Sample records for device control actuators

  1. Valve for fluid control

    DOEpatents

    Oborny, Michael C.; Paul, Phillip H.; Hencken, Kenneth R.; Frye-Mason, Gregory C.; Manginell, Ronald P.

    2001-01-01

    A valve for controlling fluid flows. This valve, which includes both an actuation device and a valve body provides: the ability to incorporate both the actuation device and valve into a unitary structure that can be placed onto a microchip, the ability to generate higher actuation pressures and thus control higher fluid pressures than conventional microvalves, and a device that draws only microwatts of power. An electrokinetic pump that converts electric potential to hydraulic force is used to operate, or actuate, the valve.

  2. Microprocessor controlled proof-mass actuator

    NASA Technical Reports Server (NTRS)

    Horner, Garnett C.

    1987-01-01

    The objective of the microprocessor controlled proof-mass actuator is to develop the capability to mount a small programmable device on laboratory models. This capability will allow research in the active control of flexible structures. The approach in developing the actuator will be to mount all components as a single unit. All sensors, electronic and control devices will be mounted with the actuator. The goal for the force output capability of the actuator will be one pound force. The programmable force actuator developed has approximately a one pound force capability over the usable frequency range, which is above 2 Hz.

  3. Approaches to creating and controlling motion in MRI.

    PubMed

    Fischer, Gregory S; Cole, Gregory; Su, Hao

    2011-01-01

    Magnetic Resonance Imaging (MRI) can provide three dimensional (3D) imaging with excellent resolution and sensitivity making it ideal for guiding and monitoring interventions. The development of MRI-compatible interventional devices is complicated by factors including: the high magnetic field strength, the requirement that such devices should not degrade image quality, and the confined physical space of the scanner bore. Numerous MRI guided actuated devices have been developed or are currently being developed utilizing piezoelectric actuators as their primary means of mechanical energy generation to enable better interventional procedure performance. While piezoelectric actuators are highly desirable for MRI guided actuation for their precision, high holding force, and non-magnetic operation they are often found to cause image degradation on a large enough to scale to render live imaging unusable. This paper describes a newly developed piezoelectric actuator driver and control system designed to drive a variety of both harmonic and non-harmonic motors that has been demonstrated to be capable of operating both harmonic and non-harmonic piezoelectric actuators with less than 5% SNR loss under closed loop control. The proposed system device allows for a single controller to control any supported actuator and feedback sensor without any physical hardware changes.

  4. Fluid flow sensing with ionic polymer-metal composites

    NASA Astrophysics Data System (ADS)

    Stalbaum, Tyler; Trabia, Sarah; Shen, Qi; Kim, Kwang J.

    2016-04-01

    Ionic polymer-metal composite (IPMC) actuators and sensors have been developed and modeled over the last two decades for use as soft-robotic deformable actuators and sensors. IPMC devices have been suggested for application as underwater actuators, energy harvesting devices, and medical devices such as in guided catheter insertion. Another interesting application of IPMCs in flow sensing is presented in this study. IPMC interaction with fluid flow is of interest to investigate the use of IPMC actuators as flow control devices and IPMC sensors as flow sensing devices. An organized array of IPMCs acting as interchanging sensors and actuators could potentially be designed for both flow measurement and control, providing an unparalleled tool in maritime operations. The underlying physics for this system include the IPMC ion transport and charge fundamental framework along with fluid dynamics to describe the flow around IPMCs. An experimental setup for an individual rectangular IPMC sensor with an externally controlled fluid flow has been developed to investigate this phenomenon and provide further insight into the design and application of this type of device. The results from this portion of the study include recommendations for IPMC device designs in flow control.

  5. Actuator concepts and mechatronics

    NASA Astrophysics Data System (ADS)

    Gilbert, Michael G.; Horner, Garnett C.

    1998-06-01

    Mechatronic design implies the consideration of integrated mechanical, electrical, and local control characteristics in electromechanical device design. In this paper, mechatronic development of actuation device concepts for active aircraft aerodynamic flow control are presented and discussed. The devices are intended to be embedded in aircraft aerodynamic surfaces to provide zero-net-momentum jets or additional flow-vorticity to control boundary layers and flow- separation. Two synthetic jet device prototypes and one vorticity-on-demand prototype currently in development are described in the paper. The aspects of actuation materials, design approaches to generating jets and vorticity, and the integration of miniaturized electronics are stressed.

  6. Active Vibration Isolation Devices with Inertial Servo Actuators

    NASA Astrophysics Data System (ADS)

    Melik-Shakhnazarov, V. A.; Strelov, V. I.; Sofiyanchuk, D. V.; Tregubenko, A. A.

    2018-03-01

    The use of active vibration isolation devices (AVIDs) in aerospace engineering is subject to the following restrictions. First, the volume for installing additional devices is always limited in instrument racks and compartments. Secondly, in many cases, it is impossible to add supports for servo actuators for fundamental or design considerations. In the paper, it has been shown that this problem can be solved if the inertial servo actuators are used in AVIDs instead of reference actuators. A transfer function has been theoretically calculated for an AVID controlled by inertial actuators. It has been shown that the volume of a six-mode single-housing AVID with inertial actuators can be 2-2.5 times smaller than that of devices with support actuators.

  7. Development of in-series piezoelectric bimorph bending beam actuators for active flow control applications

    NASA Astrophysics Data System (ADS)

    Chan, Wilfred K.; Clingman, Dan J.; Amitay, Michael

    2016-04-01

    Piezoelectric materials have long been used for active flow control purposes in aerospace applications to increase the effectiveness of aerodynamic surfaces on aircraft, wind turbines, and more. Piezoelectric actuators are an appropriate choice due to their low mass, small dimensions, simplistic design, and frequency response. This investigation involves the development of piezoceramic-based actuators with two bimorphs placed in series. Here, the main desired characteristic was the achievable displacement amplitude at specific driving voltages and frequencies. A parametric study was performed, in which actuators with varying dimensions were fabricated and tested. These devices were actuated with a sinusoidal waveform, resulting in an oscillating platform on which to mount active flow control devices, such as dynamic vortex generators. The main quantification method consisted of driving these devices with different voltages and frequencies to determine their free displacement, blocking force, and frequency response. It was found that resonance frequency increased with shorter and thicker actuators, while free displacement increased with longer and thinner actuators. Integration of the devices into active flow control test modules is noted. In addition to physical testing, a quasi-static analytical model was developed and compared with experimental data, which showed close correlation for both free displacement and blocking force.

  8. Wireless Displacement Sensing of Micromachined Spiral-Coil Actuator Using Resonant Frequency Tracking

    PubMed Central

    Ali, Mohamed Sultan Mohamed; AbuZaiter, Alaa; Schlosser, Colin; Bycraft, Brad; Takahata, Kenichi

    2014-01-01

    This paper reports a method that enables real-time displacement monitoring and control of micromachined resonant-type actuators using wireless radiofrequency (RF). The method is applied to an out-of-plane, spiral-coil microactuator based on shape-memory-alloy (SMA). The SMA spiral coil forms an inductor-capacitor resonant circuit that is excited using external RF magnetic fields to thermally actuate the coil. The actuation causes a shift in the circuit's resonance as the coil is displaced vertically, which is wirelessly monitored through an external antenna to track the displacements. Controlled actuation and displacement monitoring using the developed method is demonstrated with the microfabricated device. The device exhibits a frequency sensitivity to displacement of 10 kHz/μm or more for a full out-of-plane travel range of 466 μm and an average actuation velocity of up to 155 μm/s. The method described permits the actuator to have a self-sensing function that is passively operated, thereby eliminating the need for separate sensors and batteries on the device, thus realizing precise control while attaining a high level of miniaturization in the device. PMID:25014100

  9. ToF-SIMS Characterization of Biocompatible Silk/Polypyrrole Electromechanical Actuators

    NASA Astrophysics Data System (ADS)

    Bradshaw, Nathan; Severt, Sean; Wang, Zhaoying; Klemke, Carly; Larson, Jesse; Zhu, Zihua; Murphy, Amanda; Leger, Janelle

    2015-03-01

    Materials capable of controlled movements that can also interface with biological environments are highly sought after for biomedical devices such as valves, blood vessel sutures, cochlear implants and controlled drug release devices. Recently we have reported the synthesis of films composed of a conductive interpenetrating network of the biopolymer silk fibroin and poly(pyrrole). These silk-PPy composites function as bilayer electromechanical actuators in a biologically-relevant environment, can be actuated repeatedly, and are able to generate forces comparable with natural muscle (>0.1 MPa), making them an ideal candidate for interfacing with biological tissues. Here, time of flight secondary ion mass spectrometry was used to investigate the migration of ions in the devices during actuation. These findings will be discussed in the context of the actuation mechanism and opportunities for further improvements in device stability and performance.

  10. Droplet Microfluidics for Chip-Based Diagnostics

    PubMed Central

    Kaler, Karan V. I. S.; Prakash, Ravi

    2014-01-01

    Droplet microfluidics (DMF) is a fluidic handling technology that enables precision control over dispensing and subsequent manipulation of droplets in the volume range of microliters to picoliters, on a micro-fabricated device. There are several different droplet actuation methods, all of which can generate external stimuli, to either actively or passively control the shape and positioning of fluidic droplets over patterned substrates. In this review article, we focus on the operation and utility of electro-actuation-based DMF devices, which utilize one or more micro-/nano-patterned substrates to facilitate electric field-based handling of chemical and/or biological samples. The underlying theory of DMF actuations, device fabrication methods and integration of optical and opto-electronic detectors is discussed in this review. Example applications of such electro-actuation-based DMF devices have also been included, illustrating the various actuation methods and their utility in conducting chip-based laboratory and clinical diagnostic assays. PMID:25490590

  11. Development of an Actuator for Flow Control Utilizing Detonation

    NASA Technical Reports Server (NTRS)

    Lonneman, Patrick J.; Cutler, Andrew D.

    2004-01-01

    Active flow control devices including mass injection systems and zero-net-mass flux actuators (synthetic jets) have been employed to delay flow separation. These devices are capable of interacting with low-speed, subsonic flows, but situations exist where a stronger crossflow interaction is needed. Small actuators that utilize detonation of premixed fuel and oxidizer should be capable of producing supersonic exit jet velocities. An actuator producing exit velocities of this magnitude should provide a more significant interaction with transonic and supersonic crossflows. This concept would be applicable to airfoils on high-speed aircraft as well as inlet and diffuser flow control. The present work consists of the development of a detonation actuator capable of producing a detonation in a single shot (one cycle). Multiple actuator configurations, initial fill pressures, oxidizers, equivalence ratios, ignition energies, and the addition of a turbulence generating device were considered experimentally and computationally. It was found that increased initial fill pressures and the addition of a turbulence generator aided in the detonation process. The actuators successfully produced Chapman-Jouguet detonations and wave speeds on the order of 3000 m/s.

  12. High-speed wavefront control using MEMS micromirrors

    NASA Astrophysics Data System (ADS)

    Bifano, T. G.; Stewart, J. B.

    2005-08-01

    Over the past decade, a number of electrostatically-actuated MEMS deformable mirror devices have been used for adaptive control in beam-forming and imaging applications. One architecture that has been widely used is the silicon device developed by Boston University, consisting of a continuous or segmented mirror supported by post attachments to an array of parallel plate electrostatic actuators. MEMS deformable mirrors and segmented mirrors with up to 1024 of these actuators have been used in open loop and closed loop control systems to control wavefront errors. Frame rates as high as 11kHz have been demonstrated. Mechanically, the actuators used in this device exhibit a first-mode resonant frequency that is in the range of many tens of kilohertz up to a few hundred kilohertz. Viscous air damping has been found to limit operation at such high frequencies in air at standard pressure. Some applications in high-speed tracking and beam-forming could benefit from increased speed. In this paper, several approaches to achieving critically-damped performance with such MEMS DMs are detailed, and theoretical and experimental results are presented. One approach is to seal the MEMS DM in a full or partial vacuum environment, thereby affecting air damping. After vacuum sealing the device's predicted resonant behavior at tens of kilohertz was observed. In vacuum, the actuator's intrinsic material damping is quite small, resulting in considerable oscillation in step response. To alleviate this problem, a two-step actuation algorithm was employed. Precise control of a single actuator frequencies up to 100kHz without overshoot was demonstrated using this approach. Another approach to increasing actuation speed was to design actuators that reduce air damping effects. This is also demonstrated in the paper.

  13. Method of Fabricating NASA-Standard Macro-Fiber Composite Piezoelectric Actuators

    NASA Technical Reports Server (NTRS)

    High, James W.; Wilkie, W. Keats

    2003-01-01

    The NASA Macro-Fiber Composite actuator is a flexible piezoelectric composite device designed for controlling vibrations and shape deformations in high performance aerospace structures. A complete method for fabricating the standard NASA Macro-Fiber Composite actuator is presented in this document. When followed precisely, these procedures will yield devices with electromechanical properties identical to the standard actuator manufactured by NASA Langley Research Center.

  14. Control of non-linear actuator of artificial muscles for the use in low-cost robotics prosthetics limbs

    NASA Astrophysics Data System (ADS)

    Anis Atikah, Nurul; Yeng Weng, Leong; Anuar, Adzly; Chien Fat, Chau; Sahari, Khairul Salleh Mohamed; Zainal Abidin, Izham

    2017-10-01

    Currently, the methods of actuating robotic-based prosthetic limbs are moving away from bulky actuators to more fluid materials such as artificial muscles. The main disadvantages of these artificial muscles are their high cost of manufacturing, low-force generation, cumbersome and complex controls. A recent discovery into using super coiled polymer (SCP) proved to have low manufacturing costs, high force generation, compact and simple controls. Nevertheless, the non-linear controls still exists due to the nature of heat-based actuation, which is hysteresis. This makes position control difficult. Using electrically conductive devices allows for very quick heating, but not quick cooling. This research tries to solve the problem by using peltier devices, which can effectively heat and cool the SCP, hence giving way to a more precise control. The peltier device does not actively introduce more energy to a volume of space, which the coiled heating does; instead, it acts as a heat pump. Experiments were conducted to test the feasibility of using peltier as an actuating method on different diameters of nylon fishing strings. Based on these experiments, the performance characteristics of the strings were plotted, which could be used to control the actuation of the string efficiently in the future.

  15. Biomimetic photo-actuation: sensing, control and actuation in sun-tracking plants.

    PubMed

    Dicker, M P M; Rossiter, J M; Bond, I P; Weaver, P M

    2014-09-01

    Although the actuation mechanisms that drive plant movement have been investigated from a biomimetic perspective, few studies have looked at the wider sensing and control systems that regulate this motion. This paper examines photo-actuation-actuation induced by, and controlled with light-through a review of the sun-tracking functions of the Cornish Mallow. The sun-tracking movement of the Cornish Mallow leaf results from an extraordinarily complex-yet extremely elegant-process of signal perception, generation, filtering and control. Inspired by this process, a concept for a simplified biomimetic analogue of this leaf is proposed: a multifunctional structure employing chemical sensing, signal transmission, and control of composite hydrogel actuators. We present this multifunctional structure, and show that the success of the concept will require improved selection of materials and structural design. This device has application in the solar-tracking of photovoltaic panels for increased energy yield. More broadly it is envisaged that the concept of chemical sensing and control can be expanded beyond photo-actuation to many other stimuli, resulting in new classes of robust solid-state devices.

  16. Electrically controlled polymeric gel actuators

    DOEpatents

    Adolf, Douglas B.; Shahinpoor, Mohsen; Segalman, Daniel J.; Witkowski, Walter R.

    1993-01-01

    Electrically controlled polymeric gel actuators or synthetic muscles capable of undergoing substantial expansion and contraction when subjected to changing pH environments, temperature, or solvent. The actuators employ compliant containers for the gels and their solvents. The gels employed may be cylindrical electromechanical gel fibers such as polyacrylamide fibers or a mixture of poly vinyl alcohol-polyacrylic acid arranged in a parallel aggregate and contained in an electrolytic solvent bath such as salt water. The invention includes smart, electrically activated devices exploiting this phenomenon. These devices are capable of being manipulated via active computer control as large displacement actuators for use in adaptive structure such as robots.

  17. Electrically controlled polymeric gel actuators

    DOEpatents

    Adolf, D.B.; Shahinpoor, M.; Segalman, D.J.; Witkowski, W.R.

    1993-10-05

    Electrically controlled polymeric gel actuators or synthetic muscles are described capable of undergoing substantial expansion and contraction when subjected to changing pH environments, temperature, or solvent. The actuators employ compliant containers for the gels and their solvents. The gels employed may be cylindrical electromechanical gel fibers such as polyacrylamide fibers or a mixture of poly vinyl alcohol-polyacrylic acid arranged in a parallel aggregate and contained in an electrolytic solvent bath such as salt water. The invention includes smart, electrically activated devices exploiting this phenomenon. These devices are capable of being manipulated via active computer control as large displacement actuators for use in adaptive structure such as robots. 11 figures.

  18. Assistive acting movement therapy devices with pneumatic rotary-type soft actuators.

    PubMed

    Wilkening, André; Baiden, David; Ivlev, Oleg

    2012-12-01

    Inherent compliance and assistive behavior are assumed to be essential properties for safe human-robot interaction. Rehabilitation robots demand the highest standards in this respect because the machine interacts directly with weak persons who are often sensitive to pain. Using novel soft fluidic actuators with rotary elastic chambers (REC actuators), compact, lightweight, and cost-effective therapeutic devices can be developed. This article describes modular design and control strategies for new assistive acting robotic devices for upper and lower extremities. Due to the inherent compliance and natural back-drivability of pneumatic REC actuators, these movement therapy devices provide gentle treatment, whereby the interaction forces between humans and the therapy device are estimated without the use of expensive force/torque sensors. An active model-based gravity compensation based on separated models of the robot and of the individual patient's extremity provides the basis for effective assistive control. The utilization of pneumatic actuators demands a special safety concept, which is merged with control algorithms to provide a sufficient level of safeness and to catch any possible system errors and/or emergency situations. A self-explanatory user interface allows for easy, intuitive handling. Prototypes are very comfortable for use due to several control routines that work in the background. Assistive devices have been tested extensively with several healthy persons; the knee/hip movement therapy device is now under clinical trials at the Clinic for Orthopaedics and Trauma Surgery at the Klinikum Stuttgart.

  19. Monovalve with integrated fuel injector and port control valve, and engine using same

    DOEpatents

    Milam, David M.

    2002-01-01

    Each cylinder of an internal combustion engine includes a combined gas exchange valve and fuel injector with a port control valve. The port control valve operates to open either an intake passage or an exhaust passage. The operation of the combined device is controlled by a pair of electrical actuators. The device is hydraulically actuated.

  20. A description of model 3B of the multipurpose ventricular actuating system. [providing controlled driving pressures

    NASA Technical Reports Server (NTRS)

    Webb, J. A., Jr.

    1974-01-01

    The multipurpose ventricular actuating system is a pneumatic signal generating device that provides controlled driving pressures for actuating pulsatile blood pumps. Overall system capabilities, the timing circuitry, and calibration instruction are included.

  1. Tunable actuation of dielectric elastomer by electromechanical loading rates

    NASA Astrophysics Data System (ADS)

    Li, Guorui; Zhang, Mingqi; Chen, Xiangping; Yang, Xuxu; Wong, Tuck-Whye; Li, Tiefeng; Huang, Zhilong

    2017-10-01

    Dielectric elastomer (DE) membranes are able to self-deform with the application of an electric field through the thickness direction. In comparison to conventional rigid counterparts, soft actuators using DE provide a variety of advantages such as high compliance, low noise, and light weight. As one of the challenges in the development of DE actuating devices, tuning the electromechanical actuating behavior is crucial in order to achieve demanded loading paths and to avoid electromechanical failures. In this paper, our experimental results show that the electromechanical loading conditions affect the actuating behaviors of the DE. The electrical actuating force can be tuned by 29.4% with the control of the electrical charging rate. In addition, controllable actuations have been investigated by the mechanical model in manipulating the electromechanical loading rate. The calculated results agree well with the experimental data. Lastly, it is believed that the mechanisms of controlling the electromechanical loading rate may serve as a guide for the design of DE devices and high performance soft robots in the near future.

  2. Reliability Testing of NASA Piezocomposite Actuators

    NASA Technical Reports Server (NTRS)

    Wilkie, W.; High, J.; Bockman, J.

    2002-01-01

    NASA Langley Research Center has developed a low-cost piezocomposite actuator which has application for controlling vibrations in large inflatable smart space structures, space telescopes, and high performance aircraft. Tests show the NASA piezocomposite device is capable of producing large, directional, in-plane strains on the order of 2000 parts-per-million peak-to-peak, with no reduction in free-strain performance to 100 million electrical cycles. This paper describes methods, measurements, and preliminary results from our reliability evaluation of the device under externally applied mechanical loads and at various operational temperatures. Tests performed to date show no net reductions in actuation amplitude while the device was moderately loaded through 10 million electrical cycles. Tests were performed at both room temperature and at the maximum operational temperature of the epoxy resin system used in manufacture of the device. Initial indications are that actuator reliability is excellent, with no actuator failures or large net reduction in actuator performance.

  3. Development of an active member using piezoelectric and electrostrictive actuation for control of precision structures

    NASA Technical Reports Server (NTRS)

    Anderson, E. H.; Moore, D. M.; Fanson, J. L.; Ealey, M. A.

    1990-01-01

    The design and development of a zero stiction active member containing piezoelectric and electrostrictive actuator motors is presented. The active member is intended for use in submicron control of structures. Experimental results are shown which illustrate actuator and device characteristics relevant to precision control applications.

  4. Thermal expansion as a precision actuator

    NASA Astrophysics Data System (ADS)

    Miller, Chris; Montgomery, David; Black, Martin; Schnetler, Hermine

    2016-07-01

    The UK ATC has developed a novel thermal actuator design as part of an OPTICON project focusing on the development of a Freeform Active Mirror Element (FAME). The actuator uses the well understood concept of thermal expansion to generate the required force and displacement. As heat is applied to the actuator material it expands linearly. A resistance temperature device (RTD) is embedded in the centre of the actuator and is used both as a heater and a sensor. The RTD temperature is controlled electronically by injecting a varying amount of current into the device whilst measuring the voltage across it. Temperature control of the RTD has been achieved to within 0.01°C. A 3D printed version of the actuator is currently being used at the ATC to deform a mirror but it has several advantages that may make it suitable to other applications. The actuator is cheap to produce whilst obtaining a high accuracy and repeatability. The actuator design would be suitable for applications requiring large numbers of actuators with high precision.

  5. DEVICE FOR CONTROL OF OXYGEN PARTIAL PRESSURE

    DOEpatents

    Bradner, H.; Gordon, H.S.

    1957-12-24

    A device is described that can sense changes in oxygen partial pressure and cause a corresponding mechanical displacement sufficient to actuate meters, valves and similar devices. A piston and cylinder arrangement contains a charge of crystalline metal chelate pellets which have the peculiar property of responding to variations in the oxygen content of the ambient atmosphere by undergoing a change in dimension. A lever system amplifies the relative displacement of the piston in the cylinder, and actuates the controlled valving device. This partial pressure oxygen sensing device is useful in controlled chemical reactions or in respiratory devices such as the oxygen demand meters for high altitude aircraft.

  6. Autofocus system and autofocus method for focusing on a surface

    DOEpatents

    O'Neill, Mary Morabito

    2017-05-23

    An autofocus system includes an imaging device, a lens system and a focus control actuator that is configured to change a focus position of the imaging device in relation to a stage. The electronic control unit is configured to control the focus control actuator to a plurality of predetermined focus positions, and activate the imaging device to obtain an image at predetermined positions and then apply a spatial filter to the obtained images. This generates a filtered image for the obtained images. The control unit determines a focus score for the filtered images such that the focus score corresponds to a degree of focus in the obtained images. The control unit identifies a best focus position by comparing the focus score of the filtered images, and controls the focus control actuator to the best focus position corresponding to the highest focus score.

  7. Tool actuation and force feedback on robot-assisted microsurgery system

    NASA Technical Reports Server (NTRS)

    Das, Hari (Inventor); Ohm, Tim R. (Inventor); Boswell, Curtis D. (Inventor); Steele, Robert D. (Inventor)

    2002-01-01

    An input control device with force sensors is configured to sense hand movements of a surgeon performing a robot-assisted microsurgery. The sensed hand movements actuate a mechanically decoupled robot manipulator. A microsurgical manipulator, attached to the robot manipulator, is activated to move small objects and perform microsurgical tasks. A force-feedback element coupled to the robot manipulator and the input control device provides the input control device with an amplified sense of touch in the microsurgical manipulator.

  8. Vibration control in statically indeterminate adaptive truss structures

    NASA Technical Reports Server (NTRS)

    Baycan, C. M.; Utku, Senol; Wada, Ben K.

    1993-01-01

    In this work vibration control of statically indeterminate adaptive truss structures is investigated. Here, the actuators (i.e., length adjusting devices) that are used for vibration control, work against the axial forces caused by the inertial forces. In statically determinate adaptive trusses no axial force is induced by the actuation. The control problem in statically indeterminate trusses may be dominated by the actuation-induced axial element forces. The creation of actuation-induced axial forces puts the system to a higher energy state, thus aggravates the controls. It is shown that by the usage of sufficient number of slave actuators in addition to the actual control actuators, the actuation-induced axial element forces can be nullified, and the control problem of the statically indeterminate adaptive truss problem is reduced to that of a statically determinate one. It is also shown that the usage of slave actuators saves a great amount of control energy and provides robustness for the controls.

  9. Thin, nearly wireless adaptive optical device

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth (Inventor); Hughes, Eli (Inventor)

    2008-01-01

    A thin, nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.

  10. Thin, nearly wireless adaptive optical device

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth (Inventor); Hughes, Eli (Inventor)

    2007-01-01

    A thin, nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.

  11. Thin nearly wireless adaptive optical device

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth J. (Inventor); Hughes, Eli (Inventor)

    2009-01-01

    A thin nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.

  12. Wireless implantable chip with integrated nitinol-based pump for radio-controlled local drug delivery.

    PubMed

    Fong, Jeffrey; Xiao, Zhiming; Takahata, Kenichi

    2015-02-21

    We demonstrate an active, implantable drug delivery device embedded with a microfluidic pump that is driven by a radio-controlled actuator for temporal drug delivery. The polyimide-packaged 10 × 10 × 2 mm(3) chip contains a micromachined pump chamber and check valves of Parylene C to force the release of the drug from a 76 μL reservoir by wirelessly activating the actuator using external radio-frequency (RF) electromagnetic fields. The rectangular-shaped spiral-coil actuator based on nitinol, a biocompatible shape-memory alloy, is developed to perform cantilever-like actuation for pumping operation. The nitinol-coil actuator itself forms a passive 185 MHz resonant circuit that serves as a self-heat source activated via RF power transfer to enable frequency-selective actuation and pumping. Experimental wireless operation of fabricated prototypes shows successful release of test agents from the devices placed in liquid and excited by radiating tuned RF fields with an output power of 1.1 W. These tests reveal a single release volume of 219 nL, suggesting a device's capacity of ~350 individual ejections of drug from its reservoir. The thermal behavior of the activated device is also reported in detail. This proof-of-concept prototype validates the effectiveness of wireless RF pumping for fully controlled, long-lasting drug delivery, a key step towards enabling patient-tailored, targeted local drug delivery through highly miniaturized implants.

  13. Magnetorheological valve based actuator for improvement of passively controlled turbocharger system

    NASA Astrophysics Data System (ADS)

    Bahiuddin, I.; Mazlan, S. A.; Imaduddin, F.; Ubaidillah, Ichwan, B.

    2016-03-01

    Variable geometry turbochargers have been widely researched to fulfil the current engine stringent regulations. The passively controlled turbocharger (PCT) concept has been proposed to reduce energy consumption by utilizing the emission energy to move the actuator. However, it only covered a small range operating condition. Therefore, a magnetorheological(MR) Valve device, as typical smart material devices to enhance a passive device, is proposed to improve the PCT. Even though the benefits have been considered for the compactness and easiness to connect to an electrical system, the number of publications regarding the MR application within engine system is hard to be found. Therefore, this paper introduces a design of an MR Valve in a turbocharger. The main challenge is to make sure its capability to produce a sufficient total pressure drop. To overcome the challenge, its material properties, shape and pressure drop calculation has been analyzed to fulfil the requirement. Finally, to get a more understanding of actuator performance, the actuator response was simulated by treating the exhaust gas pressure as an input. It shows that the new MR actuator has a potential dynamic to improve the PCT controllability.

  14. A force compliant surgical robotic tool with IPMC actuator and integrated sensing

    NASA Astrophysics Data System (ADS)

    Fu, Lixue; McDaid, Andrew J.; Aw, Kean C.

    2013-08-01

    A robotic surgical device, actuated by Ionic Polymer-metal Composite (IPMC), integrated with a strain gauge to achieve force control is proposed. Test results have proved the capabilities of this device to conduct surgical procedures. The recent growth of patient acceptance and demand for robotic aided surgery has stimulated the progress of research where in many applications the performance has been proven to surpass human surgeons. A new area which uses the inherently force compliant and back-drivable properties of polymers, IPMC in this case, has shown its potential to undertake precise surgical procedures in delicate environments of medical practice. This is because IPMCs have similar actuation characteristics to real biological systems ensuring the safety of the practice. Nevertheless, little has been done in developing IPMCs as a rotary joint actuators used as functional surgical devices. This research demonstrates the design of a single degree of freedom (1DOF) robotic surgical instrument with one joint mechanism actuated by IPMC with an embedded strain gauge as a feedback unit, and controlled by a scheduled gain PI controller. With the simplicity of the system it was proven to be able to cut to the desired controlled force and hence depth.

  15. Actuator with built-in viscous damping for isolation and structural control

    NASA Astrophysics Data System (ADS)

    Hyde, T. Tupper; Anderson, Eric H.

    1994-05-01

    This paper describes the development and experimental application of an actuator with built-in viscous damping. An existing passive damper was modified for use as a novel actuation device for isolation and structural control. The device functions by using the same fluid for viscous damping and as a hydraulic lever for a voice coil actuator. Applications for such an actuator include structural control and active isolation. Lumped parameter models capturing structural and fluid effects are presented. Component tests of free stroke, blocked force, and passive complex stiffness are used to update the assumed model parameters. The structural damping effectiveness of the new actuator is shown to be that of a regular D-strut passively and that of a piezoelectric strut with load cell feedback actively in a complex testbed structure. Open and closed loop results are presented for a force isolation application showing an 8 dB passive and 20 dB active improvement over an undamped mount. An optimized design for a future experimental testbed is developed.

  16. A comprehensive review of select smart polymeric and gel actuators for soft mechatronics and robotics applications: fundamentals, freeform fabrication, and motion control

    NASA Astrophysics Data System (ADS)

    Carrico, James D.; Tyler, Tom; Leang, Kam K.

    2017-10-01

    Smart polymeric and gel actuators change shape or size in response to stimuli like electricity, heat, or light. These smart polymeric- and gel-based actuators are compliant and well suited for development of soft mechatronic and robotic devices. This paper provides a thorough review of select smart polymeric and gel actuator materials where an automated and freeform fabrication process, like 3D printing, is exploited to create custom shaped monolithic devices. In particular, the advantages and limitations, examples of applications, manufacturing and fabrication techniques, and methods for actuator control are discussed. Finally, a rigorous comparison and analysis of some of the advantages and limitations, as well as manufacturing processes, for these materials, are presented.

  17. Design, characterisation and evaluation of a soft robotic sock device on healthy subjects for assisted ankle rehabilitation.

    PubMed

    Low, Fan-Zhe; Lim, Jeong Hoon; Yeow, Chen-Hua

    2018-01-01

    Motor impairment is one of the common neurological conditions suffered by stroke patients, where this chronic immobility together with the absence of early limb mobilisation can lead to conditions such as joint contracture with spastic limbs. In this study, a soft robotic sock device was developed, which can provide compliant actuation to the ankle joint in the early stage of stroke recovery. The device is fitted with soft extension actuators and when the actuators are inflated, they extend and guide the foot into plantarflexion; upon deflation, the actuators will resume their initial conformations. Each actuator is linked to a pneumatic pump-valve control system that injects pressurised air into or release air from the system. In this study, the design and characterisation of the soft actuators will be presented, where the theoretical and experimental forces generated by the actuators were compared. The performance of the device was also evaluated on healthy subjects and the results had shown that the device was able to move the subjects' ankles into cycles of dorsiflexion-plantarflexion, in the absence of voluntary muscle effort. The findings suggested that the soft wearable robotic device was capable of assisting the subjects in performing repeated cycles of ankle flexion.

  18. An Implantable Extracardiac Soft Robotic Device for the Failing Heart: Mechanical Coupling and Synchronization.

    PubMed

    Payne, Christopher J; Wamala, Isaac; Abah, Colette; Thalhofer, Thomas; Saeed, Mossab; Bautista-Salinas, Daniel; Horvath, Markus A; Vasilyev, Nikolay V; Roche, Ellen T; Pigula, Frank A; Walsh, Conor J

    2017-09-01

    Soft robotic devices have significant potential for medical device applications that warrant safe synergistic interaction with humans. This article describes the optimization of an implantable soft robotic system for heart failure whereby soft actuators wrapped around the ventricles are programmed to contract and relax in synchrony with the beating heart. Elastic elements integrated into the soft actuators provide recoiling function so as to aid refilling during the diastolic phase of the cardiac cycle. Improved synchronization with the biological system is achieved by incorporating the native ventricular pressure into the control system to trigger assistance and synchronize the device with the heart. A three-state electro-pneumatic valve configuration allows the actuators to contract at different rates to vary contraction patterns. An in vivo study was performed to test three hypotheses relating to mechanical coupling and temporal synchronization of the actuators and heart. First, that adhesion of the actuators to the ventricles improves cardiac output. Second, that there is a contraction-relaxation ratio of the actuators which generates optimal cardiac output. Third, that the rate of actuator contraction is a factor in cardiac output.

  19. Control of Transitional and Turbulent Flows Using Plasma-Based Actuators

    DTIC Science & Technology

    2006-06-01

    by means of asymmetric dielectric-barrier-discharge ( DBD ) actuators is presented. The flow fields are simulated employ- ing an extensively validated...effective use of DBD devices. As a consequence, meaningful computations require the use of three-dimensional large-eddy simulation approaches capable of...counter-flow DBD actuator is shown to provide an effective on-demand tripping device . This prop- erty is exploited for the suppression of laminar

  20. Omni Directional Multimaterial Soft Cylindrical Actuator and Its Application as a Steerable Catheter.

    PubMed

    Gul, Jahan Zeb; Yang, Young Jin; Su, Kim Young; Choi, Kyung Hyun

    2017-09-01

    Soft actuators with complex range of motion lead to strong interest in applying devices like biomedical catheters and steerable soft pipe inspectors. To facilitate the use of soft actuators in devices where controlled, complex, precise, and fast motion is required, a structurally controlled Omni directional soft cylindrical actuator is fabricated in a modular way using multilayer composite of polylactic acid based conductive Graphene, shape memory polymer, shape memory alloy, and polyurethane. Multiple fabrication techniques are discussed step by step that mainly include fused deposition modeling based 3D printing, dip coating, and UV curing. A mathematical control model is used to generate patterned electrical signals for the Omni directional deformations. Characterizations like structural control, bending, recovery, path, and thermal effect are carried out with and without load (10 g) to verify the new cylindrical design concept. Finally, the application of Omni directional actuator as a steerable catheter is explored by fabricating a scaled version of carotid artery through 3D printing using a semitransparent material.

  1. A Resonant Pulse Detonation Actuator for High-Speed Boundary Layer Separation Control

    NASA Technical Reports Server (NTRS)

    Beck, B. T.; Cutler, A. D.; Drummond, J. P.; Jones, S. B.

    2004-01-01

    A variety of different types of actuators have been previously investigated as flow control devices. Potential applications include the control of boundary layer separation in external flows, as well as jet engine inlet and diffuser flow control. The operating principles for such devices are typically based on either mechanical deflection of control surfaces (which include MEMS flap devices), mass injection (which includes combustion driven jet actuators), or through the use of synthetic jets (diaphragm devices which produce a pulsating jet with no net mass flow). This paper introduces some of the initial flow visualization work related to the development of a relatively new type of combustion-driven jet actuator that has been proposed based on a pulse detonation principle. The device is designed to utilize localized detonation of a premixed fuel (Hydrogen)-air mixture to periodically inject a jet of gas transversely into the primary flow. Initial testing with airflow successfully demonstrated resonant conditions within the range of acoustic frequencies expected for the design. Schlieren visualization of the pulsating air jet structure revealed axially symmetric vortex flow, along with the formation of shocks. Flow visualization of the first successful sustained oscillation condition is also demonstrated for one configuration of the current test section. Future testing will explore in more detail the onset of resonant combustion and the approach to conditions of sustained resonant detonation.

  2. Electromechanically Actuated Multifunctional Wireless Auxetic Device for Wound Management.

    PubMed

    Mir, Mariam; Ansari, Umar; Ali, Murtaza Najabat; Iftikhar, Muhammad Hassan Ul; Qayyum, Faisal

    2017-01-01

    The design and fabrication of a wound healing device for chronic wounds, with multiple functions for controlled drug delivery and exudate removal, has been described in this paper. The structural features have been machined and modified through laser cutting in a biocompatible polymer cast. Miniaturized versions of electronically actuated (lead-screw and pulley) mechanisms are used for the specific purpose of controlled drug delivery. These mechanisms have been studied and tested, being controlled through a microcontroller setup. An auxetic polymeric barrier membrane has been used for restricting the drug quantities administered. Drug delivery mechanisms are powered wirelessly, through an external, active RF component; this communicates with a passive component that is buried inside the wound healing device. The exudate removal efficiency of the device has been assessed through several simple tests using simulated wound exudate. It has been found that reasonably precise quantities of drug dosages to be administered to the wound site can be controlled through both drug delivery mechanisms; however, the lead-screw mechanism provides a better control of auxetic barrier membrane actuation and hence controlled drug delivery. We propose that this device can have potential clinical significance in controlled drug delivery and exudate removal in the management of chronic wounds.

  3. Energy harvesting for self-powered aerostructure actuation

    NASA Astrophysics Data System (ADS)

    Bryant, Matthew; Pizzonia, Matthew; Mehallow, Michael; Garcia, Ephrahim

    2014-04-01

    This paper proposes and experimentally investigates applying piezoelectric energy harvesting devices driven by flow induced vibrations to create self-powered actuation of aerostructure surfaces such as tabs, flaps, spoilers, or morphing devices. Recently, we have investigated flow-induced vibrations and limit cycle oscillations due to aeroelastic flutter phenomena in piezoelectric structures as a mechanism to harvest energy from an ambient fluid flow. We will describe how our experimental investigations in a wind tunnel have demonstrated that this harvested energy can be stored and used on-demand to actuate a control surface such as a trailing edge flap in the airflow. This actuated control surface could take the form of a separate and discrete actuated flap, or could constitute rotating or deflecting the oscillating energy harvester itself to produce a non-zero mean angle of attack. Such a rotation of the energy harvester and the associated change in aerodynamic force is shown to influence the operating wind speed range of the device, its limit cycle oscillation (LCO) amplitude, and its harvested power output; hence creating a coupling between the device's performance as an energy harvester and as a control surface. Finally, the induced changes in the lift, pitching moment, and drag acting on a wing model are quantified and compared for a control surface equipped with an oscillating energy harvester and a traditional, static control surface of the same geometry. The results show that when operated in small amplitude LCO the energy harvester adds negligible aerodynamic drag.

  4. Flux-Feedback Magnetic-Suspension Actuator

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J.

    1990-01-01

    Flux-feedback magnetic-suspension actuator provides magnetic suspension and control forces having linear transfer characteristics between force command and force output over large range of gaps. Hall-effect devices used as sensors for electronic feedback circuit controlling currents flowing in electromagnetic windings to maintain flux linking suspended element at substantially constant value independent of changes in length of gap. Technique provides effective method for maintenance of constant flux density in gap and simpler than previous methods. Applications include magnetic actuators for control of shapes and figures of antennas and of precise segmented reflectors, magnetic suspensions in devices for storage of angular momentum and/or kinetic energy, and systems for control, pointing, and isolation of instruments.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradshaw, Nathan P.; Severt, Sean Y.; Wang, Zhaoying

    Biocompatible materials capable of controlled actuation under biologically relevant conditions are in high demand for use in a number of biomedical applications. Recently, we demonstrated that a composite material composed of silk biopolymer and the conducting polymer poly(pyrrole) can bend under an applied voltage using a simple bilayer device. Here we present further characterization of these bilayer actuators using time of flight secondary ion mass spectrometry, and provide clarification on the mechanism of actuation and factors affecting device performance and stability. We will discuss the results of this study in the context of strategies for optimization of device performance.

  6. Multi-function magnetic jack control drive mechanism

    DOEpatents

    Bollinger, L.R.; Crawford, D.C.

    1983-10-06

    A multi-function magnetic jack control drive mechanism for controlling a nuclear reactor is provided. The mechanism includes an elongate pressure housing in which a plurality of closely spaced drive rods are located. Each drive rod is connected to a rod which is insertable in the reactor core. An electromechanical stationary latch device is provided which is actuatable to hold each drive rod stationary with respect to the pressure housing. An electromechanical movable latch device is also provided for each one of the drive rods. Each movable latch device is provided with a base and is actuatable to hold a respective drive rod stationary with respect to the base. An electromechanical lift device is further provided for each base which is actuatable for moving a respective base longitudinally along the pressure housing. In this manner, one or more drive rods can be moved in the pressure housing by sequentially and repetitively operating the electromechanical devices. Preferably, each latch device includes a pair of opposed latches which grip teeth located on the respective drive rod. Two, three, or four drive rods can be located symmetrically about the longitudinal axis of the pressure housing.

  7. Multi-function magnetic jack control drive mechanism

    DOEpatents

    Bollinger, Lawrence R.; Crawford, Donald C.

    1986-01-01

    A multi-function magnetic jack control drive mechanism for controlling a nuclear reactor is provided. The mechanism includes an elongate pressure housing in which a plurality of closely spaced drive rods are located. Each drive rod is connected to a rod which is insertable in the reactor core. An electromechanical stationary latch device is provided which is actuatable to hold each drive rod stationary with respect to the pressure housing. An electromechanical movable latch device is also provided for each one of the drive rods. Each movable latch device is provided with a base and is actuatable to hold a respective drive rod stationary with respect to the base. An electromechanical lift device is further provided for each base which is actuatable for moving a respective base longitudinally along the pressure housing. In this manner, one or more drive rods can be moved in the pressure housing by sequentially and repetitively operating the electromechanical devices. Preferably, each latch device includes a pair of opposed latches which grip teeth located on the respective drive rod. Two, three, or four drive rods can be located symmetrically about the longitudinal axis of the pressure housing.

  8. Network device interface for digitally interfacing data channels to a controller via a network

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Philip J. (Inventor); Winkelmann, Joseph P. (Inventor); Grant, Robert L. (Inventor); Konz, Daniel W. (Inventor)

    2006-01-01

    The present invention provides a network device interface and method for digitally connecting a plurality of data channels, such as sensors, actuators, and subsystems, to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. Data retrieved from the sensor is then converted by the network device interface into digital signals and transmitted back to the controller. In one advantageous embodiment, the network device interface is a state machine, such as an ASIC, that operates independent of a processor in communicating with the bus controller and data channels.

  9. Control of soft machines using actuators operated by a Braille display.

    PubMed

    Mosadegh, Bobak; Mazzeo, Aaron D; Shepherd, Robert F; Morin, Stephen A; Gupta, Unmukt; Sani, Idin Zhalehdoust; Lai, David; Takayama, Shuichi; Whitesides, George M

    2014-01-07

    One strategy for actuating soft machines (e.g., tentacles, grippers, and simple walkers) uses pneumatic inflation of networks of small channels in an elastomeric material. Although the management of a few pneumatic inputs and valves to control pressurized gas is straightforward, the fabrication and operation of manifolds containing many (>50) independent valves is an unsolved problem. Complex pneumatic manifolds-often built for a single purpose-are not easily reconfigured to accommodate the specific inputs (i.e., multiplexing of many fluids, ranges of pressures, and changes in flow rates) required by pneumatic systems. This paper describes a pneumatic manifold comprising a computer-controlled Braille display and a micropneumatic device. The Braille display provides a compact array of 64 piezoelectric actuators that actively close and open elastomeric valves of a micropneumatic device to route pressurized gas within the manifold. The positioning and geometries of the valves and channels in the micropneumatic device dictate the functionality of the pneumatic manifold, and the use of multi-layer soft lithography permits the fabrication of networks in a wide range of configurations with many possible functions. Simply exchanging micropneumatic devices of different designs enables rapid reconfiguration of the pneumatic manifold. As a proof of principle, a pneumatic manifold controlled a soft machine containing 32 independent actuators to move a ball above a flat surface.

  10. Control of Soft Machines using Actuators Operated by a Braille Display

    PubMed Central

    Mosadegh, Bobak; Mazzeo, Aaron D.; Shepherd, Robert F.; Morin, Stephen A.; Gupta, Unmukt; Sani, Idin Zhalehdoust; Lai, David; Takayama, Shuichi; Whitesides, George M.

    2013-01-01

    One strategy for actuating soft machines (e.g., tentacles, grippers, and simple walkers) uses pneumatic inflation of networks of small channels in an elastomeric material. Although the management of a few pneumatic inputs and valves to control pressurized gas is straightforward, the fabrication and operation of manifolds containing many (>50) independent valves is an unsolved problem. Complex pneumatic manifolds—often built for a single purpose—are not easily reconfigured to accommodate the specific inputs (i.e., multiplexing of many fluids, ranges of pressures, and changes in flow rates) required by pneumatic systems. This paper describes a pneumatic manifold comprising a computer-controlled braille display and a micropneumatic device. The braille display provides a compact array of 64 piezoelectric actuators that actively close and open elastomeric valves of a micropneumatic device to route pressurized gas within the manifold. The positioning and geometries of the valves and channels in the micropneumatic device dictate the functionality of the pneumatic manifold, and the use of multi-layer soft lithography permits the fabrication of networks in a wide range of configurations with many possible functions. Simply exchanging micropneumatic devices of different designs enables rapid reconfiguration of the pneumatic manifold. As a proof of principle, a pneumatic manifold controlled a soft machine containing 32 independent actuators to move a ball above a flat surface. PMID:24196070

  11. Advanced patient transfer assist device with intuitive interaction control.

    PubMed

    Humphreys, Heather C; Choi, Young Mi; Book, Wayne J

    2017-10-24

    This research aims to improve patient transfers by developing a new type of advanced robotic assist device. It has multiple actuated degrees of freedom and a powered steerable base to maximize maneuverability around obstacles. An intuitive interface and control strategy allows the caregiver to simply push on the machine in the direction of desired patient motion. The control integrates measurements of both force and proximity to mitigate any potential large collision forces and provides operators information about obstacles with a form of haptic feedback. Electro-hydraulic pump controlled actuation provides high force density for the actuation. Nineteen participants performed tests to compare transfer operations (transferring a 250-lb mannequin between a wheelchair, chair, bed, and floor) and interaction control of a prototype device with a commercially available patient lift. The testing included a time study of the transfer operations and subjective rating of device performance. The results show that operators perform transfer tasks significantly faster and rate performance higher using the prototype patient transfer assist device than with a current market patient lift. With further development, features of the new patient lift can help facilitate patient transfers that are safer, easier, and more efficient for caregivers.

  12. Hydraulic Actuator System for Rotor Control

    NASA Technical Reports Server (NTRS)

    Ulbrich, Heinz; Althaus, Josef

    1991-01-01

    In the last ten years, several different types of actuators were developed and fabricated for active control of rotors. A special hydraulic actuator system capable of generating high forces to rotating shafts via conventional bearings is addressed. The actively controlled hydraulic force actuator features an electrohydraulic servo valve which can produce amplitudes and forces at high frequencies necessary for influencing rotor vibrations. The mathematical description will be given in detail. The experimental results verify the theoretical model. Simulations already indicate the usefulness of this compact device for application to a real rotor system.

  13. Network device interface for digitally interfacing data channels to a controller via a network

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Philip J. (Inventor); Grant, Robert L. (Inventor); Konz, Daniel W. (Inventor); Winkelmann, Joseph P. (Inventor)

    2005-01-01

    The present invention provides a network device interface and method for digitally connecting a plurality of data channels, such as sensors, actuators, and subsystems, to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. Data retrieved from the sensor is then converted by the network device interface into digital signals and transmitted back to the controller. In one advantageous embodiment, the network device interface uses a specialized protocol for communicating across the network bus that uses a low-level instruction set and has low overhead for data communication.

  14. Network device interface for digitally interfacing data channels to a controller via a network

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Philip J. (Inventor); Konz, Daniel W. (Inventor); Winkelmann, Joseph P. (Inventor); Grant, Robert L. (Inventor)

    2004-01-01

    The present invention provides a network device interface and method for digitally connecting a plurality of data channels, such as sensors, actuators, and subsystems, to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. Data retrieved from the sensor is then converted by the network device interface into digital signals and transmitted back to the controller. In one advantageous embodiment, the network device interface uses a specialized protocol for communicating across the network bus that uses a low-level instruction set and has low overhead for data communication.

  15. Conformable actively multiplexed high-density surface electrode array for brain interfacing

    DOEpatents

    Rogers, John; Kim, Dae-Hyeong; Litt, Brian; Viventi, Jonathan

    2015-01-13

    Provided are methods and devices for interfacing with brain tissue, specifically for monitoring and/or actuation of spatio-temporal electrical waveforms. The device is conformable having a high electrode density and high spatial and temporal resolution. A conformable substrate supports a conformable electronic circuit and a barrier layer. Electrodes are positioned to provide electrical contact with a brain tissue. A controller monitors or actuates the electrodes, thereby interfacing with the brain tissue. In an aspect, methods are provided to monitor or actuate spatio-temporal electrical waveform over large brain surface areas by any of the devices disclosed herein.

  16. Network device interface for digitally interfacing data channels to a controller via a network

    NASA Technical Reports Server (NTRS)

    Konz, Daniel W. (Inventor); Ellerbrock, Philip J. (Inventor); Grant, Robert L. (Inventor); Winkelmann, Joseph P. (Inventor)

    2006-01-01

    The present invention provides a network device interface and method for digitally connecting a plurality of data channels, such as sensors, actuators, and subsystems, to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. Data retrieved from the sensor is then converted into digital signals and transmitted back to the controller. In one embodiment, the bus controller sends commands and data a defined bit rate, and the network device interface senses this bit rate and sends data back to the bus controller using the defined bit rate.

  17. MEMS scanner with 2D tilt, piston, and focus motion

    NASA Astrophysics Data System (ADS)

    Lani, S.; Bayat, D.; Petremand, Y.; Regamey, Y.-J.; Onillon, E.; Pierer, J.; Grossmann, S.

    2017-02-01

    A MEMS scanner with a high level of motion freedom has been developed. It includes a 2D mechanical tilting capability of +/- 15°, a piston motion of 50μm and a focus/defocus control system of a 2mm diameter mirror. The tilt and piston motion is achieved with an electromagnetic actuation (moving magnet) and the focus control with a deformation of the reflective surface with pneumatic actuation. This required the fabrication of at least one channel on the compliant membrane and a closed cavity below the mirror surface and connected to an external pressure regulator (vacuum to several bars). The fabrication relies on 3 SOI wafers, 2 for forming the compliant membranes and the integrated channel, and 1 to form the cavity mirror. All wafers were then assembled by fusion bonding. Pneumatic actuation for focus control can be achieved from front or back side; function of packaging concept. A reflective coating can be added at the mirror surface depending of the application. The tilt and piston actuation is achieved by electromagnetic actuation for which a magnet is fixed on the moving part of the MEMS device. Finally the MEMS device is mounted on a ceramic PCB, containing the actuation micro-coils. Concept, fabrication, and testing of the devices will be presented. A case study for application in an endoscope with an integrated high power laser and a MEMS steering mechanism will be presented.

  18. Buckling of Elastomeric Beams Enables Actuation of Soft Machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Dian; Mosadegh, Bobak; Ainla, Alar

    2015-09-21

    Soft, pneumatic actuators that buckle when interior pressure is less than exterior provide a new mechanism of actuation. Upon application of negative pneumatic pressure, elastic beam elements in these actuators undergo reversible, cooperative collapse, and generate a rotational motion. These actuators are inexpensive to fabricate, lightweight, easy to control, and safe to operate. They can be used in devices that manipulate objects, locomote, or interact cooperatively with humans.

  19. Closed-loop control of a core free rolled EAP actuator

    NASA Astrophysics Data System (ADS)

    Sarban, Rahimullah; Oubaek, Jakob; Jones, Richard W.

    2009-03-01

    Tubular dielectric electro-active polymer actuators, also referred as tubular InLastors, have many possible applications. One of the most obvious is as a positioning push-type device. This work examines the feedback closed-loop control of a core-free tubular InLastor fabricated from sheets of PolyPowerTM, an EAP material developed by Danfoss PolyPower A/S, which uses a silicone elastomer in conjunction with smart compliant electrode technology. This is part of an ongoing study to develop a precision positioning feedback control system for this device. Initially proportional and integral (PI) control is considered to provide position control of the tubular InLastor. Control of the tubular Inlastors require more than conventional control, used for linear actuators, because the InLastors display highly nonlinear static voltage-strain and voltage-force characteristics as well as dynamic hysteresis and time-dependent strain behavior. In an attempt to overcome the nonlinear static voltage-strain characteristics of the Inlastors and for improving the dynamic performance of the controlled device, a gain scheduling algorithm is then integrated into the PI controlled system.

  20. Network device interface for digitally interfacing data channels to a controller via a network

    NASA Technical Reports Server (NTRS)

    Konz, Daniel W. (Inventor); Winkelmann, Joseph P. (Inventor); Ellerbrock, Philip J. (Inventor); Grant, Robert L. (Inventor)

    2007-01-01

    The present invention provides a network device interface and method for digitally connecting a plurality of data channels, such as sensors, actuators, and subsystems, to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. Data retrieved from the sensor is converted into digital signals and transmitted to the controller. In some embodiments, network device interfaces associated with different data channels coordinate communications with the other interfaces based on either a transition in a command message sent by the bus controller or a synchronous clock signal.

  1. Periodic reference tracking control approach for smart material actuators with complex hysteretic characteristics

    NASA Astrophysics Data System (ADS)

    Sun, Zhiyong; Hao, Lina; Song, Bo; Yang, Ruiguo; Cao, Ruimin; Cheng, Yu

    2016-10-01

    Micro/nano positioning technologies have been attractive for decades for their various applications in both industrial and scientific fields. The actuators employed in these technologies are typically smart material actuators, which possess inherent hysteresis that may cause systems behave unexpectedly. Periodic reference tracking capability is fundamental for apparatuses such as scanning probe microscope, which employs smart material actuators to generate periodic scanning motion. However, traditional controller such as PID method cannot guarantee accurate fast periodic scanning motion. To tackle this problem and to conduct practical implementation in digital devices, this paper proposes a novel control method named discrete extended unparallel Prandtl-Ishlinskii model based internal model (d-EUPI-IM) control approach. To tackle modeling uncertainties, the robust d-EUPI-IM control approach is investigated, and the associated sufficient stabilizing conditions are derived. The advantages of the proposed controller are: it is designed and represented in discrete form, thus practical for digital devices implementation; the extended unparallel Prandtl-Ishlinskii model can precisely represent forward/inverse complex hysteretic characteristics, thus can reduce modeling uncertainties and benefits controllers design; in addition, the internal model principle based control module can be utilized as a natural oscillator for tackling periodic references tracking problem. The proposed controller was verified through comparative experiments on a piezoelectric actuator platform, and convincing results have been achieved.

  2. REACTOR CONTROL MECHANISM

    DOEpatents

    Lane, J.A.; Engberg, R.E.; Welch, J.M.

    1959-05-12

    A quick-releasing mechanism is described which may be used to rapidiy drop a device supported from beneath during normal use, such as a safety rod in a nuclear reactor. In accordance with this invention an electrical control signal, such as may be provided by radiation detection or other alarm condition sensing devices, is delivered to an electromagnetic solenoid, the armature of which is coupled to an actuating mechanism. The solenoid is energized when the mechanism is in its upper or cocked position. In such position, the mechanism engages a plurality of retaining balls, forcing them outward into engagement with a shoulder or recess in a corresponding section of a tubular extension on the upheld device. When the control signal to the solenoid suddenly ceases, the armature drops out, allowing the actuating mechanism to move slightly but rapidly under the force of a compressed spring. The weight of the device will urge the balls inward against a beveled portion of the actuating mechanism and away from the engaging section on the tubular extension, thus allowing the upheld device to fall freely under the influence of gravity.

  3. Chattering-Free Sliding Mode Control with Unmodeled Dynamics

    NASA Technical Reports Server (NTRS)

    Krupp, Don; Shtessel, Yuri B.

    1999-01-01

    Sliding mode control systems are valued for their robust accommodation of uncertainties and their ability to reject disturbances. In this paper, a design methodology is proposed to eliminate the chattering phenomenon affecting sliding mode controlled plants with input unmodeled actuator dynamics of second order or greater. The proposed controller design is based on the relative degrees of the plant and the unmodeled actuator dynamics and the ranges of the uncertainties of the plant and actuator. The controller utilizes the pass filter characteristics of the physical actuating device to provide a smoothing effect on the discontinuous control signal rather than introducing any artificial dynamics into the controller design thus eliminating chattering in the system's output response.

  4. New horizons for orthotic and prosthetic technology: artificial muscle for ambulation

    NASA Astrophysics Data System (ADS)

    Herr, Hugh M.; Kornbluh, Roy D.

    2004-07-01

    The rehabilitation community is at the threshold of a new age in which orthotic and prosthetic devices will no longer be separate, lifeless mechanisms, but intimate extensions of the human body-structurally, neurologically, and dynamically. In this paper we discuss scientific and technological advances that promise to accelerate the merging of body and machine, including the development of actuator technologies that behave like muscle and control methodologies that exploit principles of biological movement. We present a state-of-the-art device for leg rehabilitation: a powered ankle-foot orthosis for stroke, cerebral palsy, or multiple sclerosis patients. The device employs a forcecontrollable actuator and a biomimetic control scheme that automatically modulates ankle impedance and motive torque to satisfy patient-specific gait requirements. Although the device has some clinical benefits, problems still remain. The force-controllable actuator comprises an electric motor and a mechanical transmission, resulting in a heavy, bulky, and noisy mechanism. As a resolution of this difficulty, we argue that electroactive polymer-based artificial muscle technologies may offer considerable advantages to the physically challenged, allowing for joint impedance and motive force controllability, noise-free operation, and anthropomorphic device morphologies.

  5. Navigating conjugated polymer actuated neural probes in a brain phantom

    NASA Astrophysics Data System (ADS)

    Daneshvar, Eugene D.; Kipke, Daryl; Smela, Elisabeth

    2012-04-01

    Neural probe insertion methods have a direct impact on the longevity of the device in the brain. Initial tissue and vascular damage caused by the probe entering the brain triggers a chronic tissue response that is known to attenuate neural recordings and ultimately encapsulate the probes. Smaller devices have been found to evoke reduced inflammatory response. One way to record from undamaged neural networks may be to position the electrode sites away from the probe. To investigate this approach, we are developing probes with controllably movable electrode projections, which would move outside of the zone that is damaged by the insertion of the larger probe. The objective of this study was to test the capability of conjugated polymer bilayer actuators to actuate neural electrode projections from a probe shank into a transparent brain phantom. Parylene neural probe devices, having five electrode projections with actuating segments and with varying widths (50 - 250 μm) and lengths (200 - 1000 μm) were fabricated. The electroactive polymer polypyrrole (PPy) was used to bend or flatten the projections. The devices were inserted into the brain phantom using an electronic microdrive while simultaneously activating the actuators. Deflections were quantified based on video images. The electrode projections were successfully controlled to either remain flat or to actuate out-of-plane and into the brain phantom during insertion. The projection width had a significant effect on their ability to deflect within the phantom, with thinner probes deflecting but not the wider ones. Thus, small integrated conjugated polymer actuators may enable multiple neuro-experiments and applications not possible before.

  6. Real-Time Performance of Mechatronic PZT Module Using Active Vibration Feedback Control.

    PubMed

    Aggogeri, Francesco; Borboni, Alberto; Merlo, Angelo; Pellegrini, Nicola; Ricatto, Raffaele

    2016-09-25

    This paper proposes an innovative mechatronic piezo-actuated module to control vibrations in modern machine tools. Vibrations represent one of the main issues that seriously compromise the quality of the workpiece. The active vibration control (AVC) device is composed of a host part integrated with sensors and actuators synchronized by a regulator; it is able to make a self-assessment and adjust to alterations in the environment. In particular, an innovative smart actuator has been designed and developed to satisfy machining requirements during active vibration control. This study presents the mechatronic model based on the kinematic and dynamic analysis of the AVC device. To ensure a real time performance, a H2-LQG controller has been developed and validated by simulations involving a machine tool, PZT actuator and controller models. The Hardware in the Loop (HIL) architecture is adopted to control and attenuate the vibrations. A set of experimental tests has been performed to validate the AVC module on a commercial machine tool. The feasibility of the real time vibration damping is demonstrated and the simulation accuracy is evaluated.

  7. Real-Time Performance of Mechatronic PZT Module Using Active Vibration Feedback Control

    PubMed Central

    Aggogeri, Francesco; Borboni, Alberto; Merlo, Angelo; Pellegrini, Nicola; Ricatto, Raffaele

    2016-01-01

    This paper proposes an innovative mechatronic piezo-actuated module to control vibrations in modern machine tools. Vibrations represent one of the main issues that seriously compromise the quality of the workpiece. The active vibration control (AVC) device is composed of a host part integrated with sensors and actuators synchronized by a regulator; it is able to make a self-assessment and adjust to alterations in the environment. In particular, an innovative smart actuator has been designed and developed to satisfy machining requirements during active vibration control. This study presents the mechatronic model based on the kinematic and dynamic analysis of the AVC device. To ensure a real time performance, a H2-LQG controller has been developed and validated by simulations involving a machine tool, PZT actuator and controller models. The Hardware in the Loop (HIL) architecture is adopted to control and attenuate the vibrations. A set of experimental tests has been performed to validate the AVC module on a commercial machine tool. The feasibility of the real time vibration damping is demonstrated and the simulation accuracy is evaluated. PMID:27681732

  8. Analysis, design, and testing of a low cost, direct force command linear proof mass actuator for structural control

    NASA Technical Reports Server (NTRS)

    Slater, G. L.; Shelley, Stuart; Jacobson, Mark

    1993-01-01

    In this paper, the design, analysis, and test of a low cost, linear proof mass actuator for vibration control is presented. The actuator is based on a linear induction coil from a large computer disk drive. Such disk drives are readily available and provide the linear actuator, current feedback amplifier, and power supply for a highly effective, yet inexpensive, experimental laboratory actuator. The device is implemented as a force command input system, and the performance is virtually the same as other, more sophisticated, linear proof mass systems.

  9. Control of a flexible planar truss using proof mass actuators

    NASA Technical Reports Server (NTRS)

    Minas, Constantinos; Garcia, Ephrahim; Inman, Daniel J.

    1989-01-01

    A flexible structure was modeled and actively controlled by using a single space realizable linear proof mass actuator. The NASA/UVA/UB actuator was attached to a flexible planar truss structure at an optimal location and it was considered as both passive and active device. The placement of the actuator was specified by examining the eigenvalues of the modified model that included the actuator dynamics, and the frequency response functions of the modified system. The electronic stiffness of the actuator was specified, such that the proof mass actuator system was tuned to the fourth structural mode of the truss by using traditional vibration absorber design. The active control law was limited to velocity feedback by integrating of the signals of two accelerometers attached to the structure. The two lower modes of the closed-loop structure were placed further in the LHS of the complex plane. The theoretically predicted passive and active control law was experimentally verified.

  10. Non-Uniform Thickness Electroactive Device

    NASA Technical Reports Server (NTRS)

    Su, Ji (Inventor); Harrison, Joycelyn S. (Inventor)

    2006-01-01

    An electroactive device comprises at least two layers of material, wherein at least one layer is an electroactive material and wherein at least one layer is of non-uniform thickness. The device can be produced in various sizes, ranging from large structural actuators to microscale or nanoscale devices. The applied voltage to the device in combination with the non-uniform thickness of at least one of the layers (electroactive and/or non-electroactive) controls the contour of the actuated device. The effective electric field is a mathematical function of the local layer thickness. Therefore, the local strain and the local bending/ torsion curvature are also a mathematical function of the local thickness. Hence the thinnest portion of the actuator offers the largest bending and/or torsion response. Tailoring of the layer thicknesses can enable complex motions to be achieved.

  11. Establishment of a biomimetic device based on tri-layer polymer actuators--propulsion fins.

    PubMed

    Alici, Gursel; Spinks, Geoffrey; Huynh, Nam N; Sarmadi, Laleh; Minato, Rick

    2007-06-01

    We propose to use bending type tri-layer polymer actuators as propulsion fins for a biomimetic device consisting of a rigid body, like a box fish having a carapace, and paired fins running through the rigid body, like a fish having pectoral fins. The fins or polymer bending actuators can be considered as individually controlled flexible membranes. Each fin is activated with sinusoidal inputs such that there is a phase lag between the movements of successive fins to create enough thrust force for propulsion. Eight fins with 0.125 aspect ratio have been used along both sides of the rigid body to move the device in the direction perpendicular to the longitudinal axis of the body. The designed device with the paired fins was successfully tested, moving in an organic solution consisting of solvent, propylene carbonate (PC), and electrolyte. The design procedure outlined in this study is offered as a guide to making functional devices based on polymer actuators and sensors.

  12. Note: Hybrid active/passive force feedback actuator using hydrostatic transmission.

    PubMed

    Park, Yea-Seok; Lee, Juwon; Kim, Kyung-Soo; Kim, Soohyun

    2017-12-01

    A hybrid actuator for haptic devices is proposed in this paper. The actuator is composed of a DC motor and a magneto-rheological (MR) brake to realize transparency and stable force control. Two piston cylinders are connected with a flexible tube to lighten the weight of the structures on the endpoint that interacts with an operator. Also, the MR brake is designed to be suitable for hydraulic transmission. For the proposed hybrid actuator, a cooperative force control method using a pressure sensor instead of a force sensor is proposed. To verify the proposed control algorithm, a virtual wall collision experiment was conducted using a developed prototype of the hybrid actuator.

  13. Note: Hybrid active/passive force feedback actuator using hydrostatic transmission

    NASA Astrophysics Data System (ADS)

    Park, Yea-Seok; Lee, Juwon; Kim, Kyung-Soo; Kim, Soohyun

    2017-12-01

    A hybrid actuator for haptic devices is proposed in this paper. The actuator is composed of a DC motor and a magneto-rheological (MR) brake to realize transparency and stable force control. Two piston cylinders are connected with a flexible tube to lighten the weight of the structures on the endpoint that interacts with an operator. Also, the MR brake is designed to be suitable for hydraulic transmission. For the proposed hybrid actuator, a cooperative force control method using a pressure sensor instead of a force sensor is proposed. To verify the proposed control algorithm, a virtual wall collision experiment was conducted using a developed prototype of the hybrid actuator.

  14. Dynamic characterization and microprocessor control of the NASA/UVA proof mass actuator

    NASA Technical Reports Server (NTRS)

    Zimmerman, D. C.; Inman, D. J.; Horner, G. C.

    1984-01-01

    The self-contained electromagnetic-reaction-type force-actuator system developed by NASA/UVA for the verification of spacecraft-structure vibration-control laws is characterized and demonstrated. The device is controlled by a dedicated microprocessor and has dynamic characteristics determined by Fourier analysis. Test data on a cantilevered beam are shown.

  15. Active Control Technology at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Antcliff, Richard R.; McGowan, Anna-Marie R.

    2000-01-01

    NASA Langley has a long history of attacking important technical Opportunities from a broad base of supporting disciplines. The research and development at Langley in this subject area range from the test tube to the test flight, The information covered here will range from the development of innovative new materials, sensors and actuators, to the incorporation of smart sensors and actuators in practical devices, to the optimization of the location of these devices, to, finally, a wide variety of applications of these devices utilizing Langley's facilities and expertise. Advanced materials are being developed for sensors and actuators, as well as polymers for integrating smart devices into composite structures. Contributions reside in three key areas: computational materials; advanced piezoelectric materials; and integrated composite structures.

  16. CONTROL LIMITER DEVICE

    DOEpatents

    DeShong, J.A.

    1960-03-01

    A control-limiting device for monltoring a control system is described. The system comprises a conditionsensing device, a condition-varying device exerting a control over the condition, and a control means to actuate the condition-varying device. A control-limiting device integrates the total movement or other change of the condition-varying device over any interval of time during a continuum of overlapping periods of time, and if the tothl movement or change of the condition-varying device exceeds a preset value, the control- limiting device will switch the control of the operated apparatus from automatic to manual control.

  17. Construction of a Piezoresistive Neural Sensor Array

    NASA Technical Reports Server (NTRS)

    Carlson, W. B.; Schulze, W. A.; Pilgrim, P. M.

    1996-01-01

    The construction of a piezoresistive - piezoelectric sensor (or actuator) array is proposed using 'neural' connectivity for signal recognition and possible actuation functions. A closer integration of the sensor and decision functions is necessary in order to achieve intrinsic identification within the sensor. A neural sensor is the next logical step in development of truly 'intelligent' arrays. This proposal will integrate 1-3 polymer piezoresistors and MLC electroceramic devices for applications involving acoustic identification. The 'intelligent' piezoresistor -piezoelectric system incorporates printed resistors, composite resistors, and a feedback for the resetting of resistances. A model of a design is proposed in order to simulate electromechanical resistor interactions. The goal of optimizing a sensor geometry for improving device reliability, training, & signal identification capabilities is the goal of this work. At present, studies predict performance of a 'smart' device with a significant control of 'effective' compliance over a narrow pressure range due to a piezoresistor percolation threshold. An interesting possibility may be to use an array of control elements to shift the threshold function in order to change the level of resistance in a neural sensor array for identification, or, actuation applications. The proposed design employs elements of: (1) conductor loaded polymers for a 'fast' RC time constant response; and (2) multilayer ceramics for actuation or sensing and shifting of resistance in the polymer. Other material possibilities also exist using magnetoresistive layered systems for shifting the resistance. It is proposed to use a neural net configuration to test and to help study the possible changes required in the materials design of these devices. Numerical design models utilize electromechanical elements, in conjunction with structural elements in order to simulate piezoresistively controlled actuators and changes in resistance of sensors. The construction of these devices may show significant improvement in ability to interrogate signals and in the control of effective compliance. This work focuses on the development a variety of series/parallel interconnected piezoresistive control elements for the neural sensing function.

  18. Network device interface for digitally interfacing data channels to a controller via a network

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Philip J. (Inventor); Grant, Robert L. (Inventor); Winkelmann, Joseph P. (Inventor); Konz, Daniel W. (Inventor)

    2009-01-01

    A communications system and method are provided for digitally connecting a plurality of data channels, such as sensors, actuators, and subsystems, to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. Data retrieved from the sensor is converted into digital signals and transmitted to the controller. Network device interfaces associated with different data channels can coordinate communications with the other interfaces based on either a transition in a command message sent by the bus controller or a synchronous clock signal.

  19. Tracking Control of a Magnetic Shape Memory Actuator Using an Inverse Preisach Model with Modified Fuzzy Sliding Mode Control.

    PubMed

    Lin, Jhih-Hong; Chiang, Mao-Hsiung

    2016-08-25

    Magnetic shape memory (MSM) alloys are a new class of smart materials with extraordinary strains up to 12% and frequencies in the range of 1 to 2 kHz. The MSM actuator is a potential device which can achieve high performance electromagnetic actuation by using the properties of MSM alloys. However, significant non-linear hysteresis behavior is a significant barrier to control the MSM actuator. In this paper, the Preisach model was used, by capturing experiments from different input signals and output responses, to model the hysteresis of MSM actuator, and the inverse Preisach model, as a feedforward control, provided compensational signals to the MSM actuator to linearize the hysteresis non-linearity. The control strategy for path tracking combined the hysteresis compensator and the modified fuzzy sliding mode control (MFSMC) which served as a path controller. Based on the experimental results, it was verified that a tracking error in the order of micrometers was achieved.

  20. Tracking Control of a Magnetic Shape Memory Actuator Using an Inverse Preisach Model with Modified Fuzzy Sliding Mode Control

    PubMed Central

    Lin, Jhih-Hong; Chiang, Mao-Hsiung

    2016-01-01

    Magnetic shape memory (MSM) alloys are a new class of smart materials with extraordinary strains up to 12% and frequencies in the range of 1 to 2 kHz. The MSM actuator is a potential device which can achieve high performance electromagnetic actuation by using the properties of MSM alloys. However, significant non-linear hysteresis behavior is a significant barrier to control the MSM actuator. In this paper, the Preisach model was used, by capturing experiments from different input signals and output responses, to model the hysteresis of MSM actuator, and the inverse Preisach model, as a feedforward control, provided compensational signals to the MSM actuator to linearize the hysteresis non-linearity. The control strategy for path tracking combined the hysteresis compensator and the modified fuzzy sliding mode control (MFSMC) which served as a path controller. Based on the experimental results, it was verified that a tracking error in the order of micrometers was achieved. PMID:27571081

  1. Piezoceramic devices and PVDF films as sensors and actuators for intelligent structures

    NASA Astrophysics Data System (ADS)

    Hanagud, S.; Obal, M. W.; Calise, A. G.

    The use of bonded piezoceramic sensors and piezoceramic actuators to control vibrations in structural dynamic systems is discussed. Equations for developing optimum control strategies are derived. An example of a cantilever beam is considered to illustrate the development procedure for optimal vibration control of structures by the use of piezoceramic sensors, actuators, and rate feedbacks with appropriate gains. Research areas and future directions are outlined, including dynamic coupling and constitutive equations; load and energy transfer; composite structures; optimal dynamic compensation; estimation and identification; and distributed control.

  2. Miga Aero Actuator and 2D Machined Mechanical Binary Latch

    NASA Technical Reports Server (NTRS)

    Gummin, Mark A.

    2013-01-01

    Shape memory alloy (SMA) actuators provide the highest force-to-weight ratio of any known actuator. They can be designed for a wide variety of form factors from flat, thin packages, to form-matching packages for existing actuators. SMA actuators can be operated many thousands of times, so that ground testing is possible. Actuation speed can be accurately controlled from milliseconds to position and hold, and even electronic velocity-profile control is possible. SMA actuators provide a high degree of operational flexibility, and are truly smart actuators capable of being accurately controlled by onboard microprocessors across a wide range of voltages. The Miga Aero actuator is a SMA actuator designed specifically for spaceflight applications. Providing 13 mm of stroke with either 20- or 40-N output force in two different models, the Aero actuator is made from low-outgassing PEEK (polyether ether ketone) plastic, stainless steel, and nickel-titanium SMA wires. The modular actuator weighs less than 28 grams. The dorsal output attachment allows the Aero to be used in either PUSH or PULL modes by inverting the mounting orientation. The SPA1 actuator utilizes commercially available SMA actuator wire to provide 3/8-in. (approx. =.1 cm) of stroke at a force of over 28 lb (approx. = .125 N). The force is provided by a unique packaging of the single SMA wire that provides the output force of four SMA wires mechanically in parallel. The output load is shared by allowing the SMA wire to slip around the output attachment end to adjust or balance the load, preventing any individual wire segment from experiencing high loads during actuation. A built-in end limit switch prevents overheating of the SMA element following actuation when used in conjunction with the Miga Analog Driver [a simple MOSFET (metal oxide semiconductor field-effect transistor) switching circuit]. A simple 2D machined mechanical binary latch has been developed to complement the capabilities of SMA wire actuators. SMA actuators typically perform ideally as latch-release devices, wherein a spring-loaded device is released when the SMA actuator actuates in one direction. But many applications require cycling between two latched states open and closed.

  3. Analysis and simulation of a magnetic bearing suspension system for a laboratory model annular momentum control device

    NASA Technical Reports Server (NTRS)

    Groom, N. J.; Woolley, C. T.; Joshi, S. M.

    1981-01-01

    A linear analysis and the results of a nonlinear simulation of a magnetic bearing suspension system which uses permanent magnet flux biasing are presented. The magnetic bearing suspension is part of a 4068 N-m-s (3000 lb-ft-sec) laboratory model annular momentum control device (AMCD). The simulation includes rigid body rim dynamics, linear and nonlinear axial actuators, linear radial actuators, axial and radial rim warp, and power supply and power driver current limits.

  4. A magnetic bearing control approach using flux feedback

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J.

    1989-01-01

    A magnetic bearing control approach using flux feedback is described and test results for a laboratory model magnetic bearing actuator are presented. Test results were obtained using a magnetic bearing test fixture, which is also described. The magnetic bearing actuator consists of elements similar to those used in a laboratory test model Annular Momentum Control Device (AMCD).

  5. Gait mode recognition and control for a portable-powered ankle-foot orthosis.

    PubMed

    David Li, Yifan; Hsiao-Wecksler, Elizabeth T

    2013-06-01

    Ankle foot orthoses (AFOs) are widely used as assistive/rehabilitation devices to correct the gait of people with lower leg neuromuscular dysfunction and muscle weakness. We have developed a portable powered ankle-foot orthosis (PPAFO), which uses a pneumatic bi-directional rotary actuator powered by compressed CO2 to provide untethered dorsiflexor and plantarflexor assistance at the ankle joint. Since portability is a key to the success of the PPAFO as an assist device, it is critical to recognize and control for gait modes (i.e. level walking, stair ascent/descent). While manual mode switching is implemented in most powered orthotic/prosthetic device control algorithms, we propose an automatic gait mode recognition scheme by tracking the 3D position of the PPAFO from an inertial measurement unit (IMU). The control scheme was designed to match the torque profile of physiological gait data during different gait modes. Experimental results indicate that, with an optimized threshold, the controller was able to identify the position, orientation and gait mode in real time, and properly control the actuation. It was also illustrated that during stair descent, a mode-specific actuation control scheme could better restore gait kinematic and kinetic patterns, compared to using the level ground controller.

  6. Parametric model of servo-hydraulic actuator coupled with a nonlinear system: Experimental validation

    NASA Astrophysics Data System (ADS)

    Maghareh, Amin; Silva, Christian E.; Dyke, Shirley J.

    2018-05-01

    Hydraulic actuators play a key role in experimental structural dynamics. In a previous study, a physics-based model for a servo-hydraulic actuator coupled with a nonlinear physical system was developed. Later, this dynamical model was transformed into controllable canonical form for position tracking control purposes. For this study, a nonlinear device is designed and fabricated to exhibit various nonlinear force-displacement profiles depending on the initial condition and the type of materials used as replaceable coupons. Using this nonlinear system, the controllable canonical dynamical model is experimentally validated for a servo-hydraulic actuator coupled with a nonlinear physical system.

  7. Nanophotonic implementation of optoelectrowetting for microdroplet actuation

    NASA Astrophysics Data System (ADS)

    Collier, Christopher M.; Hill, Kyle A.; DeWachter, Mark A.; Huizing, Alexander M.; Holzman, Jonathan F.

    2015-02-01

    The development and ultimate operation of a nanocomposite high-aspect-ratio photoinjection (HARP) device is presented in this work. The device makes use of a nanocomposite material as the optically active layer and the device achieves a large optical penetration depth with a high aspect ratio which provides a strong actuation force far away from the point of photoinjection. The nanocomposite material can be continuously illuminated and the position of the microdroplets can, therefore, be controlled to diffraction limited resolution. The nanocomposite HARP device shows great potential for future on-chip applications.

  8. Magnetically controlled ferromagnetic swimmers

    PubMed Central

    Hamilton, Joshua K.; Petrov, Peter G.; Winlove, C. Peter; Gilbert, Andrew D.; Bryan, Matthew T.; Ogrin, Feodor Y.

    2017-01-01

    Microscopic swimming devices hold promise for radically new applications in lab-on-a-chip and microfluidic technology, diagnostics and drug delivery etc. In this paper, we demonstrate the experimental verification of a new class of autonomous ferromagnetic swimming devices, actuated and controlled solely by an oscillating magnetic field. These devices are based on a pair of interacting ferromagnetic particles of different size and different anisotropic properties joined by an elastic link and actuated by an external time-dependent magnetic field. The net motion is generated through a combination of dipolar interparticle gradient forces, time-dependent torque and hydrodynamic coupling. We investigate the dynamic performance of a prototype (3.6 mm) of the ferromagnetic swimmer in fluids of different viscosity as a function of the external field parameters (frequency and amplitude) and demonstrate stable propulsion over a wide range of Reynolds numbers. We show that the direction of swimming has a dependence on both the frequency and amplitude of the applied external magnetic field, resulting in robust control over the speed and direction of propulsion. This paves the way to fabricating microscale devices for a variety of technological applications requiring reliable actuation and high degree of control. PMID:28276490

  9. Magnetically controlled ferromagnetic swimmers

    NASA Astrophysics Data System (ADS)

    Hamilton, Joshua K.; Petrov, Peter G.; Winlove, C. Peter; Gilbert, Andrew D.; Bryan, Matthew T.; Ogrin, Feodor Y.

    2017-03-01

    Microscopic swimming devices hold promise for radically new applications in lab-on-a-chip and microfluidic technology, diagnostics and drug delivery etc. In this paper, we demonstrate the experimental verification of a new class of autonomous ferromagnetic swimming devices, actuated and controlled solely by an oscillating magnetic field. These devices are based on a pair of interacting ferromagnetic particles of different size and different anisotropic properties joined by an elastic link and actuated by an external time-dependent magnetic field. The net motion is generated through a combination of dipolar interparticle gradient forces, time-dependent torque and hydrodynamic coupling. We investigate the dynamic performance of a prototype (3.6 mm) of the ferromagnetic swimmer in fluids of different viscosity as a function of the external field parameters (frequency and amplitude) and demonstrate stable propulsion over a wide range of Reynolds numbers. We show that the direction of swimming has a dependence on both the frequency and amplitude of the applied external magnetic field, resulting in robust control over the speed and direction of propulsion. This paves the way to fabricating microscale devices for a variety of technological applications requiring reliable actuation and high degree of control.

  10. Design Optimization Tool for Synthetic Jet Actuators Using Lumped Element Modeling

    NASA Technical Reports Server (NTRS)

    Gallas, Quentin; Sheplak, Mark; Cattafesta, Louis N., III; Gorton, Susan A. (Technical Monitor)

    2005-01-01

    The performance specifications of any actuator are quantified in terms of an exhaustive list of parameters such as bandwidth, output control authority, etc. Flow-control applications benefit from a known actuator frequency response function that relates the input voltage to the output property of interest (e.g., maximum velocity, volumetric flow rate, momentum flux, etc.). Clearly, the required performance metrics are application specific, and methods are needed to achieve the optimal design of these devices. Design and optimization studies have been conducted for piezoelectric cantilever-type flow control actuators, but the modeling issues are simpler compared to synthetic jets. Here, lumped element modeling (LEM) is combined with equivalent circuit representations to estimate the nonlinear dynamic response of a synthetic jet as a function of device dimensions, material properties, and external flow conditions. These models provide reasonable agreement between predicted and measured frequency response functions and thus are suitable for use as design tools. In this work, we have developed a Matlab-based design optimization tool for piezoelectric synthetic jet actuators based on the lumped element models mentioned above. Significant improvements were achieved by optimizing the piezoceramic diaphragm dimensions. Synthetic-jet actuators were fabricated and benchtop tested to fully document their behavior and validate a companion optimization effort. It is hoped that the tool developed from this investigation will assist in the design and deployment of these actuators.

  11. High-performance computing-based exploration of flow control with micro devices.

    PubMed

    Fujii, Kozo

    2014-08-13

    The dielectric barrier discharge (DBD) plasma actuator that controls flow separation is one of the promising technologies to realize energy savings and noise reduction of fluid dynamic systems. However, the mechanism for controlling flow separation is not clearly defined, and this lack of knowledge prevents practical use of this technology. Therefore, large-scale computations for the study of the DBD plasma actuator have been conducted using the Japanese Petaflops supercomputer 'K' for three different Reynolds numbers. Numbers of new findings on the control of flow separation by the DBD plasma actuator have been obtained from the simulations, and some of them are presented in this study. Knowledge of suitable device parameters is also obtained. The DBD plasma actuator is clearly shown to be very effective for controlling flow separation at a Reynolds number of around 10(5), and several times larger lift-to-drag ratio can be achieved at higher angles of attack after stall. For higher Reynolds numbers, separated flow is partially controlled. Flow analysis shows key features towards better control. DBD plasma actuators are a promising technology, which could reduce fuel consumption and contribute to a green environment by achieving high aerodynamic performance. The knowledge described above can be obtained only with high-end computers such as the supercomputer 'K'. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  12. Biocompatible silk-conducting polymer composite trilayer actuators

    NASA Astrophysics Data System (ADS)

    Fengel, Carly V.; Bradshaw, Nathan P.; Severt, Sean Y.; Murphy, Amanda R.; Leger, Janelle M.

    2017-05-01

    Biocompatible materials capable of controlled actuation are in high demand for use in biomedical applications such as dynamic tissue scaffolding, valves, and steerable surgical tools. Conducting polymer actuators are of interest because they operate in aqueous electrolytes at low voltages and can generate stresses similar to natural muscle. Recently, our group has demonstrated a composite material of silk and poly(pyrrole) (PPy) that is mechanically robust, made from biocompatible materials, and bends under an applied voltage when incorporated into a simple bilayer device architecture and actuated using a biologically relevant electrolyte. Here we present trilayer devices composed of two silk-PPy composite layers separated by an insulating silk layer. The trilayer architecture allows one side to expand while the other contracts, resulting in improved performance over bilayer devices. Specifically, this configuration shows a larger angle of deflection per volt applied than the analogous bilayer system, while maintaining a consistent current response throughout cycling. In addition, the overall motion of the trilayer devices is more symmetric than that of the bilayer analogs, allowing for fully reversible operation.

  13. Conjugated Polymer Actuators for Articulating Neural Probes and Electrode Interfaces

    NASA Astrophysics Data System (ADS)

    Daneshvar, Eugene Dariush

    This thesis investigated the potential use of polypyrrole (PPy) doped with dodecylbenzenesulfonate (DBS) to controllably articulate (bend or guide) flexible neural probes and electrodes. PPy(DBS) actuation performance was characterized in the ionic mixture and temperature found in the brain. Nearly all the ions in aCSF were exchanged into the PPy---the cations Na +, K+, Mg2+, Ca2+, as well as the anion PO43-; Cl- was not present. Nevertheless, deflections in aCSF were comparable to those in NaDBS and they were monotonic with oxidation level: strain increased upon reduction, with no reversal of motion despite the mixture of ionic charges and valences being exchanged. Actuation depended on temperature. Upon warming, the cyclic voltammograms showed additional peaks and an increase of 70% in the consumed charge. Actuation strain was monotonic under these conditions, demonstrating that conducting polymer actuators can indeed be used for neural interface and neural probe applications. In addition, a novel microelectro-mechanical system (MEMS) was developed to measure previously disregarded residual stress in a bilayer actuator. Residual stresses are a major concern for MEMS devices as that they can dramatically influence their yield and functionality. This device introduced a new technique to measure micro-scaled actuation forces that may be useful for characterization of other MEMS actuators. Finally, a functional movable parylene-based neural electrode prototype was developed. Employing PPy(DBS) actuators, electrode projections were successfully controlled to either remain flat or actuate out-of-plane and into a brain phantom during insertion. An electrode projection 800 microm long and 50 microm wide was able to deflect almost 800 microm away from the probe substrate. Applications that do not require insertion into tissue may also benefit from the electrode projections described here. Implantable neural interface devices are a critical component to a broad class of emerging neuroprosthetic and neurostimulation systems aimed to restore functionality, or abate symptoms related to physical impairments, loss of sensory abilities, and neurological disorders. The therapeutic outcome and performance of these systems hinge to a large degree on the proximity, size, and placement of the device or interface with respect to the targeted neurons or tissue.

  14. Electromechanical Simulation of Actively Controlled Rotordynamic Systems with Piezoelectric Actuators

    NASA Technical Reports Server (NTRS)

    Lin, Reng Rong; Palazzolo, A. B.; Kascak, A. F.; Montague, G.

    1991-01-01

    Theories and tests for incorporating piezoelectric pushers as actuator devices for active vibration control are discussed. It started from a simple model with the assumption of ideal pusher characteristics and progressed to electromechanical models with nonideal pushers. Effects on system stability due to the nonideal characteristics of piezoelectric pushers and other elements in the control loop were investigated.

  15. Method for Reading Sensors and Controlling Actuators Using Audio Interfaces of Mobile Devices

    PubMed Central

    Aroca, Rafael V.; Burlamaqui, Aquiles F.; Gonçalves, Luiz M. G.

    2012-01-01

    This article presents a novel closed loop control architecture based on audio channels of several types of computing devices, such as mobile phones and tablet computers, but not restricted to them. The communication is based on an audio interface that relies on the exchange of audio tones, allowing sensors to be read and actuators to be controlled. As an application example, the presented technique is used to build a low cost mobile robot, but the system can also be used in a variety of mechatronics applications and sensor networks, where smartphones are the basic building blocks. PMID:22438726

  16. Method for reading sensors and controlling actuators using audio interfaces of mobile devices.

    PubMed

    Aroca, Rafael V; Burlamaqui, Aquiles F; Gonçalves, Luiz M G

    2012-01-01

    This article presents a novel closed loop control architecture based on audio channels of several types of computing devices, such as mobile phones and tablet computers, but not restricted to them. The communication is based on an audio interface that relies on the exchange of audio tones, allowing sensors to be read and actuators to be controlled. As an application example, the presented technique is used to build a low cost mobile robot, but the system can also be used in a variety of mechatronics applications and sensor networks, where smartphones are the basic building blocks.

  17. Dynamic design and control of a high-speed pneumatic jet actuator

    NASA Astrophysics Data System (ADS)

    Misyurin, S. Yu; Ivlev, V. I.; Kreinin, G. V.

    2017-12-01

    Mathematical model of an actuator, consisting of a pneumatic (gas) high-speed jet engine, transfer mechanism, and a control device used for switching the ball valve is worked out. The specific attention was paid to the transition (normalization) of the dynamic model into the dimensionless form. Its dynamic simulation criteria are determined, and dynamics study of an actuator was carried out. The simple control algorithm of relay action with a velocity feedback enabling the valve plug to be turned with a smooth nonstop and continuous approach to the final position is demonstrated

  18. Differential-damper topologies for actuators in rehabilitation robotics.

    PubMed

    Tucker, Michael R; Gassert, Roger

    2012-01-01

    Differential-damper (DD) elements can provide a high bandwidth means for decoupling a high inertia, high friction, non-backdrivable actuator from its output and can enable high fidelity force control. In this paper, a port-based decomposition is used to analyze the energetic behavior of such actuators in various physical domains. The general concepts are then applied to a prototype DD actuator for illustration and discussion. It is shown that, within physical bounds, the output torque from a DD actuator can be controlled independently from the input speed. This concept holds the potential to be scaled up and integrated in a compact and lightweight package powerful enough for incorporation with a portable lower limb orthotic or prosthetic device.

  19. Dynamic Loading Assembly for Testing Actuators of Segmented Mirror Telescope

    NASA Astrophysics Data System (ADS)

    Deshmukh, Prasanna Gajanan; Parihar, Padmakar; Balasubramaniam, Karthik A.; Mishra, Deepta Sundar; Mahesh, P. K.

    Upcoming large telescopes are based on Segmented Mirror Telescope (SMT) technology which uses small hexagonal mirror segments placed side by side to form the large monolithic surface. The segments alignment needs to be maintained against external disturbances like wind, gravity, temperature and structural vibration. This is achieved by using three position actuators per segment working at few-nanometer scale range along with a local closed loop controller. The actuator along with a controller is required to meet very stringent performance requirements, such as track rates up to 300nm/s (90mN/s) with tracking errors less than 5nm, dynamical forces of up to ±40N, ability to reject disturbances introduced by the wind as well as by mechanical vibration generated in the mirror cell, etc. To conduct these performance tests in more realistic manner, we have designed and developed a Dynamic Loading Assembly (DLA) at Indian Institute of Astrophysics (IIA), Bangalore. DLA is a computer controlled force-inducing device, designed in a modular fashion to generate different types of user-defined disturbances in extremely precise and controlled manner. Before realizing the device, using a simple spring-mass-damper-based mathematical model, we ensured that the concept would indeed work. Subsequently, simple concept was converted into a detailed mechanical design and parts were manufactured and assembled. DLA has static and dynamic loading capabilities up to 250N and 18N respectively, with a bandwidth sufficient to generate wind disturbances. In this paper, we present various performance requirements of SMT actuators as well as our effort to develop a dynamic loading device which can be used to test these actuators. Well before using DLA for meaningful testing of the actuator, the DLA itself have gone through various tests and improvements phases. We have successfully demonstrated that DLA can be used to check the extreme performance of two different SMT actuators, which are expected to track the position/force with a few nanometer accuracy.

  20. Engineering model of the electric drives of separation device for simulation of automatic control systems of reactive power compensation by means of serially connected capacitors

    NASA Astrophysics Data System (ADS)

    Juromskiy, V. M.

    2016-09-01

    It is developed a mathematical model for an electric drive of high-speed separation device in terms of the modeling dynamic systems Simulink, MATLAB. The model is focused on the study of the automatic control systems of the power factor (Cosφ) of an actuator by compensating the reactive component of the total power by switching a capacitor bank in series with the actuator. The model is based on the methodology of the structural modeling of dynamic processes.

  1. High-powered automatic latching device

    NASA Technical Reports Server (NTRS)

    Cobin, J. C.; Rhodes, L. L.

    1970-01-01

    Latches automatically lock together two remotely controlled bodies when their triggers are engaged by the docking ring of the lesser body. Latches are disengaged by manual actuation of the handle of each latch through two complete cycles. Emergency locking by manual actuation is also provided.

  2. Design criteria monograph for actuators and operators

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Instrumentation for actuators and operators includes electrical position-indicating switches, potentiometers, and transducers and pressure-indicating switches and transducers. Monograph is based on critical evaluation of experiences and practices in design, test, and use of these control devices and instruments in operational space vehicles.

  3. Integrating a piezoelectric actuator with mechanical and hydraulic devices to control camless engines

    NASA Astrophysics Data System (ADS)

    Mercorelli, Paolo; Werner, Nils

    2016-10-01

    The paper deals with some interdisciplinary aspects and problems concerning the actuation control which occur in the integration of a piezoelectric structure in an aggregate actuator consisting of a piezoelectric, a stroke ratio displacement, a mechanical and a hydraulic part. Problems like compensation of the piezo hysteresis effect, scaling force-position to obtain an adequate displacement of the actuator and finally the control of such a complex aggregate system are considered and solved. Even though this work considers a particular application, the solutions proposed in the paper are quite general. In fact, the considered technical aspects occurring in systems which utilize piezoelectric technologies can be used in a variegated gamma of actuators integrating piezoelectric technologies. A cascade controller is proposed to combine a Feedforward action with an internal and an external PI-Controller. The Feedforward Controller is based on the model of the whole actuator, so particular attention is paid to the model structure. The resulting Feedforward action is an adaptive one to compensate hydraulic pressure faults. Real measurements are shown.

  4. Myoelectric control of prosthetic hands: state-of-the-art review

    PubMed Central

    Geethanjali, Purushothaman

    2016-01-01

    Myoelectric signals (MES) have been used in various applications, in particular, for identification of user intention to potentially control assistive devices for amputees, orthotic devices, and exoskeleton in order to augment capability of the user. MES are also used to estimate force and, hence, torque to actuate the assistive device. The application of MES is not limited to assistive devices, and they also find potential applications in teleoperation of robots, haptic devices, virtual reality, and so on. The myoelectric control-based prosthetic hand aids to restore activities of daily living of amputees in order to improve the self-esteem of the user. All myoelectric control-based prosthetic hands may not have similar operations and exhibit variation in sensing input, deciphering the signals, and actuating prosthetic hand. Researchers are focusing on improving the functionality of prosthetic hand in order to suit the user requirement with the different operating features. The myoelectric control differs in operation to accommodate various external factors. This article reviews the state of the art of myoelectric prosthetic hand, giving description of each control strategy. PMID:27555799

  5. On the use of electrical and optical strain gauges paired to magnetostrictive patch actuators

    NASA Astrophysics Data System (ADS)

    Braghin, Francesco; Cinquemani, Simone; Cazzulani, Gabriele; Comolli, Lorenzo

    2014-04-01

    Giant Magnetostrictive Actuators (GMA) can be profitably used in application of vibration control on smart structures. In this field, the use of inertial actuators based on magnetostrictive materials has been consolidate. Such devices turn out to be very effective in applications of vibration control, since they can be easily paired with sensors able to ensure the feedback signal necessary to perform the control action. Unlike most widespread applications, this paper studies the use of patch magnetostrictive actuators. They are made of a sheet of magnetostrictive material, rigidly constrained to the structure, and wrapped in a solenoid whose purpose is to change the intensity of the magnetic field within the material itself. The challenge in the use of such devices resides in the impossibility of having co-located sensors. This limit may be exceeded by using strain gauge sensors to measure the deformation of the structure at the actuator. This work analyzes experimentally the opportunity of introducing, inside a composite material structure, both the conventional electric strain gauges and the less conventional optical sensors based on Bragg's gratings. The performance of both solutions are analyzed with particular reference to the signal to noise ratio, the resolution of the sensors, the sensitivity to variations of the electric and magnetic fields and the temperature change associated with the operation of the actuator.

  6. High Electromechanical Response of Ionic Polymer Actuators with Controlled-Morphology Aligned Carbon Nanotube/Nafion Nanocomposite Electrodes

    PubMed Central

    Liu, Sheng; Liu, Yang; Cebeci, Hülya; de Villoria, Roberto Guzmán; Lin, Jun-Hong

    2011-01-01

    Recent advances in fabricating controlled-morphology vertically aligned carbon nanotubes (VA-CNTs) with ultrahigh volume fraction create unique opportunities for markedly improving the electromechanical performance of ionic polymer conductor network composite (IPCNC) actuators. Continuous paths through inter-VA-CNT channels allow fast ion transport, and high electrical conduction of the aligned CNTs in the composite electrodes lead to fast device actuation speed (>10% strain/second). One critical issue in developing advanced actuator materials is how to suppress the strain that does not contribute to the actuation (unwanted strain) thereby reducing actuation efficiency. Here our experiments demonstrate that the VA-CNTs give an anisotropic elastic response in the composite electrodes, which suppresses the unwanted strain and markedly enhances the actuation strain (>8% strain under 4 volts). The results reported here suggest pathways for optimizing the electrode morphology in IPCNCs using ultra-high volume fraction VA-CNTs to further enhanced performance. PMID:21765822

  7. LES-based characterization of a suction and oscillatory blowing fluidic actuator

    NASA Astrophysics Data System (ADS)

    Kim, Jeonglae; Moin, Parviz

    2015-11-01

    Recently, a novel fluidic actuator using steady suction and oscillatory blowing was developed for control of turbulent flows. The suction and oscillatory blowing (SaOB) actuator combines steady suction and pulsed oscillatory blowing into a single device. The actuation is based upon a self-sustained mechanism of confined jets and does not require any moving parts. The control output is determined by a pressure source and the geometric details, and no additional input is needed. While its basic mechanisms have been investigated to some extent, detailed characteristics of internal turbulent flows are not well understood. In this study, internal flows of the SaOB actuator are simulated using large-eddy simulation (LES). Flow characteristics within the actuator are described in detail for a better understanding of the physical mechanisms and improving the actuator design. LES predicts the self-sustained oscillations of the turbulent jet. Switching frequency, maximum velocity at the actuator outlets, and wall pressure distribution are in good agreement with the experimental measurements. The computational results are used to develop simplified boundary conditions for numerical experiments of active flow control. Supported by the Boeing company.

  8. Development of DBD plasma actuators: The double encapsulated electrode

    NASA Astrophysics Data System (ADS)

    Erfani, Rasool; Zare-Behtash, Hossein; Hale, Craig; Kontis, Konstantinos

    2015-04-01

    Plasma actuators are electrical devices that generate a wall bounded jet without the use of any moving parts. For aerodynamic applications they can be used as flow control devices to delay separation and augment lift on a wing. The standard plasma actuator consists of a single encapsulated (ground) electrode. The aim of this project is to investigate the effect of varying the number and distribution of encapsulated electrodes in the dielectric layer. Utilising a transformer cascade, a variety of input voltages are studied for their effect. In the quiescent environment of a Faraday cage the velocity flow field is recorded using particle image velocimetry. Through understanding of the mechanisms involved in producing the wall jet and the importance of the encapsulated electrode a novel actuator design is proposed. The actuator design distributes the encapsulated electrode throughout the dielectric layer. The experiments have shown that actuators with a shallow initial encapsulated electrode induce velocities greater than the baseline case at the same voltage. Actuators with a deep initial encapsulated electrode are able to induce the highest velocities as they can operate at higher voltages without breakdown of the dielectric.

  9. Active Member Design, Modeling, and Verification

    NASA Technical Reports Server (NTRS)

    Umland, Jeffrey W.; Webster, Mark; John, Bruce

    1993-01-01

    The design and development of active members intended for use in structural control applications is presented. The use of three different solid state actuation materials, namely, piezoelectric, electrostictive, and magnetostrictive, is discussed. Test data is given in order to illustrate the actuator and device characteristics and performance.

  10. Time-Accurate Computations of Free-Flight Aerodynamics of a Spinning Projectile With and Without Flow Control

    DTIC Science & Technology

    2006-09-01

    and cylinders (4, 5, 6). These synthetic jets are active control devices with zero net mass flux and are intended to produce the desired control of...the flow field through momentum effects . Many parameters such as jet location, jet velocity, and actuator frequency can affect the flow control...understanding of the flow physics. Amitay et al. (5) experimentally investigated flow separation control on a cylinder using synthetic jet actuators. Their

  11. Porous silicon structures with high surface area/specific pore size

    DOEpatents

    Northrup, M.A.; Yu, C.M.; Raley, N.F.

    1999-03-16

    Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gases in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters. 9 figs.

  12. Process for forming a porous silicon member in a crystalline silicon member

    DOEpatents

    Northrup, M. Allen; Yu, Conrad M.; Raley, Norman F.

    1999-01-01

    Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gasses in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters.

  13. Porous silicon structures with high surface area/specific pore size

    DOEpatents

    Northrup, M. Allen; Yu, Conrad M.; Raley, Norman F.

    1999-01-01

    Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gasses in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters.

  14. Shape memory system with integrated actuation using embedded particles

    DOEpatents

    Buckley, Patrick R [New York, NY; Maitland, Duncan J [Pleasant Hill, CA

    2009-09-22

    A shape memory material with integrated actuation using embedded particles. One embodiment provides a shape memory material apparatus comprising a shape memory material body and magnetic pieces in the shape memory material body. Another embodiment provides a method of actuating a device to perform an activity on a subject comprising the steps of positioning a shape memory material body in a desired position with regard to the subject, the shape memory material body capable of being formed in a specific primary shape, reformed into a secondary stable shape, and controllably actuated to recover the specific primary shape; including pieces in the shape memory material body; and actuating the shape memory material body using the pieces causing the shape memory material body to be controllably actuated to recover the specific primary shape and perform the activity on the subject.

  15. Shape memory system with integrated actuation using embedded particles

    DOEpatents

    Buckley, Patrick R [New York, NY; Maitland, Duncan J [Pleasant Hill, CA

    2012-05-29

    A shape memory material with integrated actuation using embedded particles. One embodiment provides a shape memory material apparatus comprising a shape memory material body and magnetic pieces in the shape memory material body. Another embodiment provides a method of actuating a device to perform an activity on a subject comprising the steps of positioning a shape memory material body in a desired position with regard to the subject, the shape memory material body capable of being formed in a specific primary shape, reformed into a secondary stable shape, and controllably actuated to recover the specific primary shape; including pieces in the shape memory material body; and actuating the shape memory material body using the pieces causing the shape memory material body to be controllably actuated to recover the specific primary shape and perform the activity on the subject.

  16. Shape memory system with integrated actuation using embedded particles

    DOEpatents

    Buckley, Patrick R.; Maitland, Duncan J.

    2014-04-01

    A shape memory material with integrated actuation using embedded particles. One embodiment provides a shape memory material apparatus comprising a shape memory material body and magnetic pieces in the shape memory material body. Another embodiment provides a method of actuating a device to perform an activity on a subject comprising the steps of positioning a shape memory material body in a desired position with regard to the subject, the shape memory material body capable of being formed in a specific primary shape, reformed into a secondary stable shape, and controllably actuated to recover the specific primary shape; including pieces in the shape memory material body; and actuating the shape memory material body using the pieces causing the shape memory material body to be controllably actuated to recover the specific primary shape and perform the activity on the subject.

  17. REACTOR CONTROL DEVICE

    DOEpatents

    Kaufman, H.B.; Weiss, A.A.

    1959-08-18

    A shadow control device for controlling a nuclear reactor is described. The device comprises a series of hollow neutron-absorbing elements arranged in groups, each element having a cavity for substantially housing an adjoining element and a longitudinal member for commonly supporting the groups of elements. Longitudinal actuation of the longitudinal member distributes the elements along its entire length in which position maximum worth is achieved.

  18. Piezoelectric control of needle-free transdermal drug delivery.

    PubMed

    Stachowiak, Jeanne C; von Muhlen, Marcio G; Li, Thomas H; Jalilian, Laleh; Parekh, Sapun H; Fletcher, Daniel A

    2007-12-04

    Transdermal drug delivery occurs primarily through hypodermic needle injections, which cause pain, require a trained administrator, and may contribute to the spread of disease. With the growing number of pharmaceutical therapies requiring transdermal delivery, an effective, safe, and simple needle-free alternative is needed. We present and characterize a needle-free jet injector that employs a piezoelectric actuator to accelerate a micron-scale stream of fluid (40-130 microm diameter) to velocities sufficient for skin penetration and drug delivery (50-160 m/s). Existing jet injectors, powered by compressed springs and gases, are not widely used due to painful injections and poor reliability in skin penetration depth and dose. In contrast, our device offers electronic control of the actuator expansion rate, resulting in direct control of jet velocity and thus the potential for more precise injections. We apply a simple fluid-dynamic model to predict the device response to actuator expansion. Further, we demonstrate that injection parameters including expelled volume, jet pressure, and penetration depth in soft materials vary with actuator expansion rate, but are highly coupled. Finally, we discuss how electronically-controlled jet injectors may enable the decoupling of injection parameters such as penetration depth and dose, improving the reliability of needle-free transdermal drug delivery.

  19. Design of a Soft Robotic Elbow Sleeve with Passive and Intent-Controlled Actuation

    PubMed Central

    Koh, Tze Hui; Cheng, Nicholas; Yap, Hong Kai; Yeow, Chen-Hua

    2017-01-01

    The provision of continuous passive, and intent-based assisted movements for neuromuscular training can be incorporated into a robotic elbow sleeve. The objective of this study is to propose the design and test the functionality of a soft robotic elbow sleeve in assisting flexion and extension of the elbow, both passively and using intent-based motion reinforcement. First, the elbow sleeve was developed, using elastomeric and fabric-based pneumatic actuators, which are soft and lightweight, in order to address issues of non-portability and poor alignment with joints that conventional robotic rehabilitation devices are faced with. Second, the control system was developed to allow for: (i) continuous passive actuation, in which the actuators will be activated in cycles, alternating between flexion and extension; and (ii) an intent-based actuation, in which user intent is detected by surface electromyography (sEMG) sensors attached to the biceps and triceps, and passed through a logic sequence to allow for flexion or extension of the elbow. Using this setup, the elbow sleeve was tested on six healthy subjects to assess the functionality of the device, in terms of the range of motion afforded by the device while in the continuous passive actuation. The results showed that the elbow sleeve is capable of achieving approximately 50% of the full range of motion of the elbow joint among all subjects. Next, further experiments were conducted to test the efficacy of the intent-based actuation on these healthy subjects. The results showed that all subjects were capable of achieving electromyography (EMG) control of the elbow sleeve. These preliminary results show that the elbow sleeve is capable of carrying out continuous passive and intent-based assisted movements. Further investigation of the clinical implementation of the elbow sleeve for the neuromuscular training of neurologically-impaired persons, such as stroke survivors, is needed. PMID:29118693

  20. Halbach array type focusing actuator for small and thin optical data storage device

    NASA Astrophysics Data System (ADS)

    Lee, Sung Q.; Park, Kang-Ho; Paek, Mun Chul

    2004-09-01

    The small form factor optical data storage devices are developing rapidly nowadays. Since it is designed for portable and compatibility with flesh memory, its components such as disk, head, focusing actuator, and spindle motor should be assembled within 5 mm. The thickness of focusing actuator is within 2 mm and the total working range is +/-100um, with the resolution of less than 1μm. Since the thickness is limited tightly, it is hard to place the yoke that closes the magnetic circuit and hard to make strong flux density without yoke. Therefore, Halbach array is adopted to increase the magnetic flux of one side without yoke. The proposed Halbach array type focusing actuator has the advantage of thin actuation structure with sacrificing less flex density than conventional magnetic array. The optical head unit is moved on the swing arm type tracking actuator. Focusing coil is attached to swing arm, and Halbach magnet array is positioned at the bottom of deck along the tracking line, and focusing actuator exerts force by the Fleming's left hand rule. The dynamics, working range, control resolution of focusing actuator are analyzed and performed.

  1. Programmable optical microshutter arrays for large aspect ratio microslits

    NASA Astrophysics Data System (ADS)

    Ilias, S.; Picard, F.; Larouche, C.; Kruzelecky, R.; Jamroz, W.; Le Noc, L.; Topart, P.

    2008-06-01

    Design, fabrication and characterization of a 16x1 programmable microshutter array are described. Each shutter controls the light transmitted through a microslit defined on the transparent substrate supporting the array. Two approaches were considered for the shutter array implementation: sweeping blades and zipping actuators. Simulation results and fabrication constraints led to the selection of the zipping actuators. The device was fabricated using a surface micromachining process. Each microshutter is basically an electrostatic zipping actuator having a curved shape induced by a stress gradient throughout the actuator thickness. When a sufficient voltage is applied between the microshutter and an actuation electrode surrounding the microslit area, the generated electrostatic force pulls the actuator down to the substrate which closes the microslit. Opening the slit relies on the restoring force due to the actuator deformation. Microshutter arrays were fabricated successfully. High light transmission through the slit area is obtained with the actuator in the open position and excellent light blocking is observed when the shutter is closed. Static and dynamic responses of the device were determined. A pull-in voltage of about 110 V closes the microslit and the response times to close and open the microslit are about 2 and 7 ms, respectively.

  2. Grasping with a soft glove: intrinsic impedance control in pneumatic actuators

    PubMed Central

    2017-01-01

    The interaction of a robotic manipulator with unknown soft objects represents a significant challenge for traditional robotic platforms because of the difficulty in controlling the grasping force between a soft object and a stiff manipulator. Soft robotic actuators inspired by elephant trunks, octopus limbs and muscular hydrostats are suggestive of ways to overcome this fundamental difficulty. In particular, the large intrinsic compliance of soft manipulators such as ‘pneu-nets’—pneumatically actuated elastomeric structures—makes them ideal for applications that require interactions with an uncertain mechanical and geometrical environment. Using a simple theoretical model, we show how the geometric and material nonlinearities inherent in the passive mechanical response of such devices can be used to grasp soft objects using force control, and stiff objects using position control, without any need for active sensing or feedback control. Our study is suggestive of a general principle for designing actuators with autonomous intrinsic impedance control. PMID:28250097

  3. An electrically actuated molecular toggle switch

    NASA Astrophysics Data System (ADS)

    Gerhard, Lukas; Edelmann, Kevin; Homberg, Jan; Valášek, Michal; Bahoosh, Safa G.; Lukas, Maya; Pauly, Fabian; Mayor, Marcel; Wulfhekel, Wulf

    2017-03-01

    Molecular electronics is considered a promising approach for future nanoelectronic devices. In order that molecular junctions can be used as electrical switches or even memory devices, they need to be actuated between two distinct conductance states in a controlled and reproducible manner by external stimuli. Here we present a tripodal platform with a cantilever arm and a nitrile group at its end that is lifted from the surface. The formation of a coordinative bond between the nitrile nitrogen and the gold tip of a scanning tunnelling microscope can be controlled by both electrical and mechanical means, and leads to a hysteretic switching of the conductance of the junction by more than two orders of magnitude. This toggle switch can be actuated with high reproducibility so that the forces involved in the mechanical deformation of the molecular cantilever can be determined precisely with scanning tunnelling microscopy.

  4. Piezoelectric-hydraulic pump based band brake actuation system for automotive transmission control

    NASA Astrophysics Data System (ADS)

    Kim, Gi-Woo; Wang, K. W.

    2007-04-01

    The actuation system of friction elements (such as band brakes) is essential for high quality operations in modern automotive automatic transmissions (in short, ATs). The current band brake actuation system consists of several hydraulic components, including the oil pump, the regulating valve and the control valves. In general, it has been recognized that the current AT band brake actuation system has many limitations. For example, the oil pump and valve body are relatively heavy and complex. Also, the oil pumps induce inherently large drag torque, which affects fuel economy. This research is to overcome these problems of the current system by exploring the utilization of a hybrid type piezo-hydraulic pump device for AT band brake control. This new actuating system integrates a piezo-hydraulic pump to the input of the band brake. Compared with the current systems, this new actuator features much simpler structure, smaller size, and lower weight. This paper describes the development, design and fabrication of the new stand-alone prototype actuator for AT band brake control. An analytical model is developed and validated using experimental data. Performance tests on the hardware and system simulations utilizing the validated model are performed to characterize the new prototype actuator. It is predicted that with increasing of accumulator pressure and driving frequency, the proposed prototype actuating system will satisfy the band brake requirement for AT shift control.

  5. MEMS fluidic actuator

    DOEpatents

    Kholwadwala, Deepesh K [Albuquerque, NM; Johnston, Gabriel A [Trophy Club, TX; Rohrer, Brandon R [Albuquerque, NM; Galambos, Paul C [Albuquerque, NM; Okandan, Murat [Albuquerque, NM

    2007-07-24

    The present invention comprises a novel, lightweight, massively parallel device comprising microelectromechanical (MEMS) fluidic actuators, to reconfigure the profile, of a surface. Each microfluidic actuator comprises an independent bladder that can act as both a sensor and an actuator. A MEMS sensor, and a MEMS valve within each microfluidic actuator, operate cooperatively to monitor the fluid within each bladder, and regulate the flow of the fluid entering and exiting each bladder. When adjacently spaced in a array, microfluidic actuators can create arbitrary surface profiles in response to a change in the operating environment of the surface. In an embodiment of the invention, the profile of an airfoil is controlled by independent extension and contraction of a plurality of actuators, that operate to displace a compliant cover.

  6. Effect of plasma actuator control parameters on a transitional flow

    NASA Astrophysics Data System (ADS)

    Das Gupta, Arnob; Roy, Subrata

    2018-04-01

    This study uses a wall-resolved implicit large eddy simulation to investigate the effects of different surface dielectric barrier discharge actuator parameters such as the geometry of the electrodes, frequency, amplitude of actuation and thermal effect. The actuator is used as a tripping device on a zero-pressure gradient laminar boundary layer flow. It is shown that the standard linear actuator creates structures like the Tollmien-Schlichting wave transition. The circular serpentine, square serpentine and spanwise actuators have subharmonic sinuous streak breakdown and behave like oblique wave transition scenario. The spanwise and square actuators cause comparably faster transition to turbulence. The square actuator adds energy into the higher spanwise wavenumber modes resulting in a faster transition compared to the circular actuator. When the Strouhal number of actuation is varied, the transition does not occur for a value below 0.292. Higher frequencies with same amplitude of actuation lead to faster transition. Small changes (<4%) in the amplitude of actuation can have a significant impact on the transition location which suggests that an optimal combination of frequency and amplitude exists for highest control authority. The thermal bumps approximating the actuator heating only shows localized effects on the later stages of transition for temperatures up to 373 K and can be ignored for standard actuators operating in subsonic regimes.

  7. Dual measurement self-sensing technique of NiTi actuators for use in robust control

    NASA Astrophysics Data System (ADS)

    Gurley, Austin; Lambert, Tyler Ross; Beale, David; Broughton, Royall

    2017-10-01

    Using a shape memory alloy actuator as both an actuator and a sensor provides huge benefits in cost reduction and miniaturization of robotic devices. Despite much effort, reliable and robust self-sensing (using the actuator as a position sensor) had not been achieved for general temperature, loading, hysteresis path, and fatigue conditions. Prior research has sought to model the intricacies of the electrical resistivity changes within the NiTi material. However, for the models to be solvable, nearly every previous technique only models the actuator within very specific boundary conditions. Here, we measure both the voltage across the entire NiTi wire and of a fixed-length segment of it; these dual measurements allow direct calculation of the actuator length without a material model. We review previous self-sensing literature, illustrate the mechanism design that makes the new technique possible, and use the dual measurement technique to determine the length of a single straight wire actuator under controlled conditions. This robust measurement can be used for feedback control in unknown ambient and loading conditions.

  8. Development and test of an HTSMA supersonic inlet ramp actuator

    NASA Astrophysics Data System (ADS)

    Quackenbush, Todd R.; Carpenter, Bernie F.; Boschitsch, Alexander H.; Danilov, Pavel V.

    2008-03-01

    Use of Shape Memory Alloy (SMA) actuation technology is a candidate method for reducing weight and power requirements for inlet flow control actuators in prospective supersonic passenger aircraft. The high speed/high Mach operating points of such aircraft can also call for the use of High Temperature SMAs, with transition temperatures beyond those of typical binary NiTi alloys. This paper outlines a demonstration project that entailed both testing and assessment of newly developed NiTiPt HTSMAs, as well as their use in an actuation application representative of inlet configurations. The project featured benchtop testing of an HTSMA-actuated ramp model as well as experiments in a high speed wind tunnel at loads representative of supersonic conditions. The ability of the model to generate adequate force and actuation stroke for this application is encouraging evidence the feasibility of NiTiPt-based devices for inlet flow control.

  9. Stiffness control of a nylon twisted coiled actuator for use in mechatronic rehabilitation devices.

    PubMed

    Edmonds, Brandon P R; Trejos, Ana Luisa

    2017-07-01

    Mechatronic rehabilitation devices, especially wearables, have been researched extensively and proven to be promising additions to physical therapy, but most designs utilize traditional actuators providing unnatural, robot-like movements. Therefore, many researchers have focused on the development of actuators that mimic biological properties to provide patients with improved results, safety, and comfort. Recently, a twisted-coiled actuator (TCA) made from nylon thread has been found to possess many of these important properties when heated, such as variable stiffness, flexibility, and high power density. So far, TCAs have been characterized in controlled environments to define their fundamental properties under simple loading configurations. However, for an actuator like this to be implemented in a biomimetic design such as an exoskeleton, it needs to be characterized and controlled as a biological muscle. One major control law that natural muscles exhibit is stiffness control, allowing humans to passively avoid injury from external forces, or move the limbs in a controlled or high impact motion. This type of control is created by the antagonistic muscle arrangement. In this paper, an antagonistic apparatus was developed to model the TCAs from a biological standpoint, the stiffness was characterized with respect to the TCA temperature, and a fully functional stiffness and position controller was implemented with an incorporated TCA thermal model. The stiffness was found to have a linear relationship to the TCA temperatures (R 2 =0.95). The controller performed with a stiffness accuracy of 98.95% and a position accuracy of 92.7%. A final trial with varying continuous position input and varying stepped stiffness input exhibited position control with R 2 =0.9638.

  10. Grasp Assist Device with Automatic Mode Control Logic

    NASA Technical Reports Server (NTRS)

    Laske, Evan (Inventor); Davis, Donald R. (Inventor); Ihrke, Chris A. (Inventor)

    2018-01-01

    A system includes a glove, sensors, actuator assemblies, and controller. The sensors include load sensors which measure an actual grasping force and attitude sensors which determine a glove attitude. The actuator assembly provides a grasp assist force to the glove. Respective locations of work cells in the work environment and permitted work tasks for each work cell are programmed into the controller. The controller detects the glove location and attitude. A work task is selected by the controller for the location. The controller calculates a required grasp assist force using measured actual grasping forces from the load sensors. The required grasp assist force is applied via the glove using the actuator assembly to thereby assist the operator in performing the identified work task.

  11. Membrane Mirrors With Bimorph Shape Actuators

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok

    2003-01-01

    Deformable mirrors of a proposed type would be equipped with relatively-large-stroke microscopic piezoelectric actuators that would be used to maintain their reflective surfaces in precise shapes. These mirrors would be members of the class of MEMS-DM (for microelectromechanical system deformable mirror) devices, which offer potential for a precise optical control in adaptive-optics applications in such diverse fields as astronomy and vision science. The proposed mirror would be fabricated, in part, by use of a membrane-transfer technique. The actuator design would contain bimorph-type piezoelectric actuators.

  12. Torque sensor

    NASA Astrophysics Data System (ADS)

    Fgeppert, E.

    1984-09-01

    Mechanical means for sensing turning torque generated by the load forces in a rotary drive system is described. The sensing means is designed to operate with minimal effect on normal operation of the drive system. The invention can be employed in various drive systems, e.g., automotive engine-transmission power plants, electric motor-operated tools, and metal cutting machines. In such drive systems, the torque-sensing feature may be useful for actuation of various control devices, such as electric switches, mechanical clutches, brake actuators, fluid control valves, or audible alarms. The torque-sensing function can be used for safety overload relief, motor de-energization, engine fuel control transmission clutch actuation, remote alarm signal, tool breakage signal, etc.

  13. Frequency-controlled wireless shape memory polymer microactuator for drug delivery application.

    PubMed

    Zainal, M A; Ahmad, A; Mohamed Ali, M S

    2017-03-01

    This paper reports the wireless Shape-Memory-Polymer actuator operated by external radio frequency magnetic fields and its application in a drug delivery device. The actuator is driven by a frequency-sensitive wireless resonant heater which is bonded directly to the Shape-Memory-Polymer and is activated only when the field frequency is tuned to the resonant frequency of heater. The heater is fabricated using a double-sided Cu-clad Polyimide with much simpler fabrication steps compared to previously reported methods. The actuation range of 140 μm as the tip opening distance is achieved at device temperature 44 °C in 30 s using 0.05 W RF power. A repeatability test shows that the actuator's average maximum displacement is 110 μm and standard deviation of 12 μm. An experiment is conducted to demonstrate drug release with 5 μL of an acidic solution loaded in the reservoir and the device is immersed in DI water. The actuator is successfully operated in water through wireless activation. The acidic solution is released and diffused in water with an average release rate of 0.172 μL/min.

  14. Microbioreactors with microfluidic control and a user-friendly connection to the actuator hardware

    NASA Astrophysics Data System (ADS)

    Buchenauer, A.; Funke, M.; Büchs, J.; Mokwa, W.; Schnakenberg, U.

    2009-07-01

    In this study, an array of microbioreactors based on the format of 48-well microtiter plates (MTPs) is presented. The process parameters pH and biomass are monitored online using commercially available optical sensor technology. A microfluidic device dispenses acid or base individually into each well for controlling the pH of fermentations. Fluid volumes from 72 nL to 940 nL can be supplied with valve opening times between 10 ms and 200 ms. One microfluidic device is capable of supplying four wells from two reservoirs. Up to four microfluidic devices can be integrated on the area of a prototype MTP. The devices are fabricated in polydimethylsiloxane (PDMS) using soft lithographic techniques and utilize pneumatically actuated microvalves. During fermentations, the microbioreactor is clamped to an orbital shaker and a temporary pneumatic connection guides the externally controlled pressurized air to the microfluidic device. Finally, fermentations of Escherichia coli in the presence and absence of pH control are carried out in the microbioreactor system over 18 h. During the fermentation the pH of the cultures is continuously monitored by means of optodes. An ammonia solution or phosphoric acid is dispensed to adjust the pH if it differs from the set point of 7.2. In a controlled culture, the pH can be sustained within 7.0 to 7.3 while the pH in an uncontrolled culture ranges between 6.5 and 9.0. This microbioreactor demonstrates the possibility of pH-controlled fermentations in micro-scale. The process control and the user friendly connection to the actuation hardware provide an easy handling comparable to standard MTPs.

  15. 46 CFR 154.1340 - Temperature measuring devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Each device must actuate an audible and visual alarm at the cargo control station and a remote group... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment... cargo control station. (c) Except for independent tanks type C, each cargo containment system for a...

  16. 46 CFR 154.1340 - Temperature measuring devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Each device must actuate an audible and visual alarm at the cargo control station and a remote group... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment... cargo control station. (c) Except for independent tanks type C, each cargo containment system for a...

  17. 46 CFR 154.1340 - Temperature measuring devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Each device must actuate an audible and visual alarm at the cargo control station and a remote group... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment... cargo control station. (c) Except for independent tanks type C, each cargo containment system for a...

  18. 46 CFR 154.1340 - Temperature measuring devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Each device must actuate an audible and visual alarm at the cargo control station and a remote group... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment... cargo control station. (c) Except for independent tanks type C, each cargo containment system for a...

  19. 46 CFR 154.1340 - Temperature measuring devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Each device must actuate an audible and visual alarm at the cargo control station and a remote group... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment... cargo control station. (c) Except for independent tanks type C, each cargo containment system for a...

  20. How the type of input function affects the dynamic response of conducting polymer actuators

    NASA Astrophysics Data System (ADS)

    Xiang, Xingcan; Alici, Gursel; Mutlu, Rahim; Li, Weihua

    2014-10-01

    There has been a growing interest in smart actuators typified by conducting polymer actuators, especially in their (i) fabrication, modeling and control with minimum external data and (ii) applications in bio-inspired devices, robotics and mechatronics. Their control is a challenging research problem due to the complex and nonlinear properties of these actuators, which cannot be predicted accurately. Based on an input-shaping technique, we propose a new method to improve the conducting polymer actuators’ command-following ability, while minimizing their electric power consumption. We applied four input functions with smooth characteristics to a trilayer conducting polymer actuator to experimentally evaluate its command-following ability under an open-loop control strategy and a simulated feedback control strategy, and, more importantly, to quantify how the type of input function affects the dynamic response of this class of actuators. We have found that the four smooth inputs consume less electrical power than sharp inputs such as a step input with discontinuous higher-order derivatives. We also obtained an improved transient response performance from the smooth inputs, especially under the simulated feedback control strategy, which we have proposed previously [X Xiang, R Mutlu, G Alici, and W Li, 2014 “Control of conducting polymer actuators without physical feedback: simulated feedback control approach with particle swarm optimization’, Journal of Smart Materials and Structure, 23]. The idea of using a smooth input command, which results in lower power consumption and better control performance, can be extended to other smart actuators. Consuming less electrical energy or power will have a direct effect on enhancing the operational life of these actuators.

  1. High-authority smart material integrated electric actuator

    NASA Astrophysics Data System (ADS)

    Weisensel, G. N.; Pierce, Thomas D.; Zunkel, Gary

    1997-05-01

    For many current applications, hydraulic power is still the preferred method of gaining mechanical advantage. However, in many of these applications, this power comes with the penalties of high weight, size, cost, and maintenance due to the system's distributed nature and redundancy requirements. A high authority smart material Integrated Electric Actuator (IEA) is a modular, self-contained linear motion device that is capable of producing dynamic output strokes similar to those of hydraulic actuators yet at significantly reduced weight and volume. It provides system simplification and miniaturization. This actuator concept has many innovative features, including a TERFENOL-D-based pump, TERFENOL-D- based active valves, control algorithms, a displacement amplification unit and integrated, unitized packaging. The IEA needs only electrical power and a control command signal as inputs to provide high authority, high response rate actuation. This approach is directly compatible with distributed control strategies. Aircraft control, automotive brakes and fuel injection, and fluid power delivery are just some examples of the IEA's pervasive applications in aerospace, defense and commercial systems.

  2. Development of a flexible and bendable vibrotactile actuator based on wave-shaped poly(vinyl chloride)/acetyl tributyl citrate gels for wearable electronic devices

    NASA Astrophysics Data System (ADS)

    Park, Won-Hyeong; Bae, Jin Woo; Shin, Eun-Jae; Kim, Sang-Youn

    2016-11-01

    The paradigm of consumer electronic devices is being shifted from rigid hand-held devices to flexible/wearable devices in search of benefits such as enhanced usability and portability, excellent wear characteristics, and more functions in less space. However, the fundamental incompatibility of flexible/wearable devices and a rigid actuator brought forth a new issue obstructing commercialization of flexible/wearable devices. In this paper, we propose a new wave-shaped eco-friendly PVC gel, and a new flexible and bendable vibrotactile actuator that could easily be applied to wearable electronic devices. We explain the vibration mechanism of the proposed vibrotactile actuator and investigate its influence on the content of plasticizer for the performance of the proposed actuator. An experiment for measuring vibrational amplitude was conducted over a wide frequency range. The experiment clearly showed that the proposed vibrotactile actuator could create a variety of haptic sensations in wearable devices.

  3. A device for controlled jet injection of large volumes of liquid.

    PubMed

    Mckeage, James W; Ruddy, Bryan P; Nielsen, Poul M F; Taberner, Andrew J

    2016-08-01

    We present a needle-free jet injection device controllably actuated by a voice coil and capable of injecting up to 1.3 mL. This device is used to perform jet injections of ~900 μL into porcine tissue. This is the first time that delivery of such a large volume has been reported using an electronically controllable device. The controllability of this device is demonstrated with a series of ejections where the desired volume is ejected to within 1 % during an injection at a predetermined jet velocity.

  4. Micromachined actuators/sensors for intratubular positioning/steering

    DOEpatents

    Lee, Abraham P.; Krulevitch, Peter A.; Northrup, M. Allen; Trevino, Jimmy C.

    1998-01-01

    Micromachined thin film cantilever actuators having means for individually controlling the deflection of the cantilevers, valve members, and rudders for steering same through blood vessels, or positioning same within a blood vessel, for example. Such cantilever actuators include tactile sensor arrays mounted on a catheter or guide wire tip for navigation and tissues identification, shape-memory alloy film based catheter/guide wire steering mechanisms, and rudder-based steering devices that allow the selective actuation of rudders that use the flowing blood itself to help direct the catheter direction through the blood vessel. While particularly adapted for medical applications, these cantilever actuators can be used for steering through piping and tubing systems.

  5. ER fluid applications to vibration control devices and an adaptive neural-net controller

    NASA Astrophysics Data System (ADS)

    Morishita, Shin; Ura, Tamaki

    1993-07-01

    Four applications of electrorheological (ER) fluid to vibration control actuators and an adaptive neural-net control system suitable for the controller of ER actuators are described: a shock absorber system for automobiles, a squeeze film damper bearing for rotational machines, a dynamic damper for multidegree-of-freedom structures, and a vibration isolator. An adaptive neural-net control system composed of a forward model network for structural identification and a controller network is introduced for the control system of these ER actuators. As an example study of intelligent vibration control systems, an experiment was performed in which the ER dynamic damper was attached to a beam structure and controlled by the present neural-net controller so that the vibration in several modes of the beam was reduced with a single dynamic damper.

  6. A study on the effect of surface topography on the actuation performance of stacked-rolled dielectric electro active polymer actuator

    NASA Astrophysics Data System (ADS)

    Sait, Usha; Muthuswamy, Sreekumar

    2016-05-01

    Dielectric electro active polymer (DEAP) is a suitable actuator material that finds wide applications in the field of robotics and medical areas. This material is highly controllable, flexible, and capable of developing large strain. The influence of geometrical behavior becomes critical when the material is used as miniaturized actuation devices in robotic applications. The present work focuses on the effect of surface topography on the performance of flat (single sheet) and stacked-rolled DEAP actuators. The non-active areas in the form of elliptical spots that affect the performance of the actuator are identified using scanning electron microscope (SEM) and energy dissipated X-ray (EDX) experiments. Performance of DEAP actuation is critically evaluated, compared, and presented with analytical and experimental results.

  7. Bio-hybrid cell-based actuators for microsystems.

    PubMed

    Carlsen, Rika Wright; Sitti, Metin

    2014-10-15

    As we move towards the miniaturization of devices to perform tasks at the nano and microscale, it has become increasingly important to develop new methods for actuation, sensing, and control. Over the past decade, bio-hybrid methods have been investigated as a promising new approach to overcome the challenges of scaling down robotic and other functional devices. These methods integrate biological cells with artificial components and therefore, can take advantage of the intrinsic actuation and sensing functionalities of biological cells. Here, the recent advancements in bio-hybrid actuation are reviewed, and the challenges associated with the design, fabrication, and control of bio-hybrid microsystems are discussed. As a case study, focus is put on the development of bacteria-driven microswimmers, which has been investigated as a targeted drug delivery carrier. Finally, a future outlook for the development of these systems is provided. The continued integration of biological and artificial components is envisioned to enable the performance of tasks at a smaller and smaller scale in the future, leading to the parallel and distributed operation of functional systems at the microscale. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Dual-Mechanism and Multimotion Soft Actuators Based on Commercial Plastic Film.

    PubMed

    Li, Linpeng; Meng, Junxing; Hou, Chengyi; Zhang, Qinghong; Li, Yaogang; Yu, Hao; Wang, Hongzhi

    2018-05-02

    Soft actuators have attracted a lot of attention owing to their biomimetic performance. However, the development of soft actuators that are easily prepared from readily available raw materials, conveniently utilized, and cost-efficient is still a challenge. Here, we present a simple method to fabricate a polyethylene-based soft actuator. It has controllable anisotropic structure and can realize multiple motions, including bidirectional bending and twisting based on dual mechanisms, which is a rare phenomenon. Especially, the soft actuators can response at a very small temperature difference (Δ T ≥ 2.3 °C); therefore, even skin touch can quickly drive the actuator, which greatly broadens its applications in daily life. The soft actuator could demonstrate a curvature up to 7.8 cm -1 accompanied by powerful actuation. We have shown that it can lift an object 27 times its own weight. We also demonstrate the application of this actuator as intelligent mechanical devices.

  9. Shape Memory Actuation and Release Devices.

    DTIC Science & Technology

    1996-10-01

    shelf devices such as pyrotechnics, gas-discharge systems, paraffin wax actuators, and other electro-mechanical devices may not be able to meet...shelf devices such as pyrotechnics, gas-discharge systems, paraffin wax actuators, and other electro-mechanical devices may not be able to meet future...shard mounts. They do have wide utility as pin-pullers and single point release devices for a variety of spacecraft appendages. Parrafin based mechanisms

  10. Dynamic focus-tracking MEMS scanning micromirror with low actuation voltages for endoscopic imaging.

    PubMed

    Strathman, Matthew; Liu, Yunbo; Li, Xingde; Lin, Lih Y

    2013-10-07

    We demonstrate a 3-D scanning micromirror device that combines 2-D beam scanning with focus control in the same device using micro-electro-mechanical-systems (MEMS) technology. 2-D beam scanning is achieved with a biaxial gimbal structure and focus control is obtained with a deformable mirror membrane surface. The micromirror with 800 micrometer diameter is designed to be sufficiently compact and efficient so that it can be incorporated into an endoscopic imaging probe in the future. The design, fabrication and characterization of the device are described in this paper. Using the focus-tracking MEMS scanning mirror, we achieved an optical scanning range of >16 degrees with <40 V actuation voltage at resonance and a tunable focal length between infinity and 25 mm with <100V applied bias.

  11. A Study of the Effects of Fieldbus Network Induced Delays on Control Systems

    ERIC Educational Resources Information Center

    Mainoo, Joseph

    2012-01-01

    Fieldbus networks are all-digital, two-way, multi-drop communication systems that are used to connect field devices such as sensors and actuators, and controllers. These fieldbus network systems are also called networked control systems (NCS). Although, there are different varieties of fieldbus networks such as Foundation Field Bus, DeviceNet, and…

  12. Scheduling policies of intelligent sensors and sensor/actuators in flexible structures

    NASA Astrophysics Data System (ADS)

    Demetriou, Michael A.; Potami, Raffaele

    2006-03-01

    In this note, we revisit the problem of actuator/sensor placement in large civil infrastructures and flexible space structures within the context of spatial robustness. The positioning of these devices becomes more important in systems employing wireless sensor and actuator networks (WSAN) for improved control performance and for rapid failure detection. The ability of the sensing and actuating devices to possess the property of spatial robustness results in reduced control energy and therefore the spatial distribution of disturbances is integrated into the location optimization measures. In our studies, the structure under consideration is a flexible plate clamped at all sides. First, we consider the case of sensor placement and the optimization scheme attempts to produce those locations that minimize the effects of the spatial distribution of disturbances on the state estimation error; thus the sensor locations produce state estimators with minimized disturbance-to-error transfer function norms. A two-stage optimization procedure is employed whereby one first considers the open loop system and the spatial distribution of disturbances is found that produces the maximal effects on the entire open loop state. Once this "worst" spatial distribution of disturbances is found, the optimization scheme subsequently finds the locations that produce state estimators with minimum transfer function norms. In the second part, we consider the collocated actuator/sensor pairs and the optimization scheme produces those locations that result in compensators with the smallest norms of the disturbance-to-state transfer functions. Going a step further, an intelligent control scheme is presented which, at each time interval, activates a subset of the actuator/sensor pairs in order provide robustness against spatiotemporally moving disturbances and minimize power consumption by keeping some sensor/actuators in sleep mode.

  13. High flow, low mobile weight quick disconnect system

    NASA Technical Reports Server (NTRS)

    Smith, Ronn G. (Inventor); Nagy, Jr., Zoltan Frank (Inventor); Moszczienski, Joseph Roch (Inventor)

    2010-01-01

    A fluid coupling device and coupling system that may start and stop the flow of a fluid is disclosed. In some embodiments, first and second couplings are provided having an actuator coupled with each of the couplings. The couplings and actuators may be detachable to provide quick disconnect features and, in some embodiments, provide unitary actuation for the actuators of the coupling device to facilitate connection in mobile applications. Actuation may occur as the two couplings and actuators are engaged and disengaged and may occur by rotational actuation of the actuators. Rotational actuation can be provided to ensure flow through the coupling device, which in some embodiments may further provide an offset venturi feature. Upon disengagement, a compression element such as a compression spring can be provided to return the actuators to a closed position. Some embodiments further provide a seal external to the actuators and provided at incipient engagement of the couplings.

  14. Functional materials based on carbon nanotubes: Carbon nanotube actuators and noncovalent carbon nanotube modification

    NASA Astrophysics Data System (ADS)

    Fifield, Leonard S.

    Carbon nanotubes have attractive inherent properties that encourage the development of new functional materials and devices based on them. The use of single wall carbon nanotubes as electromechanical actuators takes advantage of the high mechanical strength, surface area and electrical conductivity intrinsic to these molecules. The work presented here investigates the mechanisms that have been discovered for actuation of carbon nanotube paper: electrostatic, quantum chemical charge injection, pneumatic and viscoelastic. A home-built apparatus for the measurement of actuation strain is developed and utilized in the investigation. An optical fiber switch, the first demonstrated macro-scale device based on the actuation of carbon nanotubes, is described and its performance evaluated. Also presented here is a new general process designed to modify the surface of carbon nanotubes in a non-covalent, non-destructive way. This method can be used to impart new functionalities to carbon nanotube samples for a variety of applications including sensing, solar energy conversion and chemical separation. The process described involves the achievement of large degrees of graphitic surface coverage with polycyclic aromatic hydrocarbons through the use of supercritical fluids. These molecules are bifunctional agents that anchor a desired chemical group to the aromatic surface of the carbon nanotubes without adversely disrupting the conjugated backbone that gives rise the attractive electronic and physical properties of the nanotubes. Both the nanotube functionalization work and the actuator work presented here emphasize how an understanding and control of nanoscale structure and phenomena can be of vital importance in achieving desired performance for active materials. Opportunities for new devices with improved function over current state-of-the-art can be envisioned and anticipated based on this understanding and control.

  15. Impedance-controlled ultrasound probe

    NASA Astrophysics Data System (ADS)

    Gilbertson, Matthew W.; Anthony, Brian W.

    2011-03-01

    An actuated hand-held impedance-controlled ultrasound probe has been developed. The controller maintains a prescribed contact state (force and velocity) between the probe and a patient's body. The device will enhance the diagnostic capability of free-hand elastography and swept-force compound imaging, and also make it easier for a technician to acquire repeatable (i.e. directly comparable) images over time. The mechanical system consists of an ultrasound probe, ball-screw-driven linear actuator, and a force/torque sensor. The feedback controller commands the motor to rotate the ball-screw to translate the ultrasound probe in order to maintain a desired contact force. It was found that users of the device, with the control system engaged, maintain a constant contact force with 15 times less variation than without the controller engaged. The system was used to determine the elastic properties of soft tissue.

  16. Molecular robots with sensors and intelligence.

    PubMed

    Hagiya, Masami; Konagaya, Akihiko; Kobayashi, Satoshi; Saito, Hirohide; Murata, Satoshi

    2014-06-17

    CONSPECTUS: What we can call a molecular robot is a set of molecular devices such as sensors, logic gates, and actuators integrated into a consistent system. The molecular robot is supposed to react autonomously to its environment by receiving molecular signals and making decisions by molecular computation. Building such a system has long been a dream of scientists; however, despite extensive efforts, systems having all three functions (sensing, computation, and actuation) have not been realized yet. This Account introduces an ongoing research project that focuses on the development of molecular robotics funded by MEXT (Ministry of Education, Culture, Sports, Science and Technology, Japan). This 5 year project started in July 2012 and is titled "Development of Molecular Robots Equipped with Sensors and Intelligence". The major issues in the field of molecular robotics all correspond to a feedback (i.e., plan-do-see) cycle of a robotic system. More specifically, these issues are (1) developing molecular sensors capable of handling a wide array of signals, (2) developing amplification methods of signals to drive molecular computing devices, (3) accelerating molecular computing, (4) developing actuators that are controllable by molecular computers, and (5) providing bodies of molecular robots encapsulating the above molecular devices, which implement the conformational changes and locomotion of the robots. In this Account, the latest contributions to the project are reported. There are four research teams in the project that specialize on sensing, intelligence, amoeba-like actuation, and slime-like actuation, respectively. The molecular sensor team is focusing on the development of molecular sensors that can handle a variety of signals. This team is also investigating methods to amplify signals from the molecular sensors. The molecular intelligence team is developing molecular computers and is currently focusing on a new photochemical technology for accelerating DNA-based computations. They also introduce novel computational models behind various kinds of molecular computers necessary for designing such computers. The amoeba robot team aims at constructing amoeba-like robots. The team is trying to incorporate motor proteins, including kinesin and microtubules (MTs), for use as actuators implemented in a liposomal compartment as a robot body. They are also developing a methodology to link DNA-based computation and molecular motor control. The slime robot team focuses on the development of slime-like robots. The team is evaluating various gels, including DNA gel and BZ gel, for use as actuators, as well as the body material to disperse various molecular devices in it. They also try to control the gel actuators by DNA signals coming from molecular computers.

  17. Remote switch actuator

    DOEpatents

    Haas, Edwin Gerard; Beauman, Ronald; Palo, Jr., Stefan

    2013-01-29

    The invention provides a device and method for actuating electrical switches remotely. The device is removably attached to the switch and is actuated through the transfer of a user's force. The user is able to remain physically removed from the switch site obviating need for protective equipment. The device and method allow rapid, safe actuation of high-voltage or high-current carrying electrical switches or circuit breakers.

  18. Visual perception system and method for a humanoid robot

    NASA Technical Reports Server (NTRS)

    Chelian, Suhas E. (Inventor); Linn, Douglas Martin (Inventor); Wampler, II, Charles W. (Inventor); Bridgwater, Lyndon (Inventor); Wells, James W. (Inventor); Mc Kay, Neil David (Inventor)

    2012-01-01

    A robotic system includes a humanoid robot with robotic joints each moveable using an actuator(s), and a distributed controller for controlling the movement of each of the robotic joints. The controller includes a visual perception module (VPM) for visually identifying and tracking an object in the field of view of the robot under threshold lighting conditions. The VPM includes optical devices for collecting an image of the object, a positional extraction device, and a host machine having an algorithm for processing the image and positional information. The algorithm visually identifies and tracks the object, and automatically adapts an exposure time of the optical devices to prevent feature data loss of the image under the threshold lighting conditions. A method of identifying and tracking the object includes collecting the image, extracting positional information of the object, and automatically adapting the exposure time to thereby prevent feature data loss of the image.

  19. Impact micro-positioning actuator

    NASA Technical Reports Server (NTRS)

    Cuerden, Brian (Inventor); Angel, J. Roger P. (Inventor); Burge, James H. (Inventor); DeRigne, Scott T. (Inventor)

    2006-01-01

    An impact micro-positioning actuator. In one aspect of the invention, a threaded shaft is threadably received in a nut and the nut is impacted by an impacting device, causing the nut first to rotate relative to the shaft by slipping as a result of shaft inertia and subsequently to stick to the shaft as a result of the frictional force therebetween. The nut is returned to its initial position by a return force provided by a return mechanism after impact. The micro-positioning actuator is further improved by controlling at least one and preferably all of the following: the friction, the impact provided by the impacting device, the return force provided by the return mechanism, and the inertia of the shaft. In another aspect of the invention, a threaded shaft is threadably received in a nut and the shaft is impacted by an impacting device, causing the shaft to rotate relative to the nut.

  20. Large displacement haptic stimulus actuator using piezoelectric pump for wearable devices.

    PubMed

    Kodama, Taisuke; Izumi, Shintaro; Masaki, Kana; Kawaguchi, Hiroshi; Maenaka, Kazusuke; Yoshimoto, Masahiko

    2015-08-01

    Recently, given Japan's aging society background, wearable healthcare devices have increasingly attracted attention. Many devices have been developed, but most devices have only a sensing function. To expand the application area of wearable healthcare devices, an interactive communication function with the human body is required using an actuator. For example, a device must be useful for medication assistance, predictive alerts of a disease such as arrhythmia, and exercise. In this work, a haptic stimulus actuator using a piezoelectric pump is proposed to realize a large displacement in wearable devices. The proposed actuator drives tactile sensation of the human body. The measurement results obtained using a sensory examination demonstrate that the proposed actuator can generate sufficient stimuli even if adhered to the chest, which has fewer tactile receptors than either the fingertip or wrist.

  1. Patch Network for Power Allocation and Distribution in Smart Materials

    NASA Technical Reports Server (NTRS)

    Golembiewski, Walter T.

    2000-01-01

    The power allocation and distribution (PAD) circuitry is capable of allocating and distributing a single or multiple sources of power over multi-elements of a power user grid system. The purpose of this invention is to allocate and distribute power that is collected by individual patch rectennas to a region of specific power-user devices, such as actuators. The patch rectenna converts microwave power into DC power. Then this DC power is used to drive actuator devices. However, the power from patch rectennas is not sufficient to drive actuators unless all the collected power is effectively used to drive another group by allocation and distribution. The power allocation and distribution (PAD) circuitry solves the shortfall of power for devices in a large array. The PAD concept is based on the networked power control in which power collected over the whole array of rectennas is allocated to a sub domain where a group of devices is required to be activated for operation. Then the allocated power is distributed to individual element of power-devices in the sub domain according to a selected run-mode.

  2. Tensile-stressed microelectromechanical apparatus and micromirrors formed therefrom

    DOEpatents

    Fleming, James G [Albuquerque, NM

    2006-05-16

    A microelectromechanical (MEM) apparatus is disclosed which includes one or more tensile-stressed actuators that are coupled through flexures to a stage on a substrate. The tensile-stressed actuators, which can be formed from tensile-stressed tungsten or silicon nitride, initially raise the stage above the substrate without any applied electrical voltage, and can then be used to control the height or tilt angle of the stage. An electrostatic actuator can also be used in combination with each tensile-stressed actuator. The MEM apparatus has applications for forming piston micromirrors or tiltable micromirrors and independently addressable arrays of such devices.

  3. Design and preliminary testing of a handheld antagonistic SMA actuator for cancellation of human tremor

    NASA Astrophysics Data System (ADS)

    Pathak, Anupam; Brei, Diann; Luntz, Jonathan

    2009-03-01

    Essential Tremor is a debilitating disorder that in the US alone is estimated to affect up to ten million people. Unfortunately current treatments (i.e. drug therapy and surgical procedures), are limited in effectiveness and often pose a risk of adverse side-effects. In response to this problem, this paper describes an active cancellation device based on a hand-held Shape Memory Alloy (SMA) actuated stabilization platform. The assistive device is designed to hold and stabilize various objects (e.g. eating utensils, tools, pointing implements, etc.) by sensing the user's tremor and moving the object in an opposite direction using SMA actuators configured in biologically inspired antagonistic pairs. To aid in the design, performance prediction and control of the device, a device model is described that accounts for the device kinematics, SMA thermo-mechanics, and the heat transfer resulting from electrical heating and convective cooling. The system of differential equations in this device model coupled with the controller gain can be utilized to design the operation given a frequency range and power requirement. To demonstrate this, a prototype was built and experimentally tested under external disturbances in the range of 1-5 Hz, resulting in amplitude reduction of up to 80%. The extent of cancellation measured for both single-frequencies and actual human tremor disturbances demonstrate the promise of this approach as a broadly used assistive device for the multitudes afflicted by tremor.

  4. Finding NEMO (novel electromaterial muscle oscillator): a polypyrrole powered robotic fish with real-time wireless speed and directional control

    NASA Astrophysics Data System (ADS)

    McGovern, Scott; Alici, Gursel; Truong, Van-Tan; Spinks, Geoffrey

    2009-09-01

    This paper presents the development of an autonomously powered and controlled robotic fish that incorporates an active flexural joint tail fin, activated through conducting polymer actuators based on polypyrrole (PPy). The novel electromaterial muscle oscillator (NEMO) tail fin assembly on the fish could be controlled wirelessly in real time by varying the frequency and duty cycle of the voltage signal supplied to the PPy bending-type actuators. Directional control was achieved by altering the duty cycle of the voltage input to the NEMO tail fin, which shifted the axis of oscillation and enabled turning of the robotic fish. At low speeds, the robotic fish had a turning circle as small as 15 cm (or 1.1 body lengths) in radius. The highest speed of the fish robot was estimated to be approximately 33 mm s-1 (or 0.25 body lengths s-1) and was achieved with a flapping frequency of 0.6-0.8 Hz which also corresponded with the most hydrodynamically efficient mode for tail fin operation. This speed is approximately ten times faster than those for any previously reported artificial muscle based device that also offers real-time speed and directional control. This study contributes to previously published studies on bio-inspired functional devices, demonstrating that electroactive polymer actuators can be real alternatives to conventional means of actuation such as electric motors.

  5. An enhanced nonlinear damping approach accounting for system constraints in active mass dampers

    NASA Astrophysics Data System (ADS)

    Venanzi, Ilaria; Ierimonti, Laura; Ubertini, Filippo

    2015-11-01

    Active mass dampers are a viable solution for mitigating wind-induced vibrations in high-rise buildings and improve occupants' comfort. Such devices suffer particularly when they reach force saturation of the actuators and maximum extension of their stroke, which may occur in case of severe loading conditions (e.g. wind gust and earthquake). Exceeding actuators' physical limits can impair the control performance of the system or even lead to devices damage, with consequent need for repair or substitution of part of the control system. Controllers for active mass dampers should account for their technological limits. Prior work of the authors was devoted to stroke issues and led to the definition of a nonlinear damping approach, very easy to implement in practice. It consisted of a modified skyhook algorithm complemented with a nonlinear braking force to reverse the direction of the mass before reaching the stroke limit. This paper presents an enhanced version of this approach, also accounting for force saturation of the actuator and keeping the simplicity of implementation. This is achieved by modulating the control force by a nonlinear smooth function depending on the ratio between actuator's force and saturation limit. Results of a numerical investigation show that the proposed approach provides similar results to the method of the State Dependent Riccati Equation, a well-established technique for designing optimal controllers for constrained systems, yet very difficult to apply in practice.

  6. Helicopter force-feel and stability augmentation system with parallel servo-actuator

    NASA Technical Reports Server (NTRS)

    Hoh, Roger H. (Inventor)

    2006-01-01

    A force-feel system is implemented by mechanically coupling a servo-actuator to and in parallel with a flight control system. The servo-actuator consists of an electric motor, a gearing device, and a clutch. A commanded cockpit-flight-controller position is achieved by pilot actuation of a trim-switch. The position of the cockpit-flight-controller is compared with the commanded position to form a first error which is processed by a shaping function to correlate the first error with a commanded force at the cockpit-flight-controller. The commanded force on the cockpit-flight-controller provides centering forces and improved control feel for the pilot. In an embodiment, the force-feel system is used as the basic element of stability augmentation system (SAS). The SAS provides a stabilization signal that is compared with the commanded position to form a second error signal. The first error is summed with the second error for processing by the shaping function.

  7. A controller design approach for large flexible space structures

    NASA Technical Reports Server (NTRS)

    Joshi, S. M.

    1981-01-01

    A controller design approach for large space structures is presented, which consists of a primary attitude controller and a secondary or damping enhancement controller. The secondary controller, which uses several Annular Momentum Control Device (AMCD's), is shown to make the closed loop system asymptotically stable under relatively simple conditions. The primary controller using torque actuators (or AMCD's) and colocated attitude and rate sensors is shown to be stable. It is shown that the same AMCD's can be used for simultaneous actuation of primary and secondary controllers. Numerical results are obtained for a large, thin, completely free plate model.

  8. Enabling Flexible and Continuous Capability Invocation in Mobile Prosumer Environments

    PubMed Central

    Alcarria, Ramon; Robles, Tomas; Morales, Augusto; López-de-Ipiña, Diego; Aguilera, Unai

    2012-01-01

    Mobile prosumer environments require the communication with heterogeneous devices during the execution of mobile services. These environments integrate sensors, actuators and smart devices, whose availability continuously changes. The aim of this paper is to design a reference architecture for implementing a model for continuous service execution and access to capabilities, i.e., the functionalities provided by these devices. The defined architecture follows a set of software engineering patterns and includes some communication paradigms to cope with the heterogeneity of sensors, actuators, controllers and other devices in the environment. In addition, we stress the importance of the flexibility in capability invocation by allowing the communication middleware to select the access technology and change the communication paradigm when dealing with smart devices, and by describing and evaluating two algorithms for resource access management. PMID:23012526

  9. Actuation of an Inertia-Coupled Rimless Wheel Model across Level Ground

    NASA Astrophysics Data System (ADS)

    Weeks, Seth Caleb

    The inertia-coupled rimless wheel model is a passive dynamic walking device which is theoretically capable of achieving highly efficient motion with no energy losses. Under non-ideal circumstances, energy losses due to air drag require the use of actuation to maintain stable motions. The Actuated Inertia-coupled Rimless Wheel Across Flat Terrain (AIRWAFT) model provides actuation to an inertia-coupled rimless wheel model across level ground to compensate for energy losses by applying hip-torque between the frame and inertia wheel via a motor. Two methods of defining the open-loop actuation are presented. Position control defines the relative position of the drum relative to the frame. Torque control specifies the amount of torque between the frame and the drum. The performance of the model was evaluated with respect to changes in various geometrical and control parameters and initial conditions. This parameter study led to the discovery of a stable, periodic motion with a cost of transport of 0.33.

  10. Micromachined actuators/sensors for intratubular positioning/steering

    DOEpatents

    Lee, A.P.; Krulevitch, P.A.; Northrup, M.A.; Trevino, J.C.

    1998-06-30

    Micromachined thin film cantilever actuators having means for individually controlling the deflection of the cantilevers, valve members, and rudders for steering same through blood vessels, or positioning same within a blood vessel, for example. Such cantilever actuators include tactile sensor arrays mounted on a catheter or guide wire tip for navigation and tissues identification, shape-memory alloy film based catheter/guide wire steering mechanisms, and rudder-based steering devices that allow the selective actuation of rudders that use the flowing blood itself to help direct the catheter direction through the blood vessel. While particularly adapted for medical applications, these cantilever actuators can be used for steering through piping and tubing systems. 14 figs.

  11. Self-sensing paper-based actuators employing ferromagnetic nanoparticles and graphite

    NASA Astrophysics Data System (ADS)

    Phan, Hoang-Phuong; Dinh, Toan; Nguyen, Tuan-Khoa; Vatani, Ashkan; Md Foisal, Abu Riduan; Qamar, Afzaal; Kermany, Atieh Ranjbar; Dao, Dzung Viet; Nguyen, Nam-Trung

    2017-04-01

    Paper-based microfluidics and sensors have attracted great attention. Although a large number of paper-based devices have been developed, surprisingly there are only a few studies investigating paper actuators. To fulfill the requirements for the integration of both sensors and actuators into paper, this work presents an unprecedented platform which utilizes ferromagnetic particles for actuation and graphite for motion monitoring. The use of the integrated mechanical sensing element eliminates the reliance on image processing for motion detection and also allows real-time measurements of the dynamic response in paper-based actuators. The proposed platform can also be quickly fabricated using a simple process, indicating its potential for controllable paper-based lab on chip.

  12. EXiO-A Brain-Controlled Lower Limb Exoskeleton for Rhesus Macaques.

    PubMed

    Vouga, Tristan; Zhuang, Katie Z; Olivier, Jeremy; Lebedev, Mikhail A; Nicolelis, Miguel A L; Bouri, Mohamed; Bleuler, Hannes

    2017-02-01

    Recent advances in the field of brain-machine interfaces (BMIs) have demonstrated enormous potential to shape the future of rehabilitation and prosthetic devices. Here, a lower-limb exoskeleton controlled by the intracortical activity of an awake behaving rhesus macaque is presented as a proof-of-concept for a locomotorBMI. A detailed description of the mechanical device, including its innovative features and first experimental results, is provided. During operation, BMI-decoded position and velocity are directly mapped onto the bipedal exoskeleton's motions, which then move the monkey's legs as the monkey remains physicallypassive. To meet the unique requirements of such an application, the exoskeleton's features include: high output torque with backdrivable actuation, size adjustability, and safe user-robot interface. In addition, a novel rope transmission is introduced and implemented. To test the performance of the exoskeleton, a mechanical assessment was conducted, which yielded quantifiable results for transparency, efficiency, stiffness, and tracking performance. Usage under both brain control and automated actuation demonstrates the device's capability to fulfill the demanding needs of this application. These results lay the groundwork for further advancement in BMI-controlled devices for primates including humans.

  13. A multi-segment soft actuator for biomedical applications based on IPMCs

    NASA Astrophysics Data System (ADS)

    Zhao, Dongxu; Wang, Yanjie; Liu, Jiayu; Luo, Meng; Li, Dichen; Chen, Hualing

    2015-04-01

    With rapid progress of biomedical devices towards miniaturization, flexibility, multifunction and low cost, the restrictions of traditional mechanical structures become particularly apparent, while soft materials become research focus in broad fields. As one of the most attractive soft materials, Ionic Polymer-Metal Composite (IPMC) is widely used as artificial muscles and actuators, with the advantages of low driving-voltage, high efficiency of electromechanical transduction and functional stabilization. In this paper, a new intuitive control method was presented to achieve the omnidirectional bending movements and was applied on a representative actuation structure of a multi-degree-offreedom soft actuator composed of two segments bar-shaped IPMC with a square cross section. Firstly, the bar-shaped IPMCs were fabricated by the solution casting method, reducing plating, autocatalytic plating method and cut into shapes successively. The connectors of the multi-segment IPMC actuator were fabricated by 3D printing. Then, a new control method was introduced to realize the intuitive mapping relationship between the actuator and the joystick manipulator. The control circuit was designed and tested. Finally, the multi-degree-of-freedom actuator of 2 segments bar-shaped IPMCs was implemented and omnidirectional bending movements were achieved, which could be a promising actuator for biomedical applications, such as endoscope, catheterism, laparoscopy and the surgical resection of tumors.

  14. Fiberoptics technology and its application to propulsion control systems

    NASA Technical Reports Server (NTRS)

    Baumbick, R. J.

    1983-01-01

    Current work on optical sensors and optically controlled actuators for use in air-breathing engine control systems is reviewed with particular reference to the design and operation of several new fiber-optic devices. These include a tachometer, a rotary position encoder, a Fabry-Perot interferometer and a rare-earth sensor for measuring engine gas temperatures, a high-temperature photoswitch designed for the range -55 to 260 C, and optical cables and connectors. The advantages of optics over conventional wire systems used for sensing and actuator control are briefly discussed.

  15. Control of electro-rheological fluid-based torque generation components for use in active rehabilitation devices

    NASA Astrophysics Data System (ADS)

    Nikitczuk, Jason; Weinberg, Brian; Mavroidis, Constantinos

    2006-03-01

    In this paper we present the design and control algorithms for novel electro-rheological fluid based torque generation elements that will be used to drive the joint of a new type of portable and controllable Active Knee Rehabilitation Orthotic Device (AKROD) for gait retraining in stroke patients. The AKROD is composed of straps and rigid components for attachment to the leg, with a central hinge mechanism where a gear system is connected. The key features of AKROD include: a compact, lightweight design with highly tunable torque capabilities through a variable damper component, full portability with on board power, control circuitry, and sensors (encoder and torque), and real-time capabilities for closed loop computer control for optimizing gait retraining. The variable damper component is achieved through an electro-rheological fluid (ERF) element that connects to the output of the gear system. Using the electrically controlled rheological properties of ERFs, compact brakes capable of supplying high resistive and controllable torques, are developed. A preliminary prototype for AKROD v.2 has been developed and tested in our laboratory. AKROD's v.2 ERF resistive actuator was tested in laboratory experiments using our custom made ERF Testing Apparatus (ETA). ETA provides a computer controlled environment to test ERF brakes and actuators in various conditions and scenarios including emulating the interaction between human muscles involved with the knee and AKROD's ERF actuators / brakes. In our preliminary results, AKROD's ERF resistive actuator was tested in closed loop torque control experiments. A hybrid (non-linear, adaptive) Proportional-Integral (PI) torque controller was implemented to achieve this goal.

  16. Control Software for Piezo Stepping Actuators

    NASA Technical Reports Server (NTRS)

    Shields, Joel F.

    2013-01-01

    A control system has been developed for the Space Interferometer Mission (SIM) piezo stepping actuator. Piezo stepping actuators are novel because they offer extreme dynamic range (centimeter stroke with nanometer resolution) with power, thermal, mass, and volume advantages over existing motorized actuation technology. These advantages come with the added benefit of greatly reduced complexity in the support electronics. The piezo stepping actuator consists of three fully redundant sets of piezoelectric transducers (PZTs), two sets of brake PZTs, and one set of extension PZTs. These PZTs are used to grasp and move a runner attached to the optic to be moved. By proper cycling of the two brake and extension PZTs, both forward and backward moves of the runner can be achieved. Each brake can be configured for either a power-on or power-off state. For SIM, the brakes and gate of the mechanism are configured in such a manner that, at the end of the step, the actuator is in a parked or power-off state. The control software uses asynchronous sampling of an optical encoder to monitor the position of the runner. These samples are timed to coincide with the end of the previous move, which may consist of a variable number of steps. This sampling technique linearizes the device by avoiding input saturation of the actuator and makes latencies of the plant vanish. The software also estimates, in real time, the scale factor of the device and a disturbance caused by cycling of the brakes. These estimates are used to actively cancel the brake disturbance. The control system also includes feedback and feedforward elements that regulate the position of the runner to a given reference position. Convergence time for smalland medium-sized reference positions (less than 200 microns) to within 10 nanometers can be achieved in under 10 seconds. Convergence times for large moves (greater than 1 millimeter) are limited by the step rate.

  17. Design of a Compact Actuation and Control System for Flexible Medical Robots.

    PubMed

    Morimoto, Tania K; Hawkes, Elliot Wright; Okamura, Allison M

    2017-07-01

    Flexible medical robots can improve surgical procedures by decreasing invasiveness and increasing accessibility within the body. Using preoperative images, these robots can be designed to optimize a procedure for a particular patient. To minimize invasiveness and maximize biocompatibility, the actuation units of flexible medical robots should be placed fully outside the patient's body. In this letter, we present a novel, compact, lightweight, modular actuation, and control system for driving a class of these flexible robots, known as concentric tube robots. A key feature of the design is the use of three-dimensional printed waffle gears to enable compact control of two degrees of freedom within each module. We measure the precision and accuracy of a single actuation module and demonstrate the ability of an integrated set of three actuation modules to control six degrees of freedom. The integrated system drives a three-tube concentric tube robot to reach a final tip position that is on average less than 2 mm from a given target. In addition, we show a handheld manifestation of the device and present its potential applications.

  18. Zero Power Non-Contact Suspension System with Permanent Magnet Motion Feedback

    NASA Astrophysics Data System (ADS)

    Sun, Feng; Oka, Koichi

    This paper proposes a zero power control method for a permanent magnetic suspension system consisting mainly of a permanent magnet, an actuator, sensors, a suspended iron ball and a spring. A system using this zero power control method will consume quasi-zero power when the levitated object is suspended in an equilibrium state. To realize zero power control, a spring is installed in the magnetic suspension device to counterbalance the gravitational force on the actuator in the equilibrium position. In addition, an integral feedback loop in the controller affords zero actuator current when the device is in a balanced state. In this study, a model was set up for feasibility analysis, a prototype was manufactured for experimental confirmation, numerical simulations of zero power control with nonlinear attractive force were carried out based on the model, and experiments were completed to confirm the practicality of the prototype. The simulations and experiments were performed under varied conditions, such as without springs and without zero power control, with springs and without zero power control, with springs and with zero power control, using different springs and integral feedback gains. Some results are shown and analyzed in this paper. All results indicate that this zero power control method is feasible and effective for use in this suspension system with a permanent magnet motion feedback loop.

  19. Development of multifunctional materials exhibiting distributed sensing and actuation inspired by fish

    NASA Astrophysics Data System (ADS)

    Philen, Michael

    2011-04-01

    This manuscript is an overview of the research that is currently being performed as part of a 2009 NSF Office of Emerging Frontiers in Research and Innnovation (EFRI) grant on BioSensing and BioActuation (BSBA). The objectives of this multi-university collaborative research are to achieve a greater understanding of the hierarchical organization and structure of the sensory, muscular, and control systems of fish, and to develop advanced biologically-inspired material systems having distributed sensing, actuation, and intelligent control. New experimental apparatus have been developed for performing experiments involving live fish and robotic devices, and new bio-inspired haircell sensors and artificial muscles are being developed using carbonaceous nanomaterials, bio-derived molecules, and composite technology. Results demonstrating flow sensing and actuation are presented.

  20. Bi-stable optical actuator

    DOEpatents

    Holdener, Fred R.; Boyd, Robert D.

    2000-01-01

    The present invention is a bi-stable optical actuator device that is depowered in both stable positions. A bearing is used to transfer motion and smoothly transition from one state to another. The optical actuator device may be maintained in a stable position either by gravity or a restraining device.

  1. Development of a Pulsed Combustion Actuator For High-Speed Flow Control

    NASA Technical Reports Server (NTRS)

    Cutler, Andrew D.; Beck, B. Terry; Wilkes, Jennifer A.; Drummond, J. Philip; Alderfer, David W.; Danehy, Paul M.

    2005-01-01

    This paper describes the flow within a prototype actuator, energized by pulsed combustion or detonations, that provides a pulsed jet suitable for flow control in high-speed applications. A high-speed valve, capable of delivering a pulsed stream of reactants a mixture of H2 and air at rates of up to 1500 pulses per second, has been constructed. The reactants burn in a resonant chamber, and the products exit the device as a pulsed jet. High frequency pressure transducers have been used to monitor the pressure fluctuations in the device at various reactant injection frequencies, including both resonant and off-resonant conditions. The combustion chamber has been constructed with windows, and the flow inside it has been visualized using Planar Laser-Induced Fluorescence (PLIF). The pulsed jet at the exit of the device has been observed using schlieren.

  2. Dynamic focus-tracking MEMS scanning micromirror with low actuation voltages for endoscopic imaging

    PubMed Central

    Strathman, Matthew; Liu, Yunbo; Li, Xingde; Lin, Lih Y.

    2013-01-01

    We demonstrate a 3-D scanning micromirror device that combines 2-D beam scanning with focus control in the same device using micro-electro-mechanical-systems (MEMS) technology. 2-D beam scanning is achieved with a biaxial gimbal structure and focus control is obtained with a deformable mirror membrane surface. The micromirror with 800 micrometer diameter is designed to be sufficiently compact and efficient so that it can be incorporated into an endoscopic imaging probe in the future. The design, fabrication and characterization of the device are described in this paper. Using the focus-tracking MEMS scanning mirror, we achieved an optical scanning range of >16 degrees with <40 V actuation voltage at resonance and a tunable focal length between infinity and 25 mm with <100V applied bias. PMID:24104304

  3. A hybrid electromechanical solid state switch for ac power control

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Bidirectional thyristor coupled to a series of actuator driven electromechanical contacts generates hybrid electromechanical solid state switch for ac power control. Device is useful in power control applications where zero crossover switching is required.

  4. An electromagnetic microvalve for pneumatic control of microfluidic systems.

    PubMed

    Liu, Xuling; Li, Songjing

    2014-10-01

    An electromagnetic microvalve for pneumatic control of microfluidic devices has been designed, fabricated, and tested. The microvalve is composed of two parts: a miniature electromagnetic actuator and a valve body. The electromagnetic actuator consists mainly of a thin polydimethylsiloxane (PDMS)-based elastomer, which acts as the valve diaphragm. The diaphragm, used as a solid hydraulic medium, converts the large contact area of a valve core into a small contact area of valve head while maintaining a large stroking force. This microvalve remains closed because of a compressed mechanical spring force generated by the actuator. On the other hand, when a voltage is applied, the valve core moves up, relaxing the thin PDMS membrane, opening the microvalve. The fast open response (~17 ms) of the valve was achieved with a leak rate as low as 0.026 sccm at 200 KPa (N2) pressure. We tested the pertinent dynamic parameters such as flow rate in on/off mode, flow rate of duty cycles, and actuated frequencies in pulse width modulation (PWM) mode. Our method provides a simple, cheap, and small microvalve that avoids the bulky and expensive external pressure control solenoid manifold. This allows it to be easily integrated into portable and disposable devices. © 2014 Society for Laboratory Automation and Screening.

  5. Stability, Nonlinearity and Reliability of Electrostatically Actuated MEMS Devices

    PubMed Central

    Zhang, Wen-Ming; Meng, Guang; Chen, Di

    2007-01-01

    Electrostatic micro-electro-mechanical system (MEMS) is a special branch with a wide range of applications in sensing and actuating devices in MEMS. This paper provides a survey and analysis of the electrostatic force of importance in MEMS, its physical model, scaling effect, stability, nonlinearity and reliability in detail. It is necessary to understand the effects of electrostatic forces in MEMS and then many phenomena of practical importance, such as pull-in instability and the effects of effective stiffness, dielectric charging, stress gradient, temperature on the pull-in voltage, nonlinear dynamic effects and reliability due to electrostatic forces occurred in MEMS can be explained scientifically, and consequently the great potential of MEMS technology could be explored effectively and utilized optimally. A simplified parallel-plate capacitor model is proposed to investigate the resonance response, inherent nonlinearity, stiffness softened effect and coupled nonlinear effect of the typical electrostatically actuated MEMS devices. Many failure modes and mechanisms and various methods and techniques, including materials selection, reasonable design and extending the controllable travel range used to analyze and reduce the failures are discussed in the electrostatically actuated MEMS devices. Numerical simulations and discussions indicate that the effects of instability, nonlinear characteristics and reliability subjected to electrostatic forces cannot be ignored and are in need of further investigation.

  6. Proprioceptive Flexible Fluidic Actuators Using Conductive Working Fluids

    PubMed Central

    Rossiter, Jonathan

    2018-01-01

    Abstract Soft robotic systems generally require both soft actuators and soft sensors to perform complex functions. Separate actuators and sensors are often combined into one composite device when proprioception (self-sensing) is required. In this article, we introduce the concept of using a conductive liquid to perform both the sensing and actuation functions of a proprioceptive soft actuator. The working fluid drives actuator deformation while simultaneously acting as a strain-sensing component for detecting actuator deformation. The concept is examined and demonstrated in two proprioceptive flexible fluidic actuators (FFAs) that use conductive liquids as their working fluids: a linear actuator and a bending actuator. In both cases, we show that resistance can be used to infer strain. Some hysteresis and nonlinearity are present, but repeatability is high. The bandwidth of resistance as a sensing variable in the bending FFA is tested and found to be ∼3.665 Hz. Resistance is demonstrated as a feedback variable in a control loop, and the proprioceptive bending FFA is controlled to respond to step input and sinusoidal target functions. The effect of temperature on resistance–strain behavior is also examined, and we demonstrate how measurement of volume and resistance can be used to detect when the actuator is constrained. Biocompatible proprioceptive soft actuators such as those presented in this article are ideal for use in low-cost bionic healthcare components such as orthotics, prosthetics, or even replacement muscles. PMID:29211627

  7. Proprioceptive Flexible Fluidic Actuators Using Conductive Working Fluids.

    PubMed

    Helps, Tim; Rossiter, Jonathan

    2018-04-01

    Soft robotic systems generally require both soft actuators and soft sensors to perform complex functions. Separate actuators and sensors are often combined into one composite device when proprioception (self-sensing) is required. In this article, we introduce the concept of using a conductive liquid to perform both the sensing and actuation functions of a proprioceptive soft actuator. The working fluid drives actuator deformation while simultaneously acting as a strain-sensing component for detecting actuator deformation. The concept is examined and demonstrated in two proprioceptive flexible fluidic actuators (FFAs) that use conductive liquids as their working fluids: a linear actuator and a bending actuator. In both cases, we show that resistance can be used to infer strain. Some hysteresis and nonlinearity are present, but repeatability is high. The bandwidth of resistance as a sensing variable in the bending FFA is tested and found to be ∼3.665 Hz. Resistance is demonstrated as a feedback variable in a control loop, and the proprioceptive bending FFA is controlled to respond to step input and sinusoidal target functions. The effect of temperature on resistance-strain behavior is also examined, and we demonstrate how measurement of volume and resistance can be used to detect when the actuator is constrained. Biocompatible proprioceptive soft actuators such as those presented in this article are ideal for use in low-cost bionic healthcare components such as orthotics, prosthetics, or even replacement muscles.

  8. Haptic control of a pneumatic muscle actuator to provide resistance for simulated isokinetic exercise; part II: control development and testing.

    PubMed

    Hall, Kara L; Phillips, Chandler A; Reynolds, David B; Mohler, Stanley R; Rogers, Dana B; Neidhard-Doll, Amy T

    2015-01-01

    Pneumatic muscle actuators (PMAs) have a high power to weight ratio and possess unique characteristics which make them ideal actuators for applications involving human interaction. PMAs are difficult to control due to nonlinear dynamics, presenting challenges in system implementation. Despite these challenges, PMAs have great potential as a source of resistance for strength training and rehabilitation. The objective of this work was to control a PMA for use in isokinetic exercise, potentially benefiting anyone in need of optimal strength training through a joint's range of motion. The controller, based on an inverse three-element phenomenological model and adaptive nonlinear control, allows the system to operate as a type of haptic device. A human quadriceps dynamic simulator was developed (as described in Part I of this work) so that control effectiveness and accommodation could be tested prior to human implementation. Tracking error results indicate that the control system is effective at producing PMA displacement and resistance necessary for a scaled, simulated neuromuscular actuator to maintain low-velocity isokinetic movement during simulated concentric and eccentric knee extension.

  9. CMOS compatible thin-film ALD tungsten nanoelectromechanical devices

    NASA Astrophysics Data System (ADS)

    Davidson, Bradley Darren

    This research focuses on the development of a novel, low-temperature, CMOS compatible, atomic-layer-deposition (ALD) enabled NEMS fabrication process for the development of ALD Tungsten (WALD) NEMS devices. The devices are intended for use in CMOS/NEMS hybrid systems, and NEMS based micro-processors/controllers capable of reliable operation in harsh environments not accessible to standard CMOS technologies. The majority of NEMS switches/devices to date have been based on carbon-nano-tube (CNT) designs. The devices consume little power during actuation, and as expected, have demonstrated actuation voltages much smaller than MEMS switches. Unfortunately, NEMS CNT switches are not typically CMOS integrable due to the high temperatures required for their growth, and their fabrication typically results in extremely low and unpredictable yields. Thin-film NEMS devices offer great advantages over reported CNT devices for several reasons, including: higher fabrication yields, low-temperature (CMOS compatible) deposition techniques like ALD, and increased control over design parameters/device performance metrics, i.e., device geometry. Furthermore, top-down, thin-film, nano-fabrication techniques are better capable of producing complicated device geometries than CNT based processes, enabling the design and development of multi-terminal switches well-suited for low-power hybrid NEMS/CMOS systems as well as electromechanical transistors and logic devices for use in temperature/radiation hard computing architectures. In this work several novel, low-temperature, CMOS compatible fabrication technologies, employing WALD as a structural layer for MEMS or NEMS devices, were developed. The technologies developed are top-down nano-scale fabrication processes based on traditional micro-machining techniques commonly used in the fabrication of MEMS devices. Using these processes a variety of novel WALD NEMS devices have been successfully fabricated and characterized. Using two different WALD fabrication technologies two generations of 2-terminal WALD NEMS switches have been developed. These devices have functional gap heights of 30-50 nm, and actuation voltages typically ranging from 3--5 Volts. Via the extension of a two terminal WALD technology novel 3-terminal WALD NEMS devices were developed. These devices have actuation voltages ranging from 1.5--3 Volts, reliabilities in excess of 2 million cycles, and have been designed to be the fundamental building blocks for WALD NEMS complementary inverters. Through the development of these devices several advancements in the modeling and design of thin-film NEMS devices were achieved. A new model was developed to better characterize pre-actuation currents commonly measured for NEMS switches with nano-scale gate-to-source gap heights. The developed model is an extension of the standard field-emission model and considers the electromechanical response, and electric field effects specific to thin-film NEMS switches. Finally, a multi-physics FEM/FD based model was developed to simulate the dynamic behavior of 2 or 3-terminal electrostatically actuated devices whose electrostatic domains have an aspect ratio on the order of 10-3. The model uses a faux-Lagrangian finite difference method to solve Laplaces equation in a quasi-statatically deforming domain. This model allows for the numerical characterization and design of thin-film NEMS devices not feasible using typical non-specialized BEM/FEM based software. Using this model several novel and feasible designs for fixed-fixed 3-terminal WALD NEMS switches capable for the construction of complementary inverters were discovered.

  10. Self-actuated device

    DOEpatents

    Hecht, Samuel L.

    1984-01-01

    A self-actuated device, of particular use as a valve or an orifice for nuclear reactor fuel and blanket assemblies, in which a gas produced by a neutron induced nuclear reaction gradually accumulates as a function of neutron fluence. The gas pressure increase occasioned by such accumulation of gas is used to actuate the device.

  11. Engineering Design Handbook. Propellant Actuated Devices.

    DTIC Science & Technology

    1975-09-30

    DA 016 716 ENGINEERING DESIGN HANDBOOK PROPELLANT ACTUATED DEVICES ARMY MATERIEL COMMAND ALEXANDRIA, VIRGINIA SEPTEMBER 1975 Best Available Copy... DESIGN HANDBOOK PROPELLANT ACTUATED DEVICES TABLE OF CONTENTS Paragraph Pae "LIST OF ILLUSTRATIONS .................. I LIST OF TABLES...Tramcmission in Systems ................. 2-18 References ............................... 2-18 CHAPTER 3. BASIC DESIGN CONSIDERATIONS 3-1 General

  12. Performance evaluation of traffic sensing and control devices.

    DOT National Transportation Integrated Search

    2011-01-01

    High quality vehicle detection is essential to properly operate actuated phases at traffic signals and to facilitate effective : management of technician and engineering resources. INDOT operates over 2600 traffic signal controllers, approximately 20...

  13. Fabrication of 3D electro-thermal micro actuators in silica glass by femtosecond laser wet etch and microsolidics

    NASA Astrophysics Data System (ADS)

    Li, Qichao; Shan, Chao; Yang, Qing; Chen, Feng; Bian, Hao; Hou, Xun

    2017-02-01

    This paper demonstrates a novel electro-thermal micro actuator's design, fabrication and device tests which combine microfluidic technology and microsolidics process. A three-dimensional solenoid microchannel with high aspect ratio is fabricated inside the silica glass by an improved femtosecond laser wet etch (FLWE) technology, and the diameter of the spiral coil is only 200 μm. Molten alloy (Bi/In/Sn/Pb) with high melting point is injected into the three-dimensional solenoid microchannel inside the silica glass , then it solidifys and forms an electro-thermal micro actuator. The device is capable of achieving precise temperature control and quick response, and can also be easily integrated into MEMS, sensors and `lab on a chip' (LOC) platform inside the fused silica substrate.

  14. Microvalve

    DOEpatents

    Lee, A.P.; Krulevitch, P.A.; Northrup, M.A.; Trevino, J.C.

    1998-10-13

    Micromachined thin film cantilever actuators having means for individually controlling the deflection of the cantilevers, valve members, and rudders for steering same through blood vessels, or positioning same within a blood vessel, for example. Such cantilever actuators include tactile sensor arrays mounted on a catheter or guide wire tip for navigation and tissues identification, shape-memory alloy film based catheter/guide wire steering mechanisms, and rudder-based steering devices that allow the selective actuation of rudders that use the flowing blood itself to help direct the catheter direction through the blood vessel. While particularly adapted for medical applications, these cantilever actuators can be used for steering through piping and tubing systems. 14 figs.

  15. Microvalve

    DOEpatents

    Lee, Abraham P.; Krulevitch, Peter A.; Northrup, M. Allen; Trevino, Jimmy C.

    1998-01-01

    Micromachined thin film cantilever actuators having means for individually controlling the deflection of the cantilevers, valve members, and rudders for steering same through blood vessels, or positioning same within a blood vessel, for example. Such cantilever actuators include tactile sensor arrays mounted on a catheter or guide wire tip for navigation and tissues identification, shape-memory alloy film based catheter/guide wire steering mechanisms, and rudder-based steering devices that allow the selective actuation of rudders that use the flowing blood itself to help direct the catheter direction through the blood vessel. While particularly adapted for medical applications, these cantilever actuators can be used for steering through piping and tubing systems.

  16. Digital Platform for Wafer-Level MEMS Testing and Characterization Using Electrical Response

    PubMed Central

    Brito, Nuno; Ferreira, Carlos; Alves, Filipe; Cabral, Jorge; Gaspar, João; Monteiro, João; Rocha, Luís

    2016-01-01

    The uniqueness of microelectromechanical system (MEMS) devices, with their multiphysics characteristics, presents some limitations to the borrowed test methods from traditional integrated circuits (IC) manufacturing. Although some improvements have been performed, this specific area still lags behind when compared to the design and manufacturing competencies developed over the last decades by the IC industry. A complete digital solution for fast testing and characterization of inertial sensors with built-in actuation mechanisms is presented in this paper, with a fast, full-wafer test as a leading ambition. The full electrical approach and flexibility of modern hardware design technologies allow a fast adaptation for other physical domains with minimum effort. The digital system encloses a processor and the tailored signal acquisition, processing, control, and actuation hardware control modules, capable of the structure position and response analysis when subjected to controlled actuation signals in real time. The hardware performance, together with the simplicity of the sequential programming on a processor, results in a flexible and powerful tool to evaluate the newest and fastest control algorithms. The system enables measurement of resonant frequency (Fr), quality factor (Q), and pull-in voltage (Vpi) within 1.5 s with repeatability better than 5 ppt (parts per thousand). A full-wafer with 420 devices under test (DUTs) has been evaluated detecting the faulty devices and providing important design specification feedback to the designers. PMID:27657087

  17. Digital Platform for Wafer-Level MEMS Testing and Characterization Using Electrical Response.

    PubMed

    Brito, Nuno; Ferreira, Carlos; Alves, Filipe; Cabral, Jorge; Gaspar, João; Monteiro, João; Rocha, Luís

    2016-09-21

    The uniqueness of microelectromechanical system (MEMS) devices, with their multiphysics characteristics, presents some limitations to the borrowed test methods from traditional integrated circuits (IC) manufacturing. Although some improvements have been performed, this specific area still lags behind when compared to the design and manufacturing competencies developed over the last decades by the IC industry. A complete digital solution for fast testing and characterization of inertial sensors with built-in actuation mechanisms is presented in this paper, with a fast, full-wafer test as a leading ambition. The full electrical approach and flexibility of modern hardware design technologies allow a fast adaptation for other physical domains with minimum effort. The digital system encloses a processor and the tailored signal acquisition, processing, control, and actuation hardware control modules, capable of the structure position and response analysis when subjected to controlled actuation signals in real time. The hardware performance, together with the simplicity of the sequential programming on a processor, results in a flexible and powerful tool to evaluate the newest and fastest control algorithms. The system enables measurement of resonant frequency (Fr), quality factor (Q), and pull-in voltage (Vpi) within 1.5 s with repeatability better than 5 ppt (parts per thousand). A full-wafer with 420 devices under test (DUTs) has been evaluated detecting the faulty devices and providing important design specification feedback to the designers.

  18. Structural control by the use of piezoelectric active members

    NASA Technical Reports Server (NTRS)

    Fanson, J. L.; Chen, J.-C.

    1987-01-01

    Large Space Structures (LSS) exhibit characteristics which make the LSS control problem different form other control problems. LSS will most likely exhibit low frequency, densely spaced and lightly damped modes. In theory, the number of these modes is infinite. Because these structures are flexible, Vibration Suppression (VS) is an important aspect of LSS operation. In terms of VS, the control actuators should be as low mass as possible, have infinite bandwidth, and be electrically powered. It is proposed that actuators be built into the structure as dual purpose structural elements. A piezoelectric active member is proposed for the control of LSS. Such a device would consist of a piezoelectric actuator and sensor for measuring strain, and screwjack actuator in series for use in quasi-static shape control. An experiment simulates an active member using piezoelectric ceramic thin sheet material on a thin, uniform cantilever beam. The feasibility of using the piezoelectric materials for VS on LSS was demonstrated. Positive positive feedback as a VS control strategy was implemented. Multi-mode VS was achieved with dramatic reduction in dynamic response.

  19. Low-Actuation Voltage MEMS Digital-to-Analog Converter with Parylene Spring Structures.

    PubMed

    Ma, Cheng-Wen; Lee, Fu-Wei; Liao, Hsin-Hung; Kuo, Wen-Cheng; Yang, Yao-Joe

    2015-08-28

    We propose an electrostatically-actuated microelectromechanical digital-to-analog converter (M-DAC) device with low actuation voltage. The spring structures of the silicon-based M-DAC device were monolithically fabricated using parylene-C. Because the Young's modulus of parylene-C is considerably lower than that of silicon, the electrostatic microactuators in the proposed device require much lower actuation voltages. The actuation voltage of the proposed M-DAC device is approximately 6 V, which is less than one half of the actuation voltages of a previously reported M-DAC equipped with electrostatic microactuators. The measured total displacement of the proposed three-bit M-DAC is nearly 504 nm, and the motion step is approximately 72 nm. Furthermore, we demonstrated that the M-DAC can be employed as a mirror platform with discrete displacement output for a noncontact surface profiling system.

  20. Entirely soft dielectric elastomer robots

    NASA Astrophysics Data System (ADS)

    Henke, E.-F. Markus; Wilson, Katherine E.; Anderson, Iain A.

    2017-04-01

    Multifunctional Dielectric Elastomer (DE) devices are well established as actuators, sensors and energy har- vesters. Since the invention of the Dielectric Elastomer Switch (DES), a piezoresistive electrode that can directly switch charge on and off, it has become possible to expand the wide functionality of DE structures even more. We show the application of fully soft DE subcomponents in biomimetic robotic structures. It is now possible to couple arrays of actuator/switch units together so that they switch charge between them- selves on and off. One can then build DE devices that operate as self-controlled oscillators. With an oscillator one can produce a periodic signal that controls a soft DE robot - a DE device with its own DE nervous system. DESs were fabricated using a special electrode mixture, and imprinting technology at an exact pre-strain. We have demonstrated six orders of magnitude change in conductivity within the DES over 50% strain. The control signal can either be a mechanical deformation from another DE or an electrical input to a connected dielectric elastomer actuator (DEA). We have demonstrated a variety of fully soft multifunctional subcomponents that enable the design of autonomous soft robots without conventional electronics. The combination of digital logic structures for basic signal processing, data storage in dielectric elastomer flip-flops and digital and analogue clocks with adjustable frequencies, made of dielectric elastomer oscillators (DEOs), enables fully soft, self-controlled and electronics-free robotic structures. DE robotic structures to date include stiff frames to maintain necessary pre-strains enabling sufficient actuation of DEAs. Here we present a design and production technology for a first robotic structure consisting only of soft silicones and carbon black.

  1. Dynamic profile of a prototype pivoted proof-mass actuator. [damping the vibration of large space structures

    NASA Technical Reports Server (NTRS)

    Miller, D. W.

    1981-01-01

    A prototype of a linear inertial reaction actuation (damper) device employing a flexure-pivoted reaction (proof) mass is discussed. The mass is driven by an electromechanic motor using a dc electromagnetic field and an ac electromagnetic drive. During the damping process, the actuator dissipates structural kinetic energy as heat through electromagnetic damping. A model of the inertial, stiffness and damping properties is presented along with the characteristic differential equations describing the coupled response of the actuator and structure. The equations, employing the dynamic coefficients, are oriented in the form of a feedback control network in which distributed sensors are used to dictate actuator response leading to a specified amount of structural excitation or damping.

  2. Actuators Based on Liquid Crystalline Elastomer Materials

    PubMed Central

    Jiang, Hongrui; Li, Chensha; Huang, Xuezhen

    2013-01-01

    Liquid crystalline elastomers (LCEs) exhibit a number of remarkable physical effects, including the unique, high-stroke reversible mechanical actuation when triggered by external stimuli. This article reviews some recent exciting developments in the field of LCEs materials with an emphasis on their utilization in actuator applications. Such applications include artificial muscles, industrial manufacturing, health and microelectromechanical systems (MEMS). With suitable synthetic and preparation pathways and well-controlled actuation stimuli, such as heat, light, electric and magnetic field, excellent physical properties of LCE materials can be realized. By comparing the actuating properties of different systems, general relationships between the structure and the property of LCEs are discussed. How these materials can be turned into usable devices using interdisciplinary techniques is also described. PMID:23648966

  3. Actuators based on liquid crystalline elastomer materials

    NASA Astrophysics Data System (ADS)

    Jiang, Hongrui; Li, Chensha; Huang, Xuezhen

    2013-05-01

    Liquid crystalline elastomers (LCEs) exhibit a number of remarkable physical effects, including the unique, high-stroke reversible mechanical actuation when triggered by external stimuli. This article reviews some recent exciting developments in the field of LCE materials with an emphasis on their utilization in actuator applications. Such applications include artificial muscles, industrial manufacturing, health and microelectromechanical systems (MEMS). With suitable synthetic and preparation pathways and well-controlled actuation stimuli, such as heat, light, electric and magnetic fields, excellent physical properties of LCE materials can be realized. By comparing the actuating properties of different systems, general relationships between the structure and the properties of LCEs are discussed. How these materials can be turned into usable devices using interdisciplinary techniques is also described.

  4. Quantitative fault tolerant control design for a hydraulic actuator with a leaking piston seal

    NASA Astrophysics Data System (ADS)

    Karpenko, Mark

    Hydraulic actuators are complex fluid power devices whose performance can be degraded in the presence of system faults. In this thesis a linear, fixed-gain, fault tolerant controller is designed that can maintain the positioning performance of an electrohydraulic actuator operating under load with a leaking piston seal and in the presence of parametric uncertainties. Developing a control system tolerant to this class of internal leakage fault is important since a leaking piston seal can be difficult to detect, unless the actuator is disassembled. The designed fault tolerant control law is of low-order, uses only the actuator position as feedback, and can: (i) accommodate nonlinearities in the hydraulic functions, (ii) maintain robustness against typical uncertainties in the hydraulic system parameters, and (iii) keep the positioning performance of the actuator within prescribed tolerances despite an internal leakage fault that can bypass up to 40% of the rated servovalve flow across the actuator piston. Experimental tests verify the functionality of the fault tolerant control under normal and faulty operating conditions. The fault tolerant controller is synthesized based on linear time-invariant equivalent (LTIE) models of the hydraulic actuator using the quantitative feedback theory (QFT) design technique. A numerical approach for identifying LTIE frequency response functions of hydraulic actuators from acceptable input-output responses is developed so that linearizing the hydraulic functions can be avoided. The proposed approach can properly identify the features of the hydraulic actuator frequency response that are important for control system design and requires no prior knowledge about the asymptotic behavior or structure of the LTIE transfer functions. A distributed hardware-in-the-loop (HIL) simulation architecture is constructed that enables the performance of the proposed fault tolerant control law to be further substantiated, under realistic operating conditions. Using the HIL framework, the fault tolerant hydraulic actuator is operated as a flight control actuator against the real-time numerical simulation of a high-performance jet aircraft. A robust electrohydraulic loading system is also designed using QFT so that the in-flight aerodynamic load can be experimentally replicated. The results of the HIL experiments show that using the fault tolerant controller to compensate the internal leakage fault at the actuator level can benefit the flight performance of the airplane.

  5. Fluid control structures in microfluidic devices

    DOEpatents

    Mathies, Richard A.; Grover, William H.; Skelley, Alison; Lagally, Eric; Liu, Chung N.

    2008-11-04

    Methods and apparatus for implementing microfluidic analysis devices are provided. A monolithic elastomer membrane associated with an integrated pneumatic manifold allows the placement and actuation of a variety of fluid control structures, such as structures for pumping, isolating, mixing, routing, merging, splitting, preparing, and storing volumes of fluid. The fluid control structures can be used to implement a variety of sample introduction, preparation, processing, and storage techniques.

  6. Fluid control structures in microfluidic devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathies, Richard A.; Grover, William H.; Skelley, Alison

    2017-05-09

    Methods and apparatus for implementing microfluidic analysis devices are provided. A monolithic elastomer membrane associated with an integrated pneumatic manifold allows the placement and actuation of a variety of fluid control structures, such as structures for pumping, isolating, mixing, routing, merging, splitting, preparing, and storing volumes of fluid. The fluid control structures can be used to implement a variety of sample introduction, preparation, processing, and storage techniques.

  7. Fluid control structures in microfluidic devices

    NASA Technical Reports Server (NTRS)

    Skelley, Alison (Inventor); Mathies, Richard A. (Inventor); Lagally, Eric (Inventor); Grover, William H. (Inventor); Liu, Chung N. (Inventor)

    2008-01-01

    Methods and apparatus for implementing microfluidic analysis devices are provided. A monolithic elastomer membrane associated with an integrated pneumatic manifold allows the placement and actuation of a variety of fluid control structures, such as structures for pumping, isolating, mixing, routing, merging, splitting, preparing, and storing volumes of fluid. The fluid control structures can be used to implement a variety of sample introduction, preparation, processing, and storage techniques.

  8. Context-Based Filtering for Assisted Brain-Actuated Wheelchair Driving

    PubMed Central

    Vanacker, Gerolf; Millán, José del R.; Lew, Eileen; Ferrez, Pierre W.; Moles, Ferran Galán; Philips, Johan; Van Brussel, Hendrik; Nuttin, Marnix

    2007-01-01

    Controlling a robotic device by using human brain signals is an interesting and challenging task. The device may be complicated to control and the nonstationary nature of the brain signals provides for a rather unstable input. With the use of intelligent processing algorithms adapted to the task at hand, however, the performance can be increased. This paper introduces a shared control system that helps the subject in driving an intelligent wheelchair with a noninvasive brain interface. The subject's steering intentions are estimated from electroencephalogram (EEG) signals and passed through to the shared control system before being sent to the wheelchair motors. Experimental results show a possibility for significant improvement in the overall driving performance when using the shared control system compared to driving without it. These results have been obtained with 2 healthy subjects during their first day of training with the brain-actuated wheelchair. PMID:18354739

  9. Density control in ITER: an iterative learning control and robust control approach

    NASA Astrophysics Data System (ADS)

    Ravensbergen, T.; de Vries, P. C.; Felici, F.; Blanken, T. C.; Nouailletas, R.; Zabeo, L.

    2018-01-01

    Plasma density control for next generation tokamaks, such as ITER, is challenging because of multiple reasons. The response of the usual gas valve actuators in future, larger fusion devices, might be too slow for feedback control. Both pellet fuelling and the use of feedforward-based control may help to solve this problem. Also, tight density limits arise during ramp-up, due to operational limits related to divertor detachment and radiative collapses. As the number of shots available for controller tuning will be limited in ITER, in this paper, iterative learning control (ILC) is proposed to determine optimal feedforward actuator inputs based on tracking errors, obtained in previous shots. This control method can take the actuator and density limits into account and can deal with large actuator delays. However, a purely feedforward-based density control may not be sufficient due to the presence of disturbances and shot-to-shot differences. Therefore, robust control synthesis is used to construct a robustly stabilizing feedback controller. In simulations, it is shown that this combined controller strategy is able to achieve good tracking performance in the presence of shot-to-shot differences, tight constraints, and model mismatches.

  10. Modeling out-of-plane actuation in thin-film nematic polymer networks: From chiral ribbons to auto-origami boxes via twist and topology

    PubMed Central

    Gimenez-Pinto, Vianney; Ye, Fangfu; Mbanga, Badel; Selinger, Jonathan V.; Selinger, Robin L. B.

    2017-01-01

    Various experimental and theoretical studies demonstrate that complex stimulus-responsive out-of-plane distortions such as twist of different chirality, emergence of cones, simple and anticlastic bending can be engineered and pre-programmed in a liquid crystalline rubbery material given a well-controlled director microstructure. Via 3-d finite element simulation studies, we demonstrate director-encoded chiral shape actuation in thin-film nematic polymer networks under external stimulus. Furthermore, we design two complex director fields with twisted nematic domains and nematic disclinations that encode a pattern of folds for an auto-origami box. This actuator will be flat at a reference nematic state and form four well-controlled bend distortions as orientational order changes. Device fabrication is applicable via current experimental techniques. These results are in qualitative agreement with theoretical predictions, provide insight into experimental observations, and demonstrate the value of finite element methods at the continuum level for designing and engineering liquid crystal polymeric devices. PMID:28349949

  11. Microelectromechanical Systems for Aerodynamics Applications

    NASA Technical Reports Server (NTRS)

    Mehregany, Mehran; DeAnna, Russell G.; Reshotko, Eli

    1996-01-01

    Microelectromechanical systems (MEMS) embody the integration of sensors, actuators, and electronics on a single substrate using integrated circuit fabrication techniques and compatible micromachining processes. Silicon and its derivatives form the material base for the MEMS technology. MEMS devices, including micro-sensors and micro-actuators, are attractive because they can be made small (characteristic dimension about microns), be produced in large numbers with uniform performance, include electronics for high performance and sophisticated functionality, and be inexpensive. MEMS pressure sensors, wall-shear-stress sensors, and micromachined hot-wires are nearing application in aeronautics. MEMS actuators face a tougher challenge since they have to be scaled (up) to the physical phenomena that are being controlled. MEMS actuators are proposed, for example, for controlling the small structures in a turbulent boundary layer, for aircraft control, for cooling, and for mixing enhancement. Data acquisition or control logistics require integration of electronics along with the transducer elements with appropriate consideration of analog-to-digital conversion, multiplexing, and telemetry. Altogether, MEMS technology offers exciting opportunities for aerodynamics applications both in wind tunnels and in flight

  12. Piezoelectric devices for vibration suppression: Modeling and application to a truss structure

    NASA Technical Reports Server (NTRS)

    Won, Chin C.; Sparks, Dean W., Jr.; Belvin, W. Keith; Sulla, Jeff L.

    1993-01-01

    For a space structure assembled from truss members, an effective way to control the structure may be to replace the regular truss elements by active members. The active members play the role of load carrying elements as well as actuators. A piezo strut, made of a stack of piezoceramics, may be an ideal active member to be integrated into a truss space structure. An electrically driven piezo strut generates a pair of forces, and is considered as a two-point actuator in contrast to a one-point actuator such as a thruster or a shaker. To achieve good structural vibration control, sensing signals compatible to the control actuators are desirable. A strain gage or a piezo film with proper signal conditioning to measure member strain or strain rate, respectively, are ideal control sensors for use with a piezo actuator. The Phase 0 CSI Evolutionary Model (CEM) at NASA Langley Research Center used cold air thrusters as actuators to control both rigid body motions and flexible body vibrations. For the Phase 1 and 2 CEM, it is proposed to use piezo struts to control the flexible modes and thrusters to control the rigid body modes. A tenbay truss structure with active piezo struts is built to study the modeling, controller designs, and experimental issues. In this paper, the tenbay structure with piezo active members is modelled using an energy method approach. Decentralized and centralized control schemes are designed and implemented, and preliminary analytical and experimental results are presented.

  13. 14 CFR 417.413 - Hazard areas.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... controls during public access. A launch operator must establish procedural controls that prevent hazardous... that system hazard controls are in place that prevent initiation of a hazardous event. Hazard controls... devices or other restraints on system actuation switches or other controls to eliminate the possibility of...

  14. 14 CFR 417.413 - Hazard areas.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... controls during public access. A launch operator must establish procedural controls that prevent hazardous... that system hazard controls are in place that prevent initiation of a hazardous event. Hazard controls... devices or other restraints on system actuation switches or other controls to eliminate the possibility of...

  15. 14 CFR 417.413 - Hazard areas.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... controls during public access. A launch operator must establish procedural controls that prevent hazardous... that system hazard controls are in place that prevent initiation of a hazardous event. Hazard controls... devices or other restraints on system actuation switches or other controls to eliminate the possibility of...

  16. Circuit For Control Of Electromechanical Prosthetic Hand

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr.

    1995-01-01

    Proposed circuit for control of electromechanical prosthetic hand derives electrical control signals from shoulder movements. Updated, electronic version of prosthesis, that includes two hooklike fingers actuated via cables from shoulder harness. Circuit built around favored shoulder harness, provides more dexterous movement, without incurring complexity of computer-controlled "bionic" or hydraulically actuated devices. Additional harness and potentiometer connected to similar control circuit mounted on other shoulder. Used to control stepping motor rotating hand about prosthetic wrist to one of number of angles consistent with number of digital outputs. Finger-control signals developed by circuit connected to first shoulder harness transmitted to prosthetic hand via sliprings at prosthetic wrist joint.

  17. Elastomeric actuator devices for magnetic resonance imaging

    NASA Technical Reports Server (NTRS)

    Lichter, Matthew (Inventor); Wingert, Andreas (Inventor); Hafez, Moustapha (Inventor); Dubowsky, Steven (Inventor); Jolesz, Ferenc A. (Inventor); Kacher, Daniel F. (Inventor); Weiss, Peter (Inventor)

    2008-01-01

    The present invention is directed to devices and systems used in magnetic imaging environments that include an actuator device having an elastomeric dielectric film with at least two electrodes, and a frame attached to the actuator device. The frame can have a plurality of configurations including, such as, for example, at least two members that can be, but not limited to, curved beams, rods, plates, or parallel beams. These rigid members can be coupled to flexible members such as, for example, links wherein the frame provides an elastic restoring force. The frame preferably provides a linear actuation force characteristic over a displacement range. The linear actuation force characteristic is defined as .+-.20% and preferably 10% over a displacement range. The actuator further includes a passive element disposed between the flexible members to tune a stiffness characteristic of the actuator. The passive element can be a bi-stable element. The preferred embodiment actuator includes one or more layers of the elastomeric film integrated into the frame. The elastomeric film can be made of many elastomeric materials such as, for example, but not limited to, acrylic, silicone and latex.

  18. Electrokinetic actuation of liquid metal for reconfigurable radio frequency devices

    NASA Astrophysics Data System (ADS)

    Gough, Ryan C.

    Liquid metals are an attractive material choice for designers wishing to combine the advantages of metals, such as high electrical conductivity, thermal conductivity, and reflectivity, with the inherently dynamic nature of fluids. Liquid metals have been utilized for a wide variety of applications, but their high electrical conductivity, surface smoothness, and linear response makes them especially attractive as tuning elements within reconfigurable radio frequency (RF) devices. The recent introduction of non-toxic liquid metal alloys onto the commercial market has further fueled interest in this versatile material. Early experiments with liquid metal as an RF tuning element have yielded promising results, but have largely depended on externally applied pressure to actuate the liquid metal. For commercial implementation this would necessitate the use of clunky and inefficient micro-pumps, which can require both high voltages and high power consumption. This reliance on hydraulic pumping has been a significant barrier to the incorporation of liquid metal as an RF tuning element in applications outside of a laboratory setting. Here, several electrical actuation techniques are demonstrated that allow for the rapid and repeatable actuation of non-toxic gallium alloys as tuning elements within reconfigurable RF devices. These techniques leverage the naturally high surface tension of liquid metals, as well as the unique electrochemistry of gallium-based alloys, to exercise wide-ranging and high fidelity control over both the metal's shape and position. Furthermore, this control is exercised with voltage and power levels that are each better than an order of magnitude below that achievable with conventional micro-pumps. This control does not require the constant application of actuation signals in order to maintain an actuated state, and can even be 'self-actuated', with the liquid metal supplying its own kinetic energy via the electrochemical conversion of its native oxide layer. Several proof-of-concept devices are designed and tested to demonstrate the effectiveness of these electrical actuation techniques. A pair of tunable slot antennas are presented that achieve frequency reconfigurability through different implementations of liquid metal tuning elements - the first uses liquid metal as a dynamic short-circuit boundary condition for the magnetic current within the resonant aperture, and the second as a variable-length transmission stub that adds and removes reactance from the antenna. The two antennas are tunable across effective bandwidths of 19% and 15%, respectively. In addition, a tunable bandpass filter is demonstrated in which a central liquid-metal resonant element is 'stretched' to lower the passband of the filter by 10% without impacting the insertion loss. Finally, it is demonstrated how liquid metal can be formed into arbitrary shapes at high speeds (approximately 2.5 cm/s) without the need for an external power supply.

  19. Cylindrical Piezoelectric Fiber Composite Actuators

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.

    2008-01-01

    The use of piezoelectric devices has become widespread since Pierre and Jacques Curie discovered the piezoelectric effect in 1880. Examples of current applications of piezoelectric devices include ultrasonic transducers, micro-positioning devices, buzzers, strain sensors, and clocks. The invention of such lightweight, relatively inexpensive piezoceramic-fiber-composite actuators as macro fiber composite (MFC) actuators has made it possible to obtain strains and displacements greater than those that could be generated by prior actuators based on monolithic piezoceramic sheet materials. MFC actuators are flat, flexible actuators designed for bonding to structures to apply or detect strains. Bonding multiple layers of MFC actuators together could increase force capability, but not strain or displacement capability. Cylindrical piezoelectric fiber composite (CPFC) actuators have been invented as alternatives to MFC actuators for applications in which greater forces and/or strains or displacements may be required. In essence, a CPFC actuator is an MFC or other piezoceramic fiber composite actuator fabricated in a cylindrical instead of its conventional flat shape. Cylindrical is used here in the general sense, encompassing shapes that can have circular, elliptical, rectangular or other cross-sectional shapes in the planes perpendicular to their longitudinal axes.

  20. Actuated forebody strake controls for the F-18 high alpha research vehicle

    NASA Technical Reports Server (NTRS)

    Murri, Daniel G.; Shah, Gautam H.; Dicarlo, Daniel J.; Trilling, Todd W.

    1993-01-01

    A series of ground-based studies have been conducted to develop actuated forebody strake controls for flight test evaluations using the NASA F-18 High-Alpha Research Vehicle. The actuated forebody strake concept has been designed to provide increased levels of yaw control at high angles of attack where conventional rudders become ineffective. Results are presented from tests conducted with the flight-test strake design, including static and dynamic wind-tunnel tests, transonic wind-tunnel tests, full-scale wind-tunnel tests, pressure surveys, and flow visualization tests. Results from these studies show that a pair of conformal actuated forebody strakes applied to the F-18 HARV can provide a powerful and precise yaw control device at high angles of attack. The preparations for flight testing are described, including the fabrication of flight hardware and the development of aircraft flight control laws. The primary objectives of the flight tests are to provide flight validation of the groundbased studies and to evaluate the use of this type of control to enhance fighter aircraft maneuverability.

  1. NASA Tech Briefs, May 2003

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Topics covered include: Using Diffusion Bonding in Making Piezoelectric Actuators; Wireless Temperature-Monitoring System; Analog Binaural Circuits for Detecting and Locating Leaks; Mirrors Containing Biomimetic Shape-Control Actuators; Surface-Micromachined Planar Arrays of Thermopiles; Cascade Back-Propagation Learning in Neural Networks; Perovskite Superlattices as Tunable Microwave Devices; Rollable Thin-Shell Nanolaminate Mirrors; Flight Tests of a Ministick Controller in an F/A-18 Airplane; Piezoelectrically Actuated Shutter for High Vacuum; Bio-Inspired Engineering of Exploration Systems; Microscope Cells Containing Multiple Micromachined Wells; Electrophoretic Deposition for Fabricating Microbatteries; Integrated Arrays of Ion-Sensitive Electrodes; Model of Fluidized Bed Containing Reacting Solids and Gases; Membrane Mirrors With Bimorph Shape Actuators; Using Fractional Clock-Period Delays in Telemetry Arraying; Developing Generic Software for Spacecraft Avionics; Numerical Study of Pyrolysis of Biomass in Fluidized Beds; and Assessment of Models of Chemically Reacting Granular Flows.

  2. Improvement of Wearable Power Assist Wear for Low Back Support using Pneumatic Actuator

    NASA Astrophysics Data System (ADS)

    Cho, Feifei; Sugimoto, Riku; Noritsugu, Toshiro; Li, Xiangpan

    2017-10-01

    This study focuses on developing a safe, lightweight, power assist device that can be worn by people who like caregivers during lifting or static holding tasks to prevent low back pain (LBP). Therefore in consideration of their flexibility, light weight, and large force to weight ratio we have developed a Wearable Power Assist Wear for caregivers, two types of pneumatic actuators are employed in assisting low back movement for their safety and comfort. The device can be worn directly on the body like normal clothing. Because there is no rigid exoskeleton frame structure, it is lightweight and user friendly. In this paper, we proposed the new type of the wearable power assist wear and improved the controller of control system.

  3. Microelectromechanical Systems

    NASA Technical Reports Server (NTRS)

    Gabriel, Kaigham J.

    1995-01-01

    Micro-electromechanical systems (MEMS) is an enabling technology that merges computation and communication with sensing and actuation to change the way people and machines interact with the physical world. MEMS is a manufacturing technology that will impact widespread applications including: miniature inertial measurement measurement units for competent munitions and personal navigation; distributed unattended sensors; mass data storage devices; miniature analytical instruments; embedded pressure sensors; non-invasive biomedical sensors; fiber-optics components and networks; distributed aerodynamic control; and on-demand structural strength. The long term goal of ARPA's MEMS program is to merge information processing with sensing and actuation to realize new systems and strategies for both perceiving and controlling systems, processes, and the environment. The MEMS program has three major thrusts: advanced devices and processes, system design, and infrastructure.

  4. Safety control circuit for a neutronic reactor

    DOEpatents

    Ellsworth, Howard C.

    2004-04-27

    A neutronic reactor comprising an active portion containing material fissionable by neutrons of thermal energy, means to control a neutronic chain reaction within the reactor comprising a safety device and a regulating device, a safety device including means defining a vertical channel extending into the reactor from an aperture in the upper surface of the reactor, a rod containing neutron-absorbing materials slidably disposed within the channel, means for maintaining the safety rod in a withdrawn position relative to the active portion of the reactor including means for releasing said rod on actuation thereof, a hopper mounted above the active portion of the reactor having a door disposed at the bottom of the hopper opening into the vertical channel, a plurality of bodies of neutron-absorbing materials disposed within the hopper, and means responsive to the failure of the safety rod on actuation thereof to enter the active portion of the reactor for opening the door in the hopper.

  5. Low-Actuation Voltage MEMS Digital-to-Analog Converter with Parylene Spring Structures

    PubMed Central

    Ma, Cheng-Wen; Lee, Fu-Wei; Liao, Hsin-Hung; Kuo, Wen-Cheng; Yang, Yao-Joe

    2015-01-01

    We propose an electrostatically-actuated microelectromechanical digital-to-analog converter (M-DAC) device with low actuation voltage. The spring structures of the silicon-based M-DAC device were monolithically fabricated using parylene-C. Because the Young’s modulus of parylene-C is considerably lower than that of silicon, the electrostatic microactuators in the proposed device require much lower actuation voltages. The actuation voltage of the proposed M-DAC device is approximately 6 V, which is less than one half of the actuation voltages of a previously reported M-DAC equipped with electrostatic microactuators. The measured total displacement of the proposed three-bit M-DAC is nearly 504 nm, and the motion step is approximately 72 nm. Furthermore, we demonstrated that the M-DAC can be employed as a mirror platform with discrete displacement output for a noncontact surface profiling system. PMID:26343682

  6. Polymer-based actuators for virtual reality devices

    NASA Astrophysics Data System (ADS)

    Bolzmacher, Christian; Hafez, Moustapha; Benali Khoudja, Mohamed; Bernardoni, Paul; Dubowsky, Steven

    2004-07-01

    Virtual Reality (VR) is gaining more importance in our society. For many years, VR has been limited to the entertainment applications. Today, practical applications such as training and prototyping find a promising future in VR. Therefore there is an increasing demand for low-cost, lightweight haptic devices in virtual reality (VR) environment. Electroactive polymers seem to be a potential actuation technology that could satisfy these requirements. Dielectric polymers developed the past few years have shown large displacements (more than 300%). This feature makes them quite interesting for integration in haptic devices due to their muscle-like behaviour. Polymer actuators are flexible and lightweight as compared to traditional actuators. Using stacks with several layers of elatomeric film increase the force without limiting the output displacement. The paper discusses some design methods for a linear dielectric polymer actuator for VR devices. Experimental results of the actuator performance is presented.

  7. On the design of a miniature haptic ring for cutaneous force feedback using shape memory alloy actuators

    NASA Astrophysics Data System (ADS)

    Hwang, Donghyun; Lee, Jaemin; Kim, Keehoon

    2017-10-01

    This paper proposes a miniature haptic ring that can display touch/pressure and shearing force to the user’s fingerpad. For practical use and wider application of the device, it is developed with the aim of achieving high wearability and mobility/portability as well as cutaneous force feedback functionality. A main body of the device is designed as a ring-shaped lightweight structure with a simple driving mechanism, and thin shape memory alloy (SMA) wires having high energy density are applied as actuating elements. Also, based on a band-type wireless control unit including a wireless data communication module, the whole device could be realized as a wearable mobile haptic device system. These features enable the device to take diverse advantages on functional performances and to provide users with significant usability. In this work, the proposed miniature haptic ring is systematically designed, and its working performances are experimentally evaluated with a fabricated functional prototype. The experimental results obviously demonstrate that the proposed device exhibits higher force-to-weight ratio than conventional finger-wearable haptic devices for cutaneous force feedback. Also, it is investigated that operational performances of the device are strongly influenced by electro-thermomechanical behaviors of the SMA actuator. In addition to the experiments for performance evaluation, we conduct a preliminary user test to assess practical feasibility and usability based on user’s qualitative feedback.

  8. Design and characterization of a torque-controllable actuator for knee assistance during sit-to-stand.

    PubMed

    Shepherd, Max K; Rouse, Elliott J

    2016-08-01

    Individuals with post-stroke hemiparesis often have difficulty standing out of a chair. One way to potentially improve sit-to-stand is to provide knee extension assistance using a powered knee exoskeleton. An exoskeleton providing unilateral, partial assistance during sit-to-stand would need to be torque-controllable. There are no knee exoskeletons on the market suitable for conducting experiments assisting stroke patients with sit-to-stand, so to enable such experiments a research device was developed. The purpose of this report is to present the design of a novel knee exoskeleton actuator that uses a fiberglass leaf spring in series to improve torque-controllability, and present a characterization of the actuator performance. The actuator is capable of the required torque and speed for sit-to-stand, has high bandwidth (25 Hz), low output impedance at low frequencies (<;0.5 Nm), and excellent torque tracking. An orthotic brace built upon this actuator will enable an in-depth study on the biomechanical effects of providing stroke subjects with knee extension assistance during sit-to-stand.

  9. Development of endovascular vibrating polymer actuator probe for mechanical thrombolysis: a phantom study.

    PubMed

    Choi, Seung Hong; Yoon, Bye-Ri; Oh, Jin Sun; Han, Moon Hee; Lee, Jang Yeol; Cho, Hye Rim; Kim, Moon June; Rhee, Kyehan; Jho, Jae Young

    2011-01-01

    In this study, we propose a new method for enhancement of intraarterial thrombolysis using an ionic polymer-metal composite (IPMC) actuator. The purpose of this study was to test the mechanical thrombolysis efficiency of IPMC actuators and evaluate the endovascular vibrating polymer actuator probe for mechanical thrombolysis in a phantom model; 2 × 1 × 15 mm (2 mm in width, 1 mm in thickness, and 15 mm in length) and 0.8 × 0.8 × 10 mm (0.8 mm in width, 0.8 mm in thickness, and 10 mm in length) IPMC actuators were fabricated by stacking five and four Nafion-117 films, respectively. We manufactured the endovascular vibrating polymer actuator probe, for which thrombolysis efficiency was tested in a vascular phantom. The phantom study using 2 × 1 × 15 mm IPMC actuators showed that 5 Hz actuation is the optimal frequency for thrombolysis under both 2 and 3 V, when blood clot was not treated with rtPA, and when exposed to rtPA, IPMC actuators under the optimized condition (3 V, 5 Hz, and 5 min) significantly increased the thrombolysis degree compared with control and other experimental groups (p < 0.05). In addition, 0.8 × 0.8 × 10 mm IPMC actuators also revealed a significantly higher thrombolysis degree under the optimized condition than the control and rtPA only groups (p < 0.05). Finally, the fabricated probe using 0.8 × 0.8 × 10 mm IPMC actuators also incurred higher thrombolysis degree under the optimized condition than the control and rtPA only groups (p < 0.05). A vibrating polymer actuator probe is a feasible device for intravascular thrombolysis, and further study in an animal model is warranted.

  10. Motion control in free-standing shape-memory actuators

    NASA Astrophysics Data System (ADS)

    Belmonte, Alberto; Lama, Giuseppe C.; Cerruti, Pierfrancesco; Ambrogi, Veronica; Fernández-Francos, Xavier; De la Flor, Silvia

    2018-07-01

    In this work, free-standing shape-memory thermally triggered actuators are developed by laminating ‘thiol-epoxy’-based glassy thermoset (GT) and stretched liquid-crystalline network (LCN) films. A sequential curing process was used to obtain GTs with tailored thermomechanical properties and network relaxation dynamics, and also to assemble the final actuator. The actuation extent, rate and time were studied by varying the GT and the heating rate in thermo-actuation with an experimental approach. The results demonstrate that it is possible to tailor the actuation rate and time by designing GT materials with a glass transition temperature close to that of the liquid-crystalline-to-isotropic phase transition of the LCN, thus making it possible to couple the two processes. Such coupling is also possible in rapid heating processes even when the glass transition temperature of the GT is clearly lower than the isotropization temperature of the LCN, depending on the network relaxation dynamics of the GT and the presence of thermal gradients within the actuators. Interestingly, varying the GT network relaxation dynamics does not affect the actuation extent. As predicted by the analytical model developed in our previous work, the modulus of the GT layer is mainly responsible for the actuation extent. Finally, to demonstrate the enhanced control of the actuation, specifically designed actuators were assembled in a three-dimensional actuating device able to make complex motions (including ‘S-type’ bending). This approach makes it possible to engineer advanced functional materials for application in self-adaptable structures and soft robotics.

  11. Active Control Technology at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Antcliff, Richard R.; McGowan, Anna-Marie R.

    2000-01-01

    NASA Langley has a long history of attacking important technical opportunities from a broad base of supporting disciplines. The research and development at Langley in this subject area range from the test tube to the test flight. The information covered here will range from the development of innovative new materials, sensors and actuators, to the incorporation of smart sensors and actuators in practical devices, to the optimization of the location of these devices, to, finally, a wide variety of applications of these devices utilizing Langley's facilities and expertise. Advanced materials are being developed for sensors and actuators, as well as polymers for integrating smart devices into composite structures. Contributions reside in three key areas: computational materials; advanced piezoelectric materials; and integrated composite structures. The computational materials effort is focused on developing predictive tools for the efficient design of new materials with the appropriate combination of properties for next generation smart airframe systems. Research in the area of advanced piezoelectrics includes optimizing the efficiency, force output, use temperature, and energy transfer between the structure and device for both ceramic and polymeric materials. For structural health monitoring, advanced non-destructive techniques including fiber optics are being developed for detection of delaminations, cracks and environmental deterioration in aircraft structures. The computational materials effort is focused on developing predictive tools for the efficient design of new materials with the appropriate combination of properties for next generation smart airframe system. Innovative fabrication techniques processing structural composites with sensor and actuator integration are being developed.

  12. Anisotropic Laminar Piezocomposite Actuator Incorporating Machined PMN-PT Single Crystal Fibers

    NASA Technical Reports Server (NTRS)

    Wilkie, W. Keats; Inman, Daniel J.; Lloyd, Justin M.; High, James W.

    2006-01-01

    The design, fabrication, and testing of a flexible, laminar, anisotropic piezoelectric composite actuator utilizing machined PMN-32%PT single crystal fibers is presented. The device consists of a layer of rectangular single crystal piezoelectric fibers in an epoxy matrix, packaged between interdigitated electrode polyimide films. Quasistatic free-strain measurements of the single crystal device are compared with measurements from geometrically identical specimens incorporating polycrystalline PZT-5A and PZT-5H piezoceramic fibers. Free-strain actuation of the single crystal actuator at low bipolar electric fields (+/- 250 V/mm) is approximately 400% greater than that of the baseline PZT-5A piezoceramic device, and 200% greater than that of the PZT-5H device. Free-strain actuation under high unipolar electric fields (0-4kV/mm) is approximately 200% of the PZT-5A baseline device, and 150% of the PZT-5H alternate piezoceramic device. Performance increases at low field are qualitatively consistent with predicted increases based on scaling the low-field d33 piezoelectric constants of the respective piezoelectric materials. High-field increases are much less than scaled d33 estimates, but appear consistent with high-field freestrain measurements reported for similar bulk single-crystal and piezoceramic compositions. Measurements of single crystal actuator capacitance and coupling coefficient are also provided. These properties were poorly predicted using scaled bulk material dielectric and coupling coefficient data. Rules-of-mixtures calculations of the effective elastic properties of the single crystal device and estimated actuation work energy densities are also presented. Results indicate longitudinal stiffnesses significantly lower (50% less) than either piezoceramic device. This suggests that single-crystal piezocomposite actuators will be best suited to low induced-stress, high strain and deflection applications.

  13. Anisotropic Piezocomposite Actuator Incorporating Machined PMN-PT Single Crystal Fibers

    NASA Technical Reports Server (NTRS)

    Wilkie, W. Keats; Inman, Daniel J.; Lloyd, Justin M.; High, James W.

    2004-01-01

    The design, fabrication, and testing of a flexible, planar, anisotropic piezoelectric composite actuator utilizing machined PMN-32%PT single crystal fibers is presented. The device consists of a layer of rectangular single crystal piezoelectric fibers in an epoxy matrix, packaged between interdigitated electrode polyimide films. Quasistatic free-strain measurements of the single crystal device are compared with measurements from geometrically identical specimens incorporating polycrystalline PZT-5A and PZT-5H piezoceramic fibers. Free-strain actuation of the single crystal actuator at low bipolar electric fields (+/- 250 V/mm) is approximately 400% greater than that of the baseline PZT-5A piezoceramic device, and 200% greater than that of the PZT-5H device. Free-strain actuation under high unipolar electric fields (0-4kV/mm) is approximately 200% of the PZT-5A baseline device, and 150% of the PZT-5H alternate piezoceramic device. Performance increases at low field are qualitatively consistent with predicted increases based on scaling the low-field d(sub 33) piezoelectric constants of the respective piezoelectric materials. High-field increases are much less than scaled d(sub 33) estimates, but appear consistent with high-field freestrain measurements reported for similar bulk single-crystal and piezoceramic compositions. Measurements of single crystal actuator capacitance and coupling coefficient are also provided. These properties were poorly predicted using scaled bulk material dielectric and coupling coefficient data. Rules-of-mixtures calculations of the effective elastic properties of the single crystal device and estimated actuation work energy densities are also presented. Results indicate longitudinal stiffnesses significantly lower (50% less) than either piezoceramic device. This suggests that single-crystal piezocomposite actuators will be best suited to low induced-stress, high strain and deflection applications.

  14. Advanced methods for controlling untethered magnetic devices using rotating magnetic fields

    NASA Astrophysics Data System (ADS)

    Mahoney, Arthur W., Jr.

    This dissertation presents results documenting advancements on the control of untethered magnetic devices, such as magnetic "microrobots" and magnetically actuated capsule endoscopes, motivated by problems in minimally invasive medicine. This dissertation focuses on applying rotating magnetic fields for magnetic manipulation. The contributions include advancements in the way that helical microswimmers (devices that mimic the propulsion of bacterial flagella) are controlled in the presence of gravitational forces, advancements in ways that groups of untethered magnetic devices can be differentiated and semi-independently controlled, advancements in the way that untethered magnetic device can be controlled with a single rotating permanent magnet, and an improved understanding in the nature of the magnetic force applied to an untethered device by a rotating magnet.

  15. Haptic device development based on electro static force of cellulose electro active paper

    NASA Astrophysics Data System (ADS)

    Yun, Gyu-young; Kim, Sang-Youn; Jang, Sang-Dong; Kim, Dong-Gu; Kim, Jaehwan

    2011-04-01

    Haptic is one of well-considered device which is suitable for demanding virtual reality applications such as medical equipment, mobile devices, the online marketing and so on. Nowadays, many of concepts for haptic devices have been suggested to meet the demand of industries. Cellulose has received much attention as an emerging smart material, named as electro-active paper (EAPap). The EAPap is attractive for mobile haptic devices due to its unique characteristics in terms of low actuation power, suitability for thin devices and transparency. In this paper, we suggest a new concept of haptic actuator with the use of cellulose EAPap. Its performance is evaluated depending on various actuation conditions. As a result, cellulose electrostatic force actuator shows a large output displacement and fast response, which is suitable for mobile haptic devices.

  16. Strain-controlled nonvolatile magnetization switching

    NASA Astrophysics Data System (ADS)

    Geprägs, S.; Brandlmaier, A.; Brandt, M. S.; Gross, R.; Goennenwein, S. T. B.

    2014-11-01

    We investigate different approaches towards a nonvolatile switching of the remanent magnetization in single-crystalline ferromagnets at room temperature via elastic strain using ferromagnetic thin film/piezoelectric actuator hybrids. The piezoelectric actuator induces a voltage-controllable strain along different crystalline directions of the ferromagnetic thin film, resulting in modifications of its magnetization by converse magnetoelastic effects. We quantify the magnetization changes in the hybrids via ferromagnetic resonance spectroscopy and superconducting quantum interference device magnetometry. These measurements demonstrate a significant strain-induced change of the magnetization, limited by an inefficient strain transfer and domain formation in the particular system studied. To overcome these obstacles, we address practicable engineering concepts and use a model to demonstrate that a strain-controlled, nonvolatile magnetization switching should be possible in appropriately engineered ferromagnetic/piezoelectric actuator hybrids.

  17. An experimental study of icing control using DBD plasma actuator

    NASA Astrophysics Data System (ADS)

    Cai, Jinsheng; Tian, Yongqiang; Meng, Xuanshi; Han, Xuzhao; Zhang, Duo; Hu, Haiyang

    2017-08-01

    Ice accretion on aircraft or wind turbine has been widely recognized as a big safety threat in the past decades. This study aims to develop a new approach for icing control using an AC-DBD plasma actuator. The experiments of icing control (i.e., anti-/de-icing) on a cylinder model were conducted in an icing wind tunnel with controlled wind speed (i.e., 15 m/s) and temperature (i.e., -10°C). A digital camera was used to record the dynamic processes of plasma anti-icing and de-icing whilst an infrared imaging system was utilized to map the surface temperature variations during the anti-/de-icing processes. It was found that the AC-DBD plasma actuator is very effective in both anti-icing and de-icing operations. While no ice formation was observed when the plasma actuator served as an anti-icing device, a complete removal of the ice layer with a thickness of 5 mm was achieved by activating the plasma actuator for ˜150 s. Such information demonstrated the feasibility of plasma anti-/de-icing, which could potentially provide more effective and safer icing mitigation strategies.

  18. Development of flow separation control system to reduce the vibration of wind turbine blades

    NASA Astrophysics Data System (ADS)

    Kim, Ho-Young; Kim, Ho-Hyun; Han, Jong-Seob; Han, Jae-Hung

    2017-04-01

    The size of wind turbine blade has been continuously increased. Large-scale wind turbine blades induce loud noise, vibration; and maintenance difficulty is also increased. It causes the eventual increases of the cost of energy. The vibration of wind turbine blade is caused by several reasons such as a blade rotation, tower shadow, wind shear, and flow separation of a wind turbine blade. This wind speed variation changes in local angle of attack of the blades and create the vibration. The variation of local angle of attack influences the lift coefficient and causes the large change of the lift. In this study, we focus on the lift coefficient control using a flow control device to reduce the vibration. DU35-A15 airfoil was employed as baseline model. A plasma actuator was installed to generate the upwind jet in order to control the lift coefficient. Wind tunnel experiment was performed to demonstrate of the performance of the plasma actuator. The results show the plasma actuator can induce the flow separation compared with the baseline model. In addition, the actuator can delay the flow separation depending on the input AC frequency with the same actuator configuration.

  19. Variable recruitment fluidic artificial muscles: modeling and experiments

    NASA Astrophysics Data System (ADS)

    Bryant, Matthew; Meller, Michael A.; Garcia, Ephrahim

    2014-07-01

    We investigate taking advantage of the lightweight, compliant nature of fluidic artificial muscles to create variable recruitment actuators in the form of artificial muscle bundles. Several actuator elements at different diameter scales are packaged to act as a single actuator device. The actuator elements of the bundle can be connected to the fluidic control circuit so that different groups of actuator elements, much like individual muscle fibers, can be activated independently depending on the required force output and motion. This novel actuation concept allows us to save energy by effectively impedance matching the active size of the actuators on the fly based on the instantaneous required load. This design also allows a single bundled actuator to operate in substantially different force regimes, which could be valuable for robots that need to perform a wide variety of tasks and interact safely with humans. This paper proposes, models and analyzes the actuation efficiency of this actuator concept. The analysis shows that variable recruitment operation can create an actuator that reduces throttling valve losses to operate more efficiently over a broader range of its force-strain operating space. We also present preliminary results of the design, fabrication and experimental characterization of three such bioinspired variable recruitment actuator prototypes.

  20. Postgraduate education on electro-active polymers at Southern Denmark University

    NASA Astrophysics Data System (ADS)

    Jones, Richard W.

    2009-03-01

    A recently introduced elective to the Master's of Science in Mechatronics program at Southern Denmark University, entitled 'Mechatronics: Design and Build' concentrates on some of the interdisciplinary aspects of Mechatronics Engineering. The 'Motion Control of Mechatronic Devices' is the main theme of this elective. Within this 'theme' the modelling, identification and compensation of nonlinear effects such as friction, stiction and hysteresis are considered. One of the most important components of the elective considers 'Smart Materials' and their use for actuation purposes. The theory, modelling and properties of piezoceramics. magneto- and electro- rheological fluids and dielectric electro active polymers (DEAP) are introduced in the 'Smart Materials' component. This paper initially reviews the laboratory experiments that have been developed for the dielectric electro active polymer section of the 'Mechatronics: Design and Build' elective. In lectures the students are introduced to the basic theory and fabrication of tubular actuators, that use DEAP material based on smart compliant electrode technology. In the laboratory the students to (a) carry out a series of experiments to characterise the tubular actuators, and (b) design a closed-loop position controller and test the performance of the controlled actuator for both step changes in desired position and periodic input reference signals. The last part of this contribution reviews some of the DEAP-based demonstration devices that been developed by Danfoss PolyPower A/S using their PolyPowerTM material which utilizes smart compliant electrode technology.

  1. Mechanical strain energy shuttle for aircraft morphing via wing twist or structural deformation

    NASA Astrophysics Data System (ADS)

    Clingman, Dan J.; Ruggeri, Robert T.

    2004-07-01

    Direct structural deformation to achieve aerodynamic benefit is difficult because large actuators must supply energy for structural strain and aerodynamic loads. This ppaer presents a mechanism that allows most of the energy required to twist or deform a wing to be stored in descrete springs. When this device is used, only sufficient energy is provided to control the position of the wing. This concept allows lightweight actuators to perform wing twisting and other structural distortions, and it reduces the onboard mass of the wing-twist system. The energy shuttle can be used with any actuator and it has been adapted for used with shape memory alloy, piezoelectric, and electromagnetic actuators.

  2. Considerations on the implementation and modeling of an active mass driver with electric torsional servomotor

    NASA Astrophysics Data System (ADS)

    Ubertini, Filippo; Venanzi, Ilaria; Comanducci, Gabriele

    2015-06-01

    The current trend in full-scale applications of active mass drivers for mitigating buildings' vibrations is to rely on the use of electric servomotors and low friction transmission devices. While similar full-scale applications have been recently documented, there is still the need for deepening the understanding of the behavior of such active mass drivers, especially as it concerns their reliability in the case of extreme loading events. This paper presents some considerations arisen in the physical implementation of a prototype active mass driver system, fabricated by coupling an electric torsional servomotor with a ball screw transmission device, using state-of-the-art electronics and a high speed digital communication protocol between controller and servomotor drive. The prototype actuator is mounted on top of a scaled-down five-story frame structure, subjected to base excitation provided by a sliding table actuated by an electrodynamic shaker. The equations of motion are rigorously derived, at first, by considering the torque of the servomotor as the control input, in agreement with other literature work. Then, they are extended to the case where the servomotor operates under kinematic control, that is, by commanding its angular velocity instead of its torque, including control-structure-interaction effects. Experiments are carried out by employing an inherently stable collocated skyhook control algorithm, proving, on the one hand, the control effectiveness of the device but also revealing, on the other hand, the possibility of closed-loop system instability at high gains. Theoretical interpretation of the results clarifies that the dynamic behavior of the actuator plays a central role in determining its control effectiveness and is responsible for the observed stability issues, operating similarly to time delay effects. Numerical extension to the case of earthquake excitation confirms the control effectiveness of the device and highlights that different controllers essentially provide similar performances in the mitigation of the structural response.

  3. Preloaded latching device

    NASA Technical Reports Server (NTRS)

    Wesselski, Clarence J. (Inventor); Nagy, Kornel (Inventor)

    1992-01-01

    A latching device is disclosed which is lever operated sequentially to actuate a set of collet fingers to provide a radial expansion and to actuate a force mechanism to provide a compressive gripping force for attaching first and second devices to one another. The latching device includes a body member having elongated collet fingers which, in a deactuated condition, is insertable through bores on the first and second devices so that gripping terminal portions on the collet fingers are proximate to the end of the bore of the first device while a spring assembly on the body member is located proximate to the outer surface of a second device. A lever is rotatable through 90 deg to move a latching rod to sequentially actuate and expand collet fingers and to actuate the spring assembly by compressing it. During the first 30 deg of movement of the lever, the collet fingers are actuated by the latching rod to provide a radial expansion and during the last 60 deg of movement of the lever, the spring assembly acts as a force mechanism and is actuated to develop a compressive latching force on the devices. The latching rod and lever are connected by a camming mechanism. The amount of spring force in the spring assembly can be adjusted; the body member can be permanently attached by a telescoping assembly to one of the devices; and the structure can be used as a pulling device for removing annular bearings or the like from blind bores.

  4. Modeling, fabrication and plasma actuator coupling of flexible pressure sensors for flow separation detection and control in aeronautical applications

    NASA Astrophysics Data System (ADS)

    Francioso, L.; De Pascali, C.; Pescini, E.; De Giorgi, M. G.; Siciliano, P.

    2016-06-01

    Preventing the flow separation could enhance the performance of propulsion systems and future civil aircraft. To this end, a fast detection of boundary layer separation is mandatory for a sustainable and successful application of active flow control devices, such as plasma actuators. The present work reports on the design, fabrication and functional tests of low-cost capacitive pressure sensors coupled with dielectric barrier discharge (DBD) plasma actuators to detect and then control flow separation. Finite element method (FEM) simulations were used to obtain information on the deflection and the stress distribution in different-shaped floating membranes. The sensor sensitivity as a function of the pressure load was also calculated by experimental tests. The results of the calibration of different capacitive pressure sensors are reported in this work, together with functional tests in a wind tunnel equipped with a curved wall plate on which a DBD plasma actuator was mounted to control the flow separation. The flow behavior was experimentally investigated by particle image velocimetry (PIV) measurements. Statistical and spectral analysis, applied to the output signals of the pressure sensor placed downstream of the profile leading edge, demonstrated that the sensor is able to discriminate different ionic wind velocity and turbulence conditions. The sensor sensitivity in the 0-100 Pa range was experimentally measured and it ranged between 0.0030 and 0.0046 pF Pa-1 for the best devices.

  5. High-temperature optically activated GaAs power switching for aircraft digital electronic control

    NASA Technical Reports Server (NTRS)

    Berak, J. M.; Grantham, D. H.; Swindal, J. L.; Black, J. F.; Allen, L. B.

    1983-01-01

    Gallium arsenide high-temperature devices were fabricated and assembled into an optically activated pulse-width-modulated power control for a torque motor typical of the kinds used in jet engine actuators. A bipolar heterojunction phototransistor with gallium aluminum arsenide emitter/window, a gallium arsenide junction field-effect power transistor and a gallium arsenide transient protection diode were designed and fabricated. A high-temperature fiber optic/phototransistor coupling scheme was implemented. The devices assembled into the demonstrator were successfully tested at 250 C, proving the feasibility of actuator-located switching of control power using optical signals transmitted by fibers. Assessments of the efficiency and technical merits were made for extension of this high-temperature technology to local conversion of optical power to electrical power and its control at levels useful for driving actuators. Optical power sources included in the comparisons were an infrared light-emitting diode, an injection laser diode, tungsten-halogen lamps and arc lamps. Optical-to-electrical power conversion was limited to photovoltaics located at the actuator. Impedance matching of the photovoltaic array to the load was considered over the full temperature range, -55 C to 260 C. Loss of photovoltaic efficiency at higher temperatures was taken into account. Serious losses in efficiency are: (1) in the optical source and the cooling which they may require in the assumed 125 C ambient, (2) in the decreased conversion efficiency of the gallium arsenide photovoltaic at 260 C, and (3) in impedance matching. Practical systems require improvements in these areas.

  6. Designing components using smartMOVE electroactive polymer technology

    NASA Astrophysics Data System (ADS)

    Rosenthal, Marcus; Weaber, Chris; Polyakov, Ilya; Zarrabi, Al; Gise, Peter

    2008-03-01

    Designing components using SmartMOVE TM electroactive polymer technology requires an understanding of the basic operation principles and the necessary design tools for integration into actuator, sensor and energy generation applications. Artificial Muscle, Inc. is collaborating with OEMs to develop customized solutions for their applications using smartMOVE. SmartMOVE is an advanced and elegant way to obtain almost any kind of movement using dielectric elastomer electroactive polymers. Integration of this technology offers the unique capability to create highly precise and customized motion for devices and systems that require actuation. Applications of SmartMOVE include linear actuators for medical, consumer and industrial applications, such as pumps, valves, optical or haptic devices. This paper will present design guidelines for selecting a smartMOVE actuator design to match the stroke, force, power, size, speed, environmental and reliability requirements for a range of applications. Power supply and controller design and selection will also be introduced. An overview of some of the most versatile configuration options will be presented with performance comparisons. A case example will include the selection, optimization, and performance overview of a smartMOVE actuator for the cell phone camera auto-focus and proportional valve applications.

  7. A motor-driven ventricular assist device controlled with an optical encoder system.

    PubMed

    Nakamura, T; Hayashi, K; Yamane, H

    1993-01-01

    An electric motor-driven ventricular assist device has been developed for long-term use inside the body. The system is composed of a pusher-plate-type blood pump and an actuator consisting of an electrical motor and a ball screw. Cyclic change of the direction of motor rotation makes a back-and-forth axial movement of the ball screw shaft. The shaft, which is detached from the pump diaphragm, pushes the diaphragm via a pusher plate to eject blood during systole; blood is sucked by the diaphragm resilience during diastole. Using the output signals from a newly designed, incremental-type, miniature optical rotary encoder mounted inside the actuator, the input voltage of the motor is optimally controlled referring to the phase difference between the current position of the moving rotor and the electrical reference signal of the rotation generated by a microprocessor-based controller. In vitro performance tests indicated that the system fulfills required specifications. The maximum efficiency was 11%, which was about twice as high as that obtained with the previous open-loop prototype system. In the air, the surface temperature of the actuator elevated to 20 degrees C above the room temperature. An acute in vivo test showed its feasibility as a left ventricular assist device. Analysis of the energy loss in each component of the system indicated that redesign and precise assembly of the mechanical parts could increase the system efficiency.

  8. A versatile valving toolkit for automating fluidic operations in paper microfluidic devices.

    PubMed

    Toley, Bhushan J; Wang, Jessica A; Gupta, Mayuri; Buser, Joshua R; Lafleur, Lisa K; Lutz, Barry R; Fu, Elain; Yager, Paul

    2015-03-21

    Failure to utilize valving and automation techniques has restricted the complexity of fluidic operations that can be performed in paper microfluidic devices. We developed a toolkit of paper microfluidic valves and methods for automatic valve actuation using movable paper strips and fluid-triggered expanding elements. To the best of our knowledge, this is the first functional demonstration of this valving strategy in paper microfluidics. After introduction of fluids on devices, valves can actuate automatically after a) a certain period of time, or b) the passage of a certain volume of fluid. Timing of valve actuation can be tuned with greater than 8.5% accuracy by changing lengths of timing wicks, and we present timed on-valves, off-valves, and diversion (channel-switching) valves. The actuators require ~30 μl fluid to actuate and the time required to switch from one state to another ranges from ~5 s for short to ~50 s for longer wicks. For volume-metered actuation, the size of a metering pad can be adjusted to tune actuation volume, and we present two methods - both methods can achieve greater than 9% accuracy. Finally, we demonstrate the use of these valves in a device that conducts a multi-step assay for the detection of the malaria protein PfHRP2. Although slightly more complex than devices that do not have moving parts, this valving and automation toolkit considerably expands the capabilities of paper microfluidic devices. Components of this toolkit can be used to conduct arbitrarily complex, multi-step fluidic operations on paper-based devices, as demonstrated in the malaria assay device.

  9. A versatile valving toolkit for automating fluidic operations in paper microfluidic devices

    PubMed Central

    Toley, Bhushan J.; Wang, Jessica A.; Gupta, Mayuri; Buser, Joshua R.; Lafleur, Lisa K.; Lutz, Barry R.; Fu, Elain; Yager, Paul

    2015-01-01

    Failure to utilize valving and automation techniques has restricted the complexity of fluidic operations that can be performed in paper microfluidic devices. We developed a toolkit of paper microfluidic valves and methods for automatic valve actuation using movable paper strips and fluid-triggered expanding elements. To the best of our knowledge, this is the first functional demonstration of this valving strategy in paper microfluidics. After introduction of fluids on devices, valves can actuate automatically a) after a certain period of time, or b) after the passage of a certain volume of fluid. Timing of valve actuation can be tuned with greater than 8.5% accuracy by changing lengths of timing wicks, and we present timed on-valves, off-valves, and diversion (channel-switching) valves. The actuators require ~30 μl fluid to actuate and the time required to switch from one state to another ranges from ~5 s for short to ~50s for longer wicks. For volume-metered actuation, the size of a metering pad can be adjusted to tune actuation volume, and we present two methods – both methods can achieve greater than 9% accuracy. Finally, we demonstrate the use of these valves in a device that conducts a multi-step assay for the detection of the malaria protein PfHRP2. Although slightly more complex than devices that do not have moving parts, this valving and automation toolkit considerably expands the capabilities of paper microfluidic devices. Components of this toolkit can be used to conduct arbitrarily complex, multi-step fluidic operations on paper-based devices, as demonstrated in the malaria assay device. PMID:25606810

  10. Air Ambient-Operated pNIPAM-Based Flexible Actuators Stimulated by Human Body Temperature and Sunlight.

    PubMed

    Yamamoto, Yuki; Kanao, Kenichiro; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu

    2015-05-27

    Harnessing a natural power source such as the human body temperature or sunlight should realize ultimate low-power devices. In particular, macroscale and flexible actuators that do not require an artificial power source have tremendous potential. Here we propose and demonstrate electrically powerless polymer-based actuators operated at ambient conditions using a packaging technique in which the stimulating power source is produced by heat from the human body or sunlight. The actuating angle, force, and reliability are discussed as functions of temperature and exposure to sunlight. Furthermore, a wearable device platform and a smart curtain actuated by the temperature of human skin and sunlight, respectively, are demonstrated as the first proof-of-concepts. These nature-powered actuators should realize a new class of ultimate low-power devices.

  11. Thermal, size and surface effects on the nonlinear pull-in of small-scale piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    SoltanRezaee, Masoud; Ghazavi, Mohammad-Reza

    2017-09-01

    Electrostatically actuated miniature wires/tubes have many operational applications in the high-tech industries. In this research, the nonlinear pull-in instability of piezoelectric thermal small-scale switches subjected to Coulomb and dissipative forces is analyzed using strain gradient and modified couple stress theories. The discretized governing equation is solved numerically by means of the step-by-step linearization method. The correctness of the formulated model and solution procedure is validated through comparison with experimental and several theoretical results. Herein, the length-scale, surface energy, van der Waals attraction and nonlinear curvature are considered in the present comprehensive model and the thermo-electro-mechanical behavior of cantilever piezo-beams are discussed in detail. It is found that the piezoelectric actuation can be used as a design parameter to control the pull-in phenomenon. The obtained results are applicable in stability analysis, practical design and control of actuated miniature intelligent devices.

  12. Thermal Switch for Satellite Temperature Control

    NASA Technical Reports Server (NTRS)

    Ziad, H.; Slater, T.; vanGerwen, P.; Masure, E.; Preudhomme, F.; Baert, K.

    1995-01-01

    An active radiator tile (ART) thermal valve has been fabricated using silicon micromachining. Intended for orbital satellite heat control applications, the operational principal of the ART is to control heat flow between two thermally isolated surfaces by bring the surfaces into intimate mechanical contact using electrostatic actuation. Prototype devices have been tested in a vacuum and demonstrate thermal actuation voltages as low as 40 volts, very good thermal insulation in the OFF state, and a large increase in radiative heat flow in the ON state. Thin, anodized aluminum was developed as a coating for high infrared emissivity and high solar reflectance.

  13. Bi-stable optical element actuator device

    DOEpatents

    Holdener, Fred R.; Boyd, Robert D.

    2002-01-01

    The present invention is a bistable optical element actuator device utilizing a powered means to move an actuation arm, to which an optical element is attached, between two stable positions. A non-powered means holds the actuation arm in either of the two stable positions. The optical element may be a electromagnetic (EM) radiation or particle source, an instrument, or EM radiation or particle transmissive reflective or absorptive elements. A bearing is used to transfer motion and smoothly transition the actuation arm between the two stable positions.

  14. Dielectric Actuation of Polymers

    NASA Astrophysics Data System (ADS)

    Niu, Xiaofan

    Dielectric polymers are widely used in a plurality of applications, such as electrical insulation, dielectric capacitors, and electromechanical actuators. Dielectric polymers with large strain deformations under an electric field are named dielectric elastomers (DE), because of their relative low modulus, high elongation at break, and outstanding resilience. Dielectric elastomer actuators (DEA) are superior to traditional transducers as a muscle-like technology: large strains, high energy densities, high coupling efficiency, quiet operation, and light weight. One focus of this dissertation is on the design of DE materials with high performance and easy processing. UV radiation curing of reactive species is studied as a generic synthesis methodology to provide a platform for material scientists to customize their own DE materials. Oligomers/monomers, crosslinkers, and other additives are mixed and cured at appropriate ratios to control the stress-strain response, suppress electromechanical instability of the resulting polymers, and provide stable actuation strains larger than 100% and energy densities higher than 1 J/g. The processing is largely simplified in the new material system by removal of the prestretching step. Multilayer stack actuators with 11% linear strain are demonstrated in a procedure fully compatible with industrial production. A multifunctional DE derivative material, bistable electroactive polymer (BSEP), is invented enabling repeatable rigid-to-rigid deformation without bulky external structures. Bistable actuation allows the polymer actuator to have two distinct states that can support external load without device failure. Plasticizers are used to lower the glass transition temperature to 45 °C. Interpenetrating polymer network structure is established inside the BSEP to suppress electromechanical instability, providing a breakdown field of 194 MV/m and a stable bistable strain as large as 228% with a 97% strain fixity. The application of BSEP in tactile display is investigated by the prototyping of a large scale refreshable Braille display device. Braille is a critical way for the vision impaired community to learn literacy and improve life quality. Current piezoelectrics-based refreshable Braille display technologies are limited to up to 1 line of Braille text, due to the bulky size of bimorph actuators. Based on the unique actuation feature of BSEP, refreshable Braille display devices up to smartphone-size have been demonstrated by polymer sheet laminates. Dots in the devices can be individually controlled via incorporated field-driven BSEP actuators and Joule heater units. A composite material consisting of silver nanowires (AgNW) embedded in a polymer substrate is brought up as a compliant electrode candidate for BSEP application. The AgNW composite is highly conductive (Rs: 10 Ω/sq) and remains conductive at strains as high as 140% (Rs: <10 3 Ω/sq). The baseline conductivity has only small changes up to 90% strain, which makes it low enough for both field driving and stretchable Joule heating. An out-of-plane bistable area strain up to 68% under Joule heating is achieved.

  15. Light-weight low-frequency loudspeaker

    NASA Astrophysics Data System (ADS)

    Corsaro, Robert; Tressler, James

    2002-05-01

    In an aerospace application, we require a very low-mass sound generator with good performance at low audio frequencies (i.e., 30-400 Hz). A number of device configurations have been explored using various actuation technologies. Two particularly interesting devices have been developed, both using ``Thunder'' transducers (Face Intl. Corp.) as the actuation component. One of these devices has the advantage of high sound output but a complex phase spectrum, while the other has somewhat lower output but a highly uniform phase. The former is particularly novel in that the actuator is coupled to a flat, compliant diaphragm supported on the edges by an inflatable tube. This results in a radiating surface with very high modal complexity. Sound pressure levels measured in the far field (25 cm) using only 200-V peak drive (one-third or its rating) were nominally 74 6 dB over the band from 38 to 330 Hz. The second device essentially operates as a stiff low-mass piston, and is more suitable for our particular application, which is exploring the use of active controlled surface covers for reducing sound levels in payload fairing regions. [Work supported by NRL/ONR Smart Blanket program.

  16. A piezoelectric bone-conduction bending hearing actuator.

    PubMed

    Adamson, R B A; Bance, M; Brown, J A

    2010-10-01

    A prototype of a novel bone-conduction hearing actuator based on a piezoelectric bending actuator is presented. The device lies flat against the skull which would allow it to form the basis of a subcutaneous bone-anchored hearing aid. The actuator excites bending in bone through a local bending moment rather than the application of a point force as with conventional bone-anchored hearing aids. Through measurements of the cochlear velocity created by the actuator in embalmed human heads, the device is shown to exhibit high efficiency, making it a possible alternative to present-day electromagnetic bone-vibration actuators.

  17. Design of Attitude Control Actuators for a Simulated Spacecraft

    DTIC Science & Technology

    2011-03-24

    however, there are many dual-use applications, such as regenerative braking technology and flywheel energy storage. The reaction wheel system on Simsat...as the reaction wheels change angular velocity. 2.3.5 Control Moment Gyroscopes. The second category of momentum ex- change devices is the control

  18. Improving the vibration suppression capabilities of a magneto-rheological damper using hybrid active and semi-active control

    NASA Astrophysics Data System (ADS)

    Ullah Khan, Irfan; Wagg, David; Sims, Neil D.

    2016-08-01

    This paper presents a new hybrid active and semi-active control method for vibration suppression in flexible structures. The method uses a combination of a semi-active device and an active control actuator situated elsewhere in the structure to suppress vibrations. The key novelty is to use the hybrid controller to enable the magneto-rheological damper to achieve a performance as close to a fully active device as possible. This is achieved by ensuring that the active actuator can assist the magneto-rheological damper in the regions where energy is required. In addition, the hybrid active and semi-active controller is designed to minimize the switching of the semi-active controller. The control framework used is the immersion and invariance control technique in combination with sliding mode control. A two degree-of-freedom system with lightly damped resonances is used as an example system. Both numerical and experimental results are generated for this system, and then compared as part of a validation study. The experimental system uses hardware-in-the-loop to simulate the effect of both the degrees-of-freedom. The results show that the concept is viable both numerically and experimentally, and improved vibration suppression results can be obtained for the magneto-rheological damper that approach the performance of an active device.

  19. Silk-polypyrrole biocompatible actuator performance under biologically relevant conditions

    NASA Astrophysics Data System (ADS)

    Hagler, Jo'elen; Peterson, Ben; Murphy, Amanda; Leger, Janelle

    Biocompatible actuators that are capable of controlled movement and can function under biologically relevant conditions are of significant interest in biomedical fields. Previously, we have demonstrated that a composite material of silk biopolymer and the conducting polymer polypyrrole (PPy) can be formed into a bilayer device that can bend under applied voltage. Further, these silk-PPy composites can generate forces comparable to human muscle (>0.1 MPa) making them ideal candidates for interfacing with biological tissues. Here silk-PPy composite films are tested for performance under biologically relevant conditions including exposure to a complex protein serum and biologically relevant temperatures. Free-end bending actuation performance, current response, force generation and, mass degradation were investigated . Preliminary results show that when exposed to proteins and biologically relevant temperatures, these silk-PPy composites show minimal degradation and are able to generate forces and conduct currents comparable to devices tested under standard conditions. NSF.

  20. Inductively heated shape memory polymer for the magnetic actuation of medical devices.

    PubMed

    Buckley, Patrick R; McKinley, Gareth H; Wilson, Thomas S; Small, Ward; Benett, William J; Bearinger, Jane P; McElfresh, Michael W; Maitland, Duncan J

    2006-10-01

    Presently, there is interest in making medical devices such as expandable stents and intravascular microactuators from shape memory polymer (SMP). One of the key challenges in realizing SMP medical devices is the implementation of a safe and effective method of thermally actuating various device geometries in vivo. A novel scheme of actuation by Curie-thermoregulated inductive heating is presented. Prototype medical devices made from SMP loaded with nickel zinc ferrite ferromagnetic particles were actuated in air by applying an alternating magnetic field to induce heating. Dynamic mechanical thermal analysis was performed on both the particle-loaded and neat SMP materials to assess the impact of the ferrite particles on the mechanical properties of the samples. Calorimetry was used to quantify the rate of heat generation as a function of particle size and volumetric loading of ferrite particles in the SMP. These tests demonstrated the feasibility of SMP actuation by inductive heating. Rapid and uniform heating was achieved in complex device geometries and particle loading up to 10% volume content did not interfere with the shape recovery of the SMP.

  1. BRIEF COMMUNICATION: Electrothermal bistability tuning in a large displacement micro actuator

    NASA Astrophysics Data System (ADS)

    Gerson, Y.; Krylov, S.; Ilic, B.

    2010-11-01

    We report on an approach allowing simple yet efficient tuning of the bistability properties in large displacement micro actuators. The devices fabricated from silicon on insulator (SOI) wafers using a deep reactive ion etching (DRIE)-based process incorporate elastic suspension realized as a pair of beams initially curved in-plane and are operated electrostatically by a comb-drive transducer. The curvature of beam and therefore the stability characteristics of the suspension are controlled by passing a current through the suspension and resistive heating the beam material. Experimental results, which are in good agreement with the finite elements model predictions, demonstrate the feasibility of the suggested approach and show that the application of a small tuning current increases the device deflection from 42 to 56 µm, allows adjustment of the critical snap-through and snap-back voltages and makes it possible the control of latching without an additional electrode. The approach can be efficiently implemented in electrical and optical switches and threshold inertial and mass sensors where the use of long displacement actuators with an adjustable bistability range is beneficial.

  2. A design procedure for active control of beam vibrations

    NASA Technical Reports Server (NTRS)

    Dickerson, S. L.; Jarocki, G.

    1983-01-01

    The transverse vibrations of beams is discussed and a methodology for the design of an active damping device is given. The Bernoulli-Euler equation is used to derive a transcendental transfer function, which relates a torque applied at one end of the beam to the rotational position and velocity at that point. The active damping device consists of a wire, a linear actuator and a short torque arm attached to one end of the beam. The action of the actuator varies a tension in the wire and creates a torque which opposes the rotation of the beam and thus damps vibration. A design procedure for such an active damper is given. This procedure shows the relationships and trade-offs between the actuator stroke, power required, stress levels in the wire and beam and the geometry of the beam and wire. It is shown that by consideration of the frequency response at the beam natural frequencies, the aforementioned relationships can be greatly simplified. Similarly, a simple way of estimating the effective damping ratios and eigenvalue locations of actively controlled beams is presented.

  3. Dissipated power and induced velocity fields data of a micro single dielectric barrier discharge plasma actuator for active flow control☆

    PubMed Central

    Pescini, E.; Martínez, D.S.; De Giorgi, M.G.; Francioso, L.; Ficarella, A.

    2015-01-01

    In recent years, single dielectric barrier discharge (SDBD) plasma actuators have gained great interest among all the active flow control devices typically employed in aerospace and turbomachinery applications [1,2]. Compared with the macro SDBDs, the micro single dielectric barrier discharge (MSDBD) actuators showed a higher efficiency in conversion of input electrical power to delivered mechanical power [3,4]. This article provides data regarding the performances of a MSDBD plasma actuator [5,6]. The power dissipation values [5] and the experimental and numerical induced velocity fields [6] are provided. The present data support and enrich the research article entitled “Optimization of micro single dielectric barrier discharge plasma actuator models based on experimental velocity and body force fields” by Pescini et al. [6]. PMID:26425667

  4. Design of a gait training device for control of pelvic obliquity.

    PubMed

    Pietrusinski, Maciej; Severini, Giacomo; Cajigas, Iahn; Mavroidis, Constantinos; Bonato, Paolo

    2012-01-01

    This paper presents the design and testing of a novel device for the control of pelvic obliquity during gait. The device, called the Robotic Gait Rehabilitation (RGR) Trainer, consists of a single actuator system designed to target secondary gait deviations, such as hip-hiking, affecting the movement of the pelvis. Secondary gait deviations affecting the pelvis are generated in response to primary gait deviations (e.g. limited knee flexion during the swing phase) in stroke survivors and contribute to the overall asymmetrical gait pattern often observed in these patients. The proposed device generates a force field able to affect the obliquity of the pelvis (i.e. the rotation of the pelvis around the anteroposterior axis) by using an impedance controlled single linear actuator acting on a hip orthosis. Tests showed that the RGR Trainer is able to induce changes in pelvic obliquity trajectories (hip-hiking) in healthy subjects. These results suggest that the RGR Trainer is suitable to test the hypothesis that has motivated our efforts toward developing the system, namely that addressing both primary and secondary gait deviations during robotic-assisted gait training may help promote a physiologically-sound gait behavior more effectively than when only primary deviations are addressed.

  5. Environmentally Acceptable Medium Caliber Ammunition Percussion Primers

    DTIC Science & Technology

    2007-10-31

    tetrazol-5-amino)-s-tetrazine or Bis-aminotetrazolyl-tetrazine CAD Cartridge Actuated Device CFR Code of Federal Regulations cm Centimeter cm3...approximately 120mg each, were placed on the Plexiglas slab . The piles were separated by a potassium chloride window estimated to transmit at least...for cartridge actuated device/propellant actuated device ( CAD /PAD) application. The NSWC-IH was working with the SDSMT and IMP in developing unique

  6. Manufacturing of ionic polymer-metal composites (IPMCs) that can actuate into complex curves

    NASA Astrophysics Data System (ADS)

    Stoimenov, Boyko L.; Rossiter, Jonathan M.; Mukai, Toshiharu

    2007-04-01

    Ionic polymer-metal composites (IPMC) are soft actuators with potential applications in the fields of medicine and biologically inspired robotics. Typically, an IPMC bends with approximately constant curvature when voltage is applied to it. More complex shapes were achieved in the past by pre-shaping the actuator or by segmentation and separate actuation of each segment. There are many applications for which fully independent control of each segment of the IPMC is not required and the use of external wiring is objectionable. In this paper we propose two key elements needed to create an IPMC, which can actuate into a complex curve. The first is a connection between adjacent segments, which enables opposite curvature. This can be achieved by reversing the polarity applied on each side of the IPMC, for example by a through-hole connection. The second key element is a variable curvature segment. The segment is designed to bend with any fraction of its full bending ability under given electrical input by changing the overlap of opposite charge electrodes. We demonstrated the usefulness of these key elements in two devices. One is a bi-stable buckled IPMC beam, also used as a building block in a linear actuator device. The other one is an IPMC, actuating into an S-shaped curve with gradually increasing curvature near the ends. The proposed method of manufacturing holds promise for a wide range of new applications of IPMCs, including applications in which IPMCs are used for sensing.

  7. Control strategy of an electrically actuated morphing flap for the next generation green regional aircraft

    NASA Astrophysics Data System (ADS)

    Arena, Maurizio; Noviello, Maria Chiara; Rea, Francesco; Amoroso, Francesco; Pecora, Rosario

    2018-03-01

    The design and application of adaptive devices are currently ambitious targets in the field of aviation research addressed at new generation aircraft. The development of intelligent structures involves aspects of multidisciplinary nature: the combination of compact architectures, embedded electrical systems and smart materials, allows for developing a highly innovative device. The paper aims to present the control system design of an innovative morphing flap tailored for the next generation regional aircraft, within Clean Sky 2 - Airgreen 2 European Research Scenario. A distributed system of electromechanical actuators (EMAs) has been sized to enable up to three operating modes of a structure arranged in four blocks along the chord-wise direction: •overall camber-morphing; •upwards/downwards deflection and twisting of the final tip segment. A state-of-art feedback logic based on a decentralized control strategy for shape control is outlined, including the results of dynamic stability analysis based on the blocks rational schematization within Matlab/Simulink® environment. Such study has been performed implementing a state-space model, considering also design parameters as the torsional stiffness and damping of the actuation chain. The design process is flowing towards an increasingly "robotized" system, which can be externally controlled to perform certain operations. Future developments will be the control laws implementation as well as the functionality test on a real flap prototype.

  8. Development of shape memory metal as the actuator of a fail safe mechanism

    NASA Technical Reports Server (NTRS)

    Ford, V. G.; Johnson, M. R.; Orlosky, S. D.

    1990-01-01

    A small, compact, lightweight device was developed using shape memory alloy (SMA) in wire form to actuate a pin-puller that decouples the flanges of two shafts. When the SMA is heated it contracts producing a useful force and stroke. As it cools, it can be reset (elongated in this case) by applying a relatively small force. Resistive heating is accomplished by running a current through the SMA wire for a controlled length of time. The electronics to drive the device are not elaborate or complicated, consisting of a timed current source. The total available contraction is 3 percent of the length of the wire. This device, the engineering properties of the SMA, and the tests performed to verify the design concept are described.

  9. Infrared actuation-induced simultaneous reconfiguration of surface color and morphology for soft robotics.

    PubMed

    Banisadr, Seyedali; Chen, Jian

    2017-12-13

    Cephalopods, such as cuttlefish, demonstrate remarkable adaptability to the coloration and texture of their surroundings by modulating their skin color and surface morphology simultaneously, for the purpose of adaptive camouflage and signal communication. Inspired by this unique feature of cuttlefish skins, we present a general approach to remote-controlled, smart films that undergo simultaneous changes of surface color and morphology upon infrared (IR) actuation. The smart film has a reconfigurable laminated structure that comprises an IR-responsive nanocomposite actuator layer and a mechanochromic elastomeric photonic crystal layer. Upon global or localized IR irradiation, the actuator layer exhibits fast, large, and reversible strain in the irradiated region, which causes a synergistically coupled change in the shape of the laminated film and color of the mechanochromic elastomeric photonic crystal layer in the same region. Bending and twisting deformations can be created under IR irradiation, through modulating the strain direction in the actuator layer of the laminated film. Furthermore, the laminated film has been used in a remote-controlled inchworm walker that can directly couple a color-changing skin with the robotic movements. Such remote-controlled, smart films may open up new application possibilities in soft robotics and wearable devices.

  10. Plasma actuators for bluff body flow control

    NASA Astrophysics Data System (ADS)

    Kozlov, Alexey V.

    The aerodynamic plasma actuators have shown to be efficient flow control devices in various applications. In this study the results of flow control experiments utilizing single dielectric barrier discharge plasma actuators to control flow separation and unsteady vortex shedding from a circular cylinder in cross-flow are reported. This work is motivated by the need to reduce landing gear noise for commercial transport aircraft via an effective streamlining created by the actuators. The experiments are performed at Re D = 20,000...164,000. Circular cylinders in cross-flow are chosen for study since they represent a generic flow geometry that is similar in all essential aspects to a landing gear oleo or strut. The minimization of the unsteady flow separation from the models and associated large-scale wake vorticity by using actuators reduces the radiated aerodynamic noise. Using either steady or unsteady actuation at ReD = 25,000, Karman shedding is totally eliminated, turbulence levels in the wake decrease significantly and near-field sound pressure levels are reduced by 13.3 dB. Unsteady actuation at an excitation frequency of St D = 1 is found to be most effective. The unsteady actuation also has the advantage that total suppression of shedding is achieved for a duty cycle of only 25%. However, since unsteady actuation is associated with an unsteady body force and produces a tone at the actuation frequency, steady actuation is more suitable for noise control applications. Two actuation strategies are used at ReD = 82,000: spanwise and streamwise oriented actuators. Near field microphone measurements in an anechoic wind tunnel and detailed study of the near wake using LDA are presented in the study. Both spanwise and streamwise actuators give nearly the same noise reduction level of 11.2 dB and 14.2 dB, respectively, and similar changes in the wake velocity profiles. The contribution of the actuator induced noise is found to be small compared to the natural shedding noise. A tandem cylinder configuration with the plasma actuation on the upstream cylinder is investigated using surface dynamic pressure sensors. As a result of the plasma actuation, the surface pressure fluctuations on the downstream cylinder are reduced by about two times at the free-stream velocity of 40 m/s (ReD = 164,000). In addition, this study presents the results of a parametric experimental investigation aimed at optimizing the body force produced by single dielectric barrier discharge (SDBD) plasma actuators used for aerodynamic flow control. A primary goal of the study is the improvement of actuator authority for flow control applications at higher Reynolds number than previously possible. The study examines the effects of dielectric material and thickness, applied voltage amplitude and frequency, voltage waveform, exposed electrode geometry, covered electrode width and multiple actuator arrays. The metric used to evaluate the performance of the actuator in each case is the measured actuator-induced thrust which is proportional to the total body force. It is demonstrated that actuators constructed with thick dielectric material of low dielectric constant and operated at low frequency AC voltage produce a body force that is an order of magnitude larger than that obtained by the Kapton-based actuators used in many previous plasma flow control studies. These actuators allow operation at much higher applied voltages without the formation of discrete streamers which lead to body force saturation.

  11. Ferromagnetic Swimmers - Devices and Applications

    NASA Astrophysics Data System (ADS)

    Hamilton, Joshua; Petrov, Peter; Winlove, C. Peter; Gilbert, Andrew; Bryan, Matthew; Ogrin, Feodor

    2017-11-01

    Microscopic swimming devices hold promise for radically new applications in lab-on-a-chip and microfluidic technology, diagnostics and drug delivery etc. We propose a new class of autonomous ferromagnetic swimming devices, actuated and controlled solely by an oscillating magnetic field. Experimentally, these devices (3.6 mm) are based on a pair of interacting ferromagnetic particles of different size and different anisotropic properties joined by an elastic link and actuated by an external time-dependent magnetic field. The net motion is generated through a combination of dipolar interparticle gradient forces, time-dependent torque and hydrodynamic coupling. We investigate the dynamic performance of a prototype (3.6 mm) of the ferromagnetic swimmer in fluids of different viscosity as a function of the external field parameters and demonstrate stable propulsion over a wide range of Reynolds numbers. Manipulation of the external magnetic field resulted in robust control over the speed and direction of propulsion. We also demonstrate our ferromagnetic swimmer working as a macroscopic prototype of a microfluidic pump. By physically tethering the swimmer, instead of swimming, the swimmer generates a directional flow of liquid around itself.

  12. Flow Structures and Interactions of a Fail-Safe Actuator

    NASA Astrophysics Data System (ADS)

    Khan, Wasif; Elimelech, Yoseph; Amitay, Michael

    2010-11-01

    Vortex generators are passive devices that are commonly used in many aerodynamic applications. In their basic concept, they enhance mixing, reduce or mitigate flow separation; however, they cause drag penalties at off design conditions. Micro vanes implement the same basic idea of vortex generators but their physical dimensions are much smaller. To achieve the same effect on the baseline flow field, micro vanes are combined with an active flow control device, so their net effect is comparable to that of vortex generators when the active device is energized. As a result of their small size, micro vanes have significantly less drag penalty at off design conditions. This concept of "dual-action" is the reason why such actuation is commonly called hybrid or fail-safe actuation. The present study explores experimentally the flow interaction of a synthetic-jet with a micro vane in a zero pressure gradient flow over a flat plate. Using the stereo particle image velocimetry technique a parametric study was conducted, where the effects of the micro vane shape, height and its angle with respect to the flow were examined, at several blowing ratios and synthetic-jet configurations.

  13. Artificial Intelligence Based Control Power Optimization on Tailless Aircraft. [ARMD Seedling Fund Phase I

    NASA Technical Reports Server (NTRS)

    Gern, Frank; Vicroy, Dan D.; Mulani, Sameer B.; Chhabra, Rupanshi; Kapania, Rakesh K.; Schetz, Joseph A.; Brown, Derrell; Princen, Norman H.

    2014-01-01

    Traditional methods of control allocation optimization have shown difficulties in exploiting the full potential of controlling large arrays of control devices on innovative air vehicles. Artificial neutral networks are inspired by biological nervous systems and neurocomputing has successfully been applied to a variety of complex optimization problems. This project investigates the potential of applying neurocomputing to the control allocation optimization problem of Hybrid Wing Body (HWB) aircraft concepts to minimize control power, hinge moments, and actuator forces, while keeping system weights within acceptable limits. The main objective of this project is to develop a proof-of-concept process suitable to demonstrate the potential of using neurocomputing for optimizing actuation power for aircraft featuring multiple independently actuated control surfaces. A Nastran aeroservoelastic finite element model is used to generate a learning database of hinge moment and actuation power characteristics for an array of flight conditions and control surface deflections. An artificial neural network incorporating a genetic algorithm then uses this training data to perform control allocation optimization for the investigated aircraft configuration. The phase I project showed that optimization results for the sum of required hinge moments are improved by more than 12% over the best Nastran solution by using the neural network optimization process.

  14. Electroactive polymer (EAP) actuators for planetary applications

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, Yoseph; Leary, Sean P.; Shahinpoor, Mohsen; Harrison, Joycelyn S.; Smith, J.

    1999-05-01

    NASA is seeking to reduce the mass, size, consumed power, and cost of the instrumentation used in its future missions. An important element of many instruments and devices is the actuation mechanism and electroactive polymers (EAP) are offering an effective alternative to current actuators. In this study, two families of EAP materials were investigated, including bending ionomers and longitudinal electrostatically driven elastomers. These materials were demonstrated to effectively actuate manipulation devices and their performance is being enhanced in this on-going study. The recent observations are reported in this paper, include the operation of the bending-EAP at conditions that exceed the harsh environment on Mars, and identify the obstacles that its properties and characteristics are posing to using them as actuators. Analysis of the electrical characteristics of the ionomer EAP showed that it is a current driven material rather than voltage driven and the conductivity distribution on the surface of the material greatly influences the bending performance. An accurate equivalent circuit modeling of the ionomer EAP performance is essential for the design of effective drive electronics. The ionomer main limitations are the fact that it needs to be moist continuously and the process of electrolysis that takes place during activation. An effective coating technique using a sprayed polymer was developed extending its operation in air from a few minutes to about four months. The coating technique effectively forms the equivalent of a skin to protect the moisture content of the ionomer. In parallel to the development of the bending EAP, the development of computer control of actuated longitudinal EAP has been pursued. An EAP driven miniature robotic arm was constructed and it is controlled by a MATLAB code to drop and lift the arm and close and open EAP fingers of a 4-finger gripper.

  15. Fast autonomous holographic adaptive optics

    NASA Astrophysics Data System (ADS)

    Andersen, G.

    2010-07-01

    We have created a new adaptive optics system using a holographic modal wavefront sensing method capable of autonomous (computer-free) closed-loop control of a MEMS deformable mirror. A multiplexed hologram is recorded using the maximum and minimum actuator positions on the deformable mirror as the "modes". On reconstruction, an input beam will be diffracted into pairs of focal spots - the ratio of particular pairs determines the absolute wavefront phase at a particular actuator location. The wavefront measurement is made using a fast, sensitive photo-detector array such as a multi-pixel photon counters. This information is then used to directly control each actuator in the MEMS DM without the need for any computer in the loop. We present initial results of a 32-actuator prototype device. We further demonstrate that being an all-optical, parallel processing scheme, the speed is independent of the number of actuators. In fact, the limitations on speed are ultimately determined by the maximum driving speed of the DM actuators themselves. Finally, being modal in nature, the system is largely insensitive to both obscuration and scintillation. This should make it ideal for laser beam transmission or imaging under highly turbulent conditions.

  16. Virtual Shaping of a Two-dimensional NACA 0015 Airfoil Using Synthetic Jet Actuator

    NASA Technical Reports Server (NTRS)

    Chen, Fang-Jenq; Beeler, George B.

    2002-01-01

    The Aircraft Morphing Program at NASA Langley envisions an aircraft without conventional control surfaces. Instead of moving control surfaces, the vehicle control systems may be implemented with a combination of propulsive forces, micro surface effectors, and fluidic devices dynamically operated by an intelligent flight control system to provide aircraft maneuverability over each mission segment. As a part of this program, a two-dimensional NACA 0015 airfoil model was designed to test mild maneuvering capability of synthetic jets in a subsonic wind tunnel. The objective of the experiments is to assess the applicability of using unsteady suction and blowing to alter the aerodynamic shape of an airfoil with a purpose to enhance lift and/or to reduce drag. Synthetic jet actuation at different chordwise locations, different forcing frequencies and amplitudes, under different freestream velocities are investigated. The effect of virtual shape change is indicated by a localized increase of surface pressure in the neighborhood of synthetic jet actuation. That causes a negative lift to the airfoil with an upper surface actuation. When actuation is applied near the airfoil leading edge, it appears that the stagnation line is shifted inducing an effect similar to that caused by a small angle of attack to produce an overall lift change.

  17. High level language for measurement complex control based on the computer E-100I

    NASA Technical Reports Server (NTRS)

    Zubkov, B. V.

    1980-01-01

    A high level language was designed to control the process of conducting an experiment using the computer "Elektrinika-1001". Program examples are given to control the measuring and actuating devices. The procedure of including these programs in the suggested high level language is described.

  18. Two position optical element actuator device

    DOEpatents

    Holdener, Fred R.; Boyd, Robert D.

    2002-01-01

    The present invention is a two position optical element actuator device utilizing a powered means to hold an actuation arm, to which an optical element is attached, in a first position. A non-powered means drives the actuation arm to a second position, when the powered means ceases to receive power. The optical element may be a electromagnetic (EM) radiation or particle source, an instrument, or EM radiation or particle transmissive, reflective or absorptive elements. A bearing is used to transfer motion and smoothly transition the actuation arm from the first to second position.

  19. Compliant displacement-multiplying apparatus for microelectromechanical systems

    DOEpatents

    Kota, Sridhar; Rodgers, M. Steven; Hetrick, Joel A.

    2001-01-01

    A pivotless compliant structure is disclosed that can be used to increase the geometric advantage or mechanical advantage of a microelectromechanical (MEM) actuator such as an electrostatic comb actuator, a capacitive-plate electrostatic actuator, or a thermal actuator. The compliant structure, based on a combination of interconnected flexible beams and cross-beams formed of one or more layers of polysilicon or silicon nitride, can provide a geometric advantage of from about 5:1 to about 60:1 to multiply a 0.25-3 .mu.m displacement provided by a short-stroke actuator so that such an actuator can be used to generate a displacement stroke of about 10-34 .mu.m to operate a ratchet-driven MEM device or a microengine. The compliant structure has less play than conventional displacement-multiplying devices based on lever arms and pivoting joints, and is expected to be more reliable than such devices. The compliant structure and an associated electrostatic or thermal actuator can be formed on a common substrate (e.g. silicon) using surface micromachining.

  20. Design and fabrication of a magnetically actuated non-invasive reusable drug delivery device.

    PubMed

    Dsa, Joyline; Goswami, Manish; Singh, B R; Bhatt, Nidhi; Sharma, Pankaj; Chauhan, Meenakshi K

    2018-07-01

    We present a novel approach of designing and fabricating a noninvasive drug delivery device which is capable of delivering the drug to the target site in a controlled manner. The device utilizes a reservoir which can be reused once the drug has completely diffused from it. This micro-reservoir based fabricated device has been successfully tested using niosomes of insulin drug filled in, which was then sealed with a magnetic membrane of 20 µm thick and was actuated by applying magnetic field. The deflection of the membrane on application of magnetic field results in the drug release from the reservoir. The discharge of the drug solution and the release rates was controlled by external magnetic field. The simulation of the membrane deflection using COMSOL software was carried out to optimize the concentration of the ferrous nanopowder in PDMS matrix. The characterization of the devices was implemented in-vitro on water and in-vivo on Wistar rats. It was also validated using high-performance liquid chromatography (HPLC) by observing characteristic peak of insulin. The blood samples showed the retention time of 2.79 min at λ max of 280 nm which further authenticated the effectiveness of the proposed work. This noninvasive fabricated device provides reusability, precise control and can enable the patient or a physician to actively administrate the drug when required.

  1. Design, Fabrication, and Calibration of an Embedded Piezoceramic Actuator for Active Control Applications

    NASA Technical Reports Server (NTRS)

    Koopmann, Gary H.; Lesieutre, George A.; Yoshikawa, Shoko; Chen, Weicheng; Fahnline, John B.; Pai, Suresh; Dershem, Brian

    1996-01-01

    In this presentation, the authors describe the design and fabrication processes for a PZT strain actuator that evolved during the initial stages of a research effort to synthesize and process intelligent, cost effective structures (SPICES). The actuator performance requirements were similar to those of conventional actuators, e.g., it had to be robust, highly efficient with adequate force and stroke, as lightweight as possible, and most importantly, affordable. Further, since the actuator was to be integrated within a composite structure, it had to be compatible with the host material and easily embeddable during the fabrication process. In control applications employing strain devices as actuators, a good bond between this actuator and host material is critical to their successful operation. This criterion is often difficult to achieve when attempting to join ceramics with metals or polymers with dissimilar properties such as Young's moduli, thermal expansion coefficients, etc. One unique feature of the actuator design that evolved in this project is that the need for direct bonding between the PZT ceramic and polymers was circumvented, i.e. the strain transfer to the host material was achieved via a frame surrounding the ceramic. Consequently, the frame material could be selected (or coated) for compatibility with the host material. A second feature is that the frame enclosed a co-fired, multilayered, PZT stack that was used to minimize the voltage requirements while maximizing the output strain.

  2. Light Robots: Bridging the Gap between Microrobotics and Photomechanics in Soft Materials.

    PubMed

    Zeng, Hao; Wasylczyk, Piotr; Wiersma, Diederik S; Priimagi, Arri

    2018-06-01

    For decades, roboticists have focused their efforts on rigid systems that enable programmable, automated action, and sophisticated control with maximal movement precision and speed. Meanwhile, material scientists have sought compounds and fabrication strategies to devise polymeric actuators that are small, soft, adaptive, and stimuli-responsive. Merging these two fields has given birth to a new class of devices-soft microrobots that, by combining concepts from microrobotics and stimuli-responsive materials research, provide several advantages in a miniature form: external, remotely controllable power supply, adaptive motion, and human-friendly interaction, with device design and action often inspired by biological systems. Herein, recent progress in soft microrobotics is highlighted based on light-responsive liquid-crystal elastomers and polymer networks, focusing on photomobile devices such as walkers, swimmers, and mechanical oscillators, which may ultimately lead to flying microrobots. Finally, self-regulated actuation is proposed as a new pathway toward fully autonomous, intelligent light robots of the future. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A Physically Transient Form of Silicon Electronics, With Integrated Sensors, Actuators and Power Supply

    PubMed Central

    Hwang, Suk-Won; Tao, Hu; Kim, Dae-Hyeong; Cheng, Huanyu; Song, Jun-Kyul; Rill, Elliott; Brenckle, Mark A.; Panilaitis, Bruce; Won, Sang Min; Kim, Yun-Soung; Yu, Ki Jun; Ameen, Abid; Li, Rui; Su, Yewang; Yang, Miaomiao; Kaplan, David L.; Zakin, Mitchell R.; Slepian, Marvin J.; Huang, Yonggang; Omenetto, Fiorenzo G.; Rogers, John A.

    2013-01-01

    A remarkable feature of modern silicon electronics is its ability to remain functionally and physically invariant, almost indefinitely for many practical purposes. Here, we introduce a silicon-based technology that offers the opposite behavior: it gradually vanishes over time, in a well-controlled, programmed manner. Devices that are ‘transient’ in this sense create application possibilities that cannot be addressed with conventional electronics, such as active implants that exist for medically useful timeframes, but then completely dissolve and disappear via resorption by the body. We report a comprehensive set of materials, manufacturing schemes, device components and theoretical design tools for a complementary metal oxide semiconductor (CMOS) electronics of this type, together with four different classes of sensors and actuators in addressable arrays, two options for power supply and a wireless control strategy. A transient silicon device capable of delivering thermal therapy in an implantable mode and its demonstration in animal models illustrate a system-level example of this technology. PMID:23019646

  4. Tape underlayment rotary-node (TURN) valves for simple on-chip microfluidic flow control

    PubMed Central

    Markov, Dmitry A.; Manuel, Steven; Shor, Leslie M.; Opalenik, Susan R.; Wikswo, John P.; Samson, Philip C.

    2013-01-01

    We describe a simple and reliable fabrication method for producing multiple, manually activated microfluidic control valves in polydimethylsiloxane (PDMS) devices. These screwdriver-actuated valves reside directly on the microfluidic chip and can provide both simple on/off operation as well as graded control of fluid flow. The fabrication procedure can be easily implemented in any soft lithography lab and requires only two specialized tools – a hot-glue gun and a machined brass mold. To facilitate use in multi-valve fluidic systems, the mold is designed to produce a linear tape that contains a series of plastic rotary nodes with small stainless steel machine screws that form individual valves which can be easily separated for applications when only single valves are required. The tape and its valves are placed on the surface of a partially cured thin PDMS microchannel device while the PDMS is still on the soft-lithographic master, with the master providing alignment marks for the tape. The tape is permanently affixed to the microchannel device by pouring an over-layer of PDMS, to form a full-thickness device with the tape as an enclosed underlayment. The advantages of these Tape Underlayment Rotary-Node (TURN) valves include parallel fabrication of multiple valves, low risk of damaging a microfluidic device during valve installation, high torque, elimination of stripped threads, the capabilities of TURN hydraulic actuators, and facile customization of TURN molds. We have utilized these valves to control microfluidic flow, to control the onset of molecular diffusion, and to manipulate channel connectivity. Practical applications of TURN valves include control of loading and chemokine release in chemotaxis assay devices, flow in microfluidic bioreactors, and channel connectivity in microfluidic devices intended to study competition and predator / prey relationships among microbes. PMID:19859812

  5. Zipping dielectric elastomer actuators: characterization, design and modeling

    NASA Astrophysics Data System (ADS)

    Maffli, L.; Rosset, S.; Shea, H. R.

    2013-10-01

    We report on miniature dielectric elastomer actuators (DEAs) operating in zipping mode with an analytical model that predicts their behavior. Electrostatic zipping is a well-known mechanism in silicon MEMS to obtain large deformations and forces at lower voltages than for parallel plate electrostatic actuation. We extend this concept to DEAs, which allows us to obtain much larger out-of-plane displacements compared to silicon thanks to the softness of the elastomer membrane. We study experimentally the effect of sidewall angles and elastomer prestretch on 2.3 mm diameter actuators with PDMS membranes. With 15° and 22.5° sidewall angles, the devices zip in a bistable manner down 300 μm to the bottom of the chambers. The highly tunable bistable behavior is controllable by both chamber geometry and membrane parameters. Other specific characteristics of zipping DEAs include well-controlled deflected shape, tunable displacement versus voltage characteristics to virtually any shape, including multi-stable modes, sealing of embedded holes or channels for valving action and the reduction of the operating voltage. These properties make zipping DEAs an excellent candidate for applications such as integrated microfluidics actuators or Braille displays.

  6. Synthetic Jet Interactions with Flows of Varying Separation Severity and Spanwise Flow Magnitude

    NASA Astrophysics Data System (ADS)

    Monastero, Marianne; Lindstrom, Annika; Amitay, Michael

    2017-11-01

    Flow physics associated with the interactions of synthetic jet actuators with a highly three-dimensional separated flow over a flapped airfoil were investigated experimentally and analyzed using stereo particle image velocimetry (SPIV) and surface pressure data. Increased understanding of active flow control devices in flows which are representative of airplane wings or tails can lead to actuator placement (i.e., chordwise location, spanwise spacing) with the greatest beneficial effect on performance. An array of discrete synthetic jets was located just upstream of the control surface hingeline and operated at a blowing ratio of 1 and non-dimensional frequency of 48. Detailed flowfield measurements over the control surface were conducted, where the airfoil's sweep angle and the control surface deflection angle were fixed at 20°. Focus was placed on the local and global flowfields as spanwise actuator spacing was varied. Moreover, surface pressure measurement for several sweep angles, control surface deflection angles, and angles of attack were also performed. Actuation resulted in an overall separation reduction and a dependence of local flowfield details (i.e. separation severity, spanwise flow magnitude, flow structures, and jet trajectory) on spanwise jet spacing. The Boeing Company.

  7. A natural basis for efficient brain-actuated control

    NASA Technical Reports Server (NTRS)

    Makeig, S.; Enghoff, S.; Jung, T. P.; Sejnowski, T. J.

    2000-01-01

    The prospect of noninvasive brain-actuated control of computerized screen displays or locomotive devices is of interest to many and of crucial importance to a few 'locked-in' subjects who experience near total motor paralysis while retaining sensory and mental faculties. Currently several groups are attempting to achieve brain-actuated control of screen displays using operant conditioning of particular features of the spontaneous scalp electroencephalogram (EEG) including central mu-rhythms (9-12 Hz). A new EEG decomposition technique, independent component analysis (ICA), appears to be a foundation for new research in the design of systems for detection and operant control of endogenous EEG rhythms to achieve flexible EEG-based communication. ICA separates multichannel EEG data into spatially static and temporally independent components including separate components accounting for posterior alpha rhythms and central mu activities. We demonstrate using data from a visual selective attention task that ICA-derived mu-components can show much stronger spectral reactivity to motor events than activity measures for single scalp channels. ICA decompositions of spontaneous EEG would thus appear to form a natural basis for operant conditioning to achieve efficient and multidimensional brain-actuated control in motor-limited and locked-in subjects.

  8. Dielectric Elastomers for Fluidic and Biomedical Applications

    NASA Astrophysics Data System (ADS)

    McCoul, David James

    Dielectric elastomers have demonstrated tremendous potential as high-strain electromechanical transducers for a myriad of novel applications across all engineering disciplines. Because their soft, viscoelastic mechanical properties are similar to those of living tissues, dielectric elastomers have garnered a strong foothold in a plethora of biomedical and biomimetic applications. Dielectric elastomers consist of a sheet of stretched rubber, or elastomer, coated on both sides with compliant electrode materials; application of a voltage generates an electrostatic pressure that deforms the elastomer. They can function as soft generators, sensors, or actuators, and this last function is the focus of this dissertation. Many design configurations are possible, such as stacks, minimum energy structures, interpenetrating polymer networks, shape memory dielectric elastomers, and others; dielectric elastomers are already being applied to many fields of biomedicine. The first part of the original research presented in this dissertation details a PDMS microfluidic system paired with a dielectric elastomer stack actuator of anisotropically prestrained VHB(TM) 4910 (3M(TM)) and single-walled carbon nanotubes. These electroactive microfluidic devices demonstrated active increases in microchannel width when 3 and 4 kV were applied. Fluorescence microscopy also indicated an accompanying increase in channel depth with actuation. The cross-sectional area strains at 3 and 4 kV were approximately 2.9% and 7.4%, respectively. The device was then interfaced with a syringe pump, and the pressure was measured upstream. Linear pressure-flow plots were developed, which showed decreasing fluidic resistance with actuation, from 0.192 psi/(microL/min) at 0 kV, to 0.160 and 0.157 psi/(microL/min) at 3 and 4 kV, respectively. This corresponds to an ~18% drop in fluidic resistance at 4 kV. Active de-clogging was tested in situ with the device by introducing ~50 microm diameter PDMS microbeads and other smaller particulate debris into the system. After a channel blockage was confirmed, three actuation attempts successfully cleared the blockage. Further tests indicated that the device were biocompatible with HeLa cells at 3 kV. To our knowledge this is the first pairing of dielectric elastomers with microfluidics in a non-electroosmotic context. Applications may include adaptive microfilters, micro-peristaltic pumps, and reduced-complexity lab-on-a-chip devices. Dielectric elastomers can also be adapted to manipulate fluidic systems on a larger scale. The second part of the dissertation research reports a novel low-profile, biomimetic dielectric elastomer tubular actuator capable of actively controlling hydraulic flow. The tubular actuator has been established as a reliable tunable valve, pinching a secondary silicone tube completely shut in the absence of a fluidic pressure bias or voltage, offering a high degree of resistance against fluidic flow, and able to open and completely remove this resistance to flow with an applied low power actuation voltage. The system demonstrates a rise in pressure of ~3.0 kPa when the dielectric elastomer valve is in the passive, unactuated state, and there is a quadratic fall in this pressure with increasing actuation voltage, until ~0 kPa is reached at 2.4 kV. The device is reliable for at least 2,000 actuation cycles for voltages at or below 2.2 kV. Furthermore, modeling of the actuator and fluidic system yields results consistent with the observed experimental dependence of intrasystem pressure on input flow rate, actuator prestretch, and actuation voltage. To our knowledge, this is the first actuator of its type that can control fluid flow by directly actuating the walls of a tube. Potential applications may include an implantable artificial sphincter, part of a peristaltic pump, or a computerized valve for fluidic or pneumatic control. The final part of the dissertation presents a novel dielectric elastomer band with integrated rigid elements for the treatment of chronic acid reflux disorders. This dielectric elastomer ring actuator consists of a two-layer stack of prestretched VHB(TM) 4905 with SWCNT electrodes. Its transverse prestretch was maintained by selective rigidification of the VHB(TM) using a UV-curable, solution-processable polymer network. The actuator exhibited a maximum vertical (circumferential) actuation strain of 25% at 3.4 kV in an 24.5 g weighted isotonic setup. It also exhibited the required passive force of 0.25 N and showed a maximum force drop of 0.11 N at 3.32 kV during isometric tests at 4.5 cm. Modeling was performed to determine the prestretches necessary to achieve maximum strain while simultaneously exerting the force of 0.25 N, which corresponds to a required pinching pressure of 3.35 kPa. Modeling also determined the spacing between and number of rigid elements required. The theoretical model curves were adjusted to account for the passive rigid elements, as well as for the addition of margins; the resulting plots agrees well with experiment. The performance of the DE band is comparable to that of living muscle, and this is the first application of dielectric elastomer actuators in the design of a medical implant for the treatment of gastrointestinal disorders. Related applications that could result from this technology are very low-profile linear peristaltic pumps, artificial intestines, an artificial urethra, and artificial blood vessels.

  9. Miniature Intermittent Contact Switch

    NASA Technical Reports Server (NTRS)

    Sword, Antony

    1972-01-01

    This tech brief concerns work to provide a shock-resistant switch capable of being actuated by forces of varying magnitude and direction, primarily for use as a sensor on remote control (tele-operator) and prosthetic devices.

  10. Active control of structures using macro-fiber composite (MFC)

    NASA Astrophysics Data System (ADS)

    Kovalovs, A.; Barkanov, E.; Gluhihs, S.

    2007-12-01

    This paper presents the use of macro-fiber composites (MFC) for vibration reduces of structures. The MFC consist of polyimid films with IDE-electrodes that are glued on the top and the bottom of rectangular piezoceramic fibers. The interdigitated electrodes deliver the electric field required to activate the piezoelectric effect in the fibers and allows to invoke the stronger longitudinal piezoelectric effect along the length of the fibers. When this actuator embedded in a surface or attached to flexible structures, the MFC actuator provides distributed solid-state deflection and vibration control. The major advantages of the piezoelectric fibre composite actuators are their high performance, flexibility, and durability when compared with the traditional piezoceramic (PZT) actuators. In addition, the ability of MFC devices to couple the electrical and mechanical fields is larger than in monolithic PZT. In this study, we showed the experimental results that an MFC could be used as actuator to find modal parameters and reduce vibration for structures such as an aluminium beam and metal music plate. Two MFC actuators were attached to the surfaces of test subjects. First MFC actuator used to supply a signal as exciter of vibration and second MFC show his application for reduction of vibration in the range of resonance frequencies. Experimental results of aluminium beam with MFC actuators compared with finite element model which modelled in ANSYS software. The applied voltage is modelled as a thermal load according to thermal analogy for MFC. The experimental and numerical results presented in this paper confirm the potential of MFC for use in the vibration control of structures.

  11. A 3D Printed Implantable Device for Voiding the Bladder Using Shape Memory Alloy (SMA) Actuators.

    PubMed

    Hassani, Faezeh Arab; Peh, Wendy Yen Xian; Gammad, Gil Gerald Lasam; Mogan, Roshini Priya; Ng, Tze Kiat; Kuo, Tricia Li Chuen; Ng, Lay Guat; Luu, Percy; Yen, Shih-Cheng; Lee, Chengkuo

    2017-11-01

    Underactive bladder or detrusor underactivity (DU) is defined as a reduction of contraction strength or duration of the bladder wall. Despite the serious healthcare implications of DU, there are limited solutions for affected individuals. A flexible 3D printed implantable device driven by shape memory alloys (SMA) actuators is presented here for the first time to physically contract the bladder to restore voluntary control of the bladder for individuals suffering from DU. This approach is used initially in benchtop experiments with a rubber balloon acting as a model for the rat bladder to verify its potential for voiding, and that the operating temperatures are safe for the eventual implantation of the device in a rat. The device is then implanted and tested on an anesthetized rat, and a voiding volume of more than 8% is successfully achieved for the SMA-based device without any surgical intervention or drug injection to relax the external sphincter.

  12. Variable Frequency Diverter Actuation for Flow Control

    NASA Technical Reports Server (NTRS)

    Culley, Dennis E.

    2006-01-01

    The design and development of an actively controlled fluidic actuator for flow control applications is explored. The basic device, with one input and two output channels, takes advantage of the Coanda effect to force a fluid jet to adhere to one of two axi-symmetric surfaces. The resultant flow is bi-stable, producing a constant flow from one output channel, until a disturbance force applied at the control point causes the flow to switch to the alternate output channel. By properly applying active control the output flows can be manipulated to provide a high degree of modulation over a wide and variable range of frequency and duty cycle. In this study the momentary operative force is applied by small, high speed isolation valves of which several different types are examined. The active fluidic diverter actuator is shown to work in several configurations including that in which the operator valves are referenced to atmosphere as well as to a source common with the power stream.

  13. Electrostatically operated optical microshutter array for a miniature integrated optical spectrometer

    NASA Astrophysics Data System (ADS)

    Ilias, Samir; Picard, Francis; Larouche, Carl; Kruzelecky, Roman; Jamroz, Wes

    2017-11-01

    16x1 programmable microshutter arrays allowing control of the light transmitted through a transparent substrate supporting the array were successfully fabricated using surface micromachining technology. Each microshutter is basically an electrostatic zipping actuator having a curved shape induced by a stress gradient through the actuator thickness. When a sufficient voltage is applied between the microshutter and the actuation electrode surrounding the associated microslit area, the generated electrostatic force pulls the actuator down to the substrate which closes the microslit. Opening the slit relies on the restoring force. High light transmission through the slit area is obtained with the actuator in the open position and excellent light blocking is observed when the shutter is closed. Static and dynamic responses of the device were determined. The pull-in voltage to close the microslit was about 110 V and the response times to close and open the microslit were about 2 ms and 7 ms, respectively.

  14. Dynamic coupling of underactuated manipulators

    NASA Astrophysics Data System (ADS)

    Bergerman, Marcel; Lee, Christopher; Xu, Yangsheng

    1994-08-01

    In recent years, researchers have been turning their attention to so called underactuated systems, where the term underactuated refers to the fact that the system has more joints than control actuators. Some examples of underactuated systems are robot manipulators with failed actuators; free-floating space robots, where the base can be considered as a virtual passive linkage in inertia space; legged robots with passive joints; hyper-redundant (snake-like) robots with passive joints, etc. From the examples above, it is possible to justify the importance of the study of underactuated systems. For example, if some actuators of a conventional manipulator fail, the loss of one or more degrees of freedom may compromise an entire operation. In free-floating space systems, the base (satellite) can be considered as a 6-DOF device without positioning actuators. Finally, manipulators with passive joints and hyper-redundant robots with few actuators are important from the viewpoint of energy saving, lightweight design and compactness.

  15. Note: A simple vibrating orifice monodisperse droplet generator using a hard drive actuator arm

    NASA Astrophysics Data System (ADS)

    Kosch, Sebastian; Ashgriz, Nasser

    2015-04-01

    We propose that the rotary voice coil actuators found in magnetic hard drives are fit to supercede loudspeakers as expedient vibration sources in the laboratory setting. A specific use case is the excitation of a liquid jet to induce controlled breakup into monodisperse droplets. Like loudspeakers, which are typically used for prototyping such devices, hard drive actuators are cheap and ubiquitous, but they are less unwieldy and supply greater amplitudes without producing noise. Frequencies between 0 and 17 kHz, and likely beyond, can be reproduced reliably. No machining tools or amplifying electronics are needed for the construction and operation of the presented droplet generator.

  16. Electro-Active Polymer (EAP) Actuators for Planetary Applications

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.; Leary, S.; Shahinpoor, M.; Harrison, J. O.; Smith, J.

    1999-01-01

    NASA is seeking to reduce the mass, size, consumed power, and cost of the instrumentation used in its future missions. An important element of many instruments and devices is the actuation mechanism and electroactive polymers (EAP) are offering an effective alternative to current actuators. In this study, two families of EAP materials were investigated, including bending ionomers and longitudinal electrostatically driven elastomers. These materials were demonstrated to effectively actuate manipulation devices and their performance is being enhanced in this on-going study. The recent observations are reported in this paper, include the operation of the bending-EAP at conditions that exceed the harsh environment on Mars, and identify the obstacles that its properties and characteristics are posing to using them as actuators. Analysis of the electrical characteristics of the ionomer EAP showed that it is a current driven material rather than voltage driven and the conductivity distribution on the surface of the material greatly influences the bending performance. An accurate equivalent circuit modeling of the ionomer EAP performance is essential for the design of effective drive electronics. The ionomer main limitations are the fact that it needs to be moist continuously and the process of electrolysis that takes place during activation. An effective coating technique using a sprayed polymer was developed extending its operation in air from a few minutes to about four months. The coating technique effectively forms the equivalent of a skin to protect the moisture content of the ionomer. In parallel to the development of the bending EAP, the development of computer control of actuated longitudinal EAP has been pursued. An EAP driven miniature robotic arm was constructed and it is controlled by a MATLAB code to drop and lift the arm and close and open EAP fingers of a 4-finger gripper. Keywords: Miniature Robotics, Electroactive Polymers, Electroactive Actuators, EAP Materials

  17. Design of an innovative magnetostrictive patch actuator

    NASA Astrophysics Data System (ADS)

    Cinquemani, S.; Giberti, H.

    2015-04-01

    Magnetostrictive actuators can be profitably used to reduce vibration in structures. However, this technology has been exploited only to develop inertial actuators, while patches actuators have not been ever used in practice. Patches actuators consist on a layer of magnetostrictive material, which has to be stuck to the surface of the vibrating structure, and on a coil surrounding the layer itself. However, the presence of the winding severely limits the use of such devices. As a matter of fact, the scientific literature reports only theoretical uses of such actuators, but, in practice it does not seem they were ever used. This paper presents an innovative solution to improve the structure of the actuator patches, allowing their use in several practical applications. The principle of operation of these devices is rather simple. The actuator patch is able to generate a local deformation of the surface of the vibrating structure so as to introduce an equivalent damping that dissipates the kinetic energy associated to the vibration. This deformation is related to the behavior of the magnetostrictive material immersed in a variable magnetic field generated by the a variable current flowing in the winding. Contrary to what suggested in the theoretical literature, the designed device has the advantage of generating the variable magnetic field no longer in close proximity of the material, but in a different area, thus allowing a better coupling. The magnetic field is then conveyed through a suitable ferromagnetic structure to the magnetostrictive material. The device has been designed and simulated through FEA. Results confirm that the new configuration can easily overcome all the limits of traditional devices.

  18. Magnetic actuator for the control and mixing of magnetic bead-based reactions on-chip.

    PubMed

    Berenguel-Alonso, Miguel; Granados, Xavier; Faraudo, Jordi; Alonso-Chamarro, Julián; Puyol, Mar

    2014-10-01

    While magnetic bead (MB)-based bioassays have been implemented in integrated devices, their handling on-chip is normally either not optimal--i.e. only trapping is achieved, with aggregation of the beads--or requires complex actuator systems. Herein, we describe a simple and low-cost magnetic actuator to trap and move MBs within a microfluidic chamber in order to enhance the mixing of a MB-based reaction. The magnetic actuator consists of a CD-shaped plastic unit with an arrangement of embedded magnets which, when rotating, generate the mixing. The magnetic actuator has been used to enhance the amplification reaction of an enzyme-linked fluorescence immunoassay to detect Escherichia coli O157:H7 whole cells, an enterohemorrhagic strain, which have caused several outbreaks in food and water samples. A 2.7-fold sensitivity enhancement was attained with a detection limit of 603 colony-forming units (CFU) /mL, when employing the magnetic actuator.

  19. Polymeric Smart Skin Materials: Concepts, Materials, and Devices

    DTIC Science & Technology

    2006-03-31

    nanotube actuators for both sensing and active control of surfaces. State-of-the-art OLED and photovoltaic materials have been developed for display...format. 14. SUBJECT TERMS Multi-sensor paints; carbon nanotube materials and devices; OLED , 15. NUMBER OF PAGES nhntovnlthir ndni elp.trAn-nntjc ’vicn...Significant advances in organic light emitting device ( OLED ) materials has also been achieved as is evident from the publications and invention

  20. Development and application of induced-strain actuators for building structures

    NASA Astrophysics Data System (ADS)

    Morita, Koichi; Fujita, Takafumi; Ise, Shiro; Kawaguchi, Ken-ichi; Kamada, Takayoshi; Fujitani, Hideo

    2001-07-01

    Induced strain actuator (ISA) can change their own shapes according to external electric/magnetic fields, and vice versa. Recently these materials have been widely used for the small/precision. The objectives in this study are to develop smart members for building and to realize the smart, comfortable and safe structures. The research items are 1) Semi-active isolation of structures using piezoelectric actuator, 2) Using ISA as sensor materials and 3) Improvement of Acoustic Environment. Semi-active base isolation system with controllable friction damper using piezoelectric actuators is proposed. Simulation study was carried out, and by semi-active isolation, it could be realized to reduce response displacement of the structure to 50% of values of the passive isolation. ISA materials can act as sensors because they cause change of electric or magnetic fields under deformation. PVDF sensors are suitable for membrane structures. We evaluate performance of PVDF sensors for membrane structures by experiment. Polymer based ISA films or distributed ISA devices can control vibration mode of plane members. Applications to music halls or dwelling partition walls are expected. Results of experimental studies of noise control are discussed.

  1. Flow Control Device Evaluation for an Internal Flow with an Adverse Pressure Gradient

    NASA Technical Reports Server (NTRS)

    Jenkins, Luther N.; Gorton, Susan Althoff; Anders, Scott G.

    2002-01-01

    The effectiveness of several active and passive devices to control flow in an adverse pressure gradient with secondary flows present was evaluated in the 15 Inch Low Speed Tunnel at NASA Langley Research Center. In this study, passive micro vortex generators, micro bumps, and piezoelectric synthetic jets were evaluated for their flow control characteristics using surface static pressures, flow visualization, and 3D Stereo Digital Particle Image Velocimetry. Data also were acquired for synthetic jet actuators in a zero flow environment. It was found that the micro vortex generator is very effective in controlling the flow environment for an adverse pressure gradient, even in the presence of secondary vortical flow. The mechanism by which the control is effected is a re-energization of the boundary layer through flow mixing. The piezoelectric synthetic jet actuators must have sufficient velocity output to produce strong longitudinal vortices if they are to be effective for flow control. The output of these devices in a laboratory or zero flow environment will be different than the output in a flow environment. In this investigation, the output was higher in the flow environment, but the stroke cycle in the flow did not indicate a positive inflow into the synthetic jet.

  2. Active Flow Control for High-Speed Weapon Release from a Bay

    DTIC Science & Technology

    2004-06-01

    and supersonic microjets . Each of these control devices offers unique attributes for high-speed weapon release and was the subject of considerable...final HIFEX actuator is the supersonic microjet , a device developed at Florida A&M/Florida State University and described by [3]. Small (0.016-inch...effectiveness of the microjets is that they destroy the spanwise coherence of the instabilities generated in an open weapons bay. Figure 4 illustrates the

  3. Printed Antennas Made Reconfigurable by Use of MEMS Switches

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.

    2005-01-01

    A class of reconfigurable microwave antennas now undergoing development comprise fairly conventional printed-circuit feed elements and radiating patches integrated with novel switches containing actuators of the microelectromechanical systems (MEMS) type. In comparison with solid-state electronic control devices incorporated into some prior printed microwave antennas, the MEMS-based switches in these antennas impose lower insertion losses and consume less power. Because the radio-frequency responses of the MEMS switches are more nearly linear, they introduce less signal distortion. In addition, construction and operation are simplified because only a single DC bias line is needed to control each MEMS actuator.

  4. Improving control and estimation for distributed parameter systems utilizing mobile actuator-sensor network.

    PubMed

    Mu, Wenying; Cui, Baotong; Li, Wen; Jiang, Zhengxian

    2014-07-01

    This paper proposes a scheme for non-collocated moving actuating and sensing devices which is unitized for improving performance in distributed parameter systems. By Lyapunov stability theorem, each moving actuator/sensor agent velocity is obtained. To enhance state estimation of a spatially distributes process, two kinds of filters with consensus terms which penalize the disagreement of the estimates are considered. Both filters can result in the well-posedness of the collective dynamics of state errors and can converge to the plant state. Numerical simulations demonstrate that the effectiveness of such a moving actuator-sensor network in enhancing system performance and the consensus filters converge faster to the plant state when consensus terms are included. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Network device interface for digitally interfacing data channels to a controller a via network

    NASA Technical Reports Server (NTRS)

    Konz, Daniel W. (Inventor); Ellerbrock, Philip J. (Inventor); Grant, Robert L. (Inventor); Winkelmann, Joseph P. (Inventor)

    2006-01-01

    The present invention provides a network device interface and method for digitally connecting a plurality of data channels to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. In one embodiment, the bus controller transmits messages to the network device interface containing a plurality of bits having a value defined by a transition between first and second states in the bits. The network device interface determines timing of the data sequence of the message and uses the determined timing to communicate with the bus controller.

  6. Implementation of a Si/SiC hybrid optically controlled high-power switching device

    NASA Astrophysics Data System (ADS)

    Bhadri, Prashant; Ye, Kuntao; Guliants, E.; Beyette, Fred R., Jr.

    2002-03-01

    The ever-increasing performance and economy of operation requirements placed on commercial and military transport aircraft are resulting in very complex systems. As a result, the use of fiber optic component technology has lead to high data throughput, immunity to EMI, reduced certification and maintenance costs and reduced weight features. In particular, in avionic systems, data integrity and high data rates are necessary for stable flight control. Fly-by-Light systems that use optical signals to actuate the flight control surfaces of an aircraft have been suggested as a solution to the EMI problem in avionic systems. Current fly-by-light systems are limited by the lack of optically activated high-power switching devices. The challenge has been the development of an optoelectronic switching technology that can withstand the high power and harsh environmental conditions common in a flight surface actuation system. Wide bandgap semiconductors such as Silicon Carbide offer the potential to overcome both the temperature and voltage blocking limitations that inhibit the use of Silicon. Unfortunately, SiC is not optically active at the near IR wavelengths where communications grade light sources are readily available. Thus, we have proposed a hybrid device that combines a silicon based photoreceiver model with a SiC power transistor. When illuminated with the 5mW optical control signal the silicon chip produces a 15mA drive current for a SiC Darlington pair. The SiC Darlington pair then produces a 150 A current that is suitable for driving an electric motor with sufficient horsepower to actuate the control surfaces on an aircraft. Further, when the optical signal is turned off, the SiC is capable of holding off a 270 V potential to insure that the motor drive current is completely off. We present in this paper the design and initial tests from a prototype device that has recently been fabricated.

  7. Optimal Control of Objects on the Micro- and Nano-Scale by Electrokinetic and Electromagnetic Manipulation: for Bio-Sample Preparation, Quantum Information Devices and Magnetic Drug Delivery

    DTIC Science & Technology

    2010-01-01

    property variations. The system described here is a simple 4-electrode microfluidic device made of polydimethylsiloxane PDMS [50-53] which is reversibly...through the fluid and heat it.) A more detailed description and analysis of the physics of electroosmotic actuation can be found in [46, 83] In...a control algorithm on a standard personal computer. The micro-fluidic device is made out of a soft polymer ( polydimethylsiloxane (PDMS)) and is

  8. LEM Characterization of Synthetic Jet Actuators Driven by Piezoelectric Element: A Review

    PubMed Central

    Chiatto, Matteo; Capuano, Francesco; Coppola, Gennaro; de Luca, Luigi

    2017-01-01

    In the last decades, Synthetic jet actuators have gained much interest among the flow control techniques due to their short response time, high jet velocity and absence of traditional piping, which matches the requirements of reduced size and low weight. A synthetic jet is generated by the diaphragm oscillation (generally driven by a piezoelectric element) in a relatively small cavity, producing periodic cavity pressure variations associated with cavity volume changes. The pressured air exhausts through an orifice, converting diaphragm electrodynamic energy into jet kinetic energy. This review paper considers the development of various Lumped-Element Models (LEMs) as practical tools to design and manufacture the actuators. LEMs can quickly predict device performances such as the frequency response in terms of diaphragm displacement, cavity pressure and jet velocity, as well as the efficiency of energy conversion of input Joule power into useful kinetic power of air jet. The actuator performance is also analyzed by varying typical geometric parameters such as cavity height and orifice diameter and length, through a suited dimensionless form of the governing equations. A comprehensive and detailed physical modeling aimed to evaluate the device efficiency is introduced, shedding light on the different stages involved in the process. Overall, the influence of the coupling degree of the two oscillators, the diaphragm and the Helmholtz frequency, on the device performance is discussed throughout the paper. PMID:28587141

  9. Design of a Telescopic Linear Actuator Based on Hollow Shape Memory Springs

    NASA Astrophysics Data System (ADS)

    Spaggiari, Andrea; Spinella, Igor; Dragoni, Eugenio

    2011-07-01

    Shape memory alloys (SMAs) are smart materials exploited in many applications to build actuators with high power to mass ratio. Typical SMA drawbacks are: wires show poor stroke and excessive length, helical springs have limited mechanical bandwidth and high power consumption. This study is focused on the design of a large-scale linear SMA actuator conceived to maximize the stroke while limiting the overall size and the electric consumption. This result is achieved by adopting for the actuator a telescopic multi-stage architecture and using SMA helical springs with hollow cross section to power the stages. The hollow geometry leads to reduced axial size and mass of the actuator and to enhanced working frequency while the telescopic design confers to the actuator an indexable motion, with a number of different displacements being achieved through simple on-off control strategies. An analytical thermo-electro-mechanical model is developed to optimize the device. Output stroke and force are maximized while total size and power consumption are simultaneously minimized. Finally, the optimized actuator, showing good performance from all these points of view, is designed in detail.

  10. Improving plasma actuator performance at low pressure, and an analysis of the pointing capabilities of cubeSats using Plasmonic Force Propulsion (PFP) thrusters

    NASA Astrophysics Data System (ADS)

    Friz, Paul Daniel

    This thesis details the work done on two unrelated projects, plasma actuators, an aerodynamic flow control device, and Plasmonic Force Propulsion (PFP) thrusters, a space propulsion system for small satellites. The first half of the thesis is a paper published in the International Journal of Flow Control on plasma actuators. In this paper the thrust and power consumption of plasma actuators with varying geometries was studied at varying pressure. It was found that actuators with longer buried electrodes produce the most thrust over all and that they substantially improved thrust at low pressure. In particular actuators with 75 mm buried electrodes produced 26% more thrust overall and 34% more thrust at low pressure than the standard 15 mm design. The second half details work done modeling small satellite attitude and reaction control systems in order to compare the use of Plasmonic Force Propulsion thrusters with other state of the art reaction control systems. The model uses bang bang control algorithms and assumes the worst case scenario solar radiation pressure is the only disturbing force. It was found that the estimated 50-500 nN of thrust produced by PFP thrusters would allow the spacecraft which use them extremely high pointing and positioning accuracies (<10-9 degrees and 3 pm). PFP thrusters still face many developmental challenges such as increasing specific impulse which require more research, however, they have great potential to be an enabling technology for future NASA missions such as the Laser Interferometer Space Antenna, and The Stellar Imager.

  11. An MRI-Guided Telesurgery System Using a Fabry-Perot Interferometry Force Sensor and a Pneumatic Haptic Device.

    PubMed

    Su, Hao; Shang, Weijian; Li, Gang; Patel, Niravkumar; Fischer, Gregory S

    2017-08-01

    This paper presents a surgical master-slave teleoperation system for percutaneous interventional procedures under continuous magnetic resonance imaging (MRI) guidance. The slave robot consists of a piezoelectrically actuated 6-degree-of-freedom (DOF) robot for needle placement with an integrated fiber optic force sensor (1-DOF axial force measurement) using the Fabry-Perot interferometry (FPI) sensing principle; it is configured to operate inside the bore of the MRI scanner during imaging. By leveraging the advantages of pneumatic and piezoelectric actuation in force and position control respectively, we have designed a pneumatically actuated master robot (haptic device) with strain gauge based force sensing that is configured to operate the slave from within the scanner room during imaging. The slave robot follows the insertion motion of the haptic device while the haptic device displays the needle insertion force as measured by the FPI sensor. Image interference evaluation demonstrates that the telesurgery system presents a signal to noise ratio reduction of less than 17% and less than 1% geometric distortion during simultaneous robot motion and imaging. Teleoperated needle insertion and rotation experiments were performed to reach 10 targets in a soft tissue-mimicking phantom with 0.70 ± 0.35 mm Cartesian space error.

  12. Soft buckling actuators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Dian; Whitesides, George M.

    A soft actuator is described, including: a rotation center having a center of mass; a plurality of bucklable, elastic structural components each comprising a wall defining an axis along its longest dimension, the wall connected to the rotation center in a way that the axis is offset from the center of mass in a predetermined direction; and a plurality of cells each disposed between two adjacent bucklable, elastic structural components and configured for connection with a fluid inflation or deflation source; wherein upon the deflation of the cell, the bucklable, elastic structural components are configured to buckle in the predeterminedmore » direction. A soft actuating device including a plurality of the soft actuators and methods of actuation using the soft actuator or soft actuating device disclosed herein are also described.« less

  13. Modeling and control of plasma rotation for NSTX using neoclassical toroidal viscosity and neutral beam injection

    NASA Astrophysics Data System (ADS)

    Goumiri, I. R.; Rowley, C. W.; Sabbagh, S. A.; Gates, D. A.; Gerhardt, S. P.; Boyer, M. D.; Andre, R.; Kolemen, E.; Taira, K.

    2016-03-01

    A model-based feedback system is presented to control plasma rotation in a magnetically confined toroidal fusion device, to maintain plasma stability for long-pulse operation. This research uses experimental measurements from the National Spherical Torus Experiment (NSTX) and is aimed at controlling plasma rotation using two different types of actuation: momentum from injected neutral beams and neoclassical toroidal viscosity generated by three-dimensional applied magnetic fields. Based on the data-driven model obtained, a feedback controller is designed, and predictive simulations using the TRANSP plasma transport code show that the controller is able to attain desired plasma rotation profiles given practical constraints on the actuators and the available measurements of rotation.

  14. Modeling and control of plasma rotation for NSTX using neoclassical toroidal viscosity and neutral beam injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goumiri, I. R.; Rowley, C. W.; Sabbagh, S. A.

    2016-02-19

    A model-based feedback system is presented to control plasma rotation in a magnetically confined toroidal fusion device, to maintain plasma stability for long-pulse operation. This research uses experimental measurements from the National Spherical Torus Experiment (NSTX) and is aimed at controlling plasma rotation using two different types of actuation: momentum from injected neutral beams and neoclassical toroidal viscosity generated by three-dimensional applied magnetic fields. Based on the data-driven model obtained, a feedback controller is designed, and predictive simulations using the TRANSP plasma transport code show that the controller is able to attain desired plasma rotation profiles given practical constraints onmore » the actuators and the available measurements of rotation.« less

  15. Method and apparatus for reducing spacecraft instrument induced jitter via multifrequency cancellation

    NASA Technical Reports Server (NTRS)

    Liu, Ketao (Inventor); Uetrecht, David S. (Inventor)

    2002-01-01

    A method, apparatus, article of manufacture, and a memory structure for compensating for instrument induced spacecraft jitter is disclosed. The apparatus comprises a spacecraft control processor for producing an actuator command signal, a signal generator, for producing a cancellation signal having at least one harmonic having a frequency and an amplitude substantially equal to that of a disturbance harmonic interacting with a spacecraft structural resonance and a phase substantially out of phase with the disturbance harmonic interacting with the spacecraft structural resonance, and at least one spacecraft control actuator, communicatively coupled to the spacecraft control processor and the signal generator for inducing satellite motion according to the actuator command signal and the cancellation signal. The method comprises the steps of generating a cancellation signal having at least one harmonic having a frequency and an amplitude substantially equal to that of a disturbance harmonic interacting with a spacecraft structural resonance and a phase substantially out of phase with the disturbance harmonic interacting with the spacecraft structural resonance, and providing the cancellation signal to a spacecraft control actuator. The apparatus comprises a storage device tangibly embodying the method steps described above.

  16. Shape memory alloy actuated accumulator for ultra-deepwater oil and gas exploration

    NASA Astrophysics Data System (ADS)

    Patil, Devendra; Song, Gangbing

    2016-04-01

    As offshore oil and gas exploration moves further offshore and into deeper waters to reach hydrocarbon reserves, it is becoming essential for the industry to develop more reliable and efficient hydraulic accumulators to supply pressured hydraulic fluid for various control and actuation operations, such as closing rams of blowout preventers and controlling subsea valves on the seafloor. By utilizing the shape memory effect property of nitinol, which is a type of shape memory alloy (SMA), an innovative SMA actuated hydraulic accumulator prototype has been developed and successfully tested at Smart Materials and Structure Laboratory at the University of Houston. Absence of gas in the developed SMA accumulator prototype makes it immune to hydrostatic head loss caused by water depth and thus reduces the number of accumulators required in deep water operations. Experiments with a feedback control have demonstrated that the proposed SMA actuated accumulator can provide precisely regulated pressurized fluids. Furthermore the potential use of ultracapacitors along with an embedded system to control the electric power supplied to SMA allows this accumulator to be an autonomous device for deployment. The developed SMA accumulator will make deepwater oil extraction systems more compact and cost effective.

  17. Electromechanical actuator with controllable motion, fast response rate, and high-frequency resonance based on graphene and polydiacetylene.

    PubMed

    Liang, Jiajie; Huang, Lu; Li, Na; Huang, Yi; Wu, Yingpeng; Fang, Shaoli; Oh, Jiyoung; Kozlov, Mikhail; Ma, Yanfeng; Li, Feifei; Baughman, Ray; Chen, Yongsheng

    2012-05-22

    Although widely investigated, novel electromechanical actuators with high overall actuation performance are still in urgent need for various practical and scientific applications, such as robots, prosthetic devices, sensor switches, and sonar projectors. In this work, combining the properties of unique environmental perturbations-actuated deformational isomerization of polydiacetylene (PDA) and the outstanding intrinsic features of graphene together for the first time, we design and fabricate an electromechanical bimorph actuator composed of a layer of PDA crystal and a layer of flexible graphene paper through a simple yet versatile solution approach. Under low applied direct current (dc), the graphene-PDA bimorph actuator with strong mechanical strength can generate large actuation motion (curvature is about 0.37 cm(-1) under a current density of 0.74 A/mm(2)) and produce high actuation stress (more than 160 MPa/g under an applied dc of only 0.29 A/mm(2)). When applying alternating current (ac), this actuator can display reversible swing behavior with long cycle life under high frequencies even up to 200 Hz; significantly, while the frequency and the value of applied ac and the state of the actuators reach an appropriate value, the graphene-PDA actuator can produce a strong resonance and the swing amplitude will jump to a peak value. Moreover, this stable graphene-PDA actuator also demonstrates rapidly and partially reversible electrochromatic phenomenon when applying an ac. Two mechanisms-the dominant one, electric-induced deformation, and a secondary one, thermal-induced expansion of PDA-are proposed to contribute to these interesting actuation performances of the graphene-PDA actuators. On the basis of these results, a mini-robot with controllable direction of motion based on the graphene-PDA actuator is designed to illustrate the great potential of our discoveries for practical use. Combining the unique actuation mechanism and many outstanding properties of graphene and PDA, this novel kind of graphene-PDA actuator exhibits compelling advantages to traditional electromechanical actuation technology and may provide a new avenue for actuation applications.

  18. Dielectric barrier discharge plasma actuator for flow control

    NASA Astrophysics Data System (ADS)

    Opaits, Dmitry Florievich

    Electrohydrodynamic (EHD) and magnetohydrodynamic phenomena are being widely studied for aerodynamic applications. The major effects of these phenomena are heating of the gas, body force generation, and enthalpy addition or extraction, [1, 2, 3]. In particular, asymmetric dielectric barrier discharge (DBD) plasma actuators are known to be effective EHD device in aerodynamic control, [4, 5]. Experiments have demonstrated their effectiveness in separation control, acoustic noise reduction, and other aeronautic applications. In contrast to conventional DBD actuators driven by sinusoidal voltages, we proposed and used a voltage profile consisting of nanosecond pulses superimposed on dc bias voltage. This produces what is essentially a non-self-sustained discharge: the plasma is generated by repetitive short pulses, and the pushing of the gas occurs primarily due to the bias voltage. The advantage of this non-self-sustained discharge is that the parameters of ionizing pulses and the driving bias voltage can be varied independently, which adds flexibility to control and optimization of the actuators performance. Experimental studies were conducted of a flow induced in a quiescent room air by a single DBD actuator. A new approach for non-intrusive diagnostics of plasma actuator induced flows in quiescent gas was proposed, consisting of three elements coupled together: the Schlieren technique, burst mode of plasma actuator operation, and 2-D numerical fluid modeling. During the experiments, it was found that DBD performance is severely limited by surface charge accumulation on the dielectric. Several ways to mitigate the surface charge were found: using a reversing DC bias potential, three-electrode configuration, slightly conductive dielectrics, and semi conductive coatings. Force balance measurements proved the effectiveness of the suggested configurations and advantages of the new voltage profile (pulses+bias) over the traditional sinusoidal one at relatively low voltages. In view of practical applications certain questions have been also addressed, such as electrodynamic effects which accompany scaling of the actuators to real size models, and environmental effects of ozone production by the plasma actuators.

  19. A tilt and roll device for automated correction of rotational setup errors.

    PubMed

    Hornick, D C; Litzenberg, D W; Lam, K L; Balter, J M; Hetrick, J; Ten Haken, R K

    1998-09-01

    A tilt and roll device has been developed to add two additional degrees of freedom to an existing treatment table. This device allows computer-controlled rotational motion about the inferior-superior and left-right patient axes. The tilt and roll device comprises three supports between the tabletop and base. An automotive type universal joint welded to the end of a steel pipe supports the center of the table. Two computer-controlled linear electric actuators utilizing high accuracy stepping motors support the foot of table and control the tilt and roll of the tabletop. The current system meets or exceeds all pre-design specifications for precision, weight capacity, rigidity, and range of motion.

  20. Design and control of RUPERT: a device for robotic upper extremity repetitive therapy.

    PubMed

    Sugar, Thomas G; He, Jiping; Koeneman, Edward J; Koeneman, James B; Herman, Richard; Huang, H; Schultz, Robert S; Herring, D E; Wanberg, J; Balasubramanian, Sivakumar; Swenson, Pete; Ward, Jeffrey A

    2007-09-01

    The structural design, control system, and integrated biofeedback for a wearable exoskeletal robot for upper extremity stroke rehabilitation are presented. Assisted with clinical evaluation, designers, engineers, and scientists have built a device for robotic assisted upper extremity repetitive therapy (RUPERT). Intense, repetitive physical rehabilitation has been shown to be beneficial overcoming upper extremity deficits, but the therapy is labor intensive and expensive and difficult to evaluate quantitatively and objectively. The RUPERT is developed to provide a low cost, safe and easy-to-use, robotic-device to assist the patient and therapist to achieve more systematic therapy at home or in the clinic. The RUPERT has four actuated degrees-of-freedom driven by compliant and safe pneumatic muscles (PMs) on the shoulder, elbow, and wrist. They are programmed to actuate the device to extend the arm and move the arm in 3-D space. It is very important to note that gravity is not compensated and the daily tasks are practiced in a natural setting. Because the device is wearable and lightweight to increase portability, it can be worn standing or sitting providing therapy tasks that better mimic activities of daily living. The sensors feed back position and force information for quantitative evaluation of task performance. The device can also provide real-time, objective assessment of functional improvement. We have tested the device on stroke survivors performing two critical activities of daily living (ADL): reaching out and self feeding. The future improvement of the device involves increased degrees-of-freedom and interactive control to adapt to a user's physical conditions.

  1. On a Road to "Soft" Optical MEMS

    NASA Astrophysics Data System (ADS)

    Yang, Shu; Mach, Peter; Krupenkin, Tom

    2003-03-01

    A phenomenon of electrowetting has been applied to the actuation of micro-optical devices. The devices use small droplets of transparent conductive liquids to manipulate light in a useful way. The form and position of these droplets is controlled by the applied voltage. Both fiber based and open space optical devices are demonstrated. As an example of an open space optical device, a tunable liquid microlens capable of adjusting its focal length and lateral position is discussed. The microlens consists of a droplet of a transparent conductive liquid placed on a dielectric substrate with underlying electrodes. By varying the voltage applied to the structure, both the position and curvature of microlens can be reversibly changed. Similarly, electrowetting actuation of fluids in micro channels is employed to provide dynamic and reversible tuning of the optical fiber structures. When combined with in-fiber gratings or etched fibers this approach yields tunable broadband and narrowband filters with a large dynamic range. Both the surface and bulk properties of the materials are found important to control the device performance. Fundamental problems, such as stick-slip behavior and contact angle hysteresis associated with the surface roughness and surface contamination, are studied to optimize the choice of dielectric materials and their coatings. Some of the possible ways to control these phenomena are outlined. Several potential applications of the proposed approach are also discussed.

  2. Model-based design and experimental verification of a monitoring concept for an active-active electromechanical aileron actuation system

    NASA Astrophysics Data System (ADS)

    Arriola, David; Thielecke, Frank

    2017-09-01

    Electromechanical actuators have become a key technology for the onset of power-by-wire flight control systems in the next generation of commercial aircraft. The design of robust control and monitoring functions for these devices capable to mitigate the effects of safety-critical faults is essential in order to achieve the required level of fault tolerance. A primary flight control system comprising two electromechanical actuators nominally operating in active-active mode is considered. A set of five signal-based monitoring functions are designed using a detailed model of the system under consideration which includes non-linear parasitic effects, measurement and data acquisition effects, and actuator faults. Robust detection thresholds are determined based on the analysis of parametric and input uncertainties. The designed monitoring functions are verified experimentally and by simulation through the injection of faults in the validated model and in a test-rig suited to the actuation system under consideration, respectively. They guarantee a robust and efficient fault detection and isolation with a low risk of false alarms, additionally enabling the correct reconfiguration of the system for an enhanced operational availability. In 98% of the performed experiments and simulations, the correct faults were detected and confirmed within the time objectives set.

  3. Adaptive Optics: Arroyo Simulation Tool and Deformable Mirror Actuation Using Golay Cells

    NASA Technical Reports Server (NTRS)

    Lint, Adam S.

    2005-01-01

    The Arroyo C++ libraries, written by Caltech post-doc student Matthew Britton, have the ability to simulate optical systems and atmospheric signal interference. This program was chosen for use in an end-to-end simulation model of a laser communication system because it is freely distributed and has the ability to be controlled by a remote system or "smart agent." Proposed operation of this program by a smart agent has been demonstrated, and the results show it to be a suitable simulation tool. Deformable mirrors, as a part of modern adaptive optics systems, may contain thousands of tiny, independently controlled actuators used to modify the shape of the mirror. Each actuator is connected to two wires, creating a cumbersome and expensive device. Recently, an alternative actuation method that uses gas-filled tubes known as Golay cells has been explored. Golay cells, operated by infrared lasers instead of electricity, would replace the actuator system thereby creating a more compact deformable mirror. The operation of Golay cells and their ability to move a deformable mirror in excess of the required 20 microns has been demonstrated. Experimentation has shown them to be extremely sensitive to pressure and temperature, making them ideal for use in a controlled environment.

  4. Electrostatic artificial eyelid actuator as an analog micromirror device

    NASA Astrophysics Data System (ADS)

    Goodwin, Scott H.; Dausch, David E.; Solomon, Steven L.; Lamvik, Michael K.

    2005-05-01

    An electrostatic MEMS actuator is described for use as an analog micromirror device (AMD) for high performance, broadband, hardware-in-the-loop (HWIL) scene generation. Current state-of-the-art technology is based on resistively heated pixel arrays. As these arrays drive to the higher scene temperatures required by missile defense scenarios, the power required to drive the large format resistive arrays will ultimately become prohibitive. Existing digital micromirrors (DMD) are, in principle, capable of generating the required scene irradiances, but suffer from limited dynamic range, resolution and flicker effects. An AMD would be free of these limitations, and so represents a viable alternative for high performance UV/VIS/IR scene generation. An electrostatic flexible film actuator technology, developed for use as "artificial eyelid" shutters for focal plane sensors to protect against damaging radiation, is suitable as an AMD for analog control of projection irradiance. In shutter applications, the artificial eyelid actuator contained radius of curvature as low as 25um and operated at high voltage (>200V). Recent testing suggests that these devices are capable of analog operation as reflective microcantilever mirrors appropriate for scene projector systems. In this case, the device would possess larger radius and operate at lower voltages (20-50V). Additionally, frame rates have been measured at greater than 5kHz for continuous operation. The paper will describe the artificial eyelid technology, preliminary measurements of analog test pixels, and design aspects related to application for scene projection systems. We believe this technology will enable AMD projectors with at least 5122 spatial resolution, non-temporally-modulated output, and pixel response times of <1.25ms.

  5. Thermionic switched self-actuating reactor shutdown system

    DOEpatents

    Barrus, Donald M.; Shires, Charles D.; Brummond, William A.

    1989-01-01

    A self-actuating reactor shutdown system incorporating a thermionic switched electromagnetic latch arrangement which is responsive to reactor neutron flux changes and to reactor coolant temperature changes. The system is self-actuating in that the sensing thermionic device acts directly to release (scram) the control rod (absorber) without reference or signal from the main reactor plant protective and control systems. To be responsive to both temperature and neutron flux effects, two detectors are used, one responsive to reactor coolant temperatures, and the other responsive to reactor neutron flux increase. The detectors are incorporated into a thermionic diode connected electrically with an electromagnetic mechanism which under normal reactor operating conditions holds the the control rod in its ready position (exterior of the reactor core). Upon reaching either a specified temperature or neutron flux, the thermionic diode functions to short-circuit the electromagnetic mechanism causing same to lose its holding power and release the control rod, which drops into the reactor core region under gravitational force.

  6. Shape memory alloy-based biopsy device for active locomotive intestinal capsule endoscope.

    PubMed

    Le, Viet Ha; Hernando, Leon-Rodriguez; Lee, Cheong; Choi, Hyunchul; Jin, Zhen; Nguyen, Kim Tien; Go, Gwangjun; Ko, Seong-Young; Park, Jong-Oh; Park, Sukho

    2015-03-01

    Recently, capsule endoscopes have been used for diagnosis in digestive organs. However, because a capsule endoscope does not have a locomotive function, its use has been limited to small tubular digestive organs, such as small intestine and esophagus. To address this problem, researchers have begun studying an active locomotive intestine capsule endoscope as a medical instrument for the whole gastrointestinal tract. We have developed a capsule endoscope with a small permanent magnet that is actuated by an electromagnetic actuation system, allowing active and flexible movement in the patient's gut environment. In addition, researchers have noted the need for a biopsy function in capsule endoscope for the definitive diagnosis of digestive diseases. Therefore, this paper proposes a novel robotic biopsy device for active locomotive intestine capsule endoscope. The proposed biopsy device has a sharp blade connected with a shape memory alloy actuator. The biopsy device measuring 12 mm in diameter and 3 mm in length was integrated into our capsule endoscope prototype, where the device's sharp blade was activated and exposed by the shape memory alloy actuator. Then the electromagnetic actuation system generated a specific motion of the capsule endoscope to extract the tissue sample from the intestines. The final biopsy sample tissue had a volume of about 6 mm(3), which is a sufficient amount for a histological analysis. Consequently, we proposed the working principle of the biopsy device and conducted an in-vitro biopsy test to verify the feasibility of the biopsy device integrated into the capsule endoscope prototype using the electro-magnetic actuation system. © IMechE 2015.

  7. Investigation of microscale dielectric barrier discharge plasma devices

    NASA Astrophysics Data System (ADS)

    Zito, Justin C.

    This dissertation presents research performed on reduced-scale dielectric barrier discharge (DBD) plasma actuators. A first generation of microscale DBD actuators are designed and manufactured using polymeric dielectric layers, and successfully demonstrate operation at reduced scales. The actuators are 1 cm long and vary in width from tens of microns to several millimeters. A thin-film polymer or ceramic material is used as the dielectric barrier with thicknesses from 5 to 20 microns. The devices are characterized for their electrical, fluidic and mechanical performance. With electrical input of 5 kVpp, 1 kHz, the microscale DBD actuators induce a wall jet with velocity reaching up to 2 m/s and produce 3.5 mN/m of thrust, while consuming an average power of 20 W/m. A 5 mN/m plasma body force was observed, acting on the surrounding air. Failure of the microscale DBD actuators is investigated using thermal measurements of the dielectric surface in addition to both optical and scanning electron microscopy. The cause of device failure is identified as erosion of the dielectric surface due to collisions with ions from the discharge. A second generation of microscale actuators is then designed and manufactured using a more reliable dielectric material, namely silicon dioxide. These actuators demonstrate a significant improvement in device lifetime compared with first-generation microscale DBD actuators. The increase in actuator lifetime allowed the electrical, fluidic and mechanical characterization to be repeated over several input voltages and frequencies. At 7 kVpp, 1 kHz, the actuators with SiO2 dielectric induced velocities up to 1.5 m/s and demonstrated 1.4 mN/m of thrust while consuming an average power of 41 W/m. The plasma body force reached up to 2.5 mN/m. Depending on electrical input, the induced velocity and thrust span an order of magnitude in range. Comparisons are made with macroscale DBD actuators which relate the actuator's output performance and power consumption with the mass and volume of the actuator design. The small size and of microscale DBD actuators reduces its weight and power requirements, making them attractive for portable or battery-powered applications (e.g., on UAVs).

  8. Superconductivity devices: Commercial use of space

    NASA Technical Reports Server (NTRS)

    Haertling, Gene; Furman, Eugene; Li, Guang

    1995-01-01

    The work described in this report covers various aspects of the Rainbow solid-state actuator technology. It is presented in six parts dealing with materials, processing, fabrication, properties and associated phenomena. The Rainbow actuator technology is a relatively new materials development which had its inception in 1992. It consists of a new processing technology for preparing piezoelectric and electrostrictive ceramic materials. It involves a high temperature chemical reduction process which leads to an internal pre-stressing of the oxide wafer, thus the name Rainbow, an acronym for Reduced And INternally Biased Oxide Wafer. Ceramics fabricated by this method produce bending-mode actuator devices which possess several times more displacement and load bearing capacity than present-day benders (unimorphs, bimorphs). It is anticipated that these solid-state, electromechanical actuators which can be used in a number of applications in space such as cryopump motors, anti-vibration active structures, autoleveling platforms, telescope mirror correctors and autofocusing devices. When considering any of these applications, the key to the development of a successful device is the successful development of a ceramic material which can produce maximum displacement per volt input; hence, this initiative involving a solid-state means for achieving unusually high electromechanical displacement can be significant and far reaching. An additional benefit obtained from employing the piezoelectric effect in these actuator devices is the ability to also utilize them as sensors; and, indeed, they can be used as both motor (actuator) and generator (sensor) in multifunction devices.

  9. Evolutionary flight and enabling smart actuator devices

    NASA Astrophysics Data System (ADS)

    Manzo, Justin; Garcia, Ephrahim

    2007-04-01

    Recent interest in morphing vehicles with multiple, optimized configurations has led to renewed research on biological flight. The flying vertebrates - birds, bats, and pterosaurs - all made or make use of various morphing devices to achieve lift to suit rapidly changing flight demands, including maneuvers as complex as perching and hovering. The first part of this paper will discuss these devices, with a focus on the morphing elements and structural strong suits of each creature. Modern flight correlations to these devices will be discussed and analyzed as valid adaptations of these evolutionary traits. The second part of the paper will focus on the use of active joint structures for use in morphing aircraft devices. Initial work on smart actuator devices focused on NASA Langley's Hyper-Elliptical Cambered Span (HECS) wing platform, which led to development of a discretized spanwise curvature effector. This mechanism uses shape memory alloy (SMA) as the sole morphing actuator, allowing fast rotation with lightweight components at the expense of energy inefficiency. Phase two of morphing actuator development will add an element of active rigidity to the morphing structure, in the form of shape memory polymer (SMP). Employing a composite structure of polymer and alloy, this joint will function as part of a biomimetic morphing actuator system in a more energetically efficient manner. The joint is thermally actuated to allow compliance on demand and rigidity in the nominal configuration. Analytical and experimental joint models are presented, and potential applications on a bat-wing aircraft structure are outlined.

  10. 3-dimensional telepresence system for a robotic environment

    DOEpatents

    Anderson, Matthew O.; McKay, Mark D.

    2000-01-01

    A telepresence system includes a camera pair remotely controlled by a control module affixed to an operator. The camera pair provides for three dimensional viewing and the control module, affixed to the operator, affords hands-free operation of the camera pair. In one embodiment, the control module is affixed to the head of the operator and an initial position is established. A triangulating device is provided to track the head movement of the operator relative to the initial position. A processor module receives input from the triangulating device to determine where the operator has moved relative to the initial position and moves the camera pair in response thereto. The movement of the camera pair is predetermined by a software map having a plurality of operation zones. Each zone therein corresponds to unique camera movement parameters such as speed of movement. Speed parameters include constant speed, or increasing or decreasing. Other parameters include pan, tilt, slide, raise or lowering of the cameras. Other user interface devices are provided to improve the three dimensional control capabilities of an operator in a local operating environment. Such other devices include a pair of visual display glasses, a microphone and a remote actuator. The pair of visual display glasses are provided to facilitate three dimensional viewing, hence depth perception. The microphone affords hands-free camera movement by utilizing voice commands. The actuator allows the operator to remotely control various robotic mechanisms in the remote operating environment.

  11. Holographic Adaptive Laser Optics System

    NASA Astrophysics Data System (ADS)

    Andersen, G.; Ghebremichael, F.

    2011-09-01

    We have created a new adaptive optics system using a holographic modal wavefront sensing method with the autonomous (computer-free) closed-loop control of a MEMS deformable mirror (DM). A multiplexed hologram is recorded using the maximum and minimum actuator positions on the deformable mirror as the “modes”. On reconstruction, an input beam is diffracted into pairs of focal spots and the ratio of the intensities of certain pairs determines the absolute wavefront phase at a particular actuator location. The wavefront measurement is made using fast, sensitive silicon photomultiplier arrays with the parallel outputs directly controlling individual actuators in the MEMS DM. In this talk, we will present the results from an all-optical, ultra-compact system that runs in closed-loop without the need for a computer. The speed is limited only by the response time of any given DM actuator and not the number of actuators. In our case, our 32-actuator prototype device already operates at 10 kHz and our next generation system is being designed for > 100 kHz. As a modal system, it is largely insensitive to scintillation and obscuration and is thus ideal for extreme adaptive optics applications. We will present information on how HALOS can be used for image correction and beam propagation as well as several other novel applications.

  12. Micro Ring Grating Spectrometer with Adjustable Aperture

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor); Choi, Sang H. (Inventor)

    2012-01-01

    A spectrometer includes a micro-ring grating device having coaxially-aligned ring gratings for diffracting incident light onto a target focal point, a detection device for detecting light intensity, one or more actuators, and an adjustable aperture device defining a circular aperture. The aperture circumscribes a target focal point, and directs a light to the detection device. The aperture device is selectively adjustable using the actuators to select a portion of a frequency band for transmission to the detection device. A method of detecting intensity of a selected band of incident light includes directing incident light onto coaxially-aligned ring gratings of a micro-ring grating device, and diffracting the selected band onto a target focal point using the ring gratings. The method includes using an actuator to adjust an aperture device and pass a selected portion of the frequency band to a detection device for measuring the intensity of the selected portion.

  13. Simulation of Strain Induced Pseudomagnetic Fields in Graphene Suspended on MEMS Chevron Actuators

    NASA Astrophysics Data System (ADS)

    Vutukuru, Mounika; Christopher, Jason; Bishop, David; Swan, Anna

    Graphene has been shown to withstand remarkable levels of mechanical strain an order of magnitude larger than bulk crystalline materials. This exceptional stretchability of graphene allows for the direct tuning of fundamental material properties, as well as for the investigation of novel physics such as generation of strain induced pseudomagnetic fields. However, current methods for strain such as polymer elongation or pressurized wells do not integrate well into devices. We propose microelectromechanical (MEMS) Chevron actuators as a reliable platform for applying strain to graphene. In addition to their advantageous controllable output force, low input power and ease of integration into existing technologies, MEMS allow for different strain orientations to optimize pseudomagnetic field generation in graphene. Here, we model nonuniform strain in suspended graphene on Chevron actuators using COMSOL Multiphysics. By simulating the deformation of the graphene geometry under the device actuation, we explore the pseudomagnetic field map induced by numerically calculating the components of the strain tensor. Our models provide the theoretical framework with which experimental analysis is compared, and optimize our MEMS designs for further exploration of novel physics in graphene. The authors would like to thank NSF DMR 1411008 for their support on this project.

  14. Surface texture change on-demand and microfluidic devices based on thickness mode actuation of dielectric elastomer actuators (DEAs)

    NASA Astrophysics Data System (ADS)

    Ankit, Ankit; Nguyen, Anh Chien; Mathews, Nripan

    2017-04-01

    Tactile feedback devices and microfluidic devices have huge significance in strengthening the area of robotics, human machine interaction and low cost healthcare. Dielectric Elastomer Actuators (DEAs) are an attractive alternative for both the areas; offering the advantage of low cost and simplistic fabrication in addition to the high actuation strains. The inplane deformations produced by the DEAs can be used to produce out-of-plane deformations by what is known as the thickness mode actuation of DEAs. The thickness mode actuation is achieved by adhering a soft passive layer to the DEA. This enables a wide area of applications in tactile applications without the need of complex systems and multiple actuators. But the thickness mode actuation has not been explored enough to understand how the deformations can be improved without altering the material properties; which is often accompanied with increased cost and a trade off with other closely associated material properties. We have shown the effect of dimensions of active region and non-active region in manipulating the out-of-plane deformation. Making use of this, we have been able to demonstrate large area devices and complex patterns on the passive top layer for the surface texture change on-demand applications. We have also been able to demonstrate on-demand microfluidic channels and micro-chambers without the need of actually fabricating the channels; which is a cost incurring and cumbersome process.

  15. All optical reconfiguration of optomechanical filters.

    PubMed

    Deotare, Parag B; Bulu, Irfan; Frank, Ian W; Quan, Qimin; Zhang, Yinan; Ilic, Rob; Loncar, Marko

    2012-05-22

    Reconfigurable optical filters are of great importance for applications in optical communication and information processing. Of particular interest are tuning techniques that take advantage of mechanical deformation of the devices, as they offer wider tuning range. Here we demonstrate reconfiguration of coupled photonic crystal nanobeam cavities by using optical gradient force induced mechanical actuation. Propagating waveguide modes that exist over a wide wavelength range are used to actuate the structures and control the resonance of localized cavity modes. Using this all-optical approach, more than 18 linewidths of tuning range is demonstrated. Using an on-chip temperature self-referencing method, we determine that 20% of the total tuning was due to optomechanical reconfiguration and the rest due to thermo-optic effects. By operating the device at frequencies higher than the thermal cutoff, we show high-speed operation dominated by just optomechanical effects. Independent control of mechanical and optical resonances of our structures is also demonstrated.

  16. Electronic control of gene expression and cell behaviour in Escherichia coli through redox signalling

    NASA Astrophysics Data System (ADS)

    Tschirhart, Tanya; Kim, Eunkyoung; McKay, Ryan; Ueda, Hana; Wu, Hsuan-Chen; Pottash, Alex Eli; Zargar, Amin; Negrete, Alejandro; Shiloach, Joseph; Payne, Gregory F.; Bentley, William E.

    2017-01-01

    The ability to interconvert information between electronic and ionic modalities has transformed our ability to record and actuate biological function. Synthetic biology offers the potential to expand communication `bandwidth' by using biomolecules and providing electrochemical access to redox-based cell signals and behaviours. While engineered cells have transmitted molecular information to electronic devices, the potential for bidirectional communication stands largely untapped. Here we present a simple electrogenetic device that uses redox biomolecules to carry electronic information to engineered bacterial cells in order to control transcription from a simple synthetic gene circuit. Electronic actuation of the native transcriptional regulator SoxR and transcription from the PsoxS promoter allows cell response that is quick, reversible and dependent on the amplitude and frequency of the imposed electronic signals. Further, induction of bacterial motility and population based cell-to-cell communication demonstrates the versatility of our approach and potential to drive intricate biological behaviours.

  17. 21 CFR 870.1670 - Syringe actuator for an injector.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Syringe actuator for an injector. 870.1670 Section 870.1670 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1670 Syringe...

  18. 21 CFR 870.1670 - Syringe actuator for an injector.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Syringe actuator for an injector. 870.1670 Section 870.1670 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1670 Syringe...

  19. Defect inspection of actuator lenses using swept-source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lee, Jaeyul; Shirazi, Muhammad Faizan; Park, Kibeom; Jeon, Mansik; Kim, Jeehyun

    2017-12-01

    Actuator lens industries have gained an enormous interest with the enhancement of various latest communication devices, such as mobile phone and notebooks. The quality of the aforementioned devices can be degraded due to the internal defects of actuator lenses. Therefore, in this study, we implemented swept-source optical coherence tomography (SS-OCT) system to inspect defects of actuator lenses. Owing to the high-resolution of the SS-OCT system, defected foreign substances between the actuator lenses, defective regions of lenses and surface stains were more clearly distinguished through three-dimensional (3D) and two-dimensional (2D) cross-sectional OCT images. Therefore, the implemented SS-OCT system can be considered as a potential application to defect inspection of actuator lens.

  20. Systems, methods, and products for graphically illustrating and controlling a droplet actuator

    NASA Technical Reports Server (NTRS)

    Brafford, Keith R. (Inventor); Pamula, Vamsee K. (Inventor); Paik, Philip Y. (Inventor); Pollack, Michael G. (Inventor); Sturmer, Ryan A. (Inventor); Smith, Gregory F. (Inventor)

    2010-01-01

    Systems for controlling a droplet microactuator are provided. According to one embodiment, a system is provided and includes a controller, a droplet microactuator electronically coupled to the controller, and a display device displaying a user interface electronically coupled to the controller, wherein the system is programmed and configured to permit a user to effect a droplet manipulation by interacting with the user interface. According to another embodiment, a system is provided and includes a processor, a display device electronically coupled to the processor, and software loaded and/or stored in a storage device electronically coupled to the controller, a memory device electronically coupled to the controller, and/or the controller and programmed to display an interactive map of a droplet microactuator. According to yet another embodiment, a system is provided and includes a controller, a droplet microactuator electronically coupled to the controller, a display device displaying a user interface electronically coupled to the controller, and software for executing a protocol loaded and/or stored in a storage device electronically coupled to the controller, a memory device electronically coupled to the controller, and/or the controller.

  1. Design and Simulation of Optically Actuated Bistable MEMS

    NASA Astrophysics Data System (ADS)

    Lucas, Thomas; Moiseeva, Evgeniya; Harnett, Cindy

    2012-02-01

    In this project, bistable three-dimensional MEMS actuators are designed to be optically switched between stable states for biological research applications. The structure is a strained rectangular frame created with stress-mismatched metal-oxide bilayers. The devices curl into an arc in one of two directions tangent to the substrate, and can switch orientation when regions are selectively heated. The heating is powered by infrared laser, and localized with patterned infrared-resonant gold nanoparticles on critical regions. The enhanced energy absorption on selected areas provides switching control and heightened response to narrow-band infrared light. Coventorware has been used for finite element analysis of the system. The numerical simulations indicate that it has two local minimum states with extremely rapid transition time (<<0.1 s) when the structure is thermally deformed. Actuation at laser power and thermal limits compatible with physiological applications will enable microfluidic pumping elements and fundamental studies of tissue response to three-dimensional mechanical stimuli, artificial-muscle based pumps and other biomedical devices triggered by tissue-permeant infrared light.

  2. Upgrading the Control Systems of Turbines of K-160-12.8 Type Produced by PAO Turboatom

    NASA Astrophysics Data System (ADS)

    Babayev, I. N.

    2018-05-01

    Steam turbines of a K-160-12.8 (PVK-150) type produced by PAO Turboatom are operated at thermal power plants from the 1960s and many of them still have the complete set that was installed at that time by the factory, but they have become out of date. For this reason, the problem of upgrading the turbines to bring their characteristics into compliance with modern requirements is relevant. This article describes the main technical decisions adopted by PAO Turboatom when upgrading the automatic control system (ACS) of a K-160-12.8 (PVK-150) turbine: replacing the control valves (CV); replacing the distributing mechanism; replacing the front support components, including the main servomotor and oil control pipes; and replacing the assembly of cutoff spools by separate spools of servomotors of high-pressure control valves and reheat control valves. The schematic diagram of the ACS and description of the structure of newly installed mechanisms are presented: the cutoff spools, the high-pressure CVs, the distribution mechanism, and the main servomotor. The particularity of the ACS is the presence of electromechanical converters, which are used in each cutoff spool. For improving operating reliability of the ACS by providing the actuation of servomotors of control valves for closing regardless of ACS commands, the connection of rods of the electromechanical converter and cutoff spools are made using spring-type uncoupling devices. For actuation of the protection system by the commands of the automatic electronic safety device, the separate actuator driven by an electromagnet is installed in the ACS. During further improvement of the protection system, it is recommended to replace the controller assembly by two-spool protection devices, remove the protection spool assembly, and increase the pressure in the protection lines up to power pressure. The upgrading during this project was carried out by the Dobrotvor TPP (Ukraine).

  3. "Smart" Electromechanical Shock Absorber

    NASA Technical Reports Server (NTRS)

    Stokes, Lebarian; Glenn, Dean C.; Carroll, Monty B.

    1989-01-01

    Shock-absorbing apparatus includes electromechanical actuator and digital feedback control circuitry rather than springs and hydraulic damping as in conventional shock absorbers. Device not subject to leakage and requires little or no maintenance. Attenuator parameters adjusted in response to sensory feedback and predictive algorithms to obtain desired damping characteristic. Device programmed to decelerate slowly approaching vehicle or other large object according to prescribed damping characteristic.

  4. A pulsed mode electrolytic drug delivery device

    NASA Astrophysics Data System (ADS)

    Yi, Ying; Buttner, Ulrich; Carreno, Armando A. A.; Conchouso, David; Foulds, Ian G.

    2015-10-01

    This paper reports the design of a proof-of-concept drug delivery device that is actuated using the bubbles formed during electrolysis. The device uses a platinum (Pt) coated nickel (Ni) metal foam and a solid drug in reservoir (SDR) approach to improve the device’s performance. This electrochemically-driven pump has many features that are unlike conventional drug delivery devices: it is capable of pumping periodically and being refilled automatically; it features drug release control; and it enables targeted delivery. Pt-coated metal foam is used as a catalytic reforming element, which reduces the period of each delivery cycle. Two methods were used for fabricating the Pt-coated metal: sputtering and electroplating. Of these two methods, the sputtered Pt-coated metal foam has a higher pumping rate; it also has a comparable recombination rate when compared to the electroplated Pt-coated metal foam. The only drawback of this catalytic reformer is that it consumes nickel scaffold. Considering long-term applications, the electroplated Pt metal foam was selected for drug delivery, where a controlled drug release rate of 2.2 μg  ±  0.3 μg per actuation pulse was achieved using 4 mW of power.

  5. A procedure concept for local reflex control of grasping

    NASA Technical Reports Server (NTRS)

    Fiorini, Paolo; Chang, Jeffrey

    1989-01-01

    An architecture is proposed for the control of robotic devices, and in particular of anthropomorphic hands, characterized by a hierarchical structure in which every level of the architecture contains data and control function with varying degree of abstraction. Bottom levels of the hierarchy interface directly with sensors and actuators, and process raw data and motor commands. Higher levels perform more symbolic types of tasks, such as application of boolean rules and general planning operations. Layers implementation has to be consistent with the type of operation and its requirements for real time control. It is proposed to implement the rule level with a Boolean Artificial Neural Network characterized by a response time sufficient for producing reflex corrective action at the actuator level.

  6. A multi-responsive water-driven actuator with instant and powerful performance for versatile applications

    NASA Astrophysics Data System (ADS)

    Mu, Jiuke; Hou, Chengyi; Zhu, Bingjie; Wang, Hongzhi; Li, Yaogang; Zhang, Qinghong

    2015-03-01

    Mechanical actuators driven by water that respond to multiple stimuli, exhibit fast responses and large deformations, and generate high stress have potential in artificial muscles, motors, and generators. Meeting all these requirements in a single device remains a challenge. We report a graphene monolayer paper that undergoes reversible deformation. Its graphene oxide cells wrinkle and extend in response to water desorption and absorption, respectively. Its fast (~0.3 s), powerful (>100 MPa output stress, 7.5 × 105 N kg-1 unit mass force), and controllable actuation can be triggered by moisture, heat, and light. The graphene monolayer paper has potential in artificial muscles, robotic hands, and electromagnetic-free generators.

  7. Note: A simple vibrating orifice monodisperse droplet generator using a hard drive actuator arm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosch, Sebastian, E-mail: skosch@mie.utoronto.ca, E-mail: ashgriz@mie.utoronto.ca; Ashgriz, Nasser, E-mail: skosch@mie.utoronto.ca, E-mail: ashgriz@mie.utoronto.ca

    2015-04-15

    We propose that the rotary voice coil actuators found in magnetic hard drives are fit to supercede loudspeakers as expedient vibration sources in the laboratory setting. A specific use case is the excitation of a liquid jet to induce controlled breakup into monodisperse droplets. Like loudspeakers, which are typically used for prototyping such devices, hard drive actuators are cheap and ubiquitous, but they are less unwieldy and supply greater amplitudes without producing noise. Frequencies between 0 and 17 kHz, and likely beyond, can be reproduced reliably. No machining tools or amplifying electronics are needed for the construction and operation ofmore » the presented droplet generator.« less

  8. Piezoelectric actuator design for MR elastography: implementation and vibration issues.

    PubMed

    Tse, Zion Tsz Ho; Chan, Yum Ji; Janssen, Henning; Hamed, Abbi; Young, Ian; Lamperth, Michael

    2011-09-01

    MR elastography (MRE) is an emerging technique for tumor diagnosis. MRE actuation devices require precise mechanical design and radiofrequency engineering to achieve the required mechanical vibration performance and MR compatibility. A method of designing a general-purpose, compact and inexpensive MRE actuator is presented. It comprises piezoelectric bimorphs arranged in a resonant structure designed to operate at its resonant frequency for maximum vibration amplitude. An analytical model was established to understand the device vibration characteristics. The model-predicted performance was validated in experiments, showing its accuracy in predicting the actuator resonant frequency with an error < 4%. The device MRI compatibility was shown to cause minimal interference to a 1.5 tesla MRI scanner, with maximum signal-to-noise ratio reduction of 7.8% and generated artefact of 7.9 mm in MR images. A piezoelectric MRE actuator is proposed, and its implementation, vibration issues and future work are discussed. Copyright © 2011 John Wiley & Sons, Ltd.

  9. Providing Situational Awareness for Pipeline Control Operations

    NASA Astrophysics Data System (ADS)

    Butts, Jonathan; Kleinhans, Hugo; Chandia, Rodrigo; Papa, Mauricio; Shenoi, Sujeet

    A SCADA system for a single 3,000-mile-long strand of oil or gas pipeline may employ several thousand field devices to measure process parameters and operate equipment. Because of the vital tasks performed by these sensors and actuators, pipeline operators need accurate and timely information about their status and integrity. This paper describes a realtime scanner that provides situational awareness about SCADA devices and control operations. The scanner, with the assistance of lightweight, distributed sensors, analyzes SCADA network traffic, verifies the operational status and integrity of field devices, and identifies anomalous activity. Experimental results obtained using real pipeline control traffic demonstrate the utility of the scanner in industrial settings.

  10. Detection of near-wall vortices and their manipulation by use of dielectric barrier discharge plasma actuators

    NASA Astrophysics Data System (ADS)

    Connelly, Ryan

    A sizable amount of the drag on a typical jet airplane is due to skin friction. Decreasing this skin friction drag by even just a small percentage could significantly increase the efficiency of the plane. The idea of stationary vortices has previously been proposed as a method of skin friction reduction. Vortices could potentially be held stationary by flow control devices such as plasma actuators. This thesis lays the groundwork of a study to determine the feasibility of this idea in two ways. First, the effects of plasma actuators on vortices are studied. Second, wind tunnel tests were performed to develop a method of locating the center of vortices downstream of vortex generators. An accurate method of vortex detection will be vital in further experimental studies of plasma actuator effects.

  11. Status of Electrical Actuator Applications

    NASA Technical Reports Server (NTRS)

    Roth, Mary Ellen; Taylor, Linda M.; Hansen, Irving G.

    1996-01-01

    An ever increasing number of actuation functions historically performed by hydraulics or pneumatics are being accomplished by electric actuation. If 'end to end' systems are considered, electric actuators (EA's) are potentially lighter and more efficient. In general, system redundancies may be more easily implemented and operationally monitored. Typically, electrical components exhibit longer mean times to failure and projected lifetime costs of EA's are potentially much lower than those of other options. EA's have certain characteristics which must be considered in their application. The actual mechanical loadings must be established, for the more easily controlled EA may be operated much closer to its full capabilities. At higher rates of motion, EA's are operating as constant power devices. Therefore, it may be possible to start a movement that can not be stopped. The incorporation of high power electronics into remote locations introduces new concerns of EMI and thermal control. It is the management of these and other characteristics that forms the engineering design challenges. Work is currently in progress on EA's for aircraft and expendable launch vehicles. These applications span from ten to 40+ horsepower. The systematics and status of these actuators will be reported along with current technical trends in this area.

  12. Biofeedback-driven dialysis: where are we?

    PubMed

    Santoro, Antonio; Ferramosca, Emiliana; Mancini, Elena

    2008-01-01

    The progressive increase in the mean age and the growing conditions of co-morbidity, especially of cardiovascular pathologies and diabetes, have significantly worsened the patients' clinical status and tolerance to the hemodialysis (HD) treatment. On the other hand, the demand for short treatment times enhances the risk for hemodynamic instability as well as for inadequate depuration. The traditional management of the dialysis session, setting of predefined treatment parameters, with active therapeutic interventions only in the event of complications, is definitely unsuitable for short-lasting treatments, often complicated by hemodynamic instability, especially in critical patients. The first step to improve the management of the dialysis session is the utilization of continuous and uninvasive monitoring systems for hemodynamic or biochemical parameters involved in the dialysis quality. Special sensors for the continuous measurement of blood volume, blood temperature, blood pressure, heart rate, electrolytes, have been realized throughout the last 10 years. As a second step, some of these devices have been implemented in the dialysis instrumentation, mainly with a view to preventing cardiocirculatory instability but also to control the dialysis efficiency (biofeedback control systems). The basic components of a biofeedback system are: the plant, the sensors, the actuators and the controller. The plant is the biological process that we need to control, while the sensors are the devices used for measuring the output variables. The actuators are the working arms of the controller. The controller is the mathematical model that continuously sets the measured output variable against the reference input and modifies the actuators in order to reduce any discrepancies. Yet, in practice there are a number of conceptual, physical and technological difficulties to be overcome. In particular, the behavior of what is to be controlled may be non-linear and time-varying, with interactions between the actuators and the controlled variable. In these cases, more sophisticated control systems are needed, which must be capable of identifying the behavior of the process, and continuously update information data while the control is on. These complex systems are called adaptive controllers. In dialysis, over the last few years, it has been relatively easy to realize some biofeedback systems since a series of sensors have been developed for online monitoring. Three biofeedback devices are routinely used with the aim of improving the cardiovascular instability, one of the main problems limiting the tolerance to treatment by the patient and the quality of HD in itself - the first is the biofeedback control of blood volume, the second is the biofeedback control of thermal balance, and the third is the biofeedback control of blood pressure.

  13. Miniature Two-Axis Joystick Controller

    NASA Technical Reports Server (NTRS)

    Hollow, R.

    1983-01-01

    Novel movable-button-actuated self-centering controller uses optoelectronics to produce X and Y signals for aircraft control. In addition to be extremely compact, device puts our voltages having high signal-to-noise ratio, especially at critical center position where in many controllers this ratio is poorest. Combination of new saddle-shaped button and positive centering gives "feel" and "breakout" met with pilot approval.

  14. A portable hardware-in-the-loop (HIL) device for automotive diagnostic control systems.

    PubMed

    Palladino, A; Fiengo, G; Lanzo, D

    2012-01-01

    In-vehicle driving tests for evaluating the performance and diagnostic functionalities of engine control systems are often time consuming, expensive, and not reproducible. Using a hardware-in-the-loop (HIL) simulation approach, new control strategies and diagnostic functions on a controller area network (CAN) line can be easily tested in real time, in order to reduce the effort and the cost of the testing phase. Nowadays, spark ignition engines are controlled by an electronic control unit (ECU) with a large number of embedded sensors and actuators. In order to meet the rising demand of lower emissions and fuel consumption, an increasing number of control functions are added into such a unit. This work aims at presenting a portable electronic environment system, suited for HIL simulations, in order to test the engine control software and the diagnostic functionality on a CAN line, respectively, through non-regression and diagnostic tests. The performances of the proposed electronic device, called a micro hardware-in-the-loop system, are presented through the testing of the engine management system software of a 1.6 l Fiat gasoline engine with variable valve actuation for the ECU development version. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Bistable electroactive polymer for refreshable Braille display with improved actuation stability

    NASA Astrophysics Data System (ADS)

    Niu, Xiaofan; Brochu, Paul; Stoyanov, Hristiyan; Yun, Sung Ryul; Pei, Qibing

    2012-04-01

    Poly(t-butyl acrylate) is a bistable electroactive polymer (BSEP) capable of rigid-to-rigid actuation. The BSEP combines the large-strain actuation of dielectric elastomers with shape memory property. We have introduced a material approach to overcome pull-in instability in poly(t-butyl acrylate) that significantly improves the actuation lifetime at strains greater than 100%. Refreshable Braille display devices with size of a smartphone screen have been fabricated to manifest a potential application of the BSEP. We will report the testing results of the devices by a Braille user.

  16. Initial Work Toward a Robotically Assisted EVA Glove

    NASA Technical Reports Server (NTRS)

    Rogers, J.; Peters, B.; McBryan, E.; Laske, E.

    2016-01-01

    The Space Suit RoboGlove is a device designed to provide additional grasp strength or endurance for an EVA crew member since gloved hand performance is a fraction of what the unencumbered human hand can achieve. There have been past efforts to approach this problem by employing novel materials and construction techniques to the glove design, as well as integrating powered assistance devices. This application of the NASA/GM RoboGlove technology uses a unique approach to integrate the robotic actuators and sensors into a Phase VI EVA glove. This design provides grasp augmentation to the glove user while active, but can also function as a normal glove when disabled. Care was taken to avoid adding excessive bulk to the glove or affecting tactility by choosing low-profile sensors and extrinsically locating the actuators. Conduits are used to guide robotic tendons from linear actuators, across the wrist, and to the fingers. The second generation of the SSRG includes updated electronics, sensors, and actuators to improve performance. The following discusses the electromechanical design, softgoods integration, and control system of the SSRG. It also presents test results from the first integration of a powered mobility element onto a space suit, the NASA Mark III. Early results show that sensor integration did not impact tactile feedback in the glove and the actuators show potential for reduction in grasp fatigue over time.

  17. Design and Simulation of an Electrothermal Actuator Based Rotational Drive

    NASA Astrophysics Data System (ADS)

    Beeson, Sterling; Dallas, Tim

    2008-10-01

    As a participant in the Micro and Nano Device Engineering (MANDE) Research Experience for Undergraduates program at Texas Tech University, I learned how MEMS devices operate and the limits of their operation. Using specialized AutoCAD-based design software and the ANSYS simulation program, I learned the MEMS fabrication process used at Sandia National Labs, the design limitations of this process, the abilities and drawbacks of micro devices, and finally, I redesigned a MEMS device called the Chevron Torsional Ratcheting Actuator (CTRA). Motion is achieved through electrothermal actuation. The chevron (bent-beam) actuators cause a ratcheting motion on top of a hub-less gear so that as voltage is applied the CTRA spins. The voltage applied needs to be pulsed and the frequency of the pulses determine the angular frequency of the device. The main objective was to design electromechanical structures capable of transforming the electrical signals into mechanical motion without overheating. The design was optimized using finite element analysis in ANSYS allowing multi-physics simulations of our model system.

  18. Ionic electroactive polymer actuators as active microfluidic mixers

    DOE PAGES

    Meis, Catherine; Montazami, Reza; Hashemi, Nastaran

    2015-11-06

    On-chip sample processing is integral to the continued development of lab-on-a-chip devices for various applications. An active microfluidic mixer prototype is proposed using ionic electroactive polymer actuators (IEAPAs) as artificial cilia. A proof-of-concept experiment was performed in which the actuators were shown to produce localized flow pattern disruptions in the laminar flow regime. Suggestions for further engineering and optimization of a scaled-down, complete device are provided. Furthermore, the device in its current state of development necessitates further engineering, the use of IEAPAs addresses issues currently associated with the use of electromechanical actuators as active microfluidic mixers and may prove tomore » be a useful alternative to other similar materials.« less

  19. Fabrication and characterization of a micromachined swirl-shaped ionic polymer metal composite actuator with electrodes exhibiting asymmetric resistance.

    PubMed

    Feng, Guo-Hua; Liu, Kim-Min

    2014-05-12

    This paper presents a swirl-shaped microfeatured ionic polymer-metal composite (IPMC) actuator. A novel micromachining process was developed to fabricate an array of IPMC actuators on a glass substrate and to ensure that no shortcircuits occur between the electrodes of the actuator. We demonstrated a microfluidic scheme in which surface tension was used to construct swirl-shaped planar IPMC devices of microfeature size and investigated the flow velocity of Nafion solutions, which formed the backbone polymer of the actuator, within the microchannel. The unique fabrication process yielded top and bottom electrodes that exhibited asymmetric surface resistance. A tool for measuring surface resistance was developed and used to characterize the resistances of the electrodes for the fabricated IPMC device. The actuator, which featured asymmetric electrode resistance, caused a nonzero-bias current when the device was driven using a zero-bias square wave, and we propose a circuit model to describe this phenomenon. Moreover, we discovered and characterized a bending and rotating motion when the IPMC actuator was driven using a square wave. We observed a strain rate of 14.6% and a displacement of 700 μm in the direction perpendicular to the electrode surfaces during 4.5-V actuation.

  20. Fabrication and Characterization of a Micromachined Swirl-Shaped Ionic Polymer Metal Composite Actuator with Electrodes Exhibiting Asymmetric Resistance

    PubMed Central

    Feng, Guo-Hua; Liu, Kim-Min

    2014-01-01

    This paper presents a swirl-shaped microfeatured ionic polymer-metal composite (IPMC) actuator. A novel micromachining process was developed to fabricate an array of IPMC actuators on a glass substrate and to ensure that no shortcircuits occur between the electrodes of the actuator. We demonstrated a microfluidic scheme in which surface tension was used to construct swirl-shaped planar IPMC devices of microfeature size and investigated the flow velocity of Nafion solutions, which formed the backbone polymer of the actuator, within the microchannel. The unique fabrication process yielded top and bottom electrodes that exhibited asymmetric surface resistance. A tool for measuring surface resistance was developed and used to characterize the resistances of the electrodes for the fabricated IPMC device. The actuator, which featured asymmetric electrode resistance, caused a nonzero-bias current when the device was driven using a zero-bias square wave, and we propose a circuit model to describe this phenomenon. Moreover, we discovered and characterized a bending and rotating motion when the IPMC actuator was driven using a square wave. We observed a strain rate of 14.6% and a displacement of 700 μm in the direction perpendicular to the electrode surfaces during 4.5-V actuation. PMID:24824370

  1. Electroactive Polymer (EAP) Actuation of Mechanisms and Robotic Devices

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.; Leary, S.; Harrison, J.; Smith, J.

    1999-01-01

    Actuators are responsible to the operative capability of manipulation systems and robots. In recent years, electroactive polymers (EAP) have emerged as potential alternative to conventional actuators.

  2. A micropower miniature piezoelectric actuator for implantable middle ear hearing device.

    PubMed

    Wang, Zhigang; Mills, Robert; Luo, Hongyan; Zheng, Xiaolin; Hou, Wensheng; Wang, Lijun; Brown, Stuart I; Cuschieri, Alfred

    2011-02-01

    This paper describes the design and development of a small actuator using a miniature piezoelectric stack and a flextensional mechanical amplification structure for an implantable middle ear hearing device (IMEHD). A finite-element method was used in the actuator design. Actuator vibration displacement was measured using a laser vibrometer. Preliminary evaluation of the actuator for an IMEHD was conducted using a temporal bone model. Initial results from one temporal bone study indicated that the actuator was small enough to be implanted within the middle ear cavity, and sufficient stapes displacement can be generated for patients with mild to moderate hearing losses, especially at higher frequency range, by the actuator suspended onto the stapes. There was an insignificant mass-loading effect on normal sound transmission (<3 dB) when the actuator was attached to the stapes and switched off. Improved vibration performance is predicted by more firm attachment. The actuator power consumption and its generated equivalent sound pressure level are also discussed. In conclusion, the actuator has advantages of small size, lightweight, and micropower consumption for potential use as IMHEDs.

  3. Electrostatic actuation and electromechanical switching behavior of one-dimensional nanostructures.

    PubMed

    Subramanian, Arunkumar; Alt, Andreas R; Dong, Lixin; Kratochvil, Bradley E; Bolognesi, Colombo R; Nelson, Bradley J

    2009-10-27

    We report on the electromechanical actuation and switching performance of nanoconstructs involving doubly clamped, individual multiwalled carbon nanotubes. Batch-fabricated, three-state switches with low ON-state voltages (6.7 V average) are demonstrated. A nanoassembly architecture that permits individual probing of one device at a time without crosstalk from other nanotubes, which are originally assembled in parallel, is presented. Experimental investigations into device performance metrics such as hysteresis, repeatability and failure modes are presented. Furthermore, current-driven shell etching is demonstrated as a tool to tune the nanomechanical clamping configuration, stiffness, and actuation voltage of fabricated devices. Computational models, which take into account the nonlinearities induced by stress-stiffening of 1-D nanowires at large deformations, are presented. Apart from providing accurate estimates of device performance, these models provide new insights into the extension of stable travel range in electrostatically actuated nanowire-based constructs as compared to their microscale counterparts.

  4. Microengineering of magnetic bearings and actuators

    NASA Astrophysics Data System (ADS)

    Ghantasala, Muralihar K.; Qin, LiJiang; Sood, Dinesh K.; Zmood, Ronald B.

    2000-06-01

    Microengineering has evolved in the last decade as a subject of its own with the current research encompassing every possible area of devices from electromagnetic to optical and bio-micro electromechanical systems (MEMS). The primary advantage of the micro system technology is its small size, potential to produce high volume and low cost devices. However, the major impediments in the successful realization of many micro devices in practice are the reliability, packaging and integration with the existing microelectronics technology. Microengineering of actuators has recently grown tremendously due to its possible applicability to a wide range of devices of practical importance and the availability of a choice of materials. Selection of materials has been one of the important aspects of the design and fabrication of many micro system and actuators. This paper discusses the issues related to the selection of materials and subsequently their effect on the performance of the actuator. These will be discussed taking micro magnetic actuators and bearings, in particular, as examples. Fabrication and processing strategies and performance evaluation methods adopted will be described. Current status of the technology and projected futuristic applications in this area will be reviewed.

  5. Development of closed-fitting-type walking assistance device for legs and evaluation of muscle activity.

    PubMed

    Ikehara, Tadaaki; Nagamura, Kazuteru; Ushida, Takurou; Tanaka, Eiichirou; Saegusa, Shozo; Kojima, Sho; Yuge, Louis

    2011-01-01

    A walking assistance device using a flexible shaft was developed. The combination of a flexible shaft with a worm gear was successfully adopted on this device to simplify its appearance and reduce its size. A hybrid - control system on this device controls both torque and angle at the ankle and knee joints. In this system, the torsional spring constant of the flexible shaft is taken into account by the motor in controlling the power and angle of rotation of the motor. To expand the area in which a person may use the device, it is equipped with a self-contained system powered by a Lithium-ion battery and controlled by an SH-4 microcomputer and actuators, consisting of motors and gears, all of which are carried in a small backpack. Consequently, persons using the device may walk freely in both indoor and outdoor environments. © 2011 IEEE

  6. Powered orthosis and attachable power-assist device with Hydraulic Bilateral Servo System.

    PubMed

    Ohnishi, Kengo; Saito, Yukio; Oshima, Toru; Higashihara, Takanori

    2013-01-01

    This paper discusses the developments and control strategies of exoskeleton-type robot systems for the application of an upper limb powered orthosis and an attachable power-assist device for care-givers. Hydraulic Bilateral Servo System, which consist of a computer controlled motor, parallel connected hydraulic actuators, position sensors, and pressure sensors, are installed in the system to derive the joint motion of the exoskeleton arm. The types of hydraulic component structure and the control strategy are discussed in relation to the design philosophy and target joints motions.

  7. Integration of a mechanical forebody vortex control system into the F-15

    NASA Technical Reports Server (NTRS)

    Boalbey, Richard E.; Citurs, Kevin D.; Ely, Wayne L.; Harbaugh, Stephen P.; Hollingsworth, William B.; Phillips, Ronald L.

    1994-01-01

    The goal of the F-15 Forebody Vortex Control (FVC) program is to develop a production FVC system for the F-15. The system may consist of either a mechanically actuated device such as the strakes developed for the HARV program, or a pneumatic device such as the port blowing system being tested on the X-29. Both types of systems are being evaluated under this program. Background information on the F-15 and a description and overview of forebody vortex controls (FVC) will be presented.

  8. A Bluetooth-Based Device Management Platform for Smart Sensor Environment

    NASA Astrophysics Data System (ADS)

    Lim, Ivan Boon-Kiat; Yow, Kin Choong

    In this paper, we propose the use of Bluetooth as the device management platform for the various embedded sensors and actuators in an ambient intelligent environment. We demonstrate the ease of adding Bluetooth capability to common sensor circuits (e.g. motion sensor circuit based on a pyroelectric infrared (PIR) sensor). A central logic application is proposed which controls the operation of controller devices, based on values returned by sensors via Bluetooth. The operation of devices depends on rules that are learnt from user behavior using an Elman recurrent neural network. Overall, Bluetooth has shown its potential in being used as a device management platform in an ambient intelligent environment, which allows sensors and controllers to be deployed even in locations where power sources are not readily available, by using battery power.

  9. High Bandwidth, Fine Resolution Deformable Mirror Design.

    DTIC Science & Technology

    1980-03-01

    Low Temperature Solders 68 B.6 Influence Function Parameters 68 APPENDIX C 19 Capacitance Measurement 69 ACCESSION for NTIS white Sectloo ODC Buff...Multilayer actuator: Dilatation versus applied electric field 10 Figure 3 - Multilayer actuator: Influence function 11 Figure 4 - Honeycomb device...bimorph 20 Figure 8 - Bimorph device: Influence function of a bimorph device which has a glass plate 0.20 cm thick 24 Figure 9 - Bimorph device

  10. Green Bank Telescope active surface system

    NASA Astrophysics Data System (ADS)

    Lacasse, Richard J.

    1998-05-01

    During the design phase of the Green Bank Telescope (GBT), various means of providing an accurate surface on a large aperture paraboloid, were considered. Automated jacks supporting the primary reflector were selected as the appropriate technology since they promised greater performance and potentially lower costs than a homologous or carbon fiber design, and had certain advantages over an active secondary. The design of the active surface has presented many challenges. Since the actuators are mounted on a tipping structure, it was required that they support a significant side-load. Such devices were not readily available commercially so they had to be developed. Additional actuator requirements include low backlash, repeatable positioning, and an operational life of at least 230 years. Similarly, no control system capable of controlling the 2209 actuators was commercially available. Again a prime requirement was reliability. Maintaining was also a very important consideration. The system architecture is tree-like. An active surface 'master-computer' controls interaction with the telescope control system, and controls ancillary equipment such as power supplies and temperature monitors. Two slave computers interface with the master- computer, and each closes approximately 1100 position loops. For simplicity, the servo is an 'on/off' type, yet achieves a positioning resolution of 25 microns. Each slave computer interfaces with 4 VME I/O cards, which in turn communicate with 140 control modules. The control modules read out the positions of the actuators every 0.1 sec and control the actuators' DC motors. Initial control of the active surface will be based on an elevation dependant structural model. Later, the model will be improved by holographic observations.Surface accuracy will be improved further by using laser ranging system which will actively measure the surface figure. Several tests have been conducted to assure that the system will perform as desired when installed on the telescope. These include actuator life tests, motor life test, position transducer accuracy test, as well as positioning accuracy tests.

  11. REMOTE CONTROLLED SWITCHING DEVICE

    DOEpatents

    Hobbs, J.C.

    1959-02-01

    An electrical switching device which can be remotely controlled and in which one or more switches may be accurately operated at predetermined times or with predetermined intervening time intervals is described. The switching device consists essentially of a deck, a post projecting from the deck at right angles thereto, cam means mounted for rotation around said posts and a switch connected to said deck and actuated by said cam means. Means is provided for rotating the cam means at a constant speed and the switching apparatus is enclosed in a sealed container with external adjusting means and electrical connection elements.

  12. Active-passive hybrid piezoelectric actuators for high-precision hard disk drive servo systems

    NASA Astrophysics Data System (ADS)

    Chan, Kwong Wah; Liao, Wei-Hsin

    2006-03-01

    Positioning precision is crucial to today's increasingly high-speed, high-capacity, high data density, and miniaturized hard disk drives (HDDs). The demand for higher bandwidth servo systems that can quickly and precisely position the read/write head on a high track density becomes more pressing. Recently, the idea of applying dual-stage actuators to track servo systems has been studied. The push-pull piezoelectric actuated devices have been developed as micro actuators for fine and fast positioning, while the voice coil motor functions as a large but coarse seeking. However, the current dual-stage actuator design uses piezoelectric patches only without passive damping. In this paper, we propose a dual-stage servo system using enhanced active-passive hybrid piezoelectric actuators. The proposed actuators will improve the existing dual-stage actuators for higher precision and shock resistance, due to the incorporation of passive damping in the design. We aim to develop this hybrid servo system not only to increase speed of track seeking but also to improve precision of track following servos in HDDs. New piezoelectrically actuated suspensions with passive damping have been designed and fabricated. In order to evaluate positioning and track following performances for the dual-stage track servo systems, experimental efforts are carried out to implement the synthesized active-passive suspension structure with enhanced piezoelectric actuators using a composite nonlinear feedback controller.

  13. Vibration nullification of MEMS device using input shaping

    NASA Astrophysics Data System (ADS)

    Jordan, Scott; Lawrence, Eric M.

    2003-07-01

    The active silicon microstructures known as Micro-Electromechanical Systems (MEMS) are improving many existing technologies through simplification and cost reduction. Many industries have already capitalized on MEMS technology such as those in fields as diverse as telecommunications, computing, projection displays, automotive safety, defense and biotechnology. As they grow in sophistication and complexity, the familiar pressures to further reduce costs and increase performance grow for those who design and manufacture MEMS devices and the engineers who specify them for their end applications. One example is MEMS optical switches that have evolved from simple, bistable on/off elements to microscopic, freelypositionable beam steering optics. These can be actuated to discrete angular positions or to continuously-variable angular states through applied command signals. Unfortunately, elaborate closed-loop actuation schemes are often necessitated in order to stabilize the actuation. Furthermore, preventing one actuated micro-element from vibrationally cross-coupling with its neighbors is another reason costly closed-loop approaches are thought to be necessary. The Laser Doppler Vibrometer (LDV) is a valuable tool for MEMS characterization that provides non-contact, real-time measurements of velocity and/or displacement response. The LDV is a proven technology for production metrology to determine dynamical behaviors of MEMS elements, which can be a sensitive indicator of manufacturing variables such as film thickness, etch depth, feature tolerances, handling damage and particulate contamination. They are also important for characterizing the actuation dynamics of MEMS elements for implementation of a patented controls technique called Input Shaping«, which we show here can virtually eliminate the vibratory resonant response of MEMS elements even when subjected to the most severe actuation profiles. In this paper, we will demonstrate the use of the LDV to determine how the application of this compact, efficient algorithm can improve the performance of both open- and closed-loop MEMS devices, eliminating the need for costly closed-loop approaches. This can greatly reduce the complexity, cost and yield of MEMS design and manufacture.

  14. Automated single-slide staining device. [in clinical bacteriology

    NASA Technical Reports Server (NTRS)

    Wilkins, J. R.; Mills, S. M.

    1975-01-01

    An automatic single-slide Gram staining device is described. A timer-actuated solenoid controls the dispensing of gentian violet, Gram iodine solution, decolorizer, and 1% aqueous safranin in proper sequence and for the time required for optimum staining. The amount of stain or reagent delivered is controlled by means of stopcocks below each solenoid. Used stains and reagents can be flushed automatically or manually. Smears Gram stained automatically are equal in quality to those prepared manually. The time to complete one Gram cycle is 4.80 min.

  15. Attitude control for on-orbit servicing spacecraft using hybrid actuator

    NASA Astrophysics Data System (ADS)

    Wu, Yunhua; Han, Feng; Zheng, Mohong; He, Mengjie; Chen, Zhiming; Hua, Bing; Wang, Feng

    2018-03-01

    On-orbit servicing is one of the research hotspots of space missions. A small satellite equipped with multiple robotic manipulators is expected to carry out device replacement task for target large spacecraft. Attitude hyperstable control of a small satellite platform under rotations of the manipulators is a challenging problem. A hybrid momentum exchanging actuator consists of Control Moment Gyro (CMG) and Reaction Wheel (RW) is proposed to tackle the above issue, due to its huge amount of momentum storage capacity of the CMG and high control accuracy of the RW, in which the CMG produces large command torque while the RW offers additional control degrees. The constructed dynamic model of the servicing satellite advises that it's feasible for attitude hyperstable control of the platform with arbitrary manipulators through compensating the disturbance generated by rapid rotation of the manipulators. Then, null motion between the CMG and RW is exploited to drive the system to the expected target with favorable performance, and to overcome the CMG inherent geometric singularity and RW saturation. Simulations with different initial situations, including CMG hyperbolic and elliptic singularities and RW saturation, are executed. Compared to the scenarios where the CMG or RW fails stabilizing the platform, large control torque, precise control effect and escape of singularity are guaranteed by the introduced hybrid actuator, CMGRW (CMGRW refers to the hybrid momentum exchanging devices in this paper, consisting of 4 CMGs in classical pyramid cluster and 3 RWs in an orthogonal group (specific description can been found in Section 4)). The feasible performance of the satellite, CMG and RW under large disturbance demonstrates that the control architecture proposed is capable of attitude control for on-orbit servicing satellite with multiple robotic manipulators.

  16. Multi-layer robot skin with embedded sensors and muscles

    NASA Astrophysics Data System (ADS)

    Tomar, Ankit; Tadesse, Yonas

    2016-04-01

    Soft artificial skin with embedded sensors and actuators is proposed for a crosscutting study of cognitive science on a facial expressive humanoid platform. This paper focuses on artificial muscles suitable for humanoid robots and prosthetic devices for safe human-robot interactions. Novel composite artificial skin consisting of sensors and twisted polymer actuators is proposed. The artificial skin is conformable to intricate geometries and includes protective layers, sensor layers, and actuation layers. Fluidic channels are included in the elastomeric skin to inject fluids in order to control actuator response time. The skin can be used to develop facially expressive humanoid robots or other soft robots. The humanoid robot can be used by computer scientists and other behavioral science personnel to test various algorithms, and to understand and develop more perfect humanoid robots with facial expression capability. The small-scale humanoid robots can also assist ongoing therapeutic treatment research with autistic children. The multilayer skin can be used for many soft robots enabling them to detect both temperature and pressure, while actuating the entire structure.

  17. Research and development of energy harvesting from vibrations and human motions (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Liao, Wei-Hsin

    2017-04-01

    Most of the ambient energy, which was regarded useless in the past, now is under the spotlight. With the rapid developments on low power electronics, future personal mobile devices and remote sensing systems might become self-powered by scavenging energy in different forms from their surroundings. Kinetic energy is one of the promising energy forms in our living environment, e.g., human motions and vibrations. We have proposed an energy flow to clarify the functions of piezoelectric energy harvesting, dissipation, and their effects on the structural damping of vibrating structures. Impedance modeling and analysis were performed. We have designed an improved self-powered switching interface for piezoelectric energy harvesting circuits. With electromagnetic transduction, we also proposed a knee-mounted energy harvester that could convert the mechanical power from knee joints into electricity during walking. On the other hand, we have developed magnetorheological (MR) fluid devices with multiple functions, including rotary actuators and linear dampers. Multifunctional rotary actuator was designed to integrate motor/generator part and MR fluids into a single device. The actuator could function as motor, generator, clutch and brake, with compact size and good energy efficiency. In addition, novel self-sensing MR dampers with power generation, so as to integrate the dynamic sensing, controllable damping and power generation functions, were developed and investigated. Prototypes were fabricated and tested. The developed actuators were promising for various applications. In this paper, related research in energy harvesting done at The Chinese University of Hong Kong and key results will be presented.

  18. Adaptive Optics System with Deformable Composite Mirror and High Speed, Ultra-Compact Electronics

    NASA Astrophysics Data System (ADS)

    Chen, Peter C.; Knowles, G. J.; Shea, B. G.

    2006-06-01

    We report development of a novel adaptive optics system for optical astronomy. Key components are very thin Deformable Mirrors (DM) made of fiber reinforced polymer resins, subminiature PMN-PT actuators, and low power, high bandwidth electronics drive system with compact packaging and minimal wiring. By using specific formulations of fibers, resins, and laminate construction, we are able to fabricate mirror face sheets that are thin (< 2mm), have smooth surfaces and excellent optical shape. The mirrors are not astigmatic and do not develop surface irregularities when cooled. The actuators are small footprint multilayer PMN-PT ceramic devices with large stroke (2- 20 microns), high linearity, low hysteresis, low power, and flat frequency response to >2 KHz. By utilizing QorTek’s proprietary synthetic impendence power supply technology, all the power, control, and signal extraction for many hundreds to 1000s of actuators and sensors can be implemented on a single matrix controller printed circuit board co-mounted with the DM. The matrix controller, in turn requires only a single serial bus interface, thereby obviating the need for massive wiring harnesses. The technology can be scaled up to multi-meter aperture DMs with >100K actuators.

  19. 2nd & 3rd Generation Vehicle Subsystems

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This paper contains viewgraph presentation on the "2nd & 3rd Generation Vehicle Subsystems" project. The objective behind this project is to design, develop and test advanced avionics, power systems, power control and distribution components and subsystems for insertion into a highly reliable and low-cost system for a Reusable Launch Vehicles (RLV). The project is divided into two sections: 3rd Generation Vehicle Subsystems and 2nd Generation Vehicle Subsystems. The following topics are discussed under the first section, 3rd Generation Vehicle Subsystems: supporting the NASA RLV program; high-performance guidance & control adaptation for future RLVs; Evolvable Hardware (EHW) for 3rd generation avionics description; Scaleable, Fault-tolerant Intelligent Network or X(trans)ducers (SFINIX); advance electric actuation devices and subsystem technology; hybrid power sources and regeneration technology for electric actuators; and intelligent internal thermal control. Topics discussed in the 2nd Generation Vehicle Subsystems program include: design, development and test of a robust, low-maintenance avionics with no active cooling requirements and autonomous rendezvous and docking systems; design and development of a low maintenance, high reliability, intelligent power systems (fuel cells and battery); and design of a low cost, low maintenance high horsepower actuation systems (actuators).

  20. Vortex wake control via smart structures technology

    NASA Astrophysics Data System (ADS)

    Quackenbush, Todd R.; Bilanin, Alan J.; McKillip, Robert M., Jr.

    1996-05-01

    Control of trailing vortex wakes is an important challenges for both military and civilian applications. This paper summarizes an assessment of the feasibility of mitigating adverse vortex wake effects using control surfaces actuated via Shape Memory Alloy (SMA) technology. The assessment involved a combined computational/design analysis that identified methods for introducing small secondary vortices to promote the deintensification of vortex wakes of submarines and aircraft. Computational analyses of wake breakup using this `vortex leveraging' strategy were undertaken, and showed dramatic increases in the dissipation rate of concentrated vortex wakes. This paper briefly summarizes these results and describes the preliminary design of actuation mechanisms for the deflectable surfaces that effect the required time-varying wake perturbations. These surfaces, which build on the high-force, high- deflection capabilities of SMA materials, are shown to be well suited for the very low frequency actuation requirements of the wake deintensification mission. The paper outlines the assessment of device performance capabilities and describes the sizing studies undertaken for full-scale Vortex Leveraging Tabs (VLTs) designed for use in hydrodynamic and aerodynamic applications. Results obtained to date indicate that the proposed VLTs can accelerate wake breakup by over a factor of three and can be implemented using deflectable surfaces actuated using SMAs.

  1. Piezoelectric actuator uses sequentially-excited multiple elements: A concept

    NASA Technical Reports Server (NTRS)

    Sabelman, E. E.

    1972-01-01

    Utilizing arrays of sequentially-excited piezoelectric elements to provide motion in a nonmagnetic motor provide built-in redundancy and long life required for deployment or actuation of devices on spacecraft. Linear-motion motor devices can also be fabricated.

  2. Active disturbance rejection control for output force creep characteristics of ionic polymer metal composites

    NASA Astrophysics Data System (ADS)

    Xiong, Yan; Chen, Yang; Sun, Zhiyong; Hao, Lina; Dong, Jie

    2014-07-01

    Ionic polymer metal composites (IPMCs) are a type of electroactive polymer (EAP) that can be used as both sensors and actuators. An IPMC has enormous potential application in the field of biomimetic robotics, medical devices, and so on. However, an IPMC actuator has a great number of disadvantages, such as creep and time-variation, making it vulnerable to external disturbances. In addition, the complex actuation mechanism makes it difficult to model and the demand of the control algorithm is laborious to implement. In this paper, we obtain a creep model of the IPMC by means of model identification based on the method of creep operator linear superposition. Although the mathematical model is not approximate to the IPMC accurate model, it is accurate enough to be used in MATLAB to prove the control algorithm. A controller based on the active disturbance rejection control (ADRC) method is designed to solve the drawbacks previously given. Because the ADRC controller is separate from the mathematical model of the controlled plant, the control algorithm has the ability to complete disturbance estimation and compensation. Some factors, such as all external disturbances, uncertainty factors, the inaccuracy of the identification model and different kinds of IPMCs, have little effect on controlling the output block force of the IPMC. Furthermore, we use the particle swarm optimization algorithm to adjust ADRC parameters so that the IPMC actuator can approach the desired block force with unknown external disturbances. Simulations and experimental examples validate the effectiveness of the ADRC controller.

  3. Cardiac Muscle-cell Based Actuator and Self-stabilizing Biorobot - PART 1.

    PubMed

    Holley, Merrel T; Nagarajan, Neerajha; Danielson, Christian; Zorlutuna, Pinar; Park, Kidong

    2017-07-11

    Biological machines often referred to as biorobots, are living cell- or tissue-based devices that are powered solely by the contractile activity of living components. Due to their inherent advantages, biorobots are gaining interest as alternatives to traditional fully artificial robots. Various studies have focused on harnessing the power of biological actuators, but only recently studies have quantitatively characterized the performance of biorobots and studied their geometry to enhance functionality and efficiency. Here, we demonstrate the development of a self-stabilizing swimming biorobot that can maintain its pitch, depth, and roll without external intervention. The design and fabrication of the PDMS scaffold for the biological actuator and biorobot followed by the functionalization with fibronectin is described in this first part. In the second part of this two-part article, we detail the incorporation of cardiomyocytes and characterize the biological actuator and biorobot function. Both incorporate a base and tail (cantilever) which produce fin-based propulsion. The tail is constructed with soft lithography techniques using PDMS and laser engraving. After incorporating the tail with the device base, it is functionalized with a cell adhesive protein and seeded confluently with cardiomyocytes. The base of the biological actuator consists of a solid PDMS block with a central glass bead (acts as a weight). The base of the biorobot consists of two composite PDMS materials, Ni-PDMS and microballoon-PDMS (MB-PDMS). The nickel powder (in Ni-PDMS) allows magnetic control of the biorobot during cells seeding and stability during locomotion. Microballoons (in MB-PDMS) decrease the density of MB-PDMS, and enable the biorobot to float and swim steadily. The use of these two materials with different mass densities, enabled precise control over the weight distribution to ensure a positive restoration force at any angle of the biorobot. This technique produces a magnetically controlled self-stabilizing swimming biorobot.

  4. Large-strain, multiform movements from designable electrothermal actuators based on large highly anisotropic carbon nanotube sheets.

    PubMed

    Li, Qingwei; Liu, Changhong; Lin, Yuan-Hua; Liu, Liang; Jiang, Kaili; Fan, Shoushan

    2015-01-27

    Many electroactive polymer (EAP) actuators use diverse configurations of carbon nanotubes (CNTs) as pliable electrodes to realize discontinuous, agile movements, for CNTs are conductive and flexible. However, the reported CNT-based EAP actuators could only accomplish simple, monotonous actions. Few actuators were extended to complex devices because efficiently preparing a large-area CNT electrode was difficult, and complex electrode design has not been carried out. In this work, we successfully prepared large-area CNT paper (buckypaper, BP) through an efficient approach. The BP is highly anisotropic, strong, and suitable as flexible electrodes. By means of artful graphic design and processing on BP, we fabricated various functional BP electrodes and developed a series of BP-polymer electrothermal actuators (ETAs). The prepared ETAs can realize various controllable movements, such as large-stain bending (>180°), helical curling (∼ 630°), or even bionic actuations (imitating human-hand actions). These functional and interesting movements benefit from flexible electrode design and the anisotropy of BP material. Owing to the advantages of low driving voltage (20-200 V), electrolyte-free and long service life (over 10000 times), we think the ETAs will have great potential applications in the actuator field.

  5. Computer simulation and design of a three degree-of-freedom shoulder module

    NASA Technical Reports Server (NTRS)

    Marco, David; Torfason, L.; Tesar, Delbert

    1989-01-01

    An in-depth kinematic analysis of a three degree of freedom fully-parallel robotic shoulder module is presented. The major goal of the analysis is to determine appropriate link dimensions which will provide a maximized workspace along with desirable input to output velocity and torque amplification. First order kinematic influence coefficients which describe the output velocity properties in terms of actuator motions provide a means to determine suitable geometric dimensions for the device. Through the use of computer simulation, optimal or near optimal link dimensions based on predetermined design criteria are provided for two different structural designs of the mechanism. The first uses three rotational inputs to control the output motion. The second design involves the use of four inputs, actuating any three inputs for a given position of the output link. Alternative actuator placements are examined to determine the most effective approach to control the output motion.

  6. Human Grasp Assist Device With Exoskeleton

    NASA Technical Reports Server (NTRS)

    Bergelin, Bryan J (Inventor); Ihrke, Chris A. (Inventor); Davis, Donald R. (Inventor); Linn, Douglas Martin (Inventor); Bridgwater, Lyndon B. J. (Inventor)

    2014-01-01

    A grasp assist system includes a glove, actuator assembly, and controller. The glove includes a digit, i.e., a finger or thumb, and a force sensor. The sensor measures a grasping force applied to an object by an operator wearing the glove. Phalange rings are positioned with respect to the digit. A flexible tendon is connected at one end to one of the rings and is routed through the remaining rings. An exoskeleton positioned with respect to the digit includes hinged interconnecting members each connected to a corresponding ring, and/or a single piece of slotted material. The actuator assembly is connected to another end of the tendon. The controller calculates a tensile force in response to the measured grasping force, and commands the tensile force from the actuator assembly to thereby pull on the tendon. The exoskeleton offloads some of the tensile force from the operator's finger to the glove.

  7. Explosion suppression system

    DOEpatents

    Sapko, Michael J.; Cortese, Robert A.

    1992-01-01

    An explosion suppression system and triggering apparatus therefor are provided for quenching gas and dust explosions. An electrically actuated suppression mechanism which dispenses an extinguishing agent into the path ahead of the propagating flame is actuated by a triggering device which is light powered. This triggering device is located upstream of the propagating flame and converts light from the flame to an electrical actuation signal. A pressure arming device electrically connects the triggering device to the suppression device only when the explosion is sensed by a further characteristic thereof beside the flame such as the pioneer pressure wave. The light powered triggering device includes a solar panel which is disposed in the path of the explosion and oriented between horizontally downward and vertical. Testing mechanisms are also preferably provided to test the operation of the solar panel and detonator as well as the pressure arming mechanism.

  8. Consideration of Optimal Input on Semi-Active Shock Control System

    NASA Astrophysics Data System (ADS)

    Kawashima, Takeshi

    In press working, unidirectional transmission of mechanical energy is expected in order to maximize the life of the dies. To realize this transmission, the author has developed a shock control system based on the sliding mode control technique. The controller makes a collision-receiving object effectively deform plastically by adjusting the force of the actuator inserted between the colliding objects, while the deformation of the colliding object is held at the necessity minimum. However, the actuator has to generate a large force corresponding to the impulsive force. Therefore, development of such an actuator is a formidable challenge. The author has proposed a semi-active shock control system in which the impulsive force is adjusted by a brake mechanism, although the system exhibits inferior performance. Thus, the author has also designed an actuator using a friction device for semi-active shock control, and proposed an active seatbelt system as an application. The effectiveness has been confirmed by a numerical simulation and model experiment. In this study, the optimal deformation change of the colliding object is theoretically examined in the case that the collision-receiving object has perfect plasticity and the colliding object has perfect elasticity. As a result, the optimal input condition is obtained so that the ratio of the maximum deformation of the collision-receiving object to the maximum deformation of the colliding object becomes the maximum. Additionally, the energy balance is examined.

  9. Three-month validation of a turbuhaler electronic monitoring device: implications for asthma clinical trial use.

    PubMed

    Pilcher, Janine; Shirtcliffe, Philippa; Patel, Mitesh; McKinstry, Steve; Cripps, Terrianne; Weatherall, Mark; Beasley, Richard

    2015-01-01

    Electronic monitoring of inhaled asthma therapy is suggested as the 'gold standard' for measuring patterns of medication use in clinical trials. The SmartTurbo (Adherium (NZ) Ltd, Auckland, New Zealand) is an electronic monitor for use with a turbuhaler device (AstraZeneca, UK). The aim of this study was to determine the accuracy of the SmartTurbo in recording Symbicort actuations over a 12-week period of use. Twenty SmartTurbo monitors were attached to the base of 20 Symbicort turbuhalers. Bench testing in a research facility was undertaken on days 0, 5, 6, 7, 8, 9, 14, 21, 28, 56 and 84. Patterns of 'low-use' (2 sets of 2 actuations on the same day) and 'high-use' (2 sets of 8 actuations on the same day) were performed. The date and time of actuations were recorded in a paper diary and compared with data uploaded from the SmartTurbo monitors. 2800 actuations were performed. Monitor sensitivity was 99.9% with a lower 97.5% confidence bound of 99.6%. The positive predictive value was 99.9% with a 97.5% lower confidence bound of 99.7%. Accuracy was not affected by whether the pattern of inhaler use was low or high, or whether there was a delay in uploading the actuation data. The SmartTurbo monitor is highly accurate in recording and retaining electronic data in this 12-week bench study. It can be recommended for use in clinical trial settings, in which quality control systems are incorporated into study protocols to ensure accurate data acquisition.

  10. Magnetic Actuation of Biological Systems

    NASA Astrophysics Data System (ADS)

    Lauback, Stephanie D.

    Central to the advancement of many biomedical and nanotechnology capabilities is the capacity to precisely control the motion of micro and nanostructures. These applications range from single molecule experiments to cell isolation and separation, to drug delivery and nanomachine manipulation. This dissertation focuses on actuation of biological micro- and nano-entities through the use of weak external magnetic fields, superparamagnetic beads, and ferromagnetic thin films. The magnetic platform presents an excellent method for actuation of biological systems due to its ability to directly control the motion of an array of micro and nanostructures in real-time with calibrated picoNewton forces. The energy landscape of two ferromagnetic thin film patterns (disks and zigzag wires) is experimentally explored and compared to corresponding theoretical models to quantify the applied forces and trajectories of superparamagnetic beads due to the magnetic traps. A magnetic method to directly actuate DNA nanomachines in real-time with nanometer resolution and sub-second response times using micromagnetic control was implemented through the use of stiff DNA micro-levers which bridged the large length scale mismatch between the micro-actuator and the nanomachine. Compared to current alternative methods which are limited in the actuation speeds and the number of reconfiguration states of DNA constructs, this magnetic approach enables fast actuation (˜ milliseconds) and reconfigurable conformations achieved through a continuous range of finely tuned steps. The system was initially tested through actuation of the stiff arm tethered to the surface, and two prototype DNA nanomachines (rotor and hinge) were successfully actuated using the stiff mechanical lever. These results open new possibilities in the development of functional robotic systems at the molecular scale. In exploiting the use of DNA stiff levers, a new technique was also developed to investigate the emergence of the magnetization of individual superparamagnetic beads as a function of the applied field. Last, since proteins are frequently used for surface adhesion in assembling biomedical devices, preliminary tests were implemented to dynamically pattern proteins on a substrate using transformed E. coli that are magnetically labeled.

  11. Shape memory alloy actuator

    DOEpatents

    Varma, Venugopal K.

    2001-01-01

    An actuator for cycling between first and second positions includes a first shaped memory alloy (SMA) leg, a second SMA leg. At least one heating/cooling device is thermally connected to at least one of the legs, each heating/cooling device capable of simultaneously heating one leg while cooling the other leg. The heating/cooling devices can include thermoelectric and/or thermoionic elements.

  12. Improving actuation efficiency through variable recruitment hydraulic McKibben muscles: modeling, orderly recruitment control, and experiments.

    PubMed

    Meller, Michael; Chipka, Jordan; Volkov, Alexander; Bryant, Matthew; Garcia, Ephrahim

    2016-11-03

    Hydraulic control systems have become increasingly popular as the means of actuation for human-scale legged robots and assistive devices. One of the biggest limitations to these systems is their run time untethered from a power source. One way to increase endurance is by improving actuation efficiency. We investigate reducing servovalve throttling losses by using a selective recruitment artificial muscle bundle comprised of three motor units. Each motor unit is made up of a pair of hydraulic McKibben muscles connected to one servovalve. The pressure and recruitment state of the artificial muscle bundle can be adjusted to match the load in an efficient manner, much like the firing rate and total number of recruited motor units is adjusted in skeletal muscle. A volume-based effective initial braid angle is used in the model of each recruitment level. This semi-empirical model is utilized to predict the efficiency gains of the proposed variable recruitment actuation scheme versus a throttling-only approach. A real-time orderly recruitment controller with pressure-based thresholds is developed. This controller is used to experimentally validate the model-predicted efficiency gains of recruitment on a robot arm. The results show that utilizing variable recruitment allows for much higher efficiencies over a broader operating envelope.

  13. ELSA- The European Levitated Spherical Actruator

    NASA Astrophysics Data System (ADS)

    Ruiz, M.; Serin, J.; Telteu-Nedelcu, D.; De La Vallee Poussin, H.; Onillon, E.; Rossini, L.

    2014-08-01

    The reaction sphere is a magnetic bearing spherical actuator consisting of a permanent magnet spherical rotor that can be accelerated in any direction. It consists of an 8-pole permanent magnet spherical rotor that is magnetically levitated and can be accelerated about any axis by a 20-pole stator with electromagnets. The spherical actuator is proposed as a potential alternative to traditional momentum exchange devices such as reaction wheels (RWs) or control moment gyroscopes (CMGs). This new actuator provides several benefits such as reduced mass and power supply allocated to the attitude and navigation unit, performance gain, and improved reliability due to the absence of mechanical bearings. The paper presents the work done on the levitated spherical actuator and more precisely the electrical drive including its control unit and power parts. An elegant breadboard is currently being manufactured within the frame of an FP7 project. This project also comprises a feasibility study to show the feasibility of integrating such a system on a flight platform and to identify all the challenges to be solved in terms of technology or components to be developed.

  14. Pneumatic load compensating or controlling system

    NASA Technical Reports Server (NTRS)

    Rogers, J. R. (Inventor)

    1975-01-01

    A pneumatic load compensating or controlling system for restraining a load with a predetermined force or applying a predetermined force to the load is described; it includes a source of pressurized air, a one-way pneumatic actuator operatively connected to a load, and a fluid conduit fluidically connecting the actuator with the source of pressurized air. The actuator is of the piston and cylinder type, and the end of the fluid conduit is connected to the upper or lower portion of the cylinder whereby the actuator alternatively and selectively restrains the load with a predetermined force or apply a predetermined force to the load. Pressure regulators are included within the system for variably selectively adjusting the pressurized fluid to predetermined values as desired or required; a pressure amplifier is included within the system for multiplying the pressurized values so as to achieve greater load forces. An accumulator is incorporated within the system as a failsafe operating mechanism, and visual and aural alarm devices, operatively associated with pressure detecting apparatus, readily indicate the proper or improper functioning of the system.

  15. Fully chip-embedded automation of a multi-step lab-on-a-chip process using a modularized timer circuit.

    PubMed

    Kang, Junsu; Lee, Donghyeon; Heo, Young Jin; Chung, Wan Kyun

    2017-11-07

    For highly-integrated microfluidic systems, an actuation system is necessary to control the flow; however, the bulk of actuation devices including pumps or valves has impeded the broad application of integrated microfluidic systems. Here, we suggest a microfluidic process control method based on built-in microfluidic circuits. The circuit is composed of a fluidic timer circuit and a pneumatic logic circuit. The fluidic timer circuit is a serial connection of modularized timer units, which sequentially pass high pressure to the pneumatic logic circuit. The pneumatic logic circuit is a NOR gate array designed to control the liquid-controlling process. By using the timer circuit as a built-in signal generator, multi-step processes could be done totally inside the microchip without any external controller. The timer circuit uses only two valves per unit, and the number of process steps can be extended without limitation by adding timer units. As a demonstration, an automation chip has been designed for a six-step droplet treatment, which entails 1) loading, 2) separation, 3) reagent injection, 4) incubation, 5) clearing and 6) unloading. Each process was successfully performed for a pre-defined step-time without any external control device.

  16. Smart reconfigurable parabolic space antenna for variable electromagnetic patterns

    NASA Astrophysics Data System (ADS)

    Kalra, Sahil; Datta, Rituparna; Munjal, B. S.; Bhattacharya, Bishakh

    2018-02-01

    An application of reconfigurable parabolic space antenna for satellite is discussed in this paper. The present study focuses on shape morphing of flexible parabolic antenna actuated with Shape Memory Alloy (SMA) wires. The antenna is able to transmit the signals to the desired footprint on earth with a desired gain value. SMA wire based actuation with a locking device is developed for a precise control of Antenna shape. The locking device is efficient to hold the structure in deformed configuration during power cutoff from the system. The maximum controllable deflection at any point using such actuation system is about 25mm with a precision of ±100 m. In order to control the shape of the antenna in a closed feedback loop, a Proportional, Integral and Derivative (PID) based controller is developed using LabVIEW (NI) and experiments are performed. Numerical modeling and analysis of the structure is carried out using finite element software ABAQUS. For data reduction and fast computation, stiffness matrix generated by ABAQUS is condensed by Guyan Reduction technique and shape optimization is performed using Non-dominated Sorting Genetic Algorithm (NSGA-II). The matching in comparative study between numerical and experimental set-up shows efficacy of our method. Thereafter, Electro-Magnetic (EM) simulations of the deformed shape is carried out using electromagnetic field simulation, High Frequency Structure Simulator (HFSS). The proposed design is envisaged to be very effective for multipurpose application of satellite system in the future missions of Indian Space Research Organization (ISRO).

  17. Self-running and self-floating two-dimensional actuator using near-field acoustic levitation

    NASA Astrophysics Data System (ADS)

    Chen, Keyu; Gao, Shiming; Pan, Yayue; Guo, Ping

    2016-09-01

    Non-contact actuators are promising technologies in metrology, machine-tools, and hovercars, but have been suffering from low energy efficiency, complex design, and low controllability. Here we report a new design of a self-running and self-floating actuator capable of two-dimensional motion with an unlimited travel range. The proposed design exploits near-field acoustic levitation for heavy object lifting, and coupled resonant vibration for generation of acoustic streaming for non-contact motion in designated directions. The device utilizes resonant vibration of the structure for high energy efficiency, and adopts a single piezo element to achieve both levitation and non-contact motion for a compact and simple design. Experiments demonstrate that the proposed actuator can reach a 1.65 cm/s or faster moving speed and is capable of transporting a total weight of 80 g under 1.2 W power consumption.

  18. An electromechanical attenuator/actuator for Space Station docking

    NASA Technical Reports Server (NTRS)

    Stokes, Lebarian; Glenn, Dean; Carroll, Monty B.

    1987-01-01

    The development of a docking system for aerospace vehicles has identified the need for reusable and variably controlled attenuators/actuators for energy absorption and compliance. One approach to providing both the attenuator and the actuator functions is by way of an electromechanical attenuator/actuator (EMAA) as opposed to a hydraulic system. The use of the electromechanical devices is considered to be more suitable for a space environment because of the absence of contamination from hydraulic fluid leaks and because of the cost effectiveness of maintenance. A smart EMAA that uses range/rate/attitude sensor information to preadjust a docking interface to eliminate misalignments and to minimize contact and stroking forces is described. A prototype EMAA was fabricated and is being tested and evaluated. Results of preliminary testing and analysis already performed have established confidence that this concept is feasible and will provide the desired reliability and low maintenance for repetitive long term operation typical of Space Station requirements.

  19. A linear magnetic motor and generator

    NASA Technical Reports Server (NTRS)

    Studer, P. A.

    1980-01-01

    In linear magnetic motor and generator suitable for remote and hostile environments, magnetic forces drive reciprocating shaft along its axis. Actuator shaft is located in center of cylindrical body and may be supported by either contacting or noncontacting bearings. When device operates as bidirectional motor, drive coil selectively adds and subtracts magnetic flux to and from flux paths, producing forces that drive actuator along axis. When actuator is driven by external reciprocating engine, device becomes ac generator.

  20. Pixelized Device Control Actuators for Large Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth J.; Bird, Ross W.; Shea, Brian; Chen, Peter

    2009-01-01

    A fully integrated, compact, adaptive space optic mirror assembly has been developed, incorporating new advances in ultralight, high-performance composite mirrors. The composite mirrors use Q-switch matrix architecture-based pixelized control (PMN-PT) actuators, which achieve high-performance, large adaptive optic capability, while reducing the weight of present adaptive optic systems. The self-contained, fully assembled, 11x11x4-in. (approx.= 28x28x10-cm) unit integrates a very-high-performance 8-in. (approx.=20-cm) optic, and has 8-kHz true bandwidth. The assembled unit weighs less than 15 pounds (=6.8 kg), including all mechanical assemblies, power electronics, control electronics, drive electronics, face sheet, wiring, and cabling. It requires just three wires to be attached (power, ground, and signal) for full-function systems integration, and uses a steel-frame and epoxied electronics. The three main innovations are: 1. Ultralightweight composite optics: A new replication method for fabrication of very thin composite 20-cm-diameter laminate face sheets with good as-fabricated optical figure was developed. The approach is a new mandrel resin surface deposition onto previously fabricated thin composite laminates. 2. Matrix (regenerative) power topology: Waveform correction can be achieved across an entire face sheet at 6 kHz, even for large actuator counts. In practice, it was found to be better to develop a quadrant drive, that is, four quadrants of 169 actuators behind the face sheet. Each quadrant has a single, small, regenerative power supply driving all 169 actuators at 8 kHz in effective parallel. 3. Q-switch drive architecture: The Q-switch innovation is at the heart of the matrix architecture, and allows for a very fast current draw into a desired actuator element in 120 counts of a MHz clock without any actuator coupling.

  1. Magnetically actuated propulsion at low Reynolds numbers: towards nanoscale control.

    PubMed

    Fischer, Peer; Ghosh, Ambarish

    2011-02-01

    Significant progress has been made in the fabrication of micron and sub-micron structures whose motion can be controlled in liquids under ambient conditions. The aim of many of these engineering endeavors is to be able to build and propel an artificial micro-structure that rivals the versatility of biological swimmers of similar size, e.g. motile bacterial cells. Applications for such artificial "micro-bots" are envisioned to range from microrheology to targeted drug delivery and microsurgery, and require full motion-control under ambient conditions. In this Mini-Review we discuss the construction, actuation, and operation of several devices that have recently been reported, especially systems that can be controlled by and propelled with homogenous magnetic fields. We describe the fabrication and associated experimental challenges and discuss potential applications.

  2. Problems associated with reaction mass actuators used in conjunction with LQG control on the Mini-Mast

    NASA Technical Reports Server (NTRS)

    Ghosh, D.; Montgomery, R. C.

    1987-01-01

    The work being done at NASA LaRC on developing control laws for the Mini-Mast experimental facility is reviewed with particular attention given to the problems associated with the stroke limit of the reaction mass actuators used in conjunction with the LQG control. An algorithm for converting the force commands of the LQG algorithm into position command for the reaction mass devices is described. It is shown that the position command can be used as an input to a local controller so that the relative position of the reaction mass would track the commanded relative position. The stabilization of the integration scheme makes it possible to avoid the position drift arising in the direct double integration method of converting force commands to position commands.

  3. Magnetically actuated propulsion at low Reynolds numbers: towards nanoscale control

    NASA Astrophysics Data System (ADS)

    Fischer, Peer; Ghosh, Ambarish

    2011-02-01

    Significant progress has been made in the fabrication of micron and sub-micron structures whose motion can be controlled in liquids under ambient conditions. The aim of many of these engineering endeavors is to be able to build and propel an artificial micro-structure that rivals the versatility of biological swimmers of similar size, e.g. motile bacterial cells. Applications for such artificial ``micro-bots'' are envisioned to range from microrheology to targeted drug delivery and microsurgery, and require full motion-control under ambient conditions. In this Mini-Review we discuss the construction, actuation, and operation of several devices that have recently been reported, especially systems that can be controlled by and propelled with homogenous magnetic fields. We describe the fabrication and associated experimental challenges and discuss potential applications.

  4. Active Control of Radiated Sound With Integrated Piezoelectric Composite Structures. Volume 2 Appendices (Concl.)

    DTIC Science & Technology

    1998-11-06

    to the vibration end of the actuator. Power supply PS- 15 (Entran Devic=s. Inc.) was used to drive the load cell. The electrical admittance was...oehavicr of the potential piezoellec-71c transducers such cell was driven by power supply PS-15 (Entran Devices, as birron-h. unimorph. RAkBOW. and...unimrnorhs and ET for shear-mode_ EInc). The input AC signal to the power amplifier was 1 supplied by a generator DS345 (Stanford Research Systerns

  5. Dynamic actuation of single-crystal diamond nanobeams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sohn, Young-Ik; Burek, Michael J.; Lončar, Marko, E-mail: loncar@seas.harvard.edu

    2015-12-14

    We show the dielectrophoretic actuation of single-crystal diamond nanomechanical devices. Gradient radio-frequency electromagnetic forces are used to achieve actuation of both cantilever and doubly clamped beam structures, with operation frequencies ranging from a few MHz to ∼50 MHz. Frequency tuning and parametric actuation are also studied.

  6. Florida alternative NTCIP testing software (ANTS) for actuated signal controllers.

    DOT National Transportation Integrated Search

    2009-01-01

    The scope of this research project did include the development of a software tool to test devices for NTCIP compliance. Development of the Florida Alternative NTCIP Testing Software (ANTS) was developed by the research team due to limitations found w...

  7. Dielectric elastomer memory

    NASA Astrophysics Data System (ADS)

    O'Brien, Benjamin M.; McKay, Thomas G.; Xie, Sheng Q.; Calius, Emilio P.; Anderson, Iain A.

    2011-04-01

    Life shows us that the distribution of intelligence throughout flexible muscular networks is a highly successful solution to a wide range of challenges, for example: human hearts, octopi, or even starfish. Recreating this success in engineered systems requires soft actuator technologies with embedded sensing and intelligence. Dielectric Elastomer Actuator(s) (DEA) are promising due to their large stresses and strains, as well as quiet flexible multimodal operation. Recently dielectric elastomer devices were presented with built in sensor, driver, and logic capability enabled by a new concept called the Dielectric Elastomer Switch(es) (DES). DES use electrode piezoresistivity to control the charge on DEA and enable the distribution of intelligence throughout a DEA device. In this paper we advance the capabilities of DES further to form volatile memory elements. A set reset flip-flop with inverted reset line was developed based on DES and DEA. With a 3200V supply the flip-flop behaved appropriately and demonstrated the creation of dielectric elastomer memory capable of changing state in response to 1 second long set and reset pulses. This memory opens up applications such as oscillator, de-bounce, timing, and sequential logic circuits; all of which could be distributed throughout biomimetic actuator arrays. Future work will include miniaturisation to improve response speed, implementation into more complex circuits, and investigation of longer lasting and more sensitive switching materials.

  8. Optimal design of a smart post-buckled beam actuator using bat algorithm: simulations and experiments

    NASA Astrophysics Data System (ADS)

    Mallick, Rajnish; Ganguli, Ranjan; Kumar, Ravi

    2017-05-01

    The optimized design of a smart post-buckled beam actuator (PBA) is performed in this study. A smart material based piezoceramic stack actuator is used as a prime-mover to drive the buckled beam actuator. Piezoceramic actuators are high force, small displacement devices; they possess high energy density and have high bandwidth. In this study, bench top experiments are conducted to investigate the angular tip deflections due to the PBA. A new design of a linear-to-linear motion amplification device (LX-4) is developed to circumvent the small displacement handicap of piezoceramic stack actuators. LX-4 enhances the piezoceramic actuator mechanical leverage by a factor of four. The PBA model is based on dynamic elastic stability and is analyzed using the Mathieu-Hill equation. A formal optimization is carried out using a newly developed meta-heuristic nature inspired algorithm, named as the bat algorithm (BA). The BA utilizes the echolocation capability of bats. An optimized PBA in conjunction with LX-4 generates end rotations of the order of 15° at the output end. The optimized PBA design incurs less weight and induces large end rotations, which will be useful in development of various mechanical and aerospace devices, such as helicopter trailing edge flaps, micro and nano aerial vehicles and other robotic systems.

  9. Precision tip-tilt-piston actuator that provides exact constraint

    DOEpatents

    Hale, Layton C.

    1999-01-01

    A precision device which can precisely actuate three degrees of freedom of an optic mount, commonly referred to as tip, tilt, and piston. The device consists of three identical flexure mechanisms, an optic mount to be supported and positioned, a structure that supports the flexure mechanisms, and three commercially available linear actuators. The advantages of the precision device is in the arrangement of the constraints offered by the flexure mechanism and not in the particular design of the flexure mechanisms, as other types of mechanisms could be substituted. Each flexure mechanism constrains two degrees of freedom in the plane of the mechanisms and one direction is actuated. All other degrees of freedom are free to move within the range of flexure mechanisms. Typically, three flexure mechanisms are equally spaced in angle about to optic mount and arranged so that each actuated degree of freedom is perpendicular to the plane formed by the optic mount. This arrangement exactly constrains the optic mount and allows arbitrary actuated movement of the plane within the range of the flexure mechanisms. Each flexure mechanism provides a mechanical advantage, typically on the order of 5:1, between the commercially available actuator and the functional point on the optic mount. This improves resolution by the same ratio and stiffness by the square of the ratio.

  10. New Magnetic Microactuator Design Based on PDMS Elastomer and MEMS Technologies for Tactile Display.

    PubMed

    Streque, Jeremy; Talbi, Abdelkrim; Pernod, Philippe; Preobrazhensky, Vladimir

    2010-01-01

    Highly efficient tactile display devices must fulfill technical requirements for tactile stimulation, all the while preserving the lightness and compactness needed for handheld operation. This paper focuses on the elaboration of highly integrated magnetic microactuators for tactile display devices. FEM simulation, conception, fabrication, and characterization of these microactuators are presented in this paper. The current demonstrator offers a 4 × 4 flexible microactuator array with a resolution of 2 mm. Each actuator is composed of a Poly (Dimethyl-Siloxane) (PDMS) elastomeric membrane, magnetically actuated by coil-magnet interaction. It represents a proof of concept for fully integrated MEMS tactile devices, with fair actuation forces provided for a power consumption up to 100 mW per microactuator. The prototypes are destined to provide both static and dynamic tactile sensations, with an optimized membrane geometry for actuation frequencies between DC and 350 Hz. On the basis of preliminary experiments, this display device can offer skin stimulations for various tactile stimuli for applications in the fields of Virtual Reality or Human-Computer Interaction (HCI). Moreover, the elastomeric material used in this device and its global compactness offer great advantages in matter of comfort of use and capabilities of integration in haptic devices.

  11. State-of-the-art robotic devices for ankle rehabilitation: Mechanism and control review.

    PubMed

    Hussain, Shahid; Jamwal, Prashant K; Ghayesh, Mergen H

    2017-12-01

    There is an increasing research interest in exploring use of robotic devices for the physical therapy of patients suffering from stroke and spinal cord injuries. Rehabilitation of patients suffering from ankle joint dysfunctions such as drop foot is vital and therefore has called for the development of newer robotic devices. Several robotic orthoses and parallel ankle robots have been developed during the last two decades to augment the conventional ankle physical therapy of patients. A comprehensive review of these robotic ankle rehabilitation devices is presented in this article. Recent developments in the mechanism design, actuation and control are discussed. The study encompasses robotic devices for treadmill and over-ground training as well as platform-based parallel ankle robots. Control strategies for these robotic devices are deliberated in detail with an emphasis on the assist-as-needed training strategies. Experimental evaluations of the mechanism designs and various control strategies of these robotic ankle rehabilitation devices are also presented.

  12. Single Crystal DMs for Space-Based Observatories

    NASA Astrophysics Data System (ADS)

    Bierden, Paul

    We propose to demonstrate the feasibility of a new manufacturing process for large aperture, high-actuator count microelectromechanical deformable mirrors (MEMS-DMs). These DMs are designed to fill a critical technology gap in NASA s plan for high- contrast space-based exoplanet observatories. We will manufacture a prototype DM with a continuous mirror facesheet, having an active aperture of 50mm diameter, supported by 2040 electrostatic actuators (50 across the diameter of the active aperture), spaced at a pitch of 1mm. The DM will be manufactured using silicon microfabrication tools. The strategic motivation for the proposed project is to advance MEMS DMs as an enabling technology in NASA s rapidly emerging program for extrasolar planet exploration. That goal is supported by an Astro2010 white paper on Technologies for Direct Optical Imaging of Exoplanets, which concluded that DMs are a critical component for all proposed internal coronagraph instrument concepts. That white paper pointed to great strides made by DM developers in the past decade, and acknowledged the components made by Boston Micromachines Corporation to be the most notable MEMS-based technology option. The principal manufacturing innovation in this project will be assembly of the DM through fusion bonding of three separate single crystal silicon wafers comprising the device s substrate, actuator array, and facesheet. The most significant challenge of this project will be to develop processes that allow reliable fusion bonds between multiple compliant silicon layers while yielding an optically flat surface and a robust electromechanical system. The compliance of the DM, which is required for its electromechanical function, will make it challenging to achieve the intimate, planar contact that is generally needed for success in fusion bonding. The manufacturing approach will use photolithography and reactive ion etching to pattern structural layers. Three wafer-scale devices will be patterned and etched independently: one for the substrate and fixed electrode layer, one for the actuator layer, and one for the mirror layer. Subsequently, each of these wafers will be bonded through a thermal fusion process to the others. In an innovative new processing technique, we will employ sacrificial oxide pillars to add temporary support to the otherwise compliant device structures. These pillars will be dissolved after assembly. The result will be a stress-free, single crystal silicon device with broadly expanded design space for geometric parameters such as actuator pitch, mirror diameter, array size, and actuator gap. Consequently, this approach will allow us to make devices with characteristics that are needed for some important NASA applications in space-based coronography, especially where larger array sizes, greater actuator pitch, and better optical surface quality are needed. The significance of this work is that it will provide a technology platform that meets or exceeds the superb optical performance that has been demonstrated in conventional pizezoelectrically actuated DMs, while retaining the advantages in cost, repeatability, and thermal insensitivity that have been demonstrated in the newer generation of MEMS electrostatically actuated DMs. The shift to bonded single-crystal structures will eliminate the single biggest drawback in previously reported NASA-fielded MEMS DM technology: device susceptibility to stress-induced scalloping and print through artifacts resulting from polycrystalline thin film surface micromachining. With single crystal structures bonded at atomic scales, uncorrected surface topography can be controlled to subnanometer levels, enabling the advancement of NASA s next-generation space-based coronagraphs.

  13. Teaching Modules on Modeling and Control of Piezoactuators for System Dynamics, Controls, and Mechatronics Courses

    ERIC Educational Resources Information Center

    Leang, K. K.; Zou, Q.; Pannozzo, G.

    2010-01-01

    Piezoelectric actuators (or piezoactuators) are known for their nanoresolution and high-speed positioning capabilities. Therefore, they are used in scanning probe microscopes and in the design of innovative surgical tools and biomedical devices. The expected growth of engineering jobs in the nano- and bio-related fields, in which piezoactuators…

  14. The Current Status of Unsteady CFD Approaches for Aerodynamic Flow Control

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Singer, Bart A.; Yamaleev, Nail; Vatsa, Veer N.; Viken, Sally A.; Atkins, Harold L.

    2002-01-01

    An overview of the current status of time dependent algorithms is presented. Special attention is given to algorithms used to predict fluid actuator flows, as well as other active and passive flow control devices. Capabilities for the next decade are predicted, and principal impediments to the progress of time-dependent algorithms are identified.

  15. Patient's breath controls comfort devices

    NASA Technical Reports Server (NTRS)

    Schrader, M.; Carpenter, B.; Nichols, C. D.

    1972-01-01

    Patient assist system for totally disabled persons was developed which permits a person, so paralyzed as to be unable to move, to activate by breathing, a call system to summon assistance, turn the page of a book, ajust his bed, or do any one of a number of other things. System consists of patient assist control and breath actuated switch.

  16. Microsystem Cooler Development

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.; Wesolek, Danielle M.; Berhane, Bruk T.; Rebello, Keith J.

    2004-01-01

    A patented microsystem Stirling cooler is under development with potential application to electronics, sensors, optical and radio frequency (RF) systems, microarrays, and other microsystems. The microsystem Stirling cooler is most suited to volume-limited applications that require cooling below the ambient or sink temperature. Primary components of the planar device include: two diaphragm actuators that replace the pistons found in traditional-scale Stirling machines; and a micro-regenerator that stores and releases thermal energy to the working gas during the Stirling cycle. The use of diaphragms eliminates frictional losses and bypass leakage concerns associated with pistons, while permitting reversal of the hot and cold sides of the device during operation to allow precise temperature control. Three candidate microregenerators were custom fabricated for initial evaluation: two constructed of porous ceramic, and one made of multiple layers of nickel and photoresist in an offset grating pattern. An additional regenerator was prepared with a random stainless steel fiber matrix commonly used in existing Stirling machines for comparison to the custom fabricated regenerators. The candidate regenerators were tested in a piezoelectric-actuated test apparatus designed to simulate the Stirling refrigeration cycle. In parallel with the regenerator testing, electrostatically-driven comb-drive diaphragm actuators for the prototype device have been designed for deep reactive ion etching (DRIE) fabrication.

  17. Mission STS-134: Results of Shape Memory Foam Experiment

    NASA Astrophysics Data System (ADS)

    Santo, Loredana; Quadrini, Fabrizio; Mascetti, Gabriele; Dolce, Ferdinando; Zolesi, Valfredo

    2013-10-01

    Shape memory epoxy foams were used for an experiment aboard the International Space Station (ISS) to evaluate the feasibility of their use for building light actuators and expandable/deployable structures. The experiment named I-FOAM was performed by an autonomous device contained in the BIOKON container (by Kayser Italia) which was in turn composed of control and heating system, battery pack and data acquisition system. To simulate the actuation of simple devices in micro-gravity conditions, three different configurations (compression, bending and torsion) were chosen during the memory step of the foams so as to produce their recovery on ISS. Micro-gravity does not affect the ability of the foams to recover their shape but it poses limits for the heating system design because of the difference in heat transfer on Earth and in orbit. A recovery about 70% was measured at a temperature of 110 °C for the bending and torsion configuration whereas poor recovery was observed for the compression case. Thanks to these results, a new experiment has been developed for a future mission by the same device: for the first time a shape memory composite will be recovered, and the actuation load during time will be measured during the recovery of an epoxy foam sample.

  18. PVC gel soft actuator-based wearable assist wear for hip joint support during walking

    NASA Astrophysics Data System (ADS)

    Li, Yi; Hashimoto, Minoru

    2017-12-01

    Plasticized polyvinyl chloride (PVC) gel and mesh electrode-based soft actuators have considerable potential to provide new types of artificial muscle, exhibiting similar responsiveness to biological muscle in air, >10% deformation, >90 kPa output stress, variable stiffness, long cycle life (>5 million cycles), and low power consumption. We have designed and fabricated a prototype of walking assist wear using the PVC gel actuator in previous study. The system has several advantages compared with traditional motor-based exoskeletons, including lower weight and power consumption, and no requirement for rigid external structures that constrain the wearer’s joints. In this study, we designed and established a control and power system to making the whole system portable and wearable outdoors. And we designed two control strategies based on the characteristics of the assist wear and the biological kinematics. In a preliminary experimental evaluation, a hemiparetic stroke patient performed a 10 m to-and-fro straight line walking task with and without assist wear on the affected side. We found that the assist wear enabled natural movement, increasing step length and decreasing muscular activity during straight line walking. We demonstrated that the assistance effect could be adjusted by controlling the on-off time of the PVC gel soft actuators. The results show the effectiveness of the proposed system and suggest the feasibility of PVC gel soft actuators for developing practical soft wearable assistive devices, informing the development of future wearable robots and the other soft actuator technologies for human movement assistance and rehabilitation.

  19. Direct Observation of Ion Distributions near Electrodes in Ionic Polymer Actuators Containing Ionic Liquids

    PubMed Central

    Liu, Yang; Lu, Caiyan; Twigg, Stephen; Ghaffari, Mehdi; Lin, Junhong; Winograd, Nicholas; Zhang, Q. M.

    2013-01-01

    The recent boom of energy storage and conversion devices, exploiting ionic liquids (ILs) to enhance the performance, requires an in-depth understanding of this new class of electrolytes in device operation conditions. One central question critical to device performance is how the mobile ions accumulate near charged electrodes. Here, we present the excess ion depth profiles of ILs in ionomer membrane actuators (Aquivion/1-butyl-2,3-dimethylimidazolium chloride (BMMI-Cl), 27 μm thick), characterized directly by Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) at liquid nitrogen temperature. Experimental results reveal that for the IL studied, cations and anions are accumulated at both electrodes. The large difference in the total volume occupied by the excess ions between the two electrodes cause the observed large bending actuation of the actuator. Hence we demonstrate that ToF-SIMS experiment provides great insights on the physics nature of ionic devices. PMID:23512124

  20. Wireless patient monitoring system for a moving-actuator type artificial heart.

    PubMed

    Nam, K W; Chung, J; Choi, S W; Sun, K; Min, B G

    2006-10-01

    In this study, we developed a wireless monitoring system for outpatients equipped with a moving-actuator type pulsatile bi-ventricular assist device, AnyHeart. The developed monitoring system consists of two parts; a Bluetooth-based short-distance self-monitoring system that can monitor and control the operating status of a VAD using a Bluetooth-embedded personal digital assistant or a personal computer within a distance of 10 meters, and a cellular network-based remote monitoring system that can continuously monitor and control the operating status of AnyHeart at any location. Results of in vitro experiments demonstrate the developed system's ability to monitor the operational status of an implanted AnyHeart.

  1. Softworms: the design and control of non-pneumatic, 3D-printed, deformable robots.

    PubMed

    Umedachi, T; Vikas, V; Trimmer, B A

    2016-03-10

    Robots that can easily interact with humans and move through natural environments are becoming increasingly essential as assistive devices in the home, office and hospital. These machines need to be safe, effective, and easy to control. One strategy towards accomplishing these goals is to build the robots using soft and flexible materials to make them much more approachable and less likely to damage their environment. A major challenge is that comparatively little is known about how best to design, fabricate and control deformable machines. Here we describe the design, fabrication and control of a novel soft robotic platform (Softworms) as a modular device for research, education and public outreach. These robots are inspired by recent neuromechanical studies of crawling and climbing by larval moths and butterflies (Lepidoptera, caterpillars). Unlike most soft robots currently under development, the Softworms do not rely on pneumatic or fluidic actuators but are electrically powered and actuated using either shape-memory alloy microcoils or motor tendons, and they can be modified to accept other muscle-like actuators such as electroactive polymers. The technology is extremely versatile, and different designs can be quickly and cheaply fabricated by casting elastomeric polymers or by direct 3D printing. Softworms can crawl, inch or roll, and they are steerable and even climb steep inclines. Softworms can be made in any shape but here we describe modular and monolithic designs requiring little assembly. These modules can be combined to make multi-limbed devices. We also describe two approaches for controlling such highly deformable structures using either model-free state transition-reward matrices or distributed, mechanically coupled oscillators. In addition to their value as a research platform, these robots can be developed for use in environmental, medical and space applications where cheap, lightweight and shape-changing deformable robots will provide new performance capabilities.

  2. Adhesion testing device

    NASA Technical Reports Server (NTRS)

    LaPeyronnie, Glenn M. (Inventor); Huff, Charles M. (Inventor)

    2010-01-01

    The present invention provides a testing apparatus and method for testing the adhesion of a coating to a surface. The invention also includes an improved testing button or dolly for use with the testing apparatus and a self aligning button hook or dolly interface on the testing apparatus. According to preferred forms, the apparatus and method of the present invention are simple, portable, battery operated rugged, and inexpensive to manufacture and use, are readily adaptable to a wide variety of uses, and provide effective and accurate testing results. The device includes a linear actuator driven by an electric motor coupled to the actuator through a gearbox and a rotatable shaft. The electronics for the device are contained in the head section of the device. At the contact end of the device, is positioned a self aligning button hook, attached below the load cell located on the actuator shaft.

  3. Re-Active Passive devices for control of noise transmission through a panel

    NASA Astrophysics Data System (ADS)

    Carneal, James P.; Giovanardi, Marco; Fuller, Chris R.; Palumbo, Dan

    2008-01-01

    Re-Active Passive devices have been developed to control low-frequency (<1000 Hz) noise transmission through a panel. These devices use a combination of active, re-active, and passive technologies packaged into a single unit to control a broad frequency range utilizing the strength of each technology over its best suited frequency range. The Re-Active Passive device uses passive constrained layer damping to cover relatively high-frequency range (>150 Hz), reactive distributed vibration absorber to cover the medium-frequency range (50-200 Hz), and active control for controlling low frequencies (<150 Hz). The actuator was applied to control noise transmission through a panel mounted in the Transmission Loss Test Facility at Virginia Tech. Experimental results are presented for the bare panel, and combinations of passive treatment, reactive treatment, and active control. Results indicate that three Re-Active Passive devices were able to increase the overall broadband (15-1000 Hz) transmission loss by 9.4 dB. These three devices added a total of 285 g to the panel mass of 6.0 kg, or approximately 5%, not including control electronics.

  4. Low-Shock Pyrotechnic Actuator

    NASA Technical Reports Server (NTRS)

    Lucy, M. H.

    1984-01-01

    Miniature 1-ampere, 1-watt pyrotechnic actuator enclosed in flexible metal bellows. Bellows confines outgassing products, and pyrotechnic shock reduction achieved by action of bellows, gas cushion within device, and minimum use of pyrotechnic material. Actuator inexpensive, compact, and lightweight.

  5. Low Mass Muscle Actuators (LoMMAs) Using Electroactive Polymers

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.; Xue, T.; Joffe, B.; Lih, S. S.; Willis, P.; Simpson, J.; Smith, J.; Clair, T.; Shahinpoor, M.

    1997-01-01

    NASA is using actuation devices for many space applications and there is an increasing need to cut their cost as well as reduce their size, mass, and power consumption. Existing transducing actuators, such as piezoceramics, are inducing limited displacement levels. Potentially, electroactive polymers (so called EAP) can be formed as inexpensive, low-mass, low-power, miniature muscle actuators that are superior to the widely used actuators.

  6. Electro-Active Polymer Based Soft Tactile Interface for Wearable Devices.

    PubMed

    Mun, Seongcheol; Yun, Sungryul; Nam, Saekwang; Park, Seung Koo; Park, Suntak; Park, Bong Je; Lim, Jeong Mook; Kyung, Ki-Uk

    2018-01-01

    This paper reports soft actuator based tactile stimulation interfaces applicable to wearable devices. The soft actuator is prepared by multi-layered accumulation of thin electro-active polymer (EAP) films. The multi-layered actuator is designed to produce electrically-induced convex protrusive deformation, which can be dynamically programmable for wide range of tactile stimuli. The maximum vertical protrusion is and the output force is up to 255 mN. The soft actuators are embedded into the fingertip part of a glove and front part of a forearm band, respectively. We have conducted two kinds of experiments with 15 subjects. Perceived magnitudes of actuator's protrusion and vibrotactile intensity were measured with frequency of 1 Hz and 191 Hz, respectively. Analysis of the user tests shows participants perceive variation of protrusion height at the finger pad and modulation of vibration intensity through the proposed soft actuator based tactile interface.

  7. An architecture for rapid prototyping of control schemes for artificial ventricles.

    PubMed

    Ficola, Antonio; Pagnottelli, Stefano; Valigi, Paolo; Zoppitelli, Maurizio

    2004-01-01

    This paper presents an experimental system aimed at rapid prototyping of feedback control schemes for ventricular assist devices, and artificial ventricles in general. The system comprises a classical mock circulatory system, an actuated bellow-based ventricle chamber, and a software architecture for control schemes implementation and experimental data acquisition, visualization and storing. Several experiments have been carried out, showing good performance of ventricular pressure tracking control schemes.

  8. Long-term stable active mount for reflective optics

    NASA Astrophysics Data System (ADS)

    Reinlein, C.; Brady, A.; Damm, C.; Mohaupt, M.; Kamm, A.; Lange, N.; Goy, M.

    2016-07-01

    We report on the development of an active mount with an orthogonal actuator matrix offering a stable shape optimization for gratings or mirrors. We introduce the actuator distribution and calculate the accessible Zernike polynomials from their actuator influence function. Experimental tests show the capability of the device to compensate for aberrations of grating substrates as we report measurements of a 110x105 mm2 and 220x210 mm2 device With these devices, we evaluate the position depending aberrations, long-term stability shape results, and temperature-induced shape variations. Therewith we will discuss potential applications in space telescopes and Earth-based facilities where long-term stability is mandatory.

  9. Manually operated coded switch

    DOEpatents

    Barnette, Jon H.

    1978-01-01

    The disclosure relates to a manually operated recodable coded switch in which a code may be inserted, tried and used to actuate a lever controlling an external device. After attempting a code, the switch's code wheels must be returned to their zero positions before another try is made.

  10. A variable stiffness transverse mode shape memory alloy actuator as a minimally invasive organ positioner

    NASA Astrophysics Data System (ADS)

    Anderson, W.; Eshghinejad, A.; Azadegan, R.; Cooper, C.; Elahinia, M.

    2013-09-01

    Smart materials have gained a great deal of attention in recent years because of their unique actuation properties. Actuators are needed in the medical field where space is limited. Presented within this work is an organ positioner used to position the esophagus away from the left atrium to avoid the development of an esophageal fistula during atrial fibrillation (afib) ablation procedures. Within this work, a subroutine was implemented into the finite element framework to predict the midspan load capacity of a near equiatomic NiTi specimen in both the super elastic and shape memory regimes. The purpose of the simulations and experimental results was to develop a design envelope for the organ positioning device. The transverse loading experiments were conducted at several different temperatures leading to the ability to design a variable stiffness actuator. This is essential because the actuator must not be too stiff to injure the organ it is positioning. Extended further, geometric perturbations were applied in the virtual model and the entire design envelope was developed. Further, nitinol was tested for safety in the radio-frequency environment (to ensure that local heating will not occur in the ablation environment). With the safety of the device confirmed, a primitive prototype was manufactured and successfully tested in a cadaver. The design of the final device is also presented. The contribution of this work is the presentation of a new type of positoning device for medical purposes (NiTiBOP). In the process a comprehensive model for transverse actuation of an SMA actuator was developed and experimentally verified.

  11. Inkjet 3D printing of UV and thermal cure silicone elastomers for dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    McCoul, David; Rosset, Samuel; Schlatter, Samuel; Shea, Herbert

    2017-12-01

    Dielectric elastomer actuators (DEAs) are an attractive form of electromechanical transducer, possessing high energy densities, an efficient design, mechanical compliance, high speed, and noiseless operation. They have been incorporated into a wide variety of devices, such as microfluidic systems, cell bioreactors, tunable optics, haptic displays, and actuators for soft robotics. Fabrication of DEA devices is complex, and the majority are inefficiently made by hand. 3D printing offers an automated and flexible manufacturing alternative that can fabricate complex, multi-material, integrated devices consistently and in high resolution. We present a novel additive manufacturing approach to DEA devices in which five commercially available, thermal and UV-cure DEA silicone rubber materials have been 3D printed with a drop-on-demand, piezoelectric inkjet system. Using this process, 3D structures and high-quality silicone dielectric elastomer membranes as thin as 2 μm have been printed that exhibit mechanical and actuation performance at least as good as conventionally blade-cast membranes. Printed silicone membranes exhibited maximum tensile strains of up to 727%, and DEAs with printed silicone dielectrics were actuated up to 6.1% area strain at a breakdown strength of 84 V μm-1 and also up to 130 V μm-1 at 2.4% strain. This approach holds great potential to manufacture reliable, high-performance DEA devices with high throughput.

  12. A novel in situ device based on a bionic piezoelectric actuator to study tensile and fatigue properties of bulk materials.

    PubMed

    Wang, Shupeng; Zhang, Zhihui; Ren, Luquan; Zhao, Hongwei; Liang, Yunhong; Zhu, Bing

    2014-06-01

    In this work, a miniaturized device based on a bionic piezoelectric actuator was developed to investigate the static tensile and dynamic fatigue properties of bulk materials. The device mainly consists of a bionic stepping piezoelectric actuator based on wedge block clamping, a pair of grippers, and a set of precise signal test system. Tensile and fatigue examinations share a set of driving system and a set of signal test system. In situ tensile and fatigue examinations under scanning electron microscope or metallographic microscope could be carried out due to the miniaturized dimensions of the device. The structure and working principle of the device were discussed and the effects of output difference between two piezoelectric stacks on the device were theoretically analyzed. The tensile and fatigue examinations on ordinary copper were carried out using this device and its feasibility was verified through the comparison tests with a commercial tensile examination instrument.

  13. A novel in situ device based on a bionic piezoelectric actuator to study tensile and fatigue properties of bulk materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shupeng; Zhang, Zhihui, E-mail: zhzh@jlu.edu.cn; Ren, Luquan

    2014-06-15

    In this work, a miniaturized device based on a bionic piezoelectric actuator was developed to investigate the static tensile and dynamic fatigue properties of bulk materials. The device mainly consists of a bionic stepping piezoelectric actuator based on wedge block clamping, a pair of grippers, and a set of precise signal test system. Tensile and fatigue examinations share a set of driving system and a set of signal test system. In situ tensile and fatigue examinations under scanning electron microscope or metallographic microscope could be carried out due to the miniaturized dimensions of the device. The structure and working principlemore » of the device were discussed and the effects of output difference between two piezoelectric stacks on the device were theoretically analyzed. The tensile and fatigue examinations on ordinary copper were carried out using this device and its feasibility was verified through the comparison tests with a commercial tensile examination instrument.« less

  14. Characterization and modeling of electrostatically actuated polysilicon micromechanical devices

    NASA Astrophysics Data System (ADS)

    Chan, Edward Keat Leem

    Sensors, actuators, transducers, microsystems and MEMS (MicroElertroMechanical Systems) are some of the terms describing technologies that interface information processing systems with the physical world. Electrostatically actuated micromechanical devices are important building blocks in many of these technologies. Arrays of these devices are used in video projection displays, fluid pumping systems, optical communications systems, tunable lasers and microwave circuits. Well-calibrated simulation tools are essential for propelling ideas from the drawing board into production. This work characterizes a fabrication process---the widely-used polysilicon MUMPs process---to facilitate the design of electrostatically actuated micromechanical devices. The operating principles of a representative device---a capacitive microwave switch---are characterized using a wide range of electrical and optical measurements of test structures along with detailed electromechanical simulations. Consistency in the extraction of material properties from measurements of both pull-in voltage and buckling amplitude is demonstrated. Gold is identified as an area-dependent source of nonuniformity in polysilicon thicknesses and stress. Effects of stress gradients, substrate curvature, and film coverage are examined quantitatively. Using well-characterized beams as in-situ surface probes, capacitance-voltage and surface profile measurements reveal that compressible surface residue modifies the effective electrical gap when the movable electrode contacts an underlying silicon nitride layer. A compressible contact surface model used in simulations improves the fit to measurements. In addition, the electric field across the nitride causes charge to build up in the nitride, increasing the measured capacitance over time. The rate of charging corresponds to charge injection through direct tunneling. A novel actuator that can travel stably beyond one-third of the initial gap (a trademark limitation of conventional actuators) is demonstrated. A "folded capacitor" design, requiring only minimal modifications to the layout of conventional devices, reduces the parasitic capacitances and modes of deformation that limit performance. This device, useful for optical applications, can travel almost twice the conventional range before succumbing to a tilting instability.

  15. Stirling Microregenerators Fabricated and Tested

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.

    2004-01-01

    A mesoscale Stirling refrigerator patented by the NASA Glenn Research Center is currently under development. This refrigerator has a predicted efficiency of 30 percent of Carnot and potential uses in electronics, sensors, optical and radiofrequency systems, microarrays, and microsystems. The mesoscale Stirling refrigerator is most suited to volume-limited applications that require cooling below the ambient or sink temperature. Primary components of the planar device include two diaphragm actuators that replace the pistons found in traditional-scale Stirling machines and a microregenerator that stores and releases thermal energy to the working gas during the Stirling cycle. Diaphragms are used to eliminate frictional losses and bypass leakage concerns associated with pistons, while permitting reversal of the hot and cold sides of the device during operation to allow precise temperature control. Three candidate microregenerators were fabricated under NASA grants for initial evaluation: two constructed of porous ceramic, which were fabricated by Johns Hopkins Applied Physics Laboratory, and one made of multiple layers of nickel and photoresist, which was fabricated by Polar Thermal Technologies. The candidate regenerators are being tested by Johns Hopkins Applied Physics in a custom piezoelectric-actuated test apparatus designed to produce the Stirling refrigeration cycle. In parallel with the regenerator testing, Johns Hopkins is using deep reactive ion etching to fabricate electrostatically driven, comb-drive diaphragm actuators. These actuators will drive the Stirling cycle in the prototype device. The top photograph shows the porous ceramic microregenerators. Two microregenerators were fabricated with coarse pores and two with fine pores. The bottom photograph shows the test apparatus parts for evaluating the microregenerators, including the layered nickel-and-photoresist regenerator fabricated using LIGA techniques.

  16. Large Displacement in Relaxor Ferroelectric Terpolymer Blend Derived Actuators Using Al Electrode for Braille Displays

    NASA Astrophysics Data System (ADS)

    Lu, S. G.; Chen, X.; Levard, T.; Diglio, P. J.; Gorny, L. J.; Rahn, C. D.; Zhang, Q. M.

    2015-06-01

    Poly(vinylidene fluoride) (PVDF) based polymers are attractive for applications for artificial muscles, high energy density storage devices etc. Recently these polymers have been found great potential for being used as actuators for refreshable full-page Braille displays for visually impaired people in terms of light weight, miniaturized size, and larger displacement, compared with currently used lead zirconate titanate ceramic actuators. The applied voltages of published polymer actuators, however, cannot be reduced to meet the requirements of using city power. Here, we report the polymer actuator generating quite large displacement and blocking force at a voltage close to the city power. Our embodiments also show good self-healing performance and disuse of lead-containing material, which makes the Braille device safer, more reliable and more environment-friendly.

  17. Large Displacement in Relaxor Ferroelectric Terpolymer Blend Derived Actuators Using Al Electrode for Braille Displays.

    PubMed

    Lu, S G; Chen, X; Levard, T; Diglio, P J; Gorny, L J; Rahn, C D; Zhang, Q M

    2015-06-16

    Poly(vinylidene fluoride) (PVDF) based polymers are attractive for applications for artificial muscles, high energy density storage devices etc. Recently these polymers have been found great potential for being used as actuators for refreshable full-page Braille displays for visually impaired people in terms of light weight, miniaturized size, and larger displacement, compared with currently used lead zirconate titanate ceramic actuators. The applied voltages of published polymer actuators, however, cannot be reduced to meet the requirements of using city power. Here, we report the polymer actuator generating quite large displacement and blocking force at a voltage close to the city power. Our embodiments also show good self-healing performance and disuse of lead-containing material, which makes the Braille device safer, more reliable and more environment-friendly.

  18. A Multi-Finger Interface with MR Actuators for Haptic Applications.

    PubMed

    Qin, Huanhuan; Song, Aiguo; Gao, Zhan; Liu, Yuqing; Jiang, Guohua

    2018-01-01

    Haptic devices with multi-finger input are highly desirable in providing realistic and natural feelings when interacting with the remote or virtual environment. Compared with the conventional actuators, MR (Magneto-rheological) actuators are preferable options in haptics because of larger passive torque and torque-volume ratios. Among the existing haptic MR actuators, most of them are still bulky and heavy. If they were smaller and lighter, they would become more suitable for haptics. In this paper, a small-scale yet powerful MR actuator was designed to build a multi-finger interface for the 6 DOF haptic device. The compact structure was achieved by adopting the multi-disc configuration. Based on this configuration, the MR actuator can generate the maximum torque of 480 N.mm with dimensions of only 36 mm diameter and 18 mm height. Performance evaluation showed that it can exhibit a relatively high dynamic range and good response characteristics when compared with some other haptic MR actuators. The multi-finger interface is equipped with three MR actuators and can provide up to 8 N passive force to the thumb, index and middle fingers, respectively. An application example was used to demonstrate the effectiveness and potential of this new MR actuator based interface.

  19. A Highly Backdrivable, Lightweight Knee Actuator for Investigating Gait in Stroke

    PubMed Central

    Sulzer, James S.; Roiz, Ronald A.; Peshkin, Michael A.; Patton, James L.

    2012-01-01

    Many of those who survive a stroke develop a gait disability known as stiff-knee gait (SKG). Characterized by reduced knee flexion angle during swing, people with SKG walk with poor energy efficiency and asymmetry due to the compensatory mechanisms required to clear the foot. Previous modeling studies have shown that knee flexion activity directly before the foot leaves the ground, and this should result in improved knee flexion angle during swing. The goal of this research is to physically test this hypothesis using robotic intervention. We developed a device that is capable of assisting knee flexion torque before swing but feels imperceptible (transparent) for the rest of the gait cycle. This device uses sheathed Bowden cable to control the deflection of a compliant torsional spring in a configuration known as a Series Elastic Remote Knee Actuator (SERKA). In this investigation, we describe the design and evaluation of SERKA, which includes a pilot experiment on stroke subjects. SERKA could supply a substantial torque (12 N· m) in less than 20 ms, with a maximum torque of 41 N·m. The device resisted knee flexion imperceptibly when desired, at less than 1 N·m rms torque during normal gait. With the remote location of the actuator, the user experiences a mass of only 1.2 kg on the knee. We found that the device was capable of increasing both peak knee flexion angle and velocity during gait in stroke subjects. Thus, the SERKA is a valid experimental device that selectively alters knee kinetics and kinematics in gait after stroke. PMID:22563305

  20. An overview and categorization of dynamic arm supports for people with decreased arm function.

    PubMed

    Van der Heide, Loek A; van Ninhuijs, Bob; Bergsma, Arjen; Gelderblom, Gert Jan; van der Pijl, Dick J; de Witte, Luc P

    2014-08-01

    Assistive devices that augment arm function were already introduced during the polio era. Devices are still being developed, but a review has not been performed thus far. To create an overview and categorize assistive devices facilitating arm function in activities of daily living for people with decreased arm function. Literature review. A systematic review in three scientific literature databases. Conference proceedings, assistive technology databases, and references were searched and experts consulted. This resulted in a database of dynamic arm supports. Product information was added, and the devices were categorized. A total of 104 dynamic arm supports were found. These could be categorized as nonactuated devices (N = 39), passively actuated devices (N = 24), actively actuated devices (N = 34), or devices using the functional electrical stimulation principle (N = 7). Functionality analysis resulted in second-level categorization: tremor suppression, facilitation of anti-gravity movement, and assistance of specific joint motion. All devices could be ordered in a categorization of low complexity. Many have been developed; most have disappeared and have been succeeded by similar devices. Limitations of the devices found mainly concern interfacing and the range of motion facilitated. Future devices could make use of whatever residual strength is available in the users' arm for control. The provided overview of devices in this article and the classification developed is relevant for practitioners seeking assistive solutions for their clients as it makes the range of developed solutions both accessible and comprehensible. © The International Society for Prosthetics and Orthotics 2013.

  1. Three-month validation of a turbuhaler electronic monitoring device: implications for asthma clinical trial use

    PubMed Central

    Pilcher, Janine; Shirtcliffe, Philippa; Patel, Mitesh; McKinstry, Steve; Cripps, Terrianne; Weatherall, Mark; Beasley, Richard

    2015-01-01

    Background Electronic monitoring of inhaled asthma therapy is suggested as the ‘gold standard’ for measuring patterns of medication use in clinical trials. The SmartTurbo (Adherium (NZ) Ltd, Auckland, New Zealand) is an electronic monitor for use with a turbuhaler device (AstraZeneca, UK). The aim of this study was to determine the accuracy of the SmartTurbo in recording Symbicort actuations over a 12-week period of use. Methods Twenty SmartTurbo monitors were attached to the base of 20 Symbicort turbuhalers. Bench testing in a research facility was undertaken on days 0, 5, 6, 7, 8, 9, 14, 21, 28, 56 and 84. Patterns of ‘low-use’ (2 sets of 2 actuations on the same day) and ‘high-use’ (2 sets of 8 actuations on the same day) were performed. The date and time of actuations were recorded in a paper diary and compared with data uploaded from the SmartTurbo monitors. Results 2800 actuations were performed. Monitor sensitivity was 99.9% with a lower 97.5% confidence bound of 99.6%. The positive predictive value was 99.9% with a 97.5% lower confidence bound of 99.7%. Accuracy was not affected by whether the pattern of inhaler use was low or high, or whether there was a delay in uploading the actuation data. Conclusions The SmartTurbo monitor is highly accurate in recording and retaining electronic data in this 12-week bench study. It can be recommended for use in clinical trial settings, in which quality control systems are incorporated into study protocols to ensure accurate data acquisition. PMID:26629345

  2. Toward Self-Control Systems for Neurogenic Underactive Bladder: A Triboelectric Nanogenerator Sensor Integrated with a Bistable Micro-Actuator.

    PubMed

    Arab Hassani, Faezeh; Mogan, Roshini P; Gammad, Gil G L; Wang, Hao; Yen, Shih-Cheng; Thakor, Nitish V; Lee, Chengkuo

    2018-04-24

    Aging, neurologic diseases, and diabetes are a few risk factors that may lead to underactive bladder (UAB) syndrome. Despite all of the serious consequences of UAB, current solutions, the most common being ureteric catheterization, are all accompanied by serious shortcomings. The necessity of multiple catheterizations per day for a physically able patient not only reduces the quality of life with constant discomfort and pain but also can end up causing serious complications. Here, we present a bistable actuator to empty the bladder by incorporating shape memory alloy components integrated on flexible polyvinyl chloride sheets. The introduction of two compression and restoration phases for the actuator allows for repeated actuation for a more complete voiding of the bladder. The proposed actuator exhibits one of the highest reported voiding percentages of up to 78% of the bladder volume in an anesthetized rat after only 20 s of actuation. This amount of voiding is comparable to the common catheterization method, and its one time implantation onto the bladder rectifies the drawbacks of multiple catheterizations per day. Furthermore, the scaling of the device for animal models larger than rats can be easily achieved by adjusting the number of nitinol springs. For neurogenic UAB patients with degraded nerve function as well as degenerated detrusor muscle, we integrate a flexible triboelectric nanogenerator sensor with the actuator to detect the fullness of the bladder. The sensitivity of this sensor to the filling status of the bladder shows its capability for defining a self-control system in the future that would allow autonomous micturition.

  3. Dynamic characterization and single-frequency cancellation performance of SMASH (SMA actuated stabilizing handgrip)

    NASA Astrophysics Data System (ADS)

    Pathak, Anupam; Brei, Diann; Luntz, Jonathan; LaVigna, Chris; Kwatny, Harry

    2008-03-01

    In urban combat environments where it is common to have unsupported firing positions, wobble significantly decreases shooting accuracy reducing mission effectiveness and soldier survivability. The SMASH (SMA Stabilizing Handgrip) has been developed to cancel wobble using antagonistic SMA actuators which reduce weight and size relative to conventional actuation, but lead to interesting control challenges. This paper presents the specification and design of the SMA actuation system for the SMASH platform along with experimental validation of the actuation and cancellation authority on the benchtop and on an M16 platform. Analytical dynamic weapon models and shooter experiments were conducted to define actuation frequency and amplitude specifications. The SMASH, designed to meet these, was experimentally characterized from the bounding quasi-static case up to the 3 Hz range, successfully generating the +/-2 mm amplitude requirement. To effectively cancel wobble it is critical to produce the proper output functional shape which is difficult for SMA due to inherent nonlinearities, hysteresis, etc. Three distinct electrical heating input functions (square, ramp, and preheat) were investigated to shape the actuator output to produce smooth sinusoidal motion. The effect of each of these functions on the cancellation response of the SMASH applied to the M16 platform was experimentally studied across the wobble range (1-3 Hz) demonstrating significant cancellation, between 50-97% depending on the smoothing function and frequency. These results demonstrate the feasibility of a hand-held wobble cancellation device providing an important foundation for future work in overall system optimization and the development of physically based feed-forward signals for closed-loop control.

  4. Active Structural Acoustic Control in an Original A400M Aircraft Structure

    NASA Astrophysics Data System (ADS)

    Koehne, C.; Sachau, D.; Renger, K.

    2016-09-01

    Low frequency noise has always been a challenge in propeller driven aircraft. At low frequencies passive noise treatments are not as efficient as active noise reduction systems. The Helmut-Schmidt-University has built up a full-scale test rig with an original A400M aircraft structure. This provides a good opportunity to develop and test active noise reduction systems in a realistic environment. The currently installed system consists of mechanical actuators and acoustical sensors. The actuators are called TVAs (Tuneable Vibration Absorber) and contain two spring-mass systems whose natural frequencies are adjusted to the BPFs (Blade Passage Frequency) of the propellers. The TVAs are mounted to the frames and the force direction is normal to the skin. The sensors are condenser microphones which are attached to the primary structure of the airframe. The TVAs are equipped with signal processing devices. These components carry out Fourier transforms and signal amplification for the sensor data and actuator signals. The communication between the TVAs and the central control unit is implemented by the CAN Bus protocol and mainly consists of complex coefficients for the sensor and actuator data. This paper describes the basic structure of the system, the hardware set-up and function tests of the controller.

  5. LC Circuits for Diagnosing Embedded Piezoelectric Devices

    NASA Technical Reports Server (NTRS)

    Chattin, Richard L.; Fox, Robert Lee; Moses, Robert W.; Shams, Qamar A.

    2005-01-01

    A recently invented method of nonintrusively detecting faults in piezoelectric devices involves measurement of the resonance frequencies of inductor capacitor (LC) resonant circuits. The method is intended especially to enable diagnosis of piezoelectric sensors, actuators, and sensor/actuators that are embedded in structures and/or are components of multilayer composite material structures.

  6. A reconfigurable tactile display based on polymer MEMS technology

    NASA Astrophysics Data System (ADS)

    Wu, Xiaosong

    A tactile display provides information such as shape, texture, temperature, and hardness to a user. Ultimately, a tactile display could be used to recreate a virtual object that may be stored in a computer. However, such advanced displays are not yet widely available, primarily due to the lack of low cost, large area, compact actuator arrays that can stimulate the large numbers of receptors of the user and that can also meet the high requirements for user safety and comfort. This research focuses on the development of polymer microfabrication technologies for the realization of two major components of a pneumatic tactile display: a microactuator array and a complementary microvalve (control) array. In this work, the concept, fabrication, and characterization of a kinematically-stabilized polymeric microbubble actuator ("endoskeletal microbubble actuator") is presented. A systematic design and modeling procedure was carried out to generate an optimized geometry of the corrugated diaphragm to satisfy membrane deflection, force, and stability requirements set forth by the tactile display goals. A mass-manufacturable actuator has been fabricated using the approaches of lithography and micromolding. A prototype of a single endoskeletal bubble actuator with a diameter of 2.6mm has been fabricated and characterized. In addition, in order to further reduce the size and cost of the tactile display, a microvalve array can be integrated into the tactile display system to control the pneumatic fluid that actuates the microbubble actuator. A piezoelectrically-driven and hydraulically-amplified polymer microvalve has been designed, fabricated, and tested. An incompressible elastomer was used as a solid hydraulic medium to convert the small axial displacement of a piezoelectric actuator into a large valve head stroke while maintaining a large blocking force. The function of the microvalve as an on-off switch for a pneumatic microbubble tactile actuator has been demonstrated. Compared to present technologies, the microvalve developed can achieve large flow rate control due to its amplification mechanism, can avoid complex sealing problem because solid rather than liquid medium is used, and can form a dense valve array due to the small lateral dimension of the actuator used. To further reduce the cost of the microvalve, a laterally-laminated multilayer PZT actuator has been fabricated using diced PZT multilayer, high aspect ratio SU-8 photolithography, and molding of electrically conductive polymer composite electrodes. This fabrication process is simple and straightforward compared to previous lateral lamination approaches. An 8-layer device has shown a displacement of 0.63 micron at 100V driving voltage, which agrees well with simulation results. The lateral lamination fabrication process provides a valuable alternative for making compact, low-voltage, multilayer piezoelectric micro-actuators as microvalve driving element. A refreshable Braille cell as a tactile display prototype has been developed based on a 2x3 endoskeletal microbubble array and an array of commercial valves. The prototype can provide both a static display (which meets the displacement and force requirement of a Braille display) and vibratory tactile sensations. Along with the above capabilities, the device was designed to meet the criteria of lightness and compactness to permit portable operation. The design is scalable with respect to the number of tactile actuators while still being simple to fabricate.

  7. Optimization of Smart Structure for Improving Servo Performance of Hard Disk Drive

    NASA Astrophysics Data System (ADS)

    Kajiwara, Itsuro; Takahashi, Masafumi; Arisaka, Toshihiro

    Head positioning accuracy of the hard disk drive should be improved to meet today's increasing performance demands. Vibration suppression of the arm in the hard disk drive is very important to enhance the servo bandwidth of the head positioning system. In this study, smart structure technology is introduced into the hard disk drive to suppress the vibration of the head actuator. It has been expected that the smart structure technology will contribute to the development of small and light-weight mechatronics devices with the required performance. First, modeling of the system is conducted with finite element method and modal analysis. Next, the actuator location and the control system are simultaneously optimized using genetic algorithm. Vibration control effect with the proposed vibration control mechanisms has been evaluated by some simulations.

  8. Magnetic Tethering of Microswimmers in Microfluidic Devices

    NASA Astrophysics Data System (ADS)

    Chawan, Aschvin; Jana, Saikat; Ghosh, Suvojit; Jung, Sunghwan; Puri, Ishwar

    2013-03-01

    Exercising control over animal locomotion is well known in the macro world. In the micro-scale world, such methods require more sophistication. We magnetize Paramecium multimicronucleatum by internalization of magnetite nanoparticles coated with bovine serum albumin (BSA). This enables control of their motion in a microfluidic device using a magnetic field. Miniature permanent magnets embedded within the device are used to tether the magnetized organisms to specific locations along a micro-channel. Ciliary beatings of the microswimmer generate shear flows nearby. We apply this setup to enhance cross-stream mixing in a microfluidic device by supplementing molecular diffusion. The device is similar to an active micromixer but requires no external power sources or artificial actuators. We optically characterize the effectiveness of the mechanism in a variety of flow situations.

  9. A Middleware Solution for Wireless IoT Applications in Sparse Smart Cities

    PubMed Central

    Lanzone, Stefano; Riberto, Giulio; Stefanelli, Cesare; Tortonesi, Mauro

    2017-01-01

    The spread of off-the-shelf mobile devices equipped with multiple wireless interfaces together with sophisticated sensors is paving the way to novel wireless Internet of Things (IoT) environments, characterized by multi-hop infrastructure-less wireless networks where devices carried by users act as sensors/actuators as well as network nodes. In particular, the paper presents Real Ad-hoc Multi-hop Peer-to peer-Wireless IoT Application (RAMP-WIA), a novel solution that facilitates the development, deployment, and management of applications in sparse Smart City environments, characterized by users willing to collaborate by allowing new applications to be deployed on their smartphones to remotely monitor and control fixed/mobile devices. RAMP-WIA allows users to dynamically configure single-hop wireless links, to manage opportunistically multi-hop packet dispatching considering that the network topology (together with the availability of sensors and actuators) may abruptly change, to actuate reliably sensor nodes specifically considering that only part of them could be actually reachable in a timely manner, and to upgrade dynamically the nodes through over-the-air distribution of new software components. The paper also reports the performance of RAMP-WIA on simple but realistic cases of small-scale deployment scenarios with off-the-shelf Android smartphones and Raspberry Pi devices; these results show not only the feasibility and soundness of the proposed approach, but also the efficiency of the middleware implemented when deployed on real testbeds. PMID:29099745

  10. A Middleware Solution for Wireless IoT Applications in Sparse Smart Cities.

    PubMed

    Bellavista, Paolo; Giannelli, Carlo; Lanzone, Stefano; Riberto, Giulio; Stefanelli, Cesare; Tortonesi, Mauro

    2017-11-03

    The spread of off-the-shelf mobile devices equipped with multiple wireless interfaces together with sophisticated sensors is paving the way to novel wireless Internet of Things (IoT) environments, characterized by multi-hop infrastructure-less wireless networks where devices carried by users act as sensors/actuators as well as network nodes. In particular, the paper presents Real Ad-hoc Multi-hop Peer-to peer-Wireless IoT Application (RAMP-WIA), a novel solution that facilitates the development, deployment, and management of applications in sparse Smart City environments, characterized by users willing to collaborate by allowing new applications to be deployed on their smartphones to remotely monitor and control fixed/mobile devices. RAMP-WIA allows users to dynamically configure single-hop wireless links, to manage opportunistically multi-hop packet dispatching considering that the network topology (together with the availability of sensors and actuators) may abruptly change, to actuate reliably sensor nodes specifically considering that only part of them could be actually reachable in a timely manner, and to upgrade dynamically the nodes through over-the-air distribution of new software components. The paper also reports the performance of RAMP-WIA on simple but realistic cases of small-scale deployment scenarios with off-the-shelf Android smartphones and Raspberry Pi devices; these results show not only the feasibility and soundness of the proposed approach, but also the efficiency of the middleware implemented when deployed on real testbeds.

  11. Review of Polyimides Used in the Manufacturing of Micro Systems

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Atkinson, Gary M.

    2007-01-01

    Since their invention, polyimides have found numerous uses in MicroElectroMechanical Systems (MEMS) technology. Polyimides can act as photoresist, sacrificial layers, structural layers, and even as a replacement for silicon as the substrate during MEMS fabrication. They enable fabrication of both low and high aspect ratio devices. Polyimides have been used to fabricate expendable molds and reusable flexible molds. Development of a variety of devices that employ polyimides for sensor applications has occurred. Micro-robotic actuator applications include hinges, thermal actuators and residual stress actuators. Currently, polyimides are being used to create new sensors and devices for aerospace applications. This paper presents a review of some of the many uses of polyimides in the development of MEMS devices, including a new polyimide based MEMS fabrication process.

  12. Blade vortex interaction noise reduction techniques for a rotorcraft

    NASA Technical Reports Server (NTRS)

    Charles, Bruce D. (Inventor); Hassan, Ahmed A. (Inventor); Tadghighi, Hormoz (Inventor); JanakiRam, Ram D. (Inventor); Sankar, Lakshmi N. (Inventor)

    1996-01-01

    An active control device for reducing blade-vortex interactions (BVI) noise generated by a rotorcraft, such as a helicopter, comprises a trailing edge flap located near the tip of each of the rotorcraft's rotor blades. The flap may be actuated in any conventional way, and is scheduled to be actuated to a deflected position during rotation of the rotor blade through predetermined regions of the rotor azimuth, and is further scheduled to be actuated to a retracted position through the remaining regions of the rotor azimuth. Through the careful azimuth-dependent deployment and retraction of the flap over the rotor disk, blade tip vortices which are the primary source for BVI noise are (a) made weaker and (b) pushed farther away from the rotor disk (that is, larger blade-vortex separation distances are achieved).

  13. Blade vortex interaction noise reduction techniques for a rotorcraft

    NASA Technical Reports Server (NTRS)

    Charles, Bruce D. (Inventor); JanakiRam, Ram D. (Inventor); Hassan, Ahmed A. (Inventor); Tadghighi, Hormoz (Inventor); Sankar, Lakshmi N. (Inventor)

    1998-01-01

    An active control device for reducing blade-vortex interactions (BVI) noise generated by a rotorcraft, such as a helicopter, comprises a trailing edge flap located near the tip of each of the rotorcraft's rotor blades. The flap may be actuated in any conventional way, and is scheduled to be actuated to a deflected position during rotation of the rotor blade through predetermined regions of the rotor azimuth, and is further scheduled to be actuated to a retracted position through the remaining regions of the rotor azimuth. Through the careful azimuth-dependent deployment and retraction of the flap over the rotor disk, blade tip vortices which are the primary source for BVI noise are (a) made weaker and (b) pushed farther away from the rotor disk (that is, larger blade-vortex separation distances are achieved).

  14. Tubing and cable cutting tool

    NASA Technical Reports Server (NTRS)

    Mcsmith, D. D.; Richardson, J. I. (Inventor)

    1984-01-01

    A hand held hydraulic cutting tool was developed which is particularly useful in deactivating ejection seats in military aircraft rescue operations. The tool consists primarily of a hydraulic system composed of a fluid reservoir, a pumping piston, and an actuator piston. Mechanical cutting jaws are attached to the actuator piston rod. The hydraulic system is controlled by a pump handle. As the pump handle is operated the actuator piston rod is forced outward and thus the cutting jaws are forced together. The frame of the device is a flexible metal tubing which permits easy positioning of the tool cutting jaws in remote and normally inaccessible locations. Bifurcated cutting edges ensure removal of a section of the tubing or cable to thereby reduce the possibility of accidental reactivation of the tubing or cable being severed.

  15. Deployable robotic woven wire structures and joints for space applications

    NASA Technical Reports Server (NTRS)

    Shahinpoor, MO; Smith, Bradford

    1991-01-01

    Deployable robotic structures are basically expandable and contractable structures that may be transported or launched to space in a compact form. These structures may then be intelligently deployed by suitable actuators. The deployment may also be done by means of either airbag or spring-loaded typed mechanisms. The actuators may be pneumatic, hydraulic, ball-screw type, or electromagnetic. The means to trigger actuation may be on-board EPROMS, programmable logic controllers (PLCs) that trigger actuation based on some input caused by the placement of the structure in the space environment. The actuation may also be performed remotely by suitable remote triggering devices. Several deployable woven wire structures are examined. These woven wire structures possess a unique form of joint, the woven wire joint, which is capable of moving and changing its position and orientation with respect to the structure itself. Due to the highly dynamic and articulate nature of these joints the 3-D structures built using them are uniquely and highly expandable, deployable, and dynamic. The 3-D structure naturally gives rise to a new generation of deployable three-dimensional spatial structures.

  16. Photo-driven nanoactuators based on carbon nanocoils and vanadium dioxide bimorphs.

    PubMed

    Ma, He; Zhang, Xinping; Cui, Ruixue; Liu, Feifei; Wang, Meng; Huang, Cuiying; Hou, Jiwei; Wang, Guang; Wei, Yang; Jiang, Kaili; Pan, Lujun; Liu, Kai

    2018-06-06

    Photo-driven actuators are highly desirable in various smart systems owing to the advantages of wireless control and possible actuation by solar energy. Miniaturization of photo-driven actuators is particularly essential in micro-robotics and micro-/nano-electro-mechanical systems. However, it remains a great challenge to build up nano-scale photo-driven actuators with competitive performance in amplitude, response speed, and lifetime. In this work, we developed photo-driven nanoactuators based on bimorph structures of vanadium dioxides (VO2) and carbon nanocoils (CNCs). Activated by the huge structural phase transition of VO2, the photo-driven VO2/CNC nanoactuators deliver a giant amplitude, a fast response up to 9400 Hz, and a long lifetime more than 10 000 000 actuation cycles. Both experimental and simulation results show that the helical structure of CNCs enables a low photo-driven threshold of VO2/CNC nanoactuators, which provides an effective method to construct photo-driven nanoactuators with low power consumption. Our photo-driven VO2/CNC nanoactuators would find potential applications in nano-scale electrical/optical switches and other smart devices.

  17. 30 CFR 75.1103-6 - Automatic fire sensors; actuation of fire suppression systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection § 75.1103-6 Automatic fire sensors; actuation of fire suppression systems. Point-type heat sensors or automatic fire sensor and warning device systems may be used to actuate deluge-type water systems... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Automatic fire sensors; actuation of fire...

  18. 30 CFR 75.1103-6 - Automatic fire sensors; actuation of fire suppression systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Automatic fire sensors; actuation of fire... Protection § 75.1103-6 Automatic fire sensors; actuation of fire suppression systems. Point-type heat sensors or automatic fire sensor and warning device systems may be used to actuate deluge-type water systems...

  19. 30 CFR 75.1103-6 - Automatic fire sensors; actuation of fire suppression systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Automatic fire sensors; actuation of fire... Protection § 75.1103-6 Automatic fire sensors; actuation of fire suppression systems. Point-type heat sensors or automatic fire sensor and warning device systems may be used to actuate deluge-type water systems...

  20. 30 CFR 75.1103-6 - Automatic fire sensors; actuation of fire suppression systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Automatic fire sensors; actuation of fire... Protection § 75.1103-6 Automatic fire sensors; actuation of fire suppression systems. Point-type heat sensors or automatic fire sensor and warning device systems may be used to actuate deluge-type water systems...

  1. 30 CFR 75.1103-6 - Automatic fire sensors; actuation of fire suppression systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Automatic fire sensors; actuation of fire... Protection § 75.1103-6 Automatic fire sensors; actuation of fire suppression systems. Point-type heat sensors or automatic fire sensor and warning device systems may be used to actuate deluge-type water systems...

  2. Design and fabrication of a MEMS chevron-type thermal actuator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baracu, Angela, E-mail: angela.baracu@imt.ro; Voicu, Rodica; Müller, Raluca

    This paper presents the design and fabrication of a MEMS chevron-type thermal actuator. The device was designed for fabrication in the standard MEMS technology, where the topography of the upper layers depends on the patterns of structural and sacrificial layers underneath. The proposed actuator presents some advantages over usual thermal vertical chevron actuators by means of low operating voltages, high output force and linear movement without deformation of the shaft. The device simulations were done using COVENTOR software. The movement obtained by simulation was 12 μm, for a voltage of 0.2 V and the current intensity of 257 mA. Themore » design optimizes the in-plane displacement by fixed anchors and beam inclination angle. Heating is provided by Joule dissipation. The material used for manufacture of chevron-based actuator was aluminum due to its thermal and mechanical properties. The release of the movable part was performed using isotropic dry etching by Reactive Ion Etching (RIE). A first inspection was achieved using Scanning Electron Microscope (SEM). In order to obtain the in-plane displacement we carried out electrical measurements. The thermal actuator can be used for a variety of optical and microassembling applications. This kind of thermal actuator could be integrated easily with other micro devices since its fabrication is compatible with the general semiconductor processes.« less

  3. Fabrication of comb-drive actuators for straining nanostructured suspended graphene.

    PubMed

    Goldsche, Matthias; Verbiest, G J; Khodkov, Tymofiy; Sonntag, Jens; von den Driesch, Nils; Buca, Dan; Stampfer, Christoph

    2018-06-20

    We report on the fabrication and characterization of an optimized comb-drive actuator design for strain-dependent transport measurements on suspended graphene. We fabricate devices from highly p-doped silicon using deep reactive ion etching with a chromium mask. Crucially, we implement a gold layer to reduce the device resistance from ≈51.6 kΩ to ≈236 Ω at room temperature in order to allow for strain-dependent transport measurements. The graphene is integrated by mechanically transferring it directly onto the actuator using a polymethylmethacrylate membrane. Importantly, the integrated graphene can be nanostructured afterwards to optimize device functionality. The minimum feature size of the structured suspended graphene is 30~nm, which allows for interesting device concepts such as mechanically-tunable nanoconstrictions. Finally, we characterize the fabricated devices by measuring the Raman spectrum as well as the a mechanical resonance frequency of an integrated graphene sheet for different strain values. © 2018 IOP Publishing Ltd.

  4. Active Flow Control: Instrumentation Automation and Experimental Technique

    NASA Technical Reports Server (NTRS)

    Gimbert, N. Wes

    1995-01-01

    In investigating the potential of a new actuator for use in an active flow control system, several objectives had to be accomplished, the largest of which was the experimental setup. The work was conducted at the NASA Langley 20x28 Shear Flow Control Tunnel. The actuator named Thunder, is a high deflection piezo device recently developed at Langley Research Center. This research involved setting up the instrumentation, the lighting, the smoke, and the recording devices. The instrumentation was automated by means of a Power Macintosh running LabVIEW, a graphical instrumentation package developed by National Instruments. Routines were written to allow the tunnel conditions to be determined at a given instant at the push of a button. This included determination of tunnel pressures, speed, density, temperature, and viscosity. Other aspects of the experimental equipment included the set up of a CCD video camera with a video frame grabber, monitor, and VCR to capture the motion. A strobe light was used to highlight the smoke that was used to visualize the flow. Additional effort was put into creating a scale drawing of another tunnel on site and a limited literature search in the area of active flow control.

  5. Micromixer based on dielectric stack actuators for medical applications

    NASA Astrophysics Data System (ADS)

    Solano-Arana, Susana; Klug, Florian; Mößinger, Holger; Förster-Zügel, Florentine; Schlaak, Helmut F.

    2017-04-01

    Based on a previously developed microperistaltic pump, a micromixer made out of dielectric elastomer stack actuators (DESA) is proposed. The micromixer will be able to mix two fluids at the microscale, pumping both fluids in and out of the device. The device consists of three chambers. In the first and second chambers, fluids A and B are hosted, while in the third chamber, fluids A and B are mixed. The fluid flow regime is laminar. The application of voltage leads to an increase of the size of a gap in the z-axis direction, due to the actuators area expansion. This makes a channel open through which the fluid flows. The frequency of the actuation of the different actuators allows an increase of the flow rate. The micromixer can be used for applications such as drug delivery and synthesis of nucleic acids, the proposed device will be made of Polydimethylsiloxane (PDMS) as dielectric and graphite powder as electrode material. PDMS is a biocompatible material, widely used in the prosthesis field. Mixing fluids at a microscale is also in need in the lab-on-achip technology for complex chemical reactions.

  6. A two-axis micromachined silicon actuator with micrometer range electrostatic actuation and picometer sensitive capacitive detection

    NASA Astrophysics Data System (ADS)

    Ayela, F.; Bret, J. L.; Chaussy, J.; Fournier, T.; Ménégaz, E.

    2000-05-01

    This article presents an innovative micromachined silicon actuator. A 50-μm-thick silicon foil is anodically bonded onto a broached Pyrex substrate. A free standing membrane and four coplanar electrodes in close proximity are then lithographied and etched. The use of phosphorus doped silicon with low electrical resistivity allows the application of an electrostatic force between one electrode and the moving diaphragm. This plane displacement and the induced interelectrode variation are capacitively detected. Due to the very low electrical resistivity of the doped silicon, there is no need to metallize the vertical trenches of the device. No piezoelectric transducer takes place so that the mechanical device is free from any hysteretic or temperature dependance. The range of the possible actuation along the x and y axis is around 5 μm. The actual sensitivity is xn=0.54 Å/Hz1/2 and yn=0.14 Å/Hz1/2. The microengineering steps and the electronic setup devoted to design the actuator and to perform relative capacitive measurements ΔC/C=10-6 from an initial value C≈10-13 F are described. The elaborated tests and performances of the device are presented. As a conclusion, some experimental projects using this subnanometric sensitive device are mentioned.

  7. Large displacement spring-like electro-mechanical thermal actuators with insulator constraint beams

    NASA Astrophysics Data System (ADS)

    Luo, J. K.; Fu, Y. Q.; Flewitt, A. J.; Spearing, S. M.; Fleck, N. A.; Milne, W. I.

    2005-07-01

    A number of in-plane spring-like micro-electro-thermal-actuators with large displacements were proposed. The devices take the advantage of the large difference in the thermal expansion coefficients between the conductive arms and the insulator clamping beams. The constraint beams in one type (the spring) of these devices are horizontally positioned to restrict the expansion of the active arms in the x-direction, and to produce a displacement in the y-direction only. In other two types of actuators (the deflector and the contractor), the constraint beams are positioned parallel to the active arms. When the constraint beams are on the inside of the active arms, the actuator produces an outward deflection in the y-direction. When they are on the outside of the active arms, the actuator produces an inward contraction. Analytical model and finite element analysis were used to simulate the performances. It showed that at a constant temperature, analytical model is sufficient to predict the displacement of these devices. The displacements are all proportional to the temperature and the number of the chevron sections. A two-mask process is under development to fabricate these devices, using Si3N4 as the insulator beams, and electroplated Ni as the conductive beams.

  8. Actuating materials. Voxelated liquid crystal elastomers.

    PubMed

    Ware, Taylor H; McConney, Michael E; Wie, Jeong Jae; Tondiglia, Vincent P; White, Timothy J

    2015-02-27

    Dynamic control of shape can bring multifunctionality to devices. Soft materials capable of programmable shape change require localized control of the magnitude and directionality of a mechanical response. We report the preparation of soft, ordered materials referred to as liquid crystal elastomers. The direction of molecular order, known as the director, is written within local volume elements (voxels) as small as 0.0005 cubic millimeters. Locally, the director controls the inherent mechanical response (55% strain) within the material. In monoliths with spatially patterned director, thermal or chemical stimuli transform flat sheets into three-dimensional objects through controlled bending and stretching. The programmable mechanical response of these materials could yield monolithic multifunctional devices or serve as reconfigurable substrates for flexible devices in aerospace, medicine, or consumer goods. Copyright © 2015, American Association for the Advancement of Science.

  9. Effect of delayed pMDI actuation on the lung deposition of a fixed-dose combination aerosol drug.

    PubMed

    Farkas, Árpád; Horváth, Alpár; Kerekes, Attila; Nagy, Attila; Kugler, Szilvia; Tamási, Lilla; Tomisa, Gábor

    2018-06-07

    Lack of coordination between the beginning of the inhalation and device triggering is one of the most frequent errors reported in connection with the use of pMDI devices. Earlier results suggested a significant loss in lung deposition as a consequence of late actuation. However, most of our knowledge on the effect of poor synchronization is based on earlier works on CFC devices emitting large particles with high initial velocities. The aim of this study was to apply numerical techniques to analyse the effect of late device actuation on the lung dose of a HFA pMDI drug emitting high fraction of extrafine particles used in current asthma and COPD therapy. A computational fluid and particle dynamics model was combined with stochastic whole lung model to quantify the amount of drug depositing in the extrathoracic airways and in the lungs. High speed camera measurements were also performed to characterize the emitted spray plume. Our results have shown that for the studied pMDI drug late actuation leads to reasonable loss in terms of lung dose, unless it happens in the second half of the inhalation period. Device actuation at the middle of the inhalation caused less than 25% lung dose reduction relative to the value characterizing perfect coordination, if the inhalation time was between 2-5 s and inhalation flow rate between 30-150 L/min. This dose loss is lower than the previously known values of CFC devices and further support the practice of triggering the device shortly after the beginning of the inhalation instead of forcing a perfect synchronization and risking mishandling and poor drug deposition. Copyright © 2018. Published by Elsevier B.V.

  10. Photo-actuation of liquids for light-driven microfluidics: state of the art and perspectives.

    PubMed

    Baigl, Damien

    2012-10-07

    Using light to control liquid motion is a new paradigm for the actuation of microfluidic systems. We review here the different principles and strategies to induce or control liquid motion using light, which includes the use of radiation pressure, optical tweezers, light-induced wettability gradients, the thermocapillary effect, photosensitive surfactants, the chromocapillary effect, optoelectrowetting, photocontrolled electroosmotic flows and optical dielectrophoresis. We analyze the performance of these approaches to control using light many kinds of microfluidic operations involving discrete pL- to μL-sized droplets (generation, driving, mixing, reaction, sorting) or fluid flows in microchannels (valve operation, injection, pumping, flow rate control). We show that a complete toolbox is now available to control microfluidic systems by light. We finally discuss the perspectives of digital optofluidics as well as microfluidics based on all optical fluidic chips and optically reconfigurable devices.

  11. Effects of capacitors, resistors, and residual charges on the static and dynamic performance of electrostatically actuated devices

    NASA Astrophysics Data System (ADS)

    Chan, Edward K.; Dutton, Robert W.

    1999-03-01

    The important practical and realistic design issues of an electrostatic actuator/positioner with full-gap travel are discussed. Analytic expressions and numerical simulations show that parasitic capacitances, and non-uniform deformation in two and three dimensions influence the range of travel of an electrostatic positioner stabilized by the addition of a series capacitor. The effects of residual charge on electrostatically-actuated devices are described. The dynamic stepping characteristics of the positioner under compressible squeeze-film damping and resistive damping are compared. The physical descriptions of devices being fabricated in the MUMPs process are presented along with 3D simulation results that demonstrate viability.

  12. A microfluidic multi-injector for gradient generation.

    PubMed

    Chung, Bong Geun; Lin, Francis; Jeon, Noo Li

    2006-06-01

    This paper describes a microfluidic multi-injector (MMI) that can generate temporal and spatial concentration gradients of soluble molecules. Compared to conventional glass micropipette-based methods that generate a single gradient, the MMI exploits microfluidic integration and actuation of multiple pulsatile injectors to generate arbitrary overlapping gradients that have not previously been possible. The MMI device is fabricated in poly(dimethylsiloxane) (PDMS) using multi-layer soft lithography and consists of fluidic channels and control channels with pneumatically actuated on-chip barrier valves. Repetitive actuation of on-chip valves control pulsatile release of solution that establishes microscopic chemical gradients around the orifice. The volume of solution released per actuation cycle ranged from 30 picolitres to several hundred picolitres and increased linearly with the duration of valve opening. The shape of the measured gradient profile agreed closely with the simulated diffusion profile from a point source. Steady state gradient profiles could be attained within 10 minutes, or less with an optimized pulse sequence. Overlapping gradients from 2 injectors were generated and characterized to highlight the advantages of MMI over conventional micropipette assays. The MMI platform should be useful for a wide range of basic and applied studies on chemotaxis and axon guidance.

  13. LQC control for the Mini-Mast experiment

    NASA Technical Reports Server (NTRS)

    Montgomery, R. C.; Ghosh, D.

    1988-01-01

    The Mini-Mast system is briefly reviewed, and results of a simulation study of the LQG control for the Mini-Mast experiment are reported. In particular, attention is given to problems and limitations related to the testing of control laws using reaction mass actuators, such as accounting for force and stroke limits of these devices. The local controller used in the study and the algorithm for converting the force commands of the LQG algorithm to position commands for the reaction mass device are described. It is shown that the LQG generated damping is reduced when a local controller is used and the position command is not saturated; it drops still further when the position command is saturated.

  14. Thermal Actuation Based 3-DoF Non-Resonant Microgyroscope Using MetalMUMPs

    PubMed Central

    Shakoor, Rana Iqtidar; Bazaz, Shafaat Ahmed; Kraft, Michael; Lai, Yongjun; Masood ul Hassan, Muhammad

    2009-01-01

    High force, large displacement and low voltage consumption are a primary concern for microgyroscopes. The chevron-shaped thermal actuators are unique in terms of high force generation combined with the large displacements at a low operating voltage in comparison with traditional electrostatic actuators. A Nickel based 3-DoF micromachined gyroscope comprising 2-DoF drive mode and 1-DoF sense mode oscillator utilizing the chevron-shaped thermal actuators is presented here. Analytical derivations and finite element simulations are carried out to predict the performance of the proposed device using the thermo-physical properties of electroplated nickel. The device sensitivity is improved by utilizing the dynamical amplification of the oscillation in 2-DoF drive mode using an active-passive mass configuration. A comprehensive theoretical description, dynamics and mechanical design considerations of the proposed gyroscopes model are discussed in detail. Parametric optimization of gyroscope, its prototype modeling and fabrication using MetalMUMPs has also been investigated. Dynamic transient simulation results predicted that the sense mass of the proposed device achieved a drive displacement of 4.1μm when a sinusoidal voltage of 0.5V is applied at 1.77 kHz exhibiting a mechanical sensitivity of 1.7μm /°/s in vacuum. The wide bandwidth frequency response of the 2-DoF drive mode oscillator consists of two resonant peaks and a flat region of 2.11 kHz between the peaks defining the operational frequency region. The sense mode resonant frequency can lie anywhere within this region and therefore the amplitude of the response is insensitive to structural parameter variations, enhancing device robustness against such variations. The proposed device has a size of 2.2 × 2.6 mm2, almost one third in comparison with existing M-DoF vibratory gyroscope with an estimated power consumption of 0.26 Watts. These predicted results illustrate that the chevron-shaped thermal actuator has a large voltage-stroke ratio shifting the paradigm in MEMS gyroscope design from the traditional interdigitated comb drive electrostatic actuator. These actuators have low damping compared to electrostatic comb drive actuators which may result in high quality factor microgyroscopes operating at atmospheric pressure. PMID:22574020

  15. Large Displacement in Relaxor Ferroelectric Terpolymer Blend Derived Actuators Using Al Electrode for Braille Displays

    PubMed Central

    Lu, S. G.; Chen, X.; Levard, T.; Diglio, P. J.; Gorny, L. J.; Rahn, C. D.; Zhang, Q. M.

    2015-01-01

    Poly(vinylidene fluoride) (PVDF) based polymers are attractive for applications for artificial muscles, high energy density storage devices etc. Recently these polymers have been found great potential for being used as actuators for refreshable full-page Braille displays for visually impaired people in terms of light weight, miniaturized size, and larger displacement, compared with currently used lead zirconate titanate ceramic actuators. The applied voltages of published polymer actuators, however, cannot be reduced to meet the requirements of using city power. Here, we report the polymer actuator generating quite large displacement and blocking force at a voltage close to the city power. Our embodiments also show good self-healing performance and disuse of lead-containing material, which makes the Braille device safer, more reliable and more environment-friendly. PMID:26079628

  16. Torque-actuated valves for microfluidics.

    PubMed

    Weibel, Douglas B; Kruithof, Maarten; Potenta, Scott; Sia, Samuel K; Lee, Andrew; Whitesides, George M

    2005-08-01

    This paper describes torque-actuated valves for controlling the flow of fluids in microfluidic channels. The valves consist of small machine screws (> or =500 microm) embedded in a layer of polyurethane cast above microfluidic channels fabricated in poly(dimethylsiloxane) (PDMS). The polyurethane is cured photochemically with the screws in place; on curing, it bonds to the surrounding layer of PDMS and forms a stiff layer that retains an impression of the threads of the screws. The valves were separated from the ceiling of microfluidic channels by a layer of PDMS and were integrated into channels using a simple procedure compatible with soft lithography and rapid prototyping. Turning the screws actuated the valves by collapsing the PDMS layer between the valve and channel, controlling the flow of fluids in the underlying channels. These valves have the useful characteristic that they do not require power to retain their setting (on/off). They also allow settings between "on" and "off" and can be integrated into portable, disposable microfluidic devices for carrying out sandwich immunoassays.

  17. Ti Ni shape memory alloy film-actuated microstructures for a MEMS probe card

    NASA Astrophysics Data System (ADS)

    Namazu, Takahiro; Tashiro, Youichi; Inoue, Shozo

    2007-01-01

    This paper describes the development of a novel silicon (Si) cantilever beam device actuated by titanium-nickel (Ti-Ni) shape memory alloy (SMA) films. A Ti-Ni SMA film can yield high work output per unit volume, so a Ti-Ni film-actuated Si cantilever beam device is a prospective tool for use as a microelectromechanical system (MEMS) probe card that provides a relatively large contact force between the probe and electrode pad in spite of its minute size. Before fabrication of the device, the thermomechanical deformation behavior of Ti-Ni SMA films with various compositions was investigated in order to determine a sufficient constituent film for a MEMS actuator. As a result, Ti-Ni films having a Ti content of 50.2 to 52.6 atomic% (at%) were found to be usable for operation as a room temperature actuator. We have developed a Ti-Ni film-actuated Si cantilever beam device, which can produce a contact force by the cantilever bending when in contact, and also by the shape memory effect (SME) of the Ti-Ni film arising from Joule heating. The SME of the Ti-Ni film can generate an additional average contact force of 200 µN with application of 500 mW to the film. In addition to physical contact, a dependable electric contact between the Au film-coated probe tip and the Al film electrode was achieved. However, the contact resistance exhibited an average value of 25 Ω, which would have to be reduced for practical use. Reliability tests confirmed the durability of the Ti-Ni film-actuated Si cantilever-beam, in that the contact resistance was constant throughout a large number of physical contacts (>104 times).

  18. MODULAR MANIPULATOR FOR ROBOTICS APPLICATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph W. Geisinger, Ph.D.

    ARM Automation, Inc. is developing a framework of modular actuators that can address the DOE's wide range of robotics needs. The objective of this effort is to demonstrate the effectiveness of this technology by constructing a manipulator from these actuators within a glovebox for Automated Plutonium Processing (APP). At the end of the project, the system of actuators was used to construct several different manipulator configurations, which accommodate common glovebox tasks such as repackaging. The modular nature and quickconnects of this system simplify installation into ''hot'' boxes and any potential modifications or repair therein. This work focused on the developmentmore » of self-contained robotic actuator modules including the embedded electronic controls for the purpose of building a manipulator system. Both of the actuators developed under this project contain the control electronics, sensors, motor, gear train, wiring, system communications and mechanical interfaces of a complete robotics servo device. Test actuators and accompanying DISC{trademark}s underwent validation testing at The University of Texas at Austin and ARM Automation, Inc. following final design and fabrication. The system also included custom links, an umbilical cord, an open architecture PC-based system controller, and operational software that permitted integration into a completely functional robotic manipulator system. The open architecture on which this system is based avoids proprietary interfaces and communication protocols which only serve to limit the capabilities and flexibility of automation equipment. The system was integrated and tested in the contractor's facility for intended performance and operations. The manipulator was tested using the full-scale equipment and process mock-ups. The project produced a practical and operational system including a quantitative evaluation of its performance and cost.« less

  19. Structural and Machine Design Using Piezoceramic Materials: A Guide for Structural Design Engineers

    NASA Technical Reports Server (NTRS)

    Inman, Daniel J.; Cudney, Harley H.

    2000-01-01

    Using piezoceramic materials is one way the design engineer can create structures which have an ability to both sense and respond to their environment. Piezoceramic materials can be used to create structural sensors and structural actuators. Because piezoceramic materials have transduction as a material property, their sensing or actuation functions are a result of what happens to the material. This is different than discrete devices we might attach to the structure. For example, attaching an accelerometer to a structure will yield an electrical signal proportional to the acceleration at the attachment point on the structure. Using a electromagnetic shaker as an actuator will create an applied force at the attachment point. Active material elements in a structural design are not easily modeled as providing transduction at a point, but rather they change the physics of the structure in the areas where they are used. Hence, a designer must not think of adding discrete devices to a structure to obtain an effect, but rather must design a structural system which accounts for the physical principles of all the elements in the structure. The purpose of this manual is to provide practicing engineers the information necessary to incorporate piezoelectric materials in structural design and machine design. First, we will review the solid-state physics of piezoelectric materials. Then we will discuss the physical characteristics of the electrical-active material-structural system. We will present the elements of this system which must be considered as part of the design task for a structural engineer. We will cover simple modeling techniques and review the features and capabilities of commercial design tools that are available. We will then cover practical how-to elements of working with piezoceramic materials. We will review sources of piezoceramic materials and built-up devices, and their characteristics. Finally, we will provide two design examples using piezoceramic materials, first as discrete actuators for vibration isolation, and second as structurally-distributed sensor/actuators for active acoustic control.

  20. Application of the moving-actuator type pump as a ventricular assist device: in vitro and in vivo studies.

    PubMed

    Lee, H S; Rho, Y R; Park, C Y; Hwang, C M; Kim, W G; Sun, K; Choi, M J; Lee, K K; Cheong, J T; Shim, E B; Min, B G

    2002-06-01

    A moving actuator type pump has been developed as a multifunctional Korean artificial heart (AnyHeart). The pump consists of a moving actuator as an energy converter, right and left sacs, polymer (or mechanical) valves, and a rigid polyurethane housing. The actuator containing a brushless DC motor moves back and forth on an epicyclical gear train to produce a pendular motion, which compresses both sacs alternately. Of its versatile functions of ventricular assist device and total artificial heart use, we have evaluated the system performance as a single or biventricular assist device through in vitro and in vivo experiments. Pump performance and anatomical feasibility were tested using various animals of different sizes. In the case of single ventricular assist device (VAD) use, one of the sacs remained empty and a mini-compliance chamber was attached to either an outflow or inflow port of the unused sac. The in vitro and in vivo studies show acceptable performance and pump behavior. Further extensive study is required to proceed to human application.

  1. Zero-leak valve

    NASA Technical Reports Server (NTRS)

    Macglashan, W. F., Jr.

    1980-01-01

    Zero-leakage valve has fluid-sealing diaphragm support and flat sievelike sealing surface. Diaphragm-support valve is easy to fabricate and requires minimum maintenance. Potential applications include isolation valve for waste systems and remote air-actuated valve. Device is also useful in controlling flow of liquid fluorine and corrosive fluids at high pressures.

  2. Robotic Arms. A Contribution to the Curriculum. An Occasional Paper.

    ERIC Educational Resources Information Center

    Arnold, W. F.; Carpenter, C. J.

    This report examines ways of providing technician training in the operating principles of robotic devices. The terms "robotics" and "robotic arms" are first defined. Some background information on the principal features of robotic arms is given, including their geometric arrangement, type of actuator used, control method, and…

  3. Effectiveness enhancement of a cycloidal wind turbine by individual active control of blade motion

    NASA Astrophysics Data System (ADS)

    Hwang, In Seong; Lee, Yun Han; Kim, Seung Jo

    2007-04-01

    In this paper, a research for the effectiveness enhancement of a Cycloidal Wind Turbine by individual active control of blade motion is described. To improve the performance of the power generation system, which consists of several straight blades rotating about axis in parallel direction, the cycloidal blade system and the individual active blade control method are adopted. It has advantages comparing with horizontal axis wind turbine or conventional vertical axis wind turbine because it maintains optimal blade pitch angles according to wind speed, wind direction and rotor rotating speed to produce high electric power at any conditions. It can do self-starting and shows good efficiency at low wind speed and complex wind condition. Optimal blade pitch angle paths are obtained through CFD analysis according to rotor rotating speed and wind speed. The individual rotor blade control system consists of sensors, actuators and microcontroller. To realize the actuating device, servo motors are installed to each rotor blade. Actuating speed and actuating force are calculated to compare with the capacities of servo motor, and some delays of blade pitch angles are corrected experimentally. Performance experiment is carried out by the wind blowing equipment and Labview system, and the rotor rotates from 50 to 100 rpm according to the electric load. From this research, it is concluded that developing new vertical axis wind turbine, Cycloidal Wind Turbine which is adopting individual active blade pitch control method can be a good model for small wind turbine in urban environment.

  4. Anti-backlash drive systems for multi-degree freedom devices

    DOEpatents

    Tsai, Lung-Wen; Chang, Sun-Lai

    1993-01-01

    A new and innovative concept for the control of backlash in gear-coupled transmission mechanisms. The concept utilizes redundant unidirectional drives to assure positive coupling of gear meshes at all times. Based on this concept, a methodology for the enumeration of admissible redundant-drive backlash-free robotic mechanisms has been established. Some typical two- and three-DOF mechanisms are disclosed. Furthermore, actuator torques have been derived as functions of either joint torques or end-effector dynamic performance requirements. A redundantly driven gear coupled transmission mechanism manipulator has a fail-safe advantage in that, except of the loss of backlash control, it can continue to function when one of its actuators fails. A two-DOF backlash-free arm has been reduced to practice to demonstrate the principle.

  5. Development of a Prototype Over-Actuated Biomimetic Prosthetic Hand

    PubMed Central

    Williams, Matthew R.; Walter, Wayne

    2015-01-01

    The loss of a hand can greatly affect quality of life. A prosthetic device that can mimic normal hand function is very important to physical and mental recuperation after hand amputation, but the currently available prosthetics do not fully meet the needs of the amputee community. Most prosthetic hands are not dexterous enough to grasp a variety of shaped objects, and those that are tend to be heavy, leading to discomfort while wearing the device. In order to attempt to better simulate human hand function, a dexterous hand was developed that uses an over-actuated mechanism to form grasp shape using intrinsic joint mounted motors in addition to a finger tendon to produce large flexion force for a tight grip. This novel actuation method allows the hand to use small actuators for grip shape formation, and the tendon to produce high grip strength. The hand was capable of producing fingertip flexion force suitable for most activities of daily living. In addition, it was able to produce a range of grasp shapes with natural, independent finger motion, and appearance similar to that of a human hand. The hand also had a mass distribution more similar to a natural forearm and hand compared to contemporary prosthetics due to the more proximal location of the heavier components of the system. This paper describes the design of the hand and controller, as well as the test results. PMID:25790306

  6. A Novel MUMPs-compatible single-layer out-of-plane electrothermal actuator

    NASA Astrophysics Data System (ADS)

    Tang, Weider; Wu, Mingching; Ho, Yi-Ping; Yeh, Mau-Shium; Fang, Weileun

    2002-11-01

    Microactuator is one of the key components for the microelectromechanical systems (MEMS), and it can be categorized as out-of-plane and in-plane according to the motion types. Most of the existing out-of-plane thermal actuators are multi-layer structures. In this paper, a novel electrothermal single-layer out-of-plane actuator is provided and it characteristics and advantages of this device are stated as follows: (1) This actuator is consisted of only a single thin film material, therefore, it can prevent from delaminating after a long-term operation. Besides, owing to its symmetric geometric design, the inner-beams of this structure don"t have any current passed through them and the inner-beams also provide a geometric constraint to allow the two free ends of the structure to bend upwards symmetrically. (2) This device can be operated at a relative low voltage (<5 volt), and deflected upwards about 4 μm in the experiment test. Besides, the fabrication process is very simple and it is MUMPs(Multi-User MEMS Processes)-compatible. Presently, a prototype structure has been successfully fabricated and tested. This structure offers the potential applications in the adaptive optics systems, and Fabry-Perot filters, etc. Besides, it also provides an interface to cooperate with integrated circuits (IC) and various optical elements to construct an embedded-control optical system.

  7. Electrically actuatable doped polymer flakes and electrically addressable optical devices using suspensions of doped polymer flakes in a fluid host

    DOEpatents

    Trajkovska-Petkoska, Anka; Jacobs, Stephen D.; Marshall, Kenneth L.; Kosc, Tanya Z.

    2010-05-11

    Doped electrically actuatable (electrically addressable or switchable) polymer flakes have enhanced and controllable electric field induced motion by virtue of doping a polymer material that functions as the base flake matrix with either a distribution of insoluble dopant particles or a dopant material that is completely soluble in the base flake matrix. The base flake matrix may be a polymer liquid crystal material, and the dopants generally have higher dielectric permittivity and/or conductivity than the electrically actuatable polymer base flake matrix. The dopant distribution within the base flake matrix may be either homogeneous or non-homogeneous. In the latter case, the non-homogeneous distribution of dopant provides a dielectric permittivity and/or conductivity gradient within the body of the flakes. The dopant can also be a carbon-containing material (either soluble or insoluble in the base flake matrix) that absorbs light so as to reduce the unpolarized scattered light component reflected from the flakes, thereby enhancing the effective intensity of circularly polarized light reflected from the flakes when the flakes are oriented into a light reflecting state. Electro-optic devices contain these doped flakes suspended in a host fluid can be addressed with an applied electric field, thus controlling the orientation of the flakes between a bright reflecting state and a non-reflecting dark state.

  8. Soft Somatosensitive Actuators via Embedded 3D Printing.

    PubMed

    Truby, Ryan L; Wehner, Michael; Grosskopf, Abigail K; Vogt, Daniel M; Uzel, Sebastien G M; Wood, Robert J; Lewis, Jennifer A

    2018-04-01

    Humans possess manual dexterity, motor skills, and other physical abilities that rely on feedback provided by the somatosensory system. Herein, a method is reported for creating soft somatosensitive actuators (SSAs) via embedded 3D printing, which are innervated with multiple conductive features that simultaneously enable haptic, proprioceptive, and thermoceptive sensing. This novel manufacturing approach enables the seamless integration of multiple ionically conductive and fluidic features within elastomeric matrices to produce SSAs with the desired bioinspired sensing and actuation capabilities. Each printed sensor is composed of an ionically conductive gel that exhibits both long-term stability and hysteresis-free performance. As an exemplar, multiple SSAs are combined into a soft robotic gripper that provides proprioceptive and haptic feedback via embedded curvature, inflation, and contact sensors, including deep and fine touch contact sensors. The multimaterial manufacturing platform enables complex sensing motifs to be easily integrated into soft actuating systems, which is a necessary step toward closed-loop feedback control of soft robots, machines, and haptic devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Electrostatically actuatable light modulating device

    DOEpatents

    Koehler, Dale R.

    1991-01-01

    The electrostatically actuatable light modulator utilizes an opaque substrate plate patterned with an array of aperture cells, the cells comprised of physically positionable dielectric shutters and electrostatic actuators. With incorporation of a light source and a viewing screen, a projection display system is effected. Inclusion of a color filter array aligned with the aperture cells accomplishes a color display. The system is realized in terms of a silicon based manufacturing technology allowing fabrication of a high resolution capability in a physically small device which with the utilization of included magnification optics allows both large and small projection displays.

  10. Optimal Control of Shock Wave Turbulent Boundary Layer Interactions Using Micro-Array Actuation

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Tinapple, Jon; Surber, Lewis

    2006-01-01

    The intent of this study on micro-array flow control is to demonstrate the viability and economy of Response Surface Methodology (RSM) to determine optimal designs of micro-array actuation for controlling the shock wave turbulent boundary layer interactions within supersonic inlets and compare these concepts to conventional bleed performance. The term micro-array refers to micro-actuator arrays which have heights of 25 to 40 percent of the undisturbed supersonic boundary layer thickness. This study covers optimal control of shock wave turbulent boundary layer interactions using standard micro-vane, tapered micro-vane, and standard micro-ramp arrays at a free stream Mach number of 2.0. The effectiveness of the three micro-array devices was tested using a shock pressure rise induced by the 10 shock generator, which was sufficiently strong as to separate the turbulent supersonic boundary layer. The overall design purpose of the micro-arrays was to alter the properties of the supersonic boundary layer by introducing a cascade of counter-rotating micro-vortices in the near wall region. In this manner, the impact of the shock wave boundary layer (SWBL) interaction on the main flow field was minimized without boundary bleed.

  11. An EMG Interface for the Control of Motion and Compliance of a Supernumerary Robotic Finger

    PubMed Central

    Hussain, Irfan; Spagnoletti, Giovanni; Salvietti, Gionata; Prattichizzo, Domenico

    2016-01-01

    In this paper, we propose a novel electromyographic (EMG) control interface to control motion and joints compliance of a supernumerary robotic finger. The supernumerary robotic fingers are a recently introduced class of wearable robotics that provides users additional robotic limbs in order to compensate or augment the existing abilities of natural limbs without substituting them. Since supernumerary robotic fingers are supposed to closely interact and perform actions in synergy with the human limbs, the control principles of extra finger should have similar behavior as human’s ones including the ability of regulating the compliance. So that, it is important to propose a control interface and to consider the actuators and sensing capabilities of the robotic extra finger compatible to implement stiffness regulation control techniques. We propose EMG interface and a control approach to regulate the compliance of the device through servo actuators. In particular, we use a commercial EMG armband for gesture recognition to be associated with the motion control of the robotic device and surface one channel EMG electrodes interface to regulate the compliance of the robotic device. We also present an updated version of a robotic extra finger where the adduction/abduction motion is realized through ball bearing and spur gears mechanism. We have validated the proposed interface with two sets of experiments related to compensation and augmentation. In the first set of experiments, different bimanual tasks have been performed with the help of the robotic device and simulating a paretic hand since this novel wearable system can be used to compensate the missing grasping abilities in chronic stroke patients. In the second set, the robotic extra finger is used to enlarge the workspace and manipulation capability of healthy hands. In both sets, the same EMG control interface has been used. The obtained results demonstrate that the proposed control interface is intuitive and can successfully be used, not only to control the motion of a supernumerary robotic finger but also to regulate its compliance. The proposed approach can be exploited also for the control of different wearable devices that has to actively cooperate with the human limbs. PMID:27891088

  12. Noise screen for attitude control system

    NASA Technical Reports Server (NTRS)

    Rodden, John J. (Inventor); Stevens, Homer D. (Inventor); Hong, David P. (Inventor); Hirschberg, Philip C. (Inventor)

    2002-01-01

    An attitude control system comprising a controller and a noise screen device coupled to the controller. The controller is adapted to control an attitude of a vehicle carrying an actuator system that is adapted to pulse in metered bursts in order to generate a control torque to control the attitude of the vehicle in response to a control pulse. The noise screen device is adapted to generate a noise screen signal in response to the control pulse that is generated when an input attitude error signal exceeds a predetermined deadband attitude level. The noise screen signal comprises a decaying offset signal that when combined with the attitude error input signal results in a net attitude error input signal away from the predetermined deadband level to reduce further control pulse generation.

  13. Biomechanics and energetics of walking in powered ankle exoskeletons using myoelectric control versus mechanically intrinsic control.

    PubMed

    Koller, Jeffrey R; Remy, C David; Ferris, Daniel P

    2018-05-25

    Controllers for assistive robotic devices can be divided into two main categories: controllers using neural signals and controllers using mechanically intrinsic signals. Both approaches are prevalent in research devices, but a direct comparison between the two could provide insight into their relative advantages and disadvantages. We studied subjects walking with robotic ankle exoskeletons using two different control modes: dynamic gain proportional myoelectric control based on soleus muscle activity (neural signal), and timing-based mechanically intrinsic control based on gait events (mechanically intrinsic signal). We hypothesized that subjects would have different measures of metabolic work rate between the two controllers as we predicted subjects would use each controller in a unique manner due to one being dependent on muscle recruitment and the other not. The two controllers had the same average actuation signal as we used the control signals from walking with the myoelectric controller to shape the mechanically intrinsic control signal. The difference being the myoelectric controller allowed step-to-step variation in the actuation signals controlled by the user's soleus muscle recruitment while the timing-based controller had the same actuation signal with each step regardless of muscle recruitment. We observed no statistically significant difference in metabolic work rate between the two controllers. Subjects walked with 11% less soleus activity during mid and late stance and significantly less peak soleus recruitment when using the timing-based controller than when using the myoelectric controller. While walking with the myoelectric controller, subjects walked with significantly higher average positive and negative total ankle power compared to walking with the timing-based controller. We interpret the reduced ankle power and muscle activity with the timing-based controller relative to the myoelectric controller to result from greater slacking effects. Subjects were able to be less engaged on a muscle level when using a controller driven by mechanically intrinsic signals than when using a controller driven by neural signals, but this had no affect on their metabolic work rate. These results suggest that the type of controller (neural vs. mechanical) is likely to affect how individuals use robotic exoskeletons for therapeutic rehabilitation or human performance augmentation.

  14. On-chip functional neuroimaging with mechanical stimulation in Caenorhabditis elegans larvae for studying development and neural circuits.

    PubMed

    Cho, Yongmin; Oakland, David N; Lee, Sol Ah; Schafer, William R; Lu, Hang

    2018-02-13

    Mechanosensation is fundamentally important for the abilities of an organism to experience touch, hear sounds, and maintain balance. Caenorhabditis elegans is a powerful system for studying mechanosensation as this worm is well suited for in vivo functional imaging of neurons. Many years of research using labor-intensive methods have generated a wealth of knowledge about mechanosensation in C. elegans, and the recent microfluidic-based platforms continue to push the boundary for this field. However, developmental aspects of sensory biology, including mechanosensation, are still not fully understood. One current bottleneck is the difficulty in assaying larvae because they are much smaller than adult worms. Microfluidic devices with features small enough for larvae, especially actuators for the delivery of mechanical stimulation, are difficult to design and fabricate. Here, we present a series of automatic microfluidic platforms that allow for in vivo functional imaging of C. elegans responding to controlled mechanical stimulation at different developmental stages. Using a novel fabrication method, we designed highly deformable pneumatically actuated on-chip structures that can deliver mechanical stimulation to larval worms. The PDMS actuator allows for quantitatively controlled mechanical stimulation of both gentle and harsh touch neurons, by simply changing the actuation pressure, which makes this device easily translatable to other labs. We validated the design and utility of our systems with studies of the functional role of mechanosensory neurons in developing worms; we showed that gentle and harsh touch neurons function similarly in early larvae as they do in the adult stage, which would not have been possible previously. Finally, we investigated the effect of a sleep-like state on neuronal responses by imaging C. elegans in the lethargus state.

  15. Measurements and Simulations of Surface Dielectric Barrier Discharges Used as Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Hoskinson, Alan R.

    2012-01-01

    This report is a Ph.D. dissertation performed under NRA cooperative agreement and submitted as part of the final report. Asymmetric surface dielectric barrier discharges (DBDs) have shown promise for use as aerodynamic actuators for active flow control. In this project we studied DBD actuators experimentally and numerically. Our DBDs used a symmetric triangular high voltage waveform to generate plasma in atmospheric pressure air. Time-averaged measurements indicated that the induced force of a single barrier actuator design (one electrode insulated from the plasma) can be increased exponentially above the results of previous studies by decreasing both the length and thickness of the electrode exposed to the plasma. This increased force may allow these devices to control flow separation in a wider range of flow environments. Experiments using an intensified digital camera to examine the plasma on time scales of a few nanoseconds showed that, in addition to the previously-observed filamentary and jet-like plasma structures, discharges with very thin exposed electrodes exhibited a weak but constant plasma immediately adjacent to those electrodes. In double-barrier actuators (both electrodes insulated), decreasing the diameter of the narrower electrode lead to increasing forces, and recorded images showed the simultaneous existence of both filamentary and jet-like plasma structures. The development and application of a time-dependent, two-dimensional computational fluid plasma model has aided in understanding the detailed physics of surface DBDs at all-time scales. For simulated single-barrier discharges, the model qualitatively reproduced the filamentary and jet-like micro-discharge structures. The model was somewhat successful in reproducing the observed characteristics of double-barrier actuators. For both actuator geometries, the model indicated that the majority of the forces induced on the neutral gas occur in between micro-discharges as the plasmas decay.

  16. Electrical breakdown detection system for dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Ghilardi, Michele; Busfield, James J. C.; Carpi, Federico

    2017-04-01

    Electrical breakdown of dielectric elastomer actuators (DEAs) is an issue that has to be carefully addressed when designing systems based on this novel technology. Indeed, in some systems electrical breakdown might have serious consequences, not only in terms of interruption of the desired function but also in terms of safety of the overall system (e.g. overheating and even burning). The risk for electrical breakdown often cannot be completely avoided by simply reducing the driving voltages, either because completely safe voltages might not generate sufficient actuation or because internal or external factors might change some properties of the actuator whilst in operation (for example the aging or fatigue of the material, or an externally imposed deformation decreasing the distance between the compliant electrodes). So, there is the clear need for reliable, simple and cost-effective detection systems that are able to acknowledge the occurrence of a breakdown event, making DEA-based devices able to monitor their status and become safer and "selfaware". Here a simple solution for a portable detection system is reported that is based on a voltage-divider configuration that detects the voltage drop at the DEA terminals and assesses the occurrence of breakdown via a microcontroller (Beaglebone Black single-board computer) combined with a real-time, ultra-low-latency processing unit (Bela cape an open-source embedded platform developed at Queen Mary University of London). The system was used to both generate the control signal that drives the actuator and constantly monitor the functionality of the actuator, detecting any breakdown event and discontinuing the supplied voltage accordingly, so as to obtain a safer controlled actuation. This paper presents preliminary tests of the detection system in different scenarios in order to assess its reliability.

  17. Distributed power and control actuation in the thoracic mechanics of a robotic insect.

    PubMed

    Finio, Benjamin M; Wood, Robert J

    2010-12-01

    Recent advances in the understanding of biological flight have inspired roboticists to create flapping-wing vehicles on the scale of insects and small birds. While our understanding of the wing kinematics, flight musculature and neuromotor control systems of insects has expanded, in practice it has proven quite difficult to construct an at-scale mechanical device capable of similar flight performance. One of the key challenges is the development of an effective and efficient transmission mechanism to control wing motions. Here we present multiple insect-scale robotic thorax designs capable of producing asymmetric wing kinematics similar to those observed in nature and utilized by dipteran insects to maneuver. Inspired by the thoracic mechanics of dipteran insects, which entail a morphological separation of power and control muscles, these designs show that such distributed actuation can also modulate wing motion in a robotic design.

  18. Random access actuation of nanowire grid metamaterial

    NASA Astrophysics Data System (ADS)

    Cencillo-Abad, Pablo; Ou, Jun-Yu; Plum, Eric; Valente, João; Zheludev, Nikolay I.

    2016-12-01

    While metamaterials offer engineered static optical properties, future artificial media with dynamic random-access control over shape and position of meta-molecules will provide arbitrary control of light propagation. The simplest example of such a reconfigurable metamaterial is a nanowire grid metasurface with subwavelength wire spacing. Recently we demonstrated computationally that such a metadevice with individually controlled wire positions could be used as dynamic diffraction grating, beam steering module and tunable focusing element. Here we report on the nanomembrane realization of such a nanowire grid metasurface constructed from individually addressable plasmonic chevron nanowires with a 230 nm × 100 nm cross-section, which consist of gold and silicon nitride. The active structure of the metadevice consists of 15 nanowires each 18 μm long and is fabricated by a combination of electron beam lithography and ion beam milling. It is packaged as a microchip device where the nanowires can be individually actuated by control currents via differential thermal expansion.

  19. Evolution from MEMS-based Linear Drives to Bio-based Nano Drives

    NASA Astrophysics Data System (ADS)

    Fujita, Hiroyuki

    The successful extension of semiconductor technology to fabricate mechanical parts of the sizes from 10 to 100 micrometers opened wide ranges of possibilities for micromechanical devices and systems. The fabrication technique is called micromachining. Micromachining processes are based on silicon integrated circuits (IC) technology and used to build three-dimensional structures and movable parts by the combination of lithography, etching, film deposition, and wafer bonding. Microactuators are the key devices allowing MEMS to perform physical functions. Some of them are driven by electric, magnetic, and fluidic forces. Some others utilize actuator materials including piezoelectric (PZT, ZnO, quartz) and magnetostrictive materials (TbFe), shape memory alloy (TiNi) and bio molecular motors. This paper deals with the development of MEMS based microactuators, especially linear drives, following my own research experience. They include an electrostatic actuator, a superconductive levitated actuator, arrayed actuators, and a bio-motor-driven actuator.

  20. Hydraulic actuation technology for full- and semi-active railway suspensions

    NASA Astrophysics Data System (ADS)

    Goodall, Roger; Freudenthaler, Gerhard; Dixon, Roger

    2014-12-01

    The paper describes a simulation study that provides a comprehensive comparison between full-active and semi-active suspensions for improving the vertical ride quality of railway vehicles. It includes an assessment of the ride quality benefits that can theoretically be achieved with idealised devices, and also examines the impact of real devices based upon hydraulic actuation technology.

Top