Sample records for device detection system

  1. Market Survey: Biological Detectors. Guide for Selection of Detection Devices and Systems

    DTIC Science & Technology

    2006-02-01

    samples. There are no real concerns with logistical or operational concerns, as issues such as size, weight, signature, transportation , additional equipment...of the detection system or device on support and logistical systems. 2.1 Transportation Measure. Ability to transport the detection system or device...supplied, such as water, fuel, batteries, chemical, power, etc.) that have to be transported to the site for detection. 100 0-1 consumable or

  2. Medical devices; hematology and pathology devices; classification of the Factor V Leiden DNA mutation detection systems devices. Final rule.

    PubMed

    2004-03-16

    The Food and Drug Administration (FDA) is classifying the Factor V Leiden deoxyribonucleic acid (DNA) mutation detections systems device into class II (special controls). The special control that will apply to the device is the guidance document entitled "Class II Special Controls Guidance Document: Factor V Leiden DNA Mutation Detection Systems." The agency is taking this action in response to a petition submitted under the Federal Food, Drug, and Cosmetic Act (the act) as amended by the Medical Device Amendments of 1976 (the 1976 amendments), the Safe Medical Devices Act of 1990 (SMDA), the Food and Drug Administration Modernization Act of 1997 (FDAMA), and the Medical Device User Fee and Modernization Act of 2002. The agency is classifying this device into class II (special controls) in order to provide a reasonable assurance of safety and effectiveness of the device. Elsewhere in this issue of the Federal Register, FDA is publishing a notice of availability of a guidance document that is the special control for this device.

  3. Radiation sensitive devices and systems for detection of radioactive materials and related methods

    DOEpatents

    Kotter, Dale K

    2014-12-02

    Radiation sensitive devices include a substrate comprising a radiation sensitive material and a plurality of resonance elements coupled to the substrate. Each resonance element is configured to resonate responsive to non-ionizing incident radiation. Systems for detecting radiation from a special nuclear material include a radiation sensitive device and a sensor located remotely from the radiation sensitive device and configured to measure an output signal from the radiation sensitive device. In such systems, the radiation sensitive device includes a radiation sensitive material and a plurality of resonance elements positioned on the radiation sensitive material. Methods for detecting a presence of a special nuclear material include positioning a radiation sensitive device in a location where special nuclear materials are to be detected and remotely interrogating the radiation sensitive device with a sensor.

  4. Low cost mobile explosive/drug detection devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gozani, T.; Bendahan, J.

    1999-06-10

    Inspection technologies based on Thermal Neutron Analysis (TNA) and/or Fast Neutron Analysis (FNA) are the basis for relatively compact and low-cost, material-sensitive devices for a wide variety of inspection needs. The TNA allows the use of either isotropic neutron sources such as a {sup 252}Cf, or electronic neutron generators such as the d-T sealed neutron generator tubes. The latter could be used in a steady state mode or in slow (>{mu}s) pulsing mode, to separate the thermal neutron capture signatures following the pulse from the combination of the FNA plus TNA signatures during the pulse. Over the years, Ancore Corporationmore » has built and is continuing to develop a variety of inspection devices based on its TNA and FNA technologies: SPEDS--an explosive detection device for small parcels, portable electronics, briefcases and other similar carry-on items; MDS - a system for the detection or confirmation of buried mines; VEDS - a system for the detection of varied amounts of explosives and/or drugs concealed in passenger vehicles, pallets, lightly loaded trucks or containers, etc.; ACD - a device to clear alarms from a primary, non-specific explosive detection system for passenger luggage. The principle and performance of these devices will be shown and discussed.« less

  5. Efficient Device-Independent Entanglement Detection for Multipartite Systems

    NASA Astrophysics Data System (ADS)

    Baccari, F.; Cavalcanti, D.; Wittek, P.; Acín, A.

    2017-04-01

    Entanglement is one of the most studied properties of quantum mechanics for its application in quantum information protocols. Nevertheless, detecting the presence of entanglement in large multipartite states continues to be a great challenge both from the theoretical and the experimental point of view. Most of the known methods either have computational costs that scale inefficiently with the number of particles or require more information on the state than what is attainable in everyday experiments. We introduce a new technique for entanglement detection that provides several important advantages in these respects. First, it scales efficiently with the number of particles, thus allowing for application to systems composed by up to few tens of particles. Second, it needs only the knowledge of a subset of all possible measurements on the state, therefore being apt for experimental implementation. Moreover, since it is based on the detection of nonlocality, our method is device independent. We report several examples of its implementation for well-known multipartite states, showing that the introduced technique has a promising range of applications.

  6. Portable modular detection system

    DOEpatents

    Brennan, James S [Rodeo, CA; Singh, Anup [Danville, CA; Throckmorton, Daniel J [Tracy, CA; Stamps, James F [Livermore, CA

    2009-10-13

    Disclosed herein are portable and modular detection devices and systems for detecting electromagnetic radiation, such as fluorescence, from an analyte which comprises at least one optical element removably attached to at least one alignment rail. Also disclosed are modular detection devices and systems having an integrated lock-in amplifier and spatial filter and assay methods using the portable and modular detection devices.

  7. Apparatus and methods for real-time detection of explosives devices

    DOEpatents

    Blackburn, Brandon W [Idaho Falls, ID; Hunt, Alan W [Pocatello, ID; Chichester, David L [Idaho Falls, ID

    2014-01-07

    The present disclosure relates, according to some embodiments, to apparatus, devices, systems, and/or methods for real-time detection of a concealed or camouflaged explosive device (e.g., EFPs and IEDs) from a safe stand-off distance. Apparatus, system and/or methods of the disclosure may also be operable to identify and/or spatially locate and/or detect an explosive device. An apparatus or system may comprise an x-ray generator that generates high-energy x-rays and/or electrons operable to contact and activate a metal comprised in an explosive device from a stand-off distance; and a detector operable to detect activation of the metal. Identifying an explosive device may comprise detecting characteristic radiation signatures emitted by metals specific to an EFP, an IED or a landmine. Apparatus and systems of the disclosure may be mounted on vehicles and methods of the disclosure may be performed while moving in the vehicle and from a safe stand-off distance.

  8. Methods of use for sensor based fluid detection devices

    NASA Technical Reports Server (NTRS)

    Lewis, Nathan S. (Inventor)

    2001-01-01

    Methods of use and devices for detecting analyte in fluid. A system for detecting an analyte in a fluid is described comprising a substrate having a sensor comprising a first organic material and a second organic material where the sensor has a response to permeation by an analyte. A detector is operatively associated with the sensor. Further, a fluid delivery appliance is operatively associated with the sensor. The sensor device has information storage and processing equipment, which is operably connected with the device. This device compares a response from the detector with a stored ideal response to detect the presence of analyte. An integrated system for detecting an analyte in a fluid is also described where the sensing device, detector, information storage and processing device, and fluid delivery device are incorporated in a substrate. Methods for use for the above system are also described where the first organic material and a second organic material are sensed and the analyte is detected with a detector operatively associated with the sensor. The method provides for a device, which delivers fluid to the sensor and measures the response of the sensor with the detector. Further, the response is compared to a stored ideal response for the analyte to determine the presence of the analyte. In different embodiments, the fluid measured may be a gaseous fluid, a liquid, or a fluid extracted from a solid. Methods of fluid delivery for each embodiment are accordingly provided.

  9. High resolution biomedical imaging system with direct detection of x-rays via a charge coupled device

    DOEpatents

    Atac, M.; McKay, T.A.

    1998-04-21

    An imaging system is provided for direct detection of x-rays from an irradiated biological tissue. The imaging system includes an energy source for emitting x-rays toward the biological tissue and a charge coupled device (CCD) located immediately adjacent the biological tissue and arranged transverse to the direction of irradiation along which the x-rays travel. The CCD directly receives and detects the x-rays after passing through the biological tissue. The CCD is divided into a matrix of cells, each of which individually stores a count of x-rays directly detected by the cell. The imaging system further includes a pattern generator electrically coupled to the CCD for reading a count from each cell. A display device is provided for displaying an image representative of the count read by the pattern generator from the cells of the CCD. 13 figs.

  10. High resolution biomedical imaging system with direct detection of x-rays via a charge coupled device

    DOEpatents

    Atac, Muzaffer; McKay, Timothy A.

    1998-01-01

    An imaging system is provided for direct detection of x-rays from an irradiated biological tissue. The imaging system includes an energy source for emitting x-rays toward the biological tissue and a charge coupled device (CCD) located immediately adjacent the biological tissue and arranged transverse to the direction of irradiation along which the x-rays travel. The CCD directly receives and detects the x-rays after passing through the biological tissue. The CCD is divided into a matrix of cells, each of which individually stores a count of x-rays directly detected by the cell. The imaging system further includes a pattern generator electrically coupled to the CCD for reading a count from each cell. A display device is provided for displaying an image representative of the count read by the pattern generator from the cells of the CCD.

  11. Biofouling detection monitoring devices: status assessment. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hillman, R.E.; Anson, D.; Corliss, J.M.

    1985-03-01

    An inventory of devices to detect and monitor biofouling in power plant condenser systems was prepared. The inventory was developed through a review of manufacturers' product information brochures, a general literature review, and limited personal contact with users and manufacturers. Two macrofouling and seventeen microfouling detection devices were reviewed. A summary analysis of the principal features of each device was prepared. Macrofouling devices are generally simple devices located at or near cooling water intakes. They monitor the growth of larger organisms such as mussels, barnacles, and large seaweeds. Microfouling detectors are usually located in or near the condenser tubes. Theymore » detect and monitor the growth of slime films on the tubes. Some of the devices measure changes in heat transfer or pressure drop in the condenser tubes. Other types include condenser simulators, biofilm samplers, or devices that measure the acoustic properties of the fouling films. Most devices are still in the development stage. Of the few available for general use, the type that measures heat transfer and/or pressure drop are developed to a greater degree than the other types. Recommendations for further research into development of a biofouling detection and monitoring devices include a side-by-side field comparison of selected devices, and the continued development of an effective acoustic device.« less

  12. Caries Detection around Restorations Using ICDAS and Optical Devices.

    PubMed

    Diniz, Michele Baffi; Eckert, George Joseph; González-Cabezas, Carlos; Cordeiro, Rita de Cássia Loiola; Ferreira-Zandona, Andrea Gonçalves

    2016-01-01

    Secondary caries is the major reason for replacement of restorations in operative dentistry. New detection methods and technology have the potential to improve the accuracy for diagnosis of secondary carious lesions. This in vitro study evaluated the performance of the ICDAS (International Caries Detection and Assessment System) visual criteria and optical devices for detecting secondary caries around amalgam and composite resin restorations in permanent teeth. A total of 180 extracted teeth with Class I amalgam (N = 90) and resin composite (N = 90) restorations were selected. Two examiners analyzed the teeth twice using the visual criteria (ICDAS), laser fluorescence (LF), light-emitting diode device (MID), quantitative light-induced fluorescence system (QLF), and a prototype system based on the Fluorescence Enamel Imaging technique (Professional Caries Detection System, PCDS). The gold standard was determined by means of confocal laser scanning microscopy. High-reproducibility values were shown for all methods, except for MID in the amalgam group. For both groups the QLF and PCDS were the most sensitive methods, whereas the other methods presented better specificity (p < 0.05). All methods, except the MID device appeared to be potential methods for detecting secondary caries only around resin composite restorations, whereas around amalgam restorations all methods seemed to be questionable. Using Internal Caries Detection and Assessment System (ICDAS), an LF device, quantitative light-induced fluorescence and a novel method based on Fluorescence Enamel Imaging technique may be effective for evaluating secondary caries around composite resin restorations. © 2016 Wiley Periodicals, Inc.

  13. Radioisotope Detection Device and Methods of Radioisotope Collection

    DOEpatents

    Tranter, Troy J [Idaho Falls, ID; Oertel, Christopher P [Idaho Falls, ID; Giles, John R [Pocatello, ID; Mann, Nicholas R [Rigby, ID; McIlwain, Michael E [Idaho Falls, ID

    2011-04-12

    A device for collection of radionuclides includes a mixture of a polymer, a fluorescent organic scintillator and a chemical extractant. A radionuclide detector system includes a collection device comprising a mixture of a polymer, a fluorescent agent and a selective ligand. The system includes at least one photomultiplier tube (PMT). A method of detecting radionuclides includes providing a collector device comprising a mixture comprising a polymer, a fluorescent organic scintillator and a chemical extractant. An aqueous environment is exposed to the device and radionuclides are collected from the environment. Radionuclides can be concentrated within the device.

  14. Acoustic enhancement for photo detecting devices

    DOEpatents

    Thundat, Thomas G; Senesac, Lawrence R; Van Neste, Charles W

    2013-02-19

    Provided are improvements to photo detecting devices and methods for enhancing the sensitivity of photo detecting devices. A photo detecting device generates an electronic signal in response to a received light pulse. An electro-mechanical acoustic resonator, electrically coupled to the photo detecting device, damps the electronic signal and increases the signal noise ratio (SNR) of the electronic signal. Increased photo detector standoff distances and sensitivities will result.

  15. 21 CFR 872.1740 - Caries detection device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Caries detection device. 872.1740 Section 872.1740...) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1740 Caries detection device. (a) Identification. The caries detection device is a device intended to show the existence of decay in a patient's tooth...

  16. [A capillary blood flow velocity detection system based on linear array charge-coupled devices].

    PubMed

    Zhou, Houming; Wang, Ruofeng; Dang, Qi; Yang, Li; Wang, Xiang

    2017-12-01

    In order to detect the flow characteristics of blood samples in the capillary, this paper introduces a blood flow velocity measurement system based on field-programmable gate array (FPGA), linear charge-coupled devices (CCD) and personal computer (PC) software structure. Based on the analysis of the TCD1703C and AD9826 device data sheets, Verilog HDL hardware description language was used to design and simulate the driver. Image signal acquisition and the extraction of the real-time edge information of the blood sample were carried out synchronously in the FPGA. Then a series of discrete displacement were performed in a differential operation to scan each of the blood samples displacement, so that the sample flow rate could be obtained. Finally, the feasibility of the blood flow velocity detection system was verified by simulation and debugging. After drawing the flow velocity curve and analyzing the velocity characteristics, the significance of measuring blood flow velocity is analyzed. The results show that the measurement of the system is less time-consuming and less complex than other flow rate monitoring schemes.

  17. Remote detection of electronic devices

    DOEpatents

    Judd, Stephen L [Los Alamos, NM; Fortgang, Clifford M [Los Alamos, NM; Guenther, David C [Los Alamos, NM

    2012-09-25

    An apparatus and method for detecting solid-state electronic devices are described. Non-linear junction detection techniques are combined with spread-spectrum encoding and cross correlation to increase the range and sensitivity of the non-linear junction detection and to permit the determination of the distances of the detected electronics. Nonlinear elements are detected by transmitting a signal at a chosen frequency and detecting higher harmonic signals that are returned from responding devices.

  18. Radionuclide detection devices and associated methods

    DOEpatents

    Mann, Nicholas R [Rigby, ID; Lister, Tedd E [Idaho Falls, ID; Tranter, Troy J [Idaho Falls, ID

    2011-03-08

    Radionuclide detection devices comprise a fluid cell comprising a flow channel for a fluid stream. A radionuclide collector is positioned within the flow channel and configured to concentrate one or more radionuclides from the fluid stream onto at least a portion of the radionuclide collector. A scintillator for generating scintillation pulses responsive to an occurrence of a decay event is positioned proximate at least a portion of the radionuclide collector and adjacent to a detection system for detecting the scintillation pulses. Methods of selectively detecting a radionuclide are also provided.

  19. Analysis of Android Device-Based Solutions for Fall Detection

    PubMed Central

    Casilari, Eduardo; Luque, Rafael; Morón, María-José

    2015-01-01

    Falls are a major cause of health and psychological problems as well as hospitalization costs among older adults. Thus, the investigation on automatic Fall Detection Systems (FDSs) has received special attention from the research community during the last decade. In this area, the widespread popularity, decreasing price, computing capabilities, built-in sensors and multiplicity of wireless interfaces of Android-based devices (especially smartphones) have fostered the adoption of this technology to deploy wearable and inexpensive architectures for fall detection. This paper presents a critical and thorough analysis of those existing fall detection systems that are based on Android devices. The review systematically classifies and compares the proposals of the literature taking into account different criteria such as the system architecture, the employed sensors, the detection algorithm or the response in case of a fall alarms. The study emphasizes the analysis of the evaluation methods that are employed to assess the effectiveness of the detection process. The review reveals the complete lack of a reference framework to validate and compare the proposals. In addition, the study also shows that most research works do not evaluate the actual applicability of the Android devices (with limited battery and computing resources) to fall detection solutions. PMID:26213928

  20. Analysis of Android Device-Based Solutions for Fall Detection.

    PubMed

    Casilari, Eduardo; Luque, Rafael; Morón, María-José

    2015-07-23

    Falls are a major cause of health and psychological problems as well as hospitalization costs among older adults. Thus, the investigation on automatic Fall Detection Systems (FDSs) has received special attention from the research community during the last decade. In this area, the widespread popularity, decreasing price, computing capabilities, built-in sensors and multiplicity of wireless interfaces of Android-based devices (especially smartphones) have fostered the adoption of this technology to deploy wearable and inexpensive architectures for fall detection. This paper presents a critical and thorough analysis of those existing fall detection systems that are based on Android devices. The review systematically classifies and compares the proposals of the literature taking into account different criteria such as the system architecture, the employed sensors, the detection algorithm or the response in case of a fall alarms. The study emphasizes the analysis of the evaluation methods that are employed to assess the effectiveness of the detection process. The review reveals the complete lack of a reference framework to validate and compare the proposals. In addition, the study also shows that most research works do not evaluate the actual applicability of the Android devices (with limited battery and computing resources) to fall detection solutions.

  1. Devices Would Detect Drugs In Sweat

    NASA Technical Reports Server (NTRS)

    Mintz, Fredrick W.; Richards, Gil; Kidwell, David A.; Foster, Conrad; Kern, Roger G.; Nelson, Gregory A.

    1996-01-01

    Proposed devices worn on skin detect such substances as methamphetamine, morphine, tetrahydrocannabinol (THC), and cocaine in wearers' sweat and transmits radio signals in response to computer queries. Called Remote Biochemical Assay Telemetering System (R-BATS), commonly referred to as "drug badge," attached to wearer by use of adhesive wristband. Used for noninvasive monitoring of levels of prescribed medications in hospital and home-care settings and to detect overdoses quickly.

  2. Experimental Measurement-Device-Independent Entanglement Detection

    NASA Astrophysics Data System (ADS)

    Nawareg, Mohamed; Muhammad, Sadiq; Amselem, Elias; Bourennane, Mohamed

    2015-02-01

    Entanglement is one of the most puzzling features of quantum theory and of great importance for the new field of quantum information. The determination whether a given state is entangled or not is one of the most challenging open problems of the field. Here we report on the experimental demonstration of measurement-device-independent (MDI) entanglement detection using witness method for general two qubits photon polarization systems. In the MDI settings, there is no requirement to assume perfect implementations or neither to trust the measurement devices. This experimental demonstration can be generalized for the investigation of properties of quantum systems and for the realization of cryptography and communication protocols.

  3. Experimental Measurement-Device-Independent Entanglement Detection

    PubMed Central

    Nawareg, Mohamed; Muhammad, Sadiq; Amselem, Elias; Bourennane, Mohamed

    2015-01-01

    Entanglement is one of the most puzzling features of quantum theory and of great importance for the new field of quantum information. The determination whether a given state is entangled or not is one of the most challenging open problems of the field. Here we report on the experimental demonstration of measurement-device-independent (MDI) entanglement detection using witness method for general two qubits photon polarization systems. In the MDI settings, there is no requirement to assume perfect implementations or neither to trust the measurement devices. This experimental demonstration can be generalized for the investigation of properties of quantum systems and for the realization of cryptography and communication protocols. PMID:25649664

  4. Sample preparation and detection device for infectious agents

    DOEpatents

    Miles, Robin R.; Wang, Amy W.; Fuller, Christopher K.; Lemoff, Asuncion V.; Bettencourt, Kerry A.; Yu, June

    2003-06-10

    A sample preparation and analysis device which incorporates both immunoassays and PCR assays in one compact, field-portable microchip. The device provides new capabilities in fluid and particle control which allows the building of a fluidic chip with no moving parts, thus decreasing fabrication cost and increasing the robustness of the device. The device can operate in a true continuous (not batch) mode. The device incorporates magnetohydrodynamic (MHD) pumps to move the fluid through the system, acoustic mixing and fractionation, dielectropheretic (DEP) sample concentration and purification, and on-chip optical detection capabilities.

  5. Detection device

    DOEpatents

    Smith, Jay E.

    1984-01-01

    The present invention is directed to a detection device comprising: (1) an entrance chamber, (2) a central chamber, and (3) an exit chamber. The central chamber includes an ionizing gas, anode, and means for connecting the anode with an external power supply and pulse counter.

  6. Detection device

    DOEpatents

    Smith, J.E.

    1981-02-27

    The present invention is directed to a detection device comprising: (1) an entrance chamber; (2) a central chamber; and (3) an exit chamber. The central chamber includes an ionizing gas, anode, and means for connecting the anode with an external power supply and pulse counter.

  7. 21 CFR 872.1870 - Sulfide detection device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Sulfide detection device. 872.1870 Section 872.1870 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1870 Sulfide detection device. (a) Identification...

  8. 21 CFR 872.1740 - Caries detection device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Caries detection device. 872.1740 Section 872.1740 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1740 Caries detection device. (a) Identification...

  9. 21 CFR 872.1740 - Caries detection device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Caries detection device. 872.1740 Section 872.1740 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1740 Caries detection device. (a) Identification...

  10. Detection of low frequency external electronic identification devices using commercial panel readers.

    PubMed

    Stewart, S C; Rapnicki, P; Lewis, J R; Perala, M

    2007-09-01

    The ability of a commercially available panel reader system to read International Standards Organization-compliant electronic identification devices under commercial dairy conditions was examined. Full duplex (FDX-B) and half-duplex (HDX) low frequency radio-frequency identification external ear tags were utilized. The study involved 498 Holstein cows in the final 6 wk of gestation. There were 516 total electronic identification devices (n = 334 HDX and n = 182 FDX-B). Eighteen FDX-B were replaced with HDX during the study due to repeated detection failure. There were 6,679 HDX and 3,401 FDX-B device detection attempts. There were 220 (2.2%) unsuccessful and 9,860 (97.8%) successful identification detection attempts. There were 9 unsuccessful detection attempts for HDX (6,670/6,679 = 99.9% successful detection attempts) and 211 unsuccessful detection attempts for FDX-B (3,190/3,401 = 93.8% successful detection attempts). These results demonstrate that this panel system can achieve high detection rates of HDX devices and meet the needs of the most demanding management applications. The FDX-B detection rate was not sufficient for the most demanding applications, requiring a high degree of detection by panel readers. The lower FDX-B rate may not be inherent in the device technology itself, but could be due to other factors, including the particular panel reader utilized or the tuning of the panel reader.

  11. Exploitation of Ubiquitous Wi-Fi Devices as Building Blocks for Improvised Motion Detection Systems.

    PubMed

    Soldovieri, Francesco; Gennarelli, Gianluca

    2016-02-27

    This article deals with a feasibility study on the detection of human movements in indoor scenarios based on radio signal strength variations. The sensing principle exploits the fact that the human body interacts with wireless signals, introducing variations of the radiowave fields due to shadowing and multipath phenomena. As a result, human motion can be inferred from fluctuations of radiowave power collected by a receiving terminal. In this paper, we investigate the potentialities of widely available wireless communication devices in order to develop an improvised motion detection system (IMDS). Experimental tests are performed in an indoor environment by using a smartphone as a Wi-Fi access point and a laptop with dedicated software as a receiver. Simple detection strategies tailored for real-time operation are implemented to process the received signal strength measurements. The achieved results confirm the potentialities of the simple system here proposed to reliably detect human motion in operational conditions.

  12. Devices, systems, and methods for detecting nucleic acids using sedimentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koh, Chung-Yan; Schaff, Ulrich Y.; Sommer, Gregory J.

    Embodiments of the present invention are directed toward devices, systems, and method for conducting nucleic acid purification and quantification using sedimentation. In one example, a method includes generating complexes which bind to a plurality of beads in a fluid sample, individual ones of the complexes comprising a nucleic acid molecule such as DNA or RNA and a labeling agent. The plurality of beads including the complexes may be transported through a density media, wherein the density media has a density lower than a density of the beads and higher than a density of the fluid sample, and wherein the transportingmore » occurs, at least in part, by sedimentation. Signal may be detected from the labeling agents of the complexes.« less

  13. An Instantaneous Low-Cost Point-of-Care Anemia Detection Device

    PubMed Central

    Punter-Villagrasa, Jaime; Cid, Joan; Páez-Avilés, Cristina; Rodríguez-Villarreal, Ivón; Juanola-Feliu, Esteve; Colomer-Farrarons, Jordi; Miribel-Català, Pere Ll.

    2015-01-01

    We present a small, compact and portable device for point-of-care instantaneous early detection of anemia. The method used is based on direct hematocrit measurement from whole blood samples by means of impedance analysis. This device consists of a custom electronic instrumentation and a plug-and-play disposable sensor. The designed electronics rely on straightforward standards for low power consumption, resulting in a robust and low consumption device making it completely mobile with a long battery life. Another approach could be powering the system based on other solutions like indoor solar cells, or applying energy-harvesting solutions in order to remove the batteries. The sensing system is based on a disposable low-cost label-free three gold electrode commercial sensor for 50 μL blood samples. The device capability for anemia detection has been validated through 24 blood samples, obtained from four hospitalized patients at Hospital Clínic. As a result, the response, effectiveness and robustness of the portable point-of-care device to detect anemia has been proved with an accuracy error of 2.83% and a mean coefficient of variation of 2.57% without any particular case above 5%. PMID:25690552

  14. Fall Detection Devices and their Use with Older Adults: A Systematic Review

    PubMed Central

    Chaudhuri, Shomir; Thompson, Hilaire; Demiris, George

    2013-01-01

    Background Falls represent a significant threat to the health and independence of adults 65 years of age and older. As a wide variety and large amount of passive monitoring systems are currently and increasingly available to detect when an individual has fallen, there is a need to analyze and synthesize the evidence regarding their ability to accurately detect falls to determine which systems are most effective. Objectives The purpose of this literature review is to systematically assess the current state of design and implementation of fall detection devices. This review also examines the extent to which these devices have been tested in the real world as well as the acceptability of these devices to older adults. Data sources A systematic literature review was conducted in PubMed, CINAHL, EMBASE and PsycINFO from their respective inception dates to June 25, 2013. Study Eligibility Criteria and Interventions Articles were included if they discussed a project or multiple projects involving a system with the purpose of detecting a fall in adults. It was not a requirement for inclusion in this review that the system targets persons over the age of 65. Articles were excluded if they were not written in English or if they looked at fall risk, fall detection in children, fall prevention or a Personal Emergency Response device. Study appraisal and synthesis methods Studies were initially divided into those using sensitivity, specificity or accuracy in their evaluation methods, and those using other methods to evaluate their devices. Studies were further classified into wearable devices and non-wearable devices. Studies were appraised for inclusion of older adults in sample and if evaluation included real world settings. Results This review identified 57 projects that used wearable systems and 35 projects using non-wearable systems, regardless of evaluation technique. Non-wearable systems included cameras, motion sensors, microphones and floor sensors. Of the projects

  15. 21 CFR 872.1870 - Sulfide detection device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... A sulfide detection device is a device consisting of an AC-powered control unit, probe handle, probe... periodontal pocket probing depths, detect the presence or absence of bleeding on probing, and detect the...

  16. 21 CFR 872.1870 - Sulfide detection device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... A sulfide detection device is a device consisting of an AC-powered control unit, probe handle, probe... periodontal pocket probing depths, detect the presence or absence of bleeding on probing, and detect the...

  17. 21 CFR 872.1870 - Sulfide detection device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... A sulfide detection device is a device consisting of an AC-powered control unit, probe handle, probe... periodontal pocket probing depths, detect the presence or absence of bleeding on probing, and detect the...

  18. 21 CFR 872.1870 - Sulfide detection device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... A sulfide detection device is a device consisting of an AC-powered control unit, probe handle, probe... periodontal pocket probing depths, detect the presence or absence of bleeding on probing, and detect the...

  19. Autonomous microfluidic system for phosphate detection.

    PubMed

    McGraw, Christina M; Stitzel, Shannon E; Cleary, John; Slater, Conor; Diamond, Dermot

    2007-02-28

    Miniaturization of analytical devices through the advent of microfluidics and micro total analysis systems is an important step forward for applications such as medical diagnostics and environmental monitoring. The development of field-deployable instruments requires that the entire system, including all necessary peripheral components, be miniaturized and packaged in a portable device. A sensor for long-term monitoring of phosphate levels has been developed that incorporates sampling, reagent and waste storage, detection, and wireless communication into a complete, miniaturized system. The device employs a low-power detection and communication system, so the entire instrument can operate autonomously for 7 days on a single rechargeable, 12V battery. In addition, integration of a wireless communication device allows the instrument to be controlled and results to be downloaded remotely. This autonomous system has a limit of detection of 0.3mg/L and a linear dynamic range between 0 and 20mg/L.

  20. 21 CFR 872.1745 - Laser fluorescence caries detection device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Laser fluorescence caries detection device. 872... SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1745 Laser fluorescence caries detection device. (a) Identification. A laser fluorescence caries detection device is a laser, a...

  1. Detection of chaotic dynamics in human gait signals from mobile devices

    NASA Astrophysics Data System (ADS)

    DelMarco, Stephen; Deng, Yunbin

    2017-05-01

    The ubiquity of mobile devices offers the opportunity to exploit device-generated signal data for biometric identification, health monitoring, and activity recognition. In particular, mobile devices contain an Inertial Measurement Unit (IMU) that produces acceleration and rotational rate information from the IMU accelerometers and gyros. These signals reflect motion properties of the human carrier. It is well-known that the complexity of bio-dynamical systems gives rise to chaotic dynamics. Knowledge of chaotic properties of these systems has shown utility, for example, in detecting abnormal medical conditions and neurological disorders. Chaotic dynamics has been found, in the lab, in bio-dynamical systems data such as electrocardiogram (heart), electroencephalogram (brain), and gait data. In this paper, we investigate the following question: can we detect chaotic dynamics in human gait as measured by IMU acceleration and gyro data from mobile phones? To detect chaotic dynamics, we perform recurrence analysis on real gyro and accelerometer signal data obtained from mobile devices. We apply the delay coordinate embedding approach from Takens' theorem to reconstruct the phase space trajectory of the multi-dimensional gait dynamical system. We use mutual information properties of the signal to estimate the appropriate delay value, and the false nearest neighbor approach to determine the phase space embedding dimension. We use a correlation dimension-based approach together with estimation of the largest Lyapunov exponent to make the chaotic dynamics detection decision. We investigate the ability to detect chaotic dynamics for the different one-dimensional IMU signals, across human subject and walking modes, and as a function of different phone locations on the human carrier.

  2. Research on propane leak detection system and device based on mid infrared laser

    NASA Astrophysics Data System (ADS)

    Jiang, Meng; Wang, Xuefeng; Wang, Junlong; Wang, Yizhao; Li, Pan; Feng, Qiaoling

    2017-10-01

    Propane is a key component of liquefied petroleum gas (LPG) and crude oil volatile. This issue summarizes the recent progress of propane detection technology. Meanwhile, base on the development trend, our latest progress is also provided. We demonstrated a mid infrared propane sensor system, which is based on wavelength modulation spectroscopy (WMS) technique with a CW interband cascade laser (ICL) emitting at 3370.4nm. The ICL laser scanned over a sharp feature in the broader spectrum of propane, and harmonic signals are obtained by lock-in amplifier for gas concentration deduction. The surrounding gas is extracted into the fine optical absorption cell through the pump to realize online detection. The absorption cell is designed in mid infrared windows range. An example experimental setup is shown. The second harmonic signals 2f and first harmonic signals1f are obtained. We present the sensor performance test data including dynamic precision and temperature stability. The propane detection sensor system and device is portable can carried on the mobile inspection vehicle platforms or intelligent robot inspection platform to realize the leakage monitoring of whole oil gas tank area.

  3. Methods, microfluidic devices, and systems for detection of an active enzymatic agent

    DOEpatents

    Sommer, Gregory J; Hatch, Anson V; Singh, Anup K; Wang, Ying-Chih

    2014-10-28

    Embodiments of the present invention provide methods, microfluidic devices, and systems for the detection of an active target agent in a fluid sample. A substrate molecule is used that contains a sequence which may cleave in the presence of an active target agent. A SNAP25 sequence is described, for example, that may be cleaved in the presence of Botulinum Neurotoxin. The substrate molecule includes a reporter moiety. The substrate molecule is exposed to the sample, and resulting reaction products separated using electrophoretic separation. The elution time of the reporter moiety may be utilized to identify the presence or absence of the active target agent.

  4. Nucleic acid detection system and method for detecting influenza

    DOEpatents

    Cai, Hong; Song, Jian

    2015-03-17

    The invention provides a rapid, sensitive and specific nucleic acid detection system which utilizes isothermal nucleic acid amplification in combination with a lateral flow chromatographic device, or DNA dipstick, for DNA-hybridization detection. The system of the invention requires no complex instrumentation or electronic hardware, and provides a low cost nucleic acid detection system suitable for highly sensitive pathogen detection. Hybridization to single-stranded DNA amplification products using the system of the invention provides a sensitive and specific means by which assays can be multiplexed for the detection of multiple target sequences.

  5. Fiber optic tracheal detection device

    NASA Astrophysics Data System (ADS)

    Souhan, Brian E.; Nawn, Corinne D.; Shmel, Richard; Watts, Krista L.; Ingold, Kirk A.

    2017-02-01

    Poorly performed airway management procedures can lead to a wide variety of adverse events, such as laryngeal trauma, stenosis, cardiac arrest, hypoxemia, or death as in the case of failed airway management or intubation of the esophagus. Current methods for confirming tracheal placement, such as auscultation, direct visualization or capnography, may be subjective, compromised due to clinical presentation or require additional specialized equipment that is not always readily available during the procedure. Consequently, there exists a need for a non-visual detection mechanism for confirming successful airway placement that can give the provider rapid feedback during the procedure. Based upon our previously presented work characterizing the reflectance spectra of tracheal and esophageal tissue, we developed a fiber-optic prototype to detect the unique spectral characteristics of tracheal tissue. Device performance was tested by its ability to differentiate ex vivo samples of tracheal and esophageal tissue. Pig tissue samples were tested with the larynx, trachea and esophagus intact as well as excised and mounted on cork. The device positively detected tracheal tissue 18 out of 19 trials and 1 false positive out of 19 esophageal trials. Our proof of concept device shows great promise as a potential mechanism for rapid user feedback during airway management procedures to confirm tracheal placement. Ongoing studies will investigate device optimizations of the probe for more refined sensing and in vivo testing.

  6. 49 CFR 1544.209 - Use of metal detection devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 9 2011-10-01 2011-10-01 false Use of metal detection devices. 1544.209 Section...: AIR CARRIERS AND COMMERCIAL OPERATORS Operations § 1544.209 Use of metal detection devices. (a) No aircraft operator may use a metal detection device within the United States or under the aircraft operator...

  7. 49 CFR 1544.209 - Use of metal detection devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Use of metal detection devices. 1544.209 Section...: AIR CARRIERS AND COMMERCIAL OPERATORS Operations § 1544.209 Use of metal detection devices. (a) No aircraft operator may use a metal detection device within the United States or under the aircraft operator...

  8. A portable device for rapid nondestructive detection of fresh meat quality

    NASA Astrophysics Data System (ADS)

    Lin, Wan; Peng, Yankun

    2014-05-01

    Quality attributes of fresh meat influence nutritional value and consumers' purchasing power. In order to meet the demand of inspection department for portable device, a rapid and nondestructive detection device for fresh meat quality based on ARM (Advanced RISC Machines) processor and VIS/NIR technology was designed. Working principal, hardware composition, software system and functional test were introduced. Hardware system consisted of ARM processing unit, light source unit, detection probe unit, spectral data acquisition unit, LCD (Liquid Crystal Display) touch screen display unit, power unit and the cooling unit. Linux operating system and quality parameters acquisition processing application were designed. This system has realized collecting spectral signal, storing, displaying and processing as integration with the weight of 3.5 kg. 40 pieces of beef were used in experiment to validate the stability and reliability. The results indicated that prediction model developed using PLSR method using SNV as pre-processing method had good performance, with the correlation coefficient of 0.90 and root mean square error of 1.56 for validation set for L*, 0.95 and 1.74 for a*,0.94 and 0.59 for b*, 0.88 and 0.13 for pH, 0.79 and 12.46 for tenderness, 0.89 and 0.91 for water content, respectively. The experimental result shows that this device can be a useful tool for detecting quality of meat.

  9. Life detection systems.

    NASA Technical Reports Server (NTRS)

    Mitz, M. A.

    1972-01-01

    Some promising newer approaches for detecting microorganisms are discussed, giving particular attention to the integration of different methods into a single instrument. Life detection methods may be divided into biological, chemical, and cytological methods. Biological methods are based on the biological properties of assimilation, metabolism, and growth. Devices for the detection of organic materials are considered, taking into account an instrument which volatilizes, separates, and analyzes a sample sequentially. Other instrumental systems described make use of a microscope and the cytochemical staining principle.

  10. Molecular detection via hybrid peptide-semiconductor photonic devices

    NASA Astrophysics Data System (ADS)

    Estephan, E.; Saab, M.-b.; Martin, M.; Cloitre, T.; Larroque, C.; Cuisinier, F. J. G.; Malvezzi, A. M.; Gergely, C.

    2011-03-01

    The aim of this work was to investigate the possibilities to support device functionality that includes strongly confined and localized light emission and detection processes within nano/micro-structured semiconductors for biosensing applications. The interface between biological molecules and semiconductor surfaces, yet still under-explored is a key issue for improving biomolecular recognition in devices. We report on the use of adhesion peptides, elaborated via combinatorial phage-display libraries for controlled placement of biomolecules, leading to user-tailored hybrid photonic systems for molecular detection. An M13 bacteriophage library has been used to screen 1010 different peptides against various semiconductors to finally isolate specific peptides presenting a high binding capacity for the target surfaces. When used to functionalize porous silicon microcavities (PSiM) and GaAs/AlGaAs photonic crystals, we observe the formation of extremely thin (<1nm) peptide layers, hereby preserving the nanostructuration of the crystals. This is important to assure the photonic response of these tiny structures when they are functionalized by a biotinylated peptide layer and then used to capture streptavidin. Molecular detection was monitored via both linear and nonlinear optical measurements. Our linear reflectance spectra demonstrate an enhanced detection resolution via PSiM devices, when functionalized with the Si-specific peptide. Molecular capture at even lower concentrations (femtomols) is possible via the second harmonic generation of GaAs/AlGaAs photonic crystals when functionalized with GaAs-specific peptides. Our work demonstrates the outstanding value of adhesion peptides as interface linkers between semiconductors and biological molecules. They assure an enhanced molecular detection via both linear and nonlinear answers of photonic crystals.

  11. Diagnostic/drug delivery "sense-respond" devices, systems, and uses thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polsky, Ronen; Miller, Philip Rocco; Edwards, Thayne L.

    The present invention is directed to devices, systems, and methods for detecting and/or monitoring one or more markers in a sample. In particular, such devices integrate a plurality of hollow needles configured to extract or obtain a fluid sample from a subject, as well as transducers to detect a marker of interest.

  12. Response of the REWARD detection system to the presence of a Radiological Dispersal Device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luis, R.; Baptista, M.; Barros, S.

    2015-07-01

    In recent years an increased international concern has emerged about the radiological and nuclear (RN) threats associated with the illicit trafficking of nuclear and radioactive materials that could be potentially used for terrorist attacks. The objective of the REWARD (Real Time Wide Area Radiation Surveillance System) project, co-funded by the European Union 7. Framework Programme Security, consisted in building a mobile system for real time, wide area radiation surveillance, using a CdZnTe detector for gamma radiation and a neutron detector based on novel silicon technologies. The sensing unit includes a GPS system and a wireless communication interface to send themore » data remotely to a monitoring base station, where it will be analyzed in real time and correlated with historical data from the tag location, in order to generate an alarm when an abnormal situation is detected. Due to its portability and accuracy, the system will be extremely useful in many different scenarios such as nuclear terrorism, lost radioactive sources, radioactive contamination or nuclear accidents. This paper shortly introduces the REWARD detection system, depicts some terrorist threat scenarios involving radioactive sources and special nuclear materials and summarizes the simulation work undertaken during the past three years in the framework of the REWARD project. The main objective consisted in making predictions regarding the behavior of the REWARD system in the presence of a Radiological Dispersion Device (RDD), one of the reference scenarios foreseen for REWARD, using the Monte Carlo simulation program MCNP6. The reference scenario is characterized in detail, from the i) radiological protection, ii) radiation detection requirements and iii) communications points of view. Experimental tests were performed at the Fire Brigades Facilities in Rome and at the Naples Fire Brigades, and the results, which validate the simulation work, are presented and analyzed. The response of the

  13. Isothermal Amplification Methods for the Detection of Nucleic Acids in Microfluidic Devices

    PubMed Central

    Zanoli, Laura Maria; Spoto, Giuseppe

    2012-01-01

    Diagnostic tools for biomolecular detection need to fulfill specific requirements in terms of sensitivity, selectivity and high-throughput in order to widen their applicability and to minimize the cost of the assay. The nucleic acid amplification is a key step in DNA detection assays. It contributes to improving the assay sensitivity by enabling the detection of a limited number of target molecules. The use of microfluidic devices to miniaturize amplification protocols reduces the required sample volume and the analysis times and offers new possibilities for the process automation and integration in one single device. The vast majority of miniaturized systems for nucleic acid analysis exploit the polymerase chain reaction (PCR) amplification method, which requires repeated cycles of three or two temperature-dependent steps during the amplification of the nucleic acid target sequence. In contrast, low temperature isothermal amplification methods have no need for thermal cycling thus requiring simplified microfluidic device features. Here, the use of miniaturized analysis systems using isothermal amplification reactions for the nucleic acid amplification will be discussed. PMID:25587397

  14. Design of a leak detection device for marine airtight container

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Zhu, Faxin; Lu, Jinshu; Li, Yule; Wu, Wenfeng; Zhang, Jianwei; Qin, Beichen

    2018-04-01

    The ship airtight container as the research object, according to the tightness of the traditional detection methods of sealed container from the shortcomings of the design of modern ship sealed container leak detection device based on the requirements of the use of AutoCAD to design a ship leakage detection device using airtight container, and introduces its working principle and main components. Finally, from the aspects of technology, structure, operation and economy, the feasibility analysis of the leak detection device for marine airtight container is designed, and it is concluded that the device has the advantages of simple operation, short detection time, easy maintenance and cost control, and has high feasibility.

  15. In-situ fault detection apparatus and method for an encased energy storing device

    DOEpatents

    Hagen, Ronald A.; Comte, Christophe; Knudson, Orlin B.; Rosenthal, Brian; Rouillard, Jean

    2000-01-01

    An apparatus and method for detecting a breach in an electrically insulating surface of an electrically conductive power system enclosure within which a number of series connected energy storing devices are disposed. The energy storing devices disposed in the enclosure are connected to a series power connection. A detector is coupled to the series connection and detects a change of state in a test signal derived from the series connected energy storing devices. The detector detects a breach in the insulating layer of the enclosure by detecting a state change in the test signal from a nominal state to a non-nominal state. A voltage detector detects a state change of the test signals from a nominal state, represented by a voltage of a selected end energy storing device, to a non-nominal state, represented by a voltage that substantially exceeds the voltage of the selected opposing end energy storing device. Alternatively, the detector may comprise a signal generator that produces the test signal as a time-varying or modulated test signal and injects the test signal into the series connection. The detector detects the state change of the time-varying or modulated test signal from a nominal state, represented by a signal substantially equivalent to the test signal, to a non-nominal state, representative by an absence of the test signal.

  16. Development of high impedance measurement system for water leakage detection in implantable neuroprosthetic devices.

    PubMed

    Yousif, Aziz; Kelly, Shawn K

    2016-08-01

    There has been a push for a greater number of channels in implantable neuroprosthetic devices; but, that number has largely been limited by current hermetic packaging technology. Microfabricated packaging is becoming reality, but a standard testing system is needed to prepare these devices for clinical trials. Impedance measurements of electrodes built into the packaging layers may give an early warning of device failure and predict device lifetime. Because the impedance magnitudes of such devices can be on the order of gigaohms, a versatile system was designed to accommodate ultra-high impedances and allow future integrated circuit implementation in current neural prosthetic technologies. Here we present the circuitry, control software, and preliminary testing results of our designed system.

  17. X ray sensitive area detection device

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor); Witherow, William K. (Inventor); Pusey, Marc L. (Inventor); Yost, Vaughn H. (Inventor)

    1990-01-01

    A radiation sensitive area detection device is disclosed which comprises a phosphor-containing film capable of receiving and storing an image formed by a pattern of incoming x rays, UV, or other radiation falling on the film. The device is capable of fluorescing in response to stimulation by a light source in a manner directly proportional to the stored radiation pattern. The device includes: (1) a light source capable of projecting light or other appropriate electromagnetic wave on the film so as to cause it to fluoresce; (2) a means to focus the fluoresced light coming from the phosphor-containing film after light stimulation; and (3) at least one charged coupled detector or other detecting element capable of receiving and digitizing the pattern of fluoresced light coming from the phosphor-containing film. The device will be able to generate superior x ray images of high resolution from a crystal or other sample and will be particularly advantageous in that instantaneous near-real-time images of rapidly deteriorating samples can be obtained. Furthermore, the device can be made compact and sturdy, thus capable of carrying out x ray or other radiation imaging under a variety of conditions, including those experienced in space.

  18. Temperature differential detection device

    DOEpatents

    Girling, P.M.

    1986-04-22

    A temperature differential detection device for detecting the temperature differential between predetermined portions of a container wall is disclosed as comprising a Wheatstone bridge circuit for detecting resistance imbalance with a first circuit branch having a first elongated wire element mounted in thermal contact with a predetermined portion of the container wall, a second circuit branch having a second elongated wire element mounted in thermal contact with a second predetermined portion of a container wall with the wire elements having a predetermined temperature-resistant coefficient, an indicator interconnected between the first and second branches remote from the container wall for detecting and indicating resistance imbalance between the first and second wire elements, and connector leads for electrically connecting the wire elements to the remote indicator in order to maintain the respective resistance value relationship between the first and second wire elements. The indicator is calibrated to indicate the detected resistance imbalance in terms of a temperature differential between the first and second wall portions. 2 figs.

  19. Temperature differential detection device

    DOEpatents

    Girling, Peter M.

    1986-01-01

    A temperature differential detection device for detecting the temperature differential between predetermined portions of a container wall is disclosed as comprising a Wheatstone bridge circuit for detecting resistance imbalance with a first circuit branch having a first elongated wire element mounted in thermal contact with a predetermined portion of the container wall, a second circuit branch having a second elongated wire element mounted in thermal contact with a second predetermined portion of a container wall with the wire elements having a predetermined temperature-resistant coefficient, an indicator interconnected between the first and second branches remote from the container wall for detecting and indicating resistance imbalance between the first and second wire elements, and connector leads for electrically connecting the wire elements to the remote indicator in order to maintain the respective resistance value relationship between the first and second wire elements. The indicator is calibrated to indicate the detected resistance imbalance in terms of a temperature differential between the first and second wall portions.

  20. Biomolecular detection device

    DOEpatents

    Huo, Qisheng [Albuquerque, NM; Liu, Jun [Albuquerque, NM

    2008-10-21

    A device for detecting and measuring the concentration of biomolecules in solution, utilizing a conducting electrode in contact with a solution containing target biomolecules, with a film with controllable pore size distribution characteristics applied to at least one surface of the conducting electrode. The film is functionalized with probe molecules that chemically interact with the target biomolecules at the film surface, blocking indicator molecules present in solution from diffusing from the solution to the electrode, thereby changing the electrochemical response of the electrode.

  1. An integrated optics microfluidic device for detecting single DNA molecules.

    PubMed

    Krogmeier, Jeffrey R; Schaefer, Ian; Seward, George; Yantz, Gregory R; Larson, Jonathan W

    2007-12-01

    A fluorescence-based integrated optics microfluidic device is presented, capable of detecting single DNA molecules in a high throughput and reproducible manner. The device integrates microfluidics for DNA stretching with two optical elements for single molecule detection (SMD): a plano-aspheric refractive lens for fluorescence excitation (illuminator) and a solid parabolic reflective mirror for fluorescence collection (collector). Although miniaturized in size, both optical components were produced and assembled onto the microfluidic device by readily manufacturable fabrication techniques. The optical resolution of the device is determined by the small and relatively low numerical aperture (NA) illuminator lens (0.10 effective NA, 4.0 mm diameter) that delivers excitation light to a diffraction limited 2.0 microm diameter spot at full width half maximum within the microfluidic channel. The collector (0.82 annular NA, 15 mm diameter) reflects the fluorescence over a large collection angle, representing 71% of a hemisphere, toward a single photon counting module in an infinity-corrected scheme. As a proof-of-principle experiment for this simple integrated device, individual intercalated lambda-phage DNA molecules (48.5 kb) were stretched in a mixed elongational-shear microflow, detected, and sized with a fluorescence signal to noise ratio of 9.9 +/-1.0. We have demonstrated that SMD does not require traditional high numerical aperture objective lenses and sub-micron positioning systems conventionally used in many applications. Rather, standard manufacturing processes can be combined in a novel way that promises greater accessibility and affordability for microfluidic-based single molecule applications.

  2. Submerged Object Detection and Classification System

    DTIC Science & Technology

    1993-04-16

    example of this type of system is a conventional sonar device wherein a highly directional beam of sonic energy periodically radiates from a...scanning transducer which in turn operates as a receiver to detect echoes reflected from any object within the path of 15 propagation. Sonar devices...classification, which requires relatively high frequency signals. Sonar devices also have the shortcoming of sensing background noise generated by

  3. Failure Detecting Method of Fault Current Limiter System with Rectifier

    NASA Astrophysics Data System (ADS)

    Tokuda, Noriaki; Matsubara, Yoshio; Asano, Masakuni; Ohkuma, Takeshi; Sato, Yoshibumi; Takahashi, Yoshihisa

    A fault current limiter (FCL) is extensively needed to suppress fault current, particularly required for trunk power systems connecting high-voltage transmission lines, such as 500kV class power system which constitutes the nucleus of the electric power system. We proposed a new type FCL system (rectifier type FCL), consisting of solid-state diodes, DC reactor and bypass AC reactor, and demonstrated the excellent performances of this FCL by developing the small 6.6kV and 66kV model. It is important to detect the failure of power devices used in the rectifier under the normal operating condition, for keeping the excellent reliability of the power system. In this paper, we have proposed a new failure detecting method of power devices most suitable for the rectifier type FCL. This failure detecting system is simple and compact. We have adapted the proposed system to the 66kV prototype single-phase model and successfully demonstrated to detect the failure of power devices.

  4. Portable device for the detection of colorimetric assays

    PubMed Central

    Nowak, E.; Kawchuk, J.; Hoorfar, M.; Najjaran, H.

    2017-01-01

    In this work, a low-cost, portable device is developed to detect colorimetric assays for in-field and point-of-care (POC) analysis. The device can rapidly detect both pH values and nitrite concentrations of five different samples, simultaneously. After mixing samples with specific reagents, a high-resolution digital camera collects a picture of the sample, and a single-board computer processes the image in real time to identify the hue–saturation–value coordinates of the image. An internal light source reduces the effect of any ambient light so the device can accurately determine the corresponding pH values or nitrite concentrations. The device was purposefully designed to be low-cost, yet versatile, and the accuracy of the results have been compared to those from a conventional method. The results obtained for pH values have a mean standard deviation of 0.03 and a correlation coefficient R2 of 0.998. The detection of nitrites is between concentrations of 0.4–1.6 mg l−1, with a low detection limit of 0.2 mg l−1, and has a mean standard deviation of 0.073 and an R2 value of 0.999. The results represent great potential of the proposed portable device as an excellent analytical tool for POC colorimetric analysis and offer broad accessibility in resource-limited settings. PMID:29291093

  5. Detection device for hazardous materials

    DOEpatents

    Partin, Judy K.; Grey, Alan E.

    1994-01-01

    A detection device that is activated by the interaction of a hazardous chcal with a coating interactive with said chemical on an optical fiber thereby reducing the amount of light passing through the fiber to a light detector. A combination of optical filters separates the light into a signal beam and a reference beam which after detection, appropriate amplification, and comparison with preset internal signals, activates an alarm means if a predetermined level of contaminant is observed.

  6. Detection device for hazardous materials

    DOEpatents

    Partin, Judy K.; Grey, Alan E.

    1994-04-05

    A detection device that is activated by the interaction of a hazardous chcal with a coating interactive with said chemical on an optical fiber thereby reducing the amount of light passing through the fiber to a light detector. A combination of optical filters separates the light into a signal beam and a reference beam which after detection, appropriate amplification, and comparison with preset internal signals, activates an alarm means if a predetermined level of contaminant is observed.

  7. Device for detection and identification of carbon- and nitrogen-containing materials

    DOEpatents

    Karev, Alexander Ivanovich; Raevsky, Valery Georgievich; Dzhilavyan, Leonid Zavenovich; Laptev, Valery Dmitrievich; Pakhomov, Nikolay Ivanovich; Shvedunov, Vasily Ivanovich; Rykalin, Vladimir Ivanovich; Brothers, Louis Joseph; Wilhide, Larry K

    2014-03-25

    A device for detection and identification of carbon- and nitrogen-containing materials is described. In particular, the device performs the detection and identification of carbon- and nitrogen-containing materials by photo-nuclear detection. The device may comprise a race-track microtron, a breaking target, and a water-filled Cherenkov radiation counter.

  8. Fluorescence detection system for microfluidic droplets

    NASA Astrophysics Data System (ADS)

    Chen, Binyu; Han, Xiaoming; Su, Zhen; Liu, Quanjun

    2018-05-01

    In microfluidic detection technology, because of the universality of optical methods in laboratory, optical detection is an attractive solution for microfluidic chip laboratory equipment. In addition, the equipment with high stability and low cost can be realized by integrating appropriate optical detection technology on the chip. This paper reports a detection system for microfluidic droplets. Photomultiplier tubes (PMT) is used as a detection device to improve the sensitivity of detection. This system improves the signal to noise ratio by software filtering and spatial filter. The fluorescence intensity is proportional to the concentration of the fluorescence and intensity of the laser. The fluorescence micro droplets of different concentrations can be distinguished by this system.

  9. Design of temperature detection device for drum of belt conveyor

    NASA Astrophysics Data System (ADS)

    Zhang, Li; He, Rongjun

    2018-03-01

    For difficult wiring and big measuring error existed in the traditional temperature detection method for drum of belt conveyor, a temperature detection device for drum of belt conveyor based on Radio Frequency(RF) communication is designed. In the device, detection terminal can collect temperature data through tire pressure sensor chip SP370 which integrates temperature detection and RF emission. The receiving terminal which is composed of RF receiver chip and microcontroller receives the temperature data and sends it to Controller Area Network(CAN) bus. The test results show that the device meets requirements of field application with measuring error ±3.73 ° and single button battery can provide continuous current for the detection terminal over 1.5 years.

  10. Hand-Held Devices Detect Explosives and Chemical Agents

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Ion Applications Inc., of West Palm Beach, Florida, partnered with Ames Research Center through Small Business Innovation Research (SBIR) agreements to develop a miniature version ion mobility spectrometer (IMS). While NASA was interested in the instrument for detecting chemicals during exploration of distant planets, moons, and comets, the company has incorporated the technology into a commercial hand-held IMS device for use by the military and other public safety organizations. Capable of detecting and identifying molecules with part-per-billion sensitivity, the technology now provides soldiers with portable explosives and chemical warfare agent detection. The device is also being adapted for detecting drugs and is employed in industrial processes such as semiconductor manufacturing.

  11. Upconverting nanoparticles for optimizing scintillator based detection systems

    DOEpatents

    Kross, Brian; McKisson, John E; McKisson, John; Weisenberger, Andrew; Xi, Wenze; Zom, Carl

    2013-09-17

    An upconverting device for a scintillation detection system is provided. The detection system comprises a scintillator material, a sensor, a light transmission path between the scintillator material and the sensor, and a plurality of upconverting nanoparticles particles positioned in the light transmission path.

  12. Particle detection systems and methods

    DOEpatents

    Morris, Christopher L.; Makela, Mark F.

    2010-05-11

    Techniques, apparatus and systems for detecting particles such as muons and neutrons. In one implementation, a particle detection system employs a plurality of drift cells, which can be for example sealed gas-filled drift tubes, arranged on sides of a volume to be scanned to track incoming and outgoing charged particles, such as cosmic ray-produced muons. The drift cells can include a neutron sensitive medium to enable concurrent counting of neutrons. The system can selectively detect devices or materials, such as iron, lead, gold, uranium, plutonium, and/or tungsten, occupying the volume from multiple scattering of the charged particles passing through the volume and can concurrently detect any unshielded neutron sources occupying the volume from neutrons emitted therefrom. If necessary, the drift cells can be used to also detect gamma rays. The system can be employed to inspect occupied vehicles at border crossings for nuclear threat objects.

  13. Detecting the Use of Intentionally Transmitting Personal Electronic Devices Onboard Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Woods, Randy; Ely, Jay J.; Vahala, Linda

    2003-01-01

    The need to detect unauthorized usage of intentionally transmitting portable electronic devices (PEDs) onboard commercial aircraft is growing, while still allowing passengers to use selected unintentionally transmitting devices, such as laptop computers and CD players during non-critical stages of flight. The following paper presents an installed system for detecting PEDs over multiple frequency bands. Additionally, the advantages of a fixed verses mobile system are discussed. While data is presented to cover the frequency range of 20 MHz to 6.5 GHz, special attention was given to the Cellular/PCS bands as well as Bluetooth and the FRS radio bands. Measurement data from both the semi-anechoic and reverberation chambers are then analyzed and correlated with data collected onboard a commercial aircraft to determine the dominant mode of coupling inside the passenger cabin of the aircraft versus distance from the source. As a final check of system feasibility, several PEDs transmission signatures were recorded and compared with the expected levels.

  14. Improvement of the Raman detection system for pesticide residues on/in fruits and vegetables

    NASA Astrophysics Data System (ADS)

    Li, Yan; Peng, Yankun; Zhai, Chen; Chao, Kuanglin; Qin, Jianwei

    2017-05-01

    Pesticide residue is one of the major challenges to fruits safety, while the traditional detection methods of pesticide residue on fruits and vegetables can't afford the demand of rapid detection in actual production because of timeconsuming. Thus rapid identification and detection methods for pesticide residue are urgently needed at present. While most Raman detection systems in the market are spot detection systems, which limits the range of application. In the study, our lab develops a Raman detection system to achieve area-scan thorough the self-developed spot detection Raman system with a control software and two devices. In the system, the scanning area is composed of many scanning spots, which means every spot needs to be detected and more time will be taken than area-scan Raman system. But lower detection limit will be achieved in this method. And some detection device is needed towards fruits and vegetables in different shape. Two detection devices are developed to detect spherical fruits and leaf vegetables. During the detection, the device will make spherical fruit rotate along its axis of symmetry, and leaf vegetables will be pressed in the test surface smoothly. The detection probe will be set to keep a proper distance to the surface of fruits and vegetables. It should make sure the laser shins on the surface of spherical fruit vertically. And two software are used to detect spherical fruits and leaf vegetables will be integrated to one, which make the operator easier to switch. Accordingly two detection devices for spherical fruits and leaf vegetables will also be portable devices to make it easier to change. In the study, a new way is developed to achieve area-scan result by spot-scan Raman detection system.

  15. [Research on Detection Method with Wearable Respiration Device Based on the Theory of Bio-impedance].

    PubMed

    Liu, Guangda; Wang, Xianzhong; Cai, Jing; Wang, Wei; Zha, Yutong

    2016-12-01

    Considering the importance of the human respiratory signal detection and based on the Cole-Cole bio-impedance model,we developed a wearable device for detecting human respiratory signal.The device can be used to analyze the impedance characteristics of human body at different frequencies based on the bio-impedance theory.The device is also based on the method of proportion measurement to design a high signal to noise ratio(SNR)circuit to get human respiratory signal.In order to obtain the waveform of the respiratory signal and the value of the respiration rate,we used the techniques of discrete Fourier transform(DFT)and dynamic difference threshold peak detection.Experiments showed that this system was valid,and we could see that it could accurately detect the waveform of respiration and the detection accuracy rate of respiratory wave peak point detection results was over 98%.So it can meet the needs of the actual breath test.

  16. Development of a self-contained device for rapid detection of volatile impurities in the oil system of a turbine

    NASA Astrophysics Data System (ADS)

    Starostin, A. A.; Shangin, V. V.; Bukhman, V. G.; Volosnikov, D. V.; Skripov, P. V.

    2016-08-01

    The research is devoted to development of a self-contained device for rapid detection of volatile impurities in the oil system of a turbine and testing it using the operating equipment. The device consists of a remote sensor, whose sensitive element is a 3-5-mm long wire probe 20 microns in diameter, and a measurement unit that comprises a microcontroller with a set of peripherals. The design of the device enables automation of the measurement procedure with a minimum number of preset settings and real-time output of information to the operator console. The software of the device provides two-stage pulse heating of the wire probe and a resistance temperature detector. The two-stage mode proves to be the most sensitive to appearance in the system of moisture, including its trace amounts. The characteristic time of the heating is of the order of 10 ms. The measurement procedure is based on a method that consists in automatic search for spontaneous boiling-up temperature of the oil accompanied by a characteristic response signal. The results were interpreted by formal correlation of the measured values with an array of calibration data obtained in similar experiments with well-defined oil samples. An experimental method for application of the device has been developed that takes into account technological factors, such as comparatively high values of the flow rate and the temperature of the oil in locations of the oil drain from bearings, the variability of these values, and the variety of noise types that accompany the operation of the thermal power equipment that complicate the online measurements. Tests of the device were carried out in locations of oil drain from supporting bearings. The test results have demonstrated the possibility of applying the device directly in the oil system of a turbine and provided a practical basis for development of a system of multipoint control of the technological scheme in real time.

  17. Radiation sensitive area detection device and method

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor); Hecht, Diana L. (Inventor); Witherow, William K. (Inventor)

    1991-01-01

    A radiation sensitive area detection device for use in conjunction with an X ray, ultraviolet or other radiation source is provided which comprises a phosphor containing film which releases a stored diffraction pattern image in response to incoming light or other electromagnetic wave. A light source such as a helium-neon laser, an optical fiber capable of directing light from the laser source onto the phosphor film and also capable of channelling the fluoresced light from the phosphor film to an integrating sphere which directs the light to a signal processing means including a light receiving means such as a photomultiplier tube. The signal processing means allows translation of the fluoresced light in order to detect the original pattern caused by the diffraction of the radiation by the original sample. The optical fiber is retained directly in front of the phosphor screen by a thin metal holder which moves up and down across the phosphor screen and which features a replaceable pinhole which allows easy adjustment of the resolution of the light projected onto the phosphor film. The device produces near real time images with high spatial resolution and without the distortion that accompanies prior art devices employing photomultiplier tubes. A method is also provided for carrying out radiation area detection using the device of the invention.

  18. Bioluminescent bioreporter integrated circuit devices and methods for detecting estrogen

    DOEpatents

    Simpson, Michael L.; Paulus, Michael J.; Sayler, Gary S.; Applegate, Bruce M.; Ripp, Steven A.

    2006-08-15

    Bioelectronic devices for the detection of estrogen include a collection of eukaryotic cells which harbor a recombinant lux gene from a high temperature microorganism wherein the gene is operably linked with a heterologous promoter gene. A detectable light-emitting lux gene product is expressed in the presence of the estrogen and detected by the device.

  19. About the Power Generation Confirmation of the Induction Motor and the Influence on the Islanding Detection Device

    NASA Astrophysics Data System (ADS)

    Igarashi, Hironobu; Sato, Takashi; Miyamoto, Kazunori; Kurokawa, Kousuke

    The photovoltaic generation system must have protection device and islanding detection devices to connect with utility line of the electric power company. It is regulated in the technological requirement guideline and the electric equipment technology standard that the country provides. The islanding detection device detected purpose install for blackout due to the accident occurrence of the earth fault and the short-circuit in the utility line. When the islanding detection device detects the power blackout, it is necessary to stop the photovoltaic generation system immediately. If the photovoltaic generation system is not stopped immediately, electricity comes to charge the utility power line very at risk. We had already known that the islanding detection device can't detect the islanding phenomenon, if is there the induction motor in the loads. Authors decided to investigate the influence that the induction motors gave to the islanding detection device. The result was the load condition that the induction motors changed generator the voltage is restraining. Moreover, it was clarified that the time of the islanding was long compared with the load condition of not changing into the state of the generator. The value changes into the reactance of the induction motors according to the frequency change after the supply of electric power line stops. The frequency after the supply of electric power line stops changes for the unbalance the reactive power by the effect of the power rate constancy control with PLL of the power conditioner. However, the induction motors is also to the changing frequency, makes amends for the amount of reactive power, and the change in the frequency after the supply of electric power line stops as a result is controlled. When the frequency changed after the supply of electric power line stopped, it was clarified of the action on the direction where it made amends from the change of the constant for the amount of an invalid electric power, and

  20. 40 CFR 60.692-5 - Standards: Closed vent systems and control devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (for example, condensers and adsorbers) shall be designed and operated to recover the VOC emissions... systems and control devices. (a) Enclosed combustion devices shall be designed and operated to reduce the... them. (e)(1) Closed vent systems shall be designed and operated with no detectable emissions, as...

  1. A Detection Device for the Signs of Human Life in Accident

    NASA Astrophysics Data System (ADS)

    Ning, Li; Ruilan, Zhang; Jian, Liu; Ruirui, Cheng; Yuhong, Diao

    2017-12-01

    A detection device for the signs of human life in accidents is a device used in emergency situations, such as the crash site. the scene of natural disasters, the battlefield ruins. it designed to detect the life signs of the distress under the injured ambulance vital signs devices. The device can on human vital signs, including pulse, respiration physiological signals to make rapid and accurate response. After some calculations, and after contrast to normal human physiological parameters given warning signals, in order for them to make timely ambulance judgment. In this case the device is required to do gymnastics convenience, ease of movement, power and detection of small flexible easy realization. This device has the maximum protection of the wounded safety significance.

  2. Influence of intrinsic noise generated by a thermotesting device on thermal sensory detection and thermal pain detection thresholds.

    PubMed

    Pavlaković, G; Züchner, K; Zapf, A; Bachmann, C G; Graf, B M; Crozier, T A; Pavlaković, H

    2009-08-01

    Various factors can influence thermal perception threshold measurements and contribute significantly to unwanted variability of the tests. To minimize this variability, testing should be performed under strictly controlled conditions. Identifying the factors that increase the variability and eliminating their influence should increase reliability and reproducibility. Currently available thermotesting devices use a water-cooling system that generates a continuous noise of approximately 60 dB. In order to analyze whether this noise could influence the thermal threshold measurements we compared the thresholds obtained with a silent thermotesting device to those obtained with a commercially available device. The subjects were tested with one randomly chosen device on 1 day and with the other device 7 days later. At each session, heat, heat pain, cold, and cold pain thresholds were determined with three measurements. Bland-Altman analysis was used to assess agreement in measurements obtained with different devices and it was shown that the intersubject variability of the thresholds obtained with the two devices was comparable for all four thresholds tested. In contrast, the intrasubject variability of the thresholds for heat, heat pain, and cold pain detection was significantly lower with the silent device. Our results show that thermal sensory thresholds measured with the two devices are comparable. However, our data suggest that, for studies with repeated measurements on the same subjects, a silent thermotesting device may allow detection of smaller differences in the treatment effects and/or may permit the use of a smaller number of tested subjects. Muscle Nerve 40: 257-263, 2009.

  3. Portable light detection system for the blind

    NASA Technical Reports Server (NTRS)

    Wilber, R. L.; Carpenter, B. L.

    1973-01-01

    System can be used to detect "ready" light on automatic cooking device, to tell if lights are on for visitors, or to tell whether it is daylight or dark outside. Device is actuated like flashlight. Light impinging on photo cell activates transistor which energizes buzzer to indicate presence of light.

  4. Infrared techniques for detecting carbonization at onset of device failure

    NASA Astrophysics Data System (ADS)

    Farr, Norman; Sinofsky, Edward L.

    1997-05-01

    We describe the design, and development of an infrared detection system which detects the onset of carbonization of fluoropolymers in the presence of up to 60 watts of 1.06 micrometer laser energy. This system is used to shut down a therapeutic laser system before significant damage is done to a laser delivery device and patient. Black body radiation emitting from the diffusion tip is transmitted, backwards, through the same optical fiber as the therapeutic wavelength. Using a high power 1.06 micrometer laser mirror at 45 degrees, most of the 1.06 micrometer light is reflected while the black body radiation is passed to a holographic notch filter which further filters the signal. Still more filtering was needed before the 1.1 to 2 micrometer signal could be detected within the presence the therapeutic light using an extended indium gallium arsenide photodetector. There was still a significant detected offset which increased with laser power which necessitated a means to automatically null the offset for different laser power settings. The system is designed to be used with any unmodified laser system. It interfaces directly to or in series with most common external safety interlocks and can be used with various diffusing tips, probes or bare fibers.

  5. System and Method for Detecting Unauthorized Device Access by Comparing Multiple Independent Spatial-Time Data Sets from Other Devices

    NASA Technical Reports Server (NTRS)

    Westmeyer, Paul A. (Inventor); Wertenberg, Russell F. (Inventor); Krage, Frederick J. (Inventor); Riegel, Jack F. (Inventor)

    2017-01-01

    An authentication procedure utilizes multiple independent sources of data to determine whether usage of a device, such as a desktop computer, is authorized. When a comparison indicates an anomaly from the base-line usage data, the system, provides a notice that access of the first device is not authorized.

  6. Rapid Detection of Microbial Contamination Using a Microfluidic Device.

    PubMed

    Al-Adhami, Mustafa; Tilahun, Dagmawi; Rao, Govind; Gurramkonda, Chandrasekhar; Kostov, Yordan

    2017-01-01

    A portable kinetics fluorometer is developed to detect viable cells which may be contaminating various samples. The portable device acts as a single-excitation, single-emission photometer that continuously measures fluorescence intensity of an indicator dye and plots it. The slope of the plot depends on the number of colony forming units per milliliter. The device uses resazurin as the indicator dye. Viable cells reduce resazurin to resorufin, which is more fluorescent. Photodiode is used to detect fluorescence change. The photodiode generated current proportional to the intensity of the light that reached it, and an op-amp is used in a transimpedance differential configuration to ensure amplification of the photodiode's signal. A microfluidic chip is designed specifically for the device. It acts as a fully enclosed cuvette, which enhances the resazurin reduction rate. In tests, the E. coli-containing media are injected into the microfluidic chip and the device is able to detect the presence of E. coli in LB media based on the fluorescence change that occurred in the indicator dye. The device provides fast, accurate, and inexpensive means to optical detection of the presence of viable cells and could be used in the field in place of more complex methods, i.e., loop-meditated isothermal amplification of DNA (LAMP) to detect bacteria in pharmaceutical samples (Jimenez et al., J Microbiol Methods 41(3):259-265, 2000) or measuring the intrinsic fluorescence of the bacterial or yeast chromophores (Estes et al., Biosens Bioelectron 18(5):511-519, 2003).

  7. Hierarchical structural health monitoring system combining a fiber optic spinal cord network and distributed nerve cell devices

    NASA Astrophysics Data System (ADS)

    Minakuchi, Shu; Tsukamoto, Haruka; Takeda, Nobuo

    2009-03-01

    This study proposes novel hierarchical sensing concept for detecting damages in composite structures. In the hierarchical system, numerous three-dimensionally structured sensor devices are distributed throughout the whole structural area and connected with the optical fiber network through transducing mechanisms. The distributed "sensory nerve cell" devices detect the damage, and the fiber optic "spinal cord" network gathers damage signals and transmits the information to a measuring instrument. This study began by discussing the basic concept of the hierarchical sensing system thorough comparison with existing fiber optic based systems and nerve systems in the animal kingdom. Then, in order to validate the proposed sensing concept, impact damage detection system for the composite structure was proposed. The sensor devices were developed based on Comparative Vacuum Monitoring (CVM) system and the Brillouin based distributed strain sensing was utilized to gather the damage signals from the distributed devices. Finally a verification test was conducted using prototype devices. Occurrence of barely visible impact damage was successfully detected and it was clearly indicated that the hierarchical system has better repairability, higher robustness, and wider monitorable area compared to existing systems utilizing embedded optical fiber sensors.

  8. Fast pesticide detection inside microfluidic device with integrated optical pH, oxygen sensors and algal fluorescence.

    PubMed

    Tahirbegi, Islam Bogachan; Ehgartner, Josef; Sulzer, Philipp; Zieger, Silvia; Kasjanow, Alice; Paradiso, Mirco; Strobl, Martin; Bouwes, Dominique; Mayr, Torsten

    2017-02-15

    The necessities of developing fast, portable, cheap and easy to handle pesticide detection platforms are getting attention of scientific and industrial communities. Although there are some approaches to develop microchip based pesticide detection platforms, there is no compact microfluidic device for the complementary, fast, cheap, reusable and reliable analysis of different pesticides. In this work, a microfluidic device is developed for in-situ analysis of pesticide concentration detected via metabolism/photosynthesis of Chlamydomonas reinhardtii algal cells (algae) in tap water. Algae are grown in glass based microfluidic chip, which contains integrated optical pH and oxygen sensors in a portable system for on-site detection. In addition, intrinsic algal fluorescence is detected to analyze the pesticide concentration in parallel to pH and oxygen sensors with integrated fluorescence detectors. The response of the algae under the effect of different concentrations of pesticides is evaluated and complementary inhibition effects depending on the pesticide concentration are demonstrated. The three different sensors allow the determination of various pesticide concentrations in the nanomolar concentration range. The miniaturized system provides the fast quantification of pesticides in less than 10min and enables the study of toxic effects of different pesticides on Chlamydomonas reinhardtii green algae. Consequently, the microfluidic device described here provides fast and complementary detection of different pesticides with algae in a novel glass based microfluidic device with integrated optical pH, oxygen sensors and algal fluorescence. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Microchip-based electrochemical detection using a 3-D printed wall-jet electrode device.

    PubMed

    Munshi, Akash S; Martin, R Scott

    2016-02-07

    Three dimensional (3-D) printing technology has evolved dramatically in the last few years, offering the capability of printing objects with a variety of materials. Printing microfluidic devices using this technology offers various advantages such as ease and uniformity of fabrication, file sharing between laboratories, and increased device-to-device reproducibility. One unique aspect of this technology, when used with electrochemical detection, is the ability to produce a microfluidic device as one unit while also allowing the reuse of the device and electrode for multiple analyses. Here we present an alternate electrode configuration for microfluidic devices, a wall-jet electrode (WJE) approach, created by 3-D printing. Using microchip-based flow injection analysis, we compared the WJE design with the conventionally used thin-layer electrode (TLE) design. It was found that the optimized WJE system enhances analytical performance (as compared to the TLE design), with improvements in sensitivity and the limit of detection. Experiments were conducted using two working electrodes - 500 μm platinum and 1 mm glassy carbon. Using the 500 μm platinum electrode the calibration sensitivity was 16 times higher for the WJE device (as compared to the TLE design). In addition, use of the 1 mm glassy carbon electrode led to limit of detection of 500 nM for catechol, as compared to 6 μM for the TLE device. Finally, to demonstrate the versatility and applicability of the 3-D printed WJE approach, the device was used as an inexpensive electrochemical detector for HPLC. The number of theoretical plates was comparable to the use of commercially available UV and MS detectors, with the WJE device being inexpensive to utilize. These results show that 3-D-printing can be a powerful tool to fabricate reusable and integrated microfluidic detectors in configurations that are not easily achieved with more traditional lithographic methods.

  10. An Inexpensive Device for Capillary Electrophoresis with Fluorescence Detection

    ERIC Educational Resources Information Center

    Anderson, Greg; Thompson, Jonathan E.; Shurrush, Khriesto

    2006-01-01

    We describe an inexpensive device for performing capillary electrophoresis (CE) separations with fluorescence detection. As a demonstration of the device's utility we have determined the mass of riboflavin in a commercially available dietary supplement. The device allows for separation of riboflavin in [asymptotically equivalent to] 100 s with a…

  11. Devices and methods to detect and quantify trace gases

    DOEpatents

    Allendorf, Mark D.; Robinson, Alex

    2016-05-03

    Sensing devices based on a surface acoustic wave ("SAW") device coated with an absorbent crystalline or amorphous layer for detecting at least one chemical analyte in a gaseous carrier. Methods for detecting the presence of a chemical analyte in a gaseous carrier using such devices are also disclosed. The sensing devices and methods for their use may be configured for sensing chemical analytes selected from the group consisting of water vapor, carbon dioxide, methanol, ethanol, carbon monoxide, nitric oxide, nitrous oxide, organic amines, organic compounds containing NO.sub.2 groups, halogenated hydrocarbons, acetone, hexane, toluene, isopropanol, alcohols, alkanes, alkenes, benzene, functionalized aromatics, ammonia (NH.sub.3), phosgene (COCl.sub.2), sulfur mustard, nerve agents, sulfur dioxide, tetrahydrofuran (THF) and methyltertbutyl ether (MTBE) and combinations thereof.

  12. VERIFICATION OF PORTABLE OPTICAL AND THERMAL IMAGING DEVICES FOR LEAK DETECTION AT PETROLEUM REFINERIES AND CHEMICAL PLANTS

    EPA Science Inventory

    Optical and thermal imaging devices are remote sensing systems that can be used to detect leaking gas compounds such as methane and benzene. Use of these systems can reduce fugitive emission losses through early detection and repair at industrial facilities by providing an effici...

  13. Medical Devices; Immunology and Microbiology Devices; Classification of the Device To Detect and Identify Microbial Pathogen Nucleic Acids in Cerebrospinal Fluid. Final order.

    PubMed

    2017-10-20

    The Food and Drug Administration (FDA or we) is classifying the device to detect and identify microbial pathogen nucleic acids in cerebrospinal fluid into class II (special controls). The special controls that will apply to the device type are identified in this order and will be part of the codified language for the device to detect and identify microbial pathogen nucleic acids in cerebrospinal fluid’s classification. We are taking this action because we have determined that classifying the device into class II (special controls) will provide a reasonable assurance of safety and effectiveness of the device. We believe this action will also enhance patients' access to beneficial innovative devices, in part by reducing regulatory burdens.

  14. Photonic sensor devices for explosive detection.

    PubMed

    Willer, Ulrike; Schade, Wolfgang

    2009-09-01

    For the sensitive online and in situ detection of gaseous species, optical methods are ideally suited. In contrast to chemical analysis, no sample preparation is necessary and therefore spectroscopic methods should be favorable both in respect of a fast signal recovery and economically because no disposal is needed. However, spectroscopic methods are currently not widely used for security applications. We review photonic sensor devices for the detection of explosives in the gas phase as well as the condensed phase and the underlying spectroscopic techniques with respect to their adaptability for security applications, where high sensitivity, high selectivity, and a low false-alarm rate are of importance. The measurements have to be performed under ambient conditions and often remote handling or even operation in standoff configuration is needed. For handheld and portable equipment, special attention is focused on the miniaturization and examples for already-available sensor devices are given.

  15. Heart Rate Detection Using Microsoft Kinect: Validation and Comparison to Wearable Devices.

    PubMed

    Gambi, Ennio; Agostinelli, Angela; Belli, Alberto; Burattini, Laura; Cippitelli, Enea; Fioretti, Sandro; Pierleoni, Paola; Ricciuti, Manola; Sbrollini, Agnese; Spinsante, Susanna

    2017-08-02

    Contactless detection is one of the new frontiers of technological innovation in the field of healthcare, enabling unobtrusive measurements of biomedical parameters. Compared to conventional methods for Heart Rate (HR) detection that employ expensive and/or uncomfortable devices, such as the Electrocardiograph (ECG) or pulse oximeter, contactless HR detection offers fast and continuous monitoring of heart activities and provides support for clinical analysis without the need for the user to wear a device. This paper presents a validation study for a contactless HR estimation method exploiting RGB (Red, Green, Blue) data from a Microsoft Kinect v2 device. This method, based on Eulerian Video Magnification (EVM), Photoplethysmography (PPG) and Videoplethysmography (VPG), can achieve performance comparable to classical approaches exploiting wearable systems, under specific test conditions. The output given by a Holter, which represents the gold-standard device used in the test for ECG extraction, is considered as the ground-truth, while a comparison with a commercial smartwatch is also included. The validation process is conducted with two modalities that differ for the availability of a priori knowledge about the subjects' normal HR. The two test modalities provide different results. In particular, the HR estimation differs from the ground-truth by 2% when the knowledge about the subject's lifestyle and his/her HR is considered and by 3.4% if no information about the person is taken into account.

  16. Heart Rate Detection Using Microsoft Kinect: Validation and Comparison to Wearable Devices

    PubMed Central

    Agostinelli, Angela; Belli, Alberto; Cippitelli, Enea; Fioretti, Sandro; Pierleoni, Paola; Ricciuti, Manola

    2017-01-01

    Contactless detection is one of the new frontiers of technological innovation in the field of healthcare, enabling unobtrusive measurements of biomedical parameters. Compared to conventional methods for Heart Rate (HR) detection that employ expensive and/or uncomfortable devices, such as the Electrocardiograph (ECG) or pulse oximeter, contactless HR detection offers fast and continuous monitoring of heart activities and provides support for clinical analysis without the need for the user to wear a device. This paper presents a validation study for a contactless HR estimation method exploiting RGB (Red, Green, Blue) data from a Microsoft Kinect v2 device. This method, based on Eulerian Video Magnification (EVM), Photoplethysmography (PPG) and Videoplethysmography (VPG), can achieve performance comparable to classical approaches exploiting wearable systems, under specific test conditions. The output given by a Holter, which represents the gold-standard device used in the test for ECG extraction, is considered as the ground-truth, while a comparison with a commercial smartwatch is also included. The validation process is conducted with two modalities that differ for the availability of a priori knowledge about the subjects’ normal HR. The two test modalities provide different results. In particular, the HR estimation differs from the ground-truth by 2% when the knowledge about the subject’s lifestyle and his/her HR is considered and by 3.4% if no information about the person is taken into account. PMID:28767091

  17. Uncooled infrared photon detection concepts and devices

    NASA Astrophysics Data System (ADS)

    Piyankarage, Viraj Vishwakantha Jayaweera

    This work describes infrared (IR) photon detector techniques based on novel semiconductor device concepts and detector designs. The aim of the investigation was to examine alternative IR detection concepts with a view to resolve some of the issues of existing IR detectors such as operating temperature and response range. Systems were fabricated to demonstrate the following IR detection concepts and determine detector parameters: (i) Near-infrared (NIR) detection based on dye-sensitization of nanostructured semiconductors, (ii) Displacement currents in semiconductor quantum dots (QDs) embedded dielectric media, (iii) Split-off band transitions in GaAs/AlGaAs heterojunction interfacial workfunction internal photoemission (HEIWIP) detectors. A far-infrared detector based on GaSb homojunction interfacial workfunction internal photoemission (HIWIP) structure is also discussed. Device concepts, detector structures, and experimental results discussed in the text are summarized below. Dye-sensitized (DS) detector structures consisting of n-TiO 2/Dye/p-CuSCN heterostructures with several IR-sensitive dyes showed response peaks at 808, 812, 858, 866, 876, and 1056 nm at room temperature. The peak specific-detectivity (D*) was 9.5x1010 cm Hz-1/2 W-1 at 812 nm at room temperature. Radiation induced carrier generation alters the electronic polarizability of QDs provided the quenching of excitation is suppressed by separation of the QDs. A device constructed to illustrate this concept by embedding PbS QDs in paraffin wax showed a peak D* of 3x108 cm Hz 1/2 W-1 at ˜540 nm at ambient temperature. A typical HEIWIP/HIWIP detector structures consist of single (or multiple) period(s) of doped emitter(s) and undoped barrier(s) which are sandwiched between two highly doped contact layers. A p-GaAs/AlGaAs HEIWIP structure showed enhanced absorption in NIR range due to heavy/light-hole band to split-off band transitions and leading to the development of GaAs based uncooled sensors for IR

  18. A device for the color measurement and detection of spots on the skin.

    PubMed

    Pladellorens, Josep; Pintó, Agustí; Segura, Jordi; Cadevall, Cristina; Antó, Joan; Pujol, Jaume; Vilaseca, Meritxell; Coll, Joaquín

    2008-02-01

    In this work, we present a new and fast easy-to-use device that allows the measurement of color and the detection of spots on the human skin. The developed device is highly practical for relatively untrained operators and uses inexpensive consumer equipment, such as a CCD color camera, a light source composed of LEDs and a laptop. The knowledge of the color of the skin and the detection of spots can be useful in several areas such as in dermatology applications, the cosmetics industry, the biometrics field, health care, etc. In order to perform these measurements the system takes a picture of the skin. After that, the operator selects the region of the skin to be analyzed on the displayed image and the system provides the CIELAB color coordinates, the chroma and the ITA parameter (Individual Tipology Angle), allowing the comparison with other reference images by means of CIELAB color differences. The system also detects spots, such as freckles, age spots, sunspots, pimples, black heads, etc., in a determined region, allowing the objective measurement of their size and area. The colorimetric information provided by a conventional spectrophotometer for the tested samples and the computed values obtained with the new developed system are quite similar, meaning that the developed system can be used to perform color measurements with relatively high accuracy. On the other hand, the feasibility of the system in order to detect and measure spots on the human skin has also been checked over a great amount of images, obtaining results with high precision. In this work, we present a new system that may be very useful in order to measure the color and to detect spots of the skin. Its portability and easy applicability will be very useful in dermatologic and cosmetic studies.

  19. 21 CFR 864.7280 - Factor V Leiden DNA mutation detection systems.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Factor V Leiden DNA mutation detection systems....7280 Factor V Leiden DNA mutation detection systems. (a) Identification. Factor V Leiden deoxyribonucleic acid (DNA) mutation detection systems are devices that consist of different reagents and...

  20. 21 CFR 864.7280 - Factor V Leiden DNA mutation detection systems.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Factor V Leiden DNA mutation detection systems....7280 Factor V Leiden DNA mutation detection systems. (a) Identification. Factor V Leiden deoxyribonucleic acid (DNA) mutation detection systems are devices that consist of different reagents and...

  1. 21 CFR 864.7280 - Factor V Leiden DNA mutation detection systems.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Factor V Leiden DNA mutation detection systems....7280 Factor V Leiden DNA mutation detection systems. (a) Identification. Factor V Leiden deoxyribonucleic acid (DNA) mutation detection systems are devices that consist of different reagents and...

  2. 21 CFR 864.7280 - Factor V Leiden DNA mutation detection systems.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Factor V Leiden DNA mutation detection systems....7280 Factor V Leiden DNA mutation detection systems. (a) Identification. Factor V Leiden deoxyribonucleic acid (DNA) mutation detection systems are devices that consist of different reagents and...

  3. 21 CFR 864.7280 - Factor V Leiden DNA mutation detection systems.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Factor V Leiden DNA mutation detection systems....7280 Factor V Leiden DNA mutation detection systems. (a) Identification. Factor V Leiden deoxyribonucleic acid (DNA) mutation detection systems are devices that consist of different reagents and...

  4. Automated seizure detection systems and their effectiveness for each type of seizure.

    PubMed

    Ulate-Campos, A; Coughlin, F; Gaínza-Lein, M; Fernández, I Sánchez; Pearl, P L; Loddenkemper, T

    2016-08-01

    Epilepsy affects almost 1% of the population and most of the approximately 20-30% of patients with refractory epilepsy have one or more seizures per month. Seizure detection devices allow an objective assessment of seizure frequency and a treatment tailored to the individual patient. A rapid recognition and treatment of seizures through closed-loop systems could potentially decrease morbidity and mortality in epilepsy. However, no single detection device can detect all seizure types. Therefore, the choice of a seizure detection device should consider the patient-specific seizure semiologies. This review of the literature evaluates seizure detection devices and their effectiveness for different seizure types. Our aim is to summarize current evidence, offer suggestions on how to select the most suitable seizure detection device for each patient and provide guidance to physicians, families and researchers when choosing or designing seizure detection devices. Further, this review will guide future prospective validation studies. Copyright © 2016. Published by Elsevier Ltd.

  5. Standards for testing and clinical validation of seizure detection devices.

    PubMed

    Beniczky, Sándor; Ryvlin, Philippe

    2018-06-01

    To increase the quality of studies on seizure detection devices, we propose standards for testing and clinical validation of such devices. We identified 4 key features that are important for studies on seizure detection devices: subjects, recordings, data analysis and alarms, and reference standard. For each of these features, we list the specific aspects that need to be addressed in the studies, and depending on these, studies are classified into 5 phases (0-4). We propose a set of outcome measures that need to be reported, and we propose standards for reporting the results. These standards will help in designing and reporting studies on seizure detection devices, they will give readers clear information on the level of evidence provided by the studies, and they will help regulatory bodies in assessing the quality of the validation studies. These standards are flexible, allowing classification of the studies into one of the 5 phases. We propose actions that can facilitate development of novel methods and devices. Wiley Periodicals, Inc. © 2018 International League Against Epilepsy.

  6. Automatic Emboli Detection System for the Artificial Heart

    NASA Astrophysics Data System (ADS)

    Steifer, T.; Lewandowski, M.; Karwat, P.; Gawlikowski, M.

    In spite of the progress in material engineering and ventricular assist devices construction, thromboembolism remains the most crucial problem in mechanical heart supporting systems. Therefore, the ability to monitor the patient's blood for clot formation should be considered an important factor in development of heart supporting systems. The well-known methods for automatic embolus detection are based on the monitoring of the ultrasound Doppler signal. A working system utilizing ultrasound Doppler is being developed for the purpose of flow estimation and emboli detection in the clinical artificial heart ReligaHeart EXT. Thesystem will be based on the existing dual channel multi-gate Doppler device with RF digital processing. A specially developed clamp-on cannula probe, equipped with 2 - 4 MHz piezoceramic transducers, enables easy system setup. We present the issuesrelated to the development of automatic emboli detection via Doppler measurements. We consider several algorithms for the flow estimation and emboli detection. We discuss their efficiency and confront them with the requirements of our experimental setup. Theoretical considerations are then met with preliminary experimental findings from a) flow studies with blood mimicking fluid and b) in-vitro flow studies with animal blood. Finally, we discuss some more methodological issues - we consider several possible approaches to the problem of verification of the accuracy of the detection system.

  7. Analysis of the kinestatic charge detection system as a high detective quantum efficiency electronic portal imaging device.

    PubMed

    Samant, Sanjiv S; Gopal, Arun

    2006-09-01

    Megavoltage x-ray imaging suffers from reduced image quality due to low differential x-ray attenuation and large Compton scatter compared with kilovoltage imaging. Notwithstanding this, electronic portal imaging devices (EPIDs) are now widely used in portal verification in radiotherapy as they offer significant advantages over film, including immediate digital imaging and superior contrast range. However video-camera-based EPIDs (VEPIDs) are limited by problems of low light collection efficiency and significant light scatter, leading to reduced contrast and spatial resolution. Indirect and direct detection-based flat-panel EPIDs have been developed to overcome these limitations. While flat-panel image quality has been reported to exceed that achieved with portal film, these systems have detective quantum efficiency (DQE) limited by the thin detection medium and are sensitive to radiation damage to peripheral read-out electronics. An alternative technology for high-quality portal imaging is presented here: kinesatic charge detection (KCD). The KCD is a scanning tri-electrode ion-chamber containing high-pressure noble gas (xenon at 100 atm) used in conjunction with a strip-collimated photon beam. The chamber is scanned across the patient, and an external electric field is used to regulate the cation drift velocity. By matching the scanning velocity with that of the cation (i.e., ion) drift velocity, the cations remain static in the object frame of reference, allowing temporal integration of the signal. The KCD offers several advantages as a portal imaging system. It has a thick detector geometry with an active detection depth of 6.1 cm, compared to the sub-millimeter thickness of the phosphor layer in conventional phosphor screens, leading to an order of magnitude advantage in quantum efficiency (>0.3). The unique principle of and the use of the scanning strip-collimated x-ray beam provide further integration of charges in time, reduced scatter, and a significantly

  8. Face verification system for Android mobile devices using histogram based features

    NASA Astrophysics Data System (ADS)

    Sato, Sho; Kobayashi, Kazuhiro; Chen, Qiu

    2016-07-01

    This paper proposes a face verification system that runs on Android mobile devices. In this system, facial image is captured by a built-in camera on the Android device firstly, and then face detection is implemented using Haar-like features and AdaBoost learning algorithm. The proposed system verify the detected face using histogram based features, which are generated by binary Vector Quantization (VQ) histogram using DCT coefficients in low frequency domains, as well as Improved Local Binary Pattern (Improved LBP) histogram in spatial domain. Verification results with different type of histogram based features are first obtained separately and then combined by weighted averaging. We evaluate our proposed algorithm by using publicly available ORL database and facial images captured by an Android tablet.

  9. Location precision analysis of stereo thermal anti-sniper detection system

    NASA Astrophysics Data System (ADS)

    He, Yuqing; Lu, Ya; Zhang, Xiaoyan; Jin, Weiqi

    2012-06-01

    Anti-sniper detection devices are the urgent requirement in modern warfare. The precision of the anti-sniper detection system is especially important. This paper discusses the location precision analysis of the anti-sniper detection system based on the dual-thermal imaging system. It mainly discusses the following two aspects which produce the error: the digital quantitative effects of the camera; effect of estimating the coordinate of bullet trajectory according to the infrared images in the process of image matching. The formula of the error analysis is deduced according to the method of stereovision model and digital quantitative effects of the camera. From this, we can get the relationship of the detecting accuracy corresponding to the system's parameters. The analysis in this paper provides the theory basis for the error compensation algorithms which are put forward to improve the accuracy of 3D reconstruction of the bullet trajectory in the anti-sniper detection devices.

  10. Assistive obstacle detection and navigation devices for vision-impaired users.

    PubMed

    Ong, S K; Zhang, J; Nee, A Y C

    2013-09-01

    Quality of life for the visually impaired is an urgent worldwide issue that needs to be addressed. Obstacle detection is one of the most important navigation tasks for the visually impaired. In this research, a novel range sensor placement scheme is proposed in this paper for the development of obstacle detection devices. Based on this scheme, two prototypes have been developed targeting at different user groups. This paper discusses the design issues, functional modules and the evaluation tests carried out for both prototypes. Implications for Rehabilitation Visual impairment problem is becoming more severe due to the worldwide ageing population. Individuals with visual impairment require assistance from assistive devices in daily navigation tasks. Traditional assistive devices that assist navigation may have certain drawbacks, such as the limited sensing range of a white cane. Obstacle detection devices applying the range sensor technology can identify road conditions with a higher sensing range to notify the users of potential dangers in advance.

  11. Compatible immuno-NASBA LOC device for quantitative detection of waterborne pathogens: design and validation.

    PubMed

    Zhao, Xinyan; Dong, Tao; Yang, Zhaochu; Pires, Nuno; Høivik, Nils

    2012-02-07

    Waterborne pathogens usually pose a global threat to animals and human beings. There has been a growing demand for convenient and sensitive tools to detect the potential emerging pathogens in water. In this study, a lab-on-a-chip (LOC) device based on the real-time immuno-NASBA (immuno-nucleic acid sequence-based amplification) assay was designed, fabricated and verified. The disposable immuno-NASBA chip is modelled on a 96-well ELISA microplate, which contains 43 reaction chambers inside the bionic channel networks. All valves are designed outside the chip and are reusable. The sample and reagent solutions were pushed into each chamber in turn, which was controlled by the valve system. Notably, the immuno-NASBA chip is completely compatible with common microplate readers in a biological laboratory, and can distinguish multiple waterborne pathogens in water samples quantitatively and simultaneously. The performance of the LOC device was demonstrated by detecting the presence of a synthetic peptide, ACTH (adrenocorticotropic hormone) and two common waterborne pathogens, Escherichia coli (E. coli) and rotavirus, in artificial samples. The results indicated that the LOC device has the potential to quantify traces of waterborne pathogens at femtomolar levels with high specificity, although the detection process was still subject to some factors, such as ribonuclease (RNase) contamination and non-specific adsorption. As an ultra-sensitive tool to quantify waterborne pathogens, the LOC device can be used to monitor water quality in the drinking water system. Furthermore, a series of compatible high-throughput LOC devices for monitoring waterborne pathogens could be derived from this prototype with the same design idea, which may render the complicated immuno-NASBA assays convenient to common users without special training.

  12. Intrusion Detection in Control Systems using Sequence Characteristics

    NASA Astrophysics Data System (ADS)

    Kiuchi, Mai; Onoda, Takashi

    Intrusion detection is considered effective in control systems. Sequences of the control application behavior observed in the communication, such as the order of the control device to be controlled, are important in control systems. However, most intrusion detection systems do not effectively reflect sequences in the application layer into the detection rules. In our previous work, we considered utilizing sequences for intrusion detection in control systems, and demonstrated the usefulness of sequences for intrusion detection. However, manually writing the detection rules for a large system can be difficult, so using machine learning methods becomes feasible. Also, in the case of control systems, there have been very few observed cyber attacks, so we have very little knowledge of the attack data that should be used to train the intrusion detection system. In this paper, we use an approach that combines CRF (Conditional Random Field) considering the sequence of the system, thus able to reflect the characteristics of control system sequences into the intrusion detection system, and also does not need the knowledge of attack data to construct the detection rules.

  13. A paper and plastic device for the combined isothermal amplification and lateral flow detection of Plasmodium DNA.

    PubMed

    Cordray, Michael S; Richards-Kortum, Rebecca R

    2015-11-26

    Isothermal amplification techniques are emerging as a promising method for malaria diagnosis since they are capable of detecting extremely low concentrations of parasite target while mitigating the need for infrastructure and training required by other nucleic acid based tests. Recombinase polymerase amplification (RPA) is promising for further development since it operates in a short time frame (<30 min) and produces a product that can be visually detected on a lateral flow dipstick. A self-sealing paper and plastic system that performs both the amplification and detection of a malaria DNA sequence is presented. Primers were designed using the NCBI nBLAST tools and screened using gel electrophoresis. Paper and plastic devices were prototyped using commercial design software and parts were cut using a laser cutter and assembled by hand. Synthetic copies of the Plasmodium 18S gene were spiked into solution and used as targets for the RPA reaction. To test the performance of the device the same samples spiked with synthetic target were run in parallel both in the paper and plastic devices and using conventional bench top methods. Novel RPA primers were developed that bind to sequences present in the four species of Plasmodium which infect humans. The paper and plastic devices were found to be capable of detecting as few as 5 copies/µL of synthetic Plasmodium DNA (50 copies total), comparable to the same reaction run on the bench top. The devices produce visual results in an hour, cost approximately $1, and are self-contained once the device is sealed. The device was capable of carrying out the RPA reaction and detecting meaningful amounts of synthetic Plasmodium DNA in a self-sealing and self-contained device. This device may be a step towards making nucleic acid tests more accessible for malaria detection.

  14. Method and apparatus for continuous fluid leak monitoring and detection in analytical instruments and instrument systems

    DOEpatents

    Weitz, Karl K [Pasco, WA; Moore, Ronald J [West Richland, WA

    2010-07-13

    A method and device are disclosed that provide for detection of fluid leaks in analytical instruments and instrument systems. The leak detection device includes a collection tube, a fluid absorbing material, and a circuit that electrically couples to an indicator device. When assembled, the leak detection device detects and monitors for fluid leaks, providing a preselected response in conjunction with the indicator device when contacted by a fluid.

  15. Remote health monitoring system for detecting cardiac disorders.

    PubMed

    Bansal, Ayush; Kumar, Sunil; Bajpai, Anurag; Tiwari, Vijay N; Nayak, Mithun; Venkatesan, Shankar; Narayanan, Rangavittal

    2015-12-01

    Remote health monitoring system with clinical decision support system as a key component could potentially quicken the response of medical specialists to critical health emergencies experienced by their patients. A monitoring system, specifically designed for cardiac care with electrocardiogram (ECG) signal analysis as the core diagnostic technique, could play a vital role in early detection of a wide range of cardiac ailments, from a simple arrhythmia to life threatening conditions such as myocardial infarction. The system that the authors have developed consists of three major components, namely, (a) mobile gateway, deployed on patient's mobile device, that receives 12-lead ECG signals from any ECG sensor, (b) remote server component that hosts algorithms for accurate annotation and analysis of the ECG signal and (c) point of care device of the doctor to receive a diagnostic report from the server based on the analysis of ECG signals. In the present study, their focus has been toward developing a system capable of detecting critical cardiac events well in advance using an advanced remote monitoring system. A system of this kind is expected to have applications ranging from tracking wellness/fitness to detection of symptoms leading to fatal cardiac events.

  16. Systems and methods for detection of blowout precursors in combustors

    DOEpatents

    Lieuwen, Tim C.; Nair, Suraj

    2006-08-15

    The present invention comprises systems and methods for detecting flame blowout precursors in combustors. The blowout precursor detection system comprises a combustor, a pressure measuring device, and blowout precursor detection unit. A combustion controller may also be used to control combustor parameters. The methods of the present invention comprise receiving pressure data measured by an acoustic pressure measuring device, performing one or a combination of spectral analysis, statistical analysis, and wavelet analysis on received pressure data, and determining the existence of a blowout precursor based on such analyses. The spectral analysis, statistical analysis, and wavelet analysis further comprise their respective sub-methods to determine the existence of blowout precursors.

  17. SmartMal: a service-oriented behavioral malware detection framework for mobile devices.

    PubMed

    Wang, Chao; Wu, Zhizhong; Li, Xi; Zhou, Xuehai; Wang, Aili; Hung, Patrick C K

    2014-01-01

    This paper presents SmartMal--a novel service-oriented behavioral malware detection framework for vehicular and mobile devices. The highlight of SmartMal is to introduce service-oriented architecture (SOA) concepts and behavior analysis into the malware detection paradigms. The proposed framework relies on client-server architecture, the client continuously extracts various features and transfers them to the server, and the server's main task is to detect anomalies using state-of-art detection algorithms. Multiple distributed servers simultaneously analyze the feature vector using various detectors and information fusion is used to concatenate the results of detectors. We also propose a cycle-based statistical approach for mobile device anomaly detection. We accomplish this by analyzing the users' regular usage patterns. Empirical results suggest that the proposed framework and novel anomaly detection algorithm are highly effective in detecting malware on Android devices.

  18. SmartMal: A Service-Oriented Behavioral Malware Detection Framework for Mobile Devices

    PubMed Central

    Wu, Zhizhong; Li, Xi; Zhou, Xuehai; Wang, Aili; Hung, Patrick C. K.

    2014-01-01

    This paper presents SmartMal—a novel service-oriented behavioral malware detection framework for vehicular and mobile devices. The highlight of SmartMal is to introduce service-oriented architecture (SOA) concepts and behavior analysis into the malware detection paradigms. The proposed framework relies on client-server architecture, the client continuously extracts various features and transfers them to the server, and the server's main task is to detect anomalies using state-of-art detection algorithms. Multiple distributed servers simultaneously analyze the feature vector using various detectors and information fusion is used to concatenate the results of detectors. We also propose a cycle-based statistical approach for mobile device anomaly detection. We accomplish this by analyzing the users' regular usage patterns. Empirical results suggest that the proposed framework and novel anomaly detection algorithm are highly effective in detecting malware on Android devices. PMID:25165729

  19. Distributed Mobile Device Based Shooter Detection Simulation

    DTIC Science & Technology

    2013-09-01

    three signatures of a gunshot ( muzzle flash [optical], muzzle blast [auditory], and shock wave [auditory]), we focus only on information from the...bullet, while this proximity is important when using information from the shock wave. Detecting and using the muzzle flash would require accurate...Additionally, the mobile device would need to be aimed towards the blast to even have a chance detect the muzzle flash . 2.1 Single Microphone When a sound is

  20. Evaluation of a video image detection system : final report.

    DOT National Transportation Integrated Search

    1994-05-01

    A video image detection system (VIDS) is an advanced wide-area traffic monitoring system : that processes input from a video camera. The Autoscope VIDS coupled with an information : management system was selected as the monitoring device because test...

  1. Development of a Coded Aperture X-Ray Backscatter Imager for Explosive Device Detection

    NASA Astrophysics Data System (ADS)

    Faust, Anthony A.; Rothschild, Richard E.; Leblanc, Philippe; McFee, John Elton

    2009-02-01

    Defence R&D Canada has an active research and development program on detection of explosive devices using nuclear methods. One system under development is a coded aperture-based X-ray backscatter imaging detector designed to provide sufficient speed, contrast and spatial resolution to detect antipersonnel landmines and improvised explosive devices. The successful development of a hand-held imaging detector requires, among other things, a light-weight, ruggedized detector with low power requirements, supplying high spatial resolution. The University of California, San Diego-designed HEXIS detector provides a modern, large area, high-temperature CZT imaging surface, robustly packaged in a light-weight housing with sound mechanical properties. Based on the potential for the HEXIS detector to be incorporated as the detection element of a hand-held imaging detector, the authors initiated a collaborative effort to demonstrate the capability of a coded aperture-based X-ray backscatter imaging detector. This paper will discuss the landmine and IED detection problem and review the coded aperture technique. Results from initial proof-of-principle experiments will then be reported.

  2. Electronic security device

    DOEpatents

    Eschbach, E.A.; LeBlanc, E.J.; Griffin, J.W.

    1992-03-17

    The present invention relates to a security device having a control box containing an electronic system and a communications loop over which the system transmits a signal. The device is constructed so that the communications loop can extend from the control box across the boundary of a portal such as a door into a sealed enclosure into which access is restricted whereby the loop must be damaged or moved in order for an entry to be made into the enclosure. The device is adapted for detecting unauthorized entries into such enclosures such as rooms or containers and for recording the time at which such entries occur for later reference. Additionally, the device detects attempts to tamper or interfere with the operation of the device itself and records the time at which such events take place. In the preferred embodiment, the security device includes a microprocessor-based electronic system and a detection module capable of registering changes in the voltage and phase of the signal transmitted over the loop. 11 figs.

  3. Electronic security device

    DOEpatents

    Eschbach, Eugene A.; LeBlanc, Edward J.; Griffin, Jeffrey W.

    1992-01-01

    The present invention relates to a security device having a control box (12) containing an electronic system (50) and a communications loop (14) over which the system transmits a signal. The device is constructed so that the communications loop can extend from the control box across the boundary of a portal such as a door into a sealed enclosure into which access is restricted whereby the loop must be damaged or moved in order for an entry to be made into the enclosure. The device is adapted for detecting unauthorized entries into such enclosures such as rooms or containers and for recording the time at which such entries occur for later reference. Additionally, the device detects attempts to tamper or interfere with the operation of the device itself and records the time at which such events take place. In the preferred embodiment, the security device includes a microprocessor-based electronic system (50) and a detection module (72) capable of registering changes in the voltage and phase of the signal transmitted over the loop.

  4. Methods, systems and devices for detecting and locating ferromagnetic objects

    DOEpatents

    Roybal, Lyle Gene [Idaho Falls, ID; Kotter, Dale Kent [Shelley, ID; Rohrbaugh, David Thomas [Idaho Falls, ID; Spencer, David Frazer [Idaho Falls, ID

    2010-01-26

    Methods for detecting and locating ferromagnetic objects in a security screening system. One method includes a step of acquiring magnetic data that includes magnetic field gradients detected during a period of time. Another step includes representing the magnetic data as a function of the period of time. Another step includes converting the magnetic data to being represented as a function of frequency. Another method includes a step of sensing a magnetic field for a period of time. Another step includes detecting a gradient within the magnetic field during the period of time. Another step includes identifying a peak value of the gradient detected during the period of time. Another step includes identifying a portion of time within the period of time that represents when the peak value occurs. Another step includes configuring the portion of time over the period of time to represent a ratio.

  5. Detection of orthopaedic foot and ankle implants by security screening devices.

    PubMed

    Bluman, Eric M; Tankson, Cedric; Myerson, Mark S; Jeng, Clifford L

    2006-12-01

    A common question asked by patients contemplating foot and ankle surgery is whether the implants used will set off security screening devices in airports and elsewhere. Detectability of specific implants may require the orthopaedic surgeon to provide attestation regarding their presence in patients undergoing implantation of these devices. Only two studies have been published since security measures became more stringent in the post-9/11 era. None of these studies specifically focused on the large numbers of orthopaedic foot and ankle implants in use today. This study establishes empiric data on the detectability by security screening devices of some currently used foot and ankle implants. A list of foot and ankle procedures was compiled, including procedures frequently used by general orthopaedists as well as those usually performed only by foot and ankle specialists. Implants tested included those used for open reduction and internal fixation, joint fusion, joint arthroplasty, osteotomies, arthroreisis, and internal bone stimulation. A test subject walked through a gate-type security device and was subsequently screened using a wand-type detection device while wearing each construct grouping. The screening was repeated with the implants placed within uncooked steak to simulate subcutaneous and submuscular implantation. None of the implants were detected by the gate-type security device. Specific implants that triggered the wand-type detection device regardless of coverage with the meat were total ankle prostheses, implantable bone stimulators, large metatarsophalangeal hemiarthroplasty, large arthroreisis plugs, medial distal tibial locking construct, supramalleolar osteotomy fixation, stainless steel bimalleolar ankle fracture fixation, calcaneal fracture plate and screw constructs, large fragment blade plate constructs, intramedullary tibiotalocalcaneal fusion constructs, and screw fixation for calcaneal osteotomies, ankle arthrodeses, triple arthrodeses, and

  6. Electrochemical detection of nitromethane vapors combined with a solubilization device.

    PubMed

    Delile, Sébastien; Aussage, Adeline; Maillou, Thierry; Palmas, Pascal; Lair, Virginie; Cassir, Michel

    2015-01-01

    During the past decade, the number of terrorism acts has increased and the need for efficient explosive detectors has become an urgent worldwide necessity. A prototype, Nebulex™, was recently developed in our laboratory. Basically, it couples the solubilization of an analyte from the atmosphere by a nebulization process and in-situ detection. This article presents the development and integration of an electrochemical sensor for the detection of nitromethane, a common chemical product that can be used to make an improvised explosive device. A gold screen-printed electrode was used in a flow-cell and a detection limit of 4.5 µM was achieved by square wave voltammetry. The detection method was also determined to be selective toward nitromethane over a large panel of interfering compounds. Detection tests with the Nebulex™ were thus carried out using a custom-made calibrated nitromethane vapor generator. Detection times of less than one minute were obtained for nitromethane contents of 8 and 90 ppmv. Further measurements were performed in a room-measurement configuration leading to detection times in the range of 1-2 min, clearly demonstrating the system's efficiency under quasi-real conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Detection and measurement of electroreflectance on quantum cascade laser device using Fourier transform infrared microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enobio, Eli Christopher I.; Ohtani, Keita; Ohno, Yuzo

    2013-12-02

    We demonstrate the use of a Fourier Transform Infrared microscope system to detect and measure electroreflectance (ER) from mid-infrared quantum cascade laser (QCL) device. To characterize intersubband transition (ISBT) energies in a functioning QCL device, a microscope is used to focus the probe on the QCL cleaved mirror. The measured ER spectra exhibit resonance features associated to ISBTs under applied electric field in agreement with the numerical calculations and comparable to observed photocurrent, and emission peaks. The method demonstrates the potential as a characterization tool for QCL devices.

  8. System for particle concentration and detection

    DOEpatents

    Morales, Alfredo M.; Whaley, Josh A.; Zimmerman, Mark D.; Renzi, Ronald F.; Tran, Huu M.; Maurer, Scott M.; Munslow, William D.

    2013-03-19

    A new microfluidic system comprising an automated prototype insulator-based dielectrophoresis (iDEP) triggering microfluidic device for pathogen monitoring that can eventually be run outside the laboratory in a real world environment has been used to demonstrate the feasibility of automated trapping and detection of particles. The system broadly comprised an aerosol collector for collecting air-borne particles, an iDEP chip within which to temporarily trap the collected particles and a laser and fluorescence detector with which to induce a fluorescence signal and detect a change in that signal as particles are trapped within the iDEP chip.

  9. Multi-chamber nucleic acid amplification and detection device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dugan, Lawrence

    A nucleic acid amplification and detection device includes an amplification cartridge with a plurality of reaction chambers for containing an amplification reagent and a visual detection reagent, and a plurality of optically transparent view ports for viewing inside the reaction chambers. The cartridge also includes a sample receiving port which is adapted to receive a fluid sample and fluidically connected to distribute the fluid sample to the reaction chamber, and in one embodiment, a plunger is carried by the cartridge for occluding fluidic communication to the reaction chambers. The device also includes a heating apparatus having a heating element whichmore » is activated by controller to generate heat when a trigger event is detected. The heating apparatus includes a cartridge-mounting section which positioned a cartridge in thermal communication with the heating element so that visual changes to the contents of the reaction chambers are viewable through the view ports.« less

  10. Conductivity detection for monitoring mixing reactions in microfluidic devices.

    PubMed

    Liu, Y; Wipf, D O; Henry, C S

    2001-08-01

    A conductivity detector was coupled to poly(dimethylsiloxane)-glass capillary electrophoresis microchips to monitor microfluidic flow. Electroosmotic flow was investigated with both conductivity detection (CD) and the current monitoring method. No significant variation was observed between these methods, but CD showed a lower relative standard deviation. Gradient mixing experiments were employed to investigate the relationship between the electrolyte conductivity and the electrolyte concentration. A good linear response of conductivity to concentration was obtained for solutions whose difference in concentrations were less than 27 mM. The new system holds great promise for precision mixing in microfluidic devices using electrically driven flows.

  11. Transmission environmental scanning electron microscope with scintillation gaseous detection device.

    PubMed

    Danilatos, Gerasimos; Kollia, Mary; Dracopoulos, Vassileios

    2015-03-01

    A transmission environmental scanning electron microscope with use of a scintillation gaseous detection device has been implemented. This corresponds to a transmission scanning electron microscope but with addition of a gaseous environment acting both as environmental and detection medium. A commercial type of low vacuum machine has been employed together with appropriate modifications to the detection configuration. This involves controlled screening of various emitted signals in conjunction with a scintillation gaseous detection device already provided with the machine for regular surface imaging. Dark field and bright field imaging has been obtained along with other detection conditions. With a progressive series of modifications and tests, the theory and practice of a novel type of microscopy is briefly shown now ushering further significant improvements and developments in electron microscopy as a whole. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Note: Low temperature superconductor superconducting quantum interference device system with wide pickup coil for detecting small metallic particles

    NASA Astrophysics Data System (ADS)

    Kandori, Akihiko; Ogata, Kuniomi; Kawabata, Ryuzo; Tanimoto, Sayaka; Seki, Yusuke

    2012-07-01

    A one-channel low temperature superconductor superconducting quantum interference device system comprising a second-order axial gradiometer with a sensing area of 10 mm × 190 mm was developed. The gradiometer was mounted in a liquid-helium dewar (450-mm diameter; 975-mm length), with a gap of 12 mm between the pickup coil and the dewar-tail surface. The magnetic field sensitivity was measured to be 16 fT/Hz1/2 in the white noise regime above 2 Hz. The system was used to measure stainless steel particles of different sizes passing through the sensing area. A 100-μm diameter SUS304 particle was readily detected passing at different positions underneath the large pickup coil by measuring its 1.3-pT magnetic field. Thus, the system was shown to be applicable to quality control of lamination sheet products such as lithium ion batteries.

  13. Optical fiber strain sensor for application in intelligent intruder detection systems

    NASA Astrophysics Data System (ADS)

    Stańczyk, Tomasz; Tenderenda, Tadeusz; Szostkiewicz, Lukasz; Bienkowska, Beata; Kunicki, Daniel; Murawski, Michal; Mergo, Pawel; Nasilowski, Tomasz

    2017-10-01

    Nowadays technology allows to create highly effective Intruder Detection Systems (IDS), that are able to detect the presence of an intruder within a defined area. In such systems the best performance can be achieved by combining different detection techniques in one system. One group of devices that can be applied in an IDS, are devices based on Fiber Optic Sensors (FOS). The FOS benefits from numerous advantages of optical fibers like: small size, light weight or high sensitivity. In this work we present a novel Microstructured Optical Fiber (MOF) characterized by increased strain sensitivity dedicated to distributed acoustic sensing for intelligent intruder detection systems. By designing the MOF with large air holes in close proximity to a fiber core, we increased the effective refractive index sensitivity to longitudinal strain. The presented fiber can be easily integrated in a floor system in order to detect any movement in the investigated area. We believe that sensors, based on the presented MOF, due to its numerous advantages, can find application in intelligent IDS.

  14. Systems, devices, and methods for agglutination assays using sedimentation

    DOEpatents

    Schaff, Ulrich Y.; Sommer, Gregory J.; Singh, Anup K.

    2016-01-26

    Embodiments of the present invention include methods for conducting agglutination assays using sedimentation. Aggregates may be exposed to sedimentation forces and travel through a density medium to a detection area. Microfluidic devices, such as microfluidic disks, are described for conducting the agglutination assays, as are systems for conducting the assays.

  15. Digital micromirror devices in Raman trace detection of explosives

    NASA Astrophysics Data System (ADS)

    Glimtoft, Martin; Svanqvist, Mattias; Ågren, Matilda; Nordberg, Markus; Östmark, Henric

    2016-05-01

    Imaging Raman spectroscopy based on tunable filters is an established technique for detecting single explosives particles at stand-off distances. However, large light losses are inherent in the design due to sequential imaging at different wavelengths, leading to effective transmission often well below 1 %. The use of digital micromirror devices (DMD) and compressive sensing (CS) in imaging Raman explosives trace detection can improve light throughput and add significant flexibility compared to existing systems. DMDs are based on mature microelectronics technology, and are compact, scalable, and can be customized for specific tasks, including new functions not available with current technologies. This paper has been focusing on investigating how a DMD can be used when applying CS-based imaging Raman spectroscopy on stand-off explosives trace detection, and evaluating the performance in terms of light throughput, image reconstruction ability and potential detection limits. This type of setup also gives the possibility to combine imaging Raman with non-spatially resolved fluorescence suppression techniques, such as Kerr gating. The system used consists of a 2nd harmonics Nd:YAG laser for sample excitation, collection optics, DMD, CMOScamera and a spectrometer with ICCD camera for signal gating and detection. Initial results for compressive sensing imaging Raman shows a stable reconstruction procedure even at low signals and in presence of interfering background signal. It is also shown to give increased effective light transmission without sacrificing molecular specificity or area coverage compared to filter based imaging Raman. At the same time it adds flexibility so the setup can be customized for new functionality.

  16. 10 CFR 31.10 - General license for strontium 90 in ice detection devices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false General license for strontium 90 in ice detection devices... MATERIAL § 31.10 General license for strontium 90 in ice detection devices. (a) A general license is hereby issued to own, receive, acquire, possess, use, and transfer strontium 90 contained in ice detection...

  17. 10 CFR 31.10 - General license for strontium 90 in ice detection devices.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false General license for strontium 90 in ice detection devices... MATERIAL § 31.10 General license for strontium 90 in ice detection devices. (a) A general license is hereby issued to own, receive, acquire, possess, use, and transfer strontium 90 contained in ice detection...

  18. 10 CFR 31.10 - General license for strontium 90 in ice detection devices.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false General license for strontium 90 in ice detection devices... MATERIAL § 31.10 General license for strontium 90 in ice detection devices. (a) A general license is hereby issued to own, receive, acquire, possess, use, and transfer strontium 90 contained in ice detection...

  19. 10 CFR 31.10 - General license for strontium 90 in ice detection devices.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false General license for strontium 90 in ice detection devices... MATERIAL § 31.10 General license for strontium 90 in ice detection devices. (a) A general license is hereby issued to own, receive, acquire, possess, use, and transfer strontium 90 contained in ice detection...

  20. 10 CFR 31.10 - General license for strontium 90 in ice detection devices.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false General license for strontium 90 in ice detection devices... MATERIAL § 31.10 General license for strontium 90 in ice detection devices. (a) A general license is hereby issued to own, receive, acquire, possess, use, and transfer strontium 90 contained in ice detection...

  1. Integrated hybrid polystyrene-polydimethylsiloxane device for monitoring cellular release with microchip electrophoresis and electrochemical detection

    PubMed Central

    Johnson, Alicia S.; Mehl, Benjamin T.; Martin, R. Scott

    2015-01-01

    In this work, a polystyrene (PS)-polydimethylsiloxane (PDMS) hybrid device was developed to enable the integration of cell culture with analysis by microchip electrophoresis and electrochemical detection. It is shown that this approach combines the fundamental advantages of PDMS devices (the ability to integrate pumps and valves) and PS devices (the ability to permanently embed fluidic tubing and electrodes). The embedded fused-silica capillary enables high temporal resolution measurements from off-chip cell culture dishes and the embedded electrodes provide close to real-time analysis of small molecule neurotransmitters. A novel surface treatment for improved (reversible) adhesion between PS and PDMS is described using a chlorotrimethylsilane stamping method. It is demonstrated that a Pd decoupler is efficient at handling the high current (and cathodic hydrogen production) resulting from use of high ionic strength buffers needed for cellular analysis; thus allowing an electrophoretic separation and in-channel detection. The separation of norepinephrine (NE) and dopamine (DA) in highly conductive biological buffers was optimized using a mixed surfactant system. This PS-PDMS hybrid device integrates multiple processes including continuous sampling from a cell culture dish, on-chip pump and valving technologies, microchip electrophoresis, and electrochemical detection to monitor neurotransmitter release from PC 12 cells. PMID:25663849

  2. Electrochemical detection for microscale analytical systems: a review.

    PubMed

    Wang, Joseph

    2002-02-11

    As the field of chip-based microscale systems continues its rapid growth, there are urgent needs for developing compatible detection modes. Electrochemistry detection offers considerable promise for such microfluidic systems, with features that include remarkable sensitivity, inherent miniaturization and portability, independence of optical path length or sample turbidity, low cost, low-power requirements and high compatibility with advanced micromachining and microfabrication technologies. This paper highlights recent advances, directions and key strategies in controlled-potential electrochemical detectors for miniaturized analytical systems. Subjects covered include the design and integration of the electrochemical detection system, its requirements and operational principles, common electrode materials, derivatization reactions, electrical-field decouplers, typical applications and future prospects. It is expected that electrochemical detection will become a powerful tool for microscale analytical systems and will facilitate the creation of truly portable (and possibly disposable) devices.

  3. Comparison between different cost devices for digital capture of X-ray films: an image characteristics detection approach.

    PubMed

    Salazar, Antonio José; Camacho, Juan Camilo; Aguirre, Diego Andrés

    2012-02-01

    A common teleradiology practice is digitizing films. The costs of specialized digitizers are very high, that is why there is a trend to use conventional scanners and digital cameras. Statistical clinical studies are required to determine the accuracy of these devices, which are very difficult to carry out. The purpose of this study was to compare three capture devices in terms of their capacity to detect several image characteristics. Spatial resolution, contrast, gray levels, and geometric deformation were compared for a specialized digitizer ICR (US$ 15,000), a conventional scanner UMAX (US$ 1,800), and a digital camera LUMIX (US$ 450, but require an additional support system and a light box for about US$ 400). Test patterns printed in films were used. The results detected gray levels lower than real values for all three devices; acceptable contrast and low geometric deformation with three devices. All three devices are appropriate solutions, but a digital camera requires more operator training and more settings.

  4. Multi-channeled single chain variable fragment (scFv) based microfluidic device for explosives detection.

    PubMed

    Charles, Paul T; Davis, Jasmine; Adams, André A; Anderson, George P; Liu, Jinny L; Deschamps, Jeffrey R; Kusterbeck, Anne W

    2015-11-01

    The development of explosives detection technologies has increased significantly over the years as environmental and national security agencies implement tighter pollution control measures and methods for improving homeland security. 2, 4, 6-Trinitrotoluene (TNT), known primarily as a component in munitions, has been targeted for both its toxicity and carcinogenic properties that if present at high concentrations can be a detriment to both humans, marine and plant ecosystems. Enabling end users with environmental detection and monitoring systems capable of providing real-time, qualitative and quantitative chemical analysis of these toxic compounds would be extremely beneficial. Reported herein is the development of a multi-channeled microfluidic device immobilized with single chain fragment variable (scFv) recombinant proteins specific for the explosive, TNT. Fluorescence displacement immunoassays performed under constant flow demonstrated trace level sensitivity and specificity for TNT. The utility of three multi-channeled devices immobilized with either (1) scFv recombinant protein, (2) biotinylated-scFv (bt-scFv) and (3) monoclonal anti-TNT (whole IgG molecule) were investigated and compared. Fluorescence dose response curves, crossreactivity measurements and limits of detection (LOD) for TNT were determined. Fluorescence displacement immunoassays for TNT in natural seawater demonstrated detection limits at sub-parts-per-billion levels (0.5 ppb) utilizing the microfluidic device with immobilized bt-scFv. Published by Elsevier B.V.

  5. 21 CFR 866.5900 - Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation detection system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... regulator (CFTR) gene mutation detection system. 866.5900 Section 866.5900 Food and Drugs FOOD AND DRUG...) gene mutation detection system. (a) Identification. The CFTR gene mutation detection system is a device used to simultaneously detect and identify a panel of mutations and variants in the CFTR gene. It is...

  6. 21 CFR 866.5900 - Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation detection system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... regulator (CFTR) gene mutation detection system. 866.5900 Section 866.5900 Food and Drugs FOOD AND DRUG...) gene mutation detection system. (a) Identification. The CFTR gene mutation detection system is a device used to simultaneously detect and identify a panel of mutations and variants in the CFTR gene. It is...

  7. 21 CFR 866.5900 - Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation detection system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... regulator (CFTR) gene mutation detection system. 866.5900 Section 866.5900 Food and Drugs FOOD AND DRUG...) gene mutation detection system. (a) Identification. The CFTR gene mutation detection system is a device used to simultaneously detect and identify a panel of mutations and variants in the CFTR gene. It is...

  8. 21 CFR 866.5900 - Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation detection system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... regulator (CFTR) gene mutation detection system. 866.5900 Section 866.5900 Food and Drugs FOOD AND DRUG...) gene mutation detection system. (a) Identification. The CFTR gene mutation detection system is a device used to simultaneously detect and identify a panel of mutations and variants in the CFTR gene. It is...

  9. Solid-state devices for detection of DNA, protein biomarkers and cells

    NASA Astrophysics Data System (ADS)

    Asghar, Waseem

    Nanobiotechnology and BioMEMS have had tremendous impact on biosensing in the areas of cancer cell detection and therapeutics, disease diagnostics, proteomics and DNA analysis. Diseases are expressed on all levels including DNA, protein, cell and tissue. Therefore it is very critical to develop biosensors at each level. The power of the nanotechnology lies in the fact that we can fabricate devices on all scales from micro to nano. This dissertation focuses on four areas: 1) Development of nanopore sensors for DNA analysis; 2) Development of micropore sensors for early detection of circulating tumor cells (CTCs) from whole blood; 3) Synthesis of nano-textured substrates for cancer isolation and tissue culture applications; 4) Fabrication of nanoscale break-junctions. All of these sensors are fabricated using standard silicon processing techniques. Pulsed plasma polymer deposition is also utilized to control the density of the biosensor surface charges. These devices are then used for efficient detection of DNA, proteins and cells, and can be potentially used in point-of-care systems. Overall, our designed biosensing platforms offer improved selectivity, yield and reliability. Novel approaches to nanopore shrinking are simple, reliable and do not change the material composition around the pore boundary. The micropores provide a direct interface to distinguish CTCs from normal cell without requiring fluorescent dyes and surface functionalization. Nano-textured surfaces and break-junctions can be used for enhanced adhesion of cells and selective detection of proteins respectively.

  10. Microfluidic devices for sample preparation and rapid detection of foodborne pathogens.

    PubMed

    Kant, Krishna; Shahbazi, Mohammad-Ali; Dave, Vivek Priy; Ngo, Tien Anh; Chidambara, Vinayaka Aaydha; Than, Linh Quyen; Bang, Dang Duong; Wolff, Anders

    2018-03-10

    Rapid detection of foodborne pathogens at an early stage is imperative for preventing the outbreak of foodborne diseases, known as serious threats to human health. Conventional bacterial culturing methods for foodborne pathogen detection are time consuming, laborious, and with poor pathogen diagnosis competences. This has prompted researchers to call the current status of detection approaches into question and leverage new technologies for superior pathogen sensing outcomes. Novel strategies mainly rely on incorporating all the steps from sample preparation to detection in miniaturized devices for online monitoring of pathogens with high accuracy and sensitivity in a time-saving and cost effective manner. Lab on chip is a blooming area in diagnosis, which exploits different mechanical and biological techniques to detect very low concentrations of pathogens in food samples. This is achieved through streamlining the sample handling and concentrating procedures, which will subsequently reduce human errors and enhance the accuracy of the sensing methods. Integration of sample preparation techniques into these devices can effectively minimize the impact of complex food matrix on pathogen diagnosis and improve the limit of detections. Integration of pathogen capturing bio-receptors on microfluidic devices is a crucial step, which can facilitate recognition abilities in harsh chemical and physical conditions, offering a great commercial benefit to the food-manufacturing sector. This article reviews recent advances in current state-of-the-art of sample preparation and concentration from food matrices with focus on bacterial capturing methods and sensing technologies, along with their advantages and limitations when integrated into microfluidic devices for online rapid detection of pathogens in foods and food production line. Copyright © 2018. Published by Elsevier Inc.

  11. A Field-Based Cleaning Protocol for Sampling Devices Used in Life-Detection Studies

    NASA Astrophysics Data System (ADS)

    Eigenbrode, Jennifer; Benning, Liane G.; Maule, Jake; Wainwright, Norm; Steele, Andrew; Amundsen, Hans E. F.

    2009-06-01

    Analytical approaches to extant and extinct life detection involve molecular detection often at trace levels. Thus, removal of biological materials and other organic molecules from the surfaces of devices used for sampling is essential for ascertaining meaningful results. Organic decontamination to levels consistent with null values on life-detection instruments is particularly challenging at remote field locations where Mars analog field investigations are carried out. Here, we present a seven-step, multi-reagent decontamination method that can be applied to sampling devices while in the field. In situ lipopolysaccharide detection via low-level endotoxin assays and molecular detection via gas chromatography-mass spectrometry were used to test the effectiveness of the decontamination protocol for sampling of glacial ice with a coring device and for sampling of sediments with a rover scoop during deployment at Arctic Mars-analog sites in Svalbard, Norway. Our results indicate that the protocols and detection technique sufficiently remove and detect low levels of molecular constituents necessary for life-detection tests.

  12. A field-based cleaning protocol for sampling devices used in life-detection studies.

    PubMed

    Eigenbrode, Jennifer; Benning, Liane G; Maule, Jake; Wainwright, Norm; Steele, Andrew; Amundsen, Hans E F

    2009-06-01

    Analytical approaches to extant and extinct life detection involve molecular detection often at trace levels. Thus, removal of biological materials and other organic molecules from the surfaces of devices used for sampling is essential for ascertaining meaningful results. Organic decontamination to levels consistent with null values on life-detection instruments is particularly challenging at remote field locations where Mars analog field investigations are carried out. Here, we present a seven-step, multi-reagent decontamination method that can be applied to sampling devices while in the field. In situ lipopolysaccharide detection via low-level endotoxin assays and molecular detection via gas chromatography-mass spectrometry were used to test the effectiveness of the decontamination protocol for sampling of glacial ice with a coring device and for sampling of sediments with a rover scoop during deployment at Arctic Mars-analog sites in Svalbard, Norway. Our results indicate that the protocols and detection technique sufficiently remove and detect low levels of molecular constituents necessary for life-detection tests.

  13. An integrated fiberoptic-microfluidic device for agglutination detection and blood typing.

    PubMed

    Ramasubramanian, Melur K; Alexander, Stewart P

    2009-02-01

    In this paper, an integrated fiberoptic-microfluidic device for the detection of agglutination for blood type cross-matching has been described. The device consists of a straight microfluidic channel through with a reacted RBC suspension is pumped with the help of a syringe pump. The flow intersects an optical path created by an emitter-received fiber optic pair integrated into the microfluidic device. A 650 nm laser diode is used as the light source and a silicon photodiode is used to detect the light intensity. The spacing between the tips of the two optic fibers can be adjusted. When fiber spacing is large and the concentration of the suspension is high, scattering phenomenon becomes the dominant mechanism for agglutination detection while at low concentrations and small spacing, optointerruption becomes the dominant mechanism. An agglutination strength factor (ASF) is calculated from the data. Studies with a variety of blood types indicate that the sensing method correctly identifies the agglutination reaction in all cases. A disposable integrated device can be designed for future implementation of the method for near-bedside pre-transfusion check.

  14. Synthetic mRNA devices that detect endogenous proteins and distinguish mammalian cells.

    PubMed

    Kawasaki, Shunsuke; Fujita, Yoshihiko; Nagaike, Takashi; Tomita, Kozo; Saito, Hirohide

    2017-07-07

    Synthetic biology has great potential for future therapeutic applications including autonomous cell programming through the detection of protein signals and the production of desired outputs. Synthetic RNA devices are promising for this purpose. However, the number of available devices is limited due to the difficulty in the detection of endogenous proteins within a cell. Here, we show a strategy to construct synthetic mRNA devices that detect endogenous proteins in living cells, control translation and distinguish cell types. We engineered protein-binding aptamers that have increased stability in the secondary structures of their active conformation. The designed devices can efficiently respond to target proteins including human LIN28A and U1A proteins, while the original aptamers failed to do so. Moreover, mRNA delivery of an LIN28A-responsive device into human induced pluripotent stem cells (hiPSCs) revealed that we can distinguish living hiPSCs and differentiated cells by quantifying endogenous LIN28A protein expression level. Thus, our endogenous protein-driven RNA devices determine live-cell states and program mammalian cells based on intracellular protein information. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Detection and response to unauthorized access to a communication device

    DOEpatents

    Smith, Rhett; Gordon, Colin

    2015-09-08

    A communication gateway consistent with the present disclosure may detect unauthorized physical or electronic access and implement security actions in response thereto. A communication gateway may provide a communication path to an intelligent electronic device (IED) using an IED communications port configured to communicate with the IED. The communication gateway may include a physical intrusion detection port and a network port. The communication gateway may further include control logic configured to evaluate physical intrusion detection signal. The control logic may be configured to determine that the physical intrusion detection signal is indicative of an attempt to obtain unauthorized access to one of the communication gateway, the IED, and a device in communication with the gateway; and take a security action based upon the determination that the indication is indicative of the attempt to gain unauthorized access.

  16. Terahertz detection using double quantum well devices

    NASA Astrophysics Data System (ADS)

    Khodier, Majid; Christodoulou, Christos G.; Simmons, Jerry A.

    2001-12-01

    This paper discusses the principle of operation of an electrically tunable THz detector, working around 2.54 THz, integrated with a bowtie antenna. The detection is based on the idea of photon-assisted tunneling (PAT) in a double quantum well (DQW) device. The bowtie antenna is used to collect the THz radiation and feed it to the detector for processing. The Bowtie antenna geometry is integrated with the DQW device to achieve broadband characteristic, easy design, and compatibility with the detector fabrication process. The principle of operation of the detector is introduced first. Then, results of different bowtie antenna layouts are presented and discussed.

  17. Mass spectrometry detection and imaging of inorganic and organic explosive device signatures using desorption electro-flow focusing ionization.

    PubMed

    Forbes, Thomas P; Sisco, Edward

    2014-08-05

    We demonstrate the coupling of desorption electro-flow focusing ionization (DEFFI) with in-source collision induced dissociation (CID) for the mass spectrometric (MS) detection and imaging of explosive device components, including both inorganic and organic explosives and energetic materials. We utilize in-source CID to enhance ion collisions with atmospheric gas, thereby reducing adducts and minimizing organic contaminants. Optimization of the MS signal response as a function of in-source CID potential demonstrated contrasting trends for the detection of inorganic and organic explosive device components. DEFFI-MS and in-source CID enabled isotopic and molecular speciation of inorganic components, providing further physicochemical information. The developed system facilitated the direct detection and chemical mapping of trace analytes collected with Nomex swabs and spatially resolved distributions within artificial fingerprints from forensic lift tape. The results presented here provide the forensic and security sectors a powerful tool for the detection, chemical imaging, and inorganic speciation of explosives device signatures.

  18. Personal Electronic Devices and Their Interference with Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Ross, Elden; Ely, Jay J. (Technical Monitor)

    2001-01-01

    A compilation of data on personal electronic devices (PEDs) attributed to having created anomalies with aircraft systems. Charts and tables display 14 years of incidents reported by pilots to the Aviation Safety Reporting System (ASRS). Affected systems, incident severity, sources of anomaly detection, and the most frequently identified PEDs are some of the more significant data. Several reports contain incidents of aircraft off course when all systems indicated on course and of critical events that occurred during landings and takeoffs. Additionally, PEDs that should receive priority in testing are identified.

  19. Systems for detecting charged particles in object inspection

    DOEpatents

    Morris, Christopher L.; Makela, Mark F.

    2013-08-20

    Techniques, apparatus and systems for detecting particles such as muons. In one implementation, a monitoring system has a cosmic ray-produced charged particle tracker with a plurality of drift cells. The drift cells, which can be for example aluminum drift tubes, can be arranged at least above and below a volume to be scanned to thereby track incoming and outgoing charged particles, such as cosmic ray-produced muons, while also detecting gamma rays. The system can selectively detect devices or materials, such as iron, lead, gold and/or tungsten, occupying the volume from multiple scattering of the charged particles passing through the volume and can also detect any radioactive sources occupying the volume from gamma rays emitted therefrom. If necessary, the drift tubes can be sealed to eliminate the need for a gas handling system. The system can be employed to inspect occupied vehicles at border crossings for nuclear threat objects.

  20. Automatic Fall Detection System Based on the Combined Use of a Smartphone and a Smartwatch.

    PubMed

    Casilari, Eduardo; Oviedo-Jiménez, Miguel A

    2015-01-01

    Due to their widespread popularity, decreasing costs, built-in sensors, computing power and communication capabilities, Android-based personal devices are being seen as an appealing technology for the deployment of wearable fall detection systems. In contrast with previous solutions in the existing literature, which are based on the performance of a single element (a smartphone), this paper proposes and evaluates a fall detection system that benefits from the detection performed by two popular personal devices: a smartphone and a smartwatch (both provided with an embedded accelerometer and a gyroscope). In the proposed architecture, a specific application in each component permanently tracks and analyses the patient's movements. Diverse fall detection algorithms (commonly employed in the literature) were implemented in the developed Android apps to discriminate falls from the conventional activities of daily living of the patient. As a novelty, a fall is only assumed to have occurred if it is simultaneously and independently detected by the two Android devices (which can interact via Bluetooth communication). The system was systematically evaluated in an experimental testbed with actual test subjects simulating a set of falls and conventional movements associated with activities of daily living. The tests were repeated by varying the detection algorithm as well as the pre-defined mobility patterns executed by the subjects (i.e., the typology of the falls and non-fall movements). The proposed system was compared with the cases where only one device (the smartphone or the smartwatch) is considered to recognize and discriminate the falls. The obtained results show that the joint use of the two detection devices clearly increases the system's capability to avoid false alarms or 'false positives' (those conventional movements misidentified as falls) while maintaining the effectiveness of the detection decisions (that is to say, without increasing the ratio of 'false

  1. 10 CFR 32.61 - Ice detection devices containing strontium-90; requirements for license to manufacture or...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Ice detection devices containing strontium-90... Generally Licensed Items § 32.61 Ice detection devices containing strontium-90; requirements for license to... ice detection devices containing strontium-90 for distribution to persons generally licensed under...

  2. 10 CFR 32.61 - Ice detection devices containing strontium-90; requirements for license to manufacture or...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Ice detection devices containing strontium-90... Generally Licensed Items § 32.61 Ice detection devices containing strontium-90; requirements for license to... ice detection devices containing strontium-90 for distribution to persons generally licensed under...

  3. 10 CFR 32.61 - Ice detection devices containing strontium-90; requirements for license to manufacture or...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Ice detection devices containing strontium-90... Generally Licensed Items § 32.61 Ice detection devices containing strontium-90; requirements for license to... ice detection devices containing strontium-90 for distribution to persons generally licensed under...

  4. 10 CFR 32.61 - Ice detection devices containing strontium-90; requirements for license to manufacture or...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Ice detection devices containing strontium-90... Generally Licensed Items § 32.61 Ice detection devices containing strontium-90; requirements for license to... ice detection devices containing strontium-90 for distribution to persons generally licensed under...

  5. A Paper-Based Device for Performing Loop-Mediated Isothermal Amplification with Real-Time Simultaneous Detection of Multiple DNA Targets.

    PubMed

    Seok, Youngung; Joung, Hyou-Arm; Byun, Ju-Young; Jeon, Hyo-Sung; Shin, Su Jeong; Kim, Sanghyo; Shin, Young-Beom; Han, Hyung Soo; Kim, Min-Gon

    2017-01-01

    Paper-based diagnostic devices have many advantages as a one of the multiple diagnostic test platforms for point-of-care (POC) testing because they have simplicity, portability, and cost-effectiveness. However, despite high sensitivity and specificity of nucleic acid testing (NAT), the development of NAT based on a paper platform has not progressed as much as the others because various specific conditions for nucleic acid amplification reactions such as pH, buffer components, and temperature, inhibitions from technical differences of paper-based device. Here, we propose a paper-based device for performing loop-mediated isothermal amplification (LAMP) with real-time simultaneous detection of multiple DNA targets. We determined the optimal chemical components to enable dry conditions for the LAMP reaction without lyophilization or other techniques. We also devised the simple paper device structure by sequentially stacking functional layers, and employed a newly discovered property of hydroxynaphthol blue fluorescence to analyze real-time LAMP signals in the paper device. This proposed platform allowed analysis of three different meningitis DNA samples in a single device with single-step operation. This LAMP-based multiple diagnostic device has potential for real-time analysis with quantitative detection of 10 2 -10 5 copies of genomic DNA. Furthermore, we propose the transformation of DNA amplification devices to a simple and affordable paper system approach with great potential for realizing a paper-based NAT system for POC testing.

  6. A Paper-Based Device for Performing Loop-Mediated Isothermal Amplification with Real-Time Simultaneous Detection of Multiple DNA Targets

    PubMed Central

    Seok, Youngung; Joung, Hyou-Arm; Byun, Ju-Young; Jeon, Hyo-Sung; Shin, Su Jeong; Kim, Sanghyo; Shin, Young-Beom; Han, Hyung Soo; Kim, Min-Gon

    2017-01-01

    Paper-based diagnostic devices have many advantages as a one of the multiple diagnostic test platforms for point-of-care (POC) testing because they have simplicity, portability, and cost-effectiveness. However, despite high sensitivity and specificity of nucleic acid testing (NAT), the development of NAT based on a paper platform has not progressed as much as the others because various specific conditions for nucleic acid amplification reactions such as pH, buffer components, and temperature, inhibitions from technical differences of paper-based device. Here, we propose a paper-based device for performing loop-mediated isothermal amplification (LAMP) with real-time simultaneous detection of multiple DNA targets. We determined the optimal chemical components to enable dry conditions for the LAMP reaction without lyophilization or other techniques. We also devised the simple paper device structure by sequentially stacking functional layers, and employed a newly discovered property of hydroxynaphthol blue fluorescence to analyze real-time LAMP signals in the paper device. This proposed platform allowed analysis of three different meningitis DNA samples in a single device with single-step operation. This LAMP-based multiple diagnostic device has potential for real-time analysis with quantitative detection of 102-105 copies of genomic DNA. Furthermore, we propose the transformation of DNA amplification devices to a simple and affordable paper system approach with great potential for realizing a paper-based NAT system for POC testing. PMID:28740546

  7. Assessment of Detectable Warning Devices for Specification Compliance or Equivalent Facilitation

    DOT National Transportation Integrated Search

    1992-12-01

    This report evaluates the Americans with Disabilities Act Accessibility Guidelines (ADAAG) specification for detectable : warnings and the applicability of equivalent facilitation to the development of detectable warning devices. Ambiguities : in the...

  8. Monolithic multi-color light emission/detection device

    DOEpatents

    Wanlass, Mark W.

    1995-01-01

    A single-crystal, monolithic, tandem, multi-color optical transceiver device is described, including (a) an InP substrate having upper and lower surfaces, (b) a first junction on the upper surface of the InP substrate, (c) a second junction on the first junction. The first junction is preferably GaInAsP of defined composition, and the second junction is preferably InP. The two junctions are lattice matched. The second junction has a larger energy band gap than the first junction. Additional junctions having successively larger energy band gaps may be included. The device is capable of simultaneous and distinct multi-color emission and detection over a single optical fiber.

  9. Monolithic multi-color light emission/detection device

    DOEpatents

    Wanlass, M.W.

    1995-02-21

    A single-crystal, monolithic, tandem, multi-color optical transceiver device is described, including (a) an InP substrate having upper and lower surfaces, (b) a first junction on the upper surface of the InP substrate, (c) a second junction on the first junction. The first junction is preferably GaInAsP of defined composition, and the second junction is preferably InP. The two junctions are lattice matched. The second junction has a larger energy band gap than the first junction. Additional junctions having successively larger energy band gaps may be included. The device is capable of simultaneous and distinct multi-color emission and detection over a single optical fiber. 5 figs.

  10. Automated and miniaturized detection of biological threats with a centrifugal microfluidic system

    NASA Astrophysics Data System (ADS)

    Mark, D.; van Oordt, T.; Strohmeier, O.; Roth, G.; Drexler, J.; Eberhard, M.; Niedrig, M.; Patel, P.; Zgaga-Griesz, A.; Bessler, W.; Weidmann, M.; Hufert, F.; Zengerle, R.; von Stetten, F.

    2012-06-01

    The world's growing mobility, mass tourism, and the threat of terrorism increase the risk of the fast spread of infectious microorganisms and toxins. Today's procedures for pathogen detection involve complex stationary devices, and are often too time consuming for a rapid and effective response. Therefore a robust and mobile diagnostic system is required. We present a microstructured LabDisk which performs complex biochemical analyses together with a mobile centrifugal microfluidic device which processes the LabDisk. This portable system will allow fully automated and rapid detection of biological threats at the point-of-need.

  11. SiPM electro-optical detection system noise suppression method

    NASA Astrophysics Data System (ADS)

    Bi, Xiangli; Yang, Suhui; Hu, Tao; Song, Yiheng

    2014-11-01

    In this paper, the single photon detection principle of Silicon Photomultipliers (SiPM) device is introduced. The main noise factors that infect the sensitivity of the electro-optical detection system are analyzed, including background light noise, detector dark noise, preamplifier noise and signal light noise etc. The Optical, electrical and thermodynamic methods are used to suppress the SiPM electro-optical detection system noise, which improved the response sensitivity of the detector. Using SiPM optoelectronic detector with a even high sensitivity, together with small field large aperture optical system, high cutoff narrow bandwidth filters, low-noise operational amplifier circuit, the modular design of functional circuit, semiconductor refrigeration technology, greatly improved the sensitivity of optical detection system, reduced system noise and achieved long-range detection of weak laser radiation signal. Theoretical analysis and experimental results show that the proposed methods are reasonable and efficient.

  12. An improved three-dimensional non-scanning laser imaging system based on digital micromirror device

    NASA Astrophysics Data System (ADS)

    Xia, Wenze; Han, Shaokun; Lei, Jieyu; Zhai, Yu; Timofeev, Alexander N.

    2018-01-01

    Nowadays, there are two main methods to realize three-dimensional non-scanning laser imaging detection, which are detection method based on APD and detection method based on Streak Tube. However, the detection method based on APD possesses some disadvantages, such as small number of pixels, big pixel interval and complex supporting circuit. The detection method based on Streak Tube possesses some disadvantages, such as big volume, bad reliability and high cost. In order to resolve the above questions, this paper proposes an improved three-dimensional non-scanning laser imaging system based on Digital Micromirror Device. In this imaging system, accurate control of laser beams and compact design of imaging structure are realized by several quarter-wave plates and a polarizing beam splitter. The remapping fiber optics is used to sample the image plane of receiving optical lens, and transform the image into line light resource, which can realize the non-scanning imaging principle. The Digital Micromirror Device is used to convert laser pulses from temporal domain to spatial domain. The CCD with strong sensitivity is used to detect the final reflected laser pulses. In this paper, we also use an algorithm which is used to simulate this improved laser imaging system. In the last, the simulated imaging experiment demonstrates that this improved laser imaging system can realize three-dimensional non-scanning laser imaging detection.

  13. Wireless system for explosion detection in underground structures

    NASA Astrophysics Data System (ADS)

    Chikhradze, M.; Bochorishvili, N.; Akhvlediani, I.; Kukhalashvili, D.; Kalichava, I.; Mataradze, E.

    2009-06-01

    Considering the growing threat of terrorist or accidental explosions in underground stations, underground highway and railway sections improvement of system for protecting people from explosions appears urgent. Current automatic protective devices with blast identification module and blast damping absorbers of various designs as their basic elements cannot be considered effective. Analysis revealed that low reliability of blast detection and delayed generation of start signal for the activation of an absorber are the major disadvantages of protective devices. Besides the transmission of trigger signal to an energy absorber through cable communication reduces the reliability of the operation of protective device due to a possible damage of electric wiring under blast or mechanical attack. This paper presents the outcomes of the studies conducted to select accurate criteria for blast identification and to design wireless system of activation of defensive device. The results of testing of blast detection methods (seismic, EMP, optical, on overpressure) showed that the proposed method, which implies constant monitoring of overpressure in terms of its reliability and response speed, best meets the requirements. Proposed wireless system for explosions identification and activation of protective device consists of transmitter and receiver modules. Transmitter module contains sensor and microprocessor equipped with blast identification software. Receiver module produces activation signal for operation of absorber. Tests were performed in the underground experimental base of Mining Institute. The time between the moment of receiving signal by the sensor and activation of absorber - 640 microsecond; distance between transmitter and receiver in direct tunnel - at least 150m; in tunnel with 900 bending - 50m. This research is sponsored by NATO's Public Diplomacy Division in the framework of "Science for Peace".

  14. Terahertz imaging devices and systems, and related methods, for detection of materials

    DOEpatents

    Kotter, Dale K.

    2016-11-15

    Terahertz imaging devices may comprise a focal plane array including a substrate and a plurality of resonance elements. The plurality of resonance elements may comprise a conductive material coupled to the substrate. Each resonance element of the plurality of resonance elements may be configured to resonate and produce an output signal responsive to incident radiation having a frequency between about a 0.1 THz and 4 THz range. A method of detecting a hazardous material may comprise receiving incident radiation by a focal plane array having a plurality of discrete pixels including a resonance element configured to absorb the incident radiation at a resonant frequency in the THz, generating an output signal from each of the discrete pixels, and determining a presence of a hazardous material by interpreting spectral information from the output signal.

  15. Optimization and evaluation of the human fall detection system

    NASA Astrophysics Data System (ADS)

    Alzoubi, Hadeel; Ramzan, Naeem; Shahriar, Hasan; Alzubi, Raid; Gibson, Ryan; Amira, Abbes

    2016-10-01

    Falls are the most critical health problem for elderly people, which are often, cause significant injuries. To tackle a serious risk that made by the fall, we develop an automatic wearable fall detection system utilizing two devices (mobile phone and wireless sensor) based on three axes accelerometer signals. The goal of this study is to find an effective machine learning method that distinguish falls from activities of daily living (ADL) using only a single triaxial accelerometer. In addition, comparing the performance results for wearable sensor and mobile device data .The proposed model detects the fall by using seven different classifiers and the significant performance is demonstrated using accuracy, recall, precision and F-measure. Our model obtained accuracy over 99% on wearable device data and over 97% on mobile phone data.

  16. Wireless device monitoring systems and monitoring devices, and associated methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCown, Steven H; Derr, Kurt W; Rohde, Kenneth W

    Wireless device monitoring systems and monitoring devices include a communications module for receiving wireless communications of a wireless device. Processing circuitry is coupled with the communications module and configured to process the wireless communications to determine whether the wireless device is authorized or unauthorized to be present at the monitored area based on identification information of the wireless device. Methods of monitoring for the presence and identity of wireless devices are also provided.

  17. Detecting Nano-Scale Vibrations in Rotating Devices by Using Advanced Computational Methods

    PubMed Central

    del Toro, Raúl M.; Haber, Rodolfo E.; Schmittdiel, Michael C.

    2010-01-01

    This paper presents a computational method for detecting vibrations related to eccentricity in ultra precision rotation devices used for nano-scale manufacturing. The vibration is indirectly measured via a frequency domain analysis of the signal from a piezoelectric sensor attached to the stationary component of the rotating device. The algorithm searches for particular harmonic sequences associated with the eccentricity of the device rotation axis. The detected sequence is quantified and serves as input to a regression model that estimates the eccentricity. A case study presents the application of the computational algorithm during precision manufacturing processes. PMID:22399918

  18. Novel Wearable Device for Blood Leakage Detection during Hemodialysis Using an Array Sensing Patch

    PubMed Central

    Du, Yi-Chun; Lim, Bee-Yen; Ciou, Wei-Siang; Wu, Ming-Jui

    2016-01-01

    Hemodialysis (HD) is a clinical treatment that requires the puncturing of the body surface. However, needle dislodgement can cause a high risk of blood leakage and can be fatal to patients. Previous studies proposed several devices for blood leakage detection using optical or electrical techniques. Nonetheless, these methods used single-point detection and the design was not suitable for multi-bed monitoring. This study proposed a novel wearable device for blood leakage monitoring during HD using an array sensing patch. The array sensing patch combined with a mapping circuit and a wireless module could measure and transmit risk levels. The different risk levels could improve the working process of healthcare workers, and enhance their work efficiency and reduce inconvenience due to false alarms. Experimental results showed that each point of the sensing array could detect up to 0.1 mL of blood leakage and the array sensing patch supports a risk level monitoring system up to 8 h to alert healthcare personnel of pertinent danger to the patients. PMID:27294927

  19. Novel Wearable Device for Blood Leakage Detection during Hemodialysis Using an Array Sensing Patch.

    PubMed

    Du, Yi-Chun; Lim, Bee-Yen; Ciou, Wei-Siang; Wu, Ming-Jui

    2016-06-09

    Hemodialysis (HD) is a clinical treatment that requires the puncturing of the body surface. However, needle dislodgement can cause a high risk of blood leakage and can be fatal to patients. Previous studies proposed several devices for blood leakage detection using optical or electrical techniques. Nonetheless, these methods used single-point detection and the design was not suitable for multi-bed monitoring. This study proposed a novel wearable device for blood leakage monitoring during HD using an array sensing patch. The array sensing patch combined with a mapping circuit and a wireless module could measure and transmit risk levels. The different risk levels could improve the working process of healthcare workers, and enhance their work efficiency and reduce inconvenience due to false alarms. Experimental results showed that each point of the sensing array could detect up to 0.1 mL of blood leakage and the array sensing patch supports a risk level monitoring system up to 8 h to alert healthcare personnel of pertinent danger to the patients.

  20. Capillary electrophoresis-electrochemical detection microchip device and supporting circuits

    DOEpatents

    Jackson, Douglas J [New Albany, IN; Roussel, Jr., Thomas J.; Crain, Mark M [Georgetown, IN; Baldwin, Richard P [Louisville, KY; Keynton, Robert S [Louisville, KY; Naber, John F [Prospect, KY; Walsh, Kevin M [Louisville, KY; Edelen, John G [Versailles, KY

    2008-03-18

    The present invention is a capillary electrophoresis device, comprising a substrate; a first channel in the substrate, and having a buffer arm and a detection arm; a second channel in the substrate intersecting the first channel, and having a sample arm and a waste arm; a buffer reservoir in fluid communication with the buffer arm; a waste reservoir in fluid communication with the waste arm; a sample reservoir in fluid communication with the sample arm; and a detection reservoir in fluid communication with the detection arm. The detection arm and the buffer arm are of substantially equal length.

  1. Automatic Fall Detection System Based on the Combined Use of a Smartphone and a Smartwatch

    PubMed Central

    Casilari, Eduardo; Oviedo-Jiménez, Miguel A.

    2015-01-01

    Due to their widespread popularity, decreasing costs, built-in sensors, computing power and communication capabilities, Android-based personal devices are being seen as an appealing technology for the deployment of wearable fall detection systems. In contrast with previous solutions in the existing literature, which are based on the performance of a single element (a smartphone), this paper proposes and evaluates a fall detection system that benefits from the detection performed by two popular personal devices: a smartphone and a smartwatch (both provided with an embedded accelerometer and a gyroscope). In the proposed architecture, a specific application in each component permanently tracks and analyses the patient’s movements. Diverse fall detection algorithms (commonly employed in the literature) were implemented in the developed Android apps to discriminate falls from the conventional activities of daily living of the patient. As a novelty, a fall is only assumed to have occurred if it is simultaneously and independently detected by the two Android devices (which can interact via Bluetooth communication). The system was systematically evaluated in an experimental testbed with actual test subjects simulating a set of falls and conventional movements associated with activities of daily living. The tests were repeated by varying the detection algorithm as well as the pre-defined mobility patterns executed by the subjects (i.e., the typology of the falls and non-fall movements). The proposed system was compared with the cases where only one device (the smartphone or the smartwatch) is considered to recognize and discriminate the falls. The obtained results show that the joint use of the two detection devices clearly increases the system’s capability to avoid false alarms or ‘false positives’ (those conventional movements misidentified as falls) while maintaining the effectiveness of the detection decisions (that is to say, without increasing the ratio of

  2. Microcontroller based system for electrical breakdown time delay measurement in gas-filled devices.

    PubMed

    Pejović, Milić M; Denić, Dragan B; Pejović, Momčilo M; Nešić, Nikola T; Vasović, Nikola

    2010-10-01

    This paper presents realization of a digital embedded system for measuring electrical breakdown time delay. The proposed system consists of three major parts: dc voltage supply, analog subsystem, and a digital subsystem. Any dc power source with the range from 100 to 1000 V can be used in this application. The analog subsystem should provide fast and accurate voltage switching on the testing device as well as transform the signals that represent the voltage pulse on the device and the device breakdown into the form suitable for detection by a digital subsystem. The insulated gate bipolar transistor IRG4PH40KD driven by TC429 MOSFET driver is used for high voltage switching on the device. The aim of a digital subsystem is to detect the signals from the analog subsystem and to measure the elapsed time between their occurrences. Moreover, the digital subsystem controls various parameters that influence time delay and provides fast data storage for a large number of measured data. For this propose, we used the PIC18F4550 microcontroller with a full-speed compatible universal serial bus (USB) engine. Operation of this system is verified on different commercial and custom made gas devices with different structure and breakdown mechanisms. The electrical breakdown time delay measurements have been carried out as a function of several parameters, which dominantly influence electrical breakdown time delay. The obtained results have been verified using statistical methods, and they show good agreement with the theory. The proposed system shows good repeatability, sensitivity, and stability for measuring the electrical breakdown time delay.

  3. An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications.

    PubMed

    Chabinyc, M L; Chiu, D T; McDonald, J C; Stroock, A D; Christian, J F; Karger, A M; Whitesides, G M

    2001-09-15

    This paper describes a prototype of an integrated fluorescence detection system that uses a microavalanche photodiode (microAPD) as the photodetector for microfluidic devices fabricated in poly(dimethylsiloxane) (PDMS). The prototype device consisted of a reusable detection system and a disposable microfluidic system that was fabricated using rapid prototyping. The first step of the procedure was the fabrication of microfluidic channels in PDMS and the encapsulation of a multimode optical fiber (100-microm core diameter) in the PDMS; the tip of the fiber was placed next to the side wall of one of the channels. The optical fiber was used to couple light into the microchannel for the excitation of fluorescent analytes. The photodetector, a prototype solid-state microAPD array, was embedded in a thick slab (1 cm) of PDMS. A thin (80 microm) colored polycarbonate filter was placed on the top of the embedded microAPD to absorb scattered excitation light before it reached the detector. The microAPD was placed below the microchannel and orthogonal to the axis of the optical fiber. The close proximity (approximately 200 microm) of the microAPD to the microchannel made it unnecessary to incorporate transfer optics; the pixel size of the microAPD (30 microm) matched the dimensions of the channels (50 microm). A blue light-emitting diode was used for fluorescence excitation. The microAPD was operated in Geiger mode to detect the fluorescence. The detection limit of the prototype (approximately 25 nM) was determined by finding the minimum detectable concentration of a solution of fluorescein. The device was used to detect the separation of a mixture of proteins and small molecules by capillary electrophoresis; the separation illustrated the suitability of this integrated fluorescence detection system for bioanalytical applications.

  4. Direct Detection and Imaging of Low-Energy Electrons with Delta-Doped Charge-Coupled Devices

    NASA Technical Reports Server (NTRS)

    Nikzad, S.; Yu, Q.; Smith, A. L.; Jones, T. J.; Tombrello, T. A.; Elliott, S. T.

    1998-01-01

    We report the use fo delta-doped charge-coupled devices (CCDs) for direct detection of electrons in the 50-1500 eV energy range. These are the first measurements with a solid state device to detect electrons in this energy range.

  5. System theory in medical diagnostic devices: an overview.

    PubMed

    Baura, Gail D

    2006-01-01

    Medical diagnostics refers to testing conducted either in vitro or in vivo to provide critical health care information for risk assessment, early diagnosis, treatment, or disease management. Typical in vivo diagnostic tests include the computed tomography scan, magnetic resonance imaging, and blood pressure screening. Typical in vitro diagnostic tests include cholesterol, Papanicolaou smear, and conventional glucose monitoring tests. Historically, devices associated with both types of diagnostics have used heuristic curve fitting during signal analysis. However, since the early 1990s, a few enterprising engineers and physicians have used system theory to improve their core processing for feature detection and system identification. Current applications include automated Pap smear screening for detection of cervical cancer and diagnosis of Alzheimer's disease. Future applications, such as disease prediction before symptom onset and drug treatment customization, have been catalyzed by the Human Genome Project.

  6. Infrared detector device inspection system

    DOEpatents

    Soehnel, Grant; Bender, Daniel A.

    2016-08-09

    Methods and apparatuses for identifying carrier lifetimes are disclosed herein. In a general embodiment, a beam of light is sent to a group of locations on a material for an optical device. Photons emitted from the material are detected at each of the group of locations. A carrier lifetime is identified for each of the group of locations based on the photons detected from each of the group of locations.

  7. Thermal energy storage devices, systems, and thermal energy storage device monitoring methods

    DOEpatents

    Tugurlan, Maria; Tuffner, Francis K; Chassin, David P.

    2016-09-13

    Thermal energy storage devices, systems, and thermal energy storage device monitoring methods are described. According to one aspect, a thermal energy storage device includes a reservoir configured to hold a thermal energy storage medium, a temperature control system configured to adjust a temperature of the thermal energy storage medium, and a state observation system configured to provide information regarding an energy state of the thermal energy storage device at a plurality of different moments in time.

  8. An Organic Decontamination Method for Sampling Devices used in Life-detection Studies

    NASA Technical Reports Server (NTRS)

    Eigenbrode, Jennifer; Maule, Jake; Wainwright, Norm; Steele, Andrew; Amundsen, Hans E.F.

    2008-01-01

    Organic decontamination of sampling and storage devices are crucial steps for life-detection, habitability, and ecological investigations of extremophiles living in the most inhospitable niches of Earth, Mars and elsewhere. However, one of the main stumbling blocks for Mars-analogue life-detection studies in terrestrial remote field-sites is the capability to clean instruments and sampling devices to organic levels consistent with null values. Here we present a new seven-step, multi-reagent cleaning and decontamination protocol that was adapted and tested on a glacial ice-coring device and on a rover-guided scoop used for sediment sampling both deployed multiple times during two field seasons of the Arctic Mars Analog Svalbard Expedition AMASE). The effectiveness of the protocols for both devices was tested by (1)in situ metabolic measurements via APT, (2)in situ lipopolysacchride (LPS) quantifications via low-level endotoxin assays, and(3) laboratory-based molecular detection via gas chromatography-mass spectrometry. Our results show that the combination and step-wise application of disinfectants with oxidative and solvation properties for sterilization are effective at removing cellular remnants and other organic traces to levels necessary for molecular organic- and life-detection studies. The validation of this seven-step protocol - specifically for ice sampling - allows us to proceed with confidence in kmskia4 analogue investigations of icy environments. However, results from a rover scoop test showed that this protocol is also suitable for null-level decontamination of sample acquisition devices. Thus, this protocol may be applicable to a variety of sampling devices and analytical instrumentation used for future astrobiology missions to Enceladus, and Europa, as well as for sample-return missions.

  9. Interactive display system having a digital micromirror imaging device

    DOEpatents

    Veligdan, James T.; DeSanto, Leonard; Kaull, Lisa; Brewster, Calvin

    2006-04-11

    A display system includes a waveguide optical panel having an inlet face and an opposite outlet face. A projector cooperates with a digital imaging device, e.g. a digital micromirror imaging device, for projecting an image through the panel for display on the outlet face. The imaging device includes an array of mirrors tiltable between opposite display and divert positions. The display positions reflect an image light beam from the projector through the panel for display on the outlet face. The divert positions divert the image light beam away from the panel, and are additionally used for reflecting a probe light beam through the panel toward the outlet face. Covering a spot on the panel, e.g. with a finger, reflects the probe light beam back through the panel toward the inlet face for detection thereat and providing interactive capability.

  10. [Development of molecular detection of food-borne pathogenic bacteria using miniaturized microfluidic devices].

    PubMed

    Iván, Kristóf; Maráz, Anna

    2015-12-20

    Detection and identification of food-borne pathogenic bacteria are key points for the assurance of microbiological food safety. Traditional culture-based methods are more and more replaced by or supplemented with nucleic acid based molecular techniques, targeting specific (preferably virulence) genes in the genomes. Internationally validated DNA amplification - most frequently real-time polymerase chain reaction - methods are applied by the food microbiological testing laboratories for routine analysis, which will result not only in shortening the time for results but they also improve the performance characteristics (e.g. sensitivity, specificity) of the methods. Beside numerous advantages of the polymerase chain reaction based techniques for routine microbiological analysis certain drawbacks have to be mentioned, such as the high cost of the equipment and reagents, as well as the risk of contamination of the laboratory environment by the polymerase chain reaction amplicons, which require construction of an isolated laboratory system. Lab-on-a-chip systems can integrate most of these laboratory processes within a miniaturized device that delivers the same specificity and reliability as the standard protocols. The benefits of miniaturized devices are: simple - often automated - use, small overall size, portability, sterility due to single use possibility. These miniaturized rapid diagnostic tests are being researched and developed at the best research centers around the globe implementing various sample preparation and molecular DNA amplification methods on-chip. In parallel, the aim of the authors' research is to develop microfluidic Lab-on-a-chip devices for the detection and identification of food-borne pathogenic bacteria.

  11. Thermo-Acoustic Ultrasound for Detection of RF-Induced Device Lead Heating in MRI.

    PubMed

    Dixit, Neerav; Stang, Pascal P; Pauly, John M; Scott, Greig C

    2018-02-01

    Patients who have implanted medical devices with long conductive leads are often restricted from receiving MRI scans due to the danger of RF-induced heating near the lead tips. Phantom studies have shown that this heating varies significantly on a case-by-case basis, indicating that many patients with implanted devices can receive clinically useful MRI scans without harm. However, the difficulty of predicting RF-induced lead tip heating prior to scanning prevents numerous implant recipients from being scanned. Here, we demonstrate that thermo-acoustic ultrasound (TAUS) has the potential to be utilized for a pre-scan procedure assessing the risk of RF-induced lead tip heating in MRI. A system was developed to detect TAUS signals by four different TAUS acquisition methods. We then integrated this system with an MRI scanner and detected a peak in RF power absorption near the tip of a model lead when transmitting from the scanner's body coil. We also developed and experimentally validated simulations to characterize the thermo-acoustic signal generated near lead tips. These results indicate that TAUS is a promising method for assessing RF implant safety, and with further development, a TAUS pre-scan could allow many more patients to have access to MRI scans of significant clinical value.

  12. Real-time ECG monitoring and arrhythmia detection using Android-based mobile devices.

    PubMed

    Gradl, Stefan; Kugler, Patrick; Lohmuller, Clemens; Eskofier, Bjoern

    2012-01-01

    We developed an application for Android™-based mobile devices that allows real-time electrocardiogram (ECG) monitoring and automated arrhythmia detection by analyzing ECG parameters. ECG data provided by pre-recorded files or acquired live by accessing a Shimmer™ sensor node via Bluetooth™ can be processed and evaluated. The application is based on the Pan-Tompkins algorithm for QRS-detection and contains further algorithm blocks to detect abnormal heartbeats. The algorithm was validated using the MIT-BIH Arrhythmia and MIT-BIH Supraventricular Arrhythmia databases. More than 99% of all QRS complexes were detected correctly by the algorithm. Overall sensitivity for abnormal beat detection was 89.5% with a specificity of 80.6%. The application is available for download and may be used for real-time ECG-monitoring on mobile devices.

  13. Control method for physical systems and devices

    DOEpatents

    Guckenheimer, John

    1997-01-01

    A control method for stabilizing systems or devices that are outside the control domain of a linear controller is provided. When applied to nonlinear systems, the effectiveness of this method depends upon the size of the domain of stability that is produced for the stabilized equilibrium. If this domain is small compared to the accuracy of measurements or the size of disturbances within the system, then the linear controller is likely to fail within a short period. Failure of the system or device can be catastrophic: the system or device can wander far from the desired equilibrium. The method of the invention presents a general procedure to recapture the stability of a linear controller, when the trajectory of a system or device leaves its region of stability. By using a hybrid strategy based upon discrete switching events within the state space of the system or device, the system or device will return from a much larger domain to the region of stability utilized by the linear controller. The control procedure is robust and remains effective under large classes of perturbations of a given underlying system or device.

  14. Calcification detection of abdominal aorta in CT images and 3D visualization in VR devices.

    PubMed

    Garcia-Berna, Jose A; Sanchez-Gomez, Juan M; Hermanns, Judith; Garcia-Mateos, Gines; Fernandez-Aleman, Jose L

    2016-08-01

    Automatic calcification detection in abdominal aorta consists of a set of computer vision techniques to quantify the amount of calcium that is found around this artery. Knowing that information, it is possible to perform statistical studies that relate vascular diseases with the presence of calcium in these structures. To facilitate the detection in CT images, a contrast is usually injected into the circulatory system of the patients to distinguish the aorta from other body tissues and organs. This contrast increases the absorption of X-rays by human blood, making it easier the measurement of calcifications. Based on this idea, a new system capable of detecting and tracking the aorta artery has been developed with an estimation of the calcium found surrounding the aorta. Besides, the system is complemented with a 3D visualization mode of the image set which is designed for the new generation of immersive VR devices.

  15. Distributed gas detection system and method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Challener, William Albert; Palit, Sabarni; Karp, Jason Harris

    A distributed gas detection system includes one or more hollow core fibers disposed in different locations, one or more solid core fibers optically coupled with the one or more hollow core fibers and configured to receive light of one or more wavelengths from a light source, and an interrogator device configured to receive at least some of the light propagating through the one or more solid core fibers and the one or more hollow core fibers. The interrogator device is configured to identify a location of a presence of a gas-of-interest by examining absorption of at least one of themore » wavelengths of the light at least one of the hollow core fibers.« less

  16. Coated semiconductor devices for neutron detection

    DOEpatents

    Klann, Raymond T.; McGregor, Douglas S.

    2002-01-01

    A device for detecting neutrons includes a semi-insulated bulk semiconductor substrate having opposed polished surfaces. A blocking Schottky contact comprised of a series of metals such as Ti, Pt, Au, Ge, Pd, and Ni is formed on a first polished surface of the semiconductor substrate, while a low resistivity ("ohmic") contact comprised of metals such as Au, Ge, and Ni is formed on a second, opposed polished surface of the substrate. In one embodiment, n-type low resistivity pinout contacts comprised of an Au/Ge based eutectic alloy or multi-layered Pd/Ge/Ti/Au are also formed on the opposed polished surfaces and in contact with the Schottky and ohmic contacts. Disposed on the Schottky contact is a neutron reactive film, or coating, for detecting neutrons. The coating is comprised of a hydrogen rich polymer, such as a polyolefin or paraffin; lithium or lithium fluoride; or a heavy metal fissionable material. By varying the coating thickness and electrical settings, neutrons at specific energies can be detected. The coated neutron detector is capable of performing real-time neutron radiography in high gamma fields, digital fast neutron radiography, fissile material identification, and basic neutron detection particularly in high radiation fields.

  17. 21 CFR 880.6310 - Medical device data system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... medical device data; (ii) The electronic storage of medical device data; (iii) The electronic conversion... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical device data system. 880.6310 Section 880... Devices § 880.6310 Medical device data system. (a) Identification. (1) A medical device data system (MDDS...

  18. 21 CFR 880.6310 - Medical device data system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... medical device data; (ii) The electronic storage of medical device data; (iii) The electronic conversion... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical device data system. 880.6310 Section 880... Devices § 880.6310 Medical device data system. (a) Identification. (1) A medical device data system (MDDS...

  19. 21 CFR 880.6310 - Medical device data system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... medical device data; (ii) The electronic storage of medical device data; (iii) The electronic conversion... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical device data system. 880.6310 Section 880... Devices § 880.6310 Medical device data system. (a) Identification. (1) A medical device data system (MDDS...

  20. 21 CFR 880.6310 - Medical device data system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... medical device data; (ii) The electronic storage of medical device data; (iii) The electronic conversion... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical device data system. 880.6310 Section 880... Devices § 880.6310 Medical device data system. (a) Identification. (1) A medical device data system (MDDS...

  1. Reliability of a portable device for the detection of sleep bruxism.

    PubMed

    Deregibus, Andrea; Castroflorio, Tommaso; Bargellini, Andrea; Debernardi, Cesare

    2014-11-01

    The aim of the study was to assess the repeatability in detecting sleep bruxism (SB) episodes by combined surface electromyography and heart rate (HR) signals recorded by a compact portable device (Bruxoff®). SB episodes are preceded by a sudden HR change. Thus, HR detection increases the precision of automatic detection of SB. Ten healthy subjects (five women and five men; 30.2 ± 11.02 years) were selected for the study. Rhythmic masseter muscle activities, constituting the basic pattern of SB, were detected during three nights of recording during three different weeks with the Bruxoff device. The two-way ANOVA was not significant for SB episodes per night, SB episodes per hour, and heart frequency: no significant differences were observed during the three different nights of recording for each of the abovementioned variables (P > 0.05). The intraclass correlation coefficient showed a good reproducibility for SB episodes per night (69 %), SB per hour (74 %), and heart frequency (82 %). A poor reproducibility was revealed for the number of masseter contractions (53 %). The Pearson analysis showed the absence of a significant correlation between the number of masseter contractions per night and the number of SB episodes per night (r = -0.02, P = 0.91). The Bruxoff device showed a good reproducibility of measurements of sleep bruxism episodes over time. These findings are important in the light of the need for simple and reliable portable devices for the diagnosis of SB both in the clinical and research settings.

  2. Biomedical devices and systems security.

    PubMed

    Arney, David; Venkatasubramanian, Krishna K; Sokolsky, Oleg; Lee, Insup

    2011-01-01

    Medical devices have been changing in revolutionary ways in recent years. One is in their form-factor. Increasing miniaturization of medical devices has made them wearable, light-weight, and ubiquitous; they are available for continuous care and not restricted to clinical settings. Further, devices are increasingly becoming connected to external entities through both wired and wireless channels. These two developments have tremendous potential to make healthcare accessible to everyone and reduce costs. However, they also provide increased opportunity for technology savvy criminals to exploit them for fun and profit. Consequently, it is essential to consider medical device security issues. In this paper, we focused on the challenges involved in securing networked medical devices. We provide an overview of a generic networked medical device system model, a comprehensive attack and adversary model, and describe some of the challenges present in building security solutions to manage the attacks. Finally, we provide an overview of two areas of research that we believe will be crucial for making medical device system security solutions more viable in the long run: forensic data logging, and building security assurance cases.

  3. Microfluidic LC Device with Orthogonal Sample Extraction for On-Chip MALDI-MS Detection

    PubMed Central

    Lazar, Iulia M.; Kabulski, Jarod L.

    2013-01-01

    A microfluidic device that enables on-chip matrix assisted laser desorption ionization-mass spectrometry (MALDI-MS) detection for liquid chromatography (LC) separations is described. The device comprises an array of functional elements to carry out LC separations, integrates a novel microchip-MS interface to facilitate the orthogonal transposition of the microfluidic LC channel into an array of reservoirs, and enables sensitive MALDI-MS detection directly from the chip. Essentially, the device provides a snapshot MALDI-MS map of the content of the separation channel present on the chip. The detection of proteins with biomarker potential from MCF10A breast epithelial cell extracts, and detection limits in the low fmol range, are demonstrated. In addition, the design of the novel LC-MALDI-MS chip entices the promotion of a new concept for performing sample separations within the limited time-frame that accompanies the dead-volume of a separation channel. PMID:23592150

  4. A paper-based device for double-stranded DNA detection with Zif268

    NASA Astrophysics Data System (ADS)

    Zhang, Daohong

    2017-05-01

    Here, a small analytical device was fabricated on both nitrocellulose membrane and filter paper, for the detection of biotinylated double-stranded DNA (dsDNA) from 1 nM. Zif268 was utilized for capturing the target DNA, which was a zinc finger protein that recognized only a dsDNA with specific sequence. Therefore, this detection platform could be utilized for PCR result detection, with the well-designed primers (interpolate both biotin and Zif268 binding sequence). The result of the assay could be recorded by a camera-phone, and analyzed with software. The whole assay finished within 1 hour. Due to the easy fabrication, operation and disposal of this device, this method can be employed in point-of-care detection or on-site monitoring.

  5. A study of malware detection on smart mobile devices

    NASA Astrophysics Data System (ADS)

    Yu, Wei; Zhang, Hanlin; Xu, Guobin

    2013-05-01

    The growing in use of smart mobile devices for everyday applications has stimulated the spread of mobile malware, especially on popular mobile platforms. As a consequence, malware detection becomes ever more critical in sustaining the mobile market and providing a better user experience. In this paper, we review the existing malware and detection schemes. Using real-world malware samples with known signatures, we evaluate four popular commercial anti-virus tools and our data shows that these tools can achieve high detection accuracy. To deal with the new malware with unknown signatures, we study the anomaly based detection using decision tree algorithm. We evaluate the effectiveness of our detection scheme using malware and legitimate software samples. Our data shows that the detection scheme using decision tree can achieve a detection rate up to 90% and a false positive rate as low as 10%.

  6. Microcontroller based system for electrical breakdown time delay measurement in gas-filled devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pejovic, Milic M.; Denic, Dragan B.; Pejovic, Momcilo M.

    2010-10-15

    This paper presents realization of a digital embedded system for measuring electrical breakdown time delay. The proposed system consists of three major parts: dc voltage supply, analog subsystem, and a digital subsystem. Any dc power source with the range from 100 to 1000 V can be used in this application. The analog subsystem should provide fast and accurate voltage switching on the testing device as well as transform the signals that represent the voltage pulse on the device and the device breakdown into the form suitable for detection by a digital subsystem. The insulated gate bipolar transistor IRG4PH40KD driven bymore » TC429 MOSFET driver is used for high voltage switching on the device. The aim of a digital subsystem is to detect the signals from the analog subsystem and to measure the elapsed time between their occurrences. Moreover, the digital subsystem controls various parameters that influence time delay and provides fast data storage for a large number of measured data. For this propose, we used the PIC18F4550 microcontroller with a full-speed compatible universal serial bus (USB) engine. Operation of this system is verified on different commercial and custom made gas devices with different structure and breakdown mechanisms. The electrical breakdown time delay measurements have been carried out as a function of several parameters, which dominantly influence electrical breakdown time delay. The obtained results have been verified using statistical methods, and they show good agreement with the theory. The proposed system shows good repeatability, sensitivity, and stability for measuring the electrical breakdown time delay.« less

  7. 10 CFR 32.103 - Schedule D-prototype tests for ice detection devices containing strontium-90.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Schedule D-prototype tests for ice detection devices... § 32.103 Schedule D—prototype tests for ice detection devices containing strontium-90. An applicant for a license pursuant to § 32.61 shall conduct prototype tests on each of five prototype ice detection...

  8. 10 CFR 32.103 - Schedule D-prototype tests for ice detection devices containing strontium-90.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Schedule D-prototype tests for ice detection devices... § 32.103 Schedule D—prototype tests for ice detection devices containing strontium-90. An applicant for a license pursuant to § 32.61 shall conduct prototype tests on each of five prototype ice detection...

  9. 10 CFR 32.103 - Schedule D-prototype tests for ice detection devices containing strontium-90.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Schedule D-prototype tests for ice detection devices... § 32.103 Schedule D—prototype tests for ice detection devices containing strontium-90. An applicant for a license pursuant to § 32.61 shall conduct prototype tests on each of five prototype ice detection...

  10. Bulk semiconducting scintillator device for radiation detection

    DOEpatents

    Stowe, Ashley C.; Burger, Arnold; Groza, Michael

    2016-08-30

    A bulk semiconducting scintillator device, including: a Li-containing semiconductor compound of general composition Li-III-VI.sub.2, wherein III is a Group III element and VI is a Group VI element; wherein the Li-containing semiconductor compound is used in one or more of a first mode and a second mode, wherein: in the first mode, the Li-containing semiconductor compound is coupled to an electrical circuit under bias operable for measuring electron-hole pairs in the Li-containing semiconductor compound in the presence of neutrons and the Li-containing semiconductor compound is also coupled to current detection electronics operable for detecting a corresponding current in the Li-containing semiconductor compound; and, in the second mode, the Li-containing semiconductor compound is coupled to a photodetector operable for detecting photons generated in the Li-containing semiconductor compound in the presence of the neutrons.

  11. A mobile device system for early warning of ECG anomalies.

    PubMed

    Szczepański, Adam; Saeed, Khalid

    2014-06-20

    With the rapid increase in computational power of mobile devices the amount of ambient intelligence-based smart environment systems has increased greatly in recent years. A proposition of such a solution is described in this paper, namely real time monitoring of an electrocardiogram (ECG) signal during everyday activities for identification of life threatening situations. The paper, being both research and review, describes previous work of the authors, current state of the art in the context of the authors' work and the proposed aforementioned system. Although parts of the solution were described in earlier publications of the authors, the whole concept is presented completely for the first time along with the prototype implementation on mobile device-a Windows 8 tablet with Modern UI. The system has three main purposes. The first goal is the detection of sudden rapid cardiac malfunctions and informing the people in the patient's surroundings, family and friends and the nearest emergency station about the deteriorating health of the monitored person. The second goal is a monitoring of ECG signals under non-clinical conditions to detect anomalies that are typically not found during diagnostic tests. The third goal is to register and analyze repeatable, long-term disturbances in the regular signal and finding their patterns.

  12. Universal explosive detection system for homeland security applications

    NASA Astrophysics Data System (ADS)

    Lee, Vincent Y.; Bromberg, Edward E. A.

    2010-04-01

    L-3 Communications CyTerra Corporation has developed a high throughput universal explosive detection system (PassPort) to automatically screen the passengers in airports without requiring them to remove their shoes. The technical approach is based on the patented energetic material detection (EMD) technology. By analyzing the results of sample heating with an infrared camera, one can distinguish the deflagration or decomposition of an energetic material from other clutters such as flammables and general background substances. This becomes the basis of a universal explosive detection system that does not require a library and is capable of detecting trace levels of explosives with a low false alarm rate. The PassPort is a simple turnstile type device and integrates a non-intrusive aerodynamic sampling scheme that has been shown capable of detecting trace levels of explosives on shoes. A detailed description of the detection theory and the automated sampling techniques, as well as the field test results, will be presented.

  13. Device for detecting imminent failure of high-dielectric stress capacitors

    DOEpatents

    McDuff, George G.

    1982-01-01

    A device for detecting imminent failure of a high-dielectric stress capacitor utilizing circuitry for detecting pulse width variations and pulse magnitude variations. Inexpensive microprocessor circuitry is utilized to make numerical calculations of digital data supplied by detection circuitry for comparison of pulse width data and magnitude data to determine if preselected ranges have been exceeded, thereby indicating imminent failure of a capacitor. Detection circuitry may be incorporated in transmission lines, pulse power circuitry, including laser pulse circuitry or any circuitry where capacitors or capactior banks are utilized.

  14. Assessment of a simple obstacle detection device for the visually impaired.

    PubMed

    Lee, Cheng-Lung; Chen, Chih-Yung; Sung, Peng-Cheng; Lu, Shih-Yi

    2014-07-01

    A simple obstacle detection device, based upon an automobile parking sensor, was assessed as a mobility aid for the visually impaired. A questionnaire survey for mobility needs was performed at the start of this study. After the detector was developed, five blindfolded sighted and 15 visually impaired participants were invited to conduct travel experiments under three test conditions: (1) using a white cane only, (2) using the obstacle detector only and (3) using both devices. A post-experiment interview regarding the usefulness of the obstacle detector for the visually impaired participants was performed. The results showed that the obstacle detector could augment mobility performance with the white cane. The obstacle detection device should be used in conjunction with the white cane to achieve the best mobility speed and body protection. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  15. Symmetric miniaturized heating system for active microelectronic devices.

    PubMed

    McCracken, Michael; Mayer, Michael; Jourard, Isaac; Moon, Jeong-Tak; Persic, John

    2010-07-01

    To qualify interconnect technologies such as microelectronic fine wire bonds for mass production of integrated circuit (IC) packages, it is necessary to perform accelerated aging tests, e.g., to age a device at an elevated temperature or to subject the device to thermal cycling and measure the decrease of interconnect quality. There are downsides to using conventional ovens for this as they are relatively large and have relatively slow temperature change rates, and if electrical connections are required between monitoring equipment and the device being heated, they must be located inside the oven and may be aged by the high temperatures. Addressing these downsides, a miniaturized heating system (minioven) is presented, which can heat individual IC packages containing the interconnects to be tested. The core of this system is a piece of copper cut from a square shaped tube with high resistance heating wire looped around it. Ceramic dual in-line packages are clamped against either open end of the core. One package contains a Pt100 temperature sensor and the other package contains the device to be aged placed in symmetry to the temperature sensor. According to the temperature detected by the Pt100, a proportional-integral-derivative controller adjusts the power supplied to the heating wire. The system maintains a dynamic temperature balance with the core hot and the two symmetric sides with electrical connections to the device under test at a cooler temperature. Only the face of the package containing the device is heated, while the socket holding it remains below 75 degrees C when the oven operates at 200 degrees C. The minioven can heat packages from room temperature up to 200 degrees C in less than 5 min and maintain this temperature at 28 W power. During long term aging, a temperature of 200 degrees C was maintained for 1120 h with negligible resistance change of the heating wires after 900 h (heating wire resistance increased 0.2% over the final 220 h). The

  16. Modifications developed to improve x-ray detection devices

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Improvements in the development of x-ray detection devices are described. Emphasis is placed on lowering the temperature in order to achieve better x-ray response. A simplified charge integrator schematic is presented along with supporting tables. By using cryogenic operating temperatures, these x-ray detectors may eventually surpass the performance of the best semiconductor detectors.

  17. Development of an Electrochemical Paper-Based Analytical Device for Trace Detection of Virus Particles.

    PubMed

    Channon, Robert B; Yang, Yuanyuan; Feibelman, Kristen M; Geiss, Brian J; Dandy, David S; Henry, Charles S

    2018-06-19

    Viral pathogens are a serious health threat around the world, particularly in resource limited settings, where current sensing approaches are often insufficient and slow, compounding the spread and burden of these pathogens. Here, we describe a label-free, point-of-care approach toward detection of virus particles, based on a microfluidic paper-based analytical device with integrated microwire Au electrodes. The device is initially characterized through capturing of streptavidin modified nanoparticles by biotin-modified microwires. An order of magnitude improvement in detection limits is achieved through use of a microfluidic device over a classical static paper-based device, due to enhanced mass transport and capturing of particles on the modified electrodes. Electrochemical impedance spectroscopy detection of West Nile virus particles was carried out using antibody functionalized Au microwires, achieving a detection limit of 10.2 particles in 50 μL of cell culture media. No increase in signal is found on addition of an excess of a nonspecific target (Sindbis). This detection motif is significantly cheaper (∼$1 per test) and faster (∼30 min) than current methods, while achieving the desired selectivity and sensitivity. This sensing motif represents a general platform for trace detection of a wide range of biological pathogens.

  18. A cyber-physical system for senior collapse detection

    NASA Astrophysics Data System (ADS)

    Grewe, Lynne; Magaña-Zook, Steven

    2014-06-01

    Senior Collapse Detection (SCD) is a system that uses cyber-physical techniques to create a "smart home" system to predict and detect the falling of senior/geriatric participants in home environments. This software application addresses the needs of millions of senior citizens who live at home by themselves and can find themselves in situations where they have fallen and need assistance. We discuss how SCD uses imagery, depth and audio to fuse and interact in a system that does not require the senior to wear any devices allowing them to be more autonomous. The Microsoft Kinect Sensor is used to collect imagery, depth and audio. We will begin by discussing the physical attributes of the "collapse detection problem". Next, we will discuss the task of feature extraction resulting in skeleton and joint tracking. Improvements in error detection of joint tracking will be highlighted. Next, we discuss the main module of "fall detection" using our mid-level skeleton features. Attributes including acceleration, position and room environment factor into the SCD fall detection decision. Finally, how a detected fall and the resultant emergency response are handled will be presented. Results in a home environment will be given.

  19. Influence of handling-relevant factors on the behaviour of a novel calculus-detection device.

    PubMed

    Meissner, Grit; Oehme, Bernd; Strackeljan, Jens; Kocher, Thomas

    2005-03-01

    The aim of periodontal therapy is always the complete debridement of root surfaces with the removal of calculus and without damaging cementum. We have recently demonstrated the feasibility of a surface recognition device that discriminates dental surfaces by mathematical analysis of reflected ultrasound waves. This principle should enable the construction of calculus detecting ultrasonic device. Pre-clinical test results are presented here. An impulse generator, coupled to a conventional piezo-driven ultrasonic scaler, sends signals to the cementum via the tip of an ultrasound device. The oscillation signal reflected from the surface contains the information necessary to analyse its characteristics. In order to discriminate different surfaces, learning sets were generated from 70 extracted teeth using standardized tip angle/lateral force combinations. The complete device was then used to classify root surfaces unknown to the system. About 80% of enamel and cementum was correctly identified in vivo (sensitivity: 75%, specificity: 82%). The surface discrimination method was not influenced by the application conditions examined. A new set of 200 tests on 10 teeth was correctly recognized in 82% of the cases (sensitivity: 87%, specificity: 76%). It was shown in vitro that the tooth surface recognition system is able to function correctly, independent of the lateral forces and the tip angle of the instrument. Copyright 2005 Blackwell Munksgaard.

  20. Sensitive paper-based analytical device for fast colorimetric detection of nitrite with smartphone.

    PubMed

    Zhang, Xiu-Xiu; Song, Yi-Zhen; Fang, Fang; Wu, Zhi-Yong

    2018-04-01

    On-site rapid monitoring of nitrite as an assessment indicator of the environment, food, and physiological systems has drawn extensive attention. Here, electrokinetic stacking (ES) was combined with colorimetric reaction on a paper-based device (PAD) to achieve colorless nitrite detection with smartphone. In this paper, nitrite was stacked on the paper fluidic channel as a narrow band by electrokinetic stacking. Then, Griess reagent was introduced to visualize the stacking band. Under optimal conditions, the sensitivity of nitrite was 160-fold increased within 5 min. A linear response in the range of 0.075 to 1.0 μg mL -1 (R 2  = 0.99) and a limit of detection (LOD) of 73 ng mL -1 (0.86 μM) were obtained. The LOD was 10 times lower than the reported PAD, and close to that achieved by a desktop spectrophotometer. The applicability was demonstrated by nitrite detection from saliva and water with good selectivity, adding 100 times more concentrated co-ions. High recovery (91.0~108.7%) and reasonable intra-day and inter-day reproducibility (RSD < 9%) were obtained. This work shows that the sensitivity of colorless analyte detection-based colorimetric reaction can be effectively enhanced by integration of ES on a PAD. Graphical abstract Schematic of the experimental setups (left) and the corresponding images (right) of the actual portable device.

  1. Spill-Detector-and-Shutoff Device

    NASA Technical Reports Server (NTRS)

    Jarvis, M. R.; Fulton, D. S.

    1985-01-01

    Overflow in liquid chromatography systems rapidly detected and stopped. Spill-detector-and-shutoff device incorporated into liquid-chromatography system. When liquid from output nozzle spills on liquid sensor, device automatically shuts off pump and releases solenoid to pinch off flow in tube. Device uses common type of alarm circuit reset manually before normal operation resumes.

  2. A portable smart-phone device for rapid and sensitive detection of E. coli O157:H7 in Yoghurt and Egg.

    PubMed

    Zeinhom, Mohamed Maarouf Ali; Wang, Yijia; Song, Yang; Zhu, Mei-Jun; Lin, Yuehe; Du, Dan

    2018-01-15

    The detection of E. coli O157:H7 in foods has held the attention of many researchers because of the seriousness attributed to this pathogen. In this study, we present a simple, sensitive, rapid and portable smartphone based fluorescence device for E. coli O157:H7 detection. This field-portable fluorescent imager on the smartphone involves a compact laser-diode-based photosource, a long-pass (LP) thin-film interference filter and a high-quality insert lenses. The design of the device provided a low noise to background imaging system. Based on a sandwich ELISA and the specific recognition of antibody to E. coli O157:H7, the sensitive detection of E. coli O157:H7 were realized both in standard samples and real matrix in yoghurt and egg on our device. The detection limit are 1 CFU/mL and 10 CFU/mL correspondingly. Recovery percentages of spiked yogurt and egg samples with 10 3 , 10 4 and 10 5 CFU/mL E. coli O157:H7 were 106.98, 96.52 and 102.65 (in yogurt) and 107.37, 105.64 and 93.84 (in egg) samples using our device, respectively. Most importantly, the entire process could be quickly completed within two hours. This smartphone based device provides a simple, rapid, sensitive detection platform for fluorescent imaging which applied in pathogen detection for food safety monitoring. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Droplet Microfluidic Device Fabrication and Use for Isothermal Amplification and Detection of MicroRNA.

    PubMed

    Giuffrida, Maria Chiara; D'Agata, Roberta; Spoto, Giuseppe

    2017-01-01

    Droplet microfluidics combined with the isothermal circular strand displacement polymerization (ICSDP) represents a powerful new technique to detect both single-stranded DNA and microRNA sequences. The method here described helps in overcoming some drawbacks of the lately introduced droplet polymerase chain reaction (PCR) amplification when implemented in microfluidic devices. The method also allows the detection of nanoliter droplets of nucleic acids sequences solutions, with a particular attention to microRNA sequences that are detected at the picomolar level. The integration of the ICSDP amplification protocol in droplet microfluidic devices reduces the time of analysis and the amount of sample required. In addition, there is also the possibility to design parallel analyses to be integrated in portable devices.

  4. Fully Automated Centrifugal Microfluidic Device for Ultrasensitive Protein Detection from Whole Blood.

    PubMed

    Park, Yang-Seok; Sunkara, Vijaya; Kim, Yubin; Lee, Won Seok; Han, Ja-Ryoung; Cho, Yoon-Kyoung

    2016-04-16

    Enzyme-linked immunosorbent assay (ELISA) is a promising method to detect small amount of proteins in biological samples. The devices providing a platform for reduced sample volume and assay time as well as full automation are required for potential use in point-of-care-diagnostics. Recently, we have demonstrated ultrasensitive detection of serum proteins, C-reactive protein (CRP) and cardiac troponin I (cTnI), utilizing a lab-on-a-disc composed of TiO2 nanofibrous (NF) mats. It showed a large dynamic range with femto molar (fM) detection sensitivity, from a small volume of whole blood in 30 min. The device consists of several components for blood separation, metering, mixing, and washing that are automated for improved sensitivity from low sample volumes. Here, in the video demonstration, we show the experimental protocols and know-how for the fabrication of NFs as well as the disc, their integration and the operation in the following order: processes for preparing TiO2 NF mat; transfer-printing of TiO2 NF mat onto the disc; surface modification for immune-reactions, disc assembly and operation; on-disc detection and representative results for immunoassay. Use of this device enables multiplexed analysis with minimal consumption of samples and reagents. Given the advantages, the device should find use in a wide variety of applications, and prove beneficial in facilitating the analysis of low abundant proteins.

  5. Root Exploit Detection and Features Optimization: Mobile Device and Blockchain Based Medical Data Management.

    PubMed

    Firdaus, Ahmad; Anuar, Nor Badrul; Razak, Mohd Faizal Ab; Hashem, Ibrahim Abaker Targio; Bachok, Syafiq; Sangaiah, Arun Kumar

    2018-05-04

    The increasing demand for Android mobile devices and blockchain has motivated malware creators to develop mobile malware to compromise the blockchain. Although the blockchain is secure, attackers have managed to gain access into the blockchain as legal users, thereby comprising important and crucial information. Examples of mobile malware include root exploit, botnets, and Trojans and root exploit is one of the most dangerous malware. It compromises the operating system kernel in order to gain root privileges which are then used by attackers to bypass the security mechanisms, to gain complete control of the operating system, to install other possible types of malware to the devices, and finally, to steal victims' private keys linked to the blockchain. For the purpose of maximizing the security of the blockchain-based medical data management (BMDM), it is crucial to investigate the novel features and approaches contained in root exploit malware. This study proposes to use the bio-inspired method of practical swarm optimization (PSO) which automatically select the exclusive features that contain the novel android debug bridge (ADB). This study also adopts boosting (adaboost, realadaboost, logitboost, and multiboost) to enhance the machine learning prediction that detects unknown root exploit, and scrutinized three categories of features including (1) system command, (2) directory path and (3) code-based. The evaluation gathered from this study suggests a marked accuracy value of 93% with Logitboost in the simulation. Logitboost also helped to predicted all the root exploit samples in our developed system, the root exploit detection system (RODS).

  6. Review of interdisciplinary devices for detecting the quality of ship ballast water.

    PubMed

    Bakalar, Goran

    2014-01-01

    The results of the ship ballast water treatment systems neutralization need to be verified in a transparent and trustful way before the ship enters a port. Some researches and results, explained in this article, confirm a need for a good verification. If there is no good methodology agreed, then it would not be accepted the solution that the BWMC (Ballast Water Management Convention) 2004 did protect the sea environment in full meaning. The main problem of ballast neutralization are remaining microorganisms (algae blooms, bacteria) ≥10 and <50. Autonomy of the future ballast water detection device has been explained and newest detection methods analyzed. The ranking analysis has been done thru PROMETHEE II (Preference Ranking Organization Method for Enrichment Evaluations) and results were shown by D-Sight software projections.

  7. System for characterizing semiconductor materials and photovoltaic device

    DOEpatents

    Sopori, B.L.

    1996-12-03

    Apparatus for detecting and mapping defects in the surfaces of polycrystalline material in a manner that distinguishes dislocation pits from grain boundaries includes a first laser of a first wavelength for illuminating a wide spot on the surface of the material, a second laser of a second relatively shorter wavelength for illuminating a relatively narrower spot on the surface of the material, a light integrating sphere with apertures for capturing light scattered by etched dislocation pits in an intermediate range away from specular reflection while allowing light scattered by etched grain boundaries in a near range from specular reflection to pass through, and optical detection devices for detecting and measuring intensities of the respective intermediate scattered light and near specular scattered light. A center blocking aperture or filter can be used to screen out specular reflected light, which would be reflected by nondefect portions of the polycrystalline material surface. An X-Y translation stage for mounting the polycrystalline material and signal processing and computer equipment accommodate raster mapping, recording, and displaying of respective dislocation and grain boundary defect densities. A special etch procedure is included, which prepares the polycrystalline material surface to produce distinguishable intermediate and near specular light scattering in patterns that have statistical relevance to the dislocation and grain boundary defect densities. A reflectance measurement of the piece of material is obtained by adding together the signals from the optical detection devices. In the case where the piece of material includes a photovoltaic device, the current induced in the device by the illuminating light can be measured with a current sensing amplifier after the light integrating sphere is moved away from the device. 22 figs.

  8. System for characterizing semiconductor materials and photovoltaic device

    DOEpatents

    Sopori, Bhushan L.

    1996-01-01

    Apparatus for detecting and mapping defects in the surfaces of polycrystalline material in a manner that distinguishes dislocation pits from grain boundaries includes a first laser of a first wavelength for illuminating a wide spot on the surface of the material, a second laser of a second relatively shorter wavelength for illuminating a relatively narrower spot on the surface of the material, a light integrating sphere with apertures for capturing light scattered by etched dislocation pits in an intermediate range away from specular reflection while allowing light scattered by etched grain boundaries in a near range from specular reflection to pass through, and optical detection devices for detecting and measuring intensities of the respective intermediate scattered light and near specular scattered light. A center blocking aperture or filter can be used to screen out specular reflected light, which would be reflected by nondefect portions of the polycrystalline material surface. An X-Y translation stage for mounting the polycrystalline material and signal processing and computer equipment accommodate raster mapping, recording, and displaying of respective dislocation and grain boundary defect densities. A special etch procedure is included, which prepares the polycrystalline material surface to produce distinguishable intermediate and near specular light scattering in patterns that have statistical relevance to the dislocation and grain boundary defect densities. A reflectance measurement of the piece of material is obtained by adding together the signals from the optical detection devices. In the case where the piece of material includes a photovoltaic device, the current induced in the device by the illuminating light can be measured with a current sensing amplifier after the light integrating sphere is moved away from the device.

  9. Wireless device monitoring methods, wireless device monitoring systems, and articles of manufacture

    DOEpatents

    McCown, Steven H [Rigby, ID; Derr, Kurt W [Idaho Falls, ID; Rohde, Kenneth W [Idaho Falls, ID

    2012-05-08

    Wireless device monitoring methods, wireless device monitoring systems, and articles of manufacture are described. According to one embodiment, a wireless device monitoring method includes accessing device configuration information of a wireless device present at a secure area, wherein the device configuration information comprises information regarding a configuration of the wireless device, accessing stored information corresponding to the wireless device, wherein the stored information comprises information regarding the configuration of the wireless device, comparing the device configuration information with the stored information, and indicating the wireless device as one of authorized and unauthorized for presence at the secure area using the comparing.

  10. An Android malware detection system based on machine learning

    NASA Astrophysics Data System (ADS)

    Wen, Long; Yu, Haiyang

    2017-08-01

    The Android smartphone, with its open source character and excellent performance, has attracted many users. However, the convenience of the Android platform also has motivated the development of malware. The traditional method which detects the malware based on the signature is unable to detect unknown applications. The article proposes a machine learning-based lightweight system that is capable of identifying malware on Android devices. In this system we extract features based on the static analysis and the dynamitic analysis, then a new feature selection approach based on principle component analysis (PCA) and relief are presented in the article to decrease the dimensions of the features. After that, a model will be constructed with support vector machine (SVM) for classification. Experimental results show that our system provides an effective method in Android malware detection.

  11. Daylight control system device and method

    DOEpatents

    Paton, John Douglas

    2007-03-13

    A system and device for and a method of programming and controlling light fixtures is disclosed. A system in accordance with the present invention includes a stationary controller unit that is electrically coupled to the light fixtures. The stationary controller unit is configured to be remotely programmed with a portable commissioning device to automatically control the lights fixtures. The stationary controller unit and the portable commissioning device include light sensors, micro-computers and transceivers for measuring light levels, running programs, storing data and transmitting data between the stationary controller unit and the portable commissioning device. In operation, target light levels selected with the portable commissioning device and the controller unit is remotely programmed to automatically maintain the target level.

  12. Daylight control system, device and method

    DOEpatents

    Paton, John Douglas

    2012-08-28

    A system and device for and a method of programming and controlling light fixtures is disclosed. A system in accordance with the present invention includes a stationary controller unit that is electrically coupled to the light fixtures. The stationary controller unit is configured to be remotely programmed with a portable commissioning device to automatically control the lights fixtures. The stationary controller unit and the portable commissioning device include light sensors, micro-computers and transceivers for measuring light levels, running programs, storing data and transmitting data between the stationary controller unit and the portable commissioning device. In operation, target light levels selected with the portable commissioning device and the controller unit is remotely programmed to automatically maintain the target level.

  13. Daylight control system device and method

    DOEpatents

    Paton, John Douglas

    2009-12-01

    A system and device for and a method of programming and controlling light fixtures is disclosed. A system in accordance with the present invention includes a stationary controller unit that is electrically coupled to the light fixtures. The stationary controller unit is configured to be remotely programmed with a portable commissioning device to automatically control the lights fixtures. The stationary controller unit and the portable commissioning device include light sensors, micro-computers and transceivers for measuring light levels, running programs, storing data and transmitting data between the stationary controller unit and the portable commissioning device. In operation, target light levels selected with the portable commissioning device and the controller unit is remotely programmed to automatically maintain the target level.

  14. Detection of Explosive Devices using X-ray Backscatter Radiation

    NASA Astrophysics Data System (ADS)

    Faust, Anthony A.

    2002-09-01

    It is our goal to develop a coded aperture based X-ray backscatter imaging detector that will provide sufficient speed, contrast and spatial resolution to detect Antipersonnel Landmines and Improvised Explosive Devices (IED). While our final objective is to field a hand-held detector, we have currently constrained ourselves to a design that can be fielded on a small robotic platform. Coded aperture imaging has been used by the observational gamma astronomy community for a number of years. However, it has been the recent advances in the field of medical nuclear imaging which has allowed for the application of the technique to a backscatter scenario. In addition, driven by requirements in medical applications, advances in X-ray detection are continually being made, and detectors are now being produced that are faster, cheaper and lighter than those only a decade ago. With these advances, a coded aperture hand-held imaging system has only recently become a possibility. This paper will begin with an introduction to the technique, identify recent advances which have made this approach possible, present a simulated example case, and conclude with a discussion on future work.

  15. Preliminary performance assessment of biotoxin detection for UWS applications using a MicroChemLab device.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VanderNoot, Victoria A.; Haroldsen, Brent L.; Renzi, Ronald F.

    2010-03-01

    In a multiyear research agreement with Tenix Investments Pty. Ltd., Sandia has been developing field deployable technologies for detection of biotoxins in water supply systems. The unattended water sensor or UWS employs microfluidic chip based gel electrophoresis for monitoring biological analytes in a small integrated sensor platform. This instrument collects, prepares, and analyzes water samples in an automated manner. Sample analysis is done using the {mu}ChemLab{trademark} analysis module. This report uses analysis results of two datasets collected using the UWS to estimate performance of the device. The first dataset is made up of samples containing ricin at varying concentrations andmore » is used for assessing instrument response and detection probability. The second dataset is comprised of analyses of water samples collected at a water utility which are used to assess the false positive probability. The analyses of the two sets are used to estimate the Receiver Operating Characteristic or ROC curves for the device at one set of operational and detection algorithm parameters. For these parameters and based on a statistical estimate, the ricin probability of detection is about 0.9 at a concentration of 5 nM for a false positive probability of 1 x 10{sup -6}.« less

  16. Ion detection device and method with compressing ion-beam shutter

    DOEpatents

    Sperline, Roger P [Tucson, AZ

    2009-05-26

    An ion detection device, method and computer readable medium storing instructions for applying voltages to shutter elements of the detection device to compress ions in a volume defined by the shutter elements and to output the compressed ions to a collector. The ion detection device has a chamber having an inlet and receives ions through the inlet, a shutter provided in the chamber opposite the inlet and configured to allow or prevent the ions to pass the shutter, the shutter having first and second shutter elements, a collector provided in the chamber opposite the shutter and configured to collect ions passed through the shutter, and a processing unit electrically connected to the first and second shutter elements. The processing unit applies, during a first predetermined time interval, a first voltage to the first shutter element and a second voltage to the second shutter element, the second voltage being lower than the first voltage such that ions from the inlet enter a volume defined by the first and second shutter elements, and during a second predetermined time interval, a third voltage to the first shutter element, higher than the first voltage, and a fourth voltage to the second shutter element, the third voltage being higher than the fourth voltage such that ions that entered the volume are compressed as the ions exit the volume and new ions coming from the inlet are prevented from entering the volume. The processing unit is electrically connected to the collector and configured to detect the compressed ions based at least on a current received from the collector and produced by the ions collected by the collector.

  17. Moving Object Detection in Heterogeneous Conditions in Embedded Systems.

    PubMed

    Garbo, Alessandro; Quer, Stefano

    2017-07-01

    This paper presents a system for moving object exposure, focusing on pedestrian detection, in external, unfriendly, and heterogeneous environments. The system manipulates and accurately merges information coming from subsequent video frames, making small computational efforts in each single frame. Its main characterizing feature is to combine several well-known movement detection and tracking techniques, and to orchestrate them in a smart way to obtain good results in diversified scenarios. It uses dynamically adjusted thresholds to characterize different regions of interest, and it also adopts techniques to efficiently track movements, and detect and correct false positives. Accuracy and reliability mainly depend on the overall receipt, i.e., on how the software system is designed and implemented, on how the different algorithmic phases communicate information and collaborate with each other, and on how concurrency is organized. The application is specifically designed to work with inexpensive hardware devices, such as off-the-shelf video cameras and small embedded computational units, eventually forming an intelligent urban grid. As a matter of fact, the major contribution of the paper is the presentation of a tool for real-time applications in embedded devices with finite computational (time and memory) resources. We run experimental results on several video sequences (both home-made and publicly available), showing the robustness and accuracy of the overall detection strategy. Comparisons with state-of-the-art strategies show that our application has similar tracking accuracy but much higher frame-per-second rates.

  18. Moving Object Detection in Heterogeneous Conditions in Embedded Systems

    PubMed Central

    Garbo, Alessandro

    2017-01-01

    This paper presents a system for moving object exposure, focusing on pedestrian detection, in external, unfriendly, and heterogeneous environments. The system manipulates and accurately merges information coming from subsequent video frames, making small computational efforts in each single frame. Its main characterizing feature is to combine several well-known movement detection and tracking techniques, and to orchestrate them in a smart way to obtain good results in diversified scenarios. It uses dynamically adjusted thresholds to characterize different regions of interest, and it also adopts techniques to efficiently track movements, and detect and correct false positives. Accuracy and reliability mainly depend on the overall receipt, i.e., on how the software system is designed and implemented, on how the different algorithmic phases communicate information and collaborate with each other, and on how concurrency is organized. The application is specifically designed to work with inexpensive hardware devices, such as off-the-shelf video cameras and small embedded computational units, eventually forming an intelligent urban grid. As a matter of fact, the major contribution of the paper is the presentation of a tool for real-time applications in embedded devices with finite computational (time and memory) resources. We run experimental results on several video sequences (both home-made and publicly available), showing the robustness and accuracy of the overall detection strategy. Comparisons with state-of-the-art strategies show that our application has similar tracking accuracy but much higher frame-per-second rates. PMID:28671582

  19. Microfluidics on compliant substrates: recent developments in foldable and bendable devices and system packaging

    NASA Astrophysics Data System (ADS)

    Gray, Bonnie L.

    2012-04-01

    Microfluidics is revolutionizing laboratory methods and biomedical devices, offering new capabilities and instrumentation in multiple areas such as DNA analysis, proteomics, enzymatic analysis, single cell analysis, immunology, point-of-care medicine, personalized medicine, drug delivery, and environmental toxin and pathogen detection. For many applications (e.g., wearable and implantable health monitors, drug delivery devices, and prosthetics) mechanically flexible polymer devices and systems that can conform to the body offer benefits that cannot be achieved using systems based on conventional rigid substrate materials. However, difficulties in implementing active devices and reliable packaging technologies have limited the success of flexible microfluidics. Employing highly compliant materials such as PDMS that are typically employed for prototyping, we review mechanically flexible polymer microfluidic technologies based on free-standing polymer substrates and novel electronic and microfluidic interconnection schemes. Central to these new technologies are hybrid microfabrication methods employing novel nanocomposite polymer materials and devices. We review microfabrication methods using these materials, along with demonstrations of example devices and packaging schemes that employ them. We review these recent developments and place them in the context of the fields of flexible microfluidics and conformable systems, and discuss cross-over applications to conventional rigid-substrate microfluidics.

  20. Metallic Contaminant Detection using a High-Temperature Superconducting Quantum Interference Devices Gradiometer

    NASA Astrophysics Data System (ADS)

    Saburo, Tanaka; Tomohiro, Akai; Makoto, Takemoto; Yoshimi, Hatsukade; Takeyoshi, Ohtani; Yoshio, Ikeda; Shuichi, Suzuki

    2010-08-01

    We develop magnetic metallic contaminant detectors using high-temperature superconducting quantum interference devices (HTS-SQUIDs) for industrial products. Finding ultra-small metallic contaminants is an important issue for manufacturers producing commercial products such as lithium ion batteries. If such contaminants cause damages, the manufacturer of the product suffers a big financial loss due to having to recall the faulty products. Previously, we described a system for finding such ultra-small particles in food. In this study, we describe further developments of the system, for the reduction of the effect of the remnant field of the products, and we test the parallel magnetization of the products to generate the remnant field only at both ends of the products. In addition, we use an SQUID gradiometer in place of the magnetometer to reduce the edge effect by measuring the magnetic field gradient. We test the performances of the system and find that tiny iron particles as small as 50 × 50 μm2 on the electrode of a lithium ion battery could be clearly detected. This detection level is difficult to achieve when using other methods.

  1. The detection of organophosphonates by polymer films on a surface acoustic wave device and a micromirror fiber optic sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, R.C.; Ricco, A.J.; Butler, M.A.

    There is a need for sensitive detection of organophosphonates by, inexpensive, portable instruments. Two kinds of chemical sensors, based on surface acoustic wave (SAW) devices and fiber optic micromirrors, show promise for such sensing systems. Chemically sensitive coatings are required for detection and data for thin films of the polymer polysiloxane are reported for both kinds of physical transducers. Both kinds of sensor are shown to be capable of detecting concentrations of diisopropylmethylphosphonate (DIMP) down to 1 ppM.

  2. Bruxism force detection by a piezoelectric film-based recording device in sleeping humans.

    PubMed

    Baba, Kazuyoshi; Clark, Glenn T; Watanabe, Tatsutomi; Ohyama, Takashi

    2003-01-01

    To test the reliability and utility of a force-based bruxism detection system (Intra-Splint Force Detector [ISFD]) for multiple night recordings of forceful tooth-to-splint contacts in sleeping human subjects in their home environment. Bruxism-type forces, i.e., forceful tooth-to-splint contacts, during the night were recorded with this system in 12 subjects (6 bruxers and 6 controls) for 5 nights in their home environment; a laboratory-based nocturnal polysomnogram (NPSG) study was also performed on 1 of these subjects. All 12 subjects were able to use the device without substantial difficulty on a nightly basis. The bruxer group exhibited bruxism events of significantly longer duration than the control group (27 seconds/hour versus 7.4 seconds/hour, P < .01). A NPSG study performed on 1 subject revealed that, when the masseter muscle electromyogram (EMG) was used as a "gold standard," the ISFD had a sensitivity of 0.89. The correlation coefficient between the duration of events detected by the ISFD and the EMG was also 0.89. These results suggest that the ISFD is a system that can be used easily by the subjects and that has a reasonable reliability for bruxism detection as reflected in forceful tooth-to-splint contacts during sleep.

  3. Fabrication of a novel carbon nanotube & graphene based device for gas detection

    NASA Astrophysics Data System (ADS)

    Khosravi, Yusef; Abdi, Yaser; Arzi, Ezatollah

    2018-06-01

    We present a novel, simple method for gas detection using a nano-device fabricated on a silicon substrate. The proposed method is based on changing the density of state (DOS) of a graphene sheet during the gas absorption. Fabrication of the carbon nanotube (CNT) and graphene based device for gas detection includes silicon micro machining and the growth of vertically aligned CNTs. Field emission between the as-grown CNTs and the graphene sheet which is placed on top of the CNTs is measured at a liquid nitrogen temperature to obtain the DOS of the structure in different gas environments. The measured local DOS of the structure using the fabricated device showed that each gas had its own signatory spectrum. We believe that this method will open up a new and simple way of fabricating a portable gas spectroscope.

  4. Electrical detection of spin transport in Si two-dimensional electron gas systems

    NASA Astrophysics Data System (ADS)

    Chang, Li-Te; Fischer, Inga Anita; Tang, Jianshi; Wang, Chiu-Yen; Yu, Guoqiang; Fan, Yabin; Murata, Koichi; Nie, Tianxiao; Oehme, Michael; Schulze, Jörg; Wang, Kang L.

    2016-09-01

    Spin transport in a semiconductor-based two-dimensional electron gas (2DEG) system has been attractive in spintronics for more than ten years. The inherent advantages of high-mobility channel and enhanced spin-orbital interaction promise a long spin diffusion length and efficient spin manipulation, which are essential for the application of spintronics devices. However, the difficulty of making high-quality ferromagnetic (FM) contacts to the buried 2DEG channel in the heterostructure systems limits the potential developments in functional devices. In this paper, we experimentally demonstrate electrical detection of spin transport in a high-mobility 2DEG system using FM Mn-germanosilicide (Mn(Si0.7Ge0.3)x) end contacts, which is the first report of spin injection and detection in a 2DEG confined in a Si/SiGe modulation doped quantum well structure (MODQW). The extracted spin diffusion length and lifetime are l sf = 4.5 μm and {τ }{{s}}=16 {{ns}} at 1.9 K respectively. Our results provide a promising approach for spin injection into 2DEG system in the Si-based MODQW, which may lead to innovative spintronic applications such as spin-based transistor, logic, and memory devices.

  5. Handheld microwave bomb-detecting imaging system

    NASA Astrophysics Data System (ADS)

    Gorwara, Ashok; Molchanov, Pavlo

    2017-05-01

    Proposed novel imaging technique will provide all weather high-resolution imaging and recognition capability for RF/Microwave signals with good penetration through highly scattered media: fog, snow, dust, smoke, even foliage, camouflage, walls and ground. Image resolution in proposed imaging system is not limited by diffraction and will be determined by processor and sampling frequency. Proposed imaging system can simultaneously cover wide field of view, detect multiple targets and can be multi-frequency, multi-function. Directional antennas in imaging system can be close positioned and installed in cell phone size handheld device, on small aircraft or distributed around protected border or object. Non-scanning monopulse system allows dramatically decrease in transmitting power and at the same time provides increased imaging range by integrating 2-3 orders more signals than regular scanning imaging systems.

  6. Microfluidics-based integrated airborne pathogen detection systems

    NASA Astrophysics Data System (ADS)

    Northrup, M. Allen; Alleman-Sposito, Jennifer; Austin, Todd; Devitt, Amy; Fong, Donna; Lin, Phil; Nakao, Brian; Pourahmadi, Farzad; Vinas, Mary; Yuan, Bob

    2006-09-01

    Microfluidic Systems is focused on building microfluidic platforms that interface front-end mesofluidics to handle real world sample volumes for optimal sensitivity coupled to microfluidic circuitry to process small liquid volumes for complex reagent metering, mixing, and biochemical analysis, particularly for pathogens. MFSI is the prime contractor on two programs for the US Department of Homeland Security: BAND (Bioagent Autonomous Networked Detector) and IBADS (Instantaneous Bio-Aerosol Detection System). The goal of BAND is to develop an autonomous system for monitoring the air for known biological agents. This consists of air collection, sample lysis, sample purification, detection of DNA, RNA, and toxins, and a networked interface to report the results. For IBADS, MFSI is developing the confirmatory device which must verify the presence of a pathogen with 5 minutes of an air collector/trigger sounding an alarm. Instrument designs and biological assay results from both BAND and IBADS will be presented.

  7. Development and Initial Results of a Low Cost, Disposable, Point-of-Care Testing Device for Pathogen Detection

    PubMed Central

    Dugan, Lawrence C.; Baker, Brian R.; Hall, Sara B.; Ebert, Katja; Mioulet, Valerie; Madi, Mikidache; King, Donald P.

    2011-01-01

    Development of small footprint, disposable, fast, and inexpensive devices for pathogen detection in the field and clinic would benefit human and veterinary medicine by allowing evidence-based responses to future out breaks. We designed and tested an integrated nucleic acid extraction and amplification device employing a loop-mediated isothermal amplification (LAMP) or reverse transcriptase-LAMP assay. Our system provides a screening tool with polymerase-chain-reaction-level sensitivity and specificity for outbreak detection, response, and recovery. Time to result is ~90 min. The device utilizes a swab that collects sample and then transfers it to a disc of cellulose-based nucleic acid binding paper. The disc is positioned within a disposable containment tube with a manual loading port. In order to test for the presence of target pathogens, LAMP reagents are loaded through the tube’s port into contact with the sample containing cellulose disc. The reagents then are isothermally heated to 63°C for ~1 h to achieve sequence-specific target nucleic acid amplification. Due to the presence of a colorimetric dye, amplification induces visible color change in the reagents from purple to blue. As initial demonstrations, we detected methicillin resistant Staphylococcus aureus genomic DNA, as well as recombinant and live foot-and-mouth disease virus. PMID:21342806

  8. 46 CFR 161.002-8 - Automatic fire detecting systems, general requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... detecting system shall consist of a power supply; a control unit on which are located visible and audible... control unit. Power failure alarm devices may be separately housed from the control unit and may be combined with other power failure alarm systems when specifically approved. (b) [Reserved] [21 FR 9032, Nov...

  9. 46 CFR 161.002-8 - Automatic fire detecting systems, general requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... detecting system shall consist of a power supply; a control unit on which are located visible and audible... control unit. Power failure alarm devices may be separately housed from the control unit and may be combined with other power failure alarm systems when specifically approved. (b) [Reserved] [21 FR 9032, Nov...

  10. Medicine Delivery Device with Integrated Sterilization and Detection

    NASA Technical Reports Server (NTRS)

    Shearn, Michael J.; Greer, Harold F.; Manohara, Harish

    2013-01-01

    Sterile delivery devices can be created by integrating a medicine delivery instrument with surfaces that are coated with germicidal and anti-fouling material. This requires that a large-surface-area template be developed within a constrained volume to ensure good contact between the delivered medicine and the germicidal material. Both of these can be integrated using JPL-developed silicon nanotip or cryo-etch black silicon technologies with atomic layer deposition (ALD) coating of specific germicidal layers. The application of semiconductor processing techniques and technologies to the problems of fluid manipulation and delivery has enabled the integration of chemical, electrical, and mechanical manipulation of samples all within a single microfluidic device. This approach has been successfully applied at JPL to the automated processing, detection, and analysis of minute quantities (parts per trillion level) of biomaterials to develop instruments for in situ exploration or extraterrestrial bodies. The same nanofabrication techniques that are used to produce a microfluidics device are also capable of synthesizing extremely high-surface-area templates in precise locations, and coating those surfaces with conformal films to manipulate their surface properties. This methodology has been successfully applied at JPL to produce patterned and coated silicon nanotips (also known as black silicon) to manipulate the hydrophilicity of surfaces to direct the spreading of fluids in microdevices. JPL's ALD technique is an ideal method to produce the highly conformal coatings required for this type of application. Certain materials, such as TiO2, have germicidal and anti-fouling properties when they are illuminated with UV light. The proposed delivery device contacts medicine with this high-surface-area black silicon surface coated with a thin-film germicidal deposited conformally with ALD. The coating can also be illuminated with ultraviolet light for the purpose of sterilization

  11. System for detecting and limiting electrical ground faults within electrical devices

    DOEpatents

    Gaubatz, Donald C.

    1990-01-01

    An electrical ground fault detection and limitation system for employment with a nuclear reactor utilizing a liquid metal coolant. Elongate electromagnetic pumps submerged within the liquid metal coolant and electrical support equipment experiencing an insulation breakdown occasion the development of electrical ground fault current. Without some form of detection and control, these currents may build to damaging power levels to expose the pump drive components to liquid metal coolant such as sodium with resultant undesirable secondary effects. Such electrical ground fault currents are detected and controlled through the employment of an isolated power input to the pumps and with the use of a ground fault control conductor providing a direct return path from the affected components to the power source. By incorporating a resistance arrangement with the ground fault control conductor, the amount of fault current permitted to flow may be regulated to the extent that the reactor may remain in operation until maintenance may be performed, notwithstanding the existence of the fault. Monitors such as synchronous demodulators may be employed to identify and evaluate fault currents for each phase of a polyphase power, and control input to the submerged pump and associated support equipment.

  12. System design for 3D wound imaging using low-cost mobile devices

    NASA Astrophysics Data System (ADS)

    Sirazitdinova, Ekaterina; Deserno, Thomas M.

    2017-03-01

    The state-of-the art method of wound assessment is a manual, imprecise and time-consuming procedure. Per- formed by clinicians, it has limited reproducibility and accuracy, large time consumption and high costs. Novel technologies such as laser scanning microscopy, multi-photon microscopy, optical coherence tomography and hyper-spectral imaging, as well as devices relying on the structured light sensors, make accurate wound assessment possible. However, such methods have limitations due to high costs and may lack portability and availability. In this paper, we present a low-cost wound assessment system and architecture for fast and accurate cutaneous wound assessment using inexpensive consumer smartphone devices. Computer vision techniques are applied either on the device or the server to reconstruct wounds in 3D as dense models, which are generated from images taken with a built-in single camera of a smartphone device. The system architecture includes imaging (smartphone), processing (smartphone or PACS) and storage (PACS) devices. It supports tracking over time by alignment of 3D models, color correction using a reference color card placed into the scene and automatic segmentation of wound regions. Using our system, we are able to detect and document quantitative characteristics of chronic wounds, including size, depth, volume, rate of healing, as well as qualitative characteristics as color, presence of necrosis and type of involved tissue.

  13. Semiconducting boron carbide polymers devices for neutron detection

    NASA Astrophysics Data System (ADS)

    Echeverria, Elena; Pasquale, Frank L.; James, Robinson; Colón Santana, Juan A.; Adenwalla, Shireen; Kelber, Jeffry A.; Dowben, Peter A.

    2014-03-01

    Boron carbide materials, with aromatic compounds included, prove to be effective materials as solid state neutron detector detectors. The I-V characteristic curves for these heterojunction diodes with silicon show that these modified boron carbides, in the presence of these linking groups such as 1,4-diaminobenzene (DAB) and pyridine, are p-type. Cadmium was used as shield to discriminate between neutron-induced signals and thermal neutrons, and thermal neutron capture is evident, while gamma detection was not realized. Neutron detection signals for these heterojunction diode were observed, a measurable zero bias current noted, even without complete electron-hole collection. This again illustrates that boron carbide devices can be considered a neutron voltaic.

  14. Charged Particle Detection: Potential of Love Wave Acoustic Devices

    NASA Astrophysics Data System (ADS)

    Pedrick, Michael; Tittmann, Bernhard

    2006-03-01

    An investigation of the dependence of film density on group and phase velocities in a Love Wave Device shows potential for acoustic-based charged particle detection (CPD). Exposure of an ion sensitive photoresist to charged particles causes localized changes in density through either scission or cross-linking. A theoretical model was developed to study ion fluence effects on Love Wave sensitivity based on: ion energy, effective density changes, layer thickness and mode selection. The model is based on a Poly(Methyl Methacralate) (PMMA) film deposited on a Quartz substrate. The effect of Helium ion fluence on the properties of PMMA has previously been studied. These guidelines were used as an initial basis for the prediction of helium ion detection in a PMMA layer. Procedures for experimental characterization of ion effects on the material properties of PMMA are reviewed. Techniques for experimental validation of the predicted velocity shifts are discussed. A Love Wave Device for CPD could potentially provide a cost-effective alternative to semiconductor or photo-based counterparts. The potential for monitoring ion implantation effects on material properties is also discussed.

  15. Mid-infrared surface transmitting and detecting quantum cascade device for gas-sensing

    PubMed Central

    Harrer, Andreas; Szedlak, Rolf; Schwarz, Benedikt; Moser, Harald; Zederbauer, Tobias; MacFarland, Donald; Detz, Hermann; Andrews, Aaron Maxwell; Schrenk, Werner; Lendl, Bernhard; Strasser, Gottfried

    2016-01-01

    We present a bi-functional surface emitting and surface detecting mid-infrared device applicable for gas-sensing. A distributed feedback ring quantum cascade laser is monolithically integrated with a detector structured from a bi-functional material for same frequency lasing and detection. The emitted single mode radiation is collimated, back reflected by a flat mirror and detected by the detector element of the sensor. The surface operation mode combined with the low divergence emission of the ring quantum cascade laser enables for long analyte interaction regions spatially separated from the sample surface. The device enables for sensing of gaseous analytes which requires a relatively long interaction region. Our design is suitable for 2D array integration with multiple emission and detection frequencies. Proof of principle measurements with isobutane (2-methylpropane) and propane as gaseous analytes were conducted. Detectable concentration values of 0–70% for propane and 0–90% for isobutane were reached at a laser operation wavelength of 6.5 μm utilizing a 10 cm gas cell in double pass configuration. PMID:26887891

  16. Design of practical alignment device in KSTAR Thomson diagnostic.

    PubMed

    Lee, J H; Lee, S H; Yamada, I

    2016-11-01

    The precise alignment of the laser path and collection optics in Thomson scattering measurements is essential for accurately determining electron temperature and density in tokamak experiments. For the last five years, during the development stage, the KSTAR tokamak's Thomson diagnostic system has had alignment fibers installed in its optical collection modules, but these lacked a proper alignment detection system. In order to address these difficulties, an alignment verifying detection device between lasers and an object field of collection optics is developed. The alignment detection device utilizes two types of filters: a narrow laser band wavelength for laser, and a broad wavelength filter for Thomson scattering signal. Four such alignment detection devices have been successfully developed for the KSTAR Thomson scattering system in this year, and these will be tested in KSTAR experiments in 2016. In this paper, we present the newly developed alignment detection device for KSTAR's Thomson scattering diagnostics.

  17. Medical devices; immunology and microbiology devices; classification of nucleic acid-based devices for the detection of Mycobacterium tuberculosis complex and the genetic mutations associated with antibiotic resistance. Final order.

    PubMed

    2014-10-22

    The Food and Drug Administration (FDA) is classifying nucleic acid-based in vitro diagnostic devices for the detection of Mycobacterium tuberculosis complex (MTB-complex) and the genetic mutations associated with MTB-complex antibiotic resistance in respiratory specimens devices into class II (special controls). The Agency is classifying the device into class II (special controls) because special controls, in addition to general controls, will provide a reasonable assurance of safety and effectiveness of the device.

  18. An ontology-based annotation of cardiac implantable electronic devices to detect therapy changes in a national registry.

    PubMed

    Rosier, Arnaud; Mabo, Philippe; Chauvin, Michel; Burgun, Anita

    2015-05-01

    The patient population benefitting from cardiac implantable electronic devices (CIEDs) is increasing. This study introduces a device annotation method that supports the consistent description of the functional attributes of cardiac devices and evaluates how this method can detect device changes from a CIED registry. We designed the Cardiac Device Ontology, an ontology of CIEDs and device functions. We annotated 146 cardiac devices with this ontology and used it to detect therapy changes with respect to atrioventricular pacing, cardiac resynchronization therapy, and defibrillation capability in a French national registry of patients with implants (STIDEFIX). We then analyzed a set of 6905 device replacements from the STIDEFIX registry. Ontology-based identification of therapy changes (upgraded, downgraded, or similar) was accurate (6905 cases) and performed better than straightforward analysis of the registry codes (F-measure 1.00 versus 0.75 to 0.97). This study demonstrates the feasibility and effectiveness of ontology-based functional annotation of devices in the cardiac domain. Such annotation allowed a better description and in-depth analysis of STIDEFIX. This method was useful for the automatic detection of therapy changes and may be reused for analyzing data from other device registries.

  19. The use of a handheld Raman system for virus detection

    NASA Astrophysics Data System (ADS)

    Song, Chunyuan; Driskell, Jeremy D.; Tripp, Ralph A.; Cui, Yiping; Zhao, Yiping

    2012-06-01

    The combination of surface enhanced Raman spectroscopy (SERS) with a handheld Raman system would lead to a powerful portable device for defense and security applications. The Thermo Scientific FirstDefender RM instrument is a 785-nm handheld Raman spectrometer intended for rapid field identification of unknown solid and liquid samples. Its sensitivity and effectiveness for SERS-based detection was initially confirmed by evaluating detection of 1,2-di(4- pyridyl)ethylene as a reporter molecule on a silver nanorod (AgNR) substrate, and the results are comparable to those from a confocal Bruker Raman system. As avian influenza A viruses (AIV) are recognized as an important emerging threat to public health, this portable handheld Raman spectrometer is used, for the first time, to detect and identify avian influenza A viruses using a multi-well AgNR SERS chip. The SERS spectra obtained had rich peaks which demonstrated that the instrument can be effectively used for SERS-based influenza virus detection. According to the SERS spectra, these different influenza viruses were distinguished from the negative control via the principal component analysis and by partial least squares-discriminate analysis. Together, these results show that the combination effective SERS substrates when combined with a portable Raman spectrometer provides a powerful field device for chemical and biological sensing.

  20. Grazing incidence angle based sensing approach integrated with fiber-optic Fourier transform infrared (FO-FTIR) spectroscopy for remote and label-free detection of medical device contaminations.

    PubMed

    Hassan, Moinuddin; Ilev, Ilko

    2014-10-01

    Contamination of medical devices has become a critical and prevalent public health safety concern since medical devices are being increasingly used in clinical practices for diagnostics, therapeutics and medical implants. The development of effective sensing methods for real-time detection of pathogenic contamination is needed to prevent and reduce the spread of infections to patients and the healthcare community. In this study, a hollow-core fiber-optic Fourier transform infrared spectroscopy methodology employing a grazing incidence angle based sensing approach (FO-FTIR-GIA) was developed for detection of various biochemical contaminants on medical device surfaces. We demonstrated the sensitivity of FO-FTIR-GIA sensing approach for non-contact and label-free detection of contaminants such as lipopolysaccharide from various surface materials relevant to medical device. The proposed sensing system can detect at a minimum loading concentration of approximately 0.7 μg/cm(2). The FO-FTIR-GIA has the potential for the detection of unwanted pathogen in real time.

  1. Grazing incidence angle based sensing approach integrated with fiber-optic Fourier transform infrared (FO-FTIR) spectroscopy for remote and label-free detection of medical device contaminations

    NASA Astrophysics Data System (ADS)

    Hassan, Moinuddin; Ilev, Ilko

    2014-10-01

    Contamination of medical devices has become a critical and prevalent public health safety concern since medical devices are being increasingly used in clinical practices for diagnostics, therapeutics and medical implants. The development of effective sensing methods for real-time detection of pathogenic contamination is needed to prevent and reduce the spread of infections to patients and the healthcare community. In this study, a hollow-core fiber-optic Fourier transform infrared spectroscopy methodology employing a grazing incidence angle based sensing approach (FO-FTIR-GIA) was developed for detection of various biochemical contaminants on medical device surfaces. We demonstrated the sensitivity of FO-FTIR-GIA sensing approach for non-contact and label-free detection of contaminants such as lipopolysaccharide from various surface materials relevant to medical device. The proposed sensing system can detect at a minimum loading concentration of approximately 0.7 μg/cm2. The FO-FTIR-GIA has the potential for the detection of unwanted pathogen in real time.

  2. Grazing incidence angle based sensing approach integrated with fiber-optic Fourier transform infrared (FO-FTIR) spectroscopy for remote and label-free detection of medical device contaminations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassan, Moinuddin, E-mail: moinuddin.hassan@fda.hhs.gov; Ilev, Ilko

    2014-10-15

    Contamination of medical devices has become a critical and prevalent public health safety concern since medical devices are being increasingly used in clinical practices for diagnostics, therapeutics and medical implants. The development of effective sensing methods for real-time detection of pathogenic contamination is needed to prevent and reduce the spread of infections to patients and the healthcare community. In this study, a hollow-core fiber-optic Fourier transform infrared spectroscopy methodology employing a grazing incidence angle based sensing approach (FO-FTIR-GIA) was developed for detection of various biochemical contaminants on medical device surfaces. We demonstrated the sensitivity of FO-FTIR-GIA sensing approach for non-contactmore » and label-free detection of contaminants such as lipopolysaccharide from various surface materials relevant to medical device. The proposed sensing system can detect at a minimum loading concentration of approximately 0.7 μg/cm{sup 2}. The FO-FTIR-GIA has the potential for the detection of unwanted pathogen in real time.« less

  3. Direct and sensitive detection of foodborne pathogens within fresh produce samples using a field-deployable handheld device.

    PubMed

    You, David J; Geshell, Kenneth J; Yoon, Jeong-Yeol

    2011-10-15

    Direct and sensitive detection of foodborne pathogens from fresh produce samples was accomplished using a handheld lab-on-a-chip device, requiring little to no sample processing and enrichment steps for a near-real-time detection and truly field-deployable device. The detection of Escherichia coli K12 and O157:H7 in iceberg lettuce was achieved utilizing optimized Mie light scatter parameters with a latex particle immunoagglutination assay. The system exhibited good sensitivity, with a limit of detection of 10 CFU mL(-1) and an assay time of <6 min. Minimal pretreatment with no detrimental effects on assay sensitivity and reproducibility was accomplished with a simple and cost-effective KimWipes filter and disposable syringe. Mie simulations were used to determine the optimal parameters (particle size d, wavelength λ, and scatter angle θ) for the assay that maximize light scatter intensity of agglutinated latex microparticles and minimize light scatter intensity of the tissue fragments of iceberg lettuce, which were experimentally validated. This introduces a powerful method for detecting foodborne pathogens in fresh produce and other potential sample matrices. The integration of a multi-channel microfluidic chip allowed for differential detection of the agglutinated particles in the presence of the antigen, revealing a true field-deployable detection system with decreased assay time and improved robustness over comparable benchtop systems. Additionally, two sample preparation methods were evaluated through simulated field studies based on overall sensitivity, protocol complexity, and assay time. Preparation of the plant tissue sample by grinding resulted in a two-fold improvement in scatter intensity over washing, accompanied with a significant increase in assay time: ∼5 min (grinding) versus ∼1 min (washing). Specificity studies demonstrated binding of E. coli O157:H7 EDL933 to only O157:H7 antibody conjugated particles, with no cross-reactivity to K12

  4. Experimental evaluation of a system for human life detection under debris

    NASA Astrophysics Data System (ADS)

    Joju, Reshma; Konica, Pimplapure Ramya T.; Alex, Zachariah C.

    2017-11-01

    It is difficult to for the human beings to be found under debris or behind the walls in case of military applications. Due to which several rescue techniques such as robotic systems, optical devices, and acoustic devices were used. But if victim was unconscious then these rescue system failed. We conducted an experimental analysis on whether the microwaves could detect heart beat and breathing signals of human beings trapped under collapsed debris. For our analysis we used RADAR based on by Doppler shift effect. We calculated the minimum speed that the RADAR could detect. We checked the frequency variation by placing the RADAR at a fixed position and placing the object in motion at different distances. We checked the frequency variation by using objects of different materials as debris behind which the motion was made. The graphs of different analysis were plotted.

  5. Medical Devices; Immunology and Microbiology Devices; Classification of the Device To Detect and Measure Non-Microbial Analyte(s) in Human Clinical Specimens To Aid in Assessment of Patients With Suspected Sepsis. Final order.

    PubMed

    2017-10-24

    The Food and Drug Administration (FDA or we) is classifying the device to detect and measure non-microbial analyte(s) in human clinical specimens to aid in assessment of patients with suspected sepsis into class II (special controls). The special controls that apply to the device type are identified in this order and will be part of the codified language for the device to detect and measure non-microbial analyte(s) in human clinical specimens to aid in assessment of patients with suspected sepsis's classification. We are taking this action because we have determined that classifying the device into class II (special controls) will provide a reasonable assurance of safety and effectiveness of the device. We believe this action will also enhance patients' access to beneficial innovative devices, in part by reducing regulatory burdens.

  6. A fully disposable and integrated paper-based device for nucleic acid extraction, amplification and detection.

    PubMed

    Tang, Ruihua; Yang, Hui; Gong, Yan; You, MinLi; Liu, Zhi; Choi, Jane Ru; Wen, Ting; Qu, Zhiguo; Mei, Qibing; Xu, Feng

    2017-03-29

    Nucleic acid testing (NAT) has been widely used for disease diagnosis, food safety control and environmental monitoring. At present, NAT mainly involves nucleic acid extraction, amplification and detection steps that heavily rely on large equipment and skilled workers, making the test expensive, time-consuming, and thus less suitable for point-of-care (POC) applications. With advances in paper-based microfluidic technologies, various integrated paper-based devices have recently been developed for NAT, which however require off-chip reagent storage, complex operation steps and equipment-dependent nucleic acid amplification, restricting their use for POC testing. To overcome these challenges, we demonstrate a fully disposable and integrated paper-based sample-in-answer-out device for NAT by integrating nucleic acid extraction, helicase-dependent isothermal amplification and lateral flow assay detection into one paper device. This simple device allows on-chip dried reagent storage and equipment-free nucleic acid amplification with simple operation steps, which could be performed by untrained users in remote settings. The proposed device consists of a sponge-based reservoir and a paper-based valve for nucleic acid extraction, an integrated battery, a PTC ultrathin heater, temperature control switch and on-chip dried enzyme mix storage for isothermal amplification, and a lateral flow test strip for naked-eye detection. It can sensitively detect Salmonella typhimurium, as a model target, with a detection limit of as low as 10 2 CFU ml -1 in wastewater and egg, and 10 3 CFU ml -1 in milk and juice in about an hour. This fully disposable and integrated paper-based device has great potential for future POC applications in resource-limited settings.

  7. Method and system for reducing device performance degradation of organic devices

    DOEpatents

    Teague, Lucile C.

    2014-09-02

    Methods and systems for reducing the deleterious effects of gate bias stress on the drain current of an organic device, such as an organic thin film transistor, are provided. In a particular aspect, the organic layer of an organic device is illuminated with light having characteristics selected to reduce the gate bias voltage effects on the drain current of the organic device. For instance, the wavelength and intensity of the light are selected to provide a desired recovery of drain current of the organic device. If the characteristics of the light are appropriately matched to the organic device, recovery of the deleterious effects caused by gate bias voltage stress effects on the drain current of the organic device can be achieved. In a particular aspect, the organic device is selectively illuminated with light to operate the organic device in multiple modes of operation.

  8. A Charge Coupled Device Imaging System For Ophthalmology

    NASA Astrophysics Data System (ADS)

    Rowe, R. Wanda; Packer, Samuel; Rosen, James; Bizais, Yves

    1984-06-01

    A digital camera system has been constructed for obtaining reflectance images of the fundus of the eye with monochromatic light. Images at wavelengths in the visible and near infrared regions of the spectrum are recorded by a charge-coupled device array and transferred to a computer. A variety of image processing operations are performed to restore the pictures, correct for distortions in the image formation process, and extract new and diagnostically useful information. The steps involved in calibrating the system to permit quantitative measurement of fundus reflectance are discussed. Three clinically important applications of such a quantitative system are addressed: the characterization of changes in the optic nerve arising from glaucoma, the diagnosis of choroidal melanoma through spectral signatures, and the early detection and improved management of diabetic retinopathy by measurement of retinal tissue oxygen saturation.

  9. Improved assessment of accuracy and performance using a rotational paper-based device for multiplexed detection of heavy metals.

    PubMed

    Sun, Xiange; Li, Bowei; Qi, Anjin; Tian, Chongguo; Han, Jinglong; Shi, Yajun; Lin, Bingcheng; Chen, Lingxin

    2018-02-01

    In this work, a novel rotational microfluidic paper-based device was developed to improve the accuracy and performance of the multiplexed colorimetric detection by effectively avoiding the diffusion of colorimetric reagent on the detection zone. The integrated paper-based rotational valves were used to control the connection or disconnection between detection zones and fluid channels. Based on the manipulation of the rotational valves, this rotational paper-based device could prevent the random diffusion of colorimetric reagent and reduce the error of quantitative analysis considerably. The multiplexed colorimetric detection of heavy metals Ni(II), Cu(II) and Cr(VI) were implemented on the rotational device and the detection limits could be found to be 4.8, 1.6, and 0.18mg/L, respectively. The developed rotational device showed the great advantage in improving the detection accuracy and was expected to be a low-cost, portable analytical platform for the on-site detection. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture

    DOEpatents

    West, Phillip B [Idaho Falls, ID; Novascone, Stephen R [Idaho Falls, ID; Wright, Jerry P [Idaho Falls, ID

    2012-05-29

    Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture are described. According to one embodiment, an earth analysis method includes engaging a device with the earth, analyzing the earth in a single substantially lineal direction using the device during the engaging, and providing information regarding a subsurface feature of the earth using the analysis.

  11. Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture

    DOEpatents

    West, Phillip B [Idaho Falls, ID; Novascone, Stephen R [Idaho Falls, ID; Wright, Jerry P [Idaho Falls, ID

    2011-09-27

    Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture are described. According to one embodiment, an earth analysis method includes engaging a device with the earth, analyzing the earth in a single substantially lineal direction using the device during the engaging, and providing information regarding a subsurface feature of the earth using the analysis.

  12. Photon-number-resolving SSPDs with system detection efficiency over 50% at telecom range

    NASA Astrophysics Data System (ADS)

    Zolotov, P.; Divochiy, A.; Vakhtomin, Yu.; Moshkova, M.; Morozov, P.; Seleznev, V.; Smirnov, K.

    2018-02-01

    We used technology of making high-efficiency superconducting single-photon detectors as a basis for improvement of photon-number-resolving devices. By adding optical cavity and using an improved NbN superconducting film, we enhanced previously reported system detection efficiency at telecom range for such detectors. Our results show that implementation of optical cavity helps to develop four-section device with quantum efficiency over 50% at 1.55 µm. Performed experimental studies of detecting multi-photon optical pulses showed irregularities over defining multi-photon through single-photon quantum efficiency.

  13. Design of practical alignment device in KSTAR Thomson diagnostic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J. H., E-mail: jhlee@nfri.re.kr; University of Science and Technology; Lee, S. H.

    2016-11-15

    The precise alignment of the laser path and collection optics in Thomson scattering measurements is essential for accurately determining electron temperature and density in tokamak experiments. For the last five years, during the development stage, the KSTAR tokamak’s Thomson diagnostic system has had alignment fibers installed in its optical collection modules, but these lacked a proper alignment detection system. In order to address these difficulties, an alignment verifying detection device between lasers and an object field of collection optics is developed. The alignment detection device utilizes two types of filters: a narrow laser band wavelength for laser, and a broadmore » wavelength filter for Thomson scattering signal. Four such alignment detection devices have been successfully developed for the KSTAR Thomson scattering system in this year, and these will be tested in KSTAR experiments in 2016. In this paper, we present the newly developed alignment detection device for KSTAR’s Thomson scattering diagnostics.« less

  14. Integrated explosive preconcentrator and electrochemical detection system for 2,4,6-trinitrotoluene (TNT) vapor.

    PubMed

    Cizek, Karel; Prior, Chad; Thammakhet, Chongdee; Galik, Michal; Linker, Kevin; Tsui, Ray; Cagan, Avi; Wake, John; La Belle, Jeff; Wang, Joseph

    2010-02-19

    This article reports on an integrated explosive-preconcentration/electrochemical detection system for 2,4,6-trinitrotoluene (TNT) vapor. The challenges involved in such system integration are discussed. A hydrogel-coated screen-printed electrode is used for the detection of the thermally desorbed TNT from a preconcentration device using rapid square wave voltammetry. Optimization of the preconcentration system for desorption of TNT and subsequent electrochemical detection was conducted yielding a desorption temperature of 120 degrees C under a flow rate of 500 mL min(-1). Such conditions resulted in a characteristic electrochemical signal for TNT representing the multi-step reduction process. Quantitative measurements produced a linear signal dependence on TNT quantity exposed to the preconcentrator from 0.25 to 10 microg. Finally, the integrated device was successfully demonstrated using a sample of solid TNT located upstream of the preconcentrator. Copyright 2009 Elsevier B.V. All rights reserved.

  15. Nanofluidic Pre-Concentration Devices for Enhancing the Detection Sensitivity and Selectivity of Biomarkers for Human Performance Monitoring

    DTIC Science & Technology

    2016-10-17

    AFRL-AFOSR-JP-TR-2016-0082 Nanofluidic Pre -Concentration Devices for Enhancing the Detection Sensitivity and Selectivity of Biomarkers for Human...Nanofluidic Pre -Concentration Devices for Enhancing the Detection Sensitivity and Selectivity of Biomarkers for Human Performance Monitoring 5a...SUBJECT TERMS Biomarkers, Nanofluidics, Pre -concentration Devices, Sensing, AOARD 16.  SECURITY CLASSIFICATION OF: 17.  LIMITATION OF ABSTRACT SAR 18

  16. Non-EEG seizure detection systems and potential SUDEP prevention: State of the art: Review and update.

    PubMed

    Van de Vel, Anouk; Cuppens, Kris; Bonroy, Bert; Milosevic, Milica; Jansen, Katrien; Van Huffel, Sabine; Vanrumste, Bart; Cras, Patrick; Lagae, Lieven; Ceulemans, Berten

    2016-10-01

    Detection of, and alarming for epileptic seizures is increasingly demanded and researched. Our previous review article provided an overview of non-invasive, non-EEG (electro-encephalography) body signals that can be measured, along with corresponding methods, state of the art research, and commercially available systems. Three years later, many more studies and devices have emerged. Moreover, the boom of smart phones and tablets created a new market for seizure detection applications. We performed a thorough literature review and had contact with manufacturers of commercially available devices. This review article gives an updated overview of body signals and methods for seizure detection, international research and (commercially) available systems and applications. Reported results of non-EEG based detection devices vary between 2.2% and 100% sensitivity and between 0 and 3.23 false detections per hour compared to the gold standard video-EEG, for seizures ranging from generalized to convulsive or non-convulsive focal seizures with or without loss of consciousness. It is particularly interesting to include monitoring of autonomic dysfunction, as this may be an important pathophysiological mechanism of SUDEP (sudden unexpected death in epilepsy), and of movement, as many seizures have a motor component. Comparison of research results is difficult as studies focus on different seizure types, timing (night versus day) and patients (adult versus pediatric patients). Nevertheless, we are convinced that the most effective seizure detection systems are multimodal, combining for example detection methods for movement and heart rate, and that devices should especially take into account the user's seizure types and personal preferences. Copyright © 2016 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  17. Interacting with mobile devices by fusion eye and hand gestures recognition systems based on decision tree approach

    NASA Astrophysics Data System (ADS)

    Elleuch, Hanene; Wali, Ali; Samet, Anis; Alimi, Adel M.

    2017-03-01

    Two systems of eyes and hand gestures recognition are used to control mobile devices. Based on a real-time video streaming captured from the device's camera, the first system recognizes the motion of user's eyes and the second one detects the static hand gestures. To avoid any confusion between natural and intentional movements we developed a system to fuse the decision coming from eyes and hands gesture recognition systems. The phase of fusion was based on decision tree approach. We conducted a study on 5 volunteers and the results that our system is robust and competitive.

  18. Control System for Prosthetic Devices

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J. (Inventor)

    1996-01-01

    A control system and method for prosthetic devices is provided. The control system comprises a transducer for receiving movement from a body part for generating a sensing signal associated with that of movement. The sensing signal is processed by a linearizer for linearizing the sensing signal to be a linear function of the magnitude of the distance moved by the body part. The linearized sensing signal is normalized to be a function of the entire range of body part movement from the no-shrug position of the moveable body part through the full-shrg position of the moveable body part. The normalized signal is divided into a plurality of discrete command signals. The discrete command signals are used by typical converter devices which are in operational association with the prosthetic device. The converter device uses the discrete command signals for driving the moveable portions of the prosthetic device and its sub-prosthesis. The method for controlling a prosthetic device associated with the present invention comprises the steps of receiving the movement from the body part, generating a sensing signal in association with the movement of the body part, linearizing the sensing signal to be a linear function of the magnitude of the distance moved by the body part, normalizing the linear signal to be a function of the entire range of the body part movement, dividing the normalized signal into a plurality of discrete command signals, and implementing the plurality of discrete command signals for driving the respective moveable prosthesis device and its sub-prosthesis.

  19. Design of a Fatigue Detection System for High-Speed Trains Based on Driver Vigilance Using a Wireless Wearable EEG.

    PubMed

    Zhang, Xiaoliang; Li, Jiali; Liu, Yugang; Zhang, Zutao; Wang, Zhuojun; Luo, Dianyuan; Zhou, Xiang; Zhu, Miankuan; Salman, Waleed; Hu, Guangdi; Wang, Chunbai

    2017-03-01

    The vigilance of the driver is important for railway safety, despite not being included in the safety management system (SMS) for high-speed train safety. In this paper, a novel fatigue detection system for high-speed train safety based on monitoring train driver vigilance using a wireless wearable electroencephalograph (EEG) is presented. This system is designed to detect whether the driver is drowsiness. The proposed system consists of three main parts: (1) a wireless wearable EEG collection; (2) train driver vigilance detection; and (3) early warning device for train driver. In the first part, an 8-channel wireless wearable brain-computer interface (BCI) device acquires the locomotive driver's brain EEG signal comfortably under high-speed train-driving conditions. The recorded data are transmitted to a personal computer (PC) via Bluetooth. In the second step, a support vector machine (SVM) classification algorithm is implemented to determine the vigilance level using the Fast Fourier transform (FFT) to extract the EEG power spectrum density (PSD). In addition, an early warning device begins to work if fatigue is detected. The simulation and test results demonstrate the feasibility of the proposed fatigue detection system for high-speed train safety.

  20. Design of a Fatigue Detection System for High-Speed Trains Based on Driver Vigilance Using a Wireless Wearable EEG

    PubMed Central

    Zhang, Xiaoliang; Li, Jiali; Liu, Yugang; Zhang, Zutao; Wang, Zhuojun; Luo, Dianyuan; Zhou, Xiang; Zhu, Miankuan; Salman, Waleed; Hu, Guangdi; Wang, Chunbai

    2017-01-01

    The vigilance of the driver is important for railway safety, despite not being included in the safety management system (SMS) for high-speed train safety. In this paper, a novel fatigue detection system for high-speed train safety based on monitoring train driver vigilance using a wireless wearable electroencephalograph (EEG) is presented. This system is designed to detect whether the driver is drowsiness. The proposed system consists of three main parts: (1) a wireless wearable EEG collection; (2) train driver vigilance detection; and (3) early warning device for train driver. In the first part, an 8-channel wireless wearable brain-computer interface (BCI) device acquires the locomotive driver’s brain EEG signal comfortably under high-speed train-driving conditions. The recorded data are transmitted to a personal computer (PC) via Bluetooth. In the second step, a support vector machine (SVM) classification algorithm is implemented to determine the vigilance level using the Fast Fourier transform (FFT) to extract the EEG power spectrum density (PSD). In addition, an early warning device begins to work if fatigue is detected. The simulation and test results demonstrate the feasibility of the proposed fatigue detection system for high-speed train safety. PMID:28257073

  1. A compact and portable optofluidic device for detection of liquid properties and label-free sensing

    NASA Astrophysics Data System (ADS)

    Lahoz, F.; Martín, I. R.; Walo, D.; Gil-Rostra, J.; Yubero, F.; Gonzalez-Elipe, A. R.

    2017-06-01

    Optofluidic lasers have been widely investigated over the last few years mainly because they can be easily integrated in sensor devices. However, high power pulse lasers are required as excitation sources, which, in practice, limit the portability of the system. Trying to overcome some of these limitations, in this paper we propose the combined use of a small CW laser with a Fabry-Perot optofluidic planar microcavity showing high sensitivity and versatility for detection of liquid properties and label-free sensing. Firstly, a fluorescein solution in ethanol is used to demonstrate the high performances of the FP microcavity as a temperature sensor both in the laser (high pump power above laser threshold) and in the fluorescence (low pump power) regimes. A shift in the wavelength of the resonant cavity modes is used to detect changes in the temperature and our results show that high sensitivities could be already obtained using cheap and portable CW diode lasers. In the second part of the paper, the demonstration of this portable device for label-free sensing is illustrated under low CW pumping. The wavelength positions of the optofluidic resonant modes are used to detect glucose concentrations in water solutions using a protein labelled with a fluorescent dye as the active medium.

  2. A bubble detection system for propellant filling pipeline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, Wen; Zong, Guanghua; Bi, Shusheng

    2014-06-15

    This paper proposes a bubble detection system based on the ultrasound transmission method, mainly for probing high-speed bubbles in the satellite propellant filling pipeline. First, three common ultrasonic detection methods are compared and the ultrasound transmission method is used in this paper. Then, the ultrasound beam in a vertical pipe is investigated, suggesting that the width of the beam used for detection is usually smaller than the internal diameter of the pipe, which means that when bubbles move close to the pipe wall, they may escape from being detected. A special device is designed to solve this problem. It canmore » generate the spiral flow to force all the bubbles to ascend along the central line of the pipe. In the end, experiments are implemented to evaluate the performance of this system. Bubbles of five different sizes are generated and detected. Experiment results show that the sizes and quantity of bubbles can be estimated by this system. Also, the bubbles of different radii can be distinguished from each other. The numerical relationship between the ultrasound attenuation and the bubble radius is acquired and it can be utilized for estimating the unknown bubble size and measuring the total bubble volume.« less

  3. GPU based cloud system for high-performance arrhythmia detection with parallel k-NN algorithm.

    PubMed

    Tae Joon Jun; Hyun Ji Park; Hyuk Yoo; Young-Hak Kim; Daeyoung Kim

    2016-08-01

    In this paper, we propose an GPU based Cloud system for high-performance arrhythmia detection. Pan-Tompkins algorithm is used for QRS detection and we optimized beat classification algorithm with K-Nearest Neighbor (K-NN). To support high performance beat classification on the system, we parallelized beat classification algorithm with CUDA to execute the algorithm on virtualized GPU devices on the Cloud system. MIT-BIH Arrhythmia database is used for validation of the algorithm. The system achieved about 93.5% of detection rate which is comparable to previous researches while our algorithm shows 2.5 times faster execution time compared to CPU only detection algorithm.

  4. A Multifunctional Bimetallic Molecular Device for Ultrasensitive Detection, Naked-Eye Recognition, and Elimination of Cyanide Ions.

    PubMed

    Chow, Cheuk-Fai; Ho, Pui-Yu; Wong, Wing-Leung; Gong, Cheng-Bin

    2015-09-07

    A new bimetallic Fe(II) -Cu(II) complex was synthesized, characterized, and applied as a selective and sensitive sensor for cyanide detection in water. This complex is the first multifunctional device that can simultaneously detect cyanide ions in real water samples, amplify the colorimetric signal upon detection for naked-eye recognition at the parts-per-million (ppb) level, and convert the toxic cyanide ion into the much safer cyanate ion in situ. The mechanism of the bimetallic complex for high-selectivity recognition and signaling toward cyanide ions was investigated through a series of binding kinetics of the complex with different analytes, including CN(-) , SO4 (2-) , HCO3 (-) , HPO4 (2-) , N3 (-) , CH3 COO(-) , NCS(-) , NO3 (-) , and Cl(-) ions. In addition, the use of the indicator/catalyst displacement assay (ICDA) is demonstrated in the present system in which one metal center acts as a receptor and inhibitor and is bridged to another metal center that is responsible for signal transduction and catalysis, thus showing a versatile approach to the design of new multifunctional devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Bioluminescent bioreporter integrated circuit devices and methods for detecting ammonia

    DOEpatents

    Simpson, Michael L [Knoxville, TN; Paulus, Michael J [Knoxville, TN; Sayler, Gary S [Blaine, TN; Applegate, Bruce M [West Lafayette, IN; Ripp, Steven A [Knoxville, TN

    2007-04-24

    Monolithic bioelectronic devices for the detection of ammonia includes a microorganism that metabolizes ammonia and which harbors a lux gene fused with a heterologous promoter gene stably incorporated into the chromosome of the microorganism and an Optical Application Specific Integrated Circuit (OASIC). The microorganism is generally a bacterium.

  6. Development of cardiac prescreening device for rural population using ultralow-power embedded system.

    PubMed

    Mandal, Subhamoy; Basak, Kausik; Mandana, K M; Ray, Ajoy K; Chatterjee, Jyotirmoy; Mahadevappa, Manjunatha

    2011-03-01

    The invention is inspired by the desire to understand the opportunities and expectations of developing economies in terms of healthcare. The designed system is a point-of-care (POC) device that can deliver heart-care services to the rural population and bridge the rural-urban divide in healthcare delivery. The product design incorporates several innovations including the effective use of adaptive and multiresolution signal-processing techniques for acquisition, denoising, segmentation, and characterization of the heart sounds (HS) and murmurs using an ultralow-power embedded Mixed Signal Processor. The device is able to provide indicative diagnosis of cardiac conditions and classify a subject into either normal, abnormal, ischemic, or valvular abnormalities category. Preliminary results demonstrated by the prototype confirm the applicability of the device as a prescreening tool that can be used by paramedics in rural outreach programs. Feedback from medical professionals also shows that such a device is helpful in early detection of common congenital heart diseases. This letter aims to determine a framework for utilization of automated HS analysis system for community healthcare and healthcare inclusion.

  7. Design of Weft Detection System in The Stenter Machine

    NASA Astrophysics Data System (ADS)

    Gu, Minming; Xu, Xianju; Dai, Wenzhan

    2017-12-01

    In order to build an effective automatic weft-straightening system, it is important for the sensing device to detect most the possible fabric styles, designs, colours and structures, an optical sensing system that detects the angular orientation of weft threads in a moving web of a textile has been built. It contains an adjustable light source, two lens systems and photodiode sensor array. The sensor array includes 13 radial pattern of photosensitive areas that each generate an electrical signal proportional to the total intensity of the light incident on the area. The moving shadow of a weft thread passing over the area will modulate the output signal. A signal processed circuit was built to do the I/V conversion, amplifying, hardware filtering. An embed micro control system then deals with the information of these signals, calculates the angle of the weft drew. Finally, the experiments were done, the results showed that the weft detection system can deal with the fabric weft skew up to 30° and has achieved good results in the application.

  8. Triplexer Monitor Design for Failure Detection in FTTH System

    NASA Astrophysics Data System (ADS)

    Fu, Minglei; Le, Zichun; Hu, Jinhua; Fei, Xia

    2012-09-01

    Triplexer was one of the key components in FTTH systems, which employed an analog overlay channel for video broadcasting in addition to bidirectional digital transmission. To enhance the survivability of triplexer as well as the robustness of FTTH system, a multi-ports device named triplexer monitor was designed and realized, by which failures at triplexer ports can be detected and localized. Triplexer monitor was composed of integrated circuits and its four input ports were connected with the beam splitter whose power division ratio was 95∶5. By means of detecting the sampled optical signal from the beam splitters, triplexer monitor tracked the status of the four ports in triplexer (e.g. 1310 nm, 1490 nm, 1550 nm and com ports). In this paper, the operation scenario of the triplexer monitor with external optical devices was addressed. And the integrated circuit structure of the triplexer monitor was also given. Furthermore, a failure localization algorithm was proposed, which based on the state transition diagram. In order to measure the failure detection and localization time under the circumstance of different failed ports, an experimental test-bed was built. Experiment results showed that the detection time for the failure at 1310 nm port by the triplexer monitor was less than 8.20 ms. For the failure at 1490 nm or 1550 nm port it was less than 8.20 ms and for the failure at com port it was less than 7.20 ms.

  9. Partial Discharge Ultrasound Detection Using the Sagnac Interferometer System

    PubMed Central

    Li, Xiaomin; Gao, Yan; Zhang, Hongjuan; Wang, Dong; Jin, Baoquan

    2018-01-01

    Partial discharge detection is crucial for electrical cable safety evaluation. The ultrasonic signals frequently generated in the partial discharge process contains important characteristic information. However, traditional ultrasonic transducers are easily subject to strong electromagnetic interference in environments with high voltages and strong magnetic fields. In order to overcome this problem, an optical fiber Sagnac interferometer system is proposed for partial discharge ultrasound detection. Optical fiber sensing and time-frequency analysis of the ultrasonic signals excited by the piezoelectric ultrasonic transducer is realized for the first time. The effective frequency band of the Sagnac interferometer system was up to 175 kHz with the help of a designed 10 kV partial discharge simulator device. Using the cumulative histogram method, the characteristic ultrasonic frequency band of the partial discharges was between 28.9 kHz and 57.6 kHz for this optical fiber partial discharge detection system. This new ultrasound sensor can be used as an ideal ultrasonic source for the intrinsically safe detection of partial discharges in an explosive environment. PMID:29734682

  10. "Dip-and-read" paper-based analytical devices using distance-based detection with color screening.

    PubMed

    Yamada, Kentaro; Citterio, Daniel; Henry, Charles S

    2018-05-15

    An improved paper-based analytical device (PAD) using color screening to enhance device performance is described. Current detection methods for PADs relying on the distance-based signalling motif can be slow due to the assay time being limited by capillary flow rates that wick fluid through the detection zone. For traditional distance-based detection motifs, analysis can take up to 45 min for a channel length of 5 cm. By using a color screening method, quantification with a distance-based PAD can be achieved in minutes through a "dip-and-read" approach. A colorimetric indicator line deposited onto a paper substrate using inkjet-printing undergoes a concentration-dependent colorimetric response for a given analyte. This color intensity-based response has been converted to a distance-based signal by overlaying a color filter with a continuous color intensity gradient matching the color of the developed indicator line. As a proof-of-concept, Ni quantification in welding fume was performed as a model assay. The results of multiple independent user testing gave mean absolute percentage error and average relative standard deviations of 10.5% and 11.2% respectively, which were an improvement over analysis based on simple visual color comparison with a read guide (12.2%, 14.9%). In addition to the analytical performance comparison, an interference study and a shelf life investigation were performed to further demonstrate practical utility. The developed system demonstrates an alternative detection approach for distance-based PADs enabling fast (∼10 min), quantitative, and straightforward assays.

  11. 76 FR 36548 - Circulatory System Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-22

    ...] Circulatory System Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting AGENCY: Food and... of Committee: Circulatory System Devices Panel of the Medical Devices Advisory Committee. General... also comes with a sheath, introducer, loader, dilator, balloon (used to pre-dilate the native annulus...

  12. Quality detection system and method of micro-accessory based on microscopic vision

    NASA Astrophysics Data System (ADS)

    Li, Dongjie; Wang, Shiwei; Fu, Yu

    2017-10-01

    Considering that the traditional manual detection of micro-accessory has some problems, such as heavy workload, low efficiency and large artificial error, a kind of quality inspection system of micro-accessory has been designed. Micro-vision technology has been used to inspect quality, which optimizes the structure of the detection system. The stepper motor is used to drive the rotating micro-platform to transfer quarantine device and the microscopic vision system is applied to get graphic information of micro-accessory. The methods of image processing and pattern matching, the variable scale Sobel differential edge detection algorithm and the improved Zernike moments sub-pixel edge detection algorithm are combined in the system in order to achieve a more detailed and accurate edge of the defect detection. The grade at the edge of the complex signal can be achieved accurately by extracting through the proposed system, and then it can distinguish the qualified products and unqualified products with high precision recognition.

  13. Multiplexed protein detection using antibody-conjugated microbead arrays in a microfabricated electrophoretic device

    PubMed Central

    Barbee, Kristopher D.; Hsiao, Alexander P.; Roller, Eric E.; Huang, Xiaohua

    2011-01-01

    We report the development of a microfabricated electrophoretic device for assembling high-density arrays of antibody-conjugated microbeads for chip-based protein detection. The device consists of a flow cell formed between a gold-coated silicon chip with an array of microwells etched in a silicon dioxide film and a glass coverslip with a series of thin gold counter electrode lines. We have demonstrated that 0.4 and 1 μm beads conjugated with antibodies can be rapidly assembled into the microwells by applying a pulsed electric field across the chamber. By assembling step-wise a mixture of fluorescently labeled antibody-conjugated microbeads, we incorporated both spatial and fluorescence encoding strategies to demonstrate significant multiplexing capabilities. We have shown that these antibody-conjugated microbead arrays can be used to perform on-chip sandwich immunoassays to detect test antigens at concentrations as low as 40 pM (6 ng/mL). A finite element model was also developed to examine the electric field distribution within the device for different counter electrode configurations over a range of line pitches and chamber heights. This device will be useful for assembling high-density, encoded antibody arrays for multiplexed detection of proteins and other types of protein-conjugated microbeads for applications such as the analysis of protein-protein interactions. PMID:20820631

  14. Development and characterization of a microheater array device for real-time DNA mutation detection

    NASA Astrophysics Data System (ADS)

    Williams, Layne; Okandan, Murat; Chagovetz, Alex; Blair, Steve

    2008-04-01

    DNA analysis, specifically single nucleotide polymorphism (SNP) detection, is becoming increasingly important in rapid diagnostics and disease detection. Temperature is often controlled to help speed reaction rates and perform melting of hybridized oligonucleotides. The difference in melting temperatures, Tm, between wild-type and SNP sequences, respectively, to a given probe oligonucleotide, is indicative of the specificity of the reaction. We have characterized Tm's in solution and on a solid substrate of three sequences from known mutations associated with Cystic Fibrosis. Taking advantage of Tm differences, a microheater array device was designed to enable individual temperature control of up to 18 specific hybridization events. The device was fabricated at Sandia National Laboratories using surface micromachining techniques. The microheaters have been characterized using an IR camera at Sandia and show individual temperature control with minimal thermal cross talk. Development of the device as a real-time DNA detection platform, including surface chemistry and associated microfluidics, is described.

  15. Development and characterization of a microheater array device for real-time DNA mutation detection

    NASA Astrophysics Data System (ADS)

    Williams, Layne; Okandan, Murat; Chagovetz, Alex; Blair, Steve

    2008-02-01

    DNA analysis, specifically single nucleotide polymorphism (SNP) detection, is becoming increasingly important in rapid diagnostics and disease detection. Temperature is often controlled to help speed reaction rates and perform melting of hybridized oligonucleotides. The difference in melting temperatures, Tm, between wild-type and SNP sequences, respectively, to a given probe oligonucleotide, is indicative of the specificity of the reaction. We have characterized Tm's in solution and on a solid substrate of three sequences from known mutations associated with Cystic Fibrosis. Taking advantage of Tm differences, a microheater array device was designed to enable individual temperature control of up to 18 specific hybridization events. The device was fabricated at Sandia National Laboratories using surface micromachining techniques. The microheaters have been characterized using an IR camera at Sandia and show individual temperature control with minimal thermal cross talk. Development of the device as a real-time DNA detection platform, including surface chemistry and associated microfluidics, is described.

  16. Multiplexed detection of nitrate and nitrite for capillary electrophoresis with an automated device for high injection efficiency.

    PubMed

    Gao, Leyi; Patterson, Eric E; Shippy, Scott A

    2006-02-01

    A simple automated nanoliter scale injection device which allows for reproducible 5 nL sample injections from samples with a volume of <1 microL is successfully used for conventional capillary electrophoresis (CE) and Hadamard transform (HT) CE detection. Two standard fused silica capillaries are assembled axially through the device to function as an injection and a separation capillary. Sample solution is supplied to the injection capillary using pressure controlled with a solenoid valve. Buffer solution flows gravimetrically by the junction of the injection and separation capillaries and is also gated with a solenoid valve. Plugs of sample are pushed into the space between the injection and separation capillaries for electrokinectic injection. To evaluate the performance of the injection device, several optimizations are performed including the influence of flow rates, the injected sample volume and the control of the buffer transverse flow on the overall sensitivity. The system was then applied to HT-CE-UV detection for the signal-to-noise ratio (S/N) improvement of the nitric oxide (NO) metabolites, nitrite and nitrate. In addition, signal averaging was performed to explore the possibility of greater sensitivity enhancements compared to single injections.

  17. 77 FR 25183 - Circulatory System Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-27

    ...] Circulatory System Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting AGENCY: Food and... of Committee: Circulatory System Devices Panel of the Medical Devices Advisory Committee. General..., introducer, loader, dilator, balloon (used to pre-dilate the native annulus) and a crimper. FDA intends to...

  18. Safety status system for operating room devices.

    PubMed

    Guédon, Annetje C P; Wauben, Linda S G L; Overvelde, Marlies; Blok, Joleen H; van der Elst, Maarten; Dankelman, Jenny; van den Dobbelsteen, John J

    2014-01-01

    Since the increase of the number of technological aids in the operating room (OR), equipment-related incidents have come to be a common kind of adverse events. This underlines the importance of adequate equipment management to improve the safety in the OR. A system was developed to monitor the safety status (periodic maintenance and registered malfunctions) of OR devices and to facilitate the notification of malfunctions. The objective was to assess whether the system is suitable for use in an busy OR setting and to analyse its effect on the notification of malfunctions. The system checks automatically the safety status of OR devices through constant communication with the technical facility management system, informs the OR staff real-time and facilitates notification of malfunctions. The system was tested for a pilot period of six months in four ORs of a Dutch teaching hospital and 17 users were interviewed on the usability of the system. The users provided positive feedback on the usability. For 86.6% of total time, the localisation of OR devices was accurate. 62 malfunctions of OR devices were reported, an increase of 12 notifications compared to the previous year. The safety status system was suitable for an OR complex, both from a usability and technical point of view, and an increase of reported malfunctions was observed. The system eases monitoring the safety status of equipment and is a promising tool to improve the safety related to OR devices.

  19. Portable widefield imaging device for ICG-detection of the sentinel lymph node

    NASA Astrophysics Data System (ADS)

    Govone, Angelo Biasi; Gómez-García, Pablo Aurelio; Carvalho, André Lopes; Capuzzo, Renato de Castro; Magalhães, Daniel Varela; Kurachi, Cristina

    2015-06-01

    Metastasis is one of the major cancer complications, since the malignant cells detach from the primary tumor and reaches other organs or tissues. The sentinel lymph node (SLN) is the first lymphatic structure to be affected by the malignant cells, but its location is still a great challenge for the medical team. This occurs due to the fact that the lymph nodes are located between the muscle fibers, making it visualization difficult. Seeking to aid the surgeon in the detection of the SLN, the present study aims to develop a widefield fluorescence imaging device using the indocyanine green as fluorescence marker. The system is basically composed of a 780nm illumination unit, optical components for 810nm fluorescence detection, two CCD cameras, a laptop, and dedicated software. The illumination unit has 16 diode lasers. A dichroic mirror and bandpass filters select and deliver the excitation light to the interrogated tissue, and select and deliver the fluorescence light to the camera. One camera is responsible for the acquisition of visible light and the other one for the acquisition of the ICG fluorescence. The software developed at the LabVIEW® platform generates a real time merged image where it is possible to observe the fluorescence spots, related to the lymph nodes, superimposed at the image under white light. The system was tested in a mice model, and a first patient with tongue cancer was imaged. Both results showed the potential use of the presented fluorescence imaging system assembled for sentinel lymph node detection.

  20. Chemical detection with nano/bio hybrid devices based on carbon nanotubes and graphene

    NASA Astrophysics Data System (ADS)

    Lerner, Mitchell Bryant

    Carbon nanotube field-effect transistors (NT-FETs) and graphene field effect transistors (GFETs) provide a unique transduction platform for chemical and biomolecular detection. The work presented in this thesis describes the fabrication, characterization, and investigation of operational mechanisms of carbon-based biosensors. In the first set of experiments, we used carbon nanotubes as fast, all-electronic readout elements in novel vapor sensors, suitable for applications in environmental monitoring and medicine. Molecules bound to the hybrid alter the electrical properties of the NT-FET via several mechanisms, allowing direct detection as a change in the transistor conduction properties. Vapor sensors suitable for more complex system architectures characteristic of mammalian olfaction were demonstrated using NT-FETs functionalized with mouse olfactory receptor (mOR) proteins or single stranded DNA (ssDNA). Substitution of graphene as the channel material enabled production of hundreds of electronically similar devices with high yield. Etching large scale chemical vapor deposition (CVD)-grown graphene into small channels is itself a challenging problem, and we have developed novel fabrication methods to this end without sacrificing the inherent electrical quality that makes graphene such an attractive material. Large arrays of such devices have potential utility for understanding the physics of ligand-receptor interactions and contributing to the development of a new generation of devices for electronic olfaction. Tailored and specific detection was accomplished by chemically functionalizing the NT-FET or GFET with biomolecules, such as proteins or small molecules, to create a hybrid nanostructures. Targets for detection were widely varied, indicating the utility of these techniques, such as 1) live Salmonella cells in nutrient broth, 2) a biomarker protein indicative of prostate cancer, 3) antigen protein from the bacterium that causes Lyme disease, and 4) glucose

  1. Pit-a-Pat: A Smart Electrocardiogram System for Detecting Arrhythmia.

    PubMed

    Park, Juyoung; Lee, Kuyeon; Kang, Kyungtae

    2015-10-01

    Electrocardiogram (ECG) telemonitoring is one of the most promising applications of medical telemetry. However, previous approaches to ECG telemonitoring have largely relied on public databases of ECG results. In this article we propose a smart ECG system called Pit-a-Pat, which extracts features from ECG signals and detects arrhythmia. It is designed to run on an Android™ (Google, Mountain View, CA) device, without requiring modifications to other software. We implemented the Pit-a-Pat system using a commercial ECG device, and the experimental results demonstrate the effectiveness and accuracy of Pit-a-Pat for monitoring the ECG signal and analyzing the cardiac activity of a mobile patient. The proposed system allows monitoring of cardiac activity with automatic analysis, thereby providing a convenient, inexpensive, and ubiquitous adjunct to personal healthcare.

  2. System and method for networking electrochemical devices

    DOEpatents

    Williams, Mark C.; Wimer, John G.; Archer, David H.

    1995-01-01

    An improved electrochemically active system and method including a plurality of electrochemical devices, such as fuel cells and fluid separation devices, in which the anode and cathode process-fluid flow chambers are connected in fluid-flow arrangements so that the operating parameters of each of said plurality of electrochemical devices which are dependent upon process-fluid parameters may be individually controlled to provide improved operating efficiency. The improvements in operation include improved power efficiency and improved fuel utilization in fuel cell power generating systems and reduced power consumption in fluid separation devices and the like through interstage process fluid parameter control for series networked electrochemical devices. The improved networking method includes recycling of various process flows to enhance the overall control scheme.

  3. Device for detecting imminent failure of high-dielectric stress capacitors. [Patent application

    DOEpatents

    McDuff, G.G.

    1980-11-05

    A device is described for detecting imminent failure of a high-dielectric stress capacitor utilizing circuitry for detecting pulse width variations and pulse magnitude variations. Inexpensive microprocessor circuitry is utilized to make numerical calculations of digital data supplied by detection circuitry for comparison of pulse width data and magnitude data to determine if preselected ranges have been exceeded, thereby indicating imminent failure of a capacitor. Detection circuitry may be incorporated in transmission lines, pulse power circuitry, including laser pulse circuitry or any circuitry where capacitors or capacitor banks are utilized.

  4. Initiation devices, initiation systems including initiation devices and related methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniels, Michael A.; Condit, Reston A.; Rasmussen, Nikki

    Initiation devices may include at least one substrate, an initiation element positioned on a first side of the at least one substrate, and a spark gap electrically coupled to the initiation element and positioned on a second side of the at least one substrate. Initiation devices may include a plurality of substrates where at least one substrate of the plurality of substrates is electrically connected to at least one adjacent substrate of the plurality of substrates with at least one via extending through the at least one substrate. Initiation systems may include such initiation devices. Methods of igniting energetic materialsmore » include passing a current through a spark gap formed on at least one substrate of the initiation device, passing the current through at least one via formed through the at least one substrate, and passing the current through an explosive bridge wire of the initiation device.« less

  5. Electro-optical system for gunshot detection: analysis, concept, and performance

    NASA Astrophysics Data System (ADS)

    Kastek, M.; Dulski, R.; Madura, H.; Trzaskawka, P.; Bieszczad, G.; Sosnowski, T.

    2011-08-01

    The paper discusses technical possibilities to build an effective electro-optical sensor unit for sniper detection using infrared cameras. This unit, comprising of thermal and daylight cameras, can operate as a standalone device but its primary application is a multi-sensor sniper and shot detection system. At first, the analysis was presented of three distinguished phases of sniper activity: before, during and after the shot. On the basis of experimental data the parameters defining the relevant sniper signatures were determined which are essential in assessing the capability of infrared camera to detect sniper activity. A sniper body and muzzle flash were analyzed as targets and the descriptions of phenomena which make it possible to detect sniper activities in infrared spectra as well as analysis of physical limitations were performed. The analyzed infrared systems were simulated using NVTherm software. The calculations for several cameras, equipped with different lenses and detector types were performed. The simulation of detection ranges was performed for the selected scenarios of sniper detection tasks. After the analysis of simulation results, the technical specifications of infrared sniper detection system were discussed, required to provide assumed detection range. Finally the infrared camera setup was proposed which can detected sniper from 1000 meters range.

  6. Optical biosensor system with integrated microfluidic sample preparation and TIRF based detection

    NASA Astrophysics Data System (ADS)

    Gilli, Eduard; Scheicher, Sylvia R.; Suppan, Michael; Pichler, Heinz; Rumpler, Markus; Satzinger, Valentin; Palfinger, Christian; Reil, Frank; Hajnsek, Martin; Köstler, Stefan

    2013-05-01

    There is a steadily growing demand for miniaturized bioanalytical devices allowing for on-site or point-of-care detection of biomolecules or pathogens in applications like diagnostics, food testing, or environmental monitoring. These, so called labs-on-a-chip or micro-total analysis systems (μ-TAS) should ideally enable convenient sample-in - result-out type operation. Therefore, the entire process from sample preparation, metering, reagent incubation, etc. to detection should be performed on a single disposable device (on-chip). In the early days such devices were mainly fabricated using glass or silicon substrates and adapting established fabrication technologies from the electronics and semiconductor industry. More recently, the development focuses on the use of thermoplastic polymers as they allow for low-cost high volume fabrication of disposables. One of the most promising materials for the development of plastic based lab-on-achip systems are cyclic olefin polymers and copolymers (COP/COC) due to their excellent optical properties (high transparency and low autofluorescence) and ease of processing. We present a bioanalytical system for whole blood samples comprising a disposable plastic chip based on TIRF (total internal reflection fluorescence) optical detection. The chips were fabricated by compression moulding of COP and microfluidic channels were structured by hot embossing. These microfluidic structures integrate several sample pretreatment steps. These are the separation of erythrocytes, metering of sample volume using passive valves, and reagent incubation for competitive bioassays. The surface of the following optical detection zone is functionalized with specific capture probes in an array format. The plastic chips comprise dedicated structures for simple and effective coupling of excitation light from low-cost laser diodes. This enables TIRF excitation of fluorescently labeled probes selectively bound to detection spots at the microchannel surface

  7. System for remote control of underground device

    DOEpatents

    Brumleve, T.D.; Hicks, M.G.; Jones, M.O.

    1975-10-21

    A system is described for remote control of an underground device, particularly a nuclear explosive. The system includes means at the surface of the ground for transmitting a seismic signal sequence through the earth having controlled and predetermined signal characteristics for initiating a selected action in the device. Additional apparatus, located with or adjacent to the underground device, produces electrical signals in response to the seismic signals received and compares these electrical signals with the predetermined signal characteristics.

  8. SkinScan©: A PORTABLE LIBRARY FOR MELANOMA DETECTION ON HANDHELD DEVICES

    PubMed Central

    Wadhawan, Tarun; Situ, Ning; Lancaster, Keith; Yuan, Xiaojing; Zouridakis, George

    2011-01-01

    We have developed a portable library for automated detection of melanoma termed SkinScan© that can be used on smartphones and other handheld devices. Compared to desktop computers, embedded processors have limited processing speed, memory, and power, but they have the advantage of portability and low cost. In this study we explored the feasibility of running a sophisticated application for automated skin cancer detection on an Apple iPhone 4. Our results demonstrate that the proposed library with the advanced image processing and analysis algorithms has excellent performance on handheld and desktop computers. Therefore, deployment of smartphones as screening devices for skin cancer and other skin diseases can have a significant impact on health care delivery in underserved and remote areas. PMID:21892382

  9. Methods, media, and systems for detecting attack on a digital processing device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stolfo, Salvatore J.; Li, Wei-Jen; Keromytis, Angelos D.

    Methods, media, and systems for detecting attack are provided. In some embodiments, the methods include: comparing at least part of a document to a static detection model; determining whether attacking code is included in the document based on the comparison of the document to the static detection model; executing at least part of the document; determining whether attacking code is included in the document based on the execution of the at least part of the document; and if attacking code is determined to be included in the document based on at least one of the comparison of the document tomore » the static detection model and the execution of the at least part of the document, reporting the presence of an attack. In some embodiments, the methods include: selecting a data segment in at least one portion of an electronic document; determining whether the arbitrarily selected data segment can be altered without causing the electronic document to result in an error when processed by a corresponding program; in response to determining that the arbitrarily selected data segment can be altered, arbitrarily altering the data segment in the at least one portion of the electronic document to produce an altered electronic document; and determining whether the corresponding program produces an error state when the altered electronic document is processed by the corresponding program.« less

  10. Methods, media, and systems for detecting attack on a digital processing device

    DOEpatents

    Stolfo, Salvatore J.; Li, Wei-Jen; Keromylis, Angelos D.; Androulaki, Elli

    2014-07-22

    Methods, media, and systems for detecting attack are provided. In some embodiments, the methods include: comparing at least part of a document to a static detection model; determining whether attacking code is included in the document based on the comparison of the document to the static detection model; executing at least part of the document; determining whether attacking code is included in the document based on the execution of the at least part of the document; and if attacking code is determined to be included in the document based on at least one of the comparison of the document to the static detection model and the execution of the at least part of the document, reporting the presence of an attack. In some embodiments, the methods include: selecting a data segment in at least one portion of an electronic document; determining whether the arbitrarily selected data segment can be altered without causing the electronic document to result in an error when processed by a corresponding program; in response to determining that the arbitrarily selected data segment can be altered, arbitrarily altering the data segment in the at least one portion of the electronic document to produce an altered electronic document; and determining whether the corresponding program produces an error state when the altered electronic document is processed by the corresponding program.

  11. Optical system for object detection and delineation in space

    NASA Astrophysics Data System (ADS)

    Handelman, Amir; Shwartz, Shoam; Donitza, Liad; Chaplanov, Loran

    2018-01-01

    Object recognition and delineation is an important task in many environments, such as in crime scenes and operating rooms. Marking evidence or surgical tools and attracting the attention of the surrounding staff to the marked objects can affect people's lives. We present an optical system comprising a camera, computer, and small laser projector that can detect and delineate objects in the environment. To prove the optical system's concept, we show that it can operate in a hypothetical crime scene in which a pistol is present and automatically recognize and segment it by various computer-vision algorithms. Based on such segmentation, the laser projector illuminates the actual boundaries of the pistol and thus allows the persons in the scene to comfortably locate and measure the pistol without holding any intermediator device, such as an augmented reality handheld device, glasses, or screens. Using additional optical devices, such as diffraction grating and a cylinder lens, the pistol size can be estimated. The exact location of the pistol in space remains static, even after its removal. Our optical system can be fixed or dynamically moved, making it suitable for various applications that require marking of objects in space.

  12. Controlling system for smart hyper-spectral imaging array based on liquid-crystal Fabry-Perot device

    NASA Astrophysics Data System (ADS)

    Jiang, Xue; Chen, Xin; Rong, Xin; Liu, Kan; Zhang, Xinyu; Ji, An; Xie, Changsheng

    2011-11-01

    A research for developing a kind of smart spectral imaging detection technique based on the electrically tunable liquidcrystal (LC) FP structure is launched. It has some advantages of low cost, highly compact integration, perfuming wavelength selection without moving any micro-mirror of FP device, and the higher reliability and stability. The controlling system for hyper-spectral imaging array based on LC-FP device includes mainly a MSP430F5438 as its core. Considering the characteristics of LC-FP device, the controlling system can provide a driving signal of 1-10 kHz and 0- 30Vrms for the device in a static driving mode. This paper introduces the hardware designing of the control system in detail. It presents an overall hardware solutions including: (1) the MSP430 controlling circuit, and (2) the operational amplifier circuit, and (3) the power supply circuit, and (4) the AD conversion circuit. The techniques for the realization of special high speed digital circuits, which is necessary for the PCB employed, is also discussed.

  13. Medical devices; radiology devices; reclassification of full-field digital mammography system. Final rule.

    PubMed

    2010-11-05

    The Food and Drug Administration (FDA) is announcing the reclassification of the full-field digital mammography (FFDM) system from class III (premarket approval) to class II (special controls). The device type is intended to produce planar digital x-ray images of the entire breast; this generic type of device may include digital mammography acquisition software, full-field digital image receptor, acquisition workstation, automatic exposure control, image processing and reconstruction programs, patient and equipment supports, component parts, and accessories. The special control that will apply to the device is the guidance document entitled "Class II Special Controls Guidance Document: Full-Field Digital Mammography System." FDA is reclassifying the device into class II (special controls) because general controls along with special controls will provide a reasonable assurance of safety and effectiveness of the device. Elsewhere in this issue of the Federal Register, FDA is announcing the availability of the guidance document that will serve as the special control for this device.

  14. Detection of essential hypertension with physiological signals from wearable devices.

    PubMed

    Ghosh, Arindam; Torres, Juan Manuel Mayor; Danieli, Morena; Riccardi, Giuseppe

    2015-08-01

    Early detection of essential hypertension can support the prevention of cardiovascular disease, a leading cause of death. The traditional method of identification of hypertension involves periodic blood pressure measurement using brachial cuff-based measurement devices. While these devices are non-invasive, they require manual setup for each measurement and they are not suitable for continuous monitoring. Research has shown that physiological signals such as Heart Rate Variability, which is a measure of the cardiac autonomic activity, is correlated with blood pressure. Wearable devices capable of measuring physiological signals such as Heart Rate, Galvanic Skin Response, Skin Temperature have recently become ubiquitous. However, these signals are not accurate and are prone to noise due to different artifacts. In this paper a) we present a data collection protocol for continuous non-invasive monitoring of physiological signals from wearable devices; b) we implement signal processing techniques for signal estimation; c) we explore how the continuous monitoring of these physiological signals can be used to identify hypertensive patients; d) We conduct a pilot study with a group of normotensive and hypertensive patients to test our techniques. We show that physiological signals extracted from wearable devices can distinguish between these two groups with high accuracy.

  15. Development of a wireless, self-sustaining damage detection sensor system based on chemiluminescence for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Kuang, K. S. C.

    2014-03-01

    A novel application of chemiluminescence resulting from the chemical reaction in a glow-stick as sensors for structural health monitoring is demonstrated here. By detecting the presence of light emitting from these glow-sticks, it is possible to develop a low-cost sensing device with the potential to provide early warning of damage in a variety of engineering applications such as monitoring of cracks or damage in concrete shear walls, detecting of ground settlement, soil liquefaction, slope instability, liquefaction-related damage of underground structure and others. In addition, this paper demonstrates the ease of incorporating wireless capability to the sensor device and the possibility of making the sensor system self-sustaining by means of a renewable power source for the wireless module. A significant advantage of the system compared to previous work on the use of plastic optical fibre (POF) for damage detection is that here the system does not require an electrically-powered light source. Here, the sensing device, embedded in a cement host, is shown to be capable of detecting damage. A series of specimens with embedded glow-sticks have been investigated and an assessment of their damage detection capability will be reported. The specimens were loaded under flexure and the sensor responses were transmitted via a wireless connection.

  16. Chemiresistor Devices for Chemical Warfare Agent Detection Based on Polymer Wrapped Single-Walled Carbon Nanotubes

    PubMed Central

    Fennell, John F.; Hamaguchi, Hitoshi; Yoon, Bora; Swager, Timothy M.

    2017-01-01

    Chemical warfare agents (CWA) continue to present a threat to civilian populations and military personnel in operational areas all over the world. Reliable measurements of CWAs are critical to contamination detection, avoidance, and remediation. The current deployed systems in United States and foreign militaries, as well as those in the private sector offer accurate detection of CWAs, but are still limited by size, portability and fabrication cost. Herein, we report a chemiresistive CWA sensor using single-walled carbon nanotubes (SWCNTs) wrapped with poly(3,4-ethylenedioxythiophene) (PEDOT) derivatives. We demonstrate that a pendant hexafluoroisopropanol group on the polymer that enhances sensitivity to a nerve agent mimic, dimethyl methylphosphonate, in both nitrogen and air environments to concentrations as low as 5 ppm and 11 ppm, respectively. Additionally, these PEDOT/SWCNT derivative sensor systems experience negligible device performance over the course of two weeks under ambient conditions. PMID:28452929

  17. Chemiresistor Devices for Chemical Warfare Agent Detection Based on Polymer Wrapped Single-Walled Carbon Nanotubes.

    PubMed

    Fennell, John F; Hamaguchi, Hitoshi; Yoon, Bora; Swager, Timothy M

    2017-04-28

    Chemical warfare agents (CWA) continue to present a threat to civilian populations and military personnel in operational areas all over the world. Reliable measurements of CWAs are critical to contamination detection, avoidance, and remediation. The current deployed systems in United States and foreign militaries, as well as those in the private sector offer accurate detection of CWAs, but are still limited by size, portability and fabrication cost. Herein, we report a chemiresistive CWA sensor using single-walled carbon nanotubes (SWCNTs) wrapped with poly(3,4-ethylenedioxythiophene) (PEDOT) derivatives. We demonstrate that a pendant hexafluoroisopropanol group on the polymer that enhances sensitivity to a nerve agent mimic, dimethyl methylphosphonate, in both nitrogen and air environments to concentrations as low as 5 ppm and 11 ppm, respectively. Additionally, these PEDOT/SWCNT derivative sensor systems experience negligible device performance over the course of two weeks under ambient conditions.

  18. Real-time detection of neurite outgrowth using microfluidic device

    NASA Astrophysics Data System (ADS)

    Kim, Samhwan; Jang, Jongmoon; Choi, Hongsoo; Moon, Cheil

    2013-05-01

    We developed a simple method for real-time detection of the neurite outgrowth using microfluidic device. Our microfluidic device contains three compartmentalized channels which are for cell seeding, hydrogel and growth factors. Collagen gel is filled in the middle channel and pheochromocytoma (PC12) cells are seeded in the left channel. To induce differentiation of PC12 cells, 50 ng/ml to1000 ng/ml of nerve growth factor (NGF) is introduced into the right channel. After three days of NGF treatment, PC12 cells begin to extend neurites and formed neurite network from sixth day. Quantification of neurite outgrowth is analyzed by measuring the total area of neurites. On sixth day, the area is doubled compared to the area on third day and increases by 20 times on ninth day.

  19. Methods, systems and devices for detecting threatening objects and for classifying magnetic data

    DOEpatents

    Kotter, Dale K [Shelley, ID; Roybal, Lyle G [Idaho Falls, ID; Rohrbaugh, David T [Idaho Falls, ID; Spencer, David F [Idaho Falls, ID

    2012-01-24

    A method for detecting threatening objects in a security screening system. The method includes a step of classifying unique features of magnetic data as representing a threatening object. Another step includes acquiring magnetic data. Another step includes determining if the acquired magnetic data comprises a unique feature.

  20. Retrofit device to improve vapor compression cooling system performance by dynamic blower speed modulation

    DOEpatents

    Roth, Robert Paul; Hahn, David C.; Scaringe, Robert P.

    2015-12-08

    A device and method are provided to improve performance of a vapor compression system using a retrofittable control board to start up the vapor compression system with the evaporator blower initially set to a high speed. A baseline evaporator operating temperature with the evaporator blower operating at the high speed is recorded, and then the device detects if a predetermined acceptable change in evaporator temperature has occurred. The evaporator blower speed is reduced from the initially set high speed as long as there is only a negligible change in the measured evaporator temperature and therefore a negligible difference in the compressor's power consumption so as to obtain a net increase in the Coefficient of Performance.

  1. Reliability of recordings of subgingival calculus detected using an ultrasonic device.

    PubMed

    Corraini, Priscila; López, Rodrigo

    2015-04-01

    To assess the intra-examiner reliability of recordings of subgingival calculus detected using an ultrasonic device, and to investigate the influence of subject-, tooth- and site-level factors on the reliability of these subgingival calculus recordings. On two occasions, within a 1-week interval, 147 adult periodontitis patients received a full-mouth clinical periodontal examination by a single trained examiner. Duplicate subgingival calculus recordings, in six sites per tooth, were obtained using an ultrasonic device for calculus detection and removal. Agreement was observed in 65 % of the 22,584 duplicate subgingival calculus recordings, ranging 45 % to 83 % according to subject. Using hierarchical modeling, disagreements in the subgingival calculus duplicate recordings were more likely in all other sites than the mid-buccal, and in sites harboring supragingival calculus. Disagreements were less likely in sites with PD ≥  4 mm and with furcation involvement  ≥  degree 2. Bleeding on probing or suppuration did not influence the reliability of subgingival calculus. At the subject-level, disagreements were less likely in patients presenting with the highest and lowest extent categories of the covariate subgingival calculus. The reliability of subgingival calculus recordings using the ultrasound technology is reasonable. The results of the present study suggest that the reliability of subgingival calculus recordings is not influenced by the presence of inflammation. Moreover, subgingival calculus can be more reliably detected using the ultrasound device at sites with higher need for periodontal therapy, i.e., sites presenting with deep pockets and premolars and molars with furcation involvement.

  2. Personalized biomedical devices & systems for healthcare applications

    NASA Astrophysics Data System (ADS)

    Chen, I.-Ming; Phee, Soo Jay; Luo, Zhiqiang; Lim, Chee Kian

    2011-03-01

    With the advancement in micro- and nanotechnology, electromechanical components and systems are getting smaller and smaller and gradually can be applied to the human as portable, mobile and even wearable devices. Healthcare industry have started to benefit from this technology trend by providing more and more miniature biomedical devices for personalized medical treatments in order to obtain better and more accurate outcome. This article introduces some recent development in non-intrusive and intrusive biomedical devices resulted from the advancement of niche miniature sensors and actuators, namely, wearable biomedical sensors, wearable haptic devices, and ingestible medical capsules. The development of these devices requires carful integration of knowledge and people from many different disciplines like medicine, electronics, mechanics, and design. Furthermore, designing affordable devices and systems to benefit all mankind is a great challenge ahead. The multi-disciplinary nature of the R&D effort in this area provides a new perspective for the future mechanical engineers.

  3. Method and apparatus for detecting timing errors in a system oscillator

    DOEpatents

    Gliebe, Ronald J.; Kramer, William R.

    1993-01-01

    A method of detecting timing errors in a system oscillator for an electronic device, such as a power supply, includes the step of comparing a system oscillator signal with a delayed generated signal and generating a signal representative of the timing error when the system oscillator signal is not identical to the delayed signal. An LED indicates to an operator that a timing error has occurred. A hardware circuit implements the above-identified method.

  4. A Portable, Shock-Proof, Surface-Heated Droplet PCR System for Escherichia coli Detection

    PubMed Central

    Angus, Scott V.; Cho, Soohee; Harshman, Dustin K.; Song, Jae-Young; Yoon, Jeong-Yeol

    2015-01-01

    A novel polymerase chain reaction (PCR) device was developed that uses wire-guided droplet manipulation (WDM) to guide a droplet over three different heating chambers. After PCR amplification, end-point detection is achieved using a smartphone-based fluorescence microscope. The device was tested for identification of the 16S rRNA gene V3 hypervariable region from Escherichia coli genomic DNA. The lower limit of detection was 103 genome copies per sample. The device is portable with smartphone-based end-point detection and provides the assay results quickly (15 min for a 30-cycle amplification) and accurately. The system is also shock and vibration resistant, due to the multiple points of contact between the droplet and the thermocouple and the Teflon film on the heater surfaces. The thermocouple also provides realtime droplet temperature feedback to ensure it reaches the set temperature before moving to the next chamber/step in PCR. The device is equipped to use either silicone oil or coconut oil. Coconut oil provides additional portability and ease of transportation by eliminating spilling because its high melting temperature means it is solid at room temperature. PMID:26164008

  5. Evaluation of Three Swabbing Devices for Detection of Listeria monocytogenes on Different Types of Food Contact Surfaces

    PubMed Central

    Lahou, Evy; Uyttendaele, Mieke

    2014-01-01

    Listeria monocytogenes can adhere to different types of food contact surfaces within a food processing environment. Therefore, environmental sampling devices should be capable of detecting unacceptable contamination. In this study, a sponge-stick, foam spatula and an environmental swab were evaluated on their ability to detect low concentrations of L. monocytogenes on different types of food contact surfaces. A cocktail of four L. monocytogenes serotypes was inoculated with a concentration of 100 CFU/250 cm2 onto stainless steel (SS), high density polyethylene (HDPE) and rubber surfaces in a 250 cm2 area. Immediately after inoculation and after 1 h exposure, the surfaces were swabbed with the different swabbing devices. The results of the study show only minor differences in the ability of the swabbing devices to detect L. monocytogenes. All devices were capable to detect the contamination immediately after inoculation. However, when the surfaces were allowed to air-dry for 1 h, L. monocytogenes was undetected in 11.1% of the samples (n = 27) with the sponge stick, in 7.4% of the samples (n = 27) with the foam spatula and in 3.7% of the samples (n = 27) with the environmental swab, especially on SS surfaces. The detection ability of the different devices for L. monocytogenes can be concluded to be rather high on different types of food contact surfaces. PMID:24406663

  6. Evaluation of a novel immunochromatographic device for rapid and accurate clinical detection of Porphyromonas gingivalis in subgingival plaque.

    PubMed

    Imamura, K; Takayama, S; Saito, A; Inoue, E; Nakayama, Y; Ogata, Y; Shirakawa, S; Nagano, T; Gomi, K; Morozumi, T; Akiishi, K; Watanabe, K; Yoshie, H

    2015-10-01

    An important goal for the improved diagnosis and management of infectious and inflammatory diseases, such as periodontitis, is the development of rapid and accurate technologies for the decentralized detection of bacterial pathogens. The aim of this prospective multicenter study was to evaluate the clinical use of a novel immunochromatographic device with monoclonal antibodies for the rapid point-of-care detection and semi-quantification of Porphyromonas gingivalis in subgingival plaque. Sixty-three patients with chronic periodontitis and 28 periodontally healthy volunteers were subjected to clinical and microbiological examinations. Subgingival plaque samples were analyzed for the presence of P. gingivalis using a novel immunochromatography based device DK13-PG-001, designed to detect the 40k-outer membrane protein of P. gingivalis, and compared with a PCR-Invader method. In the periodontitis group, a significant strong positive correlation in detection results was found between the test device score and the PCR-Invader method (Spearman rank correlation, r=0.737, p<0.0001). The sensitivity, specificity, and positive and negative predictive values of the test device were 96.2%, 91.8%, 90.4% and 96.7%, respectively. The detection threshold of the test device was determined to be approximately 10(4) (per two paper points). There were significant differences in the bacterial counts by the PCR-Invader method among groups with different ranges of device scores. With a cut-off value of ≥0.25 in device score, none of periodontally healthy volunteers were tested positive for the subgingival presence of P. gingivalis, whereas 76% (n=48) of periodontitis subjects were tested positive. There was a significant positive correlation between device scores for P. gingivalis and periodontal parameters including probing pocket depth and clinical attachment level (r=0.317 and 0.281, respectively, p<0.01). The results suggested that the DK13-PG-001 device kit can be effectively used

  7. News and Events - Nanodelivery Systems and Devices Branch

    Cancer.gov

    The latest news from the Nanodelivery Systems and Devices Branch and the Alliance, as well as upcoming and past events attended by the Nanodelivery Systems and Devices Branchstaff, and relevant upcoming scientific meetings.

  8. Single-pipetting microfluidic assay device for rapid detection of Salmonella from poultry package.

    PubMed

    Fronczek, Christopher F; You, David J; Yoon, Jeong-Yeol

    2013-02-15

    A direct, sensitive, near-real-time, handheld optical immunoassay device was developed to detect Salmonella typhimurium in the naturally occurring liquid from fresh poultry packages (hereafter "chicken matrix"), with just single pipetting of sample (i.e., no filtration, culturing and/or isolation, thus reducing the assay time and the error associated with them). Carboxylated, polystyrene microparticles were covalently conjugated with anti-Salmonella, and the immunoagglutination due to the presence of Salmonella was detected by reading the Mie scatter signals from the microfluidic channels using a handheld device. The presence of chicken matrix did not affect the light scatter signal, since the optical parameters (particle size d, wavelength of incident light λ and scatter angle θ) were optimized to minimize the effect of sample matrix (animal tissues and blood proteins, etc.). The sample was loaded into a microfluidic chip that was split into two channels, one pre-loaded with vacuum-dried, antibody-conjugated particles and the other with vacuum-dried, bovine serum albumin-conjugated particles. This eliminated the need for a separate negative control, effectively minimizing chip-to-chip and sample-to-sample variations. Particles and the sample were diffused in-channel through chemical agitation by Tween 80, also vacuum-dried within the microchannels. Sequential mixing of the sample to the reagents under a strict laminar flow condition synergistically improved the reproducibility and linearity of the assay. In addition, dried particles were shown to successfully detect lower Salmonella concentrations for up to 8 weeks. The handheld device contains simplified circuitry eliminating unnecessary adjustment stages, providing a stable signal, thus maximizing sensitivity. Total assay time was 10 min, and the detection limit 10 CFU mL(-1) was observed in all matrices, demonstrating the suitability of this device for field assays. Copyright © 2012 Elsevier B.V. All rights

  9. Autonomous mine detection system (AMDS) neutralization payload module

    NASA Astrophysics Data System (ADS)

    Majerus, M.; Vanaman, R.; Wright, N.

    2010-04-01

    The Autonomous Mine Detection System (AMDS) program is developing a landmine and explosive hazards standoff detection, marking, and neutralization system for dismounted soldiers. The AMDS Capabilities Development Document (CDD) has identified the requirement to deploy three payload modules for small robotic platforms: mine detection and marking, explosives detection and marking, and neutralization. This paper addresses the neutralization payload module. There are a number of challenges that must be overcome for the neutralization payload module to be successfully integrated into AMDS. The neutralizer must meet stringent size, weight, and power (SWaP) requirements to be compatible with a small robot. The neutralizer must be effective against a broad threat, to include metal and plastic-cased Anti-Personnel (AP) and Anti-Tank (AT) landmines, explosive devices, and Unexploded Explosive Ordnance (UXO.) It must adapt to a variety of threat concealments, overburdens, and emplacement methods, to include soil, gravel, asphalt, and concrete. A unique neutralization technology is being investigated for adaptation to the AMDS Neutralization Module. This paper will describe review this technology and how the other two payload modules influence its design for minimizing SWaP. Recent modeling and experimental efforts will be included.

  10. Systems and methods for detecting and processing

    DOEpatents

    Johnson, Michael M [Livermore, CA; Yoshimura, Ann S [Tracy, CA

    2006-03-28

    Embodiments of the present invention provides systems and method for detecting. Sensing modules are provided in communication with one or more detectors. In some embodiments, detectors are provided that are sensitive to chemical, biological, or radiological agents. Embodiments of sensing modules include processing capabilities to analyze, perform computations on, and/or run models to predict or interpret data received from one or more detectors. Embodiments of sensing modules form various network configurations with one another and/or with one or more data aggregation devices. Some embodiments of sensing modules include power management functionalities.

  11. System for critical infrastructure security based on multispectral observation-detection module

    NASA Astrophysics Data System (ADS)

    Trzaskawka, Piotr; Kastek, Mariusz; Życzkowski, Marek; Dulski, Rafał; Szustakowski, Mieczysław; Ciurapiński, Wiesław; Bareła, Jarosław

    2013-10-01

    Recent terrorist attacks and possibilities of such actions in future have forced to develop security systems for critical infrastructures that embrace sensors technologies and technical organization of systems. The used till now perimeter protection of stationary objects, based on construction of a ring with two-zone fencing, visual cameras with illumination are efficiently displaced by the systems of the multisensor technology that consists of: visible technology - day/night cameras registering optical contrast of a scene, thermal technology - cheap bolometric cameras recording thermal contrast of a scene and active ground radars - microwave and millimetre wavelengths that record and detect reflected radiation. Merging of these three different technologies into one system requires methodology for selection of technical conditions of installation and parameters of sensors. This procedure enables us to construct a system with correlated range, resolution, field of view and object identification. Important technical problem connected with the multispectral system is its software, which helps couple the radar with the cameras. This software can be used for automatic focusing of cameras, automatic guiding cameras to an object detected by the radar, tracking of the object and localization of the object on the digital map as well as target identification and alerting. Based on "plug and play" architecture, this system provides unmatched flexibility and simplistic integration of sensors and devices in TCP/IP networks. Using a graphical user interface it is possible to control sensors and monitor streaming video and other data over the network, visualize the results of data fusion process and obtain detailed information about detected intruders over a digital map. System provide high-level applications and operator workload reduction with features such as sensor to sensor cueing from detection devices, automatic e-mail notification and alarm triggering. The paper presents

  12. Light-emitting device test systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCord, Mark; Brodie, Alan; George, James

    Light-emitting devices, such as LEDs, are tested using a photometric unit. The photometric unit, which may be an integrating sphere, can measure flux, color, or other properties of the devices. The photometric unit may have a single port or both an inlet and outlet. Light loss through the port, inlet, or outlet can be reduced or calibrated for. These testing systems can provide increased reliability, improved throughput, and/or improved measurement accuracy.

  13. Smart materials: strain sensing and stress determination by means of nanotube sensing systems, composites, and devices

    NASA Technical Reports Server (NTRS)

    Kim, Jong Dae (Inventor); Nagarajaiah, Satish (Inventor); Barrera, Enrique V. (Inventor); Dharap, Prasad (Inventor); Zhiling, Li (Inventor)

    2010-01-01

    The present invention is directed toward devices comprising carbon nanotubes that are capable of detecting displacement, impact, stress, and/or strain in materials, methods of making such devices, methods for sensing/detecting/monitoring displacement, impact, stress, and/or strain via carbon nanotubes, and various applications for such methods and devices. The devices and methods of the present invention all rely on mechanically-induced electronic perturbations within the carbon nanotubes to detect and quantify such stress/strain. Such detection and quantification can rely on techniques which include, but are not limited to, electrical conductivity/conductance and/or resistivity/resistance detection/measurements, thermal conductivity detection/measurements, electroluminescence detection/measurements, photoluminescence detection/measurements, and combinations thereof. All such techniques rely on an understanding of how such properties change in response to mechanical stress and/or strain.

  14. High-performance combination method of electric network frequency and phase for audio forgery detection in battery-powered devices.

    PubMed

    Savari, Maryam; Abdul Wahab, Ainuddin Wahid; Anuar, Nor Badrul

    2016-09-01

    Audio forgery is any act of tampering, illegal copy and fake quality in the audio in a criminal way. In the last decade, there has been increasing attention to the audio forgery detection due to a significant increase in the number of forge in different type of audio. There are a number of methods for forgery detection, which electric network frequency (ENF) is one of the powerful methods in this area for forgery detection in terms of accuracy. In spite of suitable accuracy of ENF in a majority of plug-in powered devices, the weak accuracy of ENF in audio forgery detection for battery-powered devices, especially in laptop and mobile phone, can be consider as one of the main obstacles of the ENF. To solve the ENF problem in terms of accuracy in battery-powered devices, a combination method of ENF and phase feature is proposed. From experiment conducted, ENF alone give 50% and 60% accuracy for forgery detection in mobile phone and laptop respectively, while the proposed method shows 88% and 92% accuracy respectively, for forgery detection in battery-powered devices. The results lead to higher accuracy for forgery detection with the combination of ENF and phase feature. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Detecting Peer-to-Peer Botnets in SCADA Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Huan; Cheng, Liang; Chuah, Mooi Choo

    Supervisory Control and Data Acquisition (SCADA) systems monitor and control critical infrastructure such as the smart grid. As SCADA systems become increasingly interconnected and adopt more and more cyber-enabled components, the risks of cyber attacks become a major concern. Due to their decentralized organization, peer-to-peer (P2P) botnets are resilient to many existing takedown measures and can be exploited as an effective way to launch cyber attacks on SCADA systems. However, little work has been done to detect P2P botnets in SCADA systems, which carry traffic flows with characteristics significantly different from the Internet. In this paper, we design a P2P-botnetmore » detection method for SCADA systems, leveraging built-in traffic monitoring capabilities of SCADA networking devices. The proposed method consists of two stages. In the first stage, we design a simple feature test to filter out non-P2P hosts, which significantly reduces the data volume for P2P-botnet identification. In the second stage, we jointly consider flow-based and connectivity-based features that effectively set apart bots from benign hosts. We propose to use unsupervised learning for P2P-botnet identification, which not only identifies known P2P botnets but also captures newly emerged ones. Our simulation results show that the proposed system achieves high detection rates with very few false positives. Furthermore, our evaluation shows that the proposed method can detect hosts running P2P SCADA applications that are infected by P2P bots.« less

  16. Electrical breakdown detection system for dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Ghilardi, Michele; Busfield, James J. C.; Carpi, Federico

    2017-04-01

    Electrical breakdown of dielectric elastomer actuators (DEAs) is an issue that has to be carefully addressed when designing systems based on this novel technology. Indeed, in some systems electrical breakdown might have serious consequences, not only in terms of interruption of the desired function but also in terms of safety of the overall system (e.g. overheating and even burning). The risk for electrical breakdown often cannot be completely avoided by simply reducing the driving voltages, either because completely safe voltages might not generate sufficient actuation or because internal or external factors might change some properties of the actuator whilst in operation (for example the aging or fatigue of the material, or an externally imposed deformation decreasing the distance between the compliant electrodes). So, there is the clear need for reliable, simple and cost-effective detection systems that are able to acknowledge the occurrence of a breakdown event, making DEA-based devices able to monitor their status and become safer and "selfaware". Here a simple solution for a portable detection system is reported that is based on a voltage-divider configuration that detects the voltage drop at the DEA terminals and assesses the occurrence of breakdown via a microcontroller (Beaglebone Black single-board computer) combined with a real-time, ultra-low-latency processing unit (Bela cape an open-source embedded platform developed at Queen Mary University of London). The system was used to both generate the control signal that drives the actuator and constantly monitor the functionality of the actuator, detecting any breakdown event and discontinuing the supplied voltage accordingly, so as to obtain a safer controlled actuation. This paper presents preliminary tests of the detection system in different scenarios in order to assess its reliability.

  17. Evaluating Imaging and Computer-aided Detection and Diagnosis Devices at the FDA

    PubMed Central

    Gallas, Brandon D.; Chan, Heang-Ping; D’Orsi, Carl J.; Dodd, Lori E.; Giger, Maryellen L.; Gur, David; Krupinski, Elizabeth A.; Metz, Charles E.; Myers, Kyle J.; Obuchowski, Nancy A.; Sahiner, Berkman; Toledano, Alicia Y.; Zuley, Margarita L.

    2017-01-01

    This report summarizes the Joint FDA-MIPS Workshop on Methods for the Evaluation of Imaging and Computer-Assist Devices. The purpose of the workshop was to gather information on the current state of the science and facilitate consensus development on statistical methods and study designs for the evaluation of imaging devices to support US Food and Drug Administration submissions. Additionally, participants expected to identify gaps in knowledge and unmet needs that should be addressed in future research. This summary is intended to document the topics that were discussed at the meeting and disseminate the lessons that have been learned through past studies of imaging and computer-aided detection and diagnosis device performance. PMID:22306064

  18. Concepts for the Design of a Diagnostic Device to Detect Malignancies in Human Tissues Final Report CRADA No. TSB-2023-00

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DaSilva, L.; Marion, J.; Chase, C.

    BioLuminate, Inc. planned to develop, produce and market a revolutionary diagnostic device for early breast cancer diagnosis. The device was originally invented by NASA; and exclusively licensed to BioLuminate for commercialization. At the time of the CRADA, eighty-five percent (85%) of all biopsies in the United States were found negative each year. The number of biopsies cost the health care system $23 billio n annually. A multi-sensor probe would allow surgeons to improve breast cancer scre ening and significantly reduce the number of biopsies. BioLuminate was developing an in-vivo system for the detection of cancer using a multi-sensor needle/probe. Themore » first system would be developed for the detection of breast cancer. LLNL, in collaboration with BioLuminate worked toward a detailed concept specification for the prototype multi-sensor needle/probe suitable for breast cancer analysis. BioLuminate in collaboration with LLNL, worked to develop a new version of the needle probe that would be the same size as needles commonly used to draw blood.« less

  19. Image change detection systems, methods, and articles of manufacture

    DOEpatents

    Jones, James L.; Lassahn, Gordon D.; Lancaster, Gregory D.

    2010-01-05

    Aspects of the invention relate to image change detection systems, methods, and articles of manufacture. According to one aspect, a method of identifying differences between a plurality of images is described. The method includes loading a source image and a target image into memory of a computer, constructing source and target edge images from the source and target images to enable processing of multiband images, displaying the source and target images on a display device of the computer, aligning the source and target edge images, switching displaying of the source image and the target image on the display device, to enable identification of differences between the source image and the target image.

  20. Revisiting QRS detection methodologies for portable, wearable, battery-operated, and wireless ECG systems.

    PubMed

    Elgendi, Mohamed; Eskofier, Björn; Dokos, Socrates; Abbott, Derek

    2014-01-01

    Cardiovascular diseases are the number one cause of death worldwide. Currently, portable battery-operated systems such as mobile phones with wireless ECG sensors have the potential to be used in continuous cardiac function assessment that can be easily integrated into daily life. These portable point-of-care diagnostic systems can therefore help unveil and treat cardiovascular diseases. The basis for ECG analysis is a robust detection of the prominent QRS complex, as well as other ECG signal characteristics. However, it is not clear from the literature which ECG analysis algorithms are suited for an implementation on a mobile device. We investigate current QRS detection algorithms based on three assessment criteria: 1) robustness to noise, 2) parameter choice, and 3) numerical efficiency, in order to target a universal fast-robust detector. Furthermore, existing QRS detection algorithms may provide an acceptable solution only on small segments of ECG signals, within a certain amplitude range, or amid particular types of arrhythmia and/or noise. These issues are discussed in the context of a comparison with the most conventional algorithms, followed by future recommendations for developing reliable QRS detection schemes suitable for implementation on battery-operated mobile devices.

  1. Revisiting QRS Detection Methodologies for Portable, Wearable, Battery-Operated, and Wireless ECG Systems

    PubMed Central

    Elgendi, Mohamed; Eskofier, Björn; Dokos, Socrates; Abbott, Derek

    2014-01-01

    Cardiovascular diseases are the number one cause of death worldwide. Currently, portable battery-operated systems such as mobile phones with wireless ECG sensors have the potential to be used in continuous cardiac function assessment that can be easily integrated into daily life. These portable point-of-care diagnostic systems can therefore help unveil and treat cardiovascular diseases. The basis for ECG analysis is a robust detection of the prominent QRS complex, as well as other ECG signal characteristics. However, it is not clear from the literature which ECG analysis algorithms are suited for an implementation on a mobile device. We investigate current QRS detection algorithms based on three assessment criteria: 1) robustness to noise, 2) parameter choice, and 3) numerical efficiency, in order to target a universal fast-robust detector. Furthermore, existing QRS detection algorithms may provide an acceptable solution only on small segments of ECG signals, within a certain amplitude range, or amid particular types of arrhythmia and/or noise. These issues are discussed in the context of a comparison with the most conventional algorithms, followed by future recommendations for developing reliable QRS detection schemes suitable for implementation on battery-operated mobile devices. PMID:24409290

  2. Point-of-Care Detection Devices for Food Safety Monitoring: Proactive Disease Prevention.

    PubMed

    Wu, Marie Yung-Chen; Hsu, Min-Yen; Chen, Shih-Jen; Hwang, De-Kuang; Yen, Tzung-Hai; Cheng, Chao-Min

    2017-04-01

    Food safety has become an increasingly significant public concern in both developed and under-developed nations around the world; it increases morbidity, mortality, human suffering, and economic burden. This Opinion focuses on (i) examining the influence of pathogens and chemicals (e.g., food additives and pesticide residue) on food-borne illnesses, (ii) summarizing food hazards that are present in Asia, and (iii) summarizing the array of current point-of-care (POC) detection devices that have potential applications in food safety monitoring. In addition, we provide insight into global healthcare issues in both developing and under-developed nations with a focus on bridging the gap between food safety issues in the public sector (associated with relevant clinical cases) and the use of POC detection devices for food safety monitoring. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. A Microfluidic Love-Wave Biosensing Device for PSA Detection Based on an Aptamer Beacon Probe.

    PubMed

    Zhang, Feng; Li, Shuangming; Cao, Kang; Wang, Pengjuan; Su, Yan; Zhu, Xinhua; Wan, Ying

    2015-06-11

    A label-free and selective aptamer beacon-based Love-wave biosensing device was developed for prostate specific antigen (PSA) detection. The device consists of the following parts: LiTaO3 substrate with SiO2 film as wave guide layer, two set of inter-digital transducers (IDT), gold film for immobilization of the biorecongniton layer and a polydimethylsiloxane (PDMS) microfluidic channels. DNA aptamer, or "artificial antibody", was used as the specific biorecognition probe for PSA capture. Some nucleotides were added to the 3'-end of the aptamer to form a duplex with the 3'-end, turning the aptamer into an aptamer-beacon. Taking advantage of the selective target-induced assembly changes arising from the "aptamer beacon", highly selective and specific detection of PSA was achieved. Furthermore, PDMS microfluidic channels were designed and fabricated to realize automated quantitative sample injection. After optimization of the experimental conditions, the established device showed good performance for PSA detection between 10 ng/mL to 1 μg/mL, with a detection limit of 10 ng/mL. The proposed sensor might be a promising alternative for point of care diagnostics.

  4. How Accurately Can Your Wrist Device Recognize Daily Activities and Detect Falls?

    PubMed Central

    Gjoreski, Martin; Gjoreski, Hristijan; Luštrek, Mitja; Gams, Matjaž

    2016-01-01

    Although wearable accelerometers can successfully recognize activities and detect falls, their adoption in real life is low because users do not want to wear additional devices. A possible solution is an accelerometer inside a wrist device/smartwatch. However, wrist placement might perform poorly in terms of accuracy due to frequent random movements of the hand. In this paper we perform a thorough, large-scale evaluation of methods for activity recognition and fall detection on four datasets. On the first two we showed that the left wrist performs better compared to the dominant right one, and also better compared to the elbow and the chest, but worse compared to the ankle, knee and belt. On the third (Opportunity) dataset, our method outperformed the related work, indicating that our feature-preprocessing creates better input data. And finally, on a real-life unlabeled dataset the recognized activities captured the subject’s daily rhythm and activities. Our fall-detection method detected all of the fast falls and minimized the false positives, achieving 85% accuracy on the first dataset. Because the other datasets did not contain fall events, only false positives were evaluated, resulting in 9 for the second, 1 for the third and 15 for the real-life dataset (57 days data). PMID:27258282

  5. Pesticide analysis using nanoceria-coated paper-based devices as a detection platform.

    PubMed

    Nouanthavong, Souksanh; Nacapricha, Duangjai; Henry, Charles S; Sameenoi, Yupaporn

    2016-03-07

    We report the first use of a paper-based device coated with nanoceria as a simple, low-cost and rapid detection platform for the analysis of organophosphate (OP) pesticides using an enzyme inhibition assay with acetylcholinesterase (AChE) and choline oxidase (ChOX). In the presence of acetylcholine, AChE and ChOX catalyze the formation of H2O2, which is detected colorimetrically by a nanoceria-coated device resulting in the formation of a yellow color. After incubation with OP pesticides, the AChE activity was inhibited, producing less H2O2, and a reduction in the yellow intensity. The assay is able to analyze OP pesticides without the use of sophisticated instruments and gives detection limits of 18 ng mL(-1) and 5.3 ng mL(-1) for methyl-paraoxon and chlorpyrifos-oxon, respectively. The developed method was successfully applied to detect methyl-paraoxon in spiked vegetables (cabbage) and a dried seafood product (dried green mussel), obtaining ∼95% recovery values for both sample types. The spiked samples were also analyzed using LC-MS/MS as a comparison to the developed method and similar values were obtained, indicating that the developed method gives accurate results and is suitable for OP analysis in real samples.

  6. Low Cost Night Vision System for Intruder Detection

    NASA Astrophysics Data System (ADS)

    Ng, Liang S.; Yusoff, Wan Azhar Wan; R, Dhinesh; Sak, J. S.

    2016-02-01

    The growth in production of Android devices has resulted in greater functionalities as well as lower costs. This has made previously more expensive systems such as night vision affordable for more businesses and end users. We designed and implemented robust and low cost night vision systems based on red-green-blue (RGB) colour histogram for a static camera as well as a camera on an unmanned aerial vehicle (UAV), using OpenCV library on Intel compatible notebook computers, running Ubuntu Linux operating system, with less than 8GB of RAM. They were tested against human intruders under low light conditions (indoor, outdoor, night time) and were shown to have successfully detected the intruders.

  7. Organic materials and devices for detecting ionizing radiation

    DOEpatents

    Doty, F Patrick [Livermore, CA; Chinn, Douglas A [Livermore, CA

    2007-03-06

    A .pi.-conjugated organic material for detecting ionizing radiation, and particularly for detecting low energy fission neutrons. The .pi.-conjugated materials comprise a class of organic materials whose members are intrinsic semiconducting materials. Included in this class are .pi.-conjugated polymers, polyaromatic hydrocarbon molecules, and quinolates. Because of their high resistivities (.gtoreq.10.sup.9 ohmcm), these .pi.-conjugated organic materials exhibit very low leakage currents. A device for detecting and measuring ionizing radiation can be made by applying an electric field to a layer of the .pi.-conjugated polymer material to measure electron/hole pair formation. A layer of the .pi.-conjugated polymer material can be made by conventional polymer fabrication methods and can be cast into sheets capable of covering large areas. These sheets of polymer radiation detector material can be deposited between flexible electrodes and rolled up to form a radiation detector occupying a small volume but having a large surface area. The semiconducting polymer material can be easily fabricated in layers about 10 .mu.m to 100 .mu.m thick. These thin polymer layers and their associated electrodes can be stacked to form unique multi-layer detector arrangements that occupy small volume.

  8. Path querying system on mobile devices

    NASA Astrophysics Data System (ADS)

    Lin, Xing; Wang, Yifei; Tian, Yuan; Wu, Lun

    2006-01-01

    Traditional approaches to path querying problems are not efficient and convenient under most circumstances. A more convenient and reliable approach to this problem has to be found. This paper is devoted to a path querying solution on mobile devices. By using an improved Dijkstra's shortest path algorithm and a natural language translating module, this system can help people find the shortest path between two places through their cell phones or other mobile devices. The chosen path is prompted in text of natural language, as well as a map picture. This system would be useful in solving best path querying problems and have potential to be a profitable business system.

  9. Anti-theft device staining on banknotes detected by mass spectrometry imaging.

    PubMed

    Correa, Deleon Nascimento; Zacca, Jorge Jardim; Rocha, Werickson Fortunato de Carvalho; Borges, Rodrigo; de Souza, Wanderley; Augusti, Rodinei; Eberlin, Marcos Nogueira; Vendramini, Pedro Henrique

    2016-03-01

    We describe the identification and limits of detection of ink staining by mass spectrometry imaging (MSI), as used in anti-theft devices (ATDs). Such ink staining is applied to banknotes during automated teller machine (ATM) explosions. Desorption electrospray ionization (DESI) coupled with high-resolution and high-accuracy orbitrap mass spectrometry (MS) and a moving stage device were applied to obtain 2D molecular images of the major dyes used for staining, that is, 1-methylaminoanthraquinone (MAAQ), rhodamine B (RB) and rhodamine 6G (R6G). MAAQ could not be detected because of its inefficient desorption by DESI from the banknote cellulose surface. By contrast, ATD staining on banknotes is perceptible by the human naked eye only at concentrations higher than 0.2 μg cm(-2), whereas both RB and R6G at concentrations 200 times lower (as low as 0.001 μg cm(-2)) could be easily detected and imaged by DESI-MSI, with selective and specific identification of each analyte and their spatial distribution on samples from suspects. This technique is non-destructive, and no sample preparation is required, which ensures sample preservation for further forensic investigations. Copyright © 2016. Published by Elsevier Ireland Ltd.

  10. Development of CMTD (Curved Multi-Tubed Device) -system III and its application to the needle-insertion for liver.

    PubMed

    Furusho, Junji; Kobayashi, Hiroshi; Kikuchi, Takehito; Yamamoto, Tatsuro; Tanaka, Hidekazu; Terayama, Motokazu; Monden, Morito

    2008-01-01

    The purpose of this study is to realize the mechanically-controllable needle-insertion system using the CMTD (Curved Multi-Tube Device) which was developed by Furusho Laboratory. A CMTD, was developed for minimally-invasive surgery and needle insertion. And we use ultrasonograph as a sensing device to detect the position of bible duct or tumor and the orientation and position of the needle which is inserted into liver. This system makes safe minimally-invasive surgery possible, because all complex mechanisms are arranged outside of the body.

  11. Method and system for assembling miniaturized devices

    DOEpatents

    Montesanti, Richard C.; Klingmann, Jeffrey L.; Seugling, Richard M.

    2013-03-12

    An apparatus for assembling a miniaturized device includes a manipulator system including six manipulators operable to position and orient components of the miniaturized device with submicron precision and micron-level accuracy. The manipulator system includes a first plurality of motorized axes, a second plurality of manual axes, and force and torque and sensors. Each of the six manipulators includes at least one translation stage, at least one rotation stage, tooling attached to the at least one translation stage or the at least one rotation stage, and an attachment mechanism disposed at a distal end of the tooling and operable to attach at least a portion of the miniaturized device to the tooling. The apparatus also includes an optical coordinate-measuring machine (OCMM) including a machine-vision system, a laser-based distance-measuring probe, and a touch probe. The apparatus also includes an operator control system coupled to the manipulator system and the OCMM.

  12. Concept of electro-optical sensor module for sniper detection system

    NASA Astrophysics Data System (ADS)

    Trzaskawka, Piotr; Dulski, Rafal; Kastek, Mariusz

    2010-10-01

    The paper presents an initial concept of the electro-optical sensor unit for sniper detection purposes. This unit, comprising of thermal and daylight cameras, can operate as a standalone device but its primary application is a multi-sensor sniper and shot detection system. Being a part of a larger system it should contribute to greater overall system efficiency and lower false alarm rate thanks to data and sensor fusion techniques. Additionally, it is expected to provide some pre-shot detection capabilities. Generally acoustic (or radar) systems used for shot detection offer only "after-the-shot" information and they cannot prevent enemy attack, which in case of a skilled sniper opponent usually means trouble. The passive imaging sensors presented in this paper, together with active systems detecting pointed optics, are capable of detecting specific shooter signatures or at least the presence of suspected objects in the vicinity. The proposed sensor unit use thermal camera as a primary sniper and shot detection tool. The basic camera parameters such as focal plane array size and type, focal length and aperture were chosen on the basis of assumed tactical characteristics of the system (mainly detection range) and current technology level. In order to provide costeffective solution the commercially available daylight camera modules and infrared focal plane arrays were tested, including fast cooled infrared array modules capable of 1000 fps image acquisition rate. The daylight camera operates as a support, providing corresponding visual image, easier to comprehend for a human operator. The initial assumptions concerning sensor operation were verified during laboratory and field test and some example shot recording sequences are presented.

  13. Wireless Falling Detection System Based on Community.

    PubMed

    Xia, Yun; Wu, Yanqi; Zhang, Bobo; Li, Zhiyang; He, Nongyue; Li, Song

    2015-06-01

    The elderly are more likely to suffer the aches or pains from the accidental falls, and both the physiology and psychology of patients would subject to a long-term disturbance, especially when the emergency treatment was not given timely and properly. Although many methods and devices have been developed creatively and shown their efficiency in experiments, few of them are suitable for commercial applications routinely. Here, we design a wearable falling detector as a mobile terminal, and utilize the wireless technology to transfer and monitor the activity data of the host in a relatively small community. With the help of the accelerometer sensor and the Google Mapping service, information of the location and the activity data will be send to the remote server for the downstream processing. The experimental result has shown that SA (Sum-vector of all axes) value of 2.5 g is the threshold value to distinguish the falling from other activities. A three-stage detection algorithm was adopted to increase the accuracy of the real alarm, and the accuracy rate of our system was more than 95%. With the further improvement, the falling detecting device which is low-cost, accurate and user-friendly would become more and more common in everyday life.

  14. Electronic firing systems and methods for firing a device

    DOEpatents

    Frickey, Steven J [Boise, ID; Svoboda, John M [Idaho Falls, ID

    2012-04-24

    An electronic firing system comprising a control system, a charging system, an electrical energy storage device, a shock tube firing circuit, a shock tube connector, a blasting cap firing circuit, and a blasting cap connector. The control system controls the charging system, which charges the electrical energy storage device. The control system also controls the shock tube firing circuit and the blasting cap firing circuit. When desired, the control system signals the shock tube firing circuit or blasting cap firing circuit to electrically connect the electrical energy storage device to the shock tube connector or the blasting cap connector respectively.

  15. The video fluorescent device for diagnostics of cancer of human reproductive system

    NASA Astrophysics Data System (ADS)

    Brysin, Nickolay N.; Linkov, Kirill G.; Stratonnikov, Alexander A.; Savelieva, Tatiana A.; Loschenov, Victor B.

    2008-06-01

    Photodynamic therapy (PDT) is one of the advanced methods of treatment of skin cancer and surfaces of internal organs. The basic advantages of PDT are high efficiency and low cost of treatment. PDT technique is needed for providing fluorescent diagnostics. Laser-based systems are widely applied to the fluorescence excitations for diagnostic because of a narrow spectrum of fluorescence excitation and high density of radiation. Application of laser systems for carrying out fluorescent diagnostics gives the image of a tumor distorted by speckles that does not give an opportunity to obtain full information about the form of a tumor quickly. Besides, these laser excitation systems have complicated structure and high cost. As a base for the development and creation of a video fluorescent device one of commercially produced colposcopes was chosen. It allows to decrease cost of the device, and also has enabled to make modernization for already used colposcopes. A LED-based light source was offered to be used for fluorescence excitation in this work. The maximum in a spectrum of radiation of LEDs corresponds to the general spectral maximum of protoporphyrin IX (PPIX) absorption. Irradiance in the center of a light spot is 31 mW/cm2. The receiving optical system of the fluorescent channel is adjusted at 635 nm where a general spectral maximum of fluorescence PPIX is located. Also the device contains a RGB video channel, a white light source and a USB spectrometer LESA-01-BIOSPEC, for measurement of spectra of fluorescence and diffusion reflections in treatment area. The software is developed for maintenance of the device. Some studies on laboratory animals were made. As a result, areas with the increased concentration of a PPIX were correctly detected. At present, the device is used for diagnostics of cancer of female reproductive system in Research Centre for Obstetrics, Gynecology and Perinatology of the Russian Academy of Medical Sciences (Moscow, Russia).

  16. Clinical implications of Mycobacterium chimaera detection in thermoregulatory devices used for extracorporeal membrane oxygenation (ECMO), Germany, 2015 to 2016.

    PubMed

    Trudzinski, Franziska C; Schlotthauer, Uwe; Kamp, Annegret; Hennemann, Kai; Muellenbach, Ralf M; Reischl, Udo; Gärtner, Barbara; Wilkens, Heinrike; Bals, Robert; Herrmann, Mathias; Lepper, Philipp M; Becker, Sören L

    2016-11-17

    Mycobacterium chimaera, a non-tuberculous mycobacterium, was recently identified as causative agent of deep-seated infections in patients who had previously undergone open-chest cardiac surgery. Outbreak investigations suggested an aerosol-borne pathogen transmission originating from water contained in heater-cooler units (HCUs) used during cardiac surgery. Similar thermoregulatory devices are used for extracorporeal membrane oxygenation (ECMO) and M. chimaera might also be detectable in ECMO treatment settings. We performed a prospective microbiological study investigating the occurrence of M. chimaera in water from ECMO systems and in environmental samples, and a retrospective clinical review of possible ECMO-related mycobacterial infections among patients in a pneumological intensive care unit. We detected M. chimaera in 9 of 18 water samples from 10 different thermoregulatory ECMO devices; no mycobacteria were found in the nine room air samples and other environmental samples. Among 118 ECMO patients, 76 had bronchial specimens analysed for mycobacteria and M. chimaera was found in three individuals without signs of mycobacterial infection at the time of sampling. We conclude that M. chimaera can be detected in water samples from ECMO-associated thermoregulatory devices and might potentially pose patients at risk of infection. Further research is warranted to elucidate the clinical significance of M. chimaera in ECMO treatment settings. This article is copyright of The Authors, 2016.

  17. Evaluation of computer-aided detection and diagnosis systems.

    PubMed

    Petrick, Nicholas; Sahiner, Berkman; Armato, Samuel G; Bert, Alberto; Correale, Loredana; Delsanto, Silvia; Freedman, Matthew T; Fryd, David; Gur, David; Hadjiiski, Lubomir; Huo, Zhimin; Jiang, Yulei; Morra, Lia; Paquerault, Sophie; Raykar, Vikas; Samuelson, Frank; Summers, Ronald M; Tourassi, Georgia; Yoshida, Hiroyuki; Zheng, Bin; Zhou, Chuan; Chan, Heang-Ping

    2013-08-01

    Computer-aided detection and diagnosis (CAD) systems are increasingly being used as an aid by clinicians for detection and interpretation of diseases. Computer-aided detection systems mark regions of an image that may reveal specific abnormalities and are used to alert clinicians to these regions during image interpretation. Computer-aided diagnosis systems provide an assessment of a disease using image-based information alone or in combination with other relevant diagnostic data and are used by clinicians as a decision support in developing their diagnoses. While CAD systems are commercially available, standardized approaches for evaluating and reporting their performance have not yet been fully formalized in the literature or in a standardization effort. This deficiency has led to difficulty in the comparison of CAD devices and in understanding how the reported performance might translate into clinical practice. To address these important issues, the American Association of Physicists in Medicine (AAPM) formed the Computer Aided Detection in Diagnostic Imaging Subcommittee (CADSC), in part, to develop recommendations on approaches for assessing CAD system performance. The purpose of this paper is to convey the opinions of the AAPM CADSC members and to stimulate the development of consensus approaches and "best practices" for evaluating CAD systems. Both the assessment of a standalone CAD system and the evaluation of the impact of CAD on end-users are discussed. It is hoped that awareness of these important evaluation elements and the CADSC recommendations will lead to further development of structured guidelines for CAD performance assessment. Proper assessment of CAD system performance is expected to increase the understanding of a CAD system's effectiveness and limitations, which is expected to stimulate further research and development efforts on CAD technologies, reduce problems due to improper use, and eventually improve the utility and efficacy of CAD in

  18. Development of a paper-based carbon nanotube sensing microfluidic device for biological detection.

    PubMed

    Yang, Shih-I; Lei, Kin Fong; Tsai, Shiao-Wen; Hsu, Hsiao-Ting

    2013-01-01

    Carbon nanotube (CNT) has been utilized for the biological detection due to its extremely sensitive to biological molecules. A paper-based CNT sensing microfluidic device has been developed for the detection of protein, i.e., biotin-avidin, binding. We have developed a fabrication method that allows controlled deposition of bundled CNTs with well-defined dimensions to form sensors on paper. Then, polydimethyl siloxane (PDMS) was used to pattern the hydrophobic boundary on paper to form the reaction sites. The proposed fabrication method is based on vacuum filtration process with a metal mask covering on a filter paper for the definition of the dimension of sensor. The length, width, and thickness of the CNT-based sensors are readily controlled by the metal mask and the weight of the CNT powder used during the filtration process, respectively. Homogeneous deposition of CNTs with well-defined dimensions can be achieved. The CNT-based sensor on paper has been demonstrated on the detection of the protein binding. Biotin was first immobilized on the CNT's sidewall and avidin suspended solution was applied to the site. The result of the biotin-avidin binding was measured by the resistance change of the sensor, which is a label-free detection method. It showed the CNT is sensitive to the biological molecules and the proposed paper-based CNT sensing device is a possible candidate for point-of-care biosensors. Thus, electrical bio-assays on paper-based microfluidics can be realized to develop low cost, sensitive, and specific diagnostic devices.

  19. Medical Devices; Hematology and Pathology Devices; Classification of the Whole Slide Imaging System. Final order.

    PubMed

    2018-01-02

    The Food and Drug Administration (FDA or we) is classifying the whole slide imaging system into class II (special controls). The special controls that apply to the device type are identified in this order and will be part of the codified language for the whole slide imaging system's classification. We are taking this action because we have determined that classifying the device into class II (special controls) will provide a reasonable assurance of safety and effectiveness of the device. We believe this action will also enhance patients' access to beneficial innovative devices, in part by reducing regulatory burdens.

  20. Ultrasound detection of cavitation as a phenomenon common to intervention devices causing tissue ablation

    NASA Astrophysics Data System (ADS)

    Bach, David S.; Armstrong, William F.; Erbel, Raimund; Ellis, Stephen G.; Sousa, Joao; Rosenschein, Uri

    1992-08-01

    Cavitation previously has been observed in association with ultrasonic angioplasty and high- frequency rotational atherectomy. This study evaluates the production of cavitation accompanying the use of several catheter-based devices under development or in current use in the practice of interventional cardiology. Catheters were examined in an in vitro model, and cavitation was evaluated using standard ultrasound imaging equipment. Cavitation was detected with each of the devices that effects tissue ablation, but not tissue resection. Devices produced characteristic patterns of cavitation dependent on the mode of energy release of the device. The size, but not the intensity, of the cavitation effect was proportional to the energy output of the devices. The precise role of cavitation in the mechanism of tissue ablation remains uncertain.

  1. Crowdsourcing seizure detection: algorithm development and validation on human implanted device recordings.

    PubMed

    Baldassano, Steven N; Brinkmann, Benjamin H; Ung, Hoameng; Blevins, Tyler; Conrad, Erin C; Leyde, Kent; Cook, Mark J; Khambhati, Ankit N; Wagenaar, Joost B; Worrell, Gregory A; Litt, Brian

    2017-06-01

    There exist significant clinical and basic research needs for accurate, automated seizure detection algorithms. These algorithms have translational potential in responsive neurostimulation devices and in automatic parsing of continuous intracranial electroencephalography data. An important barrier to developing accurate, validated algorithms for seizure detection is limited access to high-quality, expertly annotated seizure data from prolonged recordings. To overcome this, we hosted a kaggle.com competition to crowdsource the development of seizure detection algorithms using intracranial electroencephalography from canines and humans with epilepsy. The top three performing algorithms from the contest were then validated on out-of-sample patient data including standard clinical data and continuous ambulatory human data obtained over several years using the implantable NeuroVista seizure advisory system. Two hundred teams of data scientists from all over the world participated in the kaggle.com competition. The top performing teams submitted highly accurate algorithms with consistent performance in the out-of-sample validation study. The performance of these seizure detection algorithms, achieved using freely available code and data, sets a new reproducible benchmark for personalized seizure detection. We have also shared a 'plug and play' pipeline to allow other researchers to easily use these algorithms on their own datasets. The success of this competition demonstrates how sharing code and high quality data results in the creation of powerful translational tools with significant potential to impact patient care. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. One simple DNA extraction device and its combination with modified visual loop-mediated isothermal amplification for rapid on-field detection of genetically modified organisms.

    PubMed

    Zhang, Miao; Liu, Yinan; Chen, Lili; Quan, Sheng; Jiang, Shimeng; Zhang, Dabing; Yang, Litao

    2013-01-02

    Quickness, simplicity, and effectiveness are the three major criteria for establishing a good molecular diagnosis method in many fields. Herein we report a novel detection system for genetically modified organisms (GMOs), which can be utilized to perform both on-field quick screening and routine laboratory diagnosis. In this system, a newly designed inexpensive DNA extraction device was used in combination with a modified visual loop-mediated isothermal amplification (vLAMP) assay. The main parts of the DNA extraction device included a silica gel membrane filtration column and a modified syringe. The DNA extraction device could be easily operated without using other laboratory instruments, making it applicable to an on-field GMO test. High-quality genomic DNA (gDNA) suitable for polymerase chain reaction (PCR) and isothermal amplification could be quickly isolated from plant tissues using this device within 15 min. In the modified vLAMP assay, a microcrystalline wax encapsulated detection bead containing SYBR green fluorescent dye was introduced to avoid dye inhibition and cross-contaminations from post-LAMP operation. The system was successfully applied and validated in screening and identification of GM rice, soybean, and maize samples collected from both field testing and the Grain Inspection, Packers, and Stockyards Administration (GIPSA) proficiency test program, which demonstrated that it was well-adapted to both on-field testing and/or routine laboratory analysis of GMOs.

  3. A Colorimetric Enzyme-Linked Immunosorbent Assay (ELISA) Detection Platform for a Point-of-Care Dengue Detection System on a Lab-on-Compact-Disc

    PubMed Central

    Thiha, Aung; Ibrahim, Fatimah

    2015-01-01

    The enzyme-linked Immunosorbent Assay (ELISA) is the gold standard clinical diagnostic tool for the detection and quantification of protein biomarkers. However, conventional ELISA tests have drawbacks in their requirement of time, expensive equipment and expertise for operation. Hence, for the purpose of rapid, high throughput screening and point-of-care diagnosis, researchers are miniaturizing sandwich ELISA procedures on Lab-on-a-Chip and Lab-on-Compact Disc (LOCD) platforms. This paper presents a novel integrated device to detect and interpret the ELISA test results on a LOCD platform. The system applies absorption spectrophotometry to measure the absorbance (optical density) of the sample using a monochromatic light source and optical sensor. The device performs automated analysis of the results and presents absorbance values and diagnostic test results via a graphical display or via Bluetooth to a smartphone platform which also acts as controller of the device. The efficacy of the device was evaluated by performing dengue antibody IgG ELISA on 64 hospitalized patients suspected of dengue. The results demonstrate high accuracy of the device, with 95% sensitivity and 100% specificity in detection when compared with gold standard commercial ELISA microplate readers. This sensor platform represents a significant step towards establishing ELISA as a rapid, inexpensive and automatic testing method for the purpose of point-of-care-testing (POCT) in resource-limited settings. PMID:25993517

  4. A Colorimetric Enzyme-Linked Immunosorbent Assay (ELISA) Detection Platform for a Point-of-Care Dengue Detection System on a Lab-on-Compact-Disc.

    PubMed

    Thiha, Aung; Ibrahim, Fatimah

    2015-05-18

    The enzyme-linked Immunosorbent Assay (ELISA) is the gold standard clinical diagnostic tool for the detection and quantification of protein biomarkers. However, conventional ELISA tests have drawbacks in their requirement of time, expensive equipment and expertise for operation. Hence, for the purpose of rapid, high throughput screening and point-of-care diagnosis, researchers are miniaturizing sandwich ELISA procedures on Lab-on-a-Chip and Lab-on-Compact Disc (LOCD) platforms. This paper presents a novel integrated device to detect and interpret the ELISA test results on a LOCD platform. The system applies absorption spectrophotometry to measure the absorbance (optical density) of the sample using a monochromatic light source and optical sensor. The device performs automated analysis of the results and presents absorbance values and diagnostic test results via a graphical display or via Bluetooth to a smartphone platform which also acts as controller of the device. The efficacy of the device was evaluated by performing dengue antibody IgG ELISA on 64 hospitalized patients suspected of dengue. The results demonstrate high accuracy of the device, with 95% sensitivity and 100% specificity in detection when compared with gold standard commercial ELISA microplate readers. This sensor platform represents a significant step towards establishing ELISA as a rapid, inexpensive and automatic testing method for the purpose of point-of-care-testing (POCT) in resource-limited settings.

  5. A portable cell-based optical detection device for rapid detection of Listeria and Bacillus toxins

    NASA Astrophysics Data System (ADS)

    Banerjee, Pratik; Banada, Padmapriya P.; Rickus, Jenna L.; Morgan, Mark T.; Bhunia, Arun K.

    2005-11-01

    A mammalian cell-based optical biosensor was built to detect pathogenic Listeria and Bacillus species. This sensor measures the ability of the pathogens to infect and induce cytotoxicity on hybrid lymphocyte cell line (Ped-2E9) resulting in the release of alkaline phosphatase (ALP) that can be detected optically using a portable spectrophotometer. The Ped-2E9 cells were encapsulated in collagen gel matrices and grown in 48-well plates or in specially designed filtration tube units. Toxin preparations or bacterial cells were introduced and ALP release was assayed after 3-5 h. Pathogenic L. monocytogenes strains or the listeriolysin toxins preparation showed cytotoxicity ranging from 55% - 92%. Toxin preparations (~20 μg/ml) from B. cereus strains showed 24 - 98% cytotoxicity. In contrast, a non-pathogenic L. innocua (F4247) and a B. substilis induced only 2% and 8% cytotoxicity, respectively. This cell-based detection device demonstrates its ability to detect the presence of pathogenic Listeria and Bacillus species and can potentially be used onsite for food safety or in biosecurity application.

  6. A radar vehicle detection system for four-quadrant gate warning systems and blocked crossing detection.

    DOT National Transportation Integrated Search

    2012-12-01

    The Wavetronix Matrix Radar was adapted for use at four-quadrant gate railroad crossings for the purpose of influencing exit gate behavior upon the detection of vehicles, as an alternative to buried inductive loops. Two radar devices were utilized, o...

  7. An automatic device for detection and classification of malaria parasite species in thick blood film.

    PubMed

    Kaewkamnerd, Saowaluck; Uthaipibull, Chairat; Intarapanich, Apichart; Pannarut, Montri; Chaotheing, Sastra; Tongsima, Sissades

    2012-01-01

    Current malaria diagnosis relies primarily on microscopic examination of Giemsa-stained thick and thin blood films. This method requires vigorously trained technicians to efficiently detect and classify the malaria parasite species such as Plasmodium falciparum (Pf) and Plasmodium vivax (Pv) for an appropriate drug administration. However, accurate classification of parasite species is difficult to achieve because of inherent technical limitations and human inconsistency. To improve performance of malaria parasite classification, many researchers have proposed automated malaria detection devices using digital image analysis. These image processing tools, however, focus on detection of parasites on thin blood films, which may not detect the existence of parasites due to the parasite scarcity on the thin blood film. The problem is aggravated with low parasitemia condition. Automated detection and classification of parasites on thick blood films, which contain more numbers of parasite per detection area, would address the previous limitation. The prototype of an automatic malaria parasite identification system is equipped with mountable motorized units for controlling the movements of objective lens and microscope stage. This unit was tested for its precision to move objective lens (vertical movement, z-axis) and microscope stage (in x- and y-horizontal movements). The average precision of x-, y- and z-axes movements were 71.481 ± 7.266 μm, 40.009 ± 0.000 μm, and 7.540 ± 0.889 nm, respectively. Classification of parasites on 60 Giemsa-stained thick blood films (40 blood films containing infected red blood cells and 20 control blood films of normal red blood cells) was tested using the image analysis module. By comparing our results with the ones verified by trained malaria microscopists, the prototype detected parasite-positive and parasite-negative blood films at the rate of 95% and 68.5% accuracy, respectively. For classification performance, the thick blood

  8. 78 FR 18988 - Establishing the Performance Characteristics of In Vitro Diagnostic Devices for the Detection of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ...] Establishing the Performance Characteristics of In Vitro Diagnostic Devices for the Detection of Antibodies to... announcing the availability of the guidance entitled ``Establishing the Performance Characteristics of In... document entitled ``Establishing the Performance Characteristics of In Vitro Diagnostic Devices for the...

  9. Eddy-Current-Based Nondestructive Inspection System Using Superconducting Quantum Interference Device for Thin Copper Tubes

    NASA Astrophysics Data System (ADS)

    Hatsukade, Yoshimi; Kosugi, Akifumi; Mori, Kazuaki; Tanaka, Saburo

    2004-11-01

    An eddy-current-based nondestructive inspection (NDI) system using superconducting quantum interference device (SQUID) cooled using a coaxial pulse tube cryocooler was constructed for the inspection of microflaws on copper tubes employing a high-Tc SQUID gradiometer and a Helmholtz-like coil inducer. The detection of artificial flaws several tens of μm in depth on copper tubes 6.35 mm in outer diameter and 0.825 mm in thickness was demonstrated using the SQUID-NDI system. With an excitation field of 1.6 μT at 5 kHz, a 30-μm-depth flaw was successfully detected by the system at an SN ratio of at least 20. The magnetic signal amplitude due to the flaw was proportional to both excitation frequency and the square of flaw depth. With consideration of the system’s sensitivity, the results indicate that sub-10-μm-depth flaws are detectable by the SQUID-NDI system.

  10. Light collection device for flame emission detectors

    DOEpatents

    Woodruff, Stephen D.; Logan, Ronald G.; Pineault, Richard L.

    1990-01-01

    A light collection device for use in a flame emission detection system such as an on-line, real-time alkali concentration process stream monitor is disclosed which comprises a sphere coated on its interior with a highly diffuse reflective paint which is positioned over a flame emission source, and one or more fiber optic cables which transfer the light generated at the interior of the sphere to a detecting device. The diffuse scattering of the light emitted by the flame uniformly distributes the light in the sphere, and the collection efficiency of the device is greater than that obtainable in the prior art. The device of the present invention thus provides enhanced sensitivity and reduces the noise associated with flame emission detectors, and can achieve substantial improvements in alkali detection levels.

  11. Detection of fecal contamination on beef meat surfaces using handheld fluorescence imaging device (HFID)

    NASA Astrophysics Data System (ADS)

    Oh, Mirae; Lee, Hoonsoo; Cho, Hyunjeong; Moon, Sang-Ho; Kim, Eun-Kyung; Kim, Moon S.

    2016-05-01

    Current meat inspection in slaughter plants, for food safety and quality attributes including potential fecal contamination, is conducted through by visual examination human inspectors. A handheld fluorescence-based imaging device (HFID) was developed to be an assistive tool for human inspectors by highlighting contaminated food and food contact surfaces on a display monitor. It can be used under ambient lighting conditions in food processing plants. Critical components of the imaging device includes four 405-nm 10-W LEDs for fluorescence excitation, a charge-coupled device (CCD) camera, optical filter (670 nm used for this study), and Wi-Fi transmitter for broadcasting real-time video/images to monitoring devices such as smartphone and tablet. This study aimed to investigate the effectiveness of HFID in enhancing visual detection of fecal contamination on red meat, fat, and bone surfaces of beef under varying ambient luminous intensities (0, 10, 30, 50 and 70 foot-candles). Overall, diluted feces on fat, red meat and bone areas of beef surfaces were detectable in the 670-nm single-band fluorescence images when using the HFID under 0 to 50 foot-candle ambient lighting.

  12. Light-pulse atom interferometric device

    DOEpatents

    Biedermann, Grant; McGuinness, Hayden James Evans; Rakholia, Akash; Jau, Yuan-Yu; Schwindt, Peter; Wheeler, David R.

    2016-03-22

    An atomic interferometric device useful, e.g., for measuring acceleration or rotation is provided. The device comprises at least one vapor cell containing a Raman-active chemical species, an optical system, and at least one detector. The optical system is conformed to implement a Raman pulse interferometer in which Raman transitions are stimulated in a warm vapor of the Raman-active chemical species. The detector is conformed to detect changes in the populations of different internal states of atoms that have been irradiated by the optical system.

  13. Detection-gap-independent optical sensor design using divergence-beam-controlled slit lasers for wearable devices

    NASA Astrophysics Data System (ADS)

    Yoon, Young Zoon; Kim, Hyochul; Park, Yeonsang; Kim, Jineun; Lee, Min Kyung; Kim, Un Jeong; Roh, Young-Geun; Hwang, Sung Woo

    2016-09-01

    Wearable devices often employ optical sensors, such as photoplethysmography sensors, for detecting heart rates or other biochemical factors. Pulse waveforms, rather than simply detecting heartbeats, can clarify arterial conditions. However, most optical sensor designs require close skin contact to reduce power consumption while obtaining good quality signals without distortion. We have designed a detection-gap-independent optical sensor array using divergence-beam-controlled slit lasers and distributed photodiodes in a pulse-detection device wearable over the wrist's radial artery. It achieves high biosignal quality and low power consumption. The top surface of a vertical-cavity surface-emitting laser of 850 nm wavelength was covered by Au film with an open slit of width between 500 nm and 1500 nm, which generated laser emissions across a large divergence angle along an axis orthogonal to the slit direction. The sensing coverage of the slit laser diode (LD) marks a 50% improvement over nonslit LD sensor coverage. The slit LD sensor consumes 100% more input power than the nonslit LD sensor to obtain similar optical output power. The slit laser sensor showed intermediate performance between LD and light-emitting diode sensors. Thus, designing sensors with multiple-slit LD arrays can provide useful and convenient ways for incorporating optical sensors in wrist-wearable devices.

  14. A unique charge-coupled device/xenon arc lamp based imaging system for the accurate detection and quantitation of multicolour fluorescence.

    PubMed

    Spibey, C A; Jackson, P; Herick, K

    2001-03-01

    In recent years the use of fluorescent dyes in biological applications has dramatically increased. The continual improvement in the capabilities of these fluorescent dyes demands increasingly sensitive detection systems that provide accurate quantitation over a wide linear dynamic range. In the field of proteomics, the detection, quantitation and identification of very low abundance proteins are of extreme importance in understanding cellular processes. Therefore, the instrumentation used to acquire an image of such samples, for spot picking and identification by mass spectrometry, must be sensitive enough to be able, not only, to maximise the sensitivity and dynamic range of the staining dyes but, as importantly, adapt to the ever changing portfolio of fluorescent dyes as they become available. Just as the available fluorescent probes are improving and evolving so are the users application requirements. Therefore, the instrumentation chosen must be flexible to address and adapt to those changing needs. As a result, a highly competitive market for the supply and production of such dyes and the instrumentation for their detection and quantitation have emerged. The instrumentation currently available is based on either laser/photomultiplier tube (PMT) scanning or lamp/charge-coupled device (CCD) based mechanisms. This review briefly discusses the advantages and disadvantages of both System types for fluorescence imaging, gives a technical overview of CCD technology and describes in detail a unique xenon/are lamp CCD based instrument, from PerkinElmer Life Sciences. The Wallac-1442 ARTHUR is unique in its ability to scan both large areas at high resolution and give accurate selectable excitation over the whole of the UV/visible range. It operates by filtering both the excitation and emission wavelengths, providing optimal and accurate measurement and quantitation of virtually any available dye and allows excellent spectral resolution between different fluorophores

  15. A Microfluidic Device for Continuous Sensing of Systemic Acute Toxicants in Drinking Water

    PubMed Central

    Zhao, Xinyan; Dong, Tao

    2013-01-01

    A bioluminescent-cell-based microfluidic device for sensing toxicants in drinking water was designed and fabricated. The system employed Vibrio fischeri cells as broad-spectrum sensors to monitor potential systemic cell toxicants in water, such as heavy metal ions and phenol. Specifically, the chip was designed for continuous detection. The chip design included two counter-flow micromixers, a T-junction droplet generator and six spiral microchannels. The cell suspension and water sample were introduced into the micromixers and dispersed into droplets in the air flow. This guaranteed sufficient oxygen supply for the cell sensors. Copper (Cu2+), zinc (Zn2+), potassium dichromate and 3,5-dichlorophenol were selected as typical toxicants to validate the sensing system. Preliminary tests verified that the system was an effective screening tool for acute toxicants although it could not recognize or quantify specific toxicants. A distinct non-linear relationship was observed between the zinc ion concentration and the Relative Luminescence Units (RLU) obtained during testing. Thus, the concentration of simple toxic chemicals in water can be roughly estimated by this system. The proposed device shows great promise for an early warning system for water safety. PMID:24300075

  16. Performance of target detection algorithm in compressive sensing miniature ultraspectral imaging compressed sensing system

    NASA Astrophysics Data System (ADS)

    Gedalin, Daniel; Oiknine, Yaniv; August, Isaac; Blumberg, Dan G.; Rotman, Stanley R.; Stern, Adrian

    2017-04-01

    Compressive sensing theory was proposed to deal with the high quantity of measurements demanded by traditional hyperspectral systems. Recently, a compressive spectral imaging technique dubbed compressive sensing miniature ultraspectral imaging (CS-MUSI) was presented. This system uses a voltage controlled liquid crystal device to create multiplexed hyperspectral cubes. We evaluate the utility of the data captured using the CS-MUSI system for the task of target detection. Specifically, we compare the performance of the matched filter target detection algorithm in traditional hyperspectral systems and in CS-MUSI multiplexed hyperspectral cubes. We found that the target detection algorithm performs similarly in both cases, despite the fact that the CS-MUSI data is up to an order of magnitude less than that in conventional hyperspectral cubes. Moreover, the target detection is approximately an order of magnitude faster in CS-MUSI data.

  17. Development of a Calibration Strip for Immunochromatographic Assay Detection Systems.

    PubMed

    Gao, Yue-Ming; Wei, Jian-Chong; Mak, Peng-Un; Vai, Mang-I; Du, Min; Pun, Sio-Hang

    2016-06-29

    With many benefits and applications, immunochromatographic (ICG) assay detection systems have been reported on a great deal. However, the existing research mainly focuses on increasing the dynamic detection range or application fields. Calibration of the detection system, which has a great influence on the detection accuracy, has not been addressed properly. In this context, this work develops a calibration strip for ICG assay photoelectric detection systems. An image of the test strip is captured by an image acquisition device, followed by performing a fuzzy c-means (FCM) clustering algorithm and maximin-distance algorithm for image segmentation. Additionally, experiments are conducted to find the best characteristic quantity. By analyzing the linear coefficient, an average value of hue (H) at 14 min is chosen as the characteristic quantity and the empirical formula between H and optical density (OD) value is established. Therefore, H, saturation (S), and value (V) are calculated by a number of selected OD values. Then, H, S, and V values are transferred to the RGB color space and a high-resolution printer is used to print the strip images on cellulose nitrate membranes. Finally, verification of the printed calibration strips is conducted by analyzing the linear correlation between OD and the spectral reflectance, which shows a good linear correlation (R² = 98.78%).

  18. 46 CFR 62.25-25 - Programmable systems and devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Programmable systems and devices. 62.25-25 Section 62.25... AUTOMATION General Requirements for All Automated Vital Systems § 62.25-25 Programmable systems and devices. (a) Programmable control or alarm system logic must not be altered after Design Verification testing...

  19. Detecting relay attacks on RFID communication systems using quantum bits

    NASA Astrophysics Data System (ADS)

    Jannati, Hoda; Ardeshir-Larijani, Ebrahim

    2016-11-01

    RFID systems became widespread in variety of applications because of their simplicity in manufacturing and usability. In the province of critical infrastructure protection, RFID systems are usually employed to identify and track people, objects and vehicles that enter restricted areas. The most important vulnerability which is prevalent among all protocols employed in RFID systems is against relay attacks. Until now, to protect RFID systems against this kind of attack, the only approach is the utilization of distance-bounding protocols which are not applicable over low-cost devices such as RFID passive tags. This work presents a novel technique using emerging quantum technologies to detect relay attacks on RFID systems. Recently, it is demonstrated that quantum key distribution (QKD) can be implemented in a client-server scheme where client only requires an on-chip polarization rotator that may be integrated into a handheld device. Now we present our technique for a tag-reader scenario which needs similar resources as the mentioned QKD scheme. We argue that our technique requires less resources and provides lower probability of false alarm for the system, compared with distance-bounding protocols, and may pave the way to enhance the security of current RFID systems.

  20. Micro-opto-mechanical devices and systems using epitaxial lift off

    NASA Technical Reports Server (NTRS)

    Camperi-Ginestet, C.; Kim, Young W.; Wilkinson, S.; Allen, M.; Jokerst, N. M.

    1993-01-01

    The integration of high quality, single crystal thin film gallium arsenide (GaAs) and indium phosphide (InP) based photonic and electronic materials and devices with host microstructures fabricated from materials such as silicon (Si), glass, and polymers will enable the fabrication of the next generation of micro-opto-mechanical systems (MOMS) and optoelectronic integrated circuits. Thin film semiconductor devices deposited onto arbitrary host substrates and structures create hybrid (more than one material) near-monolithic integrated systems which can be interconnected electrically using standard inexpensive microfabrication techniques such as vacuum metallization and photolithography. These integrated systems take advantage of the optical and electronic properties of compound semiconductor devices while still using host substrate materials such as silicon, polysilicon, glass and polymers in the microstructures. This type of materials optimization for specific tasks creates higher performance systems than those systems which must use trade-offs in device performance to integrate all of the function in a single material system. The low weight of these thin film devices also makes them attractive for integration with micromechanical devices which may have difficulty supporting and translating the full weight of a standard device. These thin film devices and integrated systems will be attractive for applications, however, only when the development of low cost, high yield fabrication and integration techniques makes their use economically feasible. In this paper, we discuss methods for alignment, selective deposition, and interconnection of thin film epitaxial GaAs and InP based devices onto host substrates and host microstructures.

  1. 77 FR 8117 - Medical Devices; Cardiovascular Devices; Classification of the Endovascular Suturing System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-14

    ... Administration (FDA) is classifying the endovascular suturing system into class II (special controls). The Agency is classifying the device into class II (special controls) in order to provide a reasonable assurance..., or FDA issues an order finding the device to be substantially equivalent, in accordance with section...

  2. A fluorescence-based centrifugal microfluidic system for parallel detection of multiple allergens

    NASA Astrophysics Data System (ADS)

    Chen, Q. L.; Ho, H. P.; Cheung, K. L.; Kong, S. K.; Suen, Y. K.; Kwan, Y. W.; Li, W. J.; Wong, C. K.

    2010-02-01

    This paper reports a robust polymer based centrifugal microfluidic analysis system that can provide parallel detection of multiple allergens in vitro. Many commercial food products (milk, bean, pollen, etc.) may introduce allergy to people. A low-cost device for rapid detection of allergens is highly desirable. With this as the objective, we have studied the feasibility of using a rotating disk device incorporating centrifugal microfluidics for performing actuationfree and multi-analyte detection of different allergen species with minimum sample usage and fast response time. Degranulation in basophils or mast cells is an indicator to demonstrate allergic reaction. In this connection, we used acridine orange (AO) to demonstrate degranulation in KU812 human basophils. It was found that the AO was released from granules when cells were stimulated by ionomycin, thus signifying the release of histamine which accounts for allergy symptoms [1-2]. Within this rotating optical platform, major microfluidic components including sample reservoirs, reaction chambers, microchannel and flow-control compartments are integrated into a single bio-compatible polydimethylsiloxane (PDMS) substrate. The flow sequence and reaction time can be controlled precisely. Sequentially through varying the spinning speed, the disk may perform a variety of steps on sample loading, reaction and detection. Our work demonstrates the feasibility of using centrifugation as a possible immunoassay system in the future.

  3. Device for magneto-optic signal detection with a small crystal prism.

    PubMed

    Saito, K; Sato, S; Shino, K; Taniguchi, T

    2000-03-10

    A device made of a birefringent crystal for signal detection of magneto-optic (MO) disks is presented. The light beam from a MO disk is separated into two orthogonally polarized components at the surface of a birefringent prism. After these two components are reflected by the top and the bottom surfaces of the prism inside, at the detector they become sufficiently separated from each other for discrete detection, even though the prism is small. A method for calculating the light intensities and the positions of focused beams in a birefringent prism and the results of a fundamental experiment are presented.

  4. Obfuscated authentication systems, devices, and methods

    DOEpatents

    Armstrong, Robert C; Hutchinson, Robert L

    2013-10-22

    Embodiments of the present invention are directed toward authentication systems, devices, and methods. Obfuscated executable instructions may encode an authentication procedure and protect an authentication key. The obfuscated executable instructions may require communication with a remote certifying authority for operation. In this manner, security may be controlled by the certifying authority without regard to the security of the electronic device running the obfuscated executable instructions.

  5. System for In-Situ Detection of Plant Exposure to Trichloroethylene (TCE)

    NASA Technical Reports Server (NTRS)

    Newman, Lee A. (Inventor); Lewis, Mark D. (Inventor); Anderson, Daniel J. (Inventor); Keith, Amy G. (Inventor)

    2013-01-01

    A system detects a plant's exposure to trichloroethylene (TCE) through plant leaf imaging. White light impinging upon a plant's leaf interacts therewith to produce interacted light. A detector is positioned to detect at least one spectral band of the interacted light. A processor coupled to the detector performs comparisons between photonic energy of the interacted light at the one or more spectral bands thereof and reference data defining spectral responses indicative of leaf exposure to TCE. An output device coupled to the processor provides indications of the comparisons.

  6. Real-time DNA Amplification and Detection System Based on a CMOS Image Sensor.

    PubMed

    Wang, Tiantian; Devadhasan, Jasmine Pramila; Lee, Do Young; Kim, Sanghyo

    2016-01-01

    In the present study, we developed a polypropylene well-integrated complementary metal oxide semiconductor (CMOS) platform to perform the loop mediated isothermal amplification (LAMP) technique for real-time DNA amplification and detection simultaneously. An amplification-coupled detection system directly measures the photon number changes based on the generation of magnesium pyrophosphate and color changes. The photon number decreases during the amplification process. The CMOS image sensor observes the photons and converts into digital units with the aid of an analog-to-digital converter (ADC). In addition, UV-spectral studies, optical color intensity detection, pH analysis, and electrophoresis detection were carried out to prove the efficiency of the CMOS sensor based the LAMP system. Moreover, Clostridium perfringens was utilized as proof-of-concept detection for the new system. We anticipate that this CMOS image sensor-based LAMP method will enable the creation of cost-effective, label-free, optical, real-time and portable molecular diagnostic devices.

  7. Statistical fingerprinting for malware detection and classification

    DOEpatents

    Prowell, Stacy J.; Rathgeb, Christopher T.

    2015-09-15

    A system detects malware in a computing architecture with an unknown pedigree. The system includes a first computing device having a known pedigree and operating free of malware. The first computing device executes a series of instrumented functions that, when executed, provide a statistical baseline that is representative of the time it takes the software application to run on a computing device having a known pedigree. A second computing device executes a second series of instrumented functions that, when executed, provides an actual time that is representative of the time the known software application runs on the second computing device. The system detects malware when there is a difference in execution times between the first and the second computing devices.

  8. Devices, systems, and methods for conducting assays with improved sensitivity using sedimentation

    DOEpatents

    Schaff, Ulrich Y.; Koh, Chung-Yan; Sommer, Gregory J.

    2016-04-05

    Embodiments of the present invention are directed toward devices, systems, and method for conducting assays using sedimentation. In one example, a method includes layering a mixture on a density medium, subjecting sedimentation particles in the mixture to sedimentation forces to cause the sedimentation particles to move to a detection area through a density medium, and detecting a target analyte in a detection region of the sedimentation channel. In some examples, the sedimentation particles and labeling agent may have like charges to reduce non-specific binding of labeling agent and sedimentation particles. In some examples, the density medium is provided with a separation layer for stabilizing the assay during storage and operation. In some examples, the sedimentation channel may be provided with a generally flat sedimentation chamber for dispersing the particle pellet over a larger surface area.

  9. Devices, systems, and methods for conducting assays with improved sensitivity using sedimentation

    DOEpatents

    Schaff, Ulrich Y; Koh, Chung-Yan; Sommer, Gregory J

    2015-02-24

    Embodiments of the present invention are directed toward devices, systems, and method for conducting assays using sedimentation. In one example, a method includes layering a mixture on a density medium, subjecting sedimentation particles in the mixture to sedimentation forces to cause the sedimentation particles to move to a detection area through a density medium, and detecting a target analyte in a detection region of the sedimentation channel. In some examples, the sedimentation particles and labeling agent may have like charges to reduce non-specific binding of labeling agent and sedimentation particles. In some examples, the density medium is provided with a separation layer for stabilizing the assay during storage and operation. In some examples, the sedimentation channel may be provided with a generally flat sedimentation chamber for dispersing the particle pellet over a larger surface area.

  10. Research progress of infrared detecting and display integrated device based on infrared-visible up-conversion technology

    NASA Astrophysics Data System (ADS)

    Xu, Junfeng; Li, Weile; He, Bo; Wang, Haowei; Song, Yong; Yang, Shengyi; Ni, Guoqiang

    2018-01-01

    Infrared detecting and display device (IR-DDD) is a newly developed optical up-conversion device that integrates the light-emitting diode (LED) onto the infrared (IR) photo-detector, in order to convert IR light into the carriers photo-generated in detection materials and inject them into LED to emit visible light. This IR-DDD can achieve the direct up-conversion from IR ray to visible light, showing the considerable potential in night-vision application. This paper attempts a review of its working principle and current research progresses.

  11. Multiplexed Paper Analytical Device for Quantification of Metals using Distance-Based Detection

    PubMed Central

    Cate, David M.; Noblitt, Scott D.; Volckens, John; Henry, Charles S.

    2015-01-01

    Exposure to metal-containing aerosols has been linked with adverse health outcomes for almost every organ in the human body. Commercially available techniques for quantifying particulate metals are time-intensive, laborious, and expensive; often sample analysis exceeds $100. We report a simple technique, based upon a distance-based detection motif, for quantifying metal concentrations of Ni, Cu, and Fe in airborne particulate matter using microfluidic paper-based analytical devices. Paper substrates are used to create sensors that are self-contained, self-timing, and require only a drop of sample for operation. Unlike other colorimetric approaches in paper microfluidics that rely on optical instrumentation for analysis, with distance-based detection, analyte is quantified visually based on the distance of a colorimetric reaction, similar to reading temperature on a thermometer. To demonstrate the effectiveness of this approach, Ni, Cu, and Fe were measured individually in single-channel devices; detection limits as low as 0.1, 0.1, and 0.05 µg were reported for Ni, Cu, and Fe. Multiplexed analysis of all three metals was achieved with detection limits of 1, 5, and 1 µg for Ni, Cu, and Fe. We also extended the dynamic range for multi-analyte detection by printing concentration gradients of colorimetric reagents using an off the shelf inkjet printer. Analyte selectivity was demonstrated for common interferences. To demonstrate utility of the method, Ni, Cu, and Fe were measured from samples of certified welding fume; levels measured with paper sensors matched known values determined gravimetrically. PMID:26009988

  12. A Review on Microfluidic Paper-Based Analytical Devices for Glucose Detection

    PubMed Central

    Liu, Shuopeng; Su, Wenqiong; Ding, Xianting

    2016-01-01

    Glucose, as an essential substance directly involved in metabolic processes, is closely related to the occurrence of various diseases such as glucose metabolism disorders and islet cell carcinoma. Therefore, it is crucial to develop sensitive, accurate, rapid, and cost effective methods for frequent and convenient detections of glucose. Microfluidic Paper-based Analytical Devices (μPADs) not only satisfying the above requirements but also occupying the advantages of portability and minimal sample consumption, have exhibited great potential in the field of glucose detection. This article reviews and summarizes the most recent improvements in glucose detection in two aspects of colorimetric and electrochemical μPADs. The progressive techniques for fabricating channels on μPADs are also emphasized in this article. With the growth of diabetes and other glucose indication diseases in the underdeveloped and developing countries, low-cost and reliably commercial μPADs for glucose detection will be in unprecedentedly demand. PMID:27941634

  13. Model-Based Anomaly Detection for a Transparent Optical Transmission System

    NASA Astrophysics Data System (ADS)

    Bengtsson, Thomas; Salamon, Todd; Ho, Tin Kam; White, Christopher A.

    In this chapter, we present an approach for anomaly detection at the physical layer of networks where detailed knowledge about the devices and their operations is available. The approach combines physics-based process models with observational data models to characterize the uncertainties and derive the alarm decision rules. We formulate and apply three different methods based on this approach for a well-defined problem in optical network monitoring that features many typical challenges for this methodology. Specifically, we address the problem of monitoring optically transparent transmission systems that use dynamically controlled Raman amplification systems. We use models of amplifier physics together with statistical estimation to derive alarm decision rules and use these rules to automatically discriminate between measurement errors, anomalous losses, and pump failures. Our approach has led to an efficient tool for systematically detecting anomalies in the system behavior of a deployed network, where pro-active measures to address such anomalies are key to preventing unnecessary disturbances to the system's continuous operation.

  14. Leak and Pipe Detection Method and System

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C. (Inventor)

    2003-01-01

    A method and system for locating leaks of conductive fluids from non-conductive pipes and other structures or for locat- ing non-conductive pipes or structures having conductive fluid contained therein, employ a charge generator to apply a time varying charge to the conductive fluid, and a capaci- tive type detector that can detect the variable charge that is induced in the fluid. The capacitive detector, which prefer- ably includes a handheld housing, employs a large conduc- tive pickup plate that is used to locate the pipe or leak by scanning the plate over the ground and detecting the induced charge that is generated when the plate comes in close proximity to the pipe or leak. If a leak is encountered, the resulting signal will appear over an area larger than expected for a buried pipe, assuming the leak provides an electrically conductive path between the flow and the wet surrounding ground. The detector uses any suitable type of indicator device, such as a pair of headphones that enable an operator to hear the detected signal as a chirping sound, for example.

  15. Device for Detection of Explosives, Nuclear and Other Hazardous Materials in Luggage and Cargo Containers

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Andrey; Evsenin, Alexey; Gorshkov, Igor; Osetrov, Oleg; Vakhtin, Dmitry

    2009-12-01

    Device for detection of explosives, radioactive and heavily shielded nuclear materials in luggage and cargo containers based on Nanosecond Neutron Analysis/Associated Particles Technique (NNA/APT) is under construction. Detection module consists of a small neutron generator with built-in position-sensitive detector of associated alpha-particles, and several scintillator-based gamma-ray detectors. Explosives and other hazardous chemicals are detected by analyzing secondary high-energy gamma-rays from reactions of fast neutrons with materials inside a container. The same gamma-ray detectors are used to detect unshielded radioactive and nuclear materials. An array of several neutron detectors is used to detect fast neutrons from induced fission of nuclear materials. Coincidence and timing analysis allows one to discriminate between fission neutrons and scattered probing neutrons. Mathematical modeling by MCNP5 and MCNP-PoliMi codes was used to estimate the sensitivity of the device and its optimal configuration. Comparison of the features of three gamma detector types—based on BGO, NaI and LaBr3 crystals is presented.

  16. Combustion products generating and metering device

    NASA Technical Reports Server (NTRS)

    Wiberg, R. E.; Klisch, J. A.

    1974-01-01

    Device simulates incipient fire conditions in closely-controlled adjustable manner, to give predetermined degree of intensity at selected locations throughout area, and to verify that detection system will respond. Device can be used with and for cross calibration and experimentation in conjunction with commercially available products of combustion analyzing meters.

  17. System Control Applications of Low-Power Radio Frequency Devices

    NASA Astrophysics Data System (ADS)

    van Rensburg, Roger

    2017-09-01

    This paper conceptualizes a low-power wireless sensor network design for application employment to reduce theft of portable computer devices used in educational institutions today. The aim of this study is to design and develop a reliable and robust wireless network that can eradicate accessibility of a device’s human interface. An embedded system supplied by an energy harvesting source, installed on the portable computer device, may represent one of multiple slave nodes which request regular updates from a standalone master station. A portable computer device which is operated in an undesignated area or in a field perimeter where master to slave communication is restricted, indicating a possible theft scenario, will initiate a shutdown of its operating system and render the device unusable. Consequently, an algorithm in the device firmware may ensure the necessary steps are executed to track the device, irrespective whether the device is enabled. Design outcomes thus far indicate that a wireless network using low-power embedded hardware, is feasible for anti-theft applications. By incorporating one of the latest Bluetooth low-energy, ANT+, ZigBee or Thread wireless technologies, an anti-theft system may be implemented that has the potential to reduce major portable computer device theft in institutions of digitized learning.

  18. Portable Integrated Wireless Device Threat Assessment to Aircraft Radio Systems

    NASA Technical Reports Server (NTRS)

    Salud, Maria Theresa P.; Williams, Reuben A. (Technical Monitor)

    2004-01-01

    An assessment was conducted on multiple wireless local area network (WLAN) devices using the three wireless standards for spurious radiated emissions to determine their threat to aircraft radio navigation systems. The measurement process, data and analysis are provided for devices tested using IEEE 802.11a, IEEE 802.11b, and Bluetooth as well as data from portable laptops/tablet PCs and PDAs (grouping known as PEDs). A comparison was made between wireless LAN devices and portable electronic devices. Spurious radiated emissions were investigated in the radio frequency bands for the following aircraft systems: Instrument Landing System Localizer and Glideslope, Very High Frequency (VHF) Communication, VHF Omnidirectional Range, Traffic Collision Avoidance System, Air Traffic Control Radar Beacon System, Microwave Landing System and Global Positioning System. Since several of the contiguous navigation systems were grouped under one encompassing measurement frequency band, there were five measurement frequency bands where spurious radiated emissions data were collected for the PEDs and WLAN devices. The report also provides a comparison between emissions data and regulatory emission limit.

  19. Susceptibility study of audio recording devices to electromagnetic stimulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halligan, Matthew S.; Grant, Steven L.; Beetner, Daryl G.

    2014-02-01

    Little research has been performed to study how intentional electromagnetic signals may couple into recording devices. An electromagnetic susceptibility study was performed on an analog tape recorder, a digital video camera, a wired computer microphone, and a wireless microphone system to electromagnetic interference. Devices were subjected to electromagnetic stimulations in the frequency range of 1-990 MHz and field strengths up to 4.9 V/m. Carrier and message frequencies of the stimulation signals were swept, and the impacts of device orientation and antenna polarization were explored. Message signals coupled into all devices only when amplitude modulated signals were used as stimulation signals.more » Test conditions that produced maximum sensitivity were highly specific to each device. Only narrow carrier frequency ranges could be used for most devices to couple messages into recordings. A basic detection technique using cross-correlation demonstrated the need for messages to be as long as possible to maximize message detection and minimize detection error. Analysis suggests that detectable signals could be coupled to these recording devices under realistic ambient conditions.« less

  20. Medical Devices; Clinical Chemistry and Clinical Toxicology Devices; Classification of the Organophosphate Test System. Final order.

    PubMed

    2017-10-18

    The Food and Drug Administration (FDA or we) is classifying the organophosphate test system into class II (special controls). The special controls that apply to the device type are identified in this order and will be part of the codified language for the organophosphate test system's classification. We are taking this action because we have determined that classifying the device into class II (special controls) will provide a reasonable assurance of safety and effectiveness of the device. We believe this action will also enhance patients' access to beneficial innovative devices, in part by reducing regulatory burdens.

  1. Medical Devices; Hematology and Pathology Devices; Classification of a Cervical Intraepithelial Neoplasia Test System. Final order.

    PubMed

    2018-01-03

    The Food and Drug Administration (FDA or we) is classifying the cervical intraepithelial neoplasia (CIN) test system into class II (special controls). The special controls that apply to the device type are identified in this order and will be part of the codified language for the CIN test system's classification. We are taking this action because we have determined that classifying the device into class II (special controls) will provide a reasonable assurance of safety and effectiveness of the device. We believe this action will also enhance patients' access to beneficial innovative devices, in part by reducing regulatory burdens.

  2. Non-invasive paper-based microfluidic device for ultra-low detection of urea through enzyme catalysis

    NASA Astrophysics Data System (ADS)

    Suresh, Vignesh; Qunya, Ong; Kanta, Bera Lakshmi; Yuh, Lee Yeong; Chong, Karen S. L.

    2018-03-01

    This work describes the design, fabrication and characterization of a paper-based microfluidic device for ultra-low detection of urea through enzyme catalysis. The microfluidic system comprises an entry port, a fluidic channel, a reaction zone and two electrodes (contacts). Wax printing was used to create fluidic channels on the surface of a chromatography paper. Pre-conceptualized designs of the fluidic channel are wax-printed on the paper substrate while the electrodes are screen-printed. The paper printed with wax is heated to cause the wax reflow along the thickness of the paper that selectively creates hydrophilic and hydrophobic zones inside the paper. Urease immobilized in the reaction zone catalyses urea into releasing ions and, thereby, generating a current flow between the electrodes. A measure of current with respect to time at a fixed potential enables the detection of urea. The methodology enabled urea concentration down to 1 pM to be detected. The significance of this work lies in the use of simple and inexpensive paper-based substrates to achieve detection of ultra-low concentrations of analytes such as urea. The process is non-invasive and employs a less cumbersome two-electrode assembly.

  3. Comparison and characterization of Android-based fall detection systems.

    PubMed

    Luque, Rafael; Casilari, Eduardo; Morón, María-José; Redondo, Gema

    2014-10-08

    Falls are a foremost source of injuries and hospitalization for seniors. The adoption of automatic fall detection mechanisms can noticeably reduce the response time of the medical staff or caregivers when a fall takes place. Smartphones are being increasingly proposed as wearable, cost-effective and not-intrusive systems for fall detection. The exploitation of smartphones' potential (and in particular, the Android Operating System) can benefit from the wide implantation, the growing computational capabilities and the diversity of communication interfaces and embedded sensors of these personal devices. After revising the state-of-the-art on this matter, this study develops an experimental testbed to assess the performance of different fall detection algorithms that ground their decisions on the analysis of the inertial data registered by the accelerometer of the smartphone. Results obtained in a real testbed with diverse individuals indicate that the accuracy of the accelerometry-based techniques to identify the falls depends strongly on the fall pattern. The performed tests also show the difficulty to set detection acceleration thresholds that allow achieving a good trade-off between false negatives (falls that remain unnoticed) and false positives (conventional movements that are erroneously classified as falls). In any case, the study of the evolution of the battery drain reveals that the extra power consumption introduced by the Android monitoring applications cannot be neglected when evaluating the autonomy and even the viability of fall detection systems.

  4. Comparison and Characterization of Android-Based Fall Detection Systems

    PubMed Central

    Luque, Rafael; Casilari, Eduardo; Morón, María-José; Redondo, Gema

    2014-01-01

    Falls are a foremost source of injuries and hospitalization for seniors. The adoption of automatic fall detection mechanisms can noticeably reduce the response time of the medical staff or caregivers when a fall takes place. Smartphones are being increasingly proposed as wearable, cost-effective and not-intrusive systems for fall detection. The exploitation of smartphones' potential (and in particular, the Android Operating System) can benefit from the wide implantation, the growing computational capabilities and the diversity of communication interfaces and embedded sensors of these personal devices. After revising the state-of-the-art on this matter, this study develops an experimental testbed to assess the performance of different fall detection algorithms that ground their decisions on the analysis of the inertial data registered by the accelerometer of the smartphone. Results obtained in a real testbed with diverse individuals indicate that the accuracy of the accelerometry-based techniques to identify the falls depends strongly on the fall pattern. The performed tests also show the difficulty to set detection acceleration thresholds that allow achieving a good trade-off between false negatives (falls that remain unnoticed) and false positives (conventional movements that are erroneously classified as falls). In any case, the study of the evolution of the battery drain reveals that the extra power consumption introduced by the Android monitoring applications cannot be neglected when evaluating the autonomy and even the viability of fall detection systems. PMID:25299953

  5. Electric drive systems including smoothing capacitor cooling devices and systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dede, Ercan Mehmet; Zhou, Feng

    An electric drive system includes a smoothing capacitor including at least one terminal, a bus bar electrically coupled to the at least one terminal, a thermoelectric device including a first side and a second side positioned opposite the first side, where the first side is thermally coupled to at least one of the at least one terminal and the bus bar, and a cooling element thermally coupled to the second side of the thermoelectric device, where the cooling element dissipates heat from the thermoelectric device.

  6. A new insole measurement system to detect bending and torsional moments at the human foot during footwear condition: a technical report.

    PubMed

    Stief, Thomas; Peikenkamp, Klaus

    2015-01-01

    Stress occurring at the feet while wearing footwear is often determined using pressure measurement systems. However, other forms of stress, such as bending, torsional and shear loadings, cannot be detected in shoes during day-to-day activities. Nevertheless, the detection of these types of stresses would be helpful for understanding the mechanical aspects of various kinds of hard and soft tissue injuries. Therefore, we describe the development of a new measuring device that allows the reliable determination of bending and torsional load at the foot in shoes. The system consists of a measuring insole and an analogue device with Bluetooth interface. The specific shape of the insole base layer, the positions of the strain gauges, and the interconnections between them have all been selected in such a way so as to isolate bending and torsional moment detections in the medial and lateral metatarsal region. The system was calibrated using a classical two-point test procedure. A single case study was executed to evaluate the new device for practical use. This application consisted of one subject wearing neutral shoes walking on a treadmill. The calibration results (coefficients of determination R(2) > 0.999) show that bending and torsional load can be reliably detected using the measurement system presented. In the single case study, alternating bending and torsional load can be detected during walking, and the shape of the detected bending moments can be confirmed by the measurements of Arndt et al. (J Biomech 35:621-8, 2002). Despite some limitations, the presented device allows for the reliable determination of bending and torsional stresses at the foot in shoes.

  7. Knowledge system and method for simulating chemical controlled release device performance

    DOEpatents

    Cowan, Christina E.; Van Voris, Peter; Streile, Gary P.; Cataldo, Dominic A.; Burton, Frederick G.

    1991-01-01

    A knowledge system for simulating the performance of a controlled release device is provided. The system includes an input device through which the user selectively inputs one or more data parameters. The data parameters comprise first parameters including device parameters, media parameters, active chemical parameters and device release rate; and second parameters including the minimum effective inhibition zone of the device and the effective lifetime of the device. The system also includes a judgemental knowledge base which includes logic for 1) determining at least one of the second parameters from the release rate and the first parameters and 2) determining at least one of the first parameters from the other of the first parameters and the second parameters. The system further includes a device for displaying the results of the determinations to the user.

  8. AIRBORNE DETECTION AND ANALYSIS OF PRIMARY COSMIC PARTICLES WITH A SCINTILLATION DEVICE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corkhill, deP.J.; Hoffman, R.A.

    1960-07-01

    Data are presented as derived from telemetered irformation from a primary cosmic-particle detecting device. The data are preliminury in nature in that comparison between the cosmic-particle spectrum (as shown by the mechanical detector) was not made with similar information provided by nuclear emulsions exposed to regions of pri

  9. Unexpected Listeria monocytogenes detection with a dithiothreitol-based device during an aseptic hip revision.

    PubMed

    Banche, Giuliana; Bistolfi, Alessandro; Allizond, Valeria; Galletta, Claudia; Iannantuoni, Maria Rita; Marra, Elisa Simona; Merlino, Chiara; Massè, Alessandro; Cuffini, Anna Maria

    2018-06-18

    Prosthetic joint infection diagnosis is often difficult since biofilm-embedded microorganisms attach well to the prosthetic surfaces and resist their detection by conventional methods. DL-dithiothreitol has been described as a valid method for biofilm detachment on orthopedic devices. We report the case of an occasional detection of Listeria monocytogenes in a non immuno-compromised patient with a preoperative diagnosis of aseptic loosening. The infection diagnosis due to such rare bacteria was made postoperatively, thanks to a DL-dithiothreitol-based device. This may be considered a feasible approach for the microbiological analysis of prosthetic joint infection, considering that a prompt diagnosis of such biofilm-associated infections could bring some advantages, such as an early and appropriate antibiotic therapy administration and a reduction of undiagnosed infections.

  10. Devices, systems, and methods for conducting sandwich assays using sedimentation

    DOEpatents

    Schaff, Ulrich Y; Sommer, Gregory J; Singh, Anup K; Hatch, Anson V

    2015-02-03

    Embodiments of the present invention are directed toward devices, systems, and method for conducting sandwich assays using sedimentation. In one example, a method includes generating complexes on a plurality of beads in a fluid sample, individual ones of the complexes comprising a capture agent, a target analyte, and a labeling agent. The plurality of beads including the complexes may be transported through a density media, wherein the density media has a density lower than a density of the beads and higher than a density of the fluid sample, and wherein the transporting occurs, at least in part, by sedimentation. Signal may be detected from the labeling agents of the complexes.

  11. Successful placement of the Essure device after a failed procedure using the Adiana system for hysteroscopic sterilisation

    PubMed Central

    Schuurman, Teska; Veersema, Sebastiaan

    2011-01-01

    This case report describes a successful hysteroscopic sterilisation using the Essure Permanent Birth Control device (Conceptus Inc., Mountain View, California, United States) after a failed procedure of the Adiana Permanent Contraception system (Hologic, Inc., Bedford, Maryland, United States). The delivery catheter of the Adiana system was able to be inserted into the left fallopian tube without difficulty and per manufacturer specifications. However, the position detection array was unable to sense four-quadrant tissue contact. The same issue occurred at the contralateral tube. Using the Essure system, the coils were able to be placed in both ostia easily and adequately. In patients in whom the Adiana system fails to occlude the fallopian tubes due to procedural, anatomic or device-related factors, the Essure procedure may be an efficient alternative. PMID:22689274

  12. 78 FR 68861 - Certain Navigation Products, Including GPS Devices, Navigation and Display Systems, Radar Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ... Devices, Navigation and Display Systems, Radar Systems, Navigational Aids, Mapping Systems and Related... navigation products, including GPS devices, navigation and display systems, radar systems, navigational aids..., radar systems, navigational aids, mapping systems and related software by reason of infringement of one...

  13. Adaptive Device Context Based Mobile Learning Systems

    ERIC Educational Resources Information Center

    Pu, Haitao; Lin, Jinjiao; Song, Yanwei; Liu, Fasheng

    2011-01-01

    Mobile learning is e-learning delivered through mobile computing devices, which represents the next stage of computer-aided, multi-media based learning. Therefore, mobile learning is transforming the way of traditional education. However, as most current e-learning systems and their contents are not suitable for mobile devices, an approach for…

  14. The inescapable smart impact detection system (ISIS): An ubiquitous and personalized fall detector based on a distributed 'divide and conquer strategy'.

    PubMed

    Prado-Velasco, Manuel; del Rio-Cidoncha, Maria Gloria; Ortiz-Marin, Rafael

    2008-01-01

    Despite the intense research in the last decade with the aim of developing a reliable solution for fall detection in the elderly and other risk populations, it can be asserted that the diffusion of fall detectors in the geriatric practice is near null. This scenario is similar to the very scarce use of telemedicine in healthcare. The present work begins analyzing why fall detectors have not achieved to permeate the industry. That road is used to know the drawbacks of current devices and systems, besides to allow studying several important concepts underlying the principles of fall detection. A novel smart detection system based on that survey is finally briefly presented. The design of this device is founded on the experience and results obtained by an earlier device that was designed in the framework of the thesis of one of the authors.

  15. Highly Sensitive and Practical Detection of Plant Viruses via Electrical Impedance of Droplets on Textured Silicon-Based Devices

    PubMed Central

    Ambrico, Marianna; Ambrico, Paolo Francesco; Minafra, Angelantonio; De Stradis, Angelo; Vona, Danilo; Cicco, Stefania R.; Palumbo, Fabio; Favia, Pietro; Ligonzo, Teresa

    2016-01-01

    Early diagnosis of plant virus infections before the disease symptoms appearance may represent a significant benefit in limiting disease spread by a prompt application of appropriate containment steps. We propose a label-free procedure applied on a device structure where the electrical signal transduction is evaluated via impedance spectroscopy techniques. The device consists of a droplet suspension embedding two representative purified plant viruses i.e., Tomato mosaic virus and Turnip yellow mosaic virus, put in contact with a highly hydrophobic plasma textured silicon surface. Results show a high sensitivity of the system towards the virus particles with an interestingly low detection limit, from tens to hundreds of attomolar corresponding to pg/mL of sap, which refers, in the infection time-scale, to a concentration of virus particles in still-symptomless plants. Such a threshold limit, together with an envisaged engineering of an easily manageable device, compared to more sophisticated apparatuses, may contribute in simplifying the in-field plant virus diagnostics. PMID:27869726

  16. Potential of connected devices to optimize cattle reproduction.

    PubMed

    Saint-Dizier, Marie; Chastant-Maillard, Sylvie

    2018-05-01

    Estrus and calving are two major events of reproduction that benefit from connected devices because of their crucial importance in herd economics and the amount of time required for their detection. The objectives of this review are to: 1) provide an update on performances reached by sensor systems to detect estrus and calving time; 2) discuss current economic issues related to connected devices for the management of cattle reproduction; 3) propose perspectives for these devices. The main physiological parameters monitored separately or in combination by connected devices are the cow activity, body temperature and rumination or eating behavior. The combination of several indicators in one sensor may maximize the performances of estrus and calving detection. An effort remains to be made for the prediction of calvings that will require human assistance (dystocia). The main reasons to invest in connected devices are to optimize herd reproductive performances and reduce labor on farm. The economic benefit was evaluated for estrus detection and depends on the initial herd performances, herd size, labor cost and price of the equipment. Major issues associated with the use of automated sensor systems are the weight of financial investment, the lack of economic analysis and limited skills of the users to manage associated technologies. In the near future, connected devices may allow a precise phenotyping of reproductive and health traits on animals and could help to improve animal welfare and public perception of animal production. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. 78 FR 58785 - Unique Device Identification System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-24

    ... to submitting a report. It will allow FDA, health care providers, and industry to more rapidly...-sustaining. Under the UDI system established by this rule, the health care community and the public will be... with any similar device which might lead to misuse of the device. Health care providers will no longer...

  18. Control system and method for prosthetic devices

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1992-01-01

    A control system and method for prosthetic devices is provided. The control system comprises a transducer for receiving movement from a body part for generating a sensing signal associated with that movement. The sensing signal is processed by a linearizer for linearizing the sensing signal to be a linear function of the magnitude of the distance moved by the body part. The linearized sensing signal is normalized to be a function of the entire range of body part movement from the no-shrug position of the movable body part through the full-shrug position of the movable body part. The normalized signal is divided into a plurality of discrete command signals. The discrete command signals are used by typical converter devices which are in operational association with the prosthetic device. The converter device uses the discrete command signals for driving the movable portions of the prosthetic device and its sub-prosthesis. The method for controlling a prosthetic device associated with the present invention comprises the steps of receiving the movement from the body part, generating a sensing signal in association with the movement of the body part, linearizing the sensing signal to be a linear function of the magnitude of the distance moved by the body part, normalizing the linear signal to be a function of the entire range of the body part movement, dividing the normalized signal into a plurality of discrete command signals, and implementing the plurality of discrete command signals for driving the respective movable prosthesis device and its sub-prosthesis.

  19. Method and system for mesh network embedded devices

    NASA Technical Reports Server (NTRS)

    Wang, Ray (Inventor)

    2009-01-01

    A method and system for managing mesh network devices. A mesh network device with integrated features creates an N-way mesh network with a full mesh network topology or a partial mesh network topology.

  20. Detection of Special Operations Forces Using Night Vision Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, C.M.

    2001-10-22

    Night vision devices, such image intensifiers and infrared imagers, are readily available to a host of nations, organizations, and individuals through international commerce. Once the trademark of special operations units, these devices are widely advertised to ''turn night into day''. In truth, they cannot accomplish this formidable task, but they do offer impressive enhancement of vision in limited light scenarios through electronically generated images. Image intensifiers and infrared imagers are both electronic devices for enhancing vision in the dark. However, each is based upon a totally different physical phenomenon. Image intensifiers amplify the available light energy whereas infrared imagers detectmore » the thermal energy radiated from all objects. Because of this, each device operates from energy which is present in a different portion of the electromagnetic spectrum. This leads to differences in the ability of each device to detect and/or identify objects. This report is a compilation of the available information on both state-of-the-art image intensifiers and infrared imagers. Image intensifiers developed in the United States, as well as some foreign made image intensifiers, are discussed. Image intensifiers are categorized according to their spectral response and sensitivity using the nomenclature of GEN I, GEN II, and GEN III. As the first generation of image intensifiers, GEN I, were large and of limited performance, this report will deal with only GEN II and GEN III equipment. Infrared imagers are generally categorized according to their spectral response, sensor materials, and related sensor operating temperature using the nomenclature Medium Wavelength Infrared (MWIR) Cooled and Long Wavelength Infrared (LWIR) Uncooled. MWIR Cooled refers to infrared imagers which operate in the 3 to 5 {micro}m wavelength electromagnetic spectral region and require either mechanical or thermoelectric coolers to keep the sensors operating at 77 K. LWIR Uncooled

  1. Assessment of UWB radar for improvised explosive device detection

    NASA Astrophysics Data System (ADS)

    Kegege, Obadiah; Li, Junfei; Foltz, Heinrich

    2006-05-01

    The goal of our research is to assess the capability of ultra-wide-band (UWB) radar for detection of roadside improvised explosive devices (IEDs). Radar scattering signatures of artillery shells over a broadband frequency range, with different Tx/Rx polarizations, and at various aspect angles have been explored based on simulation and indoor measurement. Characteristics of IEDs versus clutter, wave penetration at different frequencies are also investigated. Finally, visibility of IED targets is tested on a moving cart in outdoor settings, with IED targets on ground surface, recessed, and buried underground at different distances away from the radar.

  2. Versatile microfluidic total internal reflection (TIR)-based devices: application to microbeads velocity measurement and single molecule detection with upright and inverted microscope.

    PubMed

    Le, Nam Cao Hoai; Yokokawa, Ryuji; Dao, Dzung Viet; Nguyen, Thien Duy; Wells, John C; Sugiyama, Susumu

    2009-01-21

    A poly(dimethylsiloxane) (PDMS) chip for Total Internal Reflection (TIR)-based imaging and detection has been developed using Si bulk micromachining and PDMS casting. In this paper, we report the applications of the chip on both inverted and upright fluorescent microscopes and confirm that two types of sample delivery platforms, PDMS microchannel and glass microchannel, can be easily integrated depending on the magnification of an objective lens needed to visualize a sample. Although any device configuration can be achievable, here we performed two experiments to demonstrate the versatility of the microfluidic TIR-based devices. The first experiment was velocity measurement of Nile red microbeads with nominal diameter of 500 nm in a pressure-driven flow. The time-sequenced fluorescent images of microbeads, illuminated by an evanescent field, were cross-correlated by a Particle Image Velocimetry (PIV) program to obtain near-wall velocity field of the microbeads at various flow rates from 500 nl/min to 3000 nl/min. We then evaluated the capabilities of the device for Single Molecule Detection (SMD) of fluorescently labeled DNA molecules from 30 bp to 48.5 kbp and confirm that DNA molecules as short as 1105 bp were detectable. Our versatile, integrated device could provide low-cost and fast accessibility to Total Internal Reflection Fluorescent Microscopy (TIRFM) on both conventional upright and inverted microscopes. It could also be a useful component in a Micro-Total Analysis System (micro-TAS) to analyze nanoparticles or biomolecules near-wall transport or motion.

  3. Detection of piperonal emitted from polymer controlled odor mimic permeation systems utilizing Canis familiaris and solid phase microextraction-ion mobility spectrometry.

    PubMed

    Macias, Michael S; Guerra-Diaz, Patricia; Almirall, José R; Furton, Kenneth G

    2010-02-25

    Currently, in the field of odor detection, there is generally a wider variation in limit of detections (LODs) for canines than instruments. The study presented in this paper introduces an improved protocol for the creation of controlled odor mimic permeation system (COMPS) devices for use as standards in canine training and discusses the canine detection thresholds of piperonal, a starting material for the illicit drug 3,4-methylenedioxymethamphetamine (MDMA), when exposed to these devices. Additionally, this paper describes the first-ever reported direct comparison of solid phase microextraction-ion mobility spectrometry (SPME-IMS) to canine detection for the MDMA odorant, piperonal. The research presented shows the reliability of COMPS devices as low cost field calibrants providing a wide range of odorant concentrations for biological and instrumental detectors. The canine LOD of piperonal emanating from the 100 ng s(-1) COMPS was found to be 1 ng as compared to the SPME-IMS LOD of piperonal in a static, closed system at 2 ng, with a linear dynamic range from 2 ng to 11 ng. The utilization of the COMPS devices would allow for training that will reduce the detection variability between canines and maintain improved consistency for training purposes. Since both SPME and IMS are field portable technologies, it is expected that this coupled method will be useful as a complement to canine detection for the field detection of MDMA. 2009 Elsevier Ireland Ltd. All rights reserved.

  4. Emulating Industrial Control System Field Devices Using Gumstix Technology

    DTIC Science & Technology

    2012-06-01

    EMULATING INDUSTRIAL CONTROL SYSTEM FIELD DEVICES USING GUMSTIX TECHNOLOGY THESIS Dustin J...APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. The views expressed in this thesis are those of the...EMULATING INDUSTRIAL CONTROL SYSTEM FIELD DEVICES USING GUMSTIX TECHNOLOGY THESIS Presented to the Faculty Department of

  5. Toxin activity assays, devices, methods and systems therefor

    DOEpatents

    Koh, Chung-Yan; Schaff, Ulrich Y.; Sommer, Gregory Jon

    2016-04-05

    Embodiments of the present invention are directed toward devices, system and method for conducting toxin activity assay using sedimentation. The toxin activity assay may include generating complexes which bind to a plurality of beads in a fluid sample. The complexes may include a target toxin and a labeling agent, or may be generated due to presence of active target toxin and/or labeling agent designed to be incorporated into complexes responsive to the presence of target active toxin. The plurality of beads including the complexes may be transported through a density media, wherein the density media has a lower density than a density of the beads and higher than a density of the fluid sample, and wherein the transporting occurs, at least in part, by sedimentation. Signal may be detected from the labeling agents of the complexes.

  6. Portable device for the detection of nitro-explosives based on optical properties of sensor's material

    NASA Astrophysics Data System (ADS)

    Baranova, A. A.; Khokhlov, K. O.

    2014-11-01

    The aim of this study was to design a device for explosives detection. The study design is based on excited steady-state luminescence quenching registration. Sensor's material luminescence intensity reduction occurs due to an interaction of explosives vapours contained in the air. The decrease rate of the luminescence intensity indicates the concentration of vapours. To study the luminescent properties of the sensor element, its luminescence spectra excited by photons with energies in the range 280 - 425 nm were measured. The excitation photoluminescence spectra for luminescence bands of the sensor element were also measured. Excitation source was light emitting diode (375 nm) and luminescent signal receiver was a photodiode (430 - 650 nm) in device designed. The device is operated under control of a program. The algorithm provides multiple operating modes (configuration, calibration, measurement etc.). Thus this device is referred to the class of devices with increased sensitivity to the explosives vapors. The advantages of device are autonomic power, small weight and sizes, simplicity of device operation for measurements.

  7. Soft-Fault Detection Technologies Developed for Electrical Power Systems

    NASA Technical Reports Server (NTRS)

    Button, Robert M.

    2004-01-01

    The NASA Glenn Research Center, partner universities, and defense contractors are working to develop intelligent power management and distribution (PMAD) technologies for future spacecraft and launch vehicles. The goals are to provide higher performance (efficiency, transient response, and stability), higher fault tolerance, and higher reliability through the application of digital control and communication technologies. It is also expected that these technologies will eventually reduce the design, development, manufacturing, and integration costs for large, electrical power systems for space vehicles. The main focus of this research has been to incorporate digital control, communications, and intelligent algorithms into power electronic devices such as direct-current to direct-current (dc-dc) converters and protective switchgear. These technologies, in turn, will enable revolutionary changes in the way electrical power systems are designed, developed, configured, and integrated in aerospace vehicles and satellites. Initial successes in integrating modern, digital controllers have proven that transient response performance can be improved using advanced nonlinear control algorithms. One technology being developed includes the detection of "soft faults," those not typically covered by current systems in use today. Soft faults include arcing faults, corona discharge faults, and undetected leakage currents. Using digital control and advanced signal analysis algorithms, we have shown that it is possible to reliably detect arcing faults in high-voltage dc power distribution systems (see the preceding photograph). Another research effort has shown that low-level leakage faults and cable degradation can be detected by analyzing power system parameters over time. This additional fault detection capability will result in higher reliability for long-lived power systems such as reusable launch vehicles and space exploration missions.

  8. Rapid detection of Cu(2+) by a paper-based microfluidic device coated with bovine serum albumin (BSA)-Au nanoclusters.

    PubMed

    Fang, Xueen; Zhao, Qianqian; Cao, Hongmei; Liu, Juan; Guan, Ming; Kong, Jilie

    2015-11-21

    In this work, bovine serum albumin (BSA)-Au nanoclusters were used to coat a paper-based microfluidic device. This device acted as a Cu(2+) biosensor that showed fluorescence quenching on detection of copper ions. The detection limit of this sensor could be adjusted by altering the water absorbing capacity of the device. Qualitative and semi-quantitative results could be obtained visually without the aid of any advanced instruments. This sensor could test Cu(2+) rapidly with high specificity and sensitivity, which would be useful for point-of-care testing (POCT).

  9. Catheterless Long-Term Ambulatory Urodynamic Measurement Using a Novel Three-Device System

    PubMed Central

    Wille, Sebastian; Schumacher, Pauline; Paas, Jenny; Tenholte, Dirk; Eminaga, Okyaz; Müller, Ute; Muthen, Noemi; Mehner, Jan; Cornely, Oliver; Engelmann, Udo

    2014-01-01

    Aims Long-term urodynamics are required because bladder-emptying disorders are often not clearly revealed by conventional urodynamics. Patients with severe clinical overactive bladder symptoms, for instance, often show normal results. This may be due to the short evaluation time and psychological factors that complicate conventional urodynamics. This study aimed to develop an ambulatory three-component urodynamic measurement system that is easy to operate, registers urodynamic parameters for several days, and has no negative impact on the patient. Methods We developed an intravesical capsule combined with a hand-held device to register voiding desire and micturition, and an alarm pad device that detects urine loss. Recently, the intravesical capsule and its proven function were detailed in the literature. Here, we present detailed in vitro results using a female bladder model. The flexible capsule was C-shaped to minimize the risk of expulsion from the bladder during micturition. Results of biocompatibility evaluation of the intravesical capsule, which is called Wille Capsule (WiCa) are described. Results The WiCa with an oval nose and a maximum outer diameter of 5.5 mm was easily inserted through a 25-French cystoscope. Removing the WiCa by grasping the nose using the female model with bladder was easily conducted. Expulsion of the WiCa during voiding was avoided through a novel C-shaped device design. Based on in vitro cytotoxicity studies, the capsule is a promising and safe device. Conclusion Our novel system is an innovative minimally-invasive tool for accurate long-term urodynamic measurement, and does not require inserting a transurethral catheter. PMID:24840482

  10. Field Tests of a Tractor Rollover Detection and Emergency Notification System.

    PubMed

    Liu, B; Koc, A B

    2015-04-01

    The objective of this research was to assess the feasibility of a rollover detection and emergency notification system for farm tractors using field tests. The emergency notification system was developed based on a tractor stability model and implemented on a mobile electronic device with the iOS operating system. A complementary filter was implemented to combine the data from the accelerometer and gyroscope sensors to improve their accuracies in calculating the roll and pitch angles and the roll and pitch rates. The system estimates a stability index value during tractor operation, displays feedback messages when the stability index is lower than a preset threshold value, and transmits emergency notification messages when an overturn happens. Ten tractor rollover tests were conducted on a field track. The developed system successfully monitored the stability of the tractor during all of the tests. The iOS application was able to detect rollover accidents and transmit emergency notifications in the form of a phone call and email when an accident was detected. The system can be a useful tool for training and education in safe tractor operation. The system also has potential for stability monitoring and emergency notification of other on-road and off-road motorized vehicles.

  11. Integrated neuron circuit for implementing neuromorphic system with synaptic device

    NASA Astrophysics Data System (ADS)

    Lee, Jeong-Jun; Park, Jungjin; Kwon, Min-Woo; Hwang, Sungmin; Kim, Hyungjin; Park, Byung-Gook

    2018-02-01

    In this paper, we propose and fabricate Integrate & Fire neuron circuit for implementing neuromorphic system. Overall operation of the circuit is verified by measuring discrete devices and the output characteristics of the circuit. Since the neuron circuit shows asymmetric output characteristic that can drive synaptic device with Spike-Timing-Dependent-Plasticity (STDP) characteristic, the autonomous weight update process is also verified by connecting the synaptic device and the neuron circuit. The timing difference of the pre-neuron and the post-neuron induce autonomous weight change of the synaptic device. Unlike 2-terminal devices, which is frequently used to implement neuromorphic system, proposed scheme of the system enables autonomous weight update and simple configuration by using 4-terminal synapse device and appropriate neuron circuit. Weight update process in the multi-layer neuron-synapse connection ensures implementation of the hardware-based artificial intelligence, based on Spiking-Neural- Network (SNN).

  12. Full On-Device Stay Points Detection in Smartphones for Location-Based Mobile Applications.

    PubMed

    Pérez-Torres, Rafael; Torres-Huitzil, César; Galeana-Zapién, Hiram

    2016-10-13

    The tracking of frequently visited places, also known as stay points, is a critical feature in location-aware mobile applications as a way to adapt the information and services provided to smartphones users according to their moving patterns. Location based applications usually employ the GPS receiver along with Wi-Fi hot-spots and cellular cell tower mechanisms for estimating user location. Typically, fine-grained GPS location data are collected by the smartphone and transferred to dedicated servers for trajectory analysis and stay points detection. Such Mobile Cloud Computing approach has been successfully employed for extending smartphone's battery lifetime by exchanging computation costs, assuming that on-device stay points detection is prohibitive. In this article, we propose and validate the feasibility of having an alternative event-driven mechanism for stay points detection that is executed fully on-device, and that provides higher energy savings by avoiding communication costs. Our solution is encapsulated in a sensing middleware for Android smartphones, where a stream of GPS location updates is collected in the background, supporting duty cycling schemes, and incrementally analyzed following an event-driven paradigm for stay points detection. To evaluate the performance of the proposed middleware, real world experiments were conducted under different stress levels, validating its power efficiency when compared against a Mobile Cloud Computing oriented solution.

  13. Full On-Device Stay Points Detection in Smartphones for Location-Based Mobile Applications

    PubMed Central

    Pérez-Torres, Rafael; Torres-Huitzil, César; Galeana-Zapién, Hiram

    2016-01-01

    The tracking of frequently visited places, also known as stay points, is a critical feature in location-aware mobile applications as a way to adapt the information and services provided to smartphones users according to their moving patterns. Location based applications usually employ the GPS receiver along with Wi-Fi hot-spots and cellular cell tower mechanisms for estimating user location. Typically, fine-grained GPS location data are collected by the smartphone and transferred to dedicated servers for trajectory analysis and stay points detection. Such Mobile Cloud Computing approach has been successfully employed for extending smartphone’s battery lifetime by exchanging computation costs, assuming that on-device stay points detection is prohibitive. In this article, we propose and validate the feasibility of having an alternative event-driven mechanism for stay points detection that is executed fully on-device, and that provides higher energy savings by avoiding communication costs. Our solution is encapsulated in a sensing middleware for Android smartphones, where a stream of GPS location updates is collected in the background, supporting duty cycling schemes, and incrementally analyzed following an event-driven paradigm for stay points detection. To evaluate the performance of the proposed middleware, real world experiments were conducted under different stress levels, validating its power efficiency when compared against a Mobile Cloud Computing oriented solution. PMID:27754388

  14. Experimental Measurement-Device-Independent Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Chen, Teng-Yun; Wang, Liu-Jun; Liang, Hao; Shentu, Guo-Liang; Wang, Jian; Cui, Ke; Yin, Hua-Lei; Liu, Nai-Le; Li, Li; Ma, Xiongfeng; Pelc, Jason S.; Fejer, M. M.; Peng, Cheng-Zhi; Zhang, Qiang; Pan, Jian-Wei

    2013-09-01

    Quantum key distribution is proven to offer unconditional security in communication between two remote users with ideal source and detection. Unfortunately, ideal devices never exist in practice and device imperfections have become the targets of various attacks. By developing up-conversion single-photon detectors with high efficiency and low noise, we faithfully demonstrate the measurement-device-independent quantum-key-distribution protocol, which is immune to all hacking strategies on detection. Meanwhile, we employ the decoy-state method to defend attacks on a nonideal source. By assuming a trusted source scenario, our practical system, which generates more than a 25 kbit secure key over a 50 km fiber link, serves as a stepping stone in the quest for unconditionally secure communications with realistic devices.

  15. Experimental measurement-device-independent quantum key distribution.

    PubMed

    Liu, Yang; Chen, Teng-Yun; Wang, Liu-Jun; Liang, Hao; Shentu, Guo-Liang; Wang, Jian; Cui, Ke; Yin, Hua-Lei; Liu, Nai-Le; Li, Li; Ma, Xiongfeng; Pelc, Jason S; Fejer, M M; Peng, Cheng-Zhi; Zhang, Qiang; Pan, Jian-Wei

    2013-09-27

    Quantum key distribution is proven to offer unconditional security in communication between two remote users with ideal source and detection. Unfortunately, ideal devices never exist in practice and device imperfections have become the targets of various attacks. By developing up-conversion single-photon detectors with high efficiency and low noise, we faithfully demonstrate the measurement-device-independent quantum-key-distribution protocol, which is immune to all hacking strategies on detection. Meanwhile, we employ the decoy-state method to defend attacks on a nonideal source. By assuming a trusted source scenario, our practical system, which generates more than a 25 kbit secure key over a 50 km fiber link, serves as a stepping stone in the quest for unconditionally secure communications with realistic devices.

  16. Emerging Techniques for Field Device Security

    DOE PAGES

    Schwartz, Moses; Bechtel Corp.; Mulder, John; ...

    2014-11-01

    Critical infrastructure, such as electrical power plants and oil refineries, rely on embedded devices to control essential processes. State of the art security is unable to detect attacks on these devices at the hardware or firmware level. We provide an overview of the hardware used in industrial control system field devices, look at how these devices have been attacked, and discuss techniques and new technologies that may be used to secure them. We follow three themes: (1) Inspectability, the capability for an external arbiter to monitor the internal state of a device. (2) Trustworthiness, the degree to which a systemmore » will continue to function correctly despite disruption, error, or attack. (3) Diversity, the use of adaptive systems and complexity to make attacks more difficult by reducing the feasible attack surface.« less

  17. Device-tissue interactions: a collaborative communications system.

    PubMed

    Chekan, Edward; Whelan, Richard L; Feng, Alexander H

    2013-07-29

    Medical devices, including surgical staplers, energy-based devices, and access enabling devices, are used routinely today in the majority of surgical procedures. Although these technically advanced devices have proved to be of immense benefit to both surgeons and patients, their rapid development and continuous improvement have had the unintended consequence of creating a knowledge gap for surgeons due to a lack of adequate training and educational programs. Thus, there is an unmet need in the surgical community to collect existing data on device-tissue interactions and subsequently develop research and educational programs to fill this gap in surgical training. Gathering data and developing these new programs will require collaboration between doctors, engineers, and scientists, from both clinical practice and industry. This paper presents a communications system to enable this unique collaboration that can potentially result in significantly improved patient care.

  18. Portable Bio/Chemosensoristic Devices: Innovative Systems for Environmental Health and Food Safety Diagnostics.

    PubMed

    Dragone, Roberto; Grasso, Gerardo; Muccini, Michele; Toffanin, Stefano

    2017-01-01

    This mini-review covers the newly developed biosensoristic and chemosensoristic devices described in recent literature for detection of contaminants in both environmental and food real matrices. Current needs in environmental and food surveillance of contaminants require new simplified, sensitive systems, which are portable and allow for rapid and on-site monitoring and diagnostics. Here, we focus on optical and electrochemical bio/chemosensoristic devices as promising tools with interesting analytical features that can be potentially exploited for innovative on-site and real-time applications for diagnostics and monitoring of environmental and food matrices (e.g., agricultural waters and milk). In near future, suitably developed and implemented bio/chemosensoristic devices will be a new and modern technological solution for the identification of new quality and safety marker indexes as well as for a more proper and complete characterization of abovementioned environmental and food matrices. Integrated bio/chemosensoristic devices can also allow an "holistic approach" that may prove to be more suitable for diagnostics of environmental and food real matrices, where the copresence of more bioactive substances is frequent. Therefore, this approach can be focused on the determination of net effect (mixture effect) of bioactive substances present in real matrices.

  19. Wide-band gas leak imaging detection system using UFPA

    NASA Astrophysics Data System (ADS)

    Jin, Wei-qi; Li, Jia-kun; Dun, Xiong; Jin, Minglei; Wang, Xia

    2014-11-01

    The leakage of toxic or hazardous gases not only pollutes the environment, but also threatens people's lives and property safety. Many countries attach great importance to the rapid and effective gas leak detection technology and instrument development. However, the gas leak imaging detection systems currently existing are generally limited to a narrow-band in Medium Wavelength Infrared (MWIR) or Long Wavelength Infrared (LWIR) cooled focal plane imaging, which is difficult to detect the common kinds of the leaking gases. Besides the costly cooled focal plane array is utilized, the application promotion is severely limited. To address this issue, a wide-band gas leak IR imaging detection system using Uncooled Focal Plane Array (UFPA) detector is proposed, which is composed of wide-band IR optical lens, sub-band filters and switching device, wide-band UFPA detector, video processing and system control circuit. A wide-band (3µm~12µm) UFPA detector is obtained by replacing the protection window and optimizing the structural parameters of the detector. A large relative aperture (F#=0.75) wide-band (3μm~12μm) multispectral IR lens is developed by using the focus compensation method, which combining the thickness of the narrow-band filters. The gas leak IR image quality and the detection sensitivity are improved by using the IR image Non-Uniformity Correction (NUC) technology and Digital Detail Enhancement (DDE) technology. The wide-band gas leak IR imaging detection system using UFPA detector takes full advantage of the wide-band (MWIR&LWIR) response characteristic of the UFPA detector and the digital image processing technology to provide the resulting gas leak video easy to be observed for the human eyes. Many kinds of gases, which are not visible to the naked eyes, can be sensitively detected and visualized. The designed system has many commendable advantages, such as scanning a wide range simultaneously, locating the leaking source quickly, visualizing the gas

  20. A cryogen-free ultralow-field superconducting quantum interference device magnetic resonance imaging system.

    PubMed

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2014-09-01

    Magnetic resonance imaging (MRI) at microtesla fields using superconducting quantum interference device (SQUID) detection has previously been demonstrated, and advantages have been noted. Although the ultralow-field SQUID MRI technique would not need the heavy superconducting magnet of conventional MRI systems, liquid helium required to cool the low-temperature detector still places a significant burden on its operation. We have built a prototype cryocooler-based SQUID MRI system that does not require a cryogen. The SQUID detector and the superconducting gradiometer were cooled down to 3.7 K and 4.3 K, respectively. We describe the prototype design, characterization, a phantom image, and areas of further improvements needed to bring the imaging performance to parity with conventional MRI systems.

  1. Intrinsic fluorescence based in-vivo detection of cervical precancer with hand held prototype device

    NASA Astrophysics Data System (ADS)

    Meena, Bharat Lal; Raikwar, Akanksha; Pandey, Kiran; Agarwal, Asha; Pantola, Chayanika; Pradhan, Asima

    2018-02-01

    A prototype device (hand held probe) designed and fabricated in the lab has been tested for cervical precancer detection using intrinsic fluorescence. The intrinsic fluorescence gets strongly modulated by the interplay of scattering and absorption. This masks valuable biochemical information which is present in the intrinsic fluorescence. These distortion effects can be minimized by normalizing the polarized fluorescence spectra by the polarized elastic scattering spectra. The measurements have been made with a in-house fabricated device using a 405 nm diode laser and white light source respectively. 166 sites of different grades of cervical pre-cancer biopsy samples (CIN I and CIN II) (CIN: cervical intraepithelial neoplastic) have been discriminated from 29 sites of normal biopsy samples using principal component analysis (PCA) based linear discriminant analysis (LDA). The sensitivity and specificity for discrimination of normal samples from CIN I are found to be 99% and 96% respectively. Further the normal samples can be discriminated from CIN II samples with 96% sensitivity and 96% specificity. Based on these promising ex-vivo results an in-vivo study on patients has been initiated in the hospital. The hand held device built in-house shows promise as a useful tool for in vivo cervical precancer detection by polarized fluorescence. Preliminary in-vivo results on 10 patients indicate the efficacy of the hand held device for screening cervical precancers using intrinsic fluorescence.

  2. Medical devices; hematology and pathology devices; classification of cord blood processing system and storage container. Final rule.

    PubMed

    2007-02-01

    The Food and Drug Administration (FDA) is classifying a cord blood processing system and storage container into class II (special controls). The special control that will apply to this device is the guidance document entitled "Class II Special Controls Guidance Document: Cord Blood Processing System and Storage Container." FDA is classifying this device into class II (special controls) in order to provide a reasonable assurance of safety and effectiveness of this device. Elsewhere in this issue of the Federal Register, FDA is announcing the availability of the guidance document that will serve as the special control for this device.

  3. Spintronic logic: from switching devices to computing systems

    NASA Astrophysics Data System (ADS)

    Friedman, Joseph S.

    2017-09-01

    Though numerous spintronic switching devices have been proposed or demonstrated, there has been significant difficulty in translating these advances into practical computing systems. The challenge of cascading has impeded the integration of multiple devices into a logic family, and several proposed solutions potentially overcome these challenges. Here, the cascading techniques by which the output of each spintronic device can drive the input of another device are described for several logic families, including spin-diode logic (in particular, all-carbon spin logic), complementary magnetic tunnel junction logic (CMAT), and emitter-coupled spin-transistor logic (ECSTL).

  4. Device for detecting the specific gravity of a liquid. [Patent application

    DOEpatents

    Derouin, C.R.; Kerwin, W.J.; McCormick, J.B.; Bobbett, R.E.

    1980-11-18

    A device for detecting the specific gravity of a liquid and a device for detecting the state of charge of a liquid phase electrolyte battery are described. In one embodiment of the present invention, a change in the critical angle of total internal reflection is utilized to determine the index of refraction of the liquid to be measured. It is shown that the index of refraction of the liquid is a function of the specific gravity of the liquid. In applications for measuring the state of charge of a battery, the specific gravity is proportional to the state of charge of the battery. A change in intensity of rays intersecting an interface surface indicates the critical angle which is a direct indication of the specific gravity of the liquid and the state of charge of a battery. In another embodiment, a light beam is projected through a transparent medium and then through a portion of the liquid to be measured. A change in refraction due to a change in the index of refraction of the liquid produces a deflection of the beam which is measured by a detector. The magnitude of deflection of the beam is directly proportional to the specific gravity of the liquid and the state of charge of a battery.

  5. Single-Use, Electricity-Free Amplification Device for Detection of HIV-1

    PubMed Central

    Curtis, Kelly A.; Rudolph, Donna L.; Morrison, Daphne; Guelig, Dylan; Diesburg, Steven; McAdams, David; Burton, Robert A.; LaBarre, Paul; Owen, Michele

    2016-01-01

    Early and accurate diagnosis of HIV is key for the reduction of transmission and initiation of patient care. The availability of a rapid nucleic acid test (NAT) for use at the point-of-care (POC) will fill a gap in HIV diagnostics, improving the diagnosis of acute infection and HIV in infants born to infected mothers. In this study, we evaluated the performance of non-instrumented nucleic acid amplification, single-use disposable (NINA-SUD) devices for the detection of HIV-1 in whole blood using reverse-transcription, loop-mediated isothermal amplification (RT-LAMP) with lyophilized reagents. The NINA-SUD heating device harnesses the heat from an exothermic chemical reaction initiated by the addition of saline to magnesium iron powder. Reproducibility was demonstrated between NINA-SUD units and comparable, if not superior, performance for detecting clinical specimens was observed as compared to the thermal cycler. The stability of the lyophilized HIV-1 RT-LAMP reagents was also demonstrated following storage at −20, 4, 25, and 30°C for up to one month. The single-use, disposable NAT minimizes hands-on time and has the potential to facilitate HIV-1 testing in resource-limited settings or at the POC. PMID:27616198

  6. Integrated microfluidic systems for sample preparation and detection of respiratory pathogen Bordetella pertussis.

    PubMed

    de la Rosa, Carlos; Prakash, Ranjit; Tilley, Peter A; Fox, Julie D; Kaler, Karan V i S

    2007-01-01

    An integrated microfluidic system for combined manipulation, pre-concentration, and lysis of samples containing Bordetella pertussis by dielectrophoresis and electroporation has been developed and implemented. The microfluidic device was able to pre-concentrate the amount of B. pertussis cells present in 200 microl of a B. pertussis suspension stock into a 20 microl volume. The device exhibited optimal sample pre-concentration of 6.7x at a stock value of 10(3) cfu/ml and at a flow rate of 250 microl/h. Electro-disruption experiments showed that on-chip-based electroporation is an effective solution for lysis of B. pertussis cells that is easily integrated with dielectrophoresis assisted pre-concentration procedures. Pulsed voltage applied, number of pulses, and presence of potassium chloride in a B. pertussis suspension showed a reduction in B. pertussis cell viability by electroporation; and transmission electron microscopy confirmed B. pertussis cell disruption by electroporation. Genetic amplification and detection of the pre-concentrated sample employing an integrated chip-based system demonstrated a complete chip approach for pathogen detection.

  7. Frequency-agile THz-wave generation and detection system using nonlinear frequency conversion at room temperature.

    PubMed

    Guo, Ruixiang; Ikar'i, Tomofumi; Zhang, Jun; Minamide, Hiroaki; Ito, Hiromasa

    2010-08-02

    A surface-emitting THz parametric oscillator is set up to generate a narrow-linewidth, nanosecond pulsed THz-wave radiation. The THz-wave radiation is coherently detected using the frequency up-conversion in MgO: LiNbO(3) crystal. Fast frequency tuning and automatic achromatic THz-wave detection are achieved through a special optical design, including a variable-angle mirror and 1:1 telescope devices in the pump and THz-wave beams. We demonstrate a frequency-agile THz-wave parametric generation and THz-wave coherent detection system. This system can be used as a frequency-domain THz-wave spectrometer operated at room-temperature, and there are a high possible to develop into a real-time two-dimensional THz spectral imaging system.

  8. Medical Devices Transition to Information Systems: Lessons Learned

    PubMed Central

    Charters, Kathleen G.

    2012-01-01

    Medical devices designed to network can share data with a Clinical Information System (CIS), making that data available within clinician workflow. Some lessons learned by transitioning anesthesia reporting and monitoring devices (ARMDs) on a local area network (LAN) to integration of anesthesia documentation within a CIS include the following categories: access, contracting, deployment, implementation, planning, security, support, training and workflow integration. Areas identified for improvement include: Vendor requirements for access reconciled with the organizations’ security policies and procedures. Include clauses supporting transition from stand-alone devices to information integrated into clinical workflow in the medical device procurement contract. Resolve deployment and implementation barriers that make the process less efficient and more costly. Include effective field communication and creative alternatives in planning. Build training on the baseline knowledge of trainees. Include effective help desk processes and metrics. Have a process for determining where problems originate when systems share information. PMID:24199054

  9. Development of crawler type device using new measuring system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maruyama, T.; Sasaki, T.; Yagi, T.

    1995-08-01

    This paper reports the development and field application of a new device which examine shell to shell weld joints of RPV. In a BWR type nuclear power plant, there is narrow space around the Reactor Pressure Vessel (RPV) because RPV is enclosed by the Reactor Shield Wall (RSW) and thermal insulations. The developed device is characterized by a new position measuring system and magnet wheels for driving. The new position measuring system uses laser beam and ultrasonic wave. The magnet wheels make the device travel freely in the narrow space between RPV and insulation. This device is tested on mock-upsmore » and applied examination of RPVs to verify field applicability.« less

  10. Medical Devices; Gastroenterology-Urology Devices; Classification of the Metallic Biliary Stent System for Benign Strictures. Final order.

    PubMed

    2016-07-13

    The Food and Drug Administration (FDA) is classifying the metallic biliary stent system for benign strictures into class II (special controls). The special controls that will apply to the device are identified in this order and will be part of the codified language for the metallic biliary stent system for benign strictures' classification. The Agency is classifying the device into class II (special controls) in order to provide a reasonable assurance of safety and effectiveness of the device.

  11. Computational simulation of biomolecules transport with multi-physics near microchannel surface for development of biomolecules-detection devices.

    PubMed

    Suzuki, Yuma; Shimizu, Tetsuhide; Yang, Ming

    2017-01-01

    The quantitative evaluation of the biomolecules transport with multi-physics in nano/micro scale is demanded in order to optimize the design of microfluidics device for the biomolecules detection with high detection sensitivity and rapid diagnosis. This paper aimed to investigate the effectivity of the computational simulation using the numerical model of the biomolecules transport with multi-physics near a microchannel surface on the development of biomolecules-detection devices. The biomolecules transport with fluid drag force, electric double layer (EDL) force, and van der Waals force was modeled by Newtonian Equation of motion. The model validity was verified in the influence of ion strength and flow velocity on biomolecules distribution near the surface compared with experimental results of previous studies. The influence of acting forces on its distribution near the surface was investigated by the simulation. The trend of its distribution to ion strength and flow velocity was agreement with the experimental result by the combination of all acting forces. Furthermore, EDL force dominantly influenced its distribution near its surface compared with fluid drag force except for the case of high velocity and low ion strength. The knowledges from the simulation might be useful for the design of biomolecules-detection devices and the simulation can be expected to be applied on its development as the design tool for high detection sensitivity and rapid diagnosis in the future.

  12. Design of remote control alarm system by microwave detection

    NASA Astrophysics Data System (ADS)

    Wang, Junli

    2018-04-01

    A microwave detection remote control alarm system is designed, which is composed of a Microwave detectors, a radio receiving/transmitting module and a digital encoding/decoding IC. When some objects move into the surveillance area, microwave detectors will generate a control signal to start transmitting system. A radio control signal will be spread by the transmitting module, once the signal can be received, and it will be disposed by some circuits, arousing some voices that awake the watching people. The whole device is a modular configuration, it not only has some advantage of frequency stable, but also reliable and adjustment-free, and it is suitable for many kinds of demands within the distance of 100m.

  13. An efficient enzyme-powered micromotor device fabricated by cyclic alternate hybridization assembly for DNA detection.

    PubMed

    Fu, Shizhe; Zhang, Xueqing; Xie, Yuzhe; Wu, Jie; Ju, Huangxian

    2017-07-06

    An efficient enzyme-powered micromotor device was fabricated by assembling multiple layers of catalase on the inner surface of a poly(3,4-ethylenedioxythiophene and sodium 4-styrenesulfonate)/Au microtube (PEDOT-PSS/Au). The catalase assembly was achieved by programmed DNA hybridization, which was performed by immobilizing a designed sandwich DNA structure as the sensing unit on the PEDOT-PSS/Au, and then alternately hybridizing with two assisting DNA to bind the enzyme for efficient motor motion. The micromotor device showed unique features of good reproducibility, stability and motion performance. Under optimal conditions, it showed a speed of 420 μm s -1 in 2% H 2 O 2 and even 51 μm s -1 in 0.25% H 2 O 2 . In the presence of target DNA, the sensing unit hybridized with target DNA to release the multi-layer DNA as well as the multi-catalase, resulting in a decrease of the motion speed. By using the speed as a signal, the micromotor device could detect DNA from 10 nM to 1 μM. The proposed micromotor device along with the cyclic alternate DNA hybridization assembly technique provided a new path to fabricate efficient and versatile micromotors, which would be an exceptional tool for rapid and simple detection of biomolecules.

  14. 30 CFR 75.1107-8 - Fire suppression devices; extinguishant supply systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Fire suppression devices; extinguishant supply systems. (a) Fire suppression systems using water or... equivalent protective devices and a rising stem or other visual indicator-type shutoff valve. (b) Water supplies for fire suppression devices installed on underground equipment may be maintained in mounted water...

  15. 30 CFR 75.1107-8 - Fire suppression devices; extinguishant supply systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Fire suppression devices; extinguishant supply systems. (a) Fire suppression systems using water or... equivalent protective devices and a rising stem or other visual indicator-type shutoff valve. (b) Water supplies for fire suppression devices installed on underground equipment may be maintained in mounted water...

  16. 30 CFR 75.1107-8 - Fire suppression devices; extinguishant supply systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Fire suppression devices; extinguishant supply systems. (a) Fire suppression systems using water or... equivalent protective devices and a rising stem or other visual indicator-type shutoff valve. (b) Water supplies for fire suppression devices installed on underground equipment may be maintained in mounted water...

  17. Method and device for maximizing memory system bandwidth by accessing data in a dynamically determined order

    NASA Technical Reports Server (NTRS)

    Schwab, Andrew J. (Inventor); Aylor, James (Inventor); Hitchcock, Charles Young (Inventor); Wulf, William A. (Inventor); McKee, Sally A. (Inventor); Moyer, Stephen A. (Inventor); Klenke, Robert (Inventor)

    2000-01-01

    A data processing system is disclosed which comprises a data processor and memory control device for controlling the access of information from the memory. The memory control device includes temporary storage and decision ability for determining what order to execute the memory accesses. The compiler detects the requirements of the data processor and selects the data to stream to the memory control device which determines a memory access order. The order in which to access said information is selected based on the location of information stored in the memory. The information is repeatedly accessed from memory and stored in the temporary storage until all streamed information is accessed. The information is stored until required by the data processor. The selection of the order in which to access information maximizes bandwidth and decreases the retrieval time.

  18. An intelligent telecardiology system using a wearable and wireless ECG to detect atrial fibrillation.

    PubMed

    Lin, Chin-Teng; Chang, Kuan-Cheng; Lin, Chun-Ling; Chiang, Chia-Cheng; Lu, Shao-Wei; Chang, Shih-Sheng; Lin, Bor-Shyh; Liang, Hsin-Yueh; Chen, Ray-Jade; Lee, Yuan-Teh; Ko, Li-Wei

    2010-05-01

    This study presents a novel wireless, ambulatory, real-time, and autoalarm intelligent telecardiology system to improve healthcare for cardiovascular disease, which is one of the most prevalent and costly health problems in the world. This system consists of a lightweight and power-saving wireless ECG device equipped with a built-in automatic warning expert system. This device is connected to a mobile and ubiquitous real-time display platform. The acquired ECG signals are instantaneously transmitted to mobile devices, such as netbooks or mobile phones through Bluetooth, and then, processed by the expert system. An alert signal is sent to the remote database server, which can be accessed by an Internet browser, once an abnormal ECG is detected. The current version of the expert system can identify five types of abnormal cardiac rhythms in real-time, including sinus tachycardia, sinus bradycardia, wide QRS complex, atrial fibrillation (AF), and cardiac asystole, which is very important for both the subjects who are being monitored and the healthcare personnel tracking cardiac-rhythm disorders. The proposed system also activates an emergency medical alarm system when problems occur. Clinical testing reveals that the proposed system is approximately 94% accurate, with high sensitivity, specificity, and positive prediction rates for ten normal subjects and 20 AF patients. We believe that in the future a business-card-like ECG device, accompanied with a mobile phone, can make universal cardiac protection service possible.

  19. Performance evaluation of three on-site adulterant detection devices for urine specimens.

    PubMed

    Peace, Michelle R; Tarnai, Lisa D

    2002-10-01

    The performance of three on-site adulterant detection devices that assess the integrity of urine specimens collected for drug-of-abuse testing was evaluated: the Intect 7, MASK Ultra Screen, and Adultacheck 4. Intect 7 simultaneously tests creatinine, nitrite, glutaraldehyde, pH, specific gravity, and the presence of bleach and pyridinium chlorochromate (PCC). Mask Ultra Screen tests creatinine, nitrite, pH, specific gravity, and oxidants, and Adultacheck 4 tests creatinine, nitrite, glutaraldehyde, and pH. Urine specimens were prepared with the Substance Abuse and Mental Health Administration regulated analytes at 50% above the cut-off concentrations. Stealth, Urine Luck, Instant Clean ADD-IT-ive, and KLEAR were added individually to the drug-added urine specimens so that their concentrations reflected the "optimum" usage reported in their package inserts and 25% above and below that optimum. Stealth is reported to be peroxidase; Urine Luck is believed to be PCC; Instant Clean ADD-it-ive reportedly contains glutaraldehyde, and Klear is a nitrite. The following diluents/adulterants were added at 25%, 33%, and 50% of the volume of drug-added urine: distilled water, bleach, ammonia, and vinegar. Of the devices tested, Intect 7 proved to be the most sensitive, and it correctly indicated the presence of adulterant or diluent in all samples tested. In order to do so, all indication pads had to be assessed in concert. Adultacheck 4 specifically assesses four characteristics of urine integrity and is therefore very limited in detecting the use of several popular adulterants that are commercially available. Although it correctly assessed the four characteristics, it did not detect the use of Stealth, Urine Luck, or Instant Clean ADD-it-ive. Mask Ultra Screen can potentially detect a broader range of adulterants than Adultacheck 4. However, in practice, it only detected them at levels well above their optimum usage, making it less efficacious than Intect 7. Clearly, the

  20. Micro-Hall devices for magnetic, electric and photo-detection

    NASA Astrophysics Data System (ADS)

    Gilbertson, A.; Sadeghi, H.; Panchal, V.; Kazakova, O.; Lambert, C. J.; Solin, S. A.; Cohen, L. F.

    Multifunctional mesoscopic sensors capable of detecting local magnetic (B) , electric (E) , and optical fields can greatly facilitate image capture in nano-arrays that address a multitude of disciplines. The use of micro-Hall devices as B-field sensors and, more recently as E-field sensors is well established. Here we report the real-space voltage response of InSb/AlInSb micro-Hall devices to not only local E-, and B-fields but also to photo-excitation using scanning probe microscopy. We show that the ultrafast generation of localised photocarriers results in conductance perturbations analogous to those produced by local E-fields. Our experimental results are in good agreement with tight-binding transport calculations in the diffusive regime. At room temperature, samples exhibit a magnetic sensitivity of >500 nT/ √Hz, an optical noise equivalent power of >20 pW/ √Hz (λ = 635 nm) comparable to commercial photoconductive detectors, and charge sensitivity of >0.04 e/ √Hz comparable to that of single electron transistors. Work done while on sabbatical from Washington University. Co-founder of PixelEXX, a start-up whose focus is imaging nano-arrays.

  1. Floating seal system for rotary devices

    DOEpatents

    Banasiuk, Hubert A.

    1983-01-01

    This invention relates to a floating seal system for rotary devices to reduce gas leakage around the rotary device in a duct and across the face of the rotary device to an adjacent duct. The peripheral seal bodies are made of resilient material having a generally U-shaped cross section wherein one of the legs is secured to a support member and the other of the legs forms a contacting seal against the rotary device. The legs of the peripheral seal form an extended angle of intersection of about 10.degree. to about 30.degree. in the unloaded condition to provide even sealing forces around the periphery of the rotary device. The peripheral seal extends around the periphery of the support member except where intersected by radial seals which reduce gas leakage across the face of the rotary device and between adjacent duct portions. The radial seal assembly is fabricated from channel bars, the smaller channel bar being secured to the divider of the support member and a larger inverted rigid floating channel bar having its legs freely movable over the legs of the smaller channel bar forming therewith a tubular channel. A resilient flexible tube is positioned within the tubular channel for substantially its full length to reduce gas leakage across the tubular channel. A spacer extends beyond the face of the floating channel near each end of the floating channel a distance to provide desired clearance between the floating channel and the face of the rotary device.

  2. Floating seal system for rotary devices

    DOEpatents

    Banasiuk, H.A.

    1983-08-23

    This invention relates to a floating seal system for rotary devices to reduce gas leakage around the rotary device in a duct and across the face of the rotary device to an adjacent duct. The peripheral seal bodies are made of resilient material having a generally U-shaped cross section wherein one of the legs is secured to a support member and the other of the legs forms a contacting seal against the rotary device. The legs of the peripheral seal form an extended angle of intersection of about 10[degree] to about 30[degree] in the unloaded condition to provide even sealing forces around the periphery of the rotary device. The peripheral seal extends around the periphery of the support member except where intersected by radial seals which reduce gas leakage across the face of the rotary device and between adjacent duct portions. The radial seal assembly is fabricated from channel bars, the smaller channel bar being secured to the divider of the support member and a larger inverted rigid floating channel bar having its legs freely movable over the legs of the smaller channel bar forming therewith a tubular channel. A resilient flexible tube is positioned within the tubular channel for substantially its full length to reduce gas leakage across the tubular channel. A spacer extends beyond the face of the floating channel near each end of the floating channel a distance to provide desired clearance between the floating channel and the face of the rotary device. 5 figs.

  3. Separation and dual detection of prostate cancer cells and protein biomarkers using a microchip device.

    PubMed

    Huang, Wanfeng; Chang, Chun-Li; Brault, Norman D; Gur, Onur; Wang, Zhe; Jalal, Shadia I; Low, Philip S; Ratliff, Timothy L; Pili, Roberto; Savran, Cagri A

    2017-01-31

    Current efforts for the detection of prostate cancer using only prostate specific antigen are not ideal and indicate a need to develop new assays - using multiple targets - that can more accurately stratify disease states. We previously introduced a device capable of the concurrent detection of cellular and molecular markers from a single sample fluid. Here, an improved design, which achieves affinity as well as size-based separation of captured targets using antibody-conjugated magnetic beads and a silicon chip containing micro-apertures, is presented. Upon injection of the sample, the integration of magnetic attraction with the micro-aperture chip permits larger cell-bead complexes to be isolated in an upper chamber with the smaller protein-bead complexes and remaining beads passing through the micro-apertures into the lower chamber. This enhances captured cell purity for on chip quantification, allows the separate retrieval of captured cells and proteins for downstream analysis, and enables higher bead concentrations for improved multiplexed ligand targeting. Using LNCaP cells and prostate specific membrane antigen (PSMA) to model prostate cancer, the device was able to detect 34 pM of spiked PSMA and achieve a cell capture efficiency of 93% from culture media. LNCaP cells and PSMA were then spiked into diluted healthy human blood to mimic a cancer patient. The device enabled the detection of spiked PSMA (relative to endogenous PSMA) while recovering 85-90% of LNCaP cells which illustrated the potential of new assays for the diagnosis of prostate cancer.

  4. IMAPS Device Packaging Conference 2017 - Engineered Micro Systems & Devices Track

    NASA Technical Reports Server (NTRS)

    Varnavas, Kosta

    2017-01-01

    NASA field center Marshall Space Flight Center (Huntsville, AL), has invested in advanced wireless sensor technology development. Developments for a wireless microcontroller back-end were primarily focused on the commercial Synapse Wireless family of devices. These devices have many useful features for NASA applications, good characteristics and the ability to be programmed Over-The-Air (OTA). The effort has focused on two widely used sensor types, mechanical strain gauges and thermal sensors. Mechanical strain gauges are used extensively in NASA structural testing and even on vehicle instrumentation systems. Additionally, thermal monitoring with many types of sensors is extensively used. These thermal sensors include thermocouples of all types, resistive temperature devices (RTDs), diodes and other thermal sensor types. The wireless thermal board will accommodate all of these types of sensor inputs to an analog front end. The analog front end on each of the sensors interfaces to the Synapse wireless microcontroller, based on the Atmel Atmega128 device. Once the analog sensor output data is digitized by the onboard analog to digital converter (A/D), the data is available for analysis, computation or transmission. Various hardware features allow custom embedded software to manage battery power to enhance battery life. This technology development fits nicely into using numerous additional sensor front ends, including some of the low-cost printed circuit board capacitive moisture content sensors currently being developed at Auburn University.

  5. Dynamic detection of spin accumulation in ferromagnet-semiconductor devices by ferromagnetic resonance (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Crowell, Paul A.; Liu, Changjiang; Patel, Sahil; Peterson, Tim; Geppert, Chad C.; Christie, Kevin; Stecklein, Gordon; Palmstrøm, Chris J.

    2016-10-01

    A distinguishing feature of spin accumulation in ferromagnet-semiconductor devices is its precession in a magnetic field. This is the basis for detection techniques such as the Hanle effect, but these approaches become ineffective as the spin lifetime in the semiconductor decreases. For this reason, no electrical Hanle measurement has been demonstrated in GaAs at room temperature. We show here that by forcing the magnetization in the ferromagnet to precess at resonance instead of relying only on the Larmor precession of the spin accumulation in the semiconductor, an electrically generated spin accumulation can be detected up to 300 K. The injection bias and temperature dependence of the measured spin signal agree with those obtained using traditional methods. We further show that this new approach enables a measurement of short spin lifetimes (< 100 psec), a regime that is not accessible in semiconductors using traditional Hanle techniques. The measurements were carried out on epitaxial Heusler alloy (Co2FeSi or Co2MnSi)/n-GaAs heterostructures. Lateral spin valve devices were fabricated by electron beam and photolithography. We compare measurements carried out by the new FMR-based technique with traditional non-local and three-terminal Hanle measurements. A full model appropriate for the measurements will be introduced, and a broader discussion in the context of spin pumping experimenments will be included in the talk. The new technique provides a simple and powerful means for detecting spin accumulation at high temperatures. Reference: C. Liu, S. J. Patel, T. A. Peterson, C. C. Geppert, K. D. Christie, C. J. Palmstrøm, and P. A. Crowell, "Dynamic detection of electron spin accumulation in ferromagnet-semiconductor devices by ferromagnetic resonance," Nature Communications 7, 10296 (2016). http://dx.doi.org/10.1038/ncomms10296

  6. Developing Control System of Electrical Devices with Operational Expense Prediction

    NASA Astrophysics Data System (ADS)

    Sendari, Siti; Wahyu Herwanto, Heru; Rahmawati, Yuni; Mukti Putranto, Dendi; Fitri, Shofiana

    2017-04-01

    The purpose of this research is to develop a system that can monitor and record home electrical device’s electricity usage. This system has an ability to control electrical devices in distance and predict the operational expense. The system was developed using micro-controllers and WiFi modules connected to PC server. The communication between modules is arranged by server via WiFi. Beside of reading home electrical devices electricity usage, the unique point of the proposed-system is the ability of micro-controllers to send electricity data to server for recording the usage of electrical devices. The testing of this research was done by Black-box method to test the functionality of system. Testing system run well with 0% error.

  7. Determining Training Device Requirements in Army Aviation Systems

    NASA Technical Reports Server (NTRS)

    Poumade, M. L.

    1984-01-01

    A decision making methodology which applies the systems approach to the training problem is discussed. Training is viewed as a total system instead of a collection of individual devices and unrelated techniques. The core of the methodology is the use of optimization techniques such as the transportation algorithm and multiobjective goal programming with training task and training device specific data. The role of computers, especially automated data bases and computer simulation models, in the development of training programs is also discussed. The approach can provide significant training enhancement and cost savings over the more traditional, intuitive form of training development and device requirements process. While given from an aviation perspective, the methodology is equally applicable to other training development efforts.

  8. A cryogen-free ultralow-field superconducting quantum interference device magnetic resonance imaging system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob, E-mail: ihahn@caltech.edu

    2014-09-15

    Magnetic resonance imaging (MRI) at microtesla fields using superconducting quantum interference device (SQUID) detection has previously been demonstrated, and advantages have been noted. Although the ultralow-field SQUID MRI technique would not need the heavy superconducting magnet of conventional MRI systems, liquid helium required to cool the low-temperature detector still places a significant burden on its operation. We have built a prototype cryocooler-based SQUID MRI system that does not require a cryogen. The SQUID detector and the superconducting gradiometer were cooled down to 3.7 K and 4.3 K, respectively. We describe the prototype design, characterization, a phantom image, and areas ofmore » further improvements needed to bring the imaging performance to parity with conventional MRI systems.« less

  9. The signature-based radiation-scanning approach to standoff detection of improvised explosive devices.

    PubMed

    Brewer, R L; Dunn, W L; Heider, S; Matthew, C; Yang, X

    2012-07-01

    The signature-based radiation-scanning technique for detection of improvised explosive devices is described. The technique seeks to detect nitrogen-rich chemical explosives present in a target. The technology compares a set of "signatures" obtained from a test target to a collection of "templates", sets of signatures for a target that contain an explosive in a specific configuration. Interrogation of nitrogen-rich fertilizer samples, which serve as surrogates for explosives, is shown experimentally to be able to discriminate samples of 3.8L and larger. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Multiple-Parameter, Low-False-Alarm Fire-Detection Systems

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Greensburg, Paul; McKnight, Robert; Xu, Jennifer C.; Liu, C. C.; Dutta, Prabir; Makel, Darby; Blake, D.; Sue-Antillio, Jill

    2007-01-01

    Fire-detection systems incorporating multiple sensors that measure multiple parameters are being developed for use in storage depots, cargo bays of ships and aircraft, and other locations not amenable to frequent, direct visual inspection. These systems are intended to improve upon conventional smoke detectors, now used in such locations, that reliably detect fires but also frequently generate false alarms: for example, conventional smoke detectors based on the blockage of light by smoke particles are also affected by dust particles and water droplets and, thus, are often susceptible to false alarms. In contrast, by utilizing multiple parameters associated with fires, i.e. not only obscuration by smoke particles but also concentrations of multiple chemical species that are commonly generated in combustion, false alarms can be significantly decreased while still detecting fires as reliably as older smoke-detector systems do. The present development includes fabrication of sensors that have, variously, micrometer- or nanometer-sized features so that such multiple sensors can be integrated into arrays that have sizes, weights, and power demands smaller than those of older macroscopic sensors. The sensors include resistors, electrochemical cells, and Schottky diodes that exhibit different sensitivities to the various airborne chemicals of interest. In a system of this type, the sensor readings are digitized and processed by advanced signal-processing hardware and software to extract such chemical indications of fires as abnormally high concentrations of CO and CO2, possibly in combination with H2 and/or hydrocarbons. The system also includes a microelectromechanical systems (MEMS)-based particle detector and classifier device to increase the reliability of measurements of chemical species and particulates. In parallel research, software for modeling the evolution of a fire within an aircraft cargo bay has been developed. The model implemented in the software can

  11. BlueDetect: An iBeacon-Enabled Scheme for Accurate and Energy-Efficient Indoor-Outdoor Detection and Seamless Location-Based Service

    PubMed Central

    Zou, Han; Jiang, Hao; Luo, Yiwen; Zhu, Jianjie; Lu, Xiaoxuan; Xie, Lihua

    2016-01-01

    The location and contextual status (indoor or outdoor) is fundamental and critical information for upper-layer applications, such as activity recognition and location-based services (LBS) for individuals. In addition, optimizations of building management systems (BMS), such as the pre-cooling or heating process of the air-conditioning system according to the human traffic entering or exiting a building, can utilize the information, as well. The emerging mobile devices, which are equipped with various sensors, become a feasible and flexible platform to perform indoor-outdoor (IO) detection. However, power-hungry sensors, such as GPS and WiFi, should be used with caution due to the constrained battery storage on mobile device. We propose BlueDetect: an accurate, fast response and energy-efficient scheme for IO detection and seamless LBS running on the mobile device based on the emerging low-power iBeacon technology. By leveraging the on-broad Bluetooth module and our proposed algorithms, BlueDetect provides a precise IO detection service that can turn on/off on-board power-hungry sensors smartly and automatically, optimize their performances and reduce the power consumption of mobile devices simultaneously. Moreover, seamless positioning and navigation services can be realized by it, especially in a semi-outdoor environment, which cannot be achieved by GPS or an indoor positioning system (IPS) easily. We prototype BlueDetect on Android mobile devices and evaluate its performance comprehensively. The experimental results have validated the superiority of BlueDetect in terms of IO detection accuracy, localization accuracy and energy consumption. PMID:26907295

  12. Microcontroller based driver alertness detection systems to detect drowsiness

    NASA Astrophysics Data System (ADS)

    Adenin, Hasibah; Zahari, Rahimi; Lim, Tiong Hoo

    2018-04-01

    The advancement of embedded system for detecting and preventing drowsiness in a vehicle is a major challenge for road traffic accident systems. To prevent drowsiness while driving, it is necessary to have an alert system that can detect a decline in driver concentration and send a signal to the driver. Studies have shown that traffc accidents usually occur when the driver is distracted while driving. In this paper, we have reviewed a number of detection systems to monitor the concentration of a car driver and propose a portable Driver Alertness Detection System (DADS) to determine the level of concentration of the driver based on pixelated coloration detection technique using facial recognition. A portable camera will be placed at the front visor to capture facial expression and the eye activities. We evaluate DADS using 26 participants and have achieved 100% detection rate with good lighting condition and a low detection rate at night.

  13. Small-volume multiparametric electrochemical detection at low cost polymeric devices featuring nanoelectrodes

    NASA Astrophysics Data System (ADS)

    Kitsara, Maria; Cirera, Josep Maria; Aller-Pellitero, Miguel; Sabaté, Neus; Punter, Jaume; Colomer-Farrarons, Jordi; Miribel-Català, Pere; del Campo, F. Javier

    2015-06-01

    The development of a low-cost multiparametric platform for enzymatic electrochemical biosensing that can be integrated in a disposable, energy autonomous analytical device is the target of the current work. We propose a technology to fabricate nano-electrodes and ultimately biosensors on flexible polymeric-based substrates (cyclo olefin polymer, and polyimide) using standard microfabrication (step and repeat lithography and lift-off) and rapid prototyping techniques (blade cutting). Our target is towards the fabrication of a miniaturized prototype that can work with small sample volumes in the range of 5-10μL without the need for external pumps for sample loading and handling. This device can be used for the simultaneous detection of metabolites such as glucose, cholesterol and triglycerides for the early diagnosis of diabetes.

  14. Studying fish near ocean energy devices using underwater video

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matzner, Shari; Hull, Ryan E.; Harker-Klimes, Genevra EL

    The effects of energy devices on fish populations are not well-understood, and studying the interactions of fish with tidal and instream turbines is challenging. To address this problem, we have evaluated algorithms to automatically detect fish in underwater video and propose a semi-automated method for ocean and river energy device ecological monitoring. The key contributions of this work are the demonstration of a background subtraction algorithm (ViBE) that detected 87% of human-identified fish events and is suitable for use in a real-time system to reduce data volume, and the demonstration of a statistical model to classify detections as fish ormore » not fish that achieved a correct classification rate of 85% overall and 92% for detections larger than 5 pixels. Specific recommendations for underwater video acquisition to better facilitate automated processing are given. The recommendations will help energy developers put effective monitoring systems in place, and could lead to a standard approach that simplifies the monitoring effort and advances the scientific understanding of the ecological impacts of ocean and river energy devices.« less

  15. Design of indoor temperature and humidity detection system based on single chip microcomputer

    NASA Astrophysics Data System (ADS)

    Fu, Xiuwei; Fu, Li; Ma, Tianhui

    2018-03-01

    The indoor temperature and humidity detection system based on STC15F2K60S2 is designed in this paper. The temperature and humidity sensor DHT22 to monitor the indoor temperature and humidity are used, and the temperature and humidity data to the user's handheld device are wirelessly transmitted, when the temperature reaches or exceeds the user set the temperature alarm value, and the system sound and light alarm, to remind the user.

  16. Microbial detection in microfluidic devices through dual staining of quantum dots-labeled immunoassay and RNA hybridization.

    PubMed

    Zhang, Qing; Zhu, Liang; Feng, Hanhua; Ang, Simon; Chau, Fook Siong; Liu, Wen-Tso

    2006-01-18

    This paper reported the development of a microfludic device for the rapid detection of viable and nonviable microbial cells through dual labeling by fluorescent in situ hybridization (FISH) and quantum dots (QDs)-labeled immunofluorescent assay (IFA). The coin sized device consists of a microchannel and filtering pillars (gap=1-2 microm) and was demonstrated to effectively trap and concentrate microbial cells (i.e. Giardia lamblia). After sample injection, FISH probe solution and QDs-labeled antibody solution were sequentially pumped into the device to accelerate the fluorescent labeling reactions at optimized flow rates (i.e. 1 and 20 microL/min, respectively). After 2 min washing for each assay, the whole process could be finished within 30 min, with minimum consumption of labeling reagents and superior fluorescent signal intensity. The choice of QDs 525 for IFA resulted in bright and stable fluorescent signal, with minimum interference with the Cy3 signal from FISH detection.

  17. Improving Cyber-Security of Smart Grid Systems via Anomaly Detection and Linguistic Domain Knowledge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ondrej Linda; Todd Vollmer; Milos Manic

    The planned large scale deployment of smart grid network devices will generate a large amount of information exchanged over various types of communication networks. The implementation of these critical systems will require appropriate cyber-security measures. A network anomaly detection solution is considered in this work. In common network architectures multiple communications streams are simultaneously present, making it difficult to build an anomaly detection solution for the entire system. In addition, common anomaly detection algorithms require specification of a sensitivity threshold, which inevitably leads to a tradeoff between false positives and false negatives rates. In order to alleviate these issues, thismore » paper proposes a novel anomaly detection architecture. The designed system applies the previously developed network security cyber-sensor method to individual selected communication streams allowing for learning accurate normal network behavior models. Furthermore, the developed system dynamically adjusts the sensitivity threshold of each anomaly detection algorithm based on domain knowledge about the specific network system. It is proposed to model this domain knowledge using Interval Type-2 Fuzzy Logic rules, which linguistically describe the relationship between various features of the network communication and the possibility of a cyber attack. The proposed method was tested on experimental smart grid system demonstrating enhanced cyber-security.« less

  18. The Malaria System MicroApp: A New, Mobile Device-Based Tool for Malaria Diagnosis.

    PubMed

    Oliveira, Allisson Dantas; Prats, Clara; Espasa, Mateu; Zarzuela Serrat, Francesc; Montañola Sales, Cristina; Silgado, Aroa; Codina, Daniel Lopez; Arruda, Mercia Eliane; I Prat, Jordi Gomez; Albuquerque, Jones

    2017-04-25

    Malaria is a public health problem that affects remote areas worldwide. Climate change has contributed to the problem by allowing for the survival of Anopheles in previously uninhabited areas. As such, several groups have made developing news systems for the automated diagnosis of malaria a priority. The objective of this study was to develop a new, automated, mobile device-based diagnostic system for malaria. The system uses Giemsa-stained peripheral blood samples combined with light microscopy to identify the Plasmodium falciparum species in the ring stage of development. The system uses image processing and artificial intelligence techniques as well as a known face detection algorithm to identify Plasmodium parasites. The algorithm is based on integral image and haar-like features concepts, and makes use of weak classifiers with adaptive boosting learning. The search scope of the learning algorithm is reduced in the preprocessing step by removing the background around blood cells. As a proof of concept experiment, the tool was used on 555 malaria-positive and 777 malaria-negative previously-made slides. The accuracy of the system was, on average, 91%, meaning that for every 100 parasite-infected samples, 91 were identified correctly. Accessibility barriers of low-resource countries can be addressed with low-cost diagnostic tools. Our system, developed for mobile devices (mobile phones and tablets), addresses this by enabling access to health centers in remote communities, and importantly, not depending on extensive malaria expertise or expensive diagnostic detection equipment. ©Allisson Dantas Oliveira, Clara Prats, Mateu Espasa, Francesc Zarzuela Serrat, Cristina Montañola Sales, Aroa Silgado, Daniel Lopez Codina, Mercia Eliane Arruda, Jordi Gomez i Prat, Jones Albuquerque. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 25.04.2017.

  19. Direct measurement of mammographic X-ray spectra with a digital CdTe detection system.

    PubMed

    Abbene, Leonardo; Gerardi, Gaetano; Principato, Fabio; Del Sordo, Stefano; Raso, Giuseppe

    2012-01-01

    In this work we present a detection system, based on a CdTe detector and an innovative digital pulse processing (DPP) system, for high-rate X-ray spectroscopy in mammography (1-30 keV). The DPP system performs a height and shape analysis of the detector pulses, sampled and digitized by a 14-bit, 100 MHz ADC. We show the results of the characterization of the detection system both at low and high photon counting rates by using monoenergetic X-ray sources and a nonclinical X-ray tube. The detection system exhibits excellent performance up to 830 kcps with an energy resolution of 4.5% FWHM at 22.1 keV. Direct measurements of clinical molybdenum X-ray spectra were carried out by using a pinhole collimator and a custom alignment device. A comparison with the attenuation curves and the half value layer values, obtained from the measured and simulated spectra, from an ionization chamber and from a solid state dosimeter, also shows the accuracy of the measurements. These results make the proposed detection system a very attractive tool for both laboratory research, calibration of dosimeters and advanced quality controls in mammography.

  20. Portable Bio/Chemosensoristic Devices: Innovative Systems for Environmental Health and Food Safety Diagnostics

    PubMed Central

    Dragone, Roberto; Grasso, Gerardo; Muccini, Michele; Toffanin, Stefano

    2017-01-01

    This mini-review covers the newly developed biosensoristic and chemosensoristic devices described in recent literature for detection of contaminants in both environmental and food real matrices. Current needs in environmental and food surveillance of contaminants require new simplified, sensitive systems, which are portable and allow for rapid and on-site monitoring and diagnostics. Here, we focus on optical and electrochemical bio/chemosensoristic devices as promising tools with interesting analytical features that can be potentially exploited for innovative on-site and real-time applications for diagnostics and monitoring of environmental and food matrices (e.g., agricultural waters and milk). In near future, suitably developed and implemented bio/chemosensoristic devices will be a new and modern technological solution for the identification of new quality and safety marker indexes as well as for a more proper and complete characterization of abovementioned environmental and food matrices. Integrated bio/chemosensoristic devices can also allow an “holistic approach” that may prove to be more suitable for diagnostics of environmental and food real matrices, where the copresence of more bioactive substances is frequent. Therefore, this approach can be focused on the determination of net effect (mixture effect) of bioactive substances present in real matrices. PMID:28529937

  1. Practical scheme for optimal measurement in quantum interferometric devices

    NASA Astrophysics Data System (ADS)

    Takeoka, Masahiro; Ban, Masashi; Sasaki, Masahide

    2003-06-01

    We apply a Kennedy-type detection scheme, which was originally proposed for a binary communications system, to interferometric sensing devices. We show that the minimum detectable perturbation of the proposed system reaches the ultimate precision bound which is predicted by quantum Neyman-Pearson hypothesis testing. To provide concrete examples, we apply our interferometric scheme to phase shift detection by using coherent and squeezed probe fields.

  2. Nanofluidic Pre-Concentration Devices for Enhancing the Detection Sensitivity and Selectivity of Biomarkers for Human Performance Monitoring

    DTIC Science & Technology

    2014-11-24

    aptamers to enhance specificity. Additionally, pre-concentration was coupled to various detection paradigms to achieve high-sensitivity biomarker... Aptamers , Biomarkers, Nanofluidics, Pre-concentration Devices, Sensing 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER...devices and optimized electrokinetic pre-concentration conditions for key neurological biomarkers of interest, by using nanoparticles and aptamers to

  3. WiFi-Based Real-Time Calibration-Free Passive Human Motion Detection.

    PubMed

    Gong, Liangyi; Yang, Wu; Man, Dapeng; Dong, Guozhong; Yu, Miao; Lv, Jiguang

    2015-12-21

    With the rapid development of WLAN technology, wireless device-free passive human detection becomes a newly-developing technique and holds more potential to worldwide and ubiquitous smart applications. Recently, indoor fine-grained device-free passive human motion detection based on the PHY layer information is rapidly developed. Previous wireless device-free passive human detection systems either rely on deploying specialized systems with dense transmitter-receiver links or elaborate off-line training process, which blocks rapid deployment and weakens system robustness. In the paper, we explore to research a novel fine-grained real-time calibration-free device-free passive human motion via physical layer information, which is independent of indoor scenarios and needs no prior-calibration and normal profile. We investigate sensitivities of amplitude and phase to human motion, and discover that phase feature is more sensitive to human motion, especially to slow human motion. Aiming at lightweight and robust device-free passive human motion detection, we develop two novel and practical schemes: short-term averaged variance ratio (SVR) and long-term averaged variance ratio (LVR). We realize system design with commercial WiFi devices and evaluate it in typical multipath-rich indoor scenarios. As demonstrated in the experiments, our approach can achieve a high detection rate and low false positive rate.

  4. Potential applications of microtesla magnetic resonance imaging detected using a superconducting quantum interference device

    NASA Astrophysics Data System (ADS)

    Myers, Whittier Ryan

    This dissertation describes magnetic resonance imaging (MRI) of protons performed in a precession field of 132 muT. In order to increase the signal-to-noise ratio (SNR), a pulsed 40-300 mT magnetic field prepolarizes the sample spins and an untuned second-order superconducting gradiometer coupled to a low transition temperature superconducting quantum interference device (SQUID) detects the subsequent 5.6-kHz spin precession. Imaging sequences including multiple echoes and partial Fourier reconstruction are developed. Calculating the SNR of prepolarized SQUID-detected MRI shows that three-dimensional Fourier imaging yields higher SNR than slice-selection imaging. An experimentally demonstrated field-cycling pulse sequence and post-processing algorithm mitigate image artifacts caused by concomitant gradients in low-field MRI. The magnetic field noise of SQUID untuned detection is compared to the noise of SQUID tuned detection, conventional Faraday detection, and the Nyquist noise generated by conducting biological samples. A second-generation microtesla MRI system employing a low-noise SQUID is constructed to increase SNR. A 2.4-m cubic, eddy-current shield with 6-mm thick aluminum walls encloses the experiment to attenuate external noise. The measured noise is 0.75 fT Hz 1/2 referred to the bottom gradiometer loop. Solenoids wound from 30-strand braided wire to decrease Nyquist noise and cooled by either liquid nitrogen or water polarize the spins. Copper wire coils wound on wooden supports produce the imaging magnetic fields and field gradients. Water phantom images with 0.8 x 0.8 x 10 mm3 resolution have a SNR of 6. Three-dimensional 1.6 x 1.9 x 14 mm3 images of bell peppers and 3 x 3 x 26 mm3 in vivo images of the human arm are presented. Since contrast based on the transverse spin relaxation rate (T1 ) is enhanced at low magnetic fields, microtesla MRI could potentially be used for tumor imaging. The measured T1 of ex vivo normal and cancerous prostate tissue

  5. Large Area MEMS Based Ultrasound Device for Cancer Detection.

    PubMed

    Wodnicki, Robert; Thomenius, Kai; Hooi, Fong Ming; Sinha, Sumedha P; Carson, Paul L; Lin, Der-Song; Zhuang, Xuefeng; Khuri-Yakub, Pierre; Woychik, Charles

    2011-08-21

    We present image results obtained using a prototype ultrasound array which demonstrates the fundamental architecture for a large area MEMS based ultrasound device for detection of breast cancer. The prototype array consists of a tiling of capacitive Micro-Machined Ultrasound Transducers (cMUTs) which have been flip-chip attached to a rigid organic substrate. The pitch on the cMUT elements is 185 um and the operating frequency is nominally 9 MHz. The spatial resolution of the new probe is comparable to production PZT probes, however the sensitivity is reduced by conditions that should be correctable. Simulated opposed-view image registration and Speed of Sound volume reconstruction results for ultrasound in the mammographic geometry are also presented.

  6. Large area MEMS based ultrasound device for cancer detection

    NASA Astrophysics Data System (ADS)

    Wodnicki, Robert; Thomenius, Kai; Ming Hooi, Fong; Sinha, Sumedha P.; Carson, Paul L.; Lin, Der-Song; Zhuang, Xuefeng; Khuri-Yakub, Pierre; Woychik, Charles

    2011-08-01

    We present image results obtained using a prototype ultrasound array that demonstrates the fundamental architecture for a large area MEMS based ultrasound device for detection of breast cancer. The prototype array consists of a tiling of capacitive Micromachined Ultrasound Transducers (cMUTs) that have been flip-chip attached to a rigid organic substrate. The pitch on the cMUT elements is 185 μm and the operating frequency is nominally 9 MHz. The spatial resolution of the new probe is comparable to those of production PZT probes; however the sensitivity is reduced by conditions that should be correctable. Simulated opposed-view image registration and Speed of Sound volume reconstruction results for ultrasound in the mammographic geometry are also presented.

  7. Fire detection system using random forest classification for image sequences of complex background

    NASA Astrophysics Data System (ADS)

    Kim, Onecue; Kang, Dong-Joong

    2013-06-01

    We present a fire alarm system based on image processing that detects fire accidents in various environments. To reduce false alarms that frequently appeared in earlier systems, we combined image features including color, motion, and blinking information. We specifically define the color conditions of fires in hue, saturation and value, and RGB color space. Fire features are represented as intensity variation, color mean and variance, motion, and image differences. Moreover, blinking fire features are modeled by using crossing patches. We propose an algorithm that classifies patches into fire or nonfire areas by using random forest supervised learning. We design an embedded surveillance device made with acrylonitrile butadiene styrene housing for stable fire detection in outdoor environments. The experimental results show that our algorithm works robustly in complex environments and is able to detect fires in real time.

  8. Single walled carbon nanotube-based stochastic resonance device with molecular self-noise source

    NASA Astrophysics Data System (ADS)

    Fujii, Hayato; Setiadi, Agung; Kuwahara, Yuji; Akai-Kasaya, Megumi

    2017-09-01

    Stochastic resonance (SR) is an intrinsic noise usage system for small-signal sensing found in various living creatures. The noise-enhanced signal transmission and detection system, which is probabilistic but consumes low power, has not been used in modern electronics. We demonstrated SR in a summing network based on a single-walled carbon nanotube (SWNT) device that detects small subthreshold signals with very low current flow. The nonlinear current-voltage characteristics of this SWNT device, which incorporated Cr electrodes, were used as the threshold level of signal detection. The adsorption of redox-active polyoxometalate molecules on SWNTs generated additional noise, which was utilized as a self-noise source. To form a summing network SR device, a large number of SWNTs were aligned parallel to each other between the electrodes, which increased the signal detection ability. The functional capabilities of the present small-size summing network SR device, which rely on dense nanomaterials and exploit intrinsic spontaneous noise at room temperature, offer a glimpse of future bio-inspired electronic devices.

  9. Prospective study of device-related complications in intensive care unit detected by virtual autopsy.

    PubMed

    Wichmann, D; Heinemann, A; Zähler, S; Vogel, H; Höpker, W; Püschel, K; Kluge, S

    2018-06-01

    There has been increasing use of invasive techniques, such as extracorporeal organ support, in intensive care units (ICU), and declining autopsy rates. Thus, new measures are needed to maintain high-quality standards. We investigated the potential of computed tomography (CT)-based virtual autopsy to substitute for medical autopsy in this setting. We investigated the potential of virtual autopsy by post-mortem CT to identify complications associated with medical devices in a prospective study of patients who had died in the ICU. Clinical records were reviewed to determine the number and types of medical devices used, and findings from medical and virtual autopsies, related and unrelated to the medical devices, were compared. Medical and virtual autopsies could be performed in 61 patients (Group M/V), and virtual autopsy only in 101 patients (Group V). In Group M/V, 41 device-related complications and 30 device malpositions were identified, but only with a low inter-method agreement. Major findings unrelated to a device were identified in about 25% of patients with a high level of agreement between methods. In Group V, 8 device complications and 36 device malpositions were identified. Device-related complications are frequent in ICU patients. Virtual and medical autopsies showed clear differences in the detection of complications and device malpositions. Both methods should supplement each other rather than one alone for quality control of medical devices in the ICU. Further studies should focus on the identification of special patient populations in which virtual autopsy might be of particular benefit. NCT01541982. Copyright © 2018 British Journal of Anaesthesia. Published by Elsevier Ltd. All rights reserved.

  10. Development for equipment of the milk macromolecules content detection

    NASA Astrophysics Data System (ADS)

    Ding, Guochao; Li, Weimin; Shang, Tingyi; Xi, Yang; Gao, Yunli; Zhou, Zhen

    Developed an experimental device for rapid and accurate detection of milk macromolecular content. This device developed based on laser scattered through principle, the principle use of the ingredients of the scattered light and transmitted light ratio characterization of macromolecules. Peristaltic pump to achieve automatic input and output of the milk samples, designing weak signal detection amplifier circuit for detecting the ratio with ICL7650. Real-time operating system μC / OS-II is the core design of the software part of the whole system. The experimental data prove that the device can achieve a fast real-time measurement of milk macromolecules.

  11. Microfluidic devices to enrich and isolate circulating tumor cells

    PubMed Central

    Myung, J. H.; Hong, S.

    2015-01-01

    Given the potential clinical impact of circulating tumor cells (CTCs) in blood as a clinical biomarker for diagnosis and prognosis of various cancers, a myriad of detection methods for CTCs have been recently introduced. Among those, a series of microfluidic devices are particularly promising as these uniquely offer micro-scale analytical systems that are highlighted by low consumption of samples and reagents, high flexibility to accommodate other cutting-edge technologies, precise and well-defined flow behaviors, and automation capability, presenting significant advantages over the conventional larger scale systems. In this review, we highlight the advantages of microfluidic devices and their translational potential into CTC detection methods, categorized by miniaturization of bench-top analytical instruments, integration capability with nanotechnologies, and in situ or sequential analysis of captured CTCs. This review provides a comprehensive overview of recent advances in the CTC detection achieved through application of microfluidic devices and their challenges that these promising technologies must overcome to be clinically impactful. PMID:26549749

  12. Investigating the detection of multi-homed devices independent of operating systems

    DTIC Science & Technology

    2017-09-01

    timestamp data was used to estimate clock skews using linear regression and linear optimization methods. Analysis revealed that detection depends on...the consistency of the estimated clock skew. Through vertical testing, it was also shown that clock skew consistency depends on the installed...optimization methods. Analysis revealed that detection depends on the consistency of the estimated clock skew. Through vertical testing, it was also

  13. MEMS- and NEMS-based smart devices and systems

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.

    2001-11-01

    The microelectronics industry has seen explosive growth during the last thirty years. Extremely large markets for logic and memory devices have driven the development of new materials, and technologies for the fabrication of even more complex devices with features sized now don at the sub micron and nanometer level. Recent interest has arisen in employing these materials, tools and technologies for the fabrication of miniature sensors and actuators and their integration with electronic circuits to produce smart devices and systems. This effort offers the promise of: 1) increasing the performance and manufacturability of both sensors and actuators by exploiting new batch fabrication processes developed including micro stereo lithographic an micro molding techniques; 2) developing novel classes of materials and mechanical structures not possible previously, such as diamond like carbon, silicon carbide and carbon nanotubes, micro-turbines and micro-engines; 3) development of technologies for the system level and wafer level integration of micro components at the nanometer precision, such as self-assembly techniques and robotic manipulation; 4) development of control and communication systems for MEMS devices, such as optical and RF wireless, and power delivery systems, etc. A novel composite structure can be tailored by functionalizing carbon nano tubes and chemically bonding them with the polymer matrix e.g. block or graft copolymer, or even cross-linked copolymer, to impart exceptional structural, electronic and surface properties. Bio- and Mechanical-MEMS devices derived from this hybrid composite provide a new avenue for future smart systems. The integration of NEMS (NanoElectroMechanical Systems), MEMS, IDTs (Interdigital Transducers) and required microelectronics and conformal antenna in the multifunctional smart materials and composites results in a smart system suitable for sensing and control of a variety functions in automobile, aerospace, marine and civil

  14. Generalized Detectability for Discrete Event Systems

    PubMed Central

    Shu, Shaolong; Lin, Feng

    2011-01-01

    In our previous work, we investigated detectability of discrete event systems, which is defined as the ability to determine the current and subsequent states of a system based on observation. For different applications, we defined four types of detectabilities: (weak) detectability, strong detectability, (weak) periodic detectability, and strong periodic detectability. In this paper, we extend our results in three aspects. (1) We extend detectability from deterministic systems to nondeterministic systems. Such a generalization is necessary because there are many systems that need to be modeled as nondeterministic discrete event systems. (2) We develop polynomial algorithms to check strong detectability. The previous algorithms are based on observer whose construction is of exponential complexity, while the new algorithms are based on a new automaton called detector. (3) We extend detectability to D-detectability. While detectability requires determining the exact state of a system, D-detectability relaxes this requirement by asking only to distinguish certain pairs of states. With these extensions, the theory on detectability of discrete event systems becomes more applicable in solving many practical problems. PMID:21691432

  15. A Passive Wireless Multi-Sensor SAW Technology Device and System Perspectives

    PubMed Central

    Malocha, Donald C.; Gallagher, Mark; Fisher, Brian; Humphries, James; Gallagher, Daniel; Kozlovski, Nikolai

    2013-01-01

    This paper will discuss a SAW passive, wireless multi-sensor system under development by our group for the past several years. The device focus is on orthogonal frequency coded (OFC) SAW sensors, which use both frequency diversity and pulse position reflectors to encode the device ID and will be briefly contrasted to other embodiments. A synchronous correlator transceiver is used for the hardware and post processing and correlation techniques of the received signal to extract the sensor information will be presented. Critical device and system parameters addressed include encoding, operational range, SAW device parameters, post-processing, and antenna-SAW device integration. A fully developed 915 MHz OFC SAW multi-sensor system is used to show experimental results. The system is based on a software radio approach that provides great flexibility for future enhancements and diverse sensor applications. Several different sensor types using the OFC SAW platform are shown. PMID:23666124

  16. Detection of bulk explosives using the GPR only portion of the HSTAMIDS system

    NASA Astrophysics Data System (ADS)

    Tabony, Joshua; Carlson, Douglas O.; Duvoisin, Herbert A., III; Torres-Rosario, Juan

    2010-04-01

    The legacy AN/PSS-14 (Army-Navy Portable Special Search-14) Handheld Mine Detecting Set (also called HSTAMIDS for Handheld Standoff Mine Detection System) has proven itself over the last 7 years as the state-of-the-art in land mine detection, both for the US Army and for Humanitarian Demining groups. Its dual GPR (Ground Penetrating Radar) and MD (Metal Detection) sensor has provided receiver operating characteristic curves (probability of detection or Pd versus false alarm rate or FAR) that routinely set the mark for such devices. Since its inception and type-classification in 2003 as the US (United States) Army standard, the desire for use of the AN/PSS-14 against alternate threats - such as bulk explosives - has recently become paramount. To this end, L-3 CyTerra has developed and tested bulk explosive detection and discrimination algorithms using only the Stepped Frequency Continuous Wave (SFCW) Ground Penetrating Radar (GPR) portion of the system, versus the fused version that is used to optimally detect land mines. Performance of the new bulk explosive algorithm against representative zero-metal bulk explosive target and clutter emplacements is depicted, with the utility to the operator also described.

  17. Identification of chemical warfare agents using a portable microchip-based detection device

    NASA Astrophysics Data System (ADS)

    Petkovic-Duran, K.; Swallow, A.; Sexton, B. A.; Glenn, F.; Zhu, Y.

    2011-12-01

    Analysis of chemical warfare agents (CWAs) and their degradation products is an important verification component in support of the Chemical Weapons Convention and urgently demanding rapid and reliable analytical methods. A portable microchip electrophoresis (ME) device with contactless conductivity (CCD) detection was developed for the in situ identification of CWA and their degradation products. A 10mM MES/His, 0.4mM CTAB - based separation electrolyte accomplished the analysis of Sarin (GB), Tabun( GA) and Soman (GD) in less than 1 min, which is the fastest screening of nerve agents achieved with portable ME and CCD based detection methods to date. Reproducibility of detection was successfully demonstrated on simultaneous detection of GB (200ppm) and GA (278ppm). Reasonable agreement for the four consecutive runs was achieved with the mean peak time for Sarin of 29.15s, and the standard error of 0.58s or 2%. GD and GA were simultaneously detected with their degradation products methylphosphonic acid (MPA), pinacolyl methylphosphonic acid (PMPA) and O-Ethyl Phosphorocyanidate (GAHP and GAHP1) respectively. The detection limit for Sarin was around 35ppb. To the best of our knowledge this is the best result achieved in microchip electrophoresis and contactless conductivity based detection to date.

  18. Simple System for Isothermal DNA Amplification Coupled to Lateral Flow Detection

    PubMed Central

    Roskos, Kristina; Hickerson, Anna I.; Lu, Hsiang-Wei; Ferguson, Tanya M.; Shinde, Deepali N.; Klaue, Yvonne; Niemz, Angelika

    2013-01-01

    Infectious disease diagnosis in point-of-care settings can be greatly improved through integrated, automated nucleic acid testing devices. We have developed an early prototype for a low-cost system which executes isothermal DNA amplification coupled to nucleic acid lateral flow (NALF) detection in a mesofluidic cartridge attached to a portable instrument. Fluid handling inside the cartridge is facilitated through one-way passive valves, flexible pouches, and electrolysis-driven pumps, which promotes a compact and inexpensive instrument design. The closed-system disposable prevents workspace amplicon contamination. The cartridge design is based on standard scalable manufacturing techniques such as injection molding. Nucleic acid amplification occurs in a two-layer pouch that enables efficient heat transfer. We have demonstrated as proof of principle the amplification and detection of Mycobacterium tuberculosis (M.tb) genomic DNA in the cartridge, using either Loop Mediated Amplification (LAMP) or the Exponential Amplification Reaction (EXPAR), both coupled to NALF detection. We envision that a refined version of this cartridge, including upstream sample preparation coupled to amplification and detection, will enable fully-automated sample-in to answer-out infectious disease diagnosis in primary care settings of low-resource countries with high disease burden. PMID:23922706

  19. Development of a multispectral imagery device devoted to weed detection

    NASA Astrophysics Data System (ADS)

    Vioix, Jean-Baptiste; Douzals, Jean-Paul; Truchetet, Frederic; Navar, Pierre

    2003-04-01

    Multispectral imagery is a large domain with number of practical applications: thermography, quality control in industry, food science and agronomy, etc. The main interest is to obtain spectral information of the objects for which reflectance signal can be associated with physical, chemical and/or biological properties. Agronomic applications of multispectral imagery generally involve the acquisition of several images in the wavelengths of visible and near infrared. This paper will first present different kind of multispectral devices used for agronomic issues and will secondly introduce an original multispectral design based on a single CCD. Third, early results obtained for weed detection are presented.

  20. Remote laser drilling and sampling system for the detection of concealed explosives

    NASA Astrophysics Data System (ADS)

    Wild, D.; Pschyklenk, L.; Theiß, C.; Holl, G.

    2017-05-01

    The detection of hazardous materials like explosives is a central issue in national security in the field of counterterrorism. One major task includes the development of new methods and sensor systems for the detection. Many existing remote or standoff methods like infrared or raman spectroscopy find their limits, if the hazardous material is concealed in an object. Imaging technologies using x-ray or terahertz radiation usually yield no information about the chemical content itself. However, the exact knowledge of the real threat potential of a suspicious object is crucial for disarming the device. A new approach deals with a laser drilling and sampling system for the use as verification detector for suspicious objects. Central part of the system is a miniaturised, diode pumped Nd:YAG laser oscillator-amplifier. The system allows drilling into most materials like metals, synthetics or textiles with bore hole diameters in the micron scale. During the drilling process, the hazardous material can be sampled for further investigation with suitable detection methods. In the reported work, laser induced breakdown spectroscopy (LIBS) is used to monitor the drilling process and to classify the drilled material. Also experiments were carried out to show the system's ability to not ignite even sensitive explosives like triacetone triperoxide (TATP). The detection of concealed hazardous material is shown for different explosives using liquid chromatography and ion mobility spectrometry.