Multi-scale computational modeling of developmental biology.
Setty, Yaki
2012-08-01
Normal development of multicellular organisms is regulated by a highly complex process in which a set of precursor cells proliferate, differentiate and move, forming over time a functioning tissue. To handle their complexity, developmental systems can be studied over distinct scales. The dynamics of each scale is determined by the collective activity of entities at the scale below it. I describe a multi-scale computational approach for modeling developmental systems and detail the methodology through a synthetic example of a developmental system that retains key features of real developmental systems. I discuss the simulation of the system as it emerges from cross-scale and intra-scale interactions and describe how an in silico study can be carried out by modifying these interactions in a way that mimics in vivo experiments. I highlight biological features of the results through a comparison with findings in Caenorhabditis elegans germline development and finally discuss about the applications of the approach in real developmental systems and propose future extensions. The source code of the model of the synthetic developmental system can be found in www.wisdom.weizmann.ac.il/~yaki/MultiScaleModel. yaki.setty@gmail.com Supplementary data are available at Bioinformatics online.
Zebrafish (Danio rerio) Models To Assess Acute, Developmental, And Neurodevelopmental Toxicity
Zebrafish (Danio rerio) acute, developmental, and neurodevelopmental model systems have been developed to assess both known and unknown environmental contaminants. Developmental toxicity is assessed using death and dysmorphology as endpoints, whereas neurodevelopmental toxicity ...
An important challenge for an integrative approach to developmental systems toxicology is associating putative molecular initiating events (MIEs), cell signaling pathways, cell function and modeled fetal exposure kinetics. We have developed a chemical classification model based o...
ERIC Educational Resources Information Center
Ricco, Robert B.; Overton, Willis F.
2011-01-01
Many current psychological models of reasoning minimize the role of deductive processes in human thought. In the present paper, we argue that deduction is an important part of ordinary cognition and we propose that a dual systems Competence [image omitted] Procedural processing model conceptualized within relational developmental systems theory…
ACORNS: A Tool for the Visualisation and Modelling of Atypical Development
ERIC Educational Resources Information Center
Moore, D. G.; George, R.
2011-01-01
Across many academic disciplines visualisation and notation systems are used for modelling data and developing theory, but in child development visual models are not widely used; yet researchers and students of developmental difficulties may benefit from a visualisation and notation system which can clearly map developmental outcomes and…
Associating putative molecular initiating events (MIE) with downstream cell signaling pathways and modeling fetal exposure kinetics is an important challenge for integration in developmental systems toxicology. Here, we describe an integrative systems toxicology model for develop...
Potential of DCT/SCDT in Addressing Two Elusive Themes of Mental Health Counseling.
ERIC Educational Resources Information Center
Borders, L. DiAnne
1994-01-01
Responds to previous article by Rigazio-DiGilio on Developmental Counseling and Therapy and Systemic Cognitive-Developmental Therapy as two integrative models that unify individual, family, and network treatment within coconstructive-developmental framework. Considers extent to which model breaks impasse in integrating development into counseling…
Using zebrafish in systems toxicology for developmental toxicity testing.
Nishimura, Yuhei; Inoue, Atsuto; Sasagawa, Shota; Koiwa, Junko; Kawaguchi, Koki; Kawase, Reiko; Maruyama, Toru; Kim, Soonih; Tanaka, Toshio
2016-01-01
With the high cost and the long-term assessment of developmental toxicity testing in mammals, the vertebrate zebrafish has become a useful alternative model organism for high-throughput developmental toxicity testing. Zebrafish is also very favorable for the 3R perspective in toxicology; however, the methodologies used by research groups vary greatly, posing considerable challenges to integrative analysis. In this review, we discuss zebrafish developmental toxicity testing, focusing on the methods of chemical exposure, the assessment of morphological abnormalities, housing conditions and their effects on the production of healthy embryos, and future directions. Zebrafish as a systems toxicology model has the potential to elucidate developmental toxicity pathways, and to provide a sound basis for human health risk assessments. © 2015 Japanese Teratology Society.
20170312 - Computer Simulation of Developmental ...
Rationale: Recent progress in systems toxicology and synthetic biology have paved the way to new thinking about in vitro/in silico modeling of developmental processes and toxicities, both for embryological and reproductive impacts. Novel in vitro platforms such as 3D organotypic culture models, engineered microscale tissues and complex microphysiological systems (MPS), together with computational models and computer simulation of tissue dynamics, lend themselves to a integrated testing strategies for predictive toxicology. As these emergent methodologies continue to evolve, they must be integrally tied to maternal/fetal physiology and toxicity of the developing individual across early lifestage transitions, from fertilization to birth, through puberty and beyond. Scope: This symposium will focus on how the novel technology platforms can help now and in the future, with in vitro/in silico modeling of complex biological systems for developmental and reproductive toxicity issues, and translating systems models into integrative testing strategies. The symposium is based on three main organizing principles: (1) that novel in vitro platforms with human cells configured in nascent tissue architectures with a native microphysiological environments yield mechanistic understanding of developmental and reproductive impacts of drug/chemical exposures; (2) that novel in silico platforms with high-throughput screening (HTS) data, biologically-inspired computational models of
Computer Simulation of Developmental Processes and ...
Rationale: Recent progress in systems toxicology and synthetic biology have paved the way to new thinking about in vitro/in silico modeling of developmental processes and toxicities, both for embryological and reproductive impacts. Novel in vitro platforms such as 3D organotypic culture models, engineered microscale tissues and complex microphysiological systems (MPS), together with computational models and computer simulation of tissue dynamics, lend themselves to a integrated testing strategies for predictive toxicology. As these emergent methodologies continue to evolve, they must be integrally tied to maternal/fetal physiology and toxicity of the developing individual across early lifestage transitions, from fertilization to birth, through puberty and beyond. Scope: This symposium will focus on how the novel technology platforms can help now and in the future, with in vitro/in silico modeling of complex biological systems for developmental and reproductive toxicity issues, and translating systems models into integrative testing strategies. The symposium is based on three main organizing principles: (1) that novel in vitro platforms with human cells configured in nascent tissue architectures with a native microphysiological environments yield mechanistic understanding of developmental and reproductive impacts of drug/chemical exposures; (2) that novel in silico platforms with high-throughput screening (HTS) data, biologically-inspired computational models of
Reynolds, L P; Borowicz, P P; Caton, J S; Vonnahme, K A; Luther, J S; Hammer, C J; Maddock Carlin, K R; Grazul-Bilska, A T; Redmer, D A
2010-04-01
Developmental programming refers to the programming of various bodily systems and processes by a stressor of the maternal system during pregnancy or during the neonatal period. Such stressors include nutritional stress, multiple pregnancy (i.e., increased numbers of fetuses in the gravid uterus), environmental stress (e.g., high environmental temperature, high altitude, prenatal steroid exposure), gynecological immaturity, and maternal or fetal genotype. Programming refers to impaired function of numerous bodily systems or processes, leading to poor growth, altered body composition, metabolic dysfunction, and poor productivity (e.g., poor growth, reproductive dysfunction) of the offspring throughout their lifespan and even across generations. A key component of developmental programming seems to be placental dysfunction, leading to altered fetal growth and development. We discuss various large animal models of developmental programming and how they have and will continue to contribute to our understanding of the mechanisms underlying altered placental function and developmental programming, and, further, how large animal models also will be critical to the identification and application of therapeutic strategies that will alleviate the negative consequences of developmental programming to improve offspring performance in livestock production and human medicine.
The Theory behind the Theory in DCT and SCDT: A Response to Rigazio-DiGilio.
ERIC Educational Resources Information Center
Terry, Linda L.
1994-01-01
Responds to previous article by Rigazio-DiGilio on Developmental Counseling and Therapy and Systemic Cognitive-Developmental Therapy as two integrative models that unify individual, family, and network treatment within coconstructive-developmental framework. Discusses hidden complexities in cognitive-developmental ecosystemic integration and…
Pathways to recovery: promoting change within a developmental-systemic framework.
Bryant-Waugh, Rachel
2006-04-01
This article describes a format for the process of achieving therapeutic change through structured individual sessions with adolescents or adults with eating disorders. It is a model for change based on three separate existing theoretical or conceptual strands: Developmental theory; the application of systems theory and cybernetics to clinical practice; and feminist ideology. It was developed as a pragmatic, clinician-friendly model that could be successfully used by therapists from different disciplines, and is referred to here as developmental-systemic-feminist therapy or individual developmental-systemic therapy. Change in this context is defined as the overt and measurable alteration in feelings, thoughts and behaviours of the participant(s) over the course of treatment. The article provides an overview of the treatment model and outlines the five steps used to achieve change (explore; understand; accept; challenge; change). Essential components of the therapist's stance, skills and knowledge are described, followed by a discussion of the structure and content of sessions in different stages of the therapy. Finally, clinical examples are given to illustrate the clinical use of this model in young patients with eating disorders.
Zebrafish as a systems toxicology model for developmental neurotoxicity testing.
Nishimura, Yuhei; Murakami, Soichiro; Ashikawa, Yoshifumi; Sasagawa, Shota; Umemoto, Noriko; Shimada, Yasuhito; Tanaka, Toshio
2015-02-01
The developing brain is extremely sensitive to many chemicals. Exposure to neurotoxicants during development has been implicated in various neuropsychiatric and neurological disorders, including autism spectrum disorder, attention deficit hyperactive disorder, schizophrenia, Parkinson's disease, and Alzheimer's disease. Although rodents have been widely used for developmental neurotoxicity testing, experiments using large numbers of rodents are time-consuming, expensive, and raise ethical concerns. Using alternative non-mammalian animal models may relieve some of these pressures by allowing testing of large numbers of subjects while reducing expenses and minimizing the use of mammalian subjects. In this review, we discuss some of the advantages of using zebrafish in developmental neurotoxicity testing, focusing on central nervous system development, neurobehavior, toxicokinetics, and toxicodynamics in this species. We also describe some important examples of developmental neurotoxicity testing using zebrafish combined with gene expression profiling, neuroimaging, or neurobehavioral assessment. Zebrafish may be a systems toxicology model that has the potential to reveal the pathways of developmental neurotoxicity and to provide a sound basis for human risk assessments. © 2014 Japanese Teratology Society.
Animal models suggest that the immature immune system is more susceptible to xenobiotics than the fully mature system, and sequelae of developmental immunotoxicant exposure may be persistent well into adulthood. Immune maturation may be delayed by xenobiotic exposure and recover...
Concerted and mosaic evolution of functional modules in songbird brains
DeVoogd, Timothy J.
2017-01-01
Vertebrate brains differ in overall size, composition and functional capacities, but the evolutionary processes linking these traits are unclear. Two leading models offer opposing views: the concerted model ascribes major dimensions of covariation in brain structures to developmental events, whereas the mosaic model relates divergent structures to functional capabilities. The models are often cast as incompatible, but they must be unified to explain how adaptive changes in brain structure arise from pre-existing architectures and developmental mechanisms. Here we show that variation in the sizes of discrete neural systems in songbirds, a species-rich group exhibiting diverse behavioural and ecological specializations, supports major elements of both models. In accordance with the concerted model, most variation in nucleus volumes is shared across functional domains and allometry is related to developmental sequence. Per the mosaic model, residual variation in nucleus volumes is correlated within functional systems and predicts specific behavioural capabilities. These comparisons indicate that oscine brains evolved primarily as a coordinated whole but also experienced significant, independent modifications to dedicated systems from specific selection pressures. Finally, patterns of covariation between species and brain areas hint at underlying developmental mechanisms. PMID:28490627
ERIC Educational Resources Information Center
Prince, Christopher G.
2008-01-01
Developmental robotics has forwarded a range of models of development and behaviours. With the variety of systems that have been created, and with some of these approximating prominent human behaviours (e.g. joint attention, word learning, imitation), one may argue that developmental robotics has started to go past robotic models of earwigs…
Systems Modeling in Developmental Toxicity
An individual starts off as a single cell, the progeny of which form complex structures that are themselves integrated into progressively larger systems. Developmental biology is concerned with how this cellular complexity and patterning arises through orchestration of cell divi...
Zebrafish Development: High-throughput Test Systems to Assess Developmental Toxicity
Abstract Because of its developmental concordance, ease of handling and rapid development, the small teleost, zebrafish (Danio rerio), is frequently promoted as a vertebrate model for medium-throughput developmental screens. This present chapter discusses zebrafish as an altern...
Thinking Developmentally: The Next Evolution in Models of Health.
Garner, Andrew S
2016-09-01
As the basic sciences that inform conceptions of human health advance, so must the models that are used to frame additional research, to teach the next generation of providers, and to inform health policy. This article briefly reviews the evolution from a biomedical model to a biopsychosocial (BPS) model and to an ecobiodevelopmental (EBD) model. Like the BPS model, the EBD model reaffirms the biological significance of psychosocial features within the patient's ecology, but it does so at the molecular and cellular levels. More importantly, the EBD model adds the dimension of time, forcing providers to "think developmentally" and to acknowledge the considerable biological and psychological consequences of previous experiences. For the health care system to move from a reactive "sick care" system to a proactive "well care" system, all providers must begin thinking developmentally by acknowledging the dynamic but cumulative dance between nature and nurture that drives development, behavior, and health, not only in childhood, but across the lifespan.
A SYSTEMS BIOLOGY APPROACH TO DEVELOPMENTAL TOXICOLOGY
Abstract
Recent advances in developmental biology have yielded detailed models of gene regulatory networks (GRNs) involved in cell specification and other processes in embryonic differentiation. Such networks form the bedrock on which a systems biology approach to developme...
Thousands of chemicals have little or no data to support developmental neurotoxicity risk assessments. Current developmental neurotoxicity guideline studies mandating mammalian model systems are expensive and time consuming. Therefore a rapid, cost-effective method to assess de...
Development of Civic Engagement: Theoretical and Methodological Issues
ERIC Educational Resources Information Center
Lerner, Richard M.; Wang, Jun; Champine, Robey B.; Warren, Daniel J. A.; Erickson, Karl
2014-01-01
Within contemporary developmental science, models derived from relational developmental systems (RDS) metatheory emphasize that the basic process of human development involves mutually-influential relations, termed developmental regulations, between the developing individual and his or her complex and changing physical, social, and cultural…
Drosophila melanogaster as a model system for assessing development under conditions of microgravity
NASA Technical Reports Server (NTRS)
Abbott, M. K.; Hilgenfeld, R. B.; Denell, R. E.; Spooner, B. S. (Principal Investigator)
1992-01-01
More is known about the regulation of early developmental events in Drosophila than any other animal. In addition, its size and short life cycle make it a facile experimental system. Since developmental perturbations have been demonstrated when both oogenesis and embryogenesis occur in the space environment, there is a strong rationale for using this organism for the elucidation of specific gravity-sensitive developmental events.
Refahi, Yassin; Brunoud, Géraldine; Farcot, Etienne; Jean-Marie, Alain; Pulkkinen, Minna; Vernoux, Teva; Godin, Christophe
2016-01-01
Exploration of developmental mechanisms classically relies on analysis of pattern regularities. Whether disorders induced by biological noise may carry information on building principles of developmental systems is an important debated question. Here, we addressed theoretically this question using phyllotaxis, the geometric arrangement of plant aerial organs, as a model system. Phyllotaxis arises from reiterative organogenesis driven by lateral inhibitions at the shoot apex. Motivated by recurrent observations of disorders in phyllotaxis patterns, we revisited in depth the classical deterministic view of phyllotaxis. We developed a stochastic model of primordia initiation at the shoot apex, integrating locality and stochasticity in the patterning system. This stochastic model recapitulates phyllotactic patterns, both regular and irregular, and makes quantitative predictions on the nature of disorders arising from noise. We further show that disorders in phyllotaxis instruct us on the parameters governing phyllotaxis dynamics, thus that disorders can reveal biological watermarks of developmental systems. DOI: http://dx.doi.org/10.7554/eLife.14093.001 PMID:27380805
Johnson, Norman A; Porter, Adam H
2007-01-01
Developmental systems are regulated by a web of interacting loci. One common and useful approach in studying the evolution of development is to focus on classes of interacting elements within these systems. Here, we use individual-based simulations to study the evolution of traits controlled by branched developmental pathways involving three loci, where one locus regulates two different traits. We examined the system under a variety of selective regimes. In the case where one branch was under stabilizing selection and the other under directional selection, we observed "developmental system drift": the trait under stabilizing selection showed little phenotypic change even though the loci underlying that trait showed considerable evolutionary divergence. This occurs because the pleiotropic locus responds to directional selection and compensatory mutants are then favored in the pathway under stabilizing selection. Though developmental system drift may be caused by other mechanisms, it seems likely that it is accelerated by the same underlying genetic mechanism as that producing the Dobzhansky-Muller incompatibilities that lead to speciation in both linear and branched pathways. We also discuss predictions of our model for developmental system drift and how different selective regimes affect probabilities of speciation in the branched pathway system.
Dossa, P A
1990-01-01
The literature refers to older people with developmental disabilities as the "new service population." How and why this population emerged as a special category is discussed conceptually with reference to social systems theory. A brief review of social systems theory and some basic systemic tenets are presented. Systemic tenets are employed in examining the historical development of social gerontology and present trends in the service-delivery system. I show that the systemic variable of the economic model of human development has significantly impacted on the making of older people with developmental disabilities a dependent population. In the conclusion the systems perspective is explored in relation to recognizing the liminal, in-between parts between components. It is argued that such a perception minimizes the dichotomy between older people with developmental disabilities and the non-disabled population, paving the way for a genuine encounter.
A new assessment model and tool for pediatric nurse practitioners.
Burns, C
1992-01-01
This article presents a comprehensive assessment model for pediatric nurse practitioner (PNP) practice that integrates familiar elements of the classical medical history, Gordon's Functional Health Patterns, and developmental fields into one system. This model drives the diagnostic reasoning process toward consideration of a broad range of disease, daily living (nursing diagnosis), and developmental diagnoses, which represents PNP practice better than the medical model does.
A dysmorphology score system for assessing embryo abnormalities in rat whole embryo culture.
Zhang, Cindy X; Danberry, Tracy; Jacobs, Mary Ann; Augustine-Rauch, Karen
2010-12-01
The rodent whole embryo culture (WEC) system is a well-established model for characterizing developmental toxicity of test compounds and conducting mechanistic studies. Laboratories have taken various approaches in describing type and severity of developmental findings of organogenesis-stage rodent embryos, but the Brown and Fabro morphological score system is commonly used as a quantitative approach. The associated score criteria is based upon developmental stage and growth parameters, where a series of embryonic structures are assessed and assigned respective scores relative to their gestational stage, with a Total Morphological Score (TMS) assigned to the embryo. This score system is beneficial because it assesses a series of stage-specific anatomical landmarks, facilitating harmonized evaluation across laboratories. Although the TMS provides a quantitative approach to assess growth and determine developmental delay, it is limited to its ability to identify and/or delineate subtle or structure-specific abnormalities. Because of this, the TMS may not be sufficiently sensitive for identifying compounds that induce structure or organ-selective effects. This study describes a distinct morphological score system called the "Dysmorphology Score System (DMS system)" that has been developed for assessing gestation day 11 (approximately 20-26 somite stage) rat embryos using numerical scores to differentiate normal from abnormal morphology and define the respective severity of dysmorphology of specific embryonic structures and organ systems. This method can also be used in scoring mouse embryos of the equivalent developmental stage. The DMS system enhances capabilities to rank-order compounds based upon teratogenic potency, conduct structure- relationships of chemicals, and develop statistical prediction models to support abbreviated developmental toxicity screens. © 2010 Wiley-Liss, Inc.
Applying Evolutionary Genetics to Developmental Toxicology and Risk Assessment
Leung, Maxwell C. K.; Procter, Andrew C.; Goldstone, Jared V.; Foox, Jonathan; DeSalle, Robert; Mattingly, Carolyn J.; Siddall, Mark E.; Timme-Laragy, Alicia R.
2018-01-01
Evolutionary thinking continues to challenge our views on health and disease. Yet, there is a communication gap between evolutionary biologists and toxicologists in recognizing the connections among developmental pathways, high-throughput screening, and birth defects in humans. To increase our capability in identifying potential developmental toxicants in humans, we propose to apply evolutionary genetics to improve the experimental design and data interpretation with various in vitro and whole-organism models. We review five molecular systems of stress response and update 18 consensual cell-cell signaling pathways that are the hallmark for early development, organogenesis, and differentiation; and revisit the principles of teratology in light of recent advances in high-throughput screening, big data techniques, and systems toxicology. Multiscale systems modeling plays an integral role in the evolutionary approach to cross-species extrapolation. Phylogenetic analysis and comparative bioinformatics are both valuable tools in identifying and validating the molecular initiating events that account for adverse developmental outcomes in humans. The discordance of susceptibility between test species and humans (ontogeny) reflects their differences in evolutionary history (phylogeny). This synthesis not only can lead to novel applications in developmental toxicity and risk assessment, but also can pave the way for applying an evo-devo perspective to the study of developmental origins of health and disease. PMID:28267574
Cunningham, Albert R; Carrasquer, C Alex; Mattison, Donald R
2009-01-01
The choice of therapeutic strategies for hyperthyroidism during pregnancy is limited. Surgery and radioiodine are typically avoided, leaving propylthiouracil and methimazole in the US. Carbimazole, a metabolic precursor of methimazole, is available in some countries outside of the US. In the US propylthiouracil is recommended because of concern about developmental toxicity from methimazole and carbimazole. Despite this recommendation, the data on developmental toxicity of all three agents are extremely limited and insufficient to support a policy given the broad use of methimazole and carbimazole around the world. In the absence of new human or animal data we describe the development of a new structure-activity relationship (SAR) model for developmental toxicity using the cat-SAR expert system. The SAR model was developed from data for 323 compounds evaluated for human developmental toxicity with 130 categorized as developmental toxicants and 193 as nontoxicants. Model cross-validation yielded a concordance between observed and predicted results between 79% to 81%. Based on this model, propylthiouracil, methimazole, and carbimazole were observed to share some structural features relating to human developmental toxicity. Thus given the need to treat women with Graves's disease during pregnancy, new molecules with minimized risk for developmental toxicity are needed. To help meet this challenge, the cat-SAR method would be a useful in screening new drug candidates for developmental toxicity as well as for investigating their mechanism of action.
ERIC Educational Resources Information Center
Kastner, Theodore A.; Walsh, Kevin K.; Criscione, Teri
1997-01-01
Presents a general model of the structure and functioning of managed care and describes elements (provider networks, fiscal elements, risk estimation, case-mix, management information systems, practice parameters, and quality improvement) critical to people with developmental disabilities. Managed care demonstration projects and a hypothetical…
Zebrafish model systems for developmental neurobehavioral toxicology.
Bailey, Jordan; Oliveri, Anthony; Levin, Edward D
2013-03-01
Zebrafish offer many advantages that complement classic mammalian models for the study of normal development as well as for the teratogenic effects of exposure to hazardous compounds. The clear chorion and embryo of the zebrafish allow for continuous visualization of the anatomical changes associated with development, which, along with short maturation times and the capability of complex behavior, makes this model particularly useful for measuring changes to the developing nervous system. Moreover, the rich array of developmental, behavioral, and molecular benefits offered by the zebrafish have contributed to an increasing demand for the use of zebrafish in behavioral teratology. Essential for this endeavor has been the development of a battery of tests to evaluate a spectrum of behavior in zebrafish. Measures of sensorimotor plasticity, emotional function, cognition and social interaction have been used to characterize the persisting adverse effects of developmental exposure to a variety of chemicals including therapeutic drugs, drugs of abuse and environmental toxicants. In this review, we present and discuss such tests and data from a range of developmental neurobehavioral toxicology studies using zebrafish as a model. Zebrafish provide a key intermediate model between high throughput in vitro screens and the classic mammalian models as they have the accessibility of in vitro models and the complex functional capabilities of mammalian models. Copyright © 2013 Wiley Periodicals, Inc.
Zebrafish Model Systems for Developmental Neurobehavioral Toxicology
Bailey, Jordan; Oliveri, Anthony; Levin, Edward D.
2014-01-01
Zebrafish offer many advantages that complement classic mammalian models for the study of normal development as well as for the teratogenic effects of exposure to hazardous compounds. The clear chorion and embryo of the zebrafish allow for continuous visualization of the anatomical changes associated with development, which, along with short maturation times and the capability of complex behavior, makes this model particularly useful for measuring changes to the developing nervous system. Moreover, the rich array of developmental, behavioral, and molecular benefits offered by the zebrafish have contributed to an increasing demand for the use of zebrafish in behavioral teratology. Essential for this endeavor has been the development of a battery of tests to evaluate a spectrum of behavior in zebrafish. Measures of sensorimotor plasticity, emotional function, cognition and social interaction have been used to characterize the persisting adverse effects of developmental exposure to a variety of chemicals including therapeutic drugs, drugs of abuse and environmental toxicants. In this review, we present and discuss such tests and data from a range of developmental neurobehavioral toxicology studies using zebrafish as a model. Zebrafish provide a key intermediate model between high throughput in vitro screens and the classic mammalian models as they have the accessibility of in vitro models and the complex functional capabilities of mammalian models. PMID:23723169
Liu, Yong; Tang, Yamei; Pu, Weidan; Zhang, Xianghui; Zhao, Jingping
2011-08-01
To explore the related neurobiochemical mechanism by comparing the concentration change of dopamine (DA), dihydroxy-phenyl acetic acid (DOPAC), glutamate (Glu), and γ-aminobutyric acid (GABA) in the brain tissues in schizophrenia (SZ) developmental model rats and chronic medication model rats. A total of 60 neonatal male Spragur-Dawley (SD) rats were randomly assigned to 3 groups at the postnatal day 6: an SZ developmental rat model group (subcutaneous injection with MK-801 at the postnatal day 7-10, 0.1 mg/kg, Bid), a chronic medication model group (intraperitoneal injection at the postnatal day 47-60, 0.2 mg/kg,Qd), and a normal control group (injection with 0.9% normal saline during the corresponding periods). DA, DOPAC, Glu, and GABA of the tissue homogenate from the medial prefrontal cortex (mPFC) and hippocampus were examined with Coularray electrochemic detection by high performance liquid chromatogram technique. The utilization rate of DA and Glu was calculated. Compared with the normal control group, the concentration of DA and DOPAC in the mPFC and the hippocampus in the SZ developmental model group significantly decreased (P<0.05), and the GABA concentration and Glu utilization rate in the mPFC also decreased (P<0.05). Compared with the chronic medication model group, the DA concentration of the mPFC in the SZ developmental group decreased (P<0.05), and the DOPAC concentration and the utility rate of DA in the hippocampus also decreased (P<0.01, P<0.05, respectively). The activities of DA, Glu and GABA system decrease in the mPFC and the DA system function reduces in the hippocampus of SZ developmental rats.
School Engagement and Positive Youth Development: A Relational Developmental Systems Perspective
ERIC Educational Resources Information Center
Li, Yibing; Agans, Jennifer P.; Chase, Paul A.; Arbeit, Miriam R.; Weiner, Michelle B.; Lerner, Richard M.
2014-01-01
This chapter explains the links between relational developmental systems theory and the strength-based, positive youth development (PYD) perspective. The Five Cs model of PYD (involving competence, confidence, connection, character, and caring) is used to assess the role of school engagement in PYD. [This article originally appeared as NSSE…
Effects of developmental variability on the dynamics and self-organization of cell populations
NASA Astrophysics Data System (ADS)
Prabhakara, Kaumudi H.; Gholami, Azam; Zykov, Vladimir S.; Bodenschatz, Eberhard
2017-11-01
We report experimental and theoretical results for spatiotemporal pattern formation in cell populations, where the parameters vary in space and time due to mechanisms intrinsic to the system, namely Dictyostelium discoideum (D.d.) in the starvation phase. We find that different patterns are formed when the populations are initialized at different developmental stages, or when populations at different initial developmental stages are mixed. The experimentally observed patterns can be understood with a modified Kessler-Levine model that takes into account the initial spatial heterogeneity of the cell populations and a developmental path introduced by us, i.e. the time dependence of the various biochemical parameters. The dynamics of the parameters agree with known biochemical studies. Most importantly, the modified model reproduces not only our results, but also the observations of an independent experiment published earlier. This shows that pattern formation can be used to understand and quantify the temporal evolution of the system parameters.
Developmental neurotoxic effects of Malathion on 3D neurosphere system
Salama, Mohamed; Lotfy, Ahmed; Fathy, Khaled; Makar, Maria; El-emam, Mona; El-gamal, Aya; El-gamal, Mohamed; Badawy, Ahmad; Mohamed, Wael M.Y.; Sobh, Mohamed
2015-01-01
Developmental neurotoxicity (DNT) refers to the toxic effects induced by various chemicals on brain during the early childhood period. As human brains are vulnerable during this period, various chemicals would have significant effects on brains during early childhood. Some toxicants have been confirmed to induce developmental toxic effects on CNS; however, most of agents cannot be identified with certainty. This is because available animal models do not cover the whole spectrum of CNS developmental periods. A novel alternative method that can overcome most of the limitations of the conventional techniques is the use of 3D neurosphere system. This in-vitro system can recapitulate many of the changes during the period of brain development making it an ideal model for predicting developmental neurotoxic effects. In the present study we verified the possible DNT of Malathion, which is one of organophosphate pesticides with suggested possible neurotoxic effects on nursing children. Three doses of Malathion (0.25 μM, 1 μM and 10 μM) were used in cultured neurospheres for a period of 14 days. Malathion was found to affect proliferation, differentiation and viability of neurospheres, these effects were positively correlated to doses and time progress. This study confirms the DNT effects of Malathion on 3D neurosphere model. Further epidemiological studies will be needed to link these results to human exposure and effects data. PMID:27054080
Quantitative developmental transcriptomes of the Mediterranean sea urchin Paracentrotus lividus.
Gildor, Tsvia; Malik, Assaf; Sher, Noa; Avraham, Linor; Ben-Tabou de-Leon, Smadar
2016-02-01
Embryonic development progresses through the timely activation of thousands of differentially activated genes. Quantitative developmental transcriptomes provide the means to relate global patterns of differentially expressed genes to the emerging body plans they generate. The sea urchin is one of the classic model systems for embryogenesis and the models of its developmental gene regulatory networks are of the most comprehensive of their kind. Thus, the sea urchin embryo is an excellent system for studies of its global developmental transcriptional profiles. Here we produced quantitative developmental transcriptomes of the sea urchin Paracentrotus lividus (P. lividus) at seven developmental stages from the fertilized egg to prism stage. We generated de-novo reference transcriptome and identified 29,817 genes that are expressed at this time period. We annotated and quantified gene expression at the different developmental stages and confirmed the reliability of the expression profiles by QPCR measurement of a subset of genes. The progression of embryo development is reflected in the observed global expression patterns and in our principle component analysis. Our study illuminates the rich patterns of gene expression that participate in sea urchin embryogenesis and provide an essential resource for further studies of the dynamic expression of P. lividus genes. Copyright © 2015 Elsevier B.V. All rights reserved.
Tassy, Olivier; Dauga, Delphine; Daian, Fabrice; Sobral, Daniel; Robin, François; Khoueiry, Pierre; Salgado, David; Fox, Vanessa; Caillol, Danièle; Schiappa, Renaud; Laporte, Baptiste; Rios, Anne; Luxardi, Guillaume; Kusakabe, Takehiro; Joly, Jean-Stéphane; Darras, Sébastien; Christiaen, Lionel; Contensin, Magali; Auger, Hélène; Lamy, Clément; Hudson, Clare; Rothbächer, Ute; Gilchrist, Michael J; Makabe, Kazuhiro W; Hotta, Kohji; Fujiwara, Shigeki; Satoh, Nori; Satou, Yutaka; Lemaire, Patrick
2010-10-01
Developmental biology aims to understand how the dynamics of embryonic shapes and organ functions are encoded in linear DNA molecules. Thanks to recent progress in genomics and imaging technologies, systemic approaches are now used in parallel with small-scale studies to establish links between genomic information and phenotypes, often described at the subcellular level. Current model organism databases, however, do not integrate heterogeneous data sets at different scales into a global view of the developmental program. Here, we present a novel, generic digital system, NISEED, and its implementation, ANISEED, to ascidians, which are invertebrate chordates suitable for developmental systems biology approaches. ANISEED hosts an unprecedented combination of anatomical and molecular data on ascidian development. This includes the first detailed anatomical ontologies for these embryos, and quantitative geometrical descriptions of developing cells obtained from reconstructed three-dimensional (3D) embryos up to the gastrula stages. Fully annotated gene model sets are linked to 30,000 high-resolution spatial gene expression patterns in wild-type and experimentally manipulated conditions and to 528 experimentally validated cis-regulatory regions imported from specialized databases or extracted from 160 literature articles. This highly structured data set can be explored via a Developmental Browser, a Genome Browser, and a 3D Virtual Embryo module. We show how integration of heterogeneous data in ANISEED can provide a system-level understanding of the developmental program through the automatic inference of gene regulatory interactions, the identification of inducing signals, and the discovery and explanation of novel asymmetric divisions.
Tassy, Olivier; Dauga, Delphine; Daian, Fabrice; Sobral, Daniel; Robin, François; Khoueiry, Pierre; Salgado, David; Fox, Vanessa; Caillol, Danièle; Schiappa, Renaud; Laporte, Baptiste; Rios, Anne; Luxardi, Guillaume; Kusakabe, Takehiro; Joly, Jean-Stéphane; Darras, Sébastien; Christiaen, Lionel; Contensin, Magali; Auger, Hélène; Lamy, Clément; Hudson, Clare; Rothbächer, Ute; Gilchrist, Michael J.; Makabe, Kazuhiro W.; Hotta, Kohji; Fujiwara, Shigeki; Satoh, Nori; Satou, Yutaka; Lemaire, Patrick
2010-01-01
Developmental biology aims to understand how the dynamics of embryonic shapes and organ functions are encoded in linear DNA molecules. Thanks to recent progress in genomics and imaging technologies, systemic approaches are now used in parallel with small-scale studies to establish links between genomic information and phenotypes, often described at the subcellular level. Current model organism databases, however, do not integrate heterogeneous data sets at different scales into a global view of the developmental program. Here, we present a novel, generic digital system, NISEED, and its implementation, ANISEED, to ascidians, which are invertebrate chordates suitable for developmental systems biology approaches. ANISEED hosts an unprecedented combination of anatomical and molecular data on ascidian development. This includes the first detailed anatomical ontologies for these embryos, and quantitative geometrical descriptions of developing cells obtained from reconstructed three-dimensional (3D) embryos up to the gastrula stages. Fully annotated gene model sets are linked to 30,000 high-resolution spatial gene expression patterns in wild-type and experimentally manipulated conditions and to 528 experimentally validated cis-regulatory regions imported from specialized databases or extracted from 160 literature articles. This highly structured data set can be explored via a Developmental Browser, a Genome Browser, and a 3D Virtual Embryo module. We show how integration of heterogeneous data in ANISEED can provide a system-level understanding of the developmental program through the automatic inference of gene regulatory interactions, the identification of inducing signals, and the discovery and explanation of novel asymmetric divisions. PMID:20647237
ERIC Educational Resources Information Center
Lerner, Richard M.; Bowers, Edmond P.; Geldhof, G. John; Gestsdottir, Steinunn; DeSouza, Lisette
2012-01-01
Contemporary developmental theory is framed by relational developmental systems models that emphasize that change across life occurs through mutually regulative relations between individuals and their contexts (represented as individual [left arrow][right arrow] context relations). Within these models, all contextual levels are involved in these…
Tretinoin: a review of the nonclinical developmental toxicology experience.
Kochhar, D M; Christian, M S
1997-03-01
Tretinoin has been thoroughly evaluated for its potential as an embryofetal developmental toxicant. Oral tretinoin produces developmental anomalies in animal models; the minimal teratogenic dose is consistently 2.5 to 10 mg/kg. In contrast, topical application does not induce developmental malformations in laboratory animals. A structurally related compound, isotretinoin, is a potent toxicant in humans and animals; the lowest systemic dose that induces fetal anomalies varies more than 100-fold depending on the model. Oral isotretinoin is a more potent developmental toxicant than oral tretinoin in monkeys. Between-drug differences in the metabolism and transplacental transfer of the two retinoids account for the differences in toxicant potency. Pharmacokinetic studies reveal that absorption of tretinoin from the skin is poor and yields maternal plasma concentrations below the developmentally toxic threshold established after oral administration. Analysis of outcomes of developmental toxicology and pharmacokinetic studies suggests that the human risk of fetal anomalies is negligible after therapeutic application of topical tretinoin.
Human pluripotent stem cells: an emerging model in developmental biology.
Zhu, Zengrong; Huangfu, Danwei
2013-02-01
Developmental biology has long benefited from studies of classic model organisms. Recently, human pluripotent stem cells (hPSCs), including human embryonic stem cells and human induced pluripotent stem cells, have emerged as a new model system that offers unique advantages for developmental studies. Here, we discuss how studies of hPSCs can complement classic approaches using model organisms, and how hPSCs can be used to recapitulate aspects of human embryonic development 'in a dish'. We also summarize some of the recently developed genetic tools that greatly facilitate the interrogation of gene function during hPSC differentiation. With the development of high-throughput screening technologies, hPSCs have the potential to revolutionize gene discovery in mammalian development.
Computational Modeling and Simulation of Developmental ...
SYNOPSIS: The question of how tissues and organs are shaped during development is crucial for understanding human birth defects. Data from high-throughput screening assays on human stem cells may be utilized predict developmental toxicity with reasonable accuracy. Other types of models are necessary, however, for mechanism-specific analysis because embryogenesis requires precise timing and control. Agent-based modeling and simulation (ABMS) is an approach to virtually reconstruct these dynamics, cell-by-cell and interaction-by-interaction. Using ABMS, HTS lesions from ToxCast can be integrated with patterning systems heuristically to propagate key events This presentation to FDA-CFSAN will update progress on the applications of in silico modeling tools and approaches for assessing developmental toxicity.
Lin, Hsien-Cheng; Chiu, Yu-Hsien; Chen, Yenming J; Wuang, Yee-Pay; Chen, Chiu-Ping; Wang, Chih-Chung; Huang, Chien-Ling; Wu, Tang-Meng; Ho, Wen-Hsien
2017-11-01
This study developed an interactive computer game-based visual perception learning system for special education children with developmental delay. To investigate whether perceived interactivity affects continued use of the system, this study developed a theoretical model of the process in which learners decide whether to continue using an interactive computer game-based visual perception learning system. The technology acceptance model, which considers perceived ease of use, perceived usefulness, and perceived playfulness, was extended by integrating perceived interaction (i.e., learner-instructor interaction and learner-system interaction) and then analyzing the effects of these perceptions on satisfaction and continued use. Data were collected from 150 participants (rehabilitation therapists, medical paraprofessionals, and parents of children with developmental delay) recruited from a single medical center in Taiwan. Structural equation modeling and partial-least-squares techniques were used to evaluate relationships within the model. The modeling results indicated that both perceived ease of use and perceived usefulness were positively associated with both learner-instructor interaction and learner-system interaction. However, perceived playfulness only had a positive association with learner-system interaction and not with learner-instructor interaction. Moreover, satisfaction was positively affected by perceived ease of use, perceived usefulness, and perceived playfulness. Thus, satisfaction positively affects continued use of the system. The data obtained by this study can be applied by researchers, designers of computer game-based learning systems, special education workers, and medical professionals. Copyright © 2017 Elsevier B.V. All rights reserved.
CELLULAR, BIOCHEMICAL, AND MOLECULAR TECHNIQUES IN DEVELOPMENTAL TOXICOLOGY
Cellular, molecular and biochemical approaches vastly expand the possibilities for revealing the underlying mechanisms of developmental toxicity. The increasing interest in embryonic development as a model system for the study of gene expression has resulted in a cornucopia of i...
Inadequate levels of thyroid hormone during critical developmental periods lead to stunted growth, mental retardation, and neurological 'cretinism'. Animal models of developmental thyroid hormone deficiency mirror well the impact of severe insults to the thyroid system. However, ...
Virtual Embryo: Systems Modeling in Developmental Toxicity
High-throughput screening (HTS) studies are providing a rich source of data that can be applied to chemical profiling to address sensitivity and specificity of molecular targets, biological pathways, cellular and developmental processes. EPA’s ToxCast project is testing 960 uniq...
Robinson, Joshua F; Theunissen, Peter T; van Dartel, Dorien A M; Pennings, Jeroen L; Faustman, Elaine M; Piersma, Aldert H
2011-09-01
Toxicogenomic evaluations may improve toxicity prediction of in vitro-based developmental models, such as whole embryo culture (WEC) and embryonic stem cells (ESC), by providing a robust mechanistic marker which can be linked with responses associated with developmental toxicity in vivo. While promising in theory, toxicogenomic comparisons between in vivo and in vitro models are complex due to inherent differences in model characteristics and experimental design. Determining factors which influence these global comparisons are critical in the identification of reliable mechanistic-based markers of developmental toxicity. In this study, we compared available toxicogenomic data assessing the impact of the known teratogen, methylmercury (MeHg) across a diverse set of in vitro and in vivo models to investigate the impact of experimental variables (i.e. model, dose, time) on our comparative assessments. We evaluated common and unique aspects at both the functional (Gene Ontology) and gene level of MeHg-induced response. At the functional level, we observed stronger similarity in MeHg-response between mouse embryos exposed in utero (2 studies), ESC, and WEC as compared to liver, brain and mouse embryonic fibroblast MeHg studies. These findings were strongly correlated to the presence of a MeHg-induced developmentally related gene signature. In addition, we identified specific MeHg-induced gene expression alterations associated with developmental signaling and heart development across WEC, ESC and in vivo systems. However, the significance of overlap between studies was highly dependent on traditional experimental variables (i.e. dose, time). In summary, we identify promising examples of unique gene expression responses which show in vitro-in vivo similarities supporting the relevance of in vitro developmental models for predicting in vivo developmental toxicity. Copyright © 2011 Elsevier Inc. All rights reserved.
Dawson, Colin R; Gerken, LouAnn
2012-01-01
Rational models of human perception and cognition have allowed researchers new ways to look at learning and the ability to make inferences from data. But how good are such models at accounting for developmental change? In this chapter, we address this question in the domain of language development, focusing on the speed with which developmental change takes place, and classifying different types of language development as either fast or slow. From the pattern of fast and slow development observed, we hypothesize that rational learning processes are generally well suited for handling fast processes over small amounts of input data. In contrast, we suggest that associative learning processes are generally better suited to slow development, in which learners accumulate information about what is typical of their language over time. Finally, although one system may be dominant for a particular component of language learning, we speculate that both systems frequently interact, with the associative system providing a source of emergent hypotheses to be evaluated by the rational system and the rational system serving to highlight which aspects of the learner's input need to be processed in greater depth by the associative system.
Chapter 4. New model systems for the study of developmental evolution in plants.
Kramer, Elena M
2009-01-01
The number of genetically tractable plant model systems is rapidly increasing, thanks to the decreasing cost of sequencing and the wide amenability of plants to stable transformation and other functional approaches. In this chapter, I discuss emerging model systems from throughout the land plant phylogeny and consider how their unique attributes are contributing to our understanding of development, evolution, and ecology. These new models are being developed using two distinct strategies: in some cases, they are selected because of their close relationship to the established models, while in others, they are chosen with the explicit intention of exploring distantly related plant lineages. Such complementary approaches are yielding exciting new results that shed light on both micro- and macroevolutionary processes in the context of developmental evolution.
Computational Modeling and Simulation of Developmental ...
Standard practice for assessing developmental toxicity is the observation of apical endpoints (intrauterine death, fetal growth retardation, structural malformations) in pregnant rats/rabbits following exposure during organogenesis. EPA’s computational toxicology research program (ToxCast) generated vast in vitro cellular and molecular effects data on >1858 chemicals in >600 high-throughput screening (HTS) assays. The diversity of assays has been increased for developmental toxicity with several HTS platforms, including the devTOX-quickPredict assay from Stemina Biomarker Discovery utilizing the human embryonic stem cell line (H9). Translating these HTS data into higher order-predictions of developmental toxicity is a significant challenge. Here, we address the application of computational systems models that recapitulate the kinematics of dynamical cell signaling networks (e.g., SHH, FGF, BMP, retinoids) in a CompuCell3D.org modeling environment. Examples include angiogenesis (angiodysplasia) and dysmorphogenesis. Being numerically responsive to perturbation, these models are amenable to data integration for systems Toxicology and Adverse Outcome Pathways (AOPs). The AOP simulation outputs predict potential phenotypes based on the in vitro HTS data ToxCast. A heuristic computational intelligence framework that recapitulates the kinematics of dynamical cell signaling networks in the embryo, together with the in vitro profiling data, produce quantitative predic
A developmental approach to mentalizing communities: I. A model for social change.
Twemlow, Stuart W; Fonagy, Peter; Sacco, Frank C
2005-01-01
A developmental model is proposed applying attachment theory to complex social systems to promote social change. The idea of mentalizing communities is outlined with a proposal for three projects testing the model: ways to reduce bullying and create a peaceful climate in schools, projects to promote compassion in cities by a focus of end-of-life care, and a mentalization-based intervention into parenting style of borderline and substance abusing parents.
Computer Simulation of Developmental Processes and Toxicities (SOT)
Rationale: Recent progress in systems toxicology and synthetic biology have paved the way to new thinking about in vitro/in silico modeling of developmental processes and toxicities, both for embryological and reproductive impacts. Novel in vitro platforms such as 3D organotypic ...
Color pattern analysis of nymphalid butterfly wings: revision of the nymphalid groundplan.
Otaki, Joji M
2012-09-01
To better understand the developmental mechanisms of color pattern variation in butterfly wings, it is important to construct an accurate representation of pattern elements, known as the "nymphalid groundplan". However, some aspects of the current groundplan remain elusive. Here, I examined wing-wide elemental patterns of various nymphalid butterflies and confirmed that wing-wide color patterns are composed of the border, central, and basal symmetry systems. The central and basal symmetry systems can express circular patterns resembling eyespots, indicating that these systems have developmental mechanisms similar to those of the border symmetry system. The wing root band commonly occurs as a distinct symmetry system independent from the basal symmetry system. In addition, the marginal and submarginal bands are likely generated as a single system, referred to as the "marginal band system". Background spaces between two symmetry systems are sometimes light in coloration and can produce white bands, contributing significantly to color pattern diversity. When an element is enlarged with a pale central area, a visually similar (yet developmentally distinct) white band is produced. Based on the symmetric relationships of elements, I propose that both the central and border symmetry systems are comprised of "core elements" (the discal spot and the border ocelli, respectively) and a pair of "paracore elements" (the distal and proximal bands and the parafocal elements, respectively). Both core and paracore elements can be doubled, or outlined. Developmentally, this system configuration is consistent with the induction model, but not with the concentration gradient model for positional information.
Sotiropoulos, Andreas; Hanley, J Richard
The relationship between spelling, written word recognition, and picture naming is investigated in a study of seven bilingual adults who have developmental surface dysgraphia in both Greek (their first language) and English (their second language). Four of the cases also performed poorly at orthographic lexical decision in both languages. This finding is consistent with similar results in Italian that have been taken as evidence of a developmental impairment to a single orthographic system that is used for both reading and spelling. The remaining three participants performed well at orthographic lexical decision. At first sight, preserved lexical decision in surface dysgraphia is less easy to explain in terms of a shared orthographic system. However, the results of subsequent experiments showed clear parallels between the nature of the reading and spelling difficulties that these three individuals experienced, consistent with the existence of a single orthographic system. The different patterns that were observed were consistent with the claims of Friedmann and Lukov (2008. Developmental surface dyslexias. Cortex, 44, 1146-1160) that several distinct sub-types of developmental surface dyslexia exist. We show that individual differences in spelling in surface dysgraphia are also consistent with these sub-types; there are different developmental deficits that can give rise, in an individual, to a combination of surface dyslexia and dysgraphia. Finally, we compare the theoretical framework used by Friedmann and her colleagues that is based upon the architecture of the DRC model with an account that relies instead upon the Triangle model of reading].
The relative age effect in sport: a developmental systems model.
Wattie, Nick; Schorer, Jörg; Baker, Joseph
2015-01-01
The policies that dictate the participation structure of many youth sport systems involve the use of a set selection date (e.g. 31 December), which invariably produces relative age differences between those within the selection year (e.g. 1 January to 31 December). Those born early in the selection year (e.g. January) are relatively older—by as much as 12 months minus 1 day—than those born later in the selection year (e.g. December). Research in the area of sport has identified a number of significant developmental effects associated with such relative age differences. However, a theoretical framework that describes the breadth and complexity of relative age effects (RAEs) in sport does not exist in the literature. This paper reviews and summarizes the existing literature on relative age in sport, and proposes a constraints-based developmental systems model for RAEs in sport.
Human pluripotent stem cells: an emerging model in developmental biology
Zhu, Zengrong; Huangfu, Danwei
2013-01-01
Developmental biology has long benefited from studies of classic model organisms. Recently, human pluripotent stem cells (hPSCs), including human embryonic stem cells and human induced pluripotent stem cells, have emerged as a new model system that offers unique advantages for developmental studies. Here, we discuss how studies of hPSCs can complement classic approaches using model organisms, and how hPSCs can be used to recapitulate aspects of human embryonic development ‘in a dish’. We also summarize some of the recently developed genetic tools that greatly facilitate the interrogation of gene function during hPSC differentiation. With the development of high-throughput screening technologies, hPSCs have the potential to revolutionize gene discovery in mammalian development. PMID:23362344
Neal, Rachel E; Jagadapillai, Rekha; Chen, Jing; Webb, Cindy; Stocke, Kendall; Greene, Robert M; Pisano, M Michele
2016-10-01
Exposure to cigarette smoke during development is linked to neurodevelopmental delays and cognitive impairment including impulsivity, attention deficit disorder, and lower IQ. Utilizing a murine experimental model of "active" inhalation exposure to cigarette smoke spanning the entirety of gestation and through human third trimester equivalent hippocampal development [gestation day 1 (GD1) through postnatal day 21 (PD21)], we examined hippocampus proteome and metabolome alterations present at a time during which developmental cigarette smoke exposure (CSE)-induced behavioral and cognitive impairments are evident in adult animals from this model system. At six month of age, carbohydrate metabolism and lipid content in the hippocampus of adult offspring remained impacted by prior exposure to cigarette smoke during the critical period of hippocampal ontogenesis indicating limited glycolysis. These findings indicate developmental CSE-induced systemic glucose availability may limit both organism growth and developmental trajectory, including the capacity for learning and memory. Copyright © 2016 Elsevier Inc. All rights reserved.
Human Inspired Self-developmental Model of Neural Network (HIM): Introducing Content/Form Computing
NASA Astrophysics Data System (ADS)
Krajíček, Jiří
This paper presents cross-disciplinary research between medical/psychological evidence on human abilities and informatics needs to update current models in computer science to support alternative methods for computation and communication. In [10] we have already proposed hypothesis introducing concept of human information model (HIM) as cooperative system. Here we continue on HIM design in detail. In our design, first we introduce Content/Form computing system which is new principle of present methods in evolutionary computing (genetic algorithms, genetic programming). Then we apply this system on HIM (type of artificial neural network) model as basic network self-developmental paradigm. Main inspiration of our natural/human design comes from well known concept of artificial neural networks, medical/psychological evidence and Sheldrake theory of "Nature as Alive" [22].
OceanNOMADS: Real-time and retrospective access to operational U.S. ocean prediction products
NASA Astrophysics Data System (ADS)
Harding, J. M.; Cross, S. L.; Bub, F.; Ji, M.
2011-12-01
The National Oceanic and Atmospheric Administration (NOAA) National Operational Model Archive and Distribution System (NOMADS) provides both real-time and archived atmospheric model output from servers at the National Centers for Environmental Prediction (NCEP) and National Climatic Data Center (NCDC) respectively (http://nomads.ncep.noaa.gov/txt_descriptions/marRutledge-1.pdf). The NOAA National Ocean Data Center (NODC) with NCEP is developing a complementary capability called OceanNOMADS for operational ocean prediction models. An NCEP ftp server currently provides real-time ocean forecast output (http://www.opc.ncep.noaa.gov/newNCOM/NCOM_currents.shtml) with retrospective access through NODC. A joint effort between the Northern Gulf Institute (NGI; a NOAA Cooperative Institute) and the NOAA National Coastal Data Development Center (NCDDC; a division of NODC) created the developmental version of the retrospective OceanNOMADS capability (http://www.northerngulfinstitute.org/edac/ocean_nomads.php) under the NGI Ecosystem Data Assembly Center (EDAC) project (http://www.northerngulfinstitute.org/edac/). Complementary funding support for the developmental OceanNOMADS from U.S. Integrated Ocean Observing System (IOOS) through the Southeastern University Research Association (SURA) Model Testbed (http://testbed.sura.org/) this past year provided NODC the analogue that facilitated the creation of an NCDDC production version of OceanNOMADS (http://www.ncddc.noaa.gov/ocean-nomads/). Access tool development and storage of initial archival data sets occur on the NGI/NCDDC developmental servers with transition to NODC/NCCDC production servers as the model archives mature and operational space and distribution capability grow. Navy operational global ocean forecast subsets for U.S waters comprise the initial ocean prediction fields resident on the NCDDC production server. The NGI/NCDDC developmental server currently includes the Naval Research Laboratory Inter-America Seas Nowcast/Forecast System over the Gulf of Mexico from 2004-Mar 2011, the operational Naval Oceanographic Office (NAVOCEANO) regional USEast ocean nowcast/forecast system from early 2009 to present, and the NAVOCEANO operational regional AMSEAS (Gulf of Mexico/Caribbean) ocean nowcast/forecast system from its inception 25 June 2010 to present. AMSEAS provided one of the real-time ocean forecast products accessed by NOAA's Office of Response and Restoration from the NGI/NCDDC developmental OceanNOMADS during the Deep Water Horizon oil spill last year. The developmental server also includes archived, real-time Navy coastal forecast products off coastal Japan in support of U.S./Japanese joint efforts following the 2011 tsunami. Real-time NAVOCEANO output from regional prediction systems off Southern California and around Hawaii, currently available on the NCEP ftp server, are scheduled for archival on the developmental OceanNOMADS by late 2011 along with the next generation Navy/NOAA global ocean prediction output. Accession and archival of additional regions is planned as server capacities increase.
Developmental mechanisms underlying variation in craniofacial disease and evolution.
Fish, Jennifer L
2016-07-15
Craniofacial disease phenotypes exhibit significant variation in penetrance and severity. Although many genetic contributions to phenotypic variation have been identified, genotype-phenotype correlations remain imprecise. Recent work in evolutionary developmental biology has exposed intriguing developmental mechanisms that potentially explain incongruities in genotype-phenotype relationships. This review focuses on two observations from work in comparative and experimental animal model systems that highlight how development structures variation. First, multiple genetic inputs converge on relatively few developmental processes. Investigation of when and how variation in developmental processes occurs may therefore help predict potential genetic interactions and phenotypic outcomes. Second, genetic mutation is typically associated with an increase in phenotypic variance. Several models outlining developmental mechanisms underlying mutational increases in phenotypic variance are discussed using Satb2-mediated variation in jaw size as an example. These data highlight development as a critical mediator of genotype-phenotype correlations. Future research in evolutionary developmental biology focusing on tissue-level processes may help elucidate the "black box" between genotype and phenotype, potentially leading to novel treatment, earlier diagnoses, and better clinical consultations for individuals affected by craniofacial anomalies. Copyright © 2015 Elsevier Inc. All rights reserved.
METHYLMERCURY IMPAIRS NEURONAL DIFFERENTIATION BY ALTERING NEUROTROPHIN SIGNALING.
In previous in vivo studies, we observed that developmental exposure to CH3Hg can alter neocortical morphology and neurotrophin signaling. Using primed PC12 cells as a model system for neuronal differentiation, we examined the hypothesis that the developmental effects of CH3Hg ma...
Fernandez-Valverde, Selene L; Aguilera, Felipe; Ramos-Díaz, René Alexander
2018-06-18
The advent of high-throughput sequencing technologies has revolutionized the way we understand the transformation of genetic information into morphological traits. Elucidating the network of interactions between genes that govern cell differentiation through development is one of the core challenges in genome research. These networks are known as developmental gene regulatory networks (dGRNs) and consist largely of the functional linkage between developmental control genes, cis-regulatory modules and differentiation genes, which generate spatially and temporally refined patterns of gene expression. Over the last 20 years, great advances have been made in determining these gene interactions mainly in classical model systems, including human, mouse, sea urchin, fruit fly, and worm. This has brought about a radical transformation in the fields of developmental biology and evolutionary biology, allowing the generation of high-resolution gene regulatory maps to analyse cell differentiation during animal development. Such maps have enabled the identification of gene regulatory circuits and have led to the development of network inference methods that can recapitulate the differentiation of specific cell-types or developmental stages. In contrast, dGRN research in non-classical model systems has been limited to the identification of developmental control genes via the candidate gene approach and the characterization of their spatiotemporal expression patterns, as well as to the discovery of cis-regulatory modules via patterns of sequence conservation and/or predicted transcription-factor binding sites. However, thanks to the continuous advances in high-throughput sequencing technologies, this scenario is rapidly changing. Here, we give a historical overview on the architecture and elucidation of the dGRNs. Subsequently, we summarize the approaches available to unravel these regulatory networks, highlighting the vast range of possibilities of integrating multiple technical advances and theoretical approaches to expand our understanding on the global of gene regulation during animal development in non-classical model systems. Such new knowledge will not only lead to greater insights into the evolution of molecular mechanisms underlying cell identity and animal body plans, but also into the evolution of morphological key innovations in animals.
Voyatzis, Sylvie; Muzerelle, Aude; Gaspar, Patricia; Nicol, Xavier
2012-01-01
Programmed cell death is widespread during the development of the central nervous system and serves multiple purposes including the establishment of neural connections. In the mouse retina a substantial reduction of retinal ganglion cells (RGCs) occurs during the first postnatal week, coinciding with the formation of retinotopic maps in the superior colliculus (SC). We previously established a retino-collicular culture preparation which recapitulates the progressive topographic ordering of RGC projections during early post-natal life. Here, we questioned whether this model could also be suitable to examine the mechanisms underlying developmental cell death of RGCs. Brn3a was used as a marker of the RGCs. A developmental decline in the number of Brn3a-immunolabelled neurons was found in the retinal explant with a timing that paralleled that observed in vivo. In contrast, the density of photoreceptors or of starburst amacrine cells increased, mimicking the evolution of these cell populations in vivo. Blockade of neural activity with tetrodotoxin increased the number of surviving Brn3a-labelled neurons in the retinal explant, as did the increase in target availability when one retinal explant was confronted with 2 or 4 collicular slices. Thus, this ex vivo model reproduces the developmental reduction of RGCs and recapitulates its regulation by neural activity and target availability. It therefore offers a simple way to analyze developmental cell death in this classic system. Using this model, we show that ephrin-A signaling does not participate to the regulation of the Brn3a population size in the retina, indicating that eprhin-A-mediated elimination of exuberant projections does not involve developmental cell death.
Tracking and Quantifying Developmental Processes in C. elegans Using Open-source Tools.
Dutta, Priyanka; Lehmann, Christina; Odedra, Devang; Singh, Deepika; Pohl, Christian
2015-12-16
Quantitatively capturing developmental processes is crucial to derive mechanistic models and key to identify and describe mutant phenotypes. Here protocols are presented for preparing embryos and adult C. elegans animals for short- and long-term time-lapse microscopy and methods for tracking and quantification of developmental processes. The methods presented are all based on C. elegans strains available from the Caenorhabditis Genetics Center and on open-source software that can be easily implemented in any laboratory independently of the microscopy system used. A reconstruction of a 3D cell-shape model using the modelling software IMOD, manual tracking of fluorescently-labeled subcellular structures using the multi-purpose image analysis program Endrov, and an analysis of cortical contractile flow using PIVlab (Time-Resolved Digital Particle Image Velocimetry Tool for MATLAB) are shown. It is discussed how these methods can also be deployed to quantitatively capture other developmental processes in different models, e.g., cell tracking and lineage tracing, tracking of vesicle flow.
Hisaki, Tomoka; Aiba Née Kaneko, Maki; Yamaguchi, Masahiko; Sasa, Hitoshi; Kouzuki, Hirokazu
2015-04-01
Use of laboratory animals for systemic toxicity testing is subject to strong ethical and regulatory constraints, but few alternatives are yet available. One possible approach to predict systemic toxicity of chemicals in the absence of experimental data is quantitative structure-activity relationship (QSAR) analysis. Here, we present QSAR models for prediction of maximum "no observed effect level" (NOEL) for repeated-dose, developmental and reproductive toxicities. NOEL values of 421 chemicals for repeated-dose toxicity, 315 for reproductive toxicity, and 156 for developmental toxicity were collected from Japan Existing Chemical Data Base (JECDB). Descriptors to predict toxicity were selected based on molecular orbital (MO) calculations, and QSAR models employing multiple independent descriptors as the input layer of an artificial neural network (ANN) were constructed to predict NOEL values. Robustness of the models was indicated by the root-mean-square (RMS) errors after 10-fold cross-validation (0.529 for repeated-dose, 0.508 for reproductive, and 0.558 for developmental toxicity). Evaluation of the models in terms of the percentages of predicted NOELs falling within factors of 2, 5 and 10 of the in-vivo-determined NOELs suggested that the model is applicable to both general chemicals and the subset of chemicals listed in International Nomenclature of Cosmetic Ingredients (INCI). Our results indicate that ANN models using in silico parameters have useful predictive performance, and should contribute to integrated risk assessment of systemic toxicity using a weight-of-evidence approach. Availability of predicted NOELs will allow calculation of the margin of safety, as recommended by the Scientific Committee on Consumer Safety (SCCS).
Wallace, Rodrick
2018-06-01
Cognition in living entities-and their social groupings or institutional artifacts-is necessarily as complicated as their embedding environments, which, for humans, includes a particularly rich cultural milieu. The asymptotic limit theorems of information and control theories permit construction of a new class of empirical 'regression-like' statistical models for cognitive developmental processes, their dynamics, and modes of dysfunction. Such models may, as have their simpler analogs, prove useful in the study and re-mediation of cognitive failure at and across the scales and levels of organization that constitute and drive the phenomena of life. These new models particularly focus on the roles of sociocultural environment and stress, in a large sense, as both trigger for the failure of the regulation of bio-cognition and as 'riverbanks' determining the channels of pathology, with implications across life-course developmental trajectories. We examine the effects of an embedding cultural milieu and its socioeconomic implementations using the 'lenses' of metabolic optimization, control system theory, and an extension of symmetry-breaking appropriate to information systems. A central implication is that most, if not all, human developmental disorders are fundamentally culture-bound syndromes. This has deep implications for both individual treatment and public health policy.
A hierarchical model of the evolution of human brain specializations
Barrett, H. Clark
2012-01-01
The study of information-processing adaptations in the brain is controversial, in part because of disputes about the form such adaptations might take. Many psychologists assume that adaptations come in two kinds, specialized and general-purpose. Specialized mechanisms are typically thought of as innate, domain-specific, and isolated from other brain systems, whereas generalized mechanisms are developmentally plastic, domain-general, and interactive. However, if brain mechanisms evolve through processes of descent with modification, they are likely to be heterogeneous, rather than coming in just two kinds. They are likely to be hierarchically organized, with some design features widely shared across brain systems and others specific to particular processes. Also, they are likely to be largely developmentally plastic and interactive with other brain systems, rather than canalized and isolated. This article presents a hierarchical model of brain specialization, reviewing evidence for the model from evolutionary developmental biology, genetics, brain mapping, and comparative studies. Implications for the search for uniquely human traits are discussed, along with ways in which conventional views of modularity in psychology may need to be revised. PMID:22723350
ERIC Educational Resources Information Center
Lerner, Richard M.; Wang, Jun; Chase, Paul A.; Gutierrez, Akira S.; Harris, Elise M.; Rubin, Rachel O.; Yalin, Ceren
2014-01-01
In contemporary developmental science, relational development systems models have been used to frame the positive youth development (PYD) perspective, which posits that youth will thrive when there is alignment between their strengths and ecological resources in their context. Evidence from the 4-H Study of PYD indicates that out-of-school-time…
Current Approaches to Intervention in Children with Developmental Coordination Disorder
ERIC Educational Resources Information Center
Sugden, David
2007-01-01
This review analyzes approaches to intervention in children with developmental coordination disorder within the framework of how children develop and learn motor skills, drawing upon maturational, cognitive, and dynamic systems models. The approaches to intervention are divided into two categories: (1) process or deficit-oriented approaches; and…
Work Values System Development during Adolescence
ERIC Educational Resources Information Center
Porfeli, Erik J.
2007-01-01
Work values stability, change, and development can be appreciably reduced to a living system model [Ford, D. H. (1994). "Humans as self-constructing living systems: A developmental perspective on behavior and personality" (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates]. This theoretical model includes discrepancy-reducing and…
Developmental palaeobiology of trilobite eyes and its evolutionary significance
NASA Astrophysics Data System (ADS)
Thomas, A. T.
2005-06-01
Understanding of the calcified composite eyes of trilobites, the oldest preserved visual system, has advanced greatly in recent decades. Three types of trilobite eye occur, the more derived abathochroal and schizochroal types having evolved neotenically from holochroal eyes. Comparative morphology and phylogenetic considerations suggest that all three eye-types were underlain by common developmental systems. So far, understanding of these systems has been based entirely on morphological data from fossils, particularly the way the visual surface grew and the patterning of lens emplacement. Lenses characteristically form a hexagonal array comprising horizontal rows and, conspicuously in schizochroal eyes, dorso-ventral files. Because individual trilobites sometimes have eyes with different numbers of files, file number must reflect the operation of a developmental programme rather than being under immediate genetic control. An empirical developmental model has been devised to describe trilobite eye development, with separate rules dealing with the initiation of lens emplacement, growth and differentiation of the visual surface, and the termination of lens emplacement. Rarely, trilobites may have visual surfaces of normal size, but which lack lenses. This confirms that visual surface growth must have been regulated separately from lens emplacement, and is a feature that cannot be accounted for by the existing developmental model. Such a developmental separation is one of a number of similarities shared with Drosophila, the modern arthropod in which eye development is best understood. Many aspects of eye development are conserved in the Euarthropoda, and in bilaterian metazoans in general. A revised model for trilobite eye development is proposed using extant phylogenetic bracketing, interpreting morphological data from the fossils in the context of the hierarchy of developmental controls now becoming known from living animals. This new model suggests that overall eye shape and size did not require differential growth of the generative zone, as previously thought, and that no separate instruction was needed to specify the termination of lens emplacement. Instead, these features were regulated directly, by controlling the proliferation of cells making up the nascent visual surface. A process documented from Drosophila, which involves the selective inhibition of cells in front of a wave-like front of differentiation, and that is regulated by widely conserved genes, can be used to explain how the trilobite visual surface became differentiated. The model implies also that changes in hormonally regulated developmental pathways known from recent arthropods may have been responsible for the development of abathochroal and schizochroal eyes, and for heterochronic secondary eye reduction and blindness in trilobites.
Hoelting, Lisa; Scheinhardt, Benjamin; Bondarenko, Olesja; Schildknecht, Stefan; Kapitza, Marion; Tanavde, Vivek; Tan, Betty; Lee, Qian Yi; Mecking, Stefan; Leist, Marcel; Kadereit, Suzanne
2013-04-01
Nanoparticles (NPs) have been shown to accumulate in organs, cross the blood-brain barrier and placenta, and have the potential to elicit developmental neurotoxicity (DNT). Here, we developed a human embryonic stem cell (hESC)-derived 3-dimensional (3-D) in vitro model that allows for testing of potential developmental neurotoxicants. Early central nervous system PAX6(+) precursor cells were generated from hESCs and differentiated further within 3-D structures. The 3-D model was characterized for neural marker expression revealing robust differentiation toward neuronal precursor cells, and gene expression profiling suggested a predominantly forebrain-like development. Altered neural gene expression due to exposure to non-cytotoxic concentrations of the known developmental neurotoxicant, methylmercury, indicated that the 3-D model could detect DNT. To test for specific toxicity of NPs, chemically inert polyethylene NPs (PE-NPs) were chosen. They penetrated deep into the 3-D structures and impacted gene expression at non-cytotoxic concentrations. NOTCH pathway genes such as HES5 and NOTCH1 were reduced in expression, as well as downstream neuronal precursor genes such as NEUROD1 and ASCL1. FOXG1, a patterning marker, was also reduced. As loss of function of these genes results in severe nervous system impairments in mice, our data suggest that the 3-D hESC-derived model could be used to test for Nano-DNT.
Thoughts About Created Environment: A Neuman Systems Model Concept.
Verberk, Frans; Fawcett, Jacqueline
2017-04-01
This essay is about the Neuman systems model concept of the created environment. The essay, based on work by Frans Verberk, a Neuman systems model scholar from the Netherlands, extends understanding of the created environment by explaining how this distinctive perspective of environment represents an elaboration of the physiological, psychological, sociocultural, developmental, and spiritual variables, which are other central concepts of the Neuman Systems Model.
Yan, Chao; Zhou, Hui; Wei, Wei; Wang, Yi-Ji; Cui, Lixian; Chan, Raymond C K; Deng, Ci-Ping
2018-06-22
We conducted a 4-year longitudinal study to investigate trajectories of attention in a sample of 145 Chinese children. The Test of Everyday Attention was administered and latent growth modeling was used to capture developmental trajectories. We found that children's selective attention showed a linear increase, whereas attentional control and sustained attention increased rapidly then slowed down over 4 years. There was no significant correlation between the slopes of growth model for any subsystems. Girls showed higher initial levels of selective attention than boys, but no difference in growth rate. These findings support different developmental patterns in the attention network systems.
Modelling and Optimizing Mathematics Learning in Children
ERIC Educational Resources Information Center
Käser, Tanja; Busetto, Alberto Giovanni; Solenthaler, Barbara; Baschera, Gian-Marco; Kohn, Juliane; Kucian, Karin; von Aster, Michael; Gross, Markus
2013-01-01
This study introduces a student model and control algorithm, optimizing mathematics learning in children. The adaptive system is integrated into a computer-based training system for enhancing numerical cognition aimed at children with developmental dyscalculia or difficulties in learning mathematics. The student model consists of a dynamic…
Predictive Models of Cognitive Outcomes of Developmental Insults
NASA Astrophysics Data System (ADS)
Chan, Yupo; Bouaynaya, Nidhal; Chowdhury, Parimal; Leszczynska, Danuta; Patterson, Tucker A.; Tarasenko, Olga
2010-04-01
Representatives of Arkansas medical, research and educational institutions have gathered over the past four years to discuss the relationship between functional developmental perturbations and their neurological consequences. We wish to track the effect on the nervous system by developmental perturbations over time and across species. Except for perturbations, the sequence of events that occur during neural development was found to be remarkably conserved across mammalian species. The tracking includes consequences on anatomical regions and behavioral changes. The ultimate goal is to develop a predictive model of long-term genotypic and phenotypic outcomes that includes developmental insults. Such a model can subsequently be fostered into an educated intervention for therapeutic purposes. Several datasets were identified to test plausible hypotheses, ranging from evoked potential datasets to sleep-disorder datasets. An initial model may be mathematical and conceptual. However, we expect to see rapid progress as large-scale gene expression studies in the mammalian brain permit genome-wide searches to discover genes that are uniquely expressed in brain circuits and regions. These genes ultimately control behavior. By using a validated model we endeavor to make useful predictions.
Testing the inhibitory cascade model in Mesozoic and Cenozoic mammaliaforms
2013-01-01
Background Much of the current research in the growing field of evolutionary development concerns relating developmental pathways to large-scale patterns of morphological evolution, with developmental constraints on variation, and hence diversity, a field of particular interest. Tooth morphology offers an excellent model system for such ‘evo-devo’ studies, because teeth are well preserved in the fossil record, and are commonly used in phylogenetic analyses and as ecological proxies. Moreover, tooth development is relatively well studied, and has provided several testable hypotheses of developmental influences on macroevolutionary patterns. The recently-described Inhibitory Cascade (IC) Model provides just such a hypothesis for mammalian lower molar evolution. Derived from experimental data, the IC Model suggests that a balance between mesenchymal activators and molar-derived inhibitors determines the size of the immediately posterior molar, predicting firstly that molars either decrease in size along the tooth row, or increase in size, or are all of equal size, and secondly that the second lower molar should occupy one third of lower molar area. Here, we tested the IC Model in a large selection of taxa from diverse extant and fossil mammalian groups, ranging from the Middle Jurassic (~176 to 161 Ma) to the Recent. Results Results show that most taxa (~65%) fell within the predicted areas of the Inhibitory Cascade Model. However, members of several extinct groups fell into the regions where m2 was largest, or rarely, smallest, including the majority of the polyphyletic “condylarths”. Most Mesozoic mammals fell near the centre of the space with equality of size in all three molars. The distribution of taxa was significantly clustered by diet and by phylogenetic group. Conclusions Overall, the IC Model was supported as a plesiomorphic developmental system for Mammalia, suggesting that mammal tooth size has been subjected to this developmental constraint at least since the divergence of australosphenidans and boreosphenidans approximately 180 Ma. Although exceptions exist, including many ‘condylarths’, these are most likely to be secondarily derived states, rather than alternative ancestral developmental models for Mammalia. PMID:23565593
Zoupa, Maria; Machera, Kyriaki
2017-01-01
Triadimefon is a widely used triazole fungicide known to cause severe developmental defects in several model organisms and in humans. The present study evaluated in detail the developmental effects seen in zebrafish embryos exposed to triadimefon, confirmed and expanded upon previous phenotypic findings and compared them to those observed in other traditional animal models. In order to do this, we exposed embryos to 2 and 4 µg/mL triadimefon and evaluated growth until 120 h post-fertilization (hpf) through gross morphology examination. Our analysis revealed significant developmental defects at the highest tested concentration including somite deformities, severe craniofacial defects, a cleft phenotype along the three primary neural divisions, a rigorously hypoplastic or even absent mandible and a hypoplastic morphology of the pharyngeal arches. Interestingly, massive pericardial edemas, abnormal shaped hearts, brachycardia and inhibited or absent blood circulation were also observed. Our results revealed that the presented zebrafish phenotypes are comparable to those seen in other organism models and those derived from human observations as a result of triadimefon exposure. We therefore demonstrated that zebrafish provide an excellent system for study of compounds with toxic significance and can be used as an alternative model for developmental toxicity studies to predict effects in mammals. PMID:28417904
Neuronal pathway finding: from neurons to initial neural networks.
Roscigno, Cecelia I
2004-10-01
Neuronal pathway finding is crucial for structured cellular organization and development of neural circuits within the nervous system. Neuronal pathway finding within the visual system has been extensively studied and therefore is used as a model to review existing knowledge regarding concepts of this developmental process. General principles of neuron pathway finding throughout the nervous system exist. Comprehension of these concepts guides neuroscience nurses in gaining an understanding of the developmental course of action, the implications of different anomalies, as well as the theoretical basis and nursing implications of some provocative new therapies being proposed to treat neurodegenerative diseases and neurologic injuries. These therapies have limitations in light of current ethical, developmental, and delivery modes and what is known about the development of neuronal pathways.
[Modeling developmental aspects of sensorimotor control of speech production].
Kröger, B J; Birkholz, P; Neuschaefer-Rube, C
2007-05-01
Detailed knowledge of the neurophysiology of speech acquisition is important for understanding the developmental aspects of speech perception and production and for understanding developmental disorders of speech perception and production. A computer implemented neural model of sensorimotor control of speech production was developed. The model is capable of demonstrating the neural functions of different cortical areas during speech production in detail. (i) Two sensory and two motor maps or neural representations and the appertaining neural mappings or projections establish the sensorimotor feedback control system. These maps and mappings are already formed and trained during the prelinguistic phase of speech acquisition. (ii) The feedforward sensorimotor control system comprises the lexical map (representations of sounds, syllables, and words of the first language) and the mappings from lexical to sensory and to motor maps. The training of the appertaining mappings form the linguistic phase of speech acquisition. (iii) Three prelinguistic learning phases--i. e. silent mouthing, quasi stationary vocalic articulation, and realisation of articulatory protogestures--can be defined on the basis of our simulation studies using the computational neural model. These learning phases can be associated with temporal phases of prelinguistic speech acquisition obtained from natural data. The neural model illuminates the detailed function of specific cortical areas during speech production. In particular it can be shown that developmental disorders of speech production may result from a delayed or incorrect process within one of the prelinguistic learning phases defined by the neural model.
The Intersection of Theory and Application in Elucidating Pattern Formation in Developmental Biology
Othmer, Hans G.; Painter, Kevin; Umulis, David; Xue, Chuan
2009-01-01
We discuss theoretical and experimental approaches to three distinct developmental systems that illustrate how theory can influence experimental work and vice-versa. The chosen systems – Drosophila melanogaster, bacterial pattern formation, and pigmentation patterns – illustrate the fundamental physical processes of signaling, growth and cell division, and cell movement involved in pattern formation and development. These systems exemplify the current state of theoretical and experimental understanding of how these processes produce the observed patterns, and illustrate how theoretical and experimental approaches can interact to lead to a better understanding of development. As John Bonner said long ago ‘We have arrived at the stage where models are useful to suggest experiments, and the facts of the experiments in turn lead to new and improved models that suggest new experiments. By this rocking back and forth between the reality of experimental facts and the dream world of hypotheses, we can move slowly toward a satisfactory solution of the major problems of developmental biology.’ PMID:19844610
Are we there yet? Tracking the development of new model systems
A. Abzhanov; C. Extavour; A. Groover; S. Hodges; H. Hoekstra; E. Kramer; A. Monteiro
2008-01-01
It is increasingly clear that additional âmodelâ systems are needed to elucidate the genetic and developmental basis of organismal diversity. Whereas model system development previously required enormous investment, recent advances including the decreasing cost of DNA sequencing and the power of reverse genetics to study gene function are greatly facilitating...
Virtual Tissues and Developmental Systems Biology (book chapter)
Virtual tissue (VT) models provide an in silico environment to simulate cross-scale properties in specific tissues or organs based on knowledge of the underlying biological networks. These integrative models capture the fundamental interactions in a biological system and enable ...
Rediscovering the chick embryo as a model to study retinal development
2012-01-01
The embryonic chick occupies a privileged place among animal models used in developmental studies. Its rapid development and accessibility for visualization and experimental manipulation are just some of the characteristics that have made it a vertebrate model of choice for more than two millennia. Until a few years ago, the inability to perform genetic manipulations constituted a major drawback of this system. However, the completion of the chicken genome project and the development of techniques to manipulate gene expression have allowed this classic animal model to enter the molecular age. Such techniques, combined with the embryological manipulations that this system is well known for, provide a unique toolkit to study the genetic basis of neural development. A major advantage of these approaches is that they permit targeted gene misexpression with extremely high spatiotemporal resolution and over a large range of developmental stages, allowing functional analysis at a level, speed and ease that is difficult to achieve in other systems. This article provides a general overview of the chick as a developmental model focusing more specifically on its application to the study of eye development. Special emphasis is given to the state of the art of the techniques that have made gene gain- and loss-of-function studies in this model a reality. In addition, we discuss some methodological considerations derived from our own experience that we believe will be beneficial to researchers working with this system. PMID:22738172
Reinforcement Learning in Young Adults with Developmental Language Impairment
ERIC Educational Resources Information Center
Lee, Joanna C.; Tomblin, J. Bruce
2012-01-01
The aim of the study was to examine reinforcement learning (RL) in young adults with developmental language impairment (DLI) within the context of a neurocomputational model of the basal ganglia-dopamine system (Frank, Seeberger, & O'Reilly, 2004). Two groups of young adults, one with DLI and the other without, were recruited. A probabilistic…
A developmental approach to learning causal models for cyber security
NASA Astrophysics Data System (ADS)
Mugan, Jonathan
2013-05-01
To keep pace with our adversaries, we must expand the scope of machine learning and reasoning to address the breadth of possible attacks. One approach is to employ an algorithm to learn a set of causal models that describes the entire cyber network and each host end node. Such a learning algorithm would run continuously on the system and monitor activity in real time. With a set of causal models, the algorithm could anticipate novel attacks, take actions to thwart them, and predict the second-order effects flood of information, and the algorithm would have to determine which streams of that flood were relevant in which situations. This paper will present the results of efforts toward the application of a developmental learning algorithm to the problem of cyber security. The algorithm is modeled on the principles of human developmental learning and is designed to allow an agent to learn about the computer system in which it resides through active exploration. Children are flexible learners who acquire knowledge by actively exploring their environment and making predictions about what they will find,1, 2 and our algorithm is inspired by the work of the developmental psychologist Jean Piaget.3 Piaget described how children construct knowledge in stages and learn new concepts on top of those they already know. Developmental learning allows our algorithm to focus on subsets of the environment that are most helpful for learning given its current knowledge. In experiments, the algorithm was able to learn the conditions for file exfiltration and use that knowledge to protect sensitive files.
[Contemporary cognitive theories about developmental dyscalculia].
Castro-Cañizares, D; Estévez-Pérez, N; Reigosa-Crespo, V
To analyze the current theories describing the cognitive mechanisms underlying developmental dyscalculia. The four most researched hypotheses concerning the cognitive deficits related to developmental dyscalculia, as well as experimental evidences supporting or refusing them are presented. The first hypothesis states that developmental dyscalculia is consequence of domain general cognitive deficits. The second hypothesis suggests that it is due to a failure in the development of specialized brain systems dedicated to numerosity processing. The third hypothesis asserts the disorder is caused by a deficit in accessing quantity representation through numerical symbols. The last hypothesis states developmental dyscalculia appears as a consequence of impairments in a generalized magnitude system dedicated to the processing of continuous and discrete magnitudes. None of the hypotheses has been proven more plausible than the rest. Relevant issues rose by them need to be revisited and answered in the light of new experimental designs. In the last years the understanding of cognitive disorders involved in developmental dyscalculia has remarkably increased, but it is nonetheless insufficient. Additional research is required in order to achieve a comprehensive cognitive model of numerical processing development and its disorders. This will improve the diagnostic precision and the effectiveness of developmental dyscalculia intervention strategies.
A Drosophila model for fetal alcohol syndrome disorders: role for the insulin pathway
McClure, Kimberly D.; French, Rachael L.; Heberlein, Ulrike
2011-01-01
SUMMARY Prenatal exposure to ethanol in humans results in a wide range of developmental abnormalities, including growth deficiency, developmental delay, reduced brain size, permanent neurobehavioral abnormalities and fetal death. Here we describe the use of Drosophila melanogaster as a model for exploring the effects of ethanol exposure on development and behavior. We show that developmental ethanol exposure causes reduced viability, developmental delay and reduced adult body size. We find that flies reared on ethanol-containing food have smaller brains and imaginal discs, which is due to reduced cell division rather than increased apoptosis. Additionally, we show that, as in mammals, flies reared on ethanol have altered responses to ethanol vapor exposure as adults, including increased locomotor activation, resistance to the sedating effects of the drug and reduced tolerance development upon repeated ethanol exposure. We have found that the developmental and behavioral defects are largely due to the effects of ethanol on insulin signaling; specifically, a reduction in Drosophila insulin-like peptide (Dilp) and insulin receptor expression. Transgenic expression of Dilp proteins in the larval brain suppressed both the developmental and behavioral abnormalities displayed by ethanol-reared adult flies. Our results thus establish Drosophila as a useful model system to uncover the complex etiology of fetal alcohol syndrome. PMID:21303840
Representing Ontogeny Through Ontology: A Developmental Biologist’s Guide to The Gene Ontology
Hill, David P.; Berardini, Tanya Z.; Howe, Douglas G.; Van Auken, Kimberly M.
2010-01-01
Developmental biology, like many other areas of biology, has undergone a dramatic shift in the perspective from which developmental processes are viewed. Instead of focusing on the actions of a handful of genes or functional RNAs, we now consider the interactions of large functional gene networks and study how these complex systems orchestrate the unfolding of an organism, from gametes to adult. Developmental biologists are beginning to realize that understanding ontogeny on this scale requires the utilization of computational methods to capture, store and represent the knowledge we have about the underlying processes. Here we review the use of the Gene Ontology (GO) to study developmental biology. We describe the organization and structure of the GO and illustrate some of the ways we use it to capture the current understanding of many common developmental processes. We also discuss ways in which gene product annotations using the GO have been used to ask and answer developmental questions in a variety of model developmental systems. We provide suggestions as to how the GO might be used in more powerful ways to address questions about development. Our goal is to provide developmental biologists with enough background about the GO that they can begin to think about how they might use the ontology efficiently and in the most powerful ways possible. PMID:19921742
Zhu, Shaoyu; Eclarinal, Jesse; Baker, Maria S; Li, Ge; Waterland, Robert A
2016-02-01
Extensive human and animal model data show that environmental influences during critical periods of prenatal and early postnatal development can cause persistent alterations in energy balance regulation. Although a potentially important factor in the worldwide obesity epidemic, the fundamental mechanisms underlying such developmental programming of energy balance are poorly understood, limiting our ability to intervene. Most studies of developmental programming of energy balance have focused on persistent alterations in the regulation of energy intake; energy expenditure has been relatively underemphasised. In particular, very few studies have evaluated developmental programming of physical activity. The aim of this review is to summarise recent evidence that early environment may have a profound impact on establishment of individual propensity for physical activity. Recently, we characterised two different mouse models of developmental programming of obesity; one models fetal growth restriction followed by catch-up growth, and the other models early postnatal overnutrition. In both studies, we observed alterations in body-weight regulation that persisted to adulthood, but no group differences in food intake. Rather, in both cases, programming of energy balance appeared to be due to persistent alterations in energy expenditure and spontaneous physical activity (SPA). These effects were stronger in female offspring. We are currently exploring the hypothesis that developmental programming of SPA occurs via induced sex-specific alterations in epigenetic regulation in the hypothalamus and other regions of the central nervous system. We will summarise the current progress towards testing this hypothesis. Early environmental influences on establishment of physical activity are likely an important factor in developmental programming of energy balance. Understanding the fundamental underlying mechanisms in appropriate animal models will help determine whether early life interventions may be a practical approach to promote physical activity in man.
A discrete model of Drosophila eggshell patterning reveals cell-autonomous and juxtacrine effects.
Fauré, Adrien; Vreede, Barbara M I; Sucena, Elio; Chaouiya, Claudine
2014-03-01
The Drosophila eggshell constitutes a remarkable system for the study of epithelial patterning, both experimentally and through computational modeling. Dorsal eggshell appendages arise from specific regions in the anterior follicular epithelium that covers the oocyte: two groups of cells expressing broad (roof cells) bordered by rhomboid expressing cells (floor cells). Despite the large number of genes known to participate in defining these domains and the important modeling efforts put into this developmental system, key patterning events still lack a proper mechanistic understanding and/or genetic basis, and the literature appears to conflict on some crucial points. We tackle these issues with an original, discrete framework that considers single-cell models that are integrated to construct epithelial models. We first build a phenomenological model that reproduces wild type follicular epithelial patterns, confirming EGF and BMP signaling input as sufficient to establish the major features of this patterning system within the anterior domain. Importantly, this simple model predicts an instructive juxtacrine signal linking the roof and floor domains. To explore this prediction, we define a mechanistic model that integrates the combined effects of cellular genetic networks, cell communication and network adjustment through developmental events. Moreover, we focus on the anterior competence region, and postulate that early BMP signaling participates with early EGF signaling in its specification. This model accurately simulates wild type pattern formation and is able to reproduce, with unprecedented level of precision and completeness, various published gain-of-function and loss-of-function experiments, including perturbations of the BMP pathway previously seen as conflicting results. The result is a coherent model built upon rules that may be generalized to other epithelia and developmental systems.
Predictive computation of genomic logic processing functions in embryonic development
Peter, Isabelle S.; Faure, Emmanuel; Davidson, Eric H.
2012-01-01
Gene regulatory networks (GRNs) control the dynamic spatial patterns of regulatory gene expression in development. Thus, in principle, GRN models may provide system-level, causal explanations of developmental process. To test this assertion, we have transformed a relatively well-established GRN model into a predictive, dynamic Boolean computational model. This Boolean model computes spatial and temporal gene expression according to the regulatory logic and gene interactions specified in a GRN model for embryonic development in the sea urchin. Additional information input into the model included the progressive embryonic geometry and gene expression kinetics. The resulting model predicted gene expression patterns for a large number of individual regulatory genes each hour up to gastrulation (30 h) in four different spatial domains of the embryo. Direct comparison with experimental observations showed that the model predictively computed these patterns with remarkable spatial and temporal accuracy. In addition, we used this model to carry out in silico perturbations of regulatory functions and of embryonic spatial organization. The model computationally reproduced the altered developmental functions observed experimentally. Two major conclusions are that the starting GRN model contains sufficiently complete regulatory information to permit explanation of a complex developmental process of gene expression solely in terms of genomic regulatory code, and that the Boolean model provides a tool with which to test in silico regulatory circuitry and developmental perturbations. PMID:22927416
Computer Simulation of Embryonic Systems: What can a ...
(1) Standard practice for assessing developmental toxicity is the observation of apical endpoints (intrauterine death, fetal growth retardation, structural malformations) in pregnant rats/rabbits following exposure during organogenesis. EPA’s computational toxicology research program (ToxCast) generated vast in vitro cellular and molecular effects data on >1858 chemicals in >600 high-throughput screening (HTS) assays. The diversity of assays has been increased for developmental toxicity with several HTS platforms, including the devTOX-quickPredict assay from Stemina Biomarker Discovery utilizing the human embryonic stem cell line (H9). Translating these HTS data into higher order-predictions of developmental toxicity is a significant challenge. Here, we address the application of computational systems models that recapitulate the kinematics of dynamical cell signaling networks (e.g., SHH, FGF, BMP, retinoids) in a CompuCell3D.org modeling environment. Examples include angiogenesis (angiodysplasia) and dysmorphogenesis. Being numerically responsive to perturbation, these models are amenable to data integration for systems Toxicology and Adverse Outcome Pathways (AOPs). The AOP simulation outputs predict potential phenotypes based on the in vitro HTS data ToxCast. A heuristic computational intelligence framework that recapitulates the kinematics of dynamical cell signaling networks in the embryo, together with the in vitro profiling data, produce quantitative pr
Developmental neurogenetics and neuro-ophthalmology.
Bennett, Jeffrey L
2002-12-01
The field of developmental neurogenetics has burgeoned over the past decade. Through the combined efforts of developmental biologists, geneticists, and clinicians, genetic defects resulting in neuro-ophthalmic disorders such as holoprosencephaly, microphthalmia, dominant optic atrophy, and optic nerve colobomas have been identified and characterized at the molecular level. Experimental studies in model organisms are continuing to identify novel genes critical for ocular and central nervous system development. Mutations in some of these genes have revealed a spectrum of pathology similar to that observed in septo-optic dysplasia, Möebius syndrome, and Duane retraction syndrome. This review examines our current knowledge of the molecular genetics of neuro-ophthalmic disease and focuses on several candidate genes for afferent and efferent visual system disorders.
A Model Plant for a Biology Curriculum: Spider Flower ("Cleome Hasslerana L.")
ERIC Educational Resources Information Center
Marquard, Robert D.; Steinback, Rebecca
2009-01-01
Major advances in fundamental science are developed using model systems. Classic examples of model systems include Mendel's work with the common garden pea ("Pisium sativa"), classic inheritance work by Morgan with the fruit fly ("Drosophila"), developmental studies with the nematode ("C. elegans"), and transposable elements in maize ("Zea…
Understanding of Relation Structures of Graphical Models by Lower Secondary Students
ERIC Educational Resources Information Center
van Buuren, Onne; Heck, André; Ellermeijer, Ton
2016-01-01
A learning path has been developed on system dynamical graphical modelling, integrated into the Dutch lower secondary physics curriculum. As part of the developmental research for this learning path, students' understanding of the relation structures shown in the diagrams of graphical system dynamics based models has been investigated. One of our…
Evolution and development in cave animals: from fish to crustaceans.
Protas, Meredith; Jeffery, William R
2012-01-01
Cave animals are excellent models to study the general principles of evolution as well as the mechanisms of adaptation to a novel environment: the perpetual darkness of caves. In this article, two of the major model systems used to study the evolution and development (evo-devo) of cave animals are described: the teleost fish Astyanax mexicanus and the isopod crustacean Asellus aquaticus. The ways in which these animals match the major attributes expected of an evo-devo cave animal model system are described. For both species, we enumerate the regressive and constructive troglomorphic traits that have evolved during their adaptation to cave life, the developmental and genetic basis of these traits, the possible evolutionary forces responsible for them, and potential new areas in which these model systems could be used for further exploration of the evolution of cave animals. Furthermore, we compare the two model cave animals to investigate the mechanisms of troglomorphic evolution. Finally, we propose a few other cave animal systems that would be suitable for development as additional models to obtain a more comprehensive understanding of the developmental and genetic mechanisms involved in troglomorphic evolution.
ERIC Educational Resources Information Center
Blair, Clancy
2010-01-01
The relation of stress hormones and activity in stress response systems to the development of aspects of cognition and behavior important for educational achievement and attainment is examined from the perspective of the developmental psychobiological model. It is proposed that research in neuroendocrinology supports three general conclusions,…
ERIC Educational Resources Information Center
Burke, Shanna L.; Bresnahan, Tammy; Li, Tan; Epnere, Katrina; Rizzo, Albert; Partin, Mary; Ahlness, Robert M.; Trimmer, Matthew
2018-01-01
Conversational virtual human (VH) agents are increasingly used to support role-play experiential learning. This project examined whether a Virtual Interactive Training Agent (ViTA) system would improve job interviewing skills in individuals with autism and developmental disabilities (N = 32). A linear mixed model was employed to evaluate adjusted…
A School Improvement Model for Motivating Adolescents to Achieve Success in Middle School
ERIC Educational Resources Information Center
Hutchinson, Stuart R.
2012-01-01
Effectively addressing the unique developmental and academic needs of adolescents is a challenge that educators have been grappling with since the mid-1960's when school systems began to convert junior high schools into middle schools. While educators have recognized the need to create developmentally responsive schools that help children to form…
Zhang, Cindy; Ball, Jonathan; Panzica-Kelly, Julie; Augustine-Rauch, Karen
2016-04-18
There has been increasing focus on generation and assessment of in vitro developmental toxicology models for assessing teratogenic liability of chemicals. The driver for this focus has been to find reliable in vitro assays that will reduce or replace the use of in vivo tests for assessing teratogenicity. Such efforts may be eventually applied in testing pharmaceutical agents where a developmental toxicology assay or battery of assays may be incorporated into regulatory testing to replace one of the two species currently used in teratogenic assessment. Such assays may be eventually applied in testing a broader spectrum of chemicals, supporting efforts aligned with Tox21 strategies and responding to REACH legislation. This review describes the developmental toxicology assays that are of focus in these assessments: rodent whole embryo culture, zebrafish embryo assays, and embryonic stem cell assays. Progress on assay development as well as future directions of how these assays are envisioned to be applied for broader safety testing of chemicals are discussed. Altogether, the developmental model systems described in this review provide rich biological systems that can be utilized in better understanding teratogenic mechanisms of action of chemotypes and are promising in providing proactive safety assessment related to developmental toxicity. Continual advancements in refining/optimizing these in vitro assays are anticipated to provide a robust data set to provide thoughtful assessment of how whole animal teratogenicity evaluations can be reduced/refined in the future.
Morris, Melanie; Shaw, Ariel; Lambert, Madison; Perry, Haley Halperin; Lowenstein, Eve; Valenzuela, David; Velazquez-Ulloa, Norma Andrea
2018-06-14
Pregnant women may be exposed to nicotine if they smoke or use tobacco products, nicotine replacement therapy, or via e-cigarettes. Prenatal nicotine exposure has been shown to have deleterious effects on the nervous system in mammals including changes in brain size and in the dopaminergic system. The genetic and molecular mechanisms for these changes are not well understood. A Drosophila melanogaster model for these effects of nicotine exposure could contribute to faster identification of genes and molecular pathways underlying these effects. The purpose of this study was to determine if developmental nicotine exposure affects the nervous system of Drosophila melanogaster, focusing on changes to brain size and the dopaminergic system at two developmental stages. We reared flies on control or nicotine food from egg to 3rd instar larvae or from egg to adult and determined effectiveness of the nicotine treatment. We used immunohistochemistry to visualize the whole brain and dopaminergic neurons, using tyrosine hydroxylase as the marker. We measured brain area, tyrosine hydroxylase fluorescence, and counted the number of dopaminergic neurons in brain clusters. We detected an increase in larval brain hemisphere area, a decrease in tyrosine hydroxylase fluorescence in adult central brains, and a decrease in the number of neurons in the PPM3 adult dopaminergic cluster. We tested involvement of Dα7, one of the nicotinic acetylcholine receptor subunits, and found it was involved in eclosion, as previously described, but not involved in brain size. We conclude that developmental nicotine exposure in Drosophila melanogaster affects brain size and the dopaminergic system. Prenatal nicotine exposure in mammals has also been shown to have effects on brain size and in the dopaminergic system. This study further establishes Drosophila melanogaster as model organism to study the effects of developmental nicotine exposure. The genetic and molecular tools available for Drosophila research will allow elucidation of the mechanisms underlying the effects of nicotine exposure during development.
Grounding language in action and perception: From cognitive agents to humanoid robots
NASA Astrophysics Data System (ADS)
Cangelosi, Angelo
2010-06-01
In this review we concentrate on a grounded approach to the modeling of cognition through the methodologies of cognitive agents and developmental robotics. This work will focus on the modeling of the evolutionary and developmental acquisition of linguistic capabilities based on the principles of symbol grounding. We review cognitive agent and developmental robotics models of the grounding of language to demonstrate their consistency with the empirical and theoretical evidence on language grounding and embodiment, and to reveal the benefits of such an approach in the design of linguistic capabilities in cognitive robotic agents. In particular, three different models will be discussed, where the complexity of the agent's sensorimotor and cognitive system gradually increases: from a multi-agent simulation of language evolution, to a simulated robotic agent model for symbol grounding transfer, to a model of language comprehension in the humanoid robot iCub. The review also discusses the benefits of the use of humanoid robotic platform, and specifically of the open source iCub platform, for the study of embodied cognition.
A manipulator arm for zero-g simulations
NASA Technical Reports Server (NTRS)
Brodie, S. B.; Grant, C.; Lazar, J. J.
1975-01-01
A 12-ft counterbalanced Slave Manipulator Arm (SMA) was designed and fabricated to be used for resolving the questions of operational applications, capabilities, and limitations for such remote manned systems as the Payload Deployment and Retrieval Mechanism (PDRM) for the shuttle, the Free-Flying Teleoperator System, the Advanced Space Tug, and Planetary Rovers. As a developmental tool for the shuttle manipulator system (or PDRM), the SMA represents an approximate one-quarter scale working model for simulating and demonstrating payload handling, docking assistance, and satellite servicing. For the Free-Flying Teleoperator System and the Advanced Tug, the SMA provides a near full-scale developmental tool for satellite servicing, docking, and deployment/retrieval procedures, techniques, and support equipment requirements. For the Planetary Rovers, it provides an oversize developmental tool for sample handling and soil mechanics investigations. The design of the SMA was based on concepts developed for a 40-ft NASA technology arm to be used for zero-g shuttle manipulator simulations.
Rice, Simon; Halperin, Stephen; Blaikie, Simon; Monson, Katherine; Stefaniak, Rachel; Phelan, Mark; Davey, Christopher
2018-04-01
Although models of family intervention are clearly articulated in the child and early adolescent literature, there is less clarity regarding family intervention approaches in later adolescence and emerging adulthood. This study provides the rationale and intervention framework for a developmentally sensitive model of time-limited family work in the outpatient treatment of complex youth depression (15-25 years). Derived from current practice in the Youth Mood Clinic (YMC) at Orygen Youth Health, Melbourne, a stepped model of family intervention is discussed. YMC aims to provide comprehensive orientation, assessment and education to all families. For some, a family-based intervention, delivered either by the treating team or through the integration of a specialist family worker, offers an important adjunct in supporting the recovery of the young person. Developmental phases and challenges experienced by the young person with respect to family/caregiver involvement are discussed in the context of two case studies. A developmentally sensitive model is presented with particular attention to the developmental needs and preferences of young people. Formal evaluation of this model is required. Evaluation perspectives should include young people, caregivers, the broader family system (i.e. siblings) and the treating team (i.e. case manager, doctor and family worker) incorporating outcome measurement. Such work determines how best to apply a time-limited family-based intervention approach in strengthening family/caregiver relationships as part of the young person's recovery from severe and complex depression. © 2016 John Wiley & Sons Australia, Ltd.
From Mice to Men: research models of developmental programming
Rabadán-Diehl, C.; Nathanielsz, P.
2012-01-01
Developmental programming can be defined as a response to a specific challenge to the mammalian organism during a critical developmental time window that alters the trajectory of development with persistent effects on offspring phenotype and predisposition to future illness. We focus on the need for studies in relevant, well-characterized animal models in the context of recent research discoveries on the challenges, mechanisms and outcomes of developmental programming. We discuss commonalities and differences in general principles of developmental programming as they apply to several species, including humans. The consequences of these differences are discussed. Obesity, metabolic disorders and cardiovascular diseases are associated with the highest percentage of morbidity and mortality worldwide. Although many of the causes are associated with lifestyle, high-energy diets and lack of physical activity, recent evidence has linked developmental programming to the epidemic of metabolic diseases. A better understanding of comparative systems physiology of mother, fetus and neonate using information provided by rapid advances in molecular biology has the potential to improve the lifetime health of future generations by providing better women’s health, diagnostic tools and preventative and therapeutic interventions in individuals exposed during their development to programming influences. PMID:23525085
Oxidative Stress, Unfolded Protein Response, and Apoptosis in Developmental Toxicity
Kupsco, Allison; Schlenk, Daniel
2016-01-01
Physiological development requires precise spatiotemporal regulation of cellular and molecular processes. Disruption of these key events can generate developmental toxicity in the form of teratogenesis or mortality. The mechanism behind many developmental toxicants remains unknown. While recent work has focused on the unfolded protein response (UPR), oxidative stress, and apoptosis in the pathogenesis of disease, few studies have addressed their relationship in developmental toxicity. Redox regulation, UPR, and apoptosis are essential for physiological development and can be disturbed by a variety of endogenous and exogenous toxicants to generate lethality and diverse malformations. This review examines the current knowledge of the role of oxidative stress, UPR, and apoptosis in physiological development as well as in developmental toxicity, focusing on studies and advances in vertebrates model systems. PMID:26008783
ERIC Educational Resources Information Center
Olivier, Denise H.
2016-01-01
Purpose, Scope, and Method of Study: The purpose of this study was to compare student success rates in a college developmental writing course delivered in a conventional classroom to the same course using a computer-delivered model. The sample was drawn from a small, Midwestern community college. Students were enrolled in one of three sections…
(1) Standard practice for assessing developmental toxicity is the observation of apical endpoints (intrauterine death, fetal growth retardation, structural malformations) in pregnant rats/rabbits following exposure during organogenesis. EPA’s computational toxicology research pro...
Evolving Ideas on the Origin and Evolution of Flowers: New Perspectives in the Genomic Era
Chanderbali, Andre S.; Berger, Brent A.; Howarth, Dianella G.; Soltis, Pamela S.; Soltis, Douglas E.
2016-01-01
The origin of the flower was a key innovation in the history of complex organisms, dramatically altering Earth’s biota. Advances in phylogenetics, developmental genetics, and genomics during the past 25 years have substantially advanced our understanding of the evolution of flowers, yet crucial aspects of floral evolution remain, such as the series of genetic and morphological changes that gave rise to the first flowers; the factors enabling the origin of the pentamerous eudicot flower, which characterizes ∼70% of all extant angiosperm species; and the role of gene and genome duplications in facilitating floral innovations. A key early concept was the ABC model of floral organ specification, developed by Elliott Meyerowitz and Enrico Coen and based on two model systems, Arabidopsis thaliana and Antirrhinum majus. Yet it is now clear that these model systems are highly derived species, whose molecular genetic-developmental organization must be very different from that of ancestral, as well as early, angiosperms. In this article, we will discuss how new research approaches are illuminating the early events in floral evolution and the prospects for further progress. In particular, advancing the next generation of research in floral evolution will require the development of one or more functional model systems from among the basal angiosperms and basal eudicots. More broadly, we urge the development of “model clades” for genomic and evolutionary-developmental analyses, instead of the primary use of single “model organisms.” We predict that new evolutionary models will soon emerge as genetic/genomic models, providing unprecedented new insights into floral evolution. PMID:27053123
Volling, Brenda L
2005-12-01
The birth of a baby sibling is a normative life event for many children. Few studies address this important transition period and changes in the older sibling's adjustment and family relationships following the sibling's birth. The present article presents a developmental ecological systems model for studying changes in family life and the older child's adjustment following the birth of a baby sibling. Simultaneous changes occurring in the family and how these changes are interrelated over time to predict patterns of adaptation after the transition to siblinghood are underscored. Recommendations for designing longitudinal studies that take advantage of recent developments in multilevel modeling are also discussed. Copyright 2006 APA, all rights reserved).
[Models and Foundations of Developmental Education.
ERIC Educational Resources Information Center
Boylan, Hunter R., Ed.; Kerstiens, Gene, Ed.
1988-01-01
These five issues of "Research in Developmental Education," examine the theoretical models and foundations of developmental education. Included are the following: (1) "Theoretical Foundations of Developmental Education," by Hunter R. Boylan, which examines the behaviorist, humanist, and developmental theories underpinning developmental education;…
Kratochwil, Claudius F; Sefton, Maggie M; Meyer, Axel
2015-02-26
Central American crater lake cichlid fish of the Midas species complex (Amphilophus spp.) are a model system for sympatric speciation and fast ecological diversification and specialization. Midas cichlids have been intensively analyzed from an ecological and morphological perspective. Genomic resources such as transcriptomic and genomic data sets, and a high-quality draft genome are available now. Many ecologically relevant species-specific traits and differences such as pigmentation and cranial morphology arise during development. Detailed descriptions of the early development of the Midas cichlid in particular, will help to investigate the ontogeny of species differences and adaptations. We describe the embryonic and larval development of the crater lake cichlid, Amphilophus xiloaensis, until seven days after fertilization. Similar to previous studies on teleost development, we describe six periods of embryogenesis - the zygote, cleavage, blastula, gastrula, segmentation, and post-hatching period. Furthermore, we define homologous stages to well-described teleost models such as medaka and zebrafish, as well as other cichlid species such as the Nile tilapia and the South American cichlid Cichlasoma dimerus. Key morphological differences between the embryos of Midas cichlids and other teleosts are highlighted and discussed, including the presence of adhesive glands and different early chromatophore patterns, as well as variation in developmental timing. The developmental staging of the Midas cichlid will aid researchers in the comparative investigation of teleost ontogenies. It will facilitate comparative developmental biological studies of Neotropical and African cichlid fish in particular. In the past, the species flocks of the African Great Lakes have received the most attention from researchers, but some lineages of the 300-400 species of Central American lakes are fascinating model systems for adaptive radiation and rapid phenotypic evolution. The availability of genetic resources, their status as a model system for evolutionary research, and the possibility to perform functional experiments including transgenesis makes the Midas cichlid complex a very attractive model for evolutionary-developmental research.
Predictive Models and Computational Embryology
EPA’s ‘virtual embryo’ project is building an integrative systems biology framework for predictive models of developmental toxicity. One schema involves a knowledge-driven adverse outcome pathway (AOP) framework utilizing information from public databases, standardized ontologies...
Acute, subchronic, and developmental toxicological properties of lubricating oil base stocks.
Dalbey, Walden E; McKee, Richard H; Goyak, Katy Olsavsky; Biles, Robert W; Murray, Jay; White, Russell
2014-01-01
Lubricating oil base stocks (LOBs) are substances used in the manufacture of finished lubricants and greases. They are produced from residue remaining after atmospheric distillation of crude oil that is subsequently fractionated by vacuum distillation and additional refining steps. Initial LOB streams that have been produced by vacuum distillation but not further refined may contain polycyclic aromatic compounds (PACs) and may present carcinogenic hazards. In modern refineries, LOBs are further refined by multistep processes including solvent extraction and/or hydrogen treatment to reduce the levels of PACs and other undesirable constituents. Thus, mildly (insufficiently) refined LOBs are potentially more hazardous than more severely (sufficiently) refined LOBs. This article discusses the evaluation of LOBs using statistical models based on content of PACs; these models indicate that insufficiently refined LOBs (potentially carcinogenic LOBs) can also produce systemic and developmental effects with repeated dermal exposure. Experimental data were also obtained in ten 13-week dermal studies in rats, eight 4-week dermal studies in rabbits, and seven dermal developmental toxicity studies with sufficiently refined LOBs (noncarcinogenic and commonly marketed) in which no observed adverse effect levels for systemic toxicity and developmental toxicity were 1000 to 2000 mg/kg/d with dermal exposures, typically the highest dose tested. Results in both oral and inhalation developmental toxicity studies were similar. This absence of toxicologically relevant findings was consistent with lower PAC content of sufficiently refined LOBs. Based on data on reproductive organs with repeated dosing and parameters in developmental toxicity studies, sufficiently refined LOBs are likely to have little, if any, effect on reproductive parameters.
Shafer, Esther
1993-01-01
Augmentative and alternative communication systems are widely recommended for nonvocal developmentally disabled individuals, with selection-based systems becoming increasingly popular. However, theoretical and experimental evidence suggests that topography-based communication systems are easier to learn. This paper discusses research relevant to the ease of acquisition of topography-based and selection-based systems. Additionally, current practices for choosing and designing communication systems are reviewed in order to investigate the extent to which links have been made with available theoretical and experimental knowledge. A stimulus equivalence model is proposed as a clearer direction for practitioners to follow when planning a communication training program. Suggestions for future research are also offered. PMID:22477085
Singh, Upinder; Brewer, Jeremy L; Boothroyd, John C
2002-05-01
Developmental switching in Toxoplasma gondii, from the virulent tachyzoite to the relatively quiescent bradyzoite stage, is responsible for disease propagation and reactivation. We have generated tachyzoite to bradyzoite differentiation (Tbd-) mutants in T. gondii and used these in combination with a cDNA microarray to identify developmental pathways in bradyzoite formation. Four independently generated Tbd- mutants were analysed and had defects in bradyzoite development in response to multiple bradyzoite-inducing conditions, a stable phenotype after in vivo passages and a markedly reduced brain cyst burden in a murine model of chronic infection. Transcriptional profiles of mutant and wild-type parasites, growing under bradyzoite conditions, revealed a hierarchy of developmentally regulated genes, including many bradyzoite-induced genes whose transcripts were reduced in all mutants. A set of non-developmentally regulated genes whose transcripts were less abundant in Tbd- mutants were also identified. These may represent genes that mediate downstream effects and/or whose expression is dependent on the same transcription factors as the bradyzoite-induced set. Using these data, we have generated a model of transcription regulation during bradyzoite development in T. gondii. Our approach shows the utility of this system as a model to study developmental biology in single-celled eukaryotes including protozoa and fungi.
Developmental Trajectories of Work Values and Job Entitlement Beliefs in the Transition to Adulthood
ERIC Educational Resources Information Center
Chow, Angela; Krahn, Harvey J.; Galambos, Nancy L.
2014-01-01
Employing a life span developmental systems perspective, this study used a 5-wave (1985-1992) Canadian longitudinal data set (N = 404) to examine trajectories of intrinsic and extrinsic work values and job entitlement beliefs from age 18 to 25. Piecewise growth models (Slope 1: age 18-20; Slope 2: age 20-25) showed intriguing patterns of change.…
ERIC Educational Resources Information Center
Geva, Ronny; Feldman, Ruth
2008-01-01
Neurobiological models propose an evolutionary, vertical-integrative perspective on emotion and behavior regulation, which postulates that regulatory functions are processed along three core brain systems: the brainstem, limbic, and cortical systems. To date, few developmental studies applied these models to research on prenatal and perinatal…
Velderraín, José Dávila; Martínez-García, Juan Carlos; Álvarez-Buylla, Elena R
2017-01-01
Mathematical models based on dynamical systems theory are well-suited tools for the integration of available molecular experimental data into coherent frameworks in order to propose hypotheses about the cooperative regulatory mechanisms driving developmental processes. Computational analysis of the proposed models using well-established methods enables testing the hypotheses by contrasting predictions with observations. Within such framework, Boolean gene regulatory network dynamical models have been extensively used in modeling plant development. Boolean models are simple and intuitively appealing, ideal tools for collaborative efforts between theorists and experimentalists. In this chapter we present protocols used in our group for the study of diverse plant developmental processes. We focus on conceptual clarity and practical implementation, providing directions to the corresponding technical literature.
Predictive Models and Computational Toxicology (II IBAMTOX)
EPA’s ‘virtual embryo’ project is building an integrative systems biology framework for predictive models of developmental toxicity. One schema involves a knowledge-driven adverse outcome pathway (AOP) framework utilizing information from public databases, standardized ontologies...
The Robot in the Crib: A Developmental Analysis of Imitation Skills in Infants and Robots.
Demiris, Yiannis; Meltzoff, Andrew
2008-01-01
Interesting systems, whether biological or artificial, develop. Starting from some initial conditions, they respond to environmental changes, and continuously improve their capabilities. Developmental psychologists have dedicated significant effort to studying the developmental progression of infant imitation skills, because imitation underlies the infant's ability to understand and learn from his or her social environment. In a converging intellectual endeavour, roboticists have been equipping robots with the ability to observe and imitate human actions because such abilities can lead to rapid teaching of robots to perform tasks. We provide here a comparative analysis between studies of infants imitating and learning from human demonstrators, and computational experiments aimed at equipping a robot with such abilities. We will compare the research across the following two dimensions: (a) initial conditions-what is innate in infants, and what functionality is initially given to robots, and (b) developmental mechanisms-how does the performance of infants improve over time, and what mechanisms are given to robots to achieve equivalent behaviour. Both developmental science and robotics are critically concerned with: (a) how their systems can and do go 'beyond the stimulus' given during the demonstration, and (b) how the internal models used in this process are acquired during the lifetime of the system.
Reduce, reuse, recycle - Developmental signals in spinal cord regeneration.
Cardozo, Marcos Julian; Mysiak, Karolina S; Becker, Thomas; Becker, Catherina G
2017-12-01
Anamniotes, fishes and amphibians, have the capacity to regenerate spinal cord tissue after injury, generating new neurons that mature and integrate into the spinal circuitry. Elucidating the molecular signals that promote this regeneration is a fundamental question in regeneration research. Model systems, such as salamanders and larval and adult zebrafish are used to analyse successful regeneration. This shows that many developmental signals, such as Notch, Hedgehog (Hh), Bone Morphogenetic Protein (BMP), Wnt, Fibroblast Growth Factor (FGF), Retinoic Acid (RA) and neurotransmitters are redeployed during regeneration and activate resident spinal progenitor cells. Here we compare the roles of these signals in spinal cord development and regeneration of the much larger and fully patterned adult spinal cord. Understanding how developmental signalling systems are reactivated in successfully regenerating species may ultimately lead to ways to reactivate similar systems in mammalian progenitor cells, which do not show neurogenesis after spinal injury. Copyright © 2017. Published by Elsevier Inc.
Creating to understand - developmental biology meets engineering in Paris.
Kicheva, Anna; Rivron, Nicolas C
2017-03-01
In November 2016, developmental biologists, synthetic biologists and engineers gathered in Paris for a meeting called 'Engineering the embryo'. The participants shared an interest in exploring how synthetic systems can reveal new principles of embryonic development, and how the in vitro manipulation and modeling of development using stem cells can be used to integrate ideas and expertise from physics, developmental biology and tissue engineering. As we review here, the conference pinpointed some of the challenges arising at the intersection of these fields, along with great enthusiasm for finding new approaches and collaborations. © 2017. Published by The Company of Biologists Ltd.
Tolins, Molly; Ruchirawat, Mathuros; Landrigan, Philip
2014-01-01
More than 200 million people worldwide are chronically exposed to arsenic. Arsenic is a known human carcinogen, and its carcinogenic and systemic toxicity have been extensively studied. By contrast, the developmental neurotoxicity of arsenic has been less well described. The aim of this review was to provide a comprehensive review of the developmental neurotoxicity of arsenic. We reviewed the published epidemiological and toxicological literature on the developmental neurotoxicity of arsenic. Arsenic is able to gain access to the developing brain and cause neurotoxic effects. Animal models link prenatal and early postnatal exposure to reduction in brain weight, reductions in numbers of glia and neurons, and alterations in neurotransmitter systems. Animal and in vitro studies both suggest that oxidative stress may be a mechanism of arsenic neurotoxicity. Fifteen epidemiological studies indicate that early life exposure is associated with deficits in intelligence and memory. These effects may occur at levels of exposure below current safety guidelines, and some neurocognitive consequences may become manifest only later in life. Sex, concomitant exposures, and timing of exposure appear to modify the developmental neurotoxicity of arsenic. Four epidemiological studies failed to show behavioral outcomes of arsenic exposure. The published literature indicates that arsenic is a human developmental neurotoxicant. Ongoing and future prospective birth cohort studies will allow more precise definition of the developmental consequences of arsenic exposure in early life. Copyright © 2014. Published by Elsevier Inc.
Grounding language in action and perception: from cognitive agents to humanoid robots.
Cangelosi, Angelo
2010-06-01
In this review we concentrate on a grounded approach to the modeling of cognition through the methodologies of cognitive agents and developmental robotics. This work will focus on the modeling of the evolutionary and developmental acquisition of linguistic capabilities based on the principles of symbol grounding. We review cognitive agent and developmental robotics models of the grounding of language to demonstrate their consistency with the empirical and theoretical evidence on language grounding and embodiment, and to reveal the benefits of such an approach in the design of linguistic capabilities in cognitive robotic agents. In particular, three different models will be discussed, where the complexity of the agent's sensorimotor and cognitive system gradually increases: from a multi-agent simulation of language evolution, to a simulated robotic agent model for symbol grounding transfer, to a model of language comprehension in the humanoid robot iCub. The review also discusses the benefits of the use of humanoid robotic platform, and specifically of the open source iCub platform, for the study of embodied cognition. Copyright 2010 Elsevier B.V. All rights reserved.
The Transition to High School: Current Knowledge, Future Directions
2011-01-01
In the American educational system, school transitions are frequent and predictable, but they can disrupt student functioning across developmental domains. How students experience school transitions has been a focus of research for some time, but the high school transition has received less attention, and the limited research often focuses on a particular developmental domain (e.g., academics and socioemotional well-being) to the exclusion of a more integrated model. This review relies on life course theory to establish an organizational framework for interpreting and connecting the diffuse and sometimes disparate findings on the high school transition, including adolescent developmental trajectories and the influence of social ties, changing sociocultural contexts, and stratification systems. Conclusions identify aspects for future inquiry suggested by current knowledge and the tenets of the life course perspective. PMID:21966178
Sullivan, Regina; Wilson, Donald A.; Feldon, Joram; Yee, Benjamin K.; Meyer, Urs; Richter-Levin, Gal; Avi, Avital; Michael, Tsoory; Gruss, Michael; Bock, Jörg; Helmeke, Carina; Braun, Katharina
2007-01-01
Decades of research in the area of developmental psychobiology have shown that early life experience alters behavioral and brain development, which canalizes development to suit different environments. Recent methodological advances have begun to identify the mechanisms by which early life experiences cause these diverse adult outcomes. Here we present four different research programs that demonstrate the intricacies of early environmental influences on behavioral and brain development in both pathological and normal development. First, an animal model of schizophrenia is presented that suggests prenatal immune stimulation influences the postpubertal emergence of psychosis-related behavior in mice. Second, we describe a research program on infant rats that demonstrates how early odor learning has unique characteristics due to the unique functioning of the infant limbic system. Third, we present work on the rodent Octodon degus, which shows that early paternal and/or maternal deprivation alters development of limbic system synaptic density that corresponds to heightened emotionality. Fourth, ajuvenile model of stress is presented that suggests this developmental period is important in determining adulthood emotional well being. The approach of each research program is strikingly different, yet all succeed in delineating a specific aspect of early development and its effects on infant and adult outcome that expands our understanding of the developmental impact of infant experiences on emotional and limbic system development. Together, these research programs suggest that the developing organism’s developmental trajectory is influenced by environmental factors beginning in the fetus and extending through adolescence, although the specific timing and nature of the environmental influence has unique impact on adult mental health. PMID:17016842
ASM Conference on Prokaryotic Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaplan, H. B.
2005-07-13
Support was provided by DOE for the 2nd ASM Conference on Prokaryotic Development. The final conference program and abstracts book is attached. The conference presentations are organized around topics that are central to the current research areas in prokaryotic development. The program starts with topics that involve relatively simple models systems and ends with systems that are more complex. The topics are: i) the cell cycle, ii) the cytoskeleton, iii) morphogenesis, iv) developmental transcription, v) signaling, vi) multicellularity, and vii) developmental diversity and symbiosis. The best-studied prokaryotic development model systems will be highlighted at the conference through research presentations bymore » leaders in the field. Many of these systems are also model systems of relevance to the DOE mission including carbon sequestration (Bradyrizobium, Synechococcus), energy production (Anabaena, Rhodobacter) and bioremediation (Caulobacter, Mesorhizobium). In addition, many of the highlighted organisms have important practical applications; the actinomycetes and myxobacteria produce antimicrobials that are of commercial interest. It is certain that the cutting-edge science presented at the conference will be applicable to the large group of bacteria relevant to the DOE mission.« less
Studies of threespine stickleback developmental evolution: progress and promise.
Cresko, William A; McGuigan, Katrina L; Phillips, Patrick C; Postlethwait, John H
2007-01-01
A promising route for understanding the origin and diversification of organismal form is through studies at the intersection of evolution and development (evo-devo). While much has been learned over the last two decades concerning macroevolutionary patterns of developmental change, a fundamental gap in the evo-devo synthesis is the integration of mathematical population and quantitative genetics with studies of how genetic variation in natural populations affects developmental processes. This micro-evo-devo synthesis requires model organisms with which to ask empirical questions. Threespine stickleback fish (Gasterosteus aculeatus), long a model for studying behavior, ecology and evolution, is emerging as a prominent model micro-evo-devo system. Research on stickleback over the last decade has begun to address the genetic basis of morphological variation and sex determination, and much of this work has important implications for understanding the genetics of speciation. In this paper we review recent threespine stickleback micro-evo-devo results, and outline the resources that have been developed to make this synthesis possible. The prospects for stickleback research to speed the micro-(and macro-) evo-devo syntheses are great, and this workhorse model system is well situated to continue contributing to our understanding of the generation of diversity in organismal form for many more decades.
Computational Modeling and Simulation of Developmental ...
Developmental and Reproductive Toxicity (DART) testing is important for assessing the potential consequences of drug and chemical exposure on human health and well-being. Complexity of pregnancy and the reproductive cycle makes DART testing challenging and costly for traditional (animal-based) methods. A compendium of in vitro data from ToxCast/Tox21 high-throughput screening (HTS) programs is available for predictive toxicology. ‘Predictive DART’ will require an integrative strategy that mobilizes HTS data into in silico models that capture the relevant embryology. This lecture addresses progress on EPA's 'virtual embryo'. The question of how tissues and organs are shaped during development is crucial for understanding (and predicting) human birth defects. While ToxCast HTS data may predict developmental toxicity with reasonable accuracy, mechanistic models are still necessary to capture the relevant biology. Subtle microscopic changes induced chemically may amplify to an adverse outcome but coarse changes may override lesion propagation in any complex adaptive system. Modeling system dynamics in a developing tissue is a multiscale problem that challenges our ability to predict toxicity from in vitro profiling data (ToxCast/Tox21). (DISCLAIMER: The views expressed in this presentation are those of the presenter and do not necessarily reflect the views or policies of the US EPA). This was an invited seminar presentation to the National Institute for Public H
Predictability of spatio-temporal patterns in a lattice of coupled FitzHugh–Nagumo oscillators
Grace, Miriam; Hütt, Marc-Thorsten
2013-01-01
In many biological systems, variability of the components can be expected to outrank statistical fluctuations in the shaping of self-organized patterns. In pioneering work in the late 1990s, it was hypothesized that a drift of cellular parameters (along a ‘developmental path’), together with differences in cell properties (‘desynchronization’ of cells on the developmental path) can establish self-organized spatio-temporal patterns (in their example, spiral waves of cAMP in a colony of Dictyostelium discoideum cells) starting from a homogeneous state. Here, we embed a generic model of an excitable medium, a lattice of diffusively coupled FitzHugh–Nagumo oscillators, into a developmental-path framework. In this minimal model of spiral wave generation, we can now study the predictability of spatio-temporal patterns from cell properties as a function of desynchronization (or ‘spread’) of cells along the developmental path and the drift speed of cell properties on the path. As a function of drift speed and desynchronization, we observe systematically different routes towards fully established patterns, as well as strikingly different correlations between cell properties and pattern features. We show that the predictability of spatio-temporal patterns from cell properties contains important information on the pattern formation process as well as on the underlying dynamical system. PMID:23349439
National Centers for Environmental Prediction
Modeling Mesoscale Modeling Marine Modeling and Analysis Teams Climate Data Assimilation Ensembles and Post streamline the interaction of analysis, forecast, and post-processing systems within NCEP. The NEMS Force, and will eventually provide support to the community through the Developmental Test Center (DTC
ERIC Educational Resources Information Center
Greene, Jeffrey A.; Azevedo, Roger A.; Torney-Purta, Judith
2008-01-01
We propose an integration of aspects of several developmental and systems of beliefs models of personal epistemology. Qualitatively different positions, including realism, dogmatism, skepticism, and rationalism, are characterized according to individuals' beliefs across three dimensions in a model of epistemic and ontological cognition. This model…
From emotion resonance to empathic understanding: a social developmental neuroscience account.
Decety, Jean; Meyer, Meghan
2008-01-01
The psychological construct of empathy refers to an intersubjective induction process by which positive and negative emotions are shared, without losing sight of whose feelings belong to whom. Empathy can lead to personal distress or to empathic concern (sympathy). The goal of this paper is to address the underlying cognitive processes and their neural underpinnings that constitute empathy within a developmental neuroscience perspective. In addition, we focus on how these processes go awry in developmental disorders marked by impairments in social cognition, such as autism spectrum disorder, and conduct disorder. We argue that empathy involves both bottom-up and top-down information processing, underpinned by specific and interacting neural systems. We discuss data from developmental psychology as well as cognitive neuroscience in support of such a model, and highlight the impact of neural dysfunctions on social cognitive developmental behavior. Altogether, bridging developmental science and cognitive neuroscience helps approach a more complete understanding of social cognition. Synthesizing these two domains also contributes to a better characterization of developmental psychopathologies that impacts the development of effective treatment strategies.
A "Brief History" of Developmental Biology in Israel.
Sela-Donenfeld, Dalit; Frank, Dale
2017-01-01
While the history of developmental biology in Israel is relatively short, its impact is far-reaching, so we wanted to present a concise perspective on the Israeli developmental biology community, past-present-future. This community has undergone a wonderful, nearly exponential growth over the last three decades. How exactly did this happen? There are approximately fifty research groups that focus on developmental biology questions in Israel today that are members of the Israel Society of Developmental Biology (IsSDB; http://issdb.org/). The community has representative groups in a plethora of model systems, such as Nematostella, C. elegans, Drosophila, sea urchin, ascidians, zebrafish, Xenopus, chick and mouse, as well as plants, representing all the major universities and their branches, which include Bar-Ilan University, Ben-Gurion University of the Negev, The Hebrew University of Jerusalem, The University of Haifa, Technion - Israel Institute of Technology, Tel Aviv University and the Weizmann Institute of Science.
The filamentous fungus Sordaria macrospora as a genetic model to study fruiting body development.
Teichert, Ines; Nowrousian, Minou; Pöggeler, Stefanie; Kück, Ulrich
2014-01-01
Filamentous fungi are excellent experimental systems due to their short life cycles as well as easy and safe manipulation in the laboratory. They form three-dimensional structures with numerous different cell types and have a long tradition as genetic model organisms used to unravel basic mechanisms underlying eukaryotic cell differentiation. The filamentous ascomycete Sordaria macrospora is a model system for sexual fruiting body (perithecia) formation. S. macrospora is homothallic, i.e., self-fertile, easily genetically tractable, and well suited for large-scale genomics, transcriptomics, and proteomics studies. Specific features of its life cycle and the availability of a developmental mutant library make it an excellent system for studying cellular differentiation at the molecular level. In this review, we focus on recent developments in identifying gene and protein regulatory networks governing perithecia formation. A number of tools have been developed to genetically analyze developmental mutants and dissect transcriptional profiles at different developmental stages. Protein interaction studies allowed us to identify a highly conserved eukaryotic multisubunit protein complex, the striatin-interacting phosphatase and kinase complex and its role in sexual development. We have further identified a number of proteins involved in chromatin remodeling and transcriptional regulation of fruiting body development. Furthermore, we review the involvement of metabolic processes from both primary and secondary metabolism, and the role of nutrient recycling by autophagy in perithecia formation. Our research has uncovered numerous players regulating multicellular development in S. macrospora. Future research will focus on mechanistically understanding how these players are orchestrated in this fungal model system. Copyright © 2014 Elsevier Inc. All rights reserved.
This presentation will cover work at EPA under the CSS program for: (1) Virtual Tissue Models built from the known biology of an embryological system and structured to recapitulate key cell signals and responses; (2) running the models with real (in vitro) or synthetic (in silico...
Developmental imaging: the avian embryo hatches to the challenge.
Kulesa, Paul M; McKinney, Mary C; McLennan, Rebecca
2013-06-01
The avian embryo provides a multifaceted model to study developmental mechanisms because of its accessibility to microsurgery, fluorescence cell labeling, in vivo imaging, and molecular manipulation. Early two-dimensional planar growth of the avian embryo mimics human development and provides unique access to complex cell migration patterns using light microscopy. Later developmental events continue to permit access to both light and other imaging modalities, making the avian embryo an excellent model for developmental imaging. For example, significant insights into cell and tissue behaviors within the primitive streak, craniofacial region, and cardiovascular and peripheral nervous systems have come from avian embryo studies. In this review, we provide an update to recent advances in embryo and tissue slice culture and imaging, fluorescence cell labeling, and gene profiling. We focus on how technical advances in the chick and quail provide a clearer understanding of how embryonic cell dynamics are beautifully choreographed in space and time to sculpt cells into functioning structures. We summarize how these technical advances help us to better understand basic developmental mechanisms that may lead to clinical research into human birth defects and tissue repair. Copyright © 2013 Wiley Periodicals, Inc.
2011-01-01
Background The tomato (Solanum lycopersicum L.) plant is both an economically important food crop and an ideal dicot model to investigate various physiological phenomena not possible in Arabidopsis thaliana. Due to the great diversity of tomato cultivars used by the research community, it is often difficult to reliably compare phenotypes. The lack of tomato developmental mutants in a single genetic background prevents the stacking of mutations to facilitate analysis of double and multiple mutants, often required for elucidating developmental pathways. Results We took advantage of the small size and rapid life cycle of the tomato cultivar Micro-Tom (MT) to create near-isogenic lines (NILs) by introgressing a suite of hormonal and photomorphogenetic mutations (altered sensitivity or endogenous levels of auxin, ethylene, abscisic acid, gibberellin, brassinosteroid, and light response) into this genetic background. To demonstrate the usefulness of this collection, we compared developmental traits between the produced NILs. All expected mutant phenotypes were expressed in the NILs. We also created NILs harboring the wild type alleles for dwarf, self-pruning and uniform fruit, which are mutations characteristic of MT. This amplified both the applications of the mutant collection presented here and of MT as a genetic model system. Conclusions The community resource presented here is a useful toolkit for plant research, particularly for future studies in plant development, which will require the simultaneous observation of the effect of various hormones, signaling pathways and crosstalk. PMID:21714900
Murray, John Isaac
2018-05-01
The convergence of developmental biology and modern genomics tools brings the potential for a comprehensive understanding of developmental systems. This is especially true for the Caenorhabditis elegans embryo because its small size, invariant developmental lineage, and powerful genetic and genomic tools provide the prospect of a cellular resolution understanding of messenger RNA (mRNA) expression and regulation across the organism. We describe here how a systems biology framework might allow large-scale determination of the embryonic regulatory relationships encoded in the C. elegans genome. This framework consists of two broad steps: (a) defining the "parts list"-all genes expressed in all cells at each time during development and (b) iterative steps of computational modeling and refinement of these models by experimental perturbation. Substantial progress has been made towards defining the parts list through imaging methods such as large-scale green fluorescent protein (GFP) reporter analysis. Imaging results are now being augmented by high-resolution transcriptome methods such as single-cell RNA sequencing, and it is likely the complete expression patterns of all genes across the embryo will be known within the next few years. In contrast, the modeling and perturbation experiments performed so far have focused largely on individual cell types or genes, and improved methods will be needed to expand them to the full genome and organism. This emerging comprehensive map of embryonic expression and regulatory function will provide a powerful resource for developmental biologists, and would also allow scientists to ask questions not accessible without a comprehensive picture. This article is categorized under: Invertebrate Organogenesis > Worms Technologies > Analysis of the Transcriptome Gene Expression and Transcriptional Hierarchies > Gene Networks and Genomics. © 2018 Wiley Periodicals, Inc.
Computational Embryology and Predictive Toxicology of Cleft Palate
Capacity to model and simulate key events in developmental toxicity using computational systems biology and biological knowledge steps closer to hazard identification across the vast landscape of untested environmental chemicals. In this context, we chose cleft palate as a model ...
Modeling human diseases: an education in interactions and interdisciplinary approaches.
Zon, Leonard
2016-06-01
Traditionally, most investigators in the biomedical arena exploit one model system in the course of their careers. Occasionally, an investigator will switch models. The selection of a suitable model system is a crucial step in research design. Factors to consider include the accuracy of the model as a reflection of the human disease under investigation, the numbers of animals needed and ease of husbandry, its physiology and developmental biology, and the ability to apply genetics and harness the model for drug discovery. In my lab, we have primarily used the zebrafish but combined it with other animal models and provided a framework for others to consider the application of developmental biology for therapeutic discovery. Our interdisciplinary approach has led to many insights into human diseases and to the advancement of candidate drugs to clinical trials. Here, I draw on my experiences to highlight the importance of combining multiple models, establishing infrastructure and genetic tools, forming collaborations, and interfacing with the medical community for successful translation of basic findings to the clinic. © 2016. Published by The Company of Biologists Ltd.
Supporting Space Systems Design via Systems Dependency Analysis Methodology
NASA Astrophysics Data System (ADS)
Guariniello, Cesare
The increasing size and complexity of space systems and space missions pose severe challenges to space systems engineers. When complex systems and Systems-of-Systems are involved, the behavior of the whole entity is not only due to that of the individual systems involved but also to the interactions and dependencies between the systems. Dependencies can be varied and complex, and designers usually do not perform analysis of the impact of dependencies at the level of complex systems, or this analysis involves excessive computational cost, or occurs at a later stage of the design process, after designers have already set detailed requirements, following a bottom-up approach. While classical systems engineering attempts to integrate the perspectives involved across the variety of engineering disciplines and the objectives of multiple stakeholders, there is still a need for more effective tools and methods capable to identify, analyze and quantify properties of the complex system as a whole and to model explicitly the effect of some of the features that characterize complex systems. This research describes the development and usage of Systems Operational Dependency Analysis and Systems Developmental Dependency Analysis, two methods based on parametric models of the behavior of complex systems, one in the operational domain and one in the developmental domain. The parameters of the developed models have intuitive meaning, are usable with subjective and quantitative data alike, and give direct insight into the causes of observed, and possibly emergent, behavior. The approach proposed in this dissertation combines models of one-to-one dependencies among systems and between systems and capabilities, to analyze and evaluate the impact of failures or delays on the outcome of the whole complex system. The analysis accounts for cascading effects, partial operational failures, multiple failures or delays, and partial developmental dependencies. The user of these methods can assess the behavior of each system based on its internal status and on the topology of its dependencies on systems connected to it. Designers and decision makers can therefore quickly analyze and explore the behavior of complex systems and evaluate different architectures under various working conditions. The methods support educated decision making both in the design and in the update process of systems architecture, reducing the need to execute extensive simulations. In particular, in the phase of concept generation and selection, the information given by the methods can be used to identify promising architectures to be further tested and improved, while discarding architectures that do not show the required level of global features. The methods, when used in conjunction with appropriate metrics, also allow for improved reliability and risk analysis, as well as for automatic scheduling and re-scheduling based on the features of the dependencies and on the accepted level of risk. This dissertation illustrates the use of the two methods in sample aerospace applications, both in the operational and in the developmental domain. The applications show how to use the developed methodology to evaluate the impact of failures, assess the criticality of systems, quantify metrics of interest, quantify the impact of delays, support informed decision making when scheduling the development of systems and evaluate the achievement of partial capabilities. A larger, well-framed case study illustrates how the Systems Operational Dependency Analysis method and the Systems Developmental Dependency Analysis method can support analysis and decision making, at the mid and high level, in the design process of architectures for the exploration of Mars. The case study also shows how the methods do not replace the classical systems engineering methodologies, but support and improve them.
ERIC Educational Resources Information Center
Molenaar, Peter C. M.
2015-01-01
In this article, Peter Molenaar responds to three commentaries (this issue) on his article, "An Interpretation of Part of Gilbert Gottlieb's Legacy: Developmental Systems Theory Contra Developmental Behavior Genetics." He addresses aspects of relational developmental systems (RDS) mentioned and questions raised in each of the…
Rice, D; Barone, S
2000-01-01
Vulnerable periods during the development of the nervous system are sensitive to environmental insults because they are dependent on the temporal and regional emergence of critical developmental processes (i.e., proliferation, migration, differentiation, synaptogenesis, myelination, and apoptosis). Evidence from numerous sources demonstrates that neural development extends from the embryonic period through adolescence. In general, the sequence of events is comparable among species, although the time scales are considerably different. Developmental exposure of animals or humans to numerous agents (e.g., X-ray irradiation, methylazoxymethanol, ethanol, lead, methyl mercury, or chlorpyrifos) demonstrates that interference with one or more of these developmental processes can lead to developmental neurotoxicity. Different behavioral domains (e.g., sensory, motor, and various cognitive functions) are subserved by different brain areas. Although there are important differences between the rodent and human brain, analogous structures can be identified. Moreover, the ontogeny of specific behaviors can be used to draw inferences regarding the maturation of specific brain structures or neural circuits in rodents and primates, including humans. Furthermore, various clinical disorders in humans (e.g., schizophrenia, dyslexia, epilepsy, and autism) may also be the result of interference with normal ontogeny of developmental processes in the nervous system. Of critical concern is the possibility that developmental exposure to neurotoxicants may result in an acceleration of age-related decline in function. This concern is compounded by the fact that developmental neurotoxicity that results in small effects can have a profound societal impact when amortized across the entire population and across the life span of humans. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 8 Figure 9 Figure 12 Figure 14 Figure 16 Figure 17 PMID:10852851
Developmental regulation of fear learning and anxiety behavior by endocannabinoids
Lee, Tiffany T.-Y.; Hill, Matthew N.; Lee, Francis S.
2015-01-01
The developing brain undergoes substantial maturation into adulthood and the development of specific neural structures occurs on differing timelines. Transient imbalances between developmental trajectories of corticolimbic structures, which are known to contribute to regulation over fear learning and anxiety, can leave an individual susceptible to mental illness, particularly anxiety disorders. There is a substantial body of literature indicating that the endocannabinoid system critically regulates stress responsivity and emotional behavior throughout the life span, making this system a novel therapeutic target for stress- and anxiety-related disorders. During early life and adolescence, corticolimbic endocannabinoid signaling changes dynamically and coincides with different sensitive periods of fear learning, suggesting that endocannabinoid signaling underlies age-specific fear learning responses. Moreover, perturbations to these normative fluctuations in corticolimbic endocannabinoid signaling, such as stress or cannabinoid exposure, could serve as a neural substrate contributing to alterations to the normative developmental trajectory of neural structures governing emotional behavior and fear learning. In this review, we first introduce the components of the endocannabinoid system and discuss clinical and rodent models demonstrating endocannabinoid regulation of fear learning and anxiety in adulthood. Next, we highlight distinct fear learning and regulation profiles throughout development and discuss the ontogeny of the endocannabinoid system in the central nervous system, and models of pharmacological augmentation of endocannabinoid signaling during development in the context of fear learning and anxiety. PMID:26419643
Developmental Process Model for the Java Intelligent Tutoring System
ERIC Educational Resources Information Center
Sykes, Edward
2007-01-01
The Java Intelligent Tutoring System (JITS) was designed and developed to support the growing trend of Java programming around the world. JITS is an advanced web-based personalized tutoring system that is unique in several ways. Most programming Intelligent Tutoring Systems require the teacher to author problems with corresponding solutions. JITS,…
A system safety model for developmental aircraft programs
NASA Technical Reports Server (NTRS)
Amberboy, E. J.; Stokeld, R. L.
1982-01-01
Basic tenets of safety as applied to developmental aircraft programs are presented. The integration of safety into the project management aspects of planning, organizing, directing and controlling is illustrated by examples. The basis for project management use of safety and the relationship of these management functions to 'real-world' situations is presented. The rationale which led to the safety-related project decision and the lessons learned as they may apply to future projects are presented.
Darling, Stephen; Parker, Mary-Jane; Goodall, Karen E; Havelka, Jelena; Allen, Richard J
2014-03-01
When participants carry out visually presented digit serial recall, their performance is better if they are given the opportunity to encode extra visuospatial information at encoding-a phenomenon that has been termed visuospatial bootstrapping. This bootstrapping is the result of integration of information from different modality-specific short-term memory systems and visuospatial knowledge in long term memory, and it can be understood in the context of recent models of working memory that address multimodal binding (e.g., models incorporating an episodic buffer). Here we report a cross-sectional developmental study that demonstrated visuospatial bootstrapping in adults (n=18) and 9-year-old children (n=15) but not in 6-year-old children (n=18). This is the first developmental study addressing visuospatial bootstrapping, and results demonstrate that the developmental trajectory of bootstrapping is different from that of basic verbal and visuospatial working memory. This pattern suggests that bootstrapping (and hence integrative functions such as those associated with the episodic buffer) emerge independent of the development of basic working memory slave systems during childhood. Copyright © 2013 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Carlson, Ryan G.; Lambie, Glenn W.
2012-01-01
Supervision models for marriage and family counseling student interns primarily focus on the use of traditional systemic techniques. In addition, a supervisee's level of development may not be considered when utilizing systemic tools. Furthermore, the supervisory relationship has been identified as a significant indicator of quality supervision,…
Embryonic stem cells and the next generation of developmental toxicity testing.
Kugler, Josephine; Huhse, Bettina; Tralau, Tewes; Luch, Andreas
2017-08-01
The advent of stem cell technology has seen the establishment of embryonic stem cells (ESCs) as molecular model systems and screening tools. Although ESCs are nowadays widely used in research, regulatory implementation for developmental toxicity testing is pending. Areas Covered: This review evaluates the performance of current ESC, including human (h)ESC testing systems, trying to elucidate their potential for developmental toxicity testing. It shall discuss defining parameters and mechanisms, their relevance and contemplate what can realistically be expected. Crucially this includes the question of how to ascertain the quality of currently employed cell lines and tests based thereon. Finally, the use of hESCs will raise ethical concerns which should be addressed early on. Expert Opinion: While the suitability of (h)ESCs as tools for research and development goes undisputed, any routine use for developmental toxicity testing currently still seems premature. The reasons for this comprise inherent biological deficiencies as well as cell line quality and system validation. Overcoming these issues will require collaboration of scientists, test developers and regulators. Also, validation needs to be made worthwhile for academia. Finally we have to continuously rethink existing strategies, making room for improved testing and innovative approaches.
Kobesova, Alena; Kolar, Pavel
2014-01-01
Three levels of sensorimotor control within the central nervous system (CNS) can be distinguished. During the neonatal stage, general movements and primitive reflexes are controlled at the spinal and brain stem levels. Analysis of the newborn's spontaneous general movements and the assessment of primitive reflexes is crucial in the screening and early recognition of a risk for abnormal development. Following the newborn period, the subcortical level of the CNS motor control emerges and matures mainly during the first year of life. This allows for basic trunk stabilization, a prerequisite for any phasic movement and for the locomotor function of the extremities. At the subcortical level, orofacial muscles and afferent information are automatically integrated within postural-locomotor patterns. Finally, the cortical (the highest) level of motor control increasingly becomes activated. Cortical control is important for the individual qualities and characteristics of movement. It also allows for isolated segmental movement and relaxation. A child with impaired cortical motor control may be diagnosed with developmental dyspraxia or developmental coordination disorder. Human ontogenetic models, i.e., developmental motor patterns, can be used in both the diagnosis and treatment of locomotor system dysfunction. Copyright © 2013 Elsevier Ltd. All rights reserved.
Multidisciplinary approaches to understanding collective cell migration in developmental biology.
Schumacher, Linus J; Kulesa, Paul M; McLennan, Rebecca; Baker, Ruth E; Maini, Philip K
2016-06-01
Mathematical models are becoming increasingly integrated with experimental efforts in the study of biological systems. Collective cell migration in developmental biology is a particularly fruitful application area for the development of theoretical models to predict the behaviour of complex multicellular systems with many interacting parts. In this context, mathematical models provide a tool to assess the consistency of experimental observations with testable mechanistic hypotheses. In this review, we showcase examples from recent years of multidisciplinary investigations of neural crest cell migration. The neural crest model system has been used to study how collective migration of cell populations is shaped by cell-cell interactions, cell-environmental interactions and heterogeneity between cells. The wide range of emergent behaviours exhibited by neural crest cells in different embryonal locations and in different organisms helps us chart out the spectrum of collective cell migration. At the same time, this diversity in migratory characteristics highlights the need to reconcile or unify the array of currently hypothesized mechanisms through the next generation of experimental data and generalized theoretical descriptions. © 2016 The Authors.
Systems Toxicology of Embryo Development (9th Copenhagen Workshop)
An important consideration for predictive toxicology is to identify developmental hazards utilizing mechanism-based in vitro assays (e.g., ToxCast) and in silico multiscale models. Steady progress has been made with agent-based models that recapitulate morphogenetic drivers for a...
Sandoval, Imelda T; Manos, Elizabeth J; Van Wagoner, Ryan M; Delacruz, Richard Glenn C; Edes, Kornelia; Winge, Dennis R; Ireland, Chris M; Jones, David A
2013-06-20
A major hurdle in using complex systems for drug screening is the difficulty of defining the mechanistic targets of small molecules. The zebrafish provides an excellent model system for juxtaposing developmental phenotypes with mechanism discovery using organism genetics. We carried out a phenotype-based screen of uncharacterized small molecules in zebrafish that produced a variety of chemically induced phenotypes with potential genetic parallels. Specifically, kalihinol F caused an undulated notochord, defects in pigment formation, hematopoiesis, and neural development. These phenotypes were strikingly similar to the zebrafish mutant, calamity, an established model of copper deficiency. Further studies into the mechanism of action of kalihinol F revealed a copper-chelating activity. Our data support this mechanism of action for kalihinol F and the utility of zebrafish as an effective system for identifying therapeutic and target pathways. Copyright © 2013 Elsevier Ltd. All rights reserved.
Beyond allostatic load: rethinking the role of stress in regulating human development.
Ellis, Bruce J; Del Giudice, Marco
2014-02-01
How do exposures to stress affect biobehavioral development and, through it, psychiatric and biomedical disorder? In the health sciences, the allostatic load model provides a widely accepted answer to this question: stress responses, while essential for survival, have negative long-term effects that promote illness. Thus, the benefits of mounting repeated biological responses to threat are traded off against costs to mental and physical health. The adaptive calibration model, an evolutionary-developmental theory of stress-health relations, extends this logic by conceptualizing these trade-offs as decision nodes in allocation of resources. Each decision node influences the next in a chain of resource allocations that become instantiated in the regulatory parameters of stress response systems. Over development, these parameters filter and embed information about key dimensions of environmental stress and support, mediating the organism's openness to environmental inputs, and function to regulate life history strategies to match those dimensions. Drawing on the adaptive calibration model, we propose that consideration of biological fitness trade-offs, as delineated by life history theory, is needed to more fully explain the complex relations between developmental exposures to stress, stress responsivity, behavioral strategies, and health. We conclude that the adaptive calibration model and allostatic load model are only partially complementary and, in some cases, support different approaches to intervention. In the long run, the field may be better served by a model informed by life history theory that addresses the adaptive role of stress response systems in regulating alternative developmental pathways.
CHEMICAL PRIORITIZATION FOR DEVELOPMENTAL ...
Defining a predictive model of developmental toxicity from in vitro and high-throughput screening (HTS) assays can be limited by the availability of developmental defects data. ToxRefDB (www.epa.gov/ncct/todrefdb) was built from animal studies on data-rich environmental chemicals, and has been used as an anchor for predictive modeling of ToxCast™ data. Scaling to thousands of untested chemicals requires another approach. ToxPlorer™ was developed as a tool to query and extract specific facts about defined biological entities from the open scientific literature and to coherently synthesize relevant knowledge about relationships, pathways and processes in toxicity. Here, we investigated the specific application of ToxPlorer to weighting HTS assay targets for relevance to developmental defects as defined in the literature. First, we systemically analyzed 88,193 Pubmed abstracts selected by bulk query using harmonized terminology for 862 developmental endpoints (www.devtox.net) and 364,334 dictionary term entities in our VT-KB (virtual tissues knowledgebase). We specifically focused on entities corresponding to genes/proteins mapped across of >500 ToxCast HTS assays. The 88,193 devtox abstracts mentioned 244 gene/protein entities in an aggregated total of ~8,000 occurrences. Each of the 244 assays was scored and weighted by the number of devtox articles and relevance to developmental processes. This score was used as a feature for chemical prioritization by Toxic
Perceptual uncertainty is a property of the cognitive system.
Perea, Manuel; Carreiras, Manuel
2012-10-01
We qualify Frost's proposals regarding letter-position coding in visual word recognition and the universal model of reading. First, we show that perceptual uncertainty regarding letter position is not tied to European languages-instead it is a general property of the cognitive system. Second, we argue that a universal model of reading should incorporate a developmental view of the reading process.
Sciammas, Roger; Li, Ying; Warmflash, Aryeh; Song, Yiqiang; Dinner, Aaron R; Singh, Harinder
2011-01-01
The B-lymphocyte lineage is a leading system for analyzing gene regulatory networks (GRNs) that orchestrate distinct cell fate transitions. Upon antigen recognition, B cells can diversify their immunoglobulin (Ig) repertoire via somatic hypermutation (SHM) and/or class switch DNA recombination (CSR) before differentiating into antibody-secreting plasma cells. We construct a mathematical model for a GRN underlying this developmental dynamic. The intensity of signaling through the Ig receptor is shown to control the bimodal expression of a pivotal transcription factor, IRF-4, which dictates B cell fate outcomes. Computational modeling coupled with experimental analysis supports a model of ‘kinetic control', in which B cell developmental trajectories pass through an obligate transient state of variable duration that promotes diversification of the antibody repertoire by SHM/CSR in direct response to antigens. More generally, this network motif could be used to translate a morphogen gradient into developmental inductive events of varying time, thereby enabling the specification of distinct cell fates. PMID:21613984
Mammalian Cardiovascular Patterning as Determined by Hemodynamic Forces and Blood Vessel Genetics
NASA Astrophysics Data System (ADS)
Anderson, Gregory Arthur
Cardiovascular development is a process that involves the timing of multiple molecular events, and numerous subtle three-dimensional conformational changes. Traditional developmental biology techniques have provided large quantities of information as to how these complex organ systems develop. However, the major drawback of the majority of current developmental biological imaging is that they are two-dimensional in nature. It is now well recognized that circulation of blood is required for normal patterning and remodeling of blood vessels. Normal blood vessel formation is dependent upon a complex network of signaling pathways, and genetic mutations in these pathways leads to impaired vascular development, heart failure, and lethality. As such, it is not surprising that mutant mice with aberrant cardiovascular patterning are so common, since normal development requires proper coordination between three systems: the heart, the blood, and the vasculature. This thesis describes the implementation of a three-dimensional imaging technique, optical projection tomography (OPT), in conjunction with a computer-based registration algorithm to statistically analyze developmental differences in groups of wild-type mouse embryos. Embryos that differ by only a few hours' gestational time are shown to have developmental differences in blood vessel formation and heart development progression that can be discerned. This thesis describes how we analyzed mouse models of cardiovascular perturbation by OPT to detect morphological differences in embryonic development in both qualitative and quantitative ways. Both a blood vessel specific mutation and a cardiac specific mutation were analyzed, providing evidence that developmental defects of these types can be quantified. Finally, we describe the implementation of OPT imaging to identify statistically significant phenotypes from three different mouse models of cardiovascular perturbation across a range of developmental time points. Image registration methods, combined with intensity- and deformation-based analyses are described and utilized to fully characterize myosin light chain 2a (Mlc2a), delta-like ligand 4 (Dll4), and Endoglin (Eng) mutant mouse embryos. We show that Eng mutant embryos are statistically similar to the Mlc2a phenotype, confirming that these mouse mutants suffer from a primary cardiac developmental defect. Thus, a loss of hemodynamic force caused by defective pumping of the heart is the primary developmental defect affecting these mice.
Descriptive vs. mechanistic network models in plant development in the post-genomic era.
Davila-Velderrain, J; Martinez-Garcia, J C; Alvarez-Buylla, E R
2015-01-01
Network modeling is now a widespread practice in systems biology, as well as in integrative genomics, and it constitutes a rich and diverse scientific research field. A conceptually clear understanding of the reasoning behind the main existing modeling approaches, and their associated technical terminologies, is required to avoid confusions and accelerate the transition towards an undeniable necessary more quantitative, multidisciplinary approach to biology. Herein, we focus on two main network-based modeling approaches that are commonly used depending on the information available and the intended goals: inference-based methods and system dynamics approaches. As far as data-based network inference methods are concerned, they enable the discovery of potential functional influences among molecular components. On the other hand, experimentally grounded network dynamical models have been shown to be perfectly suited for the mechanistic study of developmental processes. How do these two perspectives relate to each other? In this chapter, we describe and compare both approaches and then apply them to a given specific developmental module. Along with the step-by-step practical implementation of each approach, we also focus on discussing their respective goals, utility, assumptions, and associated limitations. We use the gene regulatory network (GRN) involved in Arabidopsis thaliana Root Stem Cell Niche patterning as our illustrative example. We show that descriptive models based on functional genomics data can provide important background information consistent with experimentally supported functional relationships integrated in mechanistic GRN models. The rationale of analysis and modeling can be applied to any other well-characterized functional developmental module in multicellular organisms, like plants and animals.
ERIC Educational Resources Information Center
Bergman, Lars R.
2015-01-01
Molenaar's (2015) article concerns Developmental Systems Theory (DST) in relation to behavior genetics and he presents implications of DST for empirical research, especially the need for subject-specific studies. In this commentary, the article is discussed from a broader developmental science perspective, particularly regarded through the lens of…
Model for Service Delivery for Developmental Disorders in Low-Income Countries.
Hamdani, Syed Usman; Minhas, Fareed Aslam; Iqbal, Zafar; Rahman, Atif
2015-12-01
As in many low-income countries, the treatment gap for developmental disorders in rural Pakistan is near 100%. We integrated social, technological, and business innovations to develop and pilot a potentially sustainable service for children with developmental disorders in 1 rural area. Families with developmental disorders were identified through a mobile phone-based interactive voice response system, and organized into "Family Networks." "Champion" family volunteers were trained in evidence-based interventions. An Avatar-assisted Cascade Training and information system was developed to assist with training, implementation, monitoring, and supervision. In a population of ∼30,000, we successfully established 1 self-sustaining Family Network consisting of 10 trained champion family volunteers working under supervision of specialists, providing intervention to 70 families of children with developmental disorders. Each champion was responsible for training and providing ongoing support to 5 to 7 families from his or her village, and the families supported each other in management of their children. A pre-post evaluation of the program indicated that there was significant improvement in disability and socioemotional difficulties in the child, reduction in stigmatizing experiences, and greater family empowerment to seek services and community resources for the child. There was no change in caregivers' well-being. To replicate this service more widely, a social franchise model has been developed whereby the integrated intervention will be "boxed" up and passed on to others to replicate with appropriate support. Such integrated social, technological, and business innovations have the potential to be applied to other areas of health in low-income countries. Copyright © 2015 by the American Academy of Pediatrics.
The dual pathway model of AD/HD: an elaboration of neuro-developmental characteristics.
Sonuga-Barke, Edmund J S
2003-11-01
The currently dominant neuro-cognitive model of Attention Deficit Hyperactivity Disorder (AD/HD) presents the condition as executive dysfunction (EDF) underpinned by disturbances in the fronto-dorsal striatal circuit and associated dopaminergic branches (e.g. meso-cortical). In contrast, motivationally-based accounts focus on altered reward processes and implicate fronto-ventral striatal reward circuits and those meso-limbic branches that terminate in the ventral striatum especially the nucleus accumbens. One such account, delay aversion (DEL), presents AD/HD as a motivational style-characterised by attempts to escape or avoid delay-arising from fundamental disturbances in these reward centres. While traditionally regarded as competing, EDF and DEL models have recently been presented as complimentary accounts of two psycho-patho-physiological subtypes of AD/HD with different developmental pathways, underpinned by different cortico-striatal circuits and modulated by different branches of the dopamine system. In the current paper we describe the development of this model in more detail. We elaborate on the neuro-circuitry possibly underpinning these two pathways and explore their developmental significance within a neuro-ecological framework.
NASA Astrophysics Data System (ADS)
Thakar, Juilee; Albert, Réka
The following sections are included: * Introduction * Boolean Network Concepts and History * Extensions of the Classical Boolean Framework * Boolean Inference Methods and Examples in Biology * Dynamic Boolean Models: Examples in Plant Biology, Developmental Biology and Immunology * Conclusions * References
Peterson, Tim; Müller, Gerd B
2018-01-01
Advances in imaging and modeling facilitate the calculation of biomechanical forces in biological specimens. These factors play a significant role during ontogenetic development of cichlid pharyngeal jaws, a key innovation responsible for one of the most prolific species diversifications in recent times. MicroCT imaging of radiopaque-stained vertebrate embryos were used to accurately capture the spatial relationships of the pharyngeal jaw apparatus in two cichlid species (Haplochromis elegans and Amatitlania nigrofasciata) for the purpose of creating a time series of developmental stages using finite element models, which can be used to assess the effects of biomechanical forces present in a system at multiple points of its ontogeny. Changes in muscle vector orientations, bite forces, force on the neurocranium where cartilage originates, and stress on upper pharyngeal jaws are analyzed in a comparative context. In addition, microCT scanning revealed the presence of previously unreported cement glands in A. nigrofasciata. The data obtained provide an underrepresented dimension of information on physical forces present in developmental processes and assist in interpreting the role of developmental dynamics in evolution.
Müller, Gerd B.
2018-01-01
Advances in imaging and modeling facilitate the calculation of biomechanical forces in biological specimens. These factors play a significant role during ontogenetic development of cichlid pharyngeal jaws, a key innovation responsible for one of the most prolific species diversifications in recent times. MicroCT imaging of radiopaque-stained vertebrate embryos were used to accurately capture the spatial relationships of the pharyngeal jaw apparatus in two cichlid species (Haplochromis elegans and Amatitlania nigrofasciata) for the purpose of creating a time series of developmental stages using finite element models, which can be used to assess the effects of biomechanical forces present in a system at multiple points of its ontogeny. Changes in muscle vector orientations, bite forces, force on the neurocranium where cartilage originates, and stress on upper pharyngeal jaws are analyzed in a comparative context. In addition, microCT scanning revealed the presence of previously unreported cement glands in A. nigrofasciata. The data obtained provide an underrepresented dimension of information on physical forces present in developmental processes and assist in interpreting the role of developmental dynamics in evolution. PMID:29320528
4D atlas of the mouse embryo for precise morphological staging.
Wong, Michael D; van Eede, Matthijs C; Spring, Shoshana; Jevtic, Stefan; Boughner, Julia C; Lerch, Jason P; Henkelman, R Mark
2015-10-15
After more than a century of research, the mouse remains the gold-standard model system, for it recapitulates human development and disease and is quickly and highly tractable to genetic manipulations. Fundamental to the power and success of using a mouse model is the ability to stage embryonic mouse development accurately. Past staging systems were limited by the technologies of the day, such that only surface features, visible with a light microscope, could be recognized and used to define stages. With the advent of high-throughput 3D imaging tools that capture embryo morphology in microscopic detail, we now present the first 4D atlas staging system for mouse embryonic development using optical projection tomography and image registration methods. By tracking 3D trajectories of every anatomical point in the mouse embryo from E11.5 to E14.0, we established the first 4D atlas compiled from ex vivo 3D mouse embryo reference images. The resulting 4D atlas comprises 51 interpolated 3D images in this gestational range, resulting in a temporal resolution of 72 min. From this 4D atlas, any mouse embryo image can be subsequently compared and staged at the global, voxel and/or structural level. Assigning an embryonic stage to each point in anatomy allows for unprecedented quantitative analysis of developmental asynchrony among different anatomical structures in the same mouse embryo. This comprehensive developmental data set offers developmental biologists a new, powerful staging system that can identify and compare differences in developmental timing in wild-type embryos and shows promise for localizing deviations in mutant development. © 2015. Published by The Company of Biologists Ltd.
Emoto, Chie; Johnson, Trevor N; Neuhoff, Sibylle; Hahn, David; Vinks, Alexander A; Fukuda, Tsuyoshi
2018-06-19
Morphine has large pharmacokinetic variability, which is further complicated by developmental changes in neonates and small infants. The impacts of organic cation transporter 1 (OCT1) genotype and changes in blood-flow on morphine clearance (CL) were previously demonstrated in children, whereas changes in UDP-glucuronosyltransferase 2B7 (UGT2B7) activity showed a small effect. This study, targeting neonates and small infants, was designed to assess the influence of developmental changes in OCT1 and UGT2B7 protein expression and modified blood-flow on morphine CL using physiologically based pharmacokinetic (PBPK) modeling. The implementation of these three age-dependent factors into the pediatric system platform resulted in reasonable prediction for an age-dependent increase in morphine CL in these populations. Sensitivity of morphine CL to changes in cardiac output increased with age up to 3 years, whereas sensitivity to changes in UGT2B7 activity decreased. This study suggests that morphine exhibits age-dependent extraction, likely due to the developmental increase in OCT1 and UGT2B7 protein expression/activity and hepatic blood-flow. © 2018 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.
Microphysiological models of the developing nervous system (SOT workshop session overview)
Recent advances using human stem cells and other cells that can be ushered through differentiation and developmental maturation offer an unprecedented opportunity to develop predictive systems for toxicological assessment. The use of human cells is an advantage because there is n...
Developmental abnormalities and age-related neurodegeneration in a mouse model of Down syndrome
Holtzman, David M.; Santucci, Daniela; Kilbridge, Joshua; Chua-Couzens, Jane; Fontana, David J.; Daniels, Scott E.; Johnson, Randolph M.; Chen, Karen; Sun, Yuling; Carlson, Elaine; Alleva, Enrico; Epstein, Charles J.; Mobley, William C.
1996-01-01
To study the pathogenesis of central nervous system abnormalities in Down syndrome (DS), we have analyzed a new genetic model of DS, the partial trisomy 16 (Ts65Dn) mouse. Ts65Dn mice have an extra copy of the distal aspect of mouse chromosome 16, a segment homologous to human chromosome 21 that contains much of the genetic material responsible for the DS phenotype. Ts65Dn mice show developmental delay during the postnatal period as well as abnormal behaviors in both young and adult animals that may be analogous to mental retardation. Though the Ts65Dn brain is normal on gross examination, there is age-related degeneration of septohippocampal cholinergic neurons and astrocytic hypertrophy, markers of the Alzheimer disease pathology that is present in elderly DS individuals. These findings suggest that Ts65Dn mice may be used to study certain developmental and degenerative abnormalities in the DS brain. PMID:8917591
A Very Tentative Computer System Model. Occasional Paper No. 3.
ERIC Educational Resources Information Center
Breslow, Martin P.
The developmental paper, one of a series written as the Management Information System for Occupational Education (MISOE) was conceptualized, is a first attempt to picture the computer system necessary to carry out the project's goals. It describes the basic structure and the anticipated strategies of development of the computer system to be used.…
Sporulation in Bacteria: Beyond the Standard Model.
Hutchison, Elizabeth A; Miller, David A; Angert, Esther R
2014-10-01
Endospore formation follows a complex, highly regulated developmental pathway that occurs in a broad range of Firmicutes. Although Bacillus subtilis has served as a powerful model system to study the morphological, biochemical, and genetic determinants of sporulation, fundamental aspects of the program remain mysterious for other genera. For example, it is entirely unknown how most lineages within the Firmicutes regulate entry into sporulation. Additionally, little is known about how the sporulation pathway has evolved novel spore forms and reproductive schemes. Here, we describe endospore and internal offspring development in diverse Firmicutes and outline progress in characterizing these programs. Moreover, comparative genomics studies are identifying highly conserved sporulation genes, and predictions of sporulation potential in new isolates and uncultured bacteria can be made from these data. One surprising outcome of these comparative studies is that core regulatory and some structural aspects of the program appear to be universally conserved. This suggests that a robust and sophisticated developmental framework was already in place in the last common ancestor of all extant Firmicutes that produce internal offspring or endospores. The study of sporulation in model systems beyond B. subtilis will continue to provide key information on the flexibility of the program and provide insights into how changes in this developmental course may confer advantages to cells in diverse environments.
Sleep, offline processing, and vocal learning
Margoliash, Daniel; Schmidt, Marc F
2009-01-01
The study of song learning and the neural song system has provided an important comparative model system for the study of speech and language acquisition. We describe some recent advances in the bird song system, focusing on the role of offline processing including sleep in processing sensory information and in guiding developmental song learning. These observations motivate a new model of the organization and role of the sensory memories in vocal learning. PMID:19906416
Focus On: Neurotransmitter Systems
Valenzuela, C. Fernando; Puglia, Michael P.; Zucca, Stefano
2011-01-01
Neurotransmitter systems have been long recognized as important targets of the developmental actions of alcohol (i.e., ethanol). Short- and long-term effects of ethanol on amino acid (e.g., γ-aminobutyric acid and glutamate) and biogenic amine (e.g., serotonin and dopamine) neurotransmitters have been demonstrated in animal models of fetal alcohol spectrum disorders (FASD). Researchers have detected ethanol effects after exposure during developmental periods equivalent to the first, second, and third trimesters of human pregnancy. Results support the recommendation that pregnant women should abstain from drinking—even small quantities—as effects of ethanol on neurotransmitter systems have been detected at low levels of exposure. Recent studies have elucidated new mechanisms and/or consequences of the actions of ethanol on amino acid and biogenic amine neurotransmitter systems. Alterations in these neurotransmitter systems could, in part, be responsible for many of the conditions associated with FASD, including (1) learning, memory, and attention deficits; (2) motor coordination impairments; (3) abnormal responsiveness to stress; and (4) increased susceptibility to neuropsychiatric disorders, such as substance abuse and depression, and also neurological disorders, such as epilepsy and sudden infant death syndrome. However, future research is needed to conclusively establish a causal relationship between these conditions and developmental dysfunctions in neurotransmitter systems. PMID:23580048
Colloquium: Modeling the dynamics of multicellular systems: Application to tissue engineering
NASA Astrophysics Data System (ADS)
Kosztin, Ioan; Vunjak-Novakovic, Gordana; Forgacs, Gabor
2012-10-01
Tissue engineering is a rapidly evolving discipline that aims at building functional tissues to improve or replace damaged ones. To be successful in such an endeavor, ideally, the engineering of tissues should be based on the principles of developmental biology. Recent progress in developmental biology suggests that the formation of tissues from the composing cells is often guided by physical laws. Here a comprehensive computational-theoretical formalism is presented that is based on experimental input and incorporates biomechanical principles of developmental biology. The formalism is described and it is shown that it correctly reproduces and predicts the quantitative characteristics of the fundamental early developmental process of tissue fusion. Based on this finding, the formalism is then used toward the optimization of the fabrication of tubular multicellular constructs, such as a vascular graft, by bioprinting, a novel tissue engineering technology.
Golenberg, Edward M; West, Nicholas W
2013-06-01
Most models for dioecy in flowering plants assume that dioecy arises directly from hermaphroditism through a series of independent feminizing and masculinizing mutations that become chromosomally linked. However, dioecy appears to evolve most frequently through monoecious grades. The major genetic models do not explain the evolution of unisexual flowers in monoecious and submonoecious populations, nor do they account for environmentally induced sexual plasticity. In this review, we explore the roles of environmental stress and hormones on sex determination, and propose a model that can explain the evolution of dioecy through monoecy, and the mechanisms of environmental sex determination. Environmental stresses elicit hormones that allow plants to mediate the negative effects of the stresses. Many of these same hormones are involved in the regulation of floral developmental genes. Recent studies have elucidated the mechanisms whereby these hormones interact and can act as switchpoints in regulatory pathways. Consequently, differential concentrations of plant hormones can regulate whole developmental pathways, providing a mechanism for differential development within isogenic individuals such as seen in monoecious plants. Sex-determining genes in such systems will evolve to generate clusters of coexpressed suites. Coexpression rather than coinheritance of gender-specific genes will define the sexual developmental fate. Therefore, selection for gender type will drive evolution of the regulatory sequences of such genes rather than their synteny. Subsequent mutations to hyper- or hyposensitive alleles within the hormone response pathway can result in segregating dioecious populations. Simultaneously, such developmental systems will remain sensitive to external stimuli that modify hormone responses.
Sleep, Off-Line Processing, and Vocal Learning
ERIC Educational Resources Information Center
Margoliash, Daniel; Schmidt, Marc F.
2010-01-01
The study of song learning and the neural song system has provided an important comparative model system for the study of speech and language acquisition. We describe some recent advances in the bird song system, focusing on the role of off-line processing including sleep in processing sensory information and in guiding developmental song…
Gemmel, Mary; Rayen, Ine; Lotus, Tiffany; van Donkelaar, Eva; Steinbusch, Harry W; De Lacalle, Sonsoles; Kokras, Nikolaos; Dalla, Christina; Pawluski, Jodi L
2016-04-01
Selective serotonin reuptake inhibitor medication exposure during the perinatal period can have a long term impact in adult offspring on neuroplasticity and the serotonergic system, but the impact of these medications during early development is poorly understood. The aim of this study was to determine the effects of developmental exposure to the SSRI, fluoxetine, on the serotonergic system, dopaminergic system, and synaptophysin density in the prefrontal cortex and hippocampus, as well as number of immature neurons in the dentate gyrus, in juvenile rat offspring at weaning. To model aspects of maternal depression, prenatal restraint stress was used. Sprague-Dawley rat offspring were exposed to either prenatal stress and/or fluoxetine. Main findings show that developmental fluoxetine exposure to prenatally stressed offspring decreased 5-HT and 5-HIAA levels and altered the dopaminergic system in the hippocampus. Prenatal stress, regardless of fluoxetine, increased synaptophysin density in the PFC. This work indicates that early exposure to maternal stress and SSRI medication can alter brain monoamine levels and synaptophysin density in offspring at weaning. © 2015 Wiley Periodicals, Inc.
Schmidt, Alexander; Schukat-Talamazzini, Ernst G; Zöllkau, Janine; Pytlik, Adelina; Leibl, Sophia; Kumm, Kathrin; Bode, Franziska; Kynass, Isabelle; Witte, Otto W; Schleussner, Ekkehard; Schneider, Uwe; Hoyer, Dirk
2018-07-01
Adverse prenatal environmental influences to the developing fetus are associated with mental and cardiovascular disease in later life. Universal developmental characteristics such as self-organization, pattern formation, and adaptation in the growing information processing system have not yet been sufficiently analyzed with respect to description of normal fetal development and identification of developmental disturbances. Fetal heart rate patterns are the only non-invasive order parameter of the developing autonomic brain available with respect to the developing complex organ system. The objective of the present study was to investigate whether universal indices, known from evolution and phylogeny, describe the ontogenetic fetal development from 20 weeks of gestation onwards. By means of a 10-fold cross-validated data-driven multivariate regression modeling procedure, relevant indices of heart rate variability (HRV) were explored using 552 fetal heart rate recordings, each lasting over 30 min. We found that models which included HRV indices of increasing fluctuation amplitude, complexity and fractal long-range dependencies largely estimated the maturation age (coefficients of determination 0.61-0.66). Consideration of these characteristics in prenatal care may not only have implications for early identification of developmental disturbances, but also for the development of system-theory-based therapeutic strategies. Copyright © 2018 Elsevier B.V. All rights reserved.
Sobotka, Sarah A; Agrawal, Rishi K; Msall, Michael E
2017-10-01
Children with ventilator assistance have been supported in living at home since 1981 when parental advocacy ushered in a change to Medicaid policy. As the population of children who use medical technology such as long-term ventilation increases, we must critically evaluate our systems for preparing families for home life. Discharge delays persist in the modern era because of fragmentation between hospital and home systems. These discharge delays result in children spending time in less developmentally rich environments, further exacerbating the health and development disparities of children with complex disabilities. In this article, we discuss the complication of hospital discharge and how it contributes to health and developmental disparities. We also describe a hospital-to-home transitional care model, which presents a home-like environment to provide developmental support while focusing on parental training, home nursing, and public-funding arrangements. [Pediatr Ann. 2017;46(10):e365-e370.]. Copyright 2017, SLACK Incorporated.
Lee, Wenjau; Yang, Kun-Lin
2014-10-01
The electromagnetic fields (EMFs) of anthropogenic origin are ubiquitous in our environments. The health hazard of extremely low frequency and radiofrequency EMFs has been investigated for decades, but evidence remains inconclusive, and animal studies are urgently needed to resolve the controversies regarding developmental toxicity of EMFs. Furthermore, as undersea cables and technological devices are increasingly used, the lack of information regarding the health risk of EMFs to aquatic organisms needs to be addressed. Medaka embryos (Oryzias latipes) have been a useful tool to study developmental toxicity in vivo due to their optical transparency. Here we explored the feasibility of using medaka embryos as a model system to study biological effects of EMFs on development. We also used a white preference test to investigate behavioral consequences of the EMF developmental toxicity. Newly fertilized embryos were randomly assigned to four groups that were exposed to an EMF with 3.2kHz at the intensity of 0.12, 15, 25, or 60µT. The group exposed to the background 0.12µT served as the control. The embryos were exposed continually until hatch. They were observed daily, and the images were recorded for analysis of several developmental endpoints. Four days after hatching, the hatchlings were tested with the white preference test for their anxiety-like behavior. The results showed that embryos exposed to all three levels of the EMF developed significantly faster. The endpoints affected included the number of somites, eye width and length, eye pigmentation density, midbrain width, head growth, and the day to hatch. In addition, the group exposed to the EMF at 60µT exhibited significantly higher levels of anxiety-like behavior than the other groups did. In conclusion, the EMF tested in this study accelerated embryonic development and heightened anxiety-like behavior. Our results also demonstrate that the medaka embryo is a sensitive and cost-efficient in vivo model system to study developmental toxicity of EMFs. Copyright © 2014 Elsevier Inc. All rights reserved.
Lerner, Richard M
2015-06-01
The bold claim that developmental science can contribute to both enhancing positive development among diverse individuals across the life span and promoting social justice in their communities, nations and regions is supported by decades of theoretical, methodological and research contributions. To explain the basis of this claim, I describe the relational developmental systems (RDS) metamodel that frames contemporary developmental science, and I present an example of a programme of research within the adolescent portion of the life span that is associated with this metamodel and is pertinent to promoting positive human development. I then discuss methodological issues associated with using RDS-based models as frames for research and application. Finally, I explain how the theoretical and methodological ideas associated with RDS thinking may provide the scholarly tools needed by developmental scientists seeking to contribute to human thriving and to advance social justice in the Global South. © 2015 International Union of Psychological Science.
The measurement and prevalence of an ideational model of family and economic development in Nepal
Thornton, Arland; Ghimire, Dirgha J.; Mitchell, Colter
2012-01-01
This paper is motivated by the expectation that developmental idealism has been disseminated to ordinary people and affects family behavior. Developmental idealism is a belief and value system that endorses societal and family development, views societal and family development as occurring together, and suggests that modern families are causes and consequences of societal development. We use data collected in Nepal in 2003 to examine the understandings of ordinary people and show that Nepalis can discuss ideas about development and its relationship to family life and that developmental idealism has been widely disseminated in Nepal. Developmental idealism is related in predictable ways to education, work experience, rural-urban residence, and mass media exposure. Although research ascertaining the influence of developmental idealism on demographic decision-making and behavior would be valuable, we cannot evaluate this with our one-time crossectional data, but our data and theory suggest that this influence may be substantial. PMID:22963536
Evolutionary crossroads in developmental biology: Cnidaria
Technau, Ulrich; Steele, Robert E.
2011-01-01
There is growing interest in the use of cnidarians (corals, sea anemones, jellyfish and hydroids) to investigate the evolution of key aspects of animal development, such as the formation of the third germ layer (mesoderm), the nervous system and the generation of bilaterality. The recent sequencing of the Nematostella and Hydra genomes, and the establishment of methods for manipulating gene expression, have inspired new research efforts using cnidarians. Here, we present the main features of cnidarian models and their advantages for research, and summarize key recent findings using these models that have informed our understanding of the evolution of the developmental processes underlying metazoan body plan formation. PMID:21389047
Evolutionary crossroads in developmental biology: Cnidaria.
Technau, Ulrich; Steele, Robert E
2011-04-01
There is growing interest in the use of cnidarians (corals, sea anemones, jellyfish and hydroids) to investigate the evolution of key aspects of animal development, such as the formation of the third germ layer (mesoderm), the nervous system and the generation of bilaterality. The recent sequencing of the Nematostella and Hydra genomes, and the establishment of methods for manipulating gene expression, have inspired new research efforts using cnidarians. Here, we present the main features of cnidarian models and their advantages for research, and summarize key recent findings using these models that have informed our understanding of the evolution of the developmental processes underlying metazoan body plan formation.
ERIC Educational Resources Information Center
Molenaar, Peter C. M.
2015-01-01
The main theme of this paper concerns the persistent critique of Gilbert Gottlieb on developmental behavior genetics and my reactions to this critique, the latter changing from rejection to complete acceptation. Concise characterizations of developmental behavior genetics, developmental systems theory (to which Gottlieb made essential…
ERIC Educational Resources Information Center
Cihak, David F.; Smith, Catherine C.; Cornett, Ashlee; Coleman, Mari Beth
2012-01-01
The use of video modeling (VM) procedures in conjunction with the picture exchange communication system (PECS) to increase independent communicative initiations in preschool-age students was evaluated in this study. The four participants were 3-year-old children with limited communication skills prior to the intervention. Two of the students had…
Computational Tools for Stem Cell Biology
Bian, Qin; Cahan, Patrick
2016-01-01
For over half a century, the field of developmental biology has leveraged computation to explore mechanisms of developmental processes. More recently, computational approaches have been critical in the translation of high throughput data into knowledge of both developmental and stem cell biology. In the last several years, a new sub-discipline of computational stem cell biology has emerged that synthesizes the modeling of systems-level aspects of stem cells with high-throughput molecular data. In this review, we provide an overview of this new field and pay particular attention to the impact that single-cell transcriptomics is expected to have on our understanding of development and our ability to engineer cell fate. PMID:27318512
Computational Tools for Stem Cell Biology.
Bian, Qin; Cahan, Patrick
2016-12-01
For over half a century, the field of developmental biology has leveraged computation to explore mechanisms of developmental processes. More recently, computational approaches have been critical in the translation of high throughput data into knowledge of both developmental and stem cell biology. In the past several years, a new subdiscipline of computational stem cell biology has emerged that synthesizes the modeling of systems-level aspects of stem cells with high-throughput molecular data. In this review, we provide an overview of this new field and pay particular attention to the impact that single cell transcriptomics is expected to have on our understanding of development and our ability to engineer cell fate. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tonelli, Paul; Mouret, Jean-Baptiste
2013-01-01
A major goal of bio-inspired artificial intelligence is to design artificial neural networks with abilities that resemble those of animal nervous systems. It is commonly believed that two keys for evolving nature-like artificial neural networks are (1) the developmental process that links genes to nervous systems, which enables the evolution of large, regular neural networks, and (2) synaptic plasticity, which allows neural networks to change during their lifetime. So far, these two topics have been mainly studied separately. The present paper shows that they are actually deeply connected. Using a simple operant conditioning task and a classic evolutionary algorithm, we compare three ways to encode plastic neural networks: a direct encoding, a developmental encoding inspired by computational neuroscience models, and a developmental encoding inspired by morphogen gradients (similar to HyperNEAT). Our results suggest that using a developmental encoding could improve the learning abilities of evolved, plastic neural networks. Complementary experiments reveal that this result is likely the consequence of the bias of developmental encodings towards regular structures: (1) in our experimental setup, encodings that tend to produce more regular networks yield networks with better general learning abilities; (2) whatever the encoding is, networks that are the more regular are statistically those that have the best learning abilities. PMID:24236099
Developmental regulation of fear learning and anxiety behavior by endocannabinoids.
Lee, T T-Y; Hill, M N; Lee, F S
2016-01-01
The developing brain undergoes substantial maturation into adulthood and the development of specific neural structures occurs on differing timelines. Transient imbalances between developmental trajectories of corticolimbic structures, which are known to contribute to regulation over fear learning and anxiety, can leave an individual susceptible to mental illness, particularly anxiety disorders. There is a substantial body of literature indicating that the endocannabinoid (eCB) system critically regulates stress responsivity and emotional behavior throughout the life span, making this system a novel therapeutic target for stress- and anxiety-related disorders. During early life and adolescence, corticolimbic eCB signaling changes dynamically and coincides with different sensitive periods of fear learning, suggesting that eCB signaling underlies age-specific fear learning responses. Moreover, perturbations to these normative fluctuations in corticolimbic eCB signaling, such as stress or cannabinoid exposure, could serve as a neural substrate contributing to alterations to the normative developmental trajectory of neural structures governing emotional behavior and fear learning. In this review, we first introduce the components of the eCB system and discuss clinical and rodent models showing eCB regulation of fear learning and anxiety in adulthood. Next, we highlight distinct fear learning and regulation profiles throughout development and discuss the ontogeny of the eCB system in the central nervous system, and models of pharmacological augmentation of eCB signaling during development in the context of fear learning and anxiety. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Maruta, Naomichi; Marumoto, Moegi
2017-01-01
Lung branching morphogenesis has been studied for decades, but the underlying developmental mechanisms are still not fully understood. Cellular movements dynamically change during the branching process, but it is difficult to observe long-term cellular dynamics by in vivo or tissue culture experiments. Therefore, developing an in vitro experimental model of bronchial tree would provide an essential tool for developmental biology, pathology, and systems biology. In this study, we succeeded in reconstructing a bronchial tree in vitro by using primary human bronchial epithelial cells. A high concentration gradient of bronchial epithelial cells was required for branching initiation, whereas homogeneously distributed endothelial cells induced the formation of successive branches. Subsequently, the branches grew in size to the order of millimeter. The developed model contains only two types of cells and it facilitates the analysis of lung branching morphogenesis. By taking advantage of our experimental model, we carried out long-term time-lapse observations, which revealed self-assembly, collective migration with leader cells, rotational motion, and spiral motion of epithelial cells in each developmental event. Mathematical simulation was also carried out to analyze the self-assembly process and it revealed simple rules that govern cellular dynamics. Our experimental model has provided many new insights into lung development and it has the potential to accelerate the study of developmental mechanisms, pattern formation, left–right asymmetry, and disease pathogenesis of the human lung. PMID:28471293
The cellular and molecular basis of cnidarian neurogenesis.
Rentzsch, Fabian; Layden, Michael; Manuel, Michaël
2017-01-01
Neurogenesis initiates during early development and it continues through later developmental stages and in adult animals to enable expansion, remodeling, and homeostasis of the nervous system. The generation of nerve cells has been analyzed in detail in few bilaterian model organisms, leaving open many questions about the evolution of this process. As the sister group to bilaterians, cnidarians occupy an informative phylogenetic position to address the early evolution of cellular and molecular aspects of neurogenesis and to understand common principles of neural development. Here we review studies in several cnidarian model systems that have revealed significant similarities and interesting differences compared to neurogenesis in bilaterian species, and between different cnidarian taxa. Cnidarian neurogenesis is currently best understood in the sea anemone Nematostella vectensis, where it includes epithelial neural progenitor cells that express transcription factors of the soxB and atonal families. Notch signaling regulates the number of these neural progenitor cells, achaete-scute and dmrt genes are required for their further development and Wnt and BMP signaling appear to be involved in the patterning of the nervous system. In contrast to many vertebrates and Drosophila, cnidarians have a high capacity to generate neurons throughout their lifetime and during regeneration. Utilizing this feature of cnidarian biology will likely allow gaining new insights into the similarities and differences of embryonic and regenerative neurogenesis. The use of different cnidarian model systems and their expanding experimental toolkits will thus continue to provide a better understanding of evolutionary and developmental aspects of nervous system formation. WIREs Dev Biol 2017, 6:e257. doi: 10.1002/wdev.257 For further resources related to this article, please visit the WIREs website. © 2016 The Authors. WIREs Developmental Biology published by Wiley Periodicals, Inc.
Mass trauma: disasters, terrorism, and war.
Chrisman, Allan K; Dougherty, Joseph G
2014-04-01
Disasters, war, and terrorism expose millions of children globally to mass trauma with increasing frequency and severity. The clinical impact of such exposure is influenced by a child's social ecology, which is understood in a risk and resilience framework. Research findings informed by developmental systems theory and the related core principles of contemporary developmental psychopathology are reviewed. Their application to the recent recommendations for interventions based on evolving public health models of community resilience are discussed along with practical clinical tools for individual response. Published by Elsevier Inc.
Arabidopsis: an adequate model for dicot root systems
USDA-ARS?s Scientific Manuscript database
In the search for answers to pressing root developmental genetic issues, plant science has turned to a small genome dicot plant (Arabidopsis) to be used as a model to study and use to develop hypotheses for testing other species. Through out the published research only three classes of root are des...
Model Development and Replication: Introducing and Sustaining Change
ERIC Educational Resources Information Center
Garland, Corinne W.
2005-01-01
This article describes the three-decade experience in model development and replication and in introducing and sustaining organization change of Child Development Resources (CDR), of Williamsburg, Virginia. CDR provides an integrated system of services for children with disabilities and developmental delays as well as for children who are at risk.…
Developmental neurotoxicity of pyrethroid insecticides in zebrafish embryos.
DeMicco, Amy; Cooper, Keith R; Richardson, Jason R; White, Lori A
2010-01-01
Pyrethroid insecticides are one of the most commonly used residential and agricultural insecticides. Based on the increased use of pyrethroids and recent studies showing that pregnant women and children are exposed to pyrethroids, there are concerns over the potential for developmental neurotoxicity. However, there have been relatively few studies on the developmental neurotoxicity of pyrethroids. In this study, we sought to investigate the developmental toxicity of six common pyrethroids, three type I compounds (permethrin, resmethrin, and bifenthrin) and three type II compounds (deltamethrin, cypermethrin, and lambda-cyhalothrin), and to determine whether zebrafish embryos may be an appropriate model for studying the developmental neurotoxicity of pyrethroids. Exposure of zebrafish embryos to pyrethroids caused a dose-dependent increase in mortality and pericardial edema, with type II compounds being the most potent. At doses approaching the LC(50), permethrin and deltamethrin caused craniofacial abnormalities. These findings are consistent with mammalian studies demonstrating that pyrethroids are mildly teratogenic at very high doses. However, at lower doses, body axis curvature and spasms were observed, which were reminiscent of the classic syndromes observed with pyrethroid toxicity. Treatment with diazepam ameliorated the spasms, while treatment with the sodium channel antagonist MS-222 ameliorated both spasms and body curvature, suggesting that pyrethroid-induced neurotoxicity is similar in zebrafish and mammals. Taken in concert, these data suggest that zebrafish may be an appropriate alternative model to study the mechanism(s) responsible for the developmental neurotoxicity of pyrethroid insecticides and aid in identification of compounds that should be further tested in mammalian systems.
Developmental Neurotoxicity of Pyrethroid Insecticides in Zebrafish Embryos
DeMicco, Amy; Cooper, Keith R.; Richardson, Jason R.; White, Lori A.
2010-01-01
Pyrethroid insecticides are one of the most commonly used residential and agricultural insecticides. Based on the increased use of pyrethroids and recent studies showing that pregnant women and children are exposed to pyrethroids, there are concerns over the potential for developmental neurotoxicity. However, there have been relatively few studies on the developmental neurotoxicity of pyrethroids. In this study, we sought to investigate the developmental toxicity of six common pyrethroids, three type I compounds (permethrin, resmethrin, and bifenthrin) and three type II compounds (deltamethrin, cypermethrin, and λ-cyhalothrin), and to determine whether zebrafish embryos may be an appropriate model for studying the developmental neurotoxicity of pyrethroids. Exposure of zebrafish embryos to pyrethroids caused a dose-dependent increase in mortality and pericardial edema, with type II compounds being the most potent. At doses approaching the LC50, permethrin and deltamethrin caused craniofacial abnormalities. These findings are consistent with mammalian studies demonstrating that pyrethroids are mildly teratogenic at very high doses. However, at lower doses, body axis curvature and spasms were observed, which were reminiscent of the classic syndromes observed with pyrethroid toxicity. Treatment with diazepam ameliorated the spasms, while treatment with the sodium channel antagonist MS-222 ameliorated both spasms and body curvature, suggesting that pyrethroid-induced neurotoxicity is similar in zebrafish and mammals. Taken in concert, these data suggest that zebrafish may be an appropriate alternative model to study the mechanism(s) responsible for the developmental neurotoxicity of pyrethroid insecticides and aid in identification of compounds that should be further tested in mammalian systems. PMID:19861644
Bijleveld, Yuma A; de Haan, Timo R; van der Lee, Johanna H; Groenendaal, Floris; Dijk, Peter H; van Heijst, Arno; de Jonge, Rogier C J; Dijkman, Koen P; van Straaten, Henrica L M; Rijken, Monique; Zonnenberg, Inge A; Cools, Filip; Zecic, Alexandra; Nuytemans, Debbie H G M; van Kaam, Anton H; Mathôt, Ron A A
2018-04-01
The pharmacokinetic (PK) properties of intravenous (i.v.) benzylpenicillin in term neonates undergoing moderate hypothermia after perinatal asphyxia were evaluated, as they have been unknown until now. A system-specific modeling approach was applied, in which our recently developed covariate model describing developmental and temperature-induced changes in amoxicillin clearance (CL) in the same patient study population was incorporated into a population PK model of benzylpenicillin with a priori birthweight (BW)-based allometric scaling. Pediatric population covariate models describing the developmental changes in drug elimination may constitute system-specific information and may therefore be incorporated into PK models of drugs cleared through the same pathway. The performance of this system-specific model was compared to that of a reference model. Furthermore, Monte-Carlo simulations were performed to evaluate the optimal dose. The system-specific model performed as well as the reference model. Significant correlations were found between CL and postnatal age (PNA), gestational age (GA), body temperature (TEMP), urine output (UO; system-specific model), and multiorgan failure (reference model). For a typical patient with a GA of 40 weeks, BW of 3,000 g, PNA of 2 days (TEMP, 33.5°C), and normal UO (2 ml/kg/h), benzylpenicillin CL was 0.48 liter/h (interindividual variability [IIV] of 49%) and the volume of distribution of the central compartment was 0.62 liter/kg (IIV of 53%) in the system-specific model. Based on simulations, we advise a benzylpenicillin i.v. dose regimen of 75,000 IU/kg/day every 8 h (q8h), 150,000 IU/kg/day q8h, and 200,000 IU/kg/day q6h for patients with GAs of 36 to 37 weeks, 38 to 41 weeks, and ≥42 weeks, respectively. The system-specific model may be used for other drugs cleared through the same pathway accelerating model development. Copyright © 2018 American Society for Microbiology.
Character: A Multifaceted Developmental System
ERIC Educational Resources Information Center
Nucci, Larry
2017-01-01
Character is a developmental system embedded within the self-system. This Relational Developmental Systems (RDS) view is in juxtaposition with virtue theory and accounts of character in terms of moral identity. The character system includes 4 components 3 of which: basic moral cognition (as described within domain theory); other regarding; and…
Frost, Ram
2012-10-01
I have argued that orthographic processing cannot be understood and modeled without considering the manner in which orthographic structure represents phonological, semantic, and morphological information in a given writing system. A reading theory, therefore, must be a theory of the interaction of the reader with his/her linguistic environment. This outlines a novel approach to studying and modeling visual word recognition, an approach that focuses on the common cognitive principles involved in processing printed words across different writing systems. These claims were challenged by several commentaries that contested the merits of my general theoretical agenda, the relevance of the evolution of writing systems, and the plausibility of finding commonalities in reading across orthographies. Other commentaries extended the scope of the debate by bringing into the discussion additional perspectives. My response addresses all these issues. By considering the constraints of neurobiology on modeling reading, developmental data, and a large scope of cross-linguistic evidence, I argue that front-end implementations of orthographic processing that do not stem from a comprehensive theory of the complex information conveyed by writing systems do not present a viable approach for understanding reading. The common principles by which writing systems have evolved to represent orthographic, phonological, and semantic information in a language reveal the critical distributional characteristics of orthographic structure that govern reading behavior. Models of reading should thus be learning models, primarily constrained by cross-linguistic developmental evidence that describes how the statistical properties of writing systems shape the characteristics of orthographic processing. When this approach is adopted, a universal model of reading is possible.
Responsive Systems Consultation: A Model for Conjoint Consultation Preliminary Results.
ERIC Educational Resources Information Center
Prasad-Gaur, Archna; And Others
Responsive Systems Consultation (RSC) is an approach for enhancing children's developmental outcomes and involves a psychological or educational consultant working jointly with a child's parents and teachers. The impact of the RSC on parent and teacher consultees' attitudes toward home-school collaboration and their evaluation of the consultation…
Pick, Thea R; Bräutigam, Andrea; Schlüter, Urte; Denton, Alisandra K; Colmsee, Christian; Scholz, Uwe; Fahnenstich, Holger; Pieruschka, Roland; Rascher, Uwe; Sonnewald, Uwe; Weber, Andreas P M
2011-12-01
We systematically analyzed a developmental gradient of the third maize (Zea mays) leaf from the point of emergence into the light to the tip in 10 continuous leaf slices to study organ development and physiological and biochemical functions. Transcriptome analysis, oxygen sensitivity of photosynthesis, and photosynthetic rate measurements showed that the maize leaf undergoes a sink-to-source transition without an intermediate phase of C(3) photosynthesis or operation of a photorespiratory carbon pump. Metabolome and transcriptome analysis, chlorophyll and protein measurements, as well as dry weight determination, showed continuous gradients for all analyzed items. The absence of binary on-off switches and regulons pointed to a morphogradient along the leaf as the determining factor of developmental stage. Analysis of transcription factors for differential expression along the leaf gradient defined a list of putative regulators orchestrating the sink-to-source transition and establishment of C(4) photosynthesis. Finally, transcriptome and metabolome analysis, as well as enzyme activity measurements, and absolute quantification of selected metabolites revised the current model of maize C(4) photosynthesis. All data sets are included within the publication to serve as a resource for maize leaf systems biology.
Pick, Thea R.; Bräutigam, Andrea; Schlüter, Urte; Denton, Alisandra K.; Colmsee, Christian; Scholz, Uwe; Fahnenstich, Holger; Pieruschka, Roland; Rascher, Uwe; Sonnewald, Uwe; Weber, Andreas P.M.
2011-01-01
We systematically analyzed a developmental gradient of the third maize (Zea mays) leaf from the point of emergence into the light to the tip in 10 continuous leaf slices to study organ development and physiological and biochemical functions. Transcriptome analysis, oxygen sensitivity of photosynthesis, and photosynthetic rate measurements showed that the maize leaf undergoes a sink-to-source transition without an intermediate phase of C3 photosynthesis or operation of a photorespiratory carbon pump. Metabolome and transcriptome analysis, chlorophyll and protein measurements, as well as dry weight determination, showed continuous gradients for all analyzed items. The absence of binary on–off switches and regulons pointed to a morphogradient along the leaf as the determining factor of developmental stage. Analysis of transcription factors for differential expression along the leaf gradient defined a list of putative regulators orchestrating the sink-to-source transition and establishment of C4 photosynthesis. Finally, transcriptome and metabolome analysis, as well as enzyme activity measurements, and absolute quantification of selected metabolites revised the current model of maize C4 photosynthesis. All data sets are included within the publication to serve as a resource for maize leaf systems biology. PMID:22186372
The Dynamic between Work Values and Part-Time Work Experiences across the High School Years
ERIC Educational Resources Information Center
Porfeli, Erik J.
2008-01-01
The work value system, its development, and its relationship with work experiences can be modeled as an adaptive control system [Ford, D. H., & Lerner, R. M. (1992). "Developmental systems theory: An integrative approach". Newbury Park, CA: Sage Publications]. This study employed longitudinal data from 1000 participants (Youth Development Study;…
A hierarchical competing systems model of the emergence and early development of executive function
Marcovitch, Stuart; Zelazo, Philip David
2010-01-01
The hierarchical competing systems model (HCSM) provides a framework for understanding the emergence and early development of executive function – the cognitive processes underlying the conscious control of behavior – in the context of search for hidden objects. According to this model, behavior is determined by the joint influence of a developmentally invariant habit system and a conscious representational system that becomes increasingly influential as children develop. This article describes a computational formalization of the HCSM, reviews behavioral and computational research consistent with the model, and suggests directions for future research on the development of executive function. PMID:19120405
McCauley, Heather A; Wells, James M
2017-03-15
Pluripotent stem cell (PSC)-derived organoids are miniature, three-dimensional human tissues generated by the application of developmental biological principles to PSCs in vitro The approach to generate organoids uses a combination of directed differentiation, morphogenetic processes, and the intrinsically driven self-assembly of cells that mimics organogenesis in the developing embryo. The resulting organoids have remarkable cell type complexity, architecture and function similar to their in vivo counterparts. In the past five years, human PSC-derived organoids with components of all three germ layers have been generated, resulting in the establishment of a new human model system. Here, and in the accompanying poster, we provide an overview of how principles of developmental biology have been essential for generating human organoids in vitro , and how organoids are now being used as a primary research tool to investigate human developmental biology. © 2017. Published by The Company of Biologists Ltd.
DOSE-RESPONSE ASSESSMENT FOR DEVELOPMENTAL TOXICITY III. STATISTICAL MODELS
Although quantitative modeling has been central to cancer risk assessment for years, the concept of do@e-response modeling for developmental effects is relatively new. he benchmark dose (BMD) approach has been proposed for use with developmental (as well as other noncancer) endpo...
VIII. THE PAST, PRESENT, AND FUTURE OF DEVELOPMENTAL METHODOLOGY.
Little, Todd D; Wang, Eugene W; Gorrall, Britt K
2017-06-01
This chapter selectively reviews the evolution of quantitative practices in the field of developmental methodology. The chapter begins with an overview of the past in developmental methodology, discussing the implementation and dissemination of latent variable modeling and, in particular, longitudinal structural equation modeling. It then turns to the present state of developmental methodology, highlighting current methodological advances in the field. Additionally, this section summarizes ample quantitative resources, ranging from key quantitative methods journal articles to the various quantitative methods training programs and institutes. The chapter concludes with the future of developmental methodology and puts forth seven future innovations in the field. The innovations discussed span the topics of measurement, modeling, temporal design, and planned missing data designs. Lastly, the chapter closes with a brief overview of advanced modeling techniques such as continuous time models, state space models, and the application of Bayesian estimation in the field of developmental methodology. © 2017 The Society for Research in Child Development, Inc.
Decker, Johannes H.; Otto, A. Ross; Daw, Nathaniel D.; Hartley, Catherine A.
2016-01-01
Theoretical models distinguish two decision-making strategies that have been formalized in reinforcement-learning theory. A model-based strategy leverages a cognitive model of potential actions and their consequences to make goal-directed choices, whereas a model-free strategy evaluates actions based solely on their reward history. Research in adults has begun to elucidate the psychological mechanisms and neural substrates underlying these learning processes and factors that influence their relative recruitment. However, the developmental trajectory of these evaluative strategies has not been well characterized. In this study, children, adolescents, and adults, performed a sequential reinforcement-learning task that enables estimation of model-based and model-free contributions to choice. Whereas a model-free strategy was evident in choice behavior across all age groups, evidence of a model-based strategy only emerged during adolescence and continued to increase into adulthood. These results suggest that recruitment of model-based valuation systems represents a critical cognitive component underlying the gradual maturation of goal-directed behavior. PMID:27084852
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webb, Carol F., E-mail: carol-webb@omrf.org; Immunobiology and Cancer Research, Oklahoma Medical Research Foundation, Oklahoma City, OK; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
Despite exciting new possibilities for regenerative therapy posed by the ability to induce pluripotent stem cells, recapitulation of three-dimensional kidneys for repair or replacement has not been possible. ARID3a-deficient mouse tissues generated multipotent, developmentally plastic cells. Therefore, we assessed the adult mouse ARID3a−/− kidney cell line, KKPS5, which expresses renal progenitor surface markers as an alternative cell source for modeling kidney development. Remarkably, these cells spontaneously developed into multicellular nephron-like structures in vitro, and engrafted into immunocompromised medaka mesonephros, where they formed mouse nephron structures. These data implicate KKPS5 cells as a new model system for studying kidney development. - Highlights:more » • An ARID3a-deficient mouse kidney cell line expresses multiple progenitor markers. • This cell line spontaneously forms multiple nephron-like structures in vitro. • This cell line formed mouse kidney structures in immunocompromised medaka fish kidneys. • Our data identify a novel model system for studying kidney development.« less
The Alternative Peer Group: A Developmentally Appropriate Recovery Support Model for Adolescents.
Nash, Angela; Collier, Crystal
2016-01-01
Recovery as the goal for substance use disorder treatment has been a key component of the Substance Abuse and Mental Health Services Administration's mission for the past decade. Consistent with their mission, there is a call for research and development of recovery-oriented systems of care to support affected individuals through all stages of the recovery process. Evidence is emerging to support recovery practice and research for adults, but recovery-oriented models for adolescents are scant. The Alternative Peer Group (APG) is a comprehensive adolescent recovery support model that integrates recovering peers and prosocial activities into evidence-based clinical practice. Employing APG participants' own words, this article will describe the essential elements and three theoretical frameworks underlying the APG model to illustrate how the APG serves as a developmentally appropriate recovery support service for adolescents with substance use disorder.
Kohli, Vikram; Elezzabi, Abdulhakem Y
2008-01-01
Background Femtosecond (fs) laser pulses have recently received wide interest as an alternative tool for manipulating living biological systems. In various model organisms the excision of cellular components and the intracellular delivery of foreign exogenous materials have been reported. However, the effect of the applied fs laser pulses on cell viability and development has yet to be determined. Using the zebrafish (Danio rerio) as our animal model system, we address both the short- and long-term developmental changes following laser surgery on zebrafish embryonic cells. Results An exogenous fluorescent probe, fluorescein isothiocyanate (FITC), was successfully introduced into blastomere cells and found to diffuse throughout all developing cells. Using the reported manipulation tool, we addressed whether the applied fs laser pulses induced any short- or long-term developmental effects in embryos reared to 2 and 7 days post-fertilization (dpf). Using light microscopy and scanning electron microscopy we compared key developmental features of laser-manipulated and control samples, including the olfactory pit, dorsal, ventral and pectoral fins, notochord, pectoral fin buds, otic capsule, otic vesicle, neuromast patterning, and kinocilia of the olfactory pit rim and cristae of the lateral wall of the ear. Conclusion In our study, no significant differences in hatching rates and developmental morphologies were observed in laser-manipulated samples relative to controls. This tool represents an effective non-destructive technique for potential medical and biological applications. PMID:18230185
Luyten, Patrick; Fonagy, Peter
2017-10-09
The Research Domain Criteria (RDoC) propose a much-needed change in approach to the study of vulnerability factors implicated in mental disorders, shifting away from a categorical, disease-oriented model to a dimensional approach that focuses on underlying systems implicated in psychopathology. In this paper we illustrate this approach with a focus on the emergence of depression in childhood and adolescence. Based on evolutionary biological and developmental psychopathology considerations, we present an integrative developmental cascade model of depression that essentially suggests that depression emerges out of a three-pronged series of interacting impairments in the domains of stress regulation, reward, and mentalizing. We discuss the relation of these impairments to the five domains proposed by RDoC. We also focus on how this model may explain in large part the marked comorbidity of depression with other psychiatric disorders, as well as with functional somatic and somatic disorders. Limitations of this theoretical approach are discussed, as well as implications for the development, evaluation, and dissemination of interventions aimed at preventing or treating depression. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sordaria macrospora, a model organism to study fungal cellular development.
Engh, Ines; Nowrousian, Minou; Kück, Ulrich
2010-12-01
During the development of multicellular eukaryotes, the processes of cellular growth and organogenesis are tightly coordinated. Since the 1940s, filamentous fungi have served as genetic model organisms to decipher basic mechanisms underlying eukaryotic cell differentiation. Here, we focus on Sordaria macrospora, a homothallic ascomycete and important model organism for developmental biology. During its sexual life cycle, S. macrospora forms three-dimensional fruiting bodies, a complex process involving the formation of different cell types. S. macrospora can be used for genetic, biochemical and cellular experimental approaches since diverse tools, including fluorescence microscopy, a marker recycling system and gene libraries, are available. Moreover, the genome of S. macrospora has been sequenced and allows functional genomics analyses. Over the past years, our group has generated and analysed a number of developmental mutants which has greatly enhanced our fundamental understanding about fungal morphogenesis. In addition, our recent research activities have established a link between developmental proteins and conserved signalling cascades, ultimately leading to a regulatory network controlling differentiation processes in a eukaryotic model organism. This review summarizes the results of our recent findings, thus advancing current knowledge of the general principles and paradigms underpinning eukaryotic cell differentiation and development. Copyright © 2010 Elsevier GmbH. All rights reserved.
The Need for Developmental Models in Supervising School Counselors
ERIC Educational Resources Information Center
Gallo, Laura L.
2013-01-01
Developmental models, like Stoltenberg, McNeil, and Delworth's integrated developmental model (IDM) for supervision (1998), provide supervisors with an important resource in understanding and managing the counseling student's development and experience. The current status of school counseling supervision is discussed as well as the…
Beauchaine, Theodore P.; Gatzke-Kopp, Lisa M.
2014-01-01
During the last quarter century, developmental psychopathology has become increasingly inclusive and now spans disciplines ranging from psychiatric genetics to primary prevention. As a result, developmental psychopathologists have extended traditional diathesis–stress and transactional models to include causal processes at and across all relevant levels of analysis. Such research is embodied in what is known as the multiple levels of analysis perspective. We describe how multiple levels of analysis research has informed our current thinking about antisocial and borderline personality development among trait impulsive and therefore vulnerable individuals. Our approach extends the multiple levels of analysis perspective beyond simple Biology × Environment interactions by evaluating impulsivity across physiological systems (genetic, autonomic, hormonal, neural), psychological constructs (social, affective, motivational), developmental epochs (preschool, middle childhood, adolescence, adulthood), sexes (male, female), and methods of inquiry (self-report, informant report, treatment outcome, cardiovascular, electrophysiological, neuroimaging). By conducting our research using any and all available methods across these levels of analysis, we have arrived at a developmental model of trait impulsivity that we believe confers a greater understanding of this highly heritable trait and captures at least some heterogeneity in key behavioral outcomes, including delinquency and suicide. PMID:22781868
Lettieri, Anna; Esposito, Rosaria; Ianora, Adrianna; Spagnuolo, Antonietta
2015-01-01
The anti-proliferative effects of diatoms, described for the first time in copepods, have also been demonstrated in benthic invertebrates such as polychaetes, sea urchins and tunicates. In these organisms PUAs (polyunsaturated aldehydes) induce the disruption of gametogenesis, gamete functionality, fertilization, embryonic mitosis, and larval fitness and competence. These inhibitory effects are due to the PUAs, produced by diatoms in response to physical damage as occurs during copepod grazing. The cell targets of these compounds remain largely unknown. Here we identify some of the genes targeted by the diatom PUA 2-trans-4-trans-decadienal (DD) using the tunicate Ciona intestinalis. The tools, techniques and genomic resources available for Ciona, as well as the suitability of Ciona embryos for medium-to high-throughput strategies, are key to their employment as model organisms in different fields, including the investigation of toxic agents that could interfere with developmental processes. We demonstrate that DD can induce developmental aberrations in Ciona larvae in a dose-dependent manner. Moreover, through a preliminary analysis, DD is shown to affect the expression level of genes involved in stress response and developmental processes. PMID:25789602
Assessing the Development of Cross-Cultural Competence in Soldiers
2010-11-01
five stages of CQ development based on models from developmental psychology including Piaget’s Model of Cognitive Development ( Piaget , 1985) and...and competence development , the Stage Model of Cognitive Skill Acquisition (Ross et al., 2005), and the Bennett Developmental Model of... developmental stages of proficiency and expertise (see the Stage Model of Cognitive Development ). At this level, cross-cultural competence is highly refined and
Kishi, Shuji
2011-09-01
Senescence may be considered the antithesis of early development, but yet there may be factors and mechanisms in common between these two phenomena during the process of aging. We investigated whether any relationship exists between the regulatory mechanisms that function in early development and in senescence using the zebrafish (Danio rerio), a small freshwater fish and a useful model animal for genetic studies. We conducted experiments to isolate zebrafish mutants expressing an apparent senescence phenotype during embryogenesis (embryonic senescence). Some of the genes we thereby identified had already been associated with cellular senescence and chronological aging in other organisms, but many had not yet been linked to these processes. Complete loss-of-function of developmentally essential genes induce embryonic (or larval) lethality, whereas it seems like their partial loss-of-function (i.e., decrease-of-function by heterozygote or hypomorphic mutations) still remains sufficient to go through the early developmental process because of its adaptive plasticity or rather heterozygote advantage. However, in some cases, such partial loss-of-function of genes compromise normal homeostasis due to haploinsufficiency later in adult life having many environmental stress challenges. By contrast, any heterozygote-advantageous genes might gain a certain benefit(s) (much more fitness) by such partial loss-of-function later in life. Physiological senescence may evolutionarily arise from both genetic and epigenetic drifts as well as from losing adaptive developmental plasticity in face of stress signals from the external environment that interacts with functions of multiple genes rather than effects of only a single gene mutation or defect. Previously uncharacterized developmental genes may thus mediate the aging process and play a pivotal role in senescence. Moreover, unexpected senescence-related genes might also be involved in the early developmental process and regulation. We wish to ascertain whether we can identify such genes promptly in a comprehensive manner. The ease of manipulation using the zebrafish system allows us to conduct an exhaustive exploration of novel genes and small molecular compounds that can be linked to the senescence phenotype and thereby facilitates searching for the evolutionary and developmental origins of aging in vertebrates. Copyright © 2011 Wiley-Liss, Inc.
The ac propulsion system for an electric vehicle, phase 1
NASA Astrophysics Data System (ADS)
Geppert, S.
1981-08-01
A functional prototype of an electric vehicle ac propulsion system was built consisting of a 18.65 kW rated ac induction traction motor, pulse width modulated (PWM) transistorized inverter, two speed mechanically shifted automatic transmission, and an overall drive/vehicle controller. Design developmental steps, and test results of individual components and the complex system on an instrumented test frame are described. Computer models were developed for the inverter, motor and a representative vehicle. A preliminary reliability model and failure modes effects analysis are given.
The ac propulsion system for an electric vehicle, phase 1
NASA Technical Reports Server (NTRS)
Geppert, S.
1981-01-01
A functional prototype of an electric vehicle ac propulsion system was built consisting of a 18.65 kW rated ac induction traction motor, pulse width modulated (PWM) transistorized inverter, two speed mechanically shifted automatic transmission, and an overall drive/vehicle controller. Design developmental steps, and test results of individual components and the complex system on an instrumented test frame are described. Computer models were developed for the inverter, motor and a representative vehicle. A preliminary reliability model and failure modes effects analysis are given.
Convolute laminations — a theoretical analysis: example of a Pennsylvanian sandstone
NASA Astrophysics Data System (ADS)
Visher, Glenn S.; Cunningham, Russ D.
1981-03-01
Data from an outcropping laminated interval were collected and analyzed to test the applicability of a theoretical model describing instability of layered systems. Rayleigh—Taylor wave perturbations result at the interface between fluids of contrasting density, viscosity, and thickness. In the special case where reverse density and viscosity interlaminations are developed, the deformation response produces a single wave with predictable amplitudes, wavelengths, and amplification rates. Physical measurements from both the outcropping section and modern sediments suggest the usefulness of the model for the interpretation of convolute laminations. Internal characteristics of the stratigraphic interval, and the developmental sequence of convoluted beds, are used to document the developmental history of these structures.
Valenzuela, Nicole
2009-07-01
Painted turtles (Chrysemys picta) are representatives of a vertebrate clade whose biology and phylogenetic position hold a key to our understanding of fundamental aspects of vertebrate evolution. These features make them an ideal emerging model system. Extensive ecological and physiological research provide the context in which to place new research advances in evolutionary genetics, genomics, evolutionary developmental biology, and ecological developmental biology which are enabled by current resources, such as a bacterial artificial chromosome (BAC) library of C. picta, and the imminent development of additional ones such as genome sequences and cDNA and expressed sequence tag (EST) libraries. This integrative approach will allow the research community to continue making advances to provide functional and evolutionary explanations for the lability of biological traits found not only among reptiles but vertebrates in general. Moreover, because humans and reptiles share a common ancestor, and given the ease of using nonplacental vertebrates in experimental biology compared with mammalian embryos, painted turtles are also an emerging model system for biomedical research. For example, painted turtles have been studied to understand many biological responses to overwintering and anoxia, as potential sentinels for environmental xenobiotics, and as a model to decipher the ecology and evolution of sexual development and reproduction. Thus, painted turtles are an excellent reptilian model system for studies with human health, environmental, ecological, and evolutionary significance.
THE DEVELOPMENT OF SLEEP-WAKE RHYTHMS AND THE SEARCH FOR ELEMENTAL CIRCUITS IN THE INFANT BRAIN
Blumberg, Mark S.; Gall, Andrew J.; Todd, William D.
2014-01-01
Despite the predominance of sleep in early infancy, developmental science has yet to play a major role in shaping concepts and theories about sleep and its associated ultradian and circadian rhythms. Here we argue that developmental analyses help us to elucidate the relative contributions of the brainstem and forebrain to sleep-wake control and to dissect the neural components of sleep-wake rhythms. Developmental analysis also makes it clear that sleep-wake processes in infants are the foundation for those of adults. For example, the infant brainstem alone contains a fundamental sleep-wake circuit that is sufficient to produce transitions among wakefulness, quiet sleep, and active sleep. Also, consistent with the requirements of a “flip-flop” model of sleep-wake processes, this brainstem circuit supports rapid transitions between states. Later in development, strengthening bidirectional interactions between the brainstem and forebrain contribute to the consolidation of sleep and wake bouts, the elaboration of sleep homeostatic processes, and the emergence of diurnal or nocturnal circadian rhythms. The developmental perspective promoted here critically constrains theories of sleep-wake control and provides a needed framework for the creation of fully realized computational models. Finally, with a better understanding of how this system is constructed developmentally, we will gain insight into the processes that govern its disintegration due to aging and disease. PMID:24708298
The development of sleep-wake rhythms and the search for elemental circuits in the infant brain.
Blumberg, Mark S; Gall, Andrew J; Todd, William D
2014-06-01
Despite the predominance of sleep in early infancy, developmental science has yet to play a major role in shaping concepts and theories about sleep and its associated ultradian and circadian rhythms. Here we argue that developmental analyses help us to elucidate the relative contributions of the brainstem and forebrain to sleep-wake control and to dissect the neural components of sleep-wake rhythms. Developmental analysis also makes it clear that sleep-wake processes in infants are the foundation for those of adults. For example, the infant brainstem alone contains a fundamental sleep-wake circuit that is sufficient to produce transitions among wakefulness, quiet sleep, and active sleep. In addition, consistent with the requirements of a "flip-flop" model of sleep-wake processes, this brainstem circuit supports rapid transitions between states. Later in development, strengthening bidirectional interactions between the brainstem and forebrain contribute to the consolidation of sleep and wake bouts, the elaboration of sleep homeostatic processes, and the emergence of diurnal or nocturnal circadian rhythms. The developmental perspective promoted here critically constrains theories of sleep-wake control and provides a needed framework for the creation of fully realized computational models. Finally, with a better understanding of how this system is constructed developmentally, we will gain insight into the processes that govern its disintegration due to aging and disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Royland, Joyce E.; Wu, Jinfang; Zawia, Nasser H.
2008-09-01
The developmental consequences of exposure to the polychlorinated biphenyls (PCBs) have been widely studied, making PCBs a unique model to understand issues related to environmental mixture of persistent chemicals. PCB exposure in humans adversely affects neurocognitive development, causes psychomotor difficulties, and contributes to attention deficits in children, all of which seem to be associated with altered patterns of neuronal connectivity. In the present study, we examined gene expression profiles in the rat nervous system following PCB developmental exposure. Pregnant rats (Long-Evans) were dosed perinatally with 0 or 6 mg/kg/day of Aroclor 1254 from gestation day 6 through postnatal day (PND)more » 21. Gene expression in cerebellum and hippocampus from PND7 and PND14 animals was analyzed with an emphasis on developmental aspects. Changes in gene expression ({>=} 1.5 fold) in control animals identified normal developmental changes. These basal levels of expression were compared to data from Aroclor 1254-treated animals to determine the impact of gestational PCB exposure on developmental parameters. The results indicate that the expression of a number of developmental genes related to cell cycle, synaptic function, cell maintenance, and neurogenesis is significantly altered from PND7 to PND14. Aroclor 1254 treatment appears to dampen the overall growth-related gene expression levels in both regions with the effect being more pronounced in the cerebellum. Functional analysis suggests that Aroclor 1254 delays maturation of the developing nervous system, with the consequences dependent on the ontological state of the brain area and the functional role of the individual gene. Such changes may underlie learning and memory deficits observed in PCB exposed animals and humans.« less
Snap, crack and pop of explosive fruit.
Galstyan, Anahit; Hay, Angela
2018-05-09
There is an increasing appreciation for the role of physical forces in plant development. Mechanics are fundamental to how explosive fruit eject their seeds, and recent studies have successfully combined mechanics with developmental genetics to help explain how these dispersal traits are produced and how they evolved. Computational modeling is used more and more to address developmental questions, and explosive fruit are particularly good systems for combining biology and modeling approaches. Finite element models have been recently used to explore questions such as: Why do touch-me-not species with similar fruits, differ so much in how efficiently they transfer stored energy to eject seeds? And how do popping cress fruits use the expansive force of turgor pressure for tissue contraction? Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Patterns and Mechanisms of Evolutionary Transitions between Genetic Sex-Determining Systems
Sander van Doorn, G.
2014-01-01
The diversity and patchy phylogenetic distribution of genetic sex-determining mechanisms observed in some taxa is thought to have arisen by the addition, modification, or replacement of regulators at the upstream end of the sex-determining pathway. Here, I review the various evolutionary forces acting on upstream regulators of sexual development that can cause transitions between sex-determining systems. These include sex-ratio selection and pleiotropic benefits, as well as indirect selection mechanisms involving sex-linked sexually antagonistic loci or recessive deleterious mutations. Most of the current theory concentrates on the population–genetic aspects of sex-determination transitions, using models that do not reflect the developmental mechanisms involved in sex determination. However, the increasing availability of molecular data creates opportunities for the development of mechanistic models that can clarify how selection and developmental architecture interact to direct the evolution of sex-determination genes. PMID:24993578
Can simple rules control development of a pioneer vertebrate neuronal network generating behavior?
Roberts, Alan; Conte, Deborah; Hull, Mike; Merrison-Hort, Robert; al Azad, Abul Kalam; Buhl, Edgar; Borisyuk, Roman; Soffe, Stephen R
2014-01-08
How do the pioneer networks in the axial core of the vertebrate nervous system first develop? Fundamental to understanding any full-scale neuronal network is knowledge of the constituent neurons, their properties, synaptic interconnections, and normal activity. Our novel strategy uses basic developmental rules to generate model networks that retain individual neuron and synapse resolution and are capable of reproducing correct, whole animal responses. We apply our developmental strategy to young Xenopus tadpoles, whose brainstem and spinal cord share a core vertebrate plan, but at a tractable complexity. Following detailed anatomical and physiological measurements to complete a descriptive library of each type of spinal neuron, we build models of their axon growth controlled by simple chemical gradients and physical barriers. By adding dendrites and allowing probabilistic formation of synaptic connections, we reconstruct network connectivity among up to 2000 neurons. When the resulting "network" is populated by model neurons and synapses, with properties based on physiology, it can respond to sensory stimulation by mimicking tadpole swimming behavior. This functioning model represents the most complete reconstruction of a vertebrate neuronal network that can reproduce the complex, rhythmic behavior of a whole animal. The findings validate our novel developmental strategy for generating realistic networks with individual neuron- and synapse-level resolution. We use it to demonstrate how early functional neuronal connectivity and behavior may in life result from simple developmental "rules," which lay out a scaffold for the vertebrate CNS without specific neuron-to-neuron recognition.
Spitsbergen, Jan M.; Kent, Michael L.
2007-01-01
The zebrafish (Danio rerio) is now the pre-eminent vertebrate model system for clarification of the roles of specific genes and signaling pathways in development. The zebrafish genome will be completely sequenced within the next 1–2 years. Together with the substantial historical database regarding basic developmental biology, toxicology, and gene transfer, the rich foundation of molecular genetic and genomic data makes zebrafish a powerful model system for clarifying mechanisms in toxicity. In contrast to the highly advanced knowledge base on molecular developmental genetics in zebrafish, our database regarding infectious and noninfectious diseases and pathologic lesions in zebrafish lags far behind the information available on most other domestic mammalian and avian species, particularly rodents. Currently, minimal data are available regarding spontaneous neoplasm rates or spontaneous aging lesions in any of the commonly used wild-type or mutant lines of zebrafish. Therefore, to fully utilize the potential of zebrafish as an animal model for understanding human development, disease, and toxicology we must greatly advance our knowledge on zebrafish diseases and pathology. PMID:12597434
Developmental aspects of a life course approach to healthy ageing
Cooper, C.; Aihie Sayer, A.; Eendebak, R. J.; Clough, G. F.; Beard, J. R.
2016-01-01
Abstract We examine the mechanistic basis and wider implications of adopting a developmental perspective on human ageing. Previous models of ageing have concentrated on its genetic basis, or the detrimental effects of accumulated damage, but also have raised issues about whether ageing can be viewed as adaptive itself, or is a consequence of other adaptive processes, for example if maintenance and repair processes in the period up to reproduction are traded off against later decline in function. A life course model places ageing in the context of the attainment of peak capacity for a body system, starting in early development when plasticity permits changes in structure and function induced by a range of environmental stimuli, followed by a period of decline, the rate of which depends on the peak attained as well as the later life conditions. Such path dependency in the rate of ageing may offer new insights into its modification. Focusing on musculoskeletal and cardiovascular function, we discuss this model and the possible underlying mechanisms, including endothelial function, oxidative stress, stem cells and nutritional factors such as vitamin D status. Epigenetic changes induced during developmental plasticity, and immune function may provide a common mechanistic process underlying a life course model of ageing. The life course trajectory differs in high and low resource settings. New insights into the developmental components of the life course model of ageing may lead to the design of biomarkers of later chronic disease risk and to new interventions to promote healthy ageing, with important implications for public health. PMID:26518329
Developmental aspects of a life course approach to healthy ageing.
Hanson, M A; Cooper, C; Aihie Sayer, A; Eendebak, R J; Clough, G F; Beard, J R
2016-04-15
We examine the mechanistic basis and wider implications of adopting a developmental perspective on human ageing. Previous models of ageing have concentrated on its genetic basis, or the detrimental effects of accumulated damage, but also have raised issues about whether ageing can be viewed as adaptive itself, or is a consequence of other adaptive processes, for example if maintenance and repair processes in the period up to reproduction are traded off against later decline in function. A life course model places ageing in the context of the attainment of peak capacity for a body system, starting in early development when plasticity permits changes in structure and function induced by a range of environmental stimuli, followed by a period of decline, the rate of which depends on the peak attained as well as the later life conditions. Such path dependency in the rate of ageing may offer new insights into its modification. Focusing on musculoskeletal and cardiovascular function, we discuss this model and the possible underlying mechanisms, including endothelial function, oxidative stress, stem cells and nutritional factors such as vitamin D status. Epigenetic changes induced during developmental plasticity, and immune function may provide a common mechanistic process underlying a life course model of ageing. The life course trajectory differs in high and low resource settings. New insights into the developmental components of the life course model of ageing may lead to the design of biomarkers of later chronic disease risk and to new interventions to promote healthy ageing, with important implications for public health. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
Inclusion Assistants in General Education Settings--A Model for In-Service Training
ERIC Educational Resources Information Center
Moshe, Anat
2017-01-01
The inclusion assistant (IA) is a fairly new position in the education system and is the outcome of current ideological and legislative steps to include students with special needs into the general educational system. The IA's function is to personally accompany students with severe disabilities--autism, developmental disabilities, physical…
Young Children with Disabilities in Israel: System of Early Intervention Service Delivery
ERIC Educational Resources Information Center
Shulman, Cory; Meadan, Hedda; Sandhaus, Yoram
2012-01-01
This article aims to analyze early intervention programs in Israel according to the Developmental Systems Model (Guralnick, 2001), in an attempt to identify strengths and areas for further development for service delivery for young children with disabilities in Israel. Early intervention in Israel is part of a comprehensive healthcare model…
3D in vitro modeling of the central nervous system
Hopkins, Amy M.; DeSimone, Elise; Chwalek, Karolina; Kaplan, David L.
2015-01-01
There are currently more than 600 diseases characterized as affecting the central nervous system (CNS) which inflict neural damage. Unfortunately, few of these conditions have effective treatments available. Although significant efforts have been put into developing new therapeutics, drugs which were promising in the developmental phase have high attrition rates in late stage clinical trials. These failures could be circumvented if current 2D in vitro and in vivo models were improved. 3D, tissue-engineered in vitro systems can address this need and enhance clinical translation through two approaches: (1) bottom-up, and (2) top-down (developmental/regenerative) strategies to reproduce the structure and function of human tissues. Critical challenges remain including biomaterials capable of matching the mechanical properties and extracellular matrix (ECM) composition of neural tissues, compartmentalized scaffolds that support heterogeneous tissue architectures reflective of brain organization and structure, and robust functional assays for in vitro tissue validation. The unique design parameters defined by the complex physiology of the CNS for construction and validation of 3D in vitro neural systems are reviewed here. PMID:25461688
How Evolution May Work Through Curiosity-Driven Developmental Process.
Oudeyer, Pierre-Yves; Smith, Linda B
2016-04-01
Infants' own activities create and actively select their learning experiences. Here we review recent models of embodied information seeking and curiosity-driven learning and show that these mechanisms have deep implications for development and evolution. We discuss how these mechanisms yield self-organized epigenesis with emergent ordered behavioral and cognitive developmental stages. We describe a robotic experiment that explored the hypothesis that progress in learning, in and for itself, generates intrinsic rewards: The robot learners probabilistically selected experiences according to their potential for reducing uncertainty. In these experiments, curiosity-driven learning led the robot learner to successively discover object affordances and vocal interaction with its peers. We explain how a learning curriculum adapted to the current constraints of the learning system automatically formed, constraining learning and shaping the developmental trajectory. The observed trajectories in the robot experiment share many properties with those in infant development, including a mixture of regularities and diversities in the developmental patterns. Finally, we argue that such emergent developmental structures can guide and constrain evolution, in particular with regard to the origins of language. Copyright © 2016 Cognitive Science Society, Inc.
Morphomechanics and Developmental Constraints in the Evolution of Ammonites Shell Form.
Erlich, Alexander; Moulton, Derek E; Goriely, Alain; Chirat, Regis
2016-11-01
The idea that physical processes involved in biological development underlie morphogenetic rules and channel morphological evolution has been central to the rise of evolutionary developmental biology. Here, we explore this idea in the context of seashell morphogenesis. We show that a morphomechanical model predicts the effects of variations in shell shape on the ornamental pattern in ammonites, a now extinct group of cephalopods with external chambered shell. Our model shows that several seemingly unrelated characteristics of synchronous, ontogenetic, intraspecific, and evolutionary variations in ornamental patterns among various ammonite species may all be understood from the fact that the mechanical forces underlying the oscillatory behavior of the shell secreting system scale with the cross-sectional curvature of the shell aperture. This simple morphogenetic rule, emerging from biophysical interactions during shell formation, introduced a non-random component in the production of phenotypic variation and channeled the morphological evolution of ammonites over millions of years. As such, it provides a paradigm for the concept of "developmental constraints." © 2016 Wiley Periodicals, Inc.
Threat-detection in child development: an evolutionary perspective.
Boyer, Pascal; Bergstrom, Brian
2011-03-01
Evidence for developmental aspects of fear-targets and anxiety suggests a complex but stable pattern whereby specific kinds of fears emerge at different periods of development. This developmental schedule seems appropriate to dangers encountered repeatedly during human evolution. Also consistent with evolutionary perspective, the threat-detection systems are domain-specific, comprising different kinds of cues to do with predation, intraspecific violence, contamination-contagion and status loss. Proper evolutionary models may also be relevant to outstanding issues in the domain, notably the connections between typical development and pathology. Copyright © 2010 Elsevier Ltd. All rights reserved.
Hollar, David W
2009-01-01
The development and implementation of electronic health records (EHR) have occurred slowly in the United States. To date, these approaches have, for the most part, followed four developmental tracks: (a) Enhancement of immunization registries and linkage with other health records to produce Child Health Profiles (CHP), (b) Regional Health Information Organization (RHIO) demonstration projects to link together patient medical records, (c) Insurance company projects linked to ICD-9 codes and patient records for cost-benefit assessments, and (d) Consortia of EHR developers collaborating to model systems requirements and standards for data linkage. Until recently, these separate efforts have been conducted in the very silos that they had intended to eliminate, and there is still considerable debate concerning health professionals access to as well as commitment to using EHR if these systems are provided. This paper will describe these four developmental tracks, patient rights and the legal environment for EHR, international comparisons, and future projections for EHR expansion across health networks in the United States. PMID:19291284
vEmbryo In Silico Models: Predicting Vascular Developmental Toxicity
The cardiovascular system is the first to function in the vertebrate embryo, reflecting the critical need for nutrient delivery and waste removal during organogenesis. Blood vessel development occurs by complex interacting signaling networks, including extra-cellular matrix remod...
Development of Fourier domain optical coherence tomography for applications in developmental biology
NASA Astrophysics Data System (ADS)
Davis, Anjul Maheshwari
Developmental biology is a field in which explorations are made to answer how an organism transforms from a single cell to a complex system made up of trillions of highly organized and highly specified cells. This field, however, is not just for discovery, it is crucial for unlocking factors that lead to diseases, defects, or malformations. The one key ingredient that contributes to the success of studies in developmental biology is the technology that is available for use. Optical coherence tomography (OCT) is one such technology. OCT fills a niche between the high resolution of confocal microscopy and deep imaging penetration of ultrasound. Developmental studies of the chicken embryo heart are of great interest. Studies in mature hearts, zebrafish animal models, and to a more limited degree chicken embryos, indicate a relationship between blood flow and development. It is believed that at the earliest stages, when the heart is still a tube, the purpose of blood flow is not for convective transport of oxygen, nutrients and waster, bur rather to induce shear-related gene expressions to induce further development. Yet, to this date, the simple question of "what makes blood flow?" has not been answered. This is mainly due limited availability to adequate imaging and blood flow measurement tools. Earlier work has demonstrated the potential of OCT for use in studying chicken embryo heart development, however quantitative measurement techniques still needed to be developed. In this dissertation I present technological developments I have made towards building an OCT system to study chick embryo heart development. I will describe: (1) a swept-source OCT with extended imaging depth; (2) a spectral domain OCT system for non-invasive small animal imaging; (3) Doppler flow imaging and techniques for quantitative blood flow measurement in living chicken embryos; and (4) application of the OCT system that was developed in the Specific Aims 2-5 to test hypotheses generated by a finite element model which treats the embryonic chick heart tube as a modified peristaltic pump.
ERIC Educational Resources Information Center
Georgia Univ., Athens. Coll. of Family and Consumer Sciences.
This outreach project is based on the validated Developmental Therapy-Developmental Teaching model originally designed for young children with severe emotional/behavioral problems and their families. It is an approach that emphasizes the teaching skills that foster a child's social-emotional-behavioral competence. The model has proven effective in…
Characterization of a developmental toxicity dose-response model.
Faustman, E M; Wellington, D G; Smith, W P; Kimmel, C A
1989-01-01
The Rai and Van Ryzin dose-response model proposed for teratology experiments has been characterized for its appropriateness and applicability in modeling the dichotomous response data from developmental toxicity studies. Modifications were made in the initial probability statements to reflect more accurately biological events underlying developmental toxicity. Data sets used for the evaluation were obtained from the National Toxicology Program and U.S. EPA laboratories. The studies included developmental evaluations of ethylene glycol, diethylhexyl phthalate, di- and triethylene glycol dimethyl ethers, and nitrofen in rats, mice, or rabbits. Graphic examination and statistical evaluation demonstrate that this model is sensitive to the data when compared to directly measured experimental outcomes. The model was used to interpolate to low-risk dose levels, and comparisons were made between the values obtained and the no-observed-adverse-effect levels (NOAELs) divided by an uncertainty factor. Our investigation suggests that the Rai and Van Ryzin model is sensitive to the developmental toxicity end points, prenatal deaths, and malformations, and appears to model closely their relationship to dose. PMID:2707204
ERIC Educational Resources Information Center
Bird, Candace Maria Edmonds
2010-01-01
In an effort to standardize training delivery and to individualize staff development based on observation and reflective practice, the Air Force implemented the Developmental Training Model (DTM) in its Child Development Programs. The goal of the Developmental Training Model is to enhance high quality programs through improvements in the training…
Caenorhabditis elegans: An Emerging Model in Biomedical and Environmental Toxicology
Leung, Maxwell C. K.; Williams, Phillip L.; Benedetto, Alexandre; Au, Catherine; Helmcke, Kirsten J.; Aschner, Michael; Meyer, Joel N.
2008-01-01
The nematode Caenorhabditis elegans has emerged as an important animal model in various fields including neurobiology, developmental biology, and genetics. Characteristics of this animal model that have contributed to its success include its genetic manipulability, invariant and fully described developmental program, well-characterized genome, ease of maintenance, short and prolific life cycle, and small body size. These same features have led to an increasing use of C. elegans in toxicology, both for mechanistic studies and high-throughput screening approaches. We describe some of the research that has been carried out in the areas of neurotoxicology, genetic toxicology, and environmental toxicology, as well as high-throughput experiments with C. elegans including genome-wide screening for molecular targets of toxicity and rapid toxicity assessment for new chemicals. We argue for an increased role for C. elegans in complementing other model systems in toxicological research. PMID:18566021
Viking Mars lander 1975 dynamic test model/orbiter developmental test model forced vibration test
NASA Technical Reports Server (NTRS)
Fortenberry, J.; Brownlee, G. R.
1974-01-01
The Viking Mars Lander 1975 dynamic test model and orbiter developmental test model were subjected to forced vibration sine tests. Flight acceptance (FA) and type approval (TA) test levels were applied to the spacecraft structure in a longitudinal test configuration using a 133,440-N (30,000-lb) force shaker. Testing in the two lateral axes (X, Y) was performed at lower levels using four 667-N (150-lb) force shakers. Forced vibration qualification (TA) test levels were successfully imposed on the spacecraft at frequencies down to 10 Hz. Measured responses showed the same character as analytical predictions, and correlation was reasonably good. Because of control system test tolerances, orbiter primary structure generally did not reach the design load limits attained in earlier static testing. A post-test examination of critical orbiter structure disclosed no apparent damage to the structure as a result of the test environment.
APPLICATION OF BENCHMARK DOSE METHODOLOGY TO DATA FROM PRENATAL DEVELOPMENTAL TOXICITY STUDIES
The benchmark dose (BMD) concept was applied to 246 conventional developmental toxicity datasets from government, industry and commercial laboratories. Five modeling approaches were used, two generic and three specific to developmental toxicity (DT models). BMDs for both quantal ...
A spline-based parameter and state estimation technique for static models of elastic surfaces
NASA Technical Reports Server (NTRS)
Banks, H. T.; Daniel, P. L.; Armstrong, E. S.
1983-01-01
Parameter and state estimation techniques for an elliptic system arising in a developmental model for the antenna surface in the Maypole Hoop/Column antenna are discussed. A computational algorithm based on spline approximations for the state and elastic parameters is given and numerical results obtained using this algorithm are summarized.
ERIC Educational Resources Information Center
Lindsay, William R.; Steptoe, Lesley; McVicker, Ronnie; Haut, Fabian; Robertson, Colette
2018-01-01
In "DSM-5" there has been a move to dimensional personality disorder (PD) diagnosis, incorporating personality theory in the form of the five-factor model (FFM). It proposes an alternative assessment system based on diagnostic indicators and the FFM, while retaining "DSM-IV" categorical criteria. Four individuals with…
Developmental and Individual Differences in Chinese Writing
ERIC Educational Resources Information Center
Guan, Connie Qun; Ye, Feifei; Wagner, Richard K.; Meng, Wanjin
2013-01-01
The goal of the present study was to examine the generalizability of a model of the underlying dimensions of written composition across writing systems (Chinese Mandarin vs. English) and level of writing skill. A five-factor model of writing originally developed from analyses of 1st and 4th grade English writing samples was applied to Chinese…
Embedded biofilm, a new biofilm model based on the embedded growth of bacteria.
Jung, Yong-Gyun; Choi, Jungil; Kim, Soo-Kyoung; Lee, Joon-Hee; Kwon, Sunghoon
2015-01-01
A variety of systems have been developed to study biofilm formation. However, most systems are based on the surface-attached growth of microbes under shear stress. In this study, we designed a microfluidic channel device, called a microfluidic agarose channel (MAC), and found that microbial cells in the MAC system formed an embedded cell aggregative structure (ECAS). ECASs were generated from the embedded growth of bacterial cells in an agarose matrix and better mimicked the clinical environment of biofilms formed within mucus or host tissue under shear-free conditions. ECASs were developed with the production of extracellular polymeric substances (EPS), the most important feature of biofilms, and eventually burst to release planktonic cells, which resembles the full developmental cycle of biofilms. Chemical and genetic effects have also confirmed that ECASs are a type of biofilm. Unlike the conventional biofilms formed in the flow cell model system, this embedded-type biofilm completes the developmental cycle in only 9 to 12 h and can easily be observed with ordinary microscopes. We suggest that ECASs are a type of biofilm and that the MAC is a system for observing biofilm formation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Long-term care information systems: an overview of the selection process.
Nahm, Eun-Shim; Mills, Mary Etta; Feege, Barbara
2006-06-01
Under the current Medicare Prospective Payment System method and the ever-changing managed care environment, the long-term care information system is vital to providing quality care and to surviving in business. system selection process should be an interdisciplinary effort involving all necessary stakeholders for the proposed system. The system selection process can be modeled following the Systems Developmental Life Cycle: identifying problems, opportunities, and objectives; determining information requirements; analyzing system needs; designing the recommended system; and developing and documenting software.
Education, Information Technology and Cognitive Science.
ERIC Educational Resources Information Center
Scaife, M.
1989-01-01
Discusses information technology and its effects on developmental psychology and children's education. Topics discussed include a theory of child-computer interaction (CCI); programing; communication and computers, including electronic mail; cognitive science; artificial intelligence; modeling the user-system interaction; and the future of…
Nolte, Mark J.; Hockman, Dorit; Cretekos, Chris J.; Behringer, Richard R.; Rasweiler, John J.
2010-01-01
An embryonic staging system for Molossus rufus (also widely known as Molossus ater) was devised using 17 reference specimens obtained during the postimplantation period of pregnancy from wild-caught, captive-bred females. This was done in part by comparing the embryos to a developmental staging system that had been created for another, relatively unrelated bat, Carollia perspicillata (family Phyllostomidae). Particular attention was paid to the development of species-specific features, such as wing and ear morphology, and these are discussed in light of the adaptive significance of these structures in the adult. M. rufus can be maintained and bred in captivity and is relatively abundant in the wild. This embryonic staging system will facilitate further developmental studies of M. rufus, a model species for one of the largest and most successful chiropteran families, the Molossidae. PMID:19089888
ERIC Educational Resources Information Center
Tamis-LeMonda, Catherine S.; Way, Niobe; Hughes, Diane; Yoshikawa, Hirokazu; Kalman, Ronit Kahana; Niwa, Erika Y.
2008-01-01
Current scholarship on the cultural value systems of individualism and collectivism, and the associated developmental goals of autonomy and relatedness, has moved beyond grand divide theories to emphasize variation within individuals and cultures. We present a theoretical model on the dynamic coexistence of cultural value systems (at the macro…
Early Childhood Intervention in Portugal: An Overview Based on the Developmental Systems Model
ERIC Educational Resources Information Center
Pinto, Ana Isabel; Grande, Catarina; Aguiar, Cecilia; de Almeida, Isabel Chaves; Felgueiras, Isabel; Pimentel, Julia Serpa; Serrano, Ana Maria; Carvalho, Leonor; Brandao, Maria Teresa; Boavida, Tania; Santos, Paula; Lopes-dos-Santos, Pedro
2012-01-01
Research studies on early childhood intervention (ECI) in Portugal are diffuse regarding both program components and the geographical area under scrutiny. Since the 1990s, a growing body of knowledge and evidence in ECI is being gathered, based on postgraduate teaching, in-service training, and research. This article draws on the systems theory…
Zhang, Hui; Ren, Ji-Xia; Kang, Yan-Li; Bo, Peng; Liang, Jun-Yu; Ding, Lan; Kong, Wei-Bao; Zhang, Ji
2017-08-01
Toxicological testing associated with developmental toxicity endpoints are very expensive, time consuming and labor intensive. Thus, developing alternative approaches for developmental toxicity testing is an important and urgent task in the drug development filed. In this investigation, the naïve Bayes classifier was applied to develop a novel prediction model for developmental toxicity. The established prediction model was evaluated by the internal 5-fold cross validation and external test set. The overall prediction results for the internal 5-fold cross validation of the training set and external test set were 96.6% and 82.8%, respectively. In addition, four simple descriptors and some representative substructures of developmental toxicants were identified. Thus, we hope the established in silico prediction model could be used as alternative method for toxicological assessment. And these obtained molecular information could afford a deeper understanding on the developmental toxicants, and provide guidance for medicinal chemists working in drug discovery and lead optimization. Copyright © 2017 Elsevier Inc. All rights reserved.
Decker, Johannes H; Otto, A Ross; Daw, Nathaniel D; Hartley, Catherine A
2016-06-01
Theoretical models distinguish two decision-making strategies that have been formalized in reinforcement-learning theory. A model-based strategy leverages a cognitive model of potential actions and their consequences to make goal-directed choices, whereas a model-free strategy evaluates actions based solely on their reward history. Research in adults has begun to elucidate the psychological mechanisms and neural substrates underlying these learning processes and factors that influence their relative recruitment. However, the developmental trajectory of these evaluative strategies has not been well characterized. In this study, children, adolescents, and adults performed a sequential reinforcement-learning task that enabled estimation of model-based and model-free contributions to choice. Whereas a model-free strategy was apparent in choice behavior across all age groups, a model-based strategy was absent in children, became evident in adolescents, and strengthened in adults. These results suggest that recruitment of model-based valuation systems represents a critical cognitive component underlying the gradual maturation of goal-directed behavior. © The Author(s) 2016.
Heath, Christopher J; Picciotto, Marina R
2009-01-01
Despite a great deal of progress, more than 10% of pregnant women in the USA smoke. Epidemiological studies have demonstrated correlations between developmental tobacco smoke exposure and sensory processing deficits, as well as a number of neuropsychiatric conditions, including attention deficit hyperactivity disorder. Significantly, data from animal models of developmental nicotine exposure have suggested that the nicotine in tobacco contributes significantly to the effects of developmental smoke exposure. Consequently, we hypothesize that nicotinic acetylcholine receptors (nAChRs) are important for setting and refining the strength of corticothalamic-thalamocortical loops during critical periods of development and that disruption of this process by developmental nicotine exposure can result in long-lasting dysregulation of sensory processing. The ability of nAChR activation to modulate synaptic plasticity is likely to underlie the effects of both endogenous cholinergic signaling and pharmacologically administered nicotine to alter cellular, physiological and behavioral processes during critical periods of development.
Hua, Brian L.; Orr-Weaver, Terry L.
2017-01-01
Proper control of DNA replication is critical to ensure genomic integrity during cell proliferation. In addition, differential regulation of the DNA replication program during development can change gene copy number to influence cell size and gene expression. Drosophila melanogaster serves as a powerful organism to study the developmental control of DNA replication in various cell cycle contexts in a variety of differentiated cell and tissue types. Additionally, Drosophila has provided several developmentally regulated replication models to dissect the molecular mechanisms that underlie replication-based copy number changes in the genome, which include differential underreplication and gene amplification. Here, we review key findings and our current understanding of the developmental control of DNA replication in the contexts of the archetypal replication program as well as of underreplication and differential gene amplification. We focus on the use of these latter two replication systems to delineate many of the molecular mechanisms that underlie the developmental control of replication initiation and fork elongation. PMID:28874453
Toward a Neuroscience of Adult Cognitive Developmental Theory.
Girgis, Fady; Lee, Darrin J; Goodarzi, Amir; Ditterich, Jochen
2018-01-01
Piaget's genetic epistemology has provided the constructivist approach upon which child developmental theories were founded, in that infants are thought to progress through distinct cognitive stages until they reach maturity in their early 20's. However, it is now well established that cognition continues to develop after early adulthood, and several "neo-Piagetian" theories have emerged in an attempt to better characterize adult cognitive development. For example, Kegan's Constructive Developmental Theory (CDT) argues that the thought processes used by adults to construct their reality change over time, and reaching higher stages of cognitive development entails becoming objectively aware of emotions and beliefs that were previously in the realm of the subconscious. In recent years, neuroscience has shown a growing interest in the biological substrates and neural mechanisms encompassing adult cognitive development, because psychological and psychiatric disorders can arise from deficiencies therein. In this article, we will use Kegan's CDT as a framework to discuss adult cognitive development in relation to closely correlated existing constructs underlying social processing, such as the perception of self and others. We will review the functional imaging and electrophysiologic evidence behind two key concepts relating to these posited developmental changes. These include self-related processing, a field that distinguishes between having conscious experiences ("being a self") and being aware of oneself having conscious experiences ("being aware of being a self"); and theory of mind, which is the objective awareness of possessing mental states such as beliefs and desires (i.e., having a "mind") and the understanding that others possess mental states that can be different from one's own. We shall see that cortical midline structures, including the medial prefrontal cortex and cingulate gyrus, as well as the temporal lobe, are associated with psychological tasks that test these models. In addition, we will review computational modeling approaches to cognitive development, and show how mathematical modeling can provide insights into how sometimes continuous changes in the neural processing substrate can give rise to relatively discrete developmental stages. Because deficiencies in adult cognitive development can result in disorders such as autism and depression, bridging the gaps between developmental psychology, neuroscience, and modeling has potential implications for clinical practice. As neuromodulation techniques such as deep brain and transcranial stimulation continue to advance, interfacing with these systems may lead to the emergence of novel investigational methods and therapeutic strategies in adults suffering from developmental disorders.
Multivariate dynamical modelling of structural change during development.
Ziegler, Gabriel; Ridgway, Gerard R; Blakemore, Sarah-Jayne; Ashburner, John; Penny, Will
2017-02-15
Here we introduce a multivariate framework for characterising longitudinal changes in structural MRI using dynamical systems. The general approach enables modelling changes of states in multiple imaging biomarkers typically observed during brain development, plasticity, ageing and degeneration, e.g. regional gray matter volume of multiple regions of interest (ROIs). Structural brain states follow intrinsic dynamics according to a linear system with additional inputs accounting for potential driving forces of brain development. In particular, the inputs to the system are specified to account for known or latent developmental growth/decline factors, e.g. due to effects of growth hormones, puberty, or sudden behavioural changes etc. Because effects of developmental factors might be region-specific, the sensitivity of each ROI to contributions of each factor is explicitly modelled. In addition to the external effects of developmental factors on regional change, the framework enables modelling and inference about directed (potentially reciprocal) interactions between brain regions, due to competition for space, or structural connectivity, and suchlike. This approach accounts for repeated measures in typical MRI studies of development and aging. Model inversion and posterior distributions are obtained using earlier established variational methods enabling Bayesian evidence-based comparisons between various models of structural change. Using this approach we demonstrate dynamic cortical changes during brain maturation between 6 and 22 years of age using a large openly available longitudinal paediatric dataset with 637 scans from 289 individuals. In particular, we model volumetric changes in 26 bilateral ROIs, which cover large portions of cortical and subcortical gray matter. We account for (1) puberty-related effects on gray matter regions; (2) effects of an early transient growth process with additional time-lag parameter; (3) sexual dimorphism by modelling parameter differences between boys and girls. There is evidence that the regional pattern of sensitivity to dynamic hidden growth factors in late childhood is similar across genders and shows a consistent anterior-posterior gradient with strongest impact to prefrontal cortex (PFC) brain changes. Finally, we demonstrate the potential of the framework to explore the coupling of structural changes across a priori defined subnetworks using an example of previously established resting state functional connectivity. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Modeling Developmental Transitions in Adaptive Resonance Theory
ERIC Educational Resources Information Center
Raijmakers, Maartje E. J.; Molenaar, Peter C. M.
2004-01-01
Neural networks are applied to a theoretical subject in developmental psychology: modeling developmental transitions. Two issues that are involved will be discussed: discontinuities and acquiring qualitatively new knowledge. We will argue that by the appearance of a bifurcation, a neural network can show discontinuities and may acquire…
Haron, Mona H; Khan, Ikhlas A; Dasmahapatra, Asok K
2014-01-01
Although prenatal alcohol exposure is the potential cause of fetal alcohol spectrum disorder (FASD) in humans, the molecular mechanism(s) of FASD is yet unknown. We have used Japanese ricefish (Oryzias latipes) embryogenesis as an animal model of FASD and reported that this model has effectively generated several phenotypic features in the cardiovasculature and neurocranial cartilages by developmental ethanol exposure which is analogous to human FASD phenotypes. As FASD is a neurobehavioral disorder, we are searching for a molecular target of ethanol that alters neurological functions. In this communication, we have focused on neuroligin genes (nlgn) which are known to be active at the postsynaptic side of both excitatory and inhibitory synapses of the central nervous system. There are six human NLGN homologs of Japanese ricefish reported in public data bases. We have partially cloned these genes and analyzed their expression pattern during normal development and also after exposing the embryos to ethanol. Our data indicate that the expression of all six nlgn genes in Japanese ricefish embryos is developmentally regulated. Although ethanol is able to induce developmental abnormalities in Japanese ricefish embryogenesis comparable to the FASD phenotypes, quantitative real-time PCR (qPCR) analysis of nlgn mRNAs indicate unresponsiveness of these genes to ethanol. We conclude that the disruption of the developmental rhythm of Japanese ricefish embryogenesis by ethanol that leads to FASD may not affect the nlgn gene expression at the message level. © 2013.
From Spontaneous Motor Activity to Coordinated Behaviour: A Developmental Model
Marques, Hugo Gravato; Bharadwaj, Arjun; Iida, Fumiya
2014-01-01
In mammals, the developmental path that links the primary behaviours observed during foetal stages to the full fledged behaviours observed in adults is still beyond our understanding. Often theories of motor control try to deal with the process of incremental learning in an abstract and modular way without establishing any correspondence with the mammalian developmental stages. In this paper, we propose a computational model that links three distinct behaviours which appear at three different stages of development. In order of appearance, these behaviours are: spontaneous motor activity (SMA), reflexes, and coordinated behaviours, such as locomotion. The goal of our model is to address in silico four hypotheses that are currently hard to verify in vivo: First, the hypothesis that spinal reflex circuits can be self-organized from the sensor and motor activity induced by SMA. Second, the hypothesis that supraspinal systems can modulate reflex circuits to achieve coordinated behaviour. Third, the hypothesis that, since SMA is observed in an organism throughout its entire lifetime, it provides a mechanism suitable to maintain the reflex circuits aligned with the musculoskeletal system, and thus adapt to changes in body morphology. And fourth, the hypothesis that by changing the modulation of the reflex circuits over time, one can switch between different coordinated behaviours. Our model is tested in a simulated musculoskeletal leg actuated by six muscles arranged in a number of different ways. Hopping is used as a case study of coordinated behaviour. Our results show that reflex circuits can be self-organized from SMA, and that, once these circuits are in place, they can be modulated to achieve coordinated behaviour. In addition, our results show that our model can naturally adapt to different morphological changes and perform behavioural transitions. PMID:25057775
The Hydra model - a model for what?
Gierer, Alfred
2012-01-01
The introductory personal remarks refer to my motivations for choosing research projects, and for moving from physics to molecular biology and then to development, with Hydra as a model system. Historically, Trembley's discovery of Hydra regeneration in 1744 was the beginning of developmental biology as we understand it, with passionate debates about preformation versus de novo generation, mechanisms versus organisms. In fact, seemingly conflicting bottom-up and top-down concepts are both required in combination to understand development. In modern terms, this means analysing the molecules involved, as well as searching for physical principles underlying development within systems of molecules, cells and tissues. During the last decade, molecular biology has provided surprising and impressive evidence that the same types of molecules and molecular systems are involved in pattern formation in a wide range of organisms, including coelenterates like Hydra, and thus appear to have been "invented" early in evolution. Likewise, the features of certain systems, especially those of developmental regulation, are found in many different organisms. This includes the generation of spatial structures by the interplay of self-enhancing activation and "lateral" inhibitory effects of wider range, which is a main topic of my essay. Hydra regeneration is a particularly clear model for the formation of defined patterns within initially near-uniform tissues. In conclusion, this essay emphasizes the analysis of development in terms of physical laws, including the application of mathematics, and insists that Hydra was, and will continue to be, a rewarding model for understanding general features of embryogenesis and regeneration.
Triazole induced concentration-related gene signatures in rat whole embryo culture.
Robinson, Joshua F; Tonk, Elisa C M; Verhoef, Aart; Piersma, Aldert H
2012-09-01
Commonly used as antifungal agents in agriculture and medicine, triazoles have been shown to cause teratogenicity in a diverse set of animal models. Here, we evaluated the dose-dependent impacts of flusilazole, cyproconazole and triadimefon, on global gene expression in relation to effects on embryonic development using the rat whole embryo culture (WEC) model. After 4 h exposure, we identified changes in gene expression due to triazole exposure which preceded morphological alterations observed at 48 h. In general, across the three triazoles, we observed similar directionality of regulation in gene expression and the magnitude of effects on gene expression correlated with the degree of induced developmental toxicity. Significantly regulated genes included key members of steroid/cholesterol and retinoic acid metabolism and hindbrain developmental pathways. Direct comparisons with previous studies suggest that triazole-gene signatures identified in the WEC overlap with zebrafish and mouse, and furthermore, triazoles impact gene expression in a similar manner as retinoic acid exposures in rat embryos. In summary, we further differentiate pathways underlying triazole-developmental toxicity using WEC and demonstrate the conservation of these response-pathways across model systems. Copyright © 2012 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Hegui; He, Zheng; Zhu, Chunyan
Fetal adrenal developmental status is the major determinant of fetal tissue maturation and offspring growth. We have previously proposed that prenatal ethanol exposure (PEE) suppresses fetal adrenal corticosterone (CORT) synthesis. Here, we focused on PEE-induced adrenal developmental abnormalities of male offspring rats before and after birth, and aimed to explore its intrauterine programming mechanisms. A rat model of intrauterine growth retardation (IUGR) was established by PEE (4 g/kg·d). In PEE fetus, increased serum CORT concentration and decreased insulin-like growth factor 1 (IGF1) concentration, with lower bodyweight and structural abnormalities as well as a decreased Ki67 expression (proliferative marker), were observedmore » in the male fetal adrenal cortex. Adrenal glucocorticoid (GC)-metabolic activation system was enhanced while gene expression of IGF1 signaling pathway with steroidogenic acute regulatory protein (StAR), 3β-hydroxysteroid dehydrogenase (3β-HSD) was decreased. Furthermore, in the male adult offspring of PEE, serum CORT level was decreased but IGF1 was increased with partial catch-up growth, and Ki67 expression demonstrated no obvious change. Adrenal GC-metabolic activation system was inhibited, while IGF1 signaling pathway and 3β-HSD was enhanced with the steroidogenic factor 1 (SF1), and StAR was down-regulated in the adult adrenal. Based on these findings, we propose a “two-programming” mechanism for PEE-induced adrenal developmental toxicity: “the first programming” is a lower functional programming of adrenal steroidogenesis, and “the second programming” is GC-metabolic activation system-related GC-IGF1 axis programming. - Highlights: • Prenatal ethanol exposure induces adrenal developmental abnormality in offspring rats. • Prenatal ethanol exposure induces intrauterine programming of adrenal steroidogenesis. • Intrauterine GC-IGF1 axis programming might mediate adrenal developmental abnormality.« less
Developmentally arrested structures preceding cerebellar tumors in von Hippel–Lindau disease
Shively, Sharon B; Falke, Eric A; Li, Jie; Tran, Maxine G B; Thompson, Eli R; Maxwell, Patrick H; Roessler, Erich; Oldfield, Edward H; Lonser, Russell R; Vortmeyer, Alexander O
2011-01-01
There is increasing evidence that suggests that knockout of tumor-suppressor gene function causes developmental arrest and protraction of cellular differentiation. In the peripheral nervous system of patients with the tumor-suppressor gene disorder, von Hippel–Lindau disease, we have demonstrated developmentally arrested structural elements composed of hemangioblast progenitor cells. Some developmentally arrested structural elements progress to a frank tumor, hemangioblastoma. However, in von Hippel–Lindau disease, hemangioblastomas are frequently observed in the cerebellum, suggesting an origin in the central nervous system. We performed a structural and topographic analysis of cerebellar tissues obtained from von Hippel–Lindau disease patients to identify and characterize developmentally arrested structural elements in the central nervous system. We examined the entire cerebella of five tumor-free von Hippel–Lindau disease patients and of three non-von Hippel–Lindau disease controls. In all, 9 cerebellar developmentally arrested structural elements were detected and topographically mapped in 385 blocks of von Hippel–Lindau disease cerebella. No developmentally arrested structural elements were seen in 214 blocks from control cerebella. Developmentally arrested structural elements are composed of poorly differentiated cells that express hypoxia-inducible factor (HIF)2α, but not HIF1α or brachyury, and preferentially involve the molecular layer of the dorsum cerebelli. For the first time, we identify and characterize developmentally arrested structural elements in the central nervous system of von Hippel–Lindau patients. We provide evidence that developmentally arrested structural elements in the cerebellum are composed of developmentally arrested hemangioblast progenitor cells in the molecular layer of the dorsum cerebelli. PMID:21499240
45 CFR 1386.23 - Periodic reports: Protection and Advocacy System.
Code of Federal Regulations, 2010 CFR
2010-10-01
... HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION ON DEVELOPMENTAL DISABILITIES, DEVELOPMENTAL DISABILITIES PROGRAM FORMULA GRANT PROGRAMS State System for Protection and Advocacy of the Rights of Individuals with Developmental Disabilities § 1386.23 Periodic reports...
Mathematical models in simulation process in rehabilitation of persons with disabilities
NASA Astrophysics Data System (ADS)
Gorie, Nina; Dolga, Valer; Mondoc, Alina
2012-11-01
The problems of people with disability are varied. A disability may be physical, cognitive, mental, sensory, emotional, developmental or some combination of these. The major disabilities which can appear in people's lives are: the blindness, the deafness, the limb-girdle muscular dystrophy, the orthopedic impairment, the visual impairment. A disability is an umbrella term, covering impairments, activity limitations and participation restrictions. A disability may occur during a person's lifetime or may be present from birth. The authors conclude that some of these disabilities like physical, cognitive, mental, sensory, emotional, developmental can be rehabilitated. Starting from this state of affairs the authors present briefly the possibility of using certain mechatronic systems for rehabilitation of persons with different disabilities. The authors focus their presentation on alternative calling the Stewart platform in order to achieve the proposed goal. The authors present a mathematical model of systems theory approach under the parallel system and described its contents can. The authors analyze in a meaningful mathematical model describing the procedure of rehabilitation process. From the affected function biomechanics and taking into account medical recommendations the authors illustrate the mathematical models of rehabilitation work. The authors assemble a whole mathematical model of parallel structure and the rehabilitation process and making simulation and highlighting the results estimated. The authors present in the end work the results envisaged in the end analysis work, conclusions and steps for future work program..
A BIOLOGICALLY BASED MODEL FOR THE HORMONAL CONTROL OF THE MENSTRUAL CYCLE
Recent studies suggest that environmental substances that mimic endogenous estrogens (eg. estradiol) may disrupt the endocrine system. While high-level exposures to estrogenic substances are believed to contribute to such adverse effects as cancer, developmental disorders, and fe...
Developmental Sentence Scoring for Japanese
ERIC Educational Resources Information Center
Miyata, Susanne; MacWhinney, Brian; Otomo, Kiyoshi; Sirai, Hidetosi; Oshima-Takane, Yuriko; Hirakawa, Makiko; Shirai, Yasuhiro; Sugiura, Masatoshi; Itoh, Keiko
2013-01-01
This article reports on the development and use of the Developmental Sentence Scoring for Japanese (DSSJ), a new morpho-syntactical measure for Japanese constructed after the model of Lee's English Developmental Sentence Scoring model. Using this measure, the authors calculated DSSJ scores for 84 children divided into six age groups between 2;8…
Developmental Education in Arkansas: Practices, Costs, and a Model Approach
ERIC Educational Resources Information Center
Carroll, Rhonda; Kersh, Lily; Sullivan, Ellen; Fincher, Mark
2012-01-01
This paper examines the origins of developmental education and explores the way developmental education is administered at selected colleges in Arkansas. Finally, the paper focuses on a model Career Pathways Initiative program at University of Arkansas Community College-Morrilton. Career Pathways invigorates partnerships between colleges and…
ERIC Educational Resources Information Center
Matjasko, Jennifer L.; Needham, Belinda L.; Grunden, Leslie N.; Farb, Amy Feldman
2010-01-01
Using a variant of the ecological-transactional model and developmental theories of delinquency on a nationally representative sample of adolescents, the current study explored the ecological predictors of violent victimization, perpetration, and both for three different developmental stages during adolescence. We examined the relative influence…
Lung boundary detection in pediatric chest x-rays
NASA Astrophysics Data System (ADS)
Candemir, Sema; Antani, Sameer; Jaeger, Stefan; Browning, Renee; Thoma, George R.
2015-03-01
Tuberculosis (TB) is a major public health problem worldwide, and highly prevalent in developing countries. According to the World Health Organization (WHO), over 95% of TB deaths occur in low- and middle- income countries that often have under-resourced health care systems. In an effort to aid population screening in such resource challenged settings, the U.S. National Library of Medicine has developed a chest X-ray (CXR) screening system that provides a pre-decision on pulmonary abnormalities. When the system is presented with a digital CXR image from the Picture Archive and Communication Systems (PACS) or an imaging source, it automatically identifies the lung regions in the image, extracts image features, and classifies the image as normal or abnormal using trained machine-learning algorithms. The system has been trained on adult CXR images, and this article presents enhancements toward including pediatric CXR images. Our adult lung boundary detection algorithm is model-based. We note the lung shape differences during pediatric developmental stages, and adulthood, and propose building new lung models suitable for pediatric developmental stages. In this study, we quantify changes in lung shape from infancy to adulthood toward enhancing our lung segmentation algorithm. Our initial findings suggest pediatric age groupings of 0 - 23 months, 2 - 10 years, and 11 - 18 years. We present justification for our groupings. We report on the quality of boundary detection algorithm with the pediatric lung models.
Tropini, Carolina; Huang, Kerwyn Casey
2012-01-01
Bacterial cells maintain sophisticated levels of intracellular organization that allow for signal amplification, response to stimuli, cell division, and many other critical processes. The mechanisms underlying localization and their contribution to fitness have been difficult to uncover, due to the often challenging task of creating mutants with systematically perturbed localization but normal enzymatic activity, and the lack of quantitative models through which to interpret subtle phenotypic changes. Focusing on the model bacterium Caulobacter crescentus, which generates two different types of daughter cells from an underlying asymmetric distribution of protein phosphorylation, we use mathematical modeling to investigate the contribution of the localization of histidine kinases to the establishment of cellular asymmetry and subsequent developmental outcomes. We use existing mutant phenotypes and fluorescence data to parameterize a reaction-diffusion model of the kinases PleC and DivJ and their cognate response regulator DivK. We then present a systematic computational analysis of the effects of changes in protein localization and abundance to determine whether PleC localization is required for correct developmental timing in Caulobacter. Our model predicts the developmental phenotypes of several localization mutants, and suggests that a novel strain with co-localization of PleC and DivJ could provide quantitative insight into the signaling threshold required for flagellar pole development. Our analysis indicates that normal development can be maintained through a wide range of localization phenotypes, and that developmental defects due to changes in PleC localization can be rescued by increased PleC expression. We also show that the system is remarkably robust to perturbation of the kinetic parameters, and while the localization of either PleC or DivJ is required for asymmetric development, the delocalization of one of these two components does not prevent flagellar pole development. We further find that allosteric regulation of PleC observed in vitro does not affect the predicted in vivo developmental phenotypes. Taken together, our model suggests that cells can tolerate perturbations to localization phenotypes, whose evolutionary origins may be connected with reducing protein expression or with decoupling pre- and post-division phenotypes. PMID:22876167
Method of Electroporation for the Early Chick Embryo
NASA Astrophysics Data System (ADS)
Hatakeyama, Jun; Shimamura, Kenji
Chick embryos have long been one of the favored model systems in the field of embryology and developmental biology. Recent advances in the gene manipulation technologies (Muramatsu et al., 1997; Nakamura et al., 2004) make this model system even more attractive for the developmental biologists (see review by Stern, 2005). Thanks to its two dimensional geometry, easiness in accessibility and observation, and well-established fate maps (e.g. Couly and Le Douarin, 1988; Garcia-Martinez et al., 1993; Hatada and Stern, 1994; Psychoyos and Stern, 1996; Sawada and Aoyama, 1999; Cobos et al., 2001; Lopez-Sanchez et al., 2001; Redkar et al., 2001; Fernandez-Garre et al., 2002; Kimura et al., 2006; Matsushita et al., 2008), it has great advantages especially for studies at the early embryonic stages, such as the processes of gastrulation, neural induction, left-right patterning, etc. For such purposes, a whole embryo culture system, originally invented by Dennis A. T. New (New, 1955), and its derivatives (Flamme, 1987; Sundin and Eichele, 1992; Stern, 1993; Chapman et al., 2001) have been widely used.
Passot, Sixtine; Moreno-Ortega, Beatriz; Moukouanga, Daniel; Balsera, Crispulo; Guyomarc'h, Soazig; Lucas, Mikael; Lobet, Guillaume; Laplaze, Laurent; Muller, Bertrand; Guédon, Yann
2018-05-11
Recent progress in root phenotyping has focused mainly on increasing throughput for genetic studies while identifying root developmental patterns has been comparatively underexplored. We introduce a new phenotyping pipeline for producing high-quality spatio-temporal root system development data and identifying developmental patterns within these data. The SmartRoot image analysis system and temporal and spatial statistical models were applied to two cereals, pearl millet (Pennisetum glaucum) and maize (Zea mays). Semi-Markov switching linear models were used to cluster lateral roots based on their growth rate profiles. These models revealed three types of lateral roots with similar characteristics in both species. The first type corresponds to fast and accelerating roots, the second to rapidly arrested roots, and the third to an intermediate type where roots cease elongation after a few days. These types of lateral roots were retrieved in different proportions in a maize mutant affected in auxin signaling, while the first most vigorous type was absent in maize plants exposed to severe shading. Moreover, the classification of growth rate profiles was mirrored by a ranking of anatomical traits in pearl millet. Potential dependencies in the succession of lateral root types along the primary root were then analyzed using variable-order Markov chains. The lateral root type was not influenced by the shootward neighbor root type or by the distance from this root. This random branching pattern of primary roots was remarkably conserved, despite the high variability of root systems in both species. Our phenotyping pipeline opens the door to exploring the genetic variability of lateral root developmental patterns. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.
Congenital limb malformations are among the most frequent malformation occurs in humans, with a frequency of about 1 in 500 to 1 in 1000 human live births. ToxCast is profiling the bioactivity of thousands of chemicals based on high-throughput (HTS) and computational methods that...
@NWTC Newsletter: Summer 2014 | Wind | NREL
, Developmental Role in Major Wind Journal Boosting Wind Plant Power Output by 4%-5% through Coordinated Turbine . Part 2: Wind Farm Wake Models New Framework Transforms FAST Wind Turbine Modeling Tool (Fact Sheet ) Sensitivity Analysis of Wind Plant Performance to Key Turbine Design Parameters: A Systems Engineering
Immune cell identity: perspective from a palimpsest
Rothenberg, Ellen V.
2016-01-01
The immune system in mammals is composed of multiple different immune cell types that migrate through the body and are made continuously throughout life. Lymphocytes and myeloid cells interact with each other and depend upon each other, but are each highly diverse and specialized for different roles. Lymphocytes uniquely require developmentally programmed mutational changes in the genome itself for their maturation. Despite profound differences between their mechanisms of threat recognition and threat response, however, the developmental origins of lymphocytes and myeloid cells are interlinked, and important aspects of their response mechanisms remain shared. As the immune defense system has been elucidated in the past 50 years, it is notable that the chain of logic toward our current understanding was driven by strongly posited models that led to crucial discoveries even though these models ended up being partly wrong. It has been the predictive strength of these models and their success as guides to incisive experimental research that has also illuminated the limits of each model’s explanatory scope, beyond which another model needed to assume the lead. This brief review describes how a succession of distinct paradigms has helped to clarify a sophisticated picture of immune cell generation and control. PMID:26750603
Telerobotic system performance measurement - Motivation and methods
NASA Technical Reports Server (NTRS)
Kondraske, George V.; Khoury, George J.
1992-01-01
A systems performance-based strategy for modeling and conducting experiments relevant to the design and performance characterization of telerobotic systems is described. A developmental testbed consisting of a distributed telerobotics network and initial efforts to implement the strategy described is presented. Consideration is given to the general systems performance theory (GSPT) to tackle human performance problems as a basis for: measurement of overall telerobotic system (TRS) performance; task decomposition; development of a generic TRS model; and the characterization of performance of subsystems comprising the generic model. GSPT employs a resource construct to model performance and resource economic principles to govern the interface of systems to tasks. It provides a comprehensive modeling/measurement strategy applicable to complex systems including both human and artificial components. Application is presented within the framework of a distributed telerobotics network as a testbed. Insight into the design of test protocols which elicit application-independent data is described.
Ollonen, Joni; Da Silva, Filipe O; Mahlow, Kristin; Di-Poï, Nicolas
2018-01-01
The rise of the Evo-Devo field and the development of multidisciplinary research tools at various levels of biological organization have led to a growing interest in researching for new non-model organisms. Squamates (lizards and snakes) are particularly important for understanding fundamental questions about the evolution of vertebrates because of their high diversity and evolutionary innovations and adaptations that portrait a striking body plan change that reached its extreme in snakes. Yet, little is known about the intricate connection between phenotype and genotype in squamates, partly due to limited developmental knowledge and incomplete characterization of embryonic development. Surprisingly, squamate models have received limited attention in comparative developmental studies, and only a few species examined so far can be considered as representative and appropriate model organism for mechanistic Evo-Devo studies. Fortunately, the agamid lizard Pogona vitticeps (central bearded dragon) is one of the most popular, domesticated reptile species with both a well-established history in captivity and key advantages for research, thus forming an ideal laboratory model system and justifying his recent use in reptile biology research. We first report here the complete post-oviposition embryonic development for P. vitticeps based on standardized staging systems and external morphological characters previously defined for squamates. Whereas the overall morphological development follows the general trends observed in other squamates, our comparisons indicate major differences in the developmental sequence of several tissues, including early craniofacial characters. Detailed analysis of both embryonic skull development and adult skull shape, using a comparative approach integrating CT-scans and gene expression studies in P. vitticeps as well as comparative embryology and 3D geometric morphometrics in a large dataset of lizards and snakes, highlights the extreme adult skull shape of P. vitticeps and further indicates that heterochrony has played a key role in the early development and ossification of squamate skull bones. Such detailed studies of embryonic character development, craniofacial patterning, and bone formation are essential for the establishment of well-selected squamate species as Evo-Devo model organisms. We expect that P. vitticeps will continue to emerge as a new attractive model organism for understanding developmental and molecular processes underlying tissue formation, morphology, and evolution.
Ollonen, Joni; Da Silva, Filipe O.; Mahlow, Kristin; Di-Poï, Nicolas
2018-01-01
The rise of the Evo-Devo field and the development of multidisciplinary research tools at various levels of biological organization have led to a growing interest in researching for new non-model organisms. Squamates (lizards and snakes) are particularly important for understanding fundamental questions about the evolution of vertebrates because of their high diversity and evolutionary innovations and adaptations that portrait a striking body plan change that reached its extreme in snakes. Yet, little is known about the intricate connection between phenotype and genotype in squamates, partly due to limited developmental knowledge and incomplete characterization of embryonic development. Surprisingly, squamate models have received limited attention in comparative developmental studies, and only a few species examined so far can be considered as representative and appropriate model organism for mechanistic Evo-Devo studies. Fortunately, the agamid lizard Pogona vitticeps (central bearded dragon) is one of the most popular, domesticated reptile species with both a well-established history in captivity and key advantages for research, thus forming an ideal laboratory model system and justifying his recent use in reptile biology research. We first report here the complete post-oviposition embryonic development for P. vitticeps based on standardized staging systems and external morphological characters previously defined for squamates. Whereas the overall morphological development follows the general trends observed in other squamates, our comparisons indicate major differences in the developmental sequence of several tissues, including early craniofacial characters. Detailed analysis of both embryonic skull development and adult skull shape, using a comparative approach integrating CT-scans and gene expression studies in P. vitticeps as well as comparative embryology and 3D geometric morphometrics in a large dataset of lizards and snakes, highlights the extreme adult skull shape of P. vitticeps and further indicates that heterochrony has played a key role in the early development and ossification of squamate skull bones. Such detailed studies of embryonic character development, craniofacial patterning, and bone formation are essential for the establishment of well-selected squamate species as Evo-Devo model organisms. We expect that P. vitticeps will continue to emerge as a new attractive model organism for understanding developmental and molecular processes underlying tissue formation, morphology, and evolution. PMID:29643813
Riesche, Laren; Tardif, Suzette D; Ross, Corinna N; deMartelly, Victoria A; Ziegler, Toni; Rutherford, Julienne N
2018-05-01
Animal models have been critical in building evidence that the prenatal experience and intrauterine environment are capable of exerting profound and permanent effects on metabolic health through developmental programming of obesity. However, despite physiological and evolutionary similarities, nonhuman primate models are relatively rare. The common marmoset monkey ( Callithrix jacchus) is a New World monkey that has been used as a biomedical model for well more than 50 years and has recently been framed as an appropriate model for exploring early-life impacts on later health and disease. The spontaneous, multifactorial, and early-life development of obesity in the common marmoset make it a valuable research model for advancing our knowledge about the role of the prenatal and placental mechanisms involved in developmental programming of obesity. This paper provides a brief overview of obesity in the common marmoset, followed by a discussion of marmoset reproduction and placental characteristics. We then discuss the occurrence and utility of variable intrauterine environments in developmental programming in marmosets. Evidence of developmental programming of obesity will be given, and finally, we put forward future directions and innovations for including the placenta in developmental programming of obesity in the common marmoset.
Annual Research Review: The Promise of Stem Cell Research for Neuropsychiatric Disorders
ERIC Educational Resources Information Center
Vaccarino, Flora M.; Urban, Alexander Eckehart; Stevens, Hanna E.; Szekely, Anna; Abyzov, Alexej; Grigorenko, Elena L.; Gerstein, Mark; Weissman, Sherman
2011-01-01
The study of the developing brain has begun to shed light on the underpinnings of both early and adult onset neuropsychiatric disorders. Neuroimaging of the human brain across developmental time points and the use of model animal systems have combined to reveal brain systems and gene products that may play a role in autism spectrum disorders,…
Computer-Aided Air-Traffic Control In The Terminal Area
NASA Technical Reports Server (NTRS)
Erzberger, Heinz
1995-01-01
Developmental computer-aided system for automated management and control of arrival traffic at large airport includes three integrated subsystems. One subsystem, called Traffic Management Advisor, another subsystem, called Descent Advisor, and third subsystem, called Final Approach Spacing Tool. Data base that includes current wind measurements and mathematical models of performances of types of aircraft contributes to effective operation of system.
In vivo effects of bisphenol A in laboratory rodent studies
Richter, Catherine A.; Birnbaum, Linda S.; Farabollini, Francesca; Newbold, Retha R.; Rubin, Beverly S.; Talsness, Chris E.; Vandenbergh, John G.; Walser-Kuntz, Debby R.; vom Saal, Frederick S.
2007-01-01
Concern is mounting regarding the human health and environmental effects of bisphenol A (BPA), a high-production-volume chemical used in synthesis of plastics. We have reviewed the growing literature on effects of low doses of BPA, below 50 mg/(kg day), in laboratory exposures with mammalian model organisms. Many, but not all, effects of BPA are similar to effects seen in response to the model estrogens diethylstilbestrol and ethinylestradiol. For most effects, the potency of BPA is approximately 10–1000-fold less than that of diethylstilbestrol or ethinylestradiol. Based on our review of the literature, a consensus was reached regarding our level of confidence that particular outcomes occur in response to low dose BPA exposure. We are confident that adult exposure to BPA affects the male reproductive tract, and that long lasting, organizational effects in response to developmental exposure to BPA occur in the brain, the male reproductive system, and metabolic processes. We consider it likely, but requiring further confirmation, that adult exposure to BPA affects the brain, the female reproductive system, and the immune system, and that developmental effects occur in the female reproductive system.
Fluctuating asymmetry and stress in a medieval Nubian population.
Deleon, Valerie B
2007-04-01
Fluctuating asymmetry is commonly used as a bioindicator of developmental stress. This study addresses asymmetry under nutritional/systemic stress in the human craniofacial skeleton and its utility as an indicator of developmental instability. Crania from the diachronic Christian cemeteries at Kulubnarti (Sudanese Nubia) were chosen as a model for nutrition/systemic stress. Previous studies indicate that individuals from the Early Christian cemetery were subjected to greater developmental stress when compared with individuals from the Late Christian cemetery. Therefore, crania from the Early Christian cemetery should display a greater magnitude of fluctuating asymmetry than crania from the Late Christian cemetery. Thirty adult crania of comparable age and sex were selected from each population. Landmark coordinates were digitized in two separate trials and averaged to minimize error. Euclidean distance matrix analysis (EDMA) was used to measure and compare the magnitude of fluctuating asymmetry in each sample. Results indicate that crania from the Early Christian cemetery display greater amounts of fluctuating asymmetry than those from the Late Christian cemetery, as predicted. The degree of fluctuating asymmetry for each linear distance is highly correlated between the cemeteries, suggesting that all humans may share common patterns of fluctuating asymmetry in the skull. In contrast, there is little correlation between magnitude of fluctuating asymmetry and length of linear distance, between-subject variability, or measurement error. These results support the hypothesis that poor nutrition/systemic stress increases developmental instability in the human skull and that increased fluctuating asymmetry constitutes morphological evidence of this stress.
Allman, Melissa J.; Pelphrey, Kevin A.; Meck, Warren H.
2011-01-01
Estimations of time and number share many similarities in both non-humans and man. The primary focus of this review is on the development of time and number sense across infancy and childhood, and neuropsychological findings as they relate to time and number discrimination in infants and adults. Discussion of these findings is couched within a mode-control model of timing and counting which assumes time and number share a common magnitude representation system. A basic sense of time and number likely serves as the foundation for advanced numerical and temporal competence, and aspects of higher cognition—this will be discussed as it relates to typical childhood, and certain developmental disorders, including autism spectrum disorder. Directions for future research in the developmental neuroscience of time and number (NEUTIN) will also be highlighted. PMID:22408612
Myers, Sonya S; Pianta, Robert C
2008-07-01
Understanding factors associated with children's early behavioral difficulties is of vital importance to children's school success, and to the prevention of future behavior problems. Although biological factors can influence the expression of certain behaviors, the probability of children exhibiting classroom behavior problems is intensified when they are exposed to multiple risk factors, particularly negative student-teacher interactions. Children who exhibit behavior problems during early childhood and the transition to kindergarten, without intervention, can be placed on a developmental trajectory for serious behavior problems in later grades. Using a developmental systems model, this commentary provides a conceptual framework for understanding the contributions of individual and contextual factors to the development of early student-teacher relationships. Parent, teacher, and student characteristics are discussed as they are related to shaping student-teacher interactions and children's adjustment to school.
ERIC Educational Resources Information Center
Morse, Anthony F.; Cangelosi, Angelo
2017-01-01
Most theories of learning would predict a gradual acquisition and refinement of skills as learning progresses, and while some highlight exponential growth, this fails to explain why natural cognitive development typically progresses in stages. Models that do span multiple developmental stages typically have parameters to "switch" between…
Vannucci, Anna; Nelson, Eric E.; Bongiorno, Diana M.; Pine, Daniel S.; Yanovski, Jack A.; Tanofsky-Kraff, Marian
2015-01-01
Background Pediatric loss-of-control eating is a robust behavioral precursor to binge-type eating disorders. Elucidating precursors to loss-of-control eating and binge-type eating disorders may refine developmental risk models of eating disorders and inform interventions. Method We review evidence within constructs of the Negative Valence Systems (NVS)-domain, as specified by the Research Domain Criteria framework. Based on published studies, we propose an integrated NVS model of binge-type eating disorder risk. Results Data implicate altered corticolimbic functioning, neuroendocrine dysregulation, and self-reported negative affect as possible risk-factors. However, neuroimaging and physiological data in children and adolescents are sparse, and most prospective studies are limited to self-report measures. Conclusions We discuss a broad NVS framework for conceptualizing early risk for binge-type eating disorders. Future neural and behavioral research on the developmental trajectory of loss-of-control and binge-type eating disorders is required. PMID:26040923
Applying a Lifespan Developmental Perspective to Chronic Pain: Pediatrics to Geriatrics.
Walco, Gary A; Krane, Elliot J; Schmader, Kenneth E; Weiner, Debra K
2016-09-01
An ideal taxonomy of chronic pain would be applicable to people of all ages. Developmental sciences focus on lifespan developmental approaches, and view the trajectory of processes in the life course from birth to death. In this article we provide a review of lifespan developmental models, describe normal developmental processes that affect pain processing, and identify deviations from those processes that lead to stable individual differences of clinical interest, specifically the development of chronic pain syndromes. The goals of this review were 1) to unify what are currently separate purviews of "pediatric pain," "adult pain," and "geriatric pain," and 2) to generate models so that specific elements of the chronic pain taxonomy might include important developmental considerations. A lifespan developmental model is applied to the forthcoming Analgesic, Anesthetic, and Addiction Clinical Trial Translations, Innovations, Opportunities, and Networks-American Pain Society Pain Taxonomy to ascertain the degree to which general "adult" descriptions apply to pediatric and geriatric populations, or if age- or development-related considerations need to be invoked. Copyright © 2016. Published by Elsevier Inc.
Integrating Parenting Support Within and Beyond the Pediatric Medical Home.
Linton, Julie M; Stockton, Maria Paz; Andrade, Berta; Daniel, Stephanie
2018-01-01
Positive parenting programs, developmental support services, and evidence-based home visiting programs can effectively provide parenting support and improve health and developmental outcomes for at-risk children. Few models, however, have integrated referrals for on-site support and home visiting programs into the provision of routine pediatric care within a medical home. This article describes an innovative approach, through partnership with a community-based organization, to deliver on-site and home visiting support services for children and families within and beyond the medical home. Our model offers a system of on-site services, including parenting, behavior, and/or development support, with optional intensive home visiting services. Assessment included description of the population served, delineation of services provided, and qualitative identification of key themes of the impact of services, illustrated by case examples. This replicable model describes untapped potential of the pediatric medical home as a springboard to mitigate risk and optimize children's health and development.
Genetics on the Fly: A Primer on the Drosophila Model System
Hales, Karen G.; Korey, Christopher A.; Larracuente, Amanda M.; Roberts, David M.
2015-01-01
Fruit flies of the genus Drosophila have been an attractive and effective genetic model organism since Thomas Hunt Morgan and colleagues made seminal discoveries with them a century ago. Work with Drosophila has enabled dramatic advances in cell and developmental biology, neurobiology and behavior, molecular biology, evolutionary and population genetics, and other fields. With more tissue types and observable behaviors than in other short-generation model organisms, and with vast genome data available for many species within the genus, the fly’s tractable complexity will continue to enable exciting opportunities to explore mechanisms of complex developmental programs, behaviors, and broader evolutionary questions. This primer describes the organism’s natural history, the features of sequenced genomes within the genus, the wide range of available genetic tools and online resources, the types of biological questions Drosophila can help address, and historical milestones. PMID:26564900
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tonk, Elisa C.M., E-mail: ilse.tonk@rivm.nl; Laboratory for Health Protection Research, National Institute for Public Health and the Environment; Verhoef, Aart
The developing immune system displays a relatively high sensitivity as compared to both general toxicity parameters and to the adult immune system. In this study we have performed such comparisons using di(2-ethylhexyl) phthalate (DEHP) as a model compound. DEHP is the most abundant phthalate in the environment and perinatal exposure to DEHP has been shown to disrupt male sexual differentiation. In addition, phthalate exposure has been associated with immune dysfunction as evidenced by effects on the expression of allergy. Male wistar rats were dosed with corn oil or DEHP by gavage from postnatal day (PND) 10–50 or PND 50–90 atmore » doses between 1 and 1000 mg/kg/day. Androgen-dependent organ weights showed effects at lower dose levels in juvenile versus adult animals. Immune parameters affected included TDAR parameters in both age groups, NK activity in juvenile animals and TNF-α production by adherent splenocytes in adult animals. Immune parameters were affected at lower dose levels compared to developmental parameters. Overall, more immune parameters were affected in juvenile animals compared to adult animals and effects were observed at lower dose levels. The results of this study show a relatively higher sensitivity of juvenile versus adult rats. Furthermore, they illustrate the relative sensitivity of the developing immune system in juvenile animals as compared to general toxicity and developmental parameters. This study therefore provides further argumentation for performing dedicated developmental immune toxicity testing as a default in regulatory toxicology. -- Highlights: ► In this study we evaluate the relative sensitivities for DEHP induced effects. ► Results of this study demonstrate the age-dependency of DEHP toxicity. ► Functional immune parameters were more sensitive than structural immune parameters. ► Immune parameters were affected at lower dose levels than developmental parameters. ► Findings demonstrate the susceptibility of the developing immune system for DEHP.« less
Perea, Manuel; Panadero, Victoria
2014-01-01
The vast majority of neural and computational models of visual-word recognition assume that lexical access is achieved via the activation of abstract letter identities. Thus, a word's overall shape should play no role in this process. In the present lexical decision experiment, we compared word-like pseudowords like viotín (same shape as its base word: violín) vs. viocín (different shape) in mature (college-aged skilled readers), immature (normally reading children), and immature/impaired (young readers with developmental dyslexia) word-recognition systems. Results revealed similar response times (and error rates) to consistent-shape and inconsistent-shape pseudowords for both adult skilled readers and normally reading children - this is consistent with current models of visual-word recognition. In contrast, young readers with developmental dyslexia made significantly more errors to viotín-like pseudowords than to viocín-like pseudowords. Thus, unlike normally reading children, young readers with developmental dyslexia are sensitive to a word's visual cues, presumably because of poor letter representations.
45 CFR 1386.24 - Non-allowable costs for the Protection and Advocacy System.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION ON DEVELOPMENTAL DISABILITIES, DEVELOPMENTAL DISABILITIES PROGRAM FORMULA GRANT PROGRAMS State System for Protection and Advocacy of the Rights of Individuals with Developmental Disabilities § 1386.24 Non-allowable...
Developmental Changes in Learning: Computational Mechanisms and Social Influences
Bolenz, Florian; Reiter, Andrea M. F.; Eppinger, Ben
2017-01-01
Our ability to learn from the outcomes of our actions and to adapt our decisions accordingly changes over the course of the human lifespan. In recent years, there has been an increasing interest in using computational models to understand developmental changes in learning and decision-making. Moreover, extensions of these models are currently applied to study socio-emotional influences on learning in different age groups, a topic that is of great relevance for applications in education and health psychology. In this article, we aim to provide an introduction to basic ideas underlying computational models of reinforcement learning and focus on parameters and model variants that might be of interest to developmental scientists. We then highlight recent attempts to use reinforcement learning models to study the influence of social information on learning across development. The aim of this review is to illustrate how computational models can be applied in developmental science, what they can add to our understanding of developmental mechanisms and how they can be used to bridge the gap between psychological and neurobiological theories of development. PMID:29250006
Starrfelt, Randi; Klargaard, Solja K; Petersen, Anders; Gerlach, Christian
2018-02-01
Recent models suggest that face and word recognition may rely on overlapping cognitive processes and neural regions. In support of this notion, face recognition deficits have been demonstrated in developmental dyslexia. Here we test whether the opposite association can also be found, that is, impaired reading in developmental prosopagnosia. We tested 10 adults with developmental prosopagnosia and 20 matched controls. All participants completed the Cambridge Face Memory Test, the Cambridge Face Perception test and a Face recognition questionnaire used to quantify everyday face recognition experience. Reading was measured in four experimental tasks, testing different levels of letter, word, and text reading: (a) single word reading with words of varying length,(b) vocal response times in single letter and short word naming, (c) recognition of single letters and short words at brief exposure durations (targeting the word superiority effect), and d) text reading. Participants with developmental prosopagnosia performed strikingly similar to controls across the four reading tasks. Formal analysis revealed a significant dissociation between word and face recognition, as the difference in performance with faces and words was significantly greater for participants with developmental prosopagnosia than for controls. Adult developmental prosopagnosics read as quickly and fluently as controls, while they are seemingly unable to learn efficient strategies for recognizing faces. We suggest that this is due to the differing demands that face and word recognition put on the perceptual system. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Koledova, Zuzana; Lu, Pengfei
2017-01-01
The mammary gland consists of numerous tissue compartments, including mammary epithelium, an array of stromal cells, and the extracellular matrix (ECM). Bidirectional interactions between the epithelium and its surrounding stroma are essential for proper mammary gland development and homeostasis, whereas their deregulation leads to developmental abnormalities and cancer. To study the relationships between the epithelium and the stroma, development of models that could recapitulate essential aspects of these interacting systems in vitro has become necessary. Here we describe a three-dimensional (3D) co-culture assay and show that the addition of fibroblasts to mammary organoid cultures promotes the epithelium to undergo branching morphogenesis, thus allowing the role of the stromal microenvironment to be examined in this essential developmental process.
RAM simulation model for SPH/RSV systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schryver, J.C.; Primm, A.H.; Nelson, S.C.
1995-12-31
The US Army`s Project Manager, Crusader is sponsoring the development of technologies that apply to the Self-Propelled Howitzer (SPH), formerly the Advanced Field Artillery System (AFAS), and Resupply Vehicle (RSV), formerly the Future Armored Resupply Vehicle (FARV), weapon system. Oak Ridge National Laboratory (ORNL) is currently performing developmental work in support of the SPH/PSV Crusader system. Supportive analyses of reliability, availability, and maintainability (RAM) aspects were also performed for the SPH/RSV effort. During FY 1994 and FY 1995 OPNL conducted a feasibility study to demonstrate the application of simulation modeling for RAM analysis of the Crusader system. Following completion ofmore » the feasibility study, a full-scale RAM simulation model of the Crusader system was developed for both the SPH and PSV. This report provides documentation for the simulation model as well as instructions in the proper execution and utilization of the model for the conduct of RAM analyses.« less
Kuhlman, Kate Ryan; Chiang, Jessica J; Horn, Sarah; Bower, Julienne E
2017-09-01
Childhood adversity has been repeatedly and robustly linked to physical and mental illness across the lifespan. Yet, the biological pathways through which this occurs remain unclear. Functioning of the inflammatory arm of the immune system and the hypothalamic-pituitary-adrenal (HPA)-axis are both hypothesized pathways through which childhood adversity leads to disease. This review provides a novel developmental framework for examining the role of adversity type and timing in inflammatory and HPA-axis functioning. In particular, we identify elements of childhood adversity that are salient to the developing organism: physical threat, disrupted caregiving, and unpredictable environmental conditions. We propose that existing, well-characterized animal models may be useful in differentiating the effects of these adversity elements and review both the animal and human literature that supports these ideas. To support these hypotheses, we also provide a detailed description of the development and structure of both the HPA-axis and the inflammatory arm of the immune system, as well as recent methodological advances in their measurement. Recommendations for future basic, developmental, translational, and clinical research are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pfeuty, B.; Kaneko, K.
2016-04-01
The proper functioning of multicellular organisms requires the robust establishment of precise proportions between distinct cell types. This developmental differentiation process typically involves intracellular regulatory and stochastic mechanisms to generate cell-fate diversity as well as intercellular signaling mechanisms to coordinate cell-fate decisions at tissue level. We thus surmise that key insights about the developmental regulation of cell-type proportion can be captured by the modeling study of clustering dynamics in population of inhibitory-coupled noisy bistable systems. This general class of dynamical system is shown to exhibit a very stable two-cluster state, but also metastability, collective oscillations or noise-induced state hopping, which can prevent from timely and reliably reaching a robust and well-proportioned clustered state. To circumvent these obstacles or to avoid fine-tuning, we highlight a general strategy based on dual-time positive feedback loops, such as mediated through transcriptional versus epigenetic mechanisms, which improves proportion regulation by coordinating early and flexible lineage priming with late and firm commitment. This result sheds new light on the respective and cooperative roles of multiple regulatory feedback, stochasticity and lateral inhibition in developmental dynamics.
2007-01-01
Background The usage of synonymous codons shows considerable variation among mammalian genes. How and why this usage is non-random are fundamental biological questions and remain controversial. It is also important to explore whether mammalian genes that are selectively expressed at different developmental stages bear different molecular features. Results In two models of mouse stem cell differentiation, we established correlations between codon usage and the patterns of gene expression. We found that the optimal codons exhibited variation (AT- or GC-ending codons) in different cell types within the developmental hierarchy. We also found that genes that were enriched (developmental-pivotal genes) or specifically expressed (developmental-specific genes) at different developmental stages had different patterns of codon usage and local genomic GC (GCg) content. Moreover, at the same developmental stage, developmental-specific genes generally used more GC-ending codons and had higher GCg content compared with developmental-pivotal genes. Further analyses suggest that the model of translational selection might be consistent with the developmental stage-related patterns of codon usage, especially for the AT-ending optimal codons. In addition, our data show that after human-mouse divergence, the influence of selective constraints is still detectable. Conclusion Our findings suggest that developmental stage-related patterns of gene expression are correlated with codon usage (GC3) and GCg content in stem cell hierarchies. Moreover, this paper provides evidence for the influence of natural selection at synonymous sites in the mouse genome and novel clues for linking the molecular features of genes to their patterns of expression during mammalian ontogenesis. PMID:17349061
Beck, Arne; Bergman, David A; Rahm, Alanna K; Dearing, James W; Glasgow, Russell E
2009-01-01
We describe here the use of a conceptual framework for implementing and disseminating in a Health Maintenance Organization an evidence-based model of well-child care (WCC) that includes developmental and preventive services recommended by the American Academy of Pediatrics. Twenty-first Century WCC is a parent-centered, team-based, primary care model that combines online previsit assessments—completed by parents and caregivers regarding clinic-based weight, growth, and development assessments—with vaccinations and anticipatory guidance. Nurses, nurse practitioners, developmental specialists, and pediatricians all play roles in the WCC model. Patient and clinician interaction, health records, and resources are all facilitated through a Web-based diagnostic, management, tracking, and resource information tool. Implementation and dissemination concepts and their attendant practices and tools can reliably be used to augment strategic decisions about how to best disseminate and implement innovations in health care delivery. Unlike innovations that are embedded only in technical systems, validated models of team-based health care have multiple components that must be made compatible with complex sociotechnical systems. Interpersonal communication, work, coordination, and judgment are key processes that affect implementation quality. Implementation can involve tailoring to a particular site and customizing either the model or the organizational context to accommodate it. PMID:20740083
Piloting a Web-Based Homework System in Developmental Mathematics Classrooms
ERIC Educational Resources Information Center
Dass, Wendi E.
2012-01-01
This Capstone project studied a pilot of the web-based homework system "Hawkes" in developmental mathematics classes at a mid-sized community college. The purpose of the study was to investigate how three instructors of developmental mathematics courses incorporated "Hawkes" in their classes, what obstacles they encountered,…
Takeda, Hiroyuki
2008-06-01
The medaka Oryzias latipes is a small egg-laying freshwater teleost, and has become an excellent model system for developmental genetics and evolutionary biology. The medaka genome is relatively small in size, approximately 800 Mb, and the genome sequencing project was recently completed by Japanese research groups, providing a high-quality draft genome sequence of the inbred Hd-rR strain of medaka. In this review, I present an overview of the medaka genome project including genome resources, followed by specific findings obtained with the medaka draft genome. In particular, I focus on the analysis that was done by taking advantage of the medaka system, such as the sex chromosome differentiation and the regional history of medaka species using single nucleotide polymorphisms as genomic markers.
Flower color as a model system for studies of plant evo-devo.
Sobel, James M; Streisfeld, Matthew A
2013-01-01
Even though pigmentation traits have had substantial impacts on the field of animal evolutionary developmental biology, they have played only relatively minor roles in plant evo-devo. This is surprising given the often direct connection between flower color and fitness variation mediated through the effects of pollinators. At the same time, ecological and evolutionary genetic studies have utilized the molecular resources available for the anthocyanin pathway to generate several examples of the molecular basis of putatively adaptive transitions in flower color. Despite this opportunity to synthesize experimental approaches in ecology, evolution, and developmental biology, the investigation of many fundamental questions in evo-devo using this powerful model is only at its earliest stages. For example, a long-standing question is whether predictable genetic changes accompany the repeated evolution of a trait. Due to the conserved nature of the biochemical and regulatory control of anthocyanin biosynthesis, it has become possible to determine whether, and under what circumstances, different types of mutations responsible for flower color variation are preferentially targeted by natural selection. In addition, because plants use anthocyanin and related compounds in vegetative tissue for other important physiological functions, the identification of naturally occurring transitions from unpigmented to pigmented flowers provides the opportunity to examine the mechanisms by which regulatory networks are co-opted into new developmental domains. Here, we review what is known about the ecological and molecular basis of anthocyanic flower color transitions in natural systems, focusing on the evolutionary and developmental features involved. In doing so, we provide suggestions for future work on this trait and suggest that there is still much to be learned from the evolutionary development of flower color transitions in nature.
ERIC Educational Resources Information Center
Thomas, Michael S. C.; Knowland, Victoria C. P.; Karmiloff-Smith, Annette
2011-01-01
Loss of previously established behaviors in early childhood constitutes a markedly atypical developmental trajectory. It is found almost uniquely in autism and its cause is currently unknown (Baird et al., 2008). We present an artificial neural network model of developmental regression, exploring the hypothesis that regression is caused by…
ERIC Educational Resources Information Center
Ebert, Ashlee A.
2009-01-01
Ehri's developmental model of word recognition outlines early reading development that spans from the use of logos to advanced knowledge of oral and written language to read words. Henderson's developmental spelling theory presents stages of word knowledge that progress in a similar manner to Ehri's phases. The purpose of this research study was…
Psychological Dynamics of Adolescent Satanism.
ERIC Educational Resources Information Center
Moriarty, Anthony R.; Story, Donald W.
1990-01-01
Attempts to describe the psychological processes that predispose an individual to adopt a Satanic belief system. Describes processes in terms of child-parent relationships and the developmental tasks of adolescence. Proposes a model called the web of psychic tension to represent the process of Satanic cult adoption. Describes techniques for…
ERIC Educational Resources Information Center
Gravina, Nicole E.; Siers, Brian P.
2011-01-01
Models of comprehensive Performance Management systems include both employee development and evaluative components. The Organizational Behavior Management discipline focuses almost exclusively on the developmental component, while the Industrial and Organizational Psychology discipline is focused on use of performance appraisals. Performance…
VIRTUAL EMBRYO: SYSTEMS MODELING IN DEVELOPMENTAL TOXICITY - Symposium: SOT 2012
High-throughput screening (HTS) studies are providing a rich source of data that can be applied to in vitro profiling of chemical compounds for biological activity and potential toxicity. Chemical profiling in ToxCast covered 965 drugs-chemicals in over 500 diverse assays testing...
Virtual Embryo: Systems Modeling in Developmental Toxicity
High-throughput and high-content screening (HTS-HCS) studies are providing a rich source of data that can be applied to in vitro profiling of chemical compounds for biological activity and potential toxicity. EPA’s ToxCast™ project, and the broader Tox21 consortium, in addition t...
A developmental cascade perspective of paediatric obesity: a conceptual model and scoping review.
Smith, Justin D; Egan, Kaitlyn N; Montaño, Zorash; Dawson-McClure, Spring; Jake-Schoffman, Danielle E; Larson, Madeline; St George, Sara M
2018-04-05
Considering the immense challenge of preventing obesity, the time has come to reconceptualise the way we study the obesity development in childhood. The developmental cascade model offers a longitudinal framework to elucidate the way cumulative consequences and spreading effects of risk and protective factors, across and within biopsychosocial spheres and phases of development, can propel individuals towards obesity. In this article, we use a theory-driven model-building approach and a scoping review that included 310 published studies to propose a developmental cascade model of paediatric obesity. The proposed model provides a basis for testing hypothesised cascades with multiple intervening variables and complex longitudinal processes. Moreover, the model informs future research by resolving seemingly contradictory findings on pathways to obesity previously thought to be distinct (low self-esteem, consuming sugary foods, and poor sleep cause obesity) that are actually processes working together over time (low self-esteem causes consumption of sugary foods which disrupts sleep quality and contributes to obesity). The findings of such inquiries can aid in identifying the timing and specific targets of preventive interventions across and within developmental phases. The implications of such a cascade model of paediatric obesity for health psychology and developmental and prevention sciences are discussed.
Developmental Pathways Are Blueprints for Designing Successful Crops
Trevaskis, Ben
2018-01-01
Genes controlling plant development have been studied in multiple plant systems. This has provided deep insights into conserved genetic pathways controlling core developmental processes including meristem identity, phase transitions, determinacy, stem elongation, and branching. These pathways control plant growth patterns and are fundamentally important to crop biology and agriculture. This review describes the conserved pathways that control plant development, using Arabidopsis as a model. Historical examples of how plant development has been altered through selection to improve crop performance are then presented. These examples, drawn from diverse crops, show how the genetic pathways controlling development have been modified to increase yield or tailor growth patterns to suit local growing environments or specialized crop management practices. Strategies to apply current progress in genomics and developmental biology to future crop improvement are then discussed within the broader context of emerging trends in plant breeding. The ways that knowledge of developmental processes and understanding of gene function can contribute to crop improvement, beyond what can be achieved by selection alone, are emphasized. These include using genome re-sequencing, mutagenesis, and gene editing to identify or generate novel variation in developmental genes. The expanding scope for comparative genomics, the possibility to engineer new developmental traits and new approaches to resolve gene–gene or gene–environment interactions are also discussed. Finally, opportunities to integrate fundamental research and crop breeding are highlighted. PMID:29922318
Developmental Pathways Are Blueprints for Designing Successful Crops.
Trevaskis, Ben
2018-01-01
Genes controlling plant development have been studied in multiple plant systems. This has provided deep insights into conserved genetic pathways controlling core developmental processes including meristem identity, phase transitions, determinacy, stem elongation, and branching. These pathways control plant growth patterns and are fundamentally important to crop biology and agriculture. This review describes the conserved pathways that control plant development, using Arabidopsis as a model. Historical examples of how plant development has been altered through selection to improve crop performance are then presented. These examples, drawn from diverse crops, show how the genetic pathways controlling development have been modified to increase yield or tailor growth patterns to suit local growing environments or specialized crop management practices. Strategies to apply current progress in genomics and developmental biology to future crop improvement are then discussed within the broader context of emerging trends in plant breeding. The ways that knowledge of developmental processes and understanding of gene function can contribute to crop improvement, beyond what can be achieved by selection alone, are emphasized. These include using genome re-sequencing, mutagenesis, and gene editing to identify or generate novel variation in developmental genes. The expanding scope for comparative genomics, the possibility to engineer new developmental traits and new approaches to resolve gene-gene or gene-environment interactions are also discussed. Finally, opportunities to integrate fundamental research and crop breeding are highlighted.
Metamorphosis revealed: time-lapse three-dimensional imaging inside a living chrysalis.
Lowe, Tristan; Garwood, Russell J; Simonsen, Thomas J; Bradley, Robert S; Withers, Philip J
2013-07-06
Studies of model insects have greatly increased our understanding of animal development. Yet, they are limited in scope to this small pool of model species: a small number of representatives for a hyperdiverse group with highly varied developmental processes. One factor behind this narrow scope is the challenging nature of traditional methods of study, such as histology and dissection, which can preclude quantitative analysis and do not allow the development of a single individual to be followed. Here, we use high-resolution X-ray computed tomography (CT) to overcome these issues, and three-dimensionally image numerous lepidopteran pupae throughout their development. The resulting models are presented in the electronic supplementary material, as are figures and videos, documenting a single individual throughout development. They provide new insight and details of lepidopteran metamorphosis, and allow the measurement of tracheal and gut volume. Furthermore, this study demonstrates early and rapid development of the tracheae, which become visible in scans just 12 h after pupation. This suggests that there is less remodelling of the tracheal system than previously expected, and is methodologically important because the tracheal system is an often-understudied character system in development. In the future, this form of time-lapse CT-scanning could allow faster and more detailed developmental studies on a wider range of taxa than is presently possible.
Rice, Sean H
1998-06-01
Evolution can change the developmental processes underlying a character without changing the average expression of the character itself. This sort of change must occur in both the evolution of canalization, in which a character becomes increasingly buffered against genetic or developmental variation, and in the phenomenon of closely related species that show similar adult phenotypes but different underlying developmental patterns. To study such phenomena, I develop a model that follows evolution on a surface representing adult phenotype as a function of underlying developmental characters. A contour on such a "phenotype landscape" is a set of states of developmental characters that produce the same adult phenotype. Epistasis induces curvature of this surface, and degree of canalization is represented by the slope along a contour. I first discuss the geometric properties of phenotype landscapes, relating epistasis to canalization. I then impose a fitness function on the phenotype and model evolution of developmental characters as a function of the fitness function and the local geometry of the surface. This model shows how canalization evolves as a population approaches an optimum phenotype. It further shows that under some circumstances, "decanalization" can occur, in which the expression of adult phenotype becomes increasingly sensitive to developmental variation. This process can cause very similar populations to diverge from one another developmentally even when their adult phenotypes experience identical selection regimes. © 1998 The Society for the Study of Evolution.
The Emergent Executive: A Dynamic Field Theory of the Development of Executive Function
Buss, Aaron T.; Spencer, John P.
2015-01-01
A dynamic neural field (DNF) model is presented which provides a process-based account of behavior and developmental change in a key task used to probe the early development of executive function—the Dimensional Change Card Sort (DCCS) task. In the DCCS, children must flexibly switch from sorting cards either by shape or color to sorting by the other dimension. Typically, 3-year-olds, but not 4-year-olds, lack the flexibility to do so and perseverate on the first set of rules when instructed to switch. In the DNF model, rule-use and behavioral flexibility come about through a form of dimensional attention which modulates activity within different cortical fields tuned to specific feature dimensions. In particular, we capture developmental change by increasing the strength of excitatory and inhibitory neural interactions in the dimensional attention system as well as refining the connectivity between this system and the feature-specific cortical fields. Note that although this enables the model to effectively switch tasks, the dimensional attention system does not ‘know’ the details of task-specific performance. Rather, correct performance emerges as a property of system-wide neural interactions. We show how this captures children's behavior in quantitative detail across 12 versions of the DCCS task. Moreover, we successfully test a set of novel predictions with 3-year-old children from a version of the task not explained by other theories. PMID:24818836
Physiological evaluation of men wearing three different toxicological protective systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levine, L.; Cadarette, B.S.; Sawka, M.N.
1989-08-01
This study examined the physiological responses of seven volunteers exercising in the heat while wearing three different toxicological protective systems. The Toxicological Agent Protective (TAP) suit has been available for use for more than 30 years while the other two protective systems are developmental efforts. The Self-Contained Toxicological Environmental Protection Outfit (STEPO) includes either a backpack-rebreather (with CO{sub 2} scrubber) and ice-cooling vest (STEPO-R), or a tether system which supplies breathing/cooling air inside the suit (STEPO-T). After the volunteers were heat acclimated, the three toxicological protection systems were evaluated utilizing a counter-balanced experimental design initially in a hot and thenmore » in a cool environment while subjects walked at 1.12 m/s, 0% grade for an attempted two hours. There was no statistical advantage of any one system in terms of exercise time in the cool environment. While evaporated sweating rate was greater for the STEPO-T in the cool environment compared to both STEPO-R and TAP. Development efforts to improve the STEPO system designs continue, and physiological evaluation of new developmental models is underway.« less
Buznikov, G A; Nikitina, L A; Bezuglov, V V; Lauder, J M; Padilla, S; Slotkin, T A
2001-01-01
Chlorpyrifos targets mammalian brain development through a combination of effects directed at cholinergic receptors and intracellular signaling cascades that are involved in cell differentiation. We used sea urchin embryos as an invertebrate model system to explore the cellular mechanisms underlying the actions of chlorpyrifos and to delineate the critical period of developmental vulnerability. Sea urchin embryos and larvae were exposed to chlorpyrifos at different stages of development ranging from early cell cleavages through the prism stage. Although early cleavages were unaffected even at high chlorpyrifos concentrations, micromolar concentrations added at the mid-blastula stage evoked a prominent change in cell phenotype and overall larval structure, with appearance of pigmented cells followed by their accumulation in an extralarval cap that was extruded from the animal pole. At higher concentrations (20-40 microM), these abnormal cells constituted over 90% of the total cell number. Studies with cholinergic receptor blocking agents and protein kinase C inhibitors indicated two distinct types of effects, one mediated through stimulation of nicotinic cholinergic receptors and the other targeting intracellular signaling. The effects of chlorpyrifos were not mimicked by chlorpyrifos oxon, the active metabolite that inhibits cholinesterase, nor by nonorganophosphate cholinesterase inhibitors. Dieldrin, an organochlorine that targets GABA(A )receptors, was similarly ineffective. The effects of chlorpyrifos and its underlying cholinergic and signaling-related mechanisms parallel prior findings in mammalian embryonic central nervous system. Invertebrate test systems may thus provide both a screening procedure for potential neuroteratogenesis by organophosphate-related compounds, as well as a system with which to uncover novel mechanisms underlying developmental vulnerability. PMID:11485862
Deep Reinforcement Learning of Cell Movement in the Early Stage of C. elegans Embryogenesis.
Wang, Zi; Wang, Dali; Li, Chengcheng; Xu, Yichi; Li, Husheng; Bao, Zhirong
2018-04-25
Cell movement in the early phase of C. elegans development is regulated by a highly complex process in which a set of rules and connections are formulated at distinct scales. Previous efforts have demonstrated that agent-based, multi-scale modeling systems can integrate physical and biological rules and provide new avenues to study developmental systems. However, the application of these systems to model cell movement is still challenging and requires a comprehensive understanding of regulatory networks at the right scales. Recent developments in deep learning and reinforcement learning provide an unprecedented opportunity to explore cell movement using 3D time-lapse microscopy images. We present a deep reinforcement learning approach within an agent-based modeling system to characterize cell movement in the embryonic development of C. elegans. Our modeling system captures the complexity of cell movement patterns in the embryo and overcomes the local optimization problem encountered by traditional rule-based, agent-based modeling that uses greedy algorithms. We tested our model with two real developmental processes: the anterior movement of the Cpaaa cell via intercalation and the rearrangement of the superficial left-right asymmetry. In the first case, the model results suggested that Cpaaa's intercalation is an active directional cell movement caused by the continuous effects from a longer distance (farther than the length of two adjacent cells), as opposed to a passive movement caused by neighbor cell movements. In the second case, a leader-follower mechanism well explained the collective cell movement pattern in the asymmetry rearrangement. These results showed that our approach to introduce deep reinforcement learning into agent-based modeling can test regulatory mechanisms by exploring cell migration paths in a reverse engineering perspective. This model opens new doors to explore the large datasets generated by live imaging. Source code is available at https://github.com/zwang84/drl4cellmovement. dwang7@utk.edu, baoz@mskcc.org. Supplementary data are available at Bioinformatics online.
The developmental genetics of biological robustness
Mestek Boukhibar, Lamia; Barkoulas, Michalis
2016-01-01
Background Living organisms are continuously confronted with perturbations, such as environmental changes that include fluctuations in temperature and nutrient availability, or genetic changes such as mutations. While some developmental systems are affected by such challenges and display variation in phenotypic traits, others continue consistently to produce invariable phenotypes despite perturbation. This ability of a living system to maintain an invariable phenotype in the face of perturbations is termed developmental robustness. Biological robustness is a phenomenon observed across phyla, and studying its mechanisms is central to deciphering the genotype–phenotype relationship. Recent work in yeast, animals and plants has shown that robustness is genetically controlled and has started to reveal the underlying mechinisms behind it. Scope and Conclusions Studying biological robustness involves focusing on an important property of developmental traits, which is the phenotypic distribution within a population. This is often neglected because the vast majority of developmental biology studies instead focus on population aggregates, such as trait averages. By drawing on findings in animals and yeast, this Viewpoint considers how studies on plant developmental robustness may benefit from strict definitions of what is the developmental system of choice and what is the relevant perturbation, and also from clear distinctions between gene effects on the trait mean and the trait variance. Recent advances in quantitative developmental biology and high-throughput phenotyping now allow the design of targeted genetic screens to identify genes that amplify or restrict developmental trait variance and to study how variation propagates across different phenotypic levels in biological systems. The molecular characterization of more quantitative trait loci affecting trait variance will provide further insights into the evolution of genes modulating developmental robustness. The study of robustness mechanisms in closely related species will address whether mechanisms of robustness are evolutionarily conserved. PMID:26292993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stroh, K.R.
1980-01-01
The Composite HTGR Analysis Program (CHAP) consists of a model-independent systems analysis mainframe named LASAN and model-dependent linked code modules, each representing a component, subsystem, or phenomenon of an HTGR plant. The Fort St. Vrain (FSV) version (CHAP-2) includes 21 coded modules that model the neutron kinetics and thermal response of the core; the thermal-hydraulics of the reactor primary coolant system, secondary steam supply system, and balance-of-plant; the actions of the control system and plant protection system; the response of the reactor building; and the relative hazard resulting from fuel particle failure. FSV steady-state and transient plant data are beingmore » used to partially verify the component modeling and dynamic smulation techniques used to predict plant response to postulated accident sequences.« less
Distinct developmental genetic mechanisms underlie convergently evolved tooth gain in sticklebacks
Ellis, Nicholas A.; Glazer, Andrew M.; Donde, Nikunj N.; Cleves, Phillip A.; Agoglia, Rachel M.; Miller, Craig T.
2015-01-01
Teeth are a classic model system of organogenesis, as repeated and reciprocal epithelial and mesenchymal interactions pattern placode formation and outgrowth. Less is known about the developmental and genetic bases of tooth formation and replacement in polyphyodonts, which are vertebrates with continual tooth replacement. Here, we leverage natural variation in the threespine stickleback fish Gasterosteus aculeatus to investigate the genetic basis of tooth development and replacement. We find that two derived freshwater stickleback populations have both convergently evolved more ventral pharyngeal teeth through heritable genetic changes. In both populations, evolved tooth gain manifests late in development. Using pulse-chase vital dye labeling to mark newly forming teeth in adult fish, we find that both high-toothed freshwater populations have accelerated tooth replacement rates relative to low-toothed ancestral marine fish. Despite the similar evolved phenotype of more teeth and an accelerated adult replacement rate, the timing of tooth number divergence and the spatial patterns of newly formed adult teeth are different in the two populations, suggesting distinct developmental mechanisms. Using genome-wide linkage mapping in marine-freshwater F2 genetic crosses, we find that the genetic basis of evolved tooth gain in the two freshwater populations is largely distinct. Together, our results support a model whereby increased tooth number and an accelerated tooth replacement rate have evolved convergently in two independently derived freshwater stickleback populations using largely distinct developmental and genetic mechanisms. PMID:26062935
Nagahori, Hirohisa; Suzuki, Noriyuki; Le Coz, Florian; Omori, Takashi; Saito, Koichi
2016-09-30
Hand1-Luc Embryonic Stem Cell Test (Hand1-Luc EST) is a promising alternative method for evaluation of developmental toxicity. However, the problems of predictivity have remained due to appropriateness of the solubility, metabolic system, and prediction model. Therefore, we assessed the usefulness of rat liver S9 metabolic stability test using LC-MS/MS to develop new prediction model. A total of 71 chemicals were analyzed by measuring cytotoxicity and differentiation toxicity, and highly reproducible (CV=20%) results were obtained. The first prediction model was developed by discriminant analysis performed on a full dataset using Hand1-Luc EST, and 66.2% of the chemicals were correctly classified by the cross-validated classification. A second model was developed with additional descriptors obtained from the metabolic stability test to calculate hepatic availability, and an accuracy of 83.3% was obtained with applicability domain of 50.7% (=36/71) after exclusion of 22 metabolically inapplicable candidates, which potentially have a metabolic activation property. A step-wise prediction scheme with combination of Hand1-Luc EST and metabolic stability test was therefore proposed. The current results provide a promising in vitro test method for accurately predicting in vivo developmental toxicity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
The Comet Cometh: Evolving Developmental Systems.
Jaeger, Johannes; Laubichler, Manfred; Callebaut, Werner
In a recent opinion piece, Denis Duboule has claimed that the increasing shift towards systems biology is driving evolutionary and developmental biology apart, and that a true reunification of these two disciplines within the framework of evolutionary developmental biology (EvoDevo) may easily take another 100 years. He identifies methodological, epistemological, and social differences as causes for this supposed separation. Our article provides a contrasting view. We argue that Duboule's prediction is based on a one-sided understanding of systems biology as a science that is only interested in functional, not evolutionary, aspects of biological processes. Instead, we propose a research program for an evolutionary systems biology, which is based on local exploration of the configuration space in evolving developmental systems. We call this approach-which is based on reverse engineering, simulation, and mathematical analysis-the natural history of configuration space. We discuss a number of illustrative examples that demonstrate the past success of local exploration, as opposed to global mapping, in different biological contexts. We argue that this pragmatic mode of inquiry can be extended and applied to the mathematical analysis of the developmental repertoire and evolutionary potential of evolving developmental mechanisms and that evolutionary systems biology so conceived provides a pragmatic epistemological framework for the EvoDevo synthesis.
NASA Astrophysics Data System (ADS)
Nagai, Yukie; Asada, Minoru; Hosoda, Koh
This paper presents a developmental learning model for joint attention between a robot and a human caregiver. The basic idea of the proposed model comes from the insight of the cognitive developmental science that the development can help the task learning. The model consists of a learning mechanism based on evaluation and two kinds of developmental mechanisms: a robot's development and a caregiver's one. The former means that the sensing and the actuating capabilities of the robot change from immaturity to maturity. On the other hand, the latter is defined as a process that the caregiver changes the task from easy situation to difficult one. These two developments are triggered by the learning progress. The experimental results show that the proposed model can accelerate the learning of joint attention owing to the caregiver's development. Furthermore, it is observed that the robot's development can improve the final task performance by reducing the internal representation in the learned neural network. The mechanisms that bring these effects to the learning are analyzed in line with the cognitive developmental science.
Mathematical modelling in developmental biology.
Vasieva, Olga; Rasolonjanahary, Manan'Iarivo; Vasiev, Bakhtier
2013-06-01
In recent decades, molecular and cellular biology has benefited from numerous fascinating developments in experimental technique, generating an overwhelming amount of data on various biological objects and processes. This, in turn, has led biologists to look for appropriate tools to facilitate systematic analysis of data. Thus, the need for mathematical techniques, which can be used to aid the classification and understanding of this ever-growing body of experimental data, is more profound now than ever before. Mathematical modelling is becoming increasingly integrated into biological studies in general and into developmental biology particularly. This review outlines some achievements of mathematics as applied to developmental biology and demonstrates the mathematical formulation of basic principles driving morphogenesis. We begin by describing a mathematical formalism used to analyse the formation and scaling of morphogen gradients. Then we address a problem of interplay between the dynamics of morphogen gradients and movement of cells, referring to mathematical models of gastrulation in the chick embryo. In the last section, we give an overview of various mathematical models used in the study of the developmental cycle of Dictyostelium discoideum, which is probably the best example of successful mathematical modelling in developmental biology.
Modelling and simulating reaction-diffusion systems using coloured Petri nets.
Liu, Fei; Blätke, Mary-Ann; Heiner, Monika; Yang, Ming
2014-10-01
Reaction-diffusion systems often play an important role in systems biology when developmental processes are involved. Traditional methods of modelling and simulating such systems require substantial prior knowledge of mathematics and/or simulation algorithms. Such skills may impose a challenge for biologists, when they are not equally well-trained in mathematics and computer science. Coloured Petri nets as a high-level and graphical language offer an attractive alternative, which is easily approachable. In this paper, we investigate a coloured Petri net framework integrating deterministic, stochastic and hybrid modelling formalisms and corresponding simulation algorithms for the modelling and simulation of reaction-diffusion processes that may be closely coupled with signalling pathways, metabolic reactions and/or gene expression. Such systems often manifest multiscaleness in time, space and/or concentration. We introduce our approach by means of some basic diffusion scenarios, and test it against an established case study, the Brusselator model. Copyright © 2014 Elsevier Ltd. All rights reserved.
Planarian brain regeneration as a model system for developmental neurotoxicology
Hagstrom, Danielle; Cochet‐Escartin, Olivier
2016-01-01
Abstract Freshwater planarians, famous for their regenerative prowess, have long been recognized as a valuable in vivo animal model to study the effects of chemical exposure. In this review, we summarize the current techniques and tools used in the literature to assess toxicity in the planarian system. We focus on the planarian's particular amenability for neurotoxicology and neuroregeneration studies, owing to the planarian's unique ability to regenerate a centralized nervous system. Zooming in from the organismal to the molecular level, we show that planarians offer a repertoire of morphological and behavioral readouts while also being amenable to mechanistic studies of compound toxicity. Finally, we discuss the open challenges and opportunities for planarian brain regeneration to become an important model system for modern toxicology. PMID:27499880
ERIC Educational Resources Information Center
Fong, Kristen E.; Melguizo, Tatiana; Prather, George
2015-01-01
This study tracks students' progression through developmental math sequences and defines progression as both attempting and passing each level of the sequence. A model of successful progression in developmental education was built utilizing individual-, institutional-, and developmental math-level factors. Employing step-wise logistic regression…
ERIC Educational Resources Information Center
Casas, Paula; Isarowong, Nucha
2015-01-01
Physicians affiliated with small community hospitals face numerous barriers to using developmentally oriented best practices in primary care with young children. Saint Anthony Hospital's Developmental Support Project model promotes improved developmental outcomes for children through two complementary strands of services: (a) training and…
ERIC Educational Resources Information Center
Herman, Jerry J.; Herman, Janice L.
1994-01-01
Future organizations must integrate their human-resource development requirements with organizational development requirements to survive and prosper. A totally integrated systems model will feature 10 crucial elements. Leaders must understand that their organizations pass through developmental stages (from infancy to maturity); at each stage,…
Disruption of thyroid hormone (TH) homeostasis is a known effect of environmental contaminants. Although animal models of developmental TH deficiency can predict the impact of severe insults to the thyroid system, the effects of moderate TH insufficiencies have not been adequatel...
Adaptive Patterns of Stress Responsivity: A Preliminary Investigation
ERIC Educational Resources Information Center
Del Giudice, Marco; Hinnant, J. Benjamin; Ellis, Bruce J.; El-Sheikh, Mona
2012-01-01
The adaptive calibration model (ACM) is an evolutionary-developmental theory of individual differences in stress responsivity. In this article, we tested some key predictions of the ACM in a middle childhood sample (N = 256). Measures of autonomic nervous system activity across the sympathetic and parasympathetic branches validated the 4-pattern…
Higher Education in East Asia and Singapore: Rise of the Confucian Model
ERIC Educational Resources Information Center
Marginson, Simon
2011-01-01
The paper reviews Asia-Pacific higher education and university research, focusing principally on the "Confucian" education nations Japan, Korea, China, Hong Kong China, Taiwan, Singapore and Vietnam. Except for Vietnam, these systems exhibit a special developmental dynamism--still playing out everywhere except Japan--and have created a…
There is a need for rapid, efficient and cost effective alternatives to traditional in vivo developmental neurotoxicity testing. In vitro cell culture models can recapitulate many of the key cellular processes of nervous system development, including neurite outgrowth, and may be...
There is a need for efficient, cost-effective methods for screening and prioritization of potential developmental neurotoxicants. One approach uses in vitro cell culture models that can recapitulate the critical processes of nervous system development. In vitro, primary cultures ...
Disruption of thyroid hormone (TH) homeostasis is a known effect of environmental contaminants. Although animal models of developmental TH deficiency can predict the impact of severe insults to the thyroid system, the effects of moderate TH insufficiencies have proved more diffic...
Toward a Neuroscience of Adult Cognitive Developmental Theory
Girgis, Fady; Lee, Darrin J.; Goodarzi, Amir; Ditterich, Jochen
2018-01-01
Piaget's genetic epistemology has provided the constructivist approach upon which child developmental theories were founded, in that infants are thought to progress through distinct cognitive stages until they reach maturity in their early 20's. However, it is now well established that cognition continues to develop after early adulthood, and several “neo-Piagetian” theories have emerged in an attempt to better characterize adult cognitive development. For example, Kegan's Constructive Developmental Theory (CDT) argues that the thought processes used by adults to construct their reality change over time, and reaching higher stages of cognitive development entails becoming objectively aware of emotions and beliefs that were previously in the realm of the subconscious. In recent years, neuroscience has shown a growing interest in the biological substrates and neural mechanisms encompassing adult cognitive development, because psychological and psychiatric disorders can arise from deficiencies therein. In this article, we will use Kegan's CDT as a framework to discuss adult cognitive development in relation to closely correlated existing constructs underlying social processing, such as the perception of self and others. We will review the functional imaging and electrophysiologic evidence behind two key concepts relating to these posited developmental changes. These include self-related processing, a field that distinguishes between having conscious experiences (“being a self”) and being aware of oneself having conscious experiences (“being aware of being a self”); and theory of mind, which is the objective awareness of possessing mental states such as beliefs and desires (i.e., having a “mind”) and the understanding that others possess mental states that can be different from one's own. We shall see that cortical midline structures, including the medial prefrontal cortex and cingulate gyrus, as well as the temporal lobe, are associated with psychological tasks that test these models. In addition, we will review computational modeling approaches to cognitive development, and show how mathematical modeling can provide insights into how sometimes continuous changes in the neural processing substrate can give rise to relatively discrete developmental stages. Because deficiencies in adult cognitive development can result in disorders such as autism and depression, bridging the gaps between developmental psychology, neuroscience, and modeling has potential implications for clinical practice. As neuromodulation techniques such as deep brain and transcranial stimulation continue to advance, interfacing with these systems may lead to the emergence of novel investigational methods and therapeutic strategies in adults suffering from developmental disorders. PMID:29410608
Noël, Marie-Pascale; Rousselle, Laurence
2011-01-01
Studies on developmental dyscalculia (DD) have tried to identify a basic numerical deficit that could account for this specific learning disability. The first proposition was that the number magnitude representation of these children was impaired. However, Rousselle and Noël (2007) brought data showing that this was not the case but rather that these children were impaired when processing the magnitude of symbolic numbers only. Since then, incongruent results have been published. In this paper, we will propose a developmental perspective on this issue. We will argue that the first deficit shown in DD regards the building of an exact representation of numerical value, thanks to the learning of symbolic numbers, and that the reduced acuity of the approximate number magnitude system appears only later and is secondary to the first deficit. PMID:22203797
Noël, Marie-Pascale; Rousselle, Laurence
2011-01-01
Studies on developmental dyscalculia (DD) have tried to identify a basic numerical deficit that could account for this specific learning disability. The first proposition was that the number magnitude representation of these children was impaired. However, Rousselle and Noël (2007) brought data showing that this was not the case but rather that these children were impaired when processing the magnitude of symbolic numbers only. Since then, incongruent results have been published. In this paper, we will propose a developmental perspective on this issue. We will argue that the first deficit shown in DD regards the building of an exact representation of numerical value, thanks to the learning of symbolic numbers, and that the reduced acuity of the approximate number magnitude system appears only later and is secondary to the first deficit.
Constrained vertebrate evolution by pleiotropic genes.
Hu, Haiyang; Uesaka, Masahiro; Guo, Song; Shimai, Kotaro; Lu, Tsai-Ming; Li, Fang; Fujimoto, Satoko; Ishikawa, Masato; Liu, Shiping; Sasagawa, Yohei; Zhang, Guojie; Kuratani, Shigeru; Yu, Jr-Kai; Kusakabe, Takehiro G; Khaitovich, Philipp; Irie, Naoki
2017-11-01
Despite morphological diversification of chordates over 550 million years of evolution, their shared basic anatomical pattern (or 'bodyplan') remains conserved by unknown mechanisms. The developmental hourglass model attributes this to phylum-wide conserved, constrained organogenesis stages that pattern the bodyplan (the phylotype hypothesis); however, there has been no quantitative testing of this idea with a phylum-wide comparison of species. Here, based on data from early-to-late embryonic transcriptomes collected from eight chordates, we suggest that the phylotype hypothesis would be better applied to vertebrates than chordates. Furthermore, we found that vertebrates' conserved mid-embryonic developmental programmes are intensively recruited to other developmental processes, and the degree of the recruitment positively correlates with their evolutionary conservation and essentiality for normal development. Thus, we propose that the intensively recruited genetic system during vertebrates' organogenesis period imposed constraints on its diversification through pleiotropic constraints, which ultimately led to the common anatomical pattern observed in vertebrates.
Attachment in integrative neuroscientific perspective.
Hruby, Radovan; Hasto, Jozef; Minarik, Peter
2011-01-01
Attachment theory is a very influential general concept of human social and emotional development, which emphasizes the role of early mother-infant interactions for infant's adaptive behavioural and stress copying strategies, personality organization and mental health. Individuals with disrupted development of secure attachment to mother/primary caregiver are at higher risk of developing mental disorders. This theory consists of the complex developmental psycho-neurobiological model of attachment and emerges from principles of psychoanalysis, evolutionary biology, cognitive-developmental psychology, ethology, physiology and control systems theory. The progress of modern neuroscience enables interpretation of neurobiological aspects of the theory as multi-level neural interactions and functional development of important neural structures, effects of neuromediattors, hormones and essential neurobiological processes including emotional, cognitive, social interactions and the special key role of mentalizing. It has multiple neurobiological, neuroendocrine, neurophysiological, ethological, genetic, developmental, psychological, psychotherapeutic and neuropsychiatric consequences and is a prototype of complex neuroscientific concept as interpretation of modern integrated neuroscience.
Crisis on campus: Eating disorder intervention from a developmental-ecological perspective.
Taylor, Julia V; Gibson, Donna M
2016-01-01
The purpose of this article is to review a crisis intervention using the developmental-ecological protocol (Collins and Collins, 2005) with a college student presenting with symptomatology of an active eating disorder. Participants included University Wellness Center employees responding to the crisis. Methods include an informal review of the crisis intervention response and application of the ABCDE developmental-ecological crisis model. Results reported include insight into crisis intervention when university counseling and health center is not available as resources. ABCDE Developmental-ecological model recommendations for university faculty and staff are included.
Supervision in School Psychology: The Developmental/Ecological/Problem-Solving Model
ERIC Educational Resources Information Center
Simon, Dennis J.; Cruise, Tracy K.; Huber, Brenda J.; Swerdlik, Mark E.; Newman, Daniel S.
2014-01-01
Effective supervision models guide the supervisory relationship and supervisory tasks leading to reflective and purposeful practice. The Developmental/Ecological/Problem-Solving (DEP) Model provides a contemporary framework for supervision specific to school psychology. Designed for the school psychology internship, the DEP Model is also…
Healthcare for Persons with Intellectual and Developmental Disability in the Community
Ervin, David A.; Hennen, Brian; Merrick, Joav; Morad, Mohammed
2014-01-01
Introduction: While there has been impressive progress in creating and improving community healthcare delivery systems that support people with intellectual and developmental disabilities (IDD), there is much more that can and should be done. Methods: This paper offers a review of healthcare delivery concepts on which new models are being developed, while also establishing an historical context. We review the need for creating fully integrated models of healthcare, and at the same time offer practical considerations that range from specific healthcare delivery system components to the need to expand our approach to training healthcare providers. The models and delivery systems, and the areas of needed focus in their development are reviewed to set a starting point for more and greater work going forward. Conclusion: Today, we celebrate longer life spans of people with IDD, increased attention to the benefits of healthcare that is responsive to their needs, and the development of important healthcare delivery systems that are customized to their needs. We also know that the growing body of research on health status offers incentive to continue developing healthcare structures for people with IDD by training healthcare providers about the needs of people with IDD, by establishing systems of care that integrate acute healthcare with long-term services and support, by developing IDD medicine as a specialty, and by building health promotion and wellness resources to provide people with IDD a set of preventative health supports. PMID:25077139
McCabe, Connor J; Louie, Kristine A; King, Kevin M
2015-09-01
Young adulthood is a peak period for externalizing behaviors such as substance abuse and antisocial conduct. Evidence from developmental neuroscience suggests that externalizing conduct within this time period may be associated with a "developmental asymmetry" characterized by an early peak in sensation seeking combined with a relatively immature impulse control system. Trait measures of impulsivity-sensation seeking and premeditation-are psychological manifestations of these respective systems, and multiple prior studies suggest that high sensation seeking and low premeditation independently confer risk for distinct forms of externalizing behaviors. The goal of the present study was to test this developmental asymmetry hypothesis, examining whether trait premeditation moderates the effect of sensation seeking on substance use and problems, aggression, and rule-breaking behavior. Using a cross-sectional sample of college-enrolled adults (n = 491), we applied zero-inflated modeling strategies to examine the likelihood and level of risky externalizing behaviors. Results indicated that lower premeditation enhanced the effect of higher sensation seeking on higher levels of positive and negative alcohol consequences, more frequent drug use, and more problematic drug use, but was unrelated to individual differences in antisocial behaviors. Our findings indicate that the developmental asymmetry between sensation seeking and a lack of premeditation is a risk factor for individual differences in problematic substance use among young adults, and may be less applicable for antisocial behaviors among high functioning individuals. (c) 2015 APA, all rights reserved).
Trust-Based Relational Intervention (TBRI): A Systemic Approach to Complex Developmental Trauma
Purvis, Karyn B.; Cross, David R.; Dansereau, Donald F.; Parris, Sheri R.
2013-01-01
Children and youth who have experienced foster care or orphanage-rearing have often experienced complex developmental trauma, demonstrating an interactive set of psychological and behavioral issues. Trust-Based Relational Intervention (TBRI) is a therapeutic model that trains caregivers to provide effective support and treatment for at-risk children. TBRI has been applied in orphanages, courts, residential treatment facilities, group homes, foster and adoptive homes, churches, and schools. It has been used effectively with children and youth of all ages and all risk levels. This article provides the research base for TBRI and examples of how it is applied. PMID:24453385
Discrete dynamic modeling of cellular signaling networks.
Albert, Réka; Wang, Rui-Sheng
2009-01-01
Understanding signal transduction in cellular systems is a central issue in systems biology. Numerous experiments from different laboratories generate an abundance of individual components and causal interactions mediating environmental and developmental signals. However, for many signal transduction systems there is insufficient information on the overall structure and the molecular mechanisms involved in the signaling network. Moreover, lack of kinetic and temporal information makes it difficult to construct quantitative models of signal transduction pathways. Discrete dynamic modeling, combined with network analysis, provides an effective way to integrate fragmentary knowledge of regulatory interactions into a predictive mathematical model which is able to describe the time evolution of the system without the requirement for kinetic parameters. This chapter introduces the fundamental concepts of discrete dynamic modeling, particularly focusing on Boolean dynamic models. We describe this method step-by-step in the context of cellular signaling networks. Several variants of Boolean dynamic models including threshold Boolean networks and piecewise linear systems are also covered, followed by two examples of successful application of discrete dynamic modeling in cell biology.
Developmental and reproductive toxixology (DART) has routinely been a part of safety assessment. Attention is now focused on the effects of chemicals on the developing nervous and immune systems. This focus on developmental neurotoxicology (DNT) and developmental immunotoxicolo...
Timme-Laragy, Alicia R; Karchner, Sibel I; Hahn, Mark E
2012-01-01
The zebrafish (Danio rerio) has long been used as a model for developmental biology, making it an excellent model to use also in developmental toxicology. The many advantages of zebrafish include their small size, prolific spawning, rapid development, and transparent embryos. They can be easily manipulated genetically through the use of transgenic technology and gene knockdown via morpholino-modified antisense oligonucleotides (MOs). Knocking down specific genes to assess their role in the response to toxicant exposure provides a way to further our knowledge of how developmental toxicants work on a molecular and mechanistic level while establishing a relationship between these molecular events and morphological, behavioral, and/or physiological effects (i.e., phenotypic anchoring). In this chapter, we address important considerations for using MOs to study developmental toxicology in zebrafish embryos and provide a protocol for their use.
Timme-Laragy, Alicia R.; Karchner, Sibel I.; Hahn, Mark E.
2014-01-01
Summary The zebrafish (Danio rerio) has long been used as a model for developmental biology, making it an excellent model to use also in developmental toxicology. The many advantages of zebrafish include their small size, prolific spawning, rapid development, and transparent embryos. They can be easily manipulated genetically through the use of transgenic technology and gene knock-down via morpholino-modified antisense oligonucleotides (MOs). Knocking down specific genes to assess their role in the response to toxicant exposure provides a way to further our knowledge of how developmental toxicants work on a molecular and mechanistic level, while establishing a relationship between these molecular events and morphological, behavioral, and/or physiological effects (i.e. phenotypic anchoring). In this chapter we address important considerations for using MOs to study developmental toxicology in zebrafish embryos and provide a protocol for their use. PMID:22669659
Virtual Tissue Models in Developmental Toxicity Research
Prenatal exposure to drugs and chemicals may perturb, directly or indirectly, core developmental processes in the embryo (patterning, morphogenesis, proliferation and apoptosis, and cell differentiation), leading to adverse developmental outcomes. Because embryogenesis entails a...
Mechanistic insight into neurotoxicity induced by developmental insults
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamm, Christoffer; Ceccatelli, Sandra
Epidemiological and/or experimental studies have shown that unfavorable prenatal environmental factors, such as stress or exposure to certain neurotoxic environmental contaminants, may have adverse consequences for neurodevelopment. Alterations in neurogenesis can have harmful effects not only for the developing nervous system, but also for the adult brain where neurogenesis is believed to play a role in learning, memory, and even in depression. Many recent advances in the understanding of the complex process of nervous system development can be integrated into the field of neurotoxicology. In the past 15 years we have been using cultured neural stem or progenitor cells tomore » investigate the effects of neurotoxic stimuli on cell survival, proliferation and differentiation, with special focus on heritable effects. This is an overview of the work performed by our group in the attempt to elucidate the mechanisms of developmental neurotoxicity and possibly provide relevant information for the understanding of the etiopathogenesis of complex brain disorders. - Highlights: • The developing nervous system is highly sensitive to toxic insults. • Neural stem cells are relevant models for mechanistic studies as well as for identifying heritable effects due to epigenetic changes. • Depending on the dose, the outcome of exposure to neurotoxicants ranges from altered proliferation and differentiation to cell death. • The elucidation of neurotoxicity mechanisms is relevant for understanding the etiopathogenesis of developmental and adult nervous system disorders.« less
NASA Astrophysics Data System (ADS)
Ye, Guozhu; Chen, Yajie; Wang, Hong-Ou; Ye, Ting; Lin, Yi; Huang, Qiansheng; Chi, Yulang; Dong, Sijun
2016-10-01
Tetrabromobisphenol A and tetrachlorobisphenol A are halogenated bisphenol A (H-BPA), and has raised concerns about their adverse effects on the development of fetuses and infants, however, the molecular mechanisms are unclear, and related metabolomics studies are limited. Accordingly, a metabolomics study based on gas chromatography-mass spectrometry was employed to elucidate the molecular developmental toxicology of H-BPA using the marine medaka (Oryzias melastigmas) embryo model. Here, we revealed decreased synthesis of nucleosides, amino acids and lipids, and disruptions in the TCA (tricarboxylic acid) cycle, glycolysis and lipid metabolism, thus inhibiting the developmental processes of embryos exposed to H-BPA. Unexpectedly, we observed enhanced neural activity accompanied by lactate accumulation and accelerated heart rates due to an increase in dopamine pathway and a decrease in inhibitory neurotransmitters following H-BPA exposure. Notably, disorders of the neural system, and disruptions in glycolysis, the TCA cycle, nucleoside metabolism, lipid metabolism, glutamate and aspartate metabolism induced by H-BPA exposure were heritable. Furthermore, lactate and dopa were identified as potential biomarkers of the developmental toxicity of H-BPA and related genetic effects. This study has demonstrated that the metabolomics approach is a useful tool for obtaining comprehensive and novel insights into the molecular developmental toxicity of environmental pollutants.
Ortiz-Ramírez, Carlos; Hernandez-Coronado, Marcela; Thamm, Anna; Catarino, Bruno; Wang, Mingyi; Dolan, Liam; Feijó, José A; Becker, Jörg D
2016-02-01
Identifying the genetic mechanisms that underpin the evolution of new organ and tissue systems is an aim of evolutionary developmental biology. Comparative functional genetic studies between angiosperms and bryophytes can define those genetic changes that were responsible for developmental innovations. Here, we report the generation of a transcriptome atlas covering most phases in the life cycle of the model bryophyte Physcomitrella patens, including detailed sporophyte developmental progression. We identified a comprehensive set of sporophyte-specific transcription factors, and found that many of these genes have homologs in angiosperms that function in developmental processes such as flowering and shoot branching. Deletion of the PpTCP5 transcription factor results in development of supernumerary sporangia attached to a single seta, suggesting that it negatively regulates branching in the moss sporophyte. Given that TCP genes repress branching in angiosperms, we suggest that this activity is ancient. Finally, comparison of P. patens and Arabidopsis thaliana transcriptomes led us to the identification of a conserved core of transcription factors expressed in tip-growing cells. We identified modifications in the expression patterns of these genes that could account for developmental differences between P. patens tip-growing cells and A. thaliana pollen tubes and root hairs. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.
Reading strategies in Spanish developmental dyslexics.
Suárez-Coalla, Paz; Cuetos, Fernando
2012-07-01
Cross-linguistic studies suggest that the orthographic system determines the reading performance of dyslexic children. In opaque orthographies, the fundamental feature of developmental dyslexia is difficulty in reading accuracy, whereas slower reading speed is more common in transparent orthographies. The aim of the current study was to examine the extent to which different variables of words affect reaction times and articulation times in developmental dyslexics. A group of 19 developmental dyslexics of different ages and an age-matched group of 19 children without reading disabilities completed a word naming task. The children were asked to read 100 nouns that differed in length, frequency, age of acquisition, imageability, and orthographic neighborhood. The stimuli were presented on a laptop computer, and the responses were recorded using DMDX software. We conducted analyses of mixed-effects models to determine which variables influenced reading times in dyslexic children. We found that word naming skills in dyslexic children are affected predominantly by length, while in non-dyslexics children the principal variable is the age of acquisition, a lexical variable. These findings suggest that Spanish-speaking developmental dyslexics use a sublexical procedure for reading words, which is reflected in slower speed when reading long words. In contrast, normal children use a lexical strategy, which is frequently observed in readers of opaque languages.
20170312 - Adverse Outcome Pathway (AOP) framework for ...
Vascular development commences with de novo assembly of a primary capillary plexus (vasculogenesis) followed by its expansion (angiogenesis) and maturation (angio-adaptation) into a hierarchical system of arteries and veins. These processes are tightly regulated by genetic signals and environmental factors linked to morphogenesis and microphysiology. Gestational exposure to some chemicals disrupts vascular development leading to adverse outcomes. To broadly assess consequences of gestational toxicant exposure on vascular development, an Adverse Outcome Pathway (AOP) framework was constructed that integrates data from ToxCast high-throughput screening (HTS) assays with pathway-level information from the literature and public databases. The AOP-based model resolved the ToxCast library (1065 compounds) into a matrix based on several dozen molecular functions critical for developmental angiogenesis. A sample of 38 ToxCast chemicals selected across the matrix tested model performance. Putative vascular disrupting chemical (pVDC) bioactivity was assessed by multiple laboratories utilizing diverse angiogenesis assays, including: transgenic zebrafish, complex human cell co-cultures, engineered microscale systems, and human-synthetic models. The ToxCast pVDC signature predicted vascular disruption in a manner that was chemical-specific and assay-dependent. An AOP for developmental vascular toxicity was constructed that focuses on inhibition of VEGF receptor (VEGFR2). Thi
Adverse Outcome Pathway (AOP) framework for embryonic ...
Vascular development commences with de novo assembly of a primary capillary plexus (vasculogenesis) followed by its expansion (angiogenesis) and maturation (angio-adaptation) into a hierarchical system of arteries and veins. These processes are tightly regulated by genetic signals and environmental factors linked to morphogenesis and microphysiology. Gestational exposure to some chemicals disrupts vascular development leading to adverse outcomes. To broadly assess consequences of gestational toxicant exposure on vascular development, an Adverse Outcome Pathway (AOP) framework was constructed that integrates data from ToxCast high-throughput screening (HTS) assays with pathway-level information from the literature and public databases. The AOP-based model resolved the ToxCast library (1065 compounds) into a matrix based on several dozen molecular functions critical for developmental angiogenesis. A sample of 38 ToxCast chemicals selected across the matrix tested model performance. Putative vascular disrupting chemical (pVDC) bioactivity was assessed by multiple laboratories utilizing diverse angiogenesis assays, including: transgenic zebrafish, complex human cell co-cultures, engineered microscale systems, and human-synthetic models. The ToxCast pVDC signature predicted vascular disruption in a manner that was chemical-specific and assay-dependent. An AOP for developmental vascular toxicity was constructed that focuses on inhibition of VEGF receptor (VEGFR2). Thi
Neurobehavioral foundation of environmental reactivity.
Moore, Sarah R; Depue, Richard A
2016-02-01
Sensitivity to environmental context has been of interest for many years, but the nature of individual differences in environmental sensitivity has become of particular focus over the past 2 decades. What is particularly uncertain are the neural variables and processes that mediate the effects of environment on developmental outcomes. Accordingly, we provide a neurobehavioral foundation of reactivity to the environment in several steps. First, the different patterns of environmental sensitivity are defined to identify the significant factors involved in the manifestation of these patterns. Second, we focus on neurobiological reactivity as the construct underlying variation in sensitivity to the environment by (a) providing an organizing threshold model of elicitation of neurobiology by environmental context; and (b) integrating the literature on 2 sets of neuromodulators in terms of each modulator's (a) contribution to neural and behavioral reactivity to stimulation, and (b) relation to emotional-motivational systems (dopamine, opiates and oxytocin, corticotropin-releasing hormone) or the general modulation of those systems (serotonin, norepinephrine, and GABA). Discussion concludes with (a) a comprehensive neurobehavioral framework of environmental reactivity based on a combinatorial model of a supertrait, (b) methodological implications of the model, and (c) a developmental perspective on environmental reactivity. (c) 2016 APA, all rights reserved).
Development and Symbiosis Establishment in the Cnidarian Endosymbiosis Model Aiptasia sp.
Bucher, Madeline; Wolfowicz, Iliona; Voss, Philipp A.; Hambleton, Elizabeth A.; Guse, Annika
2016-01-01
Symbiosis between photosynthetic algae and heterotrophic organisms is widespread. One prominent example of high ecological relevance is the endosymbiosis between dinoflagellate algae of the genus Symbiodinium and reef-building corals, which typically acquire symbionts anew each generation during larval stages. The tropical sea anemone Aiptasia sp. is a laboratory model system for this endosymbiosis and, similar to corals, produces non-symbiotic larvae that establish symbiosis by phagocytosing Symbiodinium from the environment into the endoderm. Here we generate the first overview of Aiptasia embryogenesis and larval development and establish in situ hybridization to analyze expression patterns of key early developmental regulators. Next, we quantify morphological changes in developing larvae and find a substantial enlargement of the gastric cavity over time. Symbiont acquisition starts soon after mouth formation and symbionts occupy a major portion of the host cell in which they reside. During the first 14 days of development, infection efficiency remains constant while in contrast, localization of phagocytosed symbionts changes, indicating that the occurrence of functional phagocytosing cells may be developmentally regulated. Taken together, here we provide the essential framework to further develop Aiptasia as a model system for the analysis of symbiosis establishment in cnidarian larvae at the molecular level. PMID:26804034
Development and Symbiosis Establishment in the Cnidarian Endosymbiosis Model Aiptasia sp.
Bucher, Madeline; Wolfowicz, Iliona; Voss, Philipp A; Hambleton, Elizabeth A; Guse, Annika
2016-01-25
Symbiosis between photosynthetic algae and heterotrophic organisms is widespread. One prominent example of high ecological relevance is the endosymbiosis between dinoflagellate algae of the genus Symbiodinium and reef-building corals, which typically acquire symbionts anew each generation during larval stages. The tropical sea anemone Aiptasia sp. is a laboratory model system for this endosymbiosis and, similar to corals, produces non-symbiotic larvae that establish symbiosis by phagocytosing Symbiodinium from the environment into the endoderm. Here we generate the first overview of Aiptasia embryogenesis and larval development and establish in situ hybridization to analyze expression patterns of key early developmental regulators. Next, we quantify morphological changes in developing larvae and find a substantial enlargement of the gastric cavity over time. Symbiont acquisition starts soon after mouth formation and symbionts occupy a major portion of the host cell in which they reside. During the first 14 days of development, infection efficiency remains constant while in contrast, localization of phagocytosed symbionts changes, indicating that the occurrence of functional phagocytosing cells may be developmentally regulated. Taken together, here we provide the essential framework to further develop Aiptasia as a model system for the analysis of symbiosis establishment in cnidarian larvae at the molecular level.
Huang, Hegui; He, Zheng; Zhu, Chunyan; Liu, Lian; Kou, Hao; Shen, Lang; Wang, Hui
2015-10-01
Fetal adrenal developmental status is the major determinant of fetal tissue maturation and offspring growth. We have previously proposed that prenatal ethanol exposure (PEE) suppresses fetal adrenal corticosterone (CORT) synthesis. Here, we focused on PEE-induced adrenal developmental abnormalities of male offspring rats before and after birth, and aimed to explore its intrauterine programming mechanisms. A rat model of intrauterine growth retardation (IUGR) was established by PEE (4g/kg·d). In PEE fetus, increased serum CORT concentration and decreased insulin-like growth factor 1 (IGF1) concentration, with lower bodyweight and structural abnormalities as well as a decreased Ki67 expression (proliferative marker), were observed in the male fetal adrenal cortex. Adrenal glucocorticoid (GC)-metabolic activation system was enhanced while gene expression of IGF1 signaling pathway with steroidogenic acute regulatory protein (StAR), 3β-hydroxysteroid dehydrogenase (3β-HSD) was decreased. Furthermore, in the male adult offspring of PEE, serum CORT level was decreased but IGF1 was increased with partial catch-up growth, and Ki67 expression demonstrated no obvious change. Adrenal GC-metabolic activation system was inhibited, while IGF1 signaling pathway and 3β-HSD was enhanced with the steroidogenic factor 1 (SF1), and StAR was down-regulated in the adult adrenal. Based on these findings, we propose a "two-programming" mechanism for PEE-induced adrenal developmental toxicity: "the first programming" is a lower functional programming of adrenal steroidogenesis, and "the second programming" is GC-metabolic activation system-related GC-IGF1 axis programming. Copyright © 2015 Elsevier Inc. All rights reserved.
The Political History of Developmental Studies in the University System of Georgia
ERIC Educational Resources Information Center
Presley, John W.; Dodd, William M.
2008-01-01
The political history of developmental education in post-secondary education is as revealing as its intellectual history. With a University system-wide Developmental Studies program initiated in 1974, the State of Georgia was a pioneer in remedial education and open access. Unfortunately, the program became linked in Georgia media, and in Georgia…
Designing Meaningful Developmental Reform. Research Overview
ERIC Educational Resources Information Center
Jaggars, Shanna Smith; Hodara, Michelle; Stacey, Georgia West
2013-01-01
This practitioner packet is designed to help community college administrators implement reforms to developmental education at their colleges. It reviews common impediments to developmental reform and presents data that supports directions colleges can take to create a system of developmental education that might serve students more effectively.…
Force on Force Modeling with Formal Task Structures and Dynamic Geometry
2017-03-24
task framework, derived using the MMF methodology to structure a complex mission. It further demonstrated the integration of effects from a range of...application methodology was intended to support a combined developmental testing (DT) and operational testing (OT) strategy for selected systems under test... methodology to develop new or modify existing Models and Simulations (M&S) to: • Apply data from multiple, distributed sources (including test
Malti, Tina; Noam, Gil G; Beelmann, Andreas; Sommer, Simon
2016-01-01
Children's and adolescents' mental health needs emphasize the necessity of a new era of translational research to enhance development and yield better lives for children, families, and communities. Developmental, clinical, and translational research serves as a powerful tool for managing the inevitable complexities in pursuit of these goals. This article proposes key ideas that will strengthen current evidence-based intervention practices by creating stronger links between research, practice, and complex systems contexts, with the potential of extending applicability, replicability, and impact. As exemplified in some of the articles throughout this special issue, new research and innovative implementation models will likely contribute to better ways of assessing and dynamically adapting structure and intervention practice within mental health systems. We contend that future models for effective interventions with children and adolescents will involve increased attention to (a) the connection of research on the developmental needs of children and adolescents to practice models; (b) consideration of informed contextual and cultural adaptation in implementation; and (c) a rational model of evidence-based planning, using a dynamic, inclusive approach with high support for adaptation, flexibility, and implementation fidelity. We discuss future directions for translational research for researchers, practitioners, and administrators in the field to continue and transform these ideas and their illustrations.
IMPACT Youth Crime Prevention.
ERIC Educational Resources Information Center
Warrington, Georgina; Wright, Paul
2003-01-01
Four models of crime prevention are discussed that arise from differing views of the causes of crime: criminal justice, situational, developmental, and social development models. Two activity-based youth crime prevention projects in Queensland (Australia) use developmental and social development models and expand local youth service…
Experimental animal models of encapsulating peritoneal sclerosis.
Hoff, Catherine M
2005-04-01
Encapsulating peritoneal sclerosis (EPS) is an infrequent, but extremely serious complication of long-term peritoneal dialysis. The cause of EPS is unclear, but the low incidence suggests that it is most likely multifactorial. The elucidation of developmental pathways and predictive markers of EPS would facilitate the identification and management of high-risk patients. Animal models are often used to define pathways of disease progression and to test strategies for treatment and prevention in the patient population. Ideally such models could help to define the cause of EPS and its developmental pathways, to facilitate the identification of contributing factors and predictive markers, and to provide a system to test therapeutic strategies. Researchers have studied several rodent models of EPS that rely on chronic chemical irritation (for example, bleach, low-pH solution, chlorhexidine gluconate) to induce peritoneal sclerosis and abdominal encapsulation. Development in all models is progressive, with inflammation giving way to peritoneal fibrosis or sclerosis with accumulating membrane damage, culminating in cocoon formation. Microscopic findings are similar to those proposed as diagnostic criteria for clinical EPS: an initial inflammatory infiltrate and submesothelial thickening, collagen deposition, and activation and proliferation of peritoneal fibroblasts. The potential to block progression of peritoneal sclerosis in these models by anti-inflammatory, antifibrotic, and anti-angiogenic agents, and by inhibitors of the renin-angiotensin system have been demonstrated. Animal models based on clinically relevant risk factors (for example, uremia, peritonitis, and long-term exposure to dialysis solutions) now represent the next step in model development.
Parker, Karen J.; Maestripieri, Dario
2010-01-01
This article examines the complex role of early stressful experiences in producing both vulnerability and resilience to later stress-related psychopathology in a variety of primate models of human development. Two types of models are reviewed: Parental Separation Models (e.g., isolate-rearing, peer-rearing, parental separations, and stress inoculation) and Maternal Behavior Models (e.g., foraging demands, variation in maternal style, and maternal abuse). Based on empirical evidence, it is argued that early life stress exposure does not increase adult vulnerability to stress-related psychopathology as a linear function, as is generally believed, but instead reflects a quadratic function. Features of early stress exposure including the type, duration, frequency, ecological validity, sensory modality, and developmental timing, within and between species, are identified to better understand how early stressful experiences alter neurobiological systems to produce such diverse developmental outcomes. This article concludes by identifying gaps in our current knowledge, providing directions for future research, and discussing the translational implications of these primate models for human development and psychopathology. PMID:20851145
Li, Hequn; Flick, Burkhard; Rietjens, Ivonne M C M; Louisse, Jochem; Schneider, Steffen; van Ravenzwaay, Bennard
2016-05-01
The mouse embryonic stem D3 (ES-D3) cell differentiation assay is based on the morphometric measurement of cardiomyocyte differentiation and is a promising tool to detect developmental toxicity of compounds. The BeWo transport model, consisting of BeWo b30 cells grown on transwell inserts and mimicking the placental barrier, is useful to determine relative placental transport velocities of compounds. We have previously demonstrated the usefulness of the ES-D3 cell differentiation assay in combination with the in vitro BeWo transport model to predict the relative in vivo developmental toxicity potencies of a set of reference azole compounds. To further evaluate this combined in vitro toxicokinetic and toxicodynamic approach, we combined ES-D3 cell differentiation data of six novel triazoles with relative transport rates obtained from the BeWo model and compared the obtained ranking to the developmental toxicity ranking as derived from in vivo data. The data show that the combined in vitro approach provided a correct prediction for in vivo developmental toxicity, whereas the ES-D3 cell differentiation assay as stand-alone did not. In conclusion, we have validated the combined in vitro approach for developmental toxicity, which we have previously developed with a set of reference azoles, for a set of six novel triazoles. We suggest that this combined model, which takes both toxicodynamic and toxicokinetic aspects into account, should be further validated for other chemical classes of developmental toxicants.
Influence of gender constancy and social power on sex-linked modeling.
Bussey, K; Bandura, A
1984-12-01
Competing predictions derived from cognitive-developmental theory and social learning theory concerning sex-linked modeling were tested. In cognitive-developmental theory, gender constancy is considered a necessary prerequisite for the emulation of same-sex models, whereas according to social learning theory, sex-role development is promoted through a vast system of social influences with modeling serving as a major conveyor of sex role information. In accord with social learning theory, even children at a lower level of gender conception emulated same-sex models in preference to opposite-sex ones. Level of gender constancy was associated with higher emulation of both male and female models rather than operating as a selective determinant of modeling. This finding corroborates modeling as a basic mechanism in the sex-typing process. In a second experiment we explored the limits of same-sex modeling by pitting social power against the force of collective modeling of different patterns of behavior by male and female models. Social power over activities and rewarding resources produced cross-sex modeling in boys, but not in girls. This unexpected pattern of cross-sex modeling is explained by the differential sex-typing pressures that exist for boys and girls and socialization experiences that heighten the attractiveness of social power for boys.
Mechanistic modeling of developmental defects through computational embryology (WC10th)
Abstract: An important consideration for 3Rs is to identify developmental hazards utilizing mechanism-based in vitro assays (e.g., ToxCast) and in silico predictive models. Steady progress has been made with agent-based models that recapitulate morphogenetic drivers for angiogen...
Modeling of developmental toxicology presents a significant challenge to computational toxicology due to endpoint complexity and lack of data coverage. These challenges largely account for the relatively few modeling successes using the structure–activity relationship (SAR) parad...
Dual-systems and the development of reasoning: competence-procedural systems.
Overton, Willis F; Ricco, Robert B
2011-03-01
Dual-system, dual-process, accounts of adult cognitive processing are examined in the context of a self-organizing relational developmental systems approaches to cognitive growth. Contemporary adult dual-process accounts describe a linear architecture of mind entailing two split-off, but interacting systems; a domain general, content-free 'analytic' system (system 2) and a domain specific highly contextualized 'heuristic' system (system 1). In the developmental literature on deductive reasoning, a similar distinction has been made between a domain general competence (reflective, algorithmic) system and a domain specific procedural system. In contrast to the linear accounts offered by empiricist, nativist, and/or evolutionary explanations, the dual competence-procedural developmental perspective argues that the mature systems emerge through developmental transformations as differentiations and intercoordinations of an early relatively undifferentiated action matrix. This development, whose microscopic mechanism is action-in-the-world, is characterized as being embodied, nonlinear, and epigenetic. WIREs Cogni Sci 2011 2 231-237 DOI: 10.1002/wcs.120 For further resources related to this article, please visit the WIREs website. © 2010 John Wiley & Sons, Ltd.
ERIC Educational Resources Information Center
Peterson, Robin L.; Pennington, Bruce F.; Olson, Richard K.
2013-01-01
We investigated the phonological and surface subtypes of developmental dyslexia in light of competing predictions made by two computational models of single word reading, the Dual-Route Cascaded Model (DRC; Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001) and Harm and Seidenberg's connectionist model (HS model; Harm & Seidenberg, 1999). The…
The Negative Effects of Positive Reinforcement in Teaching Children with Developmental Delay.
ERIC Educational Resources Information Center
Biederman, Gerald B.; And Others
1994-01-01
This study compared the performance of 12 children (ages 4 to 10) with developmental delay, each trained in 2 tasks, one through interactive modeling (with or without verbal reinforcement) and the other through passive modeling. Results showed that passive modeling produced better rated performance than interactive modeling and that verbal…
Simulation of a Cold Gas Thruster System and Test Data Correlation
NASA Technical Reports Server (NTRS)
Hauser, Daniel M.; Quinn, Frank D.
2012-01-01
During developmental testing of the Ascent Abort 1 (AA-1) cold gas thruster system, unexpected behavior was detected. Upon further review the design as it existed may not have met the requirements. To determine the best approach for modifying the design, the system was modeled with a dynamic fluid analysis tool (EASY5). The system model consisted of the nitrogen storage tank, pressure regulator, thruster valve, nozzle, and the associated interconnecting line lengths. The regulator and thruster valves were modeled using a combination of the fluid and mechanical modules available in EASY5. The simulation results were then compared against actual system test data. The simulation results exhibited behaviors similar to the test results, such as the pressure regulators response to thruster firings. Potential design solutions were investigated using the analytical model parameters, including increasing the volume downstream of the regulator and increasing the orifice area. Both were shown to improve the regulator response.
Developmental Approach for Behavior Learning Using Primitive Motion Skills.
Dawood, Farhan; Loo, Chu Kiong
2018-05-01
Imitation learning through self-exploration is essential in developing sensorimotor skills. Most developmental theories emphasize that social interactions, especially understanding of observed actions, could be first achieved through imitation, yet the discussion on the origin of primitive imitative abilities is often neglected, referring instead to the possibility of its innateness. This paper presents a developmental model of imitation learning based on the hypothesis that humanoid robot acquires imitative abilities as induced by sensorimotor associative learning through self-exploration. In designing such learning system, several key issues will be addressed: automatic segmentation of the observed actions into motion primitives using raw images acquired from the camera without requiring any kinematic model; incremental learning of spatio-temporal motion sequences to dynamically generates a topological structure in a self-stabilizing manner; organization of the learned data for easy and efficient retrieval using a dynamic associative memory; and utilizing segmented motion primitives to generate complex behavior by the combining these motion primitives. In our experiment, the self-posture is acquired through observing the image of its own body posture while performing the action in front of a mirror through body babbling. The complete architecture was evaluated by simulation and real robot experiments performed on DARwIn-OP humanoid robot.
A Theoretical Approach to Understanding Population Dynamics with Seasonal Developmental Durations
NASA Astrophysics Data System (ADS)
Lou, Yijun; Zhao, Xiao-Qiang
2017-04-01
There is a growing body of biological investigations to understand impacts of seasonally changing environmental conditions on population dynamics in various research fields such as single population growth and disease transmission. On the other side, understanding the population dynamics subject to seasonally changing weather conditions plays a fundamental role in predicting the trends of population patterns and disease transmission risks under the scenarios of climate change. With the host-macroparasite interaction as a motivating example, we propose a synthesized approach for investigating the population dynamics subject to seasonal environmental variations from theoretical point of view, where the model development, basic reproduction ratio formulation and computation, and rigorous mathematical analysis are involved. The resultant model with periodic delay presents a novel term related to the rate of change of the developmental duration, bringing new challenges to dynamics analysis. By investigating a periodic semiflow on a suitably chosen phase space, the global dynamics of a threshold type is established: all solutions either go to zero when basic reproduction ratio is less than one, or stabilize at a positive periodic state when the reproduction ratio is greater than one. The synthesized approach developed here is applicable to broader contexts of investigating biological systems with seasonal developmental durations.
Berg, A O; Melle, I; Zuber, V; Simonsen, C; Nerhus, M; Ueland, T; Andreassen, O A; Sundet, K; Vaskinn, A
2017-01-01
Abstract thinking is important in modern understanding of neurocognitive abilities, and a symptom of thought disorder in psychosis. In patients with psychosis, we assessed if socio-developmental background influences abstract thinking, and the association with executive functioning and clinical psychosis symptoms. Participants (n = 174) had a diagnosis of psychotic or bipolar disorder, were 17-65 years, intelligence quotient (IQ) > 70, fluent in a Scandinavian language, and their full primary education in Norway. Immigrants (N = 58) were matched (1:2) with participants without a history of migration (N = 116). All participants completed a neurocognitive and clinical assessment. Socio-developmental background was operationalised as human developmental index (HDI) of country of birth, at year of birth. Structural equation modelling was used to assess the model with best fit. The model with best fit, χ 2 = 96.591, df = 33, p < .001, confirmed a significant indirect effect of HDI scores on abstract thinking through executive functioning, but not through clinical psychosis symptoms. This study found that socio-developmental background influences abstract thinking in psychosis by indirect effect through executive functioning. We should take into account socio-developmental background in the interpretation of neurocognitive performance in patients with psychosis, and prioritise cognitive remediation in treatment of immigrant patients.
Robinson, Joshua F; Port, Jesse A; Yu, Xiaozhong; Faustman, Elaine M
2010-10-01
To understand the complex etiology of developmental disorders, an understanding of both genetic and environmental risk factors is needed. Human and rodent genetic studies have identified a multitude of gene candidates for specific developmental disorders such as neural tube defects (NTDs). With the emergence of toxicogenomic-based assessments, scientists now also have the ability to compare and understand the expression of thousands of genes simultaneously across strain, time, and exposure in developmental models. Using a systems-based approach in which we are able to evaluate information from various parts and levels of the developing organism, we propose a framework for integrating genetic information with toxicogenomic-based studies to better understand gene-environmental interactions critical for developmental disorders. This approach has allowed us to characterize candidate genes in the context of variables critical for determining susceptibility such as strain, time, and exposure. Using a combination of toxicogenomic studies and complementary bioinformatic tools, we characterize NTD candidate genes during normal development by function (gene ontology), linked phenotype (disease outcome), location, and expression (temporally and strain-dependent). In addition, we show how environmental exposures (cadmium, methylmercury) can influence expression of these genes in a strain-dependent manner. Using NTDs as an example of developmental disorder, we show how simple integration of genetic information from previous studies into the standard microarray design can enhance analysis of gene-environment interactions to better define environmental exposure-disease pathways in sensitive and resistant mouse strains. © Wiley-Liss, Inc.
Patterns of threshold evolution in polyphenic insects under different developmental models.
Tomkins, Joseph L; Moczek, Armin P
2009-02-01
Two hypotheses address the evolution of polyphenic traits in insects. Under the developmental reprogramming model, individuals exceeding a threshold follow a different developmental pathway from individuals below the threshold. This decoupling is thought to free selection to independently hone alternative morphologies, increasing phenotypic plasticity and morphological diversity. Under the alternative model, extreme positive allometry explains the existence of alternative phenotypes and divergent phenotypes are developmentally coupled by a continuous reaction norm, such that selection on either morph acts on both. We test the hypothesis that continuous reaction norm polyphenisms, evolve through changes in the allometric parameters of even the smallest males with minimal trait expression, whereas threshold polyphenisms evolve independent of the allometric parameters of individuals below the threshold. We compare two polyphenic species; the dung beetle Onthophagus taurus, whose allometry has been modeled both as a threshold polyphenism and a continuous reaction norm and the earwig Forficula auricularia, whose allometry is best modeled with a discontinuous threshold. We find that across populations of both species, variation in forceps or horn allometry in minor males are correlated to the population's threshold. These findings suggest that regardless of developmental mode, alternative morphs do not evolve independently of one another.
Wotton, Karl R; Jiménez-Guri, Eva; Crombach, Anton; Janssens, Hilde; Alcaine-Colet, Anna; Lemke, Steffen; Schmidt-Ott, Urs; Jaeger, Johannes
2015-01-01
The segmentation gene network in insects can produce equivalent phenotypic outputs despite differences in upstream regulatory inputs between species. We investigate the mechanistic basis of this phenomenon through a systems-level analysis of the gap gene network in the scuttle fly Megaselia abdita (Phoridae). It combines quantification of gene expression at high spatio-temporal resolution with systematic knock-downs by RNA interference (RNAi). Initiation and dynamics of gap gene expression differ markedly between M. abdita and Drosophila melanogaster, while the output of the system converges to equivalent patterns at the end of the blastoderm stage. Although the qualitative structure of the gap gene network is conserved, there are differences in the strength of regulatory interactions between species. We term such network rewiring ‘quantitative system drift’. It provides a mechanistic explanation for the developmental hourglass model in the dipteran lineage. Quantitative system drift is likely to be a widespread mechanism for developmental evolution. DOI: http://dx.doi.org/10.7554/eLife.04785.001 PMID:25560971
Barrio, Rafael A.; Romero-Arias, José Roberto; Noguez, Marco A.; Azpeitia, Eugenio; Ortiz-Gutiérrez, Elizabeth; Hernández-Hernández, Valeria; Cortes-Poza, Yuriria; Álvarez-Buylla, Elena R.
2013-01-01
A central issue in developmental biology is to uncover the mechanisms by which stem cells maintain their capacity to regenerate, yet at the same time produce daughter cells that differentiate and attain their ultimate fate as a functional part of a tissue or an organ. In this paper we propose that, during development, cells within growing organs obtain positional information from a macroscopic physical field that is produced in space while cells are proliferating. This dynamical interaction triggers and responds to chemical and genetic processes that are specific to each biological system. We chose the root apical meristem of Arabidopsis thaliana to develop our dynamical model because this system is well studied at the molecular, genetic and cellular levels and has the key traits of multicellular stem-cell niches. We built a dynamical model that couples fundamental molecular mechanisms of the cell cycle to a tension physical field and to auxin dynamics, both of which are known to play a role in root development. We perform extensive numerical calculations that allow for quantitative comparison with experimental measurements that consider the cellular patterns at the root tip. Our model recovers, as an emergent pattern, the transition from proliferative to transition and elongation domains, characteristic of stem-cell niches in multicellular organisms. In addition, we successfully predict altered cellular patterns that are expected under various applied auxin treatments or modified physical growth conditions. Our modeling platform may be extended to explicitly consider gene regulatory networks or to treat other developmental systems. PMID:23658505
ERIC Educational Resources Information Center
McCormick, Cheryl M.; Mathews, Iva Z.; Thomas, Catherine; Waters, Patti
2010-01-01
Developmental differences in hypothalamic-pituitary-adrenal (HPA) axis responsiveness to stressors and ongoing development of glucocorticoid-sensitive brain regions in adolescence suggest that similar to the neonatal period of ontogeny, adolescence may also be a sensitive period for programming effects of stressors on the central nervous system.…
ERIC Educational Resources Information Center
Pimenta, Aurea F.; Levitt, Pat
2005-01-01
The human and mouse genome projects elucidated the sequence and position map of innumerous genes expressed in the central nervous system (CNS), advancing our ability to manipulate these sequences and create models to investigate regulation of gene expression and function. In this article, we reviewed gene targeting methodologies with emphasis on…
Previous research demonstrated that perinatal exposure to Aroclor 1254 (A1254) resulted in both hypothyroxinemia (HPX) and a low-frequency ototoxicity (hearing loss). We hypothesized that the ototoxicity resulted from A1254- induced HPX during the postnatal critical period of c...
Agricultural, industrial and commercial use of pesticides continues to increase with an estimated annual usage nearing a billion lbs/year. Many of these compounds target the nervous system of nuisance animals and due to their lack of selectivity, casue adverse effects in non-targ...
Brief Report: Diminishing Geographic Variability in Autism Spectrum Disorders over Time?
ERIC Educational Resources Information Center
Hoffman, Kate; Vieira, Veronica M.; Daniels, Julie L.
2014-01-01
We investigated differences in the geographic distribution of autism spectrum disorders (ASD) over time in central North Carolina with data from the Autism and Developmental Disabilities Monitoring Network. Using generalized additive models and geographic information systems we produced maps of ASD risk in 2002-2004 and 2006-2008. Overall the risk…
The Development of Educational Programs: Advocacy in a Non-Rational System.
ERIC Educational Resources Information Center
House, Ernest R.; And Others
A study was conducted to investigate empirically the nature of program development, testing Everett Rogers' model of collective adoption of an innovation against the data, and distinguishing between the developmental patterns of high and low quality programs. Subjects were 34 school districts representing a 10 percent sample of 340 districts…
A predictive model for prenatal developmental toxicity using ToxCast Phase I showed the RAR assay set to be the strongest weighting factor (Sipes et al. 2011). Retinoid signaling mediates growth and differentiation of the embryo. ToxCast has 6 reporter assays for trans-activation...
Goal-Prioritization for Teachers, Coaches, and Students: A Developmental Model
ERIC Educational Resources Information Center
Symonds, Matthew L.; Tapps, Tyler
2016-01-01
The objective of this article is to provide background on types of goals, a system for writing goals, and a framework for goal-prioritization that can be implemented in classroom and/or sport settings. Goal-setting is the process of developing a desired outcome to serve as the purpose of one's actions.
It is desirable for local air quality agencies to accurately forecast tropospheric PM2.5 concentrations to alert the sensitive population of the onset, severity and duration of unhealthy air, and to encourage the public and industry to reduce emissions-producing activi...
An Overview of Development of Higher Education Access in China
ERIC Educational Resources Information Center
Liu, Lisha
2012-01-01
As a crucial component of higher education system, the models of student admissions differ worldwide due to diverse historical, traditional, and cultural factors. This paper presents a documentary study which seeks to identify some key developmental milestones of access to higher education in China. The paper begins with an outline history of the…
Using Research-Based Instruction to Improve Math Outcomes with Underprepared Students
ERIC Educational Resources Information Center
Pearce, Lee R.; Pearce, Kristi L.; Siewert, Daluss J.
2017-01-01
The authors used a mixed-methods research design to evaluate a multi-tiered system of supports model to address the disturbing failure rates of underprepared college students placed in developmental mathematics at a small state university. While qualitative data gathered from using Participatory Action Research methods directed the two-year…
Oscillatory Protein Expression Dynamics Endows Stem Cells with Robust Differentiation Potential
Kaneko, Kunihiko
2011-01-01
The lack of understanding of stem cell differentiation and proliferation is a fundamental problem in developmental biology. Although gene regulatory networks (GRNs) for stem cell differentiation have been partially identified, the nature of differentiation dynamics and their regulation leading to robust development remain unclear. Herein, using a dynamical system modeling cell approach, we performed simulations of the developmental process using all possible GRNs with a few genes, and screened GRNs that could generate cell type diversity through cell-cell interactions. We found that model stem cells that both proliferated and differentiated always exhibited oscillatory expression dynamics, and the differentiation frequency of such stem cells was regulated, resulting in a robust number distribution. Moreover, we uncovered the common regulatory motifs for stem cell differentiation, in which a combination of regulatory motifs that generated oscillatory expression dynamics and stabilized distinct cellular states played an essential role. These findings may explain the recently observed heterogeneity and dynamic equilibrium in cellular states of stem cells, and can be used to predict regulatory networks responsible for differentiation in stem cell systems. PMID:22073296
Developmental effects of micronutrient supplementation and malaria in Zanzibari children
USDA-ARS?s Scientific Manuscript database
Background: Children’s development is affected by the interplay of internal and external factors and changes in one factor can precipitate changes in multiple developmental domains. Objective: To test a theoretical model of children’s development we used structural equation modeling to fit the model...
Patterns of gender development.
Martin, Carol Lynn; Ruble, Diane N
2010-01-01
A comprehensive theory of gender development must describe and explain long-term developmental patterning and changes and how gender is experienced in the short term. This review considers multiple views on gender patterning, illustrated with contemporary research. First, because developmental research involves understanding normative patterns of change with age, several theoretically important topics illustrate gender development: how children come to recognize gender distinctions and understand stereotypes, and the emergence of prejudice and sexism. Second, developmental researchers study the stability of individual differences over time, which elucidates developmental processes. We review stability in two domains-sex segregation and activities/interests. Finally, a new approach advances understanding of developmental patterns, based on dynamic systems theory. Dynamic systems theory is a metatheoretical framework for studying stability and change, which developed from the study of complex and nonlinear systems in physics and mathematics. Some major features and examples show how dynamic approaches have been and could be applied in studying gender development.
Patterns of Gender Development
Martin, Carol Lynn; Ruble, Diane N.
2013-01-01
A comprehensive theory of gender development must describe and explain long-term developmental patterning and changes and how gender is experienced in the short term. This review considers multiple views on gender patterning, illustrated with contemporary research. First, because developmental research involves understanding normative patterns of change with age, several theoretically important topics illustrate gender development: how children come to recognize gender distinctions and understand stereotypes, and the emergence of prejudice and sexism. Second, developmental researchers study the stability of individual differences over time, which elucidates developmental processes. We review stability in two domains—sex segregation and activities/interests. Finally, a new approach advances understanding of developmental patterns, based on dynamic systems theory. Dynamic systems theory is a metatheoretical framework for studying stability and change, which developed from the study of complex and nonlinear systems in physics and mathematics. Some major features and examples show how dynamic approaches have been and could be applied in studying gender development. PMID:19575615
Early-life nutritional effects on the female reproductive system.
Chan, K A; Tsoulis, M W; Sloboda, D M
2015-02-01
There is now considerable epidemiological and experimental evidence indicating that early-life environmental conditions, including nutrition, affect subsequent development in later life. These conditions induce highly integrated responses in endocrine-related homeostasis, resulting in persistent changes in the developmental trajectory producing an altered adult phenotype. Early-life events trigger processes that prepare the individual for particular circumstances that are anticipated in the postnatal environment. However, where the intrauterine and postnatal environments differ markedly, such modifications to the developmental trajectory may prove maladaptive in later life. Reproductive maturation and function are similarly influenced by early-life events. This should not be surprising, because the primordial follicle pool is established early in life and is thus vulnerable to early-life events. Results of clinical and experimental studies have indicated that early-life adversity is associated with a decline in ovarian follicular reserve, changes in ovulation rates, and altered age at onset of puberty. However, the underlying mechanisms regulating the relationship between the early-life developmental environment and postnatal reproductive development and function are unclear. This review examines the evidence linking early-life nutrition and effects on the female reproductive system, bringing together clinical observations in humans and experimental data from targeted animal models. © 2015 Society for Endocrinology.
Dong, X.-P.; Donoghue, P.C.J.; Repetski, J.E.
2005-01-01
The hypothesis that conodonts are vertebrates rests solely on evidence of soft tissue anatomy. This has been corroborated by microstructural, topological and developmental evidence of homology between conodont and vertebrate hard tissues. However, these conclusions have been reached on the basis of evidence from highly derived euconodont taxa and the degree to which they are representative of plesiomorphic euconodonts remains an open question. Furthermore, the range of variation in tissue types comprising the euconodont basal body has been used to establish a hypothesis of developmental plasticity early in the phylogeny of the clade, and a model of diminishing potentiality in the evolution of development systems. The microstructural fabrics of the basal tissues of the earliest euconodonts (presumed to be the most plesiomorphic) are examined to test these two hypotheses. It is found that the range of microstructural variation observed hitherto was already apparent among plesiomorphic euconodonts. Thus, established histological data are representative of the most plesiomorphic euconodonts. However, although there is evidence of a range in microstructural fabrics, these are compatible with the dentine tissue system alone, and the degree of variation is compatible with that seen in clades of comparable diversity. ?? The Palaeontological Association.
Hadland, Brandon; Yoshimoto, Momoko
2018-04-01
In adult hematopoiesis, the hematopoietic stem cell (HSC) sits at the top of a hierarchy of hematopoietic progenitors responsible for generating the diverse repertoire of blood and immune cells. During embryonic development, however, the initial waves of hematopoiesis provide the first functioning blood cells of the developing embryo, such as primitive erythrocytes arising in the yolk sac, independently of HSCs. In the field of developmental immunology, it has been recognized that some components of the immune system, such as B-1a lymphocytes, are uniquely produced during the embryonic and neonatal period, suggesting a "layered" development of immunity. Several recent studies have shed new light on the developmental origin of the layered immune system, suggesting complex and sometimes multiple contributions to unique populations of innate-like immune cells from both fetal HSCs and earlier HSC-independent progenitors. In this review, we will attempt to synthesize these studies to provide an integrated model of developmental hematopoiesis and layered immunity that may offer new insights into the origin of HSCs. Copyright © 2018 ISEH – Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.
Neuroendocrine models of social anxiety disorder
van Honk, Jack; Bos, Peter A.; Terburg, David; Heany, Sarah; Stein, Dan J.
2015-01-01
Social anxiety disorder (SAD) is a highly prevalent and disabling disorder with key behavioral traits of social fearfulness, social avoidance, and submissiveness. Here we argue that hormonal systems play a key role in mediating social anxiety, and so may be important in SAD. Hormonal alterations, often established early in development through the interaction between biological and psychological factors (eg, genetic predisposition x early trauma), predispose to socially fearful, avoidant, and submissive behavior. However, whereas gene variants and histories of trauma persist, hormonal systems can be remodeled over the course of life. Hormones play a key role during the periods of all sensitive developmental windows (ie, prenatal, neonatal, puberty, aging), and are capable of opening up new developmental windows in adulthood. Indeed, the developmental plasticity of our social brain, and thus of social behavior in adulthood, critically depends on steroid hormones such as testosterone and peptide hormones such as oxytocin. These steroid and peptide hormones in interaction with social experiences may have potential for reprogramming the socially anxious brain. Certainly, single administrations of oxytocin and testosterone in humans reduce socially fearful, avoidant, and submissive behavior. Such work may ultimately lead to new approaches to the treatment of SAD. PMID:26487809
A database of embryo-fetal developmental toxicity (EFDT) studies of 379 pharmaceutical compounds in rat and rabbit was analyzed for species differences based on toxicokinetic parameters of area under the curve (AUC) and maximum concentration (Cmax) at the developmental adverse ef...
The zebrafish eye—a paradigm for investigating human ocular genetics
Richardson, R; Tracey-White, D; Webster, A; Moosajee, M
2017-01-01
Although human epidemiological and genetic studies are essential to elucidate the aetiology of normal and aberrant ocular development, animal models have provided us with an understanding of the pathogenesis of multiple developmental ocular malformations. Zebrafish eye development displays in depth molecular complexity and stringent spatiotemporal regulation that incorporates developmental contributions of the surface ectoderm, neuroectoderm and head mesenchyme, similar to that seen in humans. For this reason, and due to its genetic tractability, external fertilisation, and early optical clarity, the zebrafish has become an invaluable vertebrate system to investigate human ocular development and disease. Recently, zebrafish have been at the leading edge of preclinical therapy development, with their amenability to genetic manipulation facilitating the generation of robust ocular disease models required for large-scale genetic and drug screening programmes. This review presents an overview of human and zebrafish ocular development, genetic methodologies employed for zebrafish mutagenesis, relevant models of ocular disease, and finally therapeutic approaches, which may have translational leads in the future. PMID:27612182
Toward a comprehensive model of antisocial development: a dynamic systems approach.
Granic, Isabela; Patterson, Gerald R
2006-01-01
The purpose of this article is to develop a preliminary comprehensive model of antisocial development based on dynamic systems principles. The model is built on the foundations of behavioral research on coercion theory. First, the authors focus on the principles of multistability, feedback, and nonlinear causality to reconceptualize real-time parent-child and peer processes. Second, they model the mechanisms by which these real-time processes give rise to negative developmental outcomes, which in turn feed back to determine real-time interactions. Third, they examine mechanisms of change and stability in early- and late-onset antisocial trajectories. Finally, novel clinical designs and predictions are introduced. The authors highlight new predictions and present studies that have tested aspects of the model
Metamorphosis revealed: time-lapse three-dimensional imaging inside a living chrysalis
Lowe, Tristan; Garwood, Russell J.; Simonsen, Thomas J.; Bradley, Robert S.; Withers, Philip J.
2013-01-01
Studies of model insects have greatly increased our understanding of animal development. Yet, they are limited in scope to this small pool of model species: a small number of representatives for a hyperdiverse group with highly varied developmental processes. One factor behind this narrow scope is the challenging nature of traditional methods of study, such as histology and dissection, which can preclude quantitative analysis and do not allow the development of a single individual to be followed. Here, we use high-resolution X-ray computed tomography (CT) to overcome these issues, and three-dimensionally image numerous lepidopteran pupae throughout their development. The resulting models are presented in the electronic supplementary material, as are figures and videos, documenting a single individual throughout development. They provide new insight and details of lepidopteran metamorphosis, and allow the measurement of tracheal and gut volume. Furthermore, this study demonstrates early and rapid development of the tracheae, which become visible in scans just 12 h after pupation. This suggests that there is less remodelling of the tracheal system than previously expected, and is methodologically important because the tracheal system is an often-understudied character system in development. In the future, this form of time-lapse CT-scanning could allow faster and more detailed developmental studies on a wider range of taxa than is presently possible. PMID:23676900
TOWARDS REFINED USE OF TOXICITY DATA IN STATISTICALLY BASED SAR MODELS FOR DEVELOPMENTAL TOXICITY.
In 2003, an International Life Sciences Institute (ILSI) Working Group examined the potential of statistically based structure-activity relationship (SAR) models for use in screening environmental contaminants for possible developmental toxicants.
The Texas-Indiana Virtual STAR Center: Zebrafish Models for Developmental Toxicity Screening
The Texas-Indiana Virtual STAR Center: Zebrafish Models for Developmental Toxicity Screening (Presented by Maria Bondesson Bolin, Ph.D, University of Houston, Center for Nuclear Receptors and Cell Signaling) (3/22/2012)
ERIC Educational Resources Information Center
Patton, Sarah C.; Beaujean, A. Alexander; Benedict, Helen E.
2014-01-01
The developmental trajectory of body image dissatisfaction is unclear. Researchers have investigated sociocultural and developmental risk factors; however, the literature needs an integrative etiological model. In 2009, Cheng and Mallinckrodt proposed a dual mediation model, positing that poor-quality parental bonds, via the mechanisms of…
ERIC Educational Resources Information Center
Del Giudice, Marco
2016-01-01
According to models of differential susceptibility, the same neurobiological and temperamental traits that determine increased sensitivity to stress and adversity also confer enhanced responsivity to the positive aspects of the environment. Differential susceptibility models have expanded to include complex developmental processes in which genetic…
A Developmental Sequence Model to University Adjustment of International Undergraduate Students
ERIC Educational Resources Information Center
Chavoshi, Saeid; Wintre, Maxine Gallander; Dentakos, Stella; Wright, Lorna
2017-01-01
The current study proposes a Developmental Sequence Model to University Adjustment and uses a multifaceted measure, including academic, social and psychological adjustment, to examine factors predictive of undergraduate international student adjustment. A hierarchic regression model is carried out on the Student Adaptation to College Questionnaire…
Planning for School Transition: An Ecological-Developmental Approach.
ERIC Educational Resources Information Center
Diamond, Karen E.; And Others
1988-01-01
The paper describes an ecological-developmental model for planning a child's transition from a preschool special education program to a public school classroom. The model stresses interactions between the various environments in which the child functions. A description of a preschool transition program based on the model is also included.…
A MODE-OF-ACTION-BASED QSAR APPROACH TO IMPROVE UNDERSTANDING OF DEVELOPMENTAL TOXICITY
QSAR models of developmental toxicity (devtox) have met with limited regulatory acceptance due to the use of ill-defined endpoints, lack of biological interpretability, and poor model performance. More generally, the lack of biological inference of many QSAR models is often due t...
Challenges and opportunities in developmental integrative physiology☆
Mueller, C.A.; Eme, J.; Burggren, W.W.; Roghair, R.D.; Rundle, S.D.
2015-01-01
This review explores challenges and opportunities in developmental physiology outlined by a symposium at the 2014 American Physiological Society Intersociety Meeting: Comparative Approaches to Grand Challenges in Physiology. Across animal taxa, adverse embryonic/fetal environmental conditions can alter morphological and physiological phenotypes in juveniles or adults, and capacities for developmental plasticity are common phenomena. Human neonates with body sizes at the extremes of perinatal growth are at an increased risk of adult disease, particularly hypertension and cardiovascular disease. There are many rewarding areas of current and future research in comparative developmental physiology. We present key mechanisms, models, and experimental designs that can be used across taxa to investigate patterns in, and implications of, the development of animal phenotypes. Intraspecific variation in the timing of developmental events can be increased through developmental plasticity (heterokairy), and could provide the raw material for selection to produce heterochrony — an evolutionary change in the timing of developmental events. Epigenetics and critical windows research recognizes that in ovo or fetal development represent a vulnerable period in the life history of an animal, when the developing organism may be unable to actively mitigate environmental perturbations. ‘Critical windows’ are periods of susceptibility or vulnerability to environmental or maternal challenges, periods when recovery from challenge is possible, and periods when the phenotype or epigenome has been altered. Developmental plasticity may allow survival in an altered environment, but it also has possible long-term consequences for the animal. “Catch-up growth” in humans after the critical perinatal window has closed elicits adult obesity and exacerbates a programmed hypertensive phenotype (one of many examples of “fetal programing”). Grand challenges for developmental physiology include integrating variation in developmental timing within and across generations, applying multiple stressor dosages and stressor exposure at different developmental timepoints, assessment of epigenetic and parental influences, developing new animal models and techniques, and assessing and implementing these designs and models in human health and development. PMID:25711780
2013-01-01
Background Anecdotal evidence suggests that low-income preschoolers with developmental delays are at increased risk for dental caries and poor oral health, but there are no published studies based on empirical data. The purpose of this pilot study was two-fold: to examine the relationship between developmental delays and dental caries in low-income preschoolers and to present a preliminary explanatory model on the determinants of caries for enrollees in Head Start, a U.S. school readiness program for low-income preschool-aged children. Methods Data were collected on preschoolers ages 3–5 years at two Head Start centers in Washington, USA (N = 115). The predictor variable was developmental delay status (no/yes). The outcome variable was the prevalence of decayed, missing, and filled surfaces (dmfs) on primary teeth. We used multiple variable Poisson regression models to test the hypothesis that within a population of low-income preschoolers, those with developmental delays would have increased dmfs prevalence than those without developmental delays. Results Seventeen percent of preschoolers had a developmental delay and 51.3% of preschoolers had ≥1 dmfs. Preschoolers with developmental delays had a dmfs prevalence ratio that was 1.26 times as high as preschoolers without developmental delays (95% CI: 1.01, 1.58; P < .04). Other factors associated with increased dmfs prevalence ratios included: not having a dental home (P = .01); low caregiver education (P < .001); and living in a non-fluoridated community (P < .001). Conclusions Our pilot data suggest that developmental delays among low-income preschoolers are associated with increased primary tooth dmfs. Additional research is needed to further examine this relationship. Future interventions and policies should focus on caries prevention strategies within settings like Head Start classrooms that serve low-income preschool-aged children with additional targeted home- and community-based interventions for those with developmental delays. PMID:24119240
Child Maltreatment and Children's Developmental Trajectories in Early- to Middle-Childhood
Font, Sarah A.; Berger, Lawrence M.
2014-01-01
Associations between experiencing child maltreatment and adverse developmental outcomes are widely studied, yet conclusions regarding the extent to which effects are bidirectional, and whether they are likely causal, remain elusive. This study uses the Fragile Families and Child Well-Being study, a birth cohort of 4,898 children followed from birth through age 9. Hierarchical linear modeling and structural equation modeling are employed to estimate associations of maltreatment with cognitive and social-emotional well-being. Results suggest that effects of early childhood maltreatment emerge immediately, though developmental outcomes are also affected by newly occurring maltreatment over time. Additionally, findings indicate that children's early developmental scores predict their subsequent probability of experiencing maltreatment, though to a lesser extent than early maltreatment predicts subsequent developmental outcomes. PMID:25521556
Part II: morphological analysis of embryonic development following femtosecond laser manipulation
NASA Astrophysics Data System (ADS)
Kohli, V.; Elezzabi, A. Y.
2008-02-01
The zebrafish (Danio rerio) is an attractive model system that has received wide attention for its usefulness in the study of development and disease. This organism represents a closer analog to humans than the common invetebrates Drosophila melanogaster and Caenorhabditis elegans, making this species an ideal model for human health research. Non-invasive manipulation of the zebrafish has been challenging, owing to the outer proteinaceous membrane and multiple embryonic barriers. A novel tool capable of manipulating early cleavage stage embryonic cells would be important for future advancements in medial research and the aquaculture industry. Herein, we demonstrate the laser surgery of early cleavage stage (2-cell) blastomere cells using a range of average laser powers and beam dwell times. Since the novelty of this manipulation tool depends on its non-invasive application, we examined short- and long-term laser-induced developmental defects following embryonic surgery. Laser-manipulated embryos were reared to 2 and 7 days post-fertilization and compared to control embryos at the same developmental stages. Morphological analysis was performed using light microscopy and scanning electron microscopy. Developmental features that were examined included the antero- and dorsal-lateral whole body views of the larvae, the olfactory pit, dorsal, ventral and pectoral fins, notochord, pectoral fin buds, otic capsule, otic vesicle, neuromast patterning, and kinocilia of the olfactory pit rim and cristae of the lateral wall of the ear. Laser-manipulated embryos developed normally relative to the controls, with developmental patterning and morphology at 2 and 7 days indistinguishable from control larvae.
Lauer, Emily; McCallion, Philip
2015-09-01
Monitoring population trends including mortality within subgroups such as people with intellectual and developmental disabilities and between countries provides crucial information about the population's health and insights into underlying health concerns and the need for and effectiveness of public health efforts. Data from both US state intellectual and developmental disabilities service system administrative data sets and de-identified state Medicaid claims were used to calculate average age at death and crude mortality rates. Average age at death for people in state intellectual and developmental disabilities systems was 50.4-58.7 years and 61.2-63.0 years in Medicaid data, with a crude adult mortality rate of 15.2 per thousand. Age at death remains lower and mortality rates higher for people with intellectual and developmental disabilities. Improved case finding (e.g. medical claims) could provide more complete mortality patterns for the population with intellectual and developmental disabilities to inform the range of access and receipt of supportive and health-related interventions and preventive care. © 2015 John Wiley & Sons Ltd.
Shea, Jennifer; Taylor, Tory
2017-12-01
In the last 20 years, developmental evaluation has emerged as a promising approach to support organizational learning in emergent social programs. Through a continuous system of inquiry, reflection, and application of knowledge, developmental evaluation serves as a system of tools, methods, and guiding principles intended to support constructive organizational learning. However, missing from the developmental evaluation literature is a nuanced framework to guide evaluators in how to elevate the organizational practices and concepts most relevant for emergent programs. In this article, we describe and reflect on work we did to develop, pilot, and refine an integrated pilot framework. Drawing on established developmental evaluation inquiry frameworks and incorporating lessons learned from applying the pilot framework, we put forward the Evaluation-led Learning framework to help fill that gap and encourage others to implement and refine it. We posit that without explicitly incorporating the assessments at the foundation of the Evaluation-led Learning framework, developmental evaluation's ability to affect organizational learning in productive ways will likely be haphazard and limited. Copyright © 2017 Elsevier Ltd. All rights reserved.
Marshall, Amy D
2016-01-01
Increased neuroplasticity and neural development during puberty provide a context for which stress and trauma can have dramatic and long-lasting effects on psychological systems; therefore, this study was designed to determine whether exposure to potentially traumatic events during puberty uniquely predicts adolescent girls' psychopathology. Because neural substrates associated with different forms of psychopathology seemingly develop at different rates, the possibility that the developmental timing of trauma relative to puberty predicts the nature of psychopathology (posttraumatic stress disorder [PTSD], depressive, and anxiety disorders) was examined. A subset of 2,899 adolescent girls from the National Comorbidity Survey Replication-Adolescent Supplement who completed the study 2+ years postmenarche was selected. Past-year psychiatric disorders and reports of age of trauma exposure were assessed using the Composite International Diagnostic Interview. Developmental stages were defined as the 2 years after the year of menarche ("postpuberty"), 3 years before and year of menarche ("puberty"), 2 to 6 years before the puberty period ("grade school"), and 4 to 5 years after birth ("infancy-preschool"). Compared to other developmental periods, trauma during puberty conferred significantly more risk (50.47% of model R(2)) for girls' past-year anxiety disorder diagnoses (primarily social phobia), whereas trauma during the grade school period conferred significantly more risk (47.24% of model R(2)) for past-year depressive disorder diagnoses. Recency of trauma best predicted past-year PTSD diagnoses. Supporting rodent models, puberty may be a sensitive period for the impact of trauma on girls' development of an anxiety disorder. Trauma prepuberty or postpuberty distinctly predicts depression or PTSD, suggesting differential etiological processes. Copyright © 2016 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oh, Jung-Hwa; Department of human and environmental toxicology, University of Science & Technology, Daejeon 34113; Son, Mi-Young
Given the rapid growth of engineered and customer products made of silver nanoparticles (Ag NPs), understanding their biological and toxicological effects on humans is critically important. The molecular developmental neurotoxic effects associated with exposure to Ag NPs were analyzed at the physiological and molecular levels, using an alternative cell model: human embryonic stem cell (hESC)-derived neural stem/progenitor cells (NPCs). In this study, the cytotoxic effects of Ag NPs (10–200 μg/ml) were examined in these hESC-derived NPCs, which have a capacity for neurogenesis in vitro, at 6 and 24 h. The results showed that Ag NPs evoked significant toxicity in hESC-derivedmore » NPCs at 24 h in a dose-dependent manner. In addition, Ag NPs induced cell cycle arrest and apoptosis following a significant increase in oxidative stress in these cells. To further clarify the molecular mechanisms of the toxicological effects of Ag NPs at the transcriptional and post-transcriptional levels, the global expression profiles of genes and miRNAs were analyzed in hESC-derived NPCs after Ag NP exposure. The results showed that Ag NPs induced oxidative stress and dysfunctional neurogenesis at the molecular level in hESC-derived NPCs. Based on this hESC-derived neural cell model, these findings have increased our understanding of the molecular events underlying developmental neurotoxicity induced by Ag NPs in humans. - Highlights: • This system served as a suitable model for developmental neurotoxicity testing. • Ag NPs induce the apoptosis in human neural cells by ROS generation. • Genes for development of neurons were dysregulated in response to Ag NPs. • Molecular events during early developmental neurotoxicity were proposed.« less
ERIC Educational Resources Information Center
Scheflen, Sarah Clifford; Freeman, Stephanny F. N.; Paparella, Tanya
2012-01-01
Four children with autism were taught play skills through the use of video modeling. Video instruction was used to model play and appropriate language through a developmental sequence of play levels integrated with language techniques. Results showed that children with autism could successfully use video modeling to learn how to play appropriately…
Early-Life Nutrition and Neurodevelopment: Use of the Piglet as a Translational Model12
Mudd, Austin T
2017-01-01
Optimal nutrition early in life is critical to ensure proper structural and functional development of infant organ systems. Although pediatric nutrition historically has emphasized research on the relation between nutrition, growth rates, and gastrointestinal maturation, efforts increasingly have focused on how nutrition influences neurodevelopment. The provision of human milk is considered the gold standard in pediatric nutrition; thus, there is interest in understanding how functional nutrients and bioactive components in milk may modulate developmental processes. The piglet has emerged as an important translational model for studying neurodevelopmental outcomes influenced by pediatric nutrition. Given the comparable nutritional requirements and strikingly similar brain developmental patterns between young pigs and humans, the piglet is being used increasingly in developmental nutritional neuroscience studies. The piglet primarily has been used to assess the effects of dietary fatty acids and their accretion in the brain throughout neurodevelopment. However, recent research indicates that other dietary components, including choline, iron, cholesterol, gangliosides, and sialic acid, among other compounds, also affect neurodevelopment in the pig model. Moreover, novel analytical techniques, including but not limited to MRI, behavioral assessments, and molecular quantification, allow for a more holistic understanding of how nutrition affects neurodevelopmental patterns. By combining early-life nutritional interventions with innovative analytical approaches, opportunities abound to quantify factors affecting neurodevelopmental trajectories in the neonate. This review discusses research using the translational pig model with primary emphasis on early-life nutrition interventions assessing neurodevelopment outcomes, while also discussing nutritionally-sensitive methods to characterize brain maturation. PMID:28096130
Transplantation analysis of developmental mechanisms in Hydra.
Shimizu, Hiroshi
2012-01-01
Since the pioneering work of Ethel Browne (1909) who demonstrated for the first time the concept of organizer activity, i.e. the potency of an apical Hydra tissue to induce a secondary axis when transplanted onto a host, Hydra flourished as a fruitful model system for developmental studies. Over the next 60 years this efficient transplantation approach identified graded biological activities along the body column of Hydra named Head Acti-vation and Head Inhibition. These properties inspired theoretical modelers including Lewis Wolpert, Alfred Gierer and Hans Meinhardt to propose models for morphogenesis, respectively the positional information (1969) and reaction-diffusion (1972) models. In 1973, Tsutomu Sugiyama and Toshitaka Fujisawa initiated in Mishima a unique project to analyze the properties of Hydra strains with distinct morphological and developmental characters. To this end, they collected in several areas of Japan multiple Hydra strains that they subsequently characterized and crossed. They also established a lateral transplantation strategy that was much more powerful than the previous ones, as it combined quantitative measurements with cellular analyses thanks to the chimera procedures developed by Campbell and colleagues. In-deed this approach provided a paradigm to quantify in any morphological phenotype the Head Activation and Head Inhibition levels along the body column. In this article, I review the various strains identified by Sugiyama and colleagues, the principles and the main results deduced from the quantitative lateral transplantation strategy. In addition, I briefly discuss the relevance of this approach in the era of molecular biology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu Xiaozhong; Hong, Sung Woo; Moreira, Estefania G.
Gonocytes exist in the neonatal testis and represent a transient population of male germ-line stem cells. It has been shown that stem cell self-renewal and progeny production is probably controlled by the neighboring differentiated cells and extracellular matrix (ECM) in vivo known as niches. Recently, we developed an in vitro three-dimensional (3D) Sertoli cell/gonocyte co-culture (SGC) model with ECM overlay, which creates an in vivo-like niche and supports germ-line stem cell functioning within a 3D environment. In this study, we applied morphological and cytotoxicity evaluations, as well as microarray-based gene expression to examine the effects of different phthalate esters (PE)more » on this model. Known in vivo male developmentally toxic PEs (DTPE) and developmentally non-toxic PEs (DNTPE) were evaluated. We observed that DTPE induced significantly greater dose-dependent morphological changes, a decrease in cell viability and an increase in cytotoxicity compared to those treated with DNTPE. Moreover, the gene expression was more greatly altered by DTPE than by DNTPE and non-supervised cluster analysis allowed the discrimination of DTPE from the DNTPE. Our systems-based GO-Quant analysis showed significant alterations in the gene pathways involved in cell cycle, phosphate transport and apoptosis regulation with DTPE but not with DNTPE treatment. Disruptions of steroidogenesis related-gene expression such as Star, Cyp19a1, Hsd17b8, and Nr4a3 were observed in the DTPE group, but not in the DNTPE group. In summary, our observation on cell viability, cytotoxicity, and microarray-based gene expression analysis induced by PEs demonstrate that our in vitro 3D-SGC system mimicked in vivo responses for PEs and suggests that the 3D-SGC system might be useful in identifying developmental reproductive toxicants.« less
The zebrafish as a model system to study cardiovascular development.
Stainier, D Y; Fishman, M C
1994-01-01
The zebrafish, Brachydanio rerio, is rapidly becoming a system of choice for vertebrate developmental biologists. It presents unique embryological attributes and is amenable to saturation style mutagenesis, a powerful approach that, in invertebrates, has already led to the identification of a large number of key developmental genes. Since fertilization is external, the zebrafish embryo develops in the dish and is thus accessible for continued observation and manipulation at all stages of development. Furthermore, because the embryo is transparent, the developing heart and vessels can be resolved at the single-cell level. A large number of mutations that affect the development of cardiovascular form and function have recently been isolated from large-scale genetic screens for zygotic embryonic lethals. Our further understanding of the development of the cardiovascular system is important not only because of the high incidence, and familial inheritance, of congenital abnormalities, but also because it should lead to novel, differentiation-based strategies for the analysis and therapy of the diseased state. Copyright © 1994. Published by Elsevier Inc.
Toward a unified account of comprehension and production in language development.
McCauley, Stewart M; Christiansen, Morten H
2013-08-01
Although Pickering & Garrod (P&G) argue convincingly for a unified system for language comprehension and production, they fail to explain how such a system might develop. Using a recent computational model of language acquisition as an example, we sketch a developmental perspective on the integration of comprehension and production. We conclude that only through development can we fully understand the intertwined nature of comprehension and production in adult processing.
Robustness and flexibility in nematode vulva development.
Félix, Marie-Anne; Barkoulas, Michalis
2012-04-01
The Caenorhabditis elegans vulva has served as a paradigm for how conserved developmental pathways, such as EGF-Ras-MAPK, Notch and Wnt signaling, participate in networks driving animal organogenesis. Here, we discuss an emerging direction in the field, which places vulva research in a quantitative and microevolutionary framework. The final vulval cell fate pattern is known to be robust to change, but only recently has the variation of vulval traits been measured under stochastic, environmental or genetic variation. Whereas the resulting cell fate pattern is invariant among rhabditid nematodes, recent studies indicate that the developmental system has accumulated cryptic variation, even among wild C. elegans isolates. Quantitative differences in the signaling network have emerged through experiments and modeling as the driving force behind cryptic variation in Caenorhabditis species. On a wider evolutionary scale, the establishment of new model species has informed about the presence of qualitative variation in vulval signaling pathways. Copyright © 2012 Elsevier Ltd. All rights reserved.
Kavlock, R J
1997-01-01
During the last several years, significant changes in the risk assessment process for developmental toxicity of environmental contaminants have begun to emerge. The first of these changes is the development and beginning use of statistically based dose-response models [the benchmark dose (BMD) approach] that better utilize data derived from existing testing approaches. Accompanying this change is the greater emphasis placed on understanding and using mechanistic information to yield more accurate, reliable, and less uncertain risk assessments. The next stage in the evolution of risk assessment will be the use of biologically based dose-response (BBDR) models that begin to build into the statistically based models factors related to the underlying kinetic, biochemical, and/or physiologic processes perturbed by a toxicant. Such models are now emerging from several research laboratories. The introduction of quantitative models and the incorporation of biologic information into them has pointed to the need for even more sophisticated modifications for which we offer the term embryologically based dose-response (EBDR) models. Because these models would be based upon the understanding of normal morphogenesis, they represent a quantum leap in our thinking, but their complexity presents daunting challenges both to the developmental biologist and the developmental toxicologist. Implementation of these models will require extensive communication between developmental toxicologists, molecular embryologists, and biomathematicians. The remarkable progress in the understanding of mammalian embryonic development at the molecular level that has occurred over the last decade combined with advances in computing power and computational models should eventually enable these as yet hypothetical models to be brought into use.
TRIENNIAL REPRODUCTION SYMPOSIUM: Developmental programming of fertility.
Reynolds, L P; Vonnahme, K A
2016-07-01
The 2015 Triennial Reproduction Symposium focused on developmental programming of fertility. The topics covered during the morning session included the role of the placenta in programming of fetal growth and development, effects of feeding system and level of feeding during pregnancy on the annual production cycle and lifetime productivity of heifer offspring, effects of litter size and level of socialization postnatally on reproductive performance of pigs, effects of postnatal dietary intake on maturation of the hypothalamic-pituitary-gonadal axis and onset of puberty in heifers, effects of housing systems on growth performance and reproductive efficiency of gilts, and effects of energy balance on sexual differentiation in rodent models. The morning session concluded with presentation of the American Society of Animal Science L. E. Casida Award for Excellence in Graduate Education to Dr. Michael Smith from the University of Missouri, Columbia, who shared his philosophy of graduate education. The afternoon session included talks on the role of epigenetic modifications in developmental programming and transgenerational inheritance of reproductive dysfunction, effects of endocrine disrupting compounds on fetal development and long-term physiology of the individual, and potential consequences of real-life exposure to environmental contaminants on reproductive health. The symposium concluded with a summary talk and the posing of 2 questions to the audience. From an evolutionary standpoint, programming and epigenetic events must be adaptive; when do they become maladaptive? If there are so many environmental factors that induce developmental programming, are we doomed, and if not, what is or are the solution or solutions?
Perone, Sammy; Spencer, John P.
2013-01-01
What motivates children to radically transform themselves during early development? We addressed this question in the domain of infant visual exploration. Over the first year, infants' exploration shifts from familiarity to novelty seeking. This shift is delayed in preterm relative to term infants and is stable within individuals over the course of the first year. Laboratory tasks have shed light on the nature of this familiarity-to-novelty shift, but it is not clear what motivates the infant to change her exploratory style. We probed this by letting a Dynamic Neural Field (DNF) model of visual exploration develop itself via accumulating experience in a virtual world. We then situated it in a canonical laboratory task. Much like infants, the model exhibited a familiarity-to-novelty shift. When we manipulated the initial conditions of the model, the model's performance was developmentally delayed much like preterm infants. This delay was overcome by enhancing the model's experience during development. We also found that the model's performance was stable at the level of the individual. Our simulations indicate that novelty seeking emerges with no explicit motivational source via the accumulation of visual experience within a complex, dynamical exploratory system. PMID:24065948
Dannat, K; Tillner, J; Winckler, T; Weiss, M; Eger, K; Dingermann, T
2003-03-01
Dictyostelium discoideum is a single-cell, eukaryotic microorganism that can undergo multicellular development in order to produce dormant spores. We investigated the capacity of D. discoideum to be used as a rapid screening system for potential developmental toxicity of compounds under development as pharmaceuticals. We used a set of four transgenic D. discoideum strains that expressed a reporter gene under the control of promoters that are active at certain time periods and in distinct cell types during D. discoideum development. We found that teratogens such as valproic acid, tretinoin, or thalidomide interfered to various extents with D. discoideum development, and had different effects on prestalk and prespore cell-specific reporter gene expression. Phenytoin was inactive in this assay, which may point to limitations in metabolization of the compound in Dictyostelium required to exert developmental toxicity. D. discoideum cell culture is cheap and easy to handle compared to mammalian cell cultures or animal teratogenicity models. Although the Dictyostelium-based assay described in this report may not securely predict the teratogenic potential of these drugs in humans, this organism may be qualified for rapid large-scale screenings of synthetic compounds under development as new pharmaceuticals for their potential to interfere with developmental processes and thus help to reduce the amount of teratogenicity tests in animal models.
NASA Astrophysics Data System (ADS)
Sánchez-Villagra, Marcelo R.; Geiger, Madeleine; Schneider, Richard A.
2016-06-01
Studies on domestication are blooming, but the developmental bases for the generation of domestication traits and breed diversity remain largely unexplored. Some phenotypic patterns of human neurocristopathies are suggestive of those reported for domesticated mammals and disrupting neural crest developmental programmes have been argued to be the source of traits deemed the `domestication syndrome'. These character changes span multiple organ systems and morphological structures. But an in-depth examination within the phylogenetic framework of mammals including domesticated forms reveals that the distribution of such traits is not universal, with canids being the only group showing a large set of predicted features. Modularity of traits tied to phylogeny characterizes domesticated mammals: through selective breeding, individual behavioural and morphological traits can be reordered, truncated, augmented or deleted. Similarly, mammalian evolution on islands has resulted in suites of phenotypic changes like those of some domesticated forms. Many domesticated mammals can serve as valuable models for conducting comparative studies on the evolutionary developmental biology of the neural crest, given that series of their embryos are readily available and that their phylogenetic histories and genomes are well characterized.
Lauzeral, J; Halloy, J; Goldbeter, A
1997-08-19
Whereas it is relatively easy to account for the formation of concentric (target) waves of cAMP in the course of Dictyostelium discoideum aggregation after starvation, the origin of spiral waves remains obscure. We investigate a physiologically plausible mechanism for the spontaneous formation of spiral waves of cAMP in D. discoideum. The scenario relies on the developmental path associated with the continuous changes in the activity of enzymes such as adenylate cyclase and phosphodiesterase observed during the hours that follow starvation. These changes bring the cells successively from a nonexcitable state to an excitable state in which they relay suprathreshold cAMP pulses, and then to autonomous oscillations of cAMP, before the system returns to an excitable state. By analyzing a model for cAMP signaling based on receptor desensitization, we show that the desynchronization of cells on this developmental path triggers the formation of fully developed spirals of cAMP. Developmental paths that do not correspond to the sequence of dynamic transitions no relay-relay-oscillations-relay are less able or fail to give rise to the formation of spirals.
Lauzeral, Jacques; Halloy, José; Goldbeter, Albert
1997-01-01
Whereas it is relatively easy to account for the formation of concentric (target) waves of cAMP in the course of Dictyostelium discoideum aggregation after starvation, the origin of spiral waves remains obscure. We investigate a physiologically plausible mechanism for the spontaneous formation of spiral waves of cAMP in D. discoideum. The scenario relies on the developmental path associated with the continuous changes in the activity of enzymes such as adenylate cyclase and phosphodiesterase observed during the hours that follow starvation. These changes bring the cells successively from a nonexcitable state to an excitable state in which they relay suprathreshold cAMP pulses, and then to autonomous oscillations of cAMP, before the system returns to an excitable state. By analyzing a model for cAMP signaling based on receptor desensitization, we show that the desynchronization of cells on this developmental path triggers the formation of fully developed spirals of cAMP. Developmental paths that do not correspond to the sequence of dynamic transitions no relay-relay-oscillations-relay are less able or fail to give rise to the formation of spirals. PMID:9256451
Developmental biology, the stem cell of biological disciplines.
Gilbert, Scott F
2017-12-01
Developmental biology (including embryology) is proposed as "the stem cell of biological disciplines." Genetics, cell biology, oncology, immunology, evolutionary mechanisms, neurobiology, and systems biology each has its ancestry in developmental biology. Moreover, developmental biology continues to roll on, budding off more disciplines, while retaining its own identity. While its descendant disciplines differentiate into sciences with a restricted set of paradigms, examples, and techniques, developmental biology remains vigorous, pluripotent, and relatively undifferentiated. In many disciplines, especially in evolutionary biology and oncology, the developmental perspective is being reasserted as an important research program.
Development of assessment tools to measure organizational support for employee health.
Golaszewski, Thomas; Barr, Donald; Pronk, Nico
2003-01-01
To develop systems that measure and effect organizational support for employee health. Multiple studies and developmental projects were reviewed that show the process of instrument development, metric quality testing, utilization within intervention studies, and prediction modeling efforts. Demographic patterns indicate high support levels and relationships of subsections to various employee health risks. Successes with the initial version have given rise to 2 additional evaluation tools. The availability of these systems illustrates how ecological models can be practically applied. Such efforts contribute to the paradigm shift in worksite health promotion that focuses on the organization as the target of intervention.
Beauchaine, Theodore P.; Gatzke-Kopp, Lisa; Mead, Hilary K.
2007-01-01
In science, theories lend coherence to vast amounts of descriptive information. However, current diagnostic approaches in psychopathology are primarily atheoretical, emphasizing description over etiological mechanisms. We describe the importance of Polyvagal Theory toward understanding the etiology of emotion dysregulation, a hallmark of psychopathology. When combined with theories of social reinforcement and motivation, Polyvagal Theory specifies etiological mechanisms through which distinct patterns of psychopathology emerge. In this paper, we summarize three studies evaluating autonomic nervous system functioning in children with conduct problems, ages 4-18. At all age ranges, these children exhibit attenuated sympathetic nervous system responses to reward, suggesting deficiencies in approach motivation. By middle school, this reward insensitivity is met with inadequate vagal modulation of cardiac output, suggesting additional deficiencies in emotion regulation. We propose a biosocial developmental model of conduct problems in which inherited impulsivity is amplified through social reinforcement of emotional lability. Implications for early intervention are discussed. PMID:17045726
Random sex determination: When developmental noise tips the sex balance.
Perrin, Nicolas
2016-12-01
Sex-determining factors are usually assumed to be either genetic or environmental. The present paper aims at drawing attention to the potential contribution of developmental noise, an important but often-neglected component of phenotypic variance. Mutual inhibitions between male and female pathways make sex a bistable equilibrium, such that random fluctuations in the expression of genes at the top of the cascade are sufficient to drive individual development toward one or the other stable state. Evolutionary modeling shows that stochastic sex determinants should resist elimination by genetic or environmental sex determinants under ecologically meaningful settings. On the empirical side, many sex-determination systems traditionally considered as environmental or polygenic actually provide evidence for large components of stochasticity. In reviewing the field, I argue that sex-determination systems should be considered within a three-ends continuum, rather than the classical two-ends continuum. © 2016 WILEY Periodicals, Inc.
Beauchaine, Theodore P; Gatzke-Kopp, Lisa; Mead, Hilary K
2007-02-01
In science, theories lend coherence to vast amounts of descriptive information. However, current diagnostic approaches in psychopathology are primarily atheoretical, emphasizing description over etiological mechanisms. We describe the importance of Polyvagal Theory toward understanding the etiology of emotion dysregulation, a hallmark of psychopathology. When combined with theories of social reinforcement and motivation, Polyvagal Theory specifies etiological mechanisms through which distinct patterns of psychopathology emerge. In this paper, we summarize three studies evaluating autonomic nervous system functioning in children with conduct problems, ages 4-18. At all age ranges, these children exhibit attenuated sympathetic nervous system responses to reward, suggesting deficiencies in approach motivation. By middle school, this reward insensitivity is met with inadequate vagal modulation of cardiac output, suggesting additional deficiencies in emotion regulation. We propose a biosocial developmental model of conduct problems in which inherited impulsivity is amplified through social reinforcement of emotional lability. Implications for early intervention are discussed.
The Neuroendocrine Control of the Circadian System: Adolescent Chronotype
Hagenauer, Megan Hastings; Lee, Theresa M.
2012-01-01
Scientists, public health and school officials are paying growing attention to the mechanism underlying the delayed sleep patterns common in human adolescents. Data suggest that a propensity towards evening chronotype develops during puberty, and may be caused by developmental alterations in internal daily timekeeping. New support for this theory has emerged from recent studies which show that pubertal changes in chronotype occur in many laboratory species similar to human adolescents. Using these species as models, we find that pubertal changes in chronotype differ by sex, are internally generated, and driven by reproductive hormones. These chronotype changes are accompanied by alterations in the fundamental properties of the circadian timekeeping system, including endogenous rhythm period and sensitivity to environmental time cues. After comparing the developmental progression of chronotype in different species, we propose a theory regarding the ecological relevance of adolescent chronotype, and provide suggestions for improving the sleep of human adolescents. PMID:22634481
Vocal development in a Waddington landscape
Teramoto, Yayoi; Takahashi, Daniel Y; Holmes, Philip; Ghazanfar, Asif A
2017-01-01
Vocal development is the adaptive coordination of the vocal apparatus, muscles, the nervous system, and social interaction. Here, we use a quantitative framework based on optimal control theory and Waddington’s landscape metaphor to provide an integrated view of this process. With a biomechanical model of the marmoset monkey vocal apparatus and behavioral developmental data, we show that only the combination of the developing vocal tract, vocal apparatus muscles and nervous system can fully account for the patterns of vocal development. Together, these elements influence the shape of the monkeys’ vocal developmental landscape, tilting, rotating or shifting it in different ways. We can thus use this framework to make quantitative predictions regarding how interfering factors or experimental perturbations can change the landscape within a species, or to explain comparative differences in vocal development across species DOI: http://dx.doi.org/10.7554/eLife.20782.001 PMID:28092262
Virtual Embryo: Cell-Agent Based Modeling of Developmental Processes and Toxicities (CSS BOSC)
Spatial regulation of cellular dynamics is fundamental to morphological development. As such, chemical disruption of spatial dynamics is a determinant of developmental toxicity. Incorporating spatial dynamics into AOPs for developmental toxicity is desired but constrained by the ...
ERIC Educational Resources Information Center
Elbaum, Batya; Gattamorta, Karina A.; Penfield, Randall D.
2010-01-01
This study evaluated the Battelle Developmental Inventory, 2nd Edition, Screening Test (BDI-2 ST) for use in states' child outcomes accountability systems under the Individuals with Disabilities Education Act. Complete Battelle Developmental Inventory, 2nd Edition (BDI-2), assessment data were obtained for 142 children, ages 2 to 62 months, who…
Tu, Hongwei; Fan, Chengji; Chen, Xiaohui; Liu, Jiaxian; Wang, Bin; Huang, Zhibin; Zhang, Yiyue; Meng, Xiaojing; Zou, Fei
2017-08-01
The synaptic adhesion protein Neurexin 2a (Nrxn2a) plays a key role in neuronal development and is associated with cognitive functioning and locomotor behavior. Although low-level metal exposure poses a potential risk to the human nervous system, especially during the developmental stages, little is known about the effects of metal exposures on nrxn2a expression during embryonic development. We therefore exposed wild-type zebrafish embryos/larvae to cadmium (CdCl 2 ), manganese (MnCl 2 ), and lead ([CH 3 COO] 2 Pb), to determine their effect on mortality, malformation, and hatching rate. Concentrations of these metals in zebrafish were detected by inductively coupled plasma mass spectrometry analysis. Locomotor activity of zebrafish larvae was analyzed using a video-track tracking system. Expression of nrxn2a was assessed by in situ hybridization and quantitative polymerase chain reaction. The results showed that mortality, malformation, and bioaccumulation increased as the exposure dosages and duration increased. Developmental exposure to these metals significantly reduced larval swim distance and velocity. The nrxn2aa and nrxn2ab genes were expressed in the central nervous system and downregulated by almost all of the 3 metals, especially Pb. These data demonstrate that exposure to metals downregulates nrxn2a in the zebrafish model system, and this is likely linked to concurrent developmental processes. Environ Toxicol Chem 2017;36:2147-2154. © 2017 SETAC. © 2017 SETAC.
The plasticity of intellectual development: insights from preventive intervention.
Ramey, C T; Yeates, K O; Short, E J
1984-10-01
Debates regarding the plasticity of intelligence are often fired by a confusion between 2 distinct realms of development, that is, between developmental functions (e.g., a group's average IQ over time) and individual differences (e.g., the relative rank ordering of individual IQs within a group). Questions concerning the stability of these 2 realms are statistically independent. Thus there are 2 kinds of intellectual plasticity, and there may be no developmental convergences between them. In the present study, data from an early intervention program were used to investigate the 2 kinds of plasticity separately and to examine certain possible convergences between them. The program involved children at risk for developmental retardation who were randomly assigned at birth to 2 rearing conditions (i.e., educational daycare vs. no educational intervention) and whose intellectual development was then studied longitudinally to 4 years of age. Our findings indicate that developmental functions are moderately alterable through systemic early education, particularly after infancy, whereas individual differences are moderately stable, again particularly after infancy. They also indicate that the 2 kinds of plasticity are independent; the alteration of developmental functions through daycare affects neither the stability nor the determinants of individual differences. We discuss the implications that these findings have for current models of mental development, for the nature-nurture debate, and for arguments concerning the efficacy of early intervention programs.
Culture and Developmental Trajectories: A Discussion on Contemporary Theoretical Models
ERIC Educational Resources Information Center
de Carvalho, Rafael Vera Cruz; Seidl-de-Moura, Maria Lucia; Martins, Gabriela Dal Forno; Vieira, Mauro Luís
2014-01-01
This paper aims to describe, compare and discuss the theoretical models proposed by Patricia Greenfield, Çigdem Kagitçibasi and Heidi Keller. Their models have the common goal of understanding the developmental trajectories of self based on dimensions of autonomy and relatedness that are structured according to specific cultural and environmental…
The Sherborne Developmental Movement (SDM) Teaching Model for Pre-Service Teachers
ERIC Educational Resources Information Center
Hen, Meirav; Walter, Ofra
2012-01-01
Previously, the Sherborne Developmental Movement (SDM) has been found to contribute to the development of emotional competencies in higher education. This study presents and evaluates a teaching model based on SDM for the development of emotional competencies in teacher education. The study examined the contributions of this model to the increase…
ERIC Educational Resources Information Center
Smith, Douglas L.
1997-01-01
Describes a model for team developmental assessment of high-risk infants using a fiber-optic "distance learning" televideo network in south-central New York. An arena style transdisciplinary play-based assessment model was adapted for use across the televideo connection and close simulation of convention assessment procedures was…
ERIC Educational Resources Information Center
Morgan, Jeff
2011-01-01
Cultural sensitivity theory is the study of how individuals relate to cultural difference. Using literature to help students prepare for study abroad, instructors could analyze character and trace behavior through a model of cultural sensitivity. Milton J. Bennett has developed such an instrument, The Developmental Model of Intercultural…
Developmental Cascade Model for Adolescent Substance Use from Infancy to Late Adolescence
ERIC Educational Resources Information Center
Eiden, Rina D.; Lessard, Jared; Colder, Craig R.; Livingston, Jennifer; Casey, Meghan; Leonard, Kenneth E.
2016-01-01
A developmental cascade model for adolescent substance use beginning in infancy was examined in a sample of children with alcoholic and nonalcoholic parents. The model examined the role of parents' alcohol diagnoses, depression and antisocial behavior in a cascading process of risk via 3 major hypothesized pathways: first, via parental…
A Dyadic Approach: Applying a Developmental-Conceptual Model to Couples Coping with Chronic Illness
ERIC Educational Resources Information Center
Checton, Maria G.; Magsamen-Conrad, Kate; Venetis, Maria K.; Greene, Kathryn
2015-01-01
The purpose of the present study was to apply Berg and Upchurch's developmental-conceptual model toward a better understanding of how couples cope with chronic illness. Specifically, a model was hypothesized in which proximal factors (relational quality), dyadic appraisal (illness interference), and dyadic coping (partner support) influence…
Developmental Pathways of Youth Gang Membership: A Structural Test of the Social Development Model
Hill, Karl G.; Gilman, Amanda B.; Howell, James C.; Catalano, Richard F.; Hawkins, J. David
2017-01-01
As a result of nearly 40 years of research using a risk and protective factor approach, much is known about the predictors of gang onset. Little theoretical work, however, has been done to situate this approach to studying gang membership within a more comprehensive developmental model. Using structural equation modeling techniques, the current study is the first to test the capacity of the social development model (SDM) to predict the developmental pathways that increase and decrease the likelihood of gang membership. Results suggest that the SDM provides a good accounting of the social developmental processes at age 13 that are predictive of later gang membership. These findings support the promotion of a theoretical understanding of gang membership that specifies both pro- and antisocial developmental pathways. Additionally, as the SDM is intended as a model that can guide preventive intervention, results also hold practical utility for designing strategies that can be implemented in early adolescence to address the likelihood of later gang involvement. Three key preventive intervention points to address gang membership are discussed, including promoting efforts to enhance social skills, increasing the availability of prosocial opportunities and rewarding engagement in these opportunities, and reducing antisocial socialization experiences throughout the middle- and high school years. PMID:29403146
Neural Systems of Positive Affect: Relevance to Understanding Child and Adolescent Depression?
Forbes, Erika E.; Dahl, Ronald E.
2007-01-01
From an affective neuroscience perspective, the goal of achieving a deeper, more mechanistic understanding of the development of depression will require rigorous models that address the core underlying affective changes. Such an understanding will necessitate developing and testing hypotheses focusing on specific components of the complex neural systems involved in the regulation of emotion and motivation. In this paper, we illustrate these principles by describing one example of this type of approach: examining the role of disruptions in neural systems of positive affect relevant to Major Depressive Disorder in school-age children and adolescents. We begin by defining positive affect, proposing that positive affect can be distinguished from negative affect by its neurobehavioral features. We provide an overview of neural systems related to reward and positive affect, with a discussion of their potential involvement in depression. We describe a developmental psychopathology framework, addressing developmental issues that could play a role in the etiology and maintenance of early-onset depression. We review the literature on altered positive affect in depression, suggesting directions for future research. Finally, we discuss the treatment implications of this framework. PMID:16262994
Evaluation of an Educational Computer Programme as a Change Agent in Science Classrooms
ERIC Educational Resources Information Center
Muwanga-Zake, Johnnie Wycliffe Frank
2007-01-01
I report on benefits from 26 teacher-participant evaluators of a computer game designed to motivate learning and to ease conceptual understanding of biology in South Africa. Using a developmental, social constructivist and interpretative model, the recommendation is to include the value systems and needs of end-users (through social dialogue);…
Developmental forecasts simulations with the Eta-CMAQ modeling system over the continental U.S. were initiated in 2005. This paper presents an evaluation of surface O3 forecast over different regions of the continental U.S. In addition, to the traditional operational e...
ERIC Educational Resources Information Center
Guseva, Liudmila G.; Solomonovich, Mark
2017-01-01
This article overviews the theoretical and applied works of the psychologist and pedagogue Leonid Zankov. Zankov's model of teaching is based on Vygotsky's theory that appropriate teaching methods stimulate cognitive development, whose core notion is the Zone of Proximal Development. This educational psychology research was verified by large scale…
Building a Model System of Developmental Services in Orange County
ERIC Educational Resources Information Center
Halfon, Neal; Russ, Shirley; Regalado, Michael
2004-01-01
In 1998, California voters passed Proposition 10, the California Children and Families First Act, which provides for an excise tax on tobacco products to fund parent education, health and child care programs that promote early childhood development for 0-5s. Since the adoption of its first Strategic Plan (2000), the Orange County First 5…
ERIC Educational Resources Information Center
Gestsdottir, Steinunn; Urban, Jennifer Brown; Bowers, Edmond P.; Lerner, Jacqueline V.; Lerner, Richard M.
2011-01-01
The positive youth development (PYD) perspective emphasizes that thriving occurs when individual [double arrow] context relations involve the alignment of adolescent strengths with the resources in their contexts. The authors propose that a key component of this relational process is the strength that youth possess in the form of self-regulatory…
ERIC Educational Resources Information Center
Restifo, Linda L.
2005-01-01
"Drosophila melanogaster" is emerging as a valuable genetic model system for the study of mental retardation (MR). MR genes are remarkably similar between humans and fruit flies. Cognitive behavioral assays can detect reductions in learning and memory in flies with mutations in MR genes. Neuroanatomical methods, including some at single-neuron…
Eyles, D; Feldon, J; Meyer, U
2012-01-01
The idea that there is some sort of abnormality in dopamine (DA) signalling is one of the more enduring hypotheses in schizophrenia research. Opinion leaders have published recent perspectives on the aetiology of this disorder with provocative titles such as ‘Risk factors for schizophrenia—all roads lead to dopamine' or ‘The dopamine hypothesis of schizophrenia—the final common pathway'. Perhaps, the other most enduring idea about schizophrenia is that it is a neurodevelopmental disorder. Those of us that model schizophrenia developmental risk-factor epidemiology in animals in an attempt to understand how this may translate to abnormal brain function have consistently shown that as adults these animals display behavioural, cognitive and pharmacological abnormalities consistent with aberrant DA signalling. The burning question remains how can in utero exposure to specific (environmental) insults induce persistent abnormalities in DA signalling in the adult? In this review, we summarize convergent evidence from two well-described developmental animal models, namely maternal immune activation and developmental vitamin D deficiency that begin to address this question. The adult offspring resulting from these two models consistently reveal locomotor abnormalities in response to DA-releasing or -blocking drugs. Additionally, as adults these animals have DA-related attentional and/or sensorimotor gating deficits. These findings are consistent with many other developmental animal models. However, the authors of this perspective have recently refocused their attention on very early aspects of DA ontogeny and describe reductions in genes that induce or specify dopaminergic phenotype in the embryonic brain and early changes in DA turnover suggesting that the origins of these behavioural abnormalities in adults may be traced to early alterations in DA ontogeny. Whether the convergent findings from these two models can be extended to other developmental animal models for this disease is at present unknown as such early brain alterations are rarely examined. Although it is premature to conclude that such mechanisms could be operating in other developmental animal models for schizophrenia, our convergent data have led us to propose that rather than all roads leading to DA, perhaps, this may be where they start. PMID:22832818
Child maltreatment and children's developmental trajectories in early to middle childhood.
Font, Sarah A; Berger, Lawrence M
2015-01-01
Associations between experiencing child maltreatment and adverse developmental outcomes are widely studied, yet conclusions regarding the extent to which effects are bidirectional, and whether they are likely causal, remain elusive. This study uses the Fragile Families and Child Wellbeing Study, a birth cohort of 4,898 children followed from birth through age 9. Hierarchical linear modeling and structural equation modeling are employed to estimate associations of maltreatment with cognitive and social-emotional well-being. Results suggest that effects of early childhood maltreatment emerge immediately, though developmental outcomes are also affected by newly occurring maltreatment over time. Additionally, findings indicate that children's early developmental scores predict their subsequent probability of experiencing maltreatment, though to a lesser extent than early maltreatment predicts subsequent developmental outcomes. © 2014 The Authors. Child Development © 2014 Society for Research in Child Development, Inc.
Schramm, Andreas; Lee, Bongsoo; Higgs, Penelope I.
2012-01-01
Histidine-aspartate phosphorelay signaling systems are used to couple stimuli to cellular responses. A hallmark feature is the highly modular signal transmission modules that can form both simple “two-component” systems and sophisticated multicomponent systems that integrate stimuli over time and space to generate coordinated and fine-tuned responses. The deltaproteobacterium Myxococcus xanthus contains a large repertoire of signaling proteins, many of which regulate its multicellular developmental program. Here, we assign an orphan hybrid histidine protein kinase, EspC, to the Esp signaling system that negatively regulates progression through the M. xanthus developmental program. The Esp signal system consists of the hybrid histidine protein kinase, EspA, two serine/threonine protein kinases, and a putative transport protein. We demonstrate that EspC is an essential component of this system because ΔespA, ΔespC, and ΔespA ΔespC double mutants share an identical developmental phenotype. Neither substitution of the phosphoaccepting histidine residue nor deletion of the entire catalytic ATPase domain in EspC produces an in vivo mutant developmental phenotype. In contrast, substitution of the receiver phosphoaccepting residue yields the null phenotype. Although the EspC histidine kinase can efficiently autophosphorylate in vitro, it does not act as a phosphodonor to its own receiver domain. Our in vitro and in vivo analyses suggest the phosphodonor is instead the EspA histidine kinase. We propose EspA and EspC participate in a novel hybrid histidine protein kinase signaling mechanism involving both inter- and intraprotein phosphotransfer. The output of this signaling system appears to be the combined phosphorylated state of the EspA and EspC receiver modules. This system regulates the proteolytic turnover of MrpC, an important regulator of the developmental program. PMID:22661709
Law, Caroline; Cupples, Linda
2017-03-01
Improving the reading performance of children with developmental surface dyslexia has proved challenging, with limited generalisation of reading skills typically reported after intervention. The aim of this study was to provide tailored, theoretically motivated intervention to two children with developmental surface dyslexia. Our objectives were to improve their reading performance, and to evaluate the utility of current reading models in therapeutic practice. Detailed reading and cognitive profiles for two male children with developmental surface dyslexia were compared to the results obtained by age-matched control groups. The specific area of single-word reading difficulty for each child was identified within the dual route model (DRM) of reading, following which a theoretically motivated intervention programme was devised. Both children showed significant improvements in single-word reading ability after training, with generalisation effects observed for untrained words. However, the assessment and intervention results also differed for each child, reinforcing the view that the causes and consequences of developmental dyslexia, even within subtypes, are not homogeneous. Overall, the results of the interventions corresponded more closely with the DRM than other current reading models, in that real word reading improved in the absence of enhanced nonword reading for both children.
2014-01-01
Background The lined sea anemone Edwardsiella lineata is an informative model system for evolutionary-developmental studies of parasitism. In this species, it is possible to compare alternate developmental pathways leading from a larva to either a free-living polyp or a vermiform parasite that inhabits the mesoglea of a ctenophore host. Additionally, E. lineata is confamilial with the model cnidarian Nematostella vectensis, providing an opportunity for comparative genomic, molecular and organismal studies. Description We generated a reference transcriptome for E. lineata via high-throughput sequencing of RNA isolated from five developmental stages (parasite; parasite-to-larva transition; larva; larva-to-adult transition; adult). The transcriptome comprises 90,440 contigs assembled from >15 billion nucleotides of DNA sequence. Using a molecular clock approach, we estimated the divergence between E. lineata and N. vectensis at 215–364 million years ago. Based on gene ontology and metabolic pathway analyses and gene family surveys (bHLH-PAS, deiodinases, Fox genes, LIM homeodomains, minicollagens, nuclear receptors, Sox genes, and Wnts), the transcriptome of E. lineata is comparable in depth and completeness to N. vectensis. Analyses of protein motifs and revealed extensive conservation between the proteins of these two edwardsiid anemones, although we show the NF-κB protein of E. lineata reflects the ancestral structure, while the NF-κB protein of N. vectensis has undergone a split that separates the DNA-binding domain from the inhibitory domain. All contigs have been deposited in a public database (EdwardsiellaBase), where they may be searched according to contig ID, gene ontology, protein family motif (Pfam), enzyme commission number, and BLAST. The alignment of the raw reads to the contigs can also be visualized via JBrowse. Conclusions The transcriptomic data and database described here provide a platform for studying the evolutionary developmental genomics of a derived parasitic life cycle. In addition, these data from E. lineata will aid in the interpretation of evolutionary novelties in gene sequence or structure that have been reported for the model cnidarian N. vectensis (e.g., the split NF-κB locus). Finally, we include custom computational tools to facilitate the annotation of a transcriptome based on high-throughput sequencing data obtained from a “non-model system.” PMID:24467778
Stefanik, Derek J; Lubinski, Tristan J; Granger, Brian R; Byrd, Allyson L; Reitzel, Adam M; DeFilippo, Lukas; Lorenc, Allison; Finnerty, John R
2014-01-28
The lined sea anemone Edwardsiella lineata is an informative model system for evolutionary-developmental studies of parasitism. In this species, it is possible to compare alternate developmental pathways leading from a larva to either a free-living polyp or a vermiform parasite that inhabits the mesoglea of a ctenophore host. Additionally, E. lineata is confamilial with the model cnidarian Nematostella vectensis, providing an opportunity for comparative genomic, molecular and organismal studies. We generated a reference transcriptome for E. lineata via high-throughput sequencing of RNA isolated from five developmental stages (parasite; parasite-to-larva transition; larva; larva-to-adult transition; adult). The transcriptome comprises 90,440 contigs assembled from >15 billion nucleotides of DNA sequence. Using a molecular clock approach, we estimated the divergence between E. lineata and N. vectensis at 215-364 million years ago. Based on gene ontology and metabolic pathway analyses and gene family surveys (bHLH-PAS, deiodinases, Fox genes, LIM homeodomains, minicollagens, nuclear receptors, Sox genes, and Wnts), the transcriptome of E. lineata is comparable in depth and completeness to N. vectensis. Analyses of protein motifs and revealed extensive conservation between the proteins of these two edwardsiid anemones, although we show the NF-κB protein of E. lineata reflects the ancestral structure, while the NF-κB protein of N. vectensis has undergone a split that separates the DNA-binding domain from the inhibitory domain. All contigs have been deposited in a public database (EdwardsiellaBase), where they may be searched according to contig ID, gene ontology, protein family motif (Pfam), enzyme commission number, and BLAST. The alignment of the raw reads to the contigs can also be visualized via JBrowse. The transcriptomic data and database described here provide a platform for studying the evolutionary developmental genomics of a derived parasitic life cycle. In addition, these data from E. lineata will aid in the interpretation of evolutionary novelties in gene sequence or structure that have been reported for the model cnidarian N. vectensis (e.g., the split NF-κB locus). Finally, we include custom computational tools to facilitate the annotation of a transcriptome based on high-throughput sequencing data obtained from a "non-model system."
Smith, Milo R.; Burman, Poromendro
2016-01-01
Throughout childhood and adolescence, periods of heightened neuroplasticity are critical for the development of healthy brain function and behavior. Given the high prevalence of neurodevelopmental disorders, such as autism, identifying disruptors of developmental plasticity represents an essential step for developing strategies for prevention and intervention. Applying a novel computational approach that systematically assessed connections between 436 transcriptional signatures of disease and multiple signatures of neuroplasticity, we identified inflammation as a common pathological process central to a diverse set of diseases predicted to dysregulate plasticity signatures. We tested the hypothesis that inflammation disrupts developmental cortical plasticity in vivo using the mouse ocular dominance model of experience-dependent plasticity in primary visual cortex. We found that the administration of systemic lipopolysaccharide suppressed plasticity during juvenile critical period with accompanying transcriptional changes in a particular set of molecular regulators within primary visual cortex. These findings suggest that inflammation may have unrecognized adverse consequences on the postnatal developmental trajectory and indicate that treating inflammation may reduce the burden of neurodevelopmental disorders. PMID:28101530
Facility Will Help Transition Models Into Operations
NASA Astrophysics Data System (ADS)
Kumar, Mohi
2009-02-01
The U.S. National Oceanic and Atmospheric Administration's Space Weather Prediction Center (NOAA SWPC), in partnership with the U.S. Air Force Weather Agency (AFWA), is establishing a center to promote and facilitate the transition of space weather models to operations. The new facility, called the Developmental Testbed Center (DTC), will take models used by researchers and rigorously test them to see if they can withstand continued use as viable warning systems. If a model used in a space weather warning system crashes or fails to perform well, severe consequences can result. These include increased radiation risks to astronauts and people traveling on high-altitude flights, national security vulnerabilities from the loss of military satellite communications, and the cost of replacing damaged military and commercial spacecraft.
Guhn, Martin; Janus, Magdalena; Enns, Jennifer; Brownell, Marni; Forer, Barry; Duku, Eric; Muhajarine, Nazeem; Raos, Rob
2016-01-01
Introduction Early childhood is a key period to establish policies and practices that optimise children's health and development, but Canada lacks nationally representative data on social indicators of children's well-being. To address this gap, the Early Development Instrument (EDI), a teacher-administered questionnaire completed for kindergarten-age children, has been implemented across most Canadian provinces over the past 10 years. The purpose of this protocol is to describe the Canadian Neighbourhoods and Early Child Development (CanNECD) Study, the aims of which are to create a pan-Canadian EDI database to monitor trends over time in children's developmental health and to advance research examining the social determinants of health. Methods and analysis Canada-wide EDI records from 2004 to 2014 (representing over 700 000 children) will be linked to Canada Census and Income Taxfiler data. Variables of socioeconomic status derived from these databases will be used to predict neighbourhood-level EDI vulnerability rates by conducting a series of regression analyses and latent variable models at provincial/territorial and national levels. Where data are available, we will measure the neighbourhood-level change in developmental vulnerability rates over time and model the socioeconomic factors associated with those trends. Ethics and dissemination Ethics approval for this study was granted by the Behavioural Research Ethics Board at the University of British Columbia. Study findings will be disseminated to key partners, including provincial and federal ministries, schools and school districts, collaborative community groups and the early childhood development research community. The database created as part of this longitudinal population-level monitoring system will allow researchers to associate practices, programmes and policies at school and community levels with trends in developmental health outcomes. The CanNECD Study will guide future early childhood development action and policies, using the database as a tool for formative programme and policy evaluation. PMID:27130168
Hahn, Joan Earle
2014-09-01
To describe the most frequently reported and the most central nursing interventions in an advance practice registered nurse (APRN)-led in-home preventive intervention model for adults aging with developmental disabilities using the Nursing Intervention Classification (NIC) system. A descriptive data analysis and a market basket analysis were conducted on de-identified nominal nursing intervention data from two home visits conducted by nurse practitioners (NPs) from October 2010 to June 2012 for 80 community-dwelling adults with developmental disabilities, ages 29 to 68 years. The mean number of NIC interventions was 4.7 in the first visit and 6.0 in the second visit and last visit. NPs reported 45 different intervention types as classified using a standardized language, with 376 in Visit One and 470 in Visit Two. Approximately 85% of the sample received the Health education intervention. The market basket analysis revealed common pairs, triples, and quadruple sets of interventions in this preventive model. The NIC nursing interventions that occurred together repeatedly were: Health education, Weight management, Nutrition management, Health screening, and Behavior management. Five NIC interventions form the basis of an APRN-led preventive intervention model for individuals aging with lifelong disability, with health education as the most common intervention, combined with interventions to manage weight and nutrition, promote healthy behaviors, and encourage routine health screening. Less frequently reported NIC interventions suggest the need to tailor prevention to individual needs, whether acute or chronic. APRNs employing prevention among adults aging with developmental disabilities must anticipate the need to focus on health education strategies for health promotion and prevention as well as tailor and target a patient-centered approach to support self-management of health to promote healthy aging in place. These NIC interventions serve not only as a guide for planning preventive interventions, but for designing nursing curricula to reduce health disparities among people with varying learning needs. © 2014 Sigma Theta Tau International.
ERIC Educational Resources Information Center
LeRose, Barbara; And Others
1979-01-01
The project is based on a general systems approach. Developmental stage theory is employed as a starting point, and the developmental "minitasks" which act as stair risers from one developmental level to another are carried through with the use of Bloom's cognitive taxonomy. (Author/DLS)
Frątczak-Łagiewska, Katarzyna; Matuszewski, Szymon
2018-05-01
Differences in size between males and females, called the sexual size dimorphism, are common in insects. These differences may be followed by differences in the duration of development. Accordingly, it is believed that insect sex may be used to increase the accuracy of insect age estimates in forensic entomology. Here, the sex-specific differences in the development of Creophilus maxillosus were studied at seven constant temperatures. We have also created separate developmental models for males and females of C. maxillosus and tested them in a validation study to answer a question whether sex-specific developmental models improve the accuracy of insect age estimates. Results demonstrate that males of C. maxillosus developed significantly longer than females. The sex-specific and general models for the total immature development had the same optimal temperature range and similar developmental threshold but different thermal constant K, which was the largest in the case of the male-specific model and the smallest in the case of the female-specific model. Despite these differences, validation study revealed just minimal and statistically insignificant differences in the accuracy of age estimates using sex-specific and general thermal summation models. This finding indicates that in spite of statistically significant differences in the duration of immature development between females and males of C. maxillosus, there is no increase in the accuracy of insect age estimates while using the sex-specific thermal summation models compared to the general model. Accordingly, this study does not support the use of sex-specific developmental data for the estimation of insect age in forensic entomology.
The P-chain: relating sentence production and its disorders to comprehension and acquisition
Dell, Gary S.; Chang, Franklin
2014-01-01
This article introduces the P-chain, an emerging framework for theory in psycholinguistics that unifies research on comprehension, production and acquisition. The framework proposes that language processing involves incremental prediction, which is carried out by the production system. Prediction necessarily leads to prediction error, which drives learning, including both adaptive adjustment to the mature language processing system as well as language acquisition. To illustrate the P-chain, we review the Dual-path model of sentence production, a connectionist model that explains structural priming in production and a number of facts about language acquisition. The potential of this and related models for explaining acquired and developmental disorders of sentence production is discussed. PMID:24324238
The P-chain: relating sentence production and its disorders to comprehension and acquisition.
Dell, Gary S; Chang, Franklin
2014-01-01
This article introduces the P-chain, an emerging framework for theory in psycholinguistics that unifies research on comprehension, production and acquisition. The framework proposes that language processing involves incremental prediction, which is carried out by the production system. Prediction necessarily leads to prediction error, which drives learning, including both adaptive adjustment to the mature language processing system as well as language acquisition. To illustrate the P-chain, we review the Dual-path model of sentence production, a connectionist model that explains structural priming in production and a number of facts about language acquisition. The potential of this and related models for explaining acquired and developmental disorders of sentence production is discussed.
This presentation, Using in Vitro and in Vivo Models to Inform Understanding of Developmental Neurotoxicity, was given at the NIEHS/EPA Children's Centers 2015 Webinar Series: Interdisciplinary Approaches to Neurodevelopment held on Sept. 9, 2015.
Philosophically Precocious Individuals and Their Developmental Strategies.
ERIC Educational Resources Information Center
Bai, Wenyu
This study interviewed five philosophically precocious individuals (PPIs), four Chinese and one American, to examine their development. Theoretical frameworks used to evaluate data were the Transcendence Evolution Model and the taxonomy of developmental strategies. The Transcendence Evolution Model posits that children's different developmental…
Identifying Developmental Vascular Disruptor Compounds Using a Predictive Signature and Alternative Toxicity Models Presenting Author: Tamara Tal Affiliation: U.S. EPA/ORD/ISTD, RTP, NC, USA Chemically induced vascular toxicity during embryonic development can result in a wide...
Research Models in Developmental Behavioral Toxicology.
ERIC Educational Resources Information Center
Dietrich, Kim N.; Pearson, Douglas T.
Developmental models currently used by child behavioral toxicologists and teratologists are inadequate to address current issues in these fields. Both child behavioral teratology and toxicology scientifically study the impact of exposure to toxic agents on behavior development: teratology focuses on prenatal exposure and postnatal behavior…
Modeling Radial Holoblastic Cleavage: A Laboratory Activity for Developmental Biology.
ERIC Educational Resources Information Center
Ellis, Linda K.
2000-01-01
Introduces a laboratory activity designed for an undergraduate developmental biology course. Uses Play-Doh (plastic modeling clay) to build a multicellular embryo in order to provide a 3-D demonstration of cleavage. Includes notes for the instructor and student directions. (YDS)
Introduction: Research on neurodevelopmental changes resulting from thyroid hormone (TH) disruption has important basic and clinical implications. We previously demonstrated, in a rodent model, that developmental hypothyroidism or hypothyroxinemia can cause ...
The fabulous destiny of the Drosophila heart.
Medioni, Caroline; Sénatore, Sébastien; Salmand, Pierre-Adrien; Lalevée, Nathalie; Perrin, Laurent; Sémériva, Michel
2009-10-01
For the last 15 years the fly cardiovascular system has attracted developmental geneticists for its potential as a model system of organogenesis. Heart development in Drosophila indeed provides a remarkable system for elucidating the basic molecular and cellular mechanisms of morphogenesis and, more recently, for understanding the genetic control of cardiac physiology. The success of these studies can in part be attributed to multidisciplinary approaches, the multiplicity of existing genetic tools, and a detailed knowledge of the system. Striking similarities with vertebrate cardiogenesis have long been stressed, in particular concerning the conservation of key molecular regulators of cardiogenesis and the new data presented here confirm Drosophila cardiogenesis as a model not only for organogenesis but also for the study of molecular mechanisms of human cardiac disease.
Distributed Parameter Analysis of Pressure and Flow Disturbances in Rocket Propellant Feed Systems
NASA Technical Reports Server (NTRS)
Dorsch, Robert G.; Wood, Don J.; Lightner, Charlene
1966-01-01
A digital distributed parameter model for computing the dynamic response of propellant feed systems is formulated. The analytical approach used is an application of the wave-plan method of analyzing unsteady flow. Nonlinear effects are included. The model takes into account locally high compliances at the pump inlet and at the injector dome region. Examples of the calculated transient and steady-state periodic responses of a simple hypothetical propellant feed system to several types of disturbances are presented. Included are flow disturbances originating from longitudinal structural motion, gimbaling, throttling, and combustion-chamber coupling. The analytical method can be employed for analyzing developmental hardware and offers a flexible tool for the calculation of unsteady flow in these systems.
TERASHIMA, ICHIRO; ARAYA, TAKAO; MIYAZAWA, SHIN-ICHI; SONE, KOSEI; YANO, SATOSHI
2004-01-01
• Background and Aims The paper by Monsi and Saeki in 1953 (Japanese Journal of Botany 14: 22–52) was pioneering not only in mathematical modelling of canopy photosynthesis but also in eco-developmental studies of seasonal changes in leaf canopies. • Scope Construction and maintenance mechanisms of efficient photosynthetic systems at three different scaling levels—single leaves, herbaceous plants and trees—are reviewed mainly based on the nitrogen optimization theory. First, the nitrogen optimization theory with respect to the canopy and the single leaf is briefly introduced. Secondly, significance of leaf thickness in CO2 diffusion in the leaf and in leaf photosynthesis is discussed. Thirdly, mechanisms of adjustment of photosynthetic properties of the leaf within the herbaceous plant individual throughout its life are discussed. In particular, roles of sugar sensing, redox control and of cytokinin are highlighted. Finally, the development of a tree is considered. • Conclusions Various mechanisms contribute to construction and maintenance of efficient photosynthetic systems. Molecular backgrounds of these ecologically important mechanisms should be clarified. The construction mechanisms of the tree cannot be explained solely by the nitrogen optimization theory. It is proposed that the pipe model theory in its differential form could be a potential tool in future studies in this research area. PMID:15598701
A REVIEW OF HUMAN STUDIES ON THE REPRODUCTIVE AND DEVELOPMENTAL EFFECTS OF PESTICIDE EXPOSURE
Many pesticides cxause reproductive or developmental toxicity at high doses in animal models, but effects in humans at environmental exposure levels are difficult to assess. Human data on reproductive and developmental outcomes for currently used pesticides may help to define ris...
Fish models such as zebrafish and medaka are increasingly used as alternatives to rodents in developmental and toxicological studies. These developmental and toxicological studies can be facilitated by the use of transgenic reporters that permit the real-time, noninvasive observa...
Developmental toxicity is a relevant endpoint for the comprehensive assessment of human health risk from chemical exposure. However, animal developmental toxicity studies remain unavailable for many environmental contaminants due to the complexity and cost of these types of analy...