Sample records for developmental toxicity study

  1. 40 CFR 798.4900 - Developmental toxicity study.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... study is designed to provide information on the potential hazard to the unborn which may arise from... 40 Protection of Environment 32 2011-07-01 2011-07-01 false Developmental toxicity study. 798.4900... Developmental toxicity study. (a) Purpose. In the assessment and evaluation of the toxic characteristics of a...

  2. 40 CFR 798.4900 - Developmental toxicity study.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... study is designed to provide information on the potential hazard to the unborn which may arise from... 40 Protection of Environment 33 2012-07-01 2012-07-01 false Developmental toxicity study. 798.4900... Developmental toxicity study. (a) Purpose. In the assessment and evaluation of the toxic characteristics of a...

  3. 40 CFR 798.4900 - Developmental toxicity study.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... study is designed to provide information on the potential hazard to the unborn which may arise from... 40 Protection of Environment 33 2013-07-01 2013-07-01 false Developmental toxicity study. 798.4900... Developmental toxicity study. (a) Purpose. In the assessment and evaluation of the toxic characteristics of a...

  4. 40 CFR 798.4900 - Developmental toxicity study.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... study is designed to provide information on the potential hazard to the unborn which may arise from... 40 Protection of Environment 32 2014-07-01 2014-07-01 false Developmental toxicity study. 798.4900... Developmental toxicity study. (a) Purpose. In the assessment and evaluation of the toxic characteristics of a...

  5. Developmental Toxicity

    EPA Science Inventory

    This chapter provides an overview the developmental toxicity resulting from exposure to perfluorinated alkyl acids (PFAAs). The majority of studies of PFAA-induced developmental toxicity have examined effects of perfluorooctane sulfonate (PFOS) or perfluorooctanoic acid (PFOA) a...

  6. Building a developmental toxicity ontology.

    PubMed

    Baker, Nancy; Boobis, Alan; Burgoon, Lyle; Carney, Edward; Currie, Richard; Fritsche, Ellen; Knudsen, Thomas; Laffont, Madeleine; Piersma, Aldert H; Poole, Alan; Schneider, Steffen; Daston, George

    2018-04-03

    As more information is generated about modes of action for developmental toxicity and more data are generated using high-throughput and high-content technologies, it is becoming necessary to organize that information. This report discussed the need for a systematic representation of knowledge about developmental toxicity (i.e., an ontology) and proposes a method to build one based on knowledge of developmental biology and mode of action/ adverse outcome pathways in developmental toxicity. This report is the result of a consensus working group developing a plan to create an ontology for developmental toxicity that spans multiple levels of biological organization. This report provide a description of some of the challenges in building a developmental toxicity ontology and outlines a proposed methodology to meet those challenges. As the ontology is built on currently available web-based resources, a review of these resources is provided. Case studies on one of the most well-understood morphogens and developmental toxicants, retinoic acid, are presented as examples of how such an ontology might be developed. This report outlines an approach to construct a developmental toxicity ontology. Such an ontology will facilitate computer-based prediction of substances likely to induce human developmental toxicity. © 2018 Wiley Periodicals, Inc.

  7. Oxidative Stress, Unfolded Protein Response, and Apoptosis in Developmental Toxicity

    PubMed Central

    Kupsco, Allison; Schlenk, Daniel

    2016-01-01

    Physiological development requires precise spatiotemporal regulation of cellular and molecular processes. Disruption of these key events can generate developmental toxicity in the form of teratogenesis or mortality. The mechanism behind many developmental toxicants remains unknown. While recent work has focused on the unfolded protein response (UPR), oxidative stress, and apoptosis in the pathogenesis of disease, few studies have addressed their relationship in developmental toxicity. Redox regulation, UPR, and apoptosis are essential for physiological development and can be disturbed by a variety of endogenous and exogenous toxicants to generate lethality and diverse malformations. This review examines the current knowledge of the role of oxidative stress, UPR, and apoptosis in physiological development as well as in developmental toxicity, focusing on studies and advances in vertebrates model systems. PMID:26008783

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ema, Makoto, E-mail: ema-makoto@aist.go.jp; Gamo, Masashi; Honda, Kazumasa

    We summarized significant effects reported in the literature on the developmental toxicity of engineered nanomaterials (ENMs) in rodents. The developmental toxicity of ENMs included not only structural abnormalities, but also death, growth retardation, and behavioral and functional abnormalities. Most studies were performed on mice using an injection route of exposure. Teratogenic effects were indicated when multi-walled carbon nanotubes (MWCNTs), single-walled carbon nanotubes (SWCNTs), and TiO{sub 2}-nanoparticles were administered to mice during early gestation. Reactive oxygen species levels were increased in placentas and malformed fetuses and their placentas after prenatal exposure to MWCNTs and SWCNTs, respectively. The pre- and postnatal mortalitiesmore » and growth retardation in offspring increased after prenatal exposure to ENMs. Histopathological and functional abnormalities were also induced in placentas after prenatal exposure to ENMs. Maternal exposure to ENMs induced behavioral alterations, histopathological and biochemical changes in the central nervous system, increased susceptibility to allergy, transplacental genotoxicity, and vascular, immunological, and reproductive effects in offspring. The size- and developmental stage-dependent placental transfer of ENMs was noted after maternal exposure. Silver accumulated in the visceral yolk sac after being injected with Ag-NPs during early gestation. Although currently available data has provided initial information on the potential developmental toxicity of ENMs, that on the developmental toxicity of ENMs is still very limited. Further studies using well-characterized ENMs, state-of the-art study protocols, and appropriate routes of exposure are required in order to clarify these developmental effects and provide information suitable for risk assessments of ENMs. - Highlights: • We review the developmental toxicity studies of engineered nanomaterials (ENMs). • Various developmental endpoints have been reported after exposure to ENMs. • Physico-chemical properties of ENMs are determinants of the developmental toxicity. • Oxidative stress/inflammation may be involved in the developmental toxicity of ENMs. • Further developmental toxicity studies of ENMs are needed to fill a data gap.« less

  9. APPLICATION OF BENCHMARK DOSE METHODOLOGY TO DATA FROM PRENATAL DEVELOPMENTAL TOXICITY STUDIES

    EPA Science Inventory

    The benchmark dose (BMD) concept was applied to 246 conventional developmental toxicity datasets from government, industry and commercial laboratories. Five modeling approaches were used, two generic and three specific to developmental toxicity (DT models). BMDs for both quantal ...

  10. Tretinoin: a review of the nonclinical developmental toxicology experience.

    PubMed

    Kochhar, D M; Christian, M S

    1997-03-01

    Tretinoin has been thoroughly evaluated for its potential as an embryofetal developmental toxicant. Oral tretinoin produces developmental anomalies in animal models; the minimal teratogenic dose is consistently 2.5 to 10 mg/kg. In contrast, topical application does not induce developmental malformations in laboratory animals. A structurally related compound, isotretinoin, is a potent toxicant in humans and animals; the lowest systemic dose that induces fetal anomalies varies more than 100-fold depending on the model. Oral isotretinoin is a more potent developmental toxicant than oral tretinoin in monkeys. Between-drug differences in the metabolism and transplacental transfer of the two retinoids account for the differences in toxicant potency. Pharmacokinetic studies reveal that absorption of tretinoin from the skin is poor and yields maternal plasma concentrations below the developmentally toxic threshold established after oral administration. Analysis of outcomes of developmental toxicology and pharmacokinetic studies suggests that the human risk of fetal anomalies is negligible after therapeutic application of topical tretinoin.

  11. Validation of Screening Assays for Developmental Toxicity: An Exposure-Based Approach

    EPA Science Inventory

    There continue to be widespread efforts to develop assay methods for developmental toxicity that are shorter than the traditional Segment 2 study and use fewer or no animals. As with any alternative test method, novel developmental toxicity assays must be validated by evaluating ...

  12. Using Quantitative Structure-Activity Relationship Modeling to Quantitatively Predict the Developmental Toxicity of Halogenated Azole compounds

    EPA Science Inventory

    Developmental toxicity is a relevant endpoint for the comprehensive assessment of human health risk from chemical exposure. However, animal developmental toxicity studies remain unavailable for many environmental contaminants due to the complexity and cost of these types of analy...

  13. Meta-analysis of toxicity and teratogenicity of 133 chemicals from zebrafish developmental toxicity studies

    EPA Science Inventory

    Zebrafish developmental toxicity testing is an emerging field, which faces considerable challenges regarding data meta-analysis and the establishment of standardized test protocols. Here, we present an initial correlation study on toxicity of 133 chemicals based on data in the li...

  14. Comparing rat and rabbit embryo-fetal developmental toxicity studies for 379 pharmaceuticals: On systemic dose and developmental effects (Critical Reviews in Toxicology)

    EPA Science Inventory

    A database of embryo-fetal developmental toxicity (EFDT) studies of 379 pharmaceutical compounds in rat and rabbit was analyzed for species differences based on toxicokinetic parameters of area under the curve (AUC) and maximum concentration (Cmax) at the developmental adverse ef...

  15. 77 FR 12207 - Pyroxasulfone; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ... and post- natal toxicity database for pyroxasulfone includes developmental toxicity studies in rats... study and developmental toxicity study in rabbits following in utero or post-natal exposure to... reliability as well as the relationship of the results of the studies to human risk. EPA has also considered...

  16. 76 FR 59142 - Guidance for Industry on Reproductive and Developmental Toxicities-Integrating Study Results To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-23

    ...--Integrating Study Results To Assess Concerns; Availability AGENCY: Food and Drug Administration, HHS. ACTION... industry entitled ``Reproductive and Developmental Toxicities--Integrating Study Results to Assess Concerns.'' This guidance describes an approach to estimating possible human developmental or reproductive risks...

  17. Identification of developmentally toxic drinking water disinfection byproducts and evaluation of data relevant to mode of action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colman, Joan; Rice, Glenn E., E-mail: rice.glenn@epa.gov; Wright, J. Michael

    Reactions between chemicals used to disinfect drinking water and compounds present in source waters produce chemical mixtures containing hundreds of disinfection byproducts (DBPs). Although the results have been somewhat inconsistent, some epidemiological studies suggest associations may exist between DBP exposures and adverse developmental outcomes. The potencies of individual DBPs in rodent and rabbit developmental bioassays suggest that no individual DBP can account for the relative risk estimates reported in the positive epidemiologic studies, leading to the hypothesis that these outcomes could result from the toxicity of DBP mixtures. As a first step in a mixtures risk assessment for DBP developmentalmore » effects, this paper identifies developmentally toxic DBPs and examines data relevant to the mode of action (MOA) for DBP developmental toxicity. We identified 24 developmentally toxic DBPs and four adverse developmental outcomes associated with human DBP exposures: spontaneous abortion, cardiovascular defects, neural tube defects, and low birth weight infancy. A plausible MOA, involving hormonal disruption of pregnancy, is delineated for spontaneous abortion, which some epidemiologic studies associate with total trihalomethane and bromodichloromethane exposures. The DBP data for the other three outcomes were inadequate to define key MOA steps.« less

  18. Prediction of the developmental toxicity hazard potential of halogenated drinking water disinfection by-products tested by the in vitro hydra assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, L.J.; Johnson, E.M.; Newman, L.M.

    A series of seven randomly selected potential halogenated water disinfection by-products were evaluated in vitro by the hydra assay to determine their developmental toxicity hazard potential. For six of the chemicals tested by this assay (dibromoacetonitrile; trichloroacetonitrile; 2-chlorophenol; 2,4,6-trichlorophenol; trichloroacetic acid; dichloroacetone) it was predicted that they would be generally equally toxic to both adult and embryonic mammals when studied by means of standard developmental toxicity teratology tests. However, the potential water disinfection by-product chloroacetic acid (CA) was determined to be over eight times more toxic to the embryonic developmental portion of the assay than it was to the adults.more » Because of this potential selectivity, CA is a high-priority item for developmental toxicity tests in pregnant mammals to confirm or refute its apparent unique developmental hazard potential and/or to establish a NOAEL by the route of most likely human exposure.« less

  19. A systematic evaluation of chemicals in hydraulic-fracturing fluids and wastewater for reproductive and developmental toxicity.

    PubMed

    Elliott, Elise G; Ettinger, Adrienne S; Leaderer, Brian P; Bracken, Michael B; Deziel, Nicole C

    2017-01-01

    Hydraulic-fracturing fluids and wastewater from unconventional oil and natural gas development contain hundreds of substances with the potential to contaminate drinking water. Challenges to conducting well-designed human exposure and health studies include limited information about likely etiologic agents. We systematically evaluated 1021 chemicals identified in hydraulic-fracturing fluids (n=925), wastewater (n=132), or both (n=36) for potential reproductive and developmental toxicity to triage those with potential for human health impact. We searched the REPROTOX database using Chemical Abstract Service registry numbers for chemicals with available data and evaluated the evidence for adverse reproductive and developmental effects. Next, we determined which chemicals linked to reproductive or developmental toxicity had water quality standards or guidelines. Toxicity information was lacking for 781 (76%) chemicals. Of the remaining 240 substances, evidence suggested reproductive toxicity for 103 (43%), developmental toxicity for 95 (40%), and both for 41 (17%). Of these 157 chemicals, 67 had or were proposed for a federal water quality standard or guideline. Our systematic screening approach identified a list of 67 hydraulic fracturing-related candidate analytes based on known or suspected toxicity. Incorporation of data on potency, physicochemical properties, and environmental concentrations could further prioritize these substances for future drinking water exposure assessments or reproductive and developmental health studies.

  20. 75 FR 14082 - Ammonium Salts of Fatty Acids (C8

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-24

    ... study did not see any significant systemic toxicity from nonanoic acid (C 9 saturated) given to rats at... approach based on a common mechanism of toxicity, EPA has not made a common mechanism of toxicity finding... systemic toxicity or developmental toxicity in rats at doses up to 1,500 mg/kg/day in a developmental...

  1. Reproductive and Developmental Toxicity of Dioxin in Fish1

    PubMed Central

    King-Heiden, Tisha C.; Mehta, Vatsal; Xiong, Kong M.; Lanham, Kevin A.; Antkiewicz, Dagmara S.; Ganser, Alissa; Heideman, Warren

    2011-01-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD or dioxin) is a global environmental contaminant and the prototypical ligand for investigating aryl hydrocarbon receptor (AHR)-mediated toxicity. Environmental exposure to TCDD results in developmental and reproductive toxicity in fish, birds and mammals. To resolve the ecotoxicological relevance and human health risks posed by exposure to dioxin-like AHR agonists, a vertebrate model is needed that allows for toxicity studies at various levels of biological organization, assesses adverse reproductive and developmental effects and establishes appropriate integrative correlations between different levels of effects. Here we describe the reproductive and developmental toxicity of TCDD in feral fish species and summarize how using the zebrafish model to investigate TCDD toxicity has enabled us to characterize the AHR signaling in fish and to better understand how dioxin-like chemicals induce toxicity. We propose that such studies can be used to predict the risks that AHR ligands pose to feral fish populations and provide a platform for integrating risk assessments for both ecologically relevant organisms and humans. PMID:21958697

  2. Analysis of a ToxCast™ HTS Toxicity Signature for putative Vascular Disruptor Compounds

    EPA Science Inventory

    Recent studies have shown the importance of blood vessel formation during embryo development and the strong correlation to developmental toxicity. Several developmental toxicants, such as thalidomide, have been identified which specifically target the forming embryonic vasculatur...

  3. Developmental immunotoxicity of chemicals in rodents and its possible regulatory impact.

    PubMed

    Hessel, Ellen V S; Tonk, Elisa C M; Bos, Peter M J; van Loveren, Henk; Piersma, Aldert H

    2015-01-01

    Around 25% of the children in developed countries are affected with immune-based diseases. Juvenile onset diseases such as allergic, inflammatory and autoimmune diseases have shown increasing prevalences in the last decades. The role of chemical exposures in these phenomena is unclear. It is thought that the developmental immune system is more susceptible to toxicants than the mature situation. Developmental immunotoxicity (DIT) testing is nowadays not or minimally included in regulatory toxicology requirements. We reviewed whether developmental immune parameters in rodents would provide relatively sensitive endpoints of toxicity, whose inclusion in regulatory toxicity testing might improve hazard identification and risk assessment of chemicals. For each of the nine reviewed toxicants, the developing immune system was found to be at least as sensitive or more sensitive than the general (developmental) toxicity parameters. Functional immune (antigen-challenged) parameters appear more affected than structural (non-challenged) immune parameters. Especially, antibody responses to immune challenges with keyhole limpet hemocyanine or sheep red blood cells and delayed-type hypersensitivity responses appear to provide sensitive parameters of developmental immune toxicity. Comparison with current tolerable daily intakes (TDI) and their underlying overall no observed adverse effect levels showed that for some of the compounds reviewed, the TDI may need reconsideration based on developmental immune parameters. From these data, it can be concluded that the developing immune system is very sensitive to the disruption of toxicants independent of study design. Consideration of including functional DIT parameters in current hazard identification guidelines and wider application of relevant study protocols is warranted.

  4. Developmental toxicity evaluation of inhaled tertiary amyl methyl ether in mice and rats.

    PubMed

    Welsch, Frank; Elswick, Barbara; James, R Arden; Marr, Melissa C; Myers, Christina B; Tyl, Rochelle W

    2003-01-01

    This evaluation was part of a much more comprehensive testing program to characterize the mammalian toxicity potential of the gasoline oxygenator additive tertiary amyl methyl ether (TAME), and was initiated upon a regulatory agency mandate. A developmental toxicity hazard identification study was conducted by TAME vapor inhalation exposure in two pregnant rodent species. Timed-pregnant CD(Sprague-Dawley) rats and CD-1 mice, 25 animals per group, inhaled TAME vapors containing 0, 250, 1500 or 3500 ppm for 6 h a day on gestational days 6-16 (mice) or 6-19 (rats). The developmental toxicity hazard potential was evaluated following the study design draft guidelines and end points proposed by the United States Environmental Protection Agency. Based on maternal body weight changes during pregnancy, the no-observable-adverse-effect level (NOAEL) was 250 ppm for maternal toxicity in rats and 1500 ppm for developmental toxicity in rats using the criterion of near-term fetal body weights. In mice, more profound developmental toxicity was present than in rats, at both 1500 and 3500 ppm. At the highest concentration, mouse litters revealed more late fetal deaths, significantly reduced fetal body weights per litter and increased incidences of cleft palate (classified as an external malformation), as well as enlarged lateral ventricles of the cerebrum (a visceral variation). At 1500 ppm, mouse fetuses also exhibited an increased incidence of cleft palate and the dam body weights were reduced. Therefore, the NOAEL for the mouse maternal and developmental toxicity was 250 ppm under the conditions of this study. Copyright 2003 John Wiley & Sons, Ltd.

  5. CHEMICAL PRIORITIZATION FOR DEVELOPMENTAL TOXICITY USING LITERATURE MINING-BASED WEIGHTING OF TOXCAST ASSAYS

    EPA Science Inventory

    Defining a predictive model of developmental toxicity from in vitro and high-throughput screening (HTS) assays can be limited by the availability of developmental defects data. ToxRefDB (www.epa.gov/ncct/todrefdb) was built from animal studies on data-rich environmental chemicals...

  6. A Developmental Toxicity Database to Support Computational Toxicology; A Collaborative Project for Data Sharing and Harmonization

    EPA Science Inventory

    Developmental toxicity is one of the most important non-cancer endpoints for both environmental and human health. Despite the fact that numerous developmental studies are being conducted, as required for regulatory decisions, there are not yet sufficient data available to develop...

  7. DEVELOPMENTAL TOXICOGENOMIC STUDIES OF PFOA AND PFOS IN MICE.

    EPA Science Inventory

    Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are developmentally toxic in rodents. To better understand the mechanism(s) associated with this toxicity, we have conducted transcript profiling in mice. In an initial study, pregnant animals were dosed througho...

  8. RIFM fragrance ingredient safety assessment, α-Methylbenzyl acetate, CAS Registry Number 93-92-5.

    PubMed

    Api, A M; Belsito, D; Bhatia, S; Bruze, M; Calow, P; Dagli, M L; Dekant, W; Fryer, A D; Kromidas, L; La Cava, S; Lalko, J F; Lapczynski, A; Liebler, D C; Politano, V T; Ritacco, G; Salvito, D; Schultz, T W; Shen, J; Sipes, I G; Wall, B; Wilcox, D K

    2016-11-01

    The use of this material under current use conditions is supported by the existing information. This material was evaluated for genotoxicity, repeated dose toxicity, developmental toxicity, reproductive toxicity, local respiratory toxicity, phototoxicity, skin sensitization potential, as well as, environmental safety. Developmental toxicity was determined to have the most conservative systemic exposure derived NO[A]EL of 100 mg/kg/day. A gavage developmental toxicity study conducted in rats on a suitable read across analog resulted in aMOE of 3571 while considering 78.7% absorption from skin contact and 100% from inhalation. A MOE of >100 is deemed acceptable. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Predictive models of prenatal developmental toxicity from ToxCast high-throughput screening data

    EPA Science Inventory

    EPA's ToxCast™ project is profiling the in vitro bioactivity of chemicals to assess pathway-level and cell-based signatures that correlate with observed in vivo toxicity. We hypothesized that developmental toxicity in guideline animal studies captured in the ToxRefDB database wou...

  10. Evaluation of developmental toxicity studies of glyphosate with attention to cardiovascular development.

    PubMed

    Kimmel, Gary L; Kimmel, Carole A; Williams, Amy L; DeSesso, John M

    2013-02-01

    The herbicide glyphosate has undergone multiple safety tests for developmental toxicity in rats and rabbits. The European Commission's 2002 review of available glyphosate data discusses specific heart defects observed in several individual rabbit developmental toxicity studies, but describes the evidence for a potential causal relationship as equivocal. The present assessment was undertaken to analyze the current body of information generated from seven unpublished rabbit studies in order to determine if glyphosate poses a risk for cardiovascular malformations. In addition, the results of six unpublished developmental toxicity studies in rats were considered. Five of the seven rabbit studies (dose range: 10-500 mg/kg/day) were GLP- and testing guideline-compliant for the era in which the studies were performed; a sixth study predated testing and GLP guidelines, but generally adhered to these principles. The seventh study was judged inadequate. In each of the adequate studies, offspring effects occurred only at doses that also caused maternal toxicity. An integrated evaluation of the six adequate studies, using conservative assumptions, demonstrated that neither the overall malformation rate nor the incidence of cardiovascular malformations increased with dose up to the point where severe maternal toxicity was observed (generally ≥150 mg/kg/day). Random occurrences of cardiovascular malformations were observed across all dose groups (including controls) and did not exhibit a dose-response relationship. In the six rat studies (dose range: 30-3500 mg/kg/day), a low incidence of sporadic cardiovascular malformations was reported that was clearly not related to treatment. In summary, assessment of the entire body of the developmental toxicity data reviewed fails to support a potential risk for increased cardiovascular defects as a result of glyphosate exposure during pregnancy.

  11. Evaluation of developmental toxicity studies of glyphosate with attention to cardiovascular development

    PubMed Central

    Kimmel, Gary L.; Kimmel, Carole A.; Williams, Amy L.

    2013-01-01

    The herbicide glyphosate has undergone multiple safety tests for developmental toxicity in rats and rabbits. The European Commission’s 2002 review of available glyphosate data discusses specific heart defects observed in several individual rabbit developmental toxicity studies, but describes the evidence for a potential causal relationship as equivocal. The present assessment was undertaken to analyze the current body of information generated from seven unpublished rabbit studies in order to determine if glyphosate poses a risk for cardiovascular malformations. In addition, the results of six unpublished developmental toxicity studies in rats were considered. Five of the seven rabbit studies (dose range: 10–500 mg/kg/day) were GLP- and testing guideline-compliant for the era in which the studies were performed; a sixth study predated testing and GLP guidelines, but generally adhered to these principles. The seventh study was judged inadequate. In each of the adequate studies, offspring effects occurred only at doses that also caused maternal toxicity. An integrated evaluation of the six adequate studies, using conservative assumptions, demonstrated that neither the overall malformation rate nor the incidence of cardiovascular malformations increased with dose up to the point where severe maternal toxicity was observed (generally ≥150 mg/kg/day). Random occurrences of cardiovascular malformations were observed across all dose groups (including controls) and did not exhibit a dose–response relationship. In the six rat studies (dose range: 30–3500 mg/kg/day), a low incidence of sporadic cardiovascular malformations was reported that was clearly not related to treatment. In summary, assessment of the entire body of the developmental toxicity data reviewed fails to support a potential risk for increased cardiovascular defects as a result of glyphosate exposure during pregnancy. PMID:23286529

  12. Developmental Toxicology##

    EPA Science Inventory

    Developmental toxicology encompasses the study of developmental exposures, pharmacokinetics, mechanisms, pathogenesis, and outcomes potentially leading to adverse health effects. Manifestations of developmental toxicity include structural malformations, growth retardation, functi...

  13. Characterization of a developmental toxicity dose-response model.

    PubMed Central

    Faustman, E M; Wellington, D G; Smith, W P; Kimmel, C A

    1989-01-01

    The Rai and Van Ryzin dose-response model proposed for teratology experiments has been characterized for its appropriateness and applicability in modeling the dichotomous response data from developmental toxicity studies. Modifications were made in the initial probability statements to reflect more accurately biological events underlying developmental toxicity. Data sets used for the evaluation were obtained from the National Toxicology Program and U.S. EPA laboratories. The studies included developmental evaluations of ethylene glycol, diethylhexyl phthalate, di- and triethylene glycol dimethyl ethers, and nitrofen in rats, mice, or rabbits. Graphic examination and statistical evaluation demonstrate that this model is sensitive to the data when compared to directly measured experimental outcomes. The model was used to interpolate to low-risk dose levels, and comparisons were made between the values obtained and the no-observed-adverse-effect levels (NOAELs) divided by an uncertainty factor. Our investigation suggests that the Rai and Van Ryzin model is sensitive to the developmental toxicity end points, prenatal deaths, and malformations, and appears to model closely their relationship to dose. PMID:2707204

  14. Safety assessment of boron by application of new uncertainty factors and their subdivision.

    PubMed

    Hasegawa, Ryuichi; Hirata-Koizumi, Mutsuko; Dourson, Michael L; Parker, Ann; Ono, Atsushi; Hirose, Akihiko

    2013-02-01

    The available toxicity information for boron was reevaluated and four appropriate toxicity studies were selected in order to derive a tolerable daily intake (TDI) using newly proposed uncertainty factors (UFs) presented in Hasegawa et al. (2010). No observed adverse effect levels (NOAELs) of 17.5 and 8.8 mgB/kg/day for the critical effect of testicular toxicity were found in 2-year rat and dog feeding studies. Also, the 95% lower confidence limit of the benchmark doses for 5% reduction of fetal body weight (BMDL(05)) was calculated as 44.9 and 10.3 mgB/kg/day in mouse and rat developmental toxicity studies, respectively. Measured values available for differences in boron clearance between rats and humans and variability in the glomerular filtration rate (GFR) in pregnant women were used to derive chemical specific UFs. For the remaining uncertainty, newly proposed default UFs, which were derived from the latest applicable information with a probabilistic approach, and their subdivided factors for toxicokinetic and toxicodynamic variability were applied. Finally, overall UFs were calculated as 68 for rat testicular toxicity, 40 for dog testicular toxicity, 247 for mouse developmental toxicity and 78 for rat developmental toxicity. It is concluded that 0.13 mgB/kg/day is the most appropriate TDI for boron, based on rat developmental toxicity. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Best practices for developmental toxicity assessment for classification and labeling.

    PubMed

    Daston, George; Piersma, Aldert; Attias, Leonello; Beekhuijzen, Manon; Chen, Connie; Foreman, Jennifer; Hallmark, Nina; Leconte, Isabelle

    2018-05-14

    Many chemicals are going through a hazard-based classification and labeling process in Europe. Because of the significant public health implications, the best science must be applied in assessing developmental toxicity data. The European Teratology Society and Health and Environmental Sciences Institute co-organized a workshop to consider best practices, including data quality and consistency, interpretation of developmental effects in the presence of maternal toxicity, human relevance of animal data, and limits of chemical classes. Recommendations included larger historical control databases, more pharmacokinetic studies in pregnant animals for dose setting and study interpretation, generation of mechanistic data to resolve questions about whether maternal toxicity is causative of developmental toxicity, and more rigorous specifications for what constitutes a chemical class. It is our hope that these recommendations will form the basis for subsequent consensus workshops and other scientific activities designed to improve the scientific robustness of data interpretation for classification and labeling. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Developmental toxicity evaluation of unleaded gasoline vapor in the rat.

    PubMed

    Roberts, L; White, R; Bui, Q; Daughtrey, W; Koschier, F; Rodney, S; Schreiner, C; Steup, D; Breglia, R; Rhoden, R; Schroeder, R; Newton, P

    2001-01-01

    To evaluate the potential of unleaded gasoline vapor for developmental toxicity, a sample was prepared by slowly heating API 94-02 (1990 industry average gasoline) and condensing the vapor. The composition of this vapor condensate, which comprises 10.4% by volume of the starting gasoline, is representative of real-world exposure to gasoline vapor encountered at service stations and other occupational settings and consists primarily of volatile short chain (C4-C6) aliphatic hydrocarbons (i.e. paraffins) with small amounts of cycloparaffins and aromatic hydrocarbons. A preliminary study in rats and mice resulted in no developmental toxicity in either species. However, a slight reduction in maternal body weight gain in rats led to the selection of rats for this guideline study. Groups of pregnant rats (n = 24/group) were exposed to unleaded gasoline vapor at concentrations of 0, 1000, 3000, or 9000 (75% lower explosive limit) ppm equivalent to 0, 2653, 7960, or 23,900 mg/m3, for 6 h/day on gestation days 6-19. All rats were sacrificed on gestation day 20. No maternal toxicity was observed. Developmentally, there were no differences between treated and control groups in malformations, total variations, resorptions, fetal body weight, or viability. The maternal and developmental NOAEL is 9000 ppm. Under conditions of this study, unleaded gasoline vapors did not produce evidence of developmental toxicity.

  17. Profiling the activity of environmental chemicals in prenatal developmental toxicity studies using the U.S. EPA’s ToxRefDB

    EPA Science Inventory

    As the primary source for regulatory developmental toxicity information, prenatal studies characterize maternal effects and fetal endpoints including malformations, resorptions, and fetal weight reduction. Results from 383 rat and 368 rabbit prenatal studies on 387 chemicals, mo...

  18. PROSPECTIVE PREGNANCY STUDY DESIGNS FOR ASSESSING REPRODUCTIVE AND DEVELOPMENTAL TOXICANTS

    EPA Science Inventory

    Prospective Pregnancy Study Designs for Assessing Reproductive and Developmental Toxicants
    Germaine M. Buck,1 Courtney D. Johnson,1 Joseph Stanford,2 Anne Sweeney,3 Laura Schieve,4 John Rockett,5 Sherry G. Selevan,6 Steve Schrader 7

    Abstract
    The origin of successfu...

  19. 76 FR 18915 - Ethiprole; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-06

    ... homeostasis and the developing nervous system in the young is not available. Based on a battery of... of the nervous system, the Agency is requiring a developmental thyroid toxicity study to assess for... nervous system, the Agency is requiring the developmental thyroid toxicity study in lieu of the DNT. iii...

  20. A categorical structure-activity relationship analysis of the developmental toxicity of antithyroid drugs.

    PubMed

    Cunningham, Albert R; Carrasquer, C Alex; Mattison, Donald R

    2009-01-01

    The choice of therapeutic strategies for hyperthyroidism during pregnancy is limited. Surgery and radioiodine are typically avoided, leaving propylthiouracil and methimazole in the US. Carbimazole, a metabolic precursor of methimazole, is available in some countries outside of the US. In the US propylthiouracil is recommended because of concern about developmental toxicity from methimazole and carbimazole. Despite this recommendation, the data on developmental toxicity of all three agents are extremely limited and insufficient to support a policy given the broad use of methimazole and carbimazole around the world. In the absence of new human or animal data we describe the development of a new structure-activity relationship (SAR) model for developmental toxicity using the cat-SAR expert system. The SAR model was developed from data for 323 compounds evaluated for human developmental toxicity with 130 categorized as developmental toxicants and 193 as nontoxicants. Model cross-validation yielded a concordance between observed and predicted results between 79% to 81%. Based on this model, propylthiouracil, methimazole, and carbimazole were observed to share some structural features relating to human developmental toxicity. Thus given the need to treat women with Graves's disease during pregnancy, new molecules with minimized risk for developmental toxicity are needed. To help meet this challenge, the cat-SAR method would be a useful in screening new drug candidates for developmental toxicity as well as for investigating their mechanism of action.

  1. Acute, subchronic, and developmental toxicological properties of lubricating oil base stocks.

    PubMed

    Dalbey, Walden E; McKee, Richard H; Goyak, Katy Olsavsky; Biles, Robert W; Murray, Jay; White, Russell

    2014-01-01

    Lubricating oil base stocks (LOBs) are substances used in the manufacture of finished lubricants and greases. They are produced from residue remaining after atmospheric distillation of crude oil that is subsequently fractionated by vacuum distillation and additional refining steps. Initial LOB streams that have been produced by vacuum distillation but not further refined may contain polycyclic aromatic compounds (PACs) and may present carcinogenic hazards. In modern refineries, LOBs are further refined by multistep processes including solvent extraction and/or hydrogen treatment to reduce the levels of PACs and other undesirable constituents. Thus, mildly (insufficiently) refined LOBs are potentially more hazardous than more severely (sufficiently) refined LOBs. This article discusses the evaluation of LOBs using statistical models based on content of PACs; these models indicate that insufficiently refined LOBs (potentially carcinogenic LOBs) can also produce systemic and developmental effects with repeated dermal exposure. Experimental data were also obtained in ten 13-week dermal studies in rats, eight 4-week dermal studies in rabbits, and seven dermal developmental toxicity studies with sufficiently refined LOBs (noncarcinogenic and commonly marketed) in which no observed adverse effect levels for systemic toxicity and developmental toxicity were 1000 to 2000 mg/kg/d with dermal exposures, typically the highest dose tested. Results in both oral and inhalation developmental toxicity studies were similar. This absence of toxicologically relevant findings was consistent with lower PAC content of sufficiently refined LOBs. Based on data on reproductive organs with repeated dosing and parameters in developmental toxicity studies, sufficiently refined LOBs are likely to have little, if any, effect on reproductive parameters.

  2. 78 FR 53039 - Pyraclostrobin; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-28

    ... behavior changes were not observed. In the rat developmental toxicity study, developmental toxicity... requires EPA to give special consideration to exposure of infants and children to the pesticide chemical... result to infants and children from aggregate exposure to the pesticide chemical residue...

  3. DNA Damage Response Is Involved in the Developmental Toxicity of Mebendazole in Zebrafish Retina

    PubMed Central

    Sasagawa, Shota; Nishimura, Yuhei; Kon, Tetsuo; Yamanaka, Yukiko; Murakami, Soichiro; Ashikawa, Yoshifumi; Yuge, Mizuki; Okabe, Shiko; Kawaguchi, Koki; Kawase, Reiko; Tanaka, Toshio

    2016-01-01

    Intestinal helminths cause iron-deficiency anemia in pregnant women, associated with premature delivery, low birth weight, maternal ill health, and maternal death. Although benzimidazole compounds such as mebendazole (MBZ) are highly efficacious against helminths, there are limited data on its use during pregnancy. In this study, we performed in vivo imaging of the retinas of zebrafish larvae exposed to MBZ, and found that exposure to MBZ during 2 and 3 days post-fertilization caused malformation of the retinal layers. To identify the molecular mechanism underlying the developmental toxicity of MBZ, we performed transcriptome analysis of zebrafish eyes. The analysis revealed that the DNA damage response was involved in the developmental toxicity of MBZ. We were also able to demonstrate that inhibition of ATM significantly attenuated the apoptosis induced by MBZ in the zebrafish retina. These results suggest that MBZ causes developmental toxicity in the zebrafish retina at least partly by activating the DNA damage response, including ATM signaling, providing a potential adverse outcome pathway in the developmental toxicity of MBZ in mammals. PMID:27014071

  4. Comparison of the mouse Embryonic Stem cell Test, the rat Whole Embryo Culture and the Zebrafish Embryotoxicity Test as alternative methods for developmental toxicity testing of six 1,2,4-triazoles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jong, Esther de, E-mail: Esther.de.Jong@rivm.nl; Laboratory for Health Protection Research, National Institute for Public Health and the Environment; Barenys, Marta

    2011-06-01

    The relatively high experimental animal use in developmental toxicity testing has stimulated the search for alternatives that are less animal intensive. Three widely studied alternative assays are the mouse Embryonic Stem cell Test (EST), the Zebrafish Embryotoxicity Test (ZET) and the rat postimplantation Whole Embryo Culture (WEC). The goal of this study was to determine their efficacy in assessing the relative developmental toxicity of six 1,2,4-triazole compounds, flusilazole, hexaconazole, cyproconazole, triadimefon, myclobutanil and triticonazole. For this purpose, we analyzed effects and relative potencies of the compounds in and among the alternative assays and compared the findings to their known inmore » vivo developmental toxicity. Triazoles are antifungal agents used in agriculture and medicine, some of which are known to induce craniofacial and limb abnormalities in rodents. The WEC showed a general pattern of teratogenic effects, typical of exposure to triazoles, mainly consisting of reduction and fusion of the first and second branchial arches, which are in accordance with the craniofacial malformations reported after in vivo exposure. In the EST all triazole compounds inhibited cardiomyocyte differentiation concentration-dependently. Overall, the ZET gave the best correlation with the relative in vivo developmental toxicities of the tested compounds, closely followed by the EST. The relative potencies observed in the WEC showed the lowest correlation with the in vivo developmental toxicity data. These differences in the efficacy between the test systems might be due to differences in compound kinetics, in developmental stages represented and in the relative complexity of the alternative assays.« less

  5. Comparison of the mouse Embryonic Stem cell Test, the rat Whole Embryo Culture and the Zebrafish Embryotoxicity Test as alternative methods for developmental toxicity testing of six 1,2,4-triazoles.

    PubMed

    de Jong, Esther; Barenys, Marta; Hermsen, Sanne A B; Verhoef, Aart; Ossendorp, Bernadette C; Bessems, Jos G M; Piersma, Aldert H

    2011-06-01

    The relatively high experimental animal use in developmental toxicity testing has stimulated the search for alternatives that are less animal intensive. Three widely studied alternative assays are the mouse Embryonic Stem cell Test (EST), the Zebrafish Embryotoxicity Test (ZET) and the rat postimplantation Whole Embryo Culture (WEC). The goal of this study was to determine their efficacy in assessing the relative developmental toxicity of six 1,2,4-triazole compounds,(1) flusilazole, hexaconazole, cyproconazole, triadimefon, myclobutanil and triticonazole. For this purpose, we analyzed effects and relative potencies of the compounds in and among the alternative assays and compared the findings to their known in vivo developmental toxicity. Triazoles are antifungal agents used in agriculture and medicine, some of which are known to induce craniofacial and limb abnormalities in rodents. The WEC showed a general pattern of teratogenic effects, typical of exposure to triazoles, mainly consisting of reduction and fusion of the first and second branchial arches, which are in accordance with the craniofacial malformations reported after in vivo exposure. In the EST all triazole compounds inhibited cardiomyocyte differentiation concentration-dependently. Overall, the ZET gave the best correlation with the relative in vivo developmental toxicities of the tested compounds, closely followed by the EST. The relative potencies observed in the WEC showed the lowest correlation with the in vivo developmental toxicity data. These differences in the efficacy between the test systems might be due to differences in compound kinetics, in developmental stages represented and in the relative complexity of the alternative assays. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Developmental and reproductive toxicity of inorganic arsenic: animal studies and human concerns.

    PubMed

    Golub, M S; Macintosh, M S; Baumrind, N

    1998-01-01

    Information on the reproductive and developmental toxicity of inorganic arsenic is available primarily from studies in animals using arsenite and arsenate salts and arsenic trioxide. Inorganic arsenic has been extensively studied as a teratogen in animals. Data from animal studies demonstrate that arsenic can produce developmental toxicity, including malformation, death, and growth retardation, in four species (hamsters, mice, rats, rabbits). A characteristic pattern of malformations is produced, and the developmental toxicity effects are dependent on dose, route, and the day of gestation when exposure occurs. Studies with gavage and diet administration indicate that death and growth retardation are produced by oral arsenic exposure. Arsenic is readily transferred to the fetus and produces developmental toxicity in embryo culture. Animal studies have not identified an effect of arsenic on fertility in males or females. When females were dosed chronically for periods that included pregnancy, the primary effect of arsenic on reproduction was a dose-dependent increase in conceptus mortality and in postnatal growth retardation. Human data are limited to a few studies of populations exposed to arsenic from drinking water or from working at or living near smelters. Associations with spontaneous abortion and stillbirth have been reported in more than one of these studies, but interpretation of these studies is complicated because study populations were exposed to multiple chemicals. Thus, animal studies suggest that environmental arsenic exposures are primarily a risk to the developing fetus. In order to understand the implications for humans, attention must be given to comparative pharmacokinetics and metabolism, likely exposure scenarios, possible mechanisms of action, and the potential role of arsenic as an essential nutrient.

  7. 78 FR 78731 - Indoxacarb; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-27

    .../kg/day Chronic RfD = 0.02 Weight of evidence approach was UFA = 10x mg/kg/day. used from four studies..... Weight of evidence approach was 30 days), intermediate-term (1 UFA = 10x used from four studies: to 6..., one developmental toxicity study in rats with DPX-MP062 and DPX-KN128, one developmental toxicity...

  8. Predicting human developmental toxicity of pharmaceuticals using human embryonic stem cells and metabolomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, Paul R., E-mail: pwest@stemina.co; Weir, April M.; Smith, Alan M.

    2010-08-15

    Teratogens, substances that may cause fetal abnormalities during development, are responsible for a significant number of birth defects. Animal models used to predict teratogenicity often do not faithfully correlate to human response. Here, we seek to develop a more predictive developmental toxicity model based on an in vitro method that utilizes both human embryonic stem (hES) cells and metabolomics to discover biomarkers of developmental toxicity. We developed a method where hES cells were dosed with several drugs of known teratogenicity then LC-MS analysis was performed to measure changes in abundance levels of small molecules in response to drug dosing. Statisticalmore » analysis was employed to select for specific mass features that can provide a prediction of the developmental toxicity of a substance. These molecules can serve as biomarkers of developmental toxicity, leading to better prediction of teratogenicity. In particular, our work shows a correlation between teratogenicity and changes of greater than 10% in the ratio of arginine to asymmetric dimethylarginine levels. In addition, this study resulted in the establishment of a predictive model based on the most informative mass features. This model was subsequently tested for its predictive accuracy in two blinded studies using eight drugs of known teratogenicity, where it correctly predicted the teratogenicity for seven of the eight drugs. Thus, our initial data shows that this platform is a robust alternative to animal and other in vitro models for the prediction of the developmental toxicity of chemicals that may also provide invaluable information about the underlying biochemical pathways.« less

  9. USING THE MEDAKA EMBRYO ASSAY TO INVESTIGATE DEVELOPMENTAL ETHANOL TOXICITY.

    EPA Science Inventory

    Ethanol (EtOH) is a well-known developmental toxicant that produces a range of abnormal phenotypes. While the toxic potential of developmental EtOH exposure is well characterized, the effect of the timing of exposure on the extent of toxicity remains unknown. Fish models such as ...

  10. DEVELOPMENTAL TOXICITY OF ATRAZINE METABOLITES IN FISCHER 344 RATS

    EPA Science Inventory

    Previously we have shown that atrazine, a commonly used herbicide, causes full-litter resorption (FLR) in Fischer 344 rats at 50 mg/kg. In this study, we tested four atrazine metabolites for their potential to cause FLR and developmental toxicity. Desethylatrazine (DEA), desis...

  11. Health assessment of gasoline and fuel oxygenate vapors: developmental toxicity in rats.

    PubMed

    Roberts, Linda G; Gray, Thomas M; Trimmer, Gary W; Parker, Robert M; Murray, F Jay; Schreiner, Ceinwen A; Clark, Charles R

    2014-11-01

    Gasoline-vapor condensate (BGVC) or condensed vapors from gasoline blended with methyl t-butyl ether (G/MTBE), ethyl t-butyl ether (G/ETBE), t-amyl methyl ether (G/TAME) diisopropyl ether (G/DIPE), ethanol (G/EtOH), or t-butyl alcohol (G/TBA) were evaluated for developmental toxicity in Sprague-Dawley rats exposed via inhalation on gestation days (GD) 5-20 for 6h/day at levels of 0 (control filtered air), 2000, 10,000, and 20,000mg/m(3). These exposure durations and levels substantially exceed typical consumer exposure during refueling (<1-7mg/m(3), 5min). Dose responsive maternal effects were reduced maternal body weight and/or weight change, and/or reduced food consumption. No significant malformations were seen in any study. Developmental effects occurred at 20,000mg/m(3) of G/TAME (reduced fetal body weight, increased incidence of stunted fetuses), G/TBA (reduced fetal body weight, increased skeletal variants) and G/DIPE (reduced fetal weight) resulting in developmental NOAEL of 10,000mg/m(3) for these materials. Developmental NOAELs for other materials were 20,000mg/m(3) as no developmental toxicity was induced in those studies. Developmental NOAELs were equal to or greater than the concurrent maternal NOAELs which ranged from 2000 to 20,000mg/m(3). There were no clear cut differences in developmental toxicity between vapors of gasoline and gasoline blended with the ether or alcohol oxygenates. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Developmental toxicity, acute toxicity and mutagenicity testing in freshwater snails Biomphalaria glabrata (Mollusca: Gastropoda) exposed to chromium and water samples.

    PubMed

    Tallarico, Lenita de Freitas; Borrely, Sueli Ivone; Hamada, Natália; Grazeffe, Vanessa Siqueira; Ohlweiler, Fernanda Pires; Okazaki, Kayo; Granatelli, Amanda Tosatte; Pereira, Ivana Wuo; Pereira, Carlos Alberto de Bragança; Nakano, Eliana

    2014-12-01

    A protocol combining acute toxicity, developmental toxicity and mutagenicity analysis in freshwater snail Biomphalaria glabrata for application in ecotoxicological studies is described. For acute toxicity testing, LC50 and EC50 values were determined; dominant lethal mutations induction was the endpoint for mutagenicity analysis. Reference toxicant potassium dichromate (K2Cr2O7) was used to characterize B. glabrata sensitivity for toxicity and cyclophosphamide to mutagenicity testing purposes. Compared to other relevant freshwater species, B. glabrata showed high sensitivity: the lowest EC50 value was obtained with embryos at veliger stage (5.76mg/L). To assess the model applicability for environmental studies, influent and effluent water samples from a wastewater treatment plant were evaluated. Gastropod sensitivity was assessed in comparison to the standardized bioassay with Daphnia similis exposed to the same water samples. Sampling sites identified as toxic to daphnids were also detected by snails, showing a qualitatively similar sensitivity suggesting that B. glabrata is a suitable test species for freshwater monitoring. Holding procedures and protocols implemented for toxicity and developmental bioassays showed to be in compliance with international standards for intra-laboratory precision. Thereby, we are proposing this system for application in ecotoxicological studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Zebrafish (Danio rerio) Models To Assess Acute, Developmental, And Neurodevelopmental Toxicity

    EPA Science Inventory

    Zebrafish (Danio rerio) acute, developmental, and neurodevelopmental model systems have been developed to assess both known and unknown environmental contaminants. Developmental toxicity is assessed using death and dysmorphology as endpoints, whereas neurodevelopmental toxicity ...

  14. Maternal and developmental toxicity of ayahuasca in Wistar rats.

    PubMed

    Oliveira, Carolina Dizioli Rodrigues; Moreira, Camila Queiroz; de Sá, Lilian Rose Marques; Spinosa, Helenice de Souza; Yonamine, Mauricio

    2010-06-01

    Ayahuasca is a psychotropic plant beverage initially used by shamans throughout the Amazon region during traditional religious cult. In recent years, ayahuasca has also been used in ceremonies of a number of modern syncretic religious groups, including pregnant women. However, no documented study has been performed to evaluate the risk of developmental toxicity of ayahuasca. In the present work, maternal and developmental toxicity was evaluated in Wistar rats. Ayahuasca was administered to pregnant rats in three different doses [the equivalent typical dose (TD) administered to humans, five-fold TD and 10-fold TD] during the gestational period (6-20 days). Dams treated with the highest ayahuasca dose showed maternal toxicity with decrease of weight gain and food intake. Visceral fetal findings were observed in all treatment groups. Skeletal findings were observed in the intermediate- and high-dose groups. The fetuses deriving from the highest dose group also presented a decrease in body weight. From these results, it is possible to conclude that there is a risk of maternal and developmental toxicity following ayahuasca exposure and that the level of toxicity appears to be dose-dependent.

  15. Comparison of MeHg-induced toxicogenomic responses across in vivo and in vitro models used in developmental toxicology.

    PubMed

    Robinson, Joshua F; Theunissen, Peter T; van Dartel, Dorien A M; Pennings, Jeroen L; Faustman, Elaine M; Piersma, Aldert H

    2011-09-01

    Toxicogenomic evaluations may improve toxicity prediction of in vitro-based developmental models, such as whole embryo culture (WEC) and embryonic stem cells (ESC), by providing a robust mechanistic marker which can be linked with responses associated with developmental toxicity in vivo. While promising in theory, toxicogenomic comparisons between in vivo and in vitro models are complex due to inherent differences in model characteristics and experimental design. Determining factors which influence these global comparisons are critical in the identification of reliable mechanistic-based markers of developmental toxicity. In this study, we compared available toxicogenomic data assessing the impact of the known teratogen, methylmercury (MeHg) across a diverse set of in vitro and in vivo models to investigate the impact of experimental variables (i.e. model, dose, time) on our comparative assessments. We evaluated common and unique aspects at both the functional (Gene Ontology) and gene level of MeHg-induced response. At the functional level, we observed stronger similarity in MeHg-response between mouse embryos exposed in utero (2 studies), ESC, and WEC as compared to liver, brain and mouse embryonic fibroblast MeHg studies. These findings were strongly correlated to the presence of a MeHg-induced developmentally related gene signature. In addition, we identified specific MeHg-induced gene expression alterations associated with developmental signaling and heart development across WEC, ESC and in vivo systems. However, the significance of overlap between studies was highly dependent on traditional experimental variables (i.e. dose, time). In summary, we identify promising examples of unique gene expression responses which show in vitro-in vivo similarities supporting the relevance of in vitro developmental models for predicting in vivo developmental toxicity. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Assessment of Reproductive and Developmental Toxicity of Mixtures of Regulated Drinking Water Chlorination By-Products in a Multigenerational Rat Bioassay

    EPA Science Inventory

    Epidemiological and animal toxicity studies have raised concerns regarding possible adverse reproductive and developmental effects of disinfection by-products (DBPs) in drinking water. To address these concerns, we provided mixtures of the regulated trihalomethanes (THMs; chlorof...

  17. Comparative developmental toxicity of new aromatic halogenated DBPs in a chlorinated saline sewage effluent to the marine polychaete Platynereis dumerilii.

    PubMed

    Yang, Mengting; Zhang, Xiangru

    2013-10-01

    Using seawater for toilet flushing may introduce high levels of bromide and iodide into a city's sewage treatment works, and result in the formation of brominated and iodinated disinfection byproducts (DBPs) during chlorination to disinfect sewage effluents. In a previous study, the authors' group has detected the presence of many brominated DBPs and identified five new aromatic brominated DBPs in chlorinated saline sewage effluents. The presence of brominated DBPs in chlorinated saline effluents may pose adverse implications for marine ecology. In this study, besides the detection and identification of another seven new aromatic halogenated DBPs in a chlorinated saline sewage effluent, their developmental toxicity was evaluated using the marine polychaete Platynereis dumerilii. For comparison, the developmental toxicity of some commonly known halogenated DBPs was also examined. The rank order of the developmental toxicity of 20 halogenated DBPs was 2,5-dibromohydroquinone > 2,6-diiodo-4-nitrophenol ≥ 2,4,6-triiodophenol > 4-bromo-2-chlorophenol ≥ 4-bromophenol > 2,4-dibromophenol ≥ 2,6-dibromo-4-nitrophenol > 2-bromo-4-chlorophenol > 2,6-dichloro-4-nitrophenol > 2,4-dichlorophenol > 2,4,6-tribromophenol > 3,5-dibromo-4-hydroxybenzaldehyde > bromoform ≥ 2,4,6-trichlorophenol > 2,6-dibromophenol > 2,6-dichlorophenol > iodoacetic acid ≥ tribromoacetic acid > bromoacetic acid > chloroacetic acid. On the basis of developmental toxicity data, a quantitative structure-activity relationship (QSAR) was established. The QSAR involved two physical-chemical property descriptors (log P and pKa) and two electronic descriptors (the lowest unoccupied molecular orbital energy and the highest occupied molecular orbital energy) to indicate the transport, biouptake, and biointeraction of these DBPs. It can well predict the developmental toxicity of most of the DBPs tested.

  18. Virtual Embryo: Cell-Agent Based Modeling of Developmental Processes and Toxicities (CSS BOSC)

    EPA Science Inventory

    Spatial regulation of cellular dynamics is fundamental to morphological development. As such, chemical disruption of spatial dynamics is a determinant of developmental toxicity. Incorporating spatial dynamics into AOPs for developmental toxicity is desired but constrained by the ...

  19. Comparison of Birth-and Conception-Based Definitions of Postnatal Age in Developmental and Reproductive Rodent Toxicity Studies: Influence of Gestation Length and Timing of Neonatal Examinations on Litter Data in Controls

    EPA Science Inventory

    Laboratories conducting developmental and reproductive toxicity studies with rodents use varied protocols for determining the timing of neonatal litter examinations and subsequent measurements. Most laboratories determine timing based on the day of birth (DOB); l.e., gestation le...

  20. Using zebrafish in systems toxicology for developmental toxicity testing.

    PubMed

    Nishimura, Yuhei; Inoue, Atsuto; Sasagawa, Shota; Koiwa, Junko; Kawaguchi, Koki; Kawase, Reiko; Maruyama, Toru; Kim, Soonih; Tanaka, Toshio

    2016-01-01

    With the high cost and the long-term assessment of developmental toxicity testing in mammals, the vertebrate zebrafish has become a useful alternative model organism for high-throughput developmental toxicity testing. Zebrafish is also very favorable for the 3R perspective in toxicology; however, the methodologies used by research groups vary greatly, posing considerable challenges to integrative analysis. In this review, we discuss zebrafish developmental toxicity testing, focusing on the methods of chemical exposure, the assessment of morphological abnormalities, housing conditions and their effects on the production of healthy embryos, and future directions. Zebrafish as a systems toxicology model has the potential to elucidate developmental toxicity pathways, and to provide a sound basis for human health risk assessments. © 2015 Japanese Teratology Society.

  1. Development of novel in silico model for developmental toxicity assessment by using naïve Bayes classifier method.

    PubMed

    Zhang, Hui; Ren, Ji-Xia; Kang, Yan-Li; Bo, Peng; Liang, Jun-Yu; Ding, Lan; Kong, Wei-Bao; Zhang, Ji

    2017-08-01

    Toxicological testing associated with developmental toxicity endpoints are very expensive, time consuming and labor intensive. Thus, developing alternative approaches for developmental toxicity testing is an important and urgent task in the drug development filed. In this investigation, the naïve Bayes classifier was applied to develop a novel prediction model for developmental toxicity. The established prediction model was evaluated by the internal 5-fold cross validation and external test set. The overall prediction results for the internal 5-fold cross validation of the training set and external test set were 96.6% and 82.8%, respectively. In addition, four simple descriptors and some representative substructures of developmental toxicants were identified. Thus, we hope the established in silico prediction model could be used as alternative method for toxicological assessment. And these obtained molecular information could afford a deeper understanding on the developmental toxicants, and provide guidance for medicinal chemists working in drug discovery and lead optimization. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Predicting Developmental Toxicity of ToxCast Phase I Chemicals Using Human Embryonic Stem Cells and Metabolomics

    EPA Science Inventory

    EPA’s ToxRefDB contains prenatal guideline study data from rats and rabbits for over 240 chemicals that overlap with the ToxCast in vitro high throughput screening project. A subset of these compounds were tested in Stemina Biomarker Discovery's developmental toxicity platform, a...

  3. Developmental Toxicity Evaluations of Whole Mixtures of Disinfection By-products using Concentrated Drinking Water in Rats: Gestational and Lactational Effects of Sulfate and Sodium

    EPA Science Inventory

    A developmental toxicity bioassay was used in three experiments to evaluate drinking water concentrates for suitability in multigenerational studies. First, chlorinated water was concentrated 135 fold by reverse osmosis; select lost disinfection by-products were spiked back. Co...

  4. Developmental Toxicity Evaluations of Whole Mixtures of Disinfection By-products using Concentrated Drinking Water in Rats: Gestational and Lactational Effects of Sulfate and Sodium*

    EPA Science Inventory

    A developmental toxicity bioassay was used in three experiments to evaluate drinking water concentrates for suitability in multigenerational studies. First, chlorinated water was concentrated 135 fold by reverse osmosis; select lost disinfection by-products were spiked back. Conc...

  5. Reproductive and developmental toxicity of hydrofluorocarbons used as refrigerants.

    PubMed

    Ema, Makoto; Naya, Masato; Yoshida, Kikuo; Nagaosa, Ryuichi

    2010-04-01

    The present paper summarizes data on the reproductive and developmental toxicity of hydrofluorocarbons (HFCs), including pentafluoroethane (HFC-125), 1,1,1,2-tetrafluoroethane (HFC-134a), 1,1,1-trifluoroethane (HFC-143a), 1,1-difluoroethane (HFC-152a), difluoromethane (HFC-32) and 1,1,1,3,3-pentafluoropropane (HFC-245fa), used as refrigerants, published in openly available scientific literature. No developmental toxicity of HFC-125 was found even at 50,000 ppm in rats or rabbits. Although HFC-134a exhibited no dominant lethal effect or reproductive toxicity in rats, it caused low body weight in pre- and postnatal offspring and slightly retarded skeletal ossification in fetuses at 50,000 ppm in rats. No maternal or developmental toxicity was noted after exposure to HFC-143a even at 40,000 ppm in rats or rabbits or HFC-152a even at 50,000 ppm in rats. HFC-32 is slightly maternally and developmentally toxic at 50,000 ppm in rats, but not in rabbits. HFC-245fa caused decreases in maternal body weight and food consumption at 10,000 and 50,000 ppm and fetal weight at 50 000ppm. No evidence of teratogenicity for these HFCs was noted in rats or rabbits. There is limited information about the reproductive toxicity of these HFCs. Animal studies remain necessary for risk assessments of chemicals because it is difficult to find alternative methods to determine the toxic effects of chemicals. It is required to reduce emissions of organic vapors containing HFCs to reduce the risk of exposure. Copyright 2009 Elsevier Inc. All rights reserved.

  6. Regulatory Forum opinion piece: New testing paradigms for reproductive and developmental toxicity--the NTP modified one generation study and OECD 443.

    PubMed

    Foster, Paul M D

    2014-12-01

    The National Toxicology Program (NTP) has developed a new flexible study design, termed the modified one generation (MOG) reproduction study. The MOG study will encompass measurements of developmental and reproductive toxicity parameters as well as enable the setting of appropriate dose levels for a cancer bioassay through evaluation of target organ toxicity that is based on test article exposure that starts during gestation. This study design is compared and contrasted with the new Organization for Economic Co-operation and Development (OECD) 443 test guideline, the extended one generation reproduction study. The MOG study has a number of advantages, with a focus on F 1 animals, the generation of adequately powered, robust data sets that include both pre and postnatal developmental toxicity information, and the measurement of effects on reproductive structure and function in the same animals. This new study design does not employ the use of internal triggers in the design structure for the use of animals already on test and is also consistent with the principles of the 3R's. © 2014 by The Author(s).

  7. The Threshold of Toxicological Concern for prenatal developmental toxicity in rats and rabbits

    PubMed Central

    van Ravenzwaay, B.; Jiang, X.; Luechtefeld, T.; Hartung, T.

    2018-01-01

    The Threshold Toxicological Concern (TTC) is based on the concept that in absence of experimental data reasonable assurance of safety can be given if exposure is sufficiently low. Using the REACH database the low 5th percentile of the NO(A)EL distribution, for prenatal developmental toxicity (OECD guideline 414) was determined. For rats, (434 NO(A)ELs values) for maternal toxicity, this value was 10 mg/kg-bw/day. For developmental toxicity (469 NO(A)ELs): 13 mg/kg-bw/day. For rabbits, (100 NO(A)ELs), the value for maternal toxicity was 4 mg/kg-bw/day, for developmental toxicity, (112 NO(A)EL values): 10 mg/kg-bw/day. The maternal organism may thus be slightly more sensitive than the fetus. Combining REACH- (industrial chemicals) and published BASF-data (mostly agrochemicals), 537 unique compounds with NO(A)EL values for developmental toxicity in rats and 150 in rabbits were evaluated. The low 5th percentile NO(A)EL for developmental toxicity in rats was 10 mg/kg-bw/day and 9.5 mg/kg-bw/day for rabbits. Using an assessment factor of 100, a TTC value for developmental toxicity of 100 µg/kg-bw/day for rats and 95 µg/kg-bw/day for rabbits is calculated. These values could serve as guidance whether or not to perform an animal experiment, if exposure is sufficiently low. In emergency situations this value may be useful for a first tier risk assessment. PMID:28645885

  8. Comparison of Birth-and Conception-Based Definitions of Postnatal Age in Developmental and Reproductive Rodent Toxicity Studies: lnfluence of Gestation Length on Measurements of Offspring Body Weight and Puberty in Controls

    EPA Science Inventory

    Most laboratories conducting developmental and reproductive toxicity studies in rodents assign age by defining postnatal day (PND) 0 or 1 as the day of birth (DOB); i.e., gestation length affects PND and the timing of postnatal measurements. Some laboratories, however, define age...

  9. Comparative Developmental Toxicity of Flavonoids Using an Integrative Zebrafish System

    PubMed Central

    Bugel, Sean M.; Bonventre, Josephine A.; Tanguay, Robert L.

    2016-01-01

    Flavonoids are a large, structurally diverse class of bioactive naturally occurring chemicals commonly detected in breast milk, soy based infant formulas, amniotic fluid, and fetal cord blood. The potential for pervasive early life stage exposures raises concerns for perturbation of embryogenesis, though developmental toxicity and bioactivity information is limited for many flavonoids. Therefore, we evaluated a suite of 24 flavonoid and flavonoid-like chemicals using a zebrafish embryo-larval toxicity bioassay—an alternative model for investigating developmental toxicity of environmentally relevant chemicals. Embryos were exposed to 1–50 µM of each chemical from 6 to 120 h postfertilization (hpf), and assessed for 26 adverse developmental endpoints at 24, 72, and 120 hpf. Behavioral changes were evaluated in morphologically normal animals at 24 and 72 hpf, at 120 hpf using a larval photomotor response (LPR) assay. Gene expression was comparatively evaluated for all compounds for effects on biomarker transcripts indicative of AHR (cyp1a) and ER (cyp19a1b, esr1, lhb, vtg) pathway bioactivity. Overall, 15 of 24 flavonoids elicited adverse effects on one or more of the developmental or behavioral endpoints. Hierarchical clustering and principle component analyses compared toxicity profiles and identified 3 distinct groups of bioactive flavonoids. Despite robust induction of multiple estrogen-responsive biomarkers, co-exposure with ER and GPER antagonists did not ameliorate toxicity, suggesting ER-independence and alternative modes of action. Taken together, these studies demonstrate that development is sensitive to perturbation by bioactive flavonoids in zebrafish that are not related to traditional estrogen receptor mode of action pathways. This integrative zebrafish platform provides a useful framework for evaluating flavonoid developmental toxicity and hazard prioritization. PMID:27492224

  10. Environmental pollutants and lifestyle factors induce oxidative stress and poor prenatal development.

    PubMed

    Al-Gubory, Kaïs H

    2014-07-01

    Developmental toxicity caused by exposure to a mixture of environmental pollutants has become a major health concern. Human-made chemicals, including xenoestrogens, pesticides and heavy metals, as well as unhealthy lifestyle behaviours, mainly tobacco smoking, alcohol consumption and medical drug abuse, are major factors that adversely influence prenatal development and increase susceptibility of offspring to diseases. There is evidence to suggest that the developmental toxicological mechanisms of chemicals and lifestyle factors involve the generation of reactive oxygen species (ROS) and cellular oxidative damage. Overproduction of ROS induces oxidative stress, a state where increased ROS generation overwhelms antioxidant protection and subsequently leads to oxidative damage of cellular macromolecules. Data on the involvement of oxidative stress in the mechanism of developmental toxicity following exposure to environmental pollutants are reviewed in an attempt to provide an updated basis for future studies on the toxic effect of such pollutants, particularly the notion of increased risk for developmental toxicity due to combined and cumulative exposure to various environmental pollutants. The aims of such studies are to better understand the mechanisms by which environmental pollutants adversely affect conceptus development and to elucidate the impact of cumulative exposures to multiple pollutants on post-natal development and health outcomes. Developmental toxicity caused by exposure to mixture of environmental pollutants has become a major health concern. Human-made chemicals, including xenoestrogens, pesticides and heavy metals, as well as unhealthy lifestyle behaviors, mainly tobacco smoking, alcohol consumption and medical drug abuse, are major factors that adversely influence prenatal development and increase the susceptibility of offspring to development complications and diseases. There is evidence to suggest that the developmental toxicological mechanisms of human-made chemicals and unhealthy lifestyle factors involve the generation of reactive oxygen species (ROS) and cellular oxidative damage. Overproduction of ROS induces oxidative stress, a state where increased generation of ROS overwhelms antioxidant protection and subsequently leads to oxidative damage of cellular macromolecules. Exposure to various environmental pollutants induces synergic and cumulative dose-additive adverse effects on prenatal development, pregnancy outcomes and neonate health. Data from the literature on the involvement of oxidative stress in the mechanism of developmental toxicity following in vivo exposure to environmental pollutants will be reviewed in an attempt to provide an updated basis for future studies on the toxic effect of such pollutants, particularly the notion of increased risk for developmental toxicity due to combined and cumulative exposure to various environmental pollutants. The aims of such studies are to better understand the mechanisms by which environmental pollutants adversely affect conceptus development and to elucidate the impact of cumulative exposures to multiple pollutants on postnatal development and health outcomes. Copyright © 2014 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  11. Developmental toxicity of PAH mixtures in fish early life stages. Part II: adverse effects in Japanese medaka.

    PubMed

    Le Bihanic, Florane; Clérandeau, Christelle; Le Menach, Karyn; Morin, Bénédicte; Budzinski, Hélène; Cousin, Xavier; Cachot, Jérôme

    2014-12-01

    In aquatic environments, polycyclic aromatic hydrocarbons (PAHs) mostly occur as complex mixtures, for which risk assessment remains problematic. To better understand the effects of PAH mixture toxicity on fish early life stages, this study compared the developmental toxicity of three PAH complex mixtures. These mixtures were extracted from a PAH-contaminated sediment (Seine estuary, France) and two oils (Arabian Light and Erika). For each fraction, artificial sediment was spiked at three different environmental concentrations roughly equivalent to 0.5, 4, and 10 μg total PAH g(-1) dw. Japanese medaka embryos were incubated on these PAH-spiked sediments throughout their development, right up until hatching. Several endpoints were recorded at different developmental stages, including acute endpoints, morphological abnormalities, larvae locomotion, and genotoxicity (comet and micronucleus assays). The three PAH fractions delayed hatching, induced developmental abnormalities, disrupted larvae swimming activity, and damaged DNA at environmental concentrations. Differences in toxicity levels, likely related to differences in PAH proportions, were highlighted between fractions. The Arabian Light and Erika petrogenic fractions, containing a high proportion of alkylated PAHs and low molecular weight PAHs, were more toxic to Japanese medaka early life stages than the pyrolytic fraction. This was not supported by the toxic equivalency approach, which appeared unsuitable for assessing the toxicity of the three PAH fractions to fish early life stages. This study highlights the potential risks posed by environmental mixtures of alkylated and low molecular weight PAHs to early stages of fish development.

  12. Embryo Microinjection of Selenomethionine Reduces Hatchability and Modifies Oxidant Responsive Gene Expression in Zebrafish

    NASA Astrophysics Data System (ADS)

    Thomas, J. K.; Janz, D. M.

    2016-05-01

    In previous studies we demonstrated that exposure to selenomethionine (SeMet) causes developmental toxicities in zebrafish (Danio rerio). The objectives of this study were to establish a dose-response relationship for developmental toxicities in zebrafish after embryo microinjection of Se (8, 16 or 32 μg/g dry mass of eggs) in the form of SeMet, and to investigate potential underlying mechanism(s) of SeMet-induced developmental toxicities. A dose-dependent increase in frequencies of mortality and total deformities, and reduced hatchability were observed in zebrafish exposed to excess Se via embryo microinjection. The egg Se concentration causing 20% mortality was then used to investigate transcript abundance of proteins involved in antioxidant protection and methylation. Excess Se exposure modified gene expression of oxidant-responsive transcription factors (nuclear factor erythroid 2-related factor nrf2a and nrf2b), and enzymes involved in cellular methylation (methionine adenosyltransferase mat1a and mat2ab) in zebrafish larvae. Notably, excess Se exposure up-regulated transcript abundance of aryl hydrocarbon receptor 2 (ahr2), a signalling pathway involved in the toxicity of dioxin-related compounds. Our findings suggest that oxidative stress or modification of methylation, or a combination of these mechanisms, might be responsible for Se-induced developmental toxicities in fishes.

  13. Developmental toxicity in flounder embryos exposed to crude oils derived from different geographical regions.

    PubMed

    Jung, Jee-Hyun; Lee, Eun-Hee; Choi, Kwang-Min; Yim, Un Hyuk; Ha, Sung Yong; An, Joon Geon; Kim, Moonkoo

    2017-06-01

    Crude oils from distinct geographical regions have distinct chemical compositions, and, as a result, their toxicity may be different. However, developmental toxicity of crude oils derived from different geographical regions has not been extensively characterized. In this study, flounder embryos were separately exposed to effluents contaminated by three crude oils including: Basrah Light (BLO), Pyrenees (PCO), and Sakhalin Vityaz (SVO), in addition to a processed fuel oil (MFO-380), to measure developmental toxicity and for gene expressions. Each oil possessed a distinct chemical composition. Edema defect was highest in embryos exposed to PCO and MFO-380 that both have a greater fraction of three-ring PAHs (33% and 22%, respectively) compared to BLO and SVO. Observed caudal fin defects were higher in embryos exposed to SVO and MFO-380, which are both dominated by naphthalenes (81% and 52%, respectively). CYP1A gene expressions were also highest in embryos exposed to SVO and MFO-380. Higher incidence of cardiotoxicity and lower nkx 2.5 expression were detected in embryos exposed to PCO. Unique gene expression profiles were observed in embryos exposed to crude oils with distinct compositions. This study demonstrates that crude oils of different geographical origins with different compositional characteristics induce developmental toxicity to different degrees. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. The teratology testing of food additives.

    PubMed

    Barrow, Paul C; Spézia, François

    2013-01-01

    The developmental and reproductive toxicity testing (including teratogenicity) of new foods and food additives is performed worldwide according to the guidelines given in the FDA Redbook. These studies are not required for substances that are generally recognized as safe, according to the FDA inventory. The anticipated cumulated human exposure level above which developmental or reproduction studies are required depends on the structure-alert category. For food additives of concern, both developmental (prenatal) and reproduction (multigeneration) studies are required. The developmental studies are performed in two species, usually the rat and the rabbit. The reproduction study is generally performed in the rat. The two rat studies are preferably combined into a single experimental design, if possible. The test methods described in the FDA Redbook are similar to those specified by the OECD for the reproductive toxicity testing of chemicals.

  15. A review of developmental and reproductive toxicity of CS2 and H2 S generated by the pesticide sodium tetrathiocarbonate.

    PubMed

    Silva, Marilyn

    2013-04-01

    Sodium tetrathiocarbonate (STTC) is an example of a pesticide that when prepared for use in aqueous solution releases two toxic products carbon disulfide (CS2 ) (active ingredient) and hydrogen sulfide (H2 S) in ambient air in equimolar concentrations resulting in potential exposure to workers and bystanders. CS2 and H2 S are pollutants that are generated from several pesticides as well as in industrial settings. Registrant submitted reports and open literature studies for STTC, CS2 and H2 S were reviewed. Previous reports suggest that CS2 was a concern as a developmental and reproductive toxicant. H2 S was also examined since it is a neurotoxicant and potentially harmful to developing fetuses. STTC did not induce developmental or reproductive effects in animal studies. CS2 was a developmental neurobehavioral toxin in rat pups (inhalation no observed effect level [NOEL]=0.01 ppm). Reproductive effects occurred in male and female factory workers after CS2 exposure (NOEL=1 ppm). H2 S had developmental effects in rats at doses at or above those observed for nasal pathology (NOEL=10 ppm) but was not a reproductive or developmental toxin in humans. The database for CS2 indicates a strong potential for developmental neurotoxicity in animals at low doses but it is lacking in acceptable, well-performed studies. There is also a lack of studies performed with CS2 and H2 S as a mixture. © 2013 Wiley Periodicals, Inc.

  16. Evaluation of an alternative in vitro test battery for detecting reproductive toxicants in a grouping context.

    PubMed

    Kroese, E Dinant; Bosgra, Sieto; Buist, Harrie E; Lewin, Geertje; van der Linden, Sander C; Man, Hai-yen; Piersma, Aldert H; Rorije, Emiel; Schulpen, Sjors H W; Schwarz, Michael; Uibel, Frederik; van Vugt-Lussenburg, Barbara M A; Wolterbeek, Andre P M; van der Burg, Bart

    2015-08-01

    Previously we showed a battery consisting of CALUX transcriptional activation assays, the ReProGlo assay, and the embryonic stem cell test, and zebrafish embryotoxicity assay as 'apical' tests to correctly predict developmental toxicity for 11 out of 12 compounds, and to explain the one false negative [7]. Here we report on applying this battery within the context of grouping and read across, put forward as a potential tool to fill data gaps and avoid animal testing, to distinguish in vivo non- or weak developmental toxicants from potent developmental toxicants within groups of structural analogs. The battery correctly distinguished 2-methylhexanoic acid, monomethyl phthalate, and monobutyltin trichloride as non- or weak developmental toxicants from structurally related developmental toxicants valproic acid, mono-ethylhexyl phthalate, and tributyltin chloride, respectively, and, therefore, holds promise as a biological verification model in grouping and read across approaches. The relevance of toxicokinetic information is indicated. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Developmental Toxicity of Nanoparticles on the Brain.

    PubMed

    Umezawa, Masakazu; Onoda, Atsuto; Takeda, Ken

    2017-01-01

    The toxicity of nanoparticles (nanotoxicology) is being investigated to understand both the health impacts of atmospheric ultrafine particles-the size of which is a fraction (<0.1 μm aerodynamic diameter) of that of PM 2.5 (<2.5 μm diameter)-and the safer use of engineered nanomaterials. Developmental toxicity of nanoparticles has been studied since their transfer from pregnant body to fetal circulation and offspring body was first reported. Here we reviewed the developmental toxicity of nanoparticles on the brain, one of the most important organs in maintenance of mental health and high quality of life. Recently the dose- and size-dependency of transplacental nanoparticle transfer to the fetus was reported. It is important to understand both the mechanism of direct effect of nanoparticles transferred to the fetus and offspring and the indirect effect mediated by induction of oxidative stress and inflammation in the pregnant body. Locomotor activity, learning and memory, motor coordination, and social behavior were reported as potential neurobehavioral targets of maternal nanoparticle exposure. Histopathologically, brain perivascular cells, including perivascular macrophages and surrounding astrocytes, have an important role in waste clearance from the brain parenchyma. They are potentially the most sensitive target of maternal exposure to low-dose nanoparticles. Further investigations will show the detailed mechanism of developmental toxicity of nanoparticles and preventive strategies against intended and unintended nanoparticle exposure. This knowledge will contribute to the safer design of nanoparticles through the development of sensitive and quantitative endpoints for prediction of their developmental toxicity.

  18. Developmental neurotoxicity of succeeding generations of insecticides

    PubMed Central

    Abreu-Villaça, Yael; Levin, Edward D.

    2016-01-01

    Insecticides are by design toxic. They must be toxic to effectively kill target species of insects. Unfortunately, they also have off-target toxic effects that can harm other species, including humans. Developmental neurotoxicity is one of the most prominent off-target toxic risks of insecticides. Over the past seven decades several classes of insecticides have been developed, each with their own mechanisms of effect and toxic side effects. This review covers the developmental neurotoxicity of the succeeding generations of insecticides including organochlorines, organophosphates, pyrethroids, carbamates and neonicotinoids. The goal of new insecticide development is to more effectively kill target species with fewer toxic side effects on non-target species. From the experience with the developmental neurotoxicity caused by the generations of insecticides developed in the past advice is offered how to proceed with future insecticide development to decrease neurotoxic risk. PMID:27908457

  19. Current and future needs for developmental toxicity testing.

    PubMed

    Makris, Susan L; Kim, James H; Ellis, Amy; Faber, Willem; Harrouk, Wafa; Lewis, Joseph M; Paule, Merle G; Seed, Jennifer; Tassinari, Melissa; Tyl, Rochelle

    2011-10-01

    A review is presented of the use of developmental toxicity testing in the United States and international regulatory assessment of human health risks associated with exposures to pharmaceuticals (human and veterinary), chemicals (agricultural, industrial, and environmental), food additives, cosmetics, and consumer products. Developmental toxicology data are used for prioritization and screening of pharmaceuticals and chemicals, for evaluating and labeling of pharmaceuticals, and for characterizing hazards and risk of exposures to industrial and environmental chemicals. The in vivo study designs utilized in hazard characterization and dose-response assessment for developmental outcomes have not changed substantially over the past 30 years and have served the process well. Now there are opportunities to incorporate new technologies and approaches to testing into the existing assessment paradigm, or to apply innovative approaches to various aspects of risk assessment. Developmental toxicology testing can be enhanced by the refinement or replacement of traditional in vivo protocols, including through the use of in vitro assays, studies conducted in alternative nonmammalian species, the application of new technologies, and the use of in silico models. Potential benefits to the current regulatory process include the ability to screen large numbers of chemicals quickly, with the commitment of fewer resources than traditional toxicology studies, and to refine the risk assessment process through an enhanced understanding of the mechanisms of developmental toxicity and their relevance to potential human risk. As the testing paradigm evolves, the ability to use developmental toxicology data to meet diverse critical regulatory needs must be retained. © 2011 Wiley Periodicals, Inc.

  20. Studies on the Behavior of Larval Zebrafish for Developmental Neurotoxicity Screening

    EPA Science Inventory

    The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize large numbers of chemicals for developmental toxicity. We are exploring methods to detect developmentally neurotoxic chemicals using zebrafish behavior at 6 days of age. The behavioral paradig...

  1. The toxicological properties of petroleum gases.

    PubMed

    McKee, Richard H; Herron, Deborah; Saperstein, Mark; Podhasky, Paula; Hoffman, Gary M; Roberts, Linda

    2014-01-01

    To characterize the toxicological hazards of petroleum gases, 90-day inhalation toxicity (Organization for Economic Cooperation and Development [OECD] 413) and developmental toxicity (OECD 414) tests were conducted with liquefied propane gas (LPG) at concentrations of 1000, 5000, or 10,000 ppm. A micronucleus test (OECD 474) of LPG was also conducted. No systemic or developmental effects were observed; the overall no observed adverse effect concentration (NOAEC) was 10,000 ppm. Further, there was no effect of LPG exposure at levels up to 10,000 ppm on micronucleus induction and no evidence of bone marrow toxicity. Other alkane gases (ethane, propane, n-butane, and isobutane) were then evaluated in combined repeated exposure studies with reproduction/development toxicity screening tests (OECD 422). There were no toxicologically important changes in parameters relating to systemic toxicity or neurotoxicity for any of these gases at concentrations ranging from 9000 to 16,000 ppm. There was no evidence of effects on developmental or reproductive toxicity in the studies of ethane, propane, or n-butane at the highest concentrations tested. However, there was a reduction in mating in the high-exposure group (9000 ppm) of the isobutane study, which although not significantly different was outside the range previously observed in the testing laboratory. Assuming the reduction in mating to have been toxicologically significant, the NOAEC for the isobutane reproductive toxicity screening test was 3000 ppm (7125 mg/m(3)). A method is proposed by which the toxicity of any of the 106 complex petroleum gas streams can be estimated from its composition.

  2. Maternally Mediated Developmental Toxicity

    EPA Science Inventory

    The current practice for the assessment of an agent’s potential effects on the developing embryo/fetus includes administration of high, maternally toxic doses to pregnant laboratory animals. For most agents evaluated, developmental effects occur concomitant with maternal toxicity...

  3. Sub-lethal and lethal toxicities of elevated CO2 on embryonic, juvenile, and adult stages of marine medaka Oryzias melastigma.

    PubMed

    Lee, Changkeun; Kwon, Bong-Oh; Hong, Seongjin; Noh, Junsung; Lee, Junghyun; Ryu, Jongseong; Kang, Seong-Gil; Khim, Jong Seong

    2018-06-06

    The potential leakage from marine CO 2 storage sites is of increasing concern, but few studies have evaluated the probable adverse effects on marine organisms. Fish, one of the top predators in marine environments, should be an essential representative species used for water column toxicity testing in response to waterborne CO 2 exposure. In the present study, we conducted fish life cycle toxicity tests to fully elucidate CO 2 toxicity mechanism effects. We tested sub-lethal and lethal toxicities of elevated CO 2 concentrations on marine medaka (Oryzias melastigma) at different developmental stages. At each developmental stage, the test species was exposed to varying concentrations of gaseous CO 2 (control air, 5%, 10%, 20%, and 30%), with 96 h of exposure at 0-4 d (early stage), 4-8 d (middle stage), and 8-12 d (late stage). Sub-lethal and lethal effects, including early developmental delays, cardiac edema, tail abnormalities, abnormal pigmentation, and mortality were monitored daily during the 14 d exposure period. At the embryonic stage, significant sub-lethal and lethal effects were observed at pH < 6.30. Hypercapnia can cause long-term and/or delayed developmental embryonic problems, even after transfer back to clean seawater. At fish juvenile and adult stages, significant mortality was observed at pH < 5.70, indicating elevated CO 2 exposure might cause various adverse effects, even during short-term exposure periods. It should be noted the early embryonic stage was found more sensitive to CO 2 exposure than other developmental stages of the fish life cycle. Overall, the present study provided baseline information for potential adverse effects of high CO 2 concentration exposure on fish developmental processes at different life cycle stages in marine ecosystems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Developmental toxicity of inhaled methanol in the CD-1 mouse, with quantitative dose-response modeling for estimation of benchmark doses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, J.M.; Mole, M.L.; Chernoff, N.

    1993-01-01

    Pregnant CD-1 mice were exposed to 1,000, 2,000, 5,000, 7,500, 10,000, or 15,000 ppm on methanol for 7 hr/day on days 6-15 of gestation. On day 17 of gestation, remaining mice were weighed, killed and the gravid uterus was removed. Numbers of implantation sites, live and dead fetuses and resorptions were counted, and fetuses were examined externally and weighed as a litter. Significant increases in the incidence of exencephaly and cleft palate were observed at 5,000 ppm and above, increased postimplantation mortality at 7,500 ppm and above (including an increasing incidence of full-litter resorption), and reduced fetal weight at 10,000more » ppm and above. A dose-related increase in cervical ribs or ossification sites lateral to the seventh cervical vertebra was significant at 2,000 ppm and above. Thus, the NOAEL for the developmental toxicity in this study is 1,000 ppm. The results of this study indicate that inhaled methanol is developmentally toxic in the mouse at exposure levels which were not maternally toxic. Litters of pregnant mice gavaged orally with 4 g methanol/kg displayed developmental toxic effects similar to those seen in the 10,000 ppm methanol exposure group. (Copyright (c) 1993 Wiley-Liss, Inc.)« less

  5. TOWARDS REFINED USE OF TOXICITY DATA IN STATISTICALLY BASED SAR MODELS FOR DEVELOPMENTAL TOXICITY.

    EPA Science Inventory

    In 2003, an International Life Sciences Institute (ILSI) Working Group examined the potential of statistically based structure-activity relationship (SAR) models for use in screening environmental contaminants for possible developmental toxicants.

  6. Predictive Modeling of Developmental Toxicity

    EPA Science Inventory

    The use of alternative methods in conjunction with traditional in vivo developmental toxicity testing has the potential to (1) reduce cost and increase throughput of testing the chemical universe, (2) prioritize chemicals for further targeted toxicity testing and risk assessment,...

  7. Effect of Pachybasin on General Toxicity and Developmental Toxicity in Vivo.

    PubMed

    Lin, Yi-Ruu; Peng, Kou-Cheng; Chan, Ming-Huan; Peng, Huan-Lin; Liu, Shu-Ying

    2017-12-06

    To document the safety of pachybasin, a secondary metabolite of Trichoderma harzianum, for use as a bioagricultural agent, it was subjected to general toxicological testing in mice and developmental toxicity in zebrafish. With either 5 or 20 mg kg -1 pachybasin i.p. injection, mice behavioral responses such as motor coordination, spontaneous locomotor activity, or nociceptive pain were not influenced. In long-term effect (daily injection for 14 days), the physiological, hematological, liver, and kidney functions were not altered either. Evidence for the developmental toxicity of pachybasin (10-100 μM) in 72-h exposure period was shown in zebrafish larvae, based on developmental retardation, impairment of chorion, and increase of mortality. In summary, there are no significant general toxicities presented in the pachybasin-treated adult male mice. However, the embryo-toxicity in aquatic biota should be taken into consideration during bioagricultural agent application.

  8. Studies of the Variables Affecting Behavior of Larval Zebrafish for Developmental Neurotoxicity Testing

    EPA Science Inventory

    The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize large numbers of chemicals for developmental toxicity. We are exploring methods to detect developmentally neurotoxic chemicals using zebrafish behavior at 6 days of age. The behavioral paradig...

  9. Reproductive and developmental toxicity of degradation products of refrigerants in experimental animals.

    PubMed

    Ema, Makoto; Naya, Masato; Yoshida, Kikuo; Nagaosa, Ryuichi

    2010-01-01

    The present paper summarizes the results of animal studies on the reproductive and developmental toxicity of the degradation products of refrigerants, including trifluoroacetic acid (TFA), carbon dioxide (CO(2)), carbon monoxide (CO), carbonyl fluoride (CF), hydrogen fluoride (HF) and formic acid (FA). Excessive CO(2) in the atmosphere is testicular and reproductive toxic, embryolethal, developmentally neurotoxic and teratogenic in experimental animals. As for CO, maternal exposure causes prenatal and postnatal lethality and growth retardation, skeletal variations, cardiomegaly, blood biochemical, immunological and postnatal behavioral changes, and neurological impairment in offspring of several species. Very early studies of CO in rats and guinea pigs reported fetal malformations in exposed dams. The results of toxicological studies on sodium fluoride (NaF) were used to obtain insight into the toxicity of CF and HF, because CF is rapidly hydrolyzed in contact with water yielding CO(2) and HF, and NaF is similar in kinetics and dynamics to HF. Increased fetal skeletal variation, but not malformation, was noted after the maternal administration of NaF. Rat multiple-generation studies revealed that NaF caused retarded ossification and degenerative changes in the lung and kidney in offspring. There is a lack of information about the toxicity of TFA and FA. Copyright 2009 Elsevier Inc. All rights reserved.

  10. Metabolomics approach reveals metabolic disorders and potential biomarkers associated with the developmental toxicity of tetrabromobisphenol A and tetrachlorobisphenol A

    NASA Astrophysics Data System (ADS)

    Ye, Guozhu; Chen, Yajie; Wang, Hong-Ou; Ye, Ting; Lin, Yi; Huang, Qiansheng; Chi, Yulang; Dong, Sijun

    2016-10-01

    Tetrabromobisphenol A and tetrachlorobisphenol A are halogenated bisphenol A (H-BPA), and has raised concerns about their adverse effects on the development of fetuses and infants, however, the molecular mechanisms are unclear, and related metabolomics studies are limited. Accordingly, a metabolomics study based on gas chromatography-mass spectrometry was employed to elucidate the molecular developmental toxicology of H-BPA using the marine medaka (Oryzias melastigmas) embryo model. Here, we revealed decreased synthesis of nucleosides, amino acids and lipids, and disruptions in the TCA (tricarboxylic acid) cycle, glycolysis and lipid metabolism, thus inhibiting the developmental processes of embryos exposed to H-BPA. Unexpectedly, we observed enhanced neural activity accompanied by lactate accumulation and accelerated heart rates due to an increase in dopamine pathway and a decrease in inhibitory neurotransmitters following H-BPA exposure. Notably, disorders of the neural system, and disruptions in glycolysis, the TCA cycle, nucleoside metabolism, lipid metabolism, glutamate and aspartate metabolism induced by H-BPA exposure were heritable. Furthermore, lactate and dopa were identified as potential biomarkers of the developmental toxicity of H-BPA and related genetic effects. This study has demonstrated that the metabolomics approach is a useful tool for obtaining comprehensive and novel insights into the molecular developmental toxicity of environmental pollutants.

  11. Numeric Estimates of Teratogenic Severity from Embryo-Fetal Developmental Toxicity Studies.

    PubMed

    Wise, L David

    2016-02-01

    A developing organism exposed to a toxicant will have a response that ranges from none to severe (i.e., death or malformation). The response at a given dosage may be termed teratogenic (or developmental toxic) severity and is dependent on exposure conditions. Prenatal/embryo-fetal developmental (EFD) toxicity studies in rodents and rabbits are the most consistent and definitive assessments of teratogenic severity, and teratogenesis screening assays are best validated against their results. A formula is presented that estimates teratogenic severity for each group, including control, within an EFD study. The developmental components include embryonic/fetal death, malformations, variations, and mean fetal weight. The contribution of maternal toxicity is included with multiplication factors to adjust for the extent of mortality, maternal body weight change, and other parameters deemed important. The derivation of the formula to calculate teratogenic severity is described. Various EFD data sets from the literature are presented to highlight considerations to the calculation of the various components of the formula. Each score is compared to the concurrent control group to obtain a relative teratogenic severity. The limited studies presented suggest relative scores of two- to

  12. Nanoadduct relieves: Alleviation of developmental toxicity of Cr(VI) due to its spontaneous adsorption to Mg(OH)2 nanoflakes.

    PubMed

    Wang, Zhiping; Li, Chunhui; Mu, Yan; Lin, Zhang; Yi, Anji; Zhang, Qiu; Yan, Bing

    2015-04-28

    During pregnancy, both the mother and fetus are vulnerable to environmental pollution by particulate matters and chemicals. Although the toxicity of free pollutants has been frequently reported, the impact of nanoparticle/pollutant adducts on the vulnerable pregnant population remains unclear. In this study, pregnant mice were orally exposed to Mg(OH)2 nanoflakes and nanoflakes adsorbed with Cr(VI) anions during the peri-implantation and organogenesis stages of pregnancy at doses that did not induce systemic toxicity or pregnancy complications. The nano-Mg(OH)2/Cr(VI) adducts formation reduced fetal developmental toxicity compared with the toxicity induced by the same concentration of free Cr(VI) anions. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. A REVIEW OF HUMAN STUDIES ON THE REPRODUCTIVE AND DEVELOPMENTAL EFFECTS OF PESTICIDE EXPOSURE

    EPA Science Inventory

    Many pesticides cxause reproductive or developmental toxicity at high doses in animal models, but effects in humans at environmental exposure levels are difficult to assess. Human data on reproductive and developmental outcomes for currently used pesticides may help to define ris...

  14. Studies of the Variables Affecting Behavior of Larval Zebrafish for Developmental Neurotoxicity Testing*

    EPA Science Inventory

    The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize large numbers of chemicals for developmental toxicity. We are exploring methods to screen for developmentally neurotoxic chemicals using zebrafish behavior at 6 days of age. The behavioral par...

  15. Comparative Developmental Toxicity and Stress Protein Responses of Dimethyl Sulfoxide to Rare Minnow and Zebrafish Embryos/Larvae.

    PubMed

    Xiong, Xiaoqin; Luo, Si; Wu, Benli; Wang, Jianwei

    2017-02-01

    Dimethyl sulfoxide (DMSO), a widely used carrier solvent, can be toxic to test organisms and has species-specific sensitivity. In this study, the developmental toxicity and stress protein responses of DMSO to rare minnow (Gobiocypris rarus) and zebrafish (Danio rerio) with two tests were compared in the early life stage. In the first test, fertilized eggs were exposed to 0%, 0.0001%, 0.001%, 0.01%, 0.1%, 1.0%, 1.5%, and 2.0% v/v of DMSO until 3 days post hatching. In the second test, larvae from 0 to 8 d were exposed to 2% DMSO until 4 days. Our results showed that DMSO was toxic to rare minnow and zebrafish on multiple indexes, and the no-observed-effect concentrations of DMSO in both species were 1.0% and 0.001% for developmental toxicity analysis and stress protein analysis, respectively. Furthermore, rare minnow larvae were more sensitive than zebrafish to DMSO for spinal malformation. The sensitive period for induction of spinal malformation by DMSO was 0-7 d after hatch (dah) for rare minnow and 0-4 dah for zebrafish. Together, these results will provide support to the use of DMSO in ecotoxicological studies using rare minnow and will contribute to a better understanding of the toxicity of DMSO.

  16. Extended evaluation on the ES-D3 cell differentiation assay combined with the BeWo transport model, to predict relative developmental toxicity of triazole compounds.

    PubMed

    Li, Hequn; Flick, Burkhard; Rietjens, Ivonne M C M; Louisse, Jochem; Schneider, Steffen; van Ravenzwaay, Bennard

    2016-05-01

    The mouse embryonic stem D3 (ES-D3) cell differentiation assay is based on the morphometric measurement of cardiomyocyte differentiation and is a promising tool to detect developmental toxicity of compounds. The BeWo transport model, consisting of BeWo b30 cells grown on transwell inserts and mimicking the placental barrier, is useful to determine relative placental transport velocities of compounds. We have previously demonstrated the usefulness of the ES-D3 cell differentiation assay in combination with the in vitro BeWo transport model to predict the relative in vivo developmental toxicity potencies of a set of reference azole compounds. To further evaluate this combined in vitro toxicokinetic and toxicodynamic approach, we combined ES-D3 cell differentiation data of six novel triazoles with relative transport rates obtained from the BeWo model and compared the obtained ranking to the developmental toxicity ranking as derived from in vivo data. The data show that the combined in vitro approach provided a correct prediction for in vivo developmental toxicity, whereas the ES-D3 cell differentiation assay as stand-alone did not. In conclusion, we have validated the combined in vitro approach for developmental toxicity, which we have previously developed with a set of reference azoles, for a set of six novel triazoles. We suggest that this combined model, which takes both toxicodynamic and toxicokinetic aspects into account, should be further validated for other chemical classes of developmental toxicants.

  17. Dose–response analysis of phthalate effects on gene expression in rat whole embryo culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Joshua F.; Department of Toxicogenomics, Maastricht University, Maastricht; Verhoef, Aart

    2012-10-01

    The rat postimplantation whole embryo culture (WEC) model serves as a potential screening tool for developmental toxicity. In this model, cultured rat embryos are exposed during early embryogenesis and evaluated for morphological effects. The integration of molecular-based markers may lead to improved objectivity, sensitivity and predictability of WEC in assessing developmental toxic properties of compounds. In this study, we investigated the concentration-dependent effects of two phthalates differing in potency, mono(2-ethylhexyl) phthalate (MEHP) and monomethyl phthalate (MMP, less toxic), on the transcriptome in WEC to examine gene expression in relation with dysmorphogenesis. MEHP was more potent than MMP in inducing genemore » expression changes as well as changes on morphology. MEHP induced significant enrichment of cholesterol/lipid/steroid (CLS) metabolism and apoptosis pathways which was associated with developmental toxicity. Regulation of genes within CLS metabolism pathways represented the most sensitive markers of MEHP exposure, more sensitive than classical morphological endpoints. As shown in direct comparisons with toxicogenomic in vivo studies, alterations in the regulation of CLS metabolism pathways has been previously identified to be associated with developmental toxicity due to phthalate exposure in utero. Our results support the application of WEC as a model to examine relative phthalate potency through gene expression and morphological responses. Additionally, our results further define the applicability domain of the WEC model for developmental toxicological investigations. -- Highlights: ► We examine the effect of two phthalates on gene expression and morphology in WEC. ► MEHP is more potent than MMP in inducing gene expression changes and dysmorphogenesis. ► MEHP significantly disrupts cholesterol metabolism pathways in a dose-dependent manner. ► Specific phthalate-related mechanisms in WEC are relevant to mechanisms in vivo.« less

  18. 40 CFR 799.9355 - TSCA reproduction/developmental toxicity screening test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... toxicity screening test. 799.9355 Section 799.9355 Protection of Environment ENVIRONMENTAL PROTECTION... AND MIXTURE TESTING REQUIREMENTS Health Effects Test Guidelines § 799.9355 TSCA reproduction/developmental toxicity screening test. (a) Scope—(1) Applicability. This section is intended to meet testing...

  19. 40 CFR 799.9355 - TSCA reproduction/developmental toxicity screening test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... toxicity screening test. 799.9355 Section 799.9355 Protection of Environment ENVIRONMENTAL PROTECTION... AND MIXTURE TESTING REQUIREMENTS Health Effects Test Guidelines § 799.9355 TSCA reproduction/developmental toxicity screening test. (a) Scope—(1) Applicability. This section is intended to meet testing...

  20. Identifying developmental vascular disruptor compounds using a predictive signature and alternative toxicity models

    EPA Science Inventory

    Identifying Developmental Vascular Disruptor Compounds Using a Predictive Signature and Alternative Toxicity Models Presenting Author: Tamara Tal Affiliation: U.S. EPA/ORD/ISTD, RTP, NC, USA Chemically induced vascular toxicity during embryonic development can result in a wide...

  1. Final report on the developmental toxicity of methacrylonitrile (CAS No. 126-98-7) in Sprague-Dawley (CS[trademark]) rats. Report for March-June 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The study was conducted to assess the potential for orally administered methacrylonitrile (MILE) to cause developmental toxicity. Human exposure to MILE occurs in industrial settings, as a component of mainstream cigarette smoke from unfiltered cigarettes, and possibly as a result of ingestion of beverages bottled in plastic containers. MILE (CAS No. 126-98-7) was administered by gavage in water to mated CD rats (26/group) on gestation days (GD) 6 through 15 at levels of 0, 5, 25 or 50 mg/kg/day. Animals were observed daily for clinical signs of toxicity. Body weight was recorded on the mornings of gd 0, 3, 6more » through 15, 18 and 20. Mean food and water consumption was recorded for the animals in each group on GD 0, 3, 6, 9, 12, 15, 18, and 20. All animals in the developmental toxicity study were killed on GD 20 and examined for maternal body and organ weights, implant status, fetal weight, sex, and morphological development.« less

  2. Profiling Developmental Toxicity of 387 Environmental Chemicals using EPA’s Toxicity Reference Database (ToxRefDB)

    EPA Science Inventory

    EPA's Toxicity Reference Databases (ToxRefDB) was developed by the National Center for Computational Toxicology in partnership with EPA's Office of Pesticide Programs, to store data derived from in vivo animal toxicity studies [www.epa.gov/ncct/toxrefdb/]. The initial build of To...

  3. Tavaborole, a Novel Boron-Containing Small Molecule Pharmaceutical Agent for Topical Treatment of Onychomycosis: I. Reproductive and Developmental Toxicity Studies.

    PubMed

    Ciaravino, Vic; Coronado, Dina; Lanphear, Cheryl; Hoberman, Alan; Chanda, Sanjay

    2016-09-01

    Tavaborole is a topical antifungal agent approved by the US Food and Drug Administration for the treatment of toenail onychomycosis. As part of the nonclinical development program, reproductive and developmental toxicity studies were conducted (rat oral fertility and early embryonic development, rat (oral) and rabbit (dermal) embryo-fetal development). There were no effects on fertility or reproductive performance at doses up to 300 mg/kg/d (107 times the maximum recommended human dose [MRHD] based on mean area under the plasma concentration-time curve comparisons). In the rat embryo-fetal development toxicity studies, teratogenicity was not observed at doses up to 100 mg/kg/d (29 times the MRHD). However, several treatment-related skeletal malformations and variations were observed at 300 mg/kg/d (570 times the MRHD). In rabbit embryo-fetal development toxicity studies dosed via oral or dermal administration, the no observable adverse effect level for maternal toxicity and embryo-fetal toxicity was 50 mg/kg/d (16 times the MRHD) and 5% (26 times the MRHD), respectively. © The Author(s) 2016.

  4. Application of Caenorhabditis elegans (nematode) and Danio rerio embryo (zebrafish) as model systems to screen for developmental and reproductive toxicity of Piperazine compounds.

    PubMed

    Racz, Peter I; Wildwater, Marjolein; Rooseboom, Martijn; Kerkhof, Engelien; Pieters, Raymond; Yebra-Pimentel, Elena Santidrian; Dirks, Ron P; Spaink, Herman P; Smulders, Chantal; Whale, Graham F

    2017-10-01

    To enable selection of novel chemicals for new processes, there is a recognized need for alternative toxicity screening assays to assess potential risks to man and the environment. For human health hazard assessment these screening assays need to be translational to humans, have high throughput capability, and from an animal welfare perspective be harmonized with the principles of the 3Rs (Reduction, Refinement, Replacement). In the area of toxicology a number of cell culture systems are available but while these have some predictive value, they are not ideally suited for the prediction of developmental and reproductive toxicology (DART). This is because they often lack biotransformation capacity, multicellular or multi- organ complexity, for example, the hypothalamus pituitary gonad (HPG) axis and the complete life cycle of whole organisms. To try to overcome some of these limitations in this study, we have used Caenorhabditis elegans (nematode) and Danio rerio embryos (zebrafish) as alternative assays for DART hazard assessment of some candidate chemicals being considered for a new commercial application. Nematodes exposed to Piperazine and one of the analogs tested showed a slight delay in development compared to untreated animals but only at high concentrations and with Piperazine as the most sensitive compound. Total brood size of the nematodes was also reduced primarily by Piperazine and one of the analogs. In zebrafish Piperazine and analogs showed developmental delays. Malformations and mortality in individual fish were also scored. Significant malformations were most sensitively identified with Piperazine, significant mortality was only observed in Piperazine and only at the higest dose. Thus, Piperazine seemed the most toxic compound for both nematodes and zebrafish. The results of the nematode and zebrafish studies were in alignment with data obtained from conventional mammalian toxicity studies indicating that these have potential as developmental toxicity screening systems. The results of these studies also provided reassurance that none of the Piperazines tested are likely to have any significant developmental and/or reproductive toxicity issues to humans when used in their commercial applications. Copyright © 2017. Published by Elsevier Ltd.

  5. BDE 49 and developmental toxicity in zebrafish

    PubMed Central

    McClain, Valerie; Stapleton, Heather M.; Gallagher, Evan

    2011-01-01

    The polybrominated diphenyl ethers (PBDEs) are a group of brominated flame retardants. Human health concerns of these agents have largely centered upon their potential to elicit reproductive and developmental effects. Of the various congeners, BDE 49 (2,2’,4,5’-tetrabromodiphenyl ether) has been poorly studied, despite the fact that it is often detected in the tissues of fish and wildlife species. Furthermore, we have previously shown that BDE 49 is a metabolic debromination product of BDE 99 hepatic metabolism in salmon, carp and trout, underscoring the need for a better understanding of biological effects. In the current study, we investigated the developmental toxicity of BDE 49 using the zebrafish (Danio rerio) embryo larval model. Embryo and larval zebrafish were exposed to BDE 49 at either 5 hours post fertilization (hpf) or 24 hpf and monitored for developmental and neurotoxicity. Exposure to BDE 49 at concentrations of 4 µM- 32 µM caused a dose-dependent loss in survivorship at 6 days post fertilization (dpf). Morphological impairments were observed prior to the onset of mortality, the most striking of which included severe dorsal curvatures of the tail. The incidence of dorsal tail curvatures was dose and time dependent. Exposure to BDE 49 caused cardiac toxicity as evidenced by a significant reduction in zebrafish heart rates at 6 dpf but not earlier, suggesting that cardiac toxicity was non-specific and associated with physiological stress. Neurobehavioral injury from BDE 49 was evidenced by an impairment of touch-escape responses observed at 5 dpf. Our results indicate that BDE 49 is a developmental toxicant in larval zebrafish that can cause morphological abnormalities and adversely affect neurobehavior. The observed toxicities from BDE 49 were similar in scope to those previously reported for the more common tetrabrominated congener, BDE 47, and also for other lower brominated PBDEs, suggest that these compounds may share similarities in risk to aquatic species. PMID:21951712

  6. Reproductive and Developmental Toxicity of Formaldehyde: A Systematic Review

    PubMed Central

    Duong, Anh; Steinmaus, Craig; McHale, Cliona M.; Vaughan, Charles P.; Zhang, Luoping

    2011-01-01

    Formaldehyde, the recently classified carcinogen and ubiquitous environmental contaminant, has long been suspected of causing adverse reproductive and developmental effects, but previous reviews were inconclusive, due in part, to limitations in the design of many of the human population studies. In the current review, we systematically evaluated evidence of an association between formaldehyde exposure and adverse reproductive and developmental effects, in human populations and in vivo animal studies, in the peer-reviewed literature. The mostly retrospective human studies provided evidence of an association of maternal exposure with adverse reproductive and developmental effects. Further assessment of this association by meta-analysis revealed an increased risk of spontaneous abortion (1.76, 95% CI 1.20–2.59, p=0.002) and of all adverse pregnancy outcomes combined (1.54, 95% CI 1.27–1.88, p<0.001), in formaldehyde-exposed women, although differential recall, selection bias, or confounding cannot be ruled out. Evaluation of the animal studies including all routes of exposure, doses and dosing regimens studied, suggested positive associations between formaldehyde exposure and reproductive toxicity, mostly in males. Potential mechanisms underlying formaldehyde-induced reproductive and developmental toxicities, including chromosome and DNA damage (genotoxicity), oxidative stress, altered level and/or function of enzymes, hormones and proteins, apoptosis, toxicogenomic and epigenomic effects (such as DNA methylation), were identified. To clarify these associations, well-designed molecular epidemiologic studies, that include quantitative exposure assessment and diminish confounding factors, should examine both reproductive and developmental outcomes associated with exposure in males and females. Together with mechanistic and animal studies, this will allow us to better understand the systemic effect of formaldehyde exposure. PMID:21787879

  7. Identifying developmental toxicity pathways for a subset of ToxCast chemicals using human embryonic stem cells and metabolomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleinstreuer, N.C., E-mail: kleinstreuer.nicole@epa.gov; Smith, A.M.; West, P.R.

    2011-11-15

    Metabolomics analysis was performed on the supernatant of human embryonic stem (hES) cell cultures exposed to a blinded subset of 11 chemicals selected from the chemical library of EPA's ToxCast Trade-Mark-Sign chemical screening and prioritization research project. Metabolites from hES cultures were evaluated for known and novel signatures that may be indicative of developmental toxicity. Significant fold changes in endogenous metabolites were detected for 83 putatively annotated mass features in response to the subset of ToxCast chemicals. The annotations were mapped to specific human metabolic pathways. This revealed strong effects on pathways for nicotinate and nicotinamide metabolism, pantothenate and CoAmore » biosynthesis, glutathione metabolism, and arginine and proline metabolism pathways. Predictivity for adverse outcomes in mammalian prenatal developmental toxicity studies used ToxRefDB and other sources of information, including Stemina Biomarker Discovery's predictive DevTox Registered-Sign model trained on 23 pharmaceutical agents of known developmental toxicity and differing potency. The model initially predicted developmental toxicity from the blinded ToxCast compounds in concordance with animal data with 73% accuracy. Retraining the model with data from the unblinded test compounds at one concentration level increased the predictive accuracy for the remaining concentrations to 83%. These preliminary results on a 11-chemical subset of the ToxCast chemical library indicate that metabolomics analysis of the hES secretome provides information valuable for predictive modeling and mechanistic understanding of mammalian developmental toxicity. -- Highlights: Black-Right-Pointing-Pointer We tested 11 environmental compounds in a hESC metabolomics platform. Black-Right-Pointing-Pointer Significant changes in secreted small molecule metabolites were observed. Black-Right-Pointing-Pointer Perturbed mass features map to pathways critical for normal development and pregnancy. Black-Right-Pointing-Pointer Arginine, proline, nicotinate, nicotinamide and glutathione pathways were affected.« less

  8. Developmental neurotoxic effects of Malathion on 3D neurosphere system

    PubMed Central

    Salama, Mohamed; Lotfy, Ahmed; Fathy, Khaled; Makar, Maria; El-emam, Mona; El-gamal, Aya; El-gamal, Mohamed; Badawy, Ahmad; Mohamed, Wael M.Y.; Sobh, Mohamed

    2015-01-01

    Developmental neurotoxicity (DNT) refers to the toxic effects induced by various chemicals on brain during the early childhood period. As human brains are vulnerable during this period, various chemicals would have significant effects on brains during early childhood. Some toxicants have been confirmed to induce developmental toxic effects on CNS; however, most of agents cannot be identified with certainty. This is because available animal models do not cover the whole spectrum of CNS developmental periods. A novel alternative method that can overcome most of the limitations of the conventional techniques is the use of 3D neurosphere system. This in-vitro system can recapitulate many of the changes during the period of brain development making it an ideal model for predicting developmental neurotoxic effects. In the present study we verified the possible DNT of Malathion, which is one of organophosphate pesticides with suggested possible neurotoxic effects on nursing children. Three doses of Malathion (0.25 μM, 1 μM and 10 μM) were used in cultured neurospheres for a period of 14 days. Malathion was found to affect proliferation, differentiation and viability of neurospheres, these effects were positively correlated to doses and time progress. This study confirms the DNT effects of Malathion on 3D neurosphere model. Further epidemiological studies will be needed to link these results to human exposure and effects data. PMID:27054080

  9. DOSIMETRY AND REPRODUCTIVE/DEVELOPMENTAL STUDY DESIGN AND INTERPRETATION FOR RISK OR SAFETY ASSESSMENT

    EPA Science Inventory

    Increasingly reproductive and developmental toxicity studies are utilized in assessing the potential for adverse affects in pregnant women, nursing infants, and children. These studies largely have been utilized based upon the dose to the mother due to the complexity of describin...

  10. Making Waves: New Developments in Toxicology With the Zebrafish.

    PubMed

    Horzmann, Katharine A; Freeman, Jennifer L

    2018-05-01

    The laboratory zebrafish (Danio rerio) is now an accepted model in toxicologic research. The zebrafish model fills a niche between in vitro models and mammalian biomedical models. The developmental characteristics of the small fish are strategically being used by scientists to study topics ranging from high-throughput toxicity screens to toxicity in multi- and transgenerational studies. High-throughput technology has increased the utility of zebrafish embryonic toxicity assays in screening of chemicals and drugs for toxicity or effect. Additionally, advances in behavioral characterization and experimental methodology allow for observation of recognizable phenotypic changes after xenobiotic exposure. Future directions in zebrafish research are predicted to take advantage of CRISPR-Cas9 genome editing methods in creating models of disease and interrogating mechanisms of action with fluorescent reporters or tagged proteins. Zebrafish can also model developmental origins of health and disease and multi- and transgenerational toxicity. The zebrafish has many advantages as a toxicologic model and new methodologies and areas of study continue to expand the usefulness and application of the zebrafish.

  11. Developmental toxicity study of sodium molybdate dihydrate administered in the diet to Sprague Dawley rats.

    PubMed

    Jay Murray, F; Tyl, Rochelle W; Sullivan, Frank M; Tiwary, Asheesh K; Carey, Sandra

    2014-11-01

    Molybdenum is an essential nutrient for humans and animals and is a constituent of several important oxidase enzymes. It is normally absorbed from the diet and to a lesser extent from drinking water and the typical human intake is around 2μg/kg bodyweight per day. No developmental toxicity studies to contemporary standards have been published and regulatory decisions have been based primarily on older studies where the nature of the test material, or the actual dose levels consumed is uncertain. In the current study the developmental toxicity of sodium molybdate dihydrate as a representative of a broad class of soluble molybdenum(VI) compounds, was given in the diet to Sprague Dawley rats in accordance with OECD Test Guideline 414. Dose levels of 0, 3, 10, 20 and 40mgMo/kgbw/day were administered from GD6 to GD20. No adverse effects were observed at any dose level on the dams, or on embryofetal survival, fetal bodyweight, or development, with no increase in malformations or variations. Significant increases in serum and tissue copper levels were observed but no toxicity related to these was observed. The NOAEL observed in this study was 40mgMo/kgbw/day, the highest dose tested. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Identifying Toxicity Pathways with ToxCast High-Throughput Screening and Applications to Predicting Developmental Toxicity

    EPA Science Inventory

    Results from rodent and non-rodent prenatal developmental toxicity tests for over 300 chemicals have been curated into the relational database ToxRefDB. These same chemicals have been run in concentration-response format through over 500 high-throughput screening assays assessin...

  13. Toxicity Screening of the ToxCast Chemical Library Using a Zebrafish Developmental Assay

    EPA Science Inventory

    As part of the chemical screening and prioritization research program of the U.S. Environmental Protection Agency, the toxicity of the 320 ToxCast™ Phase I chemicals were assessed using a vertebrate screen of developmental toxicity. Zebrafish embryos/larvae (Danio rerio) were exp...

  14. DEVELOPMENTAL TOXICITY OF TCDD AND RELATED COMPOUNDS: SENSITIVITIES AND DIFFERENCES

    EPA Science Inventory

    The issue of the developmental toxicity of 2,3,7,8-tetrachloro-dibenzo-p-dioxin (TCDD) and related compounds has been the subject of two recent reviews (Morrissey and Schwetz, 1989; Couture et al., 1990a). here is little doubt that TCDD is one of the most potent developmental tox...

  15. Gene knockdown by morpholino-modified oligonucleotides in the zebrafish (Danio rerio) model: applications for developmental toxicology.

    PubMed

    Timme-Laragy, Alicia R; Karchner, Sibel I; Hahn, Mark E

    2012-01-01

    The zebrafish (Danio rerio) has long been used as a model for developmental biology, making it an excellent model to use also in developmental toxicology. The many advantages of zebrafish include their small size, prolific spawning, rapid development, and transparent embryos. They can be easily manipulated genetically through the use of transgenic technology and gene knockdown via morpholino-modified antisense oligonucleotides (MOs). Knocking down specific genes to assess their role in the response to toxicant exposure provides a way to further our knowledge of how developmental toxicants work on a molecular and mechanistic level while establishing a relationship between these molecular events and morphological, behavioral, and/or physiological effects (i.e., phenotypic anchoring). In this chapter, we address important considerations for using MOs to study developmental toxicology in zebrafish embryos and provide a protocol for their use.

  16. Gene knockdown by morpholino-modified oligonucleotides in the zebrafish model: applications for developmental toxicology

    PubMed Central

    Timme-Laragy, Alicia R.; Karchner, Sibel I.; Hahn, Mark E.

    2014-01-01

    Summary The zebrafish (Danio rerio) has long been used as a model for developmental biology, making it an excellent model to use also in developmental toxicology. The many advantages of zebrafish include their small size, prolific spawning, rapid development, and transparent embryos. They can be easily manipulated genetically through the use of transgenic technology and gene knock-down via morpholino-modified antisense oligonucleotides (MOs). Knocking down specific genes to assess their role in the response to toxicant exposure provides a way to further our knowledge of how developmental toxicants work on a molecular and mechanistic level, while establishing a relationship between these molecular events and morphological, behavioral, and/or physiological effects (i.e. phenotypic anchoring). In this chapter we address important considerations for using MOs to study developmental toxicology in zebrafish embryos and provide a protocol for their use. PMID:22669659

  17. DEVELOPMENT OF A PHYSIOLOGICALLY BASED PHARMACOKINETIC MODEL FOR ETHYLENE GLYCOL AND ITS MAJOR METABOLITE, GLYCOLIC ACID, IN RATS AND HUMANS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corley, Rick A.; Bartels, M J.; Carney, E W.

    2005-05-19

    An extensive database on the toxicity and modes of action of the major industrial chemical, ethylene glycol (EG), has been developed over the past several decades. These studies have consistently identified the kidney as a primary target organ, with rats being more sensitive than mice and males more sensitive than females following chronic exposure. Renal toxicity has been associated with the terminal metabolite, oxalic acid which can precipitate with calcium to form crystals. EG also induces developmental toxicity, although these effects appear to require high-doses or accelerated dose-rates, and have been reported only in rats and mice. The developmental toxicitymore » of EG has been attributed to the intermediate metabolite, glycolic acid (GA). The developmental toxicity of EG has been the subject of extensive research and regulatory review in recent years. Therefore, a physiologically based pharmacokinetic (PBPK) model was developed to integrate the extensive mode of action and pharmacokinetic data on EG and GA for use in developmental risk assessment. Metabolic rate constants and partition coefficients for EG and GA were estimated from in vitro studies. Other biochemical constants were optimized from appropriate in vivo pharmacokinetic studies. The resulting PBPK model includes inhalation, oral, dermal, intravenous and subcutaneous routes of administration. Metabolism of EG and GA were described in the liver with elimination via the kidneys. Several rat and human metabolism studies were used to validate the resulting PBPK model. Consistent with these studies, simulations indicated that the metabolism of EG to GA was essentially first-order (linear) up to 2500 mg/kg/day while the metabolism of GA saturated between bolus ethylene glycol doses of 200 and 1000 mg/kg/day. This saturation results in non-linear increases in blood GA concentrations, correlating with the developmental toxicity of EG. Pregnancy had no effect on maternal EG and GA kinetics over a broad dose range. The human PBPK model was validated against a large database of human clinical case reports in a companion study (Corley and McMartin, 2004) where the impacts of treatment and a comparison of internal dose surrogates for human health risk assessments were conducted.« less

  18. Systematic developmental neurotoxicity assessment of a representative PAH Superfund mixture using zebrafish

    DOE PAGES

    Geier, Mitra C.; James Minick, D.; Truong, Lisa; ...

    2018-04-01

    Superfund sites often consist of complex mixtures of polycyclic aromatic hydrocarbons (PAHs). It is widely recognized that PAHs pose risks to human and environmental health, but the risks posed by exposure to PAH mixtures are unclear. Here, we constructed an environmentally relevant PAH mixture with the top 10 most prevalent PAHs (SM10) from a Superfund site derived from environmental passive sampling data. Using the zebrafish model, we measured body burden at 48 hours post fertilization (hpf) and evaluated the developmental and neurotoxicity of SM10 and the 10 individual constituents at 24 hours post fertilization (hpf) and 5 days post fertilizationmore » (dpf). Zebrafish embryos were exposed from 6 to 120 hpf to (1) the SM10 mixture, (2) a variety of individual PAHs: pyrene, fluoranthene, retene, benzo[a]anthracene, chrysene, naphthalene, acenaphthene, phenanthrene, fluorene, and 2-methylnaphthalene. We demonstrated that SM10 and only 3 of the individual PAHs were developmentally toxic. Subsequently, we constructed and exposed developing zebrafish to two sub-mixtures: SM3 (comprised of 3 of the developmentally toxicity PAHs) and SM7 (7 non-developmentally toxic PAHs). We found that the SM3 toxicity profile was similar to SM10, and SM7 unexpectedly elicited developmental toxicity unlike that seen with its individual components. The results demonstrated that the overall developmental toxicity in the mixtures could be explained using the general concentration addition model. To determine if exposures activated the AHR pathway, spatial expression of CYP1A was evaluated in the 10 individual PAHs and the 3 mixtures at 5 dpf. Results showed activation of AHR in the liver and vasculature for the mixtures and some individual PAHs. Embryos exposed to SM10 during development and raised in chemical-free water into adulthood exhibited decreased learning and responses to startle stimulus indicating that developmental SM10 exposures affect neurobehavior. Collectively, these results exemplify the utility of zebrafish to investigate the developmental and neurotoxicity of complex mixtures.« less

  19. Systematic developmental neurotoxicity assessment of a representative PAH Superfund mixture using zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geier, Mitra C.; James Minick, D.; Truong, Lisa

    Superfund sites often consist of complex mixtures of polycyclic aromatic hydrocarbons (PAHs). It is widely recognized that PAHs pose risks to human and environmental health, but the risks posed by exposure to PAH mixtures are unclear. Here, we constructed an environmentally relevant PAH mixture with the top 10 most prevalent PAHs (SM10) from a Superfund site derived from environmental passive sampling data. Using the zebrafish model, we measured body burden at 48 hours post fertilization (hpf) and evaluated the developmental and neurotoxicity of SM10 and the 10 individual constituents at 24 hours post fertilization (hpf) and 5 days post fertilizationmore » (dpf). Zebrafish embryos were exposed from 6 to 120 hpf to (1) the SM10 mixture, (2) a variety of individual PAHs: pyrene, fluoranthene, retene, benzo[a]anthracene, chrysene, naphthalene, acenaphthene, phenanthrene, fluorene, and 2-methylnaphthalene. We demonstrated that SM10 and only 3 of the individual PAHs were developmentally toxic. Subsequently, we constructed and exposed developing zebrafish to two sub-mixtures: SM3 (comprised of 3 of the developmentally toxicity PAHs) and SM7 (7 non-developmentally toxic PAHs). We found that the SM3 toxicity profile was similar to SM10, and SM7 unexpectedly elicited developmental toxicity unlike that seen with its individual components. The results demonstrated that the overall developmental toxicity in the mixtures could be explained using the general concentration addition model. To determine if exposures activated the AHR pathway, spatial expression of CYP1A was evaluated in the 10 individual PAHs and the 3 mixtures at 5 dpf. Results showed activation of AHR in the liver and vasculature for the mixtures and some individual PAHs. Embryos exposed to SM10 during development and raised in chemical-free water into adulthood exhibited decreased learning and responses to startle stimulus indicating that developmental SM10 exposures affect neurobehavior. Collectively, these results exemplify the utility of zebrafish to investigate the developmental and neurotoxicity of complex mixtures.« less

  20. A risk assessment of topical tretinoin as a potential human developmental toxin based on animal and comparative human data.

    PubMed

    Johnson, E M

    1997-03-01

    Although topically applied all-trans-retinoic acid (tretinoin) undergoes minimal absorption and adds negligibly to normal endogenous levels, its safety in humans is occasionally questioned because oral ingestion of retinoids at therapeutic levels is known to entail teratogenic risks. To assess the actual potential for developmental toxicity from treatment with topical tretinoin. Risk assessments were conducted on four known human developmental toxicants (valproic acid, methotrexate, thalidomide, and isotretinoin) and a potential developmental toxicant (acetylsalicylic acid). The margin of safety for each chemical was calculated from the ratio of animal no-observed adverse effect levels to human lowest-observed adverse effect levels or estimated exposure doses. The derived safety margin of more than 100 for topical tretinoin (with 2% absorption) contrasted sharply with the near unity values for valproic acid, methotrexate, thalidomide, and isotretinoin and was larger than that for acetylsalicylic acid. These data support other epidemiologic and animal data that topical tretinoin is not a potential human developmental toxicant.

  1. Application of Targeted Functional Assays to Assess a Putative Vascular Disruption Developmental Toxicity Pathway Informed By ToxCast High-Throughput Screening Data

    EPA Science Inventory

    Chemical perturbation of vascular development is a putative toxicity pathway which may result in developmental toxicity. EPA’s high-throughput screening (HTS) ToxCast program contains assays which measure cellular signals and biological processes critical for blood vessel develop...

  2. 77 FR 13502 - Pyriofenone; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ... developmental study as an endpoint for assessing acute dietary risk. Typically, abortions observed early in the pregnancy in a developmental toxicity study are assumed to be attributable to a single exposure and thus... Agriculture (USDA) 1994-1996 and 1998 Nationwide Continuing Surveys of Food Intakes by Individuals (CSFII). As...

  3. Comparison of rat and rabbit embryo-fetal developmental toxicity data for 379 pharmaceuticals: on the nature and severity of developmental effects (Critical Reviews in Toxicology)

    EPA Science Inventory

    Regulatory non-clinical safety testing of human pharmaceutical compounds typically requires embryo fetal developmental toxicity (EFDT) testing in two species, (one rodent and one non-rodent, usually the rat and the rabbit). The question has been raised whether under some conditio...

  4. Investigation of repeated dose (90 day) oral toxicity, reproductive/developmental toxicity and mutagenic potential of 'Calebin A'.

    PubMed

    Majeed, Muhammed; Nagabhushanam, Kalyanam; Natarajan, Sankaran; Bani, Sarang; Pandey, Anjali; Karri, Suresh Kumar

    2015-01-01

    The present work investigated repeated dose and reproductive toxicity of Calebin A in Wistar rats. A study for assessing the mutagenic potential of Calebin A through an AMES test is also described. Calebin A was orally administered to groups of 10 male and/or 10 female Wistar rats each, assigned to three dose levels (20, 50 and 100 mg/kg/body weight) once daily for 90 consecutive days. None of the animals in any of the treatment/control groups exhibited any abnormal clinical signs/behavioral changes, reproductive as well as developmental parameters, or gross and microscopic changes in both male and female rats. Calebin A was also evaluated for its ability to induce reverse mutations at selected loci of Salmonella typhimurium in the presence and absence of Aroclor 1254 induced rat liver S9 cell lines. In conclusion, 100 mg/kg/d of Calebin A is not likely to produce any significant toxic effects in male and female Wistar rats and no reproductive or developmental toxicity was observed at the same dose and hence Calebin A at 100 mg/kg was determined as "No Observed Adverse Effect Level (NOAEL)" under the test conditions.

  5. Developmental Neurotoxicity of Pyrethroid Insecticides: Critical Review and Future Research Needs

    PubMed Central

    Shafer, Timothy J.; Meyer, Douglas A.; Crofton, Kevin M.

    2005-01-01

    Pyrethroid insecticides have been used for more than 40 years and account for 25% of the worldwide insecticide market. Although their acute neurotoxicity to adults has been well characterized, information regarding the potential developmental neurotoxicity of this class of compounds is limited. There is a large age dependence to the acute toxicity of pyrethroids in which neonatal rats are at least an order of magnitude more sensitive than adults to two pyrethroids. There is no information on age-dependent toxicity for most pyrethroids. In the present review we examine the scientific data related to potential for age-dependent and developmental neurotoxicity of pyrethroids. As a basis for understanding this neurotoxicity, we discuss the heterogeneity and ontogeny of voltage-sensitive sodium channels, a primary neuronal target of pyrethroids. We also summarize 22 studies of the developmental neurotoxicity of pyrethroids and review the strengths and limitations of these studies. These studies examined numerous end points, with changes in motor activity and muscarinic acetylcholine receptor density the most common. Many of the developmental neurotoxicity studies suffer from inadequate study design, problematic statistical analyses, use of formulated products, and/or inadequate controls. These factors confound interpretation of results. To better understand the potential for developmental exposure to pyrethroids to cause neurotoxicity, additional, well-designed and well-executed developmental neurotoxicity studies are needed. These studies should employ state-of-the-science methods to promote a greater understanding of the mode of action of pyrethroids in the developing nervous system. PMID:15687048

  6. Developmental neurotoxicity of pyrethroid insecticides: critical review and future research needs.

    PubMed

    Shafer, Timothy J; Meyer, Douglas A; Crofton, Kevin M

    2005-02-01

    Pyrethroid insecticides have been used for more than 40 years and account for 25% of the worldwide insecticide market. Although their acute neurotoxicity to adults has been well characterized, information regarding the potential developmental neurotoxicity of this class of compounds is limited. There is a large age dependence to the acute toxicity of pyrethroids in which neonatal rats are at least an order of magnitude more sensitive than adults to two pyrethroids. There is no information on age-dependent toxicity for most pyrethroids. In the present review we examine the scientific data related to potential for age-dependent and developmental neurotoxicity of pyrethroids. As a basis for understanding this neurotoxicity, we discuss the heterogeneity and ontogeny of voltage-sensitive sodium channels, a primary neuronal target of pyrethroids. We also summarize 22 studies of the developmental neurotoxicity of pyrethroids and review the strengths and limitations of these studies. These studies examined numerous end points, with changes in motor activity and muscarinic acetylcholine receptor density the most common. Many of the developmental neurotoxicity studies suffer from inadequate study design, problematic statistical analyses, use of formulated products, and/or inadequate controls. These factors confound interpretation of results. To better understand the potential for developmental exposure to pyrethroids to cause neurotoxicity, additional, well-designed and well-executed developmental neurotoxicity studies are needed. These studies should employ state-of-the-science methods to promote a greater understanding of the mode of action of pyrethroids in the developing nervous system.

  7. Computational Modeling and Simulation of Developmental Toxicity (EuroTox 2016)

    EPA Science Inventory

    Standard practice for assessing developmental toxicity is the observation of apical endpoints (intrauterine death, fetal growth retardation, structural malformations) in pregnant rats/rabbits following exposure during organogenesis. EPA’s computational toxicology research program...

  8. Maternally Mediated Developmental Toxicity

    EPA Science Inventory

    The current practice for the assessment of an agent’s potential effects on the developing embryo/fetus includes administration of high, maternally toxic doses to pregnant laboratory animals. For most agents evaluated, developmental effects occur concomitant with maternal to...

  9. Safety and side effects of ayahuasca in humans--an overview focusing on developmental toxicology.

    PubMed

    dos Santos, Rafael Guimarães

    2013-01-01

    Despite being relatively well studied from a botanical, chemical, and (acute) pharmacological perspective, little is known about the possible toxic effects of ayahuasca (an hallucinogenic brew used for magico-ritual purposes) in pregnant women and in their children, and the potential toxicity of long-term ayahuasca consumption. It is the main objective of the present text to do an overview of the risks and possible toxic effects of ayahuasca in humans, reviewing studies on the acute ayahuasca administration to humans, on the possible risks associated with long-term consumption by adults and adolescents, and on the possible toxic effects on pregnant animals and in their offspring. Acute ayahuasca administration, as well as long-term consumption of this beverage, does not seem to be seriously toxic to humans. Although some nonhuman developmental studies suggested possible toxic effects of ayahuasca or of some of its alkaloids, the limited human literature on adolescents exposed to ayahuasca as early as in the uterus reports no serious toxic effects of the ritual consumption of the brew. Researchers must take caution when extrapolating nonhuman data to humans and more data are needed in basic and human research before a definite opinion can be made regarding the possible toxic effects of ayahuasca in pregnant women and in their children.

  10. CELLULAR, BIOCHEMICAL, AND MOLECULAR TECHNIQUES IN DEVELOPMENTAL TOXICOLOGY

    EPA Science Inventory

    Cellular, molecular and biochemical approaches vastly expand the possibilities for revealing the underlying mechanisms of developmental toxicity. The increasing interest in embryonic development as a model system for the study of gene expression has resulted in a cornucopia of i...

  11. Virtual Embryo: Systems Modeling in Developmental Toxicity

    EPA Science Inventory

    High-throughput screening (HTS) studies are providing a rich source of data that can be applied to chemical profiling to address sensitivity and specificity of molecular targets, biological pathways, cellular and developmental processes. EPA’s ToxCast project is testing 960 uniq...

  12. Relative sensitivity of developmental and immune parameters in juvenile versus adult male rats after exposure to di(2-ethylhexyl) phthalate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonk, Elisa C.M., E-mail: ilse.tonk@rivm.nl; Laboratory for Health Protection Research, National Institute for Public Health and the Environment; Verhoef, Aart

    The developing immune system displays a relatively high sensitivity as compared to both general toxicity parameters and to the adult immune system. In this study we have performed such comparisons using di(2-ethylhexyl) phthalate (DEHP) as a model compound. DEHP is the most abundant phthalate in the environment and perinatal exposure to DEHP has been shown to disrupt male sexual differentiation. In addition, phthalate exposure has been associated with immune dysfunction as evidenced by effects on the expression of allergy. Male wistar rats were dosed with corn oil or DEHP by gavage from postnatal day (PND) 10–50 or PND 50–90 atmore » doses between 1 and 1000 mg/kg/day. Androgen-dependent organ weights showed effects at lower dose levels in juvenile versus adult animals. Immune parameters affected included TDAR parameters in both age groups, NK activity in juvenile animals and TNF-α production by adherent splenocytes in adult animals. Immune parameters were affected at lower dose levels compared to developmental parameters. Overall, more immune parameters were affected in juvenile animals compared to adult animals and effects were observed at lower dose levels. The results of this study show a relatively higher sensitivity of juvenile versus adult rats. Furthermore, they illustrate the relative sensitivity of the developing immune system in juvenile animals as compared to general toxicity and developmental parameters. This study therefore provides further argumentation for performing dedicated developmental immune toxicity testing as a default in regulatory toxicology. -- Highlights: ► In this study we evaluate the relative sensitivities for DEHP induced effects. ► Results of this study demonstrate the age-dependency of DEHP toxicity. ► Functional immune parameters were more sensitive than structural immune parameters. ► Immune parameters were affected at lower dose levels than developmental parameters. ► Findings demonstrate the susceptibility of the developing immune system for DEHP.« less

  13. In honor of the Teratology Society's 50th anniversary: The role of Teratology Society members in the development and evolution of in vivo developmental toxicity test guidelines.

    PubMed

    Tyl, Rochelle W

    2010-06-01

    Members of the Teratology Society (established in 1960) were involved in the first governmental developmental and reproductive toxicity testing guidelines (1966) by FDA following the thalidomide epidemic, followed by other national and international governmental testing guidelines. The Segment II (developmental toxicity) study design, described in rodents and rabbits, has evolved with additional enhanced endpoints and better descriptions, mechanistic insights, range-finding studies, and toxico/pharmacokinetic ADME information (especially for pharmaceuticals). Society members were also involved in the development of the current screening assays and tests for endocrine disruptors (beginning in 1996) and are now involved with developing new testing guidelines (e.g., the extended one-generation protocol), and evaluating the current test guidelines and new initiatives under ILSI/HESI sponsorship. New initiatives include ToxCast from the U.S. EPA to screen, prioritize, and predict toxic chemicals by high throughput and high-content in vitro assays, bioinformation, and modeling to reduce (or eliminate) in vivo whole animal studies. Our Society and its journal have played vital roles in the scientific and regulatory accomplishments in birth defects research over the past 50 years and will continue to do so in the future. Happy 50th anniversary! (c) 2010 Wiley-Liss, Inc.

  14. The relationship of maternal and fetal toxicity in developmental toxicology bioassays with notes on the biological significance of the "no observed adverse effect level".

    EPA Science Inventory

    Standard developmental toxicology bioassays are designed to identify agents with the potential to induce adverse effects and include dose levels that induce maternal toxicity. The work reported here was undertaken to evaluate the relationship of maternal and fetal toxicity. It co...

  15. Development and Evaluation of Reproductive and Developmental Toxicity Tests for Assessing the Hazards of Environmental Contaminants

    DTIC Science & Technology

    1997-08-01

    AL/EQ-TR-1997-0050 DEVELOPMENT AND EVALUATION OF REPRODUCTIVE AND DEVELOPMENT TOXICITY TESTS FOR ASSESSING THE HAZARDS OF ENVIRONMENTAL...SUBTITLE Development and Evaluation of Reproductive and Developmental Toxicity Tests for Assessing the Hazards of Environmental Contaminants 6...pd in testing toxicity in surface waters, ground waters and H- ™t™j£J^^^M hazard assessment when used in conjunction in sediments. FETAX can be usea

  16. Hazard-Ranking of Agricultural Pesticides for Chronic Health Effects in Yuma County, Arizona

    PubMed Central

    Sugeng, Anastasia J.; Beamer, Paloma I.; Lutz, Eric A.; Rosales, Cecilia B.

    2013-01-01

    With thousands of pesticides registered by the United States Environmental Protection Agency, it not feasible to sample for all pesticides applied in agricultural communities. Hazard-ranking pesticides based on use, toxicity, and exposure potential can help prioritize community-specific pesticide hazards. This study applied hazard-ranking schemes for cancer, endocrine disruption, and reproductive/developmental toxicity in Yuma County, Arizona. An existing cancer hazard-ranking scheme was modified, and novel schemes for endocrine disruption and reproductive/developmental toxicity were developed to rank pesticide hazards. The hazard-ranking schemes accounted for pesticide use, toxicity, and exposure potential based on chemical properties of each pesticide. Pesticides were ranked as hazards with respect to each health effect, as well as overall chronic health effects. The highest hazard-ranked pesticides for overall chronic health effects were maneb, metam sodium, trifluralin, pronamide, and bifenthrin. The relative pesticide rankings were unique for each health effect. The highest hazard-ranked pesticides differed from those most heavily applied, as well as from those previously detected in Yuma homes over a decade ago. The most hazardous pesticides for cancer in Yuma County, Arizona were also different from a previous hazard-ranking applied in California. Hazard-ranking schemes that take into account pesticide use, toxicity, and exposure potential can help prioritize pesticides of greatest health risk in agricultural communities. This study is the first to provide pesticide hazard-rankings for endocrine disruption and reproductive/developmental toxicity based on use, toxicity, and exposure potential. These hazard-ranking schemes can be applied to other agricultural communities for prioritizing community-specific pesticide hazards to target decreasing health risk. PMID:23783270

  17. PPAR involvement in PFAA developmental toxicity

    EPA Science Inventory

    Perfluoroalkyl acids (PFAAs) are found in the environment and in serum of wildlife and humans. Perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorooctane sulfonate (PFOS) are developmentally toxic in rodents. The effects of in utero exposure include increas...

  18. The Texas-Indiana Virtual STAR Center: Zebrafish Models for Developmental Toxicity Screening

    EPA Pesticide Factsheets

    The Texas-Indiana Virtual STAR Center: Zebrafish Models for Developmental Toxicity Screening (Presented by Maria Bondesson Bolin, Ph.D, University of Houston, Center for Nuclear Receptors and Cell Signaling) (3/22/2012)

  19. CHEMICAL PRIORITIZATION FOR DEVELOPMENTAL ...

    EPA Pesticide Factsheets

    Defining a predictive model of developmental toxicity from in vitro and high-throughput screening (HTS) assays can be limited by the availability of developmental defects data. ToxRefDB (www.epa.gov/ncct/todrefdb) was built from animal studies on data-rich environmental chemicals, and has been used as an anchor for predictive modeling of ToxCast™ data. Scaling to thousands of untested chemicals requires another approach. ToxPlorer™ was developed as a tool to query and extract specific facts about defined biological entities from the open scientific literature and to coherently synthesize relevant knowledge about relationships, pathways and processes in toxicity. Here, we investigated the specific application of ToxPlorer to weighting HTS assay targets for relevance to developmental defects as defined in the literature. First, we systemically analyzed 88,193 Pubmed abstracts selected by bulk query using harmonized terminology for 862 developmental endpoints (www.devtox.net) and 364,334 dictionary term entities in our VT-KB (virtual tissues knowledgebase). We specifically focused on entities corresponding to genes/proteins mapped across of >500 ToxCast HTS assays. The 88,193 devtox abstracts mentioned 244 gene/protein entities in an aggregated total of ~8,000 occurrences. Each of the 244 assays was scored and weighted by the number of devtox articles and relevance to developmental processes. This score was used as a feature for chemical prioritization by Toxic

  20. Developmental toxicity and alteration of gene expression in zebrafish embryos exposed to PFOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi Xiongjie; Graduate School of the Chinese Academy of Sciences, Beijing 100039; Du Yongbing

    2008-07-01

    Perfluorooctanesulfonate (PFOS) is a persistent organic pollutant, the potential toxicity of which is causing great concern. In the present study, we employed zebrafish embryos to investigate the developmental toxicity of this compound. Four-hour post-fertilization (hpf) zebrafish embryos were exposed to 0.1, 0.5, 1, 3 and 5 mg/L PFOS. Hatching was delayed and hatching rates as well as larval survivorship were significantly reduced after the embryos were exposed to 1, 3 and 5 mg/L PFOS until 132 hpf. The fry displayed gross developmental malformations, including epiboly deformities, hypopigmentation, yolk sac edema, tail and heart malformations and spinal curvature upon exposure tomore » PFOS concentrations of 1 mg/L or greater. Growth (body length) was significantly reduced in the 3 and 5 mg/L PFOS-treated groups. To test whether developmental malformation was mediated via apoptosis, flow cytometry analysis of DNA content, acridine orange staining and TUNEL assay was used. These techniques indicated that more apoptotic cells were present in the PFOS-treated embryos than in the control embryos. Certain genes related to cell apoptosis, p53 and Bax, were both significantly up-regulated upon exposure to all the concentrations tested. In addition, we investigated the effects of PFOS on marker genes related to early thyroid development (hhex and pax8) and genes regulating the balance of androgens and estrogens (cyp19a and cyp19b). For thyroid development, the expression of hhex was significantly up-regulated at all concentrations tested, whereas pax8 expression was significantly up-regulated only upon exposure to lower concentrations of PFOS (0.1, 0.5, 1 mg/L). The expression of cyp19a and of cyp19b was significantly down-regulated at all exposure concentrations. The overall results indicated that zebrafish embryos constitute a reliable model for testing the developmental toxicity of PFOS, and the gene expression patterns in the embryos were able to reveal some potential mechanisms of developmental toxicity.« less

  1. Reproductive and developmental toxicity of the components of gasoline.

    PubMed Central

    Skalko, R G

    1993-01-01

    The reproductive, developmental, and postnatal toxicity of 14 select chemicals and mixtures that are components of gasoline has been reviewed. The majority of experimental analyses have been performed as either variations of the accepted segment 2 protocol or as traditional teratology studies. Specific deficiencies in the present database have been identified and are most obvious in the evaluation of reproductive and postnatal effects. It is recommended that future studies address the continuing need for assessment in multiple species and over a range of dosages with specific emphasis on the impact of route of administration on the results obtained. PMID:8020438

  2. Research Models in Developmental Behavioral Toxicology.

    ERIC Educational Resources Information Center

    Dietrich, Kim N.; Pearson, Douglas T.

    Developmental models currently used by child behavioral toxicologists and teratologists are inadequate to address current issues in these fields. Both child behavioral teratology and toxicology scientifically study the impact of exposure to toxic agents on behavior development: teratology focuses on prenatal exposure and postnatal behavior…

  3. THE CYANOBACTERIAL TOXIN, CYLINDROSPERMOPSIN, INDUCES FETAL TOXICITY IN THE MOUSE AFTER EXPOSURE LATE IN GESTATION

    EPA Science Inventory

    Cylindrospermopsin (cyn) is a cyanobacterial toxin implicated in human and wildlife poisonings. We have completed studies investigating the potential of purified cyn to induce developmental toxicity in mammals. The teratology study involved intraperitoneal injections (8.0¿128ug/k...

  4. Comparing rat and rabbit embryo-fetal developmental toxicity ...

    EPA Pesticide Factsheets

    A database of embryo-fetal developmental toxicity (EFDT) studies of 379 pharmaceutical compounds in rat and rabbit was analyzed for species differences based on toxicokinetic parameters of area under the curve (AUC) and maximum concentration (Cmax) at the developmental adverse effect level (dLOAEL). For the vast majority of cases (83% based on AUC of n=283), dLOAELs in rats and rabbits were within the same order of magnitude (less than 10-fold different) when compared based on available data on AUC and Cmax exposures. For 13.5% of the compounds the rabbit was more sensitive and for 3.5% of compounds the rat was more sensitive when compared based on AUC exposures. For 12% of the compounds the rabbit was more sensitive and for 1.3% of compounds the rat was more sensitive based on Cmax exposures. When evaluated based on human equivalent dose (HED) conversion using standard factors, the rat and rabbit were equally sensitive. The relative extent of embryo-fetal toxicity in the presence of maternal toxicity was not different between species. Overall effect severity incidences were distributed similarly in rat and rabbit studies. Individual rat and rabbit strains did not show a different general distribution of systemic exposure LOAELs as compared to all strains combined for each species. There were no apparent species differences in the occurrence of embryo-fetal variations. Based on power of detection and given differences in the nature of developmental effects betwe

  5. Inhalation developmental toxicology studies: Teratology study of n-hexane in mice: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mast, T.J.; Decker, J.R.; Stoney, K.H.

    Gestational exposure to n-hexane resulted in an increase in the number of resorbed fetuses for exposure groups relative to the control group; however, the increases were not directly correlated to exposure concentration. The differences were statistically significant for the 200-ppM with respect to total intrauterine death (early plus late resorptions), and with respect to late resorptions for the 5000-ppM group. A small, but statistically significant, reduction in female (but not male) fetal body weight relative to the control group was observed at the 5000-ppM exposure level. There were no exposure-related increases in any individual fetal malformation or variation, nor wasmore » there any increase in the incidence of combined malformations or variations. Gestational exposure of CD-1 mice to n-hexane vapors appeared to cause a degree of concentration-related developmental toxicity in the absence of overt maternal toxicity, but the test material was not found to be teratogenic. This developmental toxicity was manifested as an increase in the number of resorptions per litter for all exposure levels, and as a decrease in the uterine: extra-gestational weight gain ratio at the 5000-ppM exposure level. Because of the significant increase in the number of resorptions at the 200-ppM exposure level, a no observable effect level (NOEL) for developmental toxicity was not established for exposure of mice to 200, 1000 or 5000-ppM n-hexane vapors. 21 refs., 3 figs., 9 tabs.« less

  6. The CAESAR models for developmental toxicity

    EPA Science Inventory

    The new REACH legislation requires assessment of a high number of chemicals in the European market for several endpoints. Developmental Toxicity results amongst the most difficult endpoint to assess, due to the complexity, length and costs of experiments. Following the encouragem...

  7. TOWARDS REFINED USE OF TOXICITY DATA IN ...

    EPA Pesticide Factsheets

    In 2003, an International Life Sciences Institute (ILSI) Working Group examined the potential of statistically based structure-activity relationship (SAR) models for use in screening environmental contaminants for possible developmental toxicants. In 2003, an International Life Sciences Institute (ILSI) Working Group examined the potential of statistically based structure-activity relationship (SAR) models for use in screening environmental contaminants for possible developmental toxicants.

  8. New isocoumarins from a cold-adapted fungal strain mucor sp. and their developmental toxicity to zebrafish embryos.

    PubMed

    Feng, Chun-Chi; Chen, Guo-Dong; Zhao, Yan-Qiu; Xin, Sheng-Chang; Li, Song; Tang, Jin-Shan; Li, Xiao-Xia; Hu, Dan; Liu, Xing-Zhong; Gao, Hao

    2014-07-01

    Three new isocoumarin derivatives, mucorisocoumarins A-C (1-3, resp.), together with seven known compounds, 4-10, were isolated from the cold-adapted fungal strain Mucor sp. (No. XJ07027-5). The structures of the new compounds were identified by detailed IR, MS, and 1D- and 2D-NMR analyses. It was noteworthy that compounds 1, 2, 4, and 5 were successfully resolved by chiral HPLC, indicating that 1-7 should exist as enantiomers. In an embryonic developmental toxicity assay using a zebrafish model, compound 3 produced developmental abnormalities in the zebrafish embryos. This is the first report of isocoumarins with developmental toxicity to zebrafish embryos. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.

  9. Systematic developmental neurotoxicity assessment of a representative PAH Superfund mixture using zebrafish.

    PubMed

    Geier, Mitra C; James Minick, D; Truong, Lisa; Tilton, Susan; Pande, Paritosh; Anderson, Kim A; Teeguardan, Justin; Tanguay, Robert L

    2018-04-06

    Superfund sites often consist of complex mixtures of polycyclic aromatic hydrocarbons (PAHs). It is widely recognized that PAHs pose risks to human and environmental health, but the risks posed by exposure to PAH mixtures are unclear. We constructed an environmentally relevant PAH mixture with the top 10 most prevalent PAHs (SM10) from a Superfund site derived from environmental passive sampling data. Using the zebrafish model, we measured body burden at 48 hours post fertilization (hpf) and evaluated the developmental and neurotoxicity of SM10 and the 10 individual constituents at 24 hours post fertilization (hpf) and 5 days post fertilization (dpf). Zebrafish embryos were exposed from 6 to 120 hpf to (1) the SM10 mixture, (2) a variety of individual PAHs: pyrene, fluoranthene, retene, benzo[a]anthracene, chrysene, naphthalene, acenaphthene, phenanthrene, fluorene, and 2-methylnaphthalene. We demonstrated that SM10 and only 3 of the individual PAHs were developmentally toxic. Subsequently, we constructed and exposed developing zebrafish to two sub-mixtures: SM3 (comprised of 3 of the developmentally toxicity PAHs) and SM7 (7 non-developmentally toxic PAHs). We found that the SM3 toxicity profile was similar to SM10, and SM7 unexpectedly elicited developmental toxicity unlike that seen with its individual components. The results demonstrated that the overall developmental toxicity in the mixtures could be explained using the general concentration addition model. To determine if exposures activated the AHR pathway, spatial expression of CYP1A was evaluated in the 10 individual PAHs and the 3 mixtures at 5 dpf. Results showed activation of AHR in the liver and vasculature for the mixtures and some individual PAHs. Embryos exposed to SM10 during development and raised in chemical-free water into adulthood exhibited decreased learning and responses to startle stimulus indicating that developmental SM10 exposures affect neurobehavior. Collectively, these results exemplify the utility of zebrafish to investigate the developmental and neurotoxicity of complex mixtures. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Fluctuating asymmetry as risk marker for stress and structural defects in a toxicologic experiment.

    PubMed

    Breno, Matteo; Bots, Jessica; De Schaepdrijver, Luc; Van Dongen, Stefan

    2013-08-01

    Fluctuating asymmetry (the directionally random asymmetry of bilateral structures, FA) is commonly used as a measure of developmental instability, and may increase with stress. As several studies reported a relation between FA and developmental abnormalities, we investigate whether FA could be an additional perhaps more sensitive marker of developmental toxicity. The aim of this work is analyzing patterns of FA in multiple traits in a large dataset of rabbit fetuses, which were prenatally exposed to a toxic compound and sacrificed just before natural delivery. Gravid females were exposed to three doses of this compound, inducing abnormalities in the fetuses at the high dose only. The average FA, however, was already higher than control in rabbit fetuses of the low-dose group but did not further increase with higher concentrations. Moreover, the increase in FA differed between traits, with the hindlimbs showing the strongest response. In addition, we did not find any association between FA and the presence of fetal abnormalities at the individual level. Although these results suggest that FA may act as "an early warning system," we did not find a dose-response relationship with increasing stress and effects were trait-specific. Further testing is needed before FA may be considered as a sensitive marker in developmental toxicity studies. © 2013 Wiley Periodicals, Inc.

  11. REPRODUCTIVE AND DEVELOPMENTAL TOXICITY OF ARSENIC IN RODENTS: A REVIEW

    EPA Science Inventory

    Arsenic is a recognized reproductive toxicant in humans and induces malformations, especially neural tube defects, in laboratory animals. Early studies showed that murine malformations occurred only when a high dose of inorganic arsenic was given by intravenous or intraperitoneal...

  12. Male-mediated developmental toxicity.

    PubMed

    Anderson, Diana; Schmid, Thomas E; Baumgartner, Adolf

    2014-01-01

    Male-mediated developmental toxicity has been of concern for many years. The public became aware of male-mediated developmental toxicity in the early 1990s when it was reported that men working at Sellafield might be causing leukemia in their children. Human and animal studies have contributed to our current understanding of male-mediated effects. Animal studies in the 1980s and 1990s suggested that genetic damage after radiation and chemical exposure might be transmitted to offspring. With the increasing understanding that there is histone retention and modification, protamine incorporation into the chromatin and DNA methylation in mature sperm and that spermatozoal RNA transcripts can play important roles in the epigenetic state of sperm, heritable studies began to be viewed differently. Recent reports using molecular approaches have demonstrated that DNA damage can be transmitted to babies from smoking fathers, and expanded simple tandem repeats minisatellite mutations were found in the germline of fathers who were exposed to radiation from the Chernobyl nuclear power plant disaster. In epidemiological studies, it is possible to clarify whether damage is transmitted to the sons after exposure of the fathers. Paternally transmitted damage to the offspring is now recognized as a complex issue with genetic as well as epigenetic components.

  13. 40 CFR 799.9365 - TSCA combined repeated dose toxicity study with the reproduction/developmental toxicity screening...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the control and the top dose group for observation of reversibility, persistence or delayed occurrence... toxicity. (2) Dosage. (i) Generally, at least three test groups and a control group should be used. If... administering the test substance, the control group should receive the vehicle in the highest volume used. (ii...

  14. 40 CFR 799.9365 - TSCA combined repeated dose toxicity study with the reproduction/developmental toxicity screening...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the control and the top dose group for observation of reversibility, persistence or delayed occurrence... toxicity. (2) Dosage. (i) Generally, at least three test groups and a control group should be used. If... administering the test substance, the control group should receive the vehicle in the highest volume used. (ii...

  15. 40 CFR 799.9365 - TSCA combined repeated dose toxicity study with the reproduction/developmental toxicity screening...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the control and the top dose group for observation of reversibility, persistence or delayed occurrence... toxicity. (2) Dosage. (i) Generally, at least three test groups and a control group should be used. If... administering the test substance, the control group should receive the vehicle in the highest volume used. (ii...

  16. 40 CFR 799.9365 - TSCA combined repeated dose toxicity study with the reproduction/developmental toxicity screening...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the control and the top dose group for observation of reversibility, persistence or delayed occurrence... toxicity. (2) Dosage. (i) Generally, at least three test groups and a control group should be used. If... administering the test substance, the control group should receive the vehicle in the highest volume used. (ii...

  17. 40 CFR 799.9365 - TSCA combined repeated dose toxicity study with the reproduction/developmental toxicity screening...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the control and the top dose group for observation of reversibility, persistence or delayed occurrence... toxicity. (2) Dosage. (i) Generally, at least three test groups and a control group should be used. If... administering the test substance, the control group should receive the vehicle in the highest volume used. (ii...

  18. 75 FR 27434 - [alpha]-(p-Nonylphenol)-[omega]-hydroxypoly(oxyethylene) Sulfate and Phosphate Esters; Time...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-17

    .... study with the reproduction/ developmental toxicity screening test in rats (NPEPSD) LOAEL = 300 mg/kg... toxicity screening test. In the Harmonized Guideline 870.3650 study with the nonylphenol ethoxylate... Guideline 870.3650 study in rats following pre- and post-natal exposure to NPEPSDs. E. Aggregate Risks and...

  19. Maternally-Mediated Effects on Development*

    EPA Science Inventory

    In standard Segment II mammalian bioassays for developmental toxicity, it is the pregnant animal that is exposed to the test article, so in this sense, all in utero developmental toxicity is mediated by the mother. This will include absorption, distribution, metabolism and excret...

  20. MULTIDISCIPLINARY APPROACH TO TOXICOLOGICAL SCREENING: II. DEVELOPMENTAL TOXICITY

    EPA Science Inventory

    As part of the validation of an integrated bioassay for systemic, neuro-, and developmental toxicity, we evaluated the responses of Fischer-344 rats to four pesticides, four chlorinated solvents, and two other industrial chemicals. he pesticides included carbaryl, triadimefon, ch...

  1. DEVELOPMENTAL TOXICITY OF DI- AND TETRACHLOROETHANE AND DICHLOROPROPANE IN EMBRYO CULTURE

    EPA Science Inventory

    DEVELOPMENTAL TOXICITY OF DI- AND TETRACHLOROETHANE AND DICHLOROPROPANE IN EMBRYO CULTURE. JE Andrews, H Nichols, and ES Hunter. Reproductive Toxicology Division, NHEERL, USEPA, RTP, NC.

    Disinfection of drinking water with chlorine results in numerous chlorinated byprodu...

  2. MATERNAL AND DEVELOPMENTAL TOXICITY OF PERFLUOROOCTANE SULFONATE IN THE RAT

    EPA Science Inventory

    MATERNAL AND DEVELOPMENTAL TOXICITY OF PERFLUOROOCTANE SULFONATE IN THE RAT.
    C. Lau and J.M. Rogers, Reproductive Toxicology Division, NHEERL, ORD, USEPA, Research Triangle Park, NC, USA

    Perfluorooctane sulfonate (PFOS), an environmentally persistent compound used ...

  3. Developmental toxicity study in rats exposed dermally to clarified slurry oil for a limited period of gestation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feuston, M.H.; Mackerer, C.R.

    1996-10-11

    Clarified slurry oil (CSO, CAS number 64741-62-4), a refinery stream produced by processing crude oil, is a developmental toxicant when administered dermally throughout gestation to pregnant rats. The manifestations of developmental toxicity observed included embryolethlity and growth retardation; evidence of teratogenicity was limited, and not conclusive. The present study was undertaken to further explore the teratogenic potential of CSO. In an attempt to limit emnbryolethality and thereby promote detection of terata, CSO was administered once daily for a limited period of gestation i[gestation days (GD) 9-12], via dermal application, to pregnant Sprague-Dawley rats at doses of 0, 10, 100, andmore » 1000 mg/kg. All animals were sacrificed on GD 20. Detailed examination of the dams was performed. Due to the screening nature of this investigation, fetal evaluations were limited to body weight measurements, external examinations, and evaluation of select visceral endpoints. In the dams exposed to CSO, significant decreases in body weight [absolute and gain (GD 9-13, GD 0-20)] and in the amount of food consumed were observed at 100 and 1000 mg/kg. Additional evidence of maternal toxicity observed at 1000 mg/kg included decreased absolute and relative thymus weights, increased absolute and relative liver weights, and aberrant serum chemistry. Ingestion of the test material was evident at the high dose. Developmental toxicity was observed at 1000 mg/kg and included increased embryolethality, decreased body weight, and anomalous development (cleft palate, brachydactyly, edema). Although a low incidence of abnormal fetal development was observed at 100 mg/kg, it was not conclusive that the alterations were due to CSO exposure. It is likely that three- to seven-ring polycyclic aromatic compounds present in CSO were responsible for the toxic effects observed. 33 refs., 5 tabs.« less

  4. Developmental Toxicity of Zinc Oxide Nanoparticles to Zebrafish (Danio rerio): A Transcriptomic Analysis

    PubMed Central

    Choi, Jin Soo; Kim, Ryeo-Ok; Yoon, Seokjoo

    2016-01-01

    Zinc oxide nanoparticles (ZnO NPs) are being utilized in an increasing number of fields and commercial applications. While their general toxicity and associated oxidative stress have been extensively studied, the toxicological pathways that they induce in developmental stages are still largely unknown. In this study, the developmental toxicity of ZnO NPs to embryonic/larval zebrafish was investigated. The transcriptional expression profiles induced by ZnO NPs were also investigated to ascertain novel genomic responses related to their specific toxicity pathway. Zebrafish embryos were exposed to 0.01, 0.1, 1, and 10 mg/L ZnO NPs for 96 h post-fertilization. The toxicity of ZnO NPs, based on their Zn concentration, was quite similar to that in embryonic/larval zebrafish exposed to corresponding ZnSO4 concentrations. Pericardial edema and yolk-sac edema were the principal malformations induced by ZnO NPs. Gene-expression profiling using microarrays demonstrated 689 genes that were differentially regulated (fold change >1.5) following exposure to ZnO NPs (498 upregulated, 191 downregulated). Several genes that were differentially regulated following ZnO NP exposure shared similar biological pathways with those observed with ZnSO4 exposure, but six genes (aicda, cyb5d1, edar, intl2, ogfrl2 and tnfsf13b) associated with inflammation and the immune system responded specifically to ZnO NPs (either in the opposite direction or were unchanged in ZnSO4 exposure). Real-time reverse-transcription quantitative polymerase chain reaction confirmed that the responses of these genes to ZnO NPs were significantly different from their response to ZnSO4 exposure. ZnO NPs may affect genes related to inflammation and the immune system, resulting in yolk-sac edema and pericardia edema in embryonic/larval developmental stages. These results will assist in elucidating the mechanisms of toxicity of ZnO NPs during development of zebrafish. PMID:27504894

  5. Developmental Toxicity Studies with Pregabalin in Rats: Significance of Alterations in Skull Bone Morphology.

    PubMed

    Morse, Dennis C; Henck, Judith W; Bailey, Steven A

    2016-04-01

    Pregabalin was administered to pregnant Wistar rats during organogenesis to evaluate potential developmental toxicity. In an embryo-fetal development study, compared with controls, fetuses from pregabalin-treated rats exhibited increased incidence of jugal fused to maxilla (pregabalin 1250 and 2500 mg/kg) and fusion of the nasal sutures (pregabalin 2500 mg/kg). The alterations in skull development occurred in the presence of maternal toxicity (reduced body weight gain) and developmental toxicity (reduced fetal body weight and increased skeletal variations), and were initially classified as malformations. Subsequent investigative studies in pregnant rats treated with pregabalin during organogenesis confirmed the advanced jugal fused to maxilla, and fusion of the nasal sutures at cesarean section (gestation day/postmating day [PMD] 21) in pregabalin-treated groups. In a study designed to evaluate progression of skull development, advanced jugal fused to maxilla and fusion of the nasal sutures was observed on PMD 20-25 and PMD 21-23, respectively (birth occurs approximately on PMD 22). On postnatal day (PND) 21, complete jugal fused to maxilla was observed in the majority of control and 2500 mg/kg offspring. No treatment-related differences in the incidence of skull bone fusions occurred on PND 21, indicating no permanent adverse outcome. Based on the results of the investigative studies, and a review of historical data and scientific literature, the advanced skull bone fusions were reclassified as anatomic variations. Pregabalin was not teratogenic in rats under the conditions of these studies. © 2016 Wiley Periodicals, Inc.

  6. Developmental and Reproductive Toxicology of Methanol

    EPA Science Inventory

    Methanol is a high production volume chemical used as a feedstock for chemical syntheses and as a solvent and fuel additive. Methanol is acutely toxic to humans, causing acidosis, blindness in death at high dosages, but its developmental and reproductive toxicity in humans is poo...

  7. Computer Simulation of Developmental Processes and Toxicities (SOT)

    EPA Science Inventory

    Rationale: Recent progress in systems toxicology and synthetic biology have paved the way to new thinking about in vitro/in silico modeling of developmental processes and toxicities, both for embryological and reproductive impacts. Novel in vitro platforms such as 3D organotypic ...

  8. THE DEVELOPMENTAL TOXICITY OF BROMOCHLOROACETONITRILE IN PREGNANT LONG-EVANS RATS

    EPA Science Inventory

    Bromochloroacetonitrile (BCAN) is a by-product of the chlorine disinfection of water containing natural organic material. Adverse effects of BCAN in an in vivo teratology screen (i.e. neonatal survival assay) gave reason for further investigation into the developmental toxicity o...

  9. Moderate Developmental undernutrition: Impact on growth and cognitive function in youth and old age

    EPA Science Inventory

    Low weight at birth is a common adverse developmental effect reported in human populations and animal toxicity studies. Epidemiological evidence links low birth weight to a syndrome ofmetabolic changes that increase later risk for obesity, type 2 diabetes, hypertension, and cardi...

  10. Hazard-ranking of agricultural pesticides for chronic health effects in Yuma County, Arizona.

    PubMed

    Sugeng, Anastasia J; Beamer, Paloma I; Lutz, Eric A; Rosales, Cecilia B

    2013-10-01

    With thousands of pesticides registered by the United States Environmental Protection Agency, it not feasible to sample for all pesticides applied in agricultural communities. Hazard-ranking pesticides based on use, toxicity, and exposure potential can help prioritize community-specific pesticide hazards. This study applied hazard-ranking schemes for cancer, endocrine disruption, and reproductive/developmental toxicity in Yuma County, Arizona. An existing cancer hazard-ranking scheme was modified, and novel schemes for endocrine disruption and reproductive/developmental toxicity were developed to rank pesticide hazards. The hazard-ranking schemes accounted for pesticide use, toxicity, and exposure potential based on chemical properties of each pesticide. Pesticides were ranked as hazards with respect to each health effect, as well as overall chronic health effects. The highest hazard-ranked pesticides for overall chronic health effects were maneb, metam-sodium, trifluralin, pronamide, and bifenthrin. The relative pesticide rankings were unique for each health effect. The highest hazard-ranked pesticides differed from those most heavily applied, as well as from those previously detected in Yuma homes over a decade ago. The most hazardous pesticides for cancer in Yuma County, Arizona were also different from a previous hazard-ranking applied in California. Hazard-ranking schemes that take into account pesticide use, toxicity, and exposure potential can help prioritize pesticides of greatest health risk in agricultural communities. This study is the first to provide pesticide hazard-rankings for endocrine disruption and reproductive/developmental toxicity based on use, toxicity, and exposure potential. These hazard-ranking schemes can be applied to other agricultural communities for prioritizing community-specific pesticide hazards to target decreasing health risk. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Developmental neurotoxicity of pyrethroid insecticides in zebrafish embryos.

    PubMed

    DeMicco, Amy; Cooper, Keith R; Richardson, Jason R; White, Lori A

    2010-01-01

    Pyrethroid insecticides are one of the most commonly used residential and agricultural insecticides. Based on the increased use of pyrethroids and recent studies showing that pregnant women and children are exposed to pyrethroids, there are concerns over the potential for developmental neurotoxicity. However, there have been relatively few studies on the developmental neurotoxicity of pyrethroids. In this study, we sought to investigate the developmental toxicity of six common pyrethroids, three type I compounds (permethrin, resmethrin, and bifenthrin) and three type II compounds (deltamethrin, cypermethrin, and lambda-cyhalothrin), and to determine whether zebrafish embryos may be an appropriate model for studying the developmental neurotoxicity of pyrethroids. Exposure of zebrafish embryos to pyrethroids caused a dose-dependent increase in mortality and pericardial edema, with type II compounds being the most potent. At doses approaching the LC(50), permethrin and deltamethrin caused craniofacial abnormalities. These findings are consistent with mammalian studies demonstrating that pyrethroids are mildly teratogenic at very high doses. However, at lower doses, body axis curvature and spasms were observed, which were reminiscent of the classic syndromes observed with pyrethroid toxicity. Treatment with diazepam ameliorated the spasms, while treatment with the sodium channel antagonist MS-222 ameliorated both spasms and body curvature, suggesting that pyrethroid-induced neurotoxicity is similar in zebrafish and mammals. Taken in concert, these data suggest that zebrafish may be an appropriate alternative model to study the mechanism(s) responsible for the developmental neurotoxicity of pyrethroid insecticides and aid in identification of compounds that should be further tested in mammalian systems.

  12. Developmental Neurotoxicity of Pyrethroid Insecticides in Zebrafish Embryos

    PubMed Central

    DeMicco, Amy; Cooper, Keith R.; Richardson, Jason R.; White, Lori A.

    2010-01-01

    Pyrethroid insecticides are one of the most commonly used residential and agricultural insecticides. Based on the increased use of pyrethroids and recent studies showing that pregnant women and children are exposed to pyrethroids, there are concerns over the potential for developmental neurotoxicity. However, there have been relatively few studies on the developmental neurotoxicity of pyrethroids. In this study, we sought to investigate the developmental toxicity of six common pyrethroids, three type I compounds (permethrin, resmethrin, and bifenthrin) and three type II compounds (deltamethrin, cypermethrin, and λ-cyhalothrin), and to determine whether zebrafish embryos may be an appropriate model for studying the developmental neurotoxicity of pyrethroids. Exposure of zebrafish embryos to pyrethroids caused a dose-dependent increase in mortality and pericardial edema, with type II compounds being the most potent. At doses approaching the LC50, permethrin and deltamethrin caused craniofacial abnormalities. These findings are consistent with mammalian studies demonstrating that pyrethroids are mildly teratogenic at very high doses. However, at lower doses, body axis curvature and spasms were observed, which were reminiscent of the classic syndromes observed with pyrethroid toxicity. Treatment with diazepam ameliorated the spasms, while treatment with the sodium channel antagonist MS-222 ameliorated both spasms and body curvature, suggesting that pyrethroid-induced neurotoxicity is similar in zebrafish and mammals. Taken in concert, these data suggest that zebrafish may be an appropriate alternative model to study the mechanism(s) responsible for the developmental neurotoxicity of pyrethroid insecticides and aid in identification of compounds that should be further tested in mammalian systems. PMID:19861644

  13. EVALUATIVE PROCESS FOR ASSESSING HUMAN REPRODUCTIVE AND DEVELOPMENTAL TOXICITY OF AGENTS

    EPA Science Inventory

    Agents that may affect reproductive and developmental toxicity are of great concern to the general public. espite this, both the regulatory and public health arenas have been made somewhat haphazard use of the existing data when interpreting these health effects. ppropriate infor...

  14. Constructing, Quantifying, and Validating an Adverse Outcome Pathway for Vascular Developmental Toxicity

    EPA Science Inventory

    Constructing, Quantifying, and Validating an Adverse Outcome Pathway for Vascular Developmental Toxicity The adverse outcome pathway (AOP) for embryonic vascular disruption1 leading to a range of adverse prenatal outcomes was recently entered into the AOP wiki and accepted as par...

  15. Identifying Structural Alerts Based on Zebrafish Developmental Morphological Toxicity (TDS)

    EPA Science Inventory

    Zebrafish constitute a powerful alternative animal model for chemical hazard evaluation. To provide an in vivo complement to high-throughput screening data from the ToxCast program, zebrafish developmental toxicity screens were conducted on the ToxCast Phase I (Padilla et al., 20...

  16. Modeling Zebrafish Developmental Toxicity using a Concurrent In vitro Assay Battery (SOT)

    EPA Science Inventory

    We describe the development of computational models that predict activity in a repeat-dose zebrafish embryo developmental toxicity assay using a combination of physico-chemical parameters and in vitro (human) assay measurements. The data set covered 986 chemicals including pestic...

  17. Quantitative trait loci (QTL) analysis of PCB126 induced developmental toxicity in zebrafish

    EPA Science Inventory

    Polychlorinated dioxins and biphenyls are potent developmental toxicants which persist in the environment and pose risk to ecological and human health. Variation in susceptibility to this class of compounds has been demonstrated within and among several piscine, avian and mammali...

  18. ADAPTING THE MEDAKA EMBRYO ASSAY TO A HIGH-THROUGHPUT APPROACH FOR DEVELOPMENTAL TOXICITY TESTING.

    EPA Science Inventory

    Chemical exposure during embryonic development may cause persistent effects, yet developmental toxicity data exist for very few chemicals. Current testing procedures are time consuming and costly, underlining the need for rapid and low cost screening strategies. While in vitro ...

  19. Perflurooctanoic Acid Induces Developmental Cardiotoxicity in Chicken Embryos and Hatchlings

    EPA Science Inventory

    Perfluorooctanoic acid (PFOA) is a widespread environmental contaminant that is detectable in serum of the general U.S. population. PFOA is a known developmental toxicant that induces mortality in mammalian embryos and is thought to induce toxicity via interaction with the peroxi...

  20. Optimization of high-throughput nanomaterial developmental toxicity testing in zebrafish embryos

    EPA Science Inventory

    Nanomaterial (NM) developmental toxicities are largely unknown. With an extensive variety of NMs available, high-throughput screening methods may be of value for initial characterization of potential hazard. We optimized a zebrafish embryo test as an in vivo high-throughput assay...

  1. Inhalation developmental toxicology studies: Developmental toxicity of chloroprene vapors in New Zealand white rabbits. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mast, T.J.; Evanoff, J.J.; Westerberg, R.B.

    Chloroprene, 2-chloro-1,3-butadiene, is a colorless liquid with a pungent ethereal odor that is primarily used as an intermediate in the manufacture of neoprene rubber, and has been used as such since about 1930. This study addressed the potential for chloroprene to cause developmental toxicity in New Zealand white rabbits following gestational exposure to 0, 10, 40, or 175 ppm chloroprene vapors, 6h/dy, 7dy/wk. Each treatment group consisted of 15 artificially inseminated females exposed on 6 through 28 days of gestation (dg). Body weights were obtained throughout the study period, and uterine and fetal body weights were obtained at sacrifice onmore » 29 dg. Implants were enumerated and their status recorded and live fetuses were examined for gross, visceral, skeletal, and soft-tissue craniofacial defects. There were no overt signs of maternal toxicity and the change in maternal body weight over the course of the study was not affected. Exposure of pregnant rabbits to chloroprene vapors on 6-28 dg had no effect on the number of implantation, the mean percent of live pups per litter, or on the incidence of resorptions per litter. The incidence of fetal malformations was not increased by exposure to chloroprene. Results of this study indicate that gestational exposure of New Zealand white rabbits to 10, 40, or 175 ppm chloroprene did not result in observable toxicity to either the dam or the offspring.« less

  2. Incorporating "omics" in the study of reproduction and development: Virtual Tissue Models in Developmental Toxicity Research

    EPA Science Inventory

    In recent years, ground breaking research in genomic applications in the area of reproductive and developmental toxicology have been successful in linking changes in the expression of specific genes and their higher-level biological processes to effects induced by drugs or chemic...

  3. Using medaka embryos as a model system to study biological effects of the electromagnetic fields on development and behavior.

    PubMed

    Lee, Wenjau; Yang, Kun-Lin

    2014-10-01

    The electromagnetic fields (EMFs) of anthropogenic origin are ubiquitous in our environments. The health hazard of extremely low frequency and radiofrequency EMFs has been investigated for decades, but evidence remains inconclusive, and animal studies are urgently needed to resolve the controversies regarding developmental toxicity of EMFs. Furthermore, as undersea cables and technological devices are increasingly used, the lack of information regarding the health risk of EMFs to aquatic organisms needs to be addressed. Medaka embryos (Oryzias latipes) have been a useful tool to study developmental toxicity in vivo due to their optical transparency. Here we explored the feasibility of using medaka embryos as a model system to study biological effects of EMFs on development. We also used a white preference test to investigate behavioral consequences of the EMF developmental toxicity. Newly fertilized embryos were randomly assigned to four groups that were exposed to an EMF with 3.2kHz at the intensity of 0.12, 15, 25, or 60µT. The group exposed to the background 0.12µT served as the control. The embryos were exposed continually until hatch. They were observed daily, and the images were recorded for analysis of several developmental endpoints. Four days after hatching, the hatchlings were tested with the white preference test for their anxiety-like behavior. The results showed that embryos exposed to all three levels of the EMF developed significantly faster. The endpoints affected included the number of somites, eye width and length, eye pigmentation density, midbrain width, head growth, and the day to hatch. In addition, the group exposed to the EMF at 60µT exhibited significantly higher levels of anxiety-like behavior than the other groups did. In conclusion, the EMF tested in this study accelerated embryonic development and heightened anxiety-like behavior. Our results also demonstrate that the medaka embryo is a sensitive and cost-efficient in vivo model system to study developmental toxicity of EMFs. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Developmental Effects of the ToxCast™ Phase I and Phase II Chemicals in Caenorhabditis elegans and Corresponding Responses in Zebrafish, Rats, and Rabbits

    PubMed Central

    Boyd, Windy A.; Smith, Marjolein V.; Co, Caroll A.; Pirone, Jason R.; Rice, Julie R.; Shockley, Keith R.; Freedman, Jonathan H.

    2015-01-01

    Background: Modern toxicology is shifting from an observational to a mechanistic science. As part of this shift, high-throughput toxicity assays are being developed using alternative, nonmammalian species to prioritize chemicals and develop prediction models of human toxicity. Methods: The nematode Caenorhabditis elegans (C. elegans) was used to screen the U.S. Environmental Protection Agency’s (EPA’s) ToxCast™ Phase I and Phase II libraries, which contain 292 and 676 chemicals, respectively, for chemicals leading to decreased larval development and growth. Chemical toxicity was evaluated using three parameters: a biologically defined effect size threshold, half-maximal activity concentration (AC50), and lowest effective concentration (LEC). Results: Across both the Phase I and Phase II libraries, 62% of the chemicals were classified as active ≤ 200 μM in the C. elegans assay. Chemical activities and potencies in C. elegans were compared with those from two zebrafish embryonic development toxicity studies and developmental toxicity data for rats and rabbits. Concordance of chemical activity was higher between C. elegans and one zebrafish assay across Phase I chemicals (79%) than with a second zebrafish assay (59%). Using C. elegans or zebrafish to predict rat or rabbit developmental toxicity resulted in balanced accuracies (the average value of the sensitivity and specificity for an assay) ranging from 45% to 53%, slightly lower than the concordance between rat and rabbit (58%). Conclusions: Here, we present an assay that quantitatively and reliably describes the effects of chemical toxicants on C. elegans growth and development. We found significant overlap in the activity of chemicals in the ToxCast™ libraries between C. elegans and zebrafish developmental screens. Incorporating C. elegans toxicological assays as part of a battery of in vitro and in vivo assays provides additional information for the development of models to predict a chemical’s potential toxicity to humans. Citation: Boyd WA, Smith MV, Co CA, Pirone JR, Rice JR, Shockley KR, Freedman JH. 2016. Developmental effects of the ToxCast™ Phase I and II chemicals in Caenorhabditis elegans and corresponding responses in zebrafish, rats, and rabbits. Environ Health Perspect 124:586–593; http://dx.doi.org/10.1289/ehp.1409645 PMID:26496690

  5. Multigeneration reproductive and developmental toxicity study of bar gene inserted into genetically modified potato on rats.

    PubMed

    Rhee, Gyu Seek; Cho, Dae Hyun; Won, Yong Hyuck; Seok, Ji Hyun; Kim, Soon Sun; Kwack, Seung Jun; Lee, Rhee Da; Chae, Soo Yeong; Kim, Jae Woo; Lee, Byung Mu; Park, Kui Lea; Choi, Kwang Sik

    2005-12-10

    Each specific protein has an individual gene encoding it, and a foreign gene introduced to a plant can be used to synthesize a new protein. The identification of potential reproductive and developmental toxicity from novel proteins produced by genetically modified (GM) crops is a difficult task. A science-based risk assessment is needed in order to use GM crops as a conventional foodstuff. In this study, the specific characteristics of GM food and low-level chronic exposure were examined using a five-generation animal study. In each generation, rats were fed a solid pellet containing 5% GM potato and non-GM potato for 10 wk prior to mating in order to assess the potential reproductive and developmental toxic effects. In the multigeneration animal study, there were no GM potato-related changes in body weight, food consumption, reproductive performance, and organ weight. Polymerase chain reaction (PCR) was carried out using extracted genomic DNA to examine the possibility of gene persistence in the organ tissues after a long-term exposure to low levels of GM feed. In each generation, the gene responsible for bar was not found in any of the reproductive organs of the GM potato-treated male and female rats, and the litter-related indexes did not show any genetically modified organism (GMO)-related changes. The results suggest that genetically modified crops have no adverse effects on the multigeneration reproductive-developmental ability.

  6. Goldilocks' Determination of What New In Vivo Data are "Just Right" for Different Common Drug Development Scenarios, Part 1.

    PubMed

    Bowman, Christopher J; Chapin, Robert E

    2016-08-01

    As alternative models and scientific advancements improve the ability to predict developmental toxicity, the challenge is how to best use this information to support safe use of pharmaceuticals in humans. While in vivo experimental data are often expected, there are other important considerations that drive the impact of developmental toxicity data to human risk assessment and product labeling. These considerations include three key elements: (1) the drug's likelihood of producing off-target toxicities, (2) risk tolerance of adverse effects based on indication and patient population, and (3) how much is known about the effects of modulating the target in pregnancy and developmental biology. For example, there is little impact or value of a study in pregnant monkeys to inform the risk assessment for a highly specific monoclonal antibody indicated for a life-threatening indication against a target known to be critical for pregnancy maintenance and fetal survival. In contrast, a small molecule to a novel biological target for a chronic lifestyle indication would warrant more safety data than simply in vitro studies and a literature review. Rather than accounting for innumerable theoretical possibilities surrounding each potential submission's profile, we consolidated most of the typical situations into eight possible scenarios across these three elements, and present a discussion of these scenarios here. We hope that this framework will facilitate a rational approach to determining what new information is required to inform developmental toxicity risk of pharmaceuticals in context of the specific needs of each program while reducing animal use where possible. © 2016 Wiley Periodicals, Inc.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Xiugong, E-mail: xiugong.gao@fda.hhs.gov; Sprando, Robert L.; Yourick, Jeffrey J.

    Developmental toxicity testing has traditionally relied on animal models which are costly, time consuming, and require the sacrifice of large numbers of animals. In addition, there are significant disparities between human beings and animals in their responses to chemicals. Thalidomide is a species-specific developmental toxicant that causes severe limb malformations in humans but not in mice. Here, we used microarrays to study transcriptomic changes induced by thalidomide in an in vitro model based on differentiation of mouse embryonic stem cells (mESCs). C57BL/6 mESCs were allowed to differentiate spontaneously and RNA was collected at 24, 48, and 72 h after exposuremore » to 0.25 mM thalidomide. Global gene expression analysis using microarrays revealed hundreds of differentially expressed genes upon thalidomide exposure that were enriched in gene ontology (GO) terms and canonical pathways associated with embryonic development and differentiation. In addition, many genes were found to be involved in small GTPases-mediated signal transduction, heart development, and inflammatory responses, which coincide with clinical evidences and may represent critical embryotoxicities of thalidomide. These results demonstrate that transcriptomics in combination with mouse embryonic stem cell differentiation is a promising alternative model for developmental toxicity assessment. - Highlights: • Studied genomic changes in mouse embryonic stem cells upon thalidomide exposure • Identified gene expression changes that may represent thalidomide embryotoxicity • The toxicogenomic changes coincide well with known thalidomide clinical outcomes. • The mouse embryonic stem cell model is suitable for developmental toxicity testing. • The model has the potential for high-throughput screening of a multitude of compounds.« less

  8. Complex Mixture-Associated Hormesis and Toxicity: The Case of Leather Tanning Industry

    PubMed Central

    Pagano, Giovanni; Castello, Giuseppe; Gallo, Marialuisa; Borriello, Ilaria; Guida, Marco

    2008-01-01

    A series of studies investigated the toxicities of tannery-derived complex mixtures, i.e. vegetable tannin (VT) from Acacia sp. or phenol-based synthetic tannin (ST), and waste-water from tannin-based vs. chromium-based tanneries. Toxicity was evaluated by multiple bioassays including developmental defects and loss of fertilization rate in sea urchin embryos and sperm (Paracentrotus lividus and Sphaerechinus granularis), and algal growth inhibition (Dunaliella tertiolecta and Selenastrum capricornutum). Both VT and ST water extracts resulted in hormetic effects at concentrations ranging 0.1 to 0.3%, and toxicity at levels ≥1%, both in sea urchin embryo and sperm, and in algal growth bioassays. When comparing tannin-based tannery wastewater (TTW) vs. chromium-based tannery effluent (CTE), a hormesis to toxicity trend was observed for TTW both in terms of developmental and fertilization toxicity in sea urchins, and in algal growth inhibition, with hormetic effects at 0.1 to 0.2% TTW, and toxicity at TTW levels ≥1%. Unlike TTW, CTE showed a monotonic toxicity increase from the lowest tested level (0.1%) and CTE toxicity at higher levels was significantly more severe than TTW-induced toxicity. The results support the view that leather production utilizing tannins might be regarded as a more environmentally friendly procedure than chromium-based tanning process. PMID:19088903

  9. Complex mixture-associated hormesis and toxicity: the case of leather tanning industry.

    PubMed

    Pagano, Giovanni; Castello, Giuseppe; Gallo, Marialuisa; Borriello, Ilaria; Guida, Marco

    2008-01-01

    A series of studies investigated the toxicities of tannery-derived complex mixtures, i.e. vegetable tannin (VT) from Acacia sp. or phenol-based synthetic tannin (ST), and waste-water from tannin-based vs. chromium-based tanneries. Toxicity was evaluated by multiple bioassays including developmental defects and loss of fertilization rate in sea urchin embryos and sperm (Paracentrotus lividus and Sphaerechinus granularis), and algal growth inhibition (Dunaliella tertiolecta and Selenastrum capricornutum). Both VT and ST water extracts resulted in hormetic effects at concentrations ranging 0.1 to 0.3%, and toxicity at levels > or =1%, both in sea urchin embryo and sperm, and in algal growth bioassays. When comparing tannin-based tannery wastewater (TTW) vs. chromium-based tannery effluent (CTE), a hormesis to toxicity trend was observed for TTW both in terms of developmental and fertilization toxicity in sea urchins, and in algal growth inhibition, with hormetic effects at 0.1 to 0.2% TTW, and toxicity at TTW levels > or =1%. Unlike TTW, CTE showed a monotonic toxicity increase from the lowest tested level (0.1%) and CTE toxicity at higher levels was significantly more severe than TTW-induced toxicity. The results support the view that leather production utilizing tannins might be regarded as a more environmentally friendly procedure than chromium-based tanning process.

  10. Screening for Developmental Neurotoxicity in Zebrafish Larvae: Assessment of Behavior and Malformations.

    EPA Science Inventory

    The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize large numbers of chemicals for developmental toxicity. As part of this approach, it is important to be able to separate overt toxicity (Le., malformed larvae) from the more specific neurotoxic...

  11. DEVELOPMENTAL TOXICITY OF COPPER SULFATE AND METHYLENE CHLORIDE TO SHRIMP EMBRYOS

    EPA Science Inventory

    The embryos of the grass shrimp (Palaemonetes pugio) have shown sensitivity to the water-soluble fraction of Number 2 fuel oil which indicates they may be a useful test species in estuarine developmental toxicity tests. Detailed concentration-response curves for copper sulfate an...

  12. TOXICOLOGICAL HIGHLIGHT: SCREENING FOR DEVELOPMENTAL TOXICITY OF TOBACCO SMOKE CONSTITUENTS

    EPA Science Inventory

    Abstract
    Cigarette smoking is unrivaled among developmental toxicants in terms of total adverse impact on the human population. According to the American Lung Association, smoking during pregnancy is estimated to account for 20 to 30 percent of low-weight babies, up to 14 per...

  13. A Redox Sensitive Pathway in the Mouse ES Cell Assay Modeled From ToxCast HTS Data

    EPA Science Inventory

    The broad chemical landscape coupled with the lack of developmental toxicity information across most environmental chemicals has motivated the need for high- throughput screening methods and predictive models of developmental toxicity. Towards this end, we used the mouse embryoni...

  14. A Different Approach to Validating Screening Assays for Developmental Toxicity

    EPA Science Inventory

    BACKGROUND: There continues to be many efforts around the world to develop assays that are shorter than the traditional embryofetal developmental toxicity assay, or use fewer or no mammals, or use less compound, or have all three attributes. Each assay developer needs to test th...

  15. The potential of AOP networks for reproductive and developmental toxicity assay development

    EPA Science Inventory

    Historically, the prediction of reproductive and early developmental toxicity has largely relied on the use of animals. The Adverse Outcome Pathway (AOP) framework forms a basis for the development of new non-animal test methods. It also provides biological context for mechanisti...

  16. ToxCast Profiling in a Human Stem Cell Assay for Developmental Toxicity (CompTox CoP)

    EPA Science Inventory

    Standard practice for assessing disruptions in embryogenesis involves testing pregnant animals of two species, typically rats and rabbits, exposed during major organogenesis and evaluated just prior to term. Under this design the major manifestations of developmental toxicity are...

  17. TBBPA induces developmental toxicity, oxidative stress, and apoptosis in embryos and zebrafish larvae (Danio rerio).

    PubMed

    Wu, Shengmin; Ji, Guixiang; Liu, Jining; Zhang, Shenghu; Gong, Yang; Shi, Lili

    2016-10-01

    Tetrabromobisphenol A (TBBPA) is currently one of the most frequently used brominated flame retardants and can be considered as a high production volume chemical. In this study, zebrafish embryos and larvae served as a biological model to evaluate TBBPA-induced developmental toxicity, oxidative stress, oxidant-associated gene expression, and cell apoptosis. Abnormalities, including hyperemia and pericardial edema, were induced in zebrafish larvae. The results showed that toxicity endpoints such as hatching rate, survival rate, malformation rate, and growth rate had a significant dose-response relationship with TBBPA. Further studies revealed that TBBPA did not alter the enzyme activities of Copper/Zinc Superoxide dismutase (Cu/Zn-SOD), catalase (CAT), and glutathioneperoxidase (GPx) at 0.10 mg/L, but decreased activities following exposure to 0.40, 0.70, and 1.00 mg/L. Despite the significantly decreased gene expression of Cu/Zn-SOD, CAT, and GPx1a in the 1.00 mg/L treatment group, other treatments (0.10, 0.40, 0.70 mg/L) did not alter gene expression. Moreover, Acridine orange staining results showed that apoptotic cells mainly accumulated in the brain, heart, and tail, indicating possible TBBPA-induced brain, cardiac, and blood circulation system impairment in zebrafish embryos and larvae. Histological analysis also showed evidence of obvious heart impairment in TBBPA-treated groups. This study provides new evidence on the developmental toxicity, oxidative stress, and apoptosis of embryos and zebrafish larvae, which is important for the evaluation of environmental toxicity and chemical risk. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1241-1249, 2016. © 2015 Wiley Periodicals, Inc.

  18. Development of QSAR models using artificial neural network analysis for risk assessment of repeated-dose, reproductive, and developmental toxicities of cosmetic ingredients.

    PubMed

    Hisaki, Tomoka; Aiba Née Kaneko, Maki; Yamaguchi, Masahiko; Sasa, Hitoshi; Kouzuki, Hirokazu

    2015-04-01

    Use of laboratory animals for systemic toxicity testing is subject to strong ethical and regulatory constraints, but few alternatives are yet available. One possible approach to predict systemic toxicity of chemicals in the absence of experimental data is quantitative structure-activity relationship (QSAR) analysis. Here, we present QSAR models for prediction of maximum "no observed effect level" (NOEL) for repeated-dose, developmental and reproductive toxicities. NOEL values of 421 chemicals for repeated-dose toxicity, 315 for reproductive toxicity, and 156 for developmental toxicity were collected from Japan Existing Chemical Data Base (JECDB). Descriptors to predict toxicity were selected based on molecular orbital (MO) calculations, and QSAR models employing multiple independent descriptors as the input layer of an artificial neural network (ANN) were constructed to predict NOEL values. Robustness of the models was indicated by the root-mean-square (RMS) errors after 10-fold cross-validation (0.529 for repeated-dose, 0.508 for reproductive, and 0.558 for developmental toxicity). Evaluation of the models in terms of the percentages of predicted NOELs falling within factors of 2, 5 and 10 of the in-vivo-determined NOELs suggested that the model is applicable to both general chemicals and the subset of chemicals listed in International Nomenclature of Cosmetic Ingredients (INCI). Our results indicate that ANN models using in silico parameters have useful predictive performance, and should contribute to integrated risk assessment of systemic toxicity using a weight-of-evidence approach. Availability of predicted NOELs will allow calculation of the margin of safety, as recommended by the Scientific Committee on Consumer Safety (SCCS).

  19. Chitosan nanoparticles and their Tween 80 modified counterparts disrupt the developmental profile of zebrafish embryos.

    PubMed

    Yuan, Zhongyue; Li, Ying; Hu, Yulan; You, Jian; Higashisaka, Kazuma; Nagano, Kazuya; Tsutsumi, Yasuo; Gao, Jianqing

    2016-12-30

    Chitosan nanoparticles (CS-NPs) and their Tween 80 modified counterparts (TmCS-NPs) are among the most commonly used brain-targeted vehicles. However, their potential developmental toxicity is poorly understood. In this study, zebrafish embryos are introduced as an in vivo platform. Both NPs showed a dose-dependent increase in developmental toxicity (decreased hatching rate, increased mortality and incidences of malformation). Neurobehavioral changes included decreased spontaneous movement in TmCS-NP treated embryos and hyperactive effect in CS-NP treated larvae. Both NPs remarkably inhibited axonal development of primary and secondary motor neurons, and affected the muscle structure. Overall, this study demonstrated that CS-NPs and TmCS-NPs could affect embryonic development, disrupt neurobehavior of zebrafish larvae and affect muscle and neuron development, suggesting more attention on biodegradable chitosan nanoparticles. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Is Intake of Flavonoid-Based Food Supplements During Pregnancy Safe for the Developing Child? A Literature Review.

    PubMed

    Barenys, Marta; Masjosthusmann, Stefan; Fritsche, Ellen

    2017-01-01

    Due to potential health benefits and the general assumption that natural products are safe, there is an increasing trend in the general population - including pregnant women - to supplement their diet with flavonoid-based food supplements. In addition, preclinical studies aim to prevent developmental adverse effects induced by toxic substances, infections, maternal or genetic diseases of the unborn child by administration of flavonoids at doses far above those reached by normal diets. Because these substances do not undergo classical risk assessment processes, our aim was to review the available literature on the potential adverse effects of maternal diet supplementation with flavonoid-based products for the developing child. A systematic literature search was performed in three databases and screened following four exclusion criteria. Selected studies were classified into two groups: 1. Studies on the developmental toxicity of single flavonoids in vitro or in animals in vivo, and 2. Studies on the developmental toxicity of single flavonoids or on flavonoid-mixtures in humans. The data collected indicate that there is a concern for the safety of some flavonoids within realistic human exposure scenarios. This concern is accompanied by a tremendous lack of studies on safety of these compounds during development making definite safety decisions impossible. Besides studies of survival, especially the more specific developmental processes like nervous system development need to be addressed experimentally. Before new high-dose, flavonoid-based therapeutic strategies are developed for pregnant women further research on the safety of these compounds is clearly needed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Regulation of priority carcinogens and reproductive or developmental toxicants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooper, K.; LaDou, J.; Rosenbaum, J.S.

    In California, 370 carcinogens and 112 reproductive/developmental toxicants have been identified as a result of the State's Safe Drinking Water and Toxic Enforcement Act of 1986. They include pesticides, solvents, metals, industrial intermediates, environmental mixtures, and reactive agents. Occupational, environmental, and consumer product exposures that involve these agents are regulated under the Act. At levels of concern, businesses must provide warnings for and limit discharges of those chemicals. The lists of chemicals were compiled following systematic review of published data, including technical reports from the U.S. Public Health Service--National Toxicology Program (NTP), and evaluation of recommendations from authoritative bodies suchmore » as the International Agency for Research on Cancer (IARC) and the U.S. Environmental Protection Agency (USEPA). Given the large number of chemicals that are carcinogens or reproductive/developmental toxicants, regulatory concerns should focus on those that have high potential for human exposure, e.g., widely distributed or easily absorbed solvents, metals, environmental mixtures, or reactive agents. In this paper, we present a list of 33 potential priority carcinogens and reproductive/developmental toxicants, including alcoholic beverages, asbestos, benzene, chlorinated solvents, formaldehyde, glycol ethers, lead, tobacco smoke, and toluene.« less

  2. Regulation of priority carcinogens and reproductive or developmental toxicants.

    PubMed

    Hooper, K; LaDou, J; Rosenbaum, J S; Book, S A

    1992-01-01

    In California, 370 carcinogens and 112 reproductive/developmental toxicants have been identified as a result of the State's Safe Drinking Water and Toxic Enforcement Act of 1986. They include pesticides, solvents, metals, industrial intermediates, environmental mixtures, and reactive agents. Occupational, environmental, and consumer product exposures that involve these agents are regulated under the Act. At levels of concern, businesses must provide warnings for and limit discharges of those chemicals. The lists of chemicals were compiled following systematic review of published data, including technical reports from the U.S. Public Health Service--National Toxicology Program (NTP), and evaluation of recommendations from authoritative bodies such as the International Agency for Research on Cancer (IARC) and the U.S. Environmental Protection Agency (USEPA). Given the large number of chemicals that are carcinogens or reproductive/developmental toxicants, regulatory concerns should focus on those that have high potential for human exposure, e.g., widely distributed or easily absorbed solvents, metals, environmental mixtures, or reactive agents. In this paper, we present a list of 33 potential priority carcinogens and reproductive/developmental toxicants, including alcoholic beverages, asbestos, benzene, chlorinated solvents, formaldehyde, glycol ethers, lead, tobacco smoke, and toluene.

  3. EVALUATION AND INTERPRETATION OF MATERNAL TOXICITY IN SEGMENT II STUDIES: ISSUES, SOME ANSWERS AND DATA NEEDS

    EPA Science Inventory

    Biologically rational regulatory policies with regards to developmental toxicity are often based on the extrapolation of standard laboratory rodent bioassay results to the human population. Significantly contributing to the difficulty of this task is the possibility that general ...

  4. Pathway Profiling and Tissue Modeling of Developmental Toxicity

    EPA Science Inventory

    High-throughput and high-content screening (HTS-HCS) studies are providing a rich source of data that can be applied to in vitro profiling of chemical compounds for biological activity and potential toxicity. EPA’s ToxCast™ project, and the broader Tox21 consortium, in addition t...

  5. VIRTUAL EMBRYO: SYSTEMS MODELING IN DEVELOPMENTAL TOXICITY - Symposium: SOT 2012

    EPA Science Inventory

    High-throughput screening (HTS) studies are providing a rich source of data that can be applied to in vitro profiling of chemical compounds for biological activity and potential toxicity. Chemical profiling in ToxCast covered 965 drugs-chemicals in over 500 diverse assays testing...

  6. Virtual Embryo: Systems Modeling in Developmental Toxicity

    EPA Science Inventory

    High-throughput and high-content screening (HTS-HCS) studies are providing a rich source of data that can be applied to in vitro profiling of chemical compounds for biological activity and potential toxicity. EPA’s ToxCast™ project, and the broader Tox21 consortium, in addition t...

  7. Zebrafish Developmental Screening of the ToxCast™ Phase I Chemical Library

    EPA Science Inventory

    Zebrafish (Danio rerio) is an emerging toxicity screening model for both human health and ecology. As part of the Computational Toxicology Research Program of the U.S. EPA, the toxicity of the 309 ToxCast™ Phase I chemicals was assessed using a zebrafish screen for developmental ...

  8. Computational Approach using Mouse Embryonic Stem Cells to Define a Mechanistic Applicability Domain for Prenatal Developmental Toxicity

    EPA Science Inventory

    Identification of mechanisms responsible for adverse developmental effects is the first step in creating predictive toxicity models. Identification of putative mechanisms was performed by co-analyzing three datasets for the effects of ToxCast phase Ia and II chemicals: 1.In vitro...

  9. Developing predictions of in vivo developmental toxicity of ToxCast chemicals using mouse embryonic stem cells.

    EPA Science Inventory

    Developing predictions of in vivo developmental toxicity of ToxCast chemicals using mouse embryonic stem cells S. Hunter, M. Rosen, M. Hoopes, H. Nichols, S. Jeffay, K. Chandler1, Integrated Systems Toxicology Division, National Health and Environmental Effects Research Labor...

  10. GLUCOCORTICOID RECEPTOR REGULATION IN THE RAT EMBRYO: A POTENTIAL SITE FOR DEVELOPMENTAL TOXICITY?

    EPA Science Inventory

    Glucocorticoid receptor regulation in the rat embryo: a potential site for developmental toxicity?

    Ghosh B, Wood CR, Held GA, Abbott BD, Lau C.

    National Research Council, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA.

  11. Computational Modeling and Simulation of Developmental Toxicity: what can we learn from a virtual embryo? (RIVM, Brussels)

    EPA Science Inventory

    Developmental and Reproductive Toxicity (DART) testing is important for assessing the potential consequences of drug and chemical exposure on human health and well-being. Complexity of pregnancy and the reproductive cycle makes DART testing challenging and costly for traditional ...

  12. Computational Modeling and Simulation of Developmental Toxicity. What can we learn from a virtual embryo? (FDA-CFSAN workshop)

    EPA Science Inventory

    SYNOPSIS: The question of how tissues and organs are shaped during development is crucial for understanding human birth defects. Data from high-throughput screening assays on human stem cells may be utilized predict developmental toxicity with reasonable accuracy. Other types of ...

  13. EVALUATION OF BIOLOGICALLY BASED DOSE-RESPONSE MODELING FOR DEVELOPMENTAL TOXICITY: A WORKSHOP REPORT

    EPA Science Inventory

    Evaluation of biologically based dose-response modeling for developmental toxicity: a workshop report.

    Lau C, Andersen ME, Crawford-Brown DJ, Kavlock RJ, Kimmel CA, Knudsen TB, Muneoka K, Rogers JM, Setzer RW, Smith G, Tyl R.

    Reproductive Toxicology Division, NHEERL...

  14. Maternal and fetal toxicity in developmental toxicology bioassays: Weight changes and their biological significance

    EPA Science Inventory

    Standard developmental toxicology bioassays are designed to identify agents with the potential to induce adverse effects in the embryo/fetus. Guidelines call for the inclusion of a dose level(s) that induces “overt maternal toxicity.” The possibility that general maternal toxicit...

  15. Developmental Exposure to a Dopaminergic Toxicant Produces Altered Locomotor Activity in Larval Zebrafish

    EPA Science Inventory

    In an effort to develop a rapid in vivo screen for EPA’s prioritization of toxic chemicals, we are characterizing the locomotor activity of zebrafish (Danio rerio) larvae after developmental exposure to various classes of prototypic drugs that act on the central nervous system. ...

  16. A MODE-OF-ACTION-BASED QSAR APPROACH TO IMPROVE UNDERSTANDING OF DEVELOPMENTAL TOXICITY

    EPA Science Inventory

    QSAR models of developmental toxicity (devtox) have met with limited regulatory acceptance due to the use of ill-defined endpoints, lack of biological interpretability, and poor model performance. More generally, the lack of biological inference of many QSAR models is often due t...

  17. Dose response screening of the Toxcast chemical library using a Zebrafish developmental assay

    EPA Science Inventory

    As part of the chemical screening and prioritization research program of the U.S. Environmental Protection Agency, the toxicity of the 320 ToxCaspM Phase I chemicals was assessed using a vertebrate screen of developmental toxicity. Zebrafish embryos/larvae (Danio rerio) were expo...

  18. Zebrafish as an Alternative Vertebrate Model for Investigating Developmental Toxicity—The Triadimefon Example

    PubMed Central

    Zoupa, Maria; Machera, Kyriaki

    2017-01-01

    Triadimefon is a widely used triazole fungicide known to cause severe developmental defects in several model organisms and in humans. The present study evaluated in detail the developmental effects seen in zebrafish embryos exposed to triadimefon, confirmed and expanded upon previous phenotypic findings and compared them to those observed in other traditional animal models. In order to do this, we exposed embryos to 2 and 4 µg/mL triadimefon and evaluated growth until 120 h post-fertilization (hpf) through gross morphology examination. Our analysis revealed significant developmental defects at the highest tested concentration including somite deformities, severe craniofacial defects, a cleft phenotype along the three primary neural divisions, a rigorously hypoplastic or even absent mandible and a hypoplastic morphology of the pharyngeal arches. Interestingly, massive pericardial edemas, abnormal shaped hearts, brachycardia and inhibited or absent blood circulation were also observed. Our results revealed that the presented zebrafish phenotypes are comparable to those seen in other organism models and those derived from human observations as a result of triadimefon exposure. We therefore demonstrated that zebrafish provide an excellent system for study of compounds with toxic significance and can be used as an alternative model for developmental toxicity studies to predict effects in mammals. PMID:28417904

  19. Assessment of an aqueous seed extract of Parkia clappertoniana on reproductive performance and toxicity in rodents.

    PubMed

    Boye, Alex; Boampong, Victor Addai; Takyi, Nutifafa; Martey, Orleans

    2016-06-05

    The seeds of Parkia clappertoniana Keay (Family: Fabaceae) are extensively used in food in the form of a local condiment called 'Dawadawa' in Ghana and consumed by all class of people including sensitive groups such as pregnant women and children. Also, crudely pounded preparations of P. clappertoniana seeds are used as labor inducing agent in farm animals by local farmers across northern Ghana where nomadism is the livelihood of most indigenes. Ecologically, P. clappertoniana is extensively distributed across the savannah ecological zone of many African countries where just like Ghana it enjoys ethnobotanical usage. Although, many studies have investigated some aspects of the pharmacological activity of P. clappertoniana, none of these studies focused on the reproductive system, particularly its effects on reproductive performance and toxicity. To contribute, this study assessed the effect of aqueous seed extract of P. clappertoniana (PCE) on reproductive performance and toxicity in Sprague-Dawley rats and ICR mice. After preparation of PCE, it was then tested on rodents at different gestational and developmental windows (1-7, 8-14, and 15-term gestational days) to assess the following: mating behavior, implantation rate, maternal and developmental toxicities. Generally, animals were randomly grouped into five and treated as follows: normal saline group (5ml/kg po), cytotec (misoprostol) group (200mg/kg po), folic acid group (5mg/kg po), and PCE groups (100, 200, and 500mg/kg po), however, these groupings were varied to suit the specific requirements of some parameters. For acute toxicity, animals were orally administered PCE (3 and 5g/kg for mice and rats respectively). PCE-treated rats showed improved mating behavior compared to control rats. PCE improved implantation rate compared to misoprostol-treated rats. On the average, PCE-treated rats delivered termed live pubs at 21 days compared to that of folic acid-treated rats at 23 days. Also, PCE-treated rats showed no observable maternal and developmental toxicities compared to folic acid and control rats. PCE (3-5g/kg po) was orally tolerated in rodents. Oral administration of Parkia clappertoniana seed extract improves reproductive performance in rodents with no observable maternal and developmental toxicity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Effects of Senna occidentalis seeds ingested during gestation on kid behavior

    USDA-ARS?s Scientific Manuscript database

    Senna occidentalis is a weed toxic to different animal species. Very little is known about the effects of prolonged exposure to low doses of S. occidentalis on developmental toxicology. Thus, the present study proposes an approach to evaluate the perinatal toxicity of S. occidentalis seeds in goats....

  1. 40 CFR 798.4350 - Inhalation developmental toxicity study.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Specific Organ/Tissue... million (ppm). (6) “No-observed-effect level” is the maximum concentration in a test which produces no observed adverse effects. A no-observed-effect level is expressed in terms of weight or volume of test...

  2. 40 CFR 798.4350 - Inhalation developmental toxicity study.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Specific Organ/Tissue... million (ppm). (6) “No-observed-effect level” is the maximum concentration in a test which produces no observed adverse effects. A no-observed-effect level is expressed in terms of weight or volume of test...

  3. 40 CFR 798.4350 - Inhalation developmental toxicity study.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Specific Organ/Tissue... million (ppm). (6) “No-observed-effect level” is the maximum concentration in a test which produces no observed adverse effects. A no-observed-effect level is expressed in terms of weight or volume of test...

  4. Developmental toxicity and neurotoxicity of synthetic organic insecticides in zebrafish (Danio rerio): A comparative study of deltamethrin, acephate, and thiamethoxam.

    PubMed

    Liu, XingYu; Zhang, QiuPing; Li, ShiBao; Mi, Ping; Chen, DongYan; Zhao, Xin; Feng, XiZeng

    2018-05-01

    Synthetic organic insecticides, including pyrethroids, organophosphates, neonicotinoids and other types, have the potential to alter the ecosystems and many are harmful to humans. This study examines the developmental toxicity and neurotoxicity of three synthetic organic insecticides, including deltamethrin (DM), acephate (AP), and thiamethoxam (TM), using embryo-larval stages of zebrafish (Danio rerio). Results showed that DM exposure led to embryo development delay and a significant increase in embryo mortality at 24 and 48 h post-fertilization (hpf). DM and AP decreased embryo chorion surface tension at 24 hpf, along with the increase in hatching rate at 72 hpf. Moreover, DM caused ntl, shh, and krox20 misexpression in a dose-dependent manner with morphological deformities of shorter body length, smaller eyes, and larger head-body angles at 10 μg/L. TM did not show significant developmental toxicity. Furthermore, results of larval rest/wake assay indicated that DM (>0.1 μg/L) and AP (0.1 mg/L) increased activity behavior with different patterns. Interestingly, as an insect-specific pesticide, TM still could alter locomotor activity in zebrafish larvae at concentrations as low as 0.1 mg/L. Our results indicate that different types of synthetic organic insecticides could create different toxicity outcomes in zebrafish embryos and larvae. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Ground and surface water developmental toxicity at a municipal landfill--Description and weather-related variation

    USGS Publications Warehouse

    Bruner, M.A.; Rao, M.; Dumont, J.N.; Hull, M.; Jones, T.; Bantle, J.A.

    1998-01-01

    Contaminated groundwater poses a significant health hazard and may also impact wildlife such as amphibians when it surfaces. Using FETAX (Frog Embryo Teratogenesis Assay-Xenopus), the developmental toxicity of ground and surface water samples near a closed municipal landfill at Norman, OK, were evaluated. The groundwater samples were taken from a network of wells in a shallow, unconfined aquifer downgradient from the landfill. Surface water samples were obtained from a pond and small stream adjacent to the landfill. Surface water samples from a reference site in similar habitat were also analyzed. Groundwater samples were highly toxic in the area near the landfill, indicating a plume of toxicants. Surface water samples from the landfill site demonstrated elevated developmental toxicity. This toxicity was temporally variable and was significantly correlated with weather conditions during the 3 days prior to sampling. Mortality was negatively correlated with cumulative rain and relative humidity. Mortality was positively correlated with solar radiation and net radiation. No significant correlations were observed between mortality and weather parameters for days 4–7 preceding sampling.

  6. Toxicity Screening of the ToxCast Phase II Chemical Library Using a Zebrafish Developmental Assay (SOT)

    EPA Science Inventory

    As part of the chemical screening and prioritization research program of the US EPA, the ToxCast Phase II chemicals were assessed using a vertebrate screen for developmental toxicity. Zebrafish embryos (Danio rerio) were exposed in 96-well plates from late-blastula stage (6hr pos...

  7. Evaluation of 1066 ToxCast Chemicals in a human stem cell assay for developmental toxicity (SOT)

    EPA Science Inventory

    To increase the diversity of assays used to assess potential developmental toxicity, the ToxCast chemical library was screened in the Stemina devTOX quickPREDICT assay using human embryonic stem (hES) cells. A model for predicting teratogenicity was based on a training set of 23 ...

  8. DEVELOPMENTAL TOXICITY OF PERFLUOROOCATANE SULFONATE (PFOS) IN THE RAT AND MOUSE

    EPA Science Inventory

    1Lau, C., 1J.M. Rogers, 1R.G. Hanson*, 1B.D. Barbee*, 1M.G. Narotsky, 1J.E. Schmid* and 2J.H. Richards*. 1Reproductive Toxicology Division, and 2Environmental Toxicology Division, NHEERL, US EPA, Research Triangle Park, North Carolina. Developmental toxicity of Perfluorooctane ...

  9. Rethinking developmental toxicity testing: Evolution or revolution?

    PubMed

    Scialli, Anthony R; Daston, George; Chen, Connie; Coder, Prägati S; Euling, Susan Y; Foreman, Jennifer; Hoberman, Alan M; Hui, Julia; Knudsen, Thomas; Makris, Susan L; Morford, LaRonda; Piersma, Aldert H; Stanislaus, Dinesh; Thompson, Kary E

    2018-06-01

    Current developmental toxicity testing adheres largely to protocols suggested in 1966 involving the administration of test compound to pregnant laboratory animals. After more than 50 years of embryo-fetal development testing, are we ready to consider a different approach to human developmental toxicity testing? A workshop was held under the auspices of the Developmental and Reproductive Toxicology Technical Committee of the ILSI Health and Environmental Sciences Institute to consider how we might design developmental toxicity testing if we started over with 21st century knowledge and techniques (revolution). We first consider what changes to the current protocols might be recommended to make them more predictive for human risk (evolution). The evolutionary approach includes modifications of existing protocols and can include humanized models, disease models, more accurate assessment and testing of metabolites, and informed approaches to dose selection. The revolution could start with hypothesis-driven testing where we take what we know about a compound or close analog and answer specific questions using targeted experimental techniques rather than a one-protocol-fits-all approach. Central to the idea of hypothesis-driven testing is the concept that testing can be done at the level of mode of action. It might be feasible to identify a small number of key events at a molecular or cellular level that predict an adverse outcome and for which testing could be performed in vitro or in silico or, rarely, using limited in vivo models. Techniques for evaluating these key events exist today or are in development. Opportunities exist for refining and then replacing current developmental toxicity testing protocols using techniques that have already been developed or are within reach. © 2018 The Authors. Birth Defects Research Published by Wiley Periodicals, Inc.

  10. PPTOX III: environmental stressors in the developmental origins of disease--evidence and mechanisms.

    PubMed

    Schug, Thaddeus T; Barouki, Robert; Gluckman, Peter D; Grandjean, Philippe; Hanson, Mark; Heindel, Jerold J

    2013-02-01

    Fetal and early postnatal development constitutes the most vulnerable time period of human life in regard to adverse effects of environmental hazards. Subtle effects during development can lead to functional deficits and increased disease risk later in life. The hypothesis stating that environmental exposures leads to altered programming and, thereby, to increased susceptibility to disease or dysfunction later in life has garnered much support from both experimental and epidemiological studies. Similar observations have been made on the long-term impact of nutritional unbalance during early development. In an effort to bridge the fields of nutritional and environmental developmental toxicity, the Society of Toxicology sponsored this work. This report summarizes novel findings in developmental toxicity as reported by select invited experts and meeting attendees. Recommendations for the application and improvement of current and future research efforts are also presented.

  11. Influence of Study Design on Developmental and Reproductive Toxicology Study Outcomes.

    PubMed

    Foster, Paul M D

    2017-01-01

    Regulatory studies of developmental and reproductive toxicity (DART) studies have remained largely unchanged for decades, with exposures occurring at various phases of the reproductive cycle and toxicity evaluations at different ages/times depending on the study purpose. The National Toxicology Program has conducted studies examining the power to detect adverse effects where there is a prenatal exposure, but evaluations occur postnatally. In these studies, examination is required of only 1 male and female pup from each litter beyond weaning. This provides poor resolving power to detect rare events (e.g., reproductive tract malformations). If an adverse effect is detected, there is little confidence in the shape of the dose-response curve (and the Benchmark Dose or No Observed Adverse Effect Level [NOAEL]). We have developed a new protocol to evaluate DART, the modified one generation study, with exposure commencing with pregnant animals and retention of 4 males and females from each litter beyond weaning to improve statistical power. These animals can be allocated to specific cohorts that examine subchronic toxicity, teratology, littering, and neurobehavioral toxicity in the same study. This approach also results in a reduction in animal numbers used, compared with individual stand-alone studies, and offers increased numbers of end points evaluated compared with recent Organization for Economic Cooperation and Development proposals.

  12. Virtual Tissue Models in Developmental Toxicity Research

    EPA Science Inventory

    Prenatal exposure to drugs and chemicals may perturb, directly or indirectly, core developmental processes in the embryo (patterning, morphogenesis, proliferation and apoptosis, and cell differentiation), leading to adverse developmental outcomes. Because embryogenesis entails a...

  13. Subchronic (13-week) toxicity and prenatal developmental toxicity studies of dietary astaxanthin in rats.

    PubMed

    Vega, Katherine; Edwards, James; Beilstein, Paul

    2015-12-01

    Two studies examined the effects of dietary astaxanthin on Hanlbm Wistar (SPF) rats. Male and female rats receiving astaxanthin concentrations up to 1.52% of the feed for 13 weeks showed no evidence of toxicity; no effects were noted in the offspring of female rats exposed to astaxanthin at up to 1.39% of the feed during the period of organogenesis (GD 7-16). Discoloration of the feces and yellow pigmentation of adipose tissue was seen in the 13-week study, an intrinsic property of the substance, and not a sign of toxicity. Differences between the control and astaxanthin groups, some of which reached statistical significance, were generally sporadic (i.e., transient and/or not related to astaxanthin concentration) and not considered of biological or toxicological significance. Blood cholesterol levels, for example, were greater in animals receiving astaxanthin for 13 weeks, but remained within the normal range. The highest dietary concentration of astaxanthin in each of the studies is proposed as a no-observable-adverse-effect level (NOAEL). Specifically, 1.52% for the 13-week study, corresponding to a mean intake of 1033 mg/kg bw/day (range: 880-1240 mg/kg bw/day), and 1.39% for the developmental toxicity study, corresponding to a mean intake of approximately 830 mg/kg bw/day (range: 457-957 mg/kg bw/day). Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Sodium benzoate induced developmental defects, oxidative stress and anxiety-like behaviour in zebrafish larva.

    PubMed

    Gaur, Himanshu; Purushothaman, Srinithi; Pullaguri, Narasimha; Bhargava, Yogesh; Bhargava, Anamika

    2018-07-20

    Sodium benzoate (SB) is a common food preservative. Its FDA described safety limit is 1000 ppm. Lately, increased use of SB has prompted investigations regarding its effects on biological systems. Data regarding toxicity of SB is divergent and controversial with studies reporting both harmful and beneficial effects. Therefore, we did a systematic dose dependent toxicity study of SB using zebrafish vertebrate animal model. We also investigated oxidative stress and anxiety-like behaviour in zebrafish larva treated with SB. Our results indicate that SB induced developmental (delayed hatching), morphological (pericardial edema, yolk sac edema and tail bending), biochemical (oxidative stress) and behavioural (anxiety-like behaviour) abnormalities in developing zebrafish larva. LC 50 of SB induced toxicity was approximately 400 ppm after 48 h of SB exposure. Our study strongly supports its harmful effects on vertebrates at increasing doses. Thus, we suggest caution in the excessive use of this preservative in processed and convenience foods. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Effects of gestational exposure to PFOA on PPAR protein and mRNA expression in vital organs of fetal and postnatal mice

    EPA Science Inventory

    Perfluorooctanoic acid (PFOA) is developmentally toxic, causing in utero and neonatal mortality, and altering development and growth in mice. PFOA activates peroxisome proliferator-activated receptor (PPAR)a and PPARa signaling is required for toxicity. This study examines the ex...

  16. Characteristics of the ToxRefDB In Vivo Datasets from Chronic, Reproductive and Developmental Assays

    EPA Science Inventory

    ToxRefDB was developed to store data from in vivo animal toxicity studies. The initial focus was populating ToxRefDB with pesticide registration toxicity data that has been historically stored as hard-copy and scanned documents by the Office of Pesticide Programs. A significant p...

  17. Intoxication by Senna occidentalis Seeds in Pregnant Goats: Prenatal and Postnatal Evaluation

    USDA-ARS?s Scientific Manuscript database

    Senna occidentalis is a toxic weed that affects a number of animal species. Very little is known about the effects of prolonged exposure to low doses of S. occidentalis on developmental toxicology. Thus, the present study evaluated the perinatal toxicity of S. occidentalis seeds in goats. Twenty o...

  18. EFFECTS ON BIRTH WEIGHT AND ADULT HEALTH IN RATS PRENATALLY EXPOSED TO TOXICANTS OR UNDERNUTRITION

    EPA Science Inventory

    Low fetal weight is a sensitive indicator of developmental toxicity in animal studies. While low birth weight may be permanent or transitory, the long-term effects of low birth weight on adult health have not been elucidated. Previous research has shown in humans an inverse rela...

  19. Perfluorooctanoic acid (PFOA)-induced developmental toxicity in the mouse is dependent on expression of peroxisome proliferator activated receptor-alpha (PPAR-α)

    EPA Science Inventory

    PFOA is a member of a family of perfluorinated chemicals that have a variety of applications. PFOA persists in the environment and is found in wildlife and humans. In mice, PFOA is developmentally toxic producing mortality, delayed eye opening, growth deficits, and altered puber...

  20. Evaluation of an adherent mouse embryonic stem cell in vitro assay to predict developmental toxicity of ToxCast chemicals.

    EPA Science Inventory

    The potential for most environmental chemicals to produce developmental toxicity is unknown. Mouse embryonic stem cell (mESC) assays are an alternative in vitro model to assess chemicals. The chemical space evaluated using mESC and compared to in vivo is limited. We used an adher...

  1. Aerobic Bioremediation of PAH Contaminated Soil Results in Increased Genotoxicity and Developmental Toxicity.

    PubMed

    Chibwe, Leah; Geier, Mitra C; Nakamura, Jun; Tanguay, Robert L; Aitken, Michael D; Simonich, Staci L Massey

    2015-12-01

    The formation of more polar and toxic polycyclic aromatic hydrocarbon (PAH) transformation products is one of the concerns associated with the bioremediation of PAH-contaminated soils. Soil contaminated with coal tar (prebioremediation) from a former manufactured gas plant (MGP) site was treated in a laboratory scale bioreactor (postbioremediation) and extracted using pressurized liquid extraction. The soil extracts were fractionated, based on polarity, and analyzed for 88 PAHs (unsubstituted, oxygenated, nitrated, and heterocyclic PAHs). The PAH concentrations in the soil tested, postbioremediation, were lower than their regulatory maximum allowable concentrations (MACs), with the exception of the higher molecular weight PAHs (BaA, BkF, BbF, BaP, and IcdP), most of which did not undergo significant biodegradation. The soil extract fractions were tested for genotoxicity using the DT40 chicken lymphocyte bioassay and developmental toxicity using the embryonic zebrafish (Danio rerio) bioassay. A statistically significant increase in genotoxicity was measured in the unfractionated soil extract, as well as in four polar soil extract fractions, postbioremediation (p < 0.05). In addition, a statistically significant increase in developmental toxicity was measured in one polar soil extract fraction, postbioremediation (p < 0.05). A series of morphological abnormalities, including peculiar caudal fin malformations and hyperpigmentation in the tail, were measured in several soil extract fractions in embryonic zebrafish, both pre- and postbioremediation. The increased toxicity measured postbioremediation is not likely due to the 88 PAHs measured in this study (including quinones), because most were not present in the toxic polar fractions and/or because their concentrations did not increase postbioremediation. However, the increased toxicity measured postbioremediation is likely due to hydroxylated and carboxylated transformation products of the 3- and 4-ring PAHs (PHE, 1MPHE, 2MPHE, PRY, BaA, and FLA) that were most degraded.

  2. Compound-specific effects of diverse neurodevelopmental toxicants on global gene expression in the neural embryonic stem cell test (ESTn)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Theunissen, P.T., E-mail: Peter.Theunissen@rivm.nl; Department of Toxicogenomics, Maastricht University, Maastricht; Robinson, J.F.

    Alternative assays for developmental toxicity testing are needed to reduce animal use in regulatory toxicology. The in vitro murine neural embryonic stem cell test (ESTn) was designed as an alternative for neurodevelopmental toxicity testing. The integration of toxicogenomic-based approaches may further increase predictivity as well as provide insight into underlying mechanisms of developmental toxicity. In the present study, we investigated concentration-dependent effects of six mechanistically diverse compounds, acetaldehyde (ACE), carbamazepine (CBZ), flusilazole (FLU), monoethylhexyl phthalate (MEHP), penicillin G (PENG) and phenytoin (PHE), on the transcriptome and neural differentiation in the ESTn. All compounds with the exception of PENG altered ESTnmore » morphology (cytotoxicity and neural differentiation) in a concentration-dependent manner. Compound induced gene expression changes and corresponding enriched gene ontology biological processes (GO–BP) were identified after 24 h exposure at equipotent differentiation-inhibiting concentrations of the compounds. Both compound-specific and common gene expression changes were observed between subsets of tested compounds, in terms of significance, magnitude of regulation and functionality. For example, ACE, CBZ and FLU induced robust changes in number of significantly altered genes (≥ 687 genes) as well as a variety of GO–BP, as compared to MEHP, PHE and PENG (≤ 55 genes with no significant changes in GO–BP observed). Genes associated with developmentally related processes (embryonic morphogenesis, neuron differentiation, and Wnt signaling) showed diverse regulation after exposure to ACE, CBZ and FLU. In addition, gene expression and GO–BP enrichment showed concentration dependence, allowing discrimination of non-toxic versus toxic concentrations on the basis of transcriptomics. This information may be used to define adaptive versus toxic responses at the transcriptome level.« less

  3. Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage.

    PubMed

    Zhu, Xiaoshan; Zhu, Lin; Duan, Zhenghua; Qi, Ruiqi; Li, Yan; Lang, Yupeng

    2008-02-15

    With the emergence of manufactured nanomaterials, it is urgent to carry out researches on their potential environmental impacts and biological effects. To better understand the potential ecotoxicological impacts of metal oxide nanoparticles released to aquatic environments, the zebrafish 96-h embryo-larval bioassay was used to assess and compare the developmental toxicities of nanoscale zinc oxide (nZnO), titanium dioxide (nTiO(2)) and alumina (nAl(2)O(3)) aqueous suspensions. Toxicological endpoints such as zebrafish embryos or larvae survival, hatching rate and malformation were noted and described within 96 h of exposure. Meanwhile, a comparative experiment with their bulk counterparts (i.e., ZnO/bulk, TiO(2)/bulk and Al(2)O(3)/bulk) was conducted to understand the effect of particle size on their toxicities. The results showed that: (i) both nZnO and ZnO/bulk aqueous suspensions delayed zebrafish embryo and larva development, decreased their survival and hatching rates, and caused tissue damage. The 96-h LC(50) of nZnO and ZnO/bulk aqueous suspensions on the zebrafish survival are 1.793 mg/L and 1.550 mg/L respectively; and the 84-h EC(50) on the zebrafish embryo hatching rate are 2.065 mg/L and 2.066 mg/L respectively. Serious tissue ulceration was found on zebrafish larvae exposed to nZnO and ZnO/bulk aqueous suspensions. (ii) In contrast, neither nTiO(2) and TiO(2)/bulk nor nAl(2)O(3) and Al(2)O(3)/bulk showed any toxicity to zebrafish embryos and larvae under the same experimental condition. It revealed that the metal oxide nanoparticles with different chemical composition have different zebrafish developmental toxicities. (iii) Exposures of nTiO(2), nZnO and nAl(2)O(3) produced toxic effects on zebrafish embryos and larvae, which was not different from the effects caused by exposing to their bulk counterparts. This is the first study about the developmental toxicity of metal oxide nanoparticles, and the results demonstrate that nZnO is very toxic to zebrafish embryos and larvae, which highlights the need to evaluate the potential eco-toxicity of these manufactured nanomaterials (MNMs).

  4. Hydroxylated PBDEs induce developmental arrest in zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Usenko, Crystal Y., E-mail: Crystal_usenko@baylor.edu; Hopkins, David C.; Trumble, Stephen J., E-mail: Stephen_trumble@baylor.edu

    The ubiquitous spread of polybrominated diphenyl ethers (PBDEs) has led to concerns regarding the metabolites of these congeners, in particular hydroxylated PBDEs. There are limited studies regarding the biological interactions of these chemicals, yet there is some concern they may be more toxic than their parent compounds. In this study three hydroxylated PBDEs were assessed for toxicity in embryonic zebrafish: 3-OH-BDE 47, 5-OH-BDE 47, and 6-OH-BDE 47. All three congeners induced developmental arrest in a concentration-dependent manner; however, 6-OH-BDE 47 induced adverse effects at lower concentrations than the other congeners. Furthermore, all three induced cell death; however apoptosis was notmore » observed. In short-term exposures (24–28 hours post fertilization), all hydroxylated PBDEs generated oxidative stress in the region corresponding to the cell death at 5 and 10 ppm. To further investigate the short-term effects that may be responsible for the developmental arrest observed in this study, gene regulation was assessed for embryos exposed to 0.625 ppm 6-OH-BDE 47 from 24 to 28 hpf. Genes involved in stress response, thyroid hormone regulation, and neurodevelopment were significantly upregulated compared to controls; however, genes related to oxidative stress were either unaffected or downregulated. This study suggests that hydroxylated PBDEs disrupt development, and may induce oxidative stress and potentially disrupt the cholinergic system and thyroid hormone homeostasis. -- Highlights: ► OH-PBDEs induce developmental arrest in a concentration-dependent manner. ► Hydroxyl group location influences biological interaction. ► OH-PBDEs induce oxidative stress. ► Thyroid hormone gene regulation was disrupted following exposure. ► To our knowledge, this is the first whole organism study of OH-PBDE toxicity.« less

  5. Applying Evolutionary Genetics to Developmental Toxicology and Risk Assessment

    PubMed Central

    Leung, Maxwell C. K.; Procter, Andrew C.; Goldstone, Jared V.; Foox, Jonathan; DeSalle, Robert; Mattingly, Carolyn J.; Siddall, Mark E.; Timme-Laragy, Alicia R.

    2018-01-01

    Evolutionary thinking continues to challenge our views on health and disease. Yet, there is a communication gap between evolutionary biologists and toxicologists in recognizing the connections among developmental pathways, high-throughput screening, and birth defects in humans. To increase our capability in identifying potential developmental toxicants in humans, we propose to apply evolutionary genetics to improve the experimental design and data interpretation with various in vitro and whole-organism models. We review five molecular systems of stress response and update 18 consensual cell-cell signaling pathways that are the hallmark for early development, organogenesis, and differentiation; and revisit the principles of teratology in light of recent advances in high-throughput screening, big data techniques, and systems toxicology. Multiscale systems modeling plays an integral role in the evolutionary approach to cross-species extrapolation. Phylogenetic analysis and comparative bioinformatics are both valuable tools in identifying and validating the molecular initiating events that account for adverse developmental outcomes in humans. The discordance of susceptibility between test species and humans (ontogeny) reflects their differences in evolutionary history (phylogeny). This synthesis not only can lead to novel applications in developmental toxicity and risk assessment, but also can pave the way for applying an evo-devo perspective to the study of developmental origins of health and disease. PMID:28267574

  6. Developmental Toxicity of Endocrine Disrupters Bisphenol A and Vinclozolin in a Terrestrial Isopod

    PubMed Central

    van Gestel, C. A. M.; Soares, A. M. V. M.

    2010-01-01

    Studies of the effects of endocrine-disrupting compounds (EDCs) on invertebrates are still largely underrepresented. This work aims to fill this gap by assessing the effects of bisphenol A (BPA) and vinclozolin (Vz) on the terrestrial isopod Porcellio scaber (common rough woodlouse). Male adult and sexually undifferentiated juvenile woodlice were exposed to the toxicants. Effects on molting regime and growth were investigated independently for males and female woodlice after sexual differentiation. Both chemicals elicited developmental toxicity to P. scaber by causing overall decreased growth. Nevertheless, BPA induced molting, whereas Vz delayed it. Although the LC50 values for juvenile and adult survival were fairly similar, juvenile woodlice showed an increased chronic sensitivity to both chemicals, and female woodlice were most the sensitive to BPA. We recommend the use of adults, juveniles, female, and male woodlice, as well as a large range of toxicant concentrations, to provide valuable information regarding differential dose responses, effects, and threshold values for EDCs. PMID:20148245

  7. Developmental toxicity of endocrine disrupters bisphenol A and vinclozolin in a terrestrial isopod.

    PubMed

    Lemos, M F L; van Gestel, C A M; Soares, A M V M

    2010-08-01

    Studies of the effects of endocrine-disrupting compounds (EDCs) on invertebrates are still largely underrepresented. This work aims to fill this gap by assessing the effects of bisphenol A (BPA) and vinclozolin (Vz) on the terrestrial isopod Porcellio scaber (common rough woodlouse). Male adult and sexually undifferentiated juvenile woodlice were exposed to the toxicants. Effects on molting regime and growth were investigated independently for males and female woodlice after sexual differentiation. Both chemicals elicited developmental toxicity to P. scaber by causing overall decreased growth. Nevertheless, BPA induced molting, whereas Vz delayed it. Although the LC50 values for juvenile and adult survival were fairly similar, juvenile woodlice showed an increased chronic sensitivity to both chemicals, and female woodlice were most the sensitive to BPA. We recommend the use of adults, juveniles, female, and male woodlice, as well as a large range of toxicant concentrations, to provide valuable information regarding differential dose responses, effects, and threshold values for EDCs.

  8. Transcriptomic analysis in the developing zebrafish embryo after compound exposure: Individual gene expression and pathway regulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hermsen, Sanne A.B., E-mail: Sanne.Hermsen@rivm.nl; Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht; Institute for Risk Assessment Sciences

    2013-10-01

    The zebrafish embryotoxicity test is a promising alternative assay for developmental toxicity. Classically, morphological assessment of the embryos is applied to evaluate the effects of compound exposure. However, by applying differential gene expression analysis the sensitivity and predictability of the test may be increased. For defining gene expression signatures of developmental toxicity, we explored the possibility of using gene expression signatures of compound exposures based on commonly expressed individual genes as well as based on regulated gene pathways. Four developmental toxic compounds were tested in concentration-response design, caffeine, carbamazepine, retinoic acid and valproic acid, and two non-embryotoxic compounds, D-mannitol andmore » saccharin, were included. With transcriptomic analyses we were able to identify commonly expressed genes, which were mostly development related, after exposure to the embryotoxicants. We also identified gene pathways regulated by the embryotoxicants, suggestive of their modes of action. Furthermore, whereas pathways may be regulated by all compounds, individual gene expression within these pathways can differ for each compound. Overall, the present study suggests that the use of individual gene expression signatures as well as pathway regulation may be useful starting points for defining gene biomarkers for predicting embryotoxicity. - Highlights: • The zebrafish embryotoxicity test in combination with transcriptomics was used. • We explored two approaches of defining gene biomarkers for developmental toxicity. • Four compounds in concentration-response design were tested. • We identified commonly expressed individual genes as well as regulated gene pathways. • Both approaches seem suitable starting points for defining gene biomarkers.« less

  9. Evaluation of developmental toxicity of guaifenesin using pregnant female rats.

    PubMed

    Shabbir, Arham; Shamsi, Sadia; Shahzad, Muhammad; Butt, Hajra Ikram; Aamir, Khurram; Iqbal, Javed

    2016-01-01

    Guaifenesin possesses expectorant, muscle relaxant, and anticonvulsive properties. To the best of our knowledge, the promising data regarding the developmental toxicity of guaifenesin are scarce. The current study investigates the developmental toxic effects of guaifenesin in detail using female rats. Twenty-five dams were divided into five groups. Group 1 served as a control, while Group-2, -3, -4, and -5 were administered with 250, 350, 500, and 600 (mg/kg b.w.) doses of guaifenesin, respectively, starting from gestation day 6 to day 17. Half of the total recovered fetuses was subjected to morphologic and morphometric analysis, while other half was subjected to skeletal examination. A significant reduction in maternal weight, and food/water intake, was observed, however, no mortality and morbidity were observed. About 14 dead fetuses were found in Group-3 and -4 each, while 26 in Group 5. Morphological analysis revealed 21.2%, 45.4%, 67.2%, and 86.9% of total fetuses having hemorrhagic spots in Group-2, -3, -4, and -5, respectively. Dropping wrist/ankle and kinky tail were found in Group-4 and -5 only. Morphometric analysis showed a significant decline in fetal weight, full body length, skull length, forelimb length, hindlimb length, and tail length in all guaifenesin treated groups. Skeletal examination displayed that only Group 5 fetuses had increased intercostal space between 7(th) and 8(th) rib. We also observed improper development of carpals, metacarpals, tarsals, and metatarsals of the Group 5 fetuses. Guaifenesin showed a significant developmental toxicity at selected test doses; therefore, a careful use is suggested during pregnancy.

  10. Evaluation of developmental toxicity of guaifenesin using pregnant female rats

    PubMed Central

    Shabbir, Arham; Shamsi, Sadia; Shahzad, Muhammad; Butt, Hajra Ikram; Aamir, Khurram; Iqbal, Javed

    2016-01-01

    Objectives: Guaifenesin possesses expectorant, muscle relaxant, and anticonvulsive properties. To the best of our knowledge, the promising data regarding the developmental toxicity of guaifenesin are scarce. The current study investigates the developmental toxic effects of guaifenesin in detail using female rats. Materials and Methods: Twenty-five dams were divided into five groups. Group 1 served as a control, while Group-2, -3, -4, and -5 were administered with 250, 350, 500, and 600 (mg/kg b.w.) doses of guaifenesin, respectively, starting from gestation day 6 to day 17. Half of the total recovered fetuses was subjected to morphologic and morphometric analysis, while other half was subjected to skeletal examination. Results: A significant reduction in maternal weight, and food/water intake, was observed, however, no mortality and morbidity were observed. About 14 dead fetuses were found in Group-3 and -4 each, while 26 in Group 5. Morphological analysis revealed 21.2%, 45.4%, 67.2%, and 86.9% of total fetuses having hemorrhagic spots in Group-2, -3, -4, and -5, respectively. Dropping wrist/ankle and kinky tail were found in Group-4 and -5 only. Morphometric analysis showed a significant decline in fetal weight, full body length, skull length, forelimb length, hindlimb length, and tail length in all guaifenesin treated groups. Skeletal examination displayed that only Group 5 fetuses had increased intercostal space between 7th and 8th rib. We also observed improper development of carpals, metacarpals, tarsals, and metatarsals of the Group 5 fetuses. Conclusion: Guaifenesin showed a significant developmental toxicity at selected test doses; therefore, a careful use is suggested during pregnancy. PMID:27298495

  11. RIFM fragrance ingredient safety assessment, α-Ionone, CAS Registry Number 127-41-3.

    PubMed

    Api, A M; Belsito, D; Bhatia, S; Bruze, M; Calow, P; Dagli, M L; Dekant, W; Fryer, A D; Kromidas, L; La Cava, S; Lalko, J F; Lapczynski, A; Liebler, D C; Miyachi, Y; Politano, V T; Ritacco, G; Salvito, D; Schultz, T W; Shen, J; Sipes, I G; Wall, B; Wilcox, D K

    2016-11-01

    The use of this material under current use conditions is supported by the existing information. This material was evaluated for genotoxicity, repeated dose toxicity, developmental toxicity, reproductive toxicity, local respiratory toxicity, phototoxicity, skin sensitization potential, as well as, environmental safety. Repeated dose toxicity was determined to have the most conservative systemic exposure derived NO[A]EL of 10 mg/kg/day. A dietary 90-day subchronic toxicity study conducted in rats resulted in a MOE of 182 while assuming 100% absorption from skin contact and inhalation. A MOE of >100 is deemed acceptable. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. RIFM fragrance ingredient safety assessment, isoeugenol, CAS Registry Number 97-54-1.

    PubMed

    Api, A M; Belsito, D; Bhatia, S; Bruze, M; Calow, P; Dagli, M L; Dekant, W; Fryer, A D; Kromidas, L; La Cava, S; Lalko, J F; Lapczynski, A; Liebler, D C; Miyachi, Y; Politano, V T; Ritacco, G; Salvito, D; Schultz, T W; Shen, J; Sipes, I G; Wall, B; Wilcox, D K

    2016-11-01

    The use of this material under current use conditions is supported by the existing information. This material was evaluated for genotoxicity, repeated dose toxicity, developmental toxicity, reproductive toxicity, local respiratory toxicity, phototoxicity, skin sensitization potential, as well as, environmental safety. Repeated dose toxicity was determined to have the most conservative systemic exposure derived NO[A]EL of 37.5 mg/kg/day. A gavage 13-week subchronic toxicity study conducted in mice resulted in a MOE of 5769 while considering 38.4% absorption from skin contact and 100% from inhalation. A MOE of >100 is deemed acceptable. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Developmental toxicity of 2,4-dichlorophenoxyacetic acid in zebrafish embryos.

    PubMed

    Li, Kang; Wu, Jia-Qi; Jiang, Ling-Ling; Shen, Li-Zhen; Li, Jian-Ying; He, Zhi-Heng; Wei, Ping; Lv, Zhuo; He, Ming-Fang

    2017-03-01

    2,4-Dichlorophenoxyacetic acid (2,4-D) is widely used in agriculture as herbicide/pesticide, plant growth regulator and fruit preservative agent. It progressively accumulates in the environment including surface water, air and soil. It could be detected in human food and urine, which poses great risk to the living organisms. In the present study, we investigated the developmental toxicity of 2,4-D on zebrafish (Danio rerio) embryo. 2,4-D exposure significantly decreased both the survival rate (LC 50  = 46.71 mg/L) and hatching rate (IC 50  = 46.26 mg/L) of zebrafish embryos. The most common developmental defect in 2,4-D treated embryos was pericardial edema. 2,4-D (25 mg/L) upregulated marker genes of cardiac development (vmhc, amhc, hand2, vegf, and gata1) and downregulated marker genes of oxidative stress (cat and gpx1a). Whole mount in situ hybridization confirmed the vmhc and amhc upregulation by 2,4-D treatment. LC/MS/MS showed that the bioaccumulation of 2,4-D in zebrafish embryos were increased in a time-dependent manner after 25 mg/L of 2,4-D treatment. Taken together, our study investigated the toxic effects of 2,4-D on zebrafish embryonic development and its potential molecular mechanisms, gave evidence for the full understanding of 2,4-D toxicity on living organisms and shed light on its environmental impact. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. RIFM fragrance ingredient safety assessment, isobornyl isovalerate, CAS registry number 7779-73-9.

    PubMed

    Api, A M; Belsito, D; Bhatia, S; Bruze, M; Calow, P; Dagli, M L; Dekant, W; Fryer, A D; Kromidas, L; La Cava, S; Lapczynski, A; Liebler, D C; O'Brien, D; Parakhia, R; Penning, T M; Politano, V T; Ritacco, G; Salvito, D; Schultz, T W; Shen, J; Sipes, I G; Wall, B; Wilcox, D K

    2017-12-01

    This material was evaluated for genotoxicity, repeated dose toxicity, developmental toxicity, reproductive toxicity, local respiratory toxicity, phototoxicity/photoallergenicity, skin sensitization potential, as well as, environmental safety. Data from the suitable read across analog isobornyl acetate (CAS # 125-12-2) show that this material is not genotoxic, provided a MOE > 100 for the repeated dose, developmental and reproductive endpoints, and does not have skin sensitization potential. The local respiratory toxicity endpoint was completed using the TTC (threshold of Toxicological Concern) for a Cramer Class II material (0.47 mg/day). The phototoxicity/photoallergenicity endpoint was completed based on suitable UV spectra. The environmental endpoint was completed as described in the RIFM Framework. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. MATERNAL AND DEVELOPMENTAL TOXICITY OF PERFLUOROOCATANE SULFONATE (PFOS) IN THE RAT

    EPA Science Inventory

    MATERNAL AND DEVELOPMENTAL TOXICITY OF PERFLUOROOCTANE SULFONATE (PFOS) IN THE RAT. C. Lau1, J.M. Rogers1, J.R. Thibodeaux1, R.G. Hanson1, B.E. Grey1, B.D. Barbee1, J.H. Richards2, J.L. Butenoff3. 1Reprod. Tox. Div., 2Exp. Tox. Div., NHEERL, USEPA, Research Triangle Park, NC, 3...

  16. Computer Simulation of Embryonic Systems: What can a virtual embryo teach us about developmental toxicity? Microcephaly: Computational and organotypic modeling of a complex human birth defect (seminar and lecture - Thomas Jefferson University, Philadelphia, PA)

    EPA Science Inventory

    (1) Standard practice for assessing developmental toxicity is the observation of apical endpoints (intrauterine death, fetal growth retardation, structural malformations) in pregnant rats/rabbits following exposure during organogenesis. EPA’s computational toxicology research pro...

  17. DEVELOPMENTAL TOXICITY OF 2-CHLORO-2'-DEOXYADENOSINE IN THE RAT: INDUCTION OF LUMBAR HERNIA

    EPA Science Inventory

    DEVELOPMENTAL TOXICITY OF 2-CHLORO-2'DEOXYADENOSINE IN THE RAT: INDUCTION OF LUMBAR HERNIA. C. Lau1, M.G. Narotsky1, D. Lui1, D. Best1, R.W. Setzer2, T.B. Knudsen3. 1Reprod. Tox. Div., 2Exp. Tox. Div., NHEERL, US EPA, Research Triangle Park, NC, USA, 3Dept. Path. Anat. Cell Bio...

  18. Cardiovascular Ultrasound of Neonatal Long Evans Rats ...

    EPA Pesticide Factsheets

    This abstract describes the use of a relatively new technology, cardiovascular ultrasound (echocardiography) for evaluating developmental toxicity affecting heart development. The abstract describes the effects of two known cardiac teratogens, trichloroacetic acid and dimethadione, and their effects as determined by echocardiography. This abstract describes the use and development of a relatively new technology, cardiovascular ultrasound (echocardiography) for evaluating developmental toxicity affecting heart development.

  19. MATERNAL AND DEVELOPMENTAL TOXICITY OF PERFLUOROOCTANE SULFONATE (PFOS) IN THE MOUSE

    EPA Science Inventory

    MATERNAL AND DEVELOPMENTAL TOXICITY OF PERFLUOROOCTANE SULFONATE (PFOS) IN THE MOUSE. J.R. Thibodeaux1, R.G. Hanson1, B.E. Grey1, B.D. Barbee1, J.H. Richards2, J.L. Butenhoff3, J.M. Rogers1, C. Lau1. 1Reprod. Tox. Div., 2Exp. Tox. Div., NHEERL, ORD, US EPA, Research Triangle Pa...

  20. Embryonic stem cells and the next generation of developmental toxicity testing.

    PubMed

    Kugler, Josephine; Huhse, Bettina; Tralau, Tewes; Luch, Andreas

    2017-08-01

    The advent of stem cell technology has seen the establishment of embryonic stem cells (ESCs) as molecular model systems and screening tools. Although ESCs are nowadays widely used in research, regulatory implementation for developmental toxicity testing is pending. Areas Covered: This review evaluates the performance of current ESC, including human (h)ESC testing systems, trying to elucidate their potential for developmental toxicity testing. It shall discuss defining parameters and mechanisms, their relevance and contemplate what can realistically be expected. Crucially this includes the question of how to ascertain the quality of currently employed cell lines and tests based thereon. Finally, the use of hESCs will raise ethical concerns which should be addressed early on. Expert Opinion: While the suitability of (h)ESCs as tools for research and development goes undisputed, any routine use for developmental toxicity testing currently still seems premature. The reasons for this comprise inherent biological deficiencies as well as cell line quality and system validation. Overcoming these issues will require collaboration of scientists, test developers and regulators. Also, validation needs to be made worthwhile for academia. Finally we have to continuously rethink existing strategies, making room for improved testing and innovative approaches.

  1. A human induced pluripotent stem cell-based in vitro assay predicts developmental toxicity through a retinoic acid receptor-mediated pathway for a series of related retinoid analogues.

    PubMed

    Palmer, Jessica A; Smith, Alan M; Egnash, Laura A; Colwell, Michael R; Donley, Elizabeth L R; Kirchner, Fred R; Burrier, Robert E

    2017-10-01

    The relative developmental toxicity potency of a series of retinoid analogues was evaluated using a human induced pluripotent stem (iPS) cell assay that measures changes in the biomarkers ornithine and cystine. Analogue potency was predicted, based on the assay endpoint of the ornithine/cystine (o/c) ratio, to be all-trans-retinoic acid>TTNPB>13-cis-retinoic acid≈9-cis-retinoic acid>acitretin>etretinate>retinol. These rankings correlate with in vivo data and demonstrate successful application of the assay to rank a series of related toxic and non-toxic compounds. The retinoic acid receptor α (RARα)-selective antagonist Ro 41-5253 inhibited the cystine perturbation caused by all-trans-retinoic acid, TTNPB, 13-cis-retinoic acid, 9-cis-retinoic acid, and acitretin. Ornithine was altered independent of RARα in all retinoids except acitretin. These results suggest a role for an RARα-mediated mechanism in retinoid-induced developmental toxicity through altered cystine metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Developmental toxicology: adequacy of current methods.

    PubMed

    Peters, P W

    1998-01-01

    Toxicology embraces several disciplines such as carcinogenicity, mutagenicity and reproductive toxicity. Reproductive toxicology is concerned with possible effects of substances on the reproductive process, i.e. on sexual organs and their functions, endocrine regulation, fertilization, transport of the fertilized ovum, implantation, and embryonic, fetal and postnatal development, until the end-differentiation of the organs is achieved. Reproductive toxicology is divided into areas related to male and female fertility, and developmental toxicology. Developmental toxicology can be further broken down into prenatal and postnatal toxicology. Today, much new information is available about the origins of developmental disorders resulting from chemical exposure. While these findings seem to promise important new developments in methodology and research, there is a danger of losing sight of the precepts and principles established in the light of existing knowledge. There is also a danger that we may fail to correct shortcomings in our existing procedures and practice. The aim of this presentation is to emphasize the importance of testing substances for their impact in advance of their use and to underline that we must use the best existing tools for carrying out risk assessments. Moreover, it needs to be stressed that there are many substances that are never assessed with respect to reproductive and developmental toxicity. Similarly, our programmes for post-marketing surveillance with respect to developmental toxicology are grossly inadequate. Our ability to identify risks to normal development and reproduction would be much improved, first if a number of straightforward precepts were always followed and second, if we had a clearer understanding of what we mean by risk and acceptable levels of risk in the context of development. Other aims of this paper are: to stress the complexity of the different stages of normal prenatal development; to note the principles that are applicable in developmental and especially prenatal toxicology; to describe the different agents that might act as developmental toxicants or teratogens; to show the broad scope of different effects caused by developmental toxic agents; and to indicate methods to detect and to recognise causes of developmental defects with the primary objective of preventing these disorders.

  3. METROPOLITAN ATLANTA DEVELOPMENTAL DISABILITIES PROGRAM (MADDSP)

    EPA Science Inventory

    To address the problem of developmental disabilities among children, CDC, the former Division of Birth Defects and Developmental Disabilities, which was funded by the Agency for Toxic Substances and Disease Registry (ATSDR), and the Georgia Department of Human Resources, initiate...

  4. Characteristics and Applications of the ToxRefDB In Vivo Datasets from Chronic, Reproductive and Developmental Assays

    EPA Science Inventory

    ToxRefDB was developed to store data from in vivo animal toxicity studies. The initial focus was populating ToxRefDB with pesticide registration toxicity data that has been historically stored as hard-copy and scanned documents by the Office of Pesticide Programs. A significant p...

  5. 3D Visualization of Developmental Toxicity of 2,4,6-Trinitrotoluene in Zebrafish Embryogenesis Using Light-Sheet Microscopy

    PubMed Central

    Eum, Juneyong; Kwak, Jina; Kim, Hee Joung; Ki, Seoyoung; Lee, Kooyeon; Raslan, Ahmed A.; Park, Ok Kyu; Chowdhury, Md Ashraf Uddin; Her, Song; Kee, Yun; Kwon, Seung-Hae; Hwang, Byung Joon

    2016-01-01

    Environmental contamination by trinitrotoluene is of global concern due to its widespread use in military ordnance and commercial explosives. Despite known long-term persistence in groundwater and soil, the toxicological profile of trinitrotoluene and other explosive wastes have not been systematically measured using in vivo biological assays. Zebrafish embryos are ideal model vertebrates for high-throughput toxicity screening and live in vivo imaging due to their small size and transparency during embryogenesis. Here, we used Single Plane Illumination Microscopy (SPIM)/light sheet microscopy to assess the developmental toxicity of explosive-contaminated water in zebrafish embryos and report 2,4,6-trinitrotoluene-associated developmental abnormalities, including defects in heart formation and circulation, in 3D. Levels of apoptotic cell death were higher in the actively developing tissues of trinitrotoluene-treated embryos than controls. Live 3D imaging of heart tube development at cellular resolution by light-sheet microscopy revealed trinitrotoluene-associated cardiac toxicity, including hypoplastic heart chamber formation and cardiac looping defects, while the real time PCR (polymerase chain reaction) quantitatively measured the molecular changes in the heart and blood development supporting the developmental defects at the molecular level. Identification of cellular toxicity in zebrafish using the state-of-the-art 3D imaging system could form the basis of a sensitive biosensor for environmental contaminants and be further valued by combining it with molecular analysis. PMID:27869673

  6. Continuing harmonization of terminology and innovations for methodologies in developmental toxicology: Report of the 8th Berlin Workshop on Developmental Toxicity, 14-16 May 2014.

    PubMed

    Solecki, Roland; Rauch, Martina; Gall, Andrea; Buschmann, Jochen; Clark, Ruth; Fuchs, Antje; Kan, Haidong; Heinrich, Verena; Kellner, Rupert; Knudsen, Thomas B; Li, Weihua; Makris, Susan L; Ooshima, Yojiro; Paumgartten, Francisco; Piersma, Aldert H; Schönfelder, Gilbert; Oelgeschläger, Michael; Schaefer, Christof; Shiota, Kohei; Ulbrich, Beate; Ding, Xuncheng; Chahoud, Ibrahim

    2015-11-01

    This article is a report of the 8th Berlin Workshop on Developmental Toxicity held in May 2014. The main aim of the workshop was the continuing harmonization of terminology and innovations for methodologies used in the assessment of embryo- and fetotoxic findings. The following main topics were discussed: harmonized categorization of external, skeletal, visceral and materno-fetal findings into malformations, variations and grey zone anomalies, aspects of developmental anomalies in humans and laboratory animals, and innovations for new methodologies in developmental toxicology. The application of Version 2 terminology in the DevTox database was considered as a useful improvement in the categorization of developmental anomalies. Participants concluded that initiation of a project for comparative assessments of developmental anomalies in humans and laboratory animals could support regulatory risk assessment and university-based training. Improvement of new methodological approaches for alternatives to animal testing should be triggered for a better understanding of developmental outcomes. Copyright © 2015. Published by Elsevier Inc.

  7. Assessment of diurnal systemic dose of agrochemicals in regulatory toxicity testing--an integrated approach without additional animal use.

    PubMed

    Saghir, Shakil A; Bartels, Michael J; Rick, David L; McCoy, Alene T; Rasoulpour, Reza J; Ellis-Hutchings, Robert G; Sue Marty, M; Terry, Claire; Bailey, Jason P; Billington, Richard; Bus, James S

    2012-07-01

    Integrated toxicokinetics (TK) data provide information on the rate, extent and duration of systemic exposure across doses, species, strains, gender, and life stages within a toxicology program. While routine for pharmaceuticals, TK assessments of non-pharmaceuticals are still relatively rare, and have never before been included in a full range of guideline studies for a new agrochemical. In order to better understand the relationship between diurnal systemic dose (AUC(24h)) and toxicity of agrochemicals, TK analyses in the study animals is now included in all short- (excluding acute), medium- and long-term guideline mammalian toxicity studies including reproduction/developmental tests. This paper describes a detailed procedure for the implementation of TK in short-, medium- and long-term regulatory toxicity studies, without the use of satellite animals, conducted on three agrochemicals (X11422208, 2,4-D and X574175). In these studies, kinetically-derived maximum doses (KMD) from short-term studies instead of, or along with, maximum tolerated doses (MTD) were used for the selection of the high dose in subsequent longer-term studies. In addition to leveraging TK data to guide dose level selection, the integrated program was also used to select the most appropriate method of oral administration (i.e., gavage versus dietary) of test materials for rat and rabbit developmental toxicity studies. The integrated TK data obtained across toxicity studies (without the use of additional/satellite animals) provided data critical to understanding differences in response across doses, species, strains, sexes, and life stages. Such data should also be useful in mode of action studies and to improve human risk assessments. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Assessing Aromatic-Hydrocarbon Toxicity to Fish Early Life Stages Using Passive-Dosing Methods and Target-Lipid and Chemical-Activity Models.

    PubMed

    Butler, Josh D; Parkerton, Thomas F; Redman, Aaron D; Letinski, Daniel J; Cooper, Keith R

    2016-08-02

    Aromatic hydrocarbons (AH) are known to impair fish early life stages (ELS). However, poorly defined exposures often confound ELS-test interpretation. Passive dosing (PD) overcomes these challenges by delivering consistent, controlled exposures. The objectives of this study were to apply PD to obtain 5 d acute embryo lethality and developmental data and 30 d chronic embryo-larval survival and growth-effects data using zebrafish with different AHs; to analyze study and literature toxicity data using target-lipid (TLM) and chemical-activity (CA) models; and to extend PD to a mixture and test the assumption of AH additivity. PD maintained targeted exposures over a concentration range of 6 orders of magnitude. AH toxicity increased with log Kow up to pyrene (5.2). Pericardial edema was the most sensitive sublethal effect that often preceded embryo mortality, although some AHs did not produce developmental effects at concentrations causing mortality. Cumulative embryo-larval mortality was more sensitive than larval growth, with acute-to-chronic ratios of <10. More-hydrophobic AHs did not exhibit toxicity at aqueous saturation. The relationship and utility of the TLM-CA models for characterizing fish ELS toxicity is discussed. Application of these models indicated that concentration addition provided a conservative basis for predicting ELS effects for the mixture investigated.

  9. Developmental toxicity testing for safety assessment: new approaches and technologies

    EPA Science Inventory

    The ILSI Health and Environmental Sciences Institute's Developmental and Reproductive Toxicology Technical Committee held a 2-day workshop entitled "Developmental Toxicology-New Directions" in April 2009. The fourth session of this workshop focused on new approaches and technolog...

  10. Zebrafish Development: High-throughput Test Systems to Assess Developmental Toxicity

    EPA Science Inventory

    Abstract Because of its developmental concordance, ease of handling and rapid development, the small teleost, zebrafish (Danio rerio), is frequently promoted as a vertebrate model for medium-throughput developmental screens. This present chapter discusses zebrafish as an altern...

  11. Use of genomic data in risk assessment case study: I. Evaluation of the dibutyl phthalate male reproductive development toxicity data set

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makris, Susan L., E-mail: makris.susan@epa.gov; Euling, Susan Y.; Gray, L. Earl

    2013-09-15

    A case study was conducted, using dibutyl phthalate (DBP), to explore an approach to using toxicogenomic data in risk assessment. The toxicity and toxicogenomic data sets relative to DBP-related male reproductive developmental outcomes were considered conjointly to derive information about mode and mechanism of action. In this manuscript, we describe the case study evaluation of the toxicological database for DBP, focusing on identifying the full spectrum of male reproductive developmental effects. The data were assessed to 1) evaluate low dose and low incidence findings and 2) identify male reproductive toxicity endpoints without well-established modes of action (MOAs). These efforts ledmore » to the characterization of data gaps and research needs for the toxicity and toxicogenomic studies in a risk assessment context. Further, the identification of endpoints with unexplained MOAs in the toxicity data set was useful in the subsequent evaluation of the mechanistic information that the toxicogenomic data set evaluation could provide. The extensive analysis of the toxicology data set within the MOA context provided a resource of information for DBP in attempts to hypothesize MOAs (for endpoints without a well-established MOA) and to phenotypically anchor toxicogenomic and other mechanistic data both to toxicity endpoints and to available toxicogenomic data. This case study serves as an example of the steps that can be taken to develop a toxicological data source for a risk assessment, both in general and especially for risk assessments that include toxicogenomic data.« less

  12. Revision of the ICH guideline on detection of toxicity to reproduction for medicinal products: SWOT analysis.

    PubMed

    Barrow, Paul

    2016-09-01

    SWOT analysis was used to gain insights and perspectives into the revision of the ICH S5(R2) guideline on detection of toxicity to reproduction for medicinal products. The current ICH guideline was rapidly adopted worldwide and has an excellent safety record for more than 20 years. The revised guideline should aim to further improve reproductive and developmental (DART) safety testing for new drugs. Alternative methods to animal experiments should be used whenever possible. Modern technology should be used to obtain high quality data from fewer animals. Additions to the guideline should include considerations on the following: limit dose setting, maternal toxicity, biopharmaceuticals, vaccines, testing strategies by indication, developmental immunotoxicity, and male-mediated developmental toxicity. Emerging issues, such as epigenetics and the microbiome, will most likely pose challenges to DART testing in the future. It is hoped that the new guideline will be adopted even outside the ICH regions. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Introducing Environmental Toxicology in Instructional Labs: The Use of a Modified Amphibian Developmental Toxicity Assay to Support Inquiry-Based Student Projects

    ERIC Educational Resources Information Center

    Sauterer, Roger; Rayburn, James R.

    2012-01-01

    Introducing students to the process of scientific inquiry is a major goal of high school and college labs. Environmental toxins are of great concern and public interest. Modifications of a vertebrate developmental toxicity assay using the frog Xenopus laevis can support student-initiated toxicology experiments that are relevant to humans. Teams of…

  14. Protective effects of puerarin against tetrabromobisphenol a-induced apoptosis and cardiac developmental toxicity in zebrafish embryo-larvae.

    PubMed

    Yang, Suwen; Wang, Shengrui; Sun, Fengchao; Zhang, Mengmeng; Wu, Fengchang; Xu, Fanfan; Ding, Zhishan

    2015-09-01

    Tetrabromobisphenol A (TBBPA), a brominated flame retardant, is detected commonly in aquatic environments, where it is thought to be highly toxic to the development of aquatic life. In this study, zebrafish embryos and larvae were used to investigate the protective effects of puerarin after exposure to TBBPA. Malformation, blood flow disorders, pericardial edema, and spawn coagulation rates increased, whereas survival decreased significantly after exposure to 0.5 and 1.0 mg L(-1) TBBPA. The measured indices of morphological toxicity improved after treatment with puerarin. TBBPA also induced reactive oxygen species (ROS) production in a dose-dependent manner. Acridine orange staining results revealed that TBBPA exposure caused cardiomyocyte apoptosis and induced the expression of three proapoptotic genes: P53, Bax, and Caspase9. In contrast, the expression of the antiapoptotic gene Bcl2 was down-regulated. When genes related to cardiac development were assessed, the expression of Tbx1, Raldh2, and Bmp2b changed after exposure to the combination of TBBPA and puerarin. These results suggest that TBBPA induces cardiomyocyte apoptosis and ROS production, resulting in cardiac developmental toxicity in zebrafish embryos or larvae. Therefore, puerarin regulates the expression of cardiac developmental genes, such as Tbx1, Bmp2b, and Raldh2 by inhibiting ROS production, and subsequently modulates cardiac development after the exposure of zebrafish larvae to TBBPA. © 2014 Wiley Periodicals, Inc.

  15. Developmental neurotoxicants in e-waste: an emerging health concern.

    PubMed

    Chen, Aimin; Dietrich, Kim N; Huo, Xia; Ho, Shuk-mei

    2011-04-01

    Electronic waste (e-waste) has been an emerging environmental health issue in both developed and developing countries, but its current management practice may result in unintended developmental neurotoxicity in vulnerable populations. To provide updated information about the scope of the issue, presence of known and suspected neurotoxicants, toxicologic mechanisms, and current data gaps, we conducted this literature review. We reviewed original articles and review papers in PubMed and Web of Science regarding e-waste toxicants and their potential developmental neurotoxicity. We also searched published reports of intergovernmental and governmental agencies and nongovernmental organizations on e-waste production and management practice. We focused on the potential exposure to e-waste toxicants in vulnerable populations-that is, pregnant women and developing children-and neurodevelopmental outcomes. In addition, we summarize experimental evidence of developmental neurotoxicity and mechanisms. In developing countries where most informal and primitive e-waste recycling occurs, environmental exposure to lead, cadmium, chromium, polybrominated diphenyl ethers, polychlorinated biphenyls, and polycyclic aromatic hydrocarbons is prevalent at high concentrations in pregnant women and young children. Developmental neurotoxicity is a serious concern in these regions, but human studies of adverse effects and potential mechanisms are scarce. The unprecedented mixture of exposure to heavy metals and persistent organic pollutants warrants further studies and necessitates effective pollution control measures. Pregnant women and young children living close to informal e-waste recycling sites are at risk of possible perturbations of fetus and child neurodevelopment.

  16. Integrating in silico models to enhance predictivity for developmental toxicity.

    PubMed

    Marzo, Marco; Kulkarni, Sunil; Manganaro, Alberto; Roncaglioni, Alessandra; Wu, Shengde; Barton-Maclaren, Tara S; Lester, Cathy; Benfenati, Emilio

    2016-08-31

    Application of in silico models to predict developmental toxicity has demonstrated limited success particularly when employed as a single source of information. It is acknowledged that modelling the complex outcomes related to this endpoint is a challenge; however, such models have been developed and reported in the literature. The current study explored the possibility of integrating the selected public domain models (CAESAR, SARpy and P&G model) with the selected commercial modelling suites (Multicase, Leadscope and Derek Nexus) to assess if there is an increase in overall predictive performance. The results varied according to the data sets used to assess performance which improved upon model integration relative to individual models. Moreover, because different models are based on different specific developmental toxicity effects, integration of these models increased the applicable chemical and biological spaces. It is suggested that this approach reduces uncertainty associated with in silico predictions by achieving a consensus among a battery of models. The use of tools to assess the applicability domain also improves the interpretation of the predictions. This has been verified in the case of the software VEGA, which makes freely available QSAR models with a measurement of the applicability domain. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Use of Zebrafish Larvae as a Multi-Endpoint Platform to Characterize the Toxicity Profile of Silica Nanoparticles.

    PubMed

    Pham, Duc-Hung; De Roo, Bert; Nguyen, Xuan-Bac; Vervaele, Mattias; Kecskés, Angela; Ny, Annelii; Copmans, Daniëlle; Vriens, Hanne; Locquet, Jean-Pierre; Hoet, Peter; de Witte, Peter A M

    2016-11-22

    Nanomaterials are being extensively produced and applied in society. Human and environmental exposures are, therefore, inevitable and so increased attention is being given to nanotoxicity. While silica nanoparticles (NP) are one of the top five nanomaterials found in consumer and biomedical products, their toxicity profile is poorly characterized. In this study, we investigated the toxicity of silica nanoparticles with diameters 20, 50 and 80 nm using an in vivo zebrafish platform that analyzes multiple endpoints related to developmental, cardio-, hepato-, and neurotoxicity. Results show that except for an acceleration in hatching time and alterations in the behavior of zebrafish embryos/larvae, silica NPs did not elicit any developmental defects, nor any cardio- and hepatotoxicity. The behavioral alterations were consistent for both embryonic photomotor and larval locomotor response and were dependent on the concentration and the size of silica NPs. As embryos and larvae exhibited a normal touch response and early hatching did not affect larval locomotor response, the behavior changes observed are most likely the consequence of modified neuroactivity. Overall, our results suggest that silica NPs do not cause any developmental, cardio- or hepatotoxicity, but they pose a potential risk for the neurobehavioral system.

  18. Reproductive and developmental hazards in the workplace.

    PubMed

    McElgunn, B

    1998-05-01

    Toxic exposures to both the father and the mother before conception and to the mother during pregnancy can affect fertility, the course of pregnancy, and fetal development. The present focus on cancer-causing chemicals in toxicity evaluations has overshadowed other important health endpoints, such as reproductive and developmental toxicity, that may occur at much lower levels of exposure. Environmental tobacco smoke, video display terminals, and indoor air quality are three of the most common concerns of pregnant women in their places of work. The controversies and uncertainties about these and the lack of data on other potential hazards make toxic exposure both a delicate and a necessary issue when counseling women about their workplace health during pregnancy.

  19. RIFM fragrance ingredient safety assessment, Isopulegol, CAS Registry Number 89-79-2.

    PubMed

    Api, A M; Belsito, D; Bhatia, S; Bruze, M; Calow, P; Dagli, M L; Dekant, W; Fryer, A D; Kromidas, L; La Cava, S; Lalko, J F; Lapczynski, A; Liebler, D C; Penning, T M; Politano, V T; Ritacco, G; Salvito, D; Schultz, T W; Shen, J; Sipes, I G; Wall, B; Wilcox, D K

    2016-11-01

    This material was evaluated for genotoxicity, repeated dose toxicity, developmental and reproductive toxicity, local respiratory toxicity, phototoxicity/photoallergenicity, skin sensitization, as well as environmental safety. Data show that this material is not genotoxic nor does it have skin sensitization potential. The repeated dose, developmental and reproductive, and local respiratory toxicity endpoints were completed using the TTC (Threshold of Toxicological Concern) for a Cramer Class I material (0.03, 0.03 mg/kg/day and 1.4 mg/day, respectively). The phototoxicity/photoallergenicity endpoint was completed based on suitable UV spectra. The environmental endpoint was completed as described in the RIFM Framework. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. RIFM fragrance ingredient safety assessment, p-Isopropylbenzyl acetate, CAS Registry Number 59230-57-8.

    PubMed

    Api, A M; Belsito, D; Bhatia, S; Bruze, M; Calow, P; Dagli, M L; Dekant, W; Fryer, A D; Kromidas, L; La Cava, S; Lalko, J F; Lapczynski, A; Liebler, D C; Politano, V T; Ritacco, G; Salvito, D; Schultz, T W; Shen, J; Sipes, I G; Wall, B; Wilcox, D K

    2016-11-01

    The use of this material under current use conditions is supported by the existing information. This material was evaluated for genotoxicity, repeated dose toxicity, developmental toxicity, reproductive toxicity, local respiratory toxicity, phototoxicity, skin sensitization, as well as environmental safety. Data from the suitable read across analog, benzyl acetate (CAS # 140-11-4), show that this material is not genotoxic nor does it have skin sensitization potential. The repeated dose, developmental and reproductive, and local respiratory toxicity endpoints were completed using benzyl acetate (CAS # 140-11-4) as a suitable read across analog, which provided a MOE > 100. The phototoxicity/photoallergenicity endpoint was completed based on suitable UV spectra. The environmental endpoint was completed as described in the RIFM Framework. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Nrf2 and Nrf2-Related Proteins in Development and Developmental Toxicity: Insights from studies in Zebrafish (Danio rerio)

    PubMed Central

    Hahn, Mark E.; Timme-Laragy, Alicia R.; Karchner, Sibel I.; Stegeman, John J.

    2015-01-01

    Oxidative stress is an important mechanism of chemical toxicity, contributing to developmental toxicity and teratogenesis as well as to cardiovascular and neurodegenerative diseases and diabetic embryopathy. Developing animals are especially sensitive to effects of chemicals that disrupt the balance of processes generating reactive species and oxidative stress, and those anti-oxidant defenses that protect against oxidative stress. The expression and inducibility of anti-oxidant defenses through activation of NFE2-related factor 2 (Nrf2) and related proteins is an essential process affecting the susceptibility to oxidants, but the complex interactions of Nrf2 in determining embryonic response to oxidants and oxidative stress are only beginning to be understood. The zebrafish (Danio rerio) is an established model in developmental biology and now also in developmental toxicology and redox signaling. Here we review the regulation of genes involved in protection against oxidative stress in developing vertebrates, with a focus on Nrf2 and related cap’n’collar (CNC)-basic-leucine zipper (bZIP) transcription factors. Vertebrate animals including zebrafish share Nfe2, Nrf1, Nrf2, and Nrf3 as well as a core set of genes that respond to oxidative stress, contributing to the value of zebrafish as a model system with which to investigate the mechanisms involved in regulation of redox signaling and the response to oxidative stress during embryolarval development. Moreover, studies in zebrafish have revealed nrf and keap1 gene duplications that provide an opportunity to dissect multiple functions of vertebrate NRF genes, including multiple sensing mechanisms involved in chemical-specific effects. PMID:26130508

  2. Investigation for methods of anesthesia and euthanasia for rat fetuses in developmental toxicity studies.

    PubMed

    Kato, Hirohito; Dokai, Momoko; Katagiri, Ryuichi; Arima, Akihiro; Ooshima, Yojiro

    2013-03-01

    Japan Association for Laboratory Animal Medicine (JALAM) recommends humane handling of rat fetuses. However, it is a challenge to accept proposed euthanizing methods such as cervical dislocation, decapitation and/or intracardiac injection of potassium chloride, because these methods would damage fetal specimens for skeletal and visceral examinations in developmental toxicity studies. The present study aimed at seeking better methodologies for fetal euthanasia and anesthesia. We were unable to accomplish fetal euthanasia directly, but instead, we could euthanize fetuses under pain-controlled anesthesia. It is recommended that hypothermia by immersion in cold physiological saline is an appropriate method for anesthesia. Moreover, we recommend that the anesthetized fetuses should be euthanized immediately by removal of the vital organs or immersion in appropriate fixatives. © 2012 The Authors. Congenital Anomalies © 2012 Japanese Teratology Society.

  3. Developmental toxicity evaluation of Bendectin in CD rats.

    PubMed

    Tyl, R W; Price, C J; Marr, M C; Kimmel, C A

    1988-06-01

    Bendectin, composed of doxylamine succinate and pyridoxine HCl (1:1), is an antinauseant previously prescribed for nausea and vomiting during pregnancy. The present study examined the maternal and developmental effects of Bendectin (0, 200, 500, or 800 mg/kg/day, po) administered to timed-pregnant CD rats (36-41/group) during organogenesis (gestational days [gd] 6-15). At death (gd 20), all live fetuses were examined for external, visceral, and skeletal abnormalities. At 500 and 800 mg/kg/day, maternal toxicity included reduced food consumption during treatment and for the gestation period, increased water consumption in the posttreatment period, reduced weight gain during treatment, and sedation; water consumption was reduced during treatment and for the gestation period, and maternal mortality (17.1%) was observed only at the high dose. Developmental toxicity included reduced prenatal viability (800 mg/kg/day) and reduced fetal body weight/litter (500 and 800 mg/kg/day). In addition, reduced ossification of metacarpals (800 mg/kg/day), phalanges of the forelimbs (500 and 800 mg/kg/day), and of caudal vertebral centra (all doses) was observed. No increase in percent malformed live fetuses/litter was observed. The proportion of litters with one or more malformed fetuses was higher than vehicle controls only at 800 mg/kg/day, with short 13th rib (to which the test species is predisposed) as the predominant observation. By contrast, a positive control agent (nitrofen, 50 mg/kg/day, po, 14 dams) produced 85% malformed fetuses/litter with the predominant malformation being diaphragmatic hernia. In conclusion, the incidence of litters with one or more malformed fetuses was increased only at a dose of Bendectin which produced maternal mortality (17.1%) and other indices of maternal and developmental toxicity (see Discussion).

  4. RIFM fragrance ingredient safety assessment, 2-ethyl-1-hexanol, CAS registry number 104-76-7.

    PubMed

    Api, A M; Belsito, D; Bhatia, S; Bruze, M; Calow, P; Dagli, M L; Dekant, W; Fryer, A D; Kromidas, L; La Cava, S; Lalko, J F; Lapczynski, A; Liebler, D C; Penning, T M; Politano, V T; Ritacco, G; Salvito, D; Schultz, T W; Shen, J; Sipes, I G; Wall, B; Wilcox, D K

    2016-11-01

    The use of this material under current conditions is supported by existing information. This material was evaluated for genotoxicity, repeated dose toxicity, developmental toxicity, reproductive toxicity, local respiratory toxicity, phototoxicity, skin sensitization, as well as environmental safety. Data show that this material is not genotoxic. Data from the suitable read across analog 2-butyloctan-1-ol (CAS # 3913-02-8) show that this material does not have skin sensitization potential. The reproductive and local respiratory toxicity endpoints were completed using the TTC (Threshold of Toxicological Concern) for a Cramer Class I material (0.03 and 1.4 mg/day, respectively). The developmental and repeat dose toxicity endpoints were completed data on the target material which provided a MOE > 100. The phototoxicity/photoallergenicity endpoint was completed based on suitable UV spectra. The environmental endpoint was completed as described in the RIFM Framework. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. 77 FR 72747 - Alkyl(C8

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-06

    ... or developmental parameters examined. No systemic toxicity was observed in this study. The NOAEL for... ) dimethylamidopropylamines that may be used in pesticide formulations. That limitation will be enforced through the pesticide...

  6. DOSE-RESPONSE ASSESSMENT FOR DEVELOPMENTAL TOXICITY III. STATISTICAL MODELS

    EPA Science Inventory

    Although quantitative modeling has been central to cancer risk assessment for years, the concept of do@e-response modeling for developmental effects is relatively new. he benchmark dose (BMD) approach has been proposed for use with developmental (as well as other noncancer) endpo...

  7. Functional Assays and Alternative Species: Using Larval Zebrafish in Developmental Neurotoxicity Screening

    EPA Science Inventory

    The U.S. Environmental Protection Agency is developing and evaluating methods to screen and prioritize large numbers of chemicals for developmental toxicity. Towards this goal, we are exploring methods to detect developmental neurotoxicants in very young larval zebrafish. We have...

  8. Accumulation and developmental toxicity of hexabromocyclododecanes (HBCDs) on the marine copepod Tigriopus japonicus.

    PubMed

    Shi, Dalin; Lv, Dongmei; Liu, Wanxin; Shen, Rong; Li, Dongmei; Hong, Haizheng

    2017-01-01

    The brominated flame retardants hexabromocyclododecanes (HBCDs) are ubiquitous environmental contaminants, widely distributed in aquatic systems including the marine environment and marine organisms. HBCDs are toxic to the development of both freshwater and marine fish. However, the impacts of HBCDs on marine invertebrates are not well known. In this study, the marine copepod, Tigriopus japonicus, was used to assess the bioaccumulation and developmental toxicity of technical HBCD (tHBCD) through water-borne exposure. The uptake rate constant of tHBCD by T. japonicus was high, which resulted in high bioaccumulation potential. The bioconcentration factors of tHBCD were 8.73 × 10 4 and 6.34 × 10 4  L kg -1 in T. japonicus, calculated using the kinetic and steady-state methods, respectively. Exposure of T. japonicus nauplii to tHBCD caused significant growth delay. The lowest-observable-effect-concentrations of tHBCD induced developmental delay were 30 and 8 μg L -1 for the F0 and F1 generations, respectively, which suggested that the F1 generation was more sensitive to tHBCD than the F0 generation and warranted multiple-generation toxicity tests for future studies. Furthermore, exposure of the adult copepods to tHBCD induced the transcription of oxidative stress response genes and apoptotic genes, e.g., SOD,CAT, GST, OGG1, P53 and Caspase-3. It was therefore speculated that tHBCD exposure induced the generation of reactive oxygen species in T. japonicus, which activated the oxidative stress defense genes and meanwhile resulted in oxidative DNA damage. The damaged DNA activated the transcription of p53 and triggered the caspase-mediated apoptosis pathway, which may be the reason for the tHBCD induced developmental delay in T. japonicus nauplii. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. EXPERIMENTAL MODELS FOR THE STUDY OF ORAL CLEFTS

    EPA Science Inventory

    Toxicology and teratology studies routinely utilize animal models to determine the potential for chemical and physical agents to produce reproductive and developmental toxicity, including birth defects such as cleft palate. The standardized teratology screen typically tests co...

  10. Neurotoxic effects of perfluoroalkylated compounds: mechanisms of action and environmental relevance.

    PubMed

    Mariussen, Espen

    2012-09-01

    Perfluoroalkylated compounds (PFCs) are used in fire-fighting foams, treatment of clothes, carpets and leather products, and as lubricants, pesticides, in paints and medicine. Recent developments in chemical analysis have revealed that fluorinated compounds have become ubiquitously spread and are regarded as a potential threats to the environment. Due to the carbon-fluorine bond, which has a very high bond strength, these chemicals are extremely persistent towards degradation and some PFCs have a potential for bioaccumulation in organisms. Of particular concern has been the developmental toxicity of PFOS and PFOA, which has been manifested in rodent studies as high mortality of prenatally exposed newborn rats and mice within 24 h after delivery. The nervous system appears to be one of the most sensitive targets of environmental contaminants. The serious developmental effects of PFCs have lead to the upcoming of studies that have investigated neurotoxic effects of these substances. In this review the major findings of the neurotoxicity of the main PFCs and their suggested mechanisms of action are presented. The neurotoxic effects are discussed in light of other toxic effects of PFCs to indicate the significance of PFCs as neurotoxicants. The main findings are that PFCs may induce neurobehavioral effects, particularly in developmentally exposed animals. The effects are, however, subtle and inconclusive and are often induced at concentrations where other toxic effects also are expected. Mechanistic studies have shown that PFCs may affect the thyroid system, influence the calcium homeostasis, protein kinase C, synaptic plasticity and cellular differentiation. Compared to other environmental toxicants the human blood levels of PFCs are high and of particular concern is that susceptible groups may be exposed to a cocktail of substances that in combination reach harmful concentrations.

  11. Classification and Dose-Response Characterization of ...

    EPA Pesticide Factsheets

    Thirty years and over a billion of today’s dollars worth of pesticide registration toxicity studies, historically stored as hardcopy and scanned documents, have been digitized into highly standardized and structured toxicity data, within the U.S. Environmental Protection Agency’s (EPA) Toxicity Reference Database (ToxRefDB). The source toxicity data in ToxRefDB covers multiple study types, including subchronic, developmental, reproductive, chronic, and cancer studies, resulting in a diverse set of endpoints and toxicities. Novel approaches to chemical classification are performed as a model application of ToxRefDB and as an essential need for highly detailed chemical classifications within the EPA’s ToxCast™ research program. In order to develop predictive models and biological signatures utilizing high-throughput screening (HTS) and in vitro genomic data, endpoints and toxicities must first be identified and globally characterized for ToxCast Phase I chemicals. Secondarily, dose-response characterization within and across toxicity endpoints provide insight into key precursor toxicity events and overall endpoint relevance. Toxicity-based chemical classification and dose-response characterization utilizing ToxRefDB prioritized toxicity endpoints and differentiated toxicity outcomes across a large chemical set.

  12. Combination effects of AHR agonists and Wnt/β-catenin modulators in zebrafish embryos: Implications for physiological and toxicological AHR functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wincent, Emma; Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm; Stegeman, John J.

    2015-04-15

    Wnt/β-catenin signaling regulates essential biological functions and acts in developmental toxicity of some chemicals. The aryl hydrocarbon receptor (AHR) is well-known to mediate developmental toxicity of persistent dioxin-like compounds (DLCs). Recent studies indicate a crosstalk between β-catenin and the AHR in some tissues. However the nature of this crosstalk in embryos is poorly known. We observed that zebrafish embryos exposed to the β-catenin inhibitor XAV939 display effects phenocopying those of the dioxin-like 3,3′,4,4′,5-pentachlorobiphenyl (PCB126). This led us to investigate the AHR interaction with β-catenin during development and ask whether developmental toxicity of DLCs involves antagonism of β-catenin signaling. We examinedmore » phenotypes and transcriptional responses in zebrafish embryos exposed to XAV939 or to a β-catenin activator, 1-azakenpaullone, alone or with AHR agonists, either PCB126 or 6-formylindolo[3,2-b]carbazole (FICZ). Alone 1-azakenpaullone and XAV939 both were embryo-toxic, and we found that in the presence of FICZ, the toxicity of 1-azakenpaullone decreased while the toxicity of XAV939 increased. This rescue of 1-azakenpaullone effects occurred in the time window of Ahr2-mediated toxicity and was reversed by morpholino-oligonucleotide knockdown of Ahr2. Regarding PCB126, addition of either 1-azakenpaullone or XAV939 led to lower mortality than with PCB126 alone but surviving embryos showed severe edemas. 1-Azakenpaullone induced transcription of β-catenin-associated genes, while PCB126 and FICZ blocked this induction. The data indicate a stage-dependent antagonism of β-catenin by Ahr2 in zebrafish embryos. We propose that the AHR has a physiological role in regulating β-catenin during development, and that this is one point of intersection linking toxicological and physiological AHR-governed processes.« less

  13. RIFM fragrance ingredient safety assessment, benzyl butyrate, CAS Registry Number 103-37-7.

    PubMed

    Api, A M; Belsito, D; Bhatia, S; Bruze, M; Calow, P; Dagli, M L; Dekant, W; Fryer, A D; Kromidas, L; La Cava, S; Lalko, J F; Lapczynski, A; Liebler, D C; Politano, V T; Ritacco, G; Salvito, D; Schultz, T W; Shen, J; Sipes, I G; Wall, B; Wilcox, D K

    2016-11-01

    The use of this material under current use conditions is supported by the existing information. This material was evaluated for genotoxicity, repeated dose toxicity, developmental and reproductive toxicity, local respiratory toxicity, phototoxicity/photoallergenicity, skin sensitization, as well as environmental safety. Data from the suitable read across analog benzyl acetate (CAS # 140-11-4) show that this material is not genotoxic nor does it have skin sensitization potential and also provided a MOE > 100 for the repeated dose, developmental and reproductive, and local respiratory toxicity endpoints. The phototoxicity/photoallergenicity endpoint was completed based on suitable UV spectra. The environmental endpoint was completed as described in the RIFM Framework. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Developmental and Persistent Toxicities of Maternally Deposited Selenomethionine in Zebrafish (Danio rerio).

    PubMed

    Thomas, Jith K; Janz, David M

    2015-08-18

    The objectives of this study were (1) to establish egg selenium (Se) toxicity thresholds for mortality and deformities in early life stages of zebrafish (Danio rerio) after exposure to excess selenomethionine (SeMet, the dominant chemical species of Se in diets) via in ovo maternal transfer and (2) to investigate the persistent effects of developmental exposure to excess SeMet on swim performance and metabolic capacities in F1-generation adult zebrafish. Adult zebrafish were fed either control food (1.3 μg Se/g, dry mass or d.m.) or food spiked with increasing measured concentrations of Se (3.4, 9.8, or 27.5 μg Se/g, d.m.) in the form of SeMet for 90 d. In ovo exposure to SeMet increased mortality and deformities in larval zebrafish in a concentration-dependent fashion with threshold egg Se concentrations (EC10s) of 7.5 and 7.0 μg Se/g d.m., respectively. Impaired swim performance and greater respiration and metabolic rates were observed in F1-generation zebrafish exposed in ovo to 6.8 and 12.7 μg Se/g d.m and raised to adulthood in clean water. A species sensitivity distribution (SSD) based on egg Se developmental toxicity thresholds suggests that zebrafish are the most sensitive fish species studied to date.

  15. Molecular evidence of offspring liver dysfunction after maternal exposure to zinc oxide nanoparticles.

    PubMed

    Hao, Yanan; Liu, Jing; Feng, Yanni; Yu, Shuai; Zhang, Weidong; Li, Lan; Min, Lingjiang; Zhang, Hongfu; Shen, Wei; Zhao, Yong

    2017-08-15

    Recently, reproductive, embryonic and developmental toxicity have been considered as one important sector of nanoparticle (NP) toxicology, with some studies already suggesting varying levels of toxicity and possible transgenerational toxic effects. Even though many studies have investigated the toxic effects of zinc oxide nanoparticles (ZnO NPs), little is known of their impact on overall reproductive outcome and transgenerational effects. Previously we found ZnO NPs caused liver dysfunction in lipid synthesis. This investigation, for the first time, explored the liver dysfunction at the molecular level of gene and protein expression in offspring after maternal exposure to ZnO NPs. Three pathways were investigated: lipid synthesis, growth related factors and cell toxic biomarkers/apoptosis at 5 different time points from embryonic day-18 to postnatal day-20. It was found that the expression of 15, 16, and 16 genes in lipid synthesis, growth related factors and cell toxic biomarkers/apoptosis signalling pathway respectively in F1 animal liver were altered by ZnO NPs compared to ZnSO 4 . The proteins in these signalling pathways (five in each pathways analyzed) in F1 animal liver were also changed by ZnO NPs compared to ZnSO 4 . The results suggest that ZnO NPs caused maternal liver defects can also be detected in offspring that might result in problems on offspring liver development, mainly on lipid synthesis, growth, and lesions or apoptosis. Along with others, this study suggests that ZnO NPs may pose reproductive, embryonic and developmental toxicity; therefore, precautions should be taken with regard to human exposure during daily life. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. NTP technical report on toxicity studies of cadmium oxide (Cas No. 1306-19-0) administered by inhalation to F344/N rats and B6C3f1 mice. Toxicity report series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-03-01

    Three thousand tons of cadmium are imported or produced annually in the United States, and approximately 90% of this is cadmium oxide. Cadmium oxide is used in batteries, electroplating baths, pigments, plastics, synthetic products, and a variety of other materials. Cadmium oxide was nominated for study by the National Cancer Institute because of its widespread use and to obtain toxicity and carcinogenicity information. This report describes toxicity studies of cadmium oxide aerosol in F344/N rats and B6C3F1 mice, including sperm motility and vaginal cytology evaluations, and developmental toxicity studies of cadmium oxide aerosol in Sprague-Dawley rats and Swiss (CD-1) mice.more » Genetic toxicology studies were done in Salmonella typhimurium and B6C3F1 mice erythrocytes.« less

  17. Effects of perfluorooctanoic acid (PFOA) on expression of ...

    EPA Pesticide Factsheets

    PPARs regulate metabolism and can be activated by environmental contaminants such as perfluorooctanoic acid (PFOA). PFOA induces neonatal mortality, developmental delay, and growth deficits in mice. Studies in genetically altered mice showed that PPARa is required for PFOA-induced developmental toxicity. In this study, pregnant CD-1 mice were dosed orally from GD1-17 with water or 5 mg PFO/kg to examine PPARa, PPARß, and PPARy expression and profile the effects of PFOA on PPAR-regulated genes. Prenatal and postnatal liver, heart, adrenal, kidney, intestine, stomach, lung, spleen, and thymus were collected at various developmental ages. RNA and protein were examined using qPCR and Western blot analysis. PPAR expression varied with age in all tissues, and in liver PPARa and PPARy expression correlated with nutritional changes as the pups matured. As early as GD14, PFOA affected expression of genes involved in lipid and glucose homeostatic control. The metabolic disruption produced by PFOA may contribute to poor postnatal survival and persistent weight deficits of neonates This paper represents the continuing efforts at ORD, in response to the call for assistance from OPPTS, to investigate the potential developmental toxicities of perfluoroalkyl acids (PFAA). Perfluorooctanoic acid (PFOA) is a compound which persists and is found ubiquitously in the environment, wildlife and humans. Studies in our laboratory using an in vitro transfected cell model showed that PFO

  18. Low glucose utilization and neurodegenerative changes caused by sodium fluoride exposure in rat's developmental brain.

    PubMed

    Jiang, Chunyang; Zhang, Shun; Liu, Hongliang; Guan, Zhizhong; Zeng, Qiang; Zhang, Cheng; Lei, Rongrong; Xia, Tao; Wang, Zhenglun; Yang, Lu; Chen, Yihu; Wu, Xue; Zhang, Xiaofei; Cui, Yushan; Yu, Linyu; Wang, Aiguo

    2014-03-01

    Fluorine, a toxic and reactive element, is widely prevalent throughout the environment and can induce toxicity when absorbed into the body. This study was to explore the possible mechanisms of developmental neurotoxicity in rats treated with different levels of sodium fluoride (NaF). The rats' intelligence, as well as changes in neuronal morphology, glucose absorption, and functional gene expression within the brain were determined using the Morris water maze test, transmission electron microscopy, small-animal magnetic resonance imaging and Positron emission tomography and computed tomography, and Western blotting techniques. We found that NaF treatment-impaired learning and memory in these rats. Furthermore, NaF caused neuronal degeneration, decreased brain glucose utilization, decreased the protein expression of glucose transporter 1 and glial fibrillary acidic protein, and increased levels of brain-derived neurotrophic factor in the rat brains. The developmental neurotoxicity of fluoride may be closely associated with low glucose utilization and neurodegenerative changes.

  19. An Update on ToxCast™ | Science Inventory | US EPA

    EPA Pesticide Factsheets

    In its first phase, ToxCast™ is profiling over 300 well-characterized chemicals (primarily pesticides) in over 400 HTS endpoints. These endpoints include biochemical assays of protein function, cell-based transcriptional reporter assays, multi-cell interaction assays, transcriptomics on primary cell cultures, and developmental assays in zebrafish embryos. Almost all of the compounds being examined in Phase 1 of ToxCast™ have been tested in traditional toxicology tests, including developmental toxicity, multi-generation studies, and sub-chronic and chronic rodent bioassays Lessons learned to date for ToxCast: Large amounts of quality HTS data can be economically obtained. Large scale data sets will be required to understand potential for biological activity. Value in having multiple assays with overlapping coverage of biological pathways and a variety of methodologies Concentration-response will be important for ultimate interpretation Data transparency will be important for acceptance. Metabolic capabilities and coverage of developmental toxicity pathways will need additional attention. Need to define the gold standard Partnerships are needed to bring critical mass and expertise.

  20. Health assessment of gasoline and fuel oxygenate vapors: developmental toxicity in mice.

    PubMed

    Roberts, L G; Gray, T M; Marr, M C; Tyl, R W; Trimmer, G W; Hoffman, G M; Murray, F J; Clark, C R; Schreiner, C A

    2014-11-01

    CD-1 mice were exposed to baseline gasoline vapor condensate (BGVC) alone or to vapors of gasoline blended with methyl tertiary butyl ether (G/MTBE). Inhalation exposures were 6h/d on GD 5-17 at levels of 0, 2000, 10,000, and 20,000mg/m(3). Dams were evaluated for evidence of maternal toxicity, and fetuses were weighed, sexed, and evaluated for external, visceral, and skeletal anomalies. Exposure to 20,000mg/m(3) of BGVC produced slight reductions in maternal body weight/gain and decreased fetal body weight. G/MTBE exposure did not produce statistically significant maternal or developmental effects; however, two uncommon ventral wall closure defects occurred: gastroschisis (1 fetus at 10,000mg/m(3)) and ectopia cordis (1 fetus at 2000mg/m(3); 2 fetuses/1 litter at 10,000mg/m(3)). A second study (G/MTBE-2) evaluated similar exposure levels on GD 5-16 and an additional group exposed to 30,000mg/m(3) from GD 5-10. An increased incidence of cleft palate was observed at 30,000mg/m(3) G/MTBE. No ectopia cordis occurred in the replicate study, but a single observation of gastroschisis was observed at 30,000mg/m(3). The no observed adverse effect levels for maternal/developmental toxicity in the BGVC study were 10,000/2000mg/m(3), 20,000/20,000 for the G/MTBE study, and 10,000/20,000 for the G/MTBE-2 study. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Multi-Toxic Endpoints of the Foodborne Mycotoxins in Nematode Caenorhabditis elegans

    PubMed Central

    Yang, Zhendong; Xue, Kathy S.; Sun, Xiulan; Tang, Lili; Wang, Jia-Sheng

    2015-01-01

    Aflatoxins B1 (AFB1), deoxynivalenol (DON), fumonisin B1 (FB1), T-2 toxin (T-2), and zearalenone (ZEA) are the major foodborne mycotoxins of public health concerns. In the present study, the multiple toxic endpoints of these naturally-occurring mycotoxins were evaluated in Caenorhabditis elegans model for their lethality, toxic effects on growth and reproduction, as well as influence on lifespan. We found that the lethality endpoint was more sensitive for T-2 toxicity with the EC50 at 1.38 mg/L, the growth endpoint was relatively sensitive for AFB1 toxic effects, and the reproduction endpoint was more sensitive for toxicities of AFB1, FB1, and ZEA. Moreover, the lifespan endpoint was sensitive to toxic effects of all five tested mycotoxins. Data obtained from this study may serve as an important contribution to knowledge on assessment of mycotoxin toxic effects, especially for assessing developmental and reproductive toxic effects, using the C. elegans model. PMID:26633509

  2. Developmental Neurotoxicants in E-Waste: An Emerging Health Concern

    PubMed Central

    Chen, Aimin; Dietrich, Kim N.; Huo, Xia; Ho, Shuk-mei

    2011-01-01

    Objective Electronic waste (e-waste) has been an emerging environmental health issue in both developed and developing countries, but its current management practice may result in unintended developmental neurotoxicity in vulnerable populations. To provide updated information about the scope of the issue, presence of known and suspected neurotoxicants, toxicologic mechanisms, and current data gaps, we conducted this literature review. Data sources We reviewed original articles and review papers in PubMed and Web of Science regarding e-waste toxicants and their potential developmental neurotoxicity. We also searched published reports of intergovernmental and governmental agencies and nongovernmental organizations on e-waste production and management practice. Data extraction We focused on the potential exposure to e-waste toxicants in vulnerable populations—that is, pregnant women and developing children—and neurodevelopmental outcomes. In addition, we summarize experimental evidence of developmental neurotoxicity and mechanisms. Data synthesis In developing countries where most informal and primitive e-waste recycling occurs, environmental exposure to lead, cadmium, chromium, polybrominated diphenyl ethers, polychlorinated biphenyls, and polycyclic aromatic hydrocarbons is prevalent at high concentrations in pregnant women and young children. Developmental neurotoxicity is a serious concern in these regions, but human studies of adverse effects and potential mechanisms are scarce. The unprecedented mixture of exposure to heavy metals and persistent organic pollutants warrants further studies and necessitates effective pollution control measures. Conclusions Pregnant women and young children living close to informal e-waste recycling sites are at risk of possible perturbations of fetus and child neurodevelopment. PMID:21081302

  3. In utero imaging of mouse embryonic development with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Syed, Saba H.; Dickinson, Mary E.; Larin, Kirill V.; Larina, Irina V.

    2011-03-01

    Studying progression of congenital diseases in animal models can greatly benefit from live embryonic imaging Mouse have long served as a model of mammalian embryonic developmental processes, however, due to intra-uterine nature of mammalian development live imaging is challenging. In this report we present results on live mouse embryonic imaging in utero with Optical Coherence Tomography. Embryos from 12.5 through 17.5 days post-coitus (dpc) were studied through the uterine wall. In longitudinal studies, same embryos were imaged at developmental stages 13.5, 15.5 and 17.5 dpc. This study suggests that OCT can serve as a powerful tool for live mouse embryo imaging. Potentially this technique can contribute to our understanding developmental abnormalities associated with mutations, toxic drugs.

  4. RIFM fragrance ingredient safety assessment, Eugenol, CAS Registry Number 97-53-0.

    PubMed

    Api, A M; Belsito, D; Bhatia, S; Bruze, M; Calow, P; Dagli, M L; Dekant, W; Fryer, A D; Kromidas, L; La Cava, S; Lalko, J F; Lapczynski, A; Liebler, D C; Miyachi, Y; Politano, V T; Ritacco, G; Salvito, D; Schultz, T W; Shen, J; Sipes, I G; Wall, B; Wilcox, D K

    2016-11-01

    The use of this material under current use conditions is supported by the existing information. This material was evaluated for genotoxicity, repeated dose toxicity, developmental toxicity, reproductive toxicity, local respiratory toxicity, phototoxicity, skin sensitization potential, as well as, environmental safety. Reproductive toxicity was determined to have the most conservative systemic exposure derived NO[A]EL of 230 mg/kg/day. A gavage multigenerational continuous breeding study conducted in rats on a suitable read across analog resulted in a MOE of 12,105 while considering 22.6% absorption from skin contact and 100% from inhalation. A MOE of >100 is deemed acceptable. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Nrf2 and Nrf2-related proteins in development and developmental toxicity: Insights from studies in zebrafish (Danio rerio).

    PubMed

    Hahn, Mark E; Timme-Laragy, Alicia R; Karchner, Sibel I; Stegeman, John J

    2015-11-01

    Oxidative stress is an important mechanism of chemical toxicity, contributing to developmental toxicity and teratogenesis as well as to cardiovascular and neurodegenerative diseases and diabetic embryopathy. Developing animals are especially sensitive to effects of chemicals that disrupt the balance of processes generating reactive species and oxidative stress, and those anti-oxidant defenses that protect against oxidative stress. The expression and inducibility of anti-oxidant defenses through activation of NFE2-related factor 2 (Nrf2) and related proteins is an essential process affecting the susceptibility to oxidants, but the complex interactions of Nrf2 in determining embryonic response to oxidants and oxidative stress are only beginning to be understood. The zebrafish (Danio rerio) is an established model in developmental biology and now also in developmental toxicology and redox signaling. Here we review the regulation of genes involved in protection against oxidative stress in developing vertebrates, with a focus on Nrf2 and related cap'n'collar (CNC)-basic-leucine zipper (bZIP) transcription factors. Vertebrate animals including zebrafish share Nfe2, Nrf1, Nrf2, and Nrf3 as well as a core set of genes that respond to oxidative stress, contributing to the value of zebrafish as a model system with which to investigate the mechanisms involved in regulation of redox signaling and the response to oxidative stress during embryolarval development. Moreover, studies in zebrafish have revealed nrf and keap1 gene duplications that provide an opportunity to dissect multiple functions of vertebrate NRF genes, including multiple sensing mechanisms involved in chemical-specific effects. Copyright © 2015. Published by Elsevier Inc.

  6. Developmental Exposure of Mice to TCDD Elicits a Similar Uterine Phenotype in Adult Animals as Observed in Women with Endometriosis

    PubMed Central

    Nayyar, Tultul; Bruner-Tran, Kaylon L.; Piestrzeniewicz-Ulanska, Dagmara; Osteen, Kevin G.

    2007-01-01

    Whether environmental toxicants impact an individual woman’s risk for developing endometriosis remains uncertain. Although the growth of endometrial glands and stroma at extra-uterine sites is associated with retrograde menstruation, our studies suggest that reduced responsiveness to progesterone may increase the invasive capacity of endometrial tissue in women with endometriosis. Interestingly, our recent studies using isolated human endometrial cells in short-term culture suggest that experimental exposure to the environmental contaminant 2,3,7,8-tetracholorodibenzo-p-dioxin (TCDD) can alter the expression of progesterone receptor isotypes. Compared to adult exposure, toxicant exposure during development can exert a significantly greater biological impact, potentially affecting the incidence of endometriosis in adults. To address this possibility, we exposed mice to TCDD at critical developmental time points and subsequently examined uterine progesterone receptor expression and steroid responsive transforming growth factor-β2 expression in adult animals. We find that the uterine phenotype of toxicant-exposed mice is markedly similarly to the endometrial phenotype of women with endometriosis. PMID:17056225

  7. Potential of chromium(III) picolinate for reproductive or developmental toxicity following exposure of male CD-1 mice prior to mating.

    PubMed

    McAdory, DeAna; Rhodes, Nicholas R; Briggins, Felicia; Bailey, Melissa M; Di Bona, Kristin R; Goodwin, Craig; Vincent, John B; Rasco, Jane F

    2011-12-01

    Chromium(III) picolinate, [Cr(pic)(3)], is a commonly used nutritional supplement in humans, which has also been approved for use in animals. Health concerns have arisen over the use of [Cr(pic)(3)]. At high [Cr(pic)(3)] doses, developmental toxicity tests in female mice have shown a higher litter incidence of split cervical arch in exposed fetuses, but this was not consistently reproducible. In the current study, male CD-1 mice were used to further assess the potential for reproductive or developmental toxicity. Four weeks prior to mating, the males were fed a diet providing 200 mg/kg/day [Cr(pic)(3)] for comparison with untreated controls. Females were not treated. Each male was mated with two females, which were sacrificed on gestation day 17, and their litters were examined for adverse effects. Mating and fertility indices were not significantly altered by treatment. Male exposure to [Cr(pic)(3)] also had no effect on prenatal mortality, fetal weight, or gross or skeletal morphology. These results suggest that paternal dietary exposure to chromium(III) picolinate has little potential for adverse reproductive effects, even at exposure levels considerably higher than expected human exposures from nutritional supplements (1 mg of Cr per day or less).

  8. Evaluation of the developmental toxicity of lead in the Danio rerio body.

    PubMed

    Roy, Nicole M; DeWolf, Sarah; Carneiro, Bruno

    2015-01-01

    Lead has been utilized throughout history and is widely distributed and mobilized globally. Although lead in the environment has been somewhat mitigated, the nature of lead and its extensive uses in the past prohibit it from being completely absent from our environment and exposure to lead is still a public health concern. Most studies regarding lead toxicity have focused on the brain. However, little is found in the literature on the effects of lead in other tissues. Here, we utilize the zebrafish model system to investigate effects of lead exposure during early developmental time windows at 24, 48 and 72 h post fertilization in the body. We analyze whole body, notochord and somatic muscle changes, vascular changes of the body, as well as motor neuron alterations. We find lead exposure induces a curved body phenotype with concomitant changes in somite length, decreased notochord staining and abnormal muscle staining using live and in situ approaches. Furthermore, altered vasculature within the somatic regions, loss and/or alternations of motor neuron extension both dorsally and ventrally from the spinal cord, loss of Rohon-Beard sensory neurons, and increased areas of apoptosis were found. We conclude that lead is developmentally toxic to other areas of the developing embryo, not just the brain. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Repeated-Dose and Reproductive/Developmental Toxicity of NTO (3-Nitro-1,2,4-Triazol-5-One) in the Rat

    DTIC Science & Technology

    2014-03-21

    caused by a parasitic problem or contact dermatitis , the lacerations resolved with topical treatment prior to the skin scrape being performed. Several...14 8 Discussion 16 9 Conclusions 18 10 Point of Contact 19 Appendices A References...postpartum did not indicate that NTO presents a developmental hazard. 18 Toxicology Study No. 85-XC-OFP4-12, April-July 2012 10 Point of Contact

  10. Ligand-Specific Transcriptional Mechanisms Underlie Aryl Hydrocarbon Receptor-Mediated Developmental Toxicity of Oxygenated PAHs

    PubMed Central

    Goodale, B. C.; La Du, J.; Tilton, S. C.; Sullivan, C. M.; Bisson, W. H.; Waters, K. M.; Tanguay, R. L.

    2015-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are priority environmental contaminants that exhibit mutagenic, carcinogenic, proinflammatory, and teratogenic properties. Oxygen-substituted PAHs (OPAHs) are formed during combustion processes and via phototoxidation and biological degradation of parent (unsubstituted) PAHs. Despite their prevalence both in contaminated industrial sites and in urban air, OPAH mechanisms of action in biological systems are relatively understudied. Like parent PAHs, OPAHs exert structure-dependent mutagenic activities and activation of the aryl hydrocarbon receptor (AHR) and cytochrome p450 metabolic pathway. Four-ring OPAHs 1,9-benz-10-anthrone (BEZO) and benz(a)anthracene-7,12-dione (7,12-B[a]AQ) cause morphological aberrations and induce markers of oxidative stress in developing zebrafish with similar potency, but only 7,12-B[a]AQ induces robust Cyp1a protein expression. We investigated the role of the AHR in mediating the toxicity of BEZO and 7,12-B[a]AQ, and found that knockdown of AHR2 rescued developmental effects caused by both compounds. Using RNA-seq and molecular docking, we identified transcriptional responses that precede developmental toxicity induced via differential interaction with AHR2. Redox-homeostasis genes were affected similarly by these OPAHs, while 7,12-B[a]AQ preferentially activated phase 1 metabolism and BEZO uniquely decreased visual system genes. Analysis of biological functions and upstream regulators suggests that BEZO is a weak AHR agonist, but interacts with other transcriptional regulators to cause developmental toxicity in an AHR-dependent manner. Identifying ligand-dependent AHR interactions and signaling pathways is essential for understanding toxicity of this class of environmentally relevant compounds. PMID:26141390

  11. Comprehensive assessment of a chlorinated drinking water concentrate in a rat multigenerational reproductive toxicity study

    EPA Science Inventory

    Some epidemiological studies report associations between drinking water disinfection by-products (DBPs) and adverse reproductive and developmental effects, e.g., low birth weight, spontaneous abortion, stillbirth, and birth defects. To address concerns raised by these studies, w...

  12. Comprehensive Assessment of a Chlorinated Drinking Water Concentrate in a Rat Multigenerational Reproductive Toxicity Study##

    EPA Science Inventory

    Some epidemiological studies report associations between drinking water disinfection by-products (DBPs) and adverse reproductive and developmental effects, e.g., low birth weight, spontaneous abortion, stillbirth, and birth defects. To address concerns raised by these studies, w...

  13. DIRECT AND PHOTOACTIVATED TOXICITY OF A COMPLEX PETROLEUM MIXTURE: A COMPARISON OF SOLUBILIZATION METHODS

    EPA Science Inventory

    This work addresses several issues associated with the toxicity of a complex petroleum mixture (combined kerosene/diesel and crude oil), including developmental effects and early lifestage mortality, method of solubilization, and potential photo-activated and photo-modified toxic...

  14. RIFM fragrance ingredient safety assessment, linalyl cinnamate, CAS Registry Number 78-37-5.

    PubMed

    Api, A M; Belsito, D; Bhatia, S; Bruze, M; Calow, P; Dagli, M L; Dekant, W; Fryer, A D; Kromidas, L; La Cava, S; Lalko, J F; Lapczynski, A; Liebler, D C; Penning, T M; Politano, V T; Ritacco, G; Salvito, D; Schultz, T W; Shen, J; Sipes, I G; Wall, B; Wilcox, D K

    2016-11-01

    The use of this material under current conditions is supported by existing information. This material was evaluated for genotoxicity, repeated dose toxicity, developmental and reproductive toxicity, local respiratory toxicity, phototoxicity/photoallergenicity, skin sensitization, as well as environmental safety. Data show that this material is not genotoxic nor does it have skin sensitization potential. The reproductive and local respiratory toxicity endpoints were completed using the TTC (Threshold of Toxicological Concern) for a Cramer Class I material (0.03 and 1.4 mg/day, respectively). The developmental toxicity endpoint was completed using linalool (CAS # 78-70-6), dehydrolinalool (CAS # 29171-20-8) and cinnamic acid (CAS # 621-82-9) as suitable read across analogs, which provided a MOE > 100. The repeated dose toxicity endpoint was completed using data on the target material which provided a MOE > 100. The phototoxicity/photoallergenicity endpoint was completed based on suitable UV spectra. The environmental endpoint was completed as described in the RIFM Framework. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Influence of developmental stage, salts and food presence on various end points using Caenorhabditis elegans for aquatic toxicity testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donkin, S.G.; Williams, P.L.

    1995-12-01

    This study used a randomized block design to investigate the importance of several variables in using the free-living soil nematode, Caenorhabditis elegans, for aquatic toxicity testing. Concentration-response data were obtained on nematodes of various developmental stages exposed to four metals (Cd, Pb, Cu, and Hg) and a water-soluble organic toxicant, sodium pentachlorophenate (PCP), under conditions of varied solvent medium (with or without salts and with or without a bacterial food source). The end points measured were 24- and 96-h mortality LC50 value, as well as development of larval stages to adulthood and evidence of reproduction. The results suggest that nematodesmore » of various ages respond similarity to a given toxicant for all end points measured, although adults cultured from eggs appeared more sensitive than adults cultured from dauer larvae. The most important environmental variable in determining toxicity was the medium in which the tests were conducted. The presence of potassium and sodium salts in the medium significantly (p < 0.05) reduced the toxicity of many test samples. The presence of bacteria had little effect on 24-h tests with salts, but was important in 96-h survival and development. Based on sensitivity and ease of handling, adults cultured from eggs are recommended in both 24h and 96-h tests.« less

  16. High-throughput Screening of ToxCast" Phase I Chemicals in an Embryonic Stem Cell Assay Reveals Potential Disruption of a Critical Developmental Signaling Pathway

    EPA Science Inventory

    Little is known about the developmental toxicity of the expansive chemical landscape in existence today. Significant efforts are being made to apply novel methods to predict developmental activity of chemicals utilizing high-throughput screening (HTS) and high-content screening (...

  17. Environmentally relevant levels of λ-cyhalothrin, fenvalerate, and permethrin cause developmental toxicity and disrupt endocrine system in zebrafish (Danio rerio) embryo.

    PubMed

    Zhang, Quan; Zhang, Yi; Du, Jie; Zhao, Meirong

    2017-10-01

    Synthetic pyrethroids (SPs) are one of the most widely used pesticides and frequently detected in the aquatic environment. Previous studies have shown that SPs posed high aquatic toxicity, but information on the developmental toxicity and endocrine disruption on zebrafish (Danio rerio) at environmentally relevant concentrations is limited. In this study, zebrafish embryos were employed to examine the adverse effects of λ-cyhalothrin (LCT), fenvalerate (FEN), and permethrin (PM) at 2.5, 10, 25, 125, 500 nM for 96 h. The results showed these 3 SPs caused dose-dependent mortality, malformation rate, and hatching rate. Thyroid hormone triiodothyronine (T 3 ) levels were significantly decreased after exposure to LCT and FEN. Quantitative real-time PCR analysis was then performed on a series of nuclear receptors (NRs) genes involved in the hypothalamic-pituitary-gonadal (HPG), hypothalamic-pituitary-thyroid (HPT), hypothalamic-pituitary-adrenocortical (HPA) axes, and oxidative-stress-related system. Our results showed that LCT, FEN, and PM downregulated AR expression while upregulated ER1 expression, and caused alteration to ER2a and ER2b expression. As for the expression of TRα and TRβ, they were both decreased following exposure to the 3 SPs. LCT and PM downregulated the MR expression and FEN induced MR expression. In addition, the expression of GR was increased after treating with LCT, while it was suppressed after exposure to FEN and PM. The 3 SPs also caused various alterations to the expression of genes including AhRs, PPARα, and PXR. These findings suggest that these 3 SPs may cause developmental toxicity to zebrafish larvae by disrupting endocrine signaling at environmentally relevant concentrations. Copyright © 2017. Published by Elsevier Ltd.

  18. Overview of ToxCast™ | Science Inventory | US EPA

    EPA Pesticide Factsheets

    In 2007, EPA launched ToxCast™ in order to develop a cost-effective approach for prioritizing the toxicity testing of large numbers of chemicals in a short period of time. Using data from state-of-the-art high throughput screening (HTS) bioassays developed in the pharmaceutical industry, ToxCast™ is building computational models to forecast the potential human toxicity of chemicals. These hazard predictions will provide EPA regulatory programs with science-based information helpful in prioritizing chemicals for more detailed toxicological evaluations, and lead to more efficient use of animal testing. In its first phase, ToxCast™ is profiling over 300 well-characterized chemicals (primarily pesticides) in over 400 HTS endpoints. These endpoints include biochemical assays of protein function, cell-based transcriptional reporter assays, multi-cell interaction assays, transcriptomics on primary cell cultures, and developmental assays in zebrafish embryos. Almost all of the compounds being examined in Phase 1 of ToxCast™ have been tested in traditional toxicology tests, including developmental toxicity, multi-generation studies, and sub-chronic and chronic rodent bioassays. ToxRefDB, a relational database being created to house this information, will contain nearly $1B worth of toxicity studies in animals when completed. ToxRefDB is integrated into a more comprehensive data management system developed by NCCT called ACToR (Aggregated Computational Toxicology

  19. An F1-extended one-generation reproductive toxicity study in Crl:CD(SD) rats with 2,4-dichlorophenoxyacetic acid.

    PubMed

    Marty, Mary Sue; Neal, Barbara H; Zablotny, Carol L; Yano, Barry L; Andrus, Amanda K; Woolhiser, Michael R; Boverhof, Darrell R; Saghir, Shakil A; Perala, Adam W; Passage, Julie K; Lawson, Marie A; Bus, James S; Lamb, James C; Hammond, Larry

    2013-12-01

    2,4-Dichlorophenoxyacetic acid (2,4-D) was assessed for systemic toxicity, reproductive toxicity, developmental neurotoxicity (DNT), developmental immunotoxicity (DIT), and endocrine toxicity. CD rats (27/sex/dose) were exposed to 0, 100, 300, 600 (female), or 800 (male) ppm 2,4-D in diet. Nonlinear toxicokinetic behavior was shown at high doses; the renal clearance saturation threshold for 2,4-D was exceeded markedly in females and slightly exceeded in males. Exposure was 4 weeks premating, 7 weeks postmating for P1 males and through lactation for P1 females. F1 offspring were examined for survival and development, and at weaning, pups were divided in cohorts, by sex and dose, and by systemic toxicity (10), DNT (10), DIT (20), and reproductive toxicity (≥ 23). Remaining weanlings were evaluated for systemic toxicity and neuropathology (10-12). Body weight decreased during lactation in high-dose P1 females and in F1 pups. Kidney was the primary target organ, with slight degeneration of proximal convoluted tubules observed in high-dose P1 males and in high-dose F1 males and females. A slight intergenerational difference in kidney toxicity was attributed to increased intake of 2,4-D in F1 offspring. Decreased weanling testes weights and delayed preputial separation in F1 males were attributed to decreased body weights. Endocrine-related effects were limited to slight thyroid hormone changes and adaptive histopathology in high-dose GD 17 dams seen only at a nonlinear toxicokinetic dose. 2,4-D did not cause reproductive toxicity, DNT, or DIT. The "No Observed Adverse Effect Level" for systemic toxicity was 300 ppm in both males (16.6 mg/kg/day) and females (20.6 mg/kg/day), which is approximately 6700- to 93 000-fold higher than that reported for 2,4-D exposures in human biomonitoring studies.

  20. An F1-Extended One-Generation Reproductive Toxicity Study in Crl:CD(SD) Rats With 2,4-Dichlorophenoxyacetic Acid

    PubMed Central

    Marty, Mary Sue

    2013-01-01

    2,4-Dichlorophenoxyacetic acid (2,4-D) was assessed for systemic toxicity, reproductive toxicity, developmental neurotoxicity (DNT), developmental immunotoxicity (DIT), and endocrine toxicity. CD rats (27/sex/dose) were exposed to 0, 100, 300, 600 (female), or 800 (male) ppm 2,4-D in diet. Nonlinear toxicokinetic behavior was shown at high doses; the renal clearance saturation threshold for 2,4-D was exceeded markedly in females and slightly exceeded in males. Exposure was 4 weeks premating, 7 weeks postmating for P1 males and through lactation for P1 females. F1 offspring were examined for survival and development, and at weaning, pups were divided in cohorts, by sex and dose, and by systemic toxicity (10), DNT (10), DIT (20), and reproductive toxicity (≥ 23). Remaining weanlings were evaluated for systemic toxicity and neuropathology (10–12). Body weight decreased during lactation in high-dose P1 females and in F1 pups. Kidney was the primary target organ, with slight degeneration of proximal convoluted tubules observed in high-dose P1 males and in high-dose F1 males and females. A slight intergenerational difference in kidney toxicity was attributed to increased intake of 2,4-D in F1 offspring. Decreased weanling testes weights and delayed preputial separation in F1 males were attributed to decreased body weights. Endocrine-related effects were limited to slight thyroid hormone changes and adaptive histopathology in high-dose GD 17 dams seen only at a nonlinear toxicokinetic dose. 2,4-D did not cause reproductive toxicity, DNT, or DIT. The “No Observed Adverse Effect Level” for systemic toxicity was 300 ppm in both males (16.6mg/kg/day) and females (20.6mg/kg/day), which is approximately 6700- to 93 000-fold higher than that reported for 2,4-D exposures in human biomonitoring studies. PMID:24072463

  1. Computational Modeling and Simulation of Developmental ...

    EPA Pesticide Factsheets

    SYNOPSIS: The question of how tissues and organs are shaped during development is crucial for understanding human birth defects. Data from high-throughput screening assays on human stem cells may be utilized predict developmental toxicity with reasonable accuracy. Other types of models are necessary, however, for mechanism-specific analysis because embryogenesis requires precise timing and control. Agent-based modeling and simulation (ABMS) is an approach to virtually reconstruct these dynamics, cell-by-cell and interaction-by-interaction. Using ABMS, HTS lesions from ToxCast can be integrated with patterning systems heuristically to propagate key events This presentation to FDA-CFSAN will update progress on the applications of in silico modeling tools and approaches for assessing developmental toxicity.

  2. Final report on the safety assessment of ethoxyethanol and ethoxyethanol acetate.

    PubMed

    Johnson, Wilbur

    2002-01-01

    Ethoxyethanol is an ether alcohol described as a solvent and viscosity-decreasing agent for use in cosmetics. Ethoxyethanol Acetate is the ester of Ethoxyethanol and acetic acid described as a solvent for use in cosmetics. Although these ingredients have been used in the past, neither ingredient is in current use. Ethoxyethanol is produced by reacting ethylene oxide with ethyl alcohol. Ethoxyethanol Acetate is produced via an esterification of Ethoxyethanol and acetic acid, acetic acid anhydride, or acetic chloride. Ethoxyethanol is metabolized to ethoxyacetaldehyde, which is further metabolized to ethoxyacetic acid, which is also a metabolite of Ethoxyethanol Acetate. Low to moderate acute inhalation toxicity is seen in animals studies. Acute oral toxicity studies in several species reported kidney damage, including extreme tubular degeneration. Kidney damage was also seen in acute dermal toxicity studies in rats and rabbits. Minor liver and kidney damage was also seen in short-term studies of rats injected subcutaneously with Ethoxyethanol, but was absent in dogs dosed intravenously. Mixed toxicity results were also seen in subchronic tests in mice and rats. Ethoxyethanol and Ethoxyethanol Acetate were mild to moderate eye irritants in rabbits; mild skin irritants in rabbits, and nonsensitizing in guinea pigs. Most genotoxicity tests were negative, but chromosome aberrations and sister-chromatid exchanges were among the positive results seen. Numerous reproductive and developmental toxicity studies, across several species, involving various routes of administration, indicate that Ethoxyethanol and Ethoxyethanol Acetate are reproductive toxicants and teratogens. Mild anemia was reported in individuals exposed occupationally to Ethoxyethanol, which resolved when the chemical was not used. Reproductive effects have been noted in males exposed occupationally to Ethoxyethanol. Although there are insufficient data to determine the potential carcinogenic effects of Ethoxyethanol or Ethoxyethanol Acetate, there is evidence that these chemicals are absorbed across human skin and that they are reproductive and developmental toxicants via dermal exposure. Therefore, these ingredients are unsafe for use in cosmetic formulations.

  3. A dysmorphology score system for assessing embryo abnormalities in rat whole embryo culture.

    PubMed

    Zhang, Cindy X; Danberry, Tracy; Jacobs, Mary Ann; Augustine-Rauch, Karen

    2010-12-01

    The rodent whole embryo culture (WEC) system is a well-established model for characterizing developmental toxicity of test compounds and conducting mechanistic studies. Laboratories have taken various approaches in describing type and severity of developmental findings of organogenesis-stage rodent embryos, but the Brown and Fabro morphological score system is commonly used as a quantitative approach. The associated score criteria is based upon developmental stage and growth parameters, where a series of embryonic structures are assessed and assigned respective scores relative to their gestational stage, with a Total Morphological Score (TMS) assigned to the embryo. This score system is beneficial because it assesses a series of stage-specific anatomical landmarks, facilitating harmonized evaluation across laboratories. Although the TMS provides a quantitative approach to assess growth and determine developmental delay, it is limited to its ability to identify and/or delineate subtle or structure-specific abnormalities. Because of this, the TMS may not be sufficiently sensitive for identifying compounds that induce structure or organ-selective effects. This study describes a distinct morphological score system called the "Dysmorphology Score System (DMS system)" that has been developed for assessing gestation day 11 (approximately 20-26 somite stage) rat embryos using numerical scores to differentiate normal from abnormal morphology and define the respective severity of dysmorphology of specific embryonic structures and organ systems. This method can also be used in scoring mouse embryos of the equivalent developmental stage. The DMS system enhances capabilities to rank-order compounds based upon teratogenic potency, conduct structure- relationships of chemicals, and develop statistical prediction models to support abbreviated developmental toxicity screens. © 2010 Wiley-Liss, Inc.

  4. PM2.5-bound metal metabolic distribution and coupled lipid abnormality at different developmental windows.

    PubMed

    Ku, Tingting; Zhang, Yingying; Ji, Xiaotong; Li, Guangke; Sang, Nan

    2017-09-01

    Atmospheric fine particulate matter (PM 2.5 ) is a serious threat to human health. As a toxicant constituent, metal leads to significant health risks in a population, but exposure to PM 2.5 -bound metals and their biological impacts are not fully understood. In this study, we determined the metal contents of PM 2.5 samples collected from a typical coal-burning city and then investigated the metabolic distributions of six metals (Zn, Pb, Mn, As, Cu, and Cd) following PM 2.5 inhalation in mice in different developmental windows. The results indicate that fine particles were mainly deposited in the lung, but PM 2.5 -bound metals could reach and gather in secondary off-target tissues (the lung, liver, heart and brain) with a developmental window-dependent property. Furthermore, elevations in triglycerides and cholesterol levels in sensitive developmental windows (the young and elderly stages) occurred, and significant associations between metals (Pb, Mn, As and Cd) and cholesterol in the heart, brain, liver and lung were observed. These findings suggest that PM 2.5 inhalation caused selective metal metabolic distribution in tissues with a developmental window-dependent property and that the effects were associated with lipid alterations. This provides a foundation for the underlying systemic toxicity following PM 2.5 exposure based on metal components. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Reproductive toxicity of carbon nanomaterials: a review

    NASA Astrophysics Data System (ADS)

    Vasyukova, I.; Gusev, A.; Tkachev, A.

    2015-11-01

    In the current review, we assembled the experimental evidences of an association between carbon nanomaterials including carbon black, graphite nanoplatelets, graphene, single- and multi-walled carbon nanotubes, and fullerene exposure and adverse reproductive and developmental effects, in vitro and in vivo studies. It is shown that carbon nanomaterials reveal toxic effect on reproductive system and offspring development of the animals of various system groups to a certain degree depending on carbon crystal structure. Although this paper provides initial information about the potential male and female reproductive toxicity of carbon nanomaterials, further studies, using characterized nanoparticles, relevant routes of administration, and doses closely reflecting all the expected levels of exposure are needed.

  6. An investigation of the general, reproductive and postnatal developmental toxicity of Betapol, a human milk fat equivalent.

    PubMed

    Spurgeon, M J; Palmer, A K; Hepburn, P A

    2003-10-01

    Betapol consists of triglyceride fatty acids commonly found in vegetable and animal fats. A similarity to human milk fat indicated a potential use in infant formulae as well as for food use in general. To test the potential for substantial equivalence with a related food grade oil, palm oil, Betapol was fed to rats at 15% content in the diet using an augmented two-generation study, in order to obtain information on general (6 months), reproductive and postnatal developmental toxicity in a single study rather than separate studies. For comparison there were two control groups, namely a comparative control fed a diet containing 15% of food grade oil and a negative, or laboratory standard control fed a commercial rodent breeding diet (LAD), containing 2.3-4.7% fat. It was reasoned that if Betapol fed groups showed differences from the comparative control in the direction of the negative control these would reflect differences in the nutritional value of the high fat diets. Presence of a toxicant might be indicated by differences from the comparative control group opposite to the negative control group. The group fed 15% Betapol showed occasional, statistically significant differences from the comparative control group but the direction of difference was towards the negative control group and did not indicate the presence of an unexpected toxicant.

  7. CANCER AND DEVELOPMENTAL EXPOSURE TO ENDOCRINE DISRUPTORS

    EPA Science Inventory

    ABSTRACT
    Developing organisms have been shown to have increased susceptibility to cancer if exposed to environmental toxicants during rapid growth and differentiation. Human studies have demonstrated clear increases in cancer following prenatal exposure to ionizing radiatio...

  8. 40 CFR 721.9928 - Urea, tetraethyl-.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Requirements as specified in § 721.80(r) (445,000 kg) (a dermal developmental toxicity study in mice and rats and either a chromosome aberration assay in mice (40 CFR 798.5385) or a micronucleus assay in mice (40...

  9. 40 CFR 721.9928 - Urea, tetraethyl-.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Requirements as specified in § 721.80(r) (445,000 kg) (a dermal developmental toxicity study in mice and rats and either a chromosome aberration assay in mice (40 CFR 798.5385) or a micronucleus assay in mice (40...

  10. 40 CFR 721.9928 - Urea, tetraethyl-.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... Requirements as specified in § 721.80(r) (445,000 kg) (a dermal developmental toxicity study in mice and rats and either a chromosome aberration assay in mice (40 CFR 798.5385) or a micronucleus assay in mice (40...

  11. 40 CFR 721.9928 - Urea, tetraethyl-.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Requirements as specified in § 721.80(r) (445,000 kg) (a dermal developmental toxicity study in mice and rats and either a chromosome aberration assay in mice (40 CFR 798.5385) or a micronucleus assay in mice (40...

  12. 40 CFR 721.9928 - Urea, tetraethyl-.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Requirements as specified in § 721.80(r) (445,000 kg) (a dermal developmental toxicity study in mice and rats and either a chromosome aberration assay in mice (40 CFR 798.5385) or a micronucleus assay in mice (40...

  13. Computational Modeling and Simulation of Developmental ...

    EPA Pesticide Factsheets

    Standard practice for assessing developmental toxicity is the observation of apical endpoints (intrauterine death, fetal growth retardation, structural malformations) in pregnant rats/rabbits following exposure during organogenesis. EPA’s computational toxicology research program (ToxCast) generated vast in vitro cellular and molecular effects data on >1858 chemicals in >600 high-throughput screening (HTS) assays. The diversity of assays has been increased for developmental toxicity with several HTS platforms, including the devTOX-quickPredict assay from Stemina Biomarker Discovery utilizing the human embryonic stem cell line (H9). Translating these HTS data into higher order-predictions of developmental toxicity is a significant challenge. Here, we address the application of computational systems models that recapitulate the kinematics of dynamical cell signaling networks (e.g., SHH, FGF, BMP, retinoids) in a CompuCell3D.org modeling environment. Examples include angiogenesis (angiodysplasia) and dysmorphogenesis. Being numerically responsive to perturbation, these models are amenable to data integration for systems Toxicology and Adverse Outcome Pathways (AOPs). The AOP simulation outputs predict potential phenotypes based on the in vitro HTS data ToxCast. A heuristic computational intelligence framework that recapitulates the kinematics of dynamical cell signaling networks in the embryo, together with the in vitro profiling data, produce quantitative predic

  14. 20170312 - Computer Simulation of Developmental ...

    EPA Pesticide Factsheets

    Rationale: Recent progress in systems toxicology and synthetic biology have paved the way to new thinking about in vitro/in silico modeling of developmental processes and toxicities, both for embryological and reproductive impacts. Novel in vitro platforms such as 3D organotypic culture models, engineered microscale tissues and complex microphysiological systems (MPS), together with computational models and computer simulation of tissue dynamics, lend themselves to a integrated testing strategies for predictive toxicology. As these emergent methodologies continue to evolve, they must be integrally tied to maternal/fetal physiology and toxicity of the developing individual across early lifestage transitions, from fertilization to birth, through puberty and beyond. Scope: This symposium will focus on how the novel technology platforms can help now and in the future, with in vitro/in silico modeling of complex biological systems for developmental and reproductive toxicity issues, and translating systems models into integrative testing strategies. The symposium is based on three main organizing principles: (1) that novel in vitro platforms with human cells configured in nascent tissue architectures with a native microphysiological environments yield mechanistic understanding of developmental and reproductive impacts of drug/chemical exposures; (2) that novel in silico platforms with high-throughput screening (HTS) data, biologically-inspired computational models of

  15. Computer Simulation of Developmental Processes and ...

    EPA Pesticide Factsheets

    Rationale: Recent progress in systems toxicology and synthetic biology have paved the way to new thinking about in vitro/in silico modeling of developmental processes and toxicities, both for embryological and reproductive impacts. Novel in vitro platforms such as 3D organotypic culture models, engineered microscale tissues and complex microphysiological systems (MPS), together with computational models and computer simulation of tissue dynamics, lend themselves to a integrated testing strategies for predictive toxicology. As these emergent methodologies continue to evolve, they must be integrally tied to maternal/fetal physiology and toxicity of the developing individual across early lifestage transitions, from fertilization to birth, through puberty and beyond. Scope: This symposium will focus on how the novel technology platforms can help now and in the future, with in vitro/in silico modeling of complex biological systems for developmental and reproductive toxicity issues, and translating systems models into integrative testing strategies. The symposium is based on three main organizing principles: (1) that novel in vitro platforms with human cells configured in nascent tissue architectures with a native microphysiological environments yield mechanistic understanding of developmental and reproductive impacts of drug/chemical exposures; (2) that novel in silico platforms with high-throughput screening (HTS) data, biologically-inspired computational models of

  16. Toxic effects of magnesium oxide nanoparticles on early developmental and larval stages of zebrafish (Danio rerio).

    PubMed

    Ghobadian, Mehdi; Nabiuni, Mohammad; Parivar, Kazem; Fathi, Mojtaba; Pazooki, Jamileh

    2015-12-01

    Magnesium oxide nanoparticles (MgONPs) are used in medicine, manufacturing and food industries. Because of their extensive application in our daily lives, environmental exposure to these nanoparticles is inevitable. The present study examined the effects of MgONPs on zebrafish (Danio rerio) early developmental stages. The results showed that, at different concentrations, MgONPs induced cellular apoptosis and intracellular reactive oxygen species. The hatching rate and survival of embryos decreased in a dose dependent manner. The 96-h LC50 value of MgONPs on zebrafish survival was 428 mg/l and the 48-h EC50 value of MgONPs on zebrafish embryo hatching rate was 175 mg/l. Moreover different types of malformation were observed in exposed embryos. The results demonstrate the toxic effects of MgONPs on zebrafish embryos and emphasize the need for further studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Aerobic Bioremediation of PAH Contaminated Soil Results in Increased Genotoxicity and Developmental Toxicity

    PubMed Central

    Chibwe, Leah; Geier, Mitra C.; Nakamura, Jun; Tanguay, Robert L.; Aitken, Michael D.; Simonich, Staci L. Massey

    2015-01-01

    The formation of more polar and toxic polycyclic aromatic hydrocarbon (PAH) transformation products is one of the concerns associated with the bioremediation of PAH-contaminated soils. Soil contaminated with coal tar (pre-bioremediation) from a former manufactured gas plant (MGP) site was treated in a laboratory scale bioreactor (post-bioremediation) and extracted using pressurized liquid extraction. The soil extracts were fractionated, based on polarity, and analyzed for 88 PAHs (unsubstituted, oxygenated, nitrated, and heterocyclic PAHs). The PAH concentrations in the soil tested, post-bioremediation, were lower than their regulatory maximum allowable concentrations (MACs), with the exception of the higher molecular weight PAHs (BaA, BkF, BbF, BaP, and IcdP), most of which did not undergo significant biodegradation. The soil extract fractions were tested for genotoxicity using the DT40 chicken lymphocyte bioassay and developmental to xicity using the embryonic zebrafish (Danio rerio) bioassay. A statistically significant increase in genotoxicity was measured in the unfractionated soil extract, as well as in four polar soil extract fractions, post-bioremediation (p < 0.05). In addition, a statistically significant increase in developmental toxicity was measured in one polar soil extract fraction, post-bioremediation (p < 0.05). A series of morphological abnormalities, including peculiar caudal fin malformations and hyperpigmentation in the tail, were measured in several soil extract fractions in embryonic zebrafish, both pre- and post-bioremediation. The increased toxicity measured post-bioremediation is not likely due to the 88 PAHs measured in this study (including quinones), because most were not present in the toxic polar fractions and/or because their concentrations did not increase post-bioremediation. However, the increased toxicity measured post-bioremediation is likely due to hydroxylated and carboxylated transformation products of the 3- and 4-ring PAHs (PHE, 1MPHE, 2MPHE, PRY, BaA, and FLA) that were most degraded. PMID:26200254

  18. Developmental toxicity of dextromethorphan in zebrafish embryos/larvae.

    PubMed

    Xu, Zheng; Williams, Frederick E; Liu, Ming-Cheh

    2011-03-01

    Dextromethorphan is widely used in over-the-counter cough and cold medications. Its efficacy and safety for infants and young children remains to be clarified. The present study was designed to use zebrafish as a model to investigate the potential toxicity of dextromethorphan during embryonic and larval development. Three sets of zebrafish embryos/larvae were exposed to dextromethorphan at 24, 48 and 72 h post fertilization (hpf), respectively, during the embryonic/larval development. Compared with the 48 and 72 hpf exposure sets, the embryos/larvae in the 24 hpf exposure set showed much higher mortality rates which increased in a dose-dependent manner. Bradycardia and reduced blood flow were observed for the embryos/larvae treated with increasing concentrations of dextromethorphan. Morphological effects of dextromethorphan exposure, including yolk sac and cardiac edema, craniofacial malformation, lordosis, non-inflated swim bladder and missing gill, were also more frequent and severe among zebrafish embryos/larvae exposed to dextromethorphan at 24 hpf. Whether the more frequent and severe developmental toxicity of dextromethorphan observed among the embryos/larvae in the 24 hpf exposure set, as compared with the 48 and 72 hpf exposure sets, is due to the developmental expression of the phase I and phase II enzymes involved in the metabolism of dextromethorphan remains to be clarified. A reverse transcription-polymerase chain reaction analysis, nevertheless, revealed developmental stage-dependent expression of mRNAs encoding SULT3 ST1 and SULT3 ST3, two enzymes previously shown to be capable of sulfating dextrorphan, an active metabolite of dextromethorphan. Copyright © 2010 John Wiley & Sons, Ltd.

  19. Developmental Toxicity of Dextromethorphan in Zebrafish Embryos/Larvae

    PubMed Central

    Xu, Zheng; Williams, Frederick E.; Liu, Ming-Cheh

    2012-01-01

    Dextromethorphan is widely used in over-the-counter cough and cold medications. Its efficacy and safety for infants and young children remains to be clarified. The present study was designed to use the zebrafish as a model to investigate the potential toxicity of dextromethorphan during the embryonic and larval development. Three sets of zebrafish embryos/larvae were exposed to dextromethorphan at 24 hours post fertilization (hpf), 48 hpf, and 72 hpf, respectively, during the embryonic/larval development. Compared with the 48 and 72 hpf exposure sets, the embryos/larvae in the 24 hpf exposure set showed much higher mortality rates which increased in a dose-dependent manner. Bradycardia and reduced blood flow were observed for the embryos/larvae treated with increasing concentrations of dextromethorphan. Morphological effects of dextromethorphan exposure, including yolk sac and cardiac edema, craniofacial malformation, lordosis, non-inflated swim bladder, and missing gill, were also more frequent and severe among zebrafish embryos/larvae exposed to dextromethorphan at 24 hpf. Whether the more frequent and severe developmental toxicity of dextromethorphan observed among the embryos/larvae in the 24 hpf exposure set, as compared with the 48 and 72 hpf exposure sets, is due to the developmental expression of the Phase I and Phase II enzymes involved in the metabolism of dextromethorphan remains to be clarified. A reverse transcription-polymerase chain reaction (RT-PCR) analysis, nevertheless, revealed developmental stage-dependent expression of mRNAs encoding SULT3 ST1 and SULT3 ST3, two enzymes previously shown to be capable of sulfating dextrorphan, an active metabolite of dextromethorphan. PMID:20737414

  20. Gestational lead exposure induces developmental abnormalities and up-regulates apoptosis of fetal cerebellar cells in rats.

    PubMed

    Mousa, Alyaa M; Al-Fadhli, Ameera S; Rao, Muddanna S; Kilarkaje, Narayana

    2015-01-01

    Lead (Pb), a known environmental toxicant, adversely affects almost all organ systems. In this study, we investigated the effects of maternal lead exposure on fetal rat cerebellum. Female Sprague-Dawley rats were given lead nitrate in drinking water (0, 0.5, and 1%) for two weeks before conception, and during pregnancy. Fetuses were collected by caesarian section on gestational day 21 and observed for developmental abnormalities. The fetal cerebellar sections from control and 1% lead group were stained with cresyl violet. Immunohistochemical expressions of p53, Bax, Bcl-2, and caspase 3 were quantified by AnalySIS image analyzer (Life Science, Germany). Lead exposure induced developmental abnormalities of eyes, ear, limbs, neck and ventral abdominal wall; however, these abnormalities were commonly seen in the 1% lead-treated group. In addition, lead also caused fetal mortality and reduced body growth in both dose groups and reduced brain weight in the 1% lead-treated group. The fetal cerebella from the 1% lead-treated group showed unorganized cerebellar cortical layers, and degenerative changes in granule and Purkinje cells such as the formation of clumps of Nissl granules. An increase in Bax and caspase 3, and a decrease in Bcl-2 (p < 0.05), but not in p53, showed apoptosis of the neurons. In conclusion, gestational lead exposure in rats induces fetal toxicity and developmental abnormalities. The lead exposure also impairs development of cerebellar layers, induces structural changes, and apoptosis in the fetal cerebellar cortex. These results suggest that lead exposure during gestation is extremely toxic to developing cerebellum in rats.

  1. Effect of Nanoparticles on the Survival and Development of Vitrified Porcine GV Oocytes.

    PubMed

    Li, W J; Zhou, X L; Liu, B L; Dai, J J; Song, P; Teng, Y

    BACKGROUND: Some mammalian oocytes have been successfully cryopreserved by vitrification. However, the survival and developmental rate of vitrified oocytes is still low. The incorporation of nanoparticles into cryoprotectant (CPA) may improve the efficiency of vitrification by changing the properties of solutions. The toxicity of different concentrations of hydroxy apatite (HA), silica dioxide (SO 2 ), aluminum oxide (Al 2 O 3 ) and titanium dioxide (TiO 2 ) nanoparticles (20 nm in diameter) to oocytes was tested and the toxicity threshold value of each nanoparticle was determined. Porcine GV oocytes were vitrified in optimized nano-CPA, and effects of diameter and concentration of nanoparticles on the survival rate and developmental rate of porcine GV oocytes were compared. HA nanoparticles have demonstrated the least toxicity among four nanoparticles and the developmental rate of GV-stage porcine oocytes was 100% when its concentration was lower than 0.5%. By adding 0.1% HA into VS, the developmental rate of GV-stage porcine oocytes (22%) was significantly higher than other groups. The effect of vitrification in nano-CPA on oocytes was related to the concentration of HA nanoparticles rather than their size. By adding 0.05% HA nanoparticles (60nm in diameter), the developmental rate increased dramatically from 14.7% to 30.4%. Nano-cryopreservation offers a new way to improve the effect of survival and development of oocytes, but the limitation of this technology shall not be ignored.

  2. Enhancing the fathead minnow fish embryo toxicity test: Optimizing embryo production and assessing the utility of additional test endpoints.

    PubMed

    Roush, Kyle S; Krzykwa, Julie C; Malmquist, Jacob A; Stephens, Dane A; Sellin Jeffries, Marlo K

    2018-05-30

    The fathead minnow fish embryo toxicity (FET) test has been identified as a potential alternative to toxicity test methods that utilize older fish. However, several challenges have been identified with the fathead minnow FET test, including: 1) difficulties in obtaining appropriately-staged embryos for FET test initiation, 2) a paucity of data comparing fathead minnow FET test performance to the fathead minnow larval growth and survival (LGS) test and 3) a lack of sublethal endpoints that could be used to estimate chronic toxicity and/or predict adverse effects. These challenges were addressed through three study objectives. The first objective was to optimize embryo production by assessing the effect of breeding group composition (number of males and females) on egg production. Results showed that groups containing one male and four females produced the largest clutches, enhancing the likelihood of procuring sufficient numbers of embryos for FET test initiation. The second study objective was to compare the performance of the FET test to that of the fathead minnow LGS test using three reference toxicants. The FET and LGS tests were similar in their ability to predict the acute toxicity of sodium chloride and ethanol, but the FET test was found to be more sensitive than the LGS test for sodium dodecyl sulfate. The last objective of the study was to evaluate the utility and practicality of several sublethal metrics (i.e., growth, developmental abnormalities and growth- and stress-related gene expression) as FET test endpoints. Developmental abnormalities, including pericardial edema and hatch success, were found to offer the most promise as additional FET test endpoints, given their responsiveness, potential for predicting adverse effects, ease of assessment and low cost of measurement. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Developmental toxicity study in Sprague-Dawley rats by whole-body exposure to N,N-diethylethanolamine vapor.

    PubMed

    Leung, H W; Murphy, S R

    1998-01-01

    Timed-pregnant Sprague-Dawley rats were exposed whole body to N,N-diethylethanolamine vapor for 6 h per day on gestational days (GD) 6-15 at targeted concentrations of 33, 66 or 100 ppm. Dams were sacrificed on GD 21. There was no maternal mortality in any exposed groups. Maternal toxicity observed in the 100 ppm group included dry rales, reduced body weight (9.5%) on GD 15 and reduced weight gain (48%) during exposure. Suppression of body weight gain was also noted in the 66 ppm group during GD 12-15. There were no effects of treatment on gestational parameters, including pre- and post-implantation loss or sex ratio. Mean fetal body weights in treated groups were comparable to controls. There was no increase in the incidence of total malformations (external, visceral or skeletal) or individually by category. The incidence of a single developmental variation (hypoplastic bones of the forepaw) in the 100 ppm groups was statistically significantly decreased relative to that of controls. The no-observed-adverse-effect level was 33 ppm for maternal toxicity but greater than 100 ppm for embryofetal toxicity and teratogenicity.

  4. Developmental toxicity and DNA damaging properties of silver nanoparticles in the catfish (Clarias gariepinus).

    PubMed

    Sayed, Alaa El-Din H; Soliman, Hamdy A M

    2017-10-01

    Although, silver nanoparticles (AgNPs) are used in many different products, little information is known about their toxicity in tropical fish embryos. Therefore, this study evaluated the developmental toxicity of waterborne silver nanoparticles in embryos of Clarias gariepinus. Embryos were treated with (0, 25, 50, 75ng/L silver nanoparticles) in water up to 144h postfertilization stage (PFS). Results revealed various morphological malformations including notochord curvature and edema. The mortality rate, malformations, and DNA fragmentation in embryos exposed to silver nanoparticles increased in a dose- and embryonic stage-dependent manner. The total antioxidant capacity and the activity of catalase in embryos exposed to 25ng/L silver nanoparticles were decreased significantly while the total antioxidant capacity and the activity of catalase were insignificantly increased with increasing concentrations in the embryos from 24 to 144 h-PFS exposed to 50 and 75ng/L silver nanoparticles. Lipid peroxidation values showed fluctuations with doses of silver nanoparticles. Histopathological lesions including severely distorted and wrinkled notochord were observed. The current data propose that the toxicity of silver nanoparticles in C. gariepinus embryos is caused by oxidative stress and genotoxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. A critical evaluation of developmental and reproductive toxicology in nonhuman primates.

    PubMed

    Faqi, Ali S

    2012-02-01

    The nonhuman primates (NHPs) are used in many areas of biomedical research where their similarities to humans make them exclusively valuable animal models. The use of NHPs in pre-clinical testing is expected to increase due to the increase in the development of biological compounds for therapeutic uses. The regulatory agencies around the world including Food and Drug Administration (FDA) generally requires developmental and reproductive toxicity (DART) testing of all new drugs to be used by women of childbearing age or men of reproductive potential. NHPs are most frequently used for DART testing when commonly used rodents and/or rabbits are not pharmacologically relevant species. Animal studies are unique in that assessment of reproduction and development as DART studies are not performed in controlled clinical trials; therefore, pre-clinical safety assessment forms the basis for risk assessment for marketed drug products. This paper provides a critical evaluation of developmental and reproductive toxicity studies in NHPs. The manuscript will focus on species selection, limitation of International Conference for Harmonization stages (A-F) using NHPs as a test system, study designs, logistical/technical challenges, and strength, and limitations. It will also pinpoint confounding factors inherent to the test system that may complicate the interpretation of the NHP DART data.

  6. Systems Modeling in Developmental Toxicity

    EPA Science Inventory

    An individual starts off as a single cell, the progeny of which form complex structures that are themselves integrated into progressively larger systems. Developmental biology is concerned with how this cellular complexity and patterning arises through orchestration of cell divi...

  7. Comparative BioInformatics and Computational Toxicology

    EPA Science Inventory

    Reflecting the numerous changes in the field since the publication of the previous edition, this third edition of Developmental Toxicology focuses on the mechanisms of developmental toxicity and incorporates current technologies for testing in the risk assessment process.

  8. Predictive modeling of developmental toxicity using EPA’s Virtual Embryo

    EPA Science Inventory

    Standard practice in prenatal developmental toxicology involves testing chemicals in pregnant laboratory animals of two species, typically rats and rabbits, exposed during organogenesis and evaluating for fetal growth retardation, structural malformations, and prenatal death just...

  9. LIFE-STAGE DEPENDENT DOSIMETRY AND POTENTIAL IMPACTS ON RISK ASSESSMENT APPROACHES

    EPA Science Inventory

    Increasingly reproductive and developmental toxicity studies are utilized in assessing the potential for adverse affects in pregnant women, nursing infants, and children. These studies largely have been utilized based upon the dose to the mother due to the complexity of describi...

  10. Federal Register notice: Propylene Oxide; Testing Requirements

    EPA Pesticide Factsheets

    This final rule promulgated under section 4(a) of the Toxic Substances Control Act (TSCA) requires manufacturers and processors of propylene oxide (CAS No. 75-58-9) to test this chemical for developmental toxicity.

  11. Initial evaluation of developmental malformation as an end point in mixture toxicity hazard assessment for aquatic vertebrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawson, D.A.; Wilke, T.S.

    1991-04-01

    The joint toxic action of three binary mixtures was determined for the embryo malformation endpoint of the aquatic FETAX (frog embryo teratogenesis assay: Xenopus) test system. Osteolathyrogenic compounds and short-chain carboxylic acids, representing separate, distinct modes of action for induction of malformation, were selected for testing in 96-hr, static-renewal tests. Three mixtures were tested for each combination, with each combination being tested on three separate occasions. Using toxic unit analysis, the combination of osteolathyrogens and the combination of carboxylic acids produced strictly additive (concentration addition) rates of malformation, while the combination of an osteolathyrogen and a carboxylic acid was less-than-additivemore » (response addition) for induction of malformation. Therefore, developmental malformation may have value as an endpoint in mixture toxicity hazard assessment.« less

  12. Mitochondrial Dysfunction, Disruption of F-Actin Polymerization, and Transcriptomic Alterations in Zebrafish Larvae Exposed to Trichloroethylene.

    PubMed

    Wirbisky, Sara E; Damayanti, Nur P; Mahapatra, Cecon T; Sepúlveda, Maria S; Irudayaraj, Joseph; Freeman, Jennifer L

    2016-02-15

    Trichloroethylene (TCE) is primarily used as an industrial degreasing agent and has been in use since the 1940s. TCE is released into the soil, surface, and groundwater. From an environmental and regulatory standpoint, more than half of Superfund hazardous waste sites on the National Priority List are contaminated with TCE. Occupational exposure to TCE occurs primarily via inhalation, while environmental TCE exposure also occurs through ingestion of contaminated drinking water. Current literature links TCE exposure to various adverse health effects including cardiovascular toxicity. Current studies aiming to address developmental cardiovascular toxicity utilized rodent and avian models, with the majority of studies using relatively higher parts per million (mg/L) doses. In this study, to further investigate developmental cardiotoxicity of TCE, zebrafish embryos were treated with 0, 10, 100, or 500 parts per billion (ppb; μg/L) TCE during embryogenesis and/or through early larval stages. After the appropriate exposure period, angiogenesis, F-actin, and mitochondrial function were assessed. A significant dose-response decrease in angiogenesis, F-actin, and mitochondrial function was observed. To further complement this data, a transcriptomic profile of zebrafish larvae was completed to identify gene alterations associated with the 10 ppb TCE exposure. Results from the transcriptomic data revealed that embryonic TCE exposure caused significant changes in genes associated with cardiovascular disease, cancer, and organismal injury and abnormalities with a number of targets in the FAK signaling pathway. Overall, results from our study support TCE as a developmental cardiovascular toxicant, provide molecular targets and pathways for investigation in future studies, and indicate a need for continued priority for environmental regulation.

  13. Developmental toxicity and structure/activity correlates of glycols and glycol ethers.

    PubMed Central

    Johnson, E M; Gabel, B E; Larson, J

    1984-01-01

    In recent years, the National Toxicology Program (NTP) has selected numerous glycol ethers for testing in routine laboratory mammals to ascertain the magnitude of their ability to injure the conceptus. From the lists available of ongoing and projected NTP test chemicals, a series of glycol ethers was selected for examination in vitro in the hydra assay. Also tested were additional chemicals of similar molecular configuration and/or composition. This short-term screening test placed the 14 glycols and glycol ethers tested into a rank order sequence according to their degree of hazard potential to developmental biology, i.e., their ability to interfere with the developmental events characteristic of all ontogenic systems. They were ranked according to the difference between the lowest dose or concentration overtly toxic to adults (A) and the lowest concentration interfering with development (D) of the artificial embryo of reaggregated adult hydra cells and the A/D ratio. Published data from mammalian studies were available for a few of the test chemicals, and in each instance the hydra assay was in direct agreement with the outcomes reported of the more elaborate and standard animal tests. Ethylene glycol and ethylene glycol monomethyl ether were shown by both standard evaluations in mammals, and by the hydra assay, to disrupt embryos only at or very near to their respective adult toxic doses, whereas the mono-ethyl ether perturbed development at approximately one-fifth of the lowest dose overtly toxic to adults.(ABSTRACT TRUNCATED AT 250 WORDS) Images FIGURE 1. A FIGURE 1. B FIGURE 1. C PMID:6499797

  14. New toxicogenetic insights and ranking of the selected pharmaceuticals belong to the three different classes: A toxicity estimation to confirmation approach.

    PubMed

    Liu, Yi; Junaid, Muhammad; Wang, Yan; Tang, Yu-Mei; Bian, Wan-Ping; Xiong, Wen-Xu; Huang, Hai-Yang; Chen, Chun-Di; Pei, De-Sheng

    2018-06-09

    Tetracycline hydrochloride (TH), indomethacin (IM), and bezafibrate (BF) belong to the three different important classes of pharmaceuticals, which are well known for their toxicity and environmental concerns. However, studies are still elusive to highlight the mechanistic toxicity of these pharmaceuticals and rank them using both, the toxicity prediction and confirmation approaches. Therefore, we employed the next generation toxicity testing in 21st century (TOX21) tools and estimated the in vitro/vivo toxic endpoints of mentioned pharmaceuticals, and then confirmed them using in vitro/vivo assays. We found significant resemblance in the results obtained via both approaches, especially in terms of in vivo LC50 s and developmental toxicity that ranked IM as most toxic among the studied pharmaceuticals. However, TH appeared most toxic with the lowest estimated AC50s, the highest experimental IC50s, and DNA damages in vitro. Contrarily, IM was found as congener with priority concern to activate the Pi3k-Akt-mTOR pathway in vitro at concentrations substantially lower than that of TH and BF. Further, IM exposure at lower doses (2.79-13.97 μM) depressed the pharmaceuticals detoxification phase I (CYP450 s), phase II (UGTs, SULTs), and phase III (TPs) pathways in zebrafish, whereas, at relatively higher doses, TH (2.08-33.27 μM) and BF (55.28-884.41 μM) partially activated these pathways, which ultimately caused the developmental toxicity in the following order: IM > TH > BF. In addition, we also ranked these pharmaceuticals in terms of their particular toxicity to myogenesis, hematopoiesis, and hepatogenesis in zebrafish embryos. Our results revealed that IM significantly affected myogenesis, hematopoiesis, and hepatogenesis, while TH and BF induced prominent effects on hematopoiesis via significant downregulation of associated genetic markers, such as drl, mpx, and gata2a. Overall, our findings confirmed that IM has higher toxicity than that of TH and BF, therefore, the consumption of these pharmaceuticals should be regulated in the same manner to ensure human and environmental safety. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Ligand-specific transcriptional mechanisms underlie aryl hydrocarbon receptor-mediated developmental toxicity of oxygenated PAHs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodale, B. C.; Geisel School of Medicine at Dartmouth, Hanover, NH; La Du, J.

    Polycyclic aromatic hydrocarbons (PAHs) are priority environmental contaminants that exhibit mutagenic, carcinogenic, proinflammatory, and teratogenic properties. Oxygen-substituted PAHs (OPAHs) are formed during combustion processes and via phototoxidation and biological degradation of parent (unsubstituted) PAHs. Despite their prevalence both in contaminated industrial sites and in urban air, OPAH mechanisms of action in biological systems are relatively understudied. Like parent PAHs, OPAHs exert structure-dependent mutagenic activities and activation of the aryl hydrocarbon receptor (AHR) and cytochrome p450 metabolic pathway. Four-ring OPAHs 1,9-benz-10-anthrone (BEZO) and benz(a)anthracene-7,12-dione (7,12-B[a]AQ) cause morphological aberrations and induce markers of oxidative stress in developing zebrafish with similar potency, butmore » only 7,12-B[a]AQ induces robust Cyp1a protein expression. We investigated the role of the AHR in mediating the toxicity of BEZO and 7,12-B[a]AQ, and found that knockdown of AHR2 rescued developmental effects caused by both compounds. Using RNA-seq and molecular docking, we identified transcriptional responses that precede developmental toxicity induced via differential interaction with AHR2. Redox-homeostasis genes were affected similarly by these OPAHs, while 7,12-B[a]AQ preferentially activated phase 1 metabolism and BEZO uniquely decreased visual system genes. Analysis of biological functions and upstream regulators suggests that BEZO is a weak AHR agonist, but interacts with other transcriptional regulators to cause developmental toxicity in an AHR-dependent manner. Furthermore, identifying ligand-dependent AHR interactions and signaling pathways is essential for understanding toxicity of this class of environmentally relevant compounds.« less

  16. Ligand-specific transcriptional mechanisms underlie aryl hydrocarbon receptor-mediated developmental toxicity of oxygenated PAHs

    DOE PAGES

    Goodale, B. C.; Geisel School of Medicine at Dartmouth, Hanover, NH; La Du, J.; ...

    2015-07-03

    Polycyclic aromatic hydrocarbons (PAHs) are priority environmental contaminants that exhibit mutagenic, carcinogenic, proinflammatory, and teratogenic properties. Oxygen-substituted PAHs (OPAHs) are formed during combustion processes and via phototoxidation and biological degradation of parent (unsubstituted) PAHs. Despite their prevalence both in contaminated industrial sites and in urban air, OPAH mechanisms of action in biological systems are relatively understudied. Like parent PAHs, OPAHs exert structure-dependent mutagenic activities and activation of the aryl hydrocarbon receptor (AHR) and cytochrome p450 metabolic pathway. Four-ring OPAHs 1,9-benz-10-anthrone (BEZO) and benz(a)anthracene-7,12-dione (7,12-B[a]AQ) cause morphological aberrations and induce markers of oxidative stress in developing zebrafish with similar potency, butmore » only 7,12-B[a]AQ induces robust Cyp1a protein expression. We investigated the role of the AHR in mediating the toxicity of BEZO and 7,12-B[a]AQ, and found that knockdown of AHR2 rescued developmental effects caused by both compounds. Using RNA-seq and molecular docking, we identified transcriptional responses that precede developmental toxicity induced via differential interaction with AHR2. Redox-homeostasis genes were affected similarly by these OPAHs, while 7,12-B[a]AQ preferentially activated phase 1 metabolism and BEZO uniquely decreased visual system genes. Analysis of biological functions and upstream regulators suggests that BEZO is a weak AHR agonist, but interacts with other transcriptional regulators to cause developmental toxicity in an AHR-dependent manner. Furthermore, identifying ligand-dependent AHR interactions and signaling pathways is essential for understanding toxicity of this class of environmentally relevant compounds.« less

  17. Ligand-Specific Transcriptional Mechanisms Underlie Aryl Hydrocarbon Receptor-Mediated Developmental Toxicity of Oxygenated PAHs.

    PubMed

    Goodale, B C; La Du, J; Tilton, S C; Sullivan, C M; Bisson, W H; Waters, K M; Tanguay, R L

    2015-10-01

    Polycyclic aromatic hydrocarbons (PAHs) are priority environmental contaminants that exhibit mutagenic, carcinogenic, proinflammatory, and teratogenic properties. Oxygen-substituted PAHs (OPAHs) are formed during combustion processes and via phototoxidation and biological degradation of parent (unsubstituted) PAHs. Despite their prevalence both in contaminated industrial sites and in urban air, OPAH mechanisms of action in biological systems are relatively understudied. Like parent PAHs, OPAHs exert structure-dependent mutagenic activities and activation of the aryl hydrocarbon receptor (AHR) and cytochrome p450 metabolic pathway. Four-ring OPAHs 1,9-benz-10-anthrone (BEZO) and benz(a)anthracene-7,12-dione (7,12-B[a]AQ) cause morphological aberrations and induce markers of oxidative stress in developing zebrafish with similar potency, but only 7,12-B[a]AQ induces robust Cyp1a protein expression. We investigated the role of the AHR in mediating the toxicity of BEZO and 7,12-B[a]AQ, and found that knockdown of AHR2 rescued developmental effects caused by both compounds. Using RNA-seq and molecular docking, we identified transcriptional responses that precede developmental toxicity induced via differential interaction with AHR2. Redox-homeostasis genes were affected similarly by these OPAHs, while 7,12-B[a]AQ preferentially activated phase 1 metabolism and BEZO uniquely decreased visual system genes. Analysis of biological functions and upstream regulators suggests that BEZO is a weak AHR agonist, but interacts with other transcriptional regulators to cause developmental toxicity in an AHR-dependent manner. Identifying ligand-dependent AHR interactions and signaling pathways is essential for understanding toxicity of this class of environmentally relevant compounds. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Dithiocarbamates have a common toxic effect on zebrafish body axis formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tilton, Fred; La Du, Jane K.; Vue, Meng

    2006-10-01

    We previously determined that the dithiocarbamate pesticide sodium metam (NaM) and its active ingredient methylisothiocyanate (MITC) were developmentally toxic causing notochord distortions in the zebrafish. In this study, developing zebrafish were exposed to isothiocyanates (ITCs), dithiocarbamates (DTCs) and several degradation products to determine the teratogenic relationship of these chemical classes at the molecular level. All dithiocarbamates tested elicited notochord distortions with notochord NOELs from <4 to 40 ppb, while none of the ITCs caused notochord distortions with the exception of MITC. Carbon disulfide (CS{sub 2}), a common DTC degradate, also caused distortions at concentrations >200 times the DTCs. Whole mountmore » in situ hybridization of developmental markers for collagen (collagen2a1), muscle (myoD), and body axis formation (no tail) was perturbed well after cessation of treatment with pyrolidine-DTC (PDTC), dimethyl-DTC (DMDTC), NaM, MITC, and CS{sub 2}. Therefore, distinct albeit related chemical classes share a common toxic effect on zebrafish notochord development. To test the responsiveness of the distortion to metal perturbation, five metal chelators and 2 metals were studied. The membrane permeable copper chelator neocuproine (NCu) was found to cause notochord distortions similar to DTC-related molecules. DMDTC and NCu treated animals were protected with copper, and collagen 2a1 and no tail gene expression patterns were identical to controls in these animals. PDTC, NaM, MITC, and CS{sub 2} were not responsive to copper indicating that the chelation of metals is not the primary means by which these molecules elicit their developmental toxicity. Embryos treated with DMDTC, NaM, and NCu were rescued by adding triciaine (MS-222) which abolishes the spontaneous muscle contractions that begin at 18 hpf. In these animals, only collagen 2a1 expression showed a similar pattern to the other notochord distorting molecules. This indicates that the perturbation of no tail expression is in response to the muscle contractions distorting the notochord, while collagen 2a1 is associated with the impact of these molecules on much earlier developmental processes.« less

  19. Phthalates as developmental reproductive toxicants

    EPA Science Inventory

    PE are a large family ofcompounds used in a wide array ofconsumer, industrial and medical products. Studies have shown that in utero treatment with PE such as diethyl hexyl phthalate (DEHP) during the critical period offetal reproductive development produced male reproductive mal...

  20. Tobacco as a Reproductive and Developmental Toxicant

    EPA Science Inventory

    Maternal cigarette smoking has long been known to result in effects on offspring including lower birthweight and neurobehavioral effects. Continuing studies have expanded the list of adverse outcomes in offspring to include Sudden Infant Death Syndrome, impaired lung function, an...

  1. Comparative toxicities of selected rare earth elements: Sea urchin embryogenesis and fertilization damage with redox and cytogenetic effects.

    PubMed

    Pagano, Giovanni; Guida, Marco; Siciliano, Antonietta; Oral, Rahime; Koçbaş, Fatma; Palumbo, Anna; Castellano, Immacolata; Migliaccio, Oriana; Thomas, Philippe J; Trifuoggi, Marco

    2016-05-01

    Broad-ranging adverse effects are known for rare earth elements (REE), yet only a few studies tested the toxicity of several REE, prompting studies focusing on multi-parameter REE toxicity. Trichloride salts of Y, La, Ce, Nd, Sm, Eu and Gd were tested in Paracentrotus lividus sea urchin embryos and sperm for: (1) developmental defects in either REE-exposed larvae or in the offspring of REE-exposed sperm; (2) fertilization success; (3) mitotic anomalies in REE-exposed embryos and in the offspring of REE-exposed sperm, and (4) reactive oxygen species (ROS) formation, and malondialdehyde (MDA) and nitric oxide (NO) levels. REEs affected P. lividus larvae with concentration-related increase in developmental defects, 10(-6) to 10(-4)M, ranking as: Gd(III)>Y(III)>La(III)>Nd(III)≅Eu(III)>Ce(III)≅Sm(III). Nominal concentrations of REE salts were confirmed by inductively coupled plasma mass spectrometry (ICP-MS). Significant increases in MDA levels, ROS formation, and NO levels were found in REE-exposed embryos. Sperm exposure to REEs (10(-5) to 10(-4)M) resulted in concentration-related decrease in fertilization success along with increase in offspring damage. Decreased mitotic activity and increased aberration rates were detected in REE-exposed embryos and in the offspring of REE-exposed sperm. REE-associated toxicity affecting embryogenesis, fertilization, cytogenetic and redox endpoints showed different activities of tested REEs. Damage to early life stages, along with redox and cytogenetic anomalies should be the focus of future REE toxicity studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. CUMULATIVE DEVELOPMENTAL EFFECTS OF ENDOCRINE DISRUPTERS: SYNERGY OR ADDITIVITY?

    EPA Science Inventory

    Exposure to chemicals with hormonal activity during critical developmental periods can disrupt reproductive function and development. Within the last decade, several classes of pesticides and toxic substances have been shown to disrupt differentiation of the male rat reproductive...

  3. Avian models in teratology and developmental toxicology.

    PubMed

    Smith, Susan M; Flentke, George R; Garic, Ana

    2012-01-01

    The avian embryo is a long-standing model for developmental biology research. It also has proven utility for toxicology research both in ovo and in explant culture. Like mammals, avian embryos have an allantois and their developmental pathways are highly conserved with those of mammals, thus avian models have biomedical relevance. Fertile eggs are inexpensive and the embryo develops rapidly, allowing for high-throughput. The chick genome is sequenced and significant molecular resources are available for study, including the ability for genetic manipulation. The absence of a placenta permits the direct study of an agent's embryotoxic effects. Here, we present protocols for using avian embryos in toxicology research, including egg husbandry and hatch, toxicant delivery, and assessment of proliferation, apoptosis, and cardiac structure and function.

  4. FETAX assay for evaluation of developmental toxicity.

    PubMed

    Mouche, Isabelle; Malesic, Laure; Gillardeaux, Olivier

    2011-01-01

    The Frog Embryo Teratogenesis Assay Xenopus (FETAX) test is a development toxicity screening test. Due to the small amount of compound needed and the capability to study organogenesis in a short period of time (96 h), FETAX test constitutes an efficient development toxicity alert test when performed early in drug safety development. The test is conducted on fertilized Xenopus laevis mid-blastula stage eggs over the organogenesis period. Compound teratogenic potential is determined after analysis of the mortality and malformation observations on larva. In parallel, FETAX test provides also information concerning embryotoxic effect based on larva length.

  5. FETAX Assay for Evaluation of Developmental Toxicity.

    PubMed

    Mouche, Isabelle; Malésic, Laure; Gillardeaux, Olivier

    2017-01-01

    The frog embryo teratogenesis assay Xenopus (FETAX) test is a development toxicity screening test. Due to the small amount of compound needed and the capability to study organogenesis in a short period of time (96 h), FETAX test constitutes an efficient development toxicity alert test when performed early in drug safety development. The test is conducted on fertilized Xenopus laevis mid-blastula-stage eggs over the organogenesis period. Compound teratogenic potential is determined after analysis of the mortality and malformation observations on larvae. In parallel, FETAX test provides also information concerning embryotoxic effect based on larva length.

  6. REPRODUCTIVE AND DEVELOPMENTAL TOXICITY ASSOCIATED WITH DISINFECTION BY-PRODUCTS OF DRINKING WATER

    EPA Science Inventory

    Over the past decade many toxicologic studies have addressed the potential for disinfection byproducts of drinking water to elicit alterations on the reproductive system and fetal development.
    The types and designs of these studies vary considerably, but in general they can ...

  7. The presence of MWCNTs reduces developmental toxicity of PFOS in early life stage of zebrafish.

    PubMed

    Wang, Shutao; Zhuang, Changlu; Du, Jia; Wu, Chuan; You, Hong

    2017-03-01

    Both carbon nanotubes (CNTs) and perfluorooctane sulfonate (PFOS) are used widely. There is considerable concern regarding their ecotoxicity. CNTs might interact with PFOS in water and result in different impacts compared with those after single exposures. To our knowledge, the developmental toxicity of PFOS in the presence of multi-walled carbon nanotubes (MWCNTs) in the early life stage of zebrafish (from 3 h post fertilization (hpf) to 96 hpf) was investigated for the first time in this study. The embryos and larvae were exposed to PFOS (0.2, 0.4, 0.8, and 1.6 mg/L), MWCNTs (50 mg/L), and a mixture of both. Compared with PFOS exposure, the adverse effects induced by PFOS on the hatching rate of zebrafish embryos and the heart rate and body length of zebrafish larvae were reduced in the presence of MWCNTs, and mortality and malformation were also alleviated. In addition, zebrafish larvae exposed to PFOS showed decreased activities of superoxide dismutase, catalase, and glutathione peroxidase, as well as decreased levels of reactive oxygen species and malondialdehyde, in the presence of MWCNTs, indicating that oxidative stress and lipid peroxidation was relieved. Thus, the presence of MWCNTs reduces the developmental toxicity of PFOS in the early life stage of zebrafish. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. The nematode Caenorhabditis elegans as a tool to predict chemical activity on mammalian development and identify mechanisms influencing toxicological outcome.

    PubMed

    Harlow, Philippa H; Perry, Simon J; Widdison, Stephanie; Daniels, Shannon; Bondo, Eddie; Lamberth, Clemens; Currie, Richard A; Flemming, Anthony J

    2016-03-18

    To determine whether a C. elegans bioassay could predict mammalian developmental activity, we selected diverse compounds known and known not to elicit such activity and measured their effect on C. elegans egg viability. 89% of compounds that reduced C. elegans egg viability also had mammalian developmental activity. Conversely only 25% of compounds found not to reduce egg viability in C. elegans were also inactive in mammals. We conclude that the C. elegans egg viability assay is an accurate positive predictor, but an inaccurate negative predictor, of mammalian developmental activity. We then evaluated C. elegans as a tool to identify mechanisms affecting toxicological outcomes among related compounds. The difference in developmental activity of structurally related fungicides in C. elegans correlated with their rate of metabolism. Knockdown of the cytochrome P450s cyp-35A3 and cyp-35A4 increased the toxicity to C. elegans of the least developmentally active compounds to the level of the most developmentally active. This indicated that these P450s were involved in the greater rate of metabolism of the less toxic of these compounds. We conclude that C. elegans based approaches can predict mammalian developmental activity and can yield plausible hypotheses for factors affecting the biological potency of compounds in mammals.

  9. Cell-based approaches for screening and prioritization of chemicals that may cause developmental neurotoxicity

    EPA Science Inventory

    The National Academies report on Toxicity Testing in the 21st Century envisioned the use of in vitro toxicity tests using cells of human origin to predict the ability of chemicals to cause toxicity in vivo. Successful implementation of this strategy will ultimately result in fast...

  10. Pesticides: an update of human exposure and toxicity.

    PubMed

    Mostafalou, Sara; Abdollahi, Mohammad

    2017-02-01

    Pesticides are a family of compounds which have brought many benefits to mankind in the agricultural, industrial, and health areas, but their toxicities in both humans and animals have always been a concern. Regardless of acute poisonings which are common for some classes of pesticides like organophosphoruses, the association of chronic and sub-lethal exposure to pesticides with a prevalence of some persistent diseases is going to be a phenomenon to which global attention has been attracted. In this review, incidence of various malignant, neurodegenerative, respiratory, reproductive, developmental, and metabolic diseases in relation to different routes of human exposure to pesticides such as occupational, environmental, residential, parental, maternal, and paternal has been systematically criticized in different categories of pesticide toxicities like carcinogenicity, neurotoxicity, pulmonotoxicity, reproductive toxicity, developmental toxicity, and metabolic toxicity. A huge body of evidence exists on the possible role of pesticide exposures in the elevated incidence of human diseases such as cancers, Alzheimer, Parkinson, amyotrophic lateral sclerosis, asthma, bronchitis, infertility, birth defects, attention deficit hyperactivity disorder, autism, diabetes, and obesity. Most of the disorders are induced by insecticides and herbicides most notably organophosphorus, organochlorines, phenoxyacetic acids, and triazine compounds.

  11. Toxicity assessment of diesel- and metal-contaminated soils through elutriate and solid phase assays with the slime mold Dictyostelium discoideum.

    PubMed

    Rodríguez-Ruiz, Amaia; Dondero, Francesco; Viarengo, Aldo; Marigómez, Ionan

    2016-06-01

    A suite of organisms from different taxonomical and ecological positions is needed to assess environmentally relevant soil toxicity. A new bioassay based on Dictyostelium is presented that is aimed at integrating slime molds into such a testing framework. Toxicity tests on elutriates and the solid phase developmental cycle assay were successfully applied to a soil spiked with a mixture of Zn, Cd, and diesel fuel freshly prepared (recently contaminated) and after 2 yr of aging. The elutriates of both soils provoked toxic effects, but toxicity was markedly lower in the aged soil. In the D. discoideum developmental cycle assay, both soils affected amoeba viability and aggregation, with fewer multicellular units, smaller fruiting bodies and, overall, inhibition of fruiting body formation. This assay is quick and requires small amounts of test soil, which might facilitate its incorporation into a multispecies multiple-endpoint toxicity bioassay battery suitable for environmental risk assessment in soils. Environ Toxicol Chem 2016;35:1413-1421. © 2015 SETAC. © 2015 SETAC.

  12. Toxico-Cheminformatics: New and Expanding Public ...

    EPA Pesticide Factsheets

    High-throughput screening (HTS) technologies, along with efforts to improve public access to chemical toxicity information resources and to systematize older toxicity studies, have the potential to significantly improve information gathering efforts for chemical assessments and predictive capabilities in toxicology. Important developments include: 1) large and growing public resources that link chemical structures to biological activity and toxicity data in searchable format, and that offer more nuanced and varied representations of activity; 2) standardized relational data models that capture relevant details of chemical treatment and effects of published in vivo experiments; and 3) the generation of large amounts of new data from public efforts that are employing HTS technologies to probe a wide range of bioactivity and cellular processes across large swaths of chemical space. By annotating toxicity data with associated chemical structure information, these efforts link data across diverse study domains (e.g., ‘omics’, HTS, traditional toxicity studies), toxicity domains (carcinogenicity, developmental toxicity, neurotoxicity, immunotoxicity, etc) and database sources (EPA, FDA, NCI, DSSTox, PubChem, GEO, ArrayExpress, etc.). Public initiatives are developing systematized data models of toxicity study areas and introducing standardized templates, controlled vocabularies, hierarchical organization, and powerful relational searching capability across capt

  13. Developmental toxicity of CdTe QDs in zebrafish embryos and larvae

    NASA Astrophysics Data System (ADS)

    Duan, Junchao; Yu, Yongbo; Li, Yang; Yu, Yang; Li, Yanbo; Huang, Peili; Zhou, Xianqing; Peng, Shuangqing; Sun, Zhiwei

    2013-07-01

    Quantum dots (QDs) have widely been used in biomedical and biotechnological applications. However, few studies focus on the assessing toxicity of QDs exposure in vivo. In this study, zebrafish embryos were treated with CdTe QDs (4 nm) during 4-96 h post-fertilization (hpf). Mortality, hatching rate, malformation, heart rate, and QDs uptake were detected. We also measured the larval behavior to analyze whether QDs had persistent effects on larvae locomotor activity at 144 hpf. The results showed that as the exposure dosages increased, the hatching rate and heart rate of zebrafish embryos were decreased, while the mortality increased. Exposure to QDs caused embryonic malformations, including head malformation, pericardial edema, yolk sac edema, bent spine, and yolk not depleted. QDs fluorescence was mainly localized in the intestines region. The larval behavior testing showed that the total swimming distance was decreased in a dose-dependent manner. The lowest dose (2.5 nM QDs) produced substantial hyperactivity while the higher doses groups (5, 10, and 20 nM QDs) elicited remarkably hypoactivity in dark periods. In summary, the data of this article indicated that QDs caused embryonic developmental toxicity, resulted in persistent effects on larval behavior.

  14. IN VITRO METABOLISM OF TRIADIMEFON BY RAT LIVER MICROSOMES

    EPA Science Inventory

    Triadimefon (TDF) is an azole used as an agricultural pesticide. TDF exposures in laboratory studies have resulted in neurological, developmental and reproductive toxicities as well as tumors. Other classes of conazoles serve as effective pharmaceutical agents in controlling lo...

  15. PROSPECTIVE PREGNANCY STUDY DESIGNS FOR ASSESSING REPRODUCTIVE AND DEVELOPMENTAL TOXICANTS

    EPA Science Inventory

    Of late, there is increasing recognition that exposures before, at or shortly after conception have life-long implications for human reproduction and development. Despite this evolving literature, few research initiatives have been designed to empirically evaluate exposures durin...

  16. In vitro studies of cellular and molecular developmental toxicity of adjuvants, herbicides, and fungicides commonly used in Red River Valley, Minnesota.

    PubMed

    Lin, N; Garry, V F

    2000-07-28

    Recent epidemiologic studies showed increased frequency of birth defects in pesticide applicators and general population of the Red River Valley, Minnesota. These studies further indicated that this crop growing area used more chlorophenoxy herbicides and fungicides than elsewhere in Minnesota. Based on frequency of use and known biology, certain herbicides, pesticide additives, fungicides, and mycotoxins are suspect agents. To define whether these agents affect developmental endpoints in vitro, 16 selected agrochemicals were examined using the MCF-7 breast cancer cell line. In the flow cytometric assay, cell proliferation in this estrogen-responsive cell line indicates xenobiotic-mediated estrogenic effects. Cell viability, morphology, ploidy, and apoptosis were incorporated in this assay. Data showed that the adjuvants X-77 and Activate Plus induced significant cell proliferation at 0.1 and 1 microg/ml. The commercial-grade herbicides 2,4-D LV4 and 2,4-D amine induced cell proliferation at 1 and 10 microg/ml. The reagent-grade 2,4-D products failed to induce proliferation over the same concentration range, suggesting that other ingredients in the commercial products, presumably adjuvants, could be a factor in these results. The fungicides triphenyltin and mancozeb induced apoptosis at concentrations of 4.1 microg/ml (10(-5) M) and 50 microg/ml, respectively. Triphenyltin also induced aneuploidy (C2/M arrest) at 0.41 microg/ml (10(-6) M). Data provide a mechanistic step to understanding human reproductive and developmental effects in populations exposed to these agrochemicals, and initiative to focusing limited resources for future in vivo animal developmental toxicity studies.

  17. Developmental Hypothyroidism Alters Brain-Derived Neurotrophic Factor (BDNF) Expression in Adulthood.

    EPA Science Inventory

    Severe developmental thyroid hormone (TH) insufficiency results in alterations in brain structure/function and lasting behavioral impairments. Environmental toxicants reduce circulating levels of TH, but the disruption is modest and the doseresponse relationships of TH and neuro...

  18. Developmental Toxicity of Louisiana Crude Oil-Spiked Sediment to Zebrafish

    EPA Science Inventory

    Embryonic exposures to the components of petroleum, including polycyclic aromatic hydrocarbons (PAHs), cause a characteristic suite of developmental defects and cardiotoxicity in a variety of fish species. We exposed zebrafish embryos to reference sediment mixed with laboratory w...

  19. Developmental Toxicity of Louisiana Crude Oiled Sediment to Zebrafish

    EPA Science Inventory

    Embryonic exposures to polycyclic aromatic hydrocarbons (PAHs) and petroleum products cause a characteristic suite of developmental defects in a variety of fish species. We exposed zebrafish embryos to sediment mixed with laboratory weathered South Louisiana crude oil. Oiled sedi...

  20. Developmental Toxicity of Louisiana Crude Oiled Sediment to Zebrafish - Abstract

    EPA Science Inventory

    Polycyclic aromatic hydrocarbons (PAHs) cause a number of developmental abnormalities in developing fish embryos, which has been primarily demonstrated through water-accommodated fractions. PAH-bound sediment is a more ecologically relevant route of exposure to many developing fi...

  1. Acute and chronic toxicity study of the water accommodated fraction (WAF), chemically enhanced WAF (CEWAF) of crude oil and dispersant in the rock pool copepod Tigriopus japonicus.

    PubMed

    Lee, Kyun-Woo; Shim, Won Joon; Yim, Un Hyuk; Kang, Jung-Hoon

    2013-08-01

    We determined the toxicity of the water accommodated hydrocarbon fraction (WAF), two chemically enhanced WAFs (CEWAFs; CEWAF-C, Crude oil+Corexit 9500 and CEWAF-H, Crude oil+Hiclean) of crude oil and two dispersants (Corexit 9500 and Hiclean) to the rock pool copepod Tigriopus japonicus. In the acute toxicity test, Corexit 9500 was the most toxic of all the chemicals studied. The nauplius stage of T. japonicus was more susceptible to the toxic chemicals studied than the adult female. The toxicity data using the nauplius stage was then considered as baseline to determine the spiking concentration of chemicals for chronic toxicity tests on the copepod. As the endpoints in the chronic toxicity test, survival, sex ratio, developmental time and fecundity of the copepod were used. All chemicals used in this study resulted in increased toxicity in the F1 generation. The lowest-observed-adverse-effect (LOAE) concentrations of WAF, CEWAF-H, CEWAF-C, Hiclean and Corexit 9500 were observed to be 50%, 10%, 0.1%, 1% and 1%, respectively. The results in present study imply that copepods in marine may be negatively influenced by spilled oil and dispersant. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. RIFM fragrance ingredient safety assessment, 3,7-dimethyl-1,6-nonadien-3-ol, CAS Registry Number 10339-55-6.

    PubMed

    Api, A M; Belsito, D; Bhatia, S; Bruze, M; Calow, P; Dagli, M L; Dekant, W; Fryer, A D; Kromidas, L; La Cava, S; Lalko, J F; Lapczynski, A; Liebler, D C; Miyachi, Y; Politano, V T; Ritacco, G; Salvito, D; Schultz, T W; Shen, J; Sipes, I G; Wall, B; Wilcox, D K

    2016-11-01

    The use of this material under current conditions is supported by existing information. This material was evaluated for genotoxicity, repeated dose toxicity, developmental and reproductive toxicity, local respiratory toxicity, phototoxicity/photoallergenicity, skin sensitization, as well as environmental safety. Data from the suitable read across analog linalool (CAS # 78-70-6) show that this material is not genotoxic nor does it have skin sensitization potential and also provided a MOE > 100 for the local respiratory endpoint. The repeated dose, developmental and reproductive toxicity endpoints were completed using nerolidol (isomer unspecified, CAS # 7212-44-4) as a suitable read across analog, which provided a MOE > 100. The phototoxicity/photoallergenicity endpoint was completed based on suitable UV spectra. The environmental endpoint was completed as described in the RIFM Framework. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Toxicity assessment strategies, data requirements, and risk assessment approaches to derive health based guidance values for non-relevant metabolites of plant protection products.

    PubMed

    Dekant, Wolfgang; Melching-Kollmuss, Stephanie; Kalberlah, Fritz

    2010-03-01

    In Europe, limits for tolerable concentrations of "non-relevant metabolites" for active ingredients (AI) of plant protection products in drinking water between 0.1 and 10 microg/L are discussed depending on the toxicological information available. "Non-relevant metabolites" are degradation products of AIs, which do not or only partially retain the targeted toxicities of AIs. For "non-relevant metabolites" without genotoxicity (to be confirmed by testing in vitro), the application of the concept of "thresholds of toxicological concern" results in a health-based drinking water limit of 4.5 microg/L even for Cramer class III compounds, using the TTC threshold of 90 microg/person/day (divided by 10 and 2). Taking into account the thresholds derived from two reproduction toxicity data bases a drinking water limit of 3.0 microg/L is proposed. Therefore, for "non-relevant metabolites" whose drinking water concentration is below 3.0 microg/L, no toxicity testing is necessary. This work develops a toxicity assessment strategy as a basis to delineate health-based limits for "non-relevant metabolites" in ground and drinking water. Toxicological testing is recommended to investigate, whether the metabolites are relevant or not, based on the hazard properties of the parent AIs, as outlined in the SANCO Guidance document. Also, genotoxicity testing of the water metabolites is clearly recommended. In this publication, tiered testing strategies are proposed for non-relevant metabolites, when drinking water concentrations >3.0 microg/L will occur. Conclusions based on structure-activity relationships and the detailed toxicity database on the parent AI should be included. When testing in animals is required for risk assessment, key aspects are studies along OECD-testing guidelines with "enhanced" study designs addressing additional endpoints such as reproductive toxicity and a developmental screening test to derive health-based tolerable drinking water limits with a limited number of animals. The testing strategies are similar to those used in the initial hazard assessment of high production volume (HPV) chemicals. For "non-relevant metabolites" which are also formed as products of the biotransformation of the parent AI in mammals, the proposed toxicity testing strategies uses the repeat-dose oral toxicity study combined with a reproductive/developmental screening as outlined in OECD test guidelines 407 and 422 with integration of determination of hormonal activities. For "non-relevant metabolites" not formed during biotransformation of the AI in mammals, the strategy relies on an "enhanced" 90-day oral study covering additional endpoints regarding hormonal effects and male and female fertility in combination with a prenatal developmental toxicity study (OECD test guideline 414). The integration of the results of these studies into the risk assessment process applies large minimal margins of exposure (MOEs) to compensate for the shorter duration of the studies. The results of the targeted toxicity testing will provide a science basis for setting tolerable drinking water limits for "non-relevant metabolites" based on their toxicology. Based on the recommendations given in the SANCO guidance document and the work described in this and the accompanying paper, a concise re-evaluation of the Guidance document is proposed. (c) 2009 Elsevier Inc. All rights reserved.

  4. Developmental toxicity of PAH mixtures in fish early life stages. Part I: adverse effects in rainbow trout.

    PubMed

    Le Bihanic, Florane; Morin, Bénédicte; Cousin, Xavier; Le Menach, Karyn; Budzinski, Hélène; Cachot, Jérôme

    2014-12-01

    A new gravel-contact assay using rainbow trout, Oncorhynchus mykiss, embryos was developed to assess the toxicity of polycyclic aromatic hydrocarbons (PAHs) and other hydrophobic compounds. Environmentally realistic exposure conditions were mimicked with a direct exposure of eyed rainbow trout embryos incubated onto chemical-spiked gravels until hatching at 10 °C. Several endpoints were recorded including survival, hatching delay, hatching success, biometry, developmental abnormalities, and DNA damage (comet and micronucleus assays). This bioassay was firstly tested with two model PAHs, fluoranthene and benzo[a]pyrene. Then, the method was applied to compare the toxicity of three PAH complex mixtures characterized by different PAH compositions: a pyrolytic extract from a PAH-contaminated sediment (Seine estuary, France) and two petrogenic extracts from Arabian Light and Erika oils, at two environmental concentrations, 3 and 10 μg g(-1) sum of PAHs. The degree and spectrum of toxicity were different according to the extract considered. Acute effects including embryo mortality and decreased hatching success were observed only for Erika oil extract. Arabian Light and pyrolytic extracts induced mainly sublethal effects including reduced larvae size and hemorrhages. Arabian Light and Erika extracts both induced repairable DNA damage as revealed by the comet assay versus the micronucleus assay. The concentration and proportion of methylphenanthrenes and methylanthracenes appeared to drive the toxicity of the three PAH fractions tested, featuring a toxic gradient as follows: pyrolytic < Arabian Light < Erika. The minimal concentration causing developmental defects was as low as 0.7 μg g(-1) sum of PAHs, indicating the high sensitivity of the assay and validating its use for toxicity assessment of particle-bound pollutants.

  5. 40 CFR 798.4900 - Developmental toxicity study.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... study is designed to provide information on the potential hazard to the unborn which may arise from... the same time each day. (6) Exposure conditions. The female test animals are treated with the test... recorded as they are observed, including the time of onset, the degree and duration. (iv) Cage-side...

  6. The developmental neurotoxicity of arsenic: cognitive and behavioral consequences of early life exposure.

    PubMed

    Tolins, Molly; Ruchirawat, Mathuros; Landrigan, Philip

    2014-01-01

    More than 200 million people worldwide are chronically exposed to arsenic. Arsenic is a known human carcinogen, and its carcinogenic and systemic toxicity have been extensively studied. By contrast, the developmental neurotoxicity of arsenic has been less well described. The aim of this review was to provide a comprehensive review of the developmental neurotoxicity of arsenic. We reviewed the published epidemiological and toxicological literature on the developmental neurotoxicity of arsenic. Arsenic is able to gain access to the developing brain and cause neurotoxic effects. Animal models link prenatal and early postnatal exposure to reduction in brain weight, reductions in numbers of glia and neurons, and alterations in neurotransmitter systems. Animal and in vitro studies both suggest that oxidative stress may be a mechanism of arsenic neurotoxicity. Fifteen epidemiological studies indicate that early life exposure is associated with deficits in intelligence and memory. These effects may occur at levels of exposure below current safety guidelines, and some neurocognitive consequences may become manifest only later in life. Sex, concomitant exposures, and timing of exposure appear to modify the developmental neurotoxicity of arsenic. Four epidemiological studies failed to show behavioral outcomes of arsenic exposure. The published literature indicates that arsenic is a human developmental neurotoxicant. Ongoing and future prospective birth cohort studies will allow more precise definition of the developmental consequences of arsenic exposure in early life. Copyright © 2014. Published by Elsevier Inc.

  7. Zebrafish embryotoxicity test for developmental (neuro)toxicity: Demo case of an integrated screening approach system using anti-epileptic drugs.

    PubMed

    Beker van Woudenberg, Anna; Snel, Cor; Rijkmans, Eke; de Groot, Didima; Bouma, Marga; Hermsen, Sanne; Piersma, Aldert; Menke, Aswin; Wolterbeek, André

    2014-11-01

    To improve the predictability of the zebrafish embryotoxicity test (ZET) for developmental (neuro)toxicity screening, we used a multiple-endpoints strategy, including morphology, motor activity (MA), histopathology and kinetics. The model compounds used were antiepileptic drugs (AEDs): valproic acid (VPA), carbamazepine (CBZ), ethosuximide (ETH) and levetiracetam (LEV). For VPA, histopathology was the most sensitive parameter, showing effects already at 60μM. For CBZ, morphology and MA were the most sensitive parameters, showing effects at 180μM. For ETH, all endpoints showed similar sensitivity (6.6mM), whereas MA was the most sensitive parameter for LEV (40mM). Inclusion of kinetics did not alter the absolute ranking of the compounds, but the relative potency was changed considerably. Taking all together, this demo-case study showed that inclusion of multiple-endpoints in ZET may increase the sensitivity of the assay, contribute to the elucidation of the mode of toxic action and to a better definition of the applicability domain of ZET. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Testing strategies for embryo-fetal toxicity of human pharmaceuticals. Animal models vs. in vitro approaches: a workshop report.

    PubMed

    van der Laan, Jan Willem; Chapin, Robert E; Haenen, Bert; Jacobs, Abigail C; Piersma, Aldert

    2012-06-01

    Reproductive toxicity testing is characterized by high animal use. For registration of pharmaceutical compounds, developmental toxicity studies are usually conducted in both rat and rabbits. Efforts have been underway for a long time to design alternatives to animal use. Implementation has lagged, partly because of uncertainties about the applicability domain of the alternatives. The reproductive cycle is complex and not all mechanisms of development can be mimicked in vitro. Therefore, efforts are underway to characterize the available alternative tests with regard to the mechanism of action they include. One alternative test is the mouse embryonic stem cell test (EST), which has been studied since the late 1990s. It is a genuine 3R "alternative" assay as it is essentially animal-free. A meeting was held to review the state-of-the-art of various in vitro models for prediction of developmental toxicity. Although the predictivity of individual assays is improving, a battery of several assays is likely to have even higher predictivity, which is necessary for regulatory acceptance. The workshop concluded that an important first step is a thorough survey of the existing rat and rabbit studies, to fully characterize the frequency of responses and the types of effects seen. At the same time, it is important to continue the optimization of in vitro assays. As more experience accumulates, the optimal conditions, assay structure, and applicability of the alternative assays are expected to emerge. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Combined endosulfan and cypermethrin-induced toxicity to embryo-larval development of Rhinella arenarum.

    PubMed

    Svartz, Gabriela V; Aronzon, Carolina M; Pérez Coll, Cristina S

    2016-01-01

    The combined effects of two widely used pesticides, endosulfan and cypermethrin, on survival of embryo-larval development of the South American toad (Rhinella arenarum) were examined. The toxicity bioassays were performed according to the AMPHITOX test. Embryos and larvae were exposed to mixtures of these pesticides at equitoxic ratios from acute or chronic exposure to evaluate interaction effects. The results were analyzed using both Marking's additive index and combination index (CI)-isobologram methods. Acute (96-h) and intermediate (168-h) toxicity of endosulfan-cypermethrin mixtures remained almost constant for larvae and embryos, but when exposure duration was increased, there was a significant elevation in toxicity, obtaining chronic (240-h) no-observed-effect concentrations (NOEC) values of 0.045 and 0.16 mg/L for embryos and larvae, respectively. These are environmentally relevant concentrations that reflect a realistic risk of this pesticide mixture to this native amphibian species. The toxicity increment with the exposure duration was coincident with the central nervous system development on embryos reaching the larval period, the main target organ of these pesticides. The interactions of the pesticide mixtures at acute and chronic exposure were antagonistic for embryo development (CI > 1), and additive (CI = 1) for larvae, while chronic exposure interactions were synergistic (CI < 1) for both developmental periods. Data indicated that endosulfan-cypermethrin mixtures resulted in different interaction types depending on duration and developmental stage exposed. As a general pattern and considering conditions of overall developmental period and chronic exposure, this pesticide mixture usually applied in Argentine crop fields is synergistic with respect to toxicity for this native amphibian species.

  10. HIGH-CONTENT ANALYSIS OF PRIMARY RAT NEURAL CORTICALCULTURES FOR DEVELOPMENTAL NEUROTOXICITY SCREENING

    EPA Science Inventory

    Development of the vertebrate nervous system proceeds through a number of critical processes, ultimately concluding with the extension of neurites and establishment of synaptic networks. Early-life exposure to toxicants that perturb these critical developmental processes can po...

  11. Phenotypic screening for developmental neurotoxicity: mechanistic data at the level of the cell

    EPA Science Inventory

    There are large numbers of environmental chemicals with little or no available information on their toxicity, including developmental neurotoxicity. Because of the resource-intensive nature of traditional animal tests, high-throughput (HTP) methods that can rapidly evaluate chemi...

  12. LACK OF TERATOGENICITY OF MICROCYSTIN-LR IN THE MOUSE AND TOAD

    EPA Science Inventory

    Abstract. Microcystin-LR (MC-LR) is a cyanobacterial toxin generated by the organism, Microcystis aeruginosa. Although the hepatotoxicity of this chemical has been characterized, the potential developmental toxicity in vertebrates has not been well studied. The purpose of this...

  13. Are Developmentally-Exposed C57BL/6 Mice Insensitive to Suppression of TDAR by PFOA?

    EPA Science Inventory

    Perfluorooctanoic acid (PFOA) is an environmentally persistent fluorinated compound that is present in biological samples worldwide and associated with multisystem toxicity in laboratory animal models. Several studies have reported suppression of T-cell-dependent antibody respons...

  14. Combining web-based tools for transparent evaluation of data for risk assessment: developmental effects of bisphenol A on the mammary gland as a case study.

    PubMed

    Molander, Linda; Hanberg, Annika; Rudén, Christina; Ågerstrand, Marlene; Beronius, Anna

    2017-03-01

    Different tools have been developed that facilitate systematic and transparent evaluation and handling of toxicity data in the risk assessment process. The present paper sets out to explore the combined use of two web-based tools for study evaluation and identification of reliable data relevant to health risk assessment. For this purpose, a case study was performed using in vivo toxicity studies investigating low-dose effects of bisphenol A on mammary gland development. The reliability of the mammary gland studies was evaluated using the Science in Risk Assessment and Policy (SciRAP) criteria for toxicity studies. The Health Assessment Workspace Collaborative (HAWC) was used for characterizing and visualizing the mammary gland data in terms of type of effects investigated and reported, and the distribution of these effects within the dose interval. It was then investigated whether there was any relationship between study reliability and the type of effects reported and/or their distribution in the dose interval. The combination of the SciRAP and HAWC tools allowed for transparent evaluation and visualization of the studies investigating developmental effects of BPA on the mammary gland. The use of these tools showed that there were no apparent differences in the type of effects and their distribution in the dose interval between the five studies assessed as most reliable and the whole data set. Combining the SciRAP and HAWC tools was found to be a useful approach for evaluating in vivo toxicity studies and identifying reliable and sensitive information relevant to regulatory risk assessment of chemicals. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Evaluation of developmental toxicity in rats exposed to the environmental estrogen bisphenol A during pregnancy.

    PubMed

    Kim, J C; Shin, H C; Cha, S W; Koh, W S; Chung, M K; Han, S S

    2001-10-19

    Bisphenol A (BPA) is an essential component of epoxy resins used in the lacquer lining of metal food cans, as a component of polycarbonates, and in dental sealants. The present study was conducted in an attempt to evaluate the adverse effects of the environmental estrogen BPA on initiation and maintenance of pregnancy and embryofetal development after maternal exposure during the entire period of pregnancy in Sprague-Dawley rats. The test chemical was administered by gavage to mated females from days 1 to 20 of gestation (sperm in varginal lavage = day 0) at dose levels of 0, 100, 300, and 1000 mg/kg. All females were subjected to caesarean section on day 21 of gestation and their fetuses were examined for external, visceral and skeletal abnormalities. In the 1000 mg/kg group, significant toxic effects including abnormal clinical signs, decreased maternal body weight and body weight gain, and reduced food consumption were observed in pregnant rats. An increase in pregnancy failure was also found in the successfully mated females. In addition, increased number of embryonal deaths, increased postimplantation loss, reduced litter size and fetal body weight, and decreased number of fetal ossification centers of several skeletal districts were seen. On the contrary, no significant changes induced by BPA were detected in the number of corpora lutea and implantation sites and by fetal morphological examinations. In the 300 mg/kg group, suppressed maternal body weight and body weight gain, decreased food intake and reduced body weight of male fetuses were seen. There were no adverse signs of either maternal toxicity or developmental toxicity in the 100 mg/kg group. It was concluded that BPA administration during the entire period of pregnancy in rats produced pregnancy failure, pre- and postimplantation loss, fetal developmental delay and severe maternal toxicity, but no embryo-fetal dysmorphogenesis at an oral exposure level of 1000 mg/kg.

  16. The VIRTUAL EMBRYO. A Computational Framework for Developmental Toxicity

    EPA Science Inventory

    EPA’s ‘Virtual Embryo Project’ (v-Embryo™) is focused on the predictive toxicology of children’s health and developmental defects following prenatal exposure to environmental chemicals. The research is motivated by scientific principles in systems biology as a framework for the g...

  17. Neurotoxicity in Aquatic Systems: Evaluation of Anthropogenic Trace Substances

    EPA Science Inventory

    The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize large numbers of chemicals for developmental toxicity, as well as acute and developmental neurotoxicity. In this endeavor, one of our focuses is on contaminants found in drinking water. To exp...

  18. Towards Building an AOP-based Prenatal Developmental Toxicity Ontology (CEFIC LRI Workshop - Brussels)

    EPA Science Inventory

    Ontologies are a way to formalize domain-specific scientific knowledge. A developmental ontology would help researchers describe the pathways and processes critical to embryonic development and provide a way to link their chemical disruption to adverse outcomes. Designing one for...

  19. Gene Expression Changes in Developing Zebrafish as Potential Markers for Rapid Developmental Neurotoxicity Screening

    EPA Science Inventory

    Sparse information exists on many chemicals to guide developmental neurotoxicity (DNT) risk assessments. As DNT testing using rodents is laborious and expensive, alternative species such as zebrafish are being adapted for toxicity screening. Assessing the DNT potential of chem...

  20. Simulated developmental and reproductive impacts on amphibian populations and implications for assessing long-term effects

    EPA Science Inventory

    Fish endpoints measured in early life stage toxicity tests are often used as representative of larval amphibian sensitivity in Ecological Risk Assessment (ERA). This application potentially overlooks the impact of developmental delays on amphibian metamorphosis, and thereby red...

  1. THE BARKER HYPOTHESIS: IMPLICATIONS FOR FUTURE DIRECTIONS IN TOXICOLOGY RESEARCH

    EPA Science Inventory

    This review covers the past year’s papers germane to the Barker hypothesis. While much of the literature has centered on maternal and developmental nutrition, new findings have emerged on the ability of toxic exposures during development to impact fetal/developmental programming....

  2. Assessing Locomotor Activity in Larval Zebrafish: Influence of Extrinsic and Intrinsic Variables

    EPA Science Inventory

    The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize large numbers of chemicals for developmental toxicity. We are exploring methods to detect developmentally neurotoxic chemicals using zebrafish behavior at 6 days of age. The behavioral paradig...

  3. Functional Assays and Alternative Species: Using Larval Zebrafish in Developmental Neurotoxicity Screening**

    EPA Science Inventory

    The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize large numbers of chemicals for developmental toxicity. As such, we are exploring a behavioral testing paradigm, which can assess the effect of sublethal and subteratogenic concentrations of de...

  4. The power of an ontology-driven developmental toxicity database for data mining and computational modeling

    EPA Science Inventory

    Modeling of developmental toxicology presents a significant challenge to computational toxicology due to endpoint complexity and lack of data coverage. These challenges largely account for the relatively few modeling successes using the structure–activity relationship (SAR) parad...

  5. Toxic Potential of Nitroguanidine on Reproduction and Fertility in Rats. Volume 1. Part 1

    DTIC Science & Technology

    1990-05-01

    anitroguanidine dose levels in developmental toxicity studies in ra:.E and rabbits. The diet was fed to the parental males and females star ting at...z: 58 days of age and continued throughout their lives and to t-e Fl a:-.:7 ,generation animals. Parental males and females were paired for M~ating...11,. matings were within the same dose group. The parental males and femaleS :-az did not breed were euthanized after the mating period. Litters weree

  6. POTENTIAL DEVELOPMENTAL TOXICITY OF ANATOXIN-A, A CYANOBACTERIAL TOXIN

    EPA Science Inventory

    Anatoxin-a acts as a neuro-muscular blocking agent. Acute toxicity is characterized by rapid onset of paralysis, tremors, convulsions, and death. Human exposures may occur from recreational water activities and dietary supplements, but are primarily through drinking water. The...

  7. AN OCCUPATIONAL REPRODUCTIVE RESEARCH AGENDA FOR THE THIRD MILLENNIUM

    EPA Science Inventory

    There is a significant public health concern about the potential effects of occupational exposure to toxic substances on reproductive outcomes. Several toxicants with reported reproductive and developmental effects are still in regular commercial or therapeutic use and thus prese...

  8. Polyfluoroalkyl Chemicals in the Serum and Milk of Breastfeeding Women.

    EPA Science Inventory

    Polyfluoroalkyl chemicals (PFCs) comprise a group of man-made organic compounds, some of which are persistent contaminants with developmental toxicity shown in laboratory animals. There is a paucity of human perinatal exposure data. The US EPA conducted a pilot study (Methods Adv...

  9. Acute and Developmental Behavioral Effects of Flame Retardants and Related Chemicals in Zebrafish

    EPA Science Inventory

    As polybrominated diphenyl ethers are phased out, numerous compounds are emerging as potential replacement flame retardants for use in consumer and electronic products. Little is known, however, about the neurobehavioral toxicity of these replacements. This study evaluated the ne...

  10. DEVELOPMENTAL TOXICITY OF PERFLUOROOCTANOIC ACID (PFOA) AFTER CROSS FOSTER AND RESTRICTED GESTATIONAL EXPOSURES.

    EPA Science Inventory

    Perfluorooctanoic acid (PFOA) is a compound which persists and is found ubiquitously in the environment, wildlife and humans. PFOA affects growth, development and viability of offspring of mice exposed during pregnancy. This study segregates the contributions of gestational and...

  11. EFFECTS OF PERFLUOROOCTANOIC ACID EXPOSURE DURING PREGNANCY IN THE MOUSE

    EPA Science Inventory

    Perfluorooctanoic acid (PFOA), a member of the perfluoroalkyl acids that have wide commercial applications, has recently been detected in humans and wildlife. The current study characterizes the developmental toxicity of PFOA in the mouse. Timed pregnant CD-1 mice were given 1,...

  12. POLYCHLORINATED BIPHENYL AND POLYCHLORINATED DIBENZOFURAN BIOMARKERS OF RISK ASSESSMENT IN ADOLESCENT CHILDREN AND THEIR MOTHERS

    EPA Science Inventory

    This is two cohort comparison study of endocrine and cytochrome P450 family 1 biomarkers for risk assessment of polychlorinalted biphenyls (PCBs)/polychlorinated dibenzofurans (PCDFs) induced developmental toxicities in the human. The subjects will be sexually mature adoles...

  13. THE DEVELOPMENTAL IMMUNOTOXICITY OF DIBUTYLTIN DICHLORIDE IN SPRAGUE-DAWLEY RATS

    EPA Science Inventory

    Methyl- and butyltin compounds used as stabilizers in polyvinyl chloride (PVC) pipe production are of concern as they leach from supply pipes into drinking water and have been associated with multisystem toxicity. This study assessed immune function in Sprague-Dawley (CD) rats d...

  14. Modeling of correlated data with informative cluster sizes: An evaluation of joint modeling and within-cluster resampling approaches.

    PubMed

    Zhang, Bo; Liu, Wei; Zhang, Zhiwei; Qu, Yanping; Chen, Zhen; Albert, Paul S

    2017-08-01

    Joint modeling and within-cluster resampling are two approaches that are used for analyzing correlated data with informative cluster sizes. Motivated by a developmental toxicity study, we examined the performances and validity of these two approaches in testing covariate effects in generalized linear mixed-effects models. We show that the joint modeling approach is robust to the misspecification of cluster size models in terms of Type I and Type II errors when the corresponding covariates are not included in the random effects structure; otherwise, statistical tests may be affected. We also evaluate the performance of the within-cluster resampling procedure and thoroughly investigate the validity of it in modeling correlated data with informative cluster sizes. We show that within-cluster resampling is a valid alternative to joint modeling for cluster-specific covariates, but it is invalid for time-dependent covariates. The two methods are applied to a developmental toxicity study that investigated the effect of exposure to diethylene glycol dimethyl ether.

  15. Aneuploidy: a common and early evidence-based biomarker for carcinogens and reproductive toxicants.

    PubMed

    Mandrioli, Daniele; Belpoggi, Fiorella; Silbergeld, Ellen K; Perry, Melissa J

    2016-10-12

    Aneuploidy, defined as structural and numerical aberrations of chromosomes, continues to draw attention as an informative effect biomarker for carcinogens and male reproductive toxicants. It has been well documented that aneuploidy is a hallmark of cancer. Aneuploidies in oocytes and spermatozoa contribute to infertility, pregnancy loss and a number of congenital abnormalities, and sperm aneuploidy is associated with testicular cancer. It is striking that several carcinogens induce aneuploidy in somatic cells, and also adversely affect the chromosome compliment of germ cells. In this paper we review 1) the contributions of aneuploidy to cancer, infertility, and developmental abnormalities; 2) techniques for assessing aneuploidy in precancerous and malignant lesions and in sperm; and 3) the utility of aneuploidy as a biomarker for integrated chemical assessments of carcinogenicity, and reproductive and developmental toxicity.

  16. Caenorhabditis elegans: An Emerging Model in Biomedical and Environmental Toxicology

    PubMed Central

    Leung, Maxwell C. K.; Williams, Phillip L.; Benedetto, Alexandre; Au, Catherine; Helmcke, Kirsten J.; Aschner, Michael; Meyer, Joel N.

    2008-01-01

    The nematode Caenorhabditis elegans has emerged as an important animal model in various fields including neurobiology, developmental biology, and genetics. Characteristics of this animal model that have contributed to its success include its genetic manipulability, invariant and fully described developmental program, well-characterized genome, ease of maintenance, short and prolific life cycle, and small body size. These same features have led to an increasing use of C. elegans in toxicology, both for mechanistic studies and high-throughput screening approaches. We describe some of the research that has been carried out in the areas of neurotoxicology, genetic toxicology, and environmental toxicology, as well as high-throughput experiments with C. elegans including genome-wide screening for molecular targets of toxicity and rapid toxicity assessment for new chemicals. We argue for an increased role for C. elegans in complementing other model systems in toxicological research. PMID:18566021

  17. CHLORINATED VS. CHLORAMINATED DRINKING WATER: TOXICITY-BASED IDENTIFICATION OF DISINFECTION BY-PRODUCTS USING ESI-MS AND ESI-MS/MS

    EPA Science Inventory

    Drinking water disinfection by-products (DBPs) are of concern because some epidemiologic studies have shown that some DBPs are associated with cancer or adverse reproductive/developmental effects in human populations, and other studies have shown that certain DBPs cause similar h...

  18. Toxicology, structure-function relationship, and human and environmental health impacts of polychlorinated biphenyls: progress and problems.

    PubMed Central

    Safe, S

    1993-01-01

    Polychlorinated biphenyls (PCBs) are industrial compounds that have been detected as contaminants in almost every component of the global ecosystem including the air, water, sediments, fish, and wildlife and human adipose tissue, milk, and serum. PCBs in commercial products and environmental extracts are complex mixtures of isomers and congeners that can now be analyzed on a congener-specific basis using high-resolution gas chromatographic analysis. PCBs are metabolized primarily via mixed-function oxidases into a broad spectrum of metabolites. The results indicate that metabolic activation is not required for PCB toxicity, and the parent hydrocarbons are responsible for most of the biochemical and toxic responses elicited by these compounds. Some of these responses include developmental and reproductive toxicity, dermal toxicity, endocrine effects, hepatotoxicity, carcinogenesis, and the induction of diverse phase I and phase II drug-metabolizing enzymes. Many of the effects observed for the commercial PCBs are similar to those reported for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds. Structure-function relationships for PCB congeners have identified two major structural classes of PCBs that elicit "TCDD-like" responses, namely, the coplanar PCBs (e.g., 3,3',4,4'-tetraCB, 3,3'4,4',5-pentaCB and 3,3',4,4',5,5'-hexaCB) and their mono-ortho coplanar derivatives. These compounds competitively bind to the TCDD or aryl hydrocarbon (Ah) receptor and exhibit Ah receptor agonist activity. In addition, other structural classes of PCBs elicit biochemical and toxic responses that are not mediated through the Ah receptor. The shor-term effects of PCBs on occupationally exposed humans appear to be reversible, and no consistent changes in overall mortality and cancer mortality have been reported. Recent studies have demonstrated that some developmental deficits in infants and children correlated with in utero exposure to PCBs; however, the etiologic agent(s) or structural class of PCBs responsible for these effects have not been delineated. In contrast, based on a toxic equivalency factor approach, the reproductive and developmental problems in certain wildlife populations appear to be related to the TCDD-like PCB congeners. PMID:8354174

  19. Ecophysiological perspectives on engineered nanomaterial toxicity in fish and crustaceans.

    PubMed

    Callaghan, Neal Ingraham; MacCormack, Tyson James

    2017-03-01

    Engineered nanomaterials (ENMs) are incorporated into numerous industrial, clinical, food, and consumer products and a significant body of evidence is now available on their toxicity to aquatic organisms. Environmental ENM concentrations are difficult to quantify, but production and release estimates suggest wastewater treatment plant effluent levels ranging from 10 -4 to >10 1 μgL -1 for the most common formulations by production volume. Bioavailability and ENM toxicity are heavily influenced by water quality parameters and the physicochemical properties and resulting colloidal behaviour of the particular ENM formulation. ENMs generally induce only mild acute toxicity to most adult fish and crustaceans under environmentally relevant exposure scenarios; however, sensitivity may be considerably higher for certain species and life stages. In adult animals, aquatic ENM exposure often irritates respiratory and digestive epithelia and causes oxidative stress, which can be associated with cardiovascular dysfunction and the activation of immune responses. Direct interactions between ENMs (or their dissolution products) and proteins can also lead to ionoregulatory stress and/or developmental toxicity. Chronic and developmental toxicity have been noted for several common ENMs (e.g. TiO 2 , Ag), however more data is necessary to accurately characterize long term ecological risks. The bioavailability of ENMs should be limited in saline waters but toxicity has been observed in marine animals, highlighting a need for more study on possible impacts in estuarine and coastal systems. Nano-enabled advancements in industrial processes like water treatment and remediation could provide significant net benefits to the environment and will likely temper the relatively modest impacts of incidental ENM release and exposure. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Environmental Toxicants and Developmental Disabilities: A Challenge for Psychologists

    ERIC Educational Resources Information Center

    Koger, Susan M.; Schettler, Ted; Weiss, Bernard

    2005-01-01

    Developmental, learning, and behavioral disabilities are a significant public health problem. Environmental chemicals can interfere with brain development during critical periods, thereby impacting sensory, motor, and cognitive function. Because regulation in the United States is based on limited testing protocols and essentially requires proof of…

  1. SUPERNUMERARY RIBS IN DEVELOPMENTAL TOXICITY BIOASSAYS AND IN HUMAN POPULATIONS: INCIDENCE AND BIOLOGICAL SIGNIFICANCE

    EPA Science Inventory

    Abstract
    Supernumerary or accessory ribs (SNR), either lumbar (LSNR) or cervical (CSNR) are a common finding in standard developmental toxicology bioassays. The biological significance of these anomalies within the regulatory arena has been problematic and the subject of some...

  2. QUANTITATIVE IN VITRO MEASUREMENT OF CELLULAR PROCESSES CRITICAL TO THE DEVELOPMENT OF NEURAL CONNECTIVITY USING HCA.

    EPA Science Inventory

    New methods are needed to screen thousands of environmental chemicals for toxicity, including developmental neurotoxicity. In vitro, cell-based assays that model key cellular events have been proposed for high throughput screening of chemicals for developmental neurotoxicity. Whi...

  3. Identification of Putative Cardiovascular System Developmental Toxicants using a Classification Model based on Signaling Pathway-Adverse Outcome Pathways

    EPA Science Inventory

    An important challenge for an integrative approach to developmental systems toxicology is associating putative molecular initiating events (MIEs), cell signaling pathways, cell function and modeled fetal exposure kinetics. We have developed a chemical classification model based o...

  4. Using passive sampling and zebrafish to identify developmental toxicants in complex mixtures.

    PubMed

    Bergmann, Alan J; Tanguay, Robert L; Anderson, Kim A

    2017-09-01

    Using effects-directed analysis, we investigated associations previously observed between polycyclic aromatic hydrocarbons (PAHs) and embryotoxicity in field-deployed low-density polyethylene (LDPE). We conducted effects-directed analysis using a zebrafish embryo assay and iterative fractionation of extracts of LDPE that were deployed in the Portland Harbor superfund megasite, Oregon (USA). Whole extracts induced toxicity including mortality, edema, and notochord distortion at 20% effect concentration (EC20) values of approximately 100, 100, and 10 mg LDPE/mL, respectively. Through fractionation, we determined that PAHs at concentrations similar to previous research did not contribute markedly to toxicity. We also eliminated pesticides, phthalates, musks, and other substances identified in toxic fractions by testing surrogate mixtures. We identified free fatty acids as lethal components of LDPE extracts and confirmed their toxicity with authentic standards. We found chromatographic evidence that dithiocarbamates are responsible for notochord and other sublethal effects, although exact matches were not obtained. Fatty acids and dithiocarbamates were previously unrecorded components of LDPE extracts and likely contribute to the toxicity of the whole mixture. The present study demonstrates the success of effects-directed analysis in nontargeted hazard identification using the zebrafish embryo test as a self-contained battery of bioassays that allows identification of multiple chemicals with different modes of action. This is the first effects-directed analysis to combine LDPE and zebrafish, approaches that are widely applicable to identifying developmental hazards in the bioavailable fraction of hydrophobic organic compounds. Environ Toxicol Chem 2017;36:2290-2298. © 2017 SETAC. © 2017 SETAC.

  5. RIFM fragrance ingredient safety assessment, ethylene brassylate, CAS Registry Number 105-95-3.

    PubMed

    Api, A M; Belsito, D; Bhatia, S; Bruze, M; Calow, P; Dagli, M L; Dekant, W; Fryer, A D; Kromidas, L; La Cava, S; Lalko, J F; Lapczynski, A; Liebler, D C; Politano, V T; Ritacco, G; Salvito, D; Schultz, T W; Shen, J; Sipes, I G; Wall, B; Wilcox, D K

    2016-11-01

    : The use of this material under current conditions is supported by existing information. This material was evaluated for genotoxicity, repeated dose toxicity, developmental and reproductive toxicity, local respiratory toxicity, phototoxicity/photoallergenicity, skin sensitization, as well as environmental safety. Data show that this material is not genotoxic nor does it have skin sensitization potential. The local respiratory toxicity endpoint was completed using the TTC (Threshold of Toxicological Concern) for a Cramer Class I material (1.4 mg/day). The repeated dose toxicity endpoint was completed using ethylene dodecanedioate (CAS # 54982-83-1) as a suitable read across analog, which provided a MOE > 100. The developmental and reproductive toxicity endpoint was completed using oxacyclohexadec-12-en-2-one, (12E)- (CAS # 111879-80-2) as a suitable read across analog, which provided a MOE > 100. The phototoxicity/photoallergenicity endpoint was completed based on suitable UV spectra along with data on the target material. The environmental endpoint was completed as described in the RIFM Framework along with data on the suitable read across analog oxacyclohexadec-12-en-2-one, (12E)- (CAS # 111879-80-2). Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Toxicity and developmental defects of different sizes and shape nickel nanoparticles in zebrafish

    PubMed Central

    Ispas, Cristina; Andreescu, Daniel; Patel, Avni; Goia, Dan V.; Andreescu, Silvana; Wallace, Kenneth N.

    2009-01-01

    Metallic nanoparticles such as nickel are used in catalytic, sensing and electronic applications, but health and environmental affects have not been fully investigated. While some metal nanoparticles result in toxicity, it is also important to determine whether nanoparticles of the same metal but of different size and shape changes toxicity. Three different size nickel nanoparticle (Ni NPs) of 30, 60, and 100 nm and larger particle clusters of aggregated 60 nm entities with a dendritic structure were synthesized and exposed to zebrafish embryos assessing mortality and developmental defects. Ni NPs exposure was compared to soluble nickel salts. All three 30, 60, and 100 nm Ni NPs are equal to or less toxic than soluble nickel while dendritic clusters were more toxic. With each Ni NP exposure, thinning of the intestinal epithelium first occurs around the LD10 continuing into the LD50. LD50 exposure also results in skeletal muscle fiber separation. Exposure to soluble nickel does not cause intestinal defects while skeletal muscle separation occurs at concentrations well over LD50. These results suggest that configuration of nanoparticles may affect toxicity more than size and defects from Ni NPs exposure occur by different biological mechanisms than soluble nickel. PMID:19746736

  7. BRAIN DEVELOPMENT AND METHYLMERCURY: UNDERESTIMATION OF NEUROTOXICITY

    PubMed Central

    Grandjean, Philippe; Herz, Katherine T.

    2011-01-01

    Methylmercury is now recognized as an important developmental neurotoxicant, though this insight developed slowly over many decades. Developmental neurotoxicity was first reported in a Swedish case report in 1952, and from a serious outbreak in Minamata, Japan a few years later. While the infant suffered congenital poisoning, the mother was barely harmed, thus reflecting a unique vulnerability of the developing nervous system. Nonetheless, exposure limits for this environmental chemical were based solely on adult toxicity until 50 years after the first report on developmental neurotoxicity. Even current evidence is affected by uncertainty, most importantly by imprecision of the exposure assessment in epidemiological studies. Detailed calculations suggest that the relative imprecision may be as much as 50%, or greater, thereby substantially biasing the results toward the null. In addition, as methylmercury exposure usually originates from fish and seafood that also contains essential nutrients, so-called negative confounding may occur. Thus, the beneficial effects of the nutrients may appear to dampen the toxicity, unless proper adjustment is included in the analysis to reveal the true extent of adverse effects. These problems delayed the recognition of low-level methylmercury neurotoxicity. However, such problems are not unique, and many other industrial compounds are thought to cause developmental neurotoxicity, mostly with less epidemiological support than methylmercury. The experience obtained with methylmercury should therefore be taken into account when evaluating the evidence for other substances suspected of being neurotoxic. PMID:21259267

  8. 78 FR 53047 - Halosulfuron-methyl; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-28

    ... caneberry subgroup 13-07A. The Interregional Research Project Number 4 (IR-4) requested these tolerances..., which are frequently characterized by reduced body weight/body weight gain in the test animals. In the... similar dose level. In the rabbit developmental toxicity study, increases in resorptions and post...

  9. Toxicity Assessment of 17 alpha-ethinylestradiol by Cell-Culture Based NMR Metabolomics

    EPA Science Inventory

    A zebrafish liver cell line (ZFL) established from adult zebrafish has been used in a variety of biological research, including toxicology, pharmacology, developmental biology and molecular genetics. The goal of this study is to develop an in vitro approach to identify the respo...

  10. Comparative toxicities of selected rare earth elements: Sea urchin embryogenesis and fertilization damage with redox and cytogenetic effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pagano, Giovanni, E-mail: gbpagano@tin.it; Guida, Marco; Siciliano, Antonietta

    Background: Broad-ranging adverse effects are known for rare earth elements (REE), yet only a few studies tested the toxicity of several REE, prompting studies focusing on multi-parameter REE toxicity. Methods: Trichloride salts of Y, La, Ce, Nd, Sm, Eu and Gd were tested in Paracentrotus lividus sea urchin embryos and sperm for: (1) developmental defects in either REE-exposed larvae or in the offspring of REE-exposed sperm; (2) fertilization success; (3) mitotic anomalies in REE-exposed embryos and in the offspring of REE-exposed sperm, and (4) reactive oxygen species (ROS) formation, and malondialdehyde (MDA) and nitric oxide (NO) levels. Results: REEs affectedmore » P. lividus larvae with concentration-related increase in developmental defects, 10{sup −6} to 10{sup −4} M, ranking as: Gd(III)>Y(III)>La(III)>Nd(III)≅Eu(III)>Ce(III)≅Sm(III). Nominal concentrations of REE salts were confirmed by inductively coupled plasma mass spectrometry (ICP-MS). Significant increases in MDA levels, ROS formation, and NO levels were found in REE-exposed embryos. Sperm exposure to REEs (10{sup −5} to 10{sup −4} M) resulted in concentration-related decrease in fertilization success along with increase in offspring damage. Decreased mitotic activity and increased aberration rates were detected in REE-exposed embryos and in the offspring of REE-exposed sperm. Conclusion: REE-associated toxicity affecting embryogenesis, fertilization, cytogenetic and redox endpoints showed different activities of tested REEs. Damage to early life stages, along with redox and cytogenetic anomalies should be the focus of future REE toxicity studies. - Highlights: • Seven rare earth elements exerted different effects on sea urchin early life stages. • Embryo-, spermio- and mitotoxicity, and oxidative/ nitrosative stress were found. • Nominal vs. analytical REE concentrations were checked. • Comparative toxicities were evaluated for the different REE.« less

  11. Triazole induced concentration-related gene signatures in rat whole embryo culture.

    PubMed

    Robinson, Joshua F; Tonk, Elisa C M; Verhoef, Aart; Piersma, Aldert H

    2012-09-01

    Commonly used as antifungal agents in agriculture and medicine, triazoles have been shown to cause teratogenicity in a diverse set of animal models. Here, we evaluated the dose-dependent impacts of flusilazole, cyproconazole and triadimefon, on global gene expression in relation to effects on embryonic development using the rat whole embryo culture (WEC) model. After 4 h exposure, we identified changes in gene expression due to triazole exposure which preceded morphological alterations observed at 48 h. In general, across the three triazoles, we observed similar directionality of regulation in gene expression and the magnitude of effects on gene expression correlated with the degree of induced developmental toxicity. Significantly regulated genes included key members of steroid/cholesterol and retinoic acid metabolism and hindbrain developmental pathways. Direct comparisons with previous studies suggest that triazole-gene signatures identified in the WEC overlap with zebrafish and mouse, and furthermore, triazoles impact gene expression in a similar manner as retinoic acid exposures in rat embryos. In summary, we further differentiate pathways underlying triazole-developmental toxicity using WEC and demonstrate the conservation of these response-pathways across model systems. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Effects of developmental stage, salts, and food presence on aquatic toxicological endpoints using Caenorhabditis elegans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donkin, S.G.; Williams, P.L.

    1995-12-31

    The objective of this study was to standardize the testing protocol for aquatic toxicity tests with the nematode Caenorhabditis elegans. Several variables which may be important in determining the test outcome were investigated in a randomized block design. Concentration-response data were obtained on nematodes of various developmental stages exposed to four metals (Cd, Pb, Cu, and Hg) and a water-soluble organic toxicant, sodium Pentachlorophenate (PCP), under conditions of varied solvent medium (with or without salts and with or without a bacterial food source). The endpoints measured were 24 and 96-h mortality, as well as development of larval stages to adulthoodmore » and evidence of reproduction. The results suggest that nematodes of various ages respond similarly to a given toxicant for all endpoints measured, although adults cultured from eggs appeared more sensitive than adults cultured from dauer larvae. The most important environmental variable in determining toxicity was the medium in which the tests were conducted. The presence of potassium and sodium salts in the medium significantly (p<0.05) reduced the toxicity of many test samples. The presence of bacteria had little effect on 24-h tests with salts, but was important in 96-h survival and development. Based on sensitivity and ease of handling, adults cultured from eggs are recommended in both 24-h and 96-h mortality (LC50 value) tests, as well as 96-h reproduction tests.« less

  13. ASSESSMENT OF LITHIUM USING THE IEHR EVALUATIVE PROCESS FOR ASSESSING HUMAN DEVELOPMENTAL AND REPRODUCTIVE TOXICITY OF AGENTS

    EPA Science Inventory

    This document presents an evaluation of the reproductive and developmental effects of lithium and reviews toxicologic information on several specific lithium salts: ithium carbonate, lithium chloride, lithium citrate, and lithium hypochlorite. ithium (Li), an alkali metal, is a n...

  14. Exposure to PFOS, PFHxS, or PFHxA, but not GenX, Nafion BP1, or ADONA, Elicits Developmental Neurotoxicity in Larval Zebrafish

    EPA Science Inventory

    Exposure to polyfluoroalkyl substances (PFAS) like perfluorooctane sulfonic acid (PFOS) or perfluorooctanoic acid (PFOA) are associated with developmental toxicity, neurotoxicity, and carcinogenesis. Legacy PFAS have therefore been replaced with shorter carbon chain and polyfluor...

  15. Identification and evaluation of candidate genes associated with susceptibility to PCB-126 induced developmental toxicity: a genome-wide analysis

    EPA Science Inventory

    Dioxin-like compounds (DLCs) are potent teratogens that persist in the environment and pose significant risk to ecological health. Variability in risk of developmental cardiotoxicity caused by DLCs has been demonstrated within and among several vertebrate species. Beyond our know...

  16. Parental tobacco smoke exposure: Epigenetics and the developmental origins of health and disease

    EPA Science Inventory

    Epigenetic programming is an important mechanism underlying the Developmental Origins of Health and Disease (DOHaD). Much of the research in this area has focused on maternal nutrition. Parental smoking has emerged as a prime example of how exposure to environmental toxicants dur...

  17. STAGE- AND SPECIES- SPECIFIC DEVELOPMENTAL TOXICITY OF ALL-TRANS RETINOIC ACID IN FOUR NATIVE NORTH AMERICAN RANIDS AND XENOPUS LAEVIS

    EPA Science Inventory

    Within the last decade there have been increasing reports of malformed amphibians across North America. Recently, it has been suggested that hindlimb malformations are a consequence of xenobiotic disruption of developmental pathways regulated by retinoids. To assess the validity ...

  18. 40 CFR 799.9630 - TSCA developmental neurotoxicity.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... (2) Control group. A concurrent control group is required. This group must be a sham-treated group or, if a vehicle is used in administering the test substance, a vehicle control group. The vehicle must neither be developmentally toxic nor have effects on reproduction. Animals in the control group must be...

  19. 40 CFR 799.9630 - TSCA developmental neurotoxicity.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... (2) Control group. A concurrent control group is required. This group must be a sham-treated group or, if a vehicle is used in administering the test substance, a vehicle control group. The vehicle must neither be developmentally toxic nor have effects on reproduction. Animals in the control group must be...

  20. 40 CFR 799.9630 - TSCA developmental neurotoxicity.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... (2) Control group. A concurrent control group is required. This group must be a sham-treated group or, if a vehicle is used in administering the test substance, a vehicle control group. The vehicle must neither be developmentally toxic nor have effects on reproduction. Animals in the control group must be...

  1. Acute and developmental toxicity assessment of erincine A-enriched Hericium erinaceus mycelia in Sprague-Dawley rats.

    PubMed

    Li, I-Chen; Chen, Wan-Ping; Chen, Yen-Po; Lee, Li-Ya; Tsai, Yueh-Ting; Chen, Chin-Chu

    2018-01-23

    This study aimed to establish an in vitro model to confirm the efficacy of erinacine A-enriched Hericium erinaceus (EAHE) mycelia and investigate its potential adverse effects in a preclinical experimental setting, including an assessment on the oral administration of EAHE mycelia in acute and prenatal developmental toxicity tests. At a single dose of 5000 mg/kg body weight, EAHE mycelia elicited no death or treatment-related signs of toxicity in ten Sprague-Dawley rats of both sexes during the 14 days of the experimental period. After considering the recommended dose range of EAHE mycelia from the acute toxicity test as well as the therapeutic doses, EAHE mycelia was administered to 66 pregnant rats in the low, medium, and high-dose groups by gavage at 875, 1750, and 2625 mg/kg body weight, respectively. All dams were subjected to a Caesarean section on the 20th day of pregnancy, and the fetuses were examined for any morphological abnormalities. Results indicated that weight of uterus, fetal body weight, number of corpora lutea, implantation sites, pre-implantation loss, and post-implantation loss of the treatment groups and the control group exhibited no statistical difference. In addition, no significant differences were observed in the fetal external, organ, and skeletal examinations. Taken together, it can be concluded that EAHE mycelia is considered safe and practically nontoxic for consumption within the appropriate doses and investigation period in this study.

  2. Glyphosate induces cardiovascular toxicity in Danio rerio.

    PubMed

    Roy, Nicole M; Ochs, Jeremy; Zambrzycka, Ewelina; Anderson, Ariann

    2016-09-01

    Glyphosate is a broad spectrum herbicide used aggressively in agricultural practices as well as home garden care. Although labeled "safe" by the chemical industry, doses tested by industry do not mimic chronic exposures to sublethal doses that organisms in the environment are exposed to over long periods of time. Given the widespread uses of and exposure to glyphosate, studies on developmental toxicity are needed. Here we utilize the zebrafish vertebrate model system to study early effects of glyphosate on the developing heart. Treatment by embryo soaking with 50μg/ml glyphosate starting at gastrulation results in structural abnormalities in the atrium and ventricle, irregular heart looping, situs inversus as well as decreased heartbeats by 48h as determined by live imaging and immunohistochemistry. Vasculature in the body was also affected as determined using fli-1 transgenic embryos. To determine if the effects noted at 48h post fertilization are due to early stage alterations in myocardial precursors, we also investigate cardiomyocyte development with a Mef2 antibody and by mef2ca in situ hybridization and find alterations in the Mef2/mef2ca staining patterns during early cardiac patterning stages. We conclude that glyphosate is developmentally toxic to the zebrafish heart. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Immediate and long-term consequences of vascular toxicity during zebrafish development

    EPA Science Inventory

    Proper formation of the vascular system is necessary for embryogenesis, and chemical disruption of vascular development may be a key event driving developmental toxicity. In order to test the effect of environmental chemicals on this critical process, we developed a quantitative ...

  4. Fish egg injection as an alternative exposure route for early life stage toxicity studies: Description of two unique methods: Chapter 4

    USGS Publications Warehouse

    Walker, Mary K.; Zabel, Erik W.; Akerman, Gun; Balk, Lennart; Wright, Peggy J.; Tillitt, Donald E.

    1996-01-01

    In the environment, lipophilic contaminants such as halogenated aromatic hydrocarbons (HAHs, e.g., polychlorinated biphenyls, PCBs) and polycyclic aromatic hydrocarbons (PAHs, e.g., benzo[a]pyrene) readily bioaccumulate in fish, and the bioaccumulation of these lipophilic chemicals by adult fish may have significant consequences on the development and survival of their offspring. Halogenated and polycyclic aromatic hydrocarbons translocate from adult female body stores into eggs during oocyte maturation, and early life stages of fish are often more sensitive than adults to the toxicity of these chemicals. Thus, the presence of persistent, bioaccumulative contaminants in the environment may pose a risk to fish early life stage survival and ultimately reduce recruitment into the adult population.Typically, standard early life stage toxicity studies exposed embryos, larvae, and juveniles to graded concentrations of waterborne toxicants, and dose-response relationships are based on the concentrations of chemicals in the water. However, use of waterborne exposure to assess the toxicity of persistent, bioaccumulative contaminants, such as HAHs and PAHs, has two significant drawbacks. First, uptake of hydrophobic chemicals, such as HAHs and PAHs, into the developing embryo from water is not a significant route of exposure in the environment since concentrations of these chemicals freely dissolved in water are extremely low. Rather, maternal deposition into developing oocytes is the most significant source of these chemicals to the embryo. Second, the dose received by the target tissue, in this case the developing embryo, is the most accurate predictor of the toxic response, and since extrapolation from water concentrations of the chemical to egg concentrations is required, the exact dose received by the embryo can only be estimated, often with large uncertainty. Due to these drawbacks, it is important to develop an alternative exposure method that will directly expose the developing embryo without the need to chronically expose adult fish with subsequent natural deposition of hydrophobic chemicals into the oocytes. Fish egg injection provides this exposure route. Embryos are exposed directly after fertilization with known doses of contaminants, the dose is delivered prior to critical developmental events, and extrapolation of the dose received by the embryo is not needed.We have developed two unique fish egg injection methods as alternative routes of exposure for fish early life stage toxicity studies of lipophilic environmental contaminants. With either method, individual fish eggs are injected with a known dose of chemical. The first approach, a microinjection method, originally developed to assess the developmental toxicity of HAH congeners to early life stages of salmonids, utilizes micro-syringes, 30- gauge stainless steel injection needles, and micro- to nanoliter injection volume. The second approach, a nano-injection method, utilizes glass capillary micropipettes with 2 to 10 µm tips as injection needles, and nano- to picoliter injection volume, allowing injection of nearly any size of fish egg.Both of these egg injection methods allow an investigator to assess the toxicity of lipophilic environmental contaminants to early life stages of fish in a manner that realistically reflects environmental exposure and allows accurate quantitation of the dose to the developing embryo. These injection techniques, however, are not limited to use with only lipophilic chemicals. Since the developmental toxicity of many environmental contaminants ultimately depends on the dose received by the embryo, these egg injection methods could serve as a realistic exposure route in many fish early life stage toxicity studies.

  5. Effects of the lipid regulator drug gemfibrozil: A toxicological and behavioral perspective.

    PubMed

    Henriques, Jorge F; Almeida, Ana Rita; Andrade, Thayres; Koba, Olga; Golovko, Oksana; Soares, Amadeu M V M; Oliveira, Miguel; Domingues, Inês

    2016-01-01

    Pharmaceuticals are emerging contaminants as their worldwide consumption increases. Fibrates such as gemfibrozil (GEM) are used in human medicine to reduce blood concentrations of cholesterol and triacylglycerol and also are some of the most frequently reported pharmaceuticals in waste waters and surface waters. Despite some studies have already demonstrated the negative impact in physiological and/or reproductive endpoints in adult fish, data on survival and behavioral effects in fish larvae are lacking. This study aimed to assess the effects of GEM on zebrafish eleutheroembryo development and locomotor behavior. A fish embryo toxicity (FET) test was undertaken to evaluate GEM acute toxicity by exposing embryos to 0, 6.58, 9.87, 14.81, 22.22, 33.33 and 50mg/L. Developmental endpoints such as hatching success, edemas and malformations were recorded. A second test was undertaken by exposing embryos to 0, 1.5, 3 and 6mg/L in order to evaluate the effects of GEM on 120 and 144h post fertilization (hpf) larvae locomotor activity by video tracking, using a Zebrabox(®) (Viewpoint, France) device. From the data recorded, several parameters such as total swimming distance (TSD) and total swimming time (TST) in each 120s integration time were calculated. Data showed that this compound has a moderate toxic effect on fish embryo development, affecting both survival and hatching success with a calculated 96h LC50 of 11.01mg/L and no effects at the developmental level at 6mg/L. GEM seems to impair locomotor activity, even at concentrations where developmental abnormalities were unperceived, at concentrations as low as 1.5mg/L. Both TSD and TST were sensitive to GEM exposure. These effects do not seem to be independent of the developmental stage as 120hpf larvae seem to present a development bias with repercussions in locomotor behavior. This study highlights the need to include behavioral endpoints in ecotoxicological assays as this seems to be a more sensitive endpoint often disregarded. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Nanoparticle-induced neuronal toxicity across placental barriers is mediated by autophagy and dependent on astrocytes.

    PubMed

    Hawkins, Simon J; Crompton, Lucy A; Sood, Aman; Saunders, Margaret; Boyle, Noreen T; Buckley, Amy; Minogue, Aedín M; McComish, Sarah F; Jiménez-Moreno, Natalia; Cordero-Llana, Oscar; Stathakos, Petros; Gilmore, Catherine E; Kelly, Stephen; Lane, Jon D; Case, C Patrick; Caldwell, Maeve A

    2018-05-01

    The potential for maternal nanoparticle (NP) exposures to cause developmental toxicity in the fetus without the direct passage of NPs has previously been shown, but the mechanism remained elusive. We now demonstrate that exposure of cobalt and chromium NPs to BeWo cell barriers, an in vitro model of the human placenta, triggers impairment of the autophagic flux and release of interleukin-6. This contributes to the altered differentiation of human neural progenitor cells and DNA damage in the derived neurons and astrocytes. Crucially, neuronal DNA damage is mediated by astrocytes. Inhibiting the autophagic degradation in the BeWo barrier by overexpression of the dominant-negative human ATG4B C74A significantly reduces the levels of DNA damage in astrocytes. In vivo, indirect NP toxicity in mice results in neurodevelopmental abnormalities with reactive astrogliosis and increased DNA damage in the fetal hippocampus. Our results demonstrate the potential importance of autophagy to elicit NP toxicity and the risk of indirect developmental neurotoxicity after maternal NP exposure.

  7. Nanoparticle-induced neuronal toxicity across placental barriers is mediated by autophagy and dependent on astrocytes

    NASA Astrophysics Data System (ADS)

    Hawkins, Simon J.; Crompton, Lucy A.; Sood, Aman; Saunders, Margaret; Boyle, Noreen T.; Buckley, Amy; Minogue, Aedín M.; McComish, Sarah F.; Jiménez-Moreno, Natalia; Cordero-Llana, Oscar; Stathakos, Petros; Gilmore, Catherine E.; Kelly, Stephen; Lane, Jon D.; Case, C. Patrick; Caldwell, Maeve A.

    2018-05-01

    The potential for maternal nanoparticle (NP) exposures to cause developmental toxicity in the fetus without the direct passage of NPs has previously been shown, but the mechanism remained elusive. We now demonstrate that exposure of cobalt and chromium NPs to BeWo cell barriers, an in vitro model of the human placenta, triggers impairment of the autophagic flux and release of interleukin-6. This contributes to the altered differentiation of human neural progenitor cells and DNA damage in the derived neurons and astrocytes. Crucially, neuronal DNA damage is mediated by astrocytes. Inhibiting the autophagic degradation in the BeWo barrier by overexpression of the dominant-negative human ATG4BC74A significantly reduces the levels of DNA damage in astrocytes. In vivo, indirect NP toxicity in mice results in neurodevelopmental abnormalities with reactive astrogliosis and increased DNA damage in the fetal hippocampus. Our results demonstrate the potential importance of autophagy to elicit NP toxicity and the risk of indirect developmental neurotoxicity after maternal NP exposure.

  8. RIFM fragrance ingredient safety assessment, acetic acid, C7-9-branched alkyl esters, C8-rich, CAS Registry Number 108419-32-5.

    PubMed

    Api, A M; Belsito, D; Botelho, D; Browne, D; Bruze, M; Burton, G A; Buschmann, J; Calow, P; Dagli, M L; Date, M; Dekant, W; Deodhar, C; Fryer, A D; Joshi, K; La Cava, S; Lapczynski, A; Liebler, D C; O'Brien, D; Parakhia, R; Patel, A; Penning, T M; Ritacco, G; Romine, J; Salvito, D; Schultz, T W; Sipes, I G; Thakkar, Y; Tsang, S; Wahler, J

    2017-12-01

    The use of this material under current conditions is supported by existing information. This material was evaluated for genotoxicity, repeated dose toxicity, developmental and reproductive toxicity, local respiratory toxicity, phototoxicity/photoallergenicity, skin sensitization, as well as environmental safety. Data show that this material is not genotoxic. Data from the suitable read across analog isoamyl acetate (CAS# 123-92-2) show that this material does not have skin sensitization potential. The reproductive and local respiratory toxicity endpoints were completed using the TTC (Threshold of Toxicological Concern) for a Cramer Class I material (0.03 mg/kg/day and 1.4 mg/day, respectively). The repeated dose and developmental endpoint was completed using data on the target material, which provided a MOE > 100. The phototoxicity/photoallergenicity endpoint was completed based on suitable UV spectra. The environmental endpoint was completed as described in the RIFM Framework. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Reproductive toxicity parameters and biological monitoring in occupationally and environmentally boron-exposed persons in Bandirma, Turkey.

    PubMed

    Duydu, Yalçın; Başaran, Nurşen; Üstündağ, Aylin; Aydin, Sevtap; Ündeğer, Ülkü; Ataman, Osman Yavuz; Aydos, Kaan; Düker, Yalçın; Ickstadt, Katja; Waltrup, Britta Schulze; Golka, Klaus; Bolt, Hermann M

    2011-06-01

    Boric acid and sodium borates have been considered as being "toxic to reproduction and development", following results of animal studies with high doses. Experimentally, a NOAEL (no observed adverse effect level) of 17.5 mg B/kg-bw/day has been identified for the (male) reproductive effects of boron in a multigeneration study of rats, and a NOAEL for the developmental effects in rats was identified at 9.6 mg B/kg-bw/day. These values are being taken as the basis of current EU safety assessments. The present study was conducted to investigate the reproductive effects of boron exposure in workers employed in boric acid production plant in Bandirma, Turkey. In order to characterize the external and internal boron exposures, boron was determined in biological samples (blood, urine, semen), in workplace air, in food, and in water sources. Unfavorable effects of boron exposure on the reproductive toxicity indicators (concentration, motility, morphology of the sperm cells and blood levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), and total testosterone) were not observed. The mean calculated daily boron exposure (DBE) of the highly exposed group was 14.45 ± 6.57 (3.32-35.62) mg/day. These human exposures represent worst-case exposure conditions to boric acid/borates in Turkey. These exposure levels are considerably lower than exposures, which have previously led to reproductive effects in experimental animals. In conclusion, this means that dose levels of boron associated with developmental and reproductive toxic effects in animals are by far not reachable for humans under conditions of normal handling and use.

  10. Excessive apoptosis and defective autophagy contribute to developmental testicular toxicity induced by fluoride.

    PubMed

    Zhang, Shun; Niu, Qiang; Gao, Hui; Ma, Rulin; Lei, Rongrong; Zhang, Cheng; Xia, Tao; Li, Pei; Xu, Chunyan; Wang, Chao; Chen, Jingwen; Dong, Lixing; Zhao, Qian; Wang, Aiguo

    2016-05-01

    Fluoride, a ubiquitous environmental contaminant, is known to impair testicular functions and fertility; however the underlying mechanisms remain obscure. In this study, we used a rat model to mimic human exposure and sought to investigate the roles of apoptosis and autophagy in testicular toxicity of fluoride. Sprague-Dawley rats were developmentally exposed to 25, 50, or 100 mg/L sodium fluoride (NaF) via drinking water from pre-pregnancy to post-puberty, and then the testes of offspring were excised on postnatal day 56. Our results demonstrated that developmental NaF exposure induced an enhanced testicular apoptosis, as manifested by a series of hallmarks such as caspase-3 activation, chromatin condensation and DNA fragmentation. Further study revealed that fluoride exposure elicited significant elevations in the levels of cell surface death receptor Fas with a parallel increase in cytoplasmic cytochrome c, indicating the involvement of both extrinsic and intrinsic apoptotic pathways. Intriguingly, fluoride treatment also simultaneously increased the number of autophagosomes and the levels of autophagy marker LC3-II but not Beclin1. Unexpectedly, the expression of p62, a substrate that is degraded by autophagy, was also significantly elevated, suggesting that the accumulated autophagosomes resulted from impaired autophagy degradation rather than increased formation. Importantly, these were associated with marked histopathological lesions including spermatogenic failure and germ cell loss, along with severe ultrastructural abnormalities in testes. Taken together, our findings provide deeper insights into roles of excessive apoptosis and defective autophagy in the aggravation of testicular damage, which could contribute to a better understanding of fluoride-induced male reproductive toxicity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Prediction of in vivo developmental toxicity by combination of Hand1-Luc embryonic stem cell test and metabolic stability test with clarification of metabolically inapplicable candidates.

    PubMed

    Nagahori, Hirohisa; Suzuki, Noriyuki; Le Coz, Florian; Omori, Takashi; Saito, Koichi

    2016-09-30

    Hand1-Luc Embryonic Stem Cell Test (Hand1-Luc EST) is a promising alternative method for evaluation of developmental toxicity. However, the problems of predictivity have remained due to appropriateness of the solubility, metabolic system, and prediction model. Therefore, we assessed the usefulness of rat liver S9 metabolic stability test using LC-MS/MS to develop new prediction model. A total of 71 chemicals were analyzed by measuring cytotoxicity and differentiation toxicity, and highly reproducible (CV=20%) results were obtained. The first prediction model was developed by discriminant analysis performed on a full dataset using Hand1-Luc EST, and 66.2% of the chemicals were correctly classified by the cross-validated classification. A second model was developed with additional descriptors obtained from the metabolic stability test to calculate hepatic availability, and an accuracy of 83.3% was obtained with applicability domain of 50.7% (=36/71) after exclusion of 22 metabolically inapplicable candidates, which potentially have a metabolic activation property. A step-wise prediction scheme with combination of Hand1-Luc EST and metabolic stability test was therefore proposed. The current results provide a promising in vitro test method for accurately predicting in vivo developmental toxicity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. EFFECTS OF PERFLUOROOCTANOIC ACID (PFOA) ON MICE EXPOSED IN UTERO AT SPECIFIC GESTATIONAL STAGES

    EPA Science Inventory

    Perfluorooctanoic acid is developmentally toxic resulting in embryonic and postnatal deaths and growth retardation. Previous studies showed that dosing mice from gestation day (GD)2-18 with 5 mg PFOA/kg body weight impacts the growth and development of the fetus and newborns. The...

  13. Comparison of Chemical-induced Changes in Proliferation and Apoptosis in Human and Mouse Neuroprogenitor Cells.***

    EPA Science Inventory

    There is a need to develop rapid and efficient models to screen chemicals for their potential to cause developmental neurotoxicity. Use of in vitro neuronal models, including human cells, is one approach that allows for timely, cost-effective toxicity screening. The present study...

  14. Fifty Years of Predictive Testing for Human Developmental Toxicity: From Thalidomide to Virtual Embryos

    EPA Science Inventory

    The thalidomide tragedy of the early 1960s led to the three “Segment” tests promulgated by the United States Food and Drug Administration in 1966. The Segment II study involves exposing pregnant rodents or rabbits during organogenesis and examining fetuses prior to pa...

  15. The effects of PCBs and dioxins on child health.

    PubMed

    Lundqvist, Christofer; Zuurbier, Moniek; Leijs, Marike; Johansson, Carolina; Ceccatelli, Sandra; Saunders, Margaret; Schoeters, Greet; ten Tusscher, Gavin; Koppe, Janna G

    2006-10-01

    BACKGROUND/EXPOSURE: Dioxins and PCBs are highly persistent and highly toxic environmental pollutants which at present are derived mainly from waste incineration and food contamination. They are widespread in nature and pollute human food, including breast milk so that basically all children in Europe are exposed to measurable levels. RESULTS/TOXICITY IN CHILDREN: The toxicity of dioxins and PCBs are well described both from animal studies and from a number of human epidemiological studies including several large cohort studies. Especially developmental exposure has been shown to affect endocrine and cognitive systems negatively. Measurable outcomes include reduced IQ and changed behaviour. Foetotoxic effects with reduced birth weight and increased congenital anomalies such as cleft lip have also been described. Exposure to PCBs and dioxins must be considered also in the context of multiple exposure to several toxins simultaneously or sequentially. CONCLUSION/SUGGESTED ACTION: Some measures aimed at reducing exposure to dioxins have been partly successful in that the dioxin content of breast milk is going down. However, further steps to reduce exposure must be taken. We suggest legislative measures for reducing the re-entry of especially PCBs from waste into the environment. Individual pre-conception counselling is recommended in order to reduce developmental exposure and its consequences. Biomonitoring of the substances themselves in breast milk and foods is recommended as well as monitoring possible endocrine effects.

  16. Gene expression profiling of the hippocampal dentate gyrus in an adult toxicity study captures a variety of neurodevelopmental dysfunctions in rat models of hypothyroidism.

    PubMed

    Shiraki, Ayako; Saito, Fumiyo; Akane, Hirotoshi; Akahori, Yumi; Imatanaka, Nobuya; Itahashi, Megu; Yoshida, Toshinori; Shibutani, Makoto

    2016-01-01

    We previously found that developmental hypothyroidism changed the expression of genes in the rat hippocampal dentate gyrus, a brain region where adult neurogenesis is known to occur. In the present study, we performed brain region-specific global gene expression profiling in an adult rat hypothyroidism model to see if it reflected the developmental neurotoxicity we saw in the developmental hypothyroidism model. Starting when male rats were 5 weeks old, we administered 6-propyl-2-thiouracil at a doses of 0, 0.1 and 10 mg kg(-1) body weight by gavage for 28 days. We selected four brain regions to represent both cerebral and cerebellar tissues: hippocampal dentate gyrus, cerebral cortex, corpus callosum and cerebellar vermis. We observed significant alterations in the expression of genes related to neural development (Eph family genes and Robo3) in the cerebral cortex and hippocampal dentate gyrus and in the expression of genes related to myelination (Plp1 and Mbp) in the hippocampal dentate gyrus. We observed only minor changes in the expression of these genes in the corpus callosum and cerebellar vermis. We used real-time reverse-transcription polymerase chain reaction to confirm Chrdl1, Hes5, Mbp, Plp1, Slit1, Robo3 and the Eph family transcript expression changes. The most significant changes in gene expression were found in the dentate gyrus. Considering that the gene expression profile of the adult dentate gyrus closely related to neurogenesis, 28-day toxicity studies looking at gene expression changes in adult hippocampal dentate gyrus may also detect possible developmental neurotoxic effects. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Peer consultation on relationship between PAC profile and toxicity of petroleum substances.

    PubMed

    Patterson, Jacqueline; Maier, Andrew; Kohrman-Vincent, Melissa; Dourson, Michael L

    2013-11-01

    An expert peer consultation panel reviewed a report by the PAC Analysis Task Group, which hypothesized that systemic, developmental, and reproductive toxicity observed in repeated-dose dermal toxicity studies was related to polycyclic aromatic compound (PAC) content. Peer consultations seek to solicit scientific and technical input from experts on the scientific basis and merits of the subject report. This peer consultation panel included nine scientists with expertise in petroleum chemistry, biostatistics, toxicology, risk assessment, structure activity, and reproductive and developmental toxicology. The panel evaluated the technical quality of the PAC report and provided recommendations for improving the statistical and biological approaches. The PAC report authors revised their methods and documentation, which are published elsewhere in this supplement. A review of the post peer consultation manuscripts confirmed that many of the key suggestions from expert panel members were considered and incorporated. In cases where the PAC report authors did not fully incorporate panel suggestions from the peer consultation, they have provided an explanation and support for their decision. This peer consultation demonstrates the value of formal engagement of peers in development of new scientific methods and approaches. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. NEW METHODS TO SCREEN FOR DEVELOPMENTAL NEUROTOXICITY.

    EPA Science Inventory

    The development of alternative methods for toxicity testing is driven by the need for scientifically valid data (i.e. predictive of a toxic effect) that can be obtained in a rapid and cost-efficient manner. These predictions will enable decisions to be made as to whether further ...

  19. Developmental neurotoxicity testing in vitro: Models for assessing chemical effects on neurite outgrowth

    EPA Science Inventory

    In vitro models may be useful for the rapid toxicological screening of large numbers of chemicals for their potential to produce toxicity. Such screening could facilitate prioritization of resources needed for in vivo toxicity testing towards those chemicals most likely to resul...

  20. Probing the ToxCast Chemical Library for Predictive Signatures of Developmental Toxicity

    EPA Science Inventory

    EPA’s ToxCast™ project is profiling the in vitro bioactivity of chemical compounds to assess pathway-level and cell-based signatures that correlate with observed in vivo toxicity. We hypothesize that cell signaling pathways are primary targets for diverse environmental chemicals ...

  1. A protective role of autophagy in TDCIPP-induced developmental neurotoxicity in zebrafish larvae.

    PubMed

    Li, Ruiwen; Zhang, Ling; Shi, Qipeng; Guo, Yongyong; Zhang, Wei; Zhou, Bingsheng

    2018-06-01

    Tris (1, 3-dichloro-2-propyl) phosphate (TDCIPP), an extensively used organophosphorus flame retardant, is frequently detected in various environmental media and biota, and has been demonstrated as neurotoxic. Autophagy has been proposed as a protective mechanism against toxicant-induced neurotoxicity. The purpose of the present study was to investigate the effect of TDCIPP exposure on autophagy, and its role in TDCIPP-induced developmental neurotoxicity. Zebrafish embryos (2-120 h post-fertilization [hpf]) were exposed to TDCIPP (0, 5, 50 and 500 μg/l) and a model neurotoxic chemical, chlorpyrifos (CPF, 100 μg/l). The developmental endpoints, locomotive behavior, cholinesterase activities, gene and protein expression related to neurodevelopment and autophagy were measured in the larvae. Our results demonstrate that exposure to TDCIPP (500 μg/l) and CPF causes developmental toxicity, including reduced hatching and survival rates and increased malformation rate (e.g., spinal curvature), as well as altered locomotor behavior. The expression of selected neurodevelopmental gene and protein markers (e.g., mbp, syn2a, and α1-tubulin) was significantly down-regulated in CPF and TDCIPP exposed zebrafish larvae. Treatment with CPF significantly inhibits AChE and BChE, while TDCIPP (0-500 μg/l) exerts no effects on these enzymes. Furthermore, the conversion of microtubule-associated protein I (LC3 I) to LC3 II was significantly increased in TDCIPP exposed zebrafish larvae. In addition, exposure to TDCIPP also activates transcription of several critical genes in autophagy (e.g. Becn1, atg3, atg5, map1lc3b and sqstm1). To further investigate the role of autophagy in TDCIPP induced developmental neurotoxicity, an autophagy inducer (rapamycin, Rapa, 1 nM) and inhibitor (chloroquine, CQ, 1 μM) were used. The results demonstrate that the hatching rate, survival rate, and the expression of mbp and а1-tubulin proteins were all significantly increased in larvae treated with TDCIPP (500 μg/l) and Rapa compared to TDCIPP alone. In contrast, co-treatment with the autophagy inhibitor CQ results in exacerbated neurodevelopmental toxicity. Taken together, our results confirm that exposure to TDCIPP induces autophagy, which plays a protective role in TDCIPP-induced developmental neurotoxicity in zebrafish embryos and larvae. Copyright © 2018. Published by Elsevier B.V.

  2. Parental exposure to heavy fuel oil induces developmental toxicity in offspring of the sea urchin Strongylocentrotus intermedius.

    PubMed

    Duan, Meina; Xiong, Deqi; Yang, Mengye; Xiong, Yijun; Ding, Guanghui

    2018-05-03

    The present study investigated the toxic effects of parental (maternal/paternal) exposure to heavy fuel oil (HFO) on the adult reproductive state, gamete quality and development of the offspring of the sea urchin Strongylocentrotus intermedius. Adult sea urchins were exposed to effluents from HFO-oiled gravel columns for 7 days to simulate an oil-contaminated gravel shore, and then gametes of adult sea urchins were used to produce embryos to determine developmental toxicity. For adult sea urchins, no significant difference in the somatic size and weight was found between the various oil loadings tested, while the gonad weight and gonad index were significantly decreased at higher oil loadings. The spawning ability of adults and fecundity of females significantly decreased. For gametes, no effect was observed on the egg size and fertilization success in any of the groups. However, a significant increase in the percentage of anomalies in the offspring was observed and then quantified by an integrative toxicity index (ITI) at 24 and 48 h post fertilization. The offspring from exposed parents showed higher ITI values with more malformed embryos. The results confirmed that parental exposure to HFO can cause adverse effects on the offspring and consequently affect the recruitment and population maintenance of sea urchins. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Developmental toxic effects of N-ethyl-2-pyrrolidone administered orally to rats.

    PubMed

    Saillenfait, A M; Gallissot, F; Sabaté, J P

    2007-01-01

    The developmental toxicity of N-ethyl-2-pyrrolidone (NEP) was studied in Sprague-Dawley rats after oral administration. Pregnant rats were given NEP at doses of 0 (distilled water), 50, 250, 500 and 750 mg kg(-1) day(-1), by gavage (5 ml kg(-1)), on gestational days (GD) 6-20. Maternal toxicity, as evidenced by reduction in body weight gain and food consumption, was observed in all NEP groups at the beginning of treatment (GD 6-9). The incidence of resorptions was significantly increased at 500 mg kg(-1) day(-1), and reached 83% at 750 mg kg(-1) day(-1). There was a dose-related decrease in fetal weight, which was significantly lower than control at 250 mg kg(-1) day(-1) and higher doses. The incidence of malformed fetuses per litter and the number of litters with malformed fetuses were significantly increased at 500 and 750 mg kg(-1) day(-1). Malformations mainly consisted of edema, anal atresia with absent tail, cardiovascular defects and fused cervical arches. Ossification of skull bones and sternebrae was significantly reduced at 500 and 750 mg kg(-1) day(-1). The incidence of supernumerary ribs was significantly elevated at 250 mg kg(-1) day(-1) and higher doses. In conclusion, NEP administered by gavage is embryotoxic and teratogenic at maternal toxic doses. (c) 2007 John Wiley & Sons, Ltd.

  4. Toxic wavelength of blue light changes as insects grow.

    PubMed

    Shibuya, Kazuki; Onodera, Shun; Hori, Masatoshi

    2018-01-01

    Short-wavelength visible light (blue light: 400-500 nm) has lethal effects on various insects, such as fruit flies, mosquitoes, and flour beetles. However, the most toxic wavelengths of blue light might differ across developmental stages. Here, we investigate how the toxicity of blue light changes with the developmental stages of an insect by irradiating Drosophila melanogaster with different wavelengths of blue light. Specifically, the lethal effect on eggs increased at shorter light wavelengths (i.e., toward 405 nm). In contrast, wavelengths from 405 to 466 nm had similar lethal effects on larvae. A wavelength of 466 nm had the strongest lethal effect on pupae; however, mortality declined as pupae grew. A wavelength of 417 nm was the most harmful to adults at low photon flux density, while 466 nm was the most harmful to adults at high photon flux density. These findings suggest that, as the morphology of D. melanogaster changes with growth, the most harmful wavelength also changes. In addition, our results indicated that reactive oxygen species influence the lethal effect of blue light. Our findings show that blue light irradiation could be used as an effective pest control method by adjusting the wavelength to target specific developmental stages.

  5. Computer Simulation of Embryonic Systems: What can a ...

    EPA Pesticide Factsheets

    (1) Standard practice for assessing developmental toxicity is the observation of apical endpoints (intrauterine death, fetal growth retardation, structural malformations) in pregnant rats/rabbits following exposure during organogenesis. EPA’s computational toxicology research program (ToxCast) generated vast in vitro cellular and molecular effects data on >1858 chemicals in >600 high-throughput screening (HTS) assays. The diversity of assays has been increased for developmental toxicity with several HTS platforms, including the devTOX-quickPredict assay from Stemina Biomarker Discovery utilizing the human embryonic stem cell line (H9). Translating these HTS data into higher order-predictions of developmental toxicity is a significant challenge. Here, we address the application of computational systems models that recapitulate the kinematics of dynamical cell signaling networks (e.g., SHH, FGF, BMP, retinoids) in a CompuCell3D.org modeling environment. Examples include angiogenesis (angiodysplasia) and dysmorphogenesis. Being numerically responsive to perturbation, these models are amenable to data integration for systems Toxicology and Adverse Outcome Pathways (AOPs). The AOP simulation outputs predict potential phenotypes based on the in vitro HTS data ToxCast. A heuristic computational intelligence framework that recapitulates the kinematics of dynamical cell signaling networks in the embryo, together with the in vitro profiling data, produce quantitative pr

  6. Ketamine induces toxicity in human neurons differentiated from embryonic stem cells via mitochondrial apoptosis pathway

    PubMed Central

    Bosnjak, Zeljko J.; Yan, Yasheng; Canfield, Scott; Muravyeva, Maria Y.; Kikuchi, Chika; Wells, Clive; Corbett, John; Bai, Xiaowen

    2013-01-01

    Ketamine is widely used for anesthesia in pediatric patients. Growing evidence indicates that ketamine causes neurotoxicity in a variety of developing animal models. Our understanding of anesthesia neurotoxicity in humans is currently limited by difficulties in obtaining neurons and performing developmental toxicity studies in fetal and pediatric populations. It may be possible to overcome these challenges by obtaining neurons from human embryonic stem cells (hESCs) in vitro. hESCs are able to replicate indefinitely and differentiate into every cell type. In this study, we investigated the toxic effect of ketamine on neurons differentiated from hESCs. Two-week-old neurons were treated with different doses and durations of ketamine with or without the reactive oxygen species (ROS) scavenger, Trolox. Cell viability, ultrastructure, mitochondrial membrane potential (ΔΨm), cytochrome c distribution within cells, apoptosis, and ROS production were evaluated. Here we show that ketamine induced ultrastructural abnormalities and dose- and time-dependently caused cell death. In addition, ketamine decreased ΔΨm and increased cytochrome c release from mitochondria. Ketamine also increased ROS production and induced differential expression of oxidative stress-related genes. Specifically, abnormal ultrastructural and ΔΨm changes occurred earlier than cell death in the ketamine-induced toxicity process. Furthermore, Trolox significantly decreased ROS generation and attenuated cell death caused by ketamine in a dose-dependent manner. In conclusion, this study illustrates that ketamine time- and dose-dependently induces human neurotoxicity via ROS-mediated mitochondrial apoptosis pathway and that these side effects can be prevented by the antioxidant agent Trolox. Thus, hESC-derived neurons might provide a promising tool for studying anesthetic-induced developmental neurotoxicity and prevention strategies. PMID:22873495

  7. Developmental toxicity, oxidative stress and immunotoxicity induced by three strobilurins (pyraclostrobin, trifloxystrobin and picoxystrobin) in zebrafish embryos.

    PubMed

    Li, Hui; Cao, Fangjie; Zhao, Feng; Yang, Yang; Teng, Miaomiao; Wang, Chengju; Qiu, Lihong

    2018-05-25

    Strobilurins is the most widely used class of fungicides, but is reported highly toxic to some aquatic organisms. In this study, zebrafish embryos were exposed to a range concentrations of three strobilurins (pyraclostrobin, trifloxystrobin and picoxystrobin) for 96 h post-fertilization (hpf) to assess their aquatic toxicity. The 96-h LC 50 values of pyraclostrobin, trifloxystrobin and picoxystrobin to embryos were 61, 55, 86 μg/L, respectively. A series of symptoms were observed in developmental embryos during acute exposure, including decreased heartbeat, hatching inhibition, growth regression, and morphological deformities. Moreover, the three fungicides induced oxidative stress in embryos through increasing reactive oxygen species (ROS) and malonaldehyde (MDA) contents, inhibiting superoxide dismutase (SOD) activity and glutathione (GSH) content as well as differently changing catalase (CAT) activity and mRNA levels of genes related to antioxidant system (Mn-sod, Cu/Zn-sod, Cat, Nrf2, Ucp2 and Bcl2). In addition, exposure to the three strobilurins resulted in significant upregulation of IFN and CC-chem as well as differently changed expressions of TNFa, IL-1b, C1C and IL-8, which related to the innate immune system, suggesting that these fungicides caused immunotoxicity during zebrafish embryo development. The different response of enzymes and genes in embryos exposed to the three fungicides might be the cause that leads to the difference of their toxicity. This work made a comparison of the toxicity of three strobilurins to zebrafish embryos on multi-levels and would provide a better understanding of the toxic effects of strobilurins on aquatic organisms. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. An extended one-generation reproductive toxicity test of 1,2,4-Triazol-5-one (NTO) in rats.

    PubMed

    Lent, Emily May; Crouse, Lee C B; Jackovitz, Allison M; Carroll, Erica E; Johnson, Mark S

    2016-01-01

    Nitrotriazolone (1,2,4-triazol-5-one; NTO), an insensitive, energetic material used in explosive formulations, induced testicular toxicity and oligospermia in repeated-dose oral toxicity tests in rats. To evaluate whether NTO produces additional reproductive and developmental effects, a modified extended one-generation reproductive toxicity test was conducted. Rats were provided ad libitum access to NTO in drinking water at 0-, 144-, 720-, or 3600-mg/L NTO. Treatment of the parental generation began 2 (females) and 4 (males) wk premating and continued until weaning of litters. Direct dosing of offspring (F1) occurred from weaning through puberty. Pups were counted and weighed on postnatal day (PND) 0/1. Anogenital distance (AGD) was measured on PND 4 and males were examined for presence of nipples on PND 13. F1 offspring were examined daily for attainment of puberty. NTO did not markedly affect measures of fertility, including mating indices, gestation index, litter size, and sex ratio. Seminiferous tubule degeneration or atrophy was observed in P1 and F1 3600-mg/L NTO males. F1 males in the 3600 mg/L group exhibited reduced reproductive organ mass (testes, epididymides, and accessory sex organs). Nipple retention was increased in NTO exposed F1 males compared to controls. Attainment of puberty was delayed by 2.6 d in the 3600-mg/L NTO-exposed males relative to controls. Comparison of the effects of NTO with those of antiandrogens suggests absence of malformations of the genital tract in NTO-exposed males. This study supports previous findings indicating that NTO is a testicular toxicant with male developmental effects that may be secondary to testicular toxicity.

  9. Probing the ToxCastTM Chemical Library for Predictive Signatures of Developmental Toxicity -NLTO Poster

    EPA Science Inventory

    EPA’s ToxCast™ project is profiling the in vitro bioactivity of chemical compounds to assess pathway-level and cell-based signatures that correlate with observed in vivo toxicity. We hypothesize that cell signaling pathways are primary targets for diverse environmental chemicals ...

  10. Species-Specific Predictive Signatures of Developmental Toxicity Using the ToxCast Chemical Library

    EPA Science Inventory

    EPA’s ToxCastTM project is profiling the in vitro bioactivity of chemicals to generate predictive signatures that correlate with observed in vivo toxicity. In vitro profiling methods from ToxCast data consist of over 600 high-throughput screening (HTS) and high-content screening ...

  11. Mechanisms of perfluoroalkyl acid (PFAA) toxicity: Involvement of peroxisome proliferator activator receptor alpha (PPAR) molecular signals.

    EPA Science Inventory

    Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are members of a family of environmentally persistent perfluorinated compounds and are found in the serum of wildlife and humans. PFOS and PFOA are developmentally toxic in rats and mice. Exposure in utero reduces...

  12. Building predictive models of developmental toxicity from ToxRefDB and ToxCast

    EPA Science Inventory

    EPA’s ToxCast™ project is profiling the in vitro bioactivity of chemical compounds to assess pathway-level and cell-based signatures that are highly correlated with observed in vivo toxicity. We hypothesize that cell signaling pathways underlying development are primary targets f...

  13. Screening for angiogenic inhibitors in zebrafish to evaluate a predictive model for developmental vascular toxicity

    EPA Science Inventory

    Chemically-induced vascular toxicity during embryonic development may cause a wide range of adverse effects. To identify putative vascular disrupting chemicals (pVDCs), a predictive signature was constructed from U.S. EPA ToxCast high-throughput screening (HTS) assays that map to...

  14. Predictive Signatures from ToxCast Data for Chronic, Developmental and Reproductive Toxicity Endpoints

    EPA Science Inventory

    The EPA ToxCast program is using in vitro assay data and chemical descriptors to build predictive models for in vivo toxicity endpoints. In vitro assays measure activity of chemicals against molecular targets such as enzymes and receptors (measured in cell-free and cell-based sys...

  15. Predictive Signatures of Developmental Toxicity Modeled with HTS Data from ToxCast™ Bioactivity Profiles

    EPA Science Inventory

    The EPA ToxCast™ research program uses a high-throughput screening (HTS) approach for predicting the toxicity of large numbers of chemicals. Phase-I contains 309 well-characterized chemicals which are mostly pesticides tested in over 600 assays of different molecular targets, cel...

  16. RIFM fragrance ingredient safety assessment, linalyl benzoate, CAS Registry Number 126-64-7.

    PubMed

    Api, A M; Belsito, D; Bhatia, S; Bruze, M; Calow, P; Dagli, M L; Dkant, W; Fryer, A D; Kromidas, L; La Cava, S; Lalko, J F; Lapczynski, A; Liebler, D C; Penning, T M; Politano, V T; Ritacco, G; Salvito, D; Schultz, T W; Shen, J; Sipes, I G; Wall, B; Wilcox, D K

    2016-11-01

    The use of this material under current conditions is supported by existing information. This material was evaluated for genotoxicity, repeated dose toxicity, developmental and reproductive toxicity, local respiratory toxicity, phototoxicity/photoallergenicity, skin sensitization, as well as environmental safety. Data show that this material is not genotoxic. Data from the suitable read across analog linalyl phenylacetate (CAS # 7143-69-3) show that this material does not have skin sensitization potential. The repeated dose toxicity endpoint was completed using linalyl cinnamate (CAS # 78-37-5) as a suitable read across analog, which provided a MOE > 100. The developmental and reproductive toxicity endpoint was completed using linalool (CAS # 78-70-6), dehydrolinalool (CAS # 29171-20-8), benzoic acid (CAS # 65-85-0) and sodium benzoate (CAS # 532-32-1) as suitable read across analogs, which provided a MOE > 100. The local respiratory toxicity endpoint was completed using linalool (CAS # 78-70-6) and benzoic acid (CAS # 65-85-0) as suitable read across analogs, which provided a MOE > 100. The phototoxicity/photoallergenicity endpoint was completed based on suitable UV spectra. The environmental endpoint was completed as described in the RIFM Framework along with data from the suitable read across analog linalyl cinnamate (CAS # 78-375). Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Critical review of the developmental toxicity and teratogenicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin: Recent advances toward understanding the mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couture, L.A.; Abbott, B.D.; Birnbaum, L.S.

    1990-01-01

    A specific teratogenic response is elicited in the mouse as a result of exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; dioxin). The characteristic spectrum of structural malformations induced in mice following exposure to TCDD and structurally-related congeners is highly reproducible and includes both hydronephrosis and cleft palate. In addition, prenatal exposure to TCDD has been shown to induce thymic hypoplasia. The three abnormalities occur at doses well below those producing maternal or embryo/fetal toxicity, and are among the most sensitive indicators of dioxin toxicity. In all other laboratory species tested, TCDD causes maternal and embryo/fetal toxicity, but does not induce a significant increasemore » in the incidence of structural abnormalities even at toxic dose levels. Developmental toxicity occurs in a similar dose range across species, however, mice are particularly susceptible to development of TCDD-induced terata. Recent experiments using an organ culture were an attempt to address the issue of species and organ differences in sensitivity to TCDD. Human palatal shelves were examined in this in vitro system, and were found to approximate the rat in terms of sensitivity for induction of cleft palate.« less

  18. RIFM fragrance ingredient safety assessment, 2-ethyl-1-butanol, CAS Registry Number 97-95-0.

    PubMed

    Api, A M; Belsito, D; Bhatia, S; Bruze, M; Calow, P; Dagli, M L; Dekant, W; Fryer, A D; Kromidas, L; La Cava, S; Lalko, J F; Lapczynski, A; Liebler, D C; Miyachi, Y; Politano, V T; Ritacco, G; Salvito, D; Schultz, T W; Shen, J; Sipes, I G; Wall, B; Wilcox, D K

    2016-11-01

    The use of this material under current conditions is supported by existing information. This material was evaluated for genotoxicity, repeated dose toxicity, developmental and reproductive toxicity, local respiratory toxicity, phototoxicity/photoallergenicity, skin sensitization, as well as environmental safety. Data from the suitable read across analog 2-ethylhexanol (CAS # 104-76-7) show that this material is not genotoxic. Data from the suitable read across analog isopropyl alcohol (CAS # 67-63-0) show that this material does not have skin sensitization potential. The local respiratory toxicity endpoint was completed using the TTC (Threshold of Toxicological Concern) for a Cramer Class I material (1.4 mg/day). The repeated dose toxicity endpoint was completed using 2-ethylhexanol (CAS # 104-76-7) and 1-heptanol, 2-propyl (CAS # 10042-59-8) as suitable read across analogs, which provided a MOE > 100. The developmental and reproductive toxicity endpoint was completed using 2-ethyl-hexanol (CAS # 104-76-7) and isobutyl alcohol (CAS # 78-83-1) as suitable read across analogs, which provided a MOE > 100. The phototoxicity/photoallergenicity endpoint was completed based on suitable UV spectra. The environmental endpoint was completed as described in the RIFM Framework. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. RIFM fragrance ingredient safety assessment, 1-(1,2,3,4-tetrahydro-4,4-dimethyl-1-naphthyl)propan-1-one, CAS Registry Number 74499-60-8.

    PubMed

    Api, A M; Belsito, D; Bhatia, S; Bruze, M; Calow, P; Dagli, M L; Dekant, W; Fryer, A D; Kromidas, L; La Cava, S; Lalko, J F; Lapczynski, A; Liebler, D C; Miyachi, Y; Politano, V T; Ritacco, G; Salvito, D; Schultz, T W; Shen, J; Sipes, I G; Wall, B; Wilcox, D K

    2016-11-01

    The use of this material under current use conditions is supported by the existing information. This material was evaluated for genotoxicity, repeated dose toxicity, developmental and reproductive toxicity, local respiratory toxicity, phototoxicity/photoallergenicity, skin sensitization, as well as environmental safety. Data from the target material and the suitable read across analog 6-acetyl-1,1,2,4,4,7-hexamethyltetraline (CAS # 21145-77-7) show that this material is not genotoxic. Data from the suitable read across analog 6-acetyl-1,1,2,4,4,7-hexamethyltetraline (CAS # 21145-77-7) provided a MOE > 100 for the repeat dose and developmental toxicity endpoints. The reproductive and local respiratory toxicity endpoints were completed using the TTC (Threshold of Toxicological Concern) for a Cramer Class II material (0.009 mg/kg/day and 0.47 mg/day, respectively). Data on the target material showed that this material is below the non-reactive DST for skin sensitization and did not have the potential for phototoxicity or photoallergenicity. The environmental endpoint was completed as described in the RIFM Framework. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Guidance on the selection of cohorts for the extended one-generation reproduction toxicity study (OECD test guideline 443).

    PubMed

    Moore, Nigel P; Beekhuijzen, Manon; Boogaard, Peter J; Foreman, Jennifer E; North, Colin M; Palermo, Christine; Schneider, Steffen; Strauss, Volker; van Ravenzwaay, Bennard; Poole, Alan

    2016-10-01

    The extended one-generation reproduction toxicity study (EOGRTS; OECD test guideline 433) is a new and technically complex design to evaluate the putative effects of chemicals on fertility and development, including effects upon the developing nervous and immune systems. In addition to offering a more comprehensive assessment of developmental toxicity, the EOGRTS offers important improvements in animal welfare through reduction and refinement in a modular study design. The challenge to the practitioner is to know how the modular aspects of the study should be triggered on the basis of prior knowledge of a particular chemical, or on earlier findings in the EOGRTS itself, requirements of specific regulatory frameworks notwithstanding. The purpose of this document is to offer guidance on science-based triggers for these extended evaluations. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Strengths and limitations of using repeat-dose toxicity studies to predict effects on fertility.

    PubMed

    Dent, M P

    2007-08-01

    The upcoming European chemicals legislation REACH (Registration, Evaluation, and Authorisation of Chemicals) will require the risk assessment of many thousands of chemicals. It is therefore necessary to develop intelligent testing strategies to ensure that chemicals of concern are identified whilst minimising the testing of chemicals using animals. Xenobiotics may perturb the reproductive cycle, and for this reason several reproductive studies are recommended under REACH. One of the endpoints assessed in this battery of tests is mating performance and fertility. Animal tests that address this endpoint use a relatively large number of animals and are also costly in terms of resource, time, and money. If it can be shown that data from non-reproductive studies such as in-vitro or repeat-dose toxicity tests are capable of generating reliable alerts for effects on fertility then some animal testing may be avoided. Available rat sub-chronic and fertility data for 44 chemicals that have been classified by the European Union as toxic to fertility were therefore analysed for concordance of effects. Because it was considered appropriate to read across data for some chemicals these data sets were considered relevant for 73 of the 102 chemicals currently classified as toxic to reproduction (fertility) under this system. For all but 5 of these chemicals it was considered that a well-performed sub-chronic toxicity study would have detected pathology in the male, and in some cases, the female reproductive tract. Three showed evidence of direct interaction with oestrogen or androgen receptors (linuron, nonylphenol, and fenarimol). The remaining chemicals (quinomethionate and azafenidin) act by modes of action that do not require direct interaction with steroid receptors. However, both these materials caused in-utero deaths in pre-natal developmental toxicity studies, and the relatively low NOAELs and the nature of the hazard identified in the sub-chronic tests provides an alert for possible effects on fertility (or early embryonic development), the biological significance of which can be ascertained in a littering (e.g. 2-generation) study. From the chemicals reviewed it would appear that where there are no alerts from a repeat-dose toxicity study, a pre-natal developmental toxicity study and sex steroid receptor binding assays, there exists a low priority for animal studies to address the fertility endpoint. The ability for these types of tests to provide alerts for effects on fertility is clearly dependent on the mode of action of the toxicant in question. Further work should therefore be performed to determine the 'failure rate' of this type of approach when applied to a larger group of chemicals with diverse modes of action.

  2. Developmental toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin in artificially fertilized crucian carp (Carassius auratus) embryo.

    PubMed

    Park, Yong Joo; Lee, Min Jee; Kim, Ha Ryong; Chung, Kyu Hyuck; Oh, Seung Min

    2014-09-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent bioaccumulative environmental contaminant that is an endocrine disruptor. Embryos of various fish species are responsive to TCDD and have been used as an alternative method to the acute toxicity test with juvenile and adult fish. The TCDD test has similar endpoints of developmental toxicity. However, their sensitivity and signs of TCDD-induced toxicity are different depending on fish species and its habit. Crucian carp (Carassius auratus) - the sentinel species for persistent organic pollutants and a common foodfish in China, Japan, and Korea - was used to identify the developmental toxicity of TCDD. We obtained the fertilized eggs from the artificial fertilization of crucian carp (97.45% success rate). Embryos at 3h post fertilization (hpf) were exposed to no vehicle, vehicle (dimethylsulfoxide, 0.1% v/v) or TCDD (0.128, 0.32, 0.8, 2 and 5 μg/L) for 1h and then fresh water was changed and aerated. Embryonic development and toxicity were monitored until 150 hpf. TCDD-exposed group showed no effects on embryo mortality and hatching rate from 6 to 126 hpf. On the other hand, the post-hatching mortality rate in TCDD-exposed group was increased in a dose-dependent manner, especially at high doses (0.8, 2 and 5 μg/L). The LD50 for larval mortality was calculated to 0.24 ng TCDD/g embryo. Pericardial edema was continuously observed in larvae of TCDD-exposed groups from hatching complete time (78 hpf), followed by the onset of yolk sac edema. Hemorrhage and edema showed a significant increase depending on exposure concentration and time. Expression of TCDD-related CYP1A genes was evaluated quantitatively. Embryo and larvae in TCDD-exposed groups displayed a significant increase of CYP1A gene expression. Overall, we defined TCDD-induced toxicity in artificially fertilized crucian carp embryo and these results suggest that crucian carp can be applied as an early life stage model of TCDD-induced toxicity. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. The classification of motor neuron defects in the zebrafish embryo toxicity test (ZFET) as an animal alternative approach to assess developmental neurotoxicity.

    PubMed

    Muth-Köhne, Elke; Wichmann, Arne; Delov, Vera; Fenske, Martina

    2012-07-01

    Rodents are widely used to test the developmental neurotoxicity potential of chemical substances. The regulatory test procedures are elaborate and the requirement of numerous animals is ethically disputable. Therefore, non-animal alternatives are highly desirable, but appropriate test systems that meet regulatory demands are not yet available. Hence, we have developed a new developmental neurotoxicity assay based on specific whole-mount immunostainings of primary and secondary motor neurons (using the monoclonal antibodies znp1 and zn8) in zebrafish embryos. By classifying the motor neuron defects, we evaluated the severity of the neurotoxic damage to individual primary and secondary motor neurons caused by chemical exposure and determined the corresponding effect concentration values (EC₅₀). In a proof-of-principle study, we investigated the effects of three model compounds thiocyclam, cartap and disulfiram, which show some neurotoxicity-indicating effects in vertebrates, and the positive controls ethanol and nicotine and the negative controls 3,4-dichloroaniline (3,4-DCA) and triclosan. As a quantitative measure of the neurotoxic potential of the test compounds, we calculated the ratios of the EC₅₀ values for motor neuron defects and the cumulative malformations, as determined in a zebrafish embryo toxicity test (zFET). Based on this index, disulfiram was classified as the most potent and thiocyclam as the least potent developmental neurotoxin. The index also confirmed the control compounds as positive and negative neurotoxicants. Our findings demonstrate that this index can be used to reliably distinguish between neurotoxic and non-neurotoxic chemicals and provide a sound estimate for the neurodevelopmental hazard potential of a chemical. The demonstrated method can be a feasible approach to reduce the number of animals used in developmental neurotoxicity evaluation procedures. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Acute and Developmental Behavioral Effects of Flame ...

    EPA Pesticide Factsheets

    As polybrominated diphenyl ethers are phased out, numerous compounds are emerging as potential replacement flame retardants for use in consumer and electronic products. Little is known, however, about the neurobehavioral toxicity of these replacements. This study evaluated the neurobehavioral effects of acute or developmental exposure to t-butylphenyl diphenyl phosphate (BPDP), 2-ethylhexyl diphenyl phosphate (EHDP), isodecyl diphenyl phosphate (IDDP), isopropylated phenyl phosphate (IPP), tricresyl phosphate (TMPP; also abbreviated TCP), triphenyl phosphate (TPHP; also abbreviated TPP), tetrabromobisphenol A (TBBPA), tris (2-chloroethyl) phosphate (TCEP), tris (1,3-dichloroisopropyl) phosphate (TDCIPP; also abbreviated TDCPP), tri-o-cresyl phosphate (TOCP), and 2,2-,4,4’-tetrabromodiphenyl ether (BDE-47) in zebrafish (Danio rerio) larvae. Larvae (n≈24 per dose per compound) were exposed to test compounds (0.4 - 120 µM) at sub-teratogenic concentrations either developmentally or acutely, and locomotor activity was assessed at 6 days post fertilization. When given developmentally, all chemicals except BPDP, IDDP and TBBPA produced behavioral effects. When given acutely, all chemicals produced behavioral effects, with TPHP, TBBPA, EHDP, IPP, and BPDP eliciting the most effects at the most concentrations. The results indicate that these replacement flame retardants may have developmental or pharmacological effects on the vertebrate nervous system. This study

  5. EFFECT OF VARYING MATERNAL FOLATE STATUS AND DIETARY FOLATE INTAKE ON RESPONSE TO DIVERSE DEVELOPMENTAL TOXICANTS IN THE RAT

    EPA Science Inventory

    Periconceptional and early pregnancy folate supplements are associated with reduced recurrence and occurrence of birth defects in humans. This study was undertaken to assess the influence of maternal folate status and dietary folate intake on outcome of exposures to diverse terat...

  6. Dose Range-Finding Developmental Toxicity (Segment II) Study of WR242511 in Rabbits

    DTIC Science & Technology

    1994-07-26

    NA = Not applicable R = Right NK = Neck PT = Protruded tongue CP = Cleft palate N = No visible L = Left HL = Hind limb SB = Spina bifida CL = Cleft ... lip abnormalities M = Male FL = Fore limb SUBQ = Subcutaneous HT = Hematoma A = Alive F = Female DI = Digit P = Petechial EX = Exophthalmos D

  7. Effects on specific promoter DNA methylation in zebrafish embryos and larvae following benzo[a]pyrene exposure

    USDA-ARS?s Scientific Manuscript database

    Benzo[a]pyrene (BaP) is an established reproductive and developmental toxicant. BaP exposure in humans and animals has been linked to infertility and multigenerational health consequences. DNA methylation is the most studied epigenetic mechanism that regulates gene expression, and mapping of methyla...

  8. Screening for Chemical Effects on Neuronal Proliferation and Neurite Outgrowth Using High-Content/High-Throughput Microscopy

    EPA Science Inventory

    The need to develop novel screening methods for developmental neurotoxicity in order to alleviate the demands of cost, time, and animals required for in vivo toxicity studies is well recognized. Accordingly, the U.S. EPA launched the ToxCast research program in 2007 to develop c...

  9. Genomic biomarkers of phthalate-induced male reproductive developmental toxicity: A targeted rtPCR array approach for defining relative potency

    EPA Science Inventory

    Male rat fetuses exposed to certain phthalate esters (PEs) during sexual differentiation display reproductive tract malformations due to reductions in testosterone (T) production and the expression of steroidogenesis-and INSL3-related genes. In the current study} we used a 96well...

  10. Evaluation of genomic biomarkers and relative potency of phthalate-induced male reproductive developmental toxicity using a targeted rtPCR array approach**

    EPA Science Inventory

    Exposure to certain phthalate esters (PEs) during sexual differentiation induces reproductive tract malformations in male rats due to reductions in fetal testicular testosterone (T) production and expression of steroidogenesis-and insl3-related genes. In the current study, we use...

  11. Comparison of Baseline Behavior and the Developmental Effects of Diazepam on Locomotor Activity in 3 Strains of Larval Zebrafish (Danio rerio)

    EPA Science Inventory

    Choice of strain is an important consideration in zebrafish husbandry and research. In the scientific literature there is concern that zebrafish strains may behave and respond differently to toxicants. A few studies have compared the baseline behavior of various strains of larv...

  12. MEETING IN CHINA: CHLORINATED VS. CHLORAMINATED DRINKING WATER: TOXICITY-BASED IDENTIFICATION OF DISINFECTION BY-PRODUCTS USING ESI-MS AND ESI-MS/MS

    EPA Science Inventory

    Drinking water disinfection by-products (DBPs) are of concern because epidemiologic studies have shown that they are associated with bladder cancer and adverse reproductive/developmental effects in human populations, and some cause cancer in laboratory animals. As a result, the U...

  13. Meeting in Canada: Chlorinated vs. Chloraminated Drinking Water: Toxicity-Based Identification of Disinfection By-Products Using ESI-MS and ESI-MS/MS

    EPA Science Inventory

    Drinking water disinfection by-products (DBPs) are of concern because epidemiologic studies have shown that they are associated with bladder cancer and adverse reproductive/developmental effects in human populations. There is almost no information on high molecular weight DBPs (>...

  14. MEETING IN INDIANAPOLIS: CHLORINATED VS. CHLORAMINATED DRINKING WATER: TOXICITY-BASED IDENTIFICATION OF DBPS USING ESI-MS AND ESI-MS/MS

    EPA Science Inventory

    Drinking water disinfection by-products (DBPs) are of concern because some epidemiologic studies have shown that they are associated with cancer or adverse reproductive/developmental effects in human populations. While more than 500 DBPs have been reported in drinking water, the...

  15. Lethality and Developmental Delay of Drosophila melanogaster Following Ingestion of Selected Pseudomonas fluorescens Strains

    USDA-ARS?s Scientific Manuscript database

    Pseudomonas fluorescens secretes antimicrobial compounds that promote plant health and provide protection from pathogens. We used a non-invasive feeding assay to study the toxicity of P. fluorescens strains Pf0-1, SBW25, and Pf-5 to Drosophila melanogaster. The three strains of P. fluorescens varie...

  16. Teratogenicity of Ochratoxin A and the Degradation Product, Ochratoxin α, in the Zebrafish (Danio rerio) Embryo Model of Vertebrate Development

    PubMed Central

    Haq, Mehreen; Gonzalez, Nelson; Mintz, Keenan; Jaja-Chimedza, Asha; De Jesus, Christopher Lawrence; Lydon, Christina; Welch, Aaron Z.; Berry, John P.

    2016-01-01

    Ochratoxins, and particularly ochratoxin A (OTA), are toxic fungal-derived contaminants of food and other agricultural products. Growing evidence supports the degradation of OTA by chemical, enzymatic and/or microbial means as a potential approach to remove this mycotoxin from food products. In particular, hydrolysis of OTA to ochratoxin α (OTα) and phenylalanine is the presumptive product of degradation in most cases. In the current study, we employed the zebrafish (Danio rerio) embryo, as a model of vertebrate development to evaluate, the teratogenicity of OTA and OTα. These studies show that OTA is potently active in the zebrafish embryo toxicity assay (ZETA), and that toxicity is both concentration- and time-dependent with discernible and quantifiable developmental toxicity observed at nanomolar concentrations. On the other hand, OTα had no significant effect on embryo development at all concentrations tested supporting a decreased toxicity of this degradation product. Taken together, these results suggest that ZETA is a useful, and highly sensitive, tool for evaluating OTA toxicity, as well as its degradation products, toward development of effective detoxification strategies. Specifically, the results obtained with ZETA, in the present study, further demonstrate the toxicity of OTA, and support its degradation via hydrolysis to OTα as an effective means of detoxification. PMID:26861395

  17. Teratogenicity of Ochratoxin A and the Degradation Product, Ochratoxin α, in the Zebrafish (Danio rerio) Embryo Model of Vertebrate Development.

    PubMed

    Haq, Mehreen; Gonzalez, Nelson; Mintz, Keenan; Jaja-Chimedza, Asha; De Jesus, Christopher Lawrence; Lydon, Christina; Welch, Aaron; Berry, John P

    2016-02-05

    Ochratoxins, and particularly ochratoxin A (OTA), are toxic fungal-derived contaminants of food and other agricultural products. Growing evidence supports the degradation of OTA by chemical, enzymatic and/or microbial means as a potential approach to remove this mycotoxin from food products. In particular, hydrolysis of OTA to ochratoxin α (OTα) and phenylalanine is the presumptive product of degradation in most cases. In the current study, we employed the zebrafish (Danio rerio) embryo, as a model of vertebrate development to evaluate, the teratogenicity of OTA and OTα. These studies show that OTA is potently active in the zebrafish embryo toxicity assay (ZETA), and that toxicity is both concentration- and time-dependent with discernible and quantifiable developmental toxicity observed at nanomolar concentrations. On the other hand, OTα had no significant effect on embryo development at all concentrations tested supporting a decreased toxicity of this degradation product. Taken together, these results suggest that ZETA is a useful, and highly sensitive, tool for evaluating OTA toxicity, as well as its degradation products, toward development of effective detoxification strategies. Specifically, the results obtained with ZETA, in the present study, further demonstrate the toxicity of OTA, and support its degradation via hydrolysis to OTα as an effective means of detoxification.

  18. PPARα, PPARβ, and PPARγ expression in prenatal and postnatal mouse tissues and an evaluation of the effects of perfluorooctanoic acid (PFOA) on peroxisome proliferator-activated receptor (PPAR) expression.

    EPA Science Inventory

    PFOA is developmentally toxic, reducing in utero and neonatal survival, and altering development and growth in mice. PFOA activates PPARα and studies in PPARα knockout mice showed that PPARα signaling is required to produce these effects. This study examines the expression of PPA...

  19. Human Pluripotent Stem Cell Based Developmental Toxicity Assays for Chemical Safety Screening and Systems Biology Data Generation.

    PubMed

    Shinde, Vaibhav; Klima, Stefanie; Sureshkumar, Perumal Srinivasan; Meganathan, Kesavan; Jagtap, Smita; Rempel, Eugen; Rahnenführer, Jörg; Hengstler, Jan Georg; Waldmann, Tanja; Hescheler, Jürgen; Leist, Marcel; Sachinidis, Agapios

    2015-06-17

    Efficient protocols to differentiate human pluripotent stem cells to various tissues in combination with -omics technologies opened up new horizons for in vitro toxicity testing of potential drugs. To provide a solid scientific basis for such assays, it will be important to gain quantitative information on the time course of development and on the underlying regulatory mechanisms by systems biology approaches. Two assays have therefore been tuned here for these requirements. In the UKK test system, human embryonic stem cells (hESC) (or other pluripotent cells) are left to spontaneously differentiate for 14 days in embryoid bodies, to allow generation of cells of all three germ layers. This system recapitulates key steps of early human embryonic development, and it can predict human-specific early embryonic toxicity/teratogenicity, if cells are exposed to chemicals during differentiation. The UKN1 test system is based on hESC differentiating to a population of neuroectodermal progenitor (NEP) cells for 6 days. This system recapitulates early neural development and predicts early developmental neurotoxicity and epigenetic changes triggered by chemicals. Both systems, in combination with transcriptome microarray studies, are suitable for identifying toxicity biomarkers. Moreover, they may be used in combination to generate input data for systems biology analysis. These test systems have advantages over the traditional toxicological studies requiring large amounts of animals. The test systems may contribute to a reduction of the costs for drug development and chemical safety evaluation. Their combination sheds light especially on compounds that may influence neurodevelopment specifically.

  20. Phenotypic Dichotomy Following Developmental Exposure to Perfluorooctanic Acid (PFOA) Exposure in CD-1 Mice: Low Doses Induce Elevated Serum, Leptin, Insulin, and Overweight in Mid-Life.

    EPA Science Inventory

    The synthetic surfactant, perfluorooctanoic acid (PFOA) is a proven developmental toxicant in mice, causing prenatal pregnancy loss, increased neonatal mortality, delayed eye opening, and abnormal mammary gland growth in animals exposed during fetal life. PFOA is found in the ser...

Top