryza longistaminata, the African wild rice, can propagate vegetatively through rhizomes. Rhizomes elongate horizontally underground as sink organs, however, they undergo a developmental transition that shifts their growth to the surface of the ground to become aerial stems. This particular stage is essential for the establishment of new ramets. While several determinants such as abiotic stimuli and plant hormones have been reported as key factors effecting developmental transition in aerial stem, the cause of this phenomenon in rhizome remains elusive. This study shows that depletion of nutrients, particularly sucrose, is the key stimulus that induces the developmental transition in rhizomes, as indicated by the gradient of sugars from the base to the tip of the rhizome. Sugar treatments revealed that sucrose specifically represses the developmental transition from rhizome to aerial stem by inhibiting the expression of sugar metabolism and hormone synthesis genes at the bending point. Sucrose depletion affected several factors contributing to the developmental transition of rhizome including signal transduction, transcriptional regulation and plant hormone balance.
Wagner, Doris; Meyerowitz, Elliot M.
2011-01-01
Developmental fate decisions in cell populations fundamentally depend on at least two parameters: a signal that is perceived by the cell and the intrinsic ability of the cell to respond to the signal. The same regulatory logic holds for phase transitions in the life cycle of an organism, for example the switch to reproductive development in flowering plants. Here we have tested the response of the monocarpic plant species Arabidopsis thaliana to a signal that directs flower formation, the plant-specific transcription factor LEAFY (LFY). Using transient steroid-dependent LEAFY (LFY) activation in lfy null mutant Arabidopsis plants, we show that the plant’s competence to respond to the LFY signal changes during development. Very early in the life cycle, the plant is not competent to respond to the signal. Subsequently, transient LFY activation can direct primordia at the flanks of the shoot apical meristem to adopt a floral fate. Finally, the plants acquire competence to initiate the flower-patterning program in response to transient LFY activation. Similar to a perennial life strategy, we did not observe reprogramming of all primordia after perception of the transient signal, instead only a small number of meristems responded, followed by reversion to the prior developmental program. The ability to initiate flower formation and to direct flower patterning in response to transient LFY upregulation was dependent on the known direct LFY target APETALA1 (AP1). Prolonged LFY or activation could alter the developmental gradient and bypass the requirement for AP1. Prolonged high AP1 levels, in turn, can also alter the plants’ competence. Our findings shed light on how plants can fine-tune important phase transitions and developmental responses. PMID:22639600
Sánchez, Lucas; Chaouiya, Claudine
2016-05-26
Primary sex determination in placental mammals is a very well studied developmental process. Here, we aim to investigate the currently established scenario and to assess its adequacy to fully recover the observed phenotypes, in the wild type and perturbed situations. Computational modelling allows clarifying network dynamics, elucidating crucial temporal constrains as well as interplay between core regulatory modules. Relying on a comprehensive revision of the literature, we define a logical model that integrates the current knowledge of the regulatory network controlling this developmental process. Our analysis indicates the necessity for some genes to operate at distinct functional thresholds and for specific developmental conditions to ensure the reproducibility of the sexual pathways followed by bi-potential gonads developing into either testes or ovaries. Our model thus allows studying the dynamics of wild type and mutant XX and XY gonads. Furthermore, the model analysis reveals that the gonad sexual fate results from the operation of two sub-networks associated respectively with an initiation and a maintenance phases. At the core of the process is the resolution of two connected feedback loops: the mutual inhibition of Sox9 and ß-catenin at the initiation phase, which in turn affects the mutual inhibition between Dmrt1 and Foxl2, at the maintenance phase. Three developmental signals related to the temporal activity of those sub-networks are required: a signal that determines Sry activation, marking the beginning of the initiation phase, and two further signals that define the transition from the initiation to the maintenance phases, by inhibiting the Wnt4 signalling pathway on the one hand, and by activating Foxl2 on the other hand. Our model reproduces a wide range of experimental data reported for the development of wild type and mutant gonads. It also provides a formal support to crucial aspects of the gonad sexual development and predicts gonadal phenotypes for mutations not tested yet.
Faunes, Fernando; Larraín, Juan
2016-08-01
Developmental transitions include molting in some invertebrates and the metamorphosis of insects and amphibians. While the study of Caenorhabditis elegans larval transitions was crucial to determine the genetic control of these transitions, Drosophila melanogaster and Xenopus laevis have been classic models to study the role of hormones in metamorphosis. Here we review how heterochronic genes (lin-4, let-7, lin-28, lin-41), hormones (dafachronic acid, ecdysone, thyroid hormone) and the environment regulate developmental transitions. Recent evidence suggests that some heterochronic genes also regulate transitions in higher organisms that they are controlled by hormones involved in metamorphosis. We also discuss evidence demonstrating that heterochronic genes and hormones regulate the proliferation and differentiation of embryonic and neural stem cells. We propose the hypothesis that developmental transitions are regulated by an evolutionary conserved mechanism in which heterochronic genes and hormones interact to control stem/progenitor cells proliferation, cell cycle exit, quiescence and differentiation and determine the proper timing of developmental transitions. Finally, we discuss the relevance of these studies to understand post-embryonic development, puberty and regeneration in humans. Copyright © 2016 Elsevier Inc. All rights reserved.
Geology and evolution of lakes in north-central Florida
Kindinger, J.L.; Davis, J.B.; Flocks, J.G.
1999-01-01
Fluid exchange between surficial waters and groundwater in karst environments, and the processes that control exchange, are of critical concern to water management districts and planners. High-resolution seismic data were collected from 30 lakes of north-central Florida. In each case study, lake structure and geomorphology were controlled by solution and/or mechanical processes. Processes that control lake development are twofold: (1) karstification or dissolution of the underlying limestone, and (2) the collapse, subsidence, or slumping of overburden to form sinkholes. Initial lake formation is directly related to the karst topography of the underlying host limestone. Case studies have shown that lakes can be divided by geomorphic types into progressive developmental phases: (1) active subsidence or collapse phase (young); (2) transitional phase (middle age); (3) baselevel phase (mature); and (4) polje (drowned prairie) - broad flat-bottom that have one or all phases of sinkhole. Using these criteria, Florida lakes can be classified by size, fill, subsurface features, and geomorphology.Fluid exchange between surficial waters and groundwater in karst environments, and the processes that control exchange, are of critical concern to water management districts and planners. High-resolution seismic data were collected from 30 lakes of north-central Florida. In each case study, lake structure and geomorphology were controlled by solution and/or mechanical processes. Processes that control lake development are twofold: (1) karstification or dissolution of the underlying limestone, and (2) the collapse, subsidence, or slumping of overburden to form sinkholes. Initial lake formation is directly related to the karst topography of the underlying host limestone. Case studies have shown that lakes can be divided by geomorphic types into progressive developmental phased: (1) active subsidence or collapse phase (young); (2) transitional phase (middle age); (3) baselevel phase (mature); and (4) polje (drowned prairie) - broad flat-bottom that have one or all phases of sinkhole. Using these criteria, Florida lakes can be classified by size, fill, subsurface features, and geomorphology.
Sugar is an endogenous cue for juvenile-to-adult phase transition in plants
Yu, Sha; Cao, Li; Zhou, Chuan-Miao; Zhang, Tian-Qi; Lian, Heng; Sun, Yue; Wu, Jianqiang; Huang, Jirong; Wang, Guodong; Wang, Jia-Wei
2013-01-01
The transition from the juvenile to adult phase in plants is controlled by diverse exogenous and endogenous cues such as age, day length, light, nutrients, and temperature. Previous studies have shown that the gradual decline in microRNA156 (miR156) with age promotes the expression of adult traits. However, how age temporally regulates the abundance of miR156 is poorly understood. We show here that the expression of miR156 responds to sugar. Sugar represses miR156 expression at both the transcriptional level and post-transcriptional level through the degradation of miR156 primary transcripts. Defoliation and photosynthetic mutant assays further demonstrate that sugar from the pre-existing leaves acts as a mobile signal to repress miR156, and subsequently triggers the juvenile-to-adult phase transition in young leaf primordia. We propose that the gradual increase in sugar after seed germination serves as an endogenous cue for developmental timing in plants. DOI: http://dx.doi.org/10.7554/eLife.00269.001 PMID:23543845
Chalupnikova, Katerina; Solc, Petr; Sulimenko, Vadym; Sedlacek, Radislav; Svoboda, Petr
2014-01-01
At the end of the growth phase, mouse antral follicle oocytes acquire full developmental competence. In the mouse, this event is marked by the transition from the so-called non-surrounded nucleolus (NSN) chromatin configuration into the transcriptionally quiescent surrounded nucleolus (SN) configuration, which is named after a prominent perinucleolar condensed chromatin ring. However, the SN chromatin configuration alone is not sufficient for determining the developmental competence of the SN oocyte. There are additional nuclear and cytoplamic factors involved, while a little is known about the changes occurring in the cytoplasm during the NSN/SN transition. Here, we report functional analysis of maternal ELAVL2 an AU-rich element binding protein. Elavl2 gene encodes an oocyte-specific protein isoform (denoted ELAVL2°), which acts as a translational repressor. ELAVL2° is abundant in fully grown NSN oocytes, is ablated during the NSN/SN transition and remains low during the oocyte-to-embryo transition (OET). ELAVL2° overexpression during meiotic maturation causes errors in chromosome segregation, indicating the significance of naturally reduced ELAVL2° levels in SN oocytes. On the other hand, during oocyte growth, prematurely reduced Elavl2 expression results in lower yields of fully grown and meiotically matured oocytes, suggesting that Elavl2 is necessary for proper oocyte maturation. Moreover, Elavl2 knockdown showed stimulating effects on translation in fully grown oocytes. We propose that ELAVL2 has an ambivalent role in oocytes: it functions as a pleiotropic translational repressor in efficient production of fully grown oocytes, while its disposal during the NSN/SN transition contributes to the acquisition of full developmental competence. PMID:24553115
The Transition to School of Children with Developmental Disabilities: Views of Parents and Teachers
ERIC Educational Resources Information Center
Walker, Sue; Dunbar, Stephanie; Meldrum, Katrina; Whiteford, Chrystal; Carrington, Suzanne; Berthelsen, Donna; Hand, Kirstine; Nicholson, Jan
2012-01-01
The transition from early intervention programs to inclusive school settings presents a range of social challenges for children with developmental disabilities. In Queensland, in the year of transition to school, many children with developmental disabilities attend an Early Childhood Development Program for two to three days each week and also…
Singh, Gopal; Singh, Gagandeep; Singh, Pradeep; Parmar, Rajni; Paul, Navgeet; Vashist, Radhika; Swarnkar, Mohit Kumar; Kumar, Ashok; Singh, Sanatsujat; Singh, Anil Kumar; Kumar, Sanjay; Sharma, Ram Kumar
2017-09-19
Stevia is a natural source of commercially important steviol glycosides (SGs), which share biosynthesis route with gibberellic acids (GAs) through plastidal MEP and cytosolic MVA pathways. Ontogeny-dependent deviation in SGs biosynthesis is one of the key factor for global cultivation of Stevia, has not been studied at transcriptional level. To dissect underlying molecular mechanism, we followed a global transcriptome sequencing approach and generated more than 100 million reads. Annotation of 41,262 de novo assembled transcripts identified all the genes required for SGs and GAs biosynthesis. Differential gene expression and quantitative analysis of important pathway genes (DXS, HMGR, KA13H) and gene regulators (WRKY, MYB, NAC TFs) indicated developmental phase dependent utilization of metabolic flux between SGs and GAs synthesis. Further, identification of 124 CYPs and 45 UGTs enrich the genomic resources, and their PPI network analysis with SGs/GAs biosynthesis proteins identifies putative candidates involved in metabolic changes, as supported by their developmental phase-dependent expression. These putative targets can expedite molecular breeding and genetic engineering efforts to enhance SGs content, biomass and yield. Futuristically, the generated dataset will be a useful resource for development of functional molecular markers for diversity characterization, genome mapping and evolutionary studies in Stevia.
Hart, Laura C; Pollock, McLean; Hill, Sherika; Maslow, Gary
Little is known about how transition readiness relates to other developmental skills of adolescence in youth with chronic illness. Better understanding of how transition readiness relates to these other developmental skills could lead to a broader array of tools to improve transition readiness. Intentional self-regulation (ISR) and hopeful future expectations (HFE) are 2 developmental skills of adolescence that improve with participation in developmental programming and thus are modifiable. We explored associations between transition readiness, as measured by the Transition Readiness Assessment Questionnaire 29 (TRAQ-29) and ISR and HFE in youth with chronic illness recruited from a variety of subspecialty clinics from a major southeast medical center. A total of 71 adolescents with chronic illness were included in the analysis. The TRAQ-29 Self-Advocacy domain showed positive associations to both ISR (P = .03) and HFE (P = .009). In addition, the TRAQ-29 overall had positive associations to HFE (P = .04). The significant associations between TRAQ-29 Self-Advocacy domain scores and ISR and HFE suggest that transition readiness is developing within the context of other developmental areas in adolescence. More work is needed to see if the programming that improves these other developmental skills might also improve transition readiness. Copyright © 2016 Academic Pediatric Association. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Schulenberg, John; Maggs, Jennifer L.
This paper offers a developmental perspective on college drinking by focusing on broad developmental themes during adolescence and the transition to young adulthood. Heavy drinking increases during the transition to college, with significant interindividual variation in the course and consequences. The majority of young people make it through…
Pick, Thea R; Bräutigam, Andrea; Schlüter, Urte; Denton, Alisandra K; Colmsee, Christian; Scholz, Uwe; Fahnenstich, Holger; Pieruschka, Roland; Rascher, Uwe; Sonnewald, Uwe; Weber, Andreas P M
2011-12-01
We systematically analyzed a developmental gradient of the third maize (Zea mays) leaf from the point of emergence into the light to the tip in 10 continuous leaf slices to study organ development and physiological and biochemical functions. Transcriptome analysis, oxygen sensitivity of photosynthesis, and photosynthetic rate measurements showed that the maize leaf undergoes a sink-to-source transition without an intermediate phase of C(3) photosynthesis or operation of a photorespiratory carbon pump. Metabolome and transcriptome analysis, chlorophyll and protein measurements, as well as dry weight determination, showed continuous gradients for all analyzed items. The absence of binary on-off switches and regulons pointed to a morphogradient along the leaf as the determining factor of developmental stage. Analysis of transcription factors for differential expression along the leaf gradient defined a list of putative regulators orchestrating the sink-to-source transition and establishment of C(4) photosynthesis. Finally, transcriptome and metabolome analysis, as well as enzyme activity measurements, and absolute quantification of selected metabolites revised the current model of maize C(4) photosynthesis. All data sets are included within the publication to serve as a resource for maize leaf systems biology.
Pick, Thea R.; Bräutigam, Andrea; Schlüter, Urte; Denton, Alisandra K.; Colmsee, Christian; Scholz, Uwe; Fahnenstich, Holger; Pieruschka, Roland; Rascher, Uwe; Sonnewald, Uwe; Weber, Andreas P.M.
2011-01-01
We systematically analyzed a developmental gradient of the third maize (Zea mays) leaf from the point of emergence into the light to the tip in 10 continuous leaf slices to study organ development and physiological and biochemical functions. Transcriptome analysis, oxygen sensitivity of photosynthesis, and photosynthetic rate measurements showed that the maize leaf undergoes a sink-to-source transition without an intermediate phase of C3 photosynthesis or operation of a photorespiratory carbon pump. Metabolome and transcriptome analysis, chlorophyll and protein measurements, as well as dry weight determination, showed continuous gradients for all analyzed items. The absence of binary on–off switches and regulons pointed to a morphogradient along the leaf as the determining factor of developmental stage. Analysis of transcription factors for differential expression along the leaf gradient defined a list of putative regulators orchestrating the sink-to-source transition and establishment of C4 photosynthesis. Finally, transcriptome and metabolome analysis, as well as enzyme activity measurements, and absolute quantification of selected metabolites revised the current model of maize C4 photosynthesis. All data sets are included within the publication to serve as a resource for maize leaf systems biology. PMID:22186372
Picó, Sara; Merini, Wiam
2015-01-01
Polycomb group (PcG) proteins play important roles in regulating developmental phase transitions in plants; however, little is known about the role of the PcG machinery in regulating the transition from juvenile to adult phase. Here, we show that Arabidopsis (Arabidopsis thaliana) B lymphoma Moloney murine leukemia virus insertion region1 homolog (BMI1) POLYCOMB REPRESSIVE COMPLEX1 (PRC1) components participate in the repression of microRNA156 (miR156). Loss of AtBMI1 function leads to the up-regulation of the primary transcript of MIR156A and MIR156C at the time the levels of miR156 should decline, resulting in an extended juvenile phase and delayed flowering. Conversely, the PRC1 component EMBRYONIC FLOWER (EMF1) participates in the regulation of SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE and MIR172 genes. Accordingly, plants impaired in EMF1 function displayed misexpression of these genes early in development, which contributes to a CONSTANS-independent up-regulation of FLOWERING LOCUS T (FT) leading to the earliest flowering phenotype described in Arabidopsis. Our findings show how the different regulatory roles of two functional PRC1 variants coordinate the acquisition of flowering competence and help to reach the threshold of FT necessary to flower. Furthermore, we show how two central regulatory mechanisms, such as PcG and microRNA, assemble to achieve a developmental outcome. PMID:25897002
Picó, Sara; Ortiz-Marchena, M Isabel; Merini, Wiam; Calonje, Myriam
2015-08-01
Polycomb group (PcG) proteins play important roles in regulating developmental phase transitions in plants; however, little is known about the role of the PcG machinery in regulating the transition from juvenile to adult phase. Here, we show that Arabidopsis (Arabidopsis thaliana) B lymphoma Moloney murine leukemia virus insertion region1 homolog (BMI1) POLYCOMB REPRESSIVE COMPLEX1 (PRC1) components participate in the repression of microRNA156 (miR156). Loss of AtBMI1 function leads to the up-regulation of the primary transcript of MIR156A and MIR156C at the time the levels of miR156 should decline, resulting in an extended juvenile phase and delayed flowering. Conversely, the PRC1 component EMBRYONIC FLOWER (EMF1) participates in the regulation of SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE and MIR172 genes. Accordingly, plants impaired in EMF1 function displayed misexpression of these genes early in development, which contributes to a CONSTANS-independent up-regulation of FLOWERING LOCUS T (FT) leading to the earliest flowering phenotype described in Arabidopsis. Our findings show how the different regulatory roles of two functional PRC1 variants coordinate the acquisition of flowering competence and help to reach the threshold of FT necessary to flower. Furthermore, we show how two central regulatory mechanisms, such as PcG and microRNA, assemble to achieve a developmental outcome. © 2015 American Society of Plant Biologists. All Rights Reserved.
Epifanio, Maria Stella; Genna, Vitalba; De Luca, Caterina; Roccella, Michele; La Grutta, Sabina
2015-01-01
Transition to parenthood represents an important life event increasing vulnerability to psychological disorders. Postpartum depression and parenting distress are the most common psychological disturbances and a growing scientific evidence suggests that both mothers and fathers are involved in this developmental crisis. This paper aims to explore maternal and paternal experience of transition to parenthood in terms of parenting distress and risk of postpartum depression. Seventy-five couples of first-time parents were invited to compile the Edinburgh Postnatal Depression Scale and the Parenting Stress Index-Short Form in the first month of children life. Study sample reported very high levels of parenting distress and a risk of postpartum depression in 20.8% of mothers and 5.7% of fathers. No significant correlation between parenting distress and the risk of postpartum depression emerged, both in mothers than in fathers group while maternal distress levels are related to paternal one. The first month after partum represents a critical phase of parents life and it could be considered a developmental crisis characterized by anxiety, stress and mood alterations that could have important repercussions on the child psycho-physical development. PMID:26266033
ERIC Educational Resources Information Center
Dressler, Paul B.; Nguyen, Teresa K.; Moody, Eric J.; Friedman, Sandra L.; Pickler, Laura
2018-01-01
Youth with intellectual and developmental disabilities (IDD) often experience difficulties with successful transition from pediatric to adult healthcare. A consultative Transition Clinic for youth with IDD was piloted as a quality improvement project, and assessed the engagement of primary care providers (PCPs) for transition planning after…
Modeling Developmental Transitions in Adaptive Resonance Theory
ERIC Educational Resources Information Center
Raijmakers, Maartje E. J.; Molenaar, Peter C. M.
2004-01-01
Neural networks are applied to a theoretical subject in developmental psychology: modeling developmental transitions. Two issues that are involved will be discussed: discontinuities and acquiring qualitatively new knowledge. We will argue that by the appearance of a bifurcation, a neural network can show discontinuities and may acquire…
ERIC Educational Resources Information Center
Ellerbrock, Cheryl R.; Denmon, Jennifer; Owens, Ruchelle; Lindstrom, Krista
2015-01-01
This yearlong qualitative multisite case study investigated ways middle and high school transition supports foster a developmentally responsive transition for students. A total of 23 participants engaged in this study, including 4 students, 4 middle school teachers, 13 high school teachers, 1 middle school principal, and 1 high school principal.…
Parladé, Meaghan V.; Iverson, Jana M.
2012-01-01
From a dynamic systems perspective, transition points in development are times of increased instability, during which behavioral patterns are susceptible to temporary decoupling. This study investigated the impact of the vocabulary spurt on existing patterns of communicative coordination. Eighteen typically developing infants were videotaped at home 1 month before, at, and after the vocabulary spurt. Infants were identified as spurters if they underwent a discrete phase transition in vocabulary development (marked by an inflection point), and compared with a group of nonspurters whose word-learning rates followed a trajectory of continuous change. Relative to surrounding sessions, there were significant reductions in overall coordination of communicative behaviors and in words produced in coordination at the vocabulary spurt session for infants who experienced more dramatic vocabulary growth. In contrast, nonspurters demonstrated little change across sessions. Findings underscore the importance of transitions as opportunities for observing processes of developmental change. PMID:21219063
Developmental Patterns in the Understanding of Social and Physical Transitivity.
ERIC Educational Resources Information Center
Markovits, Henry; Dumas, Claude
1999-01-01
Two studies examined developmental patterns in understanding physical and social transitivity in 6- to 11-year olds. Findings revealed no significant correlations between social judgments and judgments concerning length. Results suggested that children possess two distinct strategies for making transitive judgments that correspond to the logical…
Planning for School Transition: An Ecological-Developmental Approach.
ERIC Educational Resources Information Center
Diamond, Karen E.; And Others
1988-01-01
The paper describes an ecological-developmental model for planning a child's transition from a preschool special education program to a public school classroom. The model stresses interactions between the various environments in which the child functions. A description of a preschool transition program based on the model is also included.…
Gulbin, Jason P; Croser, Morag J; Morley, Elissa J; Weissensteiner, Juanita R
2013-01-01
This paper introduces a new sport and athlete development framework that has been generated by multidisciplinary sport practitioners. By combining current theoretical research perspectives with extensive empirical observations from one of the world's leading sport agencies, the proposed FTEM (Foundations, Talent, Elite, Mastery) framework offers broad utility to researchers and sporting stakeholders alike. FTEM is unique in comparison with alternative models and frameworks, because it: integrates general and specialised phases of development for participants within the active lifestyle, sport participation and sport excellence pathways; typically doubles the number of developmental phases (n = 10) in order to better understand athlete transition; avoids chronological and training prescriptions; more optimally establishes a continuum between participation and elite; and allows full inclusion of many developmental support drivers at the sport and system levels. The FTEM framework offers a viable and more flexible alternative for those sporting stakeholders interested in managing, optimising, and researching sport and athlete development pathways.
Eco-Evo-Devo: developmental symbiosis and developmental plasticity as evolutionary agents.
Gilbert, Scott F; Bosch, Thomas C G; Ledón-Rettig, Cristina
2015-10-01
The integration of research from developmental biology and ecology into evolutionary theory has given rise to a relatively new field, ecological evolutionary developmental biology (Eco-Evo-Devo). This field integrates and organizes concepts such as developmental symbiosis, developmental plasticity, genetic accommodation, extragenic inheritance and niche construction. This Review highlights the roles that developmental symbiosis and developmental plasticity have in evolution. Developmental symbiosis can generate particular organs, can produce selectable genetic variation for the entire animal, can provide mechanisms for reproductive isolation, and may have facilitated evolutionary transitions. Developmental plasticity is crucial for generating novel phenotypes, facilitating evolutionary transitions and altered ecosystem dynamics, and promoting adaptive variation through genetic accommodation and niche construction. In emphasizing such non-genomic mechanisms of selectable and heritable variation, Eco-Evo-Devo presents a new layer of evolutionary synthesis.
Zhou, Yue
2017-01-01
Polycomb Group regulation in Arabidopsis (Arabidopsis thaliana) is required to maintain cell differentiation and allow developmental phase transitions. This is achieved by the activity of three PcG repressive complex 2s (PRC2s) and the participation of a yet poorly defined PRC1. Previous results showed that apparent PRC1 components perform discrete roles during plant development, suggesting the existence of PRC1 variants; however, it is not clear in how many processes these components participate. We show that AtBMI1 proteins are required to promote all developmental phase transitions and to control cell proliferation during organ growth and development, expanding their proposed range of action. While AtBMI1 function during germination is closely linked to B3 domain transcription factors VAL1/2 possibly in combination with GT-box binding factors, other AtBMI1 regulatory networks require participation of different factor combinations. Conversely, EMF1 and LHP1 bind many H3K27me3 positive genes up-regulated in atbmi1a/b/c mutants; however, loss of their function affects expression of a different subset, suggesting that even if EMF1, LHP1, and AtBMI1 exist in a common PRC1 variant, their role in repression depends on the functional context. PMID:27837089
The Juvenile Transition: A Developmental Switch Point in Human Life History
ERIC Educational Resources Information Center
Del Giudice, Marco; Angeleri, Romina; Manera, Valeria
2009-01-01
This paper presents a new perspective on the transition from early to middle childhood (i.e., human juvenility), investigated in an integrative evolutionary framework. Juvenility is a crucial life history stage, when social learning and interaction with peers become central developmental functions; here it is argued that the "juvenile transition"…
Acharya, Aviseka; Brungs, Sonja; Henry, Margit; Rotshteyn, Tamara; Singh Yaduvanshi, Nirmala; Wegener, Lucia; Jentzsch, Simon; Hescheler, Jürgen; Hemmersbach, Ruth; Boeuf, Helene; Sachinidis, Agapios
2018-06-15
Embryonic developmental studies under microgravity conditions in space are very limited. To study the effects of short-term altered gravity on embryonic development processes, we exposed mouse embryonic stem cells (mESCs) to phases of hypergravity and microgravity and studied the differentiation potential of the cells using wide-genome microarray analysis. During the 64th European Space Agency's parabolic flight campaign, mESCs were exposed to 31 parabolas. Each parabola comprised phases lasting 22 s of hypergravity, microgravity, and a repeat of hypergravity. On different parabolas, RNA was isolated for microarray analysis. After exposure to 31 parabolas, mESCs (P31 mESCs) were further differentiated under normal gravity (1 g) conditions for 12 days, producing P31 12-day embryoid bodies (EBs). After analysis of the microarrays, the differentially expressed genes were analyzed using different bioinformatic tools to identify developmental and nondevelopmental biological processes affected by conditions on the parabolic flight experiment. Our results demonstrated that several genes belonging to GOs associated with cell cycle and proliferation were downregulated in undifferentiated mESCs exposed to gravity changes. However, several genes belonging to developmental processes, such as vasculature development, kidney development, skin development, and to the TGF-β signaling pathway, were upregulated. Interestingly, similar enriched and suppressed GOs were obtained in P31 12-day EBs compared with ground control 12-day EBs. Our results show that undifferentiated mESCs exposed to alternate hypergravity and microgravity phases expressed several genes associated with developmental/differentiation and cell cycle processes, suggesting a transition from the undifferentiated pluripotent to a more differentiated stage of mESCs.
ERIC Educational Resources Information Center
Office of Inspector General (DHHS), Washington, DC.
Discussions were held with 252 respondents (state and local officials, service providers, educators, parents) in 28 states concerning the problems in transition from school to adult services for developmentally disabled young adults. Transition issues were seen to include questions of where to live, what to do, and how to obtain support. The…
The Transition to High School: Current Knowledge, Future Directions
2011-01-01
In the American educational system, school transitions are frequent and predictable, but they can disrupt student functioning across developmental domains. How students experience school transitions has been a focus of research for some time, but the high school transition has received less attention, and the limited research often focuses on a particular developmental domain (e.g., academics and socioemotional well-being) to the exclusion of a more integrated model. This review relies on life course theory to establish an organizational framework for interpreting and connecting the diffuse and sometimes disparate findings on the high school transition, including adolescent developmental trajectories and the influence of social ties, changing sociocultural contexts, and stratification systems. Conclusions identify aspects for future inquiry suggested by current knowledge and the tenets of the life course perspective. PMID:21966178
ERIC Educational Resources Information Center
Ellerbrock, Cheryl R.; Kiefer, Sarah M.
2013-01-01
Understanding the developmental responsiveness of secondary school environments may be an important factor in supporting students as they make the transition from one school to the next. Students' needs may or may not be met depending on the nature of the fit between their basic and developmental needs and secondary school structures at the middle…
Gyoja, Fuki
2017-09-01
Basic helix-loop-helix (bHLH) transcription factors have attracted the attention of developmental and evolutionary biologists for decades because of their conserved functions in mesodermal and neural tissue formation in both vertebrates and fruit flies. Their evolutionary history is of special interest because it will likely provide insights into developmental processes and refinement of metazoan-specific traits. This review briefly considers advances in developmental biological studies on bHLHs/HLHs. I also discuss recent genome-wide surveys and molecular phylogenetic analyses of these factors in a wide range of metazoans. I hypothesize that interactions between metazoan-specific Group A, D, and E bHLH/HLH factors enabled a sophisticated transition system from cell proliferation to differentiation in multicellular development. This control mechanism probably emerged initially to organize a multicellular animal body and was subsequently recruited to form evolutionarily novel tissues, which differentiated during a later ontogenetic phase. © 2017 Wiley Periodicals, Inc.
Developmental Pathways Are Blueprints for Designing Successful Crops
Trevaskis, Ben
2018-01-01
Genes controlling plant development have been studied in multiple plant systems. This has provided deep insights into conserved genetic pathways controlling core developmental processes including meristem identity, phase transitions, determinacy, stem elongation, and branching. These pathways control plant growth patterns and are fundamentally important to crop biology and agriculture. This review describes the conserved pathways that control plant development, using Arabidopsis as a model. Historical examples of how plant development has been altered through selection to improve crop performance are then presented. These examples, drawn from diverse crops, show how the genetic pathways controlling development have been modified to increase yield or tailor growth patterns to suit local growing environments or specialized crop management practices. Strategies to apply current progress in genomics and developmental biology to future crop improvement are then discussed within the broader context of emerging trends in plant breeding. The ways that knowledge of developmental processes and understanding of gene function can contribute to crop improvement, beyond what can be achieved by selection alone, are emphasized. These include using genome re-sequencing, mutagenesis, and gene editing to identify or generate novel variation in developmental genes. The expanding scope for comparative genomics, the possibility to engineer new developmental traits and new approaches to resolve gene–gene or gene–environment interactions are also discussed. Finally, opportunities to integrate fundamental research and crop breeding are highlighted. PMID:29922318
Developmental Pathways Are Blueprints for Designing Successful Crops.
Trevaskis, Ben
2018-01-01
Genes controlling plant development have been studied in multiple plant systems. This has provided deep insights into conserved genetic pathways controlling core developmental processes including meristem identity, phase transitions, determinacy, stem elongation, and branching. These pathways control plant growth patterns and are fundamentally important to crop biology and agriculture. This review describes the conserved pathways that control plant development, using Arabidopsis as a model. Historical examples of how plant development has been altered through selection to improve crop performance are then presented. These examples, drawn from diverse crops, show how the genetic pathways controlling development have been modified to increase yield or tailor growth patterns to suit local growing environments or specialized crop management practices. Strategies to apply current progress in genomics and developmental biology to future crop improvement are then discussed within the broader context of emerging trends in plant breeding. The ways that knowledge of developmental processes and understanding of gene function can contribute to crop improvement, beyond what can be achieved by selection alone, are emphasized. These include using genome re-sequencing, mutagenesis, and gene editing to identify or generate novel variation in developmental genes. The expanding scope for comparative genomics, the possibility to engineer new developmental traits and new approaches to resolve gene-gene or gene-environment interactions are also discussed. Finally, opportunities to integrate fundamental research and crop breeding are highlighted.
Wei, Jianing; Shao, Wenbo; Wang, Xianhui; Ge, Jin; Chen, Xiangyong; Yu, Dan; Kang, Le
2017-02-01
Chemical communication plays an important role in density-dependent phase change in locusts. However, the volatile components and emission patterns of the migratory locust, Locusta migratoria, are largely unknown. In this study, we identified the chemical compositions and emission dynamics of locust volatiles from the body and feces and associated them with developmental stages, sexes and phase changes. The migratory locust shares a number of volatile components with the desert locust (Schistocerca gregaria), but the emission dynamics of the two locust species are significantly different. The body odors of the gregarious nymphs in the migratory locust consisted of phenylacetonitrile (PAN), benzaldehyde, guaiacol, phenol, aliphatic acids and 2,3-butanediol, and PAN was the dominant volatile. Volatiles from the fecal pellets of the nymphs primarily consist of guaiacol and phenol. Principal component analysis (PCA) showed significant differences in the volatile profiles between gregarious and solitary locusts. PAN and 4-vinylanisole concentrations were significantly higher in gregarious individuals than in solitary locusts. Gregarious mature males released significantly higher amounts of PAN and 4-vinylanisole during adulthood than mature females and immature adults of both sexes. Furthermore, PAN and 4-vinylanisole were completely lost in gregarious nymphs during the solitarization process, but were obtained by solitary nymphs during gregarization. The amounts of benzaldehyde, guaiacol and phenol only unidirectionally decreased from solitary to crowded treatment. Aliphatic aldehydes (C7 to C10), which were previously reported as locust volatiles, are now identified as environmental contaminants. Therefore, our results illustrate the precise odor profiles of migratory locusts during developmental stages, sexes and phase change. However, the function and role of PAN and other aromatic compounds during phase transition need further investigation. © 2016 Institute of Zoology, Chinese Academy of Sciences.
Reproductive Ontogeny of Wheat Grown on the MIR Space Station
NASA Technical Reports Server (NTRS)
Bubenheim, David L.; Stieber, Joseph
1997-01-01
The reproductive ontogeny of 'Super-Dwarf' wheat grown on the space station Mir is chronicled from the vegetative phase through flower development. Changes in the apical meristem associated with transition From the vegetative phase to floral initiation and development of the reproductive spike were all typical of 'Super Dwarf' wheat up to the point of anthesis. Filament elongation, which characteristically occurs just prior to anthesis and moves the anthers through the stigmatic branches thus facilitating pollination, did no1 xcur in the flowers of spikes grown on Mir. While development of spikes on tillers typically occurs later :han that of spikes on the main stem, all flowers appear to be arrested at the same developmental point.
Control of Retrograde Signaling by Rapid Turnover of GENOMES UNCOUPLED11[OPEN
Chalvin, Camille; Wu, Xu Na
2018-01-01
The exchange of signals between cellular compartments coordinates development and differentiation, modulates metabolic pathways, and triggers responses to environmental conditions. The proposed central regulator of plastid-to-nucleus retrograde signaling, GENOMES UNCOUPLED1 (GUN1), is present at very low levels, which has hampered the discovery of its precise molecular function. Here, we show that the Arabidopsis (Arabidopsis thaliana) GUN1 protein accumulates to detectable levels only at very early stages of leaf development, where it functions in the regulation of chloroplast biogenesis. GUN1 mRNA is present at high levels in all tissues, but GUN1 protein undergoes rapid degradation (with an estimated half-life of ∼4 h) in all tissues where chloroplast biogenesis has been completed. The rapid turnover of GUN1 is controlled mainly by the chaperone ClpC1, suggesting degradation of GUN1 by the Clp protease. Degradation of GUN1 slows under stress conditions that alter retrograde signaling, thus ensuring that the plant has sufficient GUN1 protein. We also find that the pentatricopeptide repeat motifs of GUN1 are important determinants of GUN1 stability. Moreover, overexpression of GUN1 causes an early flowering phenotype, suggesting a function of GUN1 in developmental phase transitions beyond chloroplast biogenesis. Taken together, our results provide new insight into the regulation of GUN1 by proteolytic degradation, uncover its function in early chloroplast biogenesis, and suggest a role in developmental phase transitions. PMID:29367233
Shlafer, Rebecca; Hergenroeder, Albert C; Jean Emans, S; Rickert, Vaughn I; Adger, Hoover; Spear, Bonnie; Irwin, Charles E; Kreipe, Richard E; Walker, Leslie R; Resnick, Michael D
2014-02-01
The Life Course Perspective (LCP), or Model, is now a guiding framework in Maternal and Child Health (MCH) activities, including training, supported by the Health Resources and Services Administration's Maternal and Child Health Bureau. As generally applied, the LCP tends to focus on pre- through post-natal stages, infancy and early childhood, with less attention paid to adolescents as either the "maternal" or "child" elements of MCH discourse. Adolescence is a distinct developmental period with unique opportunities for the development of health, competence and capacity and not merely a transitional phase between childhood and adulthood. Adequately addressing adolescents' emergent and ongoing health needs requires well-trained and specialized professionals who recognize the unique role of this developmental period in the LCP.
Attachment in Middle Childhood: An Evolutionary-Developmental Perspective
ERIC Educational Resources Information Center
Del Giudice, Marco
2015-01-01
Middle childhood is a key transitional stage in the development of attachment processes and representations. Here I discuss the middle childhood transition from an evolutionary-developmental perspective and show how this approach offers fresh insight into the function and organization of attachment in this life stage. I begin by presenting an…
USDA-ARS?s Scientific Manuscript database
The gall midge Mayetiola destructor is a destructive pest of wheat worldwide and a model organism for studying plant – insect interactions. The insect has six different developmental stages including eggs, three instars of larvae, pupae, and adults. Molecular mechanisms controlling the transition ...
The Five to Seven Year Shift: The Age of Reason and Responsibility.
ERIC Educational Resources Information Center
Sameroff, Arnold J., Ed.; Haith, Marshall M.
This book reviews the contemporary state of knowledge on developmental transitions between 5 and 7 years. Contributions are: (1) "Interpreting Developmental Transitions" (Arnold Sameroff; Marshall Haith); (2) "The Child's Entry into the 'Age of Reason'" (Sheldon White); (3) "Is There a Neural Basis for Cognitive…
Age Differences in Age Perceptions and Developmental Transitions
Chopik, William J.; Bremner, Ryan H.; Johnson, David J.; Giasson, Hannah L.
2018-01-01
Is 50 considered “old”? When do we stop being considered “young”? If individuals could choose to be any age, what would it be? In a sample of 502,548 internet respondents ranging in age from 10 to 89, we examined age differences in aging perceptions (e.g., how old do you feel?) and estimates of the timing of developmental transitions (e.g., when does someone become an older adult?). We found that older adults reported older perceptions of aging (e.g., choosing to be older, feeling older, being perceived as older), but that these perceptions were increasingly younger than their current age. The age to which individuals hope to live dramatically increased after age 40. We also found that older adults placed the age at which developmental transitions occurred later in the life course. This latter effect was stronger for transitions involving middle-age and older adulthood compared to transitions involving young adulthood. The current study constitutes the largest study to date of age differences in age perceptions and developmental timing estimates and yielded novel insights into how the aging process may affect judgments about the self and others. PMID:29449823
NASA Technical Reports Server (NTRS)
Goto, T.; Takahashi, T.; Miyama, S.; Nowakowski, R. S.; Bhide, P. G.; Caviness, V. S. Jr
2002-01-01
Neocortical neurons arise from a pseudostratified ventricular epithelium (PVE) that lies within the ventricular zone (VZ) at the margins of the embryonic cerebral ventricles. We examined the effects of fibroblast growth factor-2 (FGF-2) and 1-octanol on cell output behavior of the PVE in explants of the embryonic mouse cerebral wall. FGF-2 is mitogenic and 1-octanol antimitogenic in the PVE. Whereas all postmitotic cells migrate out of the VZ in vivo, in the explants some postmitotic cells remain within the VZ. We refer to these cells as the indeterminate or I fraction, because they neither exit from the VZ nor reenter S phase as part of the proliferative (P) fraction. They are considered to be either in an extremely prolonged G(1) phase, unable to pass the G(1)/S transition, or in the G(0) state. The I fate choice is modulated by both FGF-2 and 1-octanol. FGF-2 decreased the I fraction and increased the P fraction. In contrast, 1-octanol increased the I fraction and nearly eliminated the P fraction. The effects of FGF-2 and 1-octanol were developmentally regulated, in that they were observed in the developmentally advanced lateral region of the cerebral wall but not in the medial region. Copyright 2002 Wiley-Liss, Inc.
Bess, Gary; Allen, James; Deters, Pamela B
2004-08-12
A life cycle metaphor characterizes the evolving relationship between the evaluator and program staff. This framework suggests that common developmental dynamics occur in roughly the same order across groups and settings. There are stage-specific dynamics that begin with Pre-History, which characterize the relationship between the grantees and evaluator. The stages are: (a) Pre-History, (b) Process, (c) Development, (d) Action, (e) Findings-Compilation, and (f) Transition. The common dynamics, expectations, and activities for each stage are discussed.
Neural systems underlying reward and approach behaviors in childhood and adolescence.
Galván, Adriana
2014-01-01
Transitions into and out of adolescence are critical developmental periods of reward-seeking and approach behaviors. Converging evidence suggests that intriguing reward-related behavioral shifts are mediated by developmental changes in frontostriatal circuitry. This chapter explores how the conceptual frameworks and empirical studies in the field of developmental cognitive neuroscience have contributed to understanding reward-related behavior across development.The chapter concludes with some implications for adaptive and maladaptive behaviors that arise from these behaviors as children transition from childhood to adolescence.
Salient and Emerging Developmental Tasks in the Transition to Adulthood
ERIC Educational Resources Information Center
Roisman, Glenn I.; Masten, Ann S.; Coatsworth, J. Douglas; Tellegen, Auke
2004-01-01
Drawing on data from a normative sample of 205 children tracked into adulthood, this study examined the predictive links from 3 salient (friendship, academic, conduct) and 2 emerging (work, romantic) developmental tasks during the transition years around age 20 to adult adaptation 10 years later. Results (a) confirm the utility of salient…
ERIC Educational Resources Information Center
Rosales, Rocio; Rehfeldt, Ruth Anne
2007-01-01
The purpose of this study was to demonstrate derived manding skills in 2 adults with severe developmental disabilities and language deficits by contriving transitive conditioned establishing operations. Specifically, we evaluated whether a history of reinforced conditional discrimination learning would ultimately result in a derived mand…
Developmentally Responsive Teacher Practices across the Middle-to-High-School Transition
ERIC Educational Resources Information Center
Ellerbrock, Cheryl R.; Abbas, Bridget; DiCicco, Michael
2014-01-01
In this year-long qualitative multi-site case study, researchers identified how eighth and ninth-grade teacher practices may support students' basic and developmental needs across the middle-to-high-school transition. Data were collected throughout 2009, including individual interviews, focus group interviews, observations, and artifact data of 23…
Moilanen, Kristin L.; Shaw, Daniel S.; Maxwell, Kari L.
2011-01-01
The current study was initiated to increase understanding of developmental cascades in childhood in a sample of at-risk boys (N = 291; 52% White). Mothers, teachers, and boys reported on boys’ externalizing problems, internalizing difficulties, and academic competence. Consistent with hypotheses regarding school-related transitions, high levels of externalizing problems were associated with both low levels of academic competence and high levels of internalizing problems during the early school-age period, and with elevations in internalizing problems during the transition to adolescence. Low levels of academic competence were associated with high levels of internalizing problems in middle childhood, and with high levels of externalizing problems during the transition from elementary school to middle school. Shared risk factors played a minimal role in these developmental cascades. Results suggest that there are cascading effects of externalizing problems and academic competence in childhood and early adolescence, and that some cascading effects are more likely to occur during periods of school-related transitions. Implications of developmental cascade effects for research and intervention are discussed. PMID:20576184
Temporal remodeling of the cell cycle accompanies differentiation in the Drosophila germline.
Hinnant, Taylor D; Alvarez, Arturo A; Ables, Elizabeth T
2017-09-01
Development of multicellular organisms relies upon the coordinated regulation of cellular differentiation and proliferation. Growing evidence suggests that some molecular regulatory pathways associated with the cell cycle machinery also dictate cell fate; however, it remains largely unclear how the cell cycle is remodeled in concert with cell differentiation. During Drosophila oogenesis, mature oocytes are created through a series of precisely controlled division and differentiation steps, originating from a single tissue-specific stem cell. Further, germline stem cells (GSCs) and their differentiating progeny remain in a predominantly linear arrangement as oogenesis proceeds. The ability to visualize the stepwise events of differentiation within the context of a single tissue make the Drosophila ovary an exceptional model for study of cell cycle remodeling. To describe how the cell cycle is remodeled in germ cells as they differentiate in situ, we used the Drosophila Fluorescence Ubiquitin-based Cell Cycle Indicator (Fly-FUCCI) system, in which degradable versions of GFP::E2f1 and RFP::CycB fluorescently label cells in each phase of the cell cycle. We found that the lengths of the G1, S, and G2 phases of the cell cycle change dramatically over the course of differentiation, and identified the 4/8-cell cyst as a key developmental transition state in which cells prepare for specialized cell cycles. Our data suggest that the transcriptional activator E2f1, which controls the transition from G1 to S phase, is a key regulator of mitotic divisions in the early germline. Our data support the model that E2f1 is necessary for proper GSC proliferation, self-renewal, and daughter cell development. In contrast, while E2f1 degradation by the Cullin 4 (Cul4)-containing ubiquitin E3 ligase (CRL4) is essential for developmental transitions in the early germline, our data do not support a role for E2f1 degradation as a mechanism to limit GSC proliferation or self-renewal. Taken together, these findings provide further insight into the regulation of cell proliferation and the acquisition of differentiated cell fate, with broad implications across developing tissues. Copyright © 2017 Elsevier Inc. All rights reserved.
Ferris, M; Cohen, S; Haberman, C; Javalkar, K; Massengill, S; Mahan, J D; Kim, S; Bickford, K; Cantu, G; Medeiros, M; Phillips, A; Ferris, M T; Hooper, S R
2015-01-01
The Self-Management and Transition to Adulthood with Rx=Treatment (STARx) Questionnaire was developed to collect information on self-management and health care transition (HCT) skills, via self-report, in a broad population of adolescents and young adults (AYAs) with chronic conditions. Over several iterations, the STARx questionnaire was created with AYA, family, and health provider input. The development and pilot testing of the STARx Questionnaire took place with the assistance of 1219 AYAs with different chronic health conditions, in multiple institutions and settings over three phases: item development, pilot testing, reliability and factor structuring. The three development phases resulted in a final version of the STARx Questionnaire. The exploratory factor analysis of the third version of the 18-item STARx identified six factors that accounted for about 65% of the variance: Medication management, Provider communication, Engagement during appointments, Disease knowledge, Adult health responsibilities, and Resource utilization. Reliability estimates revealed good internal consistency and temporal stability, with the alpha coefficient for the overall scale being .80. The STARx was developmentally sensitive, with older patients scoring significantly higher on nearly every factor than younger patients. The STARx Questionnaire is a reliable, self-report tool with adequate internal consistency, temporal stability, and a strong, multidimensional factor structure. It provides another assessment strategy to measure self-management and transition skills in AYAs with chronic conditions. Copyright © 2015 Elsevier Inc. All rights reserved.
Interaction between Two Timing MicroRNAs Controls Trichome Distribution in Arabidopsis
Xue, Xue-Yi; Zhao, Bo; Chao, Lu-Men; Chen, Dian-Yang; Cui, Wen-Rui; Mao, Ying-Bo; Wang, Ling-Jian; Chen, Xiao-Ya
2014-01-01
The miR156-targeted SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL) transcription factors function as an endogenous age cue in regulating plant phase transition and phase-dependent morphogenesis, but the control of SPL output remains poorly understood. In Arabidopsis thaliana the spatial pattern of trichome is a hallmark of phase transition and governed by SPLs. Here, by dissecting the regulatory network controlling trichome formation on stem, we show that the miR171-targeted LOST MERISTEMS 1 (LOM1), LOM2 and LOM3, encoding GRAS family members previously known to maintain meristem cell polarity, are involved in regulating the SPL activity. Reduced LOM abundance by overexpression of miR171 led to decreased trichome density on stems and floral organs, and conversely, constitutive expression of the miR171-resistant LOM (rLOM) genes promoted trichome production, indicating that LOMs enhance trichome initiation at reproductive stage. Genetic analysis demonstrated LOMs shaping trichome distribution is dependent on SPLs, which positively regulate trichome repressor genes TRICHOMELESS 1 (TCL1) and TRIPTYCHON (TRY). Physical interaction between the N-terminus of LOMs and SPLs underpins the repression of SPL activity. Importantly, other growth and developmental events, such as flowering, are also modulated by LOM-SPL interaction, indicating a broad effect of the LOM-SPL interplay. Furthermore, we provide evidence that MIR171 gene expression is regulated by its targeted LOMs, forming a homeostatic feedback loop. Our data uncover an antagonistic interplay between the two timing miRNAs in controlling plant growth, phase transition and morphogenesis through direct interaction of their targets. PMID:24699192
Volling, Brenda L.
2012-01-01
Nearly 80% of children in the U.S. have at least one sibling, indicating that the birth of a baby sibling is a normative ecological transition for most children. Many clinicians and theoreticians believe the transition is stressful, constituting a developmental crisis for most children. Yet, a comprehensive review of the empirical literature on children’s adjustment over the transition to siblinghood (TTS) has not been done for several decades. The current review summarized research examining change in firstborns’ adjustment to determine whether there was evidence that the TTS was disruptive for most children. Thirty studies addressing the transition to siblinghood were found and of those studies, the evidence did not support a crisis model of developmental transitions, nor was there overwhelming evidence of consistent changes in firstborn adjustment. Although there were decreases in children’s affection and responsiveness toward mothers, the results were more equivocal for many other behaviors (e.g., sleep problems, anxiety, aggression, regression). An inspection of the scientific literature indicated there are large individual differences in children’s adjustment and that the TTS can be a time of disruption, an occasion for developmental advances, or a period of quiescence with no noticeable changes. The TTS may be a developmental turning point for some children that portends future psychopathology or growth depending on the transactions between children and the changes in the ecological context over time. A developmental ecological systems framework guided the discussion of how child, parent, and contextual factors may contribute to the prediction of firstborn children’s successful adaptation to the birth of a sibling. PMID:22289107
ERIC Educational Resources Information Center
Kramer, Jessica M.; Hwang, I-Ting; Helfrich, Christine A.; Samuel, Preethy S.; Carrellas, Ann
2018-01-01
Project "TEAM" teaches transition-age youth with developmental disabilities (DD) to identify physical and social environmental barriers and supports, generate solutions to barriers, and request modifications to increase participation. Establishing the social validity of this environment focused intervention with youth and their parents…
ERIC Educational Resources Information Center
Cullen, Jennifer M.; Simmons-Reed, Evette A.; Weaver, Lindy
2017-01-01
Barriers in acquiring, maintaining, and generalizing daily living skills are factors that contribute to discrepancies in independent living outcomes among transition age youth and young adults with intellectual and developmental disabilities (IDD). Acquisition and generalization of daily living skills empowers transition age youth and young adults…
Lenkiewicz, Kamila; Srebnicki, Tomasz; Bryńska, Anita
2016-01-01
Until the end of the nineties last century personality disorders could not be diagnosed before the age of eighteen. Nevertheless, the results of studies published in the last decade have revealed that personality disorders can be observed in children and adolescents and that personality disorders diagnosed in adult patients had been present as early as in childhood. The knowledge of possible mechanisms shaping personality disorders in childhood is unsatisfactory and needs to be expanded. Developmental psychology explains the development of abnormal personality through inappropriate attachment patterns and abnormal transitions between developmental phases. Genetic and temperamental factors are also important in the aetiology of personality disorders as well as early maladaptive schemas resulting from personal experiences and interactions with others. The aim of this article is to review the current knowledge on the mechanisms shaping the development of personality and personality disorders in childhood and adolescence.
Developmental biology of Streptomyces from the perspective of 100 actinobacterial genome sequences
Chandra, Govind; Chater, Keith F
2014-01-01
To illuminate the evolution and mechanisms of actinobacterial complexity, we evaluate the distribution and origins of known Streptomyces developmental genes and the developmental significance of actinobacteria-specific genes. As an aid, we developed the Actinoblast database of reciprocal blastp best hits between the Streptomyces coelicolor genome and more than 100 other actinobacterial genomes (http://streptomyces.org.uk/actinoblast/). We suggest that the emergence of morphological complexity was underpinned by special features of early actinobacteria, such as polar growth and the coupled participation of regulatory Wbl proteins and the redox-protecting thiol mycothiol in transducing a transient nitric oxide signal generated during physiologically stressful growth transitions. It seems that some cell growth and division proteins of early actinobacteria have acquired greater importance for sporulation of complex actinobacteria than for mycelial growth, in which septa are infrequent and not associated with complete cell separation. The acquisition of extracellular proteins with structural roles, a highly regulated extracellular protease cascade, and additional regulatory genes allowed early actinobacterial stationary phase processes to be redeployed in the emergence of aerial hyphae from mycelial mats and in the formation of spore chains. These extracellular proteins may have contributed to speciation. Simpler members of morphologically diverse clades have lost some developmental genes. PMID:24164321
Phom, Limamanen; Achumi, Bovito; Alone, Debasmita P.; Muralidhara
2014-01-01
Abstract Selective degeneration of dopaminergic neurons in the substantia nigra underlies the basic motor impairments of Parkinson's disease (PD). Curcumin has been used for centuries in traditional medicines in India. Our aim is to understand the efficacy of genotropic drug curcumin as a neuroprotective agent in PD. Analysis of different developmental stages in model organisms revealed that they are characterized by different patterns of gene expression which is similar to that of developmental stages of human. Genotropic drugs would be effective only during those life cycle stages for which their target molecules are available. Hence there exists a possibility that targets of genotropic compounds such as curcumin may not be present in all life stages. However, no reports are available in PD models illustrating the efficacy of curcumin in later phases of adult life. This is important because this is the period during which late-onset disorders such as idiopathic PD set in. To understand this paradigm, we tested the protective efficacy of curcumin in different growth stages (early, late health stage, and transition phase) in adult Drosophila flies. Results showed that it can rescue the motor defects during early stages of life but is ineffective at later phases. This observation was substantiated with the finding that curcumin treatment could replenish depleted brain dopamine levels in the PD model only during early stages of life cycle, clearly suggesting its limitation as a therapeutic agent in late-onset neurodegenerative disorders such as PD. PMID:25238331
Berthelot, Geoffroy; Foulonneau, Vincent; Marc, Andy; Antero-Jacquemin, Juliana; Noirez, Philippe; Bronikowski, Anne M.; Morgan, Theodore J.; Garland, Theodore; Carter, Patrick A.; Hersen, Pascal; Di Meglio, Jean-Marc; Toussaint, Jean-François
2017-01-01
Abstract Locomotion is one of the major physiological functions for most animals. Previous studies have described aging mechanisms linked to locomotor performance among different species. However, the precise dynamics of these age-related changes, and their interactions with development and senescence, are largely unknown. Here, we use the same conceptual framework to describe locomotor performances in Caenorhabditis elegans, Mus domesticus, Canis familiaris, Equus caballus, and Homo sapiens. We show that locomotion is a consistent biomarker of age-related changes, with an asymmetrical pattern throughout life, regardless of the type of effort or its duration. However, there is variation (i) among species for the same mode of locomotion, (ii) within species for different modes of locomotion, and (iii) among individuals of the same species for the same mode of locomotion. Age-related patterns are modulated by genetic (such as selective breeding) as well as environmental conditions (such as temperature). However, in all cases, the intersection of the rising developmental phase and the declining senescent phase reveals neither a sharp transition nor a plateau, but a smooth transition, emphasizing a crucial moment: the age at peak performance. This transition may define a specific target for future investigations on the dynamics of such biological interactions. PMID:27522057
Interplay between sugar and hormone signaling pathways modulate floral signal transduction
Matsoukas, Ianis G.
2014-01-01
NOMENCLATURE The following nomenclature will be used in this article: Names of genes are written in italicized upper-case letters, e.g., ABI4.Names of proteins are written in non-italicized upper-case letters, e.g., ABI4.Names of mutants are written in italicized lower-case letters, e.g., abi4. The juvenile-to-adult and vegetative-to-reproductive phase transitions are major determinants of plant reproductive success and adaptation to the local environment. Understanding the intricate molecular genetic and physiological machinery by which environment regulates juvenility and floral signal transduction has significant scientific and economic implications. Sugars are recognized as important regulatory molecules that regulate cellular activity at multiple levels, from transcription and translation to protein stability and activity. Molecular genetic and physiological approaches have demonstrated different aspects of carbohydrate involvement and its interactions with other signal transduction pathways in regulation of the juvenile-to-adult and vegetative-to-reproductive phase transitions. Sugars regulate juvenility and floral signal transduction through their function as energy sources, osmotic regulators and signaling molecules. Interestingly, sugar signaling has been shown to involve extensive connections with phytohormone signaling. This includes interactions with phytohormones that are also important for the orchestration of developmental phase transitions, including gibberellins, abscisic acid, ethylene, and brassinosteroids. This article highlights the potential roles of sugar-hormone interactions in regulation of floral signal transduction, with particular emphasis on Arabidopsis thaliana mutant phenotypes, and suggests possible directions for future research. PMID:25165468
Interplay between sugar and hormone signaling pathways modulate floral signal transduction.
Matsoukas, Ianis G
2014-01-01
NOMENCLATURE The following nomenclature will be used in this article: Names of genes are written in italicized upper-case letters, e.g., ABI4.Names of proteins are written in non-italicized upper-case letters, e.g., ABI4.Names of mutants are written in italicized lower-case letters, e.g., abi4. The juvenile-to-adult and vegetative-to-reproductive phase transitions are major determinants of plant reproductive success and adaptation to the local environment. Understanding the intricate molecular genetic and physiological machinery by which environment regulates juvenility and floral signal transduction has significant scientific and economic implications. Sugars are recognized as important regulatory molecules that regulate cellular activity at multiple levels, from transcription and translation to protein stability and activity. Molecular genetic and physiological approaches have demonstrated different aspects of carbohydrate involvement and its interactions with other signal transduction pathways in regulation of the juvenile-to-adult and vegetative-to-reproductive phase transitions. Sugars regulate juvenility and floral signal transduction through their function as energy sources, osmotic regulators and signaling molecules. Interestingly, sugar signaling has been shown to involve extensive connections with phytohormone signaling. This includes interactions with phytohormones that are also important for the orchestration of developmental phase transitions, including gibberellins, abscisic acid, ethylene, and brassinosteroids. This article highlights the potential roles of sugar-hormone interactions in regulation of floral signal transduction, with particular emphasis on Arabidopsis thaliana mutant phenotypes, and suggests possible directions for future research.
Seeing double: visual physiology of double-retina eye ontogeny in stomatopod crustaceans.
Feller, Kathryn D; Cohen, Jonathan H; Cronin, Thomas W
2015-03-01
Stomatopod eye development is unusual among crustaceans. Just prior to metamorphosis, an adult retina and associated neuro-processing structures emerge adjacent to the existing material in the larval compound eye. Depending on the species, the duration of this double-retina eye can range from a few hours to several days. Although this developmental process occurs in all stomatopod species observed to date, the retinal physiology and extent to which each retina contributes to the animal's visual sensitivity during this transition phase is unknown. We investigated the visual physiology of stomatopod double retinas using microspectrophotometry and electroretinogram recordings from different developmental stages of the Western Atlantic species Squilla empusa. Though microspectrophotometry data were inconclusive, we found robust ERG responses in both larval and adult retinas at all sampled time points indicating that the adult retina responds to light from the very onset of its emergence. We also found evidence of an increase in the response dynamics with ontogeny as well as an increase in sensitivity of retinal tissue during the double-retina phase relative to single retinas. These data provide an initial investigation into the ontogeny of vision during stomatopod double-retina eye development.
Volling, Brenda L
2012-05-01
Nearly 80% of children in the United States have at least 1 sibling, indicating that the birth of a baby sibling is a normative ecological transition for most children. Many clinicians and theoreticians believe the transition is stressful, constituting a developmental crisis for most children. Yet, a comprehensive review of the empirical literature on children's adjustment over the transition to siblinghood (TTS) has not been done for several decades. The current review summarizes research examining change in first borns' adjustment to determine whether there is evidence that the TTS is disruptive for most children. Thirty studies addressing the TTS were found, and of those studies, the evidence did not support a crisis model of developmental transitions, nor was there overwhelming evidence of consistent changes in firstborn adjustment. Although there were decreases in children's affection and responsiveness toward mothers, the results were more equivocal for many other behaviors (e.g., sleep problems, anxiety, aggression, regression). An inspection of the scientific literature indicated there are large individual differences in children's adjustment and that the TTS can be a time of disruption, an occasion for developmental advances, or a period of quiescence with no noticeable changes. The TTS may be a developmental turning point for some children that portends future psychopathology or growth depending on the transactions between children and the changes in the ecological context over time. A developmental ecological systems framework guided the discussion of how child, parent, and contextual factors may contribute to the prediction of firstborn children's successful adaptation to the birth of a sibling. 2012 APA, all rights reserved
ERIC Educational Resources Information Center
Moon, Sherril; Simonsen, Monica L.; Neubert, Debra A.
2011-01-01
The purpose of this exploratory study was to survey community rehabilitation providers (CRPs) to determine their perceptions of the skills, experiences, and information that transitioning youth with developmental disabilities (DD) and their families need to access supported employment (SE) services. Supervisors of SE from 12 CRPs across one state…
A Connectionist Model of a Continuous Developmental Transition in the Balance Scale Task
ERIC Educational Resources Information Center
Schapiro, Anna C.; McClelland, James L.
2009-01-01
A connectionist model of the balance scale task is presented which exhibits developmental transitions between "Rule I" and "Rule II" behavior [Siegler, R. S. (1976). Three aspects of cognitive development. "Cognitive Psychology," 8, 481-520.] as well as the "catastrophe flags" seen in data from Jansen and van der Maas [Jansen, B. R. J., & van der…
ERIC Educational Resources Information Center
Wray-Lake, Laura; Schulenberg, John; Keyes, Katherine M.; Shubert, Jennifer
2017-01-01
Despite the importance of community service for the well-being of individuals and communities, relatively little is known about the developmental course of community service during the transition to adulthood (TTA). This study tested competing hypotheses about change in community service across the TTA by estimating latent growth models from Ages…
ERIC Educational Resources Information Center
Wehman, Paul; Chan, Fong; Ditchman, Nicole; Kang, Hyun-Ju
2014-01-01
The purpose of this study was to examine the effect of supported employment intervention on the employment outcomes of transition-age youth with intellectual and developmental disabilities served by the public vocational rehabilitation system using a case-control study design. Data for this study were extracted from the Rehabilitation Services…
Timing matters: length of leave and working mothers' daily reentry regrets.
Wiese, Bettina S; Ritter, Johannes O
2012-11-01
Dealing with developmental tasks in work and family domains is an important challenge for young and middle-aged adults. We investigated a transition that has evolved into a normative task for women, namely, the retransition back to paid work following maternity leave. In a diary study with 149 mothers who had just returned to work, we examined the daily experienced regrets concerning this return. In addition to personal resources (i.e., emotional stability, feeling prepared for the transition) and financial requirements needed to return to work, daily experienced family stress predicted decisional regrets. Moreover, our results suggest that leave length is related to psychological resilience in the face of day-to-day stress experiences: Late returners reported fewer regrets in general and were unaffected by daily family stress. Return-to-work regrets, in turn, were predictive of withdrawal intentions. This underlines the relevancy of the timing of the transition back to work in terms of successful development during this life phase.
Barriers to Employment for Transition-age Youth with Developmental and Psychiatric Disabilities.
Noel, Valerie A; Oulvey, Eugene; Drake, Robert E; Bond, Gary R
2017-05-01
Youth with developmental and psychiatric disabilities encounter significant vocational challenges, even when they receive supported employment services. We examined the barriers to employment for 280 transition-age youth with disabilities enrolled in supported employment in eight community rehabilitation centers. Employment team members identified each youth's top three barriers to employment using a 21-item checklist. Lack of work experience, transportation problems, and program engagement issues represented common barriers for both youth with developmental disabilities (53, 36, and 25%) and youth with psychiatric disabilities (20, 33, and 26%). Additional common barriers among youth with developmental disabilities included cognitive problems (32%) and lack of social skills (23%) and among youth with psychiatric disabilities included poor control of psychiatric symptoms (23%). Despite receiving evidence-based employment services, youth with disabilities encounter many barriers to employment. Awareness of typical barriers for transition-age youth, including those specific to different disability groups, may help employment programs anticipate challenges and develop strategies that avoid these barriers and their effects on employment opportunities.
NASA Technical Reports Server (NTRS)
Smith, P.
1986-01-01
The Pilot Climate Data System (PCDS) was designed to support a variety of users that have been arbitrarily categorized into four groups: researchers, data producers, occasional users, and management. The expanding capabilities of the system are attracting the attention of both academic and other scientific institutions worldwide. Highlighted by progress in networking capabilities, hardware acquisitions, software developments, data set additions, and tutorial developments, exciting advances have taken place since the First PCDS Workshop. In the plans for the 1986 fiscal year, recommendations from an ad hoc users' group meeting in May 1985 and from the First PCDS workshop are apparent. This year's plans are listed, along with comments made at the users' group meeting. Although the PCDS is presently considered to be in a developmental phase, plans for making the transition to an operational phase are being implemented.
The right time to happen: play developmental divergence in the two Pan species.
Palagi, Elisabetta; Cordoni, Giada
2012-01-01
Bonobos, compared to chimpanzees, are highly motivated to play as adults. Therefore, it is interesting to compare the two species at earlier developmental stages to determine how and when these differences arise. We measured and compared some play parameters between the two species including frequency, number of partners (solitary, dyadic, and polyadic play), session length, and escalation into overt aggression. Since solitary play has a role in developing cognitive and physical skills, it is not surprising that chimpanzees and bonobos share similar developmental trajectories in the motivation to engage in this activity. The striking divergence in play developmental pathways emerged for social play. Infants of the two species showed comparable social play levels, which began to diverge during the juvenile period, a 'timing hotspot' for play development. Compared to chimpanzees, social play sessions in juvenile bonobos escalated less frequently into overt aggression, lasted longer, and frequently involved more than two partners concurrently (polyadic play). In this view, play fighting in juvenile bonobos seems to maintain a cooperative mood, whereas in juvenile chimpanzees it acquires more competitive elements. The retention of juvenile traits into adulthood typical of bonobos can be due to a developmental delay in social inhibition. Our findings show that the divergence of play ontogenetic pathways between the two Pan species and the relative emergence of play neotenic traits in bonobos can be detected before individuals reach sexual maturity. The high play motivation showed by adult bonobos compared to chimpanzees is probably the result of a long developmental process, rooted in the delicate transitional phase, which leads subjects from infancy to juvenility.
Nelissen, Hilde; Rymen, Bart; Jikumaru, Yusuke; Demuynck, Kirin; Van Lijsebettens, Mieke; Kamiya, Yuji; Inzé, Dirk; Beemster, Gerrit T S
2012-07-10
Plant growth rate is largely determined by the transition between the successive phases of cell division and expansion. A key role for hormone signaling in determining this transition was inferred from genetic approaches and transcriptome analysis in the Arabidopsis root tip. We used the developmental gradient at the maize leaf base as a model to study this transition, because it allows a direct comparison between endogenous hormone concentrations and the transitions between dividing, expanding, and mature tissue. Concentrations of auxin and cytokinins are highest in dividing tissues, whereas bioactive gibberellins (GAs) show a peak at the transition zone between the division and expansion zone. Combined metabolic and transcriptomic profiling revealed that this GA maximum is established by GA biosynthesis in the division zone (DZ) and active GA catabolism at the onset of the expansion zone. Mutants defective in GA synthesis and signaling, and transgenic plants overproducing GAs, demonstrate that altering GA levels specifically affects the size of the DZ, resulting in proportional changes in organ growth rates. This work thereby provides a novel molecular mechanism for the regulation of the transition from cell division to expansion that controls organ growth and size. Copyright © 2012 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Matuszak, Trish; And Others
This guide was developed to provide an overview of the major elements of the transition planning process from school to the adult system of supports and services for youth with developmental disabilities and their families. The workbook format is intended to enable families to be proactive at each stage of the planning process. Initial sections…
Genome-wide chromatin state transitions associated with developmental and environmental cues.
Zhu, Jiang; Adli, Mazhar; Zou, James Y; Verstappen, Griet; Coyne, Michael; Zhang, Xiaolan; Durham, Timothy; Miri, Mohammad; Deshpande, Vikram; De Jager, Philip L; Bennett, David A; Houmard, Joseph A; Muoio, Deborah M; Onder, Tamer T; Camahort, Ray; Cowan, Chad A; Meissner, Alexander; Epstein, Charles B; Shoresh, Noam; Bernstein, Bradley E
2013-01-31
Differences in chromatin organization are key to the multiplicity of cell states that arise from a single genetic background, yet the landscapes of in vivo tissues remain largely uncharted. Here, we mapped chromatin genome-wide in a large and diverse collection of human tissues and stem cells. The maps yield unprecedented annotations of functional genomic elements and their regulation across developmental stages, lineages, and cellular environments. They also reveal global features of the epigenome, related to nuclear architecture, that also vary across cellular phenotypes. Specifically, developmental specification is accompanied by progressive chromatin restriction as the default state transitions from dynamic remodeling to generalized compaction. Exposure to serum in vitro triggers a distinct transition that involves de novo establishment of domains with features of constitutive heterochromatin. We describe how these global chromatin state transitions relate to chromosome and nuclear architecture, and discuss their implications for lineage fidelity, cellular senescence, and reprogramming. Copyright © 2013 Elsevier Inc. All rights reserved.
Diverse roles of actin in C. elegans early embryogenesis
Velarde, Nathalie; Gunsalus, Kristin C; Piano, Fabio
2007-01-01
Background The actin cytoskeleton plays critical roles in early development in Caenorhabditis elegans. To further understand the complex roles of actin in early embryogenesis we use RNAi and in vivo imaging of filamentous actin (F-actin) dynamics. Results Using RNAi, we found processes that are differentially sensitive to levels of actin during early embryogenesis. Mild actin depletion shows defects in cortical ruffling, pseudocleavage, and establishment of polarity, while more severe depletion shows defects in polar body extrusion, cytokinesis, chromosome segregation, and eventually, egg production. These defects indicate that actin is required for proper oocyte development, fertilization, and a wide range of important events during early embryogenesis, including proper chromosome segregation. In vivo visualization of the cortical actin cytoskeleton shows dynamics that parallel but are distinct from the previously described myosin dynamics. Two distinct types of actin organization are observed at the cortex. During asymmetric polarization to the anterior, or the establishment phase (Phase I), actin forms a meshwork of microfilaments and focal accumulations throughout the cortex, while during the anterior maintenance phase (Phase II) it undergoes a morphological transition to asymmetrically localized puncta. The proper asymmetric redistribution is dependent on the PAR proteins, while both asymmetric redistribution and morphological transitions are dependent upon PFN-1 and NMY-2. Just before cytokinesis, actin disappears from most of the cortex and is only found around the presumptive cytokinetic furrow. Finally, we describe dynamic actin-enriched comets in the early embryo. Conclusion During early C. elegans embryogenesis actin plays more roles and its organization is more dynamic than previously described. Morphological transitions of F-actin, from meshwork to puncta, as well as asymmetric redistribution, are regulated by the PAR proteins. Results from this study indicate new insights into the cellular and developmental roles of the actin cytoskeleton. PMID:18157918
Developmental transcriptome analysis of floral transition in Rosa odorata var. gigantea.
Guo, Xuelian; Yu, Chao; Luo, Le; Wan, Huihua; Zhen, Ni; Li, Yushu; Cheng, Tangren; Wang, Jia; Pan, Huitang; Zhang, Qixiang
2018-05-07
Expression analyses revealed that floral transition of Rosa odorata var. gigantea is mainly regulated by VRN1, COLs, DELLA and KSN, with contributions by the effects of phytohormone and starch metabolism. Seasonal plants utilize changing environmental and developmental cues to control the transition from vegetative growth to flowering at the correct time of year. This study investigated global gene expression profiles at different developmental stages of Rosa odorata var. gigantea by RNA-sequencing, combined with phenotypic characterization and physiological changes. Gene ontology enrichment analysis of the differentially expressed genes (DEGs) between four different developmental stages (vegetative meristem, pre-floral meristem, floral meristem and secondary axillary buds) indicated that DNA methylation and the light reaction played a large role in inducing the rose floral transition. The expression of SUF and FLC, which are known to play a role in delaying flowering until vernalization, was down-regulated from the vegetative to the pre-floral meristem stage. In contrast, the expression of VRN1, which promotes flowering by repressing FLC expression, increased. The expression of DELLA proteins, which function as central nodes in hormone signaling pathways, and probably involve interactions between GA, auxin, and ABA to promote the floral transition, was well correlated with the expression of floral integrators, such as AGL24, COL4. We also identified DEGs associated with starch metabolism correlated with SOC1, AGL15, SPL3, AGL24, respectively. Taken together, our results suggest that vernalization and photoperiod are prominent cues to induce the rose floral transition, and that DELLA proteins also act as key regulators. The results summarized in the study on the floral transition of the seasonal rose lay a foundation for further functional demonstration, and have profound economic and ornamental values.
Adolescent Sex and Mass Media: A Developmental Approach.
ERIC Educational Resources Information Center
Chapin, John R.
2000-01-01
Media critics point to adolescents' exposure to "sexy" television and popular music. Developmental transitions lead to increased information seeking, and developmental tasks force adolescents to find information sources other than their parents, implying a link between sexy media and adolescent development. Media research informed by knowledge of…
Developmental Transition of Motherhood: Treating Postpartum Depression Using a Feminist Approach
ERIC Educational Resources Information Center
Davis-Gage, Darcie; Kettmann, Julie Jenks; Moel, Joy
2010-01-01
During the developmental lifeline for women, some individuals are affected by postpartum depression. This article describes the treatment of a Latina woman experiencing postpartum depression. The authors illustrate the feminist approach using counseling interventions that incorporate the client's developmental level, cultural background, and…
Monahan, Kathryn C.; Rhew, Isaac C.; Hawkins, J. David; Brown, Eric C.
2013-01-01
Delinquency and substance use are more likely to co-occur in adolescence compared to earlier and later developmental periods. The present study examined developmental pathways to co-occurring problem behavior from 6th-10th grade (N=2,002), testing how peer delinquency and substance use were linked to transitioning between abstaining, delinquency, substance use, and co-occurring problem behavior. Developmentally, most youth transition from abstinence to delinquent behavior, and then escalate to co-occurring problem behavior. Once co-occurring problem behavior onsets, remitting to single problem behavior or abstinence is unlikely. The impact of peers on problem behavior are domain specific when individuals transition from abstaining to a single problem behavior, but are more general with respect to escalation of and desistance from problem behavior. PMID:25506186
Using Developmental Evaluation Methods with Communities of Practice
ERIC Educational Resources Information Center
van Winkelen, Christine
2016-01-01
Purpose: This paper aims to explore the use of developmental evaluation methods with community of practice programmes experiencing change or transition to better understand how to target support resources. Design/methodology/approach: The practical use of a number of developmental evaluation methods was explored in three organizations over a…
Goswami, Usha; Fosker, Tim; Huss, Martina; Mead, Natasha; Szucs, Dénes
2011-01-01
Across languages, children with developmental dyslexia have a specific difficulty with the neural representation of the sound structure (phonological structure) of speech. One likely cause of their difficulties with phonology is a perceptual difficulty in auditory temporal processing (Tallal, 1980). Tallal (1980) proposed that basic auditory processing of brief, rapidly successive acoustic changes is compromised in dyslexia, thereby affecting phonetic discrimination (e.g. discriminating /b/ from /d/) via impaired discrimination of formant transitions (rapid acoustic changes in frequency and intensity). However, an alternative auditory temporal hypothesis is that the basic auditory processing of the slower amplitude modulation cues in speech is compromised (Goswami et al., 2002). Here, we contrast children's perception of a synthetic speech contrast (ba/wa) when it is based on the speed of the rate of change of frequency information (formant transition duration) versus the speed of the rate of change of amplitude modulation (rise time). We show that children with dyslexia have excellent phonetic discrimination based on formant transition duration, but poor phonetic discrimination based on envelope cues. The results explain why phonetic discrimination may be allophonic in developmental dyslexia (Serniclaes et al., 2004), and suggest new avenues for the remediation of developmental dyslexia. © 2010 Blackwell Publishing Ltd.
2013-01-01
Background Early childhood is recognised as a key developmental phase with implications for social, academic, health and wellbeing outcomes in later childhood and indeed throughout the adult lifespan. Community level data on inequalities in early child development are therefore required to establish the impact of government early years’ policies and programmes on children’s strengths and vulnerabilities at local and national level. This would allow local leaders to target tailored interventions according to community needs to improve children’s readiness for the transition to school. The challenge is collecting valid data on sufficient samples of children entering school to derive robust inferences about each local birth cohort’s developmental status. This information needs to be presented in a way that allows community stakeholders to understand the results, expediting the improvement of preschool programming to improve future cohorts’ development in the early years. The aim of the study was to carry out a pilot to test the feasibility and ease of use in Scotland of the 104-item teacher-administered Early Development Instrument, an internationally validated measure of children’s global development at school entry developed in Canada. Methods Phase 1 was piloted in an education district with 14 Primary 1 teachers assessing a cohort of 154 children, following which the instrument was adapted for the Scottish context (Scottish Early Development Instrument: SEDI). Phase 2 was then carried out using the SEDI. Data were analysed from a larger sample of 1090 participants, comprising all Primary 1 children within this school district, evaluated by 68 teachers. Results The SEDI displayed adequate psychometric and discriminatory properties and is appropriate for use across Scotland without any further modifications. Children in the lowest socioeconomic status quintiles were 2–3 times more likely than children in the most affluent quintile to score low in at least one developmental domain. Even in the most affluent quintile though, 17% of children were ‘developmentally vulnerable’, suggesting that those in need cannot be identified by socioeconomic status alone. Conclusions The SEDI offers a feasible means of providing communities with a holistic overview of school readiness for targeting early years’ interventions. PMID:24341526
Kohl, Stefan; Hollmann, Julien; Erban, Alexander; Kopka, Joachim; Riewe, David; Weschke, Winfriede; Weber, Hans
2015-03-01
During grain filling in barley (Hordeum vulgare L. cv. Barke) reserves are remobilized from vegetative organs. Glumes represent the vegetative tissues closest to grains, senesce late, and are involved in the conversion of assimilates. To analyse glume development and metabolism related to grain filling, parallel transcript and metabolite profiling in glumes and endosperm were performed, showing that glume metabolism and development adjusts to changing grain demands, reflected by specific signatures of metabolite and transcript abundances. Before high endosperm sink strength is established by storage product accumulation, glumes form early, intermediary sink organs, shifting then to remobilizing and exporting source organs. Metabolic and transcriptional transitions occur at two phases: first, at the onset of endosperm filling, as a consequence of endosperm sink activity and assimilate depletion in endosperm and vascular tissues; second, at late grain filling, by developmental ageing and senescence. Regulation of and transition between phases are probably governed by specific NAC and WRKY transcription factors, and both abscisic and jasmonic acid, and are accompanied by changed expression of specific nitrogen transporters. Expression and metabolite profiling suggest glume-specific mechanisms of assimilate conversion and translocation. In summary, grain filling and endosperm sink strength coordinate phase changes in glumes via metabolic, hormonal, and transcriptional control. This study provides a comprehensive view of barley glume development and metabolism, and identifies candidate genes and associated pathways, potentially important for breeding improved grain traits. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Dynamics of DNA methylation and Histone H4 acetylation during floral bud differentiation in azalea
2010-01-01
Background The ability to control the timing of flowering is a key strategy for planning production in ornamental species such as azalea, however it requires a thorough understanding of floral transition. Floral transition is achieved through a complex genetic network and regulated by multiple environmental and endogenous cues. Dynamic changes between chromatin states facilitating or inhibiting DNA transcription regulate the expression of floral induction pathways in response to environmental and developmental signals. DNA methylation and histone modifications are involved in controlling the functional state of chromatin and gene expression. Results The results of this work indicate that epigenetic mechanisms such as DNA methylation and histone H4 acetylation have opposite and particular dynamics during the transition from vegetative to reproductive development in the apical shoots of azalea. Global levels of DNA methylation and histone H4 acetylation as well as immunodetection of 5-mdC and acetylated H4, in addition to a morphological study have permitted the delimitation of four basic phases in the development of the azalea bud and allowed the identification of a stage of epigenetic reprogramming which showed a sharp decrease of whole DNA methylation similar to that is defined in other developmental processes in plants and in mammals. Conclusion The epigenetic control and reorganization of chromatin seem to be decisive for coordinating floral development in azalea. DNA methylation and H4 deacetylation act simultaneously and co-ordinately, restructuring the chromatin and regulating the gene expression during soot apical meristem development and floral differentiation. PMID:20067625
ERIC Educational Resources Information Center
Weiss, David; Freund, Alexandra M.; Wiese, Bettina S.
2012-01-01
The present research focuses on 2 factors that might help or hurt women to cope with the uncertainties associated with developmental transitions in modern societies (i.e., starting one's first job, graduating from high school, reentry to work after parental leave). We investigate (a) the role of openness to experience in coping with challenging…
ERIC Educational Resources Information Center
Hughes, Claire; Ensor, Rosie
2011-01-01
Building on an existing latent variable analysis of executive function (EF) in children (N=191, 57% boys and 43% girls) making the transition to school (Hughes et al. (2010), "Developmental Neuropsychology", vol. 35, pp. 20-36), the current study both documented average developmental improvements from 4 to 6 years of age and examined individual…
Pool desiccation and developmental thresholds in the common frog, Rana temporaria.
Lind, Martin I; Persbo, Frida; Johansson, Frank
2008-05-07
The developmental threshold is the minimum size or condition that a developing organism must have reached in order for a life-history transition to occur. Although developmental thresholds have been observed for many organisms, inter-population variation among natural populations has not been examined. Since isolated populations can be subjected to strong divergent selection, population divergence in developmental thresholds can be predicted if environmental conditions favour fast or slow developmental time in different populations. Amphibian metamorphosis is a well-studied life-history transition, and using a common garden approach we compared the development time and the developmental threshold of metamorphosis in four island populations of the common frog Rana temporaria: two populations originating from islands with only temporary breeding pools and two from islands with permanent pools. As predicted, tadpoles from time-constrained temporary pools had a genetically shorter development time than those from permanent pools. Furthermore, the variation in development time among females from temporary pools was low, consistent with the action of selection on rapid development in this environment. However, there were no clear differences in the developmental thresholds between the populations, indicating that the main response to life in a temporary pool is to shorten the development time.
ERIC Educational Resources Information Center
Price, Joseph M.; Chiapa, Amanda; Walsh, Natalia Escobar
2013-01-01
As children enter elementary school they display behavioral orientations that reveal potential developmental trajectories. Developmental transitions offer unique opportunities for examining developmental pathways and the factors that influence emerging pathways. The primary goal of this investigation was to examine characteristics of family and…
ERIC Educational Resources Information Center
Ettekal, Idean; Ladd, Gary W.
2017-01-01
To investigate the developmental course of aggression and peer victimization in childhood and adolescence, distinct subgroups of children were identified based on similarities and differences in their physical, verbal and relational aggression, and victimization. Developmental continuity and change were assessed by examining transitions within and…
Reyes-Bermudez, Alejandro; Villar-Briones, Alejandro; Ramirez-Portilla, Catalina; Hidaka, Michio; Mikheyev, Alexander S.
2016-01-01
Corals belong to the most basal class of the Phylum Cnidaria, which is considered the sister group of bilaterian animals, and thus have become an emerging model to study the evolution of developmental mechanisms. Although cell renewal, differentiation, and maintenance of pluripotency are cellular events shared by multicellular animals, the cellular basis of these fundamental biological processes are still poorly understood. To understand how changes in gene expression regulate morphogenetic transitions at the base of the eumetazoa, we performed quantitative RNA-seq analysis during Acropora digitifera’s development. We collected embryonic, larval, and adult samples to characterize stage-specific transcription profiles, as well as broad expression patterns. Transcription profiles reconstructed development revealing two main expression clusters. The first cluster grouped blastula and gastrula and the second grouped subsequent developmental time points. Consistently, we observed clear differences in gene expression between early and late developmental transitions, with higher numbers of differentially expressed genes and fold changes around gastrulation. Furthermore, we identified three coexpression clusters that represented discrete gene expression patterns. During early transitions, transcriptional networks seemed to regulate cellular fate and morphogenesis of the larval body. In late transitions, these networks seemed to play important roles preparing planulae for switch in lifestyle and regulation of adult processes. Although developmental progression in A. digitifera is regulated to some extent by differential coexpression of well-defined gene networks, stage-specific transcription profiles appear to be independent entities. While negative regulation of transcription is predominant in early development, cell differentiation was upregulated in larval and adult stages. PMID:26941230
De Caluwé, Elien; Verbeke, Lize; van Aken, Marcel; van der Heijden, Paul T; De Clercq, Barbara
2018-02-22
The inclusion of a dimensional trait model of personality pathology in DSM-5 creates new opportunities for research on developmental antecedents of personality pathology. The traits of this model can be measured with the Personality Inventory for DSM-5 (PID-5), initially developed for adults, but also demonstrating validity in adolescents. The present study adds to the growing body of literature on the psychometrics of the PID-5, by examining its structure, validity, and reliability in 187 psychiatric-referred late adolescents and emerging adults. PID-5, Big Five Inventory, and Kidscreen self-reports were provided, and 88 non-clinical matched controls completed the PID-5. Results confirm the PID-5's five-factor structure, indicate adequate psychometric properties, and underscore the construct and criterion validity, showing meaningful associations with adaptive traits and quality of life. Results are discussed in terms of the PID-5's applicability in vulnerable populations who are going through important developmental transition phases, such as the step towards early adulthood.
Keller, Thomas; Abbott, Jessica; Moritz, Thomas; Doerner, Peter
2006-03-01
Shoot branching is a major determinant of variation in plant stature. Branches, which form secondary growth axes, originate from stem cells activated in leaf axils. The initial steps by which axillary meristems (AMs) are specified and their stem cells organized are still poorly understood. We identified gain- and loss-of-function alleles at the Arabidopsis thaliana REGULATOR OF AXILLARY MERISTEMS1 (RAX1) locus. RAX1 is encoded by the Myb-like transcription factor MYB37 and is an Arabidopsis homolog of the tomato (Solanum lycopersicum) Blind gene. RAX1 is transiently expressed in a small central domain within the boundary zone separating shoot apical meristem and leaf primordia early in leaf primordium development. RAX1 genetically interacts with CUP-SHAPED COTYLEDON (CUC) genes and is required for the expression of CUC2 in the RAX1 expression domain, suggesting that RAX1 acts through CUC2. We propose that RAX1 functions to positionally specify a stem cell niche for AM formation. RAX1 also affects the timing of developmental phase transitions by negatively regulating gibberellic acid levels in the shoot apex. RAX1 thus defines a novel activity that links the specification of AM formation with the modulation of the rate of progression through developmental phases.
Differentially-dimensioned furrow formation by zygotic gene expression and the MBT
Xie, Yi
2018-01-01
Despite extensive work on the mechanisms that generate plasma membrane furrows, understanding how cells are able to dynamically regulate furrow dimensions is an unresolved question. Here, we present an in-depth characterization of furrow behaviors and their regulation in vivo during early Drosophila morphogenesis. We show that the deepening in furrow dimensions with successive nuclear cycles is largely due to the introduction of a new, rapid ingression phase (Ingression II). Blocking the midblastula transition (MBT) by suppressing zygotic transcription through pharmacological or genetic means causes the absence of Ingression II, and consequently reduces furrow dimensions. The analysis of compound chromosomes that produce chromosomal aneuploidies suggests that multiple loci on the X, II, and III chromosomes contribute to the production of differentially-dimensioned furrows, and we track the X-chromosomal contribution to furrow lengthening to the nullo gene product. We further show that checkpoint proteins are required for furrow lengthening; however, mitotic phases of the cell cycle are not strictly deterministic for furrow dimensions, as a decoupling of mitotic phases with periods of active ingression occurs as syncytial furrow cycles progress. Finally, we examined the turnover of maternal gene products and find that this is a minor contributor to the developmental regulation of furrow morphologies. Our results suggest that cellularization dynamics during cycle 14 are a continuation of dynamics established during the syncytial cycles and provide a more nuanced view of developmental- and MBT-driven morphogenesis. PMID:29337989
The Ebb and Flow of Filipino First-Time Fatherhood Transition Space: A Grounded Theory Study.
Villamor, Neil Jupiter E; de Guzman, Allan B; Matienzo, Evangeline T
2016-11-01
Fatherhood, as a developmental process, is both a human experience and a text that needs to be read. For developing nations like the Philippines, little is known about the process undergone by first-time fathers on their transition to fatherhood, and how nurses can play a significant role in assisting them. This grounded theory study purported to conceptualize the multifaceted process of transition from the lens of Filipino first-time fathers' lived experiences. A total of 20 first-time fathers from Metro Manila, Philippines, were purposively selected to take part in an individual, semistructured, and in-depth interview. The Glaserian (classical) method of analysis was specifically used, and field texts were inductively analyzed using a repertory grid. Member checking and correspondence were done to validate the findings of the study. Six surfacing stages emerged relative to the process of transition. Interestingly, The B.R.I.D.G.E. Theory of First-Time Fatherhood Transition Space describes how these fathers progress from the beholding, reorganizing, inhibiting, delivering, grasping, and embracing phases toward successful transition. This emerged theoretical model can be used in framing health care programs where the needs of fathers during this period are met and addressed. Finally, it can also be used in guiding nurses in their provision of a more empathetic care for first-time fathers. © The Author(s) 2015.
Seven Deadly Sins of Childhood: Advising Parents about Difficult Developmental Phases.
ERIC Educational Resources Information Center
Schmitt, Barton D.
1987-01-01
Seven difficult developmental phases for parents are colic, awakening at night, separation anxiety, normal exploratory behavior, normal negativism, normal poor appetite, and toilet training resistance. Principles of behavior modification and alternatives to physical punishment are given for each phase as part of the treatment plan for the…
Gan, Yinbo; Kumimoto, Rod; Liu, Chang; Ratcliffe, Oliver; Yu, Hao; Broun, Pierre
2006-06-01
As a plant shoot matures, it transitions through a series of growth phases in which successive aerial organs undergo distinct developmental changes. This process of phase change is known to be influenced by gibberellins (GAs). We report the identification of a putative transcription factor, GLABROUS INFLORESCENCE STEMS (GIS), which regulates aspects of shoot maturation in Arabidopsis thaliana. GIS loss-of-function mutations affect the epidermal differentiation of inflorescence organs, causing a premature decrease in trichome production on successive leaves, stem internodes, and branches. Overexpression has the opposite effect on trichome initiation and causes other heterochronic phenotypes, affecting flowering and juvenile-adult leaf transition and inducing the formation of rosette leaves on inflorescence stems. Genetic and gene expression analyses suggest that GIS acts in a GA-responsive pathway upstream of the trichome initiation regulator GLABROUS1 (GL1) and downstream of the GA signaling repressor SPINDLY (SPY). GIS mediates the induction of GL1 expression by GA in inflorescence organs and is antagonized in its action by the DELLA repressor GAI. The implication of GIS in the broader regulation of phase change is further suggested by the delay in flowering caused by GIS loss of function in the spy background. The discovery of GIS reveals a novel mechanism in the control of shoot maturation, through which GAs regulate cellular differentiation in plants.
Yuan, Rui; Ngai, Steven Sek-yum
2016-01-01
Drawing upon a sample of 1153 young people in Shanghai, China, this study investigates how agentic personality mediates between social capital embedded in a range of social contexts (family, friendship, association, and linking connection) and developmental outcomes during the transition to adulthood. The results of a structural equation modeling (SEM) analysis provide a good fit for the sample as a whole. The overall findings support the hypotheses that a higher level of agentic personality, including resilience, self-efficacy, and self-esteem, is associated with higher levels of developmental outcomes. Agentic personality also mediates the effects of family, friendship, associational, and linking social capital on developmental outcomes. Family social capital is predictive of university students' identity achievement and academic achievement, but not of their mental health. Linking social capital is only predictive of identity achievement. Unexpectedly, friendship social capital and associational social capital are predictive of a lower level of academic achievement and mental health, respectively, despite their positive influences on all three developmental outcomes through their significant effects on agentic personality. The study provides empirical support for the importance of social capital in promoting young people's transition to adulthood. Implications for theory, practice, and policy are also discussed. Copyright © 2015 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.
The Generation of Variation and The Developmental Basis for Evolutionary Novelty
Hallgrímsson, Benedikt; Jamniczky, Heather A.; Young, Nathan M.; Rolian, Campbell; Schmidt-Ott, Urs; Marcucio, Ralph S.
2013-01-01
Organisms exhibit an incredible diversity of form, a fact that makes the evolution of novelty seemingly self-evident. However, despite the “obvious” case for novelty, defining this concept in evolutionary terms is highly problematic, so much so that some have suggested discarding it altogether. Approaches to this problem tend to take either an adaptation or development-based perspective, but we argue here that an exclusive focus on either of these misses the original intent of the novelty concept and undermines its practical utility. We instead propose that for a feature to be novel it must have evolved both by a transition between adaptive peaks on the fitness landscape and that this transition must have overcome a previous developmental constraint. This definition focuses novelty on the explanation of apparently difficult or low probability evolutionary transitions and highlights how the integration of developmental and functional considerations is necessary to evolutionary explanation. It further reinforces that novelty is a central concern not just of evolutionary developmental biology (i.e., “evo-devo”) but of evolutionary biology more generally. We explore this definition of novelty in light of four examples that range from the obvious to subtle. PMID:22649039
Knitzer, J; Yoshikawa, H; Cauthen, N K; Aber, J L
2000-01-01
This article explores the implications of recent welfare-related policy change for the well-being of children in low-income families, and for research investigating child development processes and outcomes. It provides an overview of current welfare-related policies and explores the implications for developmental researchers. The article also synthesizes early findings from research, highlighting both overall impacts and the more nuanced evidence that while families are transitioning off welfare, only a small number are transitioning out of poverty, and a subgroup of families at risk are not faring well. It then examines, from a theoretical and methodological framework, what developmental psychopathology might bring to the study of welfare-related impacts on children in the context of this complex and changing policy landscape, and what welfare researchers might bring to the field of developmental psychopathology. The article concludes with broad recommendations for both research and policy.
The Transition to High School: Current Knowledge, Future Directions
ERIC Educational Resources Information Center
Benner, Aprile D.
2011-01-01
In the American educational system, school transitions are frequent and predictable, but they can disrupt student functioning across developmental domains. How students experience school transitions has been a focus of research for some time, but the high school transition has received less attention, and the limited research often focuses on a…
Patel, Pooja; De Boer, Leonore; Timms, Peter; Huston, Wilhelmina May
2014-08-01
Identification of the HtrA inhibitor JO146 previously enabled us to demonstrate an essential function for HtrA during the mid-replicative phase of the Chlamydia trachomatis developmental cycle. Here we extend our investigations to other members of the Chlamydia genus. C. trachomatis isolates with distinct replicative phase growth kinetics showed significant loss of viable infectious progeny after HtrA was inhibited during the replicative phase. Mid-replicative phase addition of JO146 was also significantly detrimental to Chlamydia pecorum, Chlamydia suis and Chlamydia cavie. These data combined indicate that HtrA has a conserved critical role during the replicative phase of the chlamydial developmental cycle. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Social Class, Family Formation, and Delinquency in Early Adulthood
Kuhl, Danielle C.; Chavez, Jorge M.; Swisher, Raymond R.; Wilczak, Andrew
2015-01-01
Recent research suggests increasing heterogeneity in the transition from adolescence to early adulthood. This study considers how this heterogeneity may influence delinquency between these two developmental periods. We focus on the role of family transitions, educational attainment, and employment in predicting risk of nonviolent delinquency and substance use, as well as disparities in transitions across socioeconomic status subgroups. Data are from the National Longitudinal Study of Adolescent to Adult Health (Add Health). We find that family and neighborhood advantage are negatively associated with transitions into marriage, cohabitation, and parenthood, yet positively associated with educational attainment. In addition, adolescent family and neighborhood advantage are associated with a continuation of delinquent behavior and substance use during early adulthood. In multivariate analyses, accounting for family transitions in early adulthood largely attenuates the relationship between neighborhood advantage in adolescence and delinquency in early adulthood. We conclude by discussing the implications of our findings for developmental criminology. PMID:27418713
ERIC Educational Resources Information Center
Granville, Arthur C.; And Others
This executive summary presents the major findings of Interim Report III, which reports preliminary evaluation of Project Developmental Continuity (PDC). A Head Start demonstration program, PDC is aimed at promoting greater educational and developmental continuity as children make the transition from preschool to school. The report addresses three…
ERIC Educational Resources Information Center
Lavelli, Manuela; Fogel, Alan
2005-01-01
Weekly observations documented developmental changes in mother-infant face-to-face communication between birth and 3 months. Developmental trajectories for each dyad of the duration of infant facial expressions showed a change from the dominance of Simple Attention (without other emotion expressions) to active and emotionally positive forms of…
Edwards, Joseph A.; Santos-Medellín, Christian M.; Liechty, Zachary S.; Nguyen, Bao; Lurie, Eugene; Eason, Shane; Phillips, Gregory
2018-01-01
Bacterial communities associated with roots impact the health and nutrition of the host plant. The dynamics of these microbial assemblies over the plant life cycle are, however, not well understood. Here, we use dense temporal sampling of 1,510 samples from root spatial compartments to characterize the bacterial and archaeal components of the root-associated microbiota of field grown rice (Oryza sativa) over the course of 3 consecutive growing seasons, as well as 2 sites in diverse geographic regions. The root microbiota was found to be highly dynamic during the vegetative phase of plant growth and then stabilized compositionally for the remainder of the life cycle. Bacterial and archaeal taxa conserved between field sites were defined as predictive features of rice plant age by modeling using a random forest approach. The age-prediction models revealed that drought-stressed plants have developmentally immature microbiota compared to unstressed plants. Further, by using genotypes with varying developmental rates, we show that shifts in the microbiome are correlated with rates of developmental transitions rather than age alone, such that different microbiota compositions reflect juvenile and adult life stages. These results suggest a model for successional dynamics of the root-associated microbiota over the plant life cycle. PMID:29474469
Edwards, Joseph A; Santos-Medellín, Christian M; Liechty, Zachary S; Nguyen, Bao; Lurie, Eugene; Eason, Shane; Phillips, Gregory; Sundaresan, Venkatesan
2018-02-01
Bacterial communities associated with roots impact the health and nutrition of the host plant. The dynamics of these microbial assemblies over the plant life cycle are, however, not well understood. Here, we use dense temporal sampling of 1,510 samples from root spatial compartments to characterize the bacterial and archaeal components of the root-associated microbiota of field grown rice (Oryza sativa) over the course of 3 consecutive growing seasons, as well as 2 sites in diverse geographic regions. The root microbiota was found to be highly dynamic during the vegetative phase of plant growth and then stabilized compositionally for the remainder of the life cycle. Bacterial and archaeal taxa conserved between field sites were defined as predictive features of rice plant age by modeling using a random forest approach. The age-prediction models revealed that drought-stressed plants have developmentally immature microbiota compared to unstressed plants. Further, by using genotypes with varying developmental rates, we show that shifts in the microbiome are correlated with rates of developmental transitions rather than age alone, such that different microbiota compositions reflect juvenile and adult life stages. These results suggest a model for successional dynamics of the root-associated microbiota over the plant life cycle.
McConnell, Kristopher H.; Dixon, Michael; Calvi, Brian R.
2012-01-01
DNA replication origin activity changes during development. Chromatin modifications are known to influence the genomic location of origins and the time during S phase that they initiate replication in different cells. However, how chromatin regulates origins in concert with cell differentiation remains poorly understood. Here, we use developmental gene amplification in Drosophila ovarian follicle cells as a model to investigate how chromatin modifiers regulate origins in a developmental context. We find that the histone acetyltransferase (HAT) Chameau (Chm) binds to amplicon origins and is partially required for their function. Depletion of Chm had relatively mild effects on origins during gene amplification and genomic replication compared with previous knockdown of its ortholog HBO1 in human cells, which has severe effects on origin function. We show that another HAT, CBP (Nejire), also binds amplicon origins and is partially required for amplification. Knockdown of Chm and CBP together had a more severe effect on nucleosome acetylation and amplicon origin activity than knockdown of either HAT alone, suggesting that these HATs collaborate in origin regulation. In addition to their local function at the origin, we show that Chm and CBP also globally regulate the developmental transition of follicle cells into the amplification stages of oogenesis. Our results reveal a complexity of origin epigenetic regulation by multiple HATs during development and suggest that chromatin modifiers are a nexus that integrates differentiation and DNA replication programs. PMID:22951641
Senland, Amie K; Higgins-D'Alessandro, Ann
2016-09-01
This mixed methods study investigated sociomoral reasoning, empathy, and challenging and supportive factors during the transition to adulthood in emerging adults (18-27-years-old) with autism spectrum disorder (ASD) to better understand how these variables facilitated positive developmental outcomes. Same-aged ASD (n = 22) and typically developing (TD) (n = 22) groups completed quantitative and qualitative measures assessing these constructs. Compared to the TD group, the ASD group had significantly lower sociomoral reasoning and perspective-taking, significantly higher personal distress, but similar empathic concern. Inductive content analysis showed those with ASD and better developmental outcomes more often discussed the value of informal social support and utilized perspective-taking during challenging sociomoral situations.
Rehm, Roberta S.; Fuentes-Afflick, Elena; Fisher, Lucille T.; Chesla, Catherine A.
2014-01-01
Families undertake extensive planning during transition to adulthood so youth with concomitant special health care needs and developmental disabilities will have a long-term high quality of life. Findings from an interpretive field study involving 64 youth and their parents indicated that the meaning of adulthood was functioning as independently as possible with appropriate supports. Parental priorities included protecting health, assuring safety and security in multiple realms, finding meaningful activities after high school, and establishing supportive social relationships. These priorities demonstrated the need to broaden usual health care transition goals that focus on finding adult providers and optimizing self-management. PMID:22869218
Volling, Brenda L
2005-12-01
The birth of a baby sibling is a normative life event for many children. Few studies address this important transition period and changes in the older sibling's adjustment and family relationships following the sibling's birth. The present article presents a developmental ecological systems model for studying changes in family life and the older child's adjustment following the birth of a baby sibling. Simultaneous changes occurring in the family and how these changes are interrelated over time to predict patterns of adaptation after the transition to siblinghood are underscored. Recommendations for designing longitudinal studies that take advantage of recent developments in multilevel modeling are also discussed. Copyright 2006 APA, all rights reserved).
Stagewise cognitive development: an application of catastrophe theory.
van der Maas, H L; Molenaar, P C
1992-07-01
In this article an overview is given of traditional methodological approaches to stagewise cognitive developmental research. These approaches are evaluated and integrated on the basis of catastrophe theory. In particular, catastrophe theory specifies a set of common criteria for testing the discontinuity hypothesis proposed by Piaget. Separate criteria correspond to distinct methods used in cognitive developmental research. Such criteria are, for instance, the detection of spurts in development, bimodality of test scores, and increased variability of responses during transitional periods. When a genuine stage transition is present, these criteria are expected to be satisfied. A revised catastrophe model accommodating these criteria is proposed for the stage transition in cognitive development from the preoperational to the concrete operational stage.
ERIC Educational Resources Information Center
Welchons, Leah Wildenger; McIntyre, Laura Lee
2015-01-01
The transition to kindergarten is regarded as a critical early childhood developmental milestone with important implications for later school outcomes. Despite its importance, few empirical studies examine kindergarten transition and fewer examine transition from the perspective of multiple stakeholders. The goal of the current study was to…
Transition Assessment and Planning for Youth with Severe Intellectual and Developmental Disabilities
ERIC Educational Resources Information Center
Carter, Erik W.; Brock, Matthew E.; Trainor, Audrey A.
2014-01-01
Although federal law now mandates age-appropriate transition assessment as a key component of high-quality transition planning, little research exists to guide educators on what they might learn when undertaking this process. In this study, the authors examined teacher and parent assessments of the transition-related strengths and needs of 134…
Clegg, Judy; Ansorge, Lydia; Stackhouse, Joy; Donlan, Chris
2012-10-01
This study identifies the outcomes and documents the longitudinal life experiences of adults who attended a specialist residential school for children with pervasive and complex developmental communication impairments. Semistructured interviews were carried out with 26 adult ex-pupils who had attended the school and the parents of 15 of the ex-pupils. Seven key themes were identified from the data, including (a) lack of appropriate support and the impact of this in early childhood, (b) advantages and disadvantages of specialist educational provision compared to mainstream and other provision, (c) changing impact of developmental communication impairments over time, (d) challenging transition away from specialist educational provision, (e) absence of appropriate support for adults with developmental communication impairments, (f) persisting impact of developmental communication impairments on social and emotional functioning in adult life, and (g) differences in perspective between the adult ex-pupils and their parents. Across the adult ex-pupils and their parents, the perceived reported benefits of early intervention, parental support, specialist educational provision, and guidance at times of transitions should inform current service provision for this vulnerable group of individuals and their families.
Transition to Kindergarten: Family Experiences and Involvement
ERIC Educational Resources Information Center
McIntyre, Laura Lee; Eckert, Tanya L.; Fiese, Barbara H.; DiGennaro, Florence D.; Wildenger, Leah K.
2007-01-01
The transition to kindergarten is an important developmental milestone for young children, their families, and teachers. Preparing students for successful kindergarten transition has been identified as a national priority, yet the degree to which parents are involved in kindergarten preparation is rarely considered. This study investigated the…
Marck, Adrien; Berthelot, Geoffroy; Foulonneau, Vincent; Marc, Andy; Antero-Jacquemin, Juliana; Noirez, Philippe; Bronikowski, Anne M; Morgan, Theodore J; Garland, Theodore; Carter, Patrick A; Hersen, Pascal; Di Meglio, Jean-Marc; Toussaint, Jean-François
2017-04-01
Locomotion is one of the major physiological functions for most animals. Previous studies have described aging mechanisms linked to locomotor performance among different species. However, the precise dynamics of these age-related changes, and their interactions with development and senescence, are largely unknown. Here, we use the same conceptual framework to describe locomotor performances in Caenorhabditis elegans, Mus domesticus, Canis familiaris, Equus caballus, and Homo sapiens. We show that locomotion is a consistent biomarker of age-related changes, with an asymmetrical pattern throughout life, regardless of the type of effort or its duration. However, there is variation (i) among species for the same mode of locomotion, (ii) within species for different modes of locomotion, and (iii) among individuals of the same species for the same mode of locomotion. Age-related patterns are modulated by genetic (such as selective breeding) as well as environmental conditions (such as temperature). However, in all cases, the intersection of the rising developmental phase and the declining senescent phase reveals neither a sharp transition nor a plateau, but a smooth transition, emphasizing a crucial moment: the age at peak performance. This transition may define a specific target for future investigations on the dynamics of such biological interactions. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
ERIC Educational Resources Information Center
Reitz, Anne K.; Motti-Stefanidi, Frosso; Asendorpf, Jens B.
2014-01-01
Immigrant youth differ in their adaptation, which is judged on the basis of how well they deal with developmental and acculturative tasks. While immigrant adolescents are faced with the realities of 2 different cultures, they also have to master age-salient tasks, such as self-efficacy and identity development. To get a better insight into the…
Prondvai, Edina; Stein, Koen; Osi, Attila; Sander, Martin P
2012-01-01
Rhamphorhynchus from the Solnhofen Limestones is the most prevalent long tailed pterosaur with a debated life history. Whereas morphological studies suggested a slow crocodile-like growth strategy and superprecocial volant hatchlings, the only histological study hitherto conducted on Rhamphorhynchus concluded a relatively high growth rate for the genus. These controversial conclusions can be tested by a bone histological survey of an ontogenetic series of Rhamphorhynchus. Our results suggest that Bennett's second size category does not reflect real ontogenetic stage. Significant body size differences of histologically as well as morphologically adult specimens suggest developmental plasticity. Contrasting the 'superprecocial hatchling' hypothesis, the dominance of fibrolamellar bone in early juveniles implies that hatchlings sustained high growth rate, however only up to the attainment of 30-50% and 7-20% of adult wingspan and body mass, respectively. The early fast growth phase was followed by a prolonged, slow-growth phase indicated by parallel-fibred bone deposition and lines of arrested growth in the cortex, a transition which has also been observed in Pterodaustro. An external fundamental system is absent in all investigated specimens, but due to the restricted sample size, neither determinate nor indeterminate growth could be confirmed in Rhamphorhynchus. The initial rapid growth phase early in Rhamphorhynchus ontogeny supports the non-volant nature of its hatchlings, and refutes the widely accepted 'superprecocial hatchling' hypothesis. We suggest the onset of powered flight, and not of reproduction as the cause of the transition from the fast growth phase to a prolonged slower growth phase. Rapidly growing early juveniles may have been attended by their parents, or could have been independent precocial, but non-volant arboreal creatures until attaining a certain somatic maturity to get airborne. This study adds to the understanding on the diversity of pterosaurian growth strategies.
Applying Hope Theory to Support Middle School Transitions
ERIC Educational Resources Information Center
Akos, Patrick; Kurz, Maureen Shields
2016-01-01
Middle grades transitions pose challenges to many students who meet these tasks with varying levels of success. Contemporary developmental and strengths-based literature offers Hope Theory (Snyder, 2002), a research supported approach that can mitigate risks in school transitions. This article describes how middle grades educators can apply the…
ERIC Educational Resources Information Center
Welchons, Leah Wildenger; McIntyre, Laura Lee
2017-01-01
The transition to kindergarten is regarded as a critical early childhood developmental milestone with important implications for later school outcomes. Little prior research has focused on predictors of socio-behavioral kindergarten outcomes using longitudinal research designs. Further, few studies have examined kindergarten transition using…
Disorder in the Representational Warehouse
ERIC Educational Resources Information Center
McGeer, Victoria; Schwitzgebel, Eric
2006-01-01
Although developmental psychologists are generally happy to endorse dissociations and gradualist views of development like Woolley's (2006), the design and interpretation of developmental research often suggests an implicit commitment to a cleaner, less dissociative, sudden-transition view of development. Such an implicit commitment may derive…
Developmental transitions in C. elegans larval stages.
Rougvie, Ann E; Moss, Eric G
2013-01-01
Molecular mechanisms control the timing, sequence, and synchrony of developmental events in multicellular organisms. In Caenorhabditis elegans, these mechanisms are revealed through the analysis of mutants with "heterochronic" defects: cell division or differentiation patterns that occur in the correct lineage, but simply at the wrong time. Subsets of cells in these mutants thus express temporal identities normally restricted to a different life stage. A seminal finding arising from studies of the heterochronic genes was the discovery of miRNAs; these tiny miRNAs are now a defining feature of the pathway. A series of sequentially expressed miRNAs guide larval transitions through stage-specific repression of key effector molecules. The wild-type lineage patterns are executed as discrete modules programmed between temporal borders imposed by the molting cycles. How these successive events are synchronized with the oscillatory molting cycle is just beginning to come to light. Progression through larval stages can be specifically, yet reversibly, halted in response to environmental cues, including nutrient availability. Here too, heterochronic genes and miRNAs play key roles. Remarkably, developmental arrest can, in some cases, either mask or reveal timing defects associated with mutations. In this chapter, we provide an overview of how the C. elegans heterochronic gene pathway guides developmental transitions during continuous and interrupted larval development. © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Moteki, Masato; Tsujimura, Eri; Hulley, Percy-Alexander
2017-06-01
The Antarctic myctophid fish species Electrona antarctica is believed to play a key role in the Southern Ocean food web, but there have been few studies on its early life history. This study examined the developmental changes in the external morphology and osteology of E. antarctica from the early larva to juvenile stages through the transformation phase and inferred changes in its behaviour and feeding mode. Once the larvae reached 12-13 mm body length (BL), they adopted a primordial suction feeding mode along with the acquisition of early swimming capabilities. Thereafter, both swimming and feeding functions were enhanced through fin development and ossification and acquisition of elements of the jaw and suspensorium. These processes indicate that larvae transition from the planktonic to nektonic phase upon reaching 12-13 mm BL when they enhance their both swimming and feeding abilities with growth. Transformation occurred when larvae reached 19-21 mm BL with changes such as discontinuous increases in eye diameter and upper jaw length and the appearance of photophores and dense body pigmentation. Osteological development of swimming- and feeding-related structures were mostly complete after transformation. Rapid changes in external morphology and osteology during the transformation stage are most likely related to ontogenetic vertical migration into deep waters.
Gangwar, Manali; Sood, Hemant; Chauhan, Rajinder Singh
2016-04-01
Jatropha curcas, has been projected as a major source of biodiesel due to high seed oil content (42 %). A major roadblock for commercialization of Jatropha-based biodiesel is low seed yield per inflorescence, which is affected by low female to male flower ratio (1:25-30). Molecular dissection of female flower development by analyzing genes involved in phase transitions and floral organ development is, therefore, crucial for increasing seed yield. Expression analysis of 42 genes implicated in floral organ development and sex determination was done at six floral developmental stages of a J. curcas genotype (IC561235) with inherently higher female to male flower ratio (1:8-10). Relative expression analysis of these genes was done on low ratio genotype. Genes TFL1, SUP, AP1, CRY2, CUC2, CKX1, TAA1 and PIN1 were associated with reproductive phase transition. Further, genes CUC2, TAA1, CKX1 and PIN1 were associated with female flowering while SUP and CRY2 in female flower transition. Relative expression of these genes with respect to low female flower ratio genotype showed up to ~7 folds increase in transcript abundance of SUP, TAA1, CRY2 and CKX1 genes in intermediate buds but not a significant increase (~1.25 folds) in female flowers, thereby suggesting that these genes possibly play a significant role in increased transition towards female flowering by promoting abortion of male flower primordia. The outcome of study has implications in feedstock improvement of J. curcas through functional validation and eventual utilization of key genes associated with female flowering.
Tarbox, Sarah I.; Addington, Jean; Cadenhead, Kristin S.; Cannon, Tyrone D.; Cornblatt, Barbara A.; Perkins, Diana O.; Seidman, Larry J.; Tsuang, Ming T.; Walker, Elaine F.; Heinssen, Robert; McGlashan, Thomas H.; Woods, Scott W.
2013-01-01
This study evaluates premorbid social and academic functioning in clinical high-risk individuals as predictors of transition to schizophrenia versus another psychotic disorder. Participants were 54 individuals enrolled in phase one of the North American Prodrome Longitudinal Study who over two and a half years of follow-up met criteria for schizophrenia/schizophreniform disorder (n = 28) or another psychotic disorder (n = 26). Social and academic functioning in childhood, early adolescence, and late adolescence was assessed at baseline using the Cannon-Spoor Premorbid Adjustment Scale. Social maladjustment in late adolescence predicted significantly higher odds of transition to schizophrenia versus another psychotic disorder independent of childhood and early adolescent adjustment (OR = 4.02) and conveyed unique risk over academic maladjustment (OR = 5.64). Premorbid academic maladjustment was not associated with psychotic disorder diagnosis. Results support diagnostic specificity of premorbid social dysfunction to schizophrenia in clinical high-risk youth and underscore an important role for social maladjustment in the developmental pathology of schizophrenia and its prediction. PMID:24200216
Gras, Diana E; Vidal, Elena A; Undurraga, Soledad F; Riveras, Eleodoro; Moreno, Sebastián; Dominguez-Figueroa, José; Alabadi, David; Blázquez, Miguel A; Medina, Joaquín; Gutiérrez, Rodrigo A
2018-01-23
The reproductive success of plants largely depends on the correct programming of developmental phase transitions, particularly the shift from vegetative to reproductive growth. The timing of this transition is finely regulated by the integration of an array of environmental and endogenous factors. Nitrogen is the mineral macronutrient that plants require in the largest amount, and as such its availability greatly impacts on many aspects of plant growth and development, including flowering time. We found that nitrate signaling interacts with the age-related and gibberellic acid pathways to control flowering time in Arabidopsis thaliana. We revealed that repressors of flowering time belonging to the AP2-type transcription factor family including SCHLAFMUTZE (SMZ) and SCHNARCHZAPFEN (SNZ) are important regulators of flowering time in response to nitrate. Our results support a model whereby nitrate activates SMZ and SNZ via the gibberellin pathway to repress flowering time in Arabidopsis thaliana. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.
NASA Technical Reports Server (NTRS)
di Maso, N. A.; Caiozzo, V. J.; Baldwin, K. M.
2000-01-01
The primary objective of this study was to follow the developmental time course of myosin heavy chain (MHC) isoform transitions in single fibers of the rodent plantaris muscle. Hypothyroidism was used in conjunction with single-fiber analyses to better describe a possible linkage between the neonatal and fast type IIB MHC isoforms during development. In contrast to the general concept that developmental MHC isoform transitions give rise to muscle fibers that express only a single MHC isoform, the single-fiber analyses revealed a very high degree of MHC polymorphism throughout postnatal development. In the adult state, MHC polymorphism was so pervasive that the rodent plantaris muscles contained approximately 12-15 different pools of fibers (i.e., fiber types). The degree of polymorphism observed at the single-fiber level made it difficult to determine specific developmental schemes analogous to those observed previously for the rodent soleus muscle. However, hypothyroidism was useful in that it confirmed a possible link between the developmental regulation of the neonatal and fast type IIB MHC isoforms.
ERIC Educational Resources Information Center
Lamb-Parker, Faith, Ed.; Hagen, John, Ed.; Robinson, Ruth, Ed.
This report summarizes the conference proceedings of the fifth Head Start National Research Conference. The focus of the conference was on the relationship of environment and developmental changes. Keynote topics and speakers were: "How Can We Know Environment Really Matters?" (Michael Rutter); "Creating Developmentally Appropriate…
Risk for Complicated Immigration Transition: New Diagnosis for NANDA-International.
Rifà-Ros, Rosa; Espinosa Fresnedo, Carme; Alcázar París, Mireia; Raigal Aran, Laia; Ferré Grau, Carme
2018-02-27
The objective of this article is to describe the developmental processes for the creation of the new diagnosis risk for complicated immigration transition for the NANDA-I. The study followed the recommended steps of developmental processes for NANDA-I. The identification of risk factors,which cause those who have migrated to feel vulnerable, is the result of two different research studies aimed at identifying nursing diagnosis related to the immigration process. A proposal of label, definition and risk factors of risk for complicated immigration transition. This new nursing diagnosis will reinforce the strategies for nursing interventions directed to empower immigrant people to acquire and/or develop the resources needed to cope with the immigration process. © 2018 NANDA International, Inc.
Dvořáková, Kamila; Kishida, Moé; Li, Jacinda; Elavsky, Steriani; Broderick, Patricia C; Agrusti, Mark R; Greenberg, Mark T
2017-01-01
Given the importance of developmental transitions on young adults' lives and the high rates of mental health issues among U.S. college students, first-year college students can be particularly vulnerable to stress and adversity. This pilot study evaluated the effectiveness and feasibility of mindfulness training aiming to promote first-year college students' health and wellbeing. 109 freshmen were recruited from residential halls (50% Caucasian, 66% female). Data collection was completed in November 2014. A randomized control trial was conducted utilizing the Learning to BREATHE (L2B) program, a universal mindfulness program adapted to match the developmental tasks of college transition. Participation in the pilot intervention was associated with significant increase in students' life satisfaction, and significant decrease in depression and anxiety. Marginally significant decrease was found for sleep issues and alcohol consequences. Mindfulness-based programs may be an effective strategy to enhance a healthy transition into college.
Phase transformations during the growth of paracetamol crystals from the vapor phase
NASA Astrophysics Data System (ADS)
Belyaev, A. P.; Rubets, V. P.; Antipov, V. V.; Bordei, N. S.
2014-07-01
Phase transformations during the growth of paracetamol crystals from the vapor phase are studied by differential scanning calorimetry. It is found that the vapor-crystal phase transition is actually a superposition of two phase transitions: a first-order phase transition with variable density and a second-order phase transition with variable ordering. The latter, being a diffuse phase transition, results in the formation of a new, "pretransition," phase irreversibly spent in the course of the transition, which ends in the appearance of orthorhombic crystals. X-ray diffraction data and micrograph are presented.
Friendship Experiences of Participants in a University Based Transition Program
ERIC Educational Resources Information Center
Nasr, Maya; Cranston-Gingras, Ann; Jang, Seung-Eun
2015-01-01
This study examined the nature of friendships of 14 students with intellectual and developmental disabilities participating in a university-based transition program in the United States. The transition program is a bridge between high school and adulthood, designed to foster students' self-esteem and self-confidence by providing them with training…
Transition to Middle School: Self Concept and Student Perceptions in Fourth and Fifth-Graders
ERIC Educational Resources Information Center
Hensley, Alice M.
2009-01-01
The transition from elementary to middle school is a significant period of change for adolescents and is remarkable for several reasons, including the opportunity for new experiences and the potential for other developmental changes to occur simultaneously. Existing literature on transition includes both positive and negative outcomes for…
Theories of Human Development that Enhance an Understanding of the College Transition Process
ERIC Educational Resources Information Center
Guiffrida, Douglas A.
2009-01-01
Background/Context: Although theories of human development often play a central role in K-12 pedagogical practices, evidence suggests that developmental theories have not been used extensively to understand the college transition process or to develop programs to support students during these transitions. Purpose/Objective/Research Question/Focus…
Emerging versus Emancipating: The Transition to Adulthood for Youth in Foster Care
ERIC Educational Resources Information Center
Berzin, Stephanie Cosner; Singer, Erin; Hokanson, Kimberly
2014-01-01
Emerging adulthood has been defined as a distinct developmental stage in which youth experience opportunities for identity development and transition toward independence. While this period has been examined for youth in the general population, less is known about how foster youth experience this transition. This study uses qualitative interviews…
Transitions to Adulthood for Youth with Disabilities: Emerging Themes for Practice and Research
ERIC Educational Resources Information Center
Stewart, Debra; Gorter, Jan Willem; Freeman, Matt
2013-01-01
The three common themes are emerging from recent research on positive approaches to adult transitions for youth with disabilities. The first theme acknowledges that a person's condition is only one factor that influences the developmental process of transitioning into adulthood; the second theme addresses the complexity of the numerous…
ERIC Educational Resources Information Center
Casian, Desiree Campbell
2017-01-01
For typically developing adolescents, Piaget (1932/1965), Kohlberg (1971), Vygotsky (1935/2011), and Erikson (1964) described key transitions as having happened naturally as the child aged. In adolescents with visual impairments, key transitions are often reached much later than are developmentally appropriate due to the lack of specific…
[Life-cycles, psychopathology and suicidal behaviour].
Osváth, Péter
2012-12-01
According to modern psychological theories the human life implies continuous development, the efficient solution of age-specific problems is necessary to the successful transition of age-periods. The phases of transition are very vulnerable against the accidental stressors and negative life-events. Thus the problem-solving capacity may run out, which impairs chance of the successful coping with stressful events. It may result in some negative consequences, such as different psychopathological symptoms (depression, anxiety, psychosis) or even suicidal behaviour. For that reason we have to pay special attention to the symptoms of psychological crisis and the presuicidal syndrome. In certain life-cycle transitions (such as adolescent, middle or elderly age) the personality has special vulnerability to the development of psychological and psychopathological problems. In this article the most important features of life-cycles and psychopathological symptoms are reviewed. The developmental and age-specific characteristics have special importance in understanding the background of the actual psychological crisis and improving the efficacy of the treatment. Using the complex bio-psycho-socio-spiritual approach not only the actual psychopatological problems, but the individual psychological features can be recognised. Thus the effective treatment relieves not only the actual symptoms, but will increase the chance for solving further crises.
The semaphorontic view of homology.
Havstad, Joyce C; Assis, Leandro C S; Rieppel, Olivier
2015-11-01
The relation of homology is generally characterized as an identity relation, or alternatively as a correspondence relation, both of which are transitive. We use the example of the ontogenetic development and evolutionary origin of the gnathostome jaw to discuss identity and transitivity of the homology relation under the transformationist and emergentist paradigms respectively. Token identity and consequent transitivity of homology relations are shown to be requirements that are too strong to allow the origin of genuine evolutionary novelties. We consequently introduce the concept of compositional identity that is grounded in relations prevailing between parts (organs and organ systems) of a whole (organism). We recognize an ontogenetic identity of parts within a whole throughout the sequence of successive developmental stages of those parts: this is an intra-organismal character identity maintained throughout developmental trajectory. Correspondingly, we recognize a phylogenetic identity of homologous parts within two or more organisms of different species: this is an inter-species character identity maintained throughout evolutionary trajectory. These different dimensions of character identity--ontogenetic (through development) and phylogenetic (via shared evolutionary history)--break the transitivity of homology relations. Under the transformationist paradigm, the relation of homology reigns over the entire character (-state) transformation series, and thus encompasses the plesiomorphic as well as the apomorphic condition of form. In contrast, genuine evolutionary novelties originate not through transformation of ancestral characters (-states), but instead through deviating developmental trajectories that result in alternate characters. Under the emergentist paradigm, homology is thus synonymous with synapomorphy. © 2015 The Authors. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution Published by Wiley Periodicals, Inc.
Teaching Individuals with Developmental Delays: Basic Intervention Techniques.
ERIC Educational Resources Information Center
Lovaas, O. Ivar
This teaching manual for treatment of children with developmental disabilities is divided into seven sections that address: (1) basic concepts; (2) transition into treatment; (3) early learning concepts; (4) expressive language; (5) strategies for visual learners; (6) programmatic considerations; and (7) organizational and legal issues. Among…
Romantic Relationship Patterns in Young Adulthood and Their Developmental Antecedents
ERIC Educational Resources Information Center
Rauer, Amy J.; Pettit, Gregory S.; Lansford, Jennifer E.; Bates, John E.; Dodge, Kenneth A.
2013-01-01
The delayed entry into marriage that characterizes modern society raises questions about young adults' romantic relationship trajectories and whether patterns found to characterize adolescent romantic relationships persist into young adulthood. The current study traced developmental transitions into and out of romantic relationships from age…
Americans with Developmental Disabilities: Policy Directions for the States.
ERIC Educational Resources Information Center
Wright, Barbara; King, Martha P.
This Task Force report offers recommendations to state legislatures in the following policy areas: early intervention, family support, transition services, community living, supported employment, and funding for persons with developmental disabilities. Stressed is a consumer orientation which focuses on individual and family strengths and needs.…
Wang, Yu-Chung Lawrence; Chan, Hsun-Yu; Chen, Pei-Chun
2018-02-21
We investigated the heterogeneous developmental trajectories of depressive symptoms in junior and senior high school, the transitions to different trajectories after entering senior high school, and the linkages to the development of depressive symptoms in early adulthood among Taiwanese adolescents. An eight-wave longitudinal data set was analyzed, including 2687 Taiwanese adolescents (51.2% boys, M age = 14.3 at first wave). Using a manual three-step latent transition growth mixture model, we found that a three-class solution fit the data for both junior high school (termed high-improving, cumulative, and JS-low-stable) and senior high school period (termed heightening, moderate-stable, and HS-low-stable). The depressive symptoms of most individuals maintained at a low level (i.e., low-stable) from adolescence to early adulthood; however, nearly a quarter of the adolescents reported depressive symptoms that were moderately or highly severe in senior high school and beyond. More than 30% of the participants experienced transitioning into a different developmental trajectory between junior and senior high school. When perceiving a higher level of paternal behavioral control, adolescents categorized in the high-improving class in junior high school would have a higher chance to transition to the moderate-stable class than to HS-low-stable class in senior high school. Adolescent boys and girls did not differ in the probability of transitioning between trajectories across junior and senior high school. However, a clear and consistent pattern of symptoms between late adolescence and early adulthood was not observed. These results help elucidate the heterogeneity and fluidity associated with the development of depressive symptoms between early adolescence and early adulthood in light of school transition among youths in Taiwan.
ERIC Educational Resources Information Center
Terzian, Mary A.; Moore, Kristin A.; Constance, Nicole
2014-01-01
Youth must navigate various developmental tasks as they transition to adulthood, and during this period of "emerging adulthood," young people explore roles and relationships before committing to the ones they will fill as adults. This brief seeks to identify patterns and transitions during emerging adulthood to obtain a better…
Long-Term Association between Developmental Assets and Health Behaviors
ERIC Educational Resources Information Center
Bleck, Jennifer; DeBate, Rita
2016-01-01
Introduction: Based on internal and external assets, the positive youth development approach aims to increase the capacity among adolescents to overcome challenges as they transition to adulthood. Developmental assets have been found to be positively associated with academic achievement, a variety of health promoting behaviors, and improved…
ERIC Educational Resources Information Center
Leavitt, Lewis A.; Goldson, Edward
1996-01-01
Introduces a special section of five articles that highlight new collaborative research opportunities for developmental psychologists and other biomedical researchers. Such research has focused on the transition from fetus to newborn, evaluation of early toxin exposure, and the behavioral phenotype associated with genetic syndromes. (MDM)
Developmental Coaching to Support the Transition to Self-authorship
ERIC Educational Resources Information Center
Pappas, James P.; Jerman, Jerry; Coughlin, Carolyn
2015-01-01
Constructive-developmental theorists have made the case that adults require at least a self-authored meaning-making system to thrive in today's world. This chapter shows how coaches literate in adult development and body/mind theory and practice can be powerful partners to adults on the journey to self-authorship.
Zebrafish Developmental Screening of the ToxCast™ Phase I Chemical Library
Zebrafish (Danio rerio) is an emerging toxicity screening model for both human health and ecology. As part of the Computational Toxicology Research Program of the U.S. EPA, the toxicity of the 309 ToxCast™ Phase I chemicals was assessed using a zebrafish screen for developmental ...
The menopause transition experiences of Chinese Singaporean women: an exploratory qualitative study.
Lim, Hui-Koon; Mackey, Sandra
2012-06-01
Menopause, a developmental occurrence that takes place in midlife, marks the end of a woman's fertile phase. Cultural norms, social influences, and personal perceptions related to menopause may influence its meaning and how each woman experiences this transition. Little is known about the menopausal experiences of Asian women. This study explores the menopause transition experiences of ethnic Chinese women in Singapore. Using a qualitative design, the researchers conducted audio-taped interviews in 2010 with 14 menopausal and postmenopausal Chinese Singaporean women aged 40-60 years. Thematic analysis was used to analyze interviews. Two main themes were identified: (a) experiencing symptoms and (b) managing symptoms during menopause transition. The most commonly reported symptoms were abnormal bleeding, hot flushes, and emotional changes. Most participants described their transition to be uneventful and ordinary and reported two significant symptoms at most. The strategies women used to manage their transition included using Western and traditional Chinese medical interventions and seeking support from family and friends. This study provides new insights into how ethnic Chinese women in Singapore experience menopause transition. Findings can assist nurses and healthcare workers in the local context to better understand menopausal women's needs and guide nurses to implement suitable health promotional strategies for women under their care in both hospital and community settings. Although ethnicity is not necessarily a determinant of symptom experience during menopause transition, health education for menopausal women should be based on knowledge of culture-specific practices. Nurses caring for menopausal women in hospital and community settings in Singapore should evaluate the use of medications prescribed by Western and Chinese herbal medical professionals as well as those that are self-prescribed.
Hashida, Shin-Nosuke; Itami, Taketo; Takahara, Kentaro; Hirabayashi, Takayuki; Uchimiya, Hirofumi; Kawai-Yamada, Maki
2016-11-01
NAD is a well-known co-enzyme that mediates hundreds of redox reactions and is the basis of various processes regulating cell responses to different environmental and developmental cues. The regulatory mechanism that determines the amount of cellular NAD and the rate of NAD metabolism remains unclear. We created Arabidopsis thaliana plants overexpressing the NAD synthase (NADS) gene that participates in the final step of NAD biosynthesis. NADS overexpression enhanced the activity of NAD biosynthesis but not the amounts of NAD + , NADH, NADP + or NADPH. However, the amounts of some intermediates were elevated, suggesting that NAD metabolism increased. The NAD redox state was greatly facilitated by an imbalance between NAD generation and degradation in response to bolting. Metabolite profiling and transcriptional analysis revealed that the drastic modulation of NAD redox homeostasis increased tricarboxylic acid flux, causing the ectopic generation of reactive oxygen species. Vascular bundles suffered from oxidative stress, leading to a malfunction in amino acid and organic acid transportation that caused early wilting of the flower stalk and shortened plant longevity, probably due to malnutrition. We concluded that the mechanism regulating the balance between NAD synthesis and degradation is important in the systemic plant response to developmental cues during the growth-phase transition. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Wilson loop's phase transition probed by non-local observable
NASA Astrophysics Data System (ADS)
Li, Hui-Ling; Feng, Zhong-Wen; Yang, Shu-Zheng; Zu, Xiao-Tao
2018-04-01
In order to give further insights into the holographic Van der Waals phase transition, it would be of great interest to investigate the behavior of Wilson loop across the holographic phase transition for a higher dimensional hairy black hole. We offer a possibility to proceed with a numerical calculation in order to discussion on the hairy black hole's phase transition, and show that Wilson loop can serve as a probe to detect a phase structure of the black hole. Furthermore, for a first order phase transition, we calculate numerically the Maxwell's equal area construction; and for a second order phase transition, we also study the critical exponent in order to characterize the Wilson loop's phase transition.
ERIC Educational Resources Information Center
Natsuaki, Misaki N.; Leve, Leslie D.; Mendle, Jane
2011-01-01
Menarche is a discrete, transitional event that holds considerable personal, social, biological, and developmental significance. The present longitudinal study examined both the transition and timing of menarche on the trajectory of anxiety in girls with histories of childhood maltreatment (N = 93; 63% European American, 14% multiracial, 10%…
The Transition to Adulthood of Young Adults with IDD: Parents' Joint Projects
ERIC Educational Resources Information Center
Young, Richard A.; Marshall, Sheila K.; Stainton, Tim; Wall, Jessie M.; Curle, Deirdre; Zhu, Ma; Munro, David; Murray, John; El Bouhali, Asmae; Parada, Filomena; Zaidman-Zait, Anat
2018-01-01
Introduction: Parents have found the transition to adulthood for their sons or daughters with intellectual and/or developmental disabilities (IDD) particularly challenging. The literature has not examined how parents work together and with others in face of this transition nor has it highlighted parental goals in this process. This study used a…
ERIC Educational Resources Information Center
Southward, Julie D.; Kyzar, Kathleen
2017-01-01
The purpose of this literature review was to examine transition related activities that are associated with securing competitive employment upon graduation from high school for transitioning youth with I/DD. Studies included in this review met the following required criteria: (a) participants were transition-aged individuals with I/DD and (b)…
ERIC Educational Resources Information Center
Burgin, Emma C.; DeDiego, Amanda C.; Gibbons, Melinda M.; Cihak, David F.
2017-01-01
Transition postsecondary education programs for students with intellectual disabilities create supported environments to help students with intellectual and developmental disabilities transition from high school to gainful employment and independent living. In effort to be inclusive, transition programs often include an option for students to…
Pressure dependence of band-gap and phase transitions in bulk CuX (X = Cl, Br, I)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azhikodan, Dilna; Nautiyal, Tashi; Sharma, S.
2016-05-06
Usually a phase transition, in theoretical studies, is explored or verified by studying the total energy as a function of the volume considering various plausible phases. The intersection point, if any, of the free energy vs. volume curves for the different phases is then the indicator of the phase transition(s). The question is, can the theoretical study of a single phase alone indicate a phase transition? i.e. can we look beyond the phase under consideration through such a study? Using density-functional theory, we report a novel approach to suggest phase transition(s) through theoretical study of a single phase. Copper halidesmore » have been engaged for this study. These are direct band-gap semiconductors, with zinc blende structure at ambient conditions, and are reported to exhibit many phase transitions. We show that the study of volume dependence of energy band-gap in a single phase facilitates looking beyond the phase under consideration. This, when translated to pressures, reflects the phase transition pressures for CuX (X = Cl, Br, I) with an encouraging accuracy. This work thus offers a simple, yet reliable, approach based on electronic structure calculations to investigate new semiconducting materials for phase changes under pressure.« less
NASA Astrophysics Data System (ADS)
Zhao, Bo
Phase transitions are one of the most exciting physical phenomena ever discovered. The understanding of phase transitions has long been of interest. Recently eigenstate phase transitions have been discovered and studied; they are drastically different from traditional thermal phase transitions. In eigenstate phase transitions, a sharp change is exhibited in properties of the many-body eigenstates of the Hamiltonian of a quantum system, but not the thermal equilibrium properties of the same system. In this thesis, we study two different types of eigenstate phase transitions. The first is the eigenstate phase transition within the ferromagnetic phase of an infinite-range spin model. By studying the interplay of the eigenstate thermalization hypothesis and Ising symmetry breaking, we find two eigenstate phase transitions within the ferromagnetic phase: In the lowest-temperature phase the magnetization can macroscopically oscillate by quantum tunneling between up and down. The relaxation of the magnetization is always overdamped in the remainder of the ferromagnetic phase, which is further divided into phases where the system thermally activates itself over the barrier between the up and down states, and where it quantum tunnels. The second is the many-body localization phase transition. The eigenstates on one side of the transition obey the eigenstate thermalization hypothesis; the eigenstates on the other side are many-body localized, and thus thermal equilibrium need not be achieved for an initial state even after evolving for an arbitrary long time. We study this many-body localization phase transition in the strong disorder renormalization group framework. After setting up a set of coarse-graining rules for a general one dimensional chain, we get a simple "toy model'' and obtain an almost purely analytical solution to the infinite-randomness critical fixed point renormalization group equation. We also get an estimate of the correlation length critical exponent nu ≈ 2.5.
Lee, Matthew R.; Chassin, Laurie; MacKinnon, David P.
2015-01-01
Background Research has shown a developmental process of “maturing out” of problem drinking beginning in young adulthood. Perhaps surprisingly, past studies suggests that young adult drinking reductions may be particularly pronounced among those exhibiting relatively severe forms of problem drinking earlier in emerging adulthood. This may occur because more severe problem drinkers experience stronger ameliorative effects of normative young adult role transitions like marriage. Methods The hypothesis of stronger marriage effects among more severe problem drinkers was tested using three waves of data from a large ongoing study of familial alcohol disorder (Chassin et al., 1992; N=844; 51% children of alcoholics). Results Longitudinal growth models characterized (1) the curvilinear trajectory of drinking quantity from ages 17-40, (2) effects of marriage on altering this age-related trajectory, and moderation of this effect by pre-marriage problem drinking levels (alcohol consequences and dependence symptoms). Results confirmed the hypothesis that protective marriage effects on drinking quantity trajectories would be stronger among more severe pre-marriage problem drinkers. Supplemental analyses showed that results were robust to alternative construct operationalizations and modeling approaches. Conclusions Consistent with role incompatibility theory, findings support the view of role conflict as a key mechanism of role-driven behavior change, as greater problem drinking likely conflicts more with demands of roles like marriage. This is also consistent with the developmental psychopathology view of transitions and turning points. Role transitions among already low-severity drinkers may merely represent developmental continuity of a low-risk trajectory, whereas role transitions among higher-severity problem drinkers may represent developmentally discontinuous “turning points” that divert individuals from a higher- to a lower-risk trajectory. Practically, findings support the clinical relevance of role-related “maturing out processes” by suggesting that they often reflect natural recovery from clinically significant problem drinking. Thus, understanding these processes could help clarify the nature of pathological drinking and inform interventions. PMID:26009967
Lee, Matthew R; Chassin, Laurie; MacKinnon, David P
2015-06-01
Research has shown a developmental process of "maturing out" of problem drinking beginning in young adulthood. Perhaps surprisingly, past studies suggest that young adult drinking reductions may be particularly pronounced among those exhibiting relatively severe forms of problem drinking earlier in emerging adulthood. This may occur because more severe problem drinkers experience stronger ameliorative effects of normative young adult role transitions like marriage. The hypothesis of stronger marriage effects among more severe problem drinkers was tested using 3 waves of data from a large ongoing study of familial alcohol disorder (N = 844; 51% children of alcoholics). Longitudinal growth models characterized (i) the curvilinear trajectory of drinking quantity from ages 17 to 40, (ii) effects of marriage on altering this age-related trajectory, and (iii) moderation of this effect by premarriage problem drinking levels (alcohol consequences and dependence symptoms). Results confirmed the hypothesis that protective marriage effects on drinking quantity trajectories would be stronger among more severe premarriage problem drinkers. Supplemental analyses showed that results were robust to alternative construct operationalizations and modeling approaches. Consistent with role incompatibility theory, findings support the view of role conflict as a key mechanism of role-driven behavior change, as greater problem drinking likely conflicts more with demands of roles like marriage. This is also consistent with the developmental psychopathology view of transitions and turning points. Role transitions among already low-severity drinkers may merely represent developmental continuity of a low-risk trajectory, whereas role transitions among higher-severity problem drinkers may represent developmentally discontinuous "turning points" that divert individuals from a higher- to a lower-risk trajectory. Practically, findings support the clinical relevance of role-related "maturing out processes" by suggesting that they often reflect natural recovery from clinically significant problem drinking. Thus, understanding these processes could help clarify the nature of pathological drinking and inform interventions. Copyright © 2015 by the Research Society on Alcoholism.
NASA Astrophysics Data System (ADS)
Belyaev, A. P.; Rubets, V. P.; Antipov, V. V.; Bordei, N. S.; Zarembo, V. I.
2014-03-01
We report on the structural and technological investigations of the vapor-crystal phase transition during synthesis of paracetamol films of the monoclinic system by vacuum evaporation and condensation in the temperature range 220-320 K. The complex nature of the transformation accompanied by the formation of a gel-like phase is revealed. The results are interpreted using a model according to which the vapor-crystal phase transition is not a simple first-order phase transition, but is a nonlinear superposition of two phase transitions: a first-order transition with a change in density and a second-order phase transition with a change in ordering. Micrographs of the surface of the films are obtained at different phases of formation.
Phase transitions in a multistate majority-vote model on complex networks
NASA Astrophysics Data System (ADS)
Chen, Hanshuang; Li, Guofeng
2018-06-01
We generalize the original majority-vote (MV) model from two states to arbitrary p states and study the order-disorder phase transitions in such a p -state MV model on complex networks. By extensive Monte Carlo simulations and a mean-field theory, we show that for p ≥3 the order of phase transition is essentially different from a continuous second-order phase transition in the original two-state MV model. Instead, for p ≥3 the model displays a discontinuous first-order phase transition, which is manifested by the appearance of the hysteresis phenomenon near the phase transition. Within the hysteresis loop, the ordered phase and disordered phase are coexisting, and rare flips between the two phases can be observed due to the finite-size fluctuation. Moreover, we investigate the type of phase transition under a slightly modified dynamics [Melo et al., J. Stat. Mech. (2010) P11032, 10.1088/1742-5468/2010/11/P11032]. We find that the order of phase transition in the three-state MV model depends on the degree heterogeneity of networks. For p ≥4 , both dynamics produce the first-order phase transitions.
Tsui, Lokman; Huang, Yen-Ta; Jiang, Hong-Chen; ...
2017-03-27
The study of continuous phase transitions triggered by spontaneous symmetry breaking has brought revolutionary ideas to physics. Recently, through the discovery of symmetry protected topological phases, it is realized that continuous quantum phase transition can also occur between states with the same symmetry but different topology. Here in this paper we study a specific class of such phase transitions in 1+1 dimensions – the phase transition between bosonic topological phases protected by Z n × Z n. We find in all cases the critical point possesses two gap opening relevant operators: one leads to a Landau-forbidden symmetry breaking phase transitionmore » and the other to the topological phase transition. We also obtained a constraint on the central charge for general phase transitions between symmetry protected bosonic topological phases in 1+1D.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsui, Lokman; Huang, Yen-Ta; Jiang, Hong-Chen
The study of continuous phase transitions triggered by spontaneous symmetry breaking has brought revolutionary ideas to physics. Recently, through the discovery of symmetry protected topological phases, it is realized that continuous quantum phase transition can also occur between states with the same symmetry but different topology. Here in this paper we study a specific class of such phase transitions in 1+1 dimensions – the phase transition between bosonic topological phases protected by Z n × Z n. We find in all cases the critical point possesses two gap opening relevant operators: one leads to a Landau-forbidden symmetry breaking phase transitionmore » and the other to the topological phase transition. We also obtained a constraint on the central charge for general phase transitions between symmetry protected bosonic topological phases in 1+1D.« less
As part of the chemical screening and prioritization research program of the US EPA, the ToxCast Phase II chemicals were assessed using a vertebrate screen for developmental toxicity. Zebrafish embryos (Danio rerio) were exposed in 96-well plates from late-blastula stage (6hr pos...
The semaphorontic view of homology
Assis, Leandro C.S.; Rieppel, Olivier
2015-01-01
ABSTRACT The relation of homology is generally characterized as an identity relation, or alternatively as a correspondence relation, both of which are transitive. We use the example of the ontogenetic development and evolutionary origin of the gnathostome jaw to discuss identity and transitivity of the homology relation under the transformationist and emergentist paradigms respectively. Token identity and consequent transitivity of homology relations are shown to be requirements that are too strong to allow the origin of genuine evolutionary novelties. We consequently introduce the concept of compositional identity that is grounded in relations prevailing between parts (organs and organ systems) of a whole (organism). We recognize an ontogenetic identity of parts within a whole throughout the sequence of successive developmental stages of those parts: this is an intra‐organismal character identity maintained throughout developmental trajectory. Correspondingly, we recognize a phylogenetic identity of homologous parts within two or more organisms of different species: this is an inter‐species character identity maintained throughout evolutionary trajectory. These different dimensions of character identity—ontogenetic (through development) and phylogenetic (via shared evolutionary history)—break the transitivity of homology relations. Under the transformationist paradigm, the relation of homology reigns over the entire character (‐state) transformation series, and thus encompasses the plesiomorphic as well as the apomorphic condition of form. In contrast, genuine evolutionary novelties originate not through transformation of ancestral characters (‐states), but instead through deviating developmental trajectories that result in alternate characters. Under the emergentist paradigm, homology is thus synonymous with synapomorphy. J. Exp. Zool. (Mol. Dev. Evol.) 324B: 578–587, 2015. © 2015 The Authors. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution published by Wiley Periodicals, Inc. PMID:26175214
Flower color as a model system for studies of plant evo-devo.
Sobel, James M; Streisfeld, Matthew A
2013-01-01
Even though pigmentation traits have had substantial impacts on the field of animal evolutionary developmental biology, they have played only relatively minor roles in plant evo-devo. This is surprising given the often direct connection between flower color and fitness variation mediated through the effects of pollinators. At the same time, ecological and evolutionary genetic studies have utilized the molecular resources available for the anthocyanin pathway to generate several examples of the molecular basis of putatively adaptive transitions in flower color. Despite this opportunity to synthesize experimental approaches in ecology, evolution, and developmental biology, the investigation of many fundamental questions in evo-devo using this powerful model is only at its earliest stages. For example, a long-standing question is whether predictable genetic changes accompany the repeated evolution of a trait. Due to the conserved nature of the biochemical and regulatory control of anthocyanin biosynthesis, it has become possible to determine whether, and under what circumstances, different types of mutations responsible for flower color variation are preferentially targeted by natural selection. In addition, because plants use anthocyanin and related compounds in vegetative tissue for other important physiological functions, the identification of naturally occurring transitions from unpigmented to pigmented flowers provides the opportunity to examine the mechanisms by which regulatory networks are co-opted into new developmental domains. Here, we review what is known about the ecological and molecular basis of anthocyanic flower color transitions in natural systems, focusing on the evolutionary and developmental features involved. In doing so, we provide suggestions for future work on this trait and suggest that there is still much to be learned from the evolutionary development of flower color transitions in nature.
Infancy to Early Childhood: Genetic and Environmental Influences on Developmental Change.
ERIC Educational Resources Information Center
Emde, Robert N., Ed.; Hewitt, John K., Ed.
This book analyzes the MacArthur Longitudinal Twin Study, a collaborative study by leading developmental scientists and behavioral geneticists on the transition from infancy to early childhood. Part 1 of the book describes the twin method and procedures used and introduces the analytic strategies. Parts 2 through 4 present results related to…
ERIC Educational Resources Information Center
Morsanyi, Kinga; Devine, Amy; Nobes, Alison; Szucs, Denes
2013-01-01
This study examined performance on transitive inference problems in children with developmental dyscalculia (DD), typically developing controls matched on IQ, working memory and reading skills, and in children with outstanding mathematical abilities. Whereas mainstream approaches currently consider DD as a domain-specific deficit, we hypothesized…
ERIC Educational Resources Information Center
Lindstrom, Lauren; Hirano, Kara A.; McCarthy, Colleen; Alverson, Charlotte Y.
2014-01-01
This study examined career development and early employment experiences for four young adults with intellectual and developmental disabilities. Researchers used a multiple-method, multiple case-study longitudinal design to explore career development within the context of family systems, high school and transition programs, adult services, and…
The Mistakes We Make and How We Correct Them: What I've Learned as a Consultant
ERIC Educational Resources Information Center
Boylan, Hunter R.
2009-01-01
This manuscript describes five of the most common mistakes made in developmental education programs based on the author's experiences, which include consulting at over 200 community colleges. These mistakes include failing to create a seamless transition, failing to train adjunct instructors, failing to coordinate developmental programs, failing…
ERIC Educational Resources Information Center
Carter, Erik W.; Asmus, Jennifer; Moss, Colleen K.
2013-01-01
Friendships are important not only to youth development but also to the growth and expansion of social networks. Although there has long been acknowledgment of this importance for youth, such relationships can be especially elusive for transition-age students with autism, intellectual disability, and other developmental disabilities. This article…
ERIC Educational Resources Information Center
Lotan, Gurit; Ells, Carolyn
2010-01-01
In this article, the authors challenge professionals to re-examine assumptions about basic concepts and their implications in supporting adults with intellectual and developmental disabilities. The authors focus on decisions with significant implications, such as planning transition from school to adult life, changing living environments, and…
ERIC Educational Resources Information Center
What Works Clearinghouse, 2016
2016-01-01
"First year experience courses for students in developmental education" are designed to ease the transition to college by providing academic and social development supports. Although course content and focus may vary, most are designed to introduce students to campus resources, provide training in time management and study skills, and…
Ettekal, Idean; Ladd, Gary W
2017-09-01
To investigate the developmental course of aggression and peer victimization in childhood and adolescence, distinct subgroups of children were identified based on similarities and differences in their physical, verbal and relational aggression, and victimization. Developmental continuity and change were assessed by examining transitions within and between subgroups from Grades 1 to 11. This longitudinal study consisted of 482 children (50% females) and was based on peer report data on multiple forms of aggression and peer victimization. Using person-centered methods including latent profile and latent transition analyses, most of the identified subgroups were distinguishable by their frequencies (i.e., levels) of aggression and victimization, rather than forms (physical, verbal, and relational), with the exception of 1 group that appeared to be more form-specific. Across subgroups, multiple developmental patterns emerged characterized as early and late-onset, social interactional continuity, desistance, and heterotypic pathways. Collectively, these pathways support the perspective that the development of aggression and peer victimization in childhood and adolescence is characterized by heterogeneity. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Li, Kang; Tian, Ling; Guo, Zhongjian; Guo, Sanyou; Zhang, Jianzhen; Gu, Shi-Hong; Palli, Subba R.; Cao, Yang; Li, Sheng
2016-01-01
The temporal control mechanisms that precisely control animal development remain largely elusive. The timing of major developmental transitions in insects, including molting and metamorphosis, is coordinated by the steroid hormone 20-hydroxyecdysone (20E). 20E involves feedback loops to maintain pulses of ecdysteroid biosynthesis leading to its upsurge, whereas the underpinning molecular mechanisms are not well understood. Using the silkworm Bombyx mori as a model, we demonstrated that E75, the 20E primary response gene, mediates a regulatory loop between ecdysteroid biosynthesis and 20E signaling. E75 isoforms A and C directly bind to retinoic acid receptor-related response elements in Halloween gene promoter regions to induce gene expression thus promoting ecdysteroid biosynthesis and developmental transition, whereas isoform B antagonizes the transcriptional activity of isoform A/C through physical interaction. As the expression of E75 isoforms is differentially induced by 20E, the E75-mediated regulatory loop represents a fine autoregulation of steroidogenesis, which contributes to the precise control of developmental timing. PMID:27365399
Study of a structural phase transition by two dimensional Fourier transform NMR method
NASA Astrophysics Data System (ADS)
Trokiner, A.; Man, P. P.; Théveneau, H.; Papon, P.
1985-09-01
The fluoroperovskite RbCaF 3 undergoes a structural phase transition at 195.5 K, from a cubic phase where the 87Rb nuclei have no quadrupolar interaction ( ωQ= 0) to a tetragonal phase where ω Q ≠ O. The transition is weakly first-order. A two-dimensional FT NMR experiment has been performed on 87Rb ( I = {3}/{2}) in a single crystal in both phases and in the vicinity of the phase transition. Our results show the coexistence of the two phases at the phase transition.
Changes in academic adjustment and relational self-worth across the transition to middle school.
Ryan, Allison M; Shim, Sungok Serena; Makara, Kara A
2013-09-01
Moving from elementary to middle school is a time of great transition for many early adolescents. The present study examined students' academic adjustment and relational self-worth at 6-month intervals for four time points spanning the transition from elementary school to middle school (N = 738 at time 1; 53 % girls; 54 % African American, 46 % European American). Grade point average (G.P.A.), intrinsic value for schoolwork, self-worth around teachers, and self-worth around friends were examined at every time point. The overall developmental trajectory indicated that G.P.A. and intrinsic value for schoolwork declined. The overall decline in G.P.A. was due to changes at the transition and across the first year in middle school. Intrinsic value declined across all time points. Self-worth around teachers was stable. The developmental trends were the same regardless of gender or ethnicity except for self-worth around friends, which was stable for European American students and increased for African American students due to an ascent at the transition into middle school. Implications for the education of early adolescents in middle schools are discussed.
Kerner, Boris S; Klenov, Sergey L; Schreckenberg, Michael
2014-05-01
Physical features of induced phase transitions in a metastable free flow at an on-ramp bottleneck in three-phase and two-phase cellular automaton (CA) traffic-flow models have been revealed. It turns out that at given flow rates at the bottleneck, to induce a moving jam (F → J transition) in the metastable free flow through the application of a time-limited on-ramp inflow impulse, in both two-phase and three-phase CA models the same critical amplitude of the impulse is required. If a smaller impulse than this critical one is applied, neither F → J transition nor other phase transitions can occur in the two-phase CA model. We have found that in contrast with the two-phase CA model, in the three-phase CA model, if the same smaller impulse is applied, then a phase transition from free flow to synchronized flow (F → S transition) can be induced at the bottleneck. This explains why rather than the F → J transition, in the three-phase theory traffic breakdown at a highway bottleneck is governed by an F → S transition, as observed in real measured traffic data. None of two-phase traffic-flow theories incorporates an F → S transition in a metastable free flow at the bottleneck that is the main feature of the three-phase theory. On the one hand, this shows the incommensurability of three-phase and two-phase traffic-flow theories. On the other hand, this clarifies why none of the two-phase traffic-flow theories can explain the set of fundamental empirical features of traffic breakdown at highway bottlenecks.
Nonlinear Developmental trajectory of fear learning and memory
King, Elizabeth C.; Pattwell, Siobhan S.; Sun, Alice; Glatt, Charles E.; Lee, Francis S.
2013-01-01
The transition into and out of adolescence represents a unique developmental period during which neuronal circuits are particularly susceptible to modification by experience. Adolescence is associated with an increased incidence of anxiety disorders in humans,1–3 and an estimated 75% of adults with fear-related disorders met diagnostic criteria as children and adolescents.4,5 Conserved neural circuitry between rodents and humans has facilitated neurodevelopmental studies of behavioral and molecular processes associated with fear learning and memory, which lie at the heart of many anxiety disorders. Here, we review the non-linear developmental aspects of fear learning and memory during a transition period into and out of adolescence and provide a discussion of the molecular mechanisms that may underlie these alterations in behavior. We provide a model that may help to inform novel treatment strategies for children and adolescents with fear-related disorders. PMID:24176014
ERIC Educational Resources Information Center
Chen, Xidan; Morin, Alexandre J. S.; Parker, Philip D.; Marsh, Herbert W.
2015-01-01
This study evaluated the nature of the life satisfaction construct with an emphasis on the comparison between a global or domain-specific operationalization during the transition from adolescence to adulthood. A combination of person-centered and variable-centered methods were used to analyze 7 waves of data covering the postschool transition from…
ERIC Educational Resources Information Center
Tomasik, Martin J.; Hardy, Sam; Haase, Claudia M.; Heckhausen, Jutta
2009-01-01
The transition from school to work is a central developmental task with long-term implications for the financial and social status of individuals. We argue that dynamic adjustments of aspirations play a decisive role for a successful outcome of the school to work transition, particularly in the context of the German vocational training system.…
ERIC Educational Resources Information Center
Jackson, Courtney
2010-01-01
The transitional period between elementary and middle school remains an area of concern for educators. Many middle schools are plagued with retention issues, core class failures, increased discipline problems, and decreased attendance rates among students during their transitional period. The issues increase for students labeled as at-risk…
ERIC Educational Resources Information Center
Volling, Brenda L.
2012-01-01
Nearly 80% of children in the United States have at least 1 sibling, indicating that the birth of a baby sibling is a normative ecological transition for most children. Many clinicians and theoreticians believe the transition is stressful, constituting a developmental crisis for most children. Yet, a comprehensive review of the empirical…
Investigation of phase transitions in LiK 1- x(NH 4) xSO 4 mixed crystal
NASA Astrophysics Data System (ADS)
Freire, P. T. C.; Paraguassu, W.; Silva, A. P.; Pilla, O.; Teixeira, A. M. R.; Sasaki, J. M.; Mendes Filho, J.; Guedes, I.; Melo, F. E. A.
1999-02-01
We present Raman scattering results on LiK 1- x(NH 4) xSO 4 mixed crystal for temperatures between 100 and 300 K. We observed that in this temperature range the crystal undergoes two different phase transitions, which we call Bansal and Tomaszewski phase transitions. The introduction of ammonium ions in the potassium sites increases the C 66→C 3v4 (Bansal) phase transition temperature and decreases the Tomaszewski phase transition temperature. Finally, the most impressive effect of the presence of ammonium impurity in the LiKSO 4 structure is the decrease in the temperature hysteresis of Bansal phase transition and the almost complete destruction of hysteresis in the Tomaszewski phase transition, leading to a high temperature range of stability of the trigonal phase.
Structural phase transition in monolayer MoTe2 driven by electrostatic doping
NASA Astrophysics Data System (ADS)
Wang, Ying; Xiao, Jun; Zhu, Hanyu; Li, Yao; Alsaid, Yousif; Fong, King Yan; Zhou, Yao; Wang, Siqi; Shi, Wu; Wang, Yuan; Zettl, Alex; Reed, Evan J.; Zhang, Xiang
2017-10-01
Monolayers of transition-metal dichalcogenides (TMDs) exhibit numerous crystal phases with distinct structures, symmetries and physical properties. Exploring the physics of transitions between these different structural phases in two dimensions may provide a means of switching material properties, with implications for potential applications. Structural phase transitions in TMDs have so far been induced by thermal or chemical means; purely electrostatic control over crystal phases through electrostatic doping was recently proposed as a theoretical possibility, but has not yet been realized. Here we report the experimental demonstration of an electrostatic-doping-driven phase transition between the hexagonal and monoclinic phases of monolayer molybdenum ditelluride (MoTe2). We find that the phase transition shows a hysteretic loop in Raman spectra, and can be reversed by increasing or decreasing the gate voltage. We also combine second-harmonic generation spectroscopy with polarization-resolved Raman spectroscopy to show that the induced monoclinic phase preserves the crystal orientation of the original hexagonal phase. Moreover, this structural phase transition occurs simultaneously across the whole sample. This electrostatic-doping control of structural phase transition opens up new possibilities for developing phase-change devices based on atomically thin membranes.
Schaeffer, Scott M; Christian, Ryan; Castro-Velasquez, Nohely; Hyden, Brennan; Lynch-Holm, Valerie; Dhingra, Amit
2017-10-01
Comparative ultrastructural developmental time-course analysis has identified discrete stages at which the fruit plastids undergo structural and consequently functional transitions to facilitate subsequent development-guided understanding of the complex plastid biology. Plastids are the defining organelle for a plant cell and are critical for myriad metabolic functions. The role of leaf plastid, chloroplast, is extensively documented; however, fruit plastids-chromoplasts-are poorly understood, especially in the context of the diverse metabolic processes operating in these diverse plant organs. Recently, in a comparative study of the predicted plastid-targeted proteomes across seven plant species, we reported that each plant species is predicted to harbor a unique set of plastid-targeted proteins. However, the temporal and developmental context of these processes remains unknown. In this study, an ultrastructural analysis approach was used to characterize fruit plastids in the epidermal and collenchymal cell layers at 11 developmental timepoints in three genotypes of apple (Malus × domestica Borkh.): chlorophyll-predominant 'Granny Smith', carotenoid-predominant 'Golden Delicious', and anthocyanin-predominant 'Top Red Delicious'. Plastids transitioned from a proplastid-like plastid to a chromoplast-like plastid in epidermis cells, while in the collenchyma cells, they transitioned from a chloroplast-like plastid to a chloro-chromo-amyloplast plastid. Plastids in the collenchyma cells of the three genotypes demonstrated a diverse array of structures and features. This study enabled the identification of discrete developmental stages during which specific functions are most likely being performed by the plastids as indicated by accumulation of plastoglobuli, starch granules, and other sub-organeller structures. Information regarding the metabolically active developmental stages is expected to facilitate biologically relevant omics studies to unravel the complex biochemistry of plastids in perennial non-model systems.
Experimental Evidence for a Structural-Dynamical Transition in Trajectory Space.
Pinchaipat, Rattachai; Campo, Matteo; Turci, Francesco; Hallett, James E; Speck, Thomas; Royall, C Patrick
2017-07-14
Among the key insights into the glass transition has been the identification of a nonequilibrium phase transition in trajectory space which reveals phase coexistence between the normal supercooled liquid (active phase) and a glassy state (inactive phase). Here, we present evidence that such a transition occurs in experiments. In colloidal hard spheres, we find a non-Gaussian distribution of trajectories leaning towards those rich in locally favored structures (LFSs), associated with the emergence of slow dynamics. This we interpret as evidence for a nonequilibrium transition to an inactive LFS-rich phase. Reweighting trajectories reveals a first-order phase transition in trajectory space between a normal liquid and a LFS-rich phase. We also find evidence for a purely dynamical transition in trajectory space.
International Student-Athlete Adjustment Issues: Advising Recommendations for Effective Transitions
ERIC Educational Resources Information Center
Newell, Emily M.
2015-01-01
Through an extensive literature review, student--athlete college transition issues as well as concerns of international student-athletes are identified. Research on general student advising, developmental advising, and mentoring literature points to successful tactics for assisting domestic students, international students, and student-athletes…
Counseling Issues for Adult Women in Career Transition
ERIC Educational Resources Information Center
Ronzio, Cynthia R.
2012-01-01
This article addresses current psychosocial issues facing women in career transition and the implications of those issues for career counselors. Specifically, psychosocial developmental trajectories, the roles of family and relationships, the importance of underlying physical and mental health issues, and sociocultural and contextual stressors are…
Dietary and developmental shifts in butterfly-associated bacterial communities
2018-01-01
Bacterial communities associated with insects can substantially influence host ecology, evolution and behaviour. Host diet is a key factor that shapes bacterial communities, but the impact of dietary transitions across insect development is poorly understood. We analysed bacterial communities of 12 butterfly species across different developmental stages, using amplicon sequencing of the 16S rRNA gene. Butterfly larvae typically consume leaves of a single host plant, whereas adults are more generalist nectar feeders. Thus, we expected bacterial communities to vary substantially across butterfly development. Surprisingly, only few species showed significant dietary and developmental transitions in bacterial communities, suggesting weak impacts of dietary transitions across butterfly development. On the other hand, bacterial communities were strongly influenced by butterfly species and family identity, potentially due to dietary and physiological variation across the host phylogeny. Larvae of most butterfly species largely mirrored bacterial community composition of their diets, suggesting passive acquisition rather than active selection. Overall, our results suggest that although butterflies harbour distinct microbiomes across taxonomic groups and dietary guilds, the dramatic dietary shifts that occur during development do not impose strong selection to maintain distinct bacterial communities across all butterfly hosts. PMID:29892359
A stress-induced phase transition model for semi-crystallize shape memory polymer
NASA Astrophysics Data System (ADS)
Guo, Xiaogang; Zhou, Bo; Liu, Liwu; Liu, Yanju; Leng, Jinsong
2014-03-01
The developments of constitutive models for shape memory polymer (SMP) have been motivated by its increasing applications. During cooling or heating process, the phase transition which is a continuous time-dependent process happens in semi-crystallize SMP and the various individual phases form at different temperature and in different configuration. Then, the transformation between these phases occurred and shape memory effect will emerge. In addition, stress applied on SMP is an important factor for crystal melting during phase transition. In this theory, an ideal phase transition model considering stress or pre-strain is the key to describe the behaviors of shape memory effect. So a normal distributed model was established in this research to characterize the volume fraction of each phase in SMP during phase transition. Generally, the experiment results are partly backward (in heating process) or forward (in cooling process) compared with the ideal situation considering delay effect during phase transition. So, a correction on the normal distributed model is needed. Furthermore, a nonlinear relationship between stress and phase transition temperature Tg is also taken into account for establishing an accurately normal distributed phase transition model. Finally, the constitutive model which taking the stress as an influence factor on phase transition was also established. Compared with the other expressions, this new-type model possesses less parameter and is more accurate. For the sake of verifying the rationality and accuracy of new phase transition and constitutive model, the comparisons between the simulated and experimental results were carried out.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renlund, Anita Mariana; Tappan, Alexander Smith; Miller, Jill C.
The HMX {beta}-{delta} solid-solid phase transition, which occurs as HMX is heated near 170 C, is linked to increased reactivity and sensitivity to initiation. Thermally damaged energetic materials (EMs) containing HMX therefore may present a safety concern. Information about the phase transition is vital to predictive safety models for HMX and HMX-containing EMs. We report work on monitoring the phase transition with real-time Raman spectroscopy aimed towards obtaining a better understanding of physical properties of HMX through the phase transition. HMX samples were confined in a cell of minimal free volume in a displacement-controlled or load-controlled arrangement. The cell wasmore » heated and then cooled at controlled rates while real-time Raman spectroscopic measurements were performed. Raman spectroscopy provides a clear distinction between the phases of HMX because the vibrational transitions of the molecule change with conformational changes associated with the phase transition. Temperature of phase transition versus load data are presented for both the heating and cooling cycles in the load-controlled apparatus, and general trends are discussed. A weak dependence of the temperature of phase transition on load was discovered during the heating cycle, with higher loads causing the phase transition to occur at a higher temperature. This was especially true in the temperature of completion of phase transition data as opposed to the temperature of onset of phase transition data. A stronger dependence on load was observed in the cooling cycle, with higher loads causing the reverse phase transitions to occur at a higher cooling temperature. Also, higher loads tended to cause the phase transition to occur over a longer period of time in the heating cycle and over a shorter period of time in the cooling cycle. All three of the pure HMX phases ({alpha}, {beta} and {delta}) were detected on cooling of the heated samples, either in pure form or as a mixture.« less
A Lack of Continuity in Education, Training, and Practice Violates the "Do No Harm" Principle.
Englander, Robert; Carraccio, Carol
2018-03-01
The paradigm shift to competency-based medical education (CBME) is under way, but incomplete implementation is blunting the potential impact on learning and patient outcomes. The fundamental principles of CBME call for standardizing outcomes addressing population health needs, then allowing time-variable progression to achieving them. Operationalizing CBME principles requires continuity within and across phases of the education, training, and practice continuum. However, the piecemeal origin of the phases of the "continuum" has resulted in a sequence of undergraduate to graduate medical education to practice that may be continuous temporally but bears none of the integration of a true continuum.With these timed interruptions during phase transitions, learning is not reinforced because of a failure to integrate experiences. Brief block rotations for learners and ever-shorter supervisory assignments for faculty preclude the development of relationships. Without these relationships, feedback falls on deaf ears. Block rotations also disrupt learners' relationships with patients. The harms resulting from such a system include decreases in patient satisfaction with their care and learner satisfaction with their work. Learners in this block system also demonstrate an erosion of empathy compared with those in innovative longitudinal training models. In addition, higher patient mortality during intern transitions has been demonstrated.The current medical education system is violating the first principle of medicine: "Do no harm." Full implementation of competency-based, time-variable education and training, with fixed outcomes aligned with population health needs, continuity in learning and relationships, and support from a developmental program of assessment, holds great potential to stop this harm.
Al-Hinai, Mohab A.; Jones, Shawn W.
2014-01-01
Sporulation in the model endospore-forming organism Bacillus subtilis proceeds via the sequential and stage-specific activation of the sporulation-specific sigma factors, σH (early), σF, σE, σG, and σK (late). Here we show that the Clostridium acetobutylicum σK acts both early, prior to Spo0A expression, and late, past σG activation, thus departing from the B. subtilis model. The C. acetobutylicum sigK deletion (ΔsigK) mutant was unable to sporulate, and solventogenesis, the characteristic stationary-phase phenomenon for this organism, was severely diminished. Transmission electron microscopy demonstrated that the ΔsigK mutant does not develop an asymmetric septum and produces no granulose. Complementation of sigK restored sporulation and solventogenesis to wild-type levels. Spo0A and σG proteins were not detectable by Western analysis, while σF protein levels were significantly reduced in the ΔsigK mutant. spo0A, sigF, sigE, sigG, spoIIE, and adhE1 transcript levels were all downregulated in the ΔsigK mutant, while those of the sigH transcript were unaffected during the exponential and transitional phases of culture. These data show that σK is necessary for sporulation prior to spo0A expression. Plasmid-based expression of spo0A in the ΔsigK mutant from a nonnative promoter restored solventogenesis and the production of Spo0A, σF, σE, and σG, but not sporulation, which was blocked past the σG stage of development, thus demonstrating that σK is also necessary in late sporulation. sigK is expressed very early at low levels in exponential phase but is strongly upregulated during the middle to late stationary phase. This is the first sporulation-specific sigma factor shown to have two developmentally separated roles. PMID:24187083
Al-Hinai, Mohab A; Jones, Shawn W; Papoutsakis, Eleftherios T
2014-01-01
Sporulation in the model endospore-forming organism Bacillus subtilis proceeds via the sequential and stage-specific activation of the sporulation-specific sigma factors, σ(H) (early), σ(F), σ(E), σ(G), and σ(K) (late). Here we show that the Clostridium acetobutylicum σ(K) acts both early, prior to Spo0A expression, and late, past σ(G) activation, thus departing from the B. subtilis model. The C. acetobutylicum sigK deletion (ΔsigK) mutant was unable to sporulate, and solventogenesis, the characteristic stationary-phase phenomenon for this organism, was severely diminished. Transmission electron microscopy demonstrated that the ΔsigK mutant does not develop an asymmetric septum and produces no granulose. Complementation of sigK restored sporulation and solventogenesis to wild-type levels. Spo0A and σ(G) proteins were not detectable by Western analysis, while σ(F) protein levels were significantly reduced in the ΔsigK mutant. spo0A, sigF, sigE, sigG, spoIIE, and adhE1 transcript levels were all downregulated in the ΔsigK mutant, while those of the sigH transcript were unaffected during the exponential and transitional phases of culture. These data show that σ(K) is necessary for sporulation prior to spo0A expression. Plasmid-based expression of spo0A in the ΔsigK mutant from a nonnative promoter restored solventogenesis and the production of Spo0A, σ(F), σ(E), and σ(G), but not sporulation, which was blocked past the σ(G) stage of development, thus demonstrating that σ(K) is also necessary in late sporulation. sigK is expressed very early at low levels in exponential phase but is strongly upregulated during the middle to late stationary phase. This is the first sporulation-specific sigma factor shown to have two developmentally separated roles.
ERIC Educational Resources Information Center
Serido, Joyce; Shim, Soyeon; Tang, Chuanyi
2013-01-01
This study proposes a developmental model of financial capability to understand the process by which young adults acquire the financial knowledge and behaviors needed to manage full-time adult social roles and responsibilities. The model integrates financial knowledge, financial self-beliefs, financial behavior, and well-being into a single…
Change in Knowledge and Attitudes among Students in an Undergraduate Developmental Psychology Class
ERIC Educational Resources Information Center
Sohr-Preston, Sara
2015-01-01
Non-parent college students enrolled in a lifespan developmental psychology course were assessed at two time points (beginning of the semester and shortly after midterm) on knowledge and attitudes that would likely to be useful for the transition to parenthood. Students reported perceived change in knowledge and attitudes, and repeated measures…
ERIC Educational Resources Information Center
Goswami, Usha; Fosker, Tim; Huss, Martina; Mead, Natasha; Szucs, Denes
2011-01-01
Across languages, children with developmental dyslexia have a specific difficulty with the neural representation of the sound structure (phonological structure) of speech. One likely cause of their difficulties with phonology is a perceptual difficulty in auditory temporal processing (Tallal, 1980). Tallal (1980) proposed that basic auditory…
ERIC Educational Resources Information Center
Ullery, Mary Anne; Katz, Lynne
2017-01-01
This article examined transition rates of young children (n = 102) from an early intervention program at the Linda Ray Intervention Program (LRIP) who had documented developmental delays and co-occurring prenatal drug exposure often coupled with verified child maltreatment. Findings indicated that there was significant group improvement from…
Miller, David A.
2010-01-01
Developmental plasticity can be integral in adapting organisms to the environment experienced during growth. Adaptive plastic responses may be especially important in prioritizing development in response to stress during ontogeny. To evaluate this, I examined how developmental conditions for mourning doves related to early growth and how this affected fledging age, an important life-history transition for birds. The life history of mourning doves is consistent with strong selective pressure to minimize fledging age. Therefore, I predicted that in the face of nutritional stress associated with experimental brood-size increases, young would prioritize growth to structures that promote early fledging to reduce the effect of slowed overall growth on fledging age. Increasing brood size slowed overall structural growth of nestlings and affected the relative allocation of growth among different body parts. Total wing area was the best predictor of fledging age and individuals from larger broods had larger wings relative to overall body size. Although nestlings from larger broods fledged at later ages owing to slower overall growth, prioritization of wing growth reduced this effect by an estimated 1.6 days relative to the delay if plasticity among body parts had not occurred. This was an 11 per cent reduction in the predicted developmental time it took to reach this important life-history transition. Results demonstrate that preferential allocation to wing growth can affect the timing of this life-history transition and that morphological plasticity during development can have adaptive near-term effects during avian development. PMID:20129984
Controlling the Temperature and Speed of the Phase Transition of VO 2 Microcrystals
Yoon, Joonseok; Kim, Howon; Chen, Xian; ...
2015-12-29
Here, we investigated the control of two important parameters of vanadium dioxide (VO 2 ) microcrystals, the phase transition temperature and speed, by varying microcrystal width. By using the reflectivity change between insulating and metallic phases, phase transition temperature is measured by optical microscopy. As the width of square cylinder-shaped microcrystals decreases from ~70 to ~1 μm, the phase transition temperature (67 °C for bulk) varied as much as 26.1 °C (19.7 °C) during heating (cooling). In addition, the propagation speed of phase boundary in the microcrystal, i.e., phase transition speed, is monitored at the onset of phase transition bymore » using the high-speed resistance measurement. The phase transition speed increases from 4.6 × 10 2 to 1.7 × 10 4 μm/s as the width decreases from ~50 to ~2 μm. While the statistical description for a heterogeneous nucleation process explains the size dependence on phase transition temperature of VO 2 , the increase of effective thermal exchange process is responsible for the enhancement of phase transition speed of small VO 2 microcrystals. These findings not only enhance the understanding of VO 2 intrinsic properties but also contribute to the development of innovative electronic devices.« less
Controlling the Temperature and Speed of the Phase Transition of VO 2 Microcrystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Joonseok; Kim, Howon; Chen, Xian
Here, we investigated the control of two important parameters of vanadium dioxide (VO 2 ) microcrystals, the phase transition temperature and speed, by varying microcrystal width. By using the reflectivity change between insulating and metallic phases, phase transition temperature is measured by optical microscopy. As the width of square cylinder-shaped microcrystals decreases from ~70 to ~1 μm, the phase transition temperature (67 °C for bulk) varied as much as 26.1 °C (19.7 °C) during heating (cooling). In addition, the propagation speed of phase boundary in the microcrystal, i.e., phase transition speed, is monitored at the onset of phase transition bymore » using the high-speed resistance measurement. The phase transition speed increases from 4.6 × 10 2 to 1.7 × 10 4 μm/s as the width decreases from ~50 to ~2 μm. While the statistical description for a heterogeneous nucleation process explains the size dependence on phase transition temperature of VO 2 , the increase of effective thermal exchange process is responsible for the enhancement of phase transition speed of small VO 2 microcrystals. These findings not only enhance the understanding of VO 2 intrinsic properties but also contribute to the development of innovative electronic devices.« less
Origin of phase transition in VO2
NASA Astrophysics Data System (ADS)
Basu, Raktima; Sardar, Manas; Dhara, Sandip
2018-04-01
Vanadium dioxide (VO2) exhibits a reversible first-order metal to insulator transition (MIT) along with a structural phase transition (SPT) from monoclinic M1 to rutile tetragonal R via another two intermediate phases of monoclinic M2 and triclinic T at a technologically important temperature of 340K. In the present work, besides synthesizing M1 phase of VO2, we also stabilized M2 and T phases at room temperature by introducing native defects in the system and observed an increase in transition temperature with increase in native defects. Raman spectroscopic measurements were carried out to confirm the pure VO2 phases. Since the MIT is accompanied by SPT in these systems, the origin of the phase transition is still under debate. The controversy between MIT and SPT, whether electron-phonon coupling or strong electron-electron correlation triggers the phase transition in VO2 is also resolved by examining the presence of intermediate phase M2 during phase transition.
NASA Astrophysics Data System (ADS)
Yang, Yang; Xie, Yigao; Zhou, Xiaoqian; Zhong, Hui; Jiang, Qingzheng; Ma, Shengcan; Zhong, Zhenchen; Cui, Weibin; Wang, Qiang
2018-05-01
Interstitial effects of B and Li on the phase transition and magnetocaloric effect in Gd2In alloys had been studied. The antiferromagnetic (AFM) - ferromagnetic (FM) phase transition was found to be of first-order nature while ferromagnetic - paramagnetic (PM) phase transition was of second-order nature in B- or Li-doped Gd2In alloys. AFM-FM phase transition temperature was increased while FM-PM phase transition was decreased with more doping concentrations. During AFM-FM phase transition, the slope of temperature-dependent critical field (μ0Hcr) was increased by increased doping amounts. The magnetic entropy changes under small field change were enhanced by B and Li addition, which showed the beneficial effects of B and Li additions.
NASA Astrophysics Data System (ADS)
Wang, Kun; Chen, Jun; Zhang, Xueyang; Zhu, Wenjun
2017-09-01
Phase transitions and deformation twins are constantly reported in many BCC metals under high pressure, whose interactions are of fundamental importance to understand the strengthening mechanism of these metals under extreme conditions. However, the interactions between twins and phase transition in BCC metals remain largely unexplored. In this work, interactions between coherent twin boundaries and α ↔ ɛ phase transition of iron are investigated using both non-equilibrium molecular dynamics simulations and the nudged elastic band method. Mechanisms of both twin-assisted phase transition and reverse phase transition are studied, and orientation relationships between BCC and HCP phases are found to be ⟨"separators="|11 1 ¯ ⟩ B C C||⟨"separators="|1 ¯2 1 ¯ 0 ⟩ H C P and ⟨"separators="|1 1 ¯ 0 ⟩ B C C||⟨"separators="|0001 ⟩ H C P for both cases. The twin boundary corresponds to {"separators="|10 1 ¯ 0 } H C P after the phase transition. It is amazing that the reverse transition seems to be able to "memorize" and recover the initial BCC twins. The memory would be partly lost when plastic slips take place in the HCP phase before the reverse transition. In the recovered initial BCC twins, three major twin spacings are observed, which are well explained in terms of energy barriers of transition from the HCP phase to the BCC twin. Besides, the variant selection rule of the twin assisted phase transition is also discussed. The results of present work could be expected to give some clues for producing ultra-fine grain structures in materials exhibiting martensitic phase transition.
Institutional Influence on Behavioural Disorders in Early Adolescents
ERIC Educational Resources Information Center
Jayalekshmi, N. B.; Raja, B. William Dharma
2014-01-01
Early adolescence a period of transition between childhood and late adolescence, is where one experiences dramatic changes physically, and psychologically. These transitions cause cognitive, emotional, and social changes. The developmental changes that occur during this period cause varying degrees of disturbance in them. The period of transition…
Transitions and Turning Points: Navigating the Passage from Childhood through Adolescence.
ERIC Educational Resources Information Center
Graber, Julia A.; Brooks-Gunn, Jeanne
1996-01-01
Comments on this special theme issue examining the roles of socialization, biology, and culture as they affect adaptive and maladaptive developmental outcomes. Presents models for predicting and understanding behavioral and affective change at transitions occurring especially from middle childhood through adolescence. Provides examples…
Family Instability and Child Well-Being
ERIC Educational Resources Information Center
Fomby, Paula; Cherlin, Andrew J.
2007-01-01
Children who experience multiple transitions in family structure may face worse developmental outcomes than children raised in stable, two-parent families, and perhaps even worse than children raised in stable, single-parent families--a point denoted in much prior research. Multiple transitions and negative child outcomes, however, may be…
Kansas Early Childhood Research Institute on Transitions. Final Report.
ERIC Educational Resources Information Center
Rice, Mabel L.; O'Brien, Marion
This final report describes research projects and other activities of the Kansas Early Childhood Research Institute (KECRI), a multi-investigator, cross-disciplinary Institute focusing on successful transitions for young (birth to age 8) children with disabilities or developmental delays. Interventions were developed, evaluated, and disseminated…
Sim, Taeyong; Choi, Ahnryul; Lee, Soeun; Mun, Joung Hwan
2017-10-01
The transition phase of a golf swing is considered to be a decisive instant required for a powerful swing. However, at the same time, the low back torsional loads during this phase can have a considerable effect on golf-related low back pain (LBP). Previous efforts to quantify the transition phase were hampered by problems with accuracy due to methodological limitations. In this study, vector-coding technique (VCT) method was proposed as a comprehensive methodology to quantify the precise transition phase and examine low back torsional load. Towards this end, transition phases were assessed using three different methods (VCT, lead hand speed and X-factor stretch) and compared; then, low back torsional load during the transition phase was examined. As a result, the importance of accurate transition phase quantification has been documented. The largest torsional loads were observed in healthy professional golfers (10.23 ± 1.69 N · kg -1 ), followed by professional golfers with a history of LBP (7.93 ± 1.79 N · kg -1 ), healthy amateur golfers (1.79 ± 1.05 N · kg -1 ) and amateur golfers with a history of LBP (0.99 ± 0.87 N · kg -1 ), which order was equal to that of the transition phase magnitudes of each group. These results indicate the relationship between the transition phase and LBP history and the dependency of the torsional load magnitude on the transition phase.
Symmetric development: transcriptional regulation of symmetry transition in plants.
Dolan, Liam
2014-12-15
Symmetry breaking and re-establishment is an important developmental process that occurs during the development of multicellular organisms. A new report determines that transcription factors regulate a symmetry transition event in plants by modifying the direction of auxin transport. This provides one of the first mechanistic descriptions of a transition from bilateral to radial symmetry in plants. Copyright © 2014 Elsevier Ltd. All rights reserved.
Microscopic origin of black hole reentrant phase transitions
NASA Astrophysics Data System (ADS)
Zangeneh, M. Kord; Dehyadegari, A.; Sheykhi, A.; Mann, R. B.
2018-04-01
Understanding the microscopic behavior of the black hole ingredients has been one of the important challenges in black hole physics during the past decades. In order to shed some light on the microscopic structure of black holes, in this paper, we explore a recently observed phenomenon for black holes namely reentrant phase transition, by employing the Ruppeiner geometry. Interestingly enough, we observe two properties for the phase behavior of small black holes that leads to reentrant phase transition. They are correlated and they are of the interaction type. For the range of pressure in which the system underlies reentrant phase transition, it transits from the large black holes phase to the small one which possesses higher correlation than the other ranges of pressures. On the other hand, the type of interaction between small black holes near the large/small transition line differs for usual and reentrant phase transitions. Indeed, for the usual case, the dominant interaction is repulsive whereas for the reentrant case we encounter an attractive interaction. We show that in the reentrant phase transition case, the small black holes behave like a bosonic gas whereas in the usual phase transition case, they behave like a quantum anyon gas.
Packiam, Mathanraj; Hsu, Yen-Pang; Tekkam, Srinivas; Hall, Edward; Rittichier, Jonathan T.; VanNieuwenhze, Michael; Brun, Yves V.; Maurelli, Anthony T.
2016-01-01
The peptidoglycan (PG) cell wall is a peptide cross-linked glycan polymer essential for bacterial division and maintenance of cell shape and hydrostatic pressure. Bacteria in the Chlamydiales were long thought to lack PG until recent advances in PG labeling technologies revealed the presence of this critical cell wall component in Chlamydia trachomatis. In this study, we utilize bio-orthogonal D-amino acid dipeptide probes combined with super-resolution microscopy to demonstrate that four pathogenic Chlamydiae species each possess a ≤ 140 nm wide PG ring limited to the division plane during the replicative phase of their developmental cycles. Assembly of this PG ring is rapid, processive, and linked to the bacterial actin-like protein, MreB. Both MreB polymerization and PG biosynthesis occur only in the intracellular form of pathogenic Chlamydia and are required for cell enlargement, division, and transition between the microbe’s developmental forms. Our kinetic, molecular, and biochemical analyses suggest that the development of this limited, transient, PG ring structure is the result of pathoadaptation by Chlamydia to an intracellular niche within its vertebrate host. PMID:27144308
Liechti, George; Kuru, Erkin; Packiam, Mathanraj; Hsu, Yen-Pang; Tekkam, Srinivas; Hall, Edward; Rittichier, Jonathan T; VanNieuwenhze, Michael; Brun, Yves V; Maurelli, Anthony T
2016-05-01
The peptidoglycan (PG) cell wall is a peptide cross-linked glycan polymer essential for bacterial division and maintenance of cell shape and hydrostatic pressure. Bacteria in the Chlamydiales were long thought to lack PG until recent advances in PG labeling technologies revealed the presence of this critical cell wall component in Chlamydia trachomatis. In this study, we utilize bio-orthogonal D-amino acid dipeptide probes combined with super-resolution microscopy to demonstrate that four pathogenic Chlamydiae species each possess a ≤ 140 nm wide PG ring limited to the division plane during the replicative phase of their developmental cycles. Assembly of this PG ring is rapid, processive, and linked to the bacterial actin-like protein, MreB. Both MreB polymerization and PG biosynthesis occur only in the intracellular form of pathogenic Chlamydia and are required for cell enlargement, division, and transition between the microbe's developmental forms. Our kinetic, molecular, and biochemical analyses suggest that the development of this limited, transient, PG ring structure is the result of pathoadaptation by Chlamydia to an intracellular niche within its vertebrate host.
Whitfield, P. S.; Herron, N.; Guise, W. E.; ...
2016-10-21
Here, we examine the crystal structures and structural phase transitions of the deuterated, partially deuterated and hydrogenous organic-inorganic hybrid perovskite methyl ammonium lead iodide (MAPbI 3) using time-of-flight neutron and synchrotron X-ray powder diffraction. Near 330 K the high temperature cubic phases transformed to a body-centered tetragonal phase. The variation of the order parameter Q for this transition scaled with temperature T as Q (T c-T) , where T c is the critical temperature and the exponent was close to , as predicted for a tricritical phase transition. We also observed coexistence of the cubic and tetragonal phases over amore » range of temperature in all cases, demonstrating that the phase transition was in fact first-order, although still very close to tricritical. Upon cooling further, all the tetragonal phases transformed into a low temperature orthorhombic phase around 160 K, again via a first-order phase transition. Finally, based upon these results, we discuss the impact of the structural phase transitions upon photovoltaic performance of MAPbI 3 based solar cells.« less
Mirmelstein, A.; Podlesnyak, Andrey A.; dos Santos, Antonio M.; ...
2015-08-03
The pressure-induced structural phase transition in the intermediate-valence compound CeNi has been investigated by x-ray and neutron powder diffraction techniques. It is shown that the structure of the pressure-induced CeNi phase (phases) can be described in terms of the Pnma space group. Equations of state for CeNi on both sides of the phase transition are derived and an approximate P-T phase diagram is suggested for P<8 GPa and T<300 K. The observed Cmcm→Pnma structural transition is then analyzed using density functional theory calculations, which successfully reproduce the ground state volume, the phase transition pressure, and the volume collapse associated withmore » the phase transition.« less
Prondvai, Edina; Stein, Koen; Ősi, Attila; Sander, Martin P.
2012-01-01
Background Rhamphorhynchus from the Solnhofen Limestones is the most prevalent long tailed pterosaur with a debated life history. Whereas morphological studies suggested a slow crocodile-like growth strategy and superprecocial volant hatchlings, the only histological study hitherto conducted on Rhamphorhynchus concluded a relatively high growth rate for the genus. These controversial conclusions can be tested by a bone histological survey of an ontogenetic series of Rhamphorhynchus. Methodology/Principal Findings Our results suggest that Bennett's second size category does not reflect real ontogenetic stage. Significant body size differences of histologically as well as morphologically adult specimens suggest developmental plasticity. Contrasting the ‘superprecocial hatchling’ hypothesis, the dominance of fibrolamellar bone in early juveniles implies that hatchlings sustained high growth rate, however only up to the attainment of 30–50% and 7–20% of adult wingspan and body mass, respectively. The early fast growth phase was followed by a prolonged, slow-growth phase indicated by parallel-fibred bone deposition and lines of arrested growth in the cortex, a transition which has also been observed in Pterodaustro. An external fundamental system is absent in all investigated specimens, but due to the restricted sample size, neither determinate nor indeterminate growth could be confirmed in Rhamphorhynchus. Conclusions/Significance The initial rapid growth phase early in Rhamphorhynchus ontogeny supports the non-volant nature of its hatchlings, and refutes the widely accepted ‘superprecocial hatchling’ hypothesis. We suggest the onset of powered flight, and not of reproduction as the cause of the transition from the fast growth phase to a prolonged slower growth phase. Rapidly growing early juveniles may have been attended by their parents, or could have been independent precocial, but non-volant arboreal creatures until attaining a certain somatic maturity to get airborne. This study adds to the understanding on the diversity of pterosaurian growth strategies. PMID:22355361
Positive Home Environment and Behaviour Development in Early Adolescents
ERIC Educational Resources Information Center
Jayalekshmi, N. B.; Dharma Raja, B. William
2011-01-01
Early adolescence is a period of transition when the individual changes physically and psychologically from a child to an adult. This transition involves physical, cognitive and socio- emotional changes. The developmental changes that occur during this period cause varying degree of disturbance. The changes they undergo sometimes results in…
Development Revisited: Writing and Knowing in Transition.
ERIC Educational Resources Information Center
Pounds, Buzz R.
A study examined the developmental epistemologies of first-year university students at a comprehensive university, based on the idea that students often come to the university in intellectual transition which may affect their epistemological stances toward writing. The students' comments as reported from a survey fall into seven categories: topic,…
Family Perspectives on a Successful Transition to Adulthood for Individuals with Disabilities
ERIC Educational Resources Information Center
Henninger, Natalie A.; Taylor, Julie Lounds
2014-01-01
When researchers evaluate adult outcomes for individuals with intellectual and/or developmental disabilities (IDD), the perspective of families is not always considered. Parents of individuals with IDD ("N" = 198) answered an online survey about their definition of a successful transition to adulthood. Content analysis was used to…
Learning to Work: Transitioning Youth with Developmental Disabilities.
ERIC Educational Resources Information Center
Cohen, Monte
The paper describes Stepping Stones Growth Center, which prepared handicapped students for transition into competitive employment. The origins of the program and its emphasis on functional skill training are reviewed, followed by a description of three levels of services: a "ready" class stressing basic skills, a "set" class emphasizing…
Distinct Trajectories in the Transition to Adulthood: Are Children of Immigrants Advantaged?
ERIC Educational Resources Information Center
Hao, Lingxin; Woo, Han S.
2012-01-01
Studies on children of immigrants have generally ignored distinct developmental trajectories during adolescence and their role in the transition to adulthood. This study identifies distinct trajectories in cognitive, sociobehavioral, and psychological domains and estimates their consequences for young adults. Drawing data from a nationally…
Maize development: Cell wall changes in leaves and sheaths
USDA-ARS?s Scientific Manuscript database
Developmental changes occur in maize (Zea mays L.) as it transitions from juvenile stages to the mature plant. Changes also occur as newly formed cells mature into adult cells. Maize leaf blades, including the midribs and sheaths, undergo cell wall changes as cells transition to fully mature cell ty...
Building Bridges: Transitions from Elementary to Secondary School
ERIC Educational Resources Information Center
Tilleczek, Kate
2008-01-01
Most young people leave elementary school and move into some form of secondary school during early adolescence. At precisely the time that young people are navigating multiple developmental challenges (social, intellectual, academic, physical), they are expected to move between these intuitions of public education. The transition is commonly…
Unsolved Problems of Intracellular Noise
NASA Astrophysics Data System (ADS)
Paulsson, Johan
2003-05-01
Many molecules are present at so low numbers per cell that significant fluctuations arise spontaneously. Such `noise' can randomize developmental pathways, disrupt cell cycle control or force metabolites away from their optimal levels. It can also be exploited for non-genetic individuality or, surprisingly, for more reliable and deterministic control. However, in spite of the mechanistic and evolutionary significance of noise, both explicit modeling and implicit verbal reasoning in molecular biology are completely dominated by macroscopic kinetics. Here I discuss some particularly under-addressed issues of noise in genetic and metabolic networks: 1) relations between systematic macro- and mesoscopic approaches; 2) order and disorder in gene expression; 3) autorepression for checking fluctuations; 4) noise suppression by noise; 5) phase-transitions in metabolic systems; 6) effects of cell growth and division; and 7) mono- and bistable bimodal switches.
Wiener, Lori; Weaver, Meaghann Shaw; Bell, Cynthia J; Sansom-Daly, Ursula M
2015-01-01
Medical providers are trained to investigate, diagnose, and treat cancer. Their primary goal is to maximize the chances of curing the patient, with less training provided on palliative care concepts and the unique developmental needs inherent in this population. Early, systematic integration of palliative care into standard oncology practice represents a valuable, imperative approach to improving the overall cancer experience for adolescents and young adults (AYAs). The importance of competent, confident, and compassionate providers for AYAs warrants the development of effective educational strategies for teaching AYA palliative care. Just as palliative care should be integrated early in the disease trajectory of AYA patients, palliative care training should be integrated early in professional development of trainees. As the AYA age spectrum represents sequential transitions through developmental stages, trainees experience changes in their learning needs during their progression through sequential phases of training. This article reviews unique epidemiologic, developmental, and psychosocial factors that make the provision of palliative care especially challenging in AYAs. A conceptual framework is provided for AYA palliative care education. Critical instructional strategies including experiential learning, group didactic opportunity, shared learning among care disciplines, bereaved family members as educators, and online learning are reviewed. Educational issues for provider training are addressed from the perspective of the trainer, trainee, and AYA. Goals and objectives for an AYA palliative care cancer rotation are presented. Guidance is also provided on ways to support an AYA's quality of life as end of life nears. PMID:25750863
NASA Astrophysics Data System (ADS)
Liu, Cheng-Wei
Phase transitions and their associated critical phenomena are of fundamental importance and play a crucial role in the development of statistical physics for both classical and quantum systems. Phase transitions embody diverse aspects of physics and also have numerous applications outside physics, e.g., in chemistry, biology, and combinatorial optimization problems in computer science. Many problems can be reduced to a system consisting of a large number of interacting agents, which under some circumstances (e.g., changes of external parameters) exhibit collective behavior; this type of scenario also underlies phase transitions. The theoretical understanding of equilibrium phase transitions was put on a solid footing with the establishment of the renormalization group. In contrast, non-equilibrium phase transition are relatively less understood and currently a very active research topic. One important milestone here is the Kibble-Zurek (KZ) mechanism, which provides a useful framework for describing a system with a transition point approached through a non-equilibrium quench process. I developed two efficient Monte Carlo techniques for studying phase transitions, one is for classical phase transition and the other is for quantum phase transitions, both are under the framework of KZ scaling. For classical phase transition, I develop a non-equilibrium quench (NEQ) simulation that can completely avoid the critical slowing down problem. For quantum phase transitions, I develop a new algorithm, named quasi-adiabatic quantum Monte Carlo (QAQMC) algorithm for studying quantum quenches. I demonstrate the utility of QAQMC quantum Ising model and obtain high-precision results at the transition point, in particular showing generalized dynamic scaling in the quantum system. To further extend the methods, I study more complex systems such as spin-glasses and random graphs. The techniques allow us to investigate the problems efficiently. From the classical perspective, using the NEQ approach I verify the universality class of the 3D Ising spin-glasses. I also investigate the random 3-regular graphs in terms of both classical and quantum phase transitions. I demonstrate that under this simulation scheme, one can extract information associated with the classical and quantum spin-glass transitions without any knowledge prior to the simulation.
Patterns and Mechanisms of Evolutionary Transitions between Genetic Sex-Determining Systems
Sander van Doorn, G.
2014-01-01
The diversity and patchy phylogenetic distribution of genetic sex-determining mechanisms observed in some taxa is thought to have arisen by the addition, modification, or replacement of regulators at the upstream end of the sex-determining pathway. Here, I review the various evolutionary forces acting on upstream regulators of sexual development that can cause transitions between sex-determining systems. These include sex-ratio selection and pleiotropic benefits, as well as indirect selection mechanisms involving sex-linked sexually antagonistic loci or recessive deleterious mutations. Most of the current theory concentrates on the population–genetic aspects of sex-determination transitions, using models that do not reflect the developmental mechanisms involved in sex determination. However, the increasing availability of molecular data creates opportunities for the development of mechanistic models that can clarify how selection and developmental architecture interact to direct the evolution of sex-determination genes. PMID:24993578
Sensitive periods in fear learning and memory.
King, Elizabeth C; Pattwell, Siobhan S; Glatt, Charles E; Lee, Francis S
2014-01-01
Adolescence represents a uniquely sensitive developmental stage in the transition from childhood to adulthood. During this transition, neuronal circuits are particularly susceptible to modification by experience. In addition, adolescence is a stage in which the incidence of anxiety disorders peaks in humans and over 75% of adults with fear-related disorders met diagnostic criteria as children and adolescents. While postnatal critical periods of plasticity for primary sensory processes, such as in the visual system are well established, less is known about potential critical or sensitive periods for fear learning and memory. Here, we review the non-linear developmental aspects of fear learning and memory during a transition period into and out of adolescence. We also review the literature on the non-linear development of GABAergic neurotransmission, a key regulator of critical period plasticity. We provide a model that may inform improved treatment strategies for children and adolescents with fear-related disorders.
Attachment in Middle Childhood: An Evolutionary-Developmental Perspective.
Del Giudice, Marco
2015-01-01
Middle childhood is a key transitional stage in the development of attachment processes and representations. Here I discuss the middle childhood transition from an evolutionary-developmental perspective and show how this approach offers fresh insight into the function and organization of attachment in this life stage. I begin by presenting an integrated biological model of middle childhood and discussing the neurobiological mechanisms that support the middle childhood transition. I examine the potential role of adrenal androgens, focusing on their activational effects in interaction with early exposure to sex hormones. I then discuss three insights arising from the integrated model and apply them to the development of attachment in middle childhood. I consider the changing functions of attachment in light of social competition, the emergence of sex differences in attachment, and the model's implications for the genetics of attachment in middle childhood. © 2015 Wiley Periodicals, Inc.
Sensitive periods in fear learning and memory
King, Elizabeth C.; Pattwell, Siobhan S.; Glatt, Charles E.; Lee, Francis S.
2015-01-01
Adolescence represents a uniquely sensitive developmental stage in the transition from childhood to adulthood. During this transition, neuronal circuits are particularly susceptible to modification by experience. In addition, adolescence is a stage in which the incidence of anxiety disorders peaks in humans and over 75% of adults with fear-related disorders met diagnostic criteria as children and adolescents. While postnatal critical periods of plasticity for primary sensory processes, such as in the visual system are well established, less is known about potential critical or sensitive periods for fear learning and memory. Here, we review the nonlinear developmental aspects of fear learning and memory during a transition period into and out of adolescence. We also review the literature on the non-linear development of GABAergic neurotransmission, a key regulator of critical period plasticity. We provide a model that may inform improved treatment strategies for children and adolescents with fear-related disorders. PMID:23611461
Temperature-Controlled High-Speed AFM: Real-Time Observation of Ripple Phase Transitions.
Takahashi, Hirohide; Miyagi, Atsushi; Redondo-Morata, Lorena; Scheuring, Simon
2016-11-01
With nanometer lateral and Angstrom vertical resolution, atomic force microscopy (AFM) has contributed unique data improving the understanding of lipid bilayers. Lipid bilayers are found in several different temperature-dependent states, termed phases; the main phases are solid and fluid phases. The transition temperature between solid and fluid phases is lipid composition specific. Under certain conditions some lipid bilayers adopt a so-called ripple phase, a structure where solid and fluid phase domains alternate with constant periodicity. Because of its narrow regime of existence and heterogeneity ripple phase and its transition dynamics remain poorly understood. Here, a temperature control device to high-speed atomic force microscopy (HS-AFM) to observe dynamics of phase transition from ripple phase to fluid phase reversibly in real time is developed and integrated. Based on HS-AFM imaging, the phase transition processes from ripple phase to fluid phase and from ripple phase to metastable ripple phase to fluid phase could be reversibly, phenomenologically, and quantitatively studied. The results here show phase transition hysteresis in fast cooling and heating processes, while both melting and condensation occur at 24.15 °C in quasi-steady state situation. A second metastable ripple phase with larger periodicity is formed at the ripple phase to fluid phase transition when the buffer contains Ca 2+ . The presented temperature-controlled HS-AFM is a new unique experimental system to observe dynamics of temperature-sensitive processes at the nanoscopic level. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Method for identifying and probing phase transitions in materials
Asay, Blaine W.; Henson, Bryan F.; Sander, Robert K.; Robinson, Jeanne M.; Son, Steven F.; Dickson, Peter M.
2002-01-01
The present invention includes a method for identifying and probing phase transitions in materials. A polymorphic material capable of existing in at least one non-centrosymmetric phase is interrogated with a beam of laser light at a chosen wavelength and frequency. A phase transition is induced in the material while it is interrogated. The intensity of light scattered by the material and having a wavelength equal to one half the wavelength of the interrogating laser light is detected. If the phase transition results in the production of a non-centrosymmetric phase, the intensity of this scattered light increases; if the phase transition results in the disappearance of a non-centrosymmetric phase, the intensity of this scattered light decreases.
Spontaneous Symmetry Breaking of Domain Walls in Phase-Competing Regions
NASA Astrophysics Data System (ADS)
Ishizuka, Hiroaki; Yamada, Yasusada; Nagaosa, Naoto
2018-05-01
In this study, we investigate the nature of domain walls in an ordered phase in the phase-competing region of two Ising-type order parameters. We consider a two-component ϕ4 theory and show that the domain wall of the ground-state (primary) order parameter shows a second-order phase transition associated with the secondary order parameter of the competing phase; the effective theory of the phase transition is given by the Landau theory of an Ising-type phase transition. We find that the phase boundary of this phase transition is different from the spinodal line of the competing order. The phase transition is detected experimentally by the divergence of the susceptibility corresponding to the secondary order when the temperature is quenched to introduce the domain walls.
[Modeling developmental aspects of sensorimotor control of speech production].
Kröger, B J; Birkholz, P; Neuschaefer-Rube, C
2007-05-01
Detailed knowledge of the neurophysiology of speech acquisition is important for understanding the developmental aspects of speech perception and production and for understanding developmental disorders of speech perception and production. A computer implemented neural model of sensorimotor control of speech production was developed. The model is capable of demonstrating the neural functions of different cortical areas during speech production in detail. (i) Two sensory and two motor maps or neural representations and the appertaining neural mappings or projections establish the sensorimotor feedback control system. These maps and mappings are already formed and trained during the prelinguistic phase of speech acquisition. (ii) The feedforward sensorimotor control system comprises the lexical map (representations of sounds, syllables, and words of the first language) and the mappings from lexical to sensory and to motor maps. The training of the appertaining mappings form the linguistic phase of speech acquisition. (iii) Three prelinguistic learning phases--i. e. silent mouthing, quasi stationary vocalic articulation, and realisation of articulatory protogestures--can be defined on the basis of our simulation studies using the computational neural model. These learning phases can be associated with temporal phases of prelinguistic speech acquisition obtained from natural data. The neural model illuminates the detailed function of specific cortical areas during speech production. In particular it can be shown that developmental disorders of speech production may result from a delayed or incorrect process within one of the prelinguistic learning phases defined by the neural model.
Hou, Hongmin; Yan, Xiaoxiao; Sha, Ting; Yan, Qin; Wang, Xiping
2017-07-13
Flowering occurs in angiosperms during a major developmental transition from vegetative growth to the reproductive phase. Squamosa promoter binding protein (SBP)-box genes have been found to play critical roles in regulating flower and fruit development, but their roles in grapevine have remained unclear. To better understand the functions of the grape SBP-box genes in both vegetative and reproductive growth phases, a full-length complementary DNA (cDNA) sequence of the putative SBP-box transcription factor gene, VpSBP11 , was obtained from Chinese wild grapevine Vitis pseudoreticulata Wen Tsai Wang (W. T. Wang) clone 'Baihe-35-1'. VpSBP11 encoded a putative polypeptide of 170 amino acids with a highly conserved SBP-domain with two zinc-binding sites of the Cx2C-x3-H-x11-C-x6-H (C2HCH) type and a nuclear localization signal. We confirmed that the VpSBP11 protein was targeted to the nucleus and possessed transcriptional activation activity by subcellular localization and trans -activation assay. Over-expression of VpSBP11 in Arabidopsis thaliana was shown to activate the FUL gene, and subsequently the AP1 and LFY genes, all of which were floral meristem identity genes, and to cause earlier flowering than in wild type (WT) plants. The pattern of vegetative growth was also different between the transgenic and WT plants. For example, in the VpSBP11 over-expressing transgenic plants, the number of rosette leaves was less than that of WT; the petiole was significantly elongated; and the rosette and cauline leaves curled upwards or downwards. These results were consistent with VpSBP11 acting as a transcription factor during the transition from the vegetative stage to the reproductive stage.
The infinite limit as an eliminable approximation for phase transitions
NASA Astrophysics Data System (ADS)
Ardourel, Vincent
2018-05-01
It is generally claimed that infinite idealizations are required for explaining phase transitions within statistical mechanics (e.g. Batterman 2011). Nevertheless, Menon and Callender (2013) have outlined theoretical approaches that describe phase transitions without using the infinite limit. This paper closely investigates one of these approaches, which consists of studying the complex zeros of the partition function (Borrmann et al., 2000). Based on this theory, I argue for the plausibility for eliminating the infinite limit for studying phase transitions. I offer a new account for phase transitions in finite systems, and I argue for the use of the infinite limit as an approximation for studying phase transitions in large systems.
ERIC Educational Resources Information Center
Allgood, Nicole R.
2010-01-01
Asperger syndrome (AS) and high functioning autism are complex developmental disabilities that have a significant impact on the individual and his/her family. Asperger syndrome is characterized by challenges with understanding non-verbal communication, difficulties with social relationships, and restricted interests. Having a brother or sister…
ERIC Educational Resources Information Center
McGrath, Marianne P.; Brown, Bethany C.
2008-01-01
Developmental theories of prosocial reasoning and behavior posit a transition from concrete (e.g., give a toy to receive one) to abstract (e.g., spend time to make someone happy) forms and have been supported with research on middle-socioeconomic status (SES), White samples. The methodology that researchers have used to date has restricted the…
ERIC Educational Resources Information Center
Minnesota State Planning Agency, St. Paul.
The Minnesota 2-year state plan presents a review of the existing service delivery system for: (1) the provision of services to persons with developmental disabilities and their families; (2) a continuing response to priority areas specified in federal legislation; and (3) development of a work plan leading toward development of a Three-Year State…
ERIC Educational Resources Information Center
Pireh, Diane Flanegan
2014-01-01
This article presents strategies for using two types of essay-writing rubrics in a developmental English class of students transitioning into college-level writing. One checklist rubric is student-facing, designed to serve as a guide for students throughout the writing process and as a self-assessment tool. The other checklist rubric is…
Lipner, Hildy S; Huron, Randye F
2018-02-01
Practices in the neonatal intensive care unit (NICU) that reduce infant stress and respond to behavioral cues positively influence developmental outcomes. Proactive developmental surveillance and timely introduction of early intervention services improve outcomes for premature infants. A model that emphasizes infant development and a continuum of care beginning in the NICU with transition to outpatient monitoring and provision of early intervention services is hypothesized to support the most optimal outcomes for premature infants. Copyright © 2017 Elsevier Inc. All rights reserved.
Romantic Relationship Patterns in Young Adulthood and Their Developmental Antecedents
Rauer, Amy J.; Pettit, Gregory S.; Lansford, Jennifer E.; Bates, John E.; Dodge, Kenneth A.
2013-01-01
The delayed entry into marriage that characterizes modern society raises questions about young adults' romantic relationship trajectories and whether patterns found to characterize adolescent romantic relationships persist into young adulthood. The current study traced developmental transitions into and out of romantic relationships from age 18 through age 25 in a sample of 511 young adults. The developmental antecedents of these different romantic relationship experiences in both distal and proximal family and peer domains were also examined. Analyses included both person-oriented and variable-oriented approaches. Findings show 5 distinct clusters varying in timing, duration, and frequency of participation in romantic relationships that range from those who had only recently entered into a romantic relationship to those who had been in the same relationship from age 18 to age 25. These relationship outcome trajectory clusters were predicted by variations in competence in early relationships with family and peers. Interpersonal experiences in family and peer contexts in early childhood through adolescence thus may form a scaffold on which later competence in romantic relationships develops. Findings shed light on both normative and nonnormative developmental transitions of romantic relationships in young adulthood. PMID:23421803
Leaps and lulls in the developmental transcriptome of Dictyostelium discoideum.
Rosengarten, Rafael David; Santhanam, Balaji; Fuller, Danny; Katoh-Kurasawa, Mariko; Loomis, William F; Zupan, Blaz; Shaulsky, Gad
2015-04-13
Development of the soil amoeba Dictyostelium discoideum is triggered by starvation. When placed on a solid substrate, the starving solitary amoebae cease growth, communicate via extracellular cAMP, aggregate by tens of thousands and develop into multicellular organisms. Early phases of the developmental program are often studied in cells starved in suspension while cAMP is provided exogenously. Previous studies revealed massive shifts in the transcriptome under both developmental conditions and a close relationship between gene expression and morphogenesis, but were limited by the sampling frequency and the resolution of the methods. Here, we combine the superior depth and specificity of RNA-seq-based analysis of mRNA abundance with high frequency sampling during filter development and cAMP pulsing in suspension. We found that the developmental transcriptome exhibits mostly gradual changes interspersed by a few instances of large shifts. For each time point we treated the entire transcriptome as single phenotype, and were able to characterize development as groups of similar time points separated by gaps. The grouped time points represented gradual changes in mRNA abundance, or molecular phenotype, and the gaps represented times during which many genes are differentially expressed rapidly, and thus the phenotype changes dramatically. Comparing developmental experiments revealed that gene expression in filter developed cells lagged behind those treated with exogenous cAMP in suspension. The high sampling frequency revealed many genes whose regulation is reproducibly more complex than indicated by previous studies. Gene Ontology enrichment analysis suggested that the transition to multicellularity coincided with rapid accumulation of transcripts associated with DNA processes and mitosis. Later development included the up-regulation of organic signaling molecules and co-factor biosynthesis. Our analysis also demonstrated a high level of synchrony among the developing structures throughout development. Our data describe D. discoideum development as a series of coordinated cellular and multicellular activities. Coordination occurred within fields of aggregating cells and among multicellular bodies, such as mounds or migratory slugs that experience both cell-cell contact and various soluble signaling regimes. These time courses, sampled at the highest temporal resolution to date in this system, provide a comprehensive resource for studies of developmental gene expression.
fcc-bcc phase transition in plasma crystals using time-resolved measurements
NASA Astrophysics Data System (ADS)
Dietz, C.; Bergert, R.; Steinmüller, B.; Kretschmer, M.; Mitic, S.; Thoma, M. H.
2018-04-01
Three-dimensional plasma crystals are often described as Yukawa systems for which a phase transition between the crystal structures fcc and bcc has been predicted. However, experimental investigations of this transition are missing. We use a fast scanning video camera to record the crystallization process of 70 000 microparticles and investigate the existence of the fcc-bcc phase transition at neutral gas pressures of 30, 40, and 50 Pa. To analyze the crystal, robust phase diagrams with the help of a machine learning algorithm are calculated. This work shows that the phase transition can be investigated experimentally and makes a comparison with numerical results of Yukawa systems. The phase transition is analyzed in dependence on the screening parameter and structural order. We suggest that the transition is an effect of gravitational compression of the plasma crystal. Experimental investigations of the fcc-bcc phase transition will provide an opportunity to estimate the coupling strength Γ by comparison with numerical results of Yukawa systems.
Learning phase transitions by confusion
NASA Astrophysics Data System (ADS)
van Nieuwenburg, Evert P. L.; Liu, Ye-Hua; Huber, Sebastian D.
2017-02-01
Classifying phases of matter is key to our understanding of many problems in physics. For quantum-mechanical systems in particular, the task can be daunting due to the exponentially large Hilbert space. With modern computing power and access to ever-larger data sets, classification problems are now routinely solved using machine-learning techniques. Here, we propose a neural-network approach to finding phase transitions, based on the performance of a neural network after it is trained with data that are deliberately labelled incorrectly. We demonstrate the success of this method on the topological phase transition in the Kitaev chain, the thermal phase transition in the classical Ising model, and the many-body-localization transition in a disordered quantum spin chain. Our method does not depend on order parameters, knowledge of the topological content of the phases, or any other specifics of the transition at hand. It therefore paves the way to the development of a generic tool for identifying unexplored phase transitions.
Two kinds of phase transitions in a voting model
NASA Astrophysics Data System (ADS)
Hisakado, M.; Mori, S.
2012-08-01
In this paper, we discuss a voting model with two candidates, C0 and C1. We consider two types of voters—herders and independents. The voting of independents is based on their fundamental values, while the voting of herders is based on the number of previous votes. We can identify two kinds of phase transitions. One is an information cascade transition similar to a phase transition seen in the Ising model. The other is a transition of super and normal diffusions. These phase transitions coexist. We compared our results to the conclusions of experiments and identified the phase transitions in the upper limit of the time t by using the analysis of human behavior obtained from experiments.
NASA Astrophysics Data System (ADS)
Chen, J.; Xi, G.; Wang, W.
2008-02-01
Detecting phase transitions in neural networks (determined or random) presents a challenging subject for phase transitions play a key role in human brain activity. In this paper, we detect numerically phase transitions in two types of random neural network(RNN) under proper parameters.
Universal phase transition in community detectability under a stochastic block model.
Chen, Pin-Yu; Hero, Alfred O
2015-03-01
We prove the existence of an asymptotic phase-transition threshold on community detectability for the spectral modularity method [M. E. J. Newman, Phys. Rev. E 74, 036104 (2006) and Proc. Natl. Acad. Sci. (USA) 103, 8577 (2006)] under a stochastic block model. The phase transition on community detectability occurs as the intercommunity edge connection probability p grows. This phase transition separates a subcritical regime of small p, where modularity-based community detection successfully identifies the communities, from a supercritical regime of large p where successful community detection is impossible. We show that, as the community sizes become large, the asymptotic phase-transition threshold p* is equal to √[p1p2], where pi(i=1,2) is the within-community edge connection probability. Thus the phase-transition threshold is universal in the sense that it does not depend on the ratio of community sizes. The universal phase-transition phenomenon is validated by simulations for moderately sized communities. Using the derived expression for the phase-transition threshold, we propose an empirical method for estimating this threshold from real-world data.
Cortesi, Fabio; Musilová, Zuzana; Stieb, Sara M; Hart, Nathan S; Siebeck, Ulrike E; Cheney, Karen L; Salzburger, Walter; Marshall, N Justin
2016-08-15
Animals often change their habitat throughout ontogeny; yet, the triggers for habitat transitions and how these correlate with developmental changes - e.g. physiological, morphological and behavioural - remain largely unknown. Here, we investigated how ontogenetic changes in body coloration and of the visual system relate to habitat transitions in a coral reef fish. Adult dusky dottybacks, Pseudochromis fuscus, are aggressive mimics that change colour to imitate various fishes in their surroundings; however, little is known about the early life stages of this fish. Using a developmental time series in combination with the examination of wild-caught specimens, we revealed that dottybacks change colour twice during development: (i) nearly translucent cryptic pelagic larvae change to a grey camouflage coloration when settling on coral reefs; and (ii) juveniles change to mimic yellow- or brown-coloured fishes when reaching a size capable of consuming juvenile fish prey. Moreover, microspectrophotometric (MSP) and quantitative real-time PCR (qRT-PCR) experiments show developmental changes of the dottyback visual system, including the use of a novel adult-specific visual gene (RH2 opsin). This gene is likely to be co-expressed with other visual pigments to form broad spectral sensitivities that cover the medium-wavelength part of the visible spectrum. Surprisingly, the visual modifications precede changes in habitat and colour, possibly because dottybacks need to first acquire the appropriate visual performance before transitioning into novel life stages. © 2016. Published by The Company of Biologists Ltd.
Andes, Karen; Gilliard, Danielle; Chakraborty, Rana; del Rio, Carlos; Malebranche, David J.
2015-01-01
Objectives. We conducted a qualitative study of HIV-positive young Black men who have sex with men (YBMSM) to explore their experiences of living with HIV and adhering to antiretroviral medications (ARVs) within the developmental context of their transition to adulthood. Methods. We conducted life history interviews with 20 HIV-positive YBMSM in Atlanta, Georgia, engaged in outpatient HIV care. We addressed these questions: (1) How do YBMSM living with HIV experience the transition to adulthood? and (2) What are the important sociocontextual influences on ARV adherence for YBMSM? Results. Successful transition to adulthood and optimal ARV adherence were inextricably linked. HIV’s detrimental impact on development was moderated by the degree of physical illness at diagnosis. Many participants described resilient trajectories while coping with HIV. Adherence problems occurred primarily among participants who were not meeting their developmental goals. Conclusions. Our findings support the need for early diagnosis and linkage to care, as well as the need to develop holistic, resilience-based interventions focusing on transition to adulthood. These findings have implications for individual clinical outcomes as well as ARV-based prevention efforts among YBMSM. PMID:24922167
Materials science of the gel to fluid phase transition in a supported phospholipid bilayer.
Xie, Anne Feng; Yamada, Ryo; Gewirth, Andrew A; Granick, Steve
2002-12-09
We report the results of in situ AFM measurements examining the phase transition of bilayers formed from the zwitterionic phospholipid, DMPC, 1,2-dimyristoyl-sn-glycero-3-phosphocholine, supported on mica. The images show that the fluid to gel phase transition process features substantial tearing of the bilayer due to the density change between the two phases. The gel to fluid transition is strongly affected by the resultant stress introduced into the gel phase, which changes the degree of cooperativity, the shape of developing fluid phase regions, and the course of the transition.
Isothermal lipid phase transitions.
Cevc, G
1991-03-01
In liotropic lipid systems phase transitions can be induced isothermally by changing the solvent concentration or composition; alternatively, lipid composition can be modified by (bio)chemical means. The probability for isothermal phase transitions increases with the decreasing transition entropy; it is proportional to the magnitude of the transition temperature shift caused by transformation-inducing system variation. Manipulations causing large thermodynamic effects, such as lipid (de)hydration, binding of protons or divalent ions and macromolecular adsorption, but also close bilayer approach are, therefore, likely to cause structural lipid change(s) at a constant temperature. Net lipid charges enhance the membrane susceptibility to salt-induced isothermal phase transitions; a large proportion of this effect is due to the bilayer dehydration, however, rather than being a consequence of the decreased Coulombic electrostatic interactions. Membrane propensity for isothermal phase transitions, consequently, always increases with the hydrophilicity of the lipid heads, as well as with the desaturation and shortening of the lipid chains. Upon a phase change at a constant temperature, some of the interfacially bound solutes (e.g. protons or calcium) are released in the solution. Membrane permeability and fusogenicity simultaneously increase. In mixed systems, isothermal phase transitions, moreover, may result in lateral phase separation. All this opens up ways for the involvement of isothermal phase transitions in the regulation of biological processes.
Transcriptional Analysis of Flowering Time in Switchgrass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tornqvist, Carl-Erik; Vaillancourt, Brieanne; Kim, Jeongwoon
Over the past two decades, switchgrass (Panicum virgatum) has emerged as a priority biofuel feedstock. The bulk of switchgrass biomass is in the vegetative portion of the plant; therefore, increasing the length of vegetative growth will lead to an increase in overall biomass yield. The goal of this study was to gain insight into the control of flowering time in switchgrass that would assist in development of cultivars with longer vegetative phases through delayed flowering. RNA sequencing was used to assess genome-wide expression profiles across a developmental series between switchgrass genotypes belonging to the two main ecotypes: upland, typically earlymore » flowering, and lowland, typically late flowering. Leaf blades and tissues enriched for the shoot apical meristem (SAM) were collected in a developmental series from emergence through anthesis for RNA extraction. RNA from samples that flanked the SAM transition stage was sequenced for expression analyses. The analyses revealed differential expression patterns between early- and late-flowering genotypes for known flowering time orthologs. Namely, genes shown to play roles in photoperiod response and the circadian clock in other species were identified as potential candidates for regulating flowering time in the switchgrass genotypes analyzed. Based on their expression patterns, many of the differentially expressed genes could also be classified as putative promoters or repressors of flowering. The candidate genes presented here may be used to guide switchgrass improvement through marker-assisted breeding and/or transgenic or gene editing approaches.Over the past two decades, switchgrass (Panicum virgatum) has emerged as a priority biofuel feedstock. The bulk of switchgrass biomass is in the vegetative portion of the plant; therefore, increasing the length of vegetative growth will lead to an increase in overall biomass yield. The goal of this study was to gain insight into the control of flowering time in switchgrass that would assist in development of cultivars with longer vegetative phases through delayed flowering. RNA sequencing was used to assess genome-wide expression profiles across a developmental series between switchgrass genotypes belonging to the two main ecotypes: upland, typically early flowering, and lowland, typically late flowering. Leaf blades and tissues enriched for the shoot apical meristem (SAM) were collected in a developmental series from emergence through anthesis for RNA extraction. RNA from samples that flanked the SAM transition stage was sequenced for expression analyses. The analyses revealed differential expression patterns between early- and late-flowering genotypes for known flowering time orthologs. Namely, genes shown to play roles in photoperiod response and the circadian clock in other species were identified as potential candidates for regulating flowering time in the switchgrass genotypes analyzed. Based on their expression patterns, many of the differentially expressed genes could also be classified as putative promoters or repressors of flowering. The candidate genes presented here may then be used to guide switchgrass improvement through marker-assisted breeding and/or transgenic or gene editing approaches.« less
Transcriptional Analysis of Flowering Time in Switchgrass
Tornqvist, Carl-Erik; Vaillancourt, Brieanne; Kim, Jeongwoon; ...
2017-04-27
Over the past two decades, switchgrass (Panicum virgatum) has emerged as a priority biofuel feedstock. The bulk of switchgrass biomass is in the vegetative portion of the plant; therefore, increasing the length of vegetative growth will lead to an increase in overall biomass yield. The goal of this study was to gain insight into the control of flowering time in switchgrass that would assist in development of cultivars with longer vegetative phases through delayed flowering. RNA sequencing was used to assess genome-wide expression profiles across a developmental series between switchgrass genotypes belonging to the two main ecotypes: upland, typically earlymore » flowering, and lowland, typically late flowering. Leaf blades and tissues enriched for the shoot apical meristem (SAM) were collected in a developmental series from emergence through anthesis for RNA extraction. RNA from samples that flanked the SAM transition stage was sequenced for expression analyses. The analyses revealed differential expression patterns between early- and late-flowering genotypes for known flowering time orthologs. Namely, genes shown to play roles in photoperiod response and the circadian clock in other species were identified as potential candidates for regulating flowering time in the switchgrass genotypes analyzed. Based on their expression patterns, many of the differentially expressed genes could also be classified as putative promoters or repressors of flowering. The candidate genes presented here may be used to guide switchgrass improvement through marker-assisted breeding and/or transgenic or gene editing approaches.Over the past two decades, switchgrass (Panicum virgatum) has emerged as a priority biofuel feedstock. The bulk of switchgrass biomass is in the vegetative portion of the plant; therefore, increasing the length of vegetative growth will lead to an increase in overall biomass yield. The goal of this study was to gain insight into the control of flowering time in switchgrass that would assist in development of cultivars with longer vegetative phases through delayed flowering. RNA sequencing was used to assess genome-wide expression profiles across a developmental series between switchgrass genotypes belonging to the two main ecotypes: upland, typically early flowering, and lowland, typically late flowering. Leaf blades and tissues enriched for the shoot apical meristem (SAM) were collected in a developmental series from emergence through anthesis for RNA extraction. RNA from samples that flanked the SAM transition stage was sequenced for expression analyses. The analyses revealed differential expression patterns between early- and late-flowering genotypes for known flowering time orthologs. Namely, genes shown to play roles in photoperiod response and the circadian clock in other species were identified as potential candidates for regulating flowering time in the switchgrass genotypes analyzed. Based on their expression patterns, many of the differentially expressed genes could also be classified as putative promoters or repressors of flowering. The candidate genes presented here may then be used to guide switchgrass improvement through marker-assisted breeding and/or transgenic or gene editing approaches.« less
THE DEVELOPMENT OF SLEEP-WAKE RHYTHMS AND THE SEARCH FOR ELEMENTAL CIRCUITS IN THE INFANT BRAIN
Blumberg, Mark S.; Gall, Andrew J.; Todd, William D.
2014-01-01
Despite the predominance of sleep in early infancy, developmental science has yet to play a major role in shaping concepts and theories about sleep and its associated ultradian and circadian rhythms. Here we argue that developmental analyses help us to elucidate the relative contributions of the brainstem and forebrain to sleep-wake control and to dissect the neural components of sleep-wake rhythms. Developmental analysis also makes it clear that sleep-wake processes in infants are the foundation for those of adults. For example, the infant brainstem alone contains a fundamental sleep-wake circuit that is sufficient to produce transitions among wakefulness, quiet sleep, and active sleep. Also, consistent with the requirements of a “flip-flop” model of sleep-wake processes, this brainstem circuit supports rapid transitions between states. Later in development, strengthening bidirectional interactions between the brainstem and forebrain contribute to the consolidation of sleep and wake bouts, the elaboration of sleep homeostatic processes, and the emergence of diurnal or nocturnal circadian rhythms. The developmental perspective promoted here critically constrains theories of sleep-wake control and provides a needed framework for the creation of fully realized computational models. Finally, with a better understanding of how this system is constructed developmentally, we will gain insight into the processes that govern its disintegration due to aging and disease. PMID:24708298
The development of sleep-wake rhythms and the search for elemental circuits in the infant brain.
Blumberg, Mark S; Gall, Andrew J; Todd, William D
2014-06-01
Despite the predominance of sleep in early infancy, developmental science has yet to play a major role in shaping concepts and theories about sleep and its associated ultradian and circadian rhythms. Here we argue that developmental analyses help us to elucidate the relative contributions of the brainstem and forebrain to sleep-wake control and to dissect the neural components of sleep-wake rhythms. Developmental analysis also makes it clear that sleep-wake processes in infants are the foundation for those of adults. For example, the infant brainstem alone contains a fundamental sleep-wake circuit that is sufficient to produce transitions among wakefulness, quiet sleep, and active sleep. In addition, consistent with the requirements of a "flip-flop" model of sleep-wake processes, this brainstem circuit supports rapid transitions between states. Later in development, strengthening bidirectional interactions between the brainstem and forebrain contribute to the consolidation of sleep and wake bouts, the elaboration of sleep homeostatic processes, and the emergence of diurnal or nocturnal circadian rhythms. The developmental perspective promoted here critically constrains theories of sleep-wake control and provides a needed framework for the creation of fully realized computational models. Finally, with a better understanding of how this system is constructed developmentally, we will gain insight into the processes that govern its disintegration due to aging and disease.
Paine, Christine Weirich; Stollon, Natalie B.; Lucas, Matthew S.; Brumley, Lauren D.; Poole, Erika S.; Peyton, Tamara; Grant, Anne W.; Jan, Sophia; Trachtenberg, Symme; Zander, Miriam; Mamula, Petar; Bonafide, Christopher P.; Schwartz, Lisa A.
2014-01-01
Background For adolescents and young adults (AYA) with inflammatory bowel disease (IBD), the transition from pediatric to adult care is often challenging and associated with gaps in care. Our study objectives were to (1) identify outcomes for evaluating transition success and (2) elicit the major barriers and facilitators of successful transition. Methods We interviewed pediatric and adult IBD providers from across the United States with experience caring for AYAs with IBD until thematic saturation was reached after 12 interviews. We elicited the participants' backgrounds, examples of successful and unsuccessful transition of AYAs for whom they cared, and recommendations for improving transition using the Social-ecological Model of Adolescent and Young Adult Readiness to Transition framework. We coded interview transcripts using the constant comparative method and identified major themes. Results Participants reported evaluating transition success and failure using healthcare utilization outcomes (e.g. maintaining continuity with adult providers), health outcomes (e.g. stable symptoms), and quality of life outcomes (e.g. attending school). The patients' level of developmental maturity (i.e. ownership of care) was the most prominent determinant of transition outcomes. The style of parental involvement (i.e. helicopter parent vs. optimally-involved parent) also influenced outcomes as well as the degree of support by providers (e.g. care coordination). Conclusion IBD transition success is influenced by a complex interplay of patient developmental maturity, parenting style, and provider support. Multidisciplinary IBD care teams should aim to optimize these factors for each patient to increase the likelihood of a smooth transfer to adult care. PMID:25137417
Paine, Christine W; Stollon, Natalie B; Lucas, Matthew S; Brumley, Lauren D; Poole, Erika S; Peyton, Tamara; Grant, Anne W; Jan, Sophia; Trachtenberg, Symme; Zander, Miriam; Mamula, Petar; Bonafide, Christopher P; Schwartz, Lisa A
2014-11-01
For adolescents and young adults (AYA) with inflammatory bowel disease (IBD), the transition from pediatric to adult care is often challenging and associated with gaps in care. Our study objectives were to (1) identify outcomes for evaluating transition success and (2) elicit the major barriers and facilitators of successful transition. We interviewed pediatric and adult IBD providers from across the United States with experience caring for AYAs with IBD until thematic saturation was reached after 12 interviews. We elicited the participants' backgrounds, examples of successful and unsuccessful transition of AYAs for whom they cared, and recommendations for improving transition using the Social-Ecological Model of Adolescent and Young Adult Readiness to Transition framework. We coded interview transcripts using the constant comparative method and identified major themes. Participants reported evaluating transition success and failure using health care utilization outcomes (e.g., maintaining continuity with adult providers), health outcomes (e.g., stable symptoms), and quality of life outcomes (e.g., attending school). The patients' level of developmental maturity (i.e., ownership of care) was the most prominent determinant of transition outcomes. The style of parental involvement (i.e., helicopter parent versus optimally involved parent) and the degree of support by providers (e.g., care coordination) also influenced outcomes. IBD transition success is influenced by a complex interplay of patient developmental maturity, parenting style, and provider support. Multidisciplinary IBD care teams should aim to optimize these factors for each patient to increase the likelihood of a smooth transfer to adult care.
NASA Astrophysics Data System (ADS)
Hilton, David
2011-10-01
In correlated electronic systems, observed electronic and structural behavior results from the complex interplay between multiple, sometimes competing degrees-of- freedom. One such material used to study insulator-to-metal transitions is vanadium dioxide, which undergoes a phase transition from a monoclinic-insulating phase to a rutile-metallic phase when the sample is heated to 340 K. The major open question with this material is the relative influence of this structural phase transition (Peirels transition) and the effects of electronic correlations (Mott transition) on the observed insulator-to-metal transition. Answers to these major questions are complicated by vanadium dioxide's sensitivity to perturbations in the chemical structure in VO2. For example, related VxOy oxides with nearly a 2:1 ratio do not demonstrate the insulator-to- metal transition, while recent work has demonstrated that W:VO2 has demonstrated a tunable transition temperature controllable with tungsten doping. All of these preexisting results suggest that the observed electronic properties are exquisitely sensitive to the sample disorder. Using ultrafast spectroscopic techniques, it is now possible to impulsively excite this transition and investigate the photoinduced counterpart to this thermal phase transition in a strongly nonequilibrium regime. I will discuss our recent results studying the terahertz-frequency conductivity dynamics of this photoinduced phase transition in the poorly understood near threshold temperature range. We find a dramatic softening of the transition near the critical temperature, which results primarily from the mixed phase coexistence near the transition temperature. To directly study this mixed phase behavior, we directly study the nucleation and growth rates of the metallic phase in the parent insulator using non-degenerate optical pump-probe spectroscopy. These experiments measure, in the time- domain, the coexistent phase separation in VO2 (spatially separated insulator and metal islands) and, more importantly, their dynamic evolution in response to optical excitation.
NASA Astrophysics Data System (ADS)
Thoraval, C.
2017-12-01
Describing the large-scale structures of mantle convection and quantifying the mass transfer between upper and lower mantle request to account for the role played by mineral phase transitions in the transition zone. We build a density distribution within the Earth mantle from velocity anomalies described by global seismic tomographic models. The density distribution includes thermal anomalies and topographies of the phase transitions at depths of 410 and 660 km. We compute the flow driven by this density distribution using a 3D spherical circulation model, which account for depth-dependent viscosity. The dynamic topographies at the surface and at the CMB and the geoid are calculated as well. Within the range of viscosity profiles allowing for a satisfying restitution of the long wavelength geoid, we perform a parametric study to decipher the role of the characteristics of phase diagrams - mainly the Clapeyron's slopes - and of the kinetics of phase transitions, which may modify phase transition topographies. Indeed, when a phase transition is delayed, the boundary between two mineral phases is both dragged by the flow and interfere with it. The results are compared to recent estimations of surface dynamic topography and to the phase transition topographies as revealed by seismic studies. The consequences are then discussed in terms of structure of mantle flow. Comparisons between various tomographic models allow us to enlighten the most robust features. At last, the role played by the phase transitions on the lateral variations of mass transfer between upper and lower mantle are quantified by comparison to cases with no phase transitions and confronted to regional tomographic models, which reflect the variability of the behaviors of the descending slabs in the transition zone.
Hemoglobin phase of oxygenation and deoxygenation in early brain development measured using fNIRS
Watanabe, Hama; Shitara, Yoshihiko; Aoki, Yoshinori; Inoue, Takanobu; Tsuchida, Shinya; Takahashi, Naoto; Taga, Gentaro
2017-01-01
A crucial issue in neonatal medicine is the impact of preterm birth on the developmental trajectory of the brain. Although a growing number of studies have shown alterations in the structure and function of the brain in preterm-born infants, we propose a method to detect subtle differences in neurovascular and metabolic functions in neonates and infants. Functional near-infrared spectroscopy (fNIRS) was used to obtain time-averaged phase differences between spontaneous low-frequency (less than 0.1 Hz) oscillatory changes in oxygenated hemoglobin (oxy-Hb) and those in deoxygenated hemoglobin (deoxy-Hb). This phase difference was referred to as hemoglobin phase of oxygenation and deoxygenation (hPod) in the cerebral tissue of sleeping neonates and infants. We examined hPod in term, late preterm, and early preterm infants with no evidence of clinical issues and found that all groups of infants showed developmental changes in the values of hPod from an in-phase to an antiphase pattern. Comparison of hPod among the groups revealed that developmental changes in hPod in early preterm infants precede those in late preterm and term infants at term equivalent age but then, progress at a slower pace. This study suggests that hPod measured using fNIRS is sensitive to the developmental stage of the integration of circular, neurovascular, and metabolic functions in the brains of neonates and infants. PMID:28196885
Defect-induced local variation of crystal phase transition temperature in metal-halide perovskites.
Dobrovolsky, Alexander; Merdasa, Aboma; Unger, Eva L; Yartsev, Arkady; Scheblykin, Ivan G
2017-06-26
Solution-processed organometal halide perovskites are hybrid crystalline semiconductors highly interesting for low-cost and efficient optoelectronics. Their properties are dependent on the crystal structure. Literature shows a variety of crystal phase transition temperatures and often a spread of the transition over tens of degrees Kelvin. We explain this inconsistency by demonstrating that the temperature of the tetragonal-to-orthorhombic phase transition in methylammonium lead triiodide depends on the concentration and nature of local defects. Phase transition in individual nanowires was studied by photoluminescence microspectroscopy and super-resolution imaging. We propose that upon cooling from 160 to 140 K, domains of the crystal containing fewer defects stay in the tetragonal phase longer than highly defected domains that readily transform to the high bandgap orthorhombic phase at higher temperatures. The existence of relatively pure tetragonal domains during the phase transition leads to drastic photoluminescence enhancement, which is inhomogeneously distributed across perovskite microcrystals.Understanding crystal phase transition in materials is of fundamental importance. Using luminescence spectroscopy and super-resolution imaging, Dobrovolsky et al. study the transition from the tetragonal to orthorhombic crystal phase in methylammonium lead triiodide nanowires at low temperature.
Little is known about the developmental toxicity of the expansive chemical landscape in existence today. Significant efforts are being made to apply novel methods to predict developmental activity of chemicals utilizing high-throughput screening (HTS) and high-content screening (...
Ab Initio Simulations of Temperature Dependent Phase Stability and Martensitic Transitions in NiTi
NASA Technical Reports Server (NTRS)
Haskins, Justin B.; Thompson, Alexander E.; Lawson, John W.
2016-01-01
For NiTi based alloys, the shape memory effect is governed by a transition from a low-temperature martensite phase to a high-temperature austenite phase. Despite considerable experimental and computational work, basic questions regarding the stability of the phases and the martensitic phase transition remain unclear even for the simple case of binary, equiatomic NiTi. We perform ab initio molecular dynamics simulations to describe the temperature-dependent behavior of NiTi and resolve several of these outstanding issues. Structural correlation functions and finite temperature phonon spectra are evaluated to determine phase stability. In particular, we show that finite temperature, entropic effects stabilize the experimentally observed martensite (B19') and austenite (B2) phases while destabilizing the theoretically predicted (B33) phase. Free energy computations based on ab initio thermodynamic integration confirm these results and permit estimates of the transition temperature between the phases. In addition to the martensitic phase transition, we predict a new transition between the B33 and B19' phases. The role of defects in suppressing these phase transformations is discussed.
Formation of the molecular crystal structure during the vacuum sublimation of paracetamol
NASA Astrophysics Data System (ADS)
Belyaev, A. P.; Rubets, V. P.; Antipov, V. V.; Bordei, N. S.
2015-04-01
The results from structural and thermal studies on the formation of molecular crystals during the vacuum sublimation of paracetamol from its vapor phase are given. It is established that the vapor-crystal phase transition proceeds in a complicated way as the superposition of two phase transitions: a first-order phase transition with a change in density, and a second-order phase transition with a change in ordering. It is shown that the latter is a smeared phase transition that proceeds with the formation of a pretransitional phase that is irreversibly dissipated during phase transformation, leading to the formation of crystals of the rhombic syngony. Data from differential scanning calorimetry and X-ray diffraction analysis are presented along with microphotographs.
Phase transitions in (NH4)2MoO2F4 crystal
NASA Astrophysics Data System (ADS)
Krylov, Alexander; Laptash, Natalia; Vtyurin, Alexander; Krylova, Svetlana
2016-11-01
The mechanisms of temperature and high pressure phase transitions have been studied by Raman spectroscopy. Room temperature (295 K) experiments under high hydrostatic pressure up to 3.6 GPa for (NH4)2 MoO2 F4 have been carried out. Experimental data indicates a phase transition into a new high-pressure phase for (NH4)2 MoO2 F4 at 1.2 GPa. This phase transition is related to the ordering anion octahedron groups [MoO2 F4]2- and is not associated with ammonium group. Raman spectra of small non-oriented crystals ranging from 10 to 350 K have been observed. The experiment shows anion groups [MoO2 F4]2- and ammonium in high temperature phase are disordered. The phase transition at T1 = 269.8 K is of the first-order, close to the tricritical point. The first temperature phase transition is related to the ordering anion octahedron groups [MoO2 F4]2-. Second phase transitions T2 = 180 K are associated with the ordering of ammonium. The data presented within this study demonstrate that 2D correlation analysis combined with traditional Raman spectroscopy are powerful tool to study phase transitions in the crystals.
Furchtgott, Leon A; Melton, Samuel; Menon, Vilas; Ramanathan, Sharad
2017-01-01
Computational analysis of gene expression to determine both the sequence of lineage choices made by multipotent cells and to identify the genes influencing these decisions is challenging. Here we discover a pattern in the expression levels of a sparse subset of genes among cell types in B- and T-cell developmental lineages that correlates with developmental topologies. We develop a statistical framework using this pattern to simultaneously infer lineage transitions and the genes that determine these relationships. We use this technique to reconstruct the early hematopoietic and intestinal developmental trees. We extend this framework to analyze single-cell RNA-seq data from early human cortical development, inferring a neocortical-hindbrain split in early progenitor cells and the key genes that could control this lineage decision. Our work allows us to simultaneously infer both the identity and lineage of cell types as well as a small set of key genes whose expression patterns reflect these relationships. DOI: http://dx.doi.org/10.7554/eLife.20488.001 PMID:28296636
Spilman, Sarah K.; Neppl, Tricia K.; Donnellan, M. Brent; Schofield, Thomas J.; Conger, Rand D.
2012-01-01
This study evaluated a developmental model of intergenerational continuity in religiosity and its association with observed competency in romantic and parent-child relationships across two generations. Using multi-informant data from the Family Transitions Project, a 20-year longitudinal study of families that began during early adolescence (N = 451), we found that parental religiosity assessed during the youth’s adolescence was positively related to the youth’s own religiosity during adolescence which, in turn, predicted their religiosity after the transition to adulthood. The findings also supported the theoretical model guiding the study, which proposes that religiosity acts as a personal resource that will be uniquely and positively associated with the quality of family relationships. Especially important, the findings demonstrate support for the role of religiosity in a developmental process that promotes positive family functioning after addressing earlier methodological limitations in this area of study, such as cross-sectional research designs, single informant measurement, retrospective reports, and the failure to control for other individual differences. PMID:22545832
Decoding the Regulatory Network for Blood Development from Single-Cell Gene Expression Measurements
Haghverdi, Laleh; Lilly, Andrew J.; Tanaka, Yosuke; Wilkinson, Adam C.; Buettner, Florian; Macaulay, Iain C.; Jawaid, Wajid; Diamanti, Evangelia; Nishikawa, Shin-Ichi; Piterman, Nir; Kouskoff, Valerie; Theis, Fabian J.; Fisher, Jasmin; Göttgens, Berthold
2015-01-01
Here we report the use of diffusion maps and network synthesis from state transition graphs to better understand developmental pathways from single cell gene expression profiling. We map the progression of mesoderm towards blood in the mouse by single-cell expression analysis of 3,934 cells, capturing cells with blood-forming potential at four sequential developmental stages. By adapting the diffusion plot methodology for dimensionality reduction to single-cell data, we reconstruct the developmental journey to blood at single-cell resolution. Using transitions between individual cellular states as input, we develop a single-cell network synthesis toolkit to generate a computationally executable transcriptional regulatory network model that recapitulates blood development. Model predictions were validated by showing that Sox7 inhibits primitive erythropoiesis, and that Sox and Hox factors control early expression of Erg. We therefore demonstrate that single-cell analysis of a developing organ coupled with computational approaches can reveal the transcriptional programs that control organogenesis. PMID:25664528
Unconventional phase transitions in liquid crystals
NASA Astrophysics Data System (ADS)
Kats, E. I.
2017-12-01
According to classical textbooks on thermodynamics or statistical physics, there are only two types of phase transitions: continuous, or second-order, in which the latent heat L is zero, and first-order, in which L ≠ 0. Present-day textbooks and monographs also mention another, stand-alone type—the Berezinskii-Kosterlitz-Thouless transition, which exists only in two dimensions and shares some features with first- and second-order phase transitions. We discuss examples of non-conventional thermodynamic behavior (i.e., which is inconsistent with the theoretical phase transition paradigm now universally accepted). For phase transitions in smectic liquid crystals, mechanisms for nonconventional behavior are proposed and the predictions they imply are examined.
Estrada-Hernández, María Gloria; Valenzuela-Soto, José Humberto; Ibarra-Laclette, Enrique; Délano-Frier, John Paul
2009-09-01
A suppression-subtractive-hybridization (SSH) strategy was used to identify genes whose expression was modified in response to virus-free whitefly Bemisia tabaci (Bt, biotype A) infestation in tomato (Solanum lycopersicum) plants. Thus, forward and reverse SSH gene libraries were generated at four points in the whitefly's life cycle, namely at (1) 2 days (adult feeding and oviposition: phase I); (2) 7 days (mobile crawler stage: phase II); (3) 12 days (second to third instar nymphal transition: phase III) and (4) 18 days (fourth instar nymphal stage: phase IV). The 169 genes with altered expression (up and downregulated) that were identified in the eight generated SSH libraries, together with 75 additional genes that were selected on the basis of their involvement in resistance responses against phytofagous insects and pathogens, were printed on a Nexterion(®) Slide MPX 16 to monitor their pattern of expression at the above phases. The results indicated that Bt infestation in tomato led to distinctive phase-specific expression/repression patterns of several genes associated predominantly with photosynthesis, senescence, secondary metabolism and (a)biotic stress. Most of the gene expression modifications were detected in phase III, coinciding with intense larval feeding, whereas fewer changes were detected in phases I and IV. These results complement previously reported gene expression profiles in Bt-infested tomato and Arabidopisis, and support and expand the opinion that Bt infestation leads to the downregulation of specific defense responses in addition to those controlled by jasmonic acid. Copyright © Physiologia Plantarum 2009.
Superradiant phase transition with graphene embedded in one dimensional optical cavity
NASA Astrophysics Data System (ADS)
Li, Benliang; Liu, Tao; Hewak, Daniel W.; Wang, Qi Jie
2018-01-01
We theoretically investigate the cavity QED of graphene embedded in an optical cavity under perpendicular magnetic field. We consider the coupling of cyclotron transition and a multimode cavity described by a multimode Dicke model. This model exhibits a superradiant quantum phase transition, which we describe exactly in an effective Hamiltonian approach. The complete excitation spectrum in both the normal phase and superradiant phase regimes is given. In contrast to the single mode case, multimode coupling of cavity photon and cyclotron transition can greatly reduce the critical vacuum Rabi frequency required for quantum phase transition, and dramatically enhance the superradiant emission by fast modulating the Hamiltonian. Our work paves a way to experimental explorations of quantum phase transitions in solid state systems.
NASA Astrophysics Data System (ADS)
Cheng, Stephen Z. D.; Keller, Andrew
1998-08-01
Polymer phases can be described in the same way as phases in other condensed matter using a number density operator and its correlation functions. This description requires the understanding of symmetry operations and order at different atomic and molecular levels. Statistical mechanics provides a link between the microscopic description of the structure and motion and the macroscopic thermodynamic properties. Within the limits of the laws of thermodynamics, polymers exhibit a rich variety of phase transition behaviors. By definition, a first-order phase transition describes a transformation that involves a sudden change of thermodynamic properties at its transition temperature, whereas higher-order phase transitions are classified as critical phenomena. Of special interest is the role of metastability in phase and phase transition behaviors. Although a metastable state possesses a local free energy minimum, it is not at the global equilibrium. Furthermore, metastable states can also be associated with phase sizes. Metastable behavior is also observed in phase transformations that are impeded by kinetic limitations along the pathway to thermodynamic equilibrium. This is illustrated in structural and morphological investigations of crystallization and mesophase transitions, liquid-liquid phase separation, vitrification, and gel formation, as well as combinations of transformation processes. In these cases, the metastable state often becomes the dominant state for the entire system and is observed over a range of time and size scales. This review describes the general principles of metastability in polymer phases and phase transitions and provides illustrations from current experimental works in selected areas.
Mountains and Pit Bulls: Students' Metaphors for College Transitional Reading and Writing
ERIC Educational Resources Information Center
Paulson, Eric J.; Armstrong, Sonya L.
2011-01-01
In this article, we describe an approach to uncovering learners' literacy-oriented conceptualizations while they are enrolled in transitional, or developmental, reading and writing classes in a college context. This approach entailed eliciting and then analyzing the metaphors for academic literacies produced by students in 15 sections of a…
Transitional Services for Youth with Developmental Disabilities: Living in College Dorms
ERIC Educational Resources Information Center
Kirkendall, Abbie; Doueck, Howard J.; Saladino, Albert
2009-01-01
This study evaluates the impact of a college-based dormitory program on transitioning youth with intellectual disabilities. A qualitative study, with interviews at pre and post, was conducted to evaluate the program's impact. Data were collected with semistructured interviews from young adults with intellectual disabilities who participated in a…
Re-Thinking Support: The Hidden School-to-Work Challenges for Individuals with Special Needs
ERIC Educational Resources Information Center
Nag, Sonali
2011-01-01
This paper examines the hidden challenges experienced by individuals with special needs during the transition years between school and work. An assessment framework is proposed that covers domains of difficulties, developmental tasks during the transition years, the matrix of support within the home-community-institutions ecosystems, and the…
A Case Study Exploring the Transition to Middle School from the Perspective of Students
ERIC Educational Resources Information Center
Rappa, Kelly A.
2012-01-01
The transition to middle school is often associated with negative effects on academic achievement, motivation, self-esteem, and psychological well-being. Educators at a Grade 6 through 8 middle school in the northeastern United States observed students struggle with the adjustment to middle school. Research suggests that developmentally responsive…
ERIC Educational Resources Information Center
Monahan, Kathryn C.; Steinberg, Laurence; Cauffman, Elizabeth
2009-01-01
Developmental theories suggest that affiliation with deviant peers and susceptibility to peer influence are important contributors to adolescent delinquency, but it is unclear how these variables impact antisocial behavior during the transition to adulthood, a period when most delinquent individuals decline in antisocial behavior. Using data from…
Behavioral Risks during the Transition from High School to College
ERIC Educational Resources Information Center
Fromme, Kim; Corbin, William R.; Kruse, Marc I.
2008-01-01
The transition from high school to college is an important developmental milestone that holds the potential for personal growth and behavioral change. A cohort of 2,245 students was recruited during the summer before they matriculated into college and completed Internet-based surveys about their participation in a variety of behavioral risks…
Predictors of Supported Employment for Transitioning Youth with Developmental Disabilities
ERIC Educational Resources Information Center
Simonsen, Monica Lynn
2010-01-01
The Individuals with Disabilities Education Act of 2004 requires school systems to plan systematically for the transition from school to post-secondary education and/or employment and include measurable post-school goals in students' IEPs. Schools are required to coordinate activities, such as work experiences, to assist students in meeting their…
ERIC Educational Resources Information Center
Symonds, Jennifer; Hargreaves, Linda
2016-01-01
Adolescents typically like school less after making age-graded school transitions. Stage-environment fit theory (Eccles & Midgley, 1989) attributes this to a mismatch between developmental needs and new school environments. Our in vivo study provides a basis for future quantitative designs by uncovering the most prevalent stage-environment…
Supporting Transitions: Cultural Connections for Adults with Autism Spectrum Disorders
ERIC Educational Resources Information Center
Greenberg, Aliza; Levinsky-Raskin, Sheri
2017-01-01
Museums are well-positioned to engage adults with autism and other developmental differences both as visitors and employees. This article recounts the Museum Access Consortium's process to design and implement the project Supporting Transitions: Cultural Connections for People with Autism with the goal of calling attention to a large opportunity…
ERIC Educational Resources Information Center
Williford, Anne Powell; Brisson, Daniel; Bender, Kimberly A.; Jenson, Jeffrey M.; Forrest-Bank, Shandra
2011-01-01
The developmental period characterized by the transition from childhood and elementary school to early adolescence and middle school has been associated with increases in aggressive behavior and peer victimization. Few longitudinal studies, however, have examined the stability of aggression and victimization during this critical transition. This…
Socioemotional Development in the Toddler Years: Transitions and Transformations
ERIC Educational Resources Information Center
Brownell, Celia A., Ed.; Kopp, Claire B., Ed
2007-01-01
This volume explores the key developmental transitions that take place as 1- to 3-year-olds leave infancy behind and begin to develop the social and emotional knowledge, skills, and regulatory abilities of early childhood. Leading investigators examine the multiple, interacting factors that lead to socioemotional competence in this pivotal period,…
Origins of the structural phase transitions in MoTe2 and WTe2
NASA Astrophysics Data System (ADS)
Kim, Hyun-Jung; Kang, Seoung-Hun; Hamada, Ikutaro; Son, Young-Woo
2017-05-01
Layered transition metal dichalcogenides MoTe2 and WTe2 share almost similar lattice constants as well as topological electronic properties except their structural phase transitions. While the former shows a first-order phase transition between monoclinic and orthorhombic structures, the latter does not. Using a recently proposed van der Waals density functional method, we investigate structural stability of the two materials and uncover that the disparate phase transitions originate from delicate differences between their interlayer bonding states near the Fermi energy. By exploiting the relation between the structural phase transitions and the low energy electronic properties, we show that a charge doping can control the transition substantially, thereby suggesting a way to stabilize or to eliminate their topological electronic energy bands.
Boron-tuning transition temperature of vanadium dioxide from rutile to monoclinic phase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, J. J.; He, H. Y.; Xie, Y.
2014-11-21
The effect of the doped boron on the phase transition temperature between the monoclinic phase and the rutile phase of VO{sub 2} has been studied by performing first-principles calculations. It is found that the phase transition temperature decreases linearly with increasing the doping level of B in each system, no matter where the B atom is in the crystal. More importantly, the descent of the transition temperature is predicted to be as large as 83 K/at. % B, indicating that the boron concentration of only 0.5% can cause the phase transition at room temperature. These findings provide a new routinemore » of modulating the phase transition of VO{sub 2} and pave a way for the practicality of VO{sub 2} as an energy-efficient green material.« less
From reassurance to irrelevance: adolescent psychology and homosexuality in America.
Spurlock, J C
2002-02-01
American psychology by the 1920s contained a greater capacity for viewing some homosexual experiences as normal than most current historical literature suggests. Developmental psychologists agreed with psychiatrists that adult homosexuality was pathological, but they also agreed that adolescent sexual development included a homosexual phase. Until the late 1960s, developmental texts reassured parents and teachers that homosexual behavior among adolescents was transitory and quite normal. The psychiatric view of homosexuality as pathology came under attack after the middle of the century and eventually was abandoned. The developmental concern with a transitory homosexual phase disappeared gradually. This trend in psychology suggests underlying social and cultural changes.
Imaging the developing heart: synchronized time-lapse microscopy during developmental changes
NASA Astrophysics Data System (ADS)
Nelson, Carl J.; Buckley, Charlotte; Mullins, John J.; Denvir, Martin A.; Taylor, Jonathan
2018-02-01
How do you use imaging to analyse the development of the heart, which not only changes shape but also undergoes constant, high-speed, quasi-periodic changes? We have integrated ideas from prospective and retrospective optical gating to capture long-term, phase-locked developmental time-lapse videos. In this paper we demonstrate the success of this approach over a key developmental time period: heart looping, where large changes in heart shape prevent previous prospective gating approaches from capturing phase- locked videos. We use the comparison with other approaches to in vivo heart imaging to highlight the importance of collecting the most appropriate data for the biological question.
Heng, Boon Chin; Richards, Mark; Ge, Zigang; Shu, Yimin
2010-02-01
The successful derivation of iPSC lines effectively demonstrates that it is possible to reset the 'developmental clock' of somatic cells all the way back to the initial embryonic state. Hence, it is plausible that this clock may instead be turned back half-way to a less immature developmental stage that is more directly applicable to clinical therapeutic applications or for in vitro pharmacology/toxicology screening assays. Such a suitable developmental state is postulated to be either the putative transit amplifying progenitor stage or adult stem cell stage. It is hypothetically possible to reprogram mature and terminally differentiated somatic cells back to the adult stem cell or transit amplifying progenitor stage, in a manner similar to the derivation of iPSC. It is proposed that the terminology 'Induced Adult Stem Cells' (iASC) or 'Induced Transit Amplifying Progenitor Cells' (iTAPC) be used to described such reprogrammed somatic cells. Of particular interest, is the possibility of resetting the developmental clock of mature differentiated somatic cells of the mesenchymal lineage, explanted from adipose tissue, bone marrow and cartilage. The putative adult stem cell sub-population from which these cells are derived, commonly referred to as 'mesenchymal stem cells', are highly versatile and hold much therapeutic promise in regenerative medicine, as attested to by numerous human clinical trials and animal studies. Perhaps it may be appropriate to term such reprogrammed cells as 'Induced Mesenchymal Stem Cells' (iMSC) or as 'Induced Mesenchumal Progenitor Cells' (iMPC). Given that cells from the same organ/tissue will share some commonalities in gene expression, we hypothesize that the generation of iASC or iTAPC would be more efficient as compared to iPSC generation, since a common epigenetic program must exist between the reprogrammed cells, adult stem cell or progenitor cell types and terminally differentiated cell types from the same organ/tissue.
ERIC Educational Resources Information Center
Sharpe, Dennis B.; Spain, William H.
The Transition of Youth into the Labour Market is a developmental study of youth as they make the difficult transition into the labor market of Newfoundland and Labrador. The project consists of two parallel yet interrelated studies, one focusing on the full cohort of over 9000 Level III high school students at the end of the 1988-89 school year,…
Effects of nuclear transfer procedures on ES cell cloning efficiency in the mouse.
Yabuuchi, Akiko; Yasuda, Yoshiko; Kato, Yoko; Tsunoda, Yukio
2004-04-01
Enucleated oocytes receiving mouse embryonic stem (ES) cells develop into fertile young. The developmental potential to young is low, however, and the rate of postnatal death is high. We examined the effect of various nuclear transfer procedures on the in vitro and in vivo developmental potential of nuclear-transferred oocytes. The potential of oocytes receiving ES cells at M phase to develop into blastocysts after fusion by Sendai virus was high compared with that after direct injection (67% vs. 30%). The developmental potential of oocytes receiving ES cells at the M phase is higher than that of oocytes receiving ES cells at the G(1) phase (30-67% vs. 2-5%). Developmental ability to live young was low in all groups (0-4%). Different activation protocols affected the potential to develop into blastocysts to a different extent (27-62%), but did not affect the potential to develop into live young (0-3%). The present study demonstrated that the various conditions examined did not affect the potential of nuclear-transferred oocytes receiving ES cells to develop into live young or the incidence of postnatal death.
ERIC Educational Resources Information Center
Ziomek, M. M.; Rehfeldt, R. A.
2008-01-01
This study compared the total amount of training time and total number of trial blocks for individuals with severe developmental disabilities to acquire mands under control of unconditioned establishing operations and mands under control of transitive conditioned establishing operations for manual sign and for the Picture Exchange Communication…
Developmental Trajectories of Work Values and Job Entitlement Beliefs in the Transition to Adulthood
ERIC Educational Resources Information Center
Chow, Angela; Krahn, Harvey J.; Galambos, Nancy L.
2014-01-01
Employing a life span developmental systems perspective, this study used a 5-wave (1985-1992) Canadian longitudinal data set (N = 404) to examine trajectories of intrinsic and extrinsic work values and job entitlement beliefs from age 18 to 25. Piecewise growth models (Slope 1: age 18-20; Slope 2: age 20-25) showed intriguing patterns of change.…
ERIC Educational Resources Information Center
Kagohara, Debora M.; van der Meer, Larah; Ramdoss, Sathiyaprakash; O'Reilly, Mark F.; Lancioni, Giulio E.; Davis, Tonya N.; Rispoli, Mandy; Lang, Russell; Marschik, Peter B.; Sutherland, Dean; Green, Vanessa A.; Sigafoos, Jeff
2013-01-01
We conducted a systematic review of studies that involved iPods[R], iPads[R], and related devices (e.g., iPhones[R]) in teaching programs for individuals with developmental disabilities. The search yielded 15 studies covering five domains: (a) academic, (b) communication, (c) employment, (d) leisure, and (e) transitioning across school settings.…
Aman, Michael G; Gharabawi, Georges M
2004-09-01
Mental illnesses are more common in people with mental retardation and developmental disabilities than in the general population. Due to the difficulty of making specific psychiatric diagnoses in these patients, the target of medication is often a behavioral symptom. For many symptoms, antipsychotic medications are effective, but the serious side effect profile of conventional antipsychotics renders their use problematic. Recent findings concerning the safety and efficacy of atypical antipsychotics for control of certain disruptive behaviors in adults and children led a Special Topic Advisory Panel to draw up guidelines for transitioning patients with specific symptoms from classical antipsychotics to risperidone and, by extrapolation, to other atypical agents. Participants were chosen by Janssen Pharmaceutica, based on individual achievements and lifetime experience. The Special Topic Advisory Panel on Transitioning to Risperidone Therapy in Patients With Mental Retardation and Developmental Disabilities comprised academic clinicians with at least 10 years' experience in the field of mental retardation and developmental disabilities. It included a clinical pharmacist, consultant pharmacists, a certified developmental disabilities nurse, psychiatrists, a family physician, and a psychologist. The Panel considered recent studies of the efficacy and tolerability of risperidone and other atypical antipsychotics in adults and children with mental retardation and developmental disabilities. MEDLINE searches were conducted using the name of each atypical antipsychotic and the following terms: mental retardation, developmental disabilities, and behavior disorders. Searches were conducted starting in July 2002 and done periodically through April 2004 to capture new additions to the literature. Searches were confined to English. GUIDELINES PROCESS: The Panel reviewed the available evidence, identified optimal doses and titration schedules, considered instruments and rating scales for assessing symptoms, and developed guidelines. The guidelines set forth initial and target doses and titration schedules of risperidone therapy for some behavioral symptoms and provide recommendations concerning withdrawal of previous medications and for procedures and rating scales for assessing symptoms. In patients with severe retardation, the goal is often to identify specific target behaviors rather than to pursue an exact diagnosis, which may be unattainable.
NASA Astrophysics Data System (ADS)
Iqbal, Mohsin; Duivenvoorden, Kasper; Schuch, Norbert
2018-05-01
We use projected entangled pair states (PEPS) to study topological quantum phase transitions. The local description of topological order in the PEPS formalism allows us to set up order parameters which measure condensation and deconfinement of anyons and serve as substitutes for conventional order parameters. We apply these order parameters, together with anyon-anyon correlation functions and some further probes, to characterize topological phases and phase transitions within a family of models based on a Z4 symmetry, which contains Z4 quantum double, toric code, double semion, and trivial phases. We find a diverse phase diagram which exhibits a variety of different phase transitions of both first and second order which we comprehensively characterize, including direct transitions between the toric code and the double semion phase.
The growth mechanism of grain boundary carbide in Alloy 690
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hui, E-mail: huili@shu.edu.cn; Institute of Materials, Shanghai University, Shanghai 200072; Xia, Shuang
2013-07-15
The growth mechanism of grain boundary M{sub 23}C{sub 6} carbides in nickel base Alloy 690 after aging at 715 °C was investigated by high resolution transmission electron microscopy. The grain boundary carbides have coherent orientation relationship with only one side of the matrix. The incoherent phase interface between M{sub 23}C{sub 6} and matrix was curved, and did not lie on any specific crystal plane. The M{sub 23}C{sub 6} carbide transforms from the matrix phase directly at the incoherent interface. The flat coherent phase interface generally lies on low index crystal planes, such as (011) and (111) planes. The M{sub 23}C{submore » 6} carbide transforms from a transition phase found at curved coherent phase interface. The transition phase has a complex hexagonal crystal structure, and has coherent orientation relationship with matrix and M{sub 23}C{sub 6}: (111){sub matrix}//(0001){sub transition}//(111){sub carbide}, <112{sup ¯}>{sub matrix}//<21{sup ¯}10>{sub transition}//<112{sup ¯}>{sub carbide}. The crystal lattice constants of transition phase are c{sub transition}=√(3)×a{sub matrix} and a{sub transition}=√(6)/2×a{sub matrix}. Based on the experimental results, the growth mechanism of M{sub 23}C{sub 6} and the formation mechanism of transition phase are discussed. - Highlights: • A transition phase was observed at the coherent interfaces of M{sub 23}C{sub 6} and matrix. • The transition phase has hexagonal structure, and is coherent with matrix and M{sub 23}C{sub 6}. • The M{sub 23}C{sub 6} transforms from the matrix directly at the incoherent phase interface.« less
Detecting critical state before phase transition of complex systems by hidden Markov model
NASA Astrophysics Data System (ADS)
Liu, Rui; Chen, Pei; Li, Yongjun; Chen, Luonan
Identifying the critical state or pre-transition state just before the occurrence of a phase transition is a challenging task, because the state of the system may show little apparent change before this critical transition during the gradual parameter variations. Such dynamics of phase transition is generally composed of three stages, i.e., before-transition state, pre-transition state, and after-transition state, which can be considered as three different Markov processes. Thus, based on this dynamical feature, we present a novel computational method, i.e., hidden Markov model (HMM), to detect the switching point of the two Markov processes from the before-transition state (a stationary Markov process) to the pre-transition state (a time-varying Markov process), thereby identifying the pre-transition state or early-warning signals of the phase transition. To validate the effectiveness, we apply this method to detect the signals of the imminent phase transitions of complex systems based on the simulated datasets, and further identify the pre-transition states as well as their critical modules for three real datasets, i.e., the acute lung injury triggered by phosgene inhalation, MCF-7 human breast cancer caused by heregulin, and HCV-induced dysplasia and hepatocellular carcinoma.
Boundary-field-driven control of discontinuous phase transitions on hyperbolic lattices
NASA Astrophysics Data System (ADS)
Lee, Yoju; Verstraete, Frank; Gendiar, Andrej
2016-08-01
The multistate Potts models on two-dimensional hyperbolic lattices are studied with respect to various boundary effects. The free energy is numerically calculated using the corner transfer matrix renormalization group method. We analyze phase transitions of the Potts models in the thermodynamic limit with respect to contracted boundary layers. A false phase transition is present even if a couple of the boundary layers are contracted. Its significance weakens, as the number of the contracted boundary layers increases, until the correct phase transition (deep inside the bulk) prevails over the false one. For this purpose, we derive a thermodynamic quantity, the so-called bulk excess free energy, which depends on the contracted boundary layers and memorizes additional boundary effects. In particular, the magnetic field is imposed on the outermost boundary layer. While the boundary magnetic field does not affect the second-order phase transition in the bulk if suppressing all the boundary effects on the hyperbolic lattices, the first-order (discontinuous) phase transition is significantly sensitive to the boundary magnetic field. Contrary to the phase transition on the Euclidean lattices, the discontinuous phase transition on the hyperbolic lattices can be continuously controlled (within a certain temperature coexistence region) by varying the boundary magnetic field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altintas, Ferdi, E-mail: ferdialtintas@ibu.edu.tr; Eryigit, Resul, E-mail: resul@ibu.edu.tr
2012-12-15
We have investigated the quantum phase transitions in the ground states of several critical systems, including transverse field Ising and XY models as well as XY with multiple spin interactions, XXZ and the collective system Lipkin-Meshkov-Glick models, by using different quantumness measures, such as entanglement of formation, quantum discord, as well as its classical counterpart, measurement-induced disturbance and the Clauser-Horne-Shimony-Holt-Bell function. Measurement-induced disturbance is found to detect the first and second order phase transitions present in these critical systems, while, surprisingly, it is found to fail to signal the infinite-order phase transition present in the XXZ model. Remarkably, the Clauser-Horne-Shimony-Holt-Bellmore » function is found to detect all the phase transitions, even when quantum and classical correlations are zero for the relevant ground state. - Highlights: Black-Right-Pointing-Pointer The ability of correlation measures to detect quantum phase transitions has been studied. Black-Right-Pointing-Pointer Measurement induced disturbance fails to detect the infinite order phase transition. Black-Right-Pointing-Pointer CHSH-Bell function detects all phase transitions even when the bipartite density matrix is uncorrelated.« less
OF TRYPANOSOMATIDS. ENDOTRANSFORMATIONS AND ABERRATIONS].
Frolov, A O; Malysheva, M N; Kostygov, A Yu
2016-01-01
Endotransformations and aberrations of the life cycle in the evolutionary history of trypanosomatids (Kinetoplastea: Trypanosomatidae) are analyzed. We treat the term "endotransformations" as evolutionarily fixed changes of phases and/or developmental stages of parasites. By contrast, we treat aberrations as evolutionary unstable, periodically arising deformations of developmental phases of trypanosomatids, never leading to life cycle changes. Various examples of life cycle endotransformations and aberrations in representatives of the family Trypanosomatidae are discussed.
The Root Cause of Post-traumatic and Developmental Stress Disorder, Phase 2
2013-10-01
have tested and validated. Project 2 will investigate post -mortem anatomy in subjects with major depression and/or PTSD. Both molecular and...Award Number: W81XWH-11-2-0166 TITLE: The Root Cause of Post -traumatic and Developmental Stress Disorder, Phase II PRINCIPAL INVESTIGATOR: Keith...construed as an official Department of the Army position, policy or decision unless so designated by other documentation. REPORT DOCUMENTATION PAGE
Strain and defect engineering on phase transition of monolayer black phosphorene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yan; Shi, Xiaoyang; Li, Mingjia
Under biaxial strain, SW-2 defect can move inward the phase boundary of α-P and β-P remarkably and promote the phase transition from α-P to β-P, serving as an excellent ‘phase transition catalyzer’.
Strain and defect engineering on phase transition of monolayer black phosphorene
Chen, Yan; Shi, Xiaoyang; Li, Mingjia; ...
2018-01-01
Under biaxial strain, SW-2 defect can move inward the phase boundary of α-P and β-P remarkably and promote the phase transition from α-P to β-P, serving as an excellent ‘phase transition catalyzer’.
Quantum phase transitions between a class of symmetry protected topological states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsui, Lokman; Jiang, Hong-Chen; Lu, Yuan-Ming
2015-07-01
The subject of this paper is the phase transition between symmetry protected topological states (SPTs). We consider spatial dimension d and symmetry group G so that the cohomology group, Hd+1(G,U(1)), contains at least one Z2n or Z factor. We show that the phase transition between the trivial SPT and the root states that generate the Z2n or Z groups can be induced on the boundary of a (d+1)-dimensional View the MathML source-symmetric SPT by a View the MathML source symmetry breaking field. Moreover we show these boundary phase transitions can be “transplanted” to d dimensions and realized in lattice modelsmore » as a function of a tuning parameter. The price one pays is for the critical value of the tuning parameter there is an extra non-local (duality-like) symmetry. In the case where the phase transition is continuous, our theory predicts the presence of unusual (sometimes fractionalized) excitations corresponding to delocalized boundary excitations of the non-trivial SPT on one side of the transition. This theory also predicts other phase transition scenarios including first order transition and transition via an intermediate symmetry breaking phase.« less
Quantum phase transitions between a class of symmetry protected topological states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsui, Lokman; Jiang, Hong -Chen; Lu, Yuan -Ming
2015-04-30
The subject of this paper is the phase transition between symmetry protected topological states (SPTs). We consider spatial dimension d and symmetry group G so that the cohomology group, H d+1(G,U(1)), contains at least one Z 2n or Z factor. We show that the phase transition between the trivial SPT and the root states that generate the Z 2n or Z groups can be induced on the boundary of a (d+1)-dimensional G x Z T 2-symmetric SPT by a Z T 2 symmetry breaking field. Moreover we show these boundary phase transitions can be “transplanted” to d dimensions and realizedmore » in lattice models as a function of a tuning parameter. The price one pays is for the critical value of the tuning parameter there is an extra non-local (duality-like) symmetry. In the case where the phase transition is continuous, our theory predicts the presence of unusual (sometimes fractionalized) excitations corresponding to delocalized boundary excitations of the non-trivial SPT on one side of the transition. This theory also predicts other phase transition scenarios including first order transition and transition via an intermediate symmetry breaking phase.« less
Size-dependent phase transition in methylammonium lead iodide perovskite microplate crystals
Li, Dehui; Wang, Gongming; Cheng, Hung-Chieh; Chen, Chih-Yen; Wu, Hao; Liu, Yuan; Huang, Yu; Duan, Xiangfeng
2016-01-01
Methylammonium lead iodide perovskite has attracted considerable recent interest for solution processable solar cells and other optoelectronic applications. The orthorhombic-to-tetragonal phase transition in perovskite can significantly alter its optical, electrical properties and impact the corresponding applications. Here, we report a systematic investigation of the size-dependent orthorhombic-to-tetragonal phase transition using a combined temperature-dependent optical, electrical transport and transmission electron microscopy study. Our studies of individual perovskite microplates with variable thicknesses demonstrate that the phase transition temperature decreases with reducing microplate thickness. The sudden decrease of mobility around phase transition temperature and the presence of hysteresis loops in the temperature-dependent mobility confirm that the orthorhombic-to-tetragonal phase transition is a first-order phase transition. Our findings offer significant fundamental insight on the temperature- and size-dependent structural, optical and charge transport properties of perovskite materials, and can greatly impact future exploration of novel electronic and optoelectronic devices from these materials. PMID:27098114
Size-dependent phase transition in methylammonium lead iodide perovskite microplate crystals
Li, Dehui; Wang, Gongming; Cheng, Hung -Chieh; ...
2016-04-21
Methylammonium lead iodide perovskite has attracted considerable recent interest for solution processable solar cells and other optoelectronic applications. The orthorhombic-to-tetragonal phase transition in perovskite can significantly alter its optical, electrical properties and impact the corresponding applications. Here, we report a systematic investigation of the size-dependent orthorhombic-to-tetragonal phase transition using a combined temperature-dependent optical, electrical transport and transmission electron microscopy study. Our studies of individual perovskite microplates with variable thicknesses demonstrate that the phase transition temperature decreases with reducing microplate thickness. The sudden decrease of mobility around phase transition temperature and the presence of hysteresis loops in the temperature-dependent mobility confirmmore » that the orthorhombic-to-tetragonal phase transition is a first-order phase transition. Lastly, our findings offer significant fundamental insight on the temperature-and size-dependent structural, optical and charge transport properties of perovskite materials, and can greatly impact future exploration of novel electronic and optoelectronic devices from these materials.« less
Conventional empirical law reverses in the phase transitions of 122-type iron-based superconductors
Yu, Zhenhai; Wang, Lin; Wang, Luhong; ...
2014-11-24
Phase transition of solid-state materials is a fundamental research topic in condensed matter physics, materials science and geophysics. It has been well accepted and widely proven that isostructural compounds containing different cations undergo same pressure-induced phase transitions but at progressively lower pressures as the cation radii increases. However, we discovered that this conventional law reverses in the structural transitions in 122-type iron-based superconductors. In this report, a combined low temperature and high pressure X-ray diffraction (XRD) measurement has identified the phase transition curves among the tetragonal (T), orthorhombic (O) and the collapsed-tetragonal (cT) phases in the structural phase diagram ofmore » the iron-based superconductor AFe 2As 2 (A = Ca, Sr, Eu, and Ba). As a result, the cation radii dependence of the phase transition pressure (T → cT) shows an opposite trend in which the compounds with larger ambient radii cations have a higher transition pressure.« less
Quasi-phases and pseudo-transitions in one-dimensional models with nearest neighbor interactions
NASA Astrophysics Data System (ADS)
de Souza, S. M.; Rojas, Onofre
2018-01-01
There are some particular one-dimensional models, such as the Ising-Heisenberg spin models with a variety of chain structures, which exhibit unexpected behaviors quite similar to the first and second order phase transition, which could be confused naively with an authentic phase transition. Through the analysis of the first derivative of free energy, such as entropy, magnetization, and internal energy, a "sudden" jump that closely resembles a first-order phase transition at finite temperature occurs. However, by analyzing the second derivative of free energy, such as specific heat and magnetic susceptibility at finite temperature, it behaves quite similarly to a second-order phase transition exhibiting an astonishingly sharp and fine peak. The correlation length also confirms the evidence of this pseudo-transition temperature, where a sharp peak occurs at the pseudo-critical temperature. We also present the necessary conditions for the emergence of these quasi-phases and pseudo-transitions.
Pressure-induced Lifshitz and structural transitions in NbAs and TaAs: experiments and theory
NASA Astrophysics Data System (ADS)
Nath Gupta, Satyendra; Singh, Anjali; Pal, Koushik; Muthu, D. V. S.; Shekhar, C.; Elghazali, Moaz A.; Naumov, Pavel G.; Medvedev, Sergey A.; Felser, C.; Waghmare, U. V.; Sood, A. K.
2018-05-01
High pressure Raman, resistivity and synchrotron x-ray diffraction studies on Weyl semimetals NbAs and TaAs have been carried out along with density functional theoretical (DFT) analysis to explain pressure induced structural and electronic topological phase transitions. The frequencies of first order Raman modes harden with increasing pressure, exhibiting a slope change at GPa for NbAs and GPa for TaAs. The resistivities of NbAs and TaAs exhibit a minimum at pressures close to these transition pressures and also a change in the bulk modulus is observed. Our first-principles calculations reveal that the transition is associated with an electronic Lifshitz transition at for NbAs while it is a structural phase transition from body centered tetragonal to hexagonal phase at for TaAs. Further, our DFT calculations show a structural phase transition at 24 GPa from body centered tetragonal phase to hexagonal phase.
The transition to the metallic state in low density hydrogen
McMinis, Jeremy; Morales, Miguel A.; Ceperley, David M.; ...
2015-11-18
Solid atomic hydrogen is one of the simplest systems to undergo a metal-insulator transition. Near the transition, the electronic degrees of freedom become strongly correlated and their description provides a difficult challenge for theoretical methods. As a result, the order and density of the phase transition are still subject to debate. In this work we use diffusion quantum Monte Carlo to benchmark the transition between the paramagnetic and anti-ferromagnetic phases of ground state body centered cubic atomic hydrogen. We locate the density of the transition by computing the equation of state for these two phases and identify the phase transitionmore » order by computing the band gap near the phase transition. These benchmark results show that the phase transition is continuous and occurs at a Wigner-Seitz radius of r s = 2.27(3)a 0. As a result, we compare our results to previously reported density functional theory, Hedin s GW approximation, and dynamical mean field theory results.« less
A Report on Student Achievement in a Pilot Program for Developmental Students.
ERIC Educational Resources Information Center
Best, Linda; Fung, Terry Y.
2001-01-01
Reports on the first phase of a two-year pilot study of a university-level mathematics requirement that accommodates the needs of developmental students. Finds that the 84% pass rate for this new class format is substantially higher than the 43% pass rate for traditional developmental mathematics courses offered during the same semester. (Contains…
ERIC Educational Resources Information Center
Ebert, Ashlee A.
2009-01-01
Ehri's developmental model of word recognition outlines early reading development that spans from the use of logos to advanced knowledge of oral and written language to read words. Henderson's developmental spelling theory presents stages of word knowledge that progress in a similar manner to Ehri's phases. The purpose of this research study was…
NASA Astrophysics Data System (ADS)
Lin, Hanxuan; Liu, Hao; Bai, Yu; Miao, Tian; Yu, Yang; Zhu, Yinyan; Chen, Hongyan; Kou, Yunfang; Niu, Jiebin; Wang, Wenbin; Yin, Lifeng; Shen, Jian
First order metal-insulator transition, accounting for various intriguing phenomena, is one of the most important phase transitions in condensed matter systems. Aside from the initial and final states, i.e. the metallic and insulating phases, no stable intermediate phase has been experimentally identified in such first order phase transition, though some transient phases do exist at the ultrafast time scale. Here, using our unique low-temperature, high-field magnetic force microscopy with photoexcitation, we directly observed a stable intermediate phase emerging and mediating the photoinduced first order metal-insulator transition in manganites. This phase is characteristic of low net magnetization and high resistivity. Our observations unveil the microscopic details of the photoinduced metal-insulator transition in manganites, which may be insightful to study first order metal-insulator transition in other condensed matter systems. This work was supported by National Key Research Program of China (2016YFA0300702), National Basic Research Program of China (973 Program) under the Grant No. 2013CB932901 and 2014CB921104; National Natural Science Foundation of China (11274071, 11504053).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun Yunzhou; Yi Lin; Wysin, G. M.
2008-10-15
The Berezinskii-Kosterlitz-Thouless (BKT) phase transition for the dilute planar rotator model on a triangular lattice is studied by using a hybrid Monte Carlo method. The phase-transition temperatures for different nonmagnetic impurity densities are obtained by three approaches: finite-size scaling of plane magnetic susceptibility, helicity modulus, and Binder's fourth cumulant. It is found that the phase-transition temperature decreases with increasing impurity density {rho} and the BKT phase transition vanishes when the magnetic occupancy falls to the site percolation threshold: 1-{rho}{sub c}=p{sub c}=0.5.
Huo, Heqiang; Wei, Shouhui; Bradford, Kent J.
2016-01-01
Seed germination and flowering, two critical developmental transitions in plant life cycles, are coordinately regulated by genetic and environmental factors to match plant establishment and reproduction to seasonal cues. The DELAY OF GERMINATION1 (DOG1) gene is involved in regulating seed dormancy in response to temperature and has also been associated genetically with pleiotropic flowering phenotypes across diverse Arabidopsis thaliana accessions and locations. Here we show that DOG1 can regulate seed dormancy and flowering times in lettuce (Lactuca sativa, Ls) and Arabidopsis through an influence on levels of microRNAs (miRNAs) miR156 and miR172. In lettuce, suppression of LsDOG1 expression enabled seed germination at high temperature and promoted early flowering in association with reduced miR156 and increased miR172 levels. In Arabidopsis, higher miR156 levels resulting from overexpression of the MIR156 gene enhanced seed dormancy and delayed flowering. These phenotypic effects, as well as conversion of MIR156 transcripts to miR156, were compromised in DOG1 loss-of-function mutant plants, especially in seeds. Overexpression of MIR172 reduced seed dormancy and promoted early flowering in Arabidopsis, and the effect on flowering required functional DOG1. Transcript levels of several genes associated with miRNA processing were consistently lower in dry seeds of Arabidopsis and lettuce when DOG1 was mutated or its expression was reduced; in contrast, transcript levels of these genes were elevated in a DOG1 gain-of-function mutant. Our results reveal a previously unknown linkage between two critical developmental phase transitions in the plant life cycle through a DOG1–miR156–miR172 interaction. PMID:27035986
Rosales, Rocio; Rehfeldt, Ruth Anne
2007-01-01
The purpose of this study was to demonstrate derived manding skills in 2 adults with severe developmental disabilities and language deficits by contriving transitive conditioned establishing operations. Specifically, we evaluated whether a history of reinforced conditional discrimination learning would ultimately result in a derived mand repertoire, in which participants manded for items that were needed to complete chained tasks. After mastering the first three phases of the picture exchange communication system (PECS), participants were taught to mand for the needed items by exchanging pictures of the items for the items themselves. They were then taught to conditionally relate the dictated names of the items to the corresponding pictures of the items and to relate the dictated names to the corresponding printed words. We then tested, in the absence of reinforcement, whether participants would mand for the items needed to complete the chained tasks using text rather than pictures. Both participants showed the emergence of derived mands and some derived stimulus relations as a result of this instruction. Some of the derived relations were shown to be intact at 1-month follow-up, and scores on derived mand probes were higher at follow-up than before training. In addition, the 2 participants vocally requested the needed items on maintenance test probes, a skill that was never trained and was not previously in their repertoires. These results suggest that a history of reinforced relational responding may facilitate the expansion of a number of verbal skills and emphasize the possibility of a synthesis of Skinner's (1957) analysis of verbal behavior and derived stimulus relations into language-training efforts for persons with significant disabilities.
Local bias-induced phase transitions
Seal, Katyayani; Baddorf, Arthur P.; Jesse, Stephen; ...
2008-11-27
Electrical bias-induced phase transitions underpin a wide range of applications from data storage to energy generation and conversion. The mechanisms behind these transitions are often quite complex and in many cases are extremely sensitive to local defects that act as centers for local transformations or pinning. Furthermore, using ferroelectrics as an example, we review methods for probing bias-induced phase transitions and discuss the current limitations and challenges for extending the methods to field-induced phase transitions and electrochemical reactions in energy storage, biological and molecular systems.
Mixed-order phase transition in a colloidal crystal.
Alert, Ricard; Tierno, Pietro; Casademunt, Jaume
2017-12-05
Mixed-order phase transitions display a discontinuity in the order parameter like first-order transitions yet feature critical behavior like second-order transitions. Such transitions have been predicted for a broad range of equilibrium and nonequilibrium systems, but their experimental observation has remained elusive. Here, we analytically predict and experimentally realize a mixed-order equilibrium phase transition. Specifically, a discontinuous solid-solid transition in a 2D crystal of paramagnetic colloidal particles is induced by a magnetic field [Formula: see text] At the transition field [Formula: see text], the energy landscape of the system becomes completely flat, which causes diverging fluctuations and correlation length [Formula: see text] Mean-field critical exponents are predicted, since the upper critical dimension of the transition is [Formula: see text] Our colloidal system provides an experimental test bed to probe the unconventional properties of mixed-order phase transitions.
Mixed-order phase transition in a colloidal crystal
NASA Astrophysics Data System (ADS)
Alert, Ricard; Tierno, Pietro; Casademunt, Jaume
2017-12-01
Mixed-order phase transitions display a discontinuity in the order parameter like first-order transitions yet feature critical behavior like second-order transitions. Such transitions have been predicted for a broad range of equilibrium and nonequilibrium systems, but their experimental observation has remained elusive. Here, we analytically predict and experimentally realize a mixed-order equilibrium phase transition. Specifically, a discontinuous solid-solid transition in a 2D crystal of paramagnetic colloidal particles is induced by a magnetic field H. At the transition field Hs, the energy landscape of the system becomes completely flat, which causes diverging fluctuations and correlation length ξ∝|H2-Hs2|-1/2. Mean-field critical exponents are predicted, since the upper critical dimension of the transition is du=2. Our colloidal system provides an experimental test bed to probe the unconventional properties of mixed-order phase transitions.
Global quantum discord and quantum phase transition in XY model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Si-Yuan; Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190; Zhang, Yu-Ran, E-mail: yrzhang@iphy.ac.cn
We study the relationship between the behavior of global quantum correlations and quantum phase transitions in XY model. We find that the two kinds of phase transitions in the studied model can be characterized by the features of global quantum discord (GQD) and the corresponding quantum correlations. We demonstrate that the maximum of the sum of all the nearest neighbor bipartite GQDs is effective and accurate for signaling the Ising quantum phase transition, in contrast, the sudden change of GQD is very suitable for characterizing another phase transition in the XY model. This may shed lights on the study ofmore » properties of quantum correlations in different quantum phases.« less
First-order reversal curve of the magnetostructural phase transition in FeTe
Frampton, M. K.; Crocker, J.; Gilbert, D. A.; ...
2017-06-05
We apply the first-order reversal curve (FORC) method, adapted from studies of ferromagnetic materials, to the magnetostructural phase transition of Fe 1+yTe. FORC measurements reveal two features in the hysteretic phase transition, even in samples where traditional temperature measurements display only a single transition. For Fe 1.13Te, the influence of magnetic field suggests that the main feature is primarily structural while a smaller, slightly higher-temperature transition is magnetic in origin. By contrast, Fe 1.03Te has a single transition which shows a uniform response to magnetic field, indicating a stronger coupling of the magnetic and structural phase transitions. We also introducemore » uniaxial stress, which spreads the distribution width without changing the underlying energy barrier of the transformation. Finally, the work shows how FORC can help disentangle the roles of the magnetic and structural phase transitions in FeTe.« less
In-phase oscillation of global regulons is orchestrated by a pole-specific organizer
Janakiraman, Balaganesh; Mignolet, Johann; Narayanan, Sharath; Viollier, Patrick H.
2016-01-01
Cell fate determination in the asymmetric bacterium Caulobacter crescentus (Caulobacter) is triggered by the localization of the developmental regulator SpmX to the old (stalked) cell pole during the G1→S transition. Although SpmX is required to localize and activate the cell fate-determining kinase DivJ at the stalked pole in Caulobacter, in cousins such as Asticcacaulis, SpmX directs organelle (stalk) positioning and possibly other functions. We define the conserved σ54-dependent transcriptional activator TacA as a global regulator in Caulobacter whose activation by phosphorylation is indirectly down-regulated by SpmX. Using a combination of forward genetics and cytological screening, we uncover a previously uncharacterized and polarized component (SpmY) of the TacA phosphorylation control system, and we show that SpmY function and localization are conserved. Thus, SpmX organizes a site-specific, ancestral, and multifunctional regulatory hub integrating the in-phase oscillation of two global transcriptional regulators, CtrA (the master cell cycle transcriptional regulator A) and TacA, that perform important cell cycle functions. PMID:27791133
Temporal Control of Plant Organ Growth by TCP Transcription Factors.
Huang, Tengbo; Irish, Vivian F
2015-06-29
The Arabidopsis petal is a simple laminar organ whose development is largely impervious to environmental effects, making it an excellent model for dissecting the regulation of cell-cycle progression and post-mitotic cell expansion that together sculpt organ form. Arabidopsis petals grow via basipetal waves of cell division, followed by a phase of cell expansion. RABBIT EARS (RBE) encodes a C2H2 zinc finger transcriptional repressor and is required for petal development. During the early phase of petal initiation, RBE regulates a microRNA164-dependent pathway that controls cell proliferation at the petal primordium boundaries. The effects of rbe mutations on petal lamina growth suggest that RBE is also required to regulate later developmental events during petal organogenesis. Here, we demonstrate that, early in petal development, RBE represses the transcription of a suite of CIN-TCP genes that in turn act to inhibit the number and duration of cell divisions; the temporal alleviation of that repression results in the transition from cell division to post-mitotic cell expansion and concomitant petal maturation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sadeghi, Zahra
2016-09-01
In this paper, I investigate conceptual categories derived from developmental processing in a deep neural network. The similarity matrices of deep representation at each layer of neural network are computed and compared with their raw representation. While the clusters generated by raw representation stand at the basic level of abstraction, conceptual categories obtained from deep representation shows a bottom-up transition procedure. Results demonstrate a developmental course of learning from specific to general level of abstraction through learned layers of representations in a deep belief network. © The Author(s) 2016.
Green Algae and the Origins of Multicellularity in the Plant Kingdom
Umen, James G.
2014-01-01
The green lineage of chlorophyte algae and streptophytes form a large and diverse clade with multiple independent transitions to produce multicellular and/or macroscopically complex organization. In this review, I focus on two of the best-studied multicellular groups of green algae: charophytes and volvocines. Charophyte algae are the closest relatives of land plants and encompass the transition from unicellularity to simple multicellularity. Many of the innovations present in land plants have their roots in the cell and developmental biology of charophyte algae. Volvocine algae evolved an independent route to multicellularity that is captured by a graded series of increasing cell-type specialization and developmental complexity. The study of volvocine algae has provided unprecedented insights into the innovations required to achieve multicellularity. PMID:25324214
Sebastián, Nerea; López, David Orencio; Diez-Berart, Sergio; de la Fuente, María Rosario; Salud, Josep; Pérez-Jubindo, Miguel Angel; Ros, María Blanca
2011-01-01
In this work, a study of the nematic (N)–isotropic (I) phase transition has been made in a series of odd non-symmetric liquid crystal dimers, the α-(4-cyanobiphenyl-4’-yloxy)-ω-(1-pyrenimine-benzylidene-4’-oxy) alkanes, by means of accurate calorimetric and dielectric measurements. These materials are potential candidates to present the elusive biaxial nematic (NB) phase, as they exhibit both molecular biaxiality and flexibility. According to the theory, the uniaxial nematic (NU)–isotropic (I) phase transition is first-order in nature, whereas the NB–I phase transition is second-order. Thus, a fine analysis of the critical behavior of the N–I phase transition would allow us to determine the presence or not of the biaxial nematic phase and understand how the molecular biaxiality and flexibility of these compounds influences the critical behavior of the N–I phase transition. PMID:28824100
Cole, Rebecca; Ashok, Dhandapani; Razack, Abdul; Azaz, Amer; Sebastian, Shaji
2015-08-01
We aimed to evaluate the impact of a transition service on clinical and developmental outcomes in adolescent Inflammatory Bowel Disease (IBD) patients on transfer to adult health care services. We reviewed the records of IBD patients diagnosed in pediatric care following their transfer/attendance to the adult IBD service. The data on patients who attended the transition service were compared with those who did not pass through the transition service. Seventy-two patients were included in the study 41M and 31F. Forty-four patients went through the transition system (Group A), and 28 had no formalized transition arrangement before transfer (Group B). A significantly higher number of Group B patients needed surgery within 2 years of transfer when compared with patients in Group A (46% vs. 25%, p = .01). Sixty-one percent of patients in Group B needed at least one admission within 2 years of transfer when compared with 29% of Group A patients (p = .002). Nonattendance at clinics was higher in Group B patients with 78% having at least one nonattendance, whereas 29% of Group A failed to attend at least one appointment (p = .001). In addition, drug compliance rates were higher in the transition group when compared with Group B (89% and 46%, respectively; p = .002). A higher proportion of transitioned patients achieved their estimated maximum growth potential when completing adolescence. There was a trend toward higher dependence on opiates and smoking in Group B patients. In adolescent IBD patients, transition care is associated with better disease specific and developmental outcomes. Prospective studies of different models of transition care in IBD are needed. Copyright © 2015 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Duchesne, Stéphane; Ratelle, Catherine F.; Feng, Bei
2014-01-01
This longitudinal study builds on research addressing changes in achievement goal orientations (AG) across the transition to middle school. We had two objectives. The first was to identify and describe different development trajectories of AG (mastery, performance-approach, and performance-avoidance) from the last year of elementary school (Grade…
Partners and Parents: Developmental Changes in Marital Relation during the Transition to Parenthood.
ERIC Educational Resources Information Center
Menendez, Susana; Hidalgo, Ma Victoria
This study investigated changes in marital relations during the transition to parenthood, including changes in the stability and quality of the relationship and in marital support. Subjects were 95 families studied from the beginning of the mother's pregnancy until the children were 10-12 months old. Parents differed in previous parental…
ERIC Educational Resources Information Center
Hutchinson, Nancy L.; Pyle, Angela; Villeneuve, Michelle; Dods, Jennifer; Dalton, C. J.; Minnes, Patricia
2014-01-01
Research has shown the benefits of parent involvement for student participation in education. Parent advocacy is a critical form of involvement by parents for children who are young, have disabilities, and are making transitions. Studies have classified forms of parent advocacy but have not illuminated the components necessary for effective parent…
ERIC Educational Resources Information Center
Mosek-Eilon, Vered; Hirschberger, Gilad; Kanat-Maymon, Yaniv; Feldman, Ruth
2013-01-01
The transition to parenthood marks an important developmental stage in adult life, associated with unique challenges to the partners' conflict dialogue in the formation of the family unit. Utilizing a biobehavioral experimental design, we examined the potential positive effects of the infant on the couple's conflict discussion. One…
ERIC Educational Resources Information Center
Andersen, Lee; And Others
This curriculum emphasizes successful transition from school to work and to a quality adult life for students with mild disabilities. The curriculum includes a scope and sequence outlining 11 subject matter content areas, covering tasks appropriate for learners from a developmental age of 1 month to 21 years. The 11 content areas include…
Young Children's Knowledge of Food Allergy and Transition to School
ERIC Educational Resources Information Center
Sanagavarapu, Prathyusha
2017-01-01
Children's knowledge of food allergies and their self-management is developmentally based, and is essential for their safe transition to school. Despite a growing number of children with food allergies starting school globally, to date, little is known about young children's knowledge of food allergy or their capacity to manage it, or their…
ERIC Educational Resources Information Center
Dvoráková, Kamila; Kishida, Moé; Li, Jacinda; Elavsky, Steriani; Broderick, Patricia C.; Agrusti, Mark R.; Greenberg, Mark T.
2017-01-01
Objective: Given the importance of developmental transitions on young adults' lives and the high rates of mental health issues among U.S. college students, first-year college students can be particularly vulnerable to stress and adversity. This pilot study evaluated the effectiveness and feasibility of mindfulness training aiming to promote…
Examining How and Why Children in My Transitional Kindergarten Classroom Engage in Pretend Gunplay
ERIC Educational Resources Information Center
Bauman, Jamie
2015-01-01
This self-study of pretend gunplay in my Transitional Kindergarten (TK) classroom was designed to guide me in not only improving my practice within the classroom, but also informing the development of sound classroom policies related to pretend gun-and-weapons play that balance children's developmental needs with my commitment to peace and…
ERIC Educational Resources Information Center
Terjesen, Siri; Sullivan, Sherry E.
2011-01-01
Purpose: The purpose of this study is to examine the under-researched subject of the role of mentoring relationships within and outside of organizational boundaries as individuals make the career transition from being a corporate employee to becoming an entrepreneur. Design/methodology/approach: Using structured interviews, the authors collected…
ERIC Educational Resources Information Center
Goodrich, Samantha; Mudrick, Hannah; Robinson, JoAnn
2015-01-01
Research Findings: National policy today is on the brink of defining preschool experiences as essential for children's academic success. Indeed, many children's classroom experience begins as they transition from infant/toddler care to a preschool classroom. This study examined developmentally relevant skill domains among 36-month-olds (effortful…
Peer Rejection Cues Induce Cardiac Slowing after Transition into Adolescence
ERIC Educational Resources Information Center
Gunther Moor, Bregtje; Bos, Marieke G. N.; Crone, Eveline A.; van der Molen, Maurits W.
2014-01-01
The present study examined developmental and gender differences in sensitivity to peer rejection across the transition into adolescence by examining beat-by-beat heart rate responses. Children between the ages of 8 and 14 years were presented with unfamiliar faces of age-matched peers and were asked to predict whether they would be liked by the…
ERIC Educational Resources Information Center
Traum, Linda C.; Moran, Mary Jane
2016-01-01
This qualitative study considered values, beliefs, perspectives, and meanings of 7 parents and 3 teachers within the context of daily home-to-child care transitions in one infant-toddler center in an early childhood laboratory school. Sociocultural and attachment theories anchored the study and the developmental niche framework informed…
The Ticking of the Social Clock: Adults' Beliefs about the Timing of Transition Events.
ERIC Educational Resources Information Center
Peterson, Candida C.
1996-01-01
Two studies regarding beliefs about descriptive and prescriptive age norms for adults in developmental transitions were examined in a sample of 214 Australian university students ages 17 to 50. Discusses research methodology. The probable consequences for self-esteem, mental health, and life planning are discussed in the context of the research…
ERIC Educational Resources Information Center
Ballard, Mary B.
2012-01-01
Transitioning successfully from one stage of development to the next in the family life cycle requires the accomplishment of certain developmental tasks. Couples and families who fail to accomplish these tasks often become "stuck" and unable to move forward. This impasse frequently leads to heightened stress reactions and crippled channels of…
The Effects of an Intensive Postsecondary Transition Program on College Readiness for Adult Learners
ERIC Educational Resources Information Center
Kallison, James M., Jr.
2017-01-01
Postsecondary transition programs have emerged to prepare adult learners to enter college with either limited or no remediation work needed in developmental education. This article examines the results of a pilot study, in which participants (ages 20 years and older who held GED® credentials or high school degrees) received accelerated instruction…
Supporting Pupils with DCD and ASD with the Transition to Secondary School
ERIC Educational Resources Information Center
Foulder-Hughes, Lynda; Prior, Clare
2014-01-01
Children with autistic spectrum disorders (ASDs) and developmental coordination disorder (DCD) are at an increased risk for a range of motor, sensory and social challenges which affect their ability to function at school. The current small scale, qualitative study sought to investigate how children with ASD and/or DCD felt about the transition to…
Kansas Early Childhood Research Institute on Transitions: Executive Summary.
ERIC Educational Resources Information Center
Rice, Mabel L.; O'Brien, Marion
This executive summary reviews activities over the past 5 years of the Kansas Early Childhood Research Institute (KECRI). The Institute has addressed transition issues faced by infants and young children (and their families) who have a disability or are at risk for developmental delay. KECRI goals are stated and the importance and impact of the…
ERIC Educational Resources Information Center
Doyle, Lesley
2012-01-01
The contention of this article is that the potentially productive developmental learning experience of the transition which young people in secondary school make between concurrent vocational and academic courses is largely unrecognised and thus unexploited. To support this contention, and to suggest a more productive way forward, understandings…
ERIC Educational Resources Information Center
Harwood, Kate; McLean, Neil; Durkin, Kevin
2007-01-01
Becoming a parent is a major developmental transition of adulthood. Individuals often have optimistic expectations about parenthood, yet this transition also presents a number of challenges. The authors investigated whether new parents have overly optimistic expectations about parenthood and, if they do, how this influences their adjustment to…
Thermodynamic phase transition of a black hole in rainbow gravity
NASA Astrophysics Data System (ADS)
Feng, Zhong-Wen; Yang, Shu-Zheng
2017-09-01
In this letter, using the rainbow functions that were proposed by Magueijo and Smolin, we investigate the thermodynamics and the phase transition of rainbow Schwarzschild black hole. First, we calculate the rainbow gravity corrected Hawking temperature. From this modification, we then derive the local temperature, free energy, and other thermodynamic quantities in an isothermal cavity. Finally, we analyze the critical behavior, thermodynamic stability, and phase transition of the rainbow Schwarzschild black hole. The results show that the rainbow gravity can stop the Hawking radiation in the final stages of black holes' evolution and lead to the remnants of black holes. Furthermore, one can observe that the rainbow Schwarzschild black hole has one first-order phase transition, two second-order phase transitions, and three Hawking-Page-type phase transitions in the framework of rainbow gravity theory.
NASA Astrophysics Data System (ADS)
Liu, R. M.; Zhuo, W. Z.; Chen, J.; Qin, M. H.; Zeng, M.; Lu, X. B.; Gao, X. S.; Liu, J.-M.
2017-07-01
We study the thermal phase transition of the fourfold degenerate phases (the plaquette and single-stripe states) in the two-dimensional frustrated Ising model on the Shastry-Sutherland lattice using Monte Carlo simulations. The critical Ashkin-Teller-like behavior is identified both in the plaquette phase region and the single-stripe phase region. The four-state Potts critical end points differentiating the continuous transitions from the first-order ones are estimated based on finite-size-scaling analyses. Furthermore, a similar behavior of the transition to the fourfold single-stripe phase is also observed in the anisotropic triangular Ising model. Thus, this work clearly demonstrates that the transitions to the fourfold degenerate states of two-dimensional Ising antiferromagnets exhibit similar transition behavior.
NASA Astrophysics Data System (ADS)
Goossens, D. J.; Wu, Xiaodong; Prior, M.
2005-12-01
The ferroelectric phase transition in deuterated benzil, C 14H 10O 2, has been studied using capacitance measurements and neutron powder diffraction. Hydrogenous benzil shows a phase transition at 83.5 K from a high temperature P3 121 phase to a cell-doubled P2 1 phase. The phase transition in d-benzil occurs at 88.1 K, a small isotope effect. Neutron powder diffraction was consistent with a low temperature phase of space group P2 1. Upon deuteration the transition remained first-order and the dynamics of the phenyl ring dominated the behaviour. The isotope effect can be attributed to the difference in mass and moment of inertia between C 6H 5 and C 6D 5.
Mechanism and microstructures in Ga2O3 pseudomartensitic solid phase transition.
Zhu, Sheng-Cai; Guan, Shu-Hui; Liu, Zhi-Pan
2016-07-21
Solid-to-solid phase transition, although widely exploited in making new materials, challenges persistently our current theory for predicting its complex kinetics and rich microstructures in transition. The Ga2O3α-β phase transformation represents such a common but complex reaction with marked change in cation coordination and crystal density, which was known to yield either amorphous or crystalline products under different synthetic conditions. Here we, via recently developed stochastic surface walking (SSW) method, resolve for the first time the atomistic mechanism of Ga2O3α-β phase transformation, the pathway of which turns out to be the first reaction pathway ever determined for a new type of diffusionless solid phase transition, namely, pseudomartensitic phase transition. We demonstrate that the sensitivity of product crystallinity is caused by its multi-step, multi-type reaction pathway, which bypasses seven intermediate phases and involves all types of elementary solid phase transition steps, i.e. the shearing of O layers (martensitic type), the local diffusion of Ga atoms (reconstructive type) and the significant lattice dilation (dilation type). While the migration of Ga atoms across the close-packed O layers is the rate-determining step and yields "amorphous-like" high energy intermediates, the shearing of O layers contributes to the formation of coherent biphase junctions and the presence of a crystallographic orientation relation, (001)α//(201[combining macron])β + [120]α//[13[combining macron]2]β. Our experiment using high-resolution transmission electron microscopy further confirms the theoretical predictions on the atomic structure of biphase junction and the formation of (201[combining macron])β twin, and also discovers the late occurrence of lattice expansion in the nascent β phase that grows out from the parent α phase. By distinguishing pseudomartensitic transition from other types of mechanisms, we propose general rules to predict the product crystallinity of solid phase transition. The new knowledge on the kinetics of pseudomartensitic transition complements the theory of diffusionless solid phase transition.
RNA-sequencing quantification of hepatic ontogeny of phase-I enzymes in mice.
Peng, Lai; Cui, Julia Y; Yoo, Byunggil; Gunewardena, Sumedha S; Lu, Hong; Klaassen, Curtis D; Zhong, Xiao-Bo
2013-12-01
Phase-I drug metabolizing enzymes catalyze reactions of hydrolysis, reduction, and oxidation of drugs and play a critical role in drug metabolism. However, the functions of most phase-I enzymes are not mature at birth, which markedly affects drug metabolism in newborns. Therefore, characterization of the expression profiles of phase-I enzymes and the underlying regulatory mechanisms during liver maturation is needed for better estimation of using drugs in pediatric patients. The mouse is an animal model widely used for studying the mechanisms in the regulation of developmental expression of phase-I genes. Therefore, we applied RNA sequencing to provide a "true quantification" of the mRNA expression of phase-I genes in the mouse liver during development. Liver samples of male C57BL/6 mice at 12 different ages from prenatal to adulthood were used for defining the ontogenic mRNA profiles of phase-I families, including hydrolysis: carboxylesterase (Ces), paraoxonase (Pon), and epoxide hydrolase (Ephx); reduction: aldo-keto reductase (Akr), quinone oxidoreductase (Nqo), and dihydropyrimidine dehydrogenase (Dpyd); and oxidation: alcohol dehydrogenase (Adh), aldehyde dehydrogenase (Aldh), flavin monooxygenases (Fmo), molybdenum hydroxylase (Aox and Xdh), cytochrome P450 (P450), and cytochrome P450 oxidoreductase (Por). Two rapidly increasing stages of total phase-I gene expression after birth reflect functional transition of the liver during development. Diverse expression patterns were identified, and some large gene families contained the mRNA of genes that are enriched at different stages of development. Our study reveals the mRNA abundance of phase-I genes in the mouse liver during development and provides a valuable foundation for mechanistic studies in the future.
Garvey, Katharine; Laffel, Lori
2018-01-01
Adolescence and young adulthood are times of multiple developmental changes, including physiological, social, emotional, cognitive, and behavioral transformations. The adolescent or young adult living with type 1 or type 2 diabetes must navigate the vicissitudes of these developmental stages while managing the rigors and self-care demands of these conditions. Diabetes in children is managed by adults, mainly by parents. As the child matures, diabetes management tasks transition from parents to the developing teen. This transition in care is a process that generally begins in early adolescence and culminates when the older teen successfully accepts and manages diabetes self-care tasks. Along with the transitions in diabetes management tasks, older teens and young adults must be prepared for transfer from the pediatric diabetes care team to an adult-focused health care team. Numerous publications have described the challenges associated with both the process of transition and the act of transfer. Lack of preparation during transition followed by unsuccessful transfer often results in gaps in diabetes care exceeding 6 months, deterioration in glycemic control, increase in emergency room use and hospitalization, and emergence of diabetes complications among older teens and young adults. There is need for ongoing research internationally to address these deficiencies in order to improve the short- and long-term health of young persons with diabetes. © 2018 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Ma, Fengxian; Gao, Guoping; Jiao, Yalong; Gu, Yuantong; Bilic, Ante; Zhang, Haijun; Chen, Zhongfang; Du, Aijun
2016-02-01
Single layered transition metal dichalcogenides have attracted tremendous research interest due to their structural phase diversities. By using a global optimization approach, we have discovered a new phase of transition metal dichalcogenides (labelled as T''), which is confirmed to be energetically, dynamically and kinetically stable by our first-principles calculations. The new T'' MoS2 phase exhibits an intrinsic quantum spin Hall (QSH) effect with a nontrivial gap as large as 0.42 eV, suggesting that a two-dimensional (2D) topological insulator can be achieved at room temperature. Most interestingly, there is a topological phase transition simply driven by a small tensile strain of up to 2%. Furthermore, all the known MX2 (M = Mo or W; X = S, Se or Te) monolayers in the new T'' phase unambiguously display similar band topologies and strain controlled topological phase transitions. Our findings greatly enrich the 2D families of transition metal dichalcogenides and offer a feasible way to control the electronic states of 2D topological insulators for the fabrication of high-speed spintronics devices.Single layered transition metal dichalcogenides have attracted tremendous research interest due to their structural phase diversities. By using a global optimization approach, we have discovered a new phase of transition metal dichalcogenides (labelled as T''), which is confirmed to be energetically, dynamically and kinetically stable by our first-principles calculations. The new T'' MoS2 phase exhibits an intrinsic quantum spin Hall (QSH) effect with a nontrivial gap as large as 0.42 eV, suggesting that a two-dimensional (2D) topological insulator can be achieved at room temperature. Most interestingly, there is a topological phase transition simply driven by a small tensile strain of up to 2%. Furthermore, all the known MX2 (M = Mo or W; X = S, Se or Te) monolayers in the new T'' phase unambiguously display similar band topologies and strain controlled topological phase transitions. Our findings greatly enrich the 2D families of transition metal dichalcogenides and offer a feasible way to control the electronic states of 2D topological insulators for the fabrication of high-speed spintronics devices. Electronic supplementary information (ESI) available: Detailed computational method; structural data of T'' MoS2; DOS of the T'' MoS2 phase under different strains; orbital energy of T'' MoS2 under different strains; electronic structures for all other five MX2 in the T'' phase; edge states of T'' MoS2. See DOI: 10.1039/c5nr07715j
Apparent critical phenomena in the superionic phase transition of Cu 2-xSe
Kang, Stephen Dongmin; Danilkin, Sergey A.; Aydemir, Umut; ...
2016-01-11
The superionic phase transition ofmore » $${\\mathrm{Cu}}_{2-x}\\mathrm{Se}$$ accompanies drastic changes in transport properties. The Seebeck coefficient increases sharply while the electrical conductivity and thermal diffusivity drops. Such behavior has previously been attributed to critical phenomena under the assumption of a continuous phase transition. However, applying Landau's criteria suggests that the transition should be first order. Using the phase diagram that is consistent with a first order transition, we show that the observed transport properties and heat capacity curves can be accounted for and modeled with good agreement. The apparent critical phenomena is shown to be a result of compositional degree-of-freedom. In conclusion, understanding of the phase transition allows to explain the enhancement in the thermoelectric figure-of-merit that is accompanied with the transition.« less
Majeran, Wojciech; Friso, Giulia; Ponnala, Lalit; Connolly, Brian; Huang, Mingshu; Reidel, Edwin; Zhang, Cankui; Asakura, Yukari; Bhuiyan, Nazmul H; Sun, Qi; Turgeon, Robert; van Wijk, Klaas J
2010-11-01
C(4) grasses, such as maize (Zea mays), have high photosynthetic efficiency through combined biochemical and structural adaptations. C(4) photosynthesis is established along the developmental axis of the leaf blade, leading from an undifferentiated leaf base just above the ligule into highly specialized mesophyll cells (MCs) and bundle sheath cells (BSCs) at the tip. To resolve the kinetics of maize leaf development and C(4) differentiation and to obtain a systems-level understanding of maize leaf formation, the accumulation profiles of proteomes of the leaf and the isolated BSCs with their vascular bundle along the developmental gradient were determined using large-scale mass spectrometry. This was complemented by extensive qualitative and quantitative microscopy analysis of structural features (e.g., Kranz anatomy, plasmodesmata, cell wall, and organelles). More than 4300 proteins were identified and functionally annotated. Developmental protein accumulation profiles and hierarchical cluster analysis then determined the kinetics of organelle biogenesis, formation of cellular structures, metabolism, and coexpression patterns. Two main expression clusters were observed, each divided in subclusters, suggesting that a limited number of developmental regulatory networks organize concerted protein accumulation along the leaf gradient. The coexpression with BSC and MC markers provided strong candidates for further analysis of C(4) specialization, in particular transporters and biogenesis factors. Based on the integrated information, we describe five developmental transitions that provide a conceptual and practical template for further analysis. An online protein expression viewer is provided through the Plant Proteome Database.
Deviatoric stress-induced phase transitions in diamantane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Fan; Lin, Yu; Dahl, Jeremy E. P.
2014-10-21
The high-pressure behavior of diamantane was investigated using angle-dispersive synchrotron x-ray diffraction (XRD) and Raman spectroscopy in diamond anvil cells. Our experiments revealed that the structural transitions in diamantane were extremely sensitive to deviatoric stress. Under non-hydrostatic conditions, diamantane underwent a cubic (space group Pa3) to a monoclinic phase transition at below 0.15 GPa, the lowest pressure we were able to measure. Upon further compression to 3.5 GPa, this monoclinic phase transformed into another high-pressure monoclinic phase which persisted to 32 GPa, the highest pressure studied in our experiments. However, under more hydrostatic conditions using silicone oil as a pressuremore » medium, the transition pressure to the first high-pressure monoclinic phase was elevated to 7–10 GPa, which coincided with the hydrostatic limit of silicone oil. In another experiment using helium as a pressure medium, no phase transitions were observed to the highest pressure we reached (13 GPa). In addition, large hysteresis and sluggish transition kinetics were observed upon decompression. Over the pressure range where phase transitions were confirmed by XRD, only continuous changes in the Raman spectra were observed. This suggests that these phase transitions are associated with unit cell distortions and modifications in molecular packing rather than the formation of new carbon-carbon bonds under pressure.« less
ERIC Educational Resources Information Center
Brucker, Debra L.; Nord, Derek
2016-01-01
People with intellectual or developmental disabilities (IDD) face higher levels of poverty than others, which can lead to concerns regarding areas of well-being, such as food security. Young adults with IDD who are, in many cases, transitioning from the system of educational, health care, and income supports of their youth into the adult world may…
NASA Astrophysics Data System (ADS)
Hinatsu, Yukio; Doi, Yoshihiro
2017-06-01
The phase transition of ternary rare earth niobates Ln3NbO7 (Ln = Pr, Sm, Eu) was investigated by the measurements of high-temperature and low-temperature X-ray diffraction, differential scanning calorimetry (DSC) and differential thermal analysis (DTA). These compounds crystallize in an orthorhombic superstructure derived from the structure of cubic fluorite (space group Pnma for Ln = Pr; C2221 for Ln = Sm, Eu). Sm3NbO7 undergoes the phase transition when the temperature is increased through ca. 1080 K and above the transition temperature, its structure is well described with space group Pnma. For Eu3NbO7, the phase transition was not observed up to 1273 K Pr3NbO7 indicates the phase transition when the temperature is increased through ca. 370 K. The change of the phase transition temperature against the Ln ionic radius for Ln3NbO7 is quite different from those for Ln3MO7 (M = Mo, Ru, Re, Os, or Ir), i.e., no systematic relationship between the phase transition temperature and the Ln ionic radius has been observed for Ln3NbO7 compounds.
Lu, Qing; Kim, Jaegil; Straub, John E
2013-03-14
The generalized Replica Exchange Method (gREM) is extended into the isobaric-isothermal ensemble, and applied to simulate a vapor-liquid phase transition in Lennard-Jones fluids. Merging an optimally designed generalized ensemble sampling with replica exchange, gREM is particularly well suited for the effective simulation of first-order phase transitions characterized by "backbending" in the statistical temperature. While the metastable and unstable states in the vicinity of the first-order phase transition are masked by the enthalpy gap in temperature replica exchange method simulations, they are transformed into stable states through the parameterized effective sampling weights in gREM simulations, and join vapor and liquid phases with a succession of unimodal enthalpy distributions. The enhanced sampling across metastable and unstable states is achieved without the need to identify a "good" order parameter for biased sampling. We performed gREM simulations at various pressures below and near the critical pressure to examine the change in behavior of the vapor-liquid phase transition at different pressures. We observed a crossover from the first-order phase transition at low pressure, characterized by the backbending in the statistical temperature and the "kink" in the Gibbs free energy, to a continuous second-order phase transition near the critical pressure. The controlling mechanisms of nucleation and continuous phase transition are evident and the coexistence properties and phase diagram are found in agreement with literature results.
Mixed-order phase transition in a colloidal crystal
Tierno, Pietro; Casademunt, Jaume
2017-01-01
Mixed-order phase transitions display a discontinuity in the order parameter like first-order transitions yet feature critical behavior like second-order transitions. Such transitions have been predicted for a broad range of equilibrium and nonequilibrium systems, but their experimental observation has remained elusive. Here, we analytically predict and experimentally realize a mixed-order equilibrium phase transition. Specifically, a discontinuous solid–solid transition in a 2D crystal of paramagnetic colloidal particles is induced by a magnetic field H. At the transition field Hs, the energy landscape of the system becomes completely flat, which causes diverging fluctuations and correlation length ξ∝|H2−Hs2|−1/2. Mean-field critical exponents are predicted, since the upper critical dimension of the transition is du=2. Our colloidal system provides an experimental test bed to probe the unconventional properties of mixed-order phase transitions. PMID:29158388
ERIC Educational Resources Information Center
Love, John M.; And Others
This is the final report of the 3-year feasibility phase of a projected 7-year longitudinal evaluation of Project Developmental Continuity (PDC), a Head Start demonstration program aimed at providing educational and developmental continuity between children's Head Start and primary school experiences. Chapter I gives an overview of the PDC program…
Ferroelectric to paraelectric phase transition mechanism in poled PVDF-TrFE copolymer films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pramanick, A.; T. Misture, Scott; Osti, Naresh C.
2017-11-01
Direct experimental insights into the structural and dynamical mechanisms for ferroelectric β to paraelectric α phase transition in a poled PVDF-TrFE copolymer is obtained from in situ x-ray diffraction and quasielastic neutron scattering measurements at high temperatures. It is observed that the β-to-α phase transition proceeds through two energetically distinct processes, which are identified here as the nucleation and growth of an intermediate γ phase with random skew linkages followed by a γ-to-α transition. The two energetically distinct microscopic processes can explain the stages of evolution for β-to-α phase transition observed from heat flow measurements.
Levy, Joshua; Finnegan, Paul
2016-02-01
The purpose of this paper is to demonstrate the unique place of understanding and interpreting dreams in the psychoanalytic process while working through developmental trauma. This psychoanalytic process extended over six years and is presented in four phases: establishing the therapeutic alliance, a crisis, working through, and termination. Dreams from each of these four phases of the analysis are presented, and the collaborative work of understanding and interpreting these dreams is highlighted. Evidence is presented that from this analytic work there ensued an amelioration of the impact of developmental trauma and a furtherance of the development of internal psychic structure. © 2016 by the American Psychoanalytic Association.
NASA Astrophysics Data System (ADS)
Brock, Jeffrey; Khan, Mahmud
2018-05-01
The phase transitions and associated magnetocaloric properties of the Ni2Mn0.55CoxCr0.45-xGa (0 ≤ x ≤ 0.25) Heusler alloy system have been investigated. All samples exhibit a first-order martensitic phase transition, evidenced by a sharp drop in the resistivity versus temperature data and a thermomagnetic irreversibility in the dc magnetization data of the respective samples. Large magnetic entropy changes have also been observed near the phase transitions. The martensitic transformation temperature increases as Cr is partially replaced with Co. Additionally, this substitution leads to a partial decoupling of the magnetic and structural phase transitions, dramatically suppressing any magnetic hysteresis losses. Furthermore, the change in electrical resistivity during the phase transition remains relatively constant across the system, despite major changes in the degree of structural disorder and magnetostructural phase transition coupling. Detailed experimental results and conjectures as to the origin of these behaviors have been provided.
Microscopic Description of Thermodynamics of Lipid Membrane at Liquid-Gel Phase Transition
NASA Astrophysics Data System (ADS)
Kheyfets, B.; Galimzyanov, T.; Mukhin, S.
2018-05-01
A microscopic model of the lipid membrane is constructed that provides analytically tractable description of the physical mechanism of the first order liquid-gel phase transition. We demonstrate that liquid-gel phase transition is cooperative effect of the three major interactions: inter-lipid van der Waals attraction, steric repulsion and hydrophobic tension. The model explicitly shows that temperature-dependent inter-lipid steric repulsion switches the system from liquid to gel phase when the temperature decreases. The switching manifests itself in the increase of lateral compressibility of the lipids as the temperature decreases, making phase with smaller area more preferable below the transition temperature. The model gives qualitatively correct picture of abrupt change at transition temperature of the area per lipid, membrane thickness and volume per hydrocarbon group in the lipid chains. The calculated dependence of phase transition temperature on lipid chain length is in quantitative agreement with experimental data. Steric repulsion between the lipid molecules is shown to be the only driver of the phase transition, as van der Waals attraction and hydrophobic tension are weakly temperature dependent.
Ali, Roushown; Yashima, Masatomo
2003-05-01
Lattice parameters and the structural phase transition of La(0.68)(Ti(0.95),Al(0.05))O(3) have been investigated in situ in the temperature range 301-689 K by the synchrotron radiation powder diffraction (SR-PD) technique. High-angular-resolution SR-PD is confirmed to be a powerful technique for determining precise lattice parameters around a phase-transition temperature. The title compound exhibits a reversible phase transition between orthorhombic and tetragonal phases at 622.3 +/- 0.6 K. The following results were obtained: (i) the lattice parameters increased continuously with temperature, while the b/a ratio decreased continuously with temperature and became unity at the orthorhombic-tetragonal transition point; (ii) no hysteresis was observed between the lattice-parameter values measured on heating and on cooling. Results (i) and (ii) indicate that the orthorhombic-tetragonal phase transition is continuous and reversible. The b/a ratio is found to exhibit a more continuous temperature evolution than does the order parameter for a typical second-order phase transition based on Landau theory.
Gravitation waves from QCD and electroweak phase transitions
NASA Astrophysics Data System (ADS)
Chen, Yidian; Huang, Mei; Yan, Qi-Shu
2018-05-01
We investigate the gravitation waves produced from QCD and electroweak phase transitions in the early universe by using a 5-dimension holographic QCD model and a holographic technicolor model. The dynamical holographic QCD model is to describe the pure gluon system, where a first order confinement-deconfinement phase transition can happen at the critical temperature around 250 MeV. The minimal holographic technicolor model is introduced to model the strong dynamics of electroweak, it can give a first order electroweak phase transition at the critical temperature around 100-360 GeV. We find that for both GW signals produced from QCD and EW phase transitions, in the peak frequency region, the dominant contribution comes from the sound waves, while away from the peak frequency region the contribution from the bubble collision is dominant. The peak frequency of gravitation wave determined by the QCD phase transition is located around 10-7 Hz which is within the detectability of FAST and SKA, and the peak frequency of gravitational wave predicted by EW phase transition is located at 0.002 - 0.007 Hz, which might be detectable by BBO, DECIGO, LISA and ELISA.
Lifespan persistence of ADHD: the life transition model and its application.
Turgay, Atilla; Goodman, David W; Asherson, Philip; Lasser, Robert A; Babcock, Thomas F; Pucci, Michael L; Barkley, Russell
2012-02-01
The understanding that attention-deficit/hyperactivity disorder (ADHD) often persists throughout life has heightened interest of patients, families, advocates, and professionals in a longitudinal approach to management. Such an approach must recognize and address known patient- and systems-based challenges of long-term mental health treatment, shifting of clinical presentations of ADHD, and commonality of psychiatric comorbidity with ADHD. The ADHD Life Transition Model is a step toward developing criteria to optimize recognition and clinical management of ADHD (eg, response, remission) across an individual's lifespan and across diverse medical subspecialties. To support therapeutic efficiency and adaptability, our proposed model highlights periods when external resources for managing ADHD are reduced, cognitive and behavioral stressors are increased, and individuals may be reevaluating how they perceive, accept, and adhere to ADHD treatment. Such a model aims to support the clinical community by placing in context new findings, which suggest that the prevention of adult psychopathology in individuals with pediatric ADHD may be possible. The ADHD Life Transition Model seeks to improve care for individuals with ADHD by (1) underscoring that ADHD persists beyond childhood in at least two-thirds of patients, (2) raising awareness of the need to approach ADHD from a chronic illness standpoint, and (3) increasing mental health professionals' diligence in symptom recognition and management of ADHD across developmental phases from childhood through adulthood. © Copyright 2012 Physicians Postgraduate Press, Inc.
Amorphous-amorphous transition in a porous coordination polymer.
Ohtsu, Hiroyoshi; Bennett, Thomas D; Kojima, Tatsuhiro; Keen, David A; Niwa, Yasuhiro; Kawano, Masaki
2017-07-04
The amorphous state plays a key role in porous coordination polymer and metal-organic framework phase transitions. We investigate a crystalline-to-amorphous-to-amorphous-to-crystalline (CAAC) phase transition in a Zn based coordination polymer, by X-ray absorption fine structure (XAFS) and X-ray pair distribution function (PDF) analysis. We show that the system shows two distinct amorphous phases upon heating. The first involves a reversible transition to a desolvated form of the original network, followed by an irreversible transition to an intermediate phase which has elongated Zn-I bonds.
Lewis, R N; McElhaney, R N
2000-01-01
The thermotropic phase behavior of lipid bilayer model membranes composed of the even-numbered, N-saturated 1,2-diacyl phosphatidylserines was studied by differential scanning calorimetry and by Fourier-transform infrared and (31)P-nuclear magnetic resonance spectroscopy. At pH 7.0, 0.1 M NaCl and in the absence of divalent cations, aqueous dispersions of these lipids, which have not been incubated at low temperature, exhibit a single calorimetrically detectable phase transition that is fully reversible, highly cooperative, and relatively energetic, and the transition temperatures and enthalpies increase progressively with increases in hydrocarbon chain length. Our spectroscopic observations confirm that this thermal event is a lamellar gel (L(beta))-to-lamellar liquid crystalline (L(alpha)) phase transition. However, after low temperature incubation, the L(beta)/L(alpha) phase transition of dilauroyl phosphatidylserine is replaced by a higher temperature, more enthalpic, and less cooperative phase transition, and an additional lower temperature, less enthalpic, and less cooperative phase transition appears in the longer chain phosphatidylserines. Our spectroscopic results indicate that this change in thermotropic phase behavior when incubated at low temperatures results from the conversion of the L(beta) phase to a highly ordered lamellar crystalline (L(c)) phase. Upon heating, the L(c) phase of dilauroyl phosphatidylserine converts directly to the L(alpha) phase at a temperature slightly higher than that of its original L(beta)/L(alpha) phase transition. Calorimetrically, this process is manifested by a less cooperative but considerably more energetic, higher-temperature phase transition, which replaces the weaker L(beta)/L(alpha) phase transition alluded to above. However, with the longer chain compounds, the L(c) phase first converts to the L(beta) phase at temperatures some 10-25 degrees C below that at which the L(beta) phase converts to the L(alpha) phase. Our results also suggest that shorter chain homologues form L(c) phases that are structurally related to, but more ordered than, those formed by the longer chain homologues, but that these L(c) phases are less ordered than those formed by other phospholipids. These studies also suggest that polar/apolar interfaces of the phosphatidylserine bilayers are more hydrated than those of other glycerolipid bilayers, possibly because of interactions between the polar headgroup and carbonyl groups of the fatty acyl chains. PMID:11023908
Two-order parameters theory of the metal-insulator phase transition kinetics in the magnetic field
NASA Astrophysics Data System (ADS)
Dubovskii, L. B.
2018-05-01
The metal-insulator phase transition is considered within the framework of the Ginzburg-Landau approach for the phase transition described with two coupled order parameters. One of the order parameters is the mass density which variation is responsible for the origin of nonzero overlapping of the two different electron bands and the appearance of free electron carriers. This transition is assumed to be a first-order phase one. The free electron carriers are described with the vector-function representing the second-order parameter responsible for the continuous phase transition. This order parameter determines mostly the physical properties of the metal-insulator transition and leads to a singularity of the surface tension at the metal-insulator interface. The magnetic field is involved into the consideration of the system. The magnetic field leads to new singularities of the surface tension at the metal-insulator interface and results in a drastic variation of the phase transition kinetics. A strong singularity in the surface tension results from the Landau diamagnetism and determines anomalous features of the metal-insulator transition kinetics.
Boundaries for martensitic transition of 7Li under pressure
Schaeffer, Anne Marie; Cai, Weizhao; Olejnik, Ella; ...
2015-08-14
We report that physical properties of lithium under extreme pressures continuously reveal unexpected features. These include a sequence of structural transitions to lower symmetry phases, metal-insulator-metal transition, superconductivity with one of the highest elemental transition temperatures, and a maximum followed by a minimum in its melting line. The instability of the bcc structure of lithium is well established by the presence of a temperature-driven martensitic phase transition. The boundaries of this phase, however, have not been previously explored above 3 GPa. All higher pressure phase boundaries are either extrapolations or inferred based on indirect evidence. Here we explore the pressuremore » dependence of the martensitic transition of lithium up to 7 GPa using a combination of neutron and X-ray scattering. We find a rather unexpected deviation from the extrapolated boundaries of the hR3 phase of lithium. Furthermore, there is evidence that, above ~3 GPa, once in fcc phase, lithium does not undergo a martensitic transition.« less
Pressure induced phase transitions in ceramic compounds containing tetragonal zirconia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sparks, R.G.; Pfeiffer, G.; Paesler, M.A.
Stabilized tetragonal zirconia compounds exhibit a transformation toughening process in which stress applied to the material induces a crystallographic phase transition. The phase transition is accompanied by a volume expansion in the stressed region thereby dissipating stress and increasing the fracture strength of the material. The hydrostatic component of the stress required to induce the phase transition can be investigated by the use of a high pressure technique in combination with Micro-Raman spectroscopy. The intensity of Raman lines characteristic for the crystallographic phases can be used to calculate the amount of material that has undergone the transition as a functionmore » of pressure. It was found that pressures on the order of 2-5 kBar were sufficient to produce an almost complete transition from the original tetragonal to the less dense monoclinic phase; while a further increase in pressure caused a gradual reversal of the transition back to the original tetragonal structure.« less
Tunable phase transition in single-layer TiSe2 via electric field
NASA Astrophysics Data System (ADS)
Liu, Lei; Zhuang, Houlong L.
2018-06-01
Phase transition represents an intriguing physical phenomenon that exists in a number of single-layer transition-metal dichalcogenides. This phenomenon often occurs below a critical temperature and breaks the long-range crystalline order leading to a reconstructed superstructure called the charge-density wave (CDW) structure, which can therefore be recovered by external stimuli such as temperature. Alternatively, we show here that another external stimulation, electric field can also result in the phase transition between the regular and CDW structures of a single-layer transition-metal dichalcogenide. We used single-layer TiSe2 as an example to elucidate the mechanism of the CDW followed by calculations of the electronic structure using a hybrid density functional. We found that applying electric field can tune the phase transition between the 1T and CDW phases of single-layer TiSe2. Our work opens up a route of tuning the phase transition of single-layer materials via electric field.
Pressure-induced Lifshitz and structural transitions in NbAs and TaAs: experiments and theory.
Gupta, Satyendra Nath; Singh, Anjali; Pal, Koushik; Muthu, D V S; Shekhar, C; Elghazali, Moaz A; Naumov, Pavel G; Medvedev, Sergey A; Felser, C; Waghmare, U V; Sood, A K
2018-05-10
High pressure Raman, resistivity and synchrotron x-ray diffraction studies on Weyl semimetals NbAs and TaAs have been carried out along with density functional theoretical (DFT) analysis to explain pressure induced structural and electronic topological phase transitions. The frequencies of first order Raman modes harden with increasing pressure, exhibiting a slope change at [Formula: see text] GPa for NbAs and [Formula: see text] GPa for TaAs. The resistivities of NbAs and TaAs exhibit a minimum at pressures close to these transition pressures and also a change in the bulk modulus is observed. Our first-principles calculations reveal that the transition is associated with an electronic Lifshitz transition at [Formula: see text] for NbAs while it is a structural phase transition from body centered tetragonal to hexagonal phase at [Formula: see text] for TaAs. Further, our DFT calculations show a structural phase transition at 24 GPa from body centered tetragonal phase to hexagonal phase.
Fowler, Patrick J.; Motley, Darnell; Zhang, Jinjin; Rolls-Reutz, Jennifer; Landsverk, John
2018-01-01
In this longitudinal study, we tested whether adolescent maltreatment and out-of-home placement as a response to maltreatment altered developmental patterns of sexual risk behaviors in a nationally representative sample of youth involved in the child welfare system. Participants included adolescents aged 13 to 17 (M=15.5, SD=1.49) at baseline (n=714), followed over 18 months. Computer-assisted interviews were used to collect self-reported sexual practices and experiences of physical and psychological abuse at both time points. Latent transition analyses were used to identify three patterns of sexual risk behaviors: abstainers, safe sex with multiple partners, and unsafe sex with multiple partners. Most adolescents transitioned to safer sexual behavior patterns over time. Adolescents exhibiting the riskiest sexual practices at baseline were most likely to report subsequent abuse and less likely to be placed into out-of-home care. Findings provide a more nuanced understanding of sexual risk among child welfare–involved adolescents and inform practices to promote positive transitions within the system. PMID:25155702
Yip, Tiffany; Shelton, J. Nicole
2015-01-01
Everyday interactions with same-racial/ethnic others may confer positive benefits for adolescents, but the meaning of these interactions are likely influenced by individual differences and larger structural contexts. This study examined the situation-level association between contact with same-ethnic others and anxiety symptoms among a diverse sample of 306 racial/ethnic minority adolescents (Mage = 14 years; 66 % female), based on (1) individual differences in ethnic identity centrality and (2) developmental histories of transitions in diversity between elementary, middle, and high school. The results indicated that at the level of the situation, when adolescents interacted with more same-ethnic others, they reported fewer anxiety symptoms. Further, for adolescents who had experienced a transition in school diversity, the positive benefits of contact with same-ethnic others was only conferred for those who felt that their ethnicity was very important to them. The importance of examining individual differences within larger developmental histories to understand the everyday experiences of ethnic minority adolescents are discussed. PMID:24951944
Howe, Nina
2017-09-01
Volling et al.'s monograph provides a rich, thoughtful, and rigorous account of how the transition to siblinghood is experienced by the first-born child and the family. In their comprehensive longitudinal study, they followed 241 families from the prenatal period before the second-born's birth until this child was 12-months old. Siblings are a critical, but understudied, relationship in children's development; the challenges posed in researching sibling dynamics in the context of the family are discussed. Prior psychodynamic and developmental research literature is critiqued, which places the current study into perspective and indicates the important theoretical frameworks (i.e., developmental psychopathology and developmental ecological systems) employed by Volling et al. to advance our understanding of this critical transition in the life of the family. The longitudinal study design, sample characteristics, identification of possible trajectories of adjustment (or not) to the birth of the sibling, and selection of family and child variables are addressed. The sophisticated statistical methods (Growth Mixture Modeling and data mining procedures) employed to predict child adjustment in association with parenting variables over time and sibling relationship quality at 12 months identified low- and high-risk trajectories on the seven subscales of the Child Behavior Check List (CBCL). This afforded a nuanced investigation of a variety of potentially problematic child behaviors (e.g., aggression, withdrawal, negative emotionality, somatic problems) in association with parenting behaviors. A final discussion included study limitations, significant strengths, and implications for clinicians and other professionals. The study's conclusion is that most children and families are resilient, take the birth of a sibling in their stride, and do not exhibit empirical evidence of a developmental crisis, as argued by earlier psychodynamic authors. © 2017 The Society for Research in Child Development, Inc.
The α-γ-ɛ triple point and phase boundaries of iron under shock compression
NASA Astrophysics Data System (ADS)
Li, Jun; Wu, Qiang; Xue, Tao; Geng, Huayun; Yu, Jidong; Jin, Ke; Li, Jiabo; Tan, Ye; Xi, Feng
2017-07-01
The phase transition of iron under shock compression has attracted much attention in recent decades because of its importance in fields such as condensed matter physics, geophysics, and metallurgy. At room temperature, the transition of iron from the α-phase (bcc) to the ɛ-phase (hpc) occurs at a stress of 13 GPa. At high temperature, a triple point followed by transformation to the γ-phase (fcc) is expected. However, the details of the high-temperature phase transitions of iron are still under debate. Here, we investigate the phase-transition behavior of polycrystalline iron under compression from room temperature to 820 K. The results show that the shock-induced phase transition is determined unequivocally from the measured three-wave-structure profiles, which clearly consist of an elastic wave, a plastic wave, and a phase-transition wave. The phase transition is temperature-dependent, with an average rate Δσtr/ΔT of -6.91 MPa/K below 700 K and -34.7 MPa/K at higher temperatures. The shock α-ɛ and α-γ phase boundaries intersect at 10.6 ± 0.53 GPa and 763 K, which agrees with the α-ɛ-γ triple point from early shock wave experiments and recent laser-heated diamond-anvil cell resistivity and in situ X-ray diffraction data but disagrees with the shock pressure-temperature phase diagram reported in 2009 by Zaretsky [J. Appl. Phys. 106, 023510 (2009)].
Exploring the transition from registered nurse to family nurse practitioner.
Poronsky, Cathlin Buckingham
2013-01-01
There is limited information available regarding the transition from registered nurse (RN) to family nurse practitioner (FNP). Several authors described this transition as taking place in 4 stages, and others described it as a 2-phase process. However, there is a lack of consensus about the definition of these stages and phases and at what point they occur for nurses who are making the transition from an RN to an FNP. From what is known, this multistage/2-phase transition is accompanied by feelings of anxiety, stress, role confusion, and emotional turmoil. As a nurse faculty member, the author theorized that nurse faculty might be in a position to provide support for graduate students making this transition in role. However, there was little information available about the transition phases, stages, and needs of students during graduate school. The search for a framework to explore transition yielded transition theory, which is described and applied to FNP transition in this article. Transition theory may be useful for examining more fully the phases and stages of RN-to-FNP transition. In this time of increased need for qualified primary care providers, it is essential that graduates of FNP programs transition into practice following graduation. Copyright © 2013 Elsevier Inc. All rights reserved.
The Kibble-Zurek mechanism in phase transitions of non-equilibrium systems
NASA Astrophysics Data System (ADS)
Cheung, Hil F. H.; Patil, Yogesh S.; Date, Aditya G.; Vengalattore, Mukund
2017-04-01
We experimentally realize a driven-dissipative phase transition using a mechanical parametric amplifier to demonstrate key signatures of a second order phase transition, including a point where the susceptibilities and relaxation time scales diverge, and where the system exhibits a spontaneous breaking of symmetry. Though reminiscent of conventional equilibrium phase transitions, it is unclear if such driven-dissipative phase transitions are amenable to the conventional Landau-Ginsburg-Wilson paradigm, which relies on concepts of scale invariance and universality, and recent work has shown that such phase transitions can indeed lie beyond such conventional universality classes. By quenching the system past the critical point, we investigate the dynamics of the emergent ordered phase and find that our measurements are in excellent agreement with the Kibble-Zurek mechanism. In addition to verifying the Kibble-Zurek hypothesis in driven-dissipative phase transitions for the first time, we also demonstrate that the measured critical exponents accurately reflect the interplay between intrinsic coherent dynamics and environmental correlations, showing a clear departure from mean field exponents in the case of non-Markovian system-bath interactions. We further discuss how reservoir engineering and the imposition of artificial environmental correlations can result in the stabilization of novel many-body quantum phases and aid in the creation of exotic non-equilibrium states of matter.
Developmental Programming of Branching Morphogenesis in the Kidney
Schneider, Laura; Al-Awqati, Qais
2015-01-01
The kidney developmental program encodes the intricate branching and organization of approximately 1 million functional units (nephrons). Branching regulation is poorly understood, as is the source of a 10-fold variation in nephron number. Notably, low nephron count increases the risk for developing hypertension and renal failure. To better understand the source of this variation, we analyzed the complete gestational trajectory of mouse kidney development. We constructed a computerized architectural map of the branching process throughout fetal life and found that organogenesis is composed of two distinct developmental phases, each with stage-specific rate and morphologic parameters. The early phase is characterized by a rapid acceleration in branching rate and by branching divisions that repeat with relatively reproducible morphology. The latter phase, however, is notable for a significantly decreased yet constant branching rate and the presence of nonstereotyped branching events that generate progressive variability in tree morphology until birth. Our map identifies and quantitates the contribution of four developmental mechanisms that guide organogenesis: growth, patterning, branching rate, and nephron induction. When applied to organs that developed under conditions of malnutrition or in the setting of growth factor mutation, our normative map provided an essential link between kidney architecture and the fundamental morphogenetic mechanisms that guide development. This morphogenetic map is expected to find widespread applications and help identify modifiable targets to prevent developmental programming of common diseases. PMID:25644110
Developmental Programming of Branching Morphogenesis in the Kidney.
Sampogna, Rosemary V; Schneider, Laura; Al-Awqati, Qais
2015-10-01
The kidney developmental program encodes the intricate branching and organization of approximately 1 million functional units (nephrons). Branching regulation is poorly understood, as is the source of a 10-fold variation in nephron number. Notably, low nephron count increases the risk for developing hypertension and renal failure. To better understand the source of this variation, we analyzed the complete gestational trajectory of mouse kidney development. We constructed a computerized architectural map of the branching process throughout fetal life and found that organogenesis is composed of two distinct developmental phases, each with stage-specific rate and morphologic parameters. The early phase is characterized by a rapid acceleration in branching rate and by branching divisions that repeat with relatively reproducible morphology. The latter phase, however, is notable for a significantly decreased yet constant branching rate and the presence of nonstereotyped branching events that generate progressive variability in tree morphology until birth. Our map identifies and quantitates the contribution of four developmental mechanisms that guide organogenesis: growth, patterning, branching rate, and nephron induction. When applied to organs that developed under conditions of malnutrition or in the setting of growth factor mutation, our normative map provided an essential link between kidney architecture and the fundamental morphogenetic mechanisms that guide development. This morphogenetic map is expected to find widespread applications and help identify modifiable targets to prevent developmental programming of common diseases. Copyright © 2015 by the American Society of Nephrology.
High pressure ferroelastic phase transition in SrTiO3
NASA Astrophysics Data System (ADS)
Salje, E. K. H.; Guennou, M.; Bouvier, P.; Carpenter, M. A.; Kreisel, J.
2011-07-01
High pressure measurements of the ferroelastic phase transition of SrTiO3 (Guennou et al 2010 Phys. Rev. B 81 054115) showed a linear pressure dependence of the transition temperature between the cubic and tetragonal phase. Furthermore, the pressure induced transition becomes second order while the temperature dependent transition is near a tricritical point. The phase transition mechanism is characterized by the elongation and tilt of the TiO6 octahedra in the tetragonal phase, which leads to strongly nonlinear couplings between the structural order parameter, the volume strain and the applied pressure. The phase diagram is derived from the Clausius-Clapeyron relationship and is directly related to a pressure dependent Landau potential. The nonlinearities of the pressure dependent strains lead to an increase of the fourth order Landau coefficient with increasing pressure and, hence, to a tricritical-second order crossover. This behaviour is reminiscent of the doping related crossover in isostructural KMnF3.
Continuous Easy-Plane Deconfined Phase Transition on the Kagome Lattice
NASA Astrophysics Data System (ADS)
Zhang, Xue-Feng; He, Yin-Chen; Eggert, Sebastian; Moessner, Roderich; Pollmann, Frank
2018-03-01
We use large scale quantum Monte Carlo simulations to study an extended Hubbard model of hard core bosons on the kagome lattice. In the limit of strong nearest-neighbor interactions at 1 /3 filling, the interplay between frustration and quantum fluctuations leads to a valence bond solid ground state. The system undergoes a quantum phase transition to a superfluid phase as the interaction strength is decreased. It is still under debate whether the transition is weakly first order or represents an unconventional continuous phase transition. We present a theory in terms of an easy plane noncompact C P1 gauge theory describing the phase transition at 1 /3 filling. Utilizing large scale quantum Monte Carlo simulations with parallel tempering in the canonical ensemble up to 15552 spins, we provide evidence that the phase transition is continuous at exactly 1 /3 filling. A careful finite size scaling analysis reveals an unconventional scaling behavior hinting at deconfined quantum criticality.
Anomalous structural transition of confined hard squares.
Gurin, Péter; Varga, Szabolcs; Odriozola, Gerardo
2016-11-01
Structural transitions are examined in quasi-one-dimensional systems of freely rotating hard squares, which are confined between two parallel walls. We find two competing phases: one is a fluid where the squares have two sides parallel to the walls, while the second one is a solidlike structure with a zigzag arrangement of the squares. Using transfer matrix method we show that the configuration space consists of subspaces of fluidlike and solidlike phases, which are connected with low probability microstates of mixed structures. The existence of these connecting states makes the thermodynamic quantities continuous and precludes the possibility of a true phase transition. However, thermodynamic functions indicate strong tendency for the phase transition and our replica exchange Monte Carlo simulation study detects several important markers of the first order phase transition. The distinction of a phase transition from a structural change is practically impossible with simulations and experiments in such systems like the confined hard squares.
Thermodynamics and glassy phase transition of regular black holes
NASA Astrophysics Data System (ADS)
Javed, Wajiha; Yousaf, Z.; Akhtar, Zunaira
2018-05-01
This paper is aimed to study thermodynamical properties of phase transition for regular charged black holes (BHs). In this context, we have considered two different forms of BH metrics supplemented with exponential and logistic distribution functions and investigated the recent expansion of phase transition through grand canonical ensemble. After exploring the corresponding Ehrenfest’s equation, we found the second-order background of phase transition at critical points. In order to check the critical behavior of regular BHs, we have evaluated some corresponding explicit relations for the critical temperature, pressure and volume and draw certain graphs with constant values of Smarr’s mass. We found that for the BH metric with exponential configuration function, the phase transition curves are divergent near the critical points, while glassy phase transition has been observed for the Ayón-Beato-García-Bronnikov (ABGB) BH in n = 5 dimensions.
Transitioning to Adulthood from Foster Care.
Lee, Terry; Morgan, Wynne
2017-04-01
Transitional age foster youth do not typically receive the types of family supports their nonfoster peers enjoy. Many foster youth experience multiple adversities and often fare worse than nonfoster peers on long-term functional outcomes. Governments increasingly recognize their responsibility to act as parents for state dependents transitioning to adulthood and the need to provide services to address social/emotional supports, living skills, finances, housing, education, employment, and physical and mental health. More research is needed to inform the development of effective programs. Transitional age foster youth benefit from policies promoting a developmentally appropriate, comprehensive, and integrated transition system of care. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Samatham, S. Shanmukharao; Suresh, K. G.
2017-01-01
The detailed magnetic study of complex 3d-electron based Fe3Ga4 is reported. It undergoes paramagnetic to antiferromagnetic (TN) and antiferromagnetic to ferromagnetic (TC) transitions respectively around 380 and 70 K. The thermal hysteresis of field-cooled cooling (FCC) and field-cooled warming (FCW) hints at first order phase transition below Curie temperature. A weak phase coexistence of ferro and antiferromagnetic phases is suggested by exploring the arrest-like first-order phenomenon. In the intermediate temperature range, field-driven metamagnetic transition from antiferro to ferromagnetic phase is confirmed. Further bringing the system very near to TN, field-induced transitions disappear and above TN predominant paramagnetic contribution is evident. The magnetic H-T phase diagram distinguishing different magnetic phases of Fe3Ga4 is obtained.
Nonequilibrium Phase Precursors during a Photoexcited Insulator-to-Metal Transition in V2O3
NASA Astrophysics Data System (ADS)
Singer, Andrej; Ramirez, Juan Gabriel; Valmianski, Ilya; Cela, Devin; Hua, Nelson; Kukreja, Roopali; Wingert, James; Kovalchuk, Olesya; Glownia, James M.; Sikorski, Marcin; Chollet, Matthieu; Holt, Martin; Schuller, Ivan K.; Shpyrko, Oleg G.
2018-05-01
Here, we photoinduce and directly observe with x-ray scattering an ultrafast enhancement of the structural long-range order in the archetypal Mott system V2O3 . Despite the ultrafast increase in crystal symmetry, the change of unit cell volume occurs an order of magnitude slower and coincides with the insulator-to-metal transition. The decoupling between the two structural responses in the time domain highlights the existence of a transient photoinduced precursor phase, which is distinct from the two structural phases present in equilibrium. X-ray nanoscopy reveals that acoustic phonons trapped in nanoscale twin domains govern the dynamics of the ultrafast transition into the precursor phase, while nucleation and growth of metallic domains dictate the duration of the slower transition into the metallic phase. The enhancement of the long-range order before completion of the electronic transition demonstrates the critical role the nonequilibrium structural phases play during electronic phase transitions in correlated electrons systems.
NASA Astrophysics Data System (ADS)
Puertas, Ricardo; Rute, Maria A.; Salud, Josep; López, David O.; Diez, Sergio; van Miltenburg, J. Kees; Pardo, Luis C.; Tamarit, Josep Ll.; Barrio, Maria; Pérez-Jubindo, Miguel A.; de La Fuente, Maria R.
2004-06-01
The stable solid polymorphism of cyclooctanol (C8H16O, for short C8 OH) is revealed to be a complex problem and only two stable solid phases, denoted on cooling from the liquid as phases I and II, are found using static (thermodynamic and x-ray diffraction) as well as dynamic (dielectric spectroscopy) experimental techniques. Both solid phases are known to exhibit glass transitions if they are cooled down fast enough to prevent transition to ordered crystalline states. Although glass transitions corresponding to both phases had been well documented by means of specific heat measurements, x-ray measurements constitute, as far as we know, the first evidence from the structural point of view. In addition, a great amount of dielectric works devoted to phase I and its glass transition, were published in the past but next to nothing relating to the dielectric properties of phase II and its glass transition. The nature of the disorder of phase II will be discussed.
Phase diagram of two-dimensional hard ellipses.
Bautista-Carbajal, Gustavo; Odriozola, Gerardo
2014-05-28
We report the phase diagram of two-dimensional hard ellipses as obtained from replica exchange Monte Carlo simulations. The replica exchange is implemented by expanding the isobaric ensemble in pressure. The phase diagram shows four regions: isotropic, nematic, plastic, and solid (letting aside the hexatic phase at the isotropic-plastic two-step transition [E. P. Bernard and W. Krauth, Phys. Rev. Lett. 107, 155704 (2011)]). At low anisotropies, the isotropic fluid turns into a plastic phase which in turn yields a solid for increasing pressure (area fraction). Intermediate anisotropies lead to a single first order transition (isotropic-solid). Finally, large anisotropies yield an isotropic-nematic transition at low pressures and a high-pressure nematic-solid transition. We obtain continuous isotropic-nematic transitions. For the transitions involving quasi-long-range positional ordering, i.e., isotropic-plastic, isotropic-solid, and nematic-solid, we observe bimodal probability density functions. This supports first order transition scenarios.
Learning phase transitions by confusion
NASA Astrophysics Data System (ADS)
van Nieuwenburg, Evert; Liu, Ye-Hua; Huber, Sebastian
Classifying phases of matter is a central problem in physics. For quantum mechanical systems, this task can be daunting owing to the exponentially large Hilbert space. Thanks to the available computing power and access to ever larger data sets, classification problems are now routinely solved using machine learning techniques. Here, we propose to use a neural network based approach to find transitions depending on the performance of the neural network after training it with deliberately incorrectly labelled data. We demonstrate the success of this method on the topological phase transition in the Kitaev chain, the thermal phase transition in the classical Ising model, and the many-body-localization transition in a disordered quantum spin chain. Our method does not depend on order parameters, knowledge of the topological content of the phases, or any other specifics of the transition at hand. It therefore paves the way to a generic tool to identify unexplored transitions.
Phase transition in the (Li 0.5-( x/2) K 0.5-( x/2) Cs x) 2SO 4 system
NASA Astrophysics Data System (ADS)
Hamed, A. E.; El-Aziz, Y. M. Abd.; Madi, N. K.; Kassem, M. E.
1995-12-01
Phase transition in the (Li 0.5-( x/2) K 0.5-( x/2) Cs x) 2SO 4 system was studied by measuring the specific heat at constant pressure, C p, as a function of temperature in the temperature range 300-800 K. For non-zero values of X ( X = 0.2%, 0.5%, 1% and 2%) the critical behaviour of the phase transition was found to change considerably compared with that of X = 0 or pure LiKSO 4. The observed change in the phase transition with increase of Cs 2SO 4 content ( X) was accompanied by a decrease in the thermodynamic parameters: the value of the specific heat at the transition point (Δ C P) max, the transition temperature, T1, and the value of the energy of ordering. The results were interpreted within the Landau thermodynamic theory of the phase transition.
Pressure induced phase transition and elastic properties of cerium mono-nitride (CeN)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yaduvanshi, Namrata, E-mail: namrata-yaduvanshi@yahoo.com; Singh, Sadhna
2016-05-23
In the present paper, we have investigated the high-pressure structural phase transition and elastic properties of cerium mono-nitride. We studied theoretically the structural properties of this compound (CeN) by using the improved interaction potential model (IIPM) approach. This compound exhibits first order crystallographic phase transition from NaCl (B{sub 1}) to tetragonal (BCT) phase at 37 GPa. The phase transition pressures and associated volume collapse obtained from present potential model (IIPM) show a good agreement with available theoretical data.
Nonequilibrium Phase Transition in a Model for Social Influence
NASA Astrophysics Data System (ADS)
Castellano, Claudio; Marsili, Matteo; Vespignani, Alessandro
2000-10-01
We present extensive numerical simulations of the Axelrod's model for social influence, aimed at understanding the formation of cultural domains. This is a nonequilibrium model with short range interactions and a remarkably rich dynamical behavior. We study the phase diagram of the model and uncover a nonequilibrium phase transition separating an ordered (culturally polarized) phase from a disordered (culturally fragmented) one. The nature of the phase transition can be continuous or discontinuous depending on the model parameters. At the transition, the size of cultural regions is power-law distributed.
Mohamadi, Ali; Clark, Loretta M; Lipkin, Paul H; Mahone, E Mark; Wodka, Ericka L; Plotnick, Leslie P
2010-05-01
Mutations in the KCNJ11 gene, which encodes the Kir6.2 subunit of the ATP-sensitive potassium channel, often result in neonatal diabetes. Patients with this mutation have been successfully transitioned from insulin to sulfonylurea (SU) therapy without compromise in their glycemic control. Among patients with neonatal diabetes due to KCNJ11 mutations, approximately 25% have neurological findings including developmental delay, motor dysfunction, and epilepsy, known as DEND syndrome. There have been rare cases of juvenile patients with intermediate DEND syndrome (iDEND) reporting variable improvement in neurological function following transition from insulin to SU treatment. We describe the response to glyburide in a 15-yr-old boy with severe global developmental delays resulting from the KCNJ11 mutation V59M. The patient was discovered to have diabetes mellitus at 11.5 months of age, making this the oldest age at diagnosis of a KCNJ11 mutation-related case of neonatal diabetes. Because consensus has been to screen patients for this mutation only if younger than 6 months at the time of diagnosis, we suggest that all patients under the age of 12 months at diagnosis should receive genetic testing for monogenic causes of diabetes.
2013-01-01
Background Alternate bearing is a widespread phenomenon among crop plants, defined as the tendency of certain fruit trees to produce a high-yield crop one year ("on-year"), followed by a low-yield or even no crop the following year ("off-year"). Several factors may affect the balance between such developmental phase-transition processes. Among them are the microRNA (miRNA), being gene-expression regulators that have been found to be involved as key determinants in several physiological processes. Results Six olive (Olea europaea L. cv. Ayvalik variety) small RNA libraries were constructed from fruits (ripe and unripe) and leaves (”on year” and ”off year” leaves in July and in November, respectively) and sequenced by high-throughput Illumina sequencing. The RNA was retrotranscribed and sequenced using the high-throughput Illumina platform. Bioinformatics analyses of 93,526,915 reads identified 135 conserved miRNA, belonging to 22 miRNA families in the olive. In addition, 38 putative novel miRNAs were discovered in the datasets. Expression of olive tree miRNAs varied greatly among the six libraries, indicating the contribution of diverse miRNA in balancing between reproductive and vegetative phases. Predicted targets of miRNA were categorized into 108 process ontology groups with significance abundance. Among those, potential alternate bearing-associated processes were found, such as development, hormone-mediated signaling and organ morphogenesis. The KEGG analyses revealed that the miRNA-targeted genes are involved in seven main pathways, belonging to carbohydrate metabolism and hormone signal-transduction pathways. Conclusion A comprehensive study on olive miRNA related to alternate bearing was performed. Regulation of miRNA under different developmental phases and tissues indicated that control of nutrition and hormone, together with flowering processes had a noteworthy impact on the olive tree alternate bearing. Our results also provide significant data on the miRNA-fruit development interaction and advance perspectives in the miRNA profile of the olive tree. PMID:23320600
NASA Astrophysics Data System (ADS)
Pontes, F. M.; Pontes, D. S. L.; Leite, E. R.; Longo, E.; Chiquito, A. J.; Pizani, P. S.; Varela, J. A.
2003-12-01
We have studied the phase transition behavior of Pb0.76Ca0.24TiO3 thin films using Raman scattering and dielectric measurement techniques. We also have studied the leakage current conduction mechanism as a function of temperature for these thin films on platinized silicon substrates. A Pb0.76Ca0.24TiO3 thin film was prepared using a soft chemical process, called the polymeric precursor method. The results showed that the dependence of the dielectric constant upon the frequency does not reveal any relaxor behavior. However, a diffuse character-type phase transition was observed upon transformation from a cubic paraelectric phase to a tetragonal ferroelectric phase. The temperature dependency of Raman scattering spectra was investigated through the ferroelectric phase transition. The soft mode showed a marked dependence on temperature and its disappearance at about 598 K. On the other hand, Raman modes persist above the tetragonal to cubic phase transition temperature, although all optical modes should be Raman inactive above the phase transition temperature. The origin of these modes must be interpreted in terms of a local breakdown of cubic symmetry by some kind of disorder. The lack of a well-defined transition temperature suggested a diffuse-type phase transition. This result corroborate the dielectric constant versus temperature data, which showed a broad ferroelectric phase transition in the thin film. The leakage current density of the PCT24 thin film was studied at elevated temperatures, and the data were well fitted by the Schottky emission model. The Schottky barrier height of the PCT24 thin film was estimated to be 1.49 eV.
Weiss, David; Freund, Alexandra M; Wiese, Bettina S
2012-11-01
The present research focuses on 2 factors that might help or hurt women to cope with the uncertainties associated with developmental transitions in modern societies (i.e., starting one's first job, graduating from high school, reentry to work after parental leave). We investigate (a) the role of openness to experience in coping with challenging transitions and (b) the (mal)adaptive consequences of adopting a traditional gender ideology. Starting with the assumption that transitional uncertainty has different consequences for women high or low in openness to experience, a first experiment (N = 61; 18-30 years) demonstrated that self-efficacy and well-being decrease after being confronted with transitional uncertainty among women low in openness. Two longitudinal studies investigated the (mal)adaptive consequences of adopting a traditional gender ideology for women high or low in openness in dealing with challenging transitions. Study 2 examined whether endorsing or rejecting traditional gender role beliefs might help female (but not male) students to maintain a sense of self-efficacy and subjective well-being during the transition of graduating from high school (N = 520, 17-22 years). Study 3 (N = 297; 20-53 years) tested the same model for women in middle adulthood during the transition from parental leave to reentry into work life. For both studies, latent growth analyses showed that endorsing traditional gender role beliefs contributed to self-efficacy and subjective well-being among women low in openness. By contrast, for women high in openness, rejecting traditional gender role beliefs had a positive effect on their relative level of self-efficacy and subjective well-being. Functions of ideologies in the context of challenging transitions are discussed.
Phased models for evaluating the performability of computing systems
NASA Technical Reports Server (NTRS)
Wu, L. T.; Meyer, J. F.
1979-01-01
A phase-by-phase modelling technique is introduced to evaluate a fault tolerant system's ability to execute different sets of computational tasks during different phases of the control process. Intraphase processes are allowed to differ from phase to phase. The probabilities of interphase state transitions are specified by interphase transition matrices. Based on constraints imposed on the intraphase and interphase transition probabilities, various iterative solution methods are developed for calculating system performability.
Boyd, Windy A.; Smith, Marjolein V.; Co, Caroll A.; Pirone, Jason R.; Rice, Julie R.; Shockley, Keith R.; Freedman, Jonathan H.
2015-01-01
Background: Modern toxicology is shifting from an observational to a mechanistic science. As part of this shift, high-throughput toxicity assays are being developed using alternative, nonmammalian species to prioritize chemicals and develop prediction models of human toxicity. Methods: The nematode Caenorhabditis elegans (C. elegans) was used to screen the U.S. Environmental Protection Agency’s (EPA’s) ToxCast™ Phase I and Phase II libraries, which contain 292 and 676 chemicals, respectively, for chemicals leading to decreased larval development and growth. Chemical toxicity was evaluated using three parameters: a biologically defined effect size threshold, half-maximal activity concentration (AC50), and lowest effective concentration (LEC). Results: Across both the Phase I and Phase II libraries, 62% of the chemicals were classified as active ≤ 200 μM in the C. elegans assay. Chemical activities and potencies in C. elegans were compared with those from two zebrafish embryonic development toxicity studies and developmental toxicity data for rats and rabbits. Concordance of chemical activity was higher between C. elegans and one zebrafish assay across Phase I chemicals (79%) than with a second zebrafish assay (59%). Using C. elegans or zebrafish to predict rat or rabbit developmental toxicity resulted in balanced accuracies (the average value of the sensitivity and specificity for an assay) ranging from 45% to 53%, slightly lower than the concordance between rat and rabbit (58%). Conclusions: Here, we present an assay that quantitatively and reliably describes the effects of chemical toxicants on C. elegans growth and development. We found significant overlap in the activity of chemicals in the ToxCast™ libraries between C. elegans and zebrafish developmental screens. Incorporating C. elegans toxicological assays as part of a battery of in vitro and in vivo assays provides additional information for the development of models to predict a chemical’s potential toxicity to humans. Citation: Boyd WA, Smith MV, Co CA, Pirone JR, Rice JR, Shockley KR, Freedman JH. 2016. Developmental effects of the ToxCast™ Phase I and II chemicals in Caenorhabditis elegans and corresponding responses in zebrafish, rats, and rabbits. Environ Health Perspect 124:586–593; http://dx.doi.org/10.1289/ehp.1409645 PMID:26496690
Non-equilibrium phase transitions in a driven-dissipative system of interacting bosons
NASA Astrophysics Data System (ADS)
Young, Jeremy T.; Foss-Feig, Michael; Gorshkov, Alexey V.; Maghrebi, Mohammad F.
2017-04-01
Atomic, molecular, and optical systems provide unique opportunities to study simple models of driven-dissipative many-body quantum systems. Typically, one is interested in the resultant steady state, but the non-equilibrium nature of the physics involved presents several problems in understanding its behavior theoretically. Recently, it has been shown that in many of these models, it is possible to map the steady-state phase transitions onto classical equilibrium phase transitions. In the language of Keldysh field theory, this relation typically only becomes apparent after integrating out massive fields near the critical point, leaving behind a single massless field undergoing near-equilibrium dynamics. In this talk, we study a driven-dissipative XXZ bosonic model and discover critical points at which two fields become gapless. Each critical point separates three different possible phases: a uniform phase, an anti-ferromagnetic phase, and a limit cycle phase. Furthermore, a description in terms of an equilibrium phase transition does not seem possible, so the associated phase transitions appear to be inherently non-equilibrium.
Saitou, Takashi; Imamura, Takeshi
2016-01-01
Cell cycle progression is strictly coordinated to ensure proper tissue growth, development, and regeneration of multicellular organisms. Spatiotemporal visualization of cell cycle phases directly helps us to obtain a deeper understanding of controlled, multicellular, cell cycle progression. The fluorescent ubiquitination-based cell cycle indicator (Fucci) system allows us to monitor, in living cells, the G1 and the S/G2/M phases of the cell cycle in red and green fluorescent colors, respectively. Since the discovery of Fucci technology, it has found numerous applications in the characterization of the timing of cell cycle phase transitions under diverse conditions and various biological processes. However, due to the complexity of cell cycle dynamics, understanding of specific patterns of cell cycle progression is still far from complete. In order to tackle this issue, quantitative approaches combined with mathematical modeling seem to be essential. Here, we review several studies that attempted to integrate Fucci technology and mathematical models to obtain quantitative information regarding cell cycle regulatory patterns. Focusing on the technological development of utilizing mathematics to retrieve meaningful information from the Fucci producing data, we discuss how the combined methods advance a quantitative understanding of cell cycle regulation. © 2015 Japanese Society of Developmental Biologists.
Conversion of adult endothelium to immunocompetent haematopoietic stem cells.
Lis, Raphael; Karrasch, Charles C; Poulos, Michael G; Kunar, Balvir; Redmond, David; Duran, Jose G Barcia; Badwe, Chaitanya R; Schachterle, William; Ginsberg, Michael; Xiang, Jenny; Tabrizi, Arash Rafii; Shido, Koji; Rosenwaks, Zev; Elemento, Olivier; Speck, Nancy A; Butler, Jason M; Scandura, Joseph M; Rafii, Shahin
2017-05-25
Developmental pathways that orchestrate the fleeting transition of endothelial cells into haematopoietic stem cells remain undefined. Here we demonstrate a tractable approach for fully reprogramming adult mouse endothelial cells to haematopoietic stem cells (rEC-HSCs) through transient expression of the transcription-factor-encoding genes Fosb, Gfi1, Runx1, and Spi1 (collectively denoted hereafter as FGRS) and vascular-niche-derived angiocrine factors. The induction phase (days 0-8) of conversion is initiated by expression of FGRS in mature endothelial cells, which results in endogenous Runx1 expression. During the specification phase (days 8-20), RUNX1 + FGRS-transduced endothelial cells commit to a haematopoietic fate, yielding rEC-HSCs that no longer require FGRS expression. The vascular niche drives a robust self-renewal and expansion phase of rEC-HSCs (days 20-28). rEC-HSCs have a transcriptome and long-term self-renewal capacity similar to those of adult haematopoietic stem cells, and can be used for clonal engraftment and serial primary and secondary multi-lineage reconstitution, including antigen-dependent adaptive immune function. Inhibition of TGFβ and CXCR7 or activation of BMP and CXCR4 signalling enhanced generation of rEC-HSCs. Pluripotency-independent conversion of endothelial cells into autologous authentic engraftable haematopoietic stem cells could aid treatment of haematological disorders.
Conversion of adult endothelium to immunocompetent haematopoietic stem cells
Lis, Raphael; Karrasch, Charles C.; Poulos, Michael G.; Kunar, Balvir; Redmond, David; Barcia Duran, Jose G.; Badwe, Chaitanya R.; Schachterle, Will; Ginsberg, Michael; Xiang, Jenny; Tabrizi, Arash Rafii; Shido, Koji; Rosenwaks, Zev; Elemento, Olivier; Speck, Nancy; Butler, Jason M.; Scandura, Joseph M.; Rafii, Shahin
2018-01-01
Developmental pathways that orchestrate the fleeting transition of endothelial cells into haematopoietic stem cells remain undefined. Here we demonstrate a tractable approach for fully converting adult mouse endothelial cells to haematopoietic stem cells (rEC-HSCs) through transient expression of genes encoding the transcription factors Fosb, Gfi1, Runx1, and Spi1 (also known as Fgrs) and vascular-niche-derived angiocrine factors. The induction phase (day 0–8) of conversion is initiated by expression of Fgrs in mature endothelial cells, which results in endogenous Runx1 expression. During the specification phase (day 8–20), Runx1+ Fgrs-transduced endothelial cells commit to a haematopoietic fate yielding rEC-HSCs that no longer require Fgrs expression. The vascular niche drives a robust self-renewal and expansion phase of rEC-HSCs (at day 20–28). rEC-HSCs have a transcriptome and long-term self-renewal capacity similar to those of adult haematopoietic stem cells, are competent for clonal engraftment and serial primary and secondary multi-lineage reconstituting potential, including antigen-dependent adaptive immune function. Inhibition of TGF-β and CXCR7 or activation of BMP and CXCR4 signalling enhanced generation of rEC-HSCs. Conversion of endothelial cells into autologous authentic engraftable haematopoietic stem cells could aid treatment of haematological disorders. PMID:28514438
Phase transition phenomenon: A compound measure analysis
NASA Astrophysics Data System (ADS)
Kang, Bo Soo; Park, Chanhi; Ryu, Doojin; Song, Wonho
2015-06-01
This study investigates the well-documented phenomenon of phase transition in financial markets using combined information from both return and volume changes within short time intervals. We suggest a new measure for the phase transition behaviour of markets, calculated as a return distribution conditional on local variance in volume imbalance, and show that this measure successfully captures phase transition behaviour under various conditions. We analyse the intraday trade and quote dataset from the KOSPI 200 index futures, which includes detailed information on the original order size and the type of each initiating investor. We find that among these two competing factors, the submitted order size yields more explanatory power on the phenomenon of market phase transition than the investor type.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jie; Huang, Rong; Wei, Fenfen
2014-11-17
The phase transition of Bi-doped (∼3 at. %) GeTe nanowires from a rhombohedral (R) to a face-centered cubic (C) structure was observed in in situ high-temperature X-ray diffraction. The promotion of high-temperature R-C phase transition by a doping approach was revealed. Ab initio energy calculations of doped GeTe at various Bi doping concentrations were performed to interpret the promoted temperature-induced phase transitions. Those results indicated that the total energy differences between R and C structures of doped GeTe decreased as Bi doping concentrations increased, which facilitated R-C phase transitions.
Influence of Pressure on Physical Property of Ammonia Borane and its Re-hydrogenation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jiuhua
The project systematically studied the high pressure behavior of ammonia borane and its derivative lithium amidoborane. Phase transitions in these materials are investigated in the pressure range up to 20 GPa and temperature range from 80 K to 400K. A number of new phase transitions are discovered in this pressure and temperature range including a second order transformation at 5 GPa and a first order transformation at 12 GPa at room temperature, and four new transitions at high pressure and low temperatures. The Clapeyron slopes for both pressure-induce tetragonal (I4mm) phase to orthorhombic (Cmc21) phase and temperature-induce tetragonal (I4mm) phasemore » to orthorhombic (Pmn21) phase are determined to be positive, indicating these phase transitions are exothermic. This result demonstrates that the high pressure orthorhombic phase of ammonia borane has lower enthalpy than that of tetragonal phase at ambient conditions. If we assume decomposition from the orthorhombic phase yields the same products as that from the tetragonal phase, the decomposition of the orthorhombic phase will be less exothermic. Therefore rehydrogenation from the decomposed product into the orthorhombic phase at high pressure may become easier. The project also studied the influences of nanoconfinement on the phase transitions. Comparative study using Raman spectroscopy indicates that the temperature induced I4mm to Pmn21 transition is suppressed from 217 K to 195 K when the sample is confined in SBA15 (7-9 nm pore size). When the pore size is reduced from 7-9 nm to 3-4 nm, this transition is totally suppressed in the temperature down to 80 K. A similar influence of the nanoconfiement on pressure induced phase transitions is also observed using Raman spectroscopy. The phase boundary between the I4mm phase and high pressure Cmc21 phase at ambient temperature shifts from 0.9 GPa to 0.5 GPa; and that between the Cmc21 phase and higher pressure P21 phase shifts from 10.2 GPa to 9.7 GPa.« less
Overview of Project REAL and the Conceptual Foundations of the SEALS Model
ERIC Educational Resources Information Center
Farmer, Thomas W.
2011-01-01
The early adolescent period and the transition to middle school is a foundational period that is as important to the outcomes of students' educational careers as is the transition into school. For many early adolescents, the changing contexts and demands of school are just as novel, the stresses are just as great, and the developmental stakes are…
ERIC Educational Resources Information Center
Animosa, Lydia Honesty; Lindstrom Johnson, Sarah; Cheng, Tina L.
2018-01-01
Public health practice involving adolescents is largely focused on preventing or delaying the initiation of risk behavior. However, given the experimental and exploratory nature of this developmental period, this is often impractical. This article focuses on behavioral transitions and the ways in which youth involved in risk behaviors shift to…
ERIC Educational Resources Information Center
Mayhew, Matthew J.; Seifert, Tricia A.; Pascarella, Ernest T.
2012-01-01
Understanding the developmental issues first-time college students face is critical for scholars and educators interested in learning and development. This purpose of this study was to investigate the differential impact of first-year college experiences on the moral reasoning development of 1,469 students in moral transition versus those in moral…
Micellar-shape anisometry near isotropic-liquid-crystal phase transitions
NASA Astrophysics Data System (ADS)
Itri, R.; Amaral, L. Q.
1993-04-01
Micellar phases of the sodium dodecyl (lauryl) sulfate (SLS)-water-decanol system have been studied by x-ray scattering in the isotropic (I) phase, with emphasis on the I-->hexagonal (Hα) and I-->nematic-cylindrical (Nc) lyotropic liquid-crystal phase transitions. Analysis of the scattering curves is made through modeling of the product P(q)S(q), where P(q) is the micellar form factor and S(q) is the intermicellar interference function, calculated from screened Coulombic repulsion in a mean spherical approximation. Results show that micelles grow more by decanol addition near the I-->Nc transition (anisometry ν~=3) than by increased amphiphile concentration in the binary system near the I-->Hα phase transition (ν~=2.4). These results compare well with recent theories for isotropic-liquid-crystal phase transitions.
Stochastic Cell Fate Progression in Embryonic Stem Cells
NASA Astrophysics Data System (ADS)
Zou, Ling-Nan; Doyle, Adele; Jang, Sumin; Ramanathan, Sharad
2013-03-01
Studies on the directed differentiation of embryonic stem (ES) cells suggest that some early developmental decisions may be stochastic in nature. To identify the sources of this stochasticity, we analyzed the heterogeneous expression of key transcription factors in single ES cells as they adopt distinct germ layer fates. We find that under sufficiently stringent signaling conditions, the choice of lineage is unambiguous. ES cells flow into differentiated fates via diverging paths, defined by sequences of transitional states that exhibit characteristic co-expression of multiple transcription factors. These transitional states have distinct responses to morphogenic stimuli; by sequential exposure to multiple signaling conditions, ES cells are steered towards specific fates. However, the rate at which cells travel down a developmental path is stochastic: cells exposed to the same signaling condition for the same amount of time can populate different states along the same path. The heterogeneity of cell states seen in our experiments therefore does not reflect the stochastic selection of germ layer fates, but the stochastic rate of progression along a chosen developmental path. Supported in part by the Jane Coffin Childs Fund
2010-04-01
teaching— both in the classroom as well as field-based and individualized contexts. The developmental psychologist Jean Piaget is credited with the phrase...sponsor new theory and research in intercultural development . Bennett has been active in the intercultural field since 1967. Bennett and Hammer are well...known for their work with the Developmental Model of Intercultural Sensitivity (DMIS) and the Intercultural Development Inventory (IDI). 4
Raman spectra and phase transitions in Rb{sub 2}KInF{sub 6} elpasolite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krylov, A. S.; Krylova, S. N., E-mail: slanky@iph.krasn.ru; Vtyurin, A. N.
2011-01-15
The Raman spectra of Rb{sub 2}KInF{sub 6} elpasolite crystal have been studied in a wide temperature range, including two phase transitions: from the cubic phase to the tetragonal phase and then to the monoclinic phase. Several anomalies of internal modes of InF{sub 6} octahedra and low-frequency lattice vibrations, which are related to the structural changes at the transition points, have been found and quantitatively analyzed. The results of a quantitative analysis of the temperature dependences of the parameters of spectral lines are in good agreement with the thermodynamic data on the phase transitions.
Role of relativity in high-pressure phase transitions of thallium.
Kotmool, Komsilp; Chakraborty, Sudip; Bovornratanaraks, Thiti; Ahuja, Rajeev
2017-02-20
We demonstrate the relativistic effects in high-pressure phase transitions of heavy element thallium. The known first phase transition from h.c.p. to f.c.c. is initially investigated by various relativistic levels and exchange-correlation functionals as implemented in FPLO method, as well as scalar relativistic scheme within PAW formalism. The electronic structure calculations are interpreted from the perspective of energetic stability and electronic density of states. The full relativistic scheme (FR) within L(S)DA performs to be the scheme that resembles mostly with experimental results with a transition pressure of 3 GPa. The s-p hybridization and the valence-core overlapping of 6s and 5d states are the primary reasons behind the f.c.c. phase occurrence. A recent proposed phase, i.e., a body-centered tetragonal (b.c.t.) phase, is confirmed with a small distortion from the f.c.c. phase. We have also predicted a reversible b.c.t. → f.c.c. phase transition at 800 GPa. This finding has been suggested that almost all the III-A elements (Ga, In and Tl) exhibit the b.c.t. → f.c.c. phase transition at extremely high pressure.
Phase transitions in high magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arko, A.J.; Beers, C.J.; van Deursen, A.P.J.
1982-08-01
The purpose of this paper is to summarize some of the research activities recently performed at the Laboratorium voor Hoge Magneetvelden at the University of Nijmegen. The scope here and unifying aspect is magnetically induced phase transitions. Here we summarize transitions in the settling velocity of paramagnetic aggregates, suppression of spin fluctuations in UAl/sub 2/, the phase diagram of a ferroelectric chiral smectic liquid crystal near the Lifshitz point and the transition from 3D to 2D conduction in a GaAs FET. In no way does this represent a complete review of transitions, but rather a summary of phase transitions observedmore » at the magnet laboratory during the past year. 6 figures.« less
Yong, Sheila T.; Wang, Xiao-Fan
2012-01-01
Background Scythe/BAT3 is a member of the BAG protein family whose role in apoptosis has been extensively studied. However, since the developmental defects observed in Bat3-null mouse embryos cannot be explained solely by defects in apoptosis, we investigated whether BAT3 is also involved in cell-cycle progression. Methods/Principal Findings Using a stable-inducible Bat3-knockdown cellular system, we demonstrated that reduced BAT3 protein level causes a delay in both G1/S transition and G2/M progression. Concurrent with these changes in cell-cycle progression, we observed a reduction in the turnover and phosphorylation of the CDK inhibitor p21, which is best known as an inhibitor of DNA replication; however, phosphorylated p21 has also been shown to promote G2/M progression. Our findings indicate that in Bat3-knockdown cells, p21 continues to be synthesized during cell-cycle phases that do not normally require p21, resulting in p21 protein accumulation and a subsequent delay in cell-cycle progression. Finally, we showed that BAT3 co-localizes with p21 during the cell cycle and is required for the translocation of p21 from the cytoplasm to the nucleus during the G1/S transition and G2/M progression. Conclusion: Our study reveals a novel, non-apoptotic role for BAT3 in cell-cycle regulation. By maintaining a low p21 protein level during the G1/S transition, BAT3 counteracts the inhibitory effect of p21 on DNA replication and thus enables the cells to progress from G1 to S phase. Conversely, during G2/M progression, BAT3 facilitates p21 phosphorylation by cyclin A/Cdk2, an event required for G2/M progression. BAT3 modulates these pro- and anti-proliferative roles of p21 at least in part by regulating cyclin A abundance, as well as p21 translocation between the cytoplasm and the nucleus to ensure that it functions in the appropriate intracellular compartment during each phase of the cell cycle. PMID:22761665
Mobility restrictions and glass transition behaviour of an epoxy resin under confinement.
Djemour, A; Sanctuary, R; Baller, J
2015-04-07
Confinement can have a big influence on the dynamics of glass formers in the vicinity of the glass transition. Already 40 to 50 K above the glass transition temperature, thermal equilibration of glass formers can be strongly influenced by the confining substrate. We investigate the linear thermal expansion and the specific heat capacity cp of an epoxy resin (diglycidyl ether of bisphenol A, DGEBA) in a temperature interval of 120 K around the glass transition temperature. The epoxy resin is filled into controlled pore glasses with pore diameters between 4 and 111 nm. Since DGEBA can form H-bonds with silica surfaces, we also investigate the influence of surface silanization of the porous substrates. In untreated substrates a core/shell structure of the epoxy resin can be identified. The glass transition behaviours of the bulk phase and that of the shell phase are different. In silanized substrates, the shell phase disappears. At a temperature well above the glass transition, a second transition is found for the bulk phase - both in the linear expansion data as well as in the specific heat capacity. The cp data do not allow excluding the glass transition of a third phase as being the cause for this transition, whereas the linear expansion data do so. The additional transition temperature is interpreted as a separation between two regimes: above this temperature, macroscopic flow of the bulk phase inside the porous structure is possible to balance the mismatch of thermal expansion coefficients between DGEBA and the substrate. Below the transition temperature, this degree of freedom is hindered by geometrical constraints of the porous substrates. Moreover, this second transition could also be found in the linear expansion data of the shell phase.
A time-dependent order parameter for ultrafast photoinduced phase transitions.
Beaud, P; Caviezel, A; Mariager, S O; Rettig, L; Ingold, G; Dornes, C; Huang, S-W; Johnson, J A; Radovic, M; Huber, T; Kubacka, T; Ferrer, A; Lemke, H T; Chollet, M; Zhu, D; Glownia, J M; Sikorski, M; Robert, A; Wadati, H; Nakamura, M; Kawasaki, M; Tokura, Y; Johnson, S L; Staub, U
2014-10-01
Strongly correlated electron systems often exhibit very strong interactions between structural and electronic degrees of freedom that lead to complex and interesting phase diagrams. For technological applications of these materials it is important to learn how to drive transitions from one phase to another. A key question here is the ultimate speed of such phase transitions, and to understand how a phase transition evolves in the time domain. Here we apply time-resolved X-ray diffraction to directly measure the changes in long-range order during ultrafast melting of the charge and orbitally ordered phase in a perovskite manganite. We find that although the actual change in crystal symmetry associated with this transition occurs over different timescales characteristic of the many electronic and vibrational coordinates of the system, the dynamics of the phase transformation can be well described using a single time-dependent 'order parameter' that depends exclusively on the electronic excitation.
Thermodynamics around the first-order ferromagnetic phase transition of Fe2P single crystals
NASA Astrophysics Data System (ADS)
Hudl, M.; Campanini, D.; Caron, L.; Höglin, V.; Sahlberg, M.; Nordblad, P.; Rydh, A.
2014-10-01
The specific heat and thermodynamics of Fe2P single crystals around the first-order paramagnetic to ferromagnetic (FM) phase transition at TC≃217 K are empirically investigated. The magnitude and direction of the magnetic field relative to the crystal axes govern the derived H -T phase diagram. Strikingly different phase contours are obtained for fields applied parallel and perpendicular to the c axis of the crystal. In parallel fields, the FM state is stabilized, while in perpendicular fields the phase transition is split into two sections, with an intermediate FM phase where there is no spontaneous magnetization along the c axis. The zero-field transition displays a textbook example of a first-order transition with different phase stability limits on heating and cooling. The results have special significance since Fe2P is the parent material to a family of compounds with outstanding magnetocaloric properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Shengchang; Graduate School, China Academy of Engineering Physics, Beijing 100088; Fu Libin
2011-08-15
We investigate the quantum phase transition in an ultracold atom-molecule conversion system. It is found that the system undergoes a phase transition from a mixed atom-molecule phase to a pure molecule phase when the energy bias exceeds a critical value. By constructing a coherent state as variational state, we get a good approximation of the quantum ground state of the system. Using this variational state, we deduce the critical point analytically. We then discuss the scaling laws characterizing the transition and obtain the corresponding critical exponents. Furthermore, the Berry curvature signature of the transition is studied. In particular, we findmore » that the derivatives of the Berry curvature with respect to total particle number intersect at the critical point. The underlying mechanism of this finding is discussed as well.« less
Bair, Woei-Nan; Kiemel, Tim; Jeka, John J.; Clark, Jane E.
2012-01-01
Background Developmental Coordination Disorder (DCD) is a leading movement disorder in children that commonly involves poor postural control. Multisensory integration deficit, especially the inability to adaptively reweight to changing sensory conditions, has been proposed as a possible mechanism but with insufficient characterization. Empirical quantification of reweighting significantly advances our understanding of its developmental onset and improves the characterization of its difference in children with DCD compared to their typically developing (TD) peers. Methodology/Principal Findings Twenty children with DCD (6.6 to 11.8 years) were tested with a protocol in which visual scene and touch bar simultaneously oscillateded medio-laterally at different frequencies and various amplitudes. Their data were compared to data on TD children (4.2 to 10.8 years) from a previous study. Gains and phases were calculated for medio-lateral responses of the head and center of mass to both sensory stimuli. Gains and phases were simultaneously fitted by linear functions of age for each amplitude condition, segment, modality and group. Fitted gains and phases at two comparison ages (6.6 and 10.8 years) were tested for reweighting within each group and for group differences. Children with DCD reweight touch and vision at a later age (10.8 years) than their TD peers (4.2 years). Children with DCD demonstrate a weak visual reweighting, no advanced multisensory fusion and phase lags larger than those of TD children in response to both touch and vision. Conclusions/Significance Two developmental perspectives, postural body scheme and dorsal stream development, are provided to explain the weak vision reweighting. The lack of multisensory fusion supports the notion that optimal multisensory integration is a slow developmental process and is vulnerable in children with DCD. PMID:22815872
Shtasel-Gottlieb, Zoë; Palakshappa, Deepak; Yang, Fanyu; Goodman, Elizabeth
2015-02-01
To explore the association between developmental assets (characteristics, experiences, and relationships that shape healthy development) and food insecurity among adolescents from a low-income urban community. This mixed-methods study occurred in two phases. In phase 1, using a census approach, 2,350 6th to 12th graders from the public school district completed an anonymous survey that included the developmental assets profile (DAP), the youth self-report form of the Core Food Security Module, and demographic questions. Logistic and multinomial regression analyses determined independent associations between developmental assets and food security adjusting for demographics. In phase 2, 20 adult key informant interviews and four semistructured student focus groups were performed to explain findings from phase 1. On average, DAP scores were consistent with national norms. Food insecurity was prevalent; 14.9% reported low food security and 8.6% very low food security (VLFS). Logistic regression revealed that higher DAP was associated with lower odds of food insecurity (odds ratio [OR], .96; 95% confidence interval [CI], .95-.97); family assets drove this association (OR, .93; 95% CI, .91-.95). In multinomial regression modeling, these associations persisted, and paradoxically, higher community assets were also associated with VLFS (ORVLFS, 1.08; 95% CI, 1.04-1.13). Qualitative analyses suggested that greater need among VLFS youth led to increased connections to community resources despite barriers to access such as stigma, home instability, and cultural differences. Food insecurity is a pervasive problem among adolescents from low-income communities and is associated with lower developmental assets, particularly family assets. The fact that community assets were higher among VLFS youth underscores the importance of community-level resources in struggling areas. Copyright © 2015 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.
Possible existence of two amorphous phases of d-mannitol related by a first-order transition
NASA Astrophysics Data System (ADS)
Zhu, Men; Wang, Jun-Qiang; Perepezko, John H.; Yu, Lian
2015-06-01
We report that the common polyalcohol d-mannitol may have two amorphous phases related by a first-order transition. Slightly above its glass transition temperature Tg (284 K), the supercooled liquid (SCL) of d-mannitol transforms to a low-energy, apparently amorphous phase with stronger hydrogen bonds. The enthalpy of this so-called Phase X is approximately halfway between those of the known amorphous and crystalline phases, a position low for glass aging and high for crystal polymorphs. Similar to the SCL, Phase X is transparent with broad X-ray diffraction and Raman scattering; upon temperature cycling, it exhibits a glass-transition-like change of heat capacity. On fast heating, Phase X transforms back to the SCL near Tg + 50 K, enabling a determination of their equilibrium temperature. The presence of d-sorbitol as a plasticizer enables observation of a first-order transition from the SCL to Phase X entirely in the liquid state (liquid-liquid transition). The transition from d-mannitol's SCL to Phase X has intriguing similarities with the formation of the glacial phase of triphenyl phosphite (TPP) and the conversion from high-density to low-density amorphous ice, both studied intensely in the context of polyamorphism. All three processes occur near Tg with substantial enthalpy decrease toward the crystalline phases; the processes in water and d-mannitol both strengthen the hydrogen bonds. In contrast to TPP, d-mannitol's Phase X forms more rapidly and can transform back to the SCL. These features make d-mannitol a valuable new model for understanding polyamorphism.
Levy, Allison; DeLeon, Iser G.; Martinez, Catherine K.; Fernandez, Nathalie; Gage, Nicholas A.; Sigurđsson, Sigurđur Óli; Frank-Crawford, Michelle A.
2016-01-01
The overjustification hypothesis suggests that extrinsic rewards undermine intrinsic motivation. Extrinsic rewards are common in strengthening behavior in persons with intellectual and developmental disabilities; we examined overjustification effects in this context. A literature search yielded 65 data sets permitting comparison of responding during an initial no-reinforcement phase to a subsequent no-reinforcement phase, separated by a reinforcement phase. We used effect sizes to compare response levels in these two no-reinforcement phases. Overall, the mean effect size did not differ from zero; levels in the second no-reinforcement phase were equally likely to be higher or lower than in the first. However, in contrast to the overjustification hypothesis, levels were higher in the second no-reinforcement phase when comparing the single no-reinforcement sessions immediately before and after reinforcement. Outcomes consistent with the overjustification hypothesis were somewhat more likely when the target behavior occurred at relatively higher levels prior to reinforcement. PMID:27739068
Nature of the octahedral tilting phase transitions in perovskites: A case study of CaMnO3
NASA Astrophysics Data System (ADS)
Klarbring, Johan; Simak, Sergei I.
2018-01-01
The temperature-induced antiferrodistortive (AFD) structural phase transitions in CaMnO3, a typical perovskite oxide, are studied using first-principles density functional theory calculations. These transitions are caused by tilting of the MnO6 octahedra that are related to unstable phonon modes in the high-symmetry cubic perovskite phase. Transitions due to octahedral tilting in perovskites normally are believed to fit into the standard soft-mode picture of displacive phase transitions. We calculate phonon-dispersion relations and potential-energy landscapes as functions of the unstable phonon modes and argue based on the results that the phase transitions are better described as being of order-disorder type. This means that the cubic phase emerges as a dynamical average when the system hops between local minima on the potential-energy surface. We then perform ab initio molecular dynamics simulations and find explicit evidence of the order-disorder dynamics in the system. Our conclusions are expected to be valid for other perovskite oxides, and we finally suggest how to predict the nature (displacive or order-disorder) of the AFD phase transitions in any perovskite system.
NASA Astrophysics Data System (ADS)
Kaneko, Fumitoshi; Yamazaki, Kazuhiro; Kobayashi, Masamichi; Sato, Kiyotaka; Suzuki, Masao
1994-08-01
The infrared and Raman spectra of four polymorphic phases (α, α1, γ and γ1) of erucic acid ( cis-13-docosenoic acid) and those of two polymorphic phases (α and γ) of palmitoleic acid ( cis-9-hexadecenoic acid) were investigated. The γ and γ1 phases of erucic acid were analyzed on the basis of crystal structures determined by us. There were large spectral differences between γ and γ1 phases, which could be ascribed to the differences in the conformation of cis-olefin groups and the subcell structure. Two types of reversible solid state phase transitions (γ→α and γ1→α1 transitions) were followed by the infrared and Raman spectra. It was concluded that the mechanism of the γ→α phase transition of erucic and palmitoleic acids is essentially the same as that of oleic acid previously reported by us [ J. Phys. Chem.90, 6371 (1986)], i.e. this phase transition is of order-disorder type accompanied by a conformational disordering at the methyl-terminal chain. Spectral changes on the γ1→α1 transition suggested that a similar structural change took place during this transition but there were large structural differences between α and α1.
NASA Astrophysics Data System (ADS)
Mamin, R. F.; Shaposhnikova, T. S.; Kabanov, V. V.
2018-03-01
We have considered the model of the phase transition of the second order for the Coulomb frustrated 2D charged system. The coupling of the order parameter with the charge was considered as the local temperature. We have found that in such a system, an appearance of the phase-separated state is possible. By numerical simulation, we have obtained different types ("stripes," "rings," "snakes") of phase-separated states and determined the parameter ranges for these states. Thus the system undergoes a series of phase transitions when the temperature decreases. First, the system moves from the homogeneous state with a zero order parameter to the phase-separated state with two phases in one of which the order parameter is zero and, in the other, it is nonzero (τ >0 ). Then a first-order transition occurs to another phase-separated state, in which both phases have different and nonzero values of the order parameter (for τ <0 ). Only a further decrease of temperature leads to a transition to a homogeneous ordered state.
Non-Congruence of Thermally Induced Structural and Electronic Transitions in VO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nag, Joyeeta; HaglundJr., Richard F; Payzant, E Andrew
2012-01-01
The multifunctional properties of vanadium dioxide (VO2) arise from coupled first-order phase transitions: an insulator-to-metal transition (IMT) and a structural phase transition (SPT) from monoclinic to tetragonal. The characteristic signatures of the IMT and SPT are the hysteresis loops that track the phase transition from nucleation to stabilization of a new phase and back. A long-standing question about the mechanism of the VO2 phase transition is whether and how the almost-simultaneous electronic and structural transitions are related. Here we report independent measurements of the IMT and SPT hystereses in epitaxial VO2 films with differing morphologies. We show that, in bothmore » cases, the hystereses are not congruent, that the structural change requires more energy to reach completion. This result is independent of nanoscale morphology, so that the non- congruence is an intrinsic property of the VO2 phase transition. Our conclusion is supported by effective-medium calculations of the dielectric function incorporating the measured volume fractions of the monoclinic and tetragonal states. The results are consistent with the existence of an monoclinic correlated metallic state in which the electron- electron correlations characteristic of the monoclinic state begin to disappear before the transition to the tetragonal structural state.« less
Problem-Solving Phase Transitions During Team Collaboration.
Wiltshire, Travis J; Butner, Jonathan E; Fiore, Stephen M
2018-01-01
Multiple theories of problem-solving hypothesize that there are distinct qualitative phases exhibited during effective problem-solving. However, limited research has attempted to identify when transitions between phases occur. We integrate theory on collaborative problem-solving (CPS) with dynamical systems theory suggesting that when a system is undergoing a phase transition it should exhibit a peak in entropy and that entropy levels should also relate to team performance. Communications from 40 teams that collaborated on a complex problem were coded for occurrence of problem-solving processes. We applied a sliding window entropy technique to each team's communications and specified criteria for (a) identifying data points that qualify as peaks and (b) determining which peaks were robust. We used multilevel modeling, and provide a qualitative example, to evaluate whether phases exhibit distinct distributions of communication processes. We also tested whether there was a relationship between entropy values at transition points and CPS performance. We found that a proportion of entropy peaks was robust and that the relative occurrence of communication codes varied significantly across phases. Peaks in entropy thus corresponded to qualitative shifts in teams' CPS communications, providing empirical evidence that teams exhibit phase transitions during CPS. Also, lower average levels of entropy at the phase transition points predicted better CPS performance. We specify future directions to improve understanding of phase transitions during CPS, and collaborative cognition, more broadly. Copyright © 2017 Cognitive Science Society, Inc.
NASA Astrophysics Data System (ADS)
Li, Hui-Ling; Feng, Zhong-Wen; Zu, Xiao-Tao
2018-01-01
With motivation by holography, employing black hole entropy, two-point connection function and entanglement entropy, we show that, for the higher-dimensional Anti-de Sitter charged hairy black hole in the fixed charged ensemble, a Van der Waals-like phase transition can be observed. Furthermore, based on the Maxwell equal-area construction, we check numerically the equal-area law for a first order phase transition in order to further characterize the Van der Waals-like phase transition.
Phase transition of aragonite in abalone nacre
NASA Astrophysics Data System (ADS)
An, Yuanlin; Liu, Zhiming; Wu, Wenjian
2013-04-01
Nacre is composed of about 95 vol.% aragonite and 5 vol.% biopolymer and famous for its "brick and mortar" microstructure. The phase transition temperature of aragonite in nacre is lower than the pure aragonite. In situ XRD was used to identify the phase transition temperature from aragonite to calcite in nacre, based on the analysis of TG-DSC of fresh nacre and demineralized nacre. The results indicate that the microstructure and biopolymer are the two main factors that influence the phase transition temperature of aragonite in nacre.
Hennigar, Robie A; Mann, Robert B; Tjoa, Erickson
2017-01-13
We present what we believe is the first example of a "λ-line" phase transition in black hole thermodynamics. This is a line of (continuous) second order phase transitions which in the case of liquid ^{4}He marks the onset of superfluidity. The phase transition occurs for a class of asymptotically anti-de Sitter hairy black holes in Lovelock gravity where a real scalar field is conformally coupled to gravity. We discuss the origin of this phase transition and outline the circumstances under which it (or generalizations of it) could occur.
NASA Astrophysics Data System (ADS)
Hennigar, Robie A.; Mann, Robert B.; Tjoa, Erickson
2017-01-01
We present what we believe is the first example of a "λ -line" phase transition in black hole thermodynamics. This is a line of (continuous) second order phase transitions which in the case of liquid 4He marks the onset of superfluidity. The phase transition occurs for a class of asymptotically anti-de Sitter hairy black holes in Lovelock gravity where a real scalar field is conformally coupled to gravity. We discuss the origin of this phase transition and outline the circumstances under which it (or generalizations of it) could occur.
Colossal magnetic phase transition asymmetry in mesoscale FeRh stripes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uhlir, V.; Arregi, J. A.; Fullerton, E. E.
Coupled order parameters in phase-transition materials can be controlled using various driving forces such as temperature, magnetic and electric field, strain, spin-polarized currents and optical pulses. Tuning the material properties to achieve efficient transitions would enable fast and low-power electronic devices. Here we show that the first-order metamagnetic phase transition in FeRh films becomes strongly asymmetric in mesoscale structures. In patterned FeRh stripes we observed pronounced supercooling and an avalanche-like abrupt transition from the ferromagnetic to the antiferromagnetic phase, while the reverse transition remains nearly continuous over a broad temperature range. Although modest asymmetry signatures have been found in FeRhmore » films, the effect is dramatically enhanced at the mesoscale. The activation volume of the antiferromagnetic phase is more than two orders of magnitude larger than typical magnetic heterogeneities observed in films. Finally, the collective behaviour upon cooling results from the role of long-range ferromagnetic exchange correlations that become important at the mesoscale and should be a general property of first-order metamagnetic phase transitions.« less
Colossal magnetic phase transition asymmetry in mesoscale FeRh stripes
Uhlir, V.; Arregi, J. A.; Fullerton, E. E.
2016-10-11
Coupled order parameters in phase-transition materials can be controlled using various driving forces such as temperature, magnetic and electric field, strain, spin-polarized currents and optical pulses. Tuning the material properties to achieve efficient transitions would enable fast and low-power electronic devices. Here we show that the first-order metamagnetic phase transition in FeRh films becomes strongly asymmetric in mesoscale structures. In patterned FeRh stripes we observed pronounced supercooling and an avalanche-like abrupt transition from the ferromagnetic to the antiferromagnetic phase, while the reverse transition remains nearly continuous over a broad temperature range. Although modest asymmetry signatures have been found in FeRhmore » films, the effect is dramatically enhanced at the mesoscale. The activation volume of the antiferromagnetic phase is more than two orders of magnitude larger than typical magnetic heterogeneities observed in films. Finally, the collective behaviour upon cooling results from the role of long-range ferromagnetic exchange correlations that become important at the mesoscale and should be a general property of first-order metamagnetic phase transitions.« less
Phase diagram of quantum critical system via local convertibility of ground state
Liu, Si-Yuan; Quan, Quan; Chen, Jin-Jun; Zhang, Yu-Ran; Yang, Wen-Li; Fan, Heng
2016-01-01
We investigate the relationship between two kinds of ground-state local convertibility and quantum phase transitions in XY model. The local operations and classical communications (LOCC) convertibility is examined by the majorization relations and the entanglement-assisted local operations and classical communications (ELOCC) via Rényi entropy interception. In the phase diagram of XY model, LOCC convertibility and ELOCC convertibility of ground-states are presented and compared. It is shown that different phases in the phase diagram of XY model can have different LOCC or ELOCC convertibility, which can be used to detect the quantum phase transition. This study will enlighten extensive studies of quantum phase transitions from the perspective of local convertibility, e.g., finite-temperature phase transitions and other quantum many-body models. PMID:27381284
Brady, Nathaniel F.; Appavoo, Kannatassen; Seo, Minah; ...
2016-03-02
Here we report on ultrafast optical investigations of the light-induced insulator-to-metal phase transition in vanadium dioxide with controlled disorder generated by substrate mismatch. These results reveal common dynamics of this optically-induced phase transition that are independent of this disorder. Lastly, above the fluence threshold for completing the transition to the rutile crystalline phase, we find a common time scale, independent of sample morphology, of 40.5 ± 2 ps that is consistent with nucleation and growth dynamics of the R phase from the parent M1 ground state.
Fluctuation driven electroweak phase transition
NASA Technical Reports Server (NTRS)
Gleiser, Marcelo; Kolb, Edward W.
1991-01-01
We examine the dynamics of the electroweak phase transition in the early Universe. For Higgs masses in the range 46 less than or = M sub H less than or = 150 GeV and top quark masses less than 200 GeV, regions of symmetric and asymmetric vacuum coexist to below the critical temperature, with thermal equilibrium between the two phases maintained by fluctuations of both phases. We propose that the transition to the asymmetric vacuum is completed by percolation of these subcritical fluctuations. Our results are relevant to scenarios of baryogenesis that invoke a weakly first-order phase transition at the electroweak scale.
Fluctuation-driven electroweak phase transition. [in early universe
NASA Technical Reports Server (NTRS)
Gleiser, Marcelo; Kolb, Edward W.
1992-01-01
We examine the dynamics of the electroweak phase transition in the early Universe. For Higgs masses in the range 46 less than or = M sub H less than or = 150 GeV and top quark masses less than 200 GeV, regions of symmetric and asymmetric vacuum coexist to below the critical temperature, with thermal equilibrium between the two phases maintained by fluctuations of both phases. We propose that the transition to the asymmetric vacuum is completed by percolation of these subcritical fluctuations. Our results are relevant to scenarios of baryogenesis that invoke a weakly first-order phase transition at the electroweak scale.
Crystalline Structure and Vacancy Ordering across a Surface Phase Transition in Sn/Cu(001).
Martínez-Blanco, J; Joco, V; Quirós, C; Segovia, P; Michel, E G
2018-01-18
We report a surface X-ray diffraction study of the crystalline structure changes and critical behavior across the (3√2 × √2)R45° → (√2 × √2)R45° surface phase transition at 360 K for 0.5 monolayers of Sn on Cu(100). The phase transition is of the order-disorder type and is due to the disordering of the Cu atomic vacancies present in the low temperature phase. Two different atomic sites for Sn atoms, characterized by two different heights, are maintained across the surface phase transition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Hanzheng; Randall, Clive A., E-mail: car4@psu.edu; Shimizu, Hiroyuki
2015-09-14
Hot-stage in situ transmission electron microscopy was employed to investigate the temperature-induced complex sequence of phase transitions in NaNbO{sub 3} polycrystalline. In addition to the commonly recognized P (Pbma) → R (Pmnm) → S (Pnmm) phase transitions, incommensurate phases were observed to exist in P and R phase regions. The former (in the P → R transition region) is coincident with a diffused dielectric peak appearing at ∼170 °C, and the latter (in the R → S transition region) serves as an intermediate structure to bridge the two sub-phases in the R phase region. The incommensurate phase in the P phasemore » region can be inferred from the polarization current density and differential dielectric permittivity anomalies, and it provides the bridge structure during the electric field-induced polarization reversal and antiferroelectric-to-ferroelectric transition in NaNbO{sub 3} solid solutions.« less
Phase transitions in a system of hard rectangles on the square lattice
NASA Astrophysics Data System (ADS)
Kundu, Joyjit; Rajesh, R.
2014-05-01
The phase diagram of a system of monodispersed hard rectangles of size m ×mk on a square lattice is numerically determined for m =2,3 and aspect ratio k =1,2,...,7. We show the existence of a disordered phase, a nematic phase with orientational order, a columnar phase with orientational and partial translational order, and a solidlike phase with sublattice order, but no orientational order. The asymptotic behavior of the phase boundaries for large k is determined using a combination of entropic arguments and a Bethe approximation. This allows us to generalize the phase diagram to larger m and k, showing that for k ≥7, the system undergoes three entropy-driven phase transitions with increasing density. The nature of the different phase transitions is established and the critical exponents for the continuous transitions are determined using finite size scaling.
Pressure-Induced Phase Transitions of n-Tridecane
NASA Astrophysics Data System (ADS)
Yamashita, Motoi
Pressure-induced phase transition behavior of n-tridecane from the ordered phase through the rotator phase into the liquid phase has been investigated by using Fourier transform infrared spectroscopy at 25 °C. The transition between the ordered and rotator phases has been observed in the pressure range of 270-220 MPa and the transition between the rotator and liquid phases has been observed in the pressure range of 171-112 MPa, within the experimental error of ±50 MPa. The populations of the -gtg- + -gtg'-, -gg- and gt- defects determined from the methylene wagging mode are smaller in the rotator phase than in the liquid phase and are smaller under higher pressure in both of the rotator and liquid phases. A relationship has been found between the conformation and the intensity of the 890 cm-1 band, which has been assigned as the methyl rocking mode and has been considered as insensitive to conformation.
Chang, Cui-Zu; Zhao, Weiwei; Li, Jian; Jain, J K; Liu, Chaoxing; Moodera, Jagadeesh S; Chan, Moses H W
2016-09-16
Fundamental insight into the nature of the quantum phase transition from a superconductor to an insulator in two dimensions, or from one plateau to the next or to an insulator in the quantum Hall effect, has been revealed through the study of its scaling behavior. Here, we report on the experimental observation of a quantum phase transition from a quantum-anomalous-Hall insulator to an Anderson insulator in a magnetic topological insulator by tuning the chemical potential. Our experiment demonstrates the existence of scaling behavior from which we extract the critical exponent for this quantum phase transition. We expect that our work will motivate much further investigation of many properties of quantum phase transition in this new context.
NASA Astrophysics Data System (ADS)
Wang, Pei; Yi, Wei; Xianlong, Gao
2015-01-01
We study the quench dynamics of a one-dimensional ultracold Fermi gas with synthetic spin-orbit coupling. At equilibrium, the ground state of the system can undergo a topological phase transition and become a topological superfluid with Majorana edge states. As the interaction is quenched near the topological phase boundary, we identify an interesting dynamical phase transition of the quenched state in the long-time limit, characterized by an abrupt change of the pairing gap at a critical quenched interaction strength. We further demonstrate the topological nature of this dynamical phase transition from edge-state analysis of the quenched states. Our findings provide interesting clues for the understanding of topological phase transitions in dynamical processes, and can be useful for the dynamical detection of Majorana edge states in corresponding systems.
Possible higher order phase transition in large-N gauge theory at finite temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishimura, Hiromichi
2017-08-07
We analyze the phase structure of SU(¥) gauge theory at finite temperature using matrix models. Our basic assumption is that the effective potential is dominated by double-trace terms for the Polyakov loops. As a function of the temperature, a background field for the Polyakov loop, and a quartic coupling, it exhibits a universal structure: in the large portion of the parameter space, there is a continuous phase transition analogous to the third-order phase transition of Gross,Witten and Wadia, but the order of phase transition can be higher than third. We show that different confining potentials give rise to drastically differentmore » behavior of the eigenvalue density and the free energy. Therefore lattice simulations at large N could probe the order of phase transition and test our results. Critical« less
Hammond, Jennifer L; Hirt, Melissa; Hall, Scott S
2012-01-01
Individuals diagnosed with fragile X syndrome (FXS), the most common known form of inherited intellectual disability, are reported to exhibit considerable deficits in mathematical skills that are often attributed to brain-based abnormalities associated with the syndrome. We examined whether participants with FXS would display emergent fraction-decimal relations following brief, intensive match-to-sample training on baseline relations. The performance profiles on tests of symmetry and transitivity/equivalence of 11 participants with FXS, aged 10-23 years, following baseline match-to-sample training were compared to those of 11 age- and IQ-matched controls with idiopathic developmental disability. The results showed that both groups of participants showed significant improvements in the baseline (trained) relations, as expected. However, participants with FXS failed to show significant improvements in the (untrained) symmetry and transitivity/equivalence relations compared to those in the control group. A categorical analysis of the data indicated that five participants with FXS and eight controls showed at least "intermediate" emergence of symmetry relations, whereas one individual with FXS and three controls showed at least intermediate emergence of transitivity/equivalence relations. A correlation analysis of the data indicated that improvements in the symmetry relations were significantly associated with improvements in the transitivity/equivalence relations in the control group (r=.69, p=.018), but this was not the case in the FXS group (r=.34, p>.05). Participant IQ was significantly associated with improvements in the symmetry relations in individuals with FXS (r=.60, p=.049), but not in controls (r=.21, p>.05). Taken together, these results suggest that brief, computerized match-to-sample training may produce emergent mathematical relations for a subset of children with FXS and developmental disabilities. However, the ability of individuals with FXS to form transitivity/equivalence relations may be impaired relative to those with idiopathic developmental disabilities, which may be attributed to neurodevelopmental variables associated with the syndrome. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Peng, Yan; Wang, Bin; Liu, Yunqi
2018-03-01
We study the asymptotically flat quasi-local black hole/hairy black hole model with nonzero mass of the scalar field. We disclose effects of the scalar mass on transitions in a grand canonical ensemble with condensation behaviors of the parameter ψ 2, which is similar to approaches in holographic theories. We find that a more negative scalar mass makes the phase transition easier. We also obtain the analytical relation ψ 2∝ (Tc-T)^{1/2} around the critical phase transition points, implying a second order phase transition. Besides the parameter ψ 2, we show that metric solutions can be used to disclose properties of the transitions. In this work, we observe that phase transitions in a box are strikingly similar to holographic transitions in AdS gravity and the similarity provides insights into holographic theories.
Dynamic expression of ancient and novel molluscan shell genes during ecological transitions
Jackson, Daniel J; Wörheide, Gert; Degnan, Bernard M
2007-01-01
Background The Mollusca constitute one of the most morphologically and ecologically diverse metazoan phyla, occupying a wide range of marine, terrestrial and freshwater habitats. The evolutionary success of the molluscs can in part be attributed to the evolvability of the external shell. Typically, the shell first forms during embryonic and larval development, changing dramatically in shape, colour and mineralogical composition as development and maturation proceeds. Major developmental transitions in shell morphology often correlate with ecological transitions (e.g. from a planktonic to benthic existence at metamorphosis). While the genes involved in molluscan biomineralisation are beginning to be identified, there is little understanding of how these are developmentally regulated, or if the same genes are operational at different stages of the mollusc's life. Results Here we relate the developmental expression of nine genes in the tissue responsible for shell production – the mantle – to ecological transitions that occur during the lifetime of the tropical abalone Haliotis asinina (Vetigastropoda). Four of these genes encode evolutionarily ancient proteins, while four others encode secreted proteins with little or no identity to known proteins. Another gene has been previously described from the mantle of another haliotid vetigastropod. All nine genes display dynamic spatial and temporal expression profiles within the larval shell field and juvenile mantle. Conclusion These expression data reflect the regulatory complexity that underlies molluscan shell construction from larval stages to adulthood, and serves to highlight the different ecological demands placed on each stage. The use of both ancient and novel genes in all stages of shell construction also suggest that a core set of shell-making genes was provided by a shared metazoan ancestor, which has been elaborated upon to produce the range of molluscan shell types we see today. PMID:17845714
Giant elastic tunability in strained BiFeO 3 near an electrically induced phase transition
Yu, Pu; Vasudevan, Rama K.; Tselev, Alexander; ...
2015-11-24
Elastic anomalies are signatures of phase transitions in condensed matters and have traditionally been studied using various techniques spanning from neutron scattering to static mechanical testing. Here, using band-excitation elastic/piezoresponse spectroscopy, we probed sub-MHz elastic dynamics of a tip bias-induced rhombohedral–tetragonal phase transition of strained (001)-BiFeO 3 (rhombohedral) ferroelectric thin films from ~10 3 nm 3 sample volumes. Near this transition, we observed that the Young's modulus intrinsically softens by over 30% coinciding with 2-3 folds enhancement of local piezoresponse. Coupled with phase-field modeling, we also addressed the influence of polarization switching and mesoscopic structural heterogeneities (e.g., domain walls) onmore » the kinetics of this phase transition, thereby providing fresh insights into the morphotropic phase boundary (MPB) in ferroelectrics. Moreover, the giant electrically tunable elastic stiffness and corresponding electromechanical properties observed here suggest potential applications of BiFeO 3 in next-generation frequency-agile electroacoustic devices, based on utilization of the soft modes underlying successive ferroelectric phase transitions.« less
The deconfining phase transition in and out of equilibrium
NASA Astrophysics Data System (ADS)
Bazavov, Oleksiy
Recent experiments carried out at the Relativistic Heavy Ion Collider at the Brookhaven National Laboratory provide strong evidence that a matter can be driven from a confined, low-temperature phase, observed in our every day world into a deconfined high-temperature phase of liberated quarks and gluons. The equilibrium and dynamical properties of the deconfining phase transition are thus of great theoretical interest, since they also provide an information about the first femtoseconds of the evolution of our Universe, when the hot primordial soup while cooling has undergone a chain of phase transitions. The aspects of the deconfining phase transition studied in this work include: the dynamics of the SU(3) gauge theory after the heating quench (which models rapid heating in the heavy-ion collisions), equilibrium properties of the phase transition in the SU(3) gauge theory with boundaries at low temperature (small volumes at RHIC suggest that boundary effects cannot be neglected and periodic boundary conditions normally used in lattice simulations do not correspond to the experimental situation), and a study of the order of the transition in U(1) gauge theory.
Quantum tricritical point in the temperature-pressure-magnetic field phase diagram of CeTiGe 3
Kaluarachchi, Udhara S.; Taufour, Valentin; Bud'ko, Sergey L.; ...
2018-01-22
We report the temperature-pressure-magnetic eld phase diagram of the ferromagnetic Kondolattice CeTiGe 3 determined by means of electrical resistivity measurements. Measurements up to ~5.8GPa reveal a rich phase diagram with multiple phase transitions. At ambient pressure, CeTiGe 3 orders ferromagnetically at T C =14 K. Application of pressure suppresses T C, but a pressure induced ferromagnetic quantum criticality is avoided by the appearance of two new successive transitions for p>4.1GPa that are probably antiferromagnetic in nature. These two transitions are suppressed under pressure, with the lower temperature phase being fully suppressed above 5.3GPa. The critical pressures for the presumed quantummore » phase transitions are p1≅4.1GPa and p2≅5.3GPa. Above 4.1GPa, application of magnetic eld shows a tricritical point evolving into a wing structure phase with a quantum tricritical point at 2.8T at 5.4GPa, where the rst order antiferromagneticferromagnetic transition changes into the second order antiferromagnetic-ferromagnetic transition.« less
Giant elastic tunability in strained BiFeO3 near an electrically induced phase transition
Li, Q; Cao, Y.; Yu, P.; Vasudevan, R. K.; Laanait, N.; Tselev, A.; Xue, F.; Chen, L. Q.; Maksymovych, P.; Kalinin, S. V.; Balke, N.
2015-01-01
Elastic anomalies are signatures of phase transitions in condensed matters and have traditionally been studied using various techniques spanning from neutron scattering to static mechanical testing. Here, using band-excitation elastic/piezoresponse spectroscopy, we probed sub-MHz elastic dynamics of a tip bias-induced rhombohedral−tetragonal phase transition of strained (001)-BiFeO3 (rhombohedral) ferroelectric thin films from ∼103 nm3 sample volumes. Near this transition, we observed that the Young's modulus intrinsically softens by over 30% coinciding with two- to three-fold enhancement of local piezoresponse. Coupled with phase-field modelling, we also addressed the influence of polarization switching and mesoscopic structural heterogeneities (for example, domain walls) on the kinetics of this phase transition, thereby providing fresh insights into the morphotropic phase boundary in ferroelectrics. Furthermore, the giant electrically tunable elastic stiffness and corresponding electromechanical properties observed here suggest potential applications of BiFeO3 in next-generation frequency-agile electroacoustic devices, based on the utilization of the soft modes underlying successive ferroelectric phase transitions. PMID:26597483
Shock loading and release behavior of silicon nitride
NASA Astrophysics Data System (ADS)
Kawai, N.; Tsuru, T.; Hidaka, N.; Liu, X.; Mashimo, T.
2017-01-01
Shock-reshock and shock-release experiments were performed on silicon nitride ceramics above and below its phase transition pressure. Experimental results clearly show the occurrence of elastic-plastic transition and phase transition during initial shock loading. The HEL and phase transition stress are determined as 11.6 and 34.5 GPa, respectively. Below the phase transition stress, the reshock profile consists of the single shock with short rise time, while the release profile shows the gradual release followed by rapid one. Above phase transition stress, reshock and release behavior varies with the initial shock stress. In the case of reshock and release from about 40 GPa, the reshock structure is considerably dispersed, while the release structure shows rapid release. In the reshock profile from about 50 GPa, the formation of the shock wave with the small ramped precursor is observed. And, the release response from same shocked condition shows initial gradual release and subsequent quite rapid one. These results would provide the information about how phase transformation kinetics effects on the reshock and release behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaluarachchi, Udhara S.; Taufour, Valentin; Bud'ko, Sergey L.
We report the temperature-pressure-magnetic eld phase diagram of the ferromagnetic Kondolattice CeTiGe 3 determined by means of electrical resistivity measurements. Measurements up to ~5.8GPa reveal a rich phase diagram with multiple phase transitions. At ambient pressure, CeTiGe 3 orders ferromagnetically at T C =14 K. Application of pressure suppresses T C, but a pressure induced ferromagnetic quantum criticality is avoided by the appearance of two new successive transitions for p>4.1GPa that are probably antiferromagnetic in nature. These two transitions are suppressed under pressure, with the lower temperature phase being fully suppressed above 5.3GPa. The critical pressures for the presumed quantummore » phase transitions are p1≅4.1GPa and p2≅5.3GPa. Above 4.1GPa, application of magnetic eld shows a tricritical point evolving into a wing structure phase with a quantum tricritical point at 2.8T at 5.4GPa, where the rst order antiferromagneticferromagnetic transition changes into the second order antiferromagnetic-ferromagnetic transition.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexandrov, D. V., E-mail: Dmitri.Alexandrov@usu.ru; Ivanov, A. A.
2009-05-15
The process of solidification of ternary systems in the presence of moving phase transition regions has been investigated theoretically in terms of the nonlinear equation of the liquidus surface. A mathematical model is developed and an approximate analytical solution to the Stefan problem is constructed for a linear temperature profile in two-phase zones. The temperature and impurity concentration distributions are determined, the solid-phase fractions in the phase transition regions are obtained, and the laws of motion of their boundaries are established. It is demonstrated that all boundaries move in accordance with the laws of direct proportionality to the square rootmore » of time, which is a general property of self-similar processes. It is substantiated that the concentration of an impurity of the substance undergoing a phase transition only in the cotectic zone increases in this zone and decreases in the main two-phase zone in which the other component of the substance undergoes a phase transition. In the process, the concentration reaches a maximum at the interface between the main two-phase zone and the cotectic two-phase zone. The revealed laws of motion of the outer boundaries of the entire phase transition region do not depend on the amount of the components under consideration and hold true for crystallization of a multicomponent system.« less
Crisis-transitions in athletes: current emphases on cognitive and contextual factors.
Stambulova, Natalia B
2017-08-01
During the last decade, the field of athlete career research has seen much expansion. Researchers established the holistic lifespan and ecological approaches, introduced cultural praxis of athletes' careers paradigm, and updated the taxonomy of athletes' transitions. However, recent transition research focused mainly on the transition process and factors contributing to successful transitions, while crisis-transitions and factors contributing to ineffective coping have been largely ignored. The aim of this paper is to facilitate relevant research and practice through (1) positioning athletes' developmental crises within the context of the current transition literature, (2) introducing two new approaches (termed 'cognitive turn' and 'cultural turn') with a potential to enhance our understanding of the phenomenon, and (3) outlining crisis-coping interventions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Masci, Ilaria; Vannozzi, Giuseppe; Bergamini, Elena; Pesce, Caterina; Getchell, Nancy; Cappozzo, Aurelio
2013-04-01
Objective quantitative evaluation of motor skill development is of increasing importance to carefully drive physical exercise programs in childhood. Running is a fundamental motor skill humans adopt to accomplish locomotion, which is linked to physical activity levels, although the assessment is traditionally carried out using qualitative evaluation tests. The present study aimed at investigating the feasibility of using inertial sensors to quantify developmental differences in the running pattern of young children. Qualitative and quantitative assessment tools were adopted to identify a skill-sensitive set of biomechanical parameters for running and to further our understanding of the factors that determine progression to skilled running performance. Running performances of 54 children between the ages of 2 and 12 years were submitted to both qualitative and quantitative analysis, the former using sequences of developmental level, the latter estimating temporal and kinematic parameters from inertial sensor measurements. Discriminant analysis with running developmental level as dependent variable allowed to identify a set of temporal and kinematic parameters, within those obtained with the sensor, that best classified children into the qualitative developmental levels (accuracy higher than 67%). Multivariate analysis of variance with the quantitative parameters as dependent variables allowed to identify whether and which specific parameters or parameter subsets were differentially sensitive to specific transitions between contiguous developmental levels. The findings showed that different sets of temporal and kinematic parameters are able to tap all steps of the transitional process in running skill described through qualitative observation and can be prospectively used for applied diagnostic and sport training purposes. Copyright © 2012 Elsevier B.V. All rights reserved.
Kirkpatrick, T R; Belitz, D
2015-07-10
The third law of thermodynamics constrains the phase diagram of systems with a first-order quantum phase transition. For a zero conjugate field, the coexistence curve has an infinite slope at T=0. If a tricritical point exists at T>0, then the associated tricritical wings are perpendicular to the T=0 plane, but not to the zero-field plane. These results are based on the third law and basic thermodynamics only, and are completely general. As an explicit example we consider the ferromagnetic quantum phase transition in clean metals, where a first-order quantum phase transition is commonly observed.
48 CFR 1852.223-71 - Frequency authorization.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Frequency authorization... obtained by the Contractor or subcontractor in need thereof. (b) For any experimental, developmental, or... device to the Contracting Officer during the initial planning, experimental, or developmental phase of...
Phase Transitions in Antibody Solutions: from Pharmaceuticals to Human Disease
NASA Astrophysics Data System (ADS)
Wang, Ying; Lomakin, Aleksey; Benedek, George; Dana Farber Cancer Institute Collaboration; Amgen Inc. Collaboration
2014-03-01
Antibodies are very important proteins. Natural antibodies play essential role in the immune system of human body. Pharmaceutical antibodies are used as drugs. Antibodies are also indispensable tools in biomedical research and diagnostics. Recently, a number of observations of phase transitions of pharmaceutical antibodies have been reported. These phase transitions are undesirable from the perspective of colloid stability of drug solutions in processing and storage, but can be used for protein purification, X-ray crystallography, and improving pharmokinetics of drugs. Phase transitions of antibodies can also take place in human body, particularly in multiple myeloma patients who overproduce monoclonal antibodies. These antibodies, in some cases, crystallize at body temperature and cause severe complications called cryoglobulinemia. I will present the results of our current studies on phase transitions of both pharmaceutical antibodies and cryoglobulinemia-associated antibodies. These studies have shown that different antibodies have different propensity to undergo phase transitions, but their phase behavior has universal features which are remarkably different from those of spherical proteins. I will discuss how studies of phase behavior can be useful in assessing colloid stability of pharmaceutical antibodies and in early diagnostics of cryoglobulinemia, as well as general implications of the fact that some antibodies can precipitate at physiological conditions.
Kellner, M; Porseryd, T; Porsch-Hällström, I; Borg, B; Roufidou, C; Olsén, K H
2018-01-01
Selective Serotonin re-uptake inhibitors (SSRIs) are a class of psychotropic drugs used to treat depression in both adolescents and pregnant or breast-feeding mothers as well as in the general population. Recent research on rodents points to long-lasting behavioural effects of pre- and perinatal exposure to SSRIs which last into adulthood. In fish however, studies on effects of developmental exposure to SSRIs appears to be non-existent. In order to study effects of developmental SSRI exposure in fish, three-spine sticklebacks were exposed to 1.5 µg/l of the SSRI citalopram in the ambient water for 30 days, starting two days post-fertilisation. After approximately 100 days of remediation in clean water the fish were put through an extensive battery of behavioural tests. Feeding behaviour was tested as the number of bites against a piece of food and found to be increased in the exposed fish. Aggression levels were measured as the number of bites against a mirror image during 10 min and was also found to be significantly increased in the exposed fish. Novel tank behaviour and locomotor activity was tested in an aquarium that had a horizontal line drawn half-way between the bottom and the surface. Neither the latency to the first transition to the upper half, nor the number of transitions or the total time spent in the upper half was affected by treatment. Locomotor activity was significantly reduced in the exposed fish. The light/dark preference was tested in an aquarium where the bottom and walls were black on one side and white on the other. The number of transitions to the white side was significantly reduced in the exposed fish but there was no effect on the latency to the first transition or the total time spent in the white half. The results in the current study indicate that developmental SSRI exposure causes long-lasting behavioural effects in fish and contribute to the existing knowledge about SSRIs as environmental pollutants.
Observation of polyamorphism in the phase change alloy Ge1Sb2Te4
NASA Astrophysics Data System (ADS)
Kalkan, B.; Sen, S.; Cho, J.-Y.; Joo, Y.-C.; Clark, S. M.
2012-10-01
A high-pressure synchrotron x-ray diffraction study of the phase change alloy Ge1Sb2Te4 demonstrates the existence of a polyamorphic phase transition between the "as deposited" low density amorphous (LDA) phase and a high density amorphous (HDA) phase at ˜10 GPa. The entropy of the HDA phase is expected to be higher than that of the LDA phase resulting in a negative Clapeyron slope for this transition. These phase relations may enable the polyamorphic transition to play a role in the memory and data storage applications.
NASA Technical Reports Server (NTRS)
Kolb, Edward W.
1991-01-01
In the original proposal, inflation occurred in the process of a strongly first-order phase transition. This model was soon demonstrated to be fatally flawed. Subsequent models for inflation involved phase transitions that were second-order, or perhaps weakly first-order; some even involved no phase transition at all. Recently the possibility of inflation during a strongly first-order phase transition has been revived. In this talk I will discuss some models for first-order inflation, and emphasize unique signatures that result if inflation is realized in a first-order transition. Before discussing first-order inflation, I will briefly review some of the history of inflation to demonstrate how first-order inflation differs from other models.
First-order inflation. [in cosmology
NASA Technical Reports Server (NTRS)
Kolb, Edward W.
1991-01-01
In the original proposal, inflation occurred in the process of a strongly first-order phase transition. This model was soon demonstrated to be fatally flawed. Subsequent models for inflation involved phase transitions that were second-order, or perhaps weakly first-order; some even involved no phase transition at all. Recently the possibility of inflation during a strongly first-order phase transition has been revived. In this paper, some models for first-order inflation are discussed, and unique signatures that result if inflation is realized in a first-order transition are emphasized. Some of the history of inflation is reviewed to demonstrate how first-order inflation differs from other models.
NASA/SPAN and DOE/ESnet-DECnet transition strategy for DECnet OSI/phase 5
NASA Technical Reports Server (NTRS)
Porter, Linda; Demar, Phil
1991-01-01
The technical issues are examined involved with the transition of very large DECnet networks from DECnet phase IV protocols to DECnet OSI/Phase V protocols. The networks involved are the NASA's Science Internet (NSI-DECnet) and the DOE's Energy Science network (ESnet-DECnet). These networks, along with the many universities and research institutions connected to them, combine to form a single DECnet network containing more than 20,000 transitions and crossing numerous organizational boundaries. Discussion of transition planning, including decisions about Phase V naming, addressing, and routing are presented. Also discussed are transition issues related to the use of non-DEC routers in the network.
Nguyen, T; Henderson, D; Stewart, D; Hlyva, O; Punthakee, Z; Gorter, J W
2016-07-01
Recent evidence suggests that fostering strategies to enable youth with chronic health conditions to work towards gradual self-management of their health is key in successful transition to adult healthcare. To date, there is limited research on self-management promotion for youth. The purpose of this study is to explore self-management from the perspectives of youth, parents and healthcare providers in transition to adult healthcare. Part of a larger longitudinal transition (TRACE-2009-2013) study, interpretive phenomenology was used to explore the meaning of the lived experiences and perceptions of youth, parents, and healthcare providers about transition to adult healthcare. Purposeful sampling was utilized to select youth with a range of chronic health conditions from the TRACE cohort (spanning 20 diagnoses including developmental disabilities and chronic conditions), their parents and healthcare providers. The emerging three themes were: increasing independence of youth; parents as safety nets and healthcare providers as enablers and collaborators. The findings indicate that the experiences of transitioning youth, parents and service providers are interconnected and interdependent. Results support a dynamic and developmentally appropriate approach when working with transitioning youth and parents in practice. As youth depend on parents and healthcare providers for support in taking charge of their own health, parents and healthcare providers must work together to enable youth for self-management. At a policy level, adequate funding, institutional support and accreditation incentives are recommended to allow for designated time for healthcare providers to foster self-management skills in transitioning youth and parents. © 2016 The Authors. Child: Care, Health and Development published by John Wiley & Sons Ltd.
Finite-temperature phase transitions of third and higher order in gauge theories at large N
Nishimura, Hiromichi; Pisarski, Robert D.; Skokov, Vladimir V.
2018-02-15
We study phase transitions in SU(∞) gauge theories at nonzero temperature using matrix models. Our basic assumption is that the effective potential is dominated by double trace terms for the Polyakov loops. As a function of the various parameters, related to terms linear, quadratic, and quartic in the Polyakov loop, the phase diagram exhibits a universal structure. In a large region of this parameter space, there is a continuous phase transition whose order is larger than second. This is a generalization of the phase transition of Gross, Witten, and Wadia (GWW). Depending upon the detailed form of the matrix model,more » the eigenvalue density and the behavior of the specific heat near the transition differ drastically. Here, we speculate that in the pure gauge theory, that although the deconfining transition is thermodynamically of first order, it can be nevertheless conformally symmetric at infnite N.« less
Finite-temperature phase transitions of third and higher order in gauge theories at large N
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishimura, Hiromichi; Pisarski, Robert D.; Skokov, Vladimir V.
We study phase transitions in SU(∞) gauge theories at nonzero temperature using matrix models. Our basic assumption is that the effective potential is dominated by double trace terms for the Polyakov loops. As a function of the various parameters, related to terms linear, quadratic, and quartic in the Polyakov loop, the phase diagram exhibits a universal structure. In a large region of this parameter space, there is a continuous phase transition whose order is larger than second. This is a generalization of the phase transition of Gross, Witten, and Wadia (GWW). Depending upon the detailed form of the matrix model,more » the eigenvalue density and the behavior of the specific heat near the transition differ drastically. Here, we speculate that in the pure gauge theory, that although the deconfining transition is thermodynamically of first order, it can be nevertheless conformally symmetric at infnite N.« less
Horava-Lifshitz cosmology, entropic interpretation and quark-hadron phase transition
NASA Astrophysics Data System (ADS)
Kheyri, F.; Khodadi, M.; Sepangi, Hamid Reza
2013-05-01
Based on the assumptions of the standard model of cosmology, a phase transition associated with chiral symmetry breaking after the electroweak transition has occurred at approximately 10 μs after the Big Bang to convert a plasma of free quarks and gluons into hadrons. We consider such a phase transition in the context of a deformed Horava-Lifshitz cosmology. The Friedmann equation for the deformed Horava-Lifshitz universe is obtained using the entropic interpretation of gravity, proposed by Verlinde. We investigate the effects of the parameter ω appearing in the theory on the evolution of the physical quantities relevant to a description of the early universe, namely, the energy density and temperature before, during and after the phase transition. Finally, we study the cross-over phase transition in both high and low temperature regions in view of the recent lattice QCD simulations data.
Reconstructive phase transition in (NH4)3TiF7 accompanied by the ordering of TiF6 octahedra.
Molokeev, Maxim; Misjul, S V; Flerov, I N; Laptash, N M
2014-12-01
An unusual phase transition P4/mnc → Pa\\bar 3 has been detected after cooling the (NH4)3TiF7 compound. Some TiF6 octahedra, which are disordered in the room-temperature tetragonal structure, become ordered in the low-temperature cubic phase due to the disappearance of the fourfold axis. Other TiF6 octahedra undergo large rotations resulting in huge displacements of the F atoms by 1.5-1.8 Å that implies a reconstructive phase transition. It was supposed that phases P4/mbm and Pm\\bar 3m could be a high-temperature phase and a parent phase, respectively, in (NH4)3TiF7. Therefore, the sequence of phase transitions can be written as Pm\\bar 3m → P4/mbm → P4/mnc → Pa\\bar 3. The interrelation between (NH4)3TiF7, (NH4)3GeF7 and (NH4)3PbF7 is found, which allows us to suppose phase transitions in relative compounds.
ERIC Educational Resources Information Center
Park, Sunhee; Weaver, Terri E.; Romer, Daniel
2010-01-01
Although smoking initiation is rare in young adulthood, the progression to a higher level of smoking still occurs at this developmental stage. Thus, this study was aimed at exploring predictors of the transition from experimental to daily smoking in late teens and young adults using the 2nd and 3rd waves from the National Longitudinal Study of…
Hale, Melina E
2014-07-01
An animal may experience strikingly different functional demands on its body's systems through development. One way of meeting those demands is with temporary, stage-specific adaptations. This strategy requires the animal to develop appropriate morphological states or physiological pathways that address transient functional demands as well as processes that transition morphology, physiology, and function to that of the mature form. Recent research on ray-finned (actinopterygian) fishes is a developmental transition in function of the pectoral fin, thereby providing an opportunity to examine how an organism copes with changes in the roles of its morphology between stages of its life history. As larvae, zebrafish alternate their pectoral fins in coordination with the body axis during slow swimming. The movements of their fins do not appear to contribute to the production of thrust or to stability but instead exchange fluid near the body for cutaneous respiration. The morphology of the larval fin includes a simple stage-specific endoskeletal disc overlaid by fan-shaped adductor and abductor muscles. In contrast, the musculoskeletal system of the mature fin consists of a suite of muscles and bones. Fins are extended laterally during slow swimming of the adult, without the distinct, high-amplitude left-right fin alternation of the larval fin. The morphological and functional transition of the pectoral fin occurs through juvenile development. Early in this period, at about 3 weeks post-fertilization, the gills take over respiratory function, presumably freeing the fins for other roles. Kinematic data suggest that the loss of respiratory function does not lead to a rapid switch in patterns of fin movement but rather that both morphology and movement transition gradually through the juvenile stage of development. Studies relating structure to function often focus on stable systems that are arguably well adapted for the roles they play. Examining how animals navigate transitional periods, when the link of structure to function may be less taut, provides insight both into how animals contend with such change and into the developmental pressures that shape mature form and function. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology.