Sample records for device electrical characteristics

  1. Fabrication of 1-dimension nano-material-based device and its electrical characteristics

    NASA Astrophysics Data System (ADS)

    Yang, Xing; Zhou, Zhaoying; Zheng, Fuzhong; Zhang, Min

    2008-12-01

    In recent years, many kinds of 1-dimension nano-materials (Carbon nanotube, ZnO nanobelt and nanowire etc.) continue to emerge which exhibit distinct and unique electromechanical, piezoelectric, photoelectrical properties. In this paper, a 1-dimension nano-materials-based device was proposed. The bottom-up and top-down combined process were used for constructing CNT-array-based device and ZnO nanowire device. The electrical characteristics of the 1D nano-materials-based devices were also investigated. The measurement results of electrical characteristics demonstrate that it is ohm electrical contact behavior between the nano-material and micro-electrodes in the proposed device which also have the field effect. The proposed 1D nano-material-based device shows the application potential in the sensing fields.

  2. Diagnostic for two-mode variable valve activation device

    DOEpatents

    Fedewa, Andrew M

    2014-01-07

    A method is provided for diagnosing a multi-mode valve train device which selectively provides high lift and low lift to a combustion valve of an internal combustion engine having a camshaft phaser actuated by an electric motor. The method includes applying a variable electric current to the electric motor to achieve a desired camshaft phaser operational mode and commanding the multi-mode valve train device to a desired valve train device operational mode selected from a high lift mode and a low lift mode. The method also includes monitoring the variable electric current and calculating a first characteristic of the parameter. The method also includes comparing the calculated first characteristic against a predetermined value of the first characteristic measured when the multi-mode valve train device is known to be in the desired valve train device operational mode.

  3. Grips for testing of electrical characteristics of a specimen under a mechanical load

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briggs, Timothy; Loyola, Bryan

    Various technologies to facilitate coupled electrical and mechanical measurement of conductive materials are disclosed herein. A gripping device simultaneously holds a specimen in place and causes contact to be made between the specimen and a plurality of electrodes connected to an electrical measuring device. An electrical characteristic of the specimen is then measured while a mechanical load is applied to the specimen, and a relationship between the mechanical load and changes in the electrical characteristic can be identified.

  4. Electrical characteristics of Graphene based Field Effect Transistor (GFET) biosensor for ADH detection

    NASA Astrophysics Data System (ADS)

    Selvarajan, Reena Sri; Hamzah, Azrul Azlan; Majlis, Burhanuddin Yeop

    2017-08-01

    First pristine graphene was successfully produced by mechanical exfoliation and electrically characterized in 2004 by Andre Geim and Konstantin Novoselov at University of Manchester. Since its discovery in 2004, graphene also known as `super' material that has enticed many researchers and engineers to explore its potential in ultrasensitive detection of analytes in biosensing applications. Among myriad reported sensors, biosensors based on field effect transistors (FETs) have attracted much attention. Thus, implementing graphene as conducting channel material hastens the opportunities for production of ultrasensitive biosensors for future device applications. Herein, we have reported electrical characteristics of graphene based field effect transistor (GFET) for ADH detection. GFET was modelled and simulated using Lumerical DEVICE charge transport solver (DEVICE CT). Electrical characteristics comprising of transfer and output characteristics curves are reported in this study. The device shows ambipolar curve and achieved a minimum conductivity of 0.23912 e5A at Dirac point. However, the curve shifts to the left and introduces significant changes in the minimum conductivity as drain voltage is increased. Output characteristics of GFET exhibits linear Id - Vd dependence characteristics for gate voltage ranging from 0 to 1.5 V. In addition, behavior of electrical transport through GFET was analyzed for various simulation temperatures. It clearly proves that the electrical transport in GFET is dependent on the simulation temperature as it may vary the maximum resistance in channel of the device. Therefore, this unique electrical characteristics of GFET makes it as a promising candidate for ultrasensitive detection of small biomolecules such as ADH in biosensing applications.

  5. Non- contacting capacitive diagnostic device

    DOEpatents

    Ellison, Timothy

    2005-07-12

    A non-contacting capacitive diagnostic device includes a pulsed light source for producing an electric field in a semiconductor or photovoltaic device or material to be evaluated and a circuit responsive to the electric field. The circuit is not in physical contact with the device or material being evaluated and produces an electrical signal characteristic of the electric field produced in the device or material. The diagnostic device permits quality control and evaluation of semiconductor or photovoltaic device properties in continuous manufacturing processes.

  6. Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices

    DOEpatents

    Chassin, David P [Pasco, WA; Donnelly, Matthew K [Kennewick, WA; Dagle, Jeffery E [Richland, WA

    2011-12-06

    Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

  7. Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices

    DOEpatents

    Chassin, David P.; Donnelly, Matthew K.; Dagle, Jeffery E.

    2006-12-12

    Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

  8. Electrical characteristics of silicon nanowire CMOS inverters under illumination.

    PubMed

    Yoo, Jeuk; Kim, Yoonjoong; Lim, Doohyeok; Kim, Sangsig

    2018-02-05

    In this study, we examine the electrical characteristics of complementary metal-oxide-semiconductor (CMOS) inverters with silicon nanowire (SiNW) channels on transparent substrates under illumination. The electrical characteristics vary with the wavelength and power of light due to the variation in the generation rates of the electric-hole pairs. Compared to conventional optoelectronic devices that sense the on/off states by the variation in the current, our device achieves the sensing of the on/off states with more precision by using the voltage variation induced by the wavelength or intensity of light. The device was fabricated on transparent substrates to maximize the light absorption using conventional CMOS technologies. The key difference between our SiNW CMOS inverters and conventional optoelectronic devices is the ability to control the flow of charge carriers more effectively. The improved sensitivity accomplished with the use of SiNW CMOS inverters allows better control of the on/off states.

  9. Using the Arduino with MakerPlot Software for the Display of Electrical Device Characteristics

    ERIC Educational Resources Information Center

    Atkin, Keith

    2017-01-01

    This paper shows how very simple circuitry attached to an Arduino microcontroller with MakerPlot software can be used for the display of electrical characteristic curves of three commonly available devices: an ohmic resistor, an LED, and a tungsten-filament bulb.

  10. Using the Arduino with MakerPlot software for the display of electrical device characteristics

    NASA Astrophysics Data System (ADS)

    Atkin, Keith

    2017-11-01

    This paper shows how very simple circuitry attached to an Arduino microcontroller with MakerPlot software can be used for the display of electrical characteristic curves of three commonly available devices: an ohmic resistor, an LED, and a tungsten-filament bulb.

  11. An ultrafast programmable electrical tester for enabling time-resolved, sub-nanosecond switching dynamics and programming of nanoscale memory devices.

    PubMed

    Shukla, Krishna Dayal; Saxena, Nishant; Manivannan, Anbarasu

    2017-12-01

    Recent advancements in commercialization of high-speed non-volatile electronic memories including phase change memory (PCM) have shown potential not only for advanced data storage but also for novel computing concepts. However, an in-depth understanding on ultrafast electrical switching dynamics is a key challenge for defining the ultimate speed of nanoscale memory devices that demands for an unconventional electrical setup, specifically capable of handling extremely fast electrical pulses. In the present work, an ultrafast programmable electrical tester (PET) setup has been developed exceptionally for unravelling time-resolved electrical switching dynamics and programming characteristics of nanoscale memory devices at the picosecond (ps) time scale. This setup consists of novel high-frequency contact-boards carefully designed to capture extremely fast switching transient characteristics within 200 ± 25 ps using time-resolved current-voltage measurements. All the instruments in the system are synchronized using LabVIEW, which helps to achieve various programming characteristics such as voltage-dependent transient parameters, read/write operations, and endurance test of memory devices systematically using short voltage pulses having pulse parameters varied from 1 ns rise/fall time and 1.5 ns pulse width (full width half maximum). Furthermore, the setup has successfully demonstrated strikingly one order faster switching characteristics of Ag 5 In 5 Sb 60 Te 30 (AIST) PCM devices within 250 ps. Hence, this novel electrical setup would be immensely helpful for realizing the ultimate speed limits of various high-speed memory technologies for future computing.

  12. An ultrafast programmable electrical tester for enabling time-resolved, sub-nanosecond switching dynamics and programming of nanoscale memory devices

    NASA Astrophysics Data System (ADS)

    Shukla, Krishna Dayal; Saxena, Nishant; Manivannan, Anbarasu

    2017-12-01

    Recent advancements in commercialization of high-speed non-volatile electronic memories including phase change memory (PCM) have shown potential not only for advanced data storage but also for novel computing concepts. However, an in-depth understanding on ultrafast electrical switching dynamics is a key challenge for defining the ultimate speed of nanoscale memory devices that demands for an unconventional electrical setup, specifically capable of handling extremely fast electrical pulses. In the present work, an ultrafast programmable electrical tester (PET) setup has been developed exceptionally for unravelling time-resolved electrical switching dynamics and programming characteristics of nanoscale memory devices at the picosecond (ps) time scale. This setup consists of novel high-frequency contact-boards carefully designed to capture extremely fast switching transient characteristics within 200 ± 25 ps using time-resolved current-voltage measurements. All the instruments in the system are synchronized using LabVIEW, which helps to achieve various programming characteristics such as voltage-dependent transient parameters, read/write operations, and endurance test of memory devices systematically using short voltage pulses having pulse parameters varied from 1 ns rise/fall time and 1.5 ns pulse width (full width half maximum). Furthermore, the setup has successfully demonstrated strikingly one order faster switching characteristics of Ag5In5Sb60Te30 (AIST) PCM devices within 250 ps. Hence, this novel electrical setup would be immensely helpful for realizing the ultimate speed limits of various high-speed memory technologies for future computing.

  13. System for remote control of underground device

    DOEpatents

    Brumleve, T.D.; Hicks, M.G.; Jones, M.O.

    1975-10-21

    A system is described for remote control of an underground device, particularly a nuclear explosive. The system includes means at the surface of the ground for transmitting a seismic signal sequence through the earth having controlled and predetermined signal characteristics for initiating a selected action in the device. Additional apparatus, located with or adjacent to the underground device, produces electrical signals in response to the seismic signals received and compares these electrical signals with the predetermined signal characteristics.

  14. 77 FR 16925 - Medical Devices; Neurological Devices; Classification of the Near Infrared Brain Hematoma Detector

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-23

    ... Mitigation measures Excessive laser power Electrical safety and electromagnetic compatibility (EMC... should validate electromagnetic compatibility (EMC), electrical safety, and battery characteristics; (4...

  15. Experimental investigation on electrical characteristics and dose measurement of dielectric barrier discharge plasma device used for therapeutic application

    NASA Astrophysics Data System (ADS)

    Shahbazi Rad, Zahra; Abbasi Davani, Fereydoun

    2017-04-01

    In this research, a Dielectric Barrier Discharge (DBD) plasma device operating in air has been made. The electrical characteristics of this device like instantaneous power, dissipated power, and discharge capacitance have been measured. Also, the effects of applied voltage on the dissipated power and discharge capacitance of the device have been investigated. The determination of electrical parameters is important in DBD plasma device used in living tissue treatment for choosing the proper treatment doses and preventing the destructive effects. The non-thermal atmospheric pressure DBD plasma source was applied for studying the acceleration of blood coagulation time, in vitro and wound healing time, in vivo. The citrated blood drops coagulated within 5 s treatment time by DBD plasma. The effects of plasma temperature and electric field on blood coagulation have been studied as an affirmation of the applicability of the constructed device. Also, the effect of constructed DBD plasma on wound healing acceleration has been investigated.

  16. Experimental investigation on electrical characteristics and dose measurement of dielectric barrier discharge plasma device used for therapeutic application.

    PubMed

    Shahbazi Rad, Zahra; Abbasi Davani, Fereydoun

    2017-04-01

    In this research, a Dielectric Barrier Discharge (DBD) plasma device operating in air has been made. The electrical characteristics of this device like instantaneous power, dissipated power, and discharge capacitance have been measured. Also, the effects of applied voltage on the dissipated power and discharge capacitance of the device have been investigated. The determination of electrical parameters is important in DBD plasma device used in living tissue treatment for choosing the proper treatment doses and preventing the destructive effects. The non-thermal atmospheric pressure DBD plasma source was applied for studying the acceleration of blood coagulation time, in vitro and wound healing time, in vivo. The citrated blood drops coagulated within 5 s treatment time by DBD plasma. The effects of plasma temperature and electric field on blood coagulation have been studied as an affirmation of the applicability of the constructed device. Also, the effect of constructed DBD plasma on wound healing acceleration has been investigated.

  17. Monitoring method and apparatus using high-frequency carrier

    DOEpatents

    Haynes, Howard D.

    1996-01-01

    A method and apparatus for monitoring an electrical-motor-driven device by injecting a high frequency carrier signal onto the power line current. The method is accomplished by injecting a high frequency carrier signal onto an AC power line current. The AC power line current supplies the electrical-motor-driven device with electrical energy. As a result, electrical and mechanical characteristics of the electrical-motor-driven device modulate the high frequency carrier signal and the AC power line current. The high frequency carrier signal is then monitored, conditioned and demodulated. Finally, the modulated high frequency carrier signal is analyzed to ascertain the operating condition of the electrical-motor-driven device.

  18. Multidimensional materials and device architectures for future hybrid energy storage

    DOE PAGES

    Lukatskaya, Maria R.; Dunn, Bruce; Gogotsi, Yury

    2016-09-07

    Electrical energy storage plays a vital role in daily life due to our dependence on numerous portable electronic devices. Moreover, with the continued miniaturization of electronics, integration of wireless devices into our homes and clothes and the widely anticipated ‘Internet of Things’, there are intensive efforts to develop miniature yet powerful electrical energy storage devices. Here, this review addresses the cutting edge of electrical energy storage technology, outlining approaches to overcome current limitations and providing future research directions towards the next generation of electrical energy storage devices whose characteristics represent a true hybridization of batteries and electrochemical capacitors.

  19. Multidimensional materials and device architectures for future hybrid energy storage

    NASA Astrophysics Data System (ADS)

    Lukatskaya, Maria R.; Dunn, Bruce; Gogotsi, Yury

    2016-09-01

    Electrical energy storage plays a vital role in daily life due to our dependence on numerous portable electronic devices. Moreover, with the continued miniaturization of electronics, integration of wireless devices into our homes and clothes and the widely anticipated `Internet of Things', there are intensive efforts to develop miniature yet powerful electrical energy storage devices. This review addresses the cutting edge of electrical energy storage technology, outlining approaches to overcome current limitations and providing future research directions towards the next generation of electrical energy storage devices whose characteristics represent a true hybridization of batteries and electrochemical capacitors.

  20. Multidimensional materials and device architectures for future hybrid energy storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lukatskaya, Maria R.; Dunn, Bruce; Gogotsi, Yury

    Electrical energy storage plays a vital role in daily life due to our dependence on numerous portable electronic devices. Moreover, with the continued miniaturization of electronics, integration of wireless devices into our homes and clothes and the widely anticipated ‘Internet of Things’, there are intensive efforts to develop miniature yet powerful electrical energy storage devices. Here, this review addresses the cutting edge of electrical energy storage technology, outlining approaches to overcome current limitations and providing future research directions towards the next generation of electrical energy storage devices whose characteristics represent a true hybridization of batteries and electrochemical capacitors.

  1. Monitoring method and apparatus using high-frequency carrier

    DOEpatents

    Haynes, H.D.

    1996-04-30

    A method and apparatus for monitoring an electrical-motor-driven device by injecting a high frequency carrier signal onto the power line current. The method is accomplished by injecting a high frequency carrier signal onto an AC power line current. The AC power line current supplies the electrical-motor-driven device with electrical energy. As a result, electrical and mechanical characteristics of the electrical-motor-driven device modulate the high frequency carrier signal and the AC power line current. The high frequency carrier signal is then monitored, conditioned and demodulated. Finally, the modulated high frequency carrier signal is analyzed to ascertain the operating condition of the electrical-motor-driven device. 6 figs.

  2. Piezo-phototronic effect devices

    DOEpatents

    Wang, Zhong L.; Yang, Qing

    2013-09-10

    A semiconducting device includes a piezoelectric structure that has a first end and an opposite second end. A first conductor is in electrical communication with the first end and a second conductor is in electrical communication with the second end so as to form an interface therebetween. A force applying structure is configured to maintain an amount of strain in the piezoelectric member sufficient to generate a desired electrical characteristic in the semiconducting device.

  3. Electrical transport and low-frequency noise in chemical vapor deposited single-layer MoS2 devices.

    PubMed

    Sharma, Deepak; Amani, Matin; Motayed, Abhishek; Shah, Pankaj B; Birdwell, A Glen; Najmaei, Sina; Ajayan, Pulickel M; Lou, Jun; Dubey, Madan; Li, Qiliang; Davydov, Albert V

    2014-04-18

    We have studied temperature-dependent (77-300 K) electrical characteristics and low-frequency noise (LFN) in chemical vapor deposited (CVD) single-layer molybdenum disulfide (MoS2) based back-gated field-effect transistors (FETs). Electrical characterization and LFN measurements were conducted on MoS2 FETs with Al2O3 top-surface passivation. We also studied the effect of top-surface passivation etching on the electrical characteristics of the device. Significant decrease in channel current and transconductance was observed in these devices after the Al2O3 passivation etching. For passivated devices, the two-terminal resistance variation with temperature showed a good fit to the activation energy model, whereas for the etched devices the trend indicated a hopping transport mechanism. A significant increase in the normalized drain current noise power spectral density (PSD) was observed after the etching of the top passivation layer. The observed channel current noise was explained using a standard unified model incorporating carrier number fluctuation and correlated surface mobility fluctuation mechanisms. Detailed analysis of the gate-referred noise voltage PSD indicated the presence of different trapping states in passivated devices when compared to the etched devices. Etched devices showed weak temperature dependence of the channel current noise, whereas passivated devices exhibited near-linear temperature dependence.

  4. Stopping electric field extension in a modified nanostructure based on SOI technology - A comprehensive numerical study

    NASA Astrophysics Data System (ADS)

    Anvarifard, Mohammad K.; Orouji, Ali A.

    2017-11-01

    This article has related a particular knowledge in order to reduce short channel effects (SCEs) in nano-devices based on silicon-on-insulator (SOI) MOSFETs. The device under study has been designed in 22 nm node technology with embedding Si3N4 extra oxide as a stopping layer of electric field and a useful heatsink for transferring generated heat. Two important subjects (DC characteristics and RF characteristics) have been investigated, simultaneously. Stopping electric field extension and enhancement of channel thermal conduction are introduced as an entrance gateway for this work so that improve the electrical characteristics, eventually. The inserted extra oxide made by the Si3N4 material has a vital impact on the modification of the electrical and thermal features in the proposed device. An immense comparison between the proposed SOI and conventional SOI showed that the proposed structure has higher electrical and thermal proficiency than the conventional structure in terms of main parameters such as short channel effects (SCEs), leakage current, floating body effect (FBE), self-heating effect (SHE), voltage gain, ratio of On-current to Off- current, transconductance, output conductance, minimum noise figure and power gain.

  5. Nonlinear current-voltage characteristics based on semiconductor nanowire networks enable a new concept in thermoelectric device optimization

    NASA Astrophysics Data System (ADS)

    Diaz Leon, Juan J.; Norris, Kate J.; Hartnett, Ryan J.; Garrett, Matthew P.; Tompa, Gary S.; Kobayashi, Nobuhiko P.

    2016-08-01

    Thermoelectric (TE) devices that produce electric power from heat are driven by a temperature gradient (Δ T = T_{{hot}} - T_{{cold}}, T hot: hot side temperature, T cold: cold side temperature) with respect to the average temperature ( T). While the resistance of TE devices changes as Δ T and/or T change, the current-voltage ( I- V) characteristics have consistently been shown to remain linear, which clips generated electric power ( P gen) within the given open-circuit voltage ( V OC) and short-circuit current ( I SC). This P gen clipping is altered when an appropriate nonlinearity is introduced to the I- V characteristics—increasing P gen. By analogy, photovoltaic cells with a large fill factor exhibit nonlinear I- V characteristics. In this paper, the concept of a unique TE device with nonlinear I- V characteristics is proposed and experimentally demonstrated. A single TE device with nonlinear I- V characteristics is fabricated by combining indium phosphide (InP) and silicon (Si) semiconductor nanowire networks. These TE devices show P gen that is more than 25 times larger than those of comparable devices with linear I- V characteristics. The plausible causes of the nonlinear I- V characteristics are discussed. The demonstrated concept suggests that there exists a new pathway to increase P gen of TE devices made of semiconductors.

  6. Significant mobility improvement of amorphous In-Ga-Zn-O thin-film transistors annealed in a low temperature wet ambient environment

    NASA Astrophysics Data System (ADS)

    Jallorina, Michael Paul A.; Bermundo, Juan Paolo S.; Fujii, Mami N.; Ishikawa, Yasuaki; Uraoka, Yukiharu

    2018-05-01

    Transparent amorphous oxide semiconducting materials such as amorphous InGaZnO used in thin film transistors (TFTs) are typically annealed at temperatures higher than 250 °C to remove any defects present and improve the electrical characteristics of the device. Previous research has shown that low cost and low temperature methods improve the electrical characteristics of the TFT. With the aid of surface and bulk characterization techniques in comparison to the device characteristics, this work aims to elucidate further on the improvement mechanisms of wet and dry annealing ambients that affect the electrical characteristics of the device. Secondary Ion Mass Spectrometry results show that despite outward diffusion of -H and -OH species, humid annealing ambients counteract outward diffusion of these species, leading to defect sites which can be passivated by the wet ambient. X-ray Photoelectron Spectroscopy results show that for devices annealed for only 30 min in a wet annealing environment, the concentration of metal-oxide bonds increased by as much as 21.8% and defects such as oxygen vacancies were reduced by as much as 18.2% compared to an unannealed device. Our work shows that due to the oxidizing power of water vapor, defects are reduced, and overall electrical characteristics are improved as evidenced with the 150 °C wet O2, 30 min annealed sample which exhibited the highest mobility of 5.00 cm2/V s, compared to 2.36 cm2/V s for a sample that was annealed at 150 °C in a dry ambient atmospheric environment for 2 h.

  7. Two dimensional simulation of patternable conducting polymer electrode based organic thin film transistor

    NASA Astrophysics Data System (ADS)

    Nair, Shiny; Kathiresan, M.; Mukundan, T.

    2018-02-01

    Device characteristics of organic thin film transistor (OTFT) fabricated with conducting polyaniline:polystyrene sulphonic acid (PANi-PSS) electrodes, patterned by the Parylene lift-off method are systematically analyzed by way of two dimensional numerical simulation. The device simulation was performed taking into account field-dependent mobility, low mobility layer at the electrode-semiconductor interface, trap distribution in pentacene film and trapped charge at the organic/insulator interface. The electrical characteristics of bottom contact thin film transistor with PANi-PSS electrodes and pentacene active material is superior to those with palladium electrodes due to a lower charge injection barrier. Contact resistance was extracted in both cases by the transfer line method (TLM). The extracted charge concentration and potential profile from the two dimensional numerical simulation was used to explain the observed electrical characteristics. The simulated device characteristics not only matched the experimental electrical characteristics, but also gave an insight on the charge injection, transport and trap properties of the OTFTs as a function of different electrode materials from the perspectives of transistor operation.

  8. Eight electrode optical readout gap

    DOEpatents

    Boettcher, G.E.; Crain, R.W.

    1984-01-01

    A protective device for a plurality of electrical circuits includes a plurality of isolated electrodes forming a gap with a common electrode. An output signal, electrically isolated from the circuits being monitored, is obtained by a photosensor viewing the discharge gap through an optical window. Radioactive stabilization of discharge characteristics is provided for slowly changing voltages and carbon tipped dynamic starters provide desirable discharge characteristics for rapidly varying voltages. A hydrogen permeation barrier is provided on external surfaces of the device.

  9. Effect of Electrostatic Discharge on Electrical Characteristics of Discrete Electronic Components

    NASA Technical Reports Server (NTRS)

    Wysocki, Phil; Vashchenko, Vladislav; Celaya, Jose; Saha, Sankalita; Goebel, Kai

    2009-01-01

    This article reports on preliminary results of a study conducted to examine how temporary electrical overstress seed fault conditions in discrete power electronic components that cannot be detected with reliability tests but impact longevity of the device. These defects do not result in formal parametric failures per datasheet specifications, but result in substantial change in the electrical characteristics when compared with pristine device parameters. Tests were carried out on commercially available 600V IGBT devices using transmission line pulse (TLP) and system level ESD stress. It was hypothesized that the ESD causes local damage during the ESD discharge which may greatly accelerate degradation mechanisms and thus reduce the life of the components. This hypothesis was explored in simulation studies where different types of damage were imposed to different parts of the device. Experimental results agree qualitatively with the simulation for a number of tests which will motivate more in-depth modeling of the damage.

  10. Method of Harmonic Balance in Full-Scale-Model Tests of Electrical Devices

    NASA Astrophysics Data System (ADS)

    Gorbatenko, N. I.; Lankin, A. M.; Lankin, M. V.

    2017-01-01

    Methods for determining the weber-ampere characteristics of electrical devices, one of which is based on solution of direct problem of harmonic balance and the other on solution of inverse problem of harmonic balance by the method of full-scale-model tests, are suggested. The mathematical model of the device is constructed using the describing function and simplex optimization methods. The presented results of experimental applications of the method show its efficiency. The advantage of the method is the possibility of application for nondestructive inspection of electrical devices in the processes of their production and operation.

  11. Bidirectional DC-DC conversion device use at system of urban electric transport

    NASA Astrophysics Data System (ADS)

    Vilberger, M. E.; Vislogusov, D. P.; Kotin, D. A.; Kulekina, A. V.

    2017-10-01

    The paper considers questions of energy storage devices used in electric transport, especially in the electric traction drive of a trolley bus, in order to provide an autonomous motion, overhead system’s load leveling and energy recovering. For efficiency of the proposed system, a bidirectional DC-DC converter is used. During the simulation, regulation characteristics of the bidirectional DC-DC converters were obtained.

  12. Grid regulation services for energy storage devices based on grid frequency

    DOEpatents

    Pratt, Richard M; Hammerstrom, Donald J; Kintner-Meyer, Michael C.W.; Tuffner, Francis K

    2013-07-02

    Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

  13. Grid regulation services for energy storage devices based on grid frequency

    DOEpatents

    Pratt, Richard M.; Hammerstrom, Donald J.; Kintner-Meyer, Michael C. W.; Tuffner, Francis K.

    2017-09-05

    Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

  14. Grid regulation services for energy storage devices based on grid frequency

    DOEpatents

    Pratt, Richard M; Hammerstrom, Donald J; Kintner-Meyer, Michael C.W.; Tuffner, Francis K

    2014-04-15

    Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

  15. Effect of 100 MeV Si7+ ions' irradiation on Pd/n-GaAs Schottky diodes

    NASA Astrophysics Data System (ADS)

    Sinha, O. P.

    2017-12-01

    Pd/n-GaAs realized devices (junction made on a virgin substrate prior to irradiation) and Pd/n-GaAs fabricated devices (junction realized after the virgin substrate irradiation) have been irradiated with 100 MeV Si7+ ions for the varying fluence of 1012-1013 ions/cm2. The devices have been characterized by I-V and C-V techniques for an electrical response. The electrical characterization of these devices shows the presence of interfacial layer. Moreover, the C-V characteristics show strong frequency dependence behavior, which indicates the involvement of interfacial charge layer with deep electron states. The hydrogenation of these devices has not caused any significant change in the electrical (I-V and C-V) characteristics. The observed results have been discussed in the realm of radiation-induced defects, which cause the carrier removal and compensation phenomena to cause the observed high resistivity and filling and unfilling of these traps' level to cause strong frequency dependence behavior.

  16. High Performance Polymer Memory and Its Formation

    DTIC Science & Technology

    2007-04-26

    the retention time of the device was performed to estimate the barrier height of the charge trap . The activation energy was approximated to be about...characteristics and presented a model to explain the mechanism of electrical switching in the device. By exploiting an electric-field induced charge transfer...electrical current in the high conductivity state would be due to some temperature-independent charge tunneling processes. The IV curves could be

  17. Resistive switching characteristics and mechanisms in silicon oxide memory devices

    NASA Astrophysics Data System (ADS)

    Chang, Yao-Feng; Fowler, Burt; Chen, Ying-Chen; Zhou, Fei; Wu, Xiaohan; Chen, Yen-Ting; Wang, Yanzhen; Xue, Fei; Lee, Jack C.

    2016-05-01

    Intrinsic unipolar SiOx-based resistance random access memories (ReRAM) characterization, switching mechanisms, and applications have been investigated. Device structures, material compositions, and electrical characteristics are identified that enable ReRAM cells with high ON/OFF ratio, low static power consumption, low switching power, and high readout-margin using complementary metal-oxide semiconductor transistor (CMOS)-compatible SiOx-based materials. These ideas are combined with the use of horizontal and vertical device structure designs, composition optimization, electrical control, and external factors to help understand resistive switching (RS) mechanisms. Measured temperature effects, pulse response, and carrier transport behaviors lead to compact models of RS mechanisms and energy band diagrams in order to aid the development of computer-aided design for ultralarge-v scale integration. This chapter presents a comprehensive investigation of SiOx-based RS characteristics and mechanisms for the post-CMOS device era.

  18. Scalable fabrication of a hybrid field-effect and acousto-electric device by direct growth of monolayer MoS2/LiNbO3

    PubMed Central

    Preciado, Edwin; Schülein, Florian J.R.; Nguyen, Ariana E.; Barroso, David; Isarraraz, Miguel; von Son, Gretel; Lu, I-Hsi; Michailow, Wladislaw; Möller, Benjamin; Klee, Velveth; Mann, John; Wixforth, Achim; Bartels, Ludwig; Krenner, Hubert J.

    2015-01-01

    Lithium niobate is the archetypical ferroelectric material and the substrate of choice for numerous applications including surface acoustic wave radio frequencies devices and integrated optics. It offers a unique combination of substantial piezoelectric and birefringent properties, yet its lack of optical activity and semiconducting transport hamper application in optoelectronics. Here we fabricate and characterize a hybrid MoS2/LiNbO3 acousto-electric device via a scalable route that uses millimetre-scale direct chemical vapour deposition of MoS2 followed by lithographic definition of a field-effect transistor structure on top. The prototypical device exhibits electrical characteristics competitive with MoS2 devices on silicon. Surface acoustic waves excited on the substrate can manipulate and probe the electrical transport in the monolayer device in a contact-free manner. We realize both a sound-driven battery and an acoustic photodetector. Our findings open directions to non-invasive investigation of electrical properties of monolayer films. PMID:26493867

  19. Electrical studies of Ge4Sb1Te5 devices for memory applications

    NASA Astrophysics Data System (ADS)

    Sangeetha, B. G.; Shylashree, N.

    2018-05-01

    In this paper, the Ge4Sb1Te5 thin film device preparation and electrical studies for memory devices were carried out. The device was deposited using vapor-evaporation technique. RESET to SET state switching was shown using current-voltage characterization. The current-voltage characterization shows the switching between SET to RESET state and it was found that it requires a low energy for transition. Switching between amorphous to crystalline nature was studied using resistance-voltage characteristics. The endurance showed the effective use of this composition for memory device.

  20. Investigation of the optical and electrical characteristics of solution-processed poly (3 hexylthiophene) (P3HT): multiwall carbon nanotube (MWCNT) composite-based devices

    NASA Astrophysics Data System (ADS)

    Rathore, Priyanka; Mohan Singh Negi, Chandra; Singh Verma, Ajay; Singh, Amarjeet; Chauhan, Gayatri; Regis Inigo, Anto; Gupta, Saral K.

    2017-08-01

    Devices comprised of solution-processed poly (3-hexylthiophene) (P3HT)/multiwall carbon nanotubes (MWCNTs), with various concentrations of MWCNTs, were fabricated and characterized. The morphology of the P3HT: MWCNT nanocomposite was characterized by using field emission scanning electron microscopy (FESEM). The optical characteristics of the nanocomposite were studied by UV/VIS/NIR spectroscopy and Raman spectroscopy. The electrical properties of the fabricated devices were characterized by measuring the current density-voltage (J-V) characteristics. While the J-V characteristics of a pristine P3HT device reveal thermal injection limited charge transport, the P3HT: MWCNT nanocomposite-based devices exhibit three distinct voltage-dependent conduction regimes. The fitting curve with measured data reveals Ohmic conduction for a low voltage range, a trap-charge limited conduction (TCLC) process at an intermediate voltage range followed by a trap free space-charge limited conduction (SCLC) process at much higher voltages. A fundamental understanding of this work can assist in creating new charge transport pathways which will provide new avenues for the development of highly efficient polymer-based optoelectronic devices.

  1. Characterization of the Hole Transport and Electrical Properties in the Small-Molecule Organic Semiconductors

    NASA Astrophysics Data System (ADS)

    Wang, L. G.; Zhu, J. J.; Liu, X. L.; Cheng, L. F.

    2017-10-01

    In this paper, we investigate the hole transport and electrical properties in a small-molecule organic material N, N'-bis(1-naphthyl)- N, N'-diphenyl-1,1'-biphenyl-4,4'-diamine (NPB), which is frequently used in organic light-emitting diodes. It is shown that the thickness-dependent current density versus voltage ( J- V) characteristics of sandwich-type NPB-based hole-only devices cannot be described well using the conventional mobility model without carrier density or electric field dependence. However, a consistent and excellent description of the thickness-dependent and temperature-dependent J- V characteristics of NPB hole-only devices can be obtained with a single set of parameters by using our recently introduced improved model that take into account the temperature, carrier density, and electric field dependence of the mobility. For the small-molecule organic semiconductor studied, we find that the width of the Gaussian distribution of density of states σ and the lattice constant a are similar to the values reported for conjugated polymers. Furthermore, we show that the boundary carrier density has an important effect on the J- V characteristics. Both the maximum of carrier density and the minimum of electric field appear near the interface of NPB hole-only devices.

  2. A rotating electrical transfer device

    NASA Technical Reports Server (NTRS)

    Porter, R. S.

    1985-01-01

    The design, development, and performance characteristics of two roll ring configurations - a roll ring being a device used in transferring electrical energy across a continuously rotating or oscillating interface through one or more flexible rolling contacts, or flexures are described. Emphasis is placed on the design problems and solutions encountered during development in the areas of flexure fatigue, contact electroplating, electrical noise, and control of interface geometry. Also, the present status of each configuration is summarized.

  3. Multi-Directional Environmental Sensors

    NASA Technical Reports Server (NTRS)

    Manohara, Harish (Inventor); Del Castillo, Linda Y. (Inventor); Mojarradi, Mohammed M. (Inventor)

    2016-01-01

    Systems and methods in accordance with embodiments of the invention implement multi-directional environmental sensors. In one embodiment, a multi-directional environmental sensor includes: an inner conductive element that is substantially symmetrical about three orthogonal planes; an outer conductive element that is substantially symmetrical about three orthogonal planes; and a device that measures the electrical characteristics of the multi-directional environmental sensor, the device having a first terminal and a second terminal; where the inner conductive element is substantially enclosed within the outer conductive element; where the inner conductive element is electrically coupled to the first terminal of the device; and where the outer conductive element is electrically coupled to the second terminal of the device.

  4. A weak electric field-assisted ultrafast electrical switching dynamics in In3SbTe2 phase-change memory devices

    NASA Astrophysics Data System (ADS)

    Pandey, Shivendra Kumar; Manivannan, Anbarasu

    2017-07-01

    Prefixing a weak electric field (incubation) might enhance the crystallization speed via pre-structural ordering and thereby achieving faster programming of phase change memory (PCM) devices. We employed a weak electric field, equivalent to a constant small voltage (that is incubation voltage, Vi of 0.3 V) to the applied voltage pulse, VA (main pulse) for a systematic understanding of voltage-dependent rapid threshold switching characteristics and crystallization (set) process of In3SbTe2 (IST) PCM devices. Our experimental results on incubation-assisted switching elucidate strikingly one order faster threshold switching, with an extremely small delay time, td of 300 ps, as compared with no incubation voltage (Vi = 0 V) for the same VA. Also, the voltage dependent characteristics of incubation-assisted switching dynamics confirm that the initiation of threshold switching occurs at a lower voltage of 0.82 times of VA. Furthermore, we demonstrate an incubation assisted ultrafast set process of IST device for a low VA of 1.7 V (˜18 % lesser compared to without incubation) within a short pulse-width of 1.5 ns (full width half maximum, FWHM). These findings of ultrafast switching, yet low power set process would immensely be helpful towards designing high speed PCM devices with low power operation.

  5. Thermoreflectance microscopy measurements of the Joule heating characteristics of high- Tc superconducting terahertz emitters

    NASA Astrophysics Data System (ADS)

    Kashiwagi, Takanari; Tanaka, Taiga; Watanabe, Chiharu; Kubo, Hiroyuki; Komori, Yuki; Yuasa, Takumi; Tanabe, Yuki; Ota, Ryusei; Kuwano, Genki; Nakamura, Kento; Tsujimoto, Manabu; Minami, Hidetoshi; Yamamoto, Takashi; Klemm, Richard A.; Kadowaki, Kazuo

    2017-12-01

    Joule heating is the central issue in order to develop high-power and high-performance terahertz (THz) emission from mesa devices employing the intrinsic Josephson junctions in a layered high transition-temperature Tc superconductor. Here, we describe a convenient local thermal measurement technique using charge-coupled-device-based thermoreflectance microscopy, with the highest spatial resolution to date. This technique clearly proves that the relative temperature changes of the mesa devices between different bias points on the current-voltage characteristics can be measured very sensitively. In addition, the heating characteristics on the surface of the mesa devices can be detected more directly without any special treatment of the mesa surface such as previous coatings with SiC micro-powders. The results shown here clearly indicate that the contact resistance strongly affects the formation of an inhomogeneous temperature distribution on the mesa structures. Since the temperature and sample dependencies of the Joule heating characteristics can be measured quickly, this simple thermal evaluation technique is a useful tool to check the quality of the electrical contacts, electrical wiring, and sample defects. Thus, this technique could help to reduce the heating problems and to improve the performance of superconducting THz emitter devices.

  6. Evaluating Energy Conversion Efficiency

    NASA Technical Reports Server (NTRS)

    Byvik, C. E.; Smith, B. T.; Buoncristiani, A. M.

    1983-01-01

    Devices that convert solar radiation directly into storable chemical or electrical energy, have characteristic energy absorption spectrum; specifically, each of these devices has energy threshold. The conversion efficiency of generalized system that emcompasses all threshold devices is analyzed, resulting in family of curves for devices of various threshold energies operating at different temperatures.

  7. Magnetic field controlled electronic state and electric field controlled magnetic state in α-Fe1.6Ga0.4O3 oxide

    NASA Astrophysics Data System (ADS)

    Lone, Abdul Gaffar; Bhowmik, R. N.

    2018-04-01

    We have prepared α-Fe1.6Ga0.4O3 (Ga doped α-Fe2O3) system in rhombohedral phase. The material has shown room temperature ferroelectric and ferromagnetic properties. The existence of magneto-electric coupling at room temperature has been confirmed by the experimental observation of magnetic field controlled electric properties and electric field controlled magnetization. The current-voltage characteristics were controlled by external magnetic field. The magnetic state switching and exchange bias effect are highly sensitive to the polarity and ON and OFF modes of external electric field. Such materials can find novel applications in magneto-electronic devices, especially in the field of electric field controlled spintronics devices and energy storage devices which need low power consumption.

  8. Brush potential curve tracer

    DOEpatents

    Finch, H.A.

    1985-06-21

    A device for analyzing commutating characteristics of a motor or generator includes a holder for supporting a plurality of probes adjacent a brush of the motor or generator. Measurements of electrical current characteristics of the probes provides information useful in analyzing operation of the machine. Methods for employing a device in accordance with the invention are also disclosed.

  9. Field Emission Characteristics of Carbon Nanotubes and Their Applications in Sensors and Devices

    NASA Astrophysics Data System (ADS)

    Vaseashta, Ashok

    2003-03-01

    FIELD EMISSION CHARACTERISTICS OF CARBON NANOTUBES AND THEIR APPLICATIONS IN SENSORS AND DEVICES A. Vaseashta, C. Shaffer, M. Collins, A. Mwuara Dept of Physics, Marshall University, Huntington, WV V. Pokropivny Institute for Materials Sciences of NASU, Kiev, Ukraine. D. Dimova-Malinovska Bulgarian Academy of Sciences, Sofia, Bulgaria. The dimensionality of a system has profound influence on its physical behavior. With advances in technology over the past few decades, it has become possible to fabricate and study reduced-dimensional systems, such as carbon nanotubes (CNTs). Carbon nanotubes are especially promising candidate for cold cathode field emitter because of their electrical properties, high aspect ratio, and small radius of curvature at the tips. Electron emission from the carbon nanotubes was investigated. Based upon the field emission investigation of carbon nanotubes, several prototype devices have been suggested that operate with low swing voltages with sufficient high current densities. Characteristics that allow improved current stability and long lifetime operation for electrical and opto-electronics devices are presented. The aim of this brief overview is to illustrate the useful characteristics of carbon nanotubes and its possible application.

  10. Addressable test matrix for measuring analog transfer characteristics of test elements used for integrated process control and device evaluation

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G. (Inventor)

    1988-01-01

    A set of addressable test structures, each of which uses addressing schemes to access individual elements of the structure in a matrix, is used to test the quality of a wafer before integrated circuits produced thereon are diced, packaged and subjected to final testing. The electrical characteristic of each element is checked and compared to the electrical characteristic of all other like elements in the matrix. The effectiveness of the addressable test matrix is in readily analyzing the electrical characteristics of the test elements and in providing diagnostic information.

  11. Bulk heterojunction polymer memory devices with reduced graphene oxide as electrodes.

    PubMed

    Liu, Juqing; Yin, Zongyou; Cao, Xiehong; Zhao, Fei; Lin, Anping; Xie, Linghai; Fan, Quli; Boey, Freddy; Zhang, Hua; Huang, Wei

    2010-07-27

    A unique device structure with a configuration of reduced graphene oxide (rGO) /P3HT:PCBM/Al has been designed for the polymer nonvolatile memory device. The current-voltage (I-V) characteristics of the fabricated device showed the electrical bistability with a write-once-read-many-times (WORM) memory effect. The memory device exhibits a high ON/OFF ratio (10(4)-10(5)) and low switching threshold voltage (0.5-1.2 V), which are dependent on the sheet resistance of rGO electrode. Our experimental results confirm that the carrier transport mechanisms in the OFF and ON states are dominated by the thermionic emission current and ohmic current, respectively. The polarization of PCBM domains and the localized internal electrical field formed among the adjacent domains are proposed to explain the electrical transition of the memory device.

  12. Explosion suppression system

    DOEpatents

    Sapko, Michael J.; Cortese, Robert A.

    1992-01-01

    An explosion suppression system and triggering apparatus therefor are provided for quenching gas and dust explosions. An electrically actuated suppression mechanism which dispenses an extinguishing agent into the path ahead of the propagating flame is actuated by a triggering device which is light powered. This triggering device is located upstream of the propagating flame and converts light from the flame to an electrical actuation signal. A pressure arming device electrically connects the triggering device to the suppression device only when the explosion is sensed by a further characteristic thereof beside the flame such as the pioneer pressure wave. The light powered triggering device includes a solar panel which is disposed in the path of the explosion and oriented between horizontally downward and vertical. Testing mechanisms are also preferably provided to test the operation of the solar panel and detonator as well as the pressure arming mechanism.

  13. Schottky barrier MOSFET systems and fabrication thereof

    DOEpatents

    Welch, James D.

    1997-01-01

    (MOS) device systems-utilizing Schottky barrier source and drain to channel region junctions are disclosed. Experimentally derived results which demonstrate operation of fabricated N-channel and P-channel Schottky barrier (MOSFET) devices, and of fabricated single devices with operational characteristics similar to (CMOS) and to a non-latching (SRC) are reported. Use of essentially non-rectifying Schottky barriers in (MOS) structures involving highly doped and the like and intrinsic semiconductor to allow non-rectifying interconnection of, and electrical accessing of device regions is also disclosed. Insulator effected low leakage current device geometries and fabrication procedures therefore are taught. Selective electrical interconnection of drain to drain, source to drain, or source to source, of N-channel and/or P-channel Schottky barrier (MOSFET) devices formed on P-type, N-type and Intrinsic semiconductor allows realization of Schottky Barrier (CMOS), (MOSFET) with (MOSFET) load, balanced differential (MOSFET) device systems and inverting and non-inverting single devices with operating characteristics similar to (CMOS), which devices can be utilized in modulation, as well as in voltage controled switching and effecting a direction of rectification.

  14. Schottky barrier MOSFET systems and fabrication thereof

    DOEpatents

    Welch, J.D.

    1997-09-02

    (MOS) device systems-utilizing Schottky barrier source and drain to channel region junctions are disclosed. Experimentally derived results which demonstrate operation of fabricated N-channel and P-channel Schottky barrier (MOSFET) devices, and of fabricated single devices with operational characteristics similar to (CMOS) and to a non-latching (SRC) are reported. Use of essentially non-rectifying Schottky barriers in (MOS) structures involving highly doped and the like and intrinsic semiconductor to allow non-rectifying interconnection of, and electrical accessing of device regions is also disclosed. Insulator effected low leakage current device geometries and fabrication procedures therefore are taught. Selective electrical interconnection of drain to drain, source to drain, or source to source, of N-channel and/or P-channel Schottky barrier (MOSFET) devices formed on P-type, N-type and Intrinsic semiconductor allows realization of Schottky Barrier (CMOS), (MOSFET) with (MOSFET) load, balanced differential (MOSFET) device systems and inverting and non-inverting single devices with operating characteristics similar to (CMOS), which devices can be utilized in modulation, as well as in voltage controlled switching and effecting a direction of rectification. 89 figs.

  15. Effect of a PEDOT:PSS modified layer on the electrical characteristics of flexible memristive devices based on graphene oxide:polyvinylpyrrolidone nanocomposites

    NASA Astrophysics Data System (ADS)

    Kim, Woo Kyum; Wu, Chaoxing; Kim, Tae Whan

    2018-06-01

    The electrical characteristics of flexible memristive devices utilizing a graphene oxide (GO):polyvinylpyrrolidone (PVP) nanocomposite charge-trapping layer with a poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)-modified layer fabricated on an indium-tin-oxide (ITO)-coated polyethylene glycol naphthalate (PEN) substrate were investigated. Current-voltage (I-V) curves for the Al/GO:PVP/PEDOT:PSS/ITO/PEN devices showed remarkable hysteresis behaviors before and after bending. The maximum memory margins of the devices before and after 100 bending cycles were approximately 7.69 × 103 and 5.16 × 102, respectively. The devices showed nonvolatile memory effect with a retention time of more than 1 × 104 s. The "Reset" voltages were distributed between 2.3 and 3.5 V, and the "Set" voltages were dispersed between -0.7 and -0.2 V, indicative of excellent, uniform electrical performance. The endurance number of ON/OFF-switching and bending cycles for the devices was 1 × 102, respectively. The bipolar resistive switching behavior was explained on the basis of I-V results. In particular, the bipolar resistive switching behaviors of the LRS and the HRS for the devices are dominated by the Ohmic and space charge current mechanisms, respectively.

  16. Plasma Properties of an Exploding Semiconductor Igniter

    NASA Astrophysics Data System (ADS)

    McGuirk, J. S.; Thomas, K. A.; Shaffer, E.; Malone, A. L.; Baginski, T.; Baginski, M. E.

    1997-11-01

    Requirements by the automotive industry for low-cost, pyrotechnic igniters for automotive airbags have led to the development of several semiconductor devices. The properties of the plasma produced by the vaporization of an exploding semiconductor are necessary in order to minimize the electrical energy requirements. This work considers two silicon-based semiconductor devices: the semiconductor bridge (SCB) and the semiconductor junction igniter both consisting of etched silicon with vapor deposited aluminum structures. Electrical current passing through the device heats a narrow junction region to the point of vaporization creating an aluminum and silicon low-temperature plasma. This work will investigate the electrical characteristics of both devices and infer the plasma properties. Furthermore optical spectral measurements will be taken of the exploding devices to estimate the temperature and density of the plasma.

  17. Electric Field Sensor for Lightning Early Warning System

    NASA Astrophysics Data System (ADS)

    Premlet, B.; Mohammed, R.; Sabu, S.; Joby, N. E.

    2017-12-01

    Electric field mills are used popularly for atmospheric electric field measurements. Atmospheric Electric Field variation is the primary signature for Lightning Early Warning systems. There is a characteristic change in the atmospheric electric field before lightning during a thundercloud formation.A voltage controlled variable capacitance is being proposed as a method for non-contacting measurement of electric fields. A varactor based mini electric field measurement system is developed, to detect any change in the atmospheric electric field and to issue lightning early warning system. Since this is a low-cost device, this can be used for developing countries which are facing adversities. A network of these devices can help in forming a spatial map of electric field variations over a region, and this can be used for more improved atmospheric electricity studies in developing countries.

  18. Fabrication of arrayed Si nanowire-based nano-floating gate memory devices on flexible plastics.

    PubMed

    Yoon, Changjoon; Jeon, Youngin; Yun, Junggwon; Kim, Sangsig

    2012-01-01

    Arrayed Si nanowire (NW)-based nano-floating gate memory (NFGM) devices with Pt nanoparticles (NPs) embedded in Al2O3 gate layers are successfully constructed on flexible plastics by top-down approaches. Ten arrayed Si NW-based NFGM devices are positioned on the first level. Cross-linked poly-4-vinylphenol (PVP) layers are spin-coated on them as isolation layers between the first and second level, and another ten devices are stacked on the cross-linked PVP isolation layers. The electrical characteristics of the representative Si NW-based NFGM devices on the first and second levels exhibit threshold voltage shifts, indicating the trapping and detrapping of electrons in their NPs nodes. They have an average threshold voltage shift of 2.5 V with good retention times of more than 5 x 10(4) s. Moreover, most of the devices successfully retain their electrical characteristics after about one thousand bending cycles. These well-arrayed and stacked Si NW-based NFGM devices demonstrate the potential of nanowire-based devices for large-scale integration.

  19. High-Power Piezoelectric Acoustic-Electric Power Feedthru for Metal Walls

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Biederman, Will; Sherrit, Stewart; Badescu, Mircea; Bar-Cohen, Yoseph; Jones, Christopher; Aldrich, Jack; Chang, Zensheu

    2008-01-01

    Piezoelectric acoustic-electric power feed-through devices transfer electric power wirelessly through a solid wall by using acoustic waves. This approach allows for the removal of holes through structures. The technology is applicable to power supply for electric equipment inside sealed containers, vacuum or pressure vessels, etc where the holes on the wall are prohibitive or result in significant performance degrade or complex designs. In the author's previous work, 100-W electric power was transferred through a metal wall by a small, simple-structure piezoelectric device. To meet requirements of higher power applications, the feasibility to transfer kilowatts level power was investigated. Pre-stressed longitudinal piezoelectric feedthru devices were analyzed by finite element model. An equivalent circuit model was developed to predict the power transfer characteristics to different electric loads. Based on the analysis results, a prototype device was designed, fabricated and a demonstration of the transmission of electric power up to 1-kW was successfully conducted. The methods to minimize the plate wave excitation on the wall were also analyzed. Both model analysis and experimental results are presented in detail in this presentation.

  20. Photoconductive circuit element pulse generator

    DOEpatents

    Rauscher, Christen

    1989-01-01

    A pulse generator for characterizing semiconductor devices at millimeter wavelength frequencies where a photoconductive circuit element (PCE) is biased by a direct current voltage source and produces short electrical pulses when excited into conductance by short laser light pulses. The electrical pulses are electronically conditioned to improve the frequency related amplitude characteristics of the pulses which thereafter propagate along a transmission line to a device under test.

  1. Brush potential curve tracer

    DOEpatents

    Finch, Hilvan A.

    1987-01-01

    A device for analyzing commutating characteristics of a motor or generator includes a holder for supporting a plurality of probes adjacent a brush of the motor or generator. Measurements of electrical current characteristics in each of the probes provides information useful in analyzing operation of the machine. Methods for employing a device in accordance with the invention are also disclosed.

  2. 1-dimension nano-material-based flexible device

    NASA Astrophysics Data System (ADS)

    Yang, Xing; Zhou, Zhaoying; Zheng, Fuzhong

    2009-11-01

    1D nano-material-based flexible devices has attracted considerable attention owing to the growing need of the high-sensitivity flexible sensor, portable consumer electronics etc.. In this paper, the 1D nano-materials-based flexible device on polyimide substrate was proposed. The bottom-up and top-down combined process were used for constructing the ZnO nanowire and the CNT-based flexible devices. Their electrical characteristics were also investigated. The measurement results demonstrate that the flexible device covered with a layer of Al2O3 has good ohm electrical contact behavior between the nano-material and micro-electrodes. The proposed 1D nano-material-based flexible device shows the application potential in the sensing fields.

  3. Trajectories of charged particles in radial electric and uniform axial magnetic fields

    NASA Technical Reports Server (NTRS)

    Englert, G. W.

    1979-01-01

    Trajectories of charged particles were determined over a wide range of parameters characterizing motion in cylindrical low-pressure gas discharges and plasma heating devices which have steady radial electric fields perpendicular to uniform steady magnetic fields. Consideration was given to radial distributions characteristic of fields measured in a modified Penning discharge, in two NASA Lewis burnout-type plasma heating devices, and that estimated for the Ixion device. Numerical calculations of trajectories for such devices showed that differences between cyclotron frequency and qB/m and between azimuthal drift and a guiding center approximation are appreciable.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Hyun-Sik; Jeon, Sanghun, E-mail: jeonsh@korea.ac.kr; Department of Display and Semiconductor Physics, Korea University, 2511 Sejongro, Sejong 339-700

    The influence of illumination on the electrical characteristics of amorphous indium–zinc oxide (a-IZO) thin-film transistors (TFTs) has been investigated. The electrical properties are found to depend significantly on the active thickness (T{sub IZO}) of the a-IZO TFT. The active thickness is seen to play a major role in the carrier transport mechanism. Based on the carrier fluctuation model, the low-frequency noise (LFN) characteristics of a-IZO devices of varying thicknesses were evaluated before as well as after illumination. Similar to the results of DC and capacitance–voltage (C–V) measurements, the LFN characteristics too show that the light-induced carrier transport becomes significantly enhancedmore » for relatively thick (T{sub IZO} ≥ 60 nm) a-IZO devices.« less

  5. High-power piezoelectric acoustic-electric power feedthru for metal walls

    NASA Astrophysics Data System (ADS)

    Bao, Xiaoqi; Biederman, Will; Sherrit, Stewart; Badescu, Mircea; Bar-Cohen, Yoseph; Jones, Christopher; Aldrich, Jack; Chang, Zensheu

    2008-03-01

    Piezoelectric acoustic-electric power feed-through devices transfer electric power wirelessly through a solid wall using elastic waves. This approach allows for the elimination of the need for holes through structures for cabling or electrical feed-thrus . The technology supplies power to electric equipment inside sealed containers, vacuum or pressure vessels, etc where holes in the wall are prohibitive or may result in significant performance degradation or requires complex designs. In the our previous work, 100-W of electric power was transferred through a metal wall by a small, piezoelectric device with a simple-structure. To meet requirements of higher power applications, the feasibility to transfer kilowatts level power was investigated. Pre-stressed longitudinal piezoelectric feed-thru devices were analyzed by finite element modeling. An equivalent circuit model was developed to predict the characteristics of power transfer to different electric loads. Based on the analytical results, a prototype device was designed, fabricated and successfully demonstrated to transfer electric power at a level of 1-kW. Methods of minimizing plate wave excitation on the wall were also analyzed. Both model analysis and experimental results are presented in detail in this paper.

  6. Protection coordination of the Kennedy Space Center electric distribution network

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A computer technique is described for visualizing the coordination and protection of any existing system of devices and settings by plotting the tripping characteristics of the involved devices on a common basis. The program determines the optimum settings of a given set of protective devices and configuration in the sense of the best expected coordinated operation of these devices. Subroutines are given for simulating time versus current characteristics of the different relays, circuit breakers, and fuses in the system; coordination index computation; protection checks; plotting; and coordination optimation.

  7. Silicon Nitride Deposition for Flexible Organic Electronic Devices by VHF (162 MHz)-PECVD Using a Multi-Tile Push-Pull Plasma Source.

    PubMed

    Kim, Ki Seok; Kim, Ki Hyun; Ji, You Jin; Park, Jin Woo; Shin, Jae Hee; Ellingboe, Albert Rogers; Yeom, Geun Young

    2017-10-19

    Depositing a barrier film for moisture protection without damage at a low temperature is one of the most important steps for organic-based electronic devices. In this study, the authors investigated depositing thin, high-quality SiN x film on organic-based electronic devices, specifically, very high-frequency (162 MHz) plasma-enhanced chemical vapor deposition (VHF-PECVD) using a multi-tile push-pull plasma source with a gas mixture of NH 3 /SiH 4 at a low temperature of 80 °C. The thin deposited SiN x film exhibited excellent properties in the stoichiometry, chemical bonding, stress, and step coverage. Thin film quality and plasma damage were investigated by the water vapor transmission rate (WVTR) and by electrical characteristics of organic light-emitting diode (OLED) devices deposited with SiN x , respectively. The thin deposited SiN x film exhibited a low WVTR of 4.39 × 10 -4  g (m 2 · day) -1 for a single thin (430 nm thick) film SiN x and the electrical characteristics of OLED devices before and after the thin SiN x film deposition on the devices did not change, which indicated no electrical damage during the deposition of SiN x on the OLED device.

  8. Resistive field structures for semiconductor devices and uses therof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marinella, Matthew; DasGupta, Sandeepan; Kaplar, Robert

    The present disclosure relates to resistive field structures that provide improved electric field profiles when used with a semiconductor device. In particular, the resistive field structures provide a uniform electric field profile, thereby enhancing breakdown voltage and improving reliability. In example, the structure is a field cage that is configured to be resistive, in which the potential changes significantly over the distance of the cage. In another example, the structure is a resistive field plate. Using these resistive field structures, the characteristics of the electric field profile can be independently modulated from the physical parameters of the semiconductor device. Additionalmore » methods and architectures are described herein.« less

  9. Influence of emissive layer thickness on electrical characteristics of polyfluorene copolymer based polymer light emitting diodes

    NASA Astrophysics Data System (ADS)

    Das, D.; Gopikrishna, P.; Singh, A.; Dey, A.; Iyer, P. K.

    2016-04-01

    Polymer light emitting diodes (PLEDs) with a device configuration of ITO/PEDOT:PSS/PFONPN01 [Poly [2,7-(9,9’-dioctylfluorene)-co-N-phenyl-1,8-naphthalimide (99:01)]/LiF/Al have been fabricated by varying the emissive layer (EML) thickness (40/65/80/130 nm) and the influence of EML thickness on the electrical characteristics of PLED has been studied. PLED can be modelled as a simple combination of resistors and capacitors. The impedance spectroscopy analysis showed that the devices with different EML thickness had different values of parallel resistance (RP) and the parallel capacitance (CP). The impedance of the devices is found to increase with increasing EML thickness resulting in an increase in the driving voltage. The device with an emissive layer thickness of 80nm, spin coated from a solution of concentration 15 mg/mL is found to give the best device performance with a maximum brightness value of 5226 cd/m2.

  10. Characteristics and reliability of metal-oxide-semiconductor transistors with various depths of plasma-induced Si recess structure

    NASA Astrophysics Data System (ADS)

    Chen, Jone F.; Tsai, Yen-Lin; Chen, Chun-Yen; Hsu, Hao-Tang; Kao, Chia-Yu; Hwang, Hann-Ping

    2018-04-01

    Device characteristics and hot-carrier-induced device degradation of n-channel MOS transistors with an off-state breakdown voltage of approximately 25 V and various Si recess depths introduced by sidewall spacer overetching are investigated. Experimental data show that the depth of the Si recess has small effects on device characteristics. A device with a deeper Si recess has lower substrate current and channel electric field, whereas a greater hot-carrier-induced device degradation and a shorter hot-carrier lifetime are observed. Results of technology computer-aided design simulations suggest that these unexpected observations are related to the severity of plasma damage caused by the sidewall spacer overetching and the difference in topology.

  11. Effect of cleaning procedures on the electrical properties of carbon nanotube transistors—A statistical study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tittmann-Otto, J., E-mail: jana.tittmann-otto@zfm.tu-chemnitz.de; Hermann, S.; Hartmann, M.

    The interface between a carbon nanotube (CNT) and its environment can dramatically affect the electrical properties of CNT-based field-effect transistors (FETs). For such devices, the channel environment plays a significant role inducing doping or charge traps giving rise to hysteresis in the transistor characteristics. Thereby the fabrication process strongly determines the extent of those effects and the final device performance. In CNT-based devices obtained from dispersions, a proper individualization of the nanotubes is mandatory. This is generally realized by an ultrasonic treatment combined with surfactant molecules, which enwrap nanotubes forming micelle aggregates. To minimize impact on device performance, it ismore » of vital importance to consider post-deposition treatments for removal of surfactant molecules and other impurities. In this context, we investigated the effect of several wet chemical cleaning and thermal post treatments on the electrical characteristics as well as physical properties of more than 600 devices fabricated only by wafer-level compatible technologies. We observed that nitric acid and water treatments improved the maximum-current of devices. Additionally, we found that the ethanol treatment successfully lowered hysteresis in the transfer characteristics. The effect of the chemical cleaning procedures was found to be more significant on CNT-metal contacts than for the FET channels. Moreover, we investigated the effect of an additional thermal cleaning step under vacuum after the chemical cleaning, which had an exceptional impact on the hysteresis behavior including hysteresis reversal. The presence of surfactant molecules on CNT was evidenced by X-ray photoelectron and Raman spectroscopies. By identifying the role of surfactant molecules and assessing the enhancement of device performance as a direct consequence of several cleaning procedures, these results are important for the development of CNT-based electronics at the wafer-level.« less

  12. Effect of cleaning procedures on the electrical properties of carbon nanotube transistors—A statistical study

    NASA Astrophysics Data System (ADS)

    Tittmann-Otto, J.; Hermann, S.; Kalbacova, J.; Hartmann, M.; Toader, M.; Rodriguez, R. D.; Schulz, S. E.; Zahn, D. R. T.; Gessner, T.

    2016-03-01

    The interface between a carbon nanotube (CNT) and its environment can dramatically affect the electrical properties of CNT-based field-effect transistors (FETs). For such devices, the channel environment plays a significant role inducing doping or charge traps giving rise to hysteresis in the transistor characteristics. Thereby the fabrication process strongly determines the extent of those effects and the final device performance. In CNT-based devices obtained from dispersions, a proper individualization of the nanotubes is mandatory. This is generally realized by an ultrasonic treatment combined with surfactant molecules, which enwrap nanotubes forming micelle aggregates. To minimize impact on device performance, it is of vital importance to consider post-deposition treatments for removal of surfactant molecules and other impurities. In this context, we investigated the effect of several wet chemical cleaning and thermal post treatments on the electrical characteristics as well as physical properties of more than 600 devices fabricated only by wafer-level compatible technologies. We observed that nitric acid and water treatments improved the maximum-current of devices. Additionally, we found that the ethanol treatment successfully lowered hysteresis in the transfer characteristics. The effect of the chemical cleaning procedures was found to be more significant on CNT-metal contacts than for the FET channels. Moreover, we investigated the effect of an additional thermal cleaning step under vacuum after the chemical cleaning, which had an exceptional impact on the hysteresis behavior including hysteresis reversal. The presence of surfactant molecules on CNT was evidenced by X-ray photoelectron and Raman spectroscopies. By identifying the role of surfactant molecules and assessing the enhancement of device performance as a direct consequence of several cleaning procedures, these results are important for the development of CNT-based electronics at the wafer-level.

  13. Programmable digital memory devices based on nanoscale thin films of a thermally dimensionally stable polyimide

    NASA Astrophysics Data System (ADS)

    Lee, Taek Joon; Chang, Cha-Wen; Hahm, Suk Gyu; Kim, Kyungtae; Park, Samdae; Kim, Dong Min; Kim, Jinchul; Kwon, Won-Sang; Liou, Guey-Sheng; Ree, Moonhor

    2009-04-01

    We have fabricated electrically programmable memory devices with thermally and dimensionally stable poly(N-(N',N'-diphenyl-N'-1,4-phenyl)-N,N-4,4'-diphenylene hexafluoroisopropylidene-diphthalimide) (6F-2TPA PI) films and investigated their switching characteristics and reliability. 6F-2TPA PI films were found to reveal a conductivity of 1.0 × 10-13-1.0 × 10-14 S cm-1. The 6F-2TPA PI films exhibit versatile memory characteristics that depend on the film thickness. All the PI films are initially present in the OFF state. The PI films with a thickness of >15 to <100 nm exhibit excellent write-once-read-many-times (WORM) (i.e. fuse-type) memory characteristics with and without polarity depending on the thickness. The WORM memory devices are electrically stable, even in air ambient, for a very long time. The devices' ON/OFF current ratio is high, up to 1010. Therefore, these WORM memory devices can provide an efficient, low-cost means of permanent data storage. On the other hand, the 100 nm thick PI films exhibit excellent dynamic random access memory (DRAM) characteristics with polarity. The ON/OFF current ratio of the DRAM devices is as high as 1011. The observed electrical switching behaviors were found to be governed by trap-limited space-charge-limited conduction and local filament formation and further dependent on the differences between the highest occupied molecular orbital and the lowest unoccupied molecular orbital energy levels of the PI film and the work functions of the top and bottom electrodes as well as the PI film thickness. In summary, the excellent memory properties of 6F-2TPA PI make it a promising candidate material for the low-cost mass production of high density and very stable digital nonvolatile WORM and volatile DRAM memory devices.

  14. Programmable digital memory devices based on nanoscale thin films of a thermally dimensionally stable polyimide.

    PubMed

    Lee, Taek Joon; Chang, Cha-Wen; Hahm, Suk Gyu; Kim, Kyungtae; Park, Samdae; Kim, Dong Min; Kim, Jinchul; Kwon, Won-Sang; Liou, Guey-Sheng; Ree, Moonhor

    2009-04-01

    We have fabricated electrically programmable memory devices with thermally and dimensionally stable poly(N-(N',N'-diphenyl-N'-1,4-phenyl)-N,N-4,4'-diphenylene hexafluoroisopropylidene-diphthalimide) (6F-2TPA PI) films and investigated their switching characteristics and reliability. 6F-2TPA PI films were found to reveal a conductivity of 1.0 x 10(-13)-1.0 x 10(-14) S cm(-1). The 6F-2TPA PI films exhibit versatile memory characteristics that depend on the film thickness. All the PI films are initially present in the OFF state. The PI films with a thickness of >15 to <100 nm exhibit excellent write-once-read-many-times (WORM) (i.e. fuse-type) memory characteristics with and without polarity depending on the thickness. The WORM memory devices are electrically stable, even in air ambient, for a very long time. The devices' ON/OFF current ratio is high, up to 10(10). Therefore, these WORM memory devices can provide an efficient, low-cost means of permanent data storage. On the other hand, the 100 nm thick PI films exhibit excellent dynamic random access memory (DRAM) characteristics with polarity. The ON/OFF current ratio of the DRAM devices is as high as 10(11). The observed electrical switching behaviors were found to be governed by trap-limited space-charge-limited conduction and local filament formation and further dependent on the differences between the highest occupied molecular orbital and the lowest unoccupied molecular orbital energy levels of the PI film and the work functions of the top and bottom electrodes as well as the PI film thickness. In summary, the excellent memory properties of 6F-2TPA PI make it a promising candidate material for the low-cost mass production of high density and very stable digital nonvolatile WORM and volatile DRAM memory devices.

  15. Device for conversion of electromagnetic radiation into electrical current

    DOEpatents

    Blakeslee, A.E.; Mitchell, K.W.

    1980-03-25

    Electromagnetic energy may be converted directly into electrical energy by a device comprising a sandwich of at least two semiconductor portions, each portion having a p-n junction with a characteristic energy gap, and the portions lattice matched to one another by an intervening superlattice structure. This superlattice acts to block propagation into the next deposited portion of those dislocation defects which can form due to lattice mismatch between adjacent portions.

  16. Device for conversion of electromagnetic radiation into electrical current

    DOEpatents

    Blakeslee, A. Eugene; Mitchell, Kim W.

    1981-01-01

    Electromagnetic energy may be converted directly into electrical energy by a device comprising a sandwich of at least two semiconductor portions, each portion having a p-n junction with a characteristic energy gap, and the portions lattice matched to one another by an intervening superlattice structure. This superlattice acts to block propagation into the next deposited portion of those dislocation defects which can form due to lattice mismatch between adjacent portions.

  17. Constant current loop impedance measuring system that is immune to the effects of parasitic impedances

    NASA Technical Reports Server (NTRS)

    Anderson, Karl F. (Inventor)

    1994-01-01

    A constant current loop measuring system is provided for measuring a characteristic of an environment. The system comprises a first impedance positionable in the environment, a second impedance coupled in series with said first impedance and a parasitic impedance electrically coupled to the first and second impedances. A current generating device, electrically coupled in series with the first and second impedances, provides a constant current through the first and second impedances to produce first and second voltages across the first and second impedances, respectively, and a parasitic voltage across the parasitic impedance. A high impedance voltage measuring device measures a voltage difference between the first and second voltages independent of the parasitic voltage to produce a characteristic voltage representative of the characteristic of the environment.

  18. Temperature dependent transport characteristics of graphene/n-Si diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parui, S.; Ruiter, R.; Zomer, P. J.

    2014-12-28

    Realizing an optimal Schottky interface of graphene on Si is challenging, as the electrical transport strongly depends on the graphene quality and the fabrication processes. Such interfaces are of increasing research interest for integration in diverse electronic devices as they are thermally and chemically stable in all environments, unlike standard metal/semiconductor interfaces. We fabricate such interfaces with n-type Si at ambient conditions and find their electrical characteristics to be highly rectifying, with minimal reverse leakage current (<10{sup −10} A) and rectification of more than 10{sup 6}. We extract Schottky barrier height of 0.69 eV for the exfoliated graphene and 0.83 eV for themore » CVD graphene devices at room temperature. The temperature dependent electrical characteristics suggest the influence of inhomogeneities at the graphene/n-Si interface. A quantitative analysis of the inhomogeneity in Schottky barrier heights is presented using the potential fluctuation model proposed by Werner and Güttler.« less

  19. Effects of substrate heating and post-deposition annealing on characteristics of thin MOCVD HfO2 films

    NASA Astrophysics Data System (ADS)

    Gopalan, Sundararaman; Ramesh, Sivaramakrishnan; Dutta, Shibesh; Virajit Garbhapu, Venkata

    2018-02-01

    It is well known that Hf-based dielectrics have replaced the traditional SiO2 and SiON as gate dielectric materials for conventional CMOS devices. By using thicker high-k materials such as HfO2 rather than ultra-thin SiO2, we can bring down leakage current densities in MOS devices to acceptable levels. HfO2 is also one of the potential candidates as a blocking dielectric for Flash memory applications for the same reason. In this study, effects of substrate heating and oxygen flow rate while depositing HfO2 thin films using CVD and effects of post deposition annealing on the physical and electrical characteristics of HfO2 thin films are presented. It was observed that substrate heating during deposition helps improve the density and electrical characteristics of the films. At higher substrate temperature, Vfb moved closer to zero and also resulted in significant reduction in hysteresis. Higher O2 flow rates may improve capacitance, but also results in slightly higher leakage. The effect of PDA depended on film thickness and O2 PDA improved characteristics only for thick films. For thinner films forming gas anneal resulted in better electrical characteristics.

  20. Printing method for organic light emitting device lighting

    NASA Astrophysics Data System (ADS)

    Ki, Hyun Chul; Kim, Seon Hoon; Kim, Doo-Gun; Kim, Tae-Un; Kim, Snag-Gi; Hong, Kyung-Jin; So, Soon-Yeol

    2013-03-01

    Organic Light Emitting Device (OLED) has a characteristic to change the electric energy into the light when the electric field is applied to the organic material. OLED is currently employed as a light source for the lighting tools because research has extensively progressed in the improvement of luminance, efficiency, and life time. OLED is widely used in the plate display device because of a simple manufacture process and high emitting efficiency. But most of OLED lighting projects were used the vacuum evaporator (thermal evaporator) with low molecular. Although printing method has lower efficiency and life time of OLED than vacuum evaporator method, projects of printing OLED actively are progressed because was possible to combine with flexible substrate and printing technology. Printing technology is ink-jet, screen printing and slot coating. This printing method allows for low cost and mass production techniques and large substrates. In this research, we have proposed inkjet printing for organic light-emitting devices has the dominant method of thick film deposition because of its low cost and simple processing. In this research, the fabrication of the passive matrix OLED is achieved by inkjet printing, using a polymer phosphorescent ink. We are measured optical and electrical characteristics of OLED.

  1. Nanocontact Disorder in Nanoelectronics for Modulation of Light and Gas Sensitivities.

    PubMed

    Lin, Yen-Fu; Chang, Chia-Hung; Hung, Tsu-Chang; Jian, Wen-Bin; Tsukagoshi, Kazuhito; Wu, Yue-Han; Chang, Li; Liu, Zhaoping; Fang, Jiye

    2015-08-11

    To fabricate reliable nanoelectronics, whether by top-down or bottom-up processes, it is necessary to study the electrical properties of nanocontacts. The effect of nanocontact disorder on device properties has been discussed but not quantitatively studied. Here, by carefully analyzing the temperature dependence of device electrical characteristics and by inspecting them with a microscope, we investigated the Schottky contact and Mott's variable-range-hopping resistances connected in parallel in the nanocontact. To interpret these parallel resistances, we proposed a model of Ti/TiOx in the interface between the metal electrodes and nanowires. The hopping resistance as well as the nanocontact disorder dominated the total device resistance for high-resistance devices, especially at low temperatures. Furthermore, we introduced nanocontact disorder to modulate the light and gas responsivities of the device; unexpectedly, it multiplied the sensitivities compared with the intrinsic sensitivity of the nanowires. Our results improve the collective understanding of electrical contacts to low-dimensional semiconductor devices and will aid performance optimization in future nanoelectronics.

  2. Nanocontact Disorder in Nanoelectronics for Modulation of Light and Gas Sensitivities

    PubMed Central

    Lin, Yen-Fu; Chang, Chia-Hung; Hung, Tsu-Chang; Jian, Wen-Bin; Tsukagoshi, Kazuhito; Wu, Yue-Han; Chang, Li; Liu, Zhaoping; Fang, Jiye

    2015-01-01

    To fabricate reliable nanoelectronics, whether by top-down or bottom-up processes, it is necessary to study the electrical properties of nanocontacts. The effect of nanocontact disorder on device properties has been discussed but not quantitatively studied. Here, by carefully analyzing the temperature dependence of device electrical characteristics and by inspecting them with a microscope, we investigated the Schottky contact and Mott’s variable-range-hopping resistances connected in parallel in the nanocontact. To interpret these parallel resistances, we proposed a model of Ti/TiOx in the interface between the metal electrodes and nanowires. The hopping resistance as well as the nanocontact disorder dominated the total device resistance for high-resistance devices, especially at low temperatures. Furthermore, we introduced nanocontact disorder to modulate the light and gas responsivities of the device; unexpectedly, it multiplied the sensitivities compared with the intrinsic sensitivity of the nanowires. Our results improve the collective understanding of electrical contacts to low-dimensional semiconductor devices and will aid performance optimization in future nanoelectronics. PMID:26260674

  3. Modeling of the Electric Characteristics of Solar Cells

    NASA Astrophysics Data System (ADS)

    Logan, Benjamin; Tzolov, Marian

    The purpose of a solar cell is to covert solar energy, through means of photovoltaic action, into a sustainable electrical current that produces usable electricity. The electrical characteristics of solar cells can be modeled to better understand how they function. As an electrical device, solar cells can be conveniently represented as an equivalent electrical circuit with an ideal diode, ideal current source for the photovoltaic action, a shunt resistor for recombination, a resistor in series to account for contact resistance, and a resistor modeling external power consumption. The values of these elements have been modified to model dark and illumination states. Fitting the model to the experimental current voltage characteristics allows to determine the values of the equivalent circuit elements. Comparing values of open circuit voltage, short circuit current, and shunt resistor can determine factors such as the amount of recombination to diagnose problems in solar cells. The many measurable quantities of a solar cell's characteristics give guidance for the design when they are related with microscopic processes.

  4. Band gap control using electric field of photonic gel cells fabricated with block copolymer and hydrogel.

    PubMed

    Lee, Sung Nam; Baek, Young Bin; Shin, Dong Myung

    2014-08-01

    Optical and electrical characteristics of the devices using photonic gel film and hydrogel electrolyte were studied. Poly(styrene-b-2-vinylpyridine) (PS-b-P2VP) lamellar film with alternating hydrophobic block and hydrophilic polyelectrolyte block polymers (52 kg/mol-b-57 kg/mol) were prepared for the photonic gel. Poly(isobutylene-co-maleic acid) sodium salts were prepared for the hydrogel. This hydrogel fiber is common water swelling material and it owned ions for a device has conductivity. Photonic gel and hydrogel was spin coating onto Indium-tin-oxide (ITO) glass for make electric fields. The reflectance maximum wavelength of photonic crystal device shifted from 538 nm and reached to 557 nm, 585 nm and 604 nm during 30 min voltage applying time. The bandwidth variation was very limited. Loss of electrolyte was much less with hydrogel compared to the pure water. We can control color of hydrogel used photonic device by electric field with reasonable time range under moderate electric field by applying 2 V between two facing electrodes.

  5. Laterally inhomogeneous barrier analysis of cu/n-gap/al schottky devices

    NASA Astrophysics Data System (ADS)

    Çınar Demir, K.; Coşkun, C.; Kurudirek, S. V.; Öz, S.; Aydoğan, Ş.; Biber, M.

    2016-04-01

    In this study, we examined the electrical parameters of Cu/n-GaP/Al Schottky structures at room temperature and examined the electrical characterization of these devices depending on and Capacitance-Voltage (C-V) and Current-Voltage (I-V) measurements. A statistical study on the experimental ideality factor (n) and BHs(barrier heights) values of the devices was stated. The n and BHs of all contacts have been determined from the electrical characteristics. Even though all of the diodes were conformably prepared, there was a diode-todiode variation: the effective BHs changed from 0.988-0.07 to 1.216-0.07 eV, and the n from 1.01-0.299 to 2.16-0.299. The yielded results show that the mean electrical parameters of Schottky devices are different from one diode to another, even if they are identically prepared. It can be axplained that the lower BHs usher with the higher n values owing to inhomogeneities.

  6. High to ultra-high power electrical energy storage.

    PubMed

    Sherrill, Stefanie A; Banerjee, Parag; Rubloff, Gary W; Lee, Sang Bok

    2011-12-14

    High power electrical energy storage systems are becoming critical devices for advanced energy storage technology. This is true in part due to their high rate capabilities and moderate energy densities which allow them to capture power efficiently from evanescent, renewable energy sources. High power systems include both electrochemical capacitors and electrostatic capacitors. These devices have fast charging and discharging rates, supplying energy within seconds or less. Recent research has focused on increasing power and energy density of the devices using advanced materials and novel architectural design. An increase in understanding of structure-property relationships in nanomaterials and interfaces and the ability to control nanostructures precisely has led to an immense improvement in the performance characteristics of these devices. In this review, we discuss the recent advances for both electrochemical and electrostatic capacitors as high power electrical energy storage systems, and propose directions and challenges for the future. We asses the opportunities in nanostructure-based high power electrical energy storage devices and include electrochemical and electrostatic capacitors for their potential to open the door to a new regime of power energy.

  7. Effects of Asymmetric Local Joule Heating on Silicon Nanowire-Based Devices Formed by Dielectrophoresis Alignment Across Pt Electrodes

    NASA Astrophysics Data System (ADS)

    Ho, Hsiang-Hsi; Lin, Chun-Lung; Tsai, Wei-Che; Hong, Liang-Zheng; Lyu, Cheng-Han; Hsu, Hsun-Feng

    2018-01-01

    We demonstrate the fabrication and characterization of silicon nanowire-based devices in metal-nanowire-metal configuration using direct current dielectrophoresis. The current-voltage characteristics of the devices were found rectifying, and their direction of rectification could be determined by voltage sweep direction due to the asymmetric Joule heating effect that occurred in the electrical measurement process. The photosensing properties of the rectifying devices were investigated. It reveals that when the rectifying device was in reverse-biased mode, the excellent photoresponse was achieved due to the strong built-in electric field at the junction interface. It is expected that rectifying silicon nanowire-based devices through this novel and facile method can be potentially applied to other applications such as logic gates and sensors.

  8. Cellulose-Based Smart Fluids under Applied Electric Fields

    PubMed Central

    Choi, Kisuk; Gao, Chun Yan; Nam, Jae Do

    2017-01-01

    Cellulose particles, their derivatives and composites have special environmentally benign features and are abundant in nature with their various applications. This review paper introduces the essential properties of several types of cellulose and their derivatives obtained from various source materials, and their use in electro-responsive electrorheological (ER) suspensions, which are smart fluid systems that are actively responsive under applied electric fields, while, at zero electric field, ER fluids retain a liquid-like state. Given the actively controllable characteristics of cellulose-based smart ER fluids under an applied electric field regarding their rheological and dielectric properties, they can potentially be applied for various industrial devices including dampers and haptic devices. PMID:28891966

  9. Mathematical simulation of thermocouple characteristics

    NASA Astrophysics Data System (ADS)

    Abouellail, A. A.; Kostina, M. A.; Bortalevich, S. I.; Loginov, E. L.; Shinyakov, Y. A.; Sukhorukov, M. P.

    2018-03-01

    Within this article, the investigation of the electrical characteristics of two thermocouples in parallel connection was mathematically simulated for further research of the effect of multi-point contact between the sensing thermocouple electrodes and the inspected sample in thermoelectric inspection devices.

  10. Physical Design and Dynamical Analysis of Resonant-Antiresonant Ag/MgO/GaSe/Al Optoelectronic Microwave Devices

    NASA Astrophysics Data System (ADS)

    Kmail, Renal R. N.; Qasrawi, A. F.

    2015-11-01

    In this work, the design and optical and electrical properties of MgO/GaSe heterojunction devices are reported and discussed. The device was designed using 0.4- μm-thick n-type GaSe as substrate for a 1.6- μm-thick p-type MgO optoelectronic window. The device was characterized by means of ultraviolet-visible optical spectrophotometry in the wavelength region from 200 nm to 1100 nm, current-voltage ( I- V) characteristics, impedance spectroscopy in the range from 1.0 MHz to 1.8 GHz, and microwave amplitude spectroscopy in the frequency range from 1.0 MHz to 3.0 GHz. Optical analysis of the MgO/GaSe heterojunction revealed enhanced absorbing ability of the GaSe below 2.90 eV with an energy bandgap shift from 2.10 eV for the GaSe substrate to 1.90 eV for the heterojunction design. On the other hand, analysis of I- V characteristics revealed a tunneling-type device conducting current by electric field-assisted tunneling of charged particles through a barrier with height of 0.81 eV and depletion region width of 670 nm and 116 nm when forward and reverse biased, respectively. Very interesting features of the device are observed when subjected to alternating current (ac) signal analysis. In particular, the device exhibited resonance-antiresonance behavior and negative capacitance characteristics near 1.0 GHz. The device quality factor was ˜102. In addition, when a small ac signal of Bluetooth amplitude (0.0 dBm) was imposed between the device terminals, the power spectra of the device displayed tunable band-stop filter characteristics with maximum notch frequency of 1.6 GHz. The energy bandgap discontinuity, the resonance-antiresonance behavior, the negative capacitance features, and the tunability of the electromagnetic power spectra at microwave frequencies nominate the Ag/MgO/GaSe/Al device as a promising optoelectronic device for use in multipurpose operations at microwave frequencies.

  11. Synaptic electronics: materials, devices and applications.

    PubMed

    Kuzum, Duygu; Yu, Shimeng; Wong, H-S Philip

    2013-09-27

    In this paper, the recent progress of synaptic electronics is reviewed. The basics of biological synaptic plasticity and learning are described. The material properties and electrical switching characteristics of a variety of synaptic devices are discussed, with a focus on the use of synaptic devices for neuromorphic or brain-inspired computing. Performance metrics desirable for large-scale implementations of synaptic devices are illustrated. A review of recent work on targeted computing applications with synaptic devices is presented.

  12. GAS DISCHARGE DEVICES

    DOEpatents

    Arrol, W.J.; Jefferson, S.

    1957-08-27

    The construction of gas discharge devices where the object is to provide a gas discharge device having a high dark current and stabilized striking voltage is described. The inventors have discovered that the introduction of tritium gas into a discharge device with a subsequent electrical discharge in the device will deposit tritium on the inside of the chamber. The tritium acts to emit beta rays amd is an effective and non-hazardous way of improving the abovementioned discharge tube characteristics

  13. Deflagration-to-detonation characteristics of a laser exploding bridge detonator

    NASA Astrophysics Data System (ADS)

    Welle, E. J.; Fleming, K. J.; Marley, S. K.

    2006-08-01

    Evaluation of laser initiated explosive trains has been an area of extreme interest due to the safety benefits of these systems relative to traditional electro-explosive devices. A particularly important difference is these devices are inherently less electro-static discharge (ESD) sensitive relative to traditional explosive devices due to the isolation of electrical power and associated materials from the explosive interface. This paper will report work conducted at Sandia National Laboratories' Explosive Components Facility, which evaluated the initiation and deflagration-to-detonation characteristics of a Laser Driven Exploding Bridgewire detonator. This paper will report and discuss characteristics of Laser Exploding Bridgewire devices loaded with hexanitrohexaazaisowurtzitane (CL-20) and tetraammine-cis-bis-(5-nitro-2H-tetrazolato-N2) cobalt (III) perchlorate (BNCP).

  14. Transparent and Flexible Zinc Tin Oxide Thin Film Transistors and Inverters using Low-pressure Oxygen Annealing Process

    NASA Astrophysics Data System (ADS)

    Lee, Kimoon; Kim, Yong-Hoon; Kim, Jiwan; Oh, Min Suk

    2018-05-01

    We report on the transparent and flexible enhancement-load inverters which consist of zinc tin oxide (ZTO) thin film transistors (TFTs) fabricated at low process temperature. To control the electrical characteristics of oxide TFTs by oxygen vacancies, we applied low-pressure oxygen rapid thermal annealing (RTA) process to our devices. When we annealed the ZTO TFTs in oxygen ambient of 2 Torr, they showed better electrical characteristics than those of the devices annealed in the air ambient of 760 Torr. To realize oxide thin film transistor and simple inverter circuits on flexible substrate, we annealed the devices in O2 of 2 Torr at 150° C and could achieve the decent electrical properties. When we used transparent conductive oxide electrodes such as indium zinc oxide (IZO) and indium tin oxide (ITO), our transparent and flexible inverter showed the total transmittance of 68% in the visible range and the voltage gain of 5. And the transition voltage in voltage transfer curve was located well within the range of operation voltage.

  15. Study on Differentiation Management of Grid Energy Metering Device under High Permeability by Distributed Energy and Smart Grid Technology

    NASA Astrophysics Data System (ADS)

    Wang, Haiyuan; Huang, Rui; Yang, Maotao; Chen, Hao

    2017-12-01

    At present, the electric energy metering device is classified according to the amount of electric energy and the degree of importance of the measurement object. The measuring device is also selected according to the characteristics of the traditional metering object.With the continuous development of smart grid, the diversification of measurement objects increasingly appear, the traditional measurement object classification has been unable to meet the new measurement object of personalized, differentiated needs.Withal, this paper constructs the subdivision model based on the object feature-system evaluation, classifies according to the characteristics of the measurement object, and carries on the empirical analysis with some kind of measurement object as the research object.The results show that the model works well and can be used to subdivide the metrological objects into different customer groups, which can be reasonably configured and managed for the metering devices. The research of this paper has effectively improved the economy and rationality of the energy metering device management, and improved the working efficiency.

  16. Standardization of soil apparent electrical conductivity using multi-temporal surveys across multiple production fields

    USDA-ARS?s Scientific Manuscript database

    Apparent soil electrical conductivity (ECa) is an efficient technique for understanding within-field variability of physical and chemical soil characteristics. Commercial devices are readily available for collecting ECa on whole fields and used broadly for crop management in precision agriculture; h...

  17. Wet etch methods for InAs nanowire patterning and self-aligned electrical contacts

    NASA Astrophysics Data System (ADS)

    Fülöp, G.; d'Hollosy, S.; Hofstetter, L.; Baumgartner, A.; Nygård, J.; Schönenberger, C.; Csonka, S.

    2016-05-01

    Advanced synthesis of semiconductor nanowires (NWs) enables their application in diverse fields, notably in chemical and electrical sensing, photovoltaics, or quantum electronic devices. In particular, indium arsenide (InAs) NWs are an ideal platform for quantum devices, e.g. they may host topological Majorana states. While the synthesis has been continously perfected, only a few techniques have been developed to tailor individual NWs after growth. Here we present three wet chemical etch methods for the post-growth morphological engineering of InAs NWs on the sub-100 nm scale. The first two methods allow the formation of self-aligned electrical contacts to etched NWs, while the third method results in conical shaped NW profiles ideal for creating smooth electrical potential gradients and shallow barriers. Low temperature experiments show that NWs with etched segments have stable transport characteristics and can serve as building blocks of quantum electronic devices. As an example we report the formation of a single electrically stable quantum dot between two etched NW segments.

  18. On the electrical characterization of platinum octaethylporphyrin (PtOEP)/Si hybrid device

    NASA Astrophysics Data System (ADS)

    Abuelwafa, A. A.; El-Denglawey, A.; Dongol, M.; El-Nahass, M. M.; Ebied, M. S.; Soga, T.

    2018-01-01

    The electrical properties of Au/PtOEP/p-Si/Al and Au/PtOEP/n-Si/Al devices were studied in terms of current-voltage I- V characteristics at different temperatures ranging from 308 to 388 K. The two diodes were fabricated with the same qualifications. They showed a rectification behavior. The conduction mechanisms at forward and reverse bias and diode parameters as a function of the temperature for these devices were determined and discussed. The variation of the C -2- V characteristics for two diodes exhibited a straight line fit which supports the abrupt diode type. The interface state density N ss was determined from the I- V and C- V data using Card and Rhoderick's model. Also, the impedance spectroscopy plots for the two diodes and suitable equivalent circuit model were established to evaluate the details of interface carrier transfer and recombination processes.

  19. Electro-Thermal Simulation Studies of SiC Junction Diodes Containing Screw Dislocations Under High Reverse-Bias Operation

    NASA Technical Reports Server (NTRS)

    Joshi, R. P.

    2001-01-01

    The objective of this work was to conduct a modeling study of SiC P-N junction diodes operating under high reverse biased conditions. Analytical models and numerical simulation capabilities were to be developed for self-consistent electro-thermal analysis of the diode current-voltage (I-V) characteristics. Data from GRC indicate that screw dislocations are unavoidable in large area SiC devices, and lead to changes in the SiC diode electrical response characteristics under high field conditions. For example, device instability and failures linked to internal current filamentation have been observed. The physical origin of these processes is not well understood, and quantitative projections of the electrical behavior under high field and temperature conditions are lacking. Thermal calculations for SiC devices have not been reported in the literature either. So estimates or projections of peak device temperatures and power limitations do not exist. This numerical study and simulation analysis was aimed at resolving some of the above issues. The following tasks were successfully accomplished: (1) Development of physically based models using one- and two-dimensional drift-diffusion theory for the transport behavior and I-V characteristics; (2) One- and two-dimensional heat flow to account for internal device heating. This led to calculations of the internal temperature profiles, which in turn, were used to update the electrical transport parameters for a self-consistent analysis. The temperature profiles and the peak values were thus obtainable for a given device operating condition; (3) Inclusion of traps assumed to model the presence of internal screw dislocations running along the longitudinal direction; (4) Predictions of the operating characteristics with and without heating as a function of applied bias with and without traps. Both one and two-dimensional cases were implemented; (5) Assessment of device stability based on the operating characteristics. The presence of internal non-uniformities, particularly filamentary structures, was probed and demonstrated; (6) Cause and physical origins of filamentary behavior and unstable I-V characteristics were made transparent; (7) It was demonstrated that diodes containing defects would be more prone to thermal breakdown associated with the temperature dependent decrease in the thermal conductivity; and (8) Finally, negative differential resistance (S-shaped NDR) which can potential lead to device instability and filamentary behavior was shown to occur for diodes containing a line of defects such as could be associated with a screw dislocation line.

  20. Model of a Piezoelectric Transducer

    NASA Technical Reports Server (NTRS)

    Goodenow, Debra

    2004-01-01

    It's difficult to control liquid and gas in propellant tanks in zero gravity. A possible a design would utilize acoustic liquid manipulation (ALM) technology which uses ultrasonic beams conducted through a liquid and solid media, to push gas bubbles in the liquid to desirable locations. We can propel and control the bubble with acoustic radiation pressure by aiming the acoustic waves on the bubble s surface. This allows us to design a so called smart tank in which the ALM devices transfer the gas to the outer wall of the tank and isolating the liquid in the center. Because the heat transfer rate of a gas is lower of that of the liquid it would substantially decrease boil off and provide of for a longer storage life. The ALM beam is composed of little wavelets which are individual waves that constructively interfere with each other to produce a single, combined acoustic wave front. This is accomplished by using a set of synchronized ultrasound transducers arranged in an array. A slight phase offset of these elements allows us to focus and steer the beam. The device that we are using to produce the acoustic beam is called the piezoelectric transducer. This device converts electrical energy to mechanical energy, which appears in the form of acoustic energy. Therefore the behavior of the device is dependent on both the mechanical characteristics, such as its density, cross-sectional area, and its electrical characteristics, such as, electric flux permittivity and coupling factor. These devices can also be set up in a number of modes which are determined by the way the piezoelectric device is arranged, and the shape of the transducer. For this application we are using the longitudinal or thickness mode for our operation. The transducer also vibrates in the lateral mode, and one of the goals of my project is to decrease the amount of energy lost to the lateral mode. To model the behavior of the transducers I will be using Pspice, electric circuit modeling tool, to determine the transducer's electrical characteristics at the frequency of interest. This will also help me determine the characteristics of an impedance matching network to operate the transducer at its optimum efficiency. For this I will use ABMs (analog behavioral modeling) to model dependent current and voltage sources that represent the transducer. I have also been working on the Labview control software for the phased array used to control the bubbles, and will begin testing on that before the end of my internship.

  1. Facile fabrication of wire-type indium gallium zinc oxide thin-film transistors applicable to ultrasensitive flexible sensors.

    PubMed

    Kim, Yeong-Gyu; Tak, Young Jun; Kim, Hee Jun; Kim, Won-Gi; Yoo, Hyukjoon; Kim, Hyun Jae

    2018-04-03

    We fabricated wire-type indium gallium zinc oxide (IGZO) thin-film transistors (TFTs) using a self-formed cracked template based on a lift-off process. The electrical characteristics of wire-type IGZO TFTs could be controlled by changing the width and density of IGZO wires through varying the coating conditions of template solution or multi-stacking additional layers. The fabricated wire-type devices were applied to sensors after functionalizing the surface. The wire-type pH sensor showed a sensitivity of 45.4 mV/pH, and this value was an improved sensitivity compared with that of the film-type device (27.6 mV/pH). Similarly, when the wire-type device was used as a glucose sensor, it showed more variation in electrical characteristics than the film-type device. The improved sensing properties resulted from the large surface area of the wire-type device compared with that of the film-type device. In addition, we fabricated wire-type IGZO TFTs on flexible substrates and confirmed that such structures were very resistant to mechanical stresses at a bending radius of 10 mm.

  2. Fabrication and electrical characterization of planar lighting devices with Cs3Sb photocathode emitters

    NASA Astrophysics Data System (ADS)

    Jeong, Hyo-Soo; Keller, Kris; Culkin, Brad

    2017-03-01

    Non-vacuum process technology was used to produce Cs3Sb photocathodes on substrates, and in-situ panel devices were fabricated. The performance of the devices was characterized by measuring the anode current as functions of the devices' operation times. An excitation light source with a 475-nm wavelength was used for the photocathodes. The device has a simple diode structure, providing unique characteristics such as a large gap, vertical electron beam directionality, and resistance to surface contamination from ion bombardment and poisoning by outgassing species. Accordingly, Cs3Sb photocathodes function as flat emitters, and the emission properties of the photocathode emitters depend on the vacuum level of the devices. An improved current stability has been observed after conducting an electrical conditioning process to remove possible adsorbates on the Cs3Sb flat emitters.

  3. High Photoelectric Conversion Efficiency of Metal Phthalocyanine/Fullerene Heterojunction Photovoltaic Device

    PubMed Central

    Lin, Chi-Feng; Zhang, Mi; Liu, Shun-Wei; Chiu, Tien-Lung; Lee, Jiun-Haw

    2011-01-01

    This paper introduces the fundamental physical characteristics of organic photovoltaic (OPV) devices. Photoelectric conversion efficiency is crucial to the evaluation of quality in OPV devices, and enhancing efficiency has been spurring on researchers to seek alternatives to this problem. In this paper, we focus on organic photovoltaic (OPV) devices and review several approaches to enhance the energy conversion efficiency of small molecular heterojunction OPV devices based on an optimal metal-phthalocyanine/fullerene (C60) planar heterojunction thin film structure. For the sake of discussion, these mechanisms have been divided into electrical and optical sections: (1) Electrical: Modification on electrodes or active regions to benefit carrier injection, charge transport and exciton dissociation; (2) Optical: Optional architectures or infilling to promote photon confinement and enhance absorption. PMID:21339999

  4. Influence of Illumination on the Electrical Properties of p-(ZnMgTe/ZnTe:N)/CdTe/n-(CdTe:I)/GaAs Heterojunction Grown by Molecular Beam Epitaxy (MBE)

    NASA Astrophysics Data System (ADS)

    Jum'h, I.; Abd El-Sadek, M. S.; Al-Taani, H.; Yahia, I. S.; Karczewski, G.

    2017-02-01

    Heterostructure p-(ZnMgTe/ZnTe:N)/CdTe/n-(CdTe:I)/GaAs was evaporated using molecular beam epitaxy and investigated for photovoltaic energy conversion application. The electrical properties of the studied heterostructure were measured and characterized in order to understand the relevant electrical transport mechanisms. Electrical properties derived from the current-voltage ( I- V) characteristics of solar cells provide essential information necessary for the analysis of performance losses and device efficiency. I- V characteristics are investigated in dark conditions and under different light intensities. All the electrical and power parameters of the heterostructure were measured, calculated and explained.

  5. Dimensionality effects in chalcogenide-based devices

    NASA Astrophysics Data System (ADS)

    Kostylev, S. A.

    2013-06-01

    The multiplicity of fundamental bulk effects with small characteristic dimensions and short times and diversity of their combinations attracts a lot of researcher and industrialist attention in nanoelectronics and photonics to chalcogenide materials. Experimental data presented on dimensional effects of electrical chalcogenide switching (threshold voltage and threshold current dependence on device area and the film thickness), and in phase-change memory (switching, programming and read parameters), are analyzed from the point of view of choice of low dimensional materials with S-NDC and participation of electrical instabilities - high current density filaments. New ways of improving parameters of phase-change devices are proposed together with new criteria of material choice.

  6. Electrical characteristic fluctuation of 16-nm-gate high-κ/metal gate bulk FinFET devices in the presence of random interface traps

    NASA Astrophysics Data System (ADS)

    Hsu, Sheng-Chia; Li, Yiming

    2014-11-01

    In this work, we study the impact of random interface traps (RITs) at the interface of SiO x /Si on the electrical characteristic of 16-nm-gate high-κ/metal gate (HKMG) bulk fin-type field effect transistor (FinFET) devices. Under the same threshold voltage, the effects of RIT position and number on the degradation of electrical characteristics are clarified with respect to different levels of RIT density of state ( D it). The variability of the off-state current ( I off) and drain-induced barrier lowering (DIBL) will be severely affected by RITs with high D it varying from 5 × 1012 to 5 × 1013 eV-1 cm-2 owing to significant threshold voltage ( V th) fluctuation. The results of this study indicate that if the level of D it is lower than 1 × 1012 eV-1 cm-2, the normalized variability of the on-state current, I off, V th, DIBL, and subthreshold swing is within 5%.

  7. Impact of electrically formed interfacial layer and improved memory characteristics of IrOx/high-κx/W structures containing AlOx, GdOx, HfOx, and TaOx switching materials.

    PubMed

    Prakash, Amit; Maikap, Siddheswar; Banerjee, Writam; Jana, Debanjan; Lai, Chao-Sung

    2013-09-06

    Improved switching characteristics were obtained from high-κ oxides AlOx, GdOx, HfOx, and TaOx in IrOx/high-κx/W structures because of a layer that formed at the IrOx/high-κx interface under external positive bias. The surface roughness and morphology of the bottom electrode in these devices were observed by atomic force microscopy. Device size was investigated using high-resolution transmission electron microscopy. More than 100 repeatable consecutive switching cycles were observed for positive-formatted memory devices compared with that of the negative-formatted devices (only five unstable cycles) because it contained an electrically formed interfacial layer that controlled 'SET/RESET' current overshoot. This phenomenon was independent of the switching material in the device. The electrically formed oxygen-rich interfacial layer at the IrOx/high-κx interface improved switching in both via-hole and cross-point structures. The switching mechanism was attributed to filamentary conduction and oxygen ion migration. Using the positive-formatted design approach, cross-point memory in an IrOx/AlOx/W structure was fabricated. This cross-point memory exhibited forming-free, uniform switching for >1,000 consecutive dc cycles with a small voltage/current operation of ±2 V/200 μA and high yield of >95% switchable with a large resistance ratio of >100. These properties make this cross-point memory particularly promising for high-density applications. Furthermore, this memory device also showed multilevel capability with a switching current as low as 10 μA and a RESET current of 137 μA, good pulse read endurance of each level (>105 cycles), and data retention of >104 s at a low current compliance of 50 μA at 85°C. Our improvement of the switching characteristics of this resistive memory device will aid in the design of memory stacks for practical applications.

  8. Electrical Characterization of 3D Au Microelectrodes for Use in Retinal Prostheses.

    PubMed

    Lee, Sangmin; Ahn, Jae Hyun; Seo, Jong-Mo; Chung, Hum; Cho, Dong-Il Dan

    2015-06-17

    In order to provide high-quality visual information to patients who have implanted retinal prosthetic devices, the number of microelectrodes should be large. As the number of microelectrodes is increased, the dimensions of each microelectrode must be decreased, which in turn results in an increased microelectrode interface impedance and decreased injection current dynamic range. In order to improve the trade-off envelope between the number of microelectrodes and the current injection characteristics, a 3D microelectrode structure can be used as an alternative. In this paper, the electrical characteristics of 2D and 3D Au microelectrodes were investigated. In order to examine the effects of the structural difference, 2D and 3D Au microelectrodes with different base areas but similar effective surface areas were fabricated and evaluated. Interface impedances were measured and similar dynamic ranges were obtained for both 2D and 3D Au microelectrodes. These results indicate that more electrodes can be implemented in the same area if 3D designs are used. Furthermore, the 3D Au microelectrodes showed substantially enhanced electrical durability characteristics against over-injected stimulation currents, withstanding electrical currents that are much larger than the limit measured for 2D microelectrodes of similar area. This enhanced electrical durability property of 3D Au microelectrodes is a new finding in microelectrode research, and makes 3D microelectrodes very desirable devices.

  9. Megawatt level electric propulsion perspectives

    NASA Technical Reports Server (NTRS)

    Jahn, Robert G.; Kelly, Arnold J.

    1987-01-01

    For long range space missions, deliverable payload fraction is an inverse exponential function of the propellant exhaust velocity or specific impulse of the propulsion system. The exhaust velocity of chemical systems are limited by their combustion chemistry and heat transfer to a few km/s. Nuclear rockets may achieve double this range, but are still heat transfer limited and ponderous to develop. Various electric propulsion systems can achieve exhaust velocities in the 10 km/s range, at considerably lower thrust densities, but require an external electrical power source. A general overview is provided of the currently available electric propulsion systems from the perspective of their characteristics as a terminal load for space nuclear systems. A summary of the available electric propulsion options is shown and generally characterized in the power vs. exhaust velocity plot. There are 3 general classes of electric thruster devices: neutral gas heaters, plasma devices, and space charge limited electrostatic or ion thrusters.

  10. Skeleton-supported stochastic networks of organic memristive devices: Adaptations and learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erokhina, Svetlana; Sorokin, Vladimir; Erokhin, Victor, E-mail: victor.erokhin@fis.unipr.it

    Stochastic networks of memristive devices were fabricated using a sponge as a skeleton material. Cyclic voltage-current characteristics, measured on the network, revealed properties, similar to the organic memristive device with deterministic architecture. Application of the external training resulted in the adaptation of the network electrical properties. The system revealed an improved stability with respect to the networks, composed from polymer fibers.

  11. Tuning the resistive switching properties of TiO2-x films

    NASA Astrophysics Data System (ADS)

    Ghenzi, N.; Rozenberg, M. J.; Llopis, R.; Levy, P.; Hueso, L. E.; Stoliar, P.

    2015-03-01

    We study the electrical characteristics of TiO2-x-based resistive switching devices fabricated with different oxygen/argon flow ratio during the oxide thin film sputtering deposition. Upon minute changes in this fabrication parameter, three qualitatively different device characteristics were accessed in the same system, namely, standard bipolar resistive switching, electroforming-free devices, and devices with multi-step breakdown. We propose that small variations in the oxygen/ argon flow ratio result in relevant changes of the oxygen vacancy concentration, which is the key parameter determining the resistive switching behavior. The coexistence of percolative or non-percolative conductive filaments is also discussed. Finally, the hypothesis is verified by means of the temperature dependence of the devices in low resistance state.

  12. The effect of a source-contacted light shield on the electrical characteristics of an LTPS TFT

    NASA Astrophysics Data System (ADS)

    Kim, Miryeon; Sun, Wookyung; Kang, Jongseuk; Shin, Hyungsoon

    2017-08-01

    The electrical characteristics of a low-temperature polycrystalline silicon thin-film transistor (TFT) with a source-contacted light shield (SCLS) are observed and analyzed. Compared with that of a conventional TFT without a light shield (LS), the on-current of the TFT with an SCLS is lower because the SCLS blocks the fringing electric field from the drain to the active layer. Furthermore, the gate-to-source capacitance (C gs) of the TFT with an SCLS in the off and saturation regions is higher than that of a conventional TFT, which is due to the gate-to-LS capacitance (C g-LS). The electrical characteristics of the TFT with an SCLS are thoroughly investigated by two-dimensional device simulations, and a semi-empirical C g-LS model for SPICE simulation is proposed and verified.

  13. Electrical reliability, multilevel data storage and mechanical stability of MoS2-PMMA nanocomposite-based non-volatile memory device

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Snigdha; Sarkar, Pranab Kumar; Prajapat, Manoj; Roy, Asim

    2017-07-01

    Molybdenum disulfide (MoS2) is of great interest for its applicability in various optoelectronic devices. Here we report the resistive switching properties of polymethylmethacrylate embedding MoS2 nano-crystals. The devices are developed on an ITO-coated PET substrate with copper as the top electrode. Systematic evaluation of resistive switching parameters, on the basis of MoS2 content, suggests non-volatile memory characteristics. A decent ON/OFF ratio, high retention time and long endurance of 3  ×  103, 105 s and 105 cycles are respectively recorded in a device with 1 weight percent (wt%) of MoS2. The bending cyclic measurements confirm the flexibility of the memory devices with good electrical reliability as well as mechanical stability. In addition, multilevel storage has been demonstrated by controlling the current compliance and span of voltage sweeping in the memory device.

  14. Electrical Stress Influences the Efficiency of CH3 NH3 PbI3 Perovskite Light Emitting Devices.

    PubMed

    Zhao, Lianfeng; Gao, Jia; Lin, YunHui L; Yeh, Yao-Wen; Lee, Kyung Min; Yao, Nan; Loo, Yueh-Lin; Rand, Barry P

    2017-06-01

    Organic-inorganic hybrid perovskite materials are emerging as semiconductors with potential application in optoelectronic devices. In particular, perovskites are very promising for light-emitting devices (LEDs) due to their high color purity, low nonradiative recombination rates, and tunable bandgap. Here, using pure CH 3 NH 3 PbI 3 perovskite LEDs with an external quantum efficiency (EQE) of 5.9% as a platform, it is shown that electrical stress can influence device performance significantly, increasing the EQE from an initial 5.9% to as high as 7.4%. Consistent with the enhanced device performance, both the steady-state photoluminescence (PL) intensity and the time-resolved PL decay lifetime increase after electrical stress, indicating a reduction in nonradiative recombination in the perovskite film. By investigating the temperature-dependent characteristics of the perovskite LEDs and the cross-sectional elemental depth profile, it is proposed that trap reduction and resulting device-performance enhancement is due to local ionic motion of excess ions, likely excess mobile iodide, in the perovskite film that fills vacancies and reduces interstitial defects. On the other hand, it is found that overstressed LEDs show irreversibly degraded device performance, possibly because ions initially on the perovskite lattice are displaced during extended electrical stress and create defects such as vacancies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Postfabrication annealing effects on insulator-metal transitions in VO2 thin-film devices.

    PubMed

    Rathi, Servin; Lee, In-yeal; Park, Jin-Hyung; Kim, Bong-Jun; Kim, Hyun-Tak; Kim, Gil-Ho

    2014-11-26

    In order to investigate the metal-insulator transition characteristics of VO2 devices annealed in reducing atmosphere after device fabrication at various temperature, electrical, chemical, and thermal characteristics are measured and analyzed. It is found that the sheet resistance and the insulator-metal transition point, induced by both voltage and thermal, decrease when the devices are annealed from 200 to 500 °C. The V 2p3/2 peak variation in X-ray photoelectron spectroscopy (XPS) characterization verifies the reduction of thin-films. A decrease of the transition temperature from voltage hysteresis measurements further endorse the reducing effects of the annealing on VO2 thin-film.

  16. Insertion of a pentacene layer into the gold/poly(methyl methacrylate)/heavily doped p-type Si/indium device leading to the modulation of resistive switching characteristics

    NASA Astrophysics Data System (ADS)

    Hung, Cheng-Chun; Lin, Yow-Jon

    2018-01-01

    In order to get a physical insight into the pentacene interlayer-modulated resistive switching (RS) characteristics, the Au/pentacene/poly(methyl methacrylate) (PMMA)/heavily doped p-type Si (p+-Si)/In and Au/PMMA/p+-Si/In devices are fabricated and the device performance is provided. The Au/pentacene/PMMA/p+-Si/In device shows RS behavior, whereas the Au/PMMA/p+-Si/In device exhibits the set/reset-free hysteresis current-voltage characteristics. The insertion of a pentacene layer is a noticeable contribution to the RS characteristic. This is because of the occurrence of carrier accumulation/depletion in the pentacene interlayer. The transition from carrier depletion to carrier accumulation (carrier accumulation to carrier depletion) in pentacene occurring under negative (positive) voltage induces the process of set (reset). The switching conduction mechanism is primarily described as space charge limited conduction according to the electrical transport properties measurement. The concept of a pentacene/PMMA heterostructure opens a promising direction for organic memory devices.

  17. Performance analysis of SiGe double-gate N-MOSFET

    NASA Astrophysics Data System (ADS)

    Singh, A.; Kapoor, D.; Sharma, R.

    2017-04-01

    The major purpose of this paper is to find an alternative configuration that not only minimizes the limitations of single-gate (SG) MOSFETs but also provides the better replacement for future technology. In this paper, the electrical characteristics of SiGe double-gate N-MOSFET are demonstrated and compared with electrical characteristics of Si double-gate N-MOSFET. Furthermore, in this paper the electrical characteristics of Si double-gate N-MOSFET are demonstrated and compared with electrical characteristics of Si single-gate N-MOSFET. The simulations are carried out for the device at different operational voltages using Cogenda Visual TCAD tool. Moreover, we have designed its structure and studied both {I}{{d}}{-}{V}{{g}} characteristics for different voltages namely 0.05, 0.1, 0.5, 0.8, 1 and 1.5 V and {I}{{d}}{-}{V}{{d}} characteristics for different voltages namely 0.1, 0.5, 1 and 1.5 V at work functions 4.5, 4.6 and 4.8 eV for this structure. The performance parameters investigated in this paper are threshold voltage, DIBL, subthreshold slope, GIDL, volume inversion and MMCR.

  18. Interfacial characteristics and leakage current transfer mechanisms in organometal trihalide perovskite gate-controlled devices via doping of PCBM

    NASA Astrophysics Data System (ADS)

    Wang, Yucheng; Zhang, Yuming; Liu, Yintao; Pang, Tiqiang; Hu, Ziyang; Zhu, Yuejin; Luan, Suzhen; Jia, Renxu

    2017-11-01

    Two types of perovskite (with and without doping of PCBM) based metal-oxide-semiconductor (MOS) gate-controlled devices were fabricated and characterized. The study of the interfacial characteristics and charge transfer mechanisms by doping of PCBM were analyzed by material and electrical measurements. Doping of PCBM does not affect the size and crystallinity of perovskite films, but has an impact on carrier extraction in perovskite MOS devices. The electrical hysteresis observed in capacitance-voltage and current-voltage measurements can be alleviated by doping of PCBM. Experimental results demonstrate that extremely low trap densities are found for the perovskite device without doping, while the doped sample leads to higher density of interface state. Three mechanisms including Ohm’s law, trap-filled-limit (TFL) emission, and child’s law were used to analyze possible charge transfer mechanisms. Ohm’s law mechanism is well suitable for charge transfer of both the perovskite MOS devices under light condition at large voltage, while TFL emission well addresses the behavior of charge transfer under dark at small voltage. This change of charge transfer mechanism is attributed to the impact of the ion drift within perovskites.

  19. Enhancement of methane gas sensing characteristics of graphene oxide sensor by heat treatment and laser irradiation.

    PubMed

    Assar, Mohammadreza; Karimzadeh, Rouhollah

    2016-12-01

    The present study uses a rapid, easy and practical method for cost-effective fabrication of a methane gas sensor. The sensor was made by drop-casting a graphene oxide suspension onto an interdigital circuit surface. The electrical conductivity and gas-sensing characteristics of the sensor were determined and then heat treatment and in situ laser irradiation were applied to improve the device conductivity and gas sensitivity. Real-time monitoring of the evolution of the device current as a function of heat treatment time revealed significant changes in the conductance of the graphene oxide sensor. The use of low power laser irradiation enhanced both the electrical conductivity and sensing response of the graphene oxide sensor. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Vibration properties of a rotating piezoelectric energy harvesting device that experiences gyroscopic effects

    NASA Astrophysics Data System (ADS)

    Lu, Haohui; Chai, Tan; Cooley, Christopher G.

    2018-03-01

    This study investigates the vibration of a rotating piezoelectric device that consists of a proof mass that is supported by elastic structures with piezoelectric layers. Vibration of the proof mass causes deformation in the piezoelectric structures and voltages to power the electrical loads. The coupled electromechanical equations of motion are derived using Newtonian mechanics and Kirchhoff's circuit laws. The free vibration behavior is investigated for devices with identical (tuned) and nonidentical (mistuned) piezoelectric support structures and electrical loads. These devices have complex-valued, speed-dependent eigenvalues and eigenvectors as a result of gyroscopic effects caused by their constant rotation. The characteristics of the complex-valued eigensolutions are related to physical behavior of the device's vibration. The free vibration behaviors differ significantly for tuned and mistuned devices. Due to gyroscopic effects, the proof mass in the tuned device vibrates in either forward or backward decaying circular orbits in single-mode free response. This is proven analytically for all tuned devices, regardless of the device's specific parameters or operating speed. For mistuned devices, the proof mass has decaying elliptical forward and backward orbits. The eigenvalues are shown to be sensitive to changes in the electrical load resistances. Closed-form solutions for the eigenvalues are derived for open and close circuits. At high rotation speeds these devices experience critical speeds and instability.

  1. Electrical detection of single viruses

    NASA Astrophysics Data System (ADS)

    Patolsky, Fernando; Zheng, Gengfeng; Hayden, Oliver; Lakadamyali, Melike; Zhuang, Xiaowei; Lieber, Charles M.

    2004-09-01

    We report direct, real-time electrical detection of single virus particles with high selectivity by using nanowire field effect transistors. Measurements made with nanowire arrays modified with antibodies for influenza A showed discrete conductance changes characteristic of binding and unbinding in the presence of influenza A but not paramyxovirus or adenovirus. Simultaneous electrical and optical measurements using fluorescently labeled influenza A were used to demonstrate conclusively that the conductance changes correspond to binding/unbinding of single viruses at the surface of nanowire devices. pH-dependent studies further show that the detection mechanism is caused by a field effect, and that the nanowire devices can be used to determine rapidly isoelectric points and variations in receptor-virus binding kinetics for different conditions. Lastly, studies of nanowire devices modified with antibodies specific for either influenza or adenovirus show that multiple viruses can be selectively detected in parallel. The possibility of large-scale integration of these nanowire devices suggests potential for simultaneous detection of a large number of distinct viral threats at the single virus level.

  2. Electrically switchable polymer liquid crystal and polymer birefringent flake in fluid host systems and optical devices utilizing same

    DOEpatents

    Marshall, Kenneth L.; Kosc, Tanya Z.; Jacobs, Stephen D.; Faris, Sadeg M.; Li, Le

    2003-12-16

    Flakes or platelets of polymer liquid crystals (PLC) or other birefringent polymers (BP) suspended in a fluid host medium constitute a system that can function as the active element in an electrically switchable optical device when the suspension is either contained between a pair of rigid substrates bearing transparent conductive coatings or dispersed as microcapsules within the body of a flexible host polymer. Optical properties of these flake materials include large effective optical path length, different polarization states and high angular sensitivity in their selective reflection or birefringence. The flakes or platelets of these devices need only a 3-20.degree. rotation about the normal to the cell surface to achieve switching characteristics obtainable with prior devices using particle rotation or translation.

  3. Microwave characteristics of interdigitated photoconductors on a HEMT structure. M.S. Thesis. Final Contractor Report

    NASA Technical Reports Server (NTRS)

    Hill, Scott M.; Claspy, Paul C.

    1988-01-01

    Interdigitated photoconductive detectors of various geometries were fabricated on AlGaAs/GaAs heterostructure material. The processes used in the fabrication of these devices are described, and the results of a study of their optical and electrical characteristics are presented.

  4. Study on the Pulsed Flashover Characteristics of Solid-Solid Interface in Electrical Devices Poured by Epoxy Resin

    NASA Astrophysics Data System (ADS)

    Li, Manping; Wu, Kai; Yang, Zhanping; Ding, Man; Liu, Xin; Cheng, Yonghong

    2014-09-01

    In electrical devices poured by epoxy resin, there are a lot of interfaces between epoxy resin and other solid dielectrics, i.e. solid-solid interfaces. Experiments were carried out to study the flashover characteristics of two typical solid-solid interfaces (epoxy-ceramic and epoxy-PMMA) under steep high-voltage impulse for different electrode systems (coaxial electrodes and finger electrodes) and different types of epoxy resin (neat epoxy resin, polyether modified epoxy resin and polyurethane modified epoxy resin). Results showed that, the flashover of solid-solid interface is similar to the breakdown of solid dielectric, and there are unrecoverable carbonated tracks after flashover. Under the same distance of electrodes, the electric stress of coaxial electrodes is lower than that of finger electrodes; and after the flashover, there are more severe breakdown and larger enhanced surface conductivity at interface for coaxial electrodes, as compared with the case of finger electrode. The dielectric properties are also discussed.

  5. Er Effect of Low Molecular Liquid Crystal on One-Sided Patterned Electrodes

    NASA Astrophysics Data System (ADS)

    Kikuchi, Takehito; Inoue, Akio; Furusho, Junji; Kawamuki, Ryohei

    Several kinds of ER fluids (ERF) have been developed and have been applied to some mechatronics devices and processing technologies. In many conventional applications of ERFs, these devices consist of bilateral electrodes to apply electric field in ERF. However, the electric field of several kV/mm may be necessary to generate an ER effect sufficiently for practical purposes. The gap between a pair of electrodes should be, therefore, maintained narrowly and exactly for fears of short-circuit. At the same time, this electrode system also requires an interconnection on driving parts. To improve these disadvantages, we proposed "one-sided patterned electrode" (OSPE) systems in previous works. In this report, we confirmed the flow characteristics of low molecular liquid crystal (LMLC) on OSPE. Next, we also confirmed the different characteristics depending on the pattern type. Depending on results of electro-static analysis, we conclude that such a difference may results from the directors of LC molecules derived by electric field.

  6. Impact of post metal annealing on gate work function engineering for advanced MOS applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, S. Sachin, E-mail: ssachikl995@yahoo.in; Prasad, Amitesh; Sinha, Amrita

    2016-05-06

    Ultra thin HfO{sub 2} high-k gate dielectric has been deposited directly on strained Si{sub 0.81}Ge{sub 0.19} by Atomic Layer Deposition (ALD) technique. The influence of different types of metal gate electrodes (Al, Au, Pt) on electrical characteristics of Metal-Oxide-Semiconductor capacitors has been studied. Our results show that the electrical characteristics of MOS device are highly dependent on the gate electrodes used. The dependency of electrical characteristics on post metal annealing was studied in detail. The measured flat band (V{sub fb}) and hysteresis (ΔV{sub fb}) from high frequency C-V characteristics were used to study the pre-existing traps in the dielectric. Impactmore » of PMA on interface state density (D{sub it}), border trap density (N{sub bt}) and oxide trap density (Q{sub f/q}) of high-k gate stack were also examined for all the devices. The N{sub bt} and frequency dispersion significantly reduces to ~2.77x1010 cm{sup −2} and ~11.34 % respectively in case of Al electrode with a Dit value of ~4x10{sup 12} eV{sup −1}cm{sup −2} after PMA (350°C) in N{sub 2}, suggesting an improvement in device performance while Pt electrode shows a much less value of ΔVfb (~0.02 V) and Dit (~3.44x10{sup 12} eV{sup −1}cm{sup −2}) after PMA.« less

  7. Electrical and optical characteristics of heterojunction devices composed of silicon nanowires and mercury selenide nanoparticle films on flexible plastics.

    PubMed

    Yeo, Minje; Yun, Junggwon; Kim, Sangsig

    2013-09-01

    A pn heterojunction device based on p-type silicon (Si) nanowires (NWs) prepared by top-down method and n-type mercury selenide (HgSe) nanoparticles (NPs) synthesized by the colloidal method have been fabricated on a flexible plastic substrate. The synthesized HgSe NPs were analyzed through the effective mass approximation. The characteristics of the heterojunction device were examined and studied with the energy band diagram. The device showed typical diode characteristics with a turn-on voltage of 1.5 V and exhibited a high rectification ratio of 10(3) under relatively low forward bias. Under illumination of 633-nm-wavelength light, the device presented photocurrent efficiency of 117.5 and 20.1 nA/W under forward bias and reverse bias conditions, respectively. Moreover, the photocurrent characteristics of the device have been determined by bending of the plastic substrate upward and downward with strain of 0.8%. Even though the photocurrent efficiency has fluctuations during the bending cycles, the values are roughly maintained for 10(4) bending cycles. This result indicates that the fabricated heterojunction device has the potential to be applied as fundamental elements of flexible nanoelectronics.

  8. DNA hybridization sensor based on pentacene thin film transistor.

    PubMed

    Kim, Jung-Min; Jha, Sandeep Kumar; Chand, Rohit; Lee, Dong-Hoon; Kim, Yong-Sang

    2011-01-15

    A DNA hybridization sensor using pentacene thin film transistors (TFTs) is an excellent candidate for disposable sensor applications due to their low-cost fabrication process and fast detection. We fabricated pentacene TFTs on glass substrate for the sensing of DNA hybridization. The ss-DNA (polyA/polyT) or ds-DNA (polyA/polyT hybrid) were immobilized directly on the surface of the pentacene, producing a dramatic change in the electrical properties of the devices. The electrical characteristics of devices were studied as a function of DNA immobilization, single-stranded vs. double-stranded DNA, DNA length and concentration. The TFT device was further tested for detection of λ-phage genomic DNA using probe hybridization. Based on these results, we propose that a "label-free" detection technique for DNA hybridization is possible through direct measurement of electrical properties of DNA-immobilized pentacene TFTs. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Variable temperature performance of a fully screen printed transistor switch

    NASA Astrophysics Data System (ADS)

    Zambou, Serges; Magunje, Batsirai; Rhyme, Setshedi; Walton, Stanley D.; Idowu, M. Florence; Unuigbe, David; Britton, David T.; Härting, Margit

    2016-12-01

    This article reports on the variable temperature performance of a flexible printed transistor which works as a current driven switch. In this work, electronic ink is formulated from nanostructured silicon produced by milling polycrystalline silicon. The study of the silicon active layer shows that its conductivity is based on thermal activation of carriers, and could be used as active layers in active devices. We further report on the transistors switching operation and their electrical performance under variable temperature. The reliability of the transistors at constant current bias was also investigated. Analysis of the electrical transfer characteristics from 340 to 10 K showed that the printed devices' current ON/OFF ratio increases as temperature decreases making it a better switch at lower temperatures. A constant current bias on a terminal for up to six hours shows extraordinary stability in electrical performance of the device.

  10. Electrically tunable superconducting terahertz metamaterial with low insertion loss and high switchable ratios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chun; Zhang, Caihong, E-mail: chzhang@nju.edu.cn; Hu, Guoliang

    2016-07-11

    With the emergence and development of artificially structured electromagnetic materials, active terahertz (THz) metamaterial devices have attracted significant attention in recent years. Tunability of transmission is desirable for many applications. For example, short-range wireless THz communications and ultrafast THz interconnects require switches and modulators. However, the tunable range of transmission amplitude of existing THz metamaterial devices is not satisfactory. In this article, we experimentally demonstrate an electrically tunable superconducting niobium nitride metamaterial device and employ a hybrid coupling model to analyze its optical transmission characteristics. The maximum transmission coefficient at 0.507 THz is 0.98 and decreases to 0.19 when themore » applied voltage increases to 0.9 V. A relative transmittance change of 80.6% is observed, making this device an efficient narrowband THz switch. Additionally, the frequency of the peak is red shifted from 0.507 to 0.425 THz, which means that the device can be used to select the frequency. This study offers an alternative tuning method to existing optical, thermal, magnetic-field, and electric-field tuning, delivering a promising approach for designing active and miniaturized THz devices.« less

  11. Monolithic prestressed ceramic devices and method for making same

    NASA Technical Reports Server (NTRS)

    Haertling, Gene H. (Inventor)

    1996-01-01

    Monolithic, internally asymmetrically stress biased electrically active ceramic devices and a method for making same is disclosed. The first step in the method of the present invention is to fabricate a ceramic element having first and second opposing surfaces. Next, only the first surface is chemically reduced by heat treatment in a reducing atmosphere. This produces a concave shaped, internally asymmetrically stress biased ceramic element and an electrically conducting, chemically reduced layer on the first surface which serves as one of the electrodes of the device. Another electrode can be deposited on the second surface to complete the device. In another embodiment of the present invention two dome shaped ceramic devices can be placed together to form a completed clamshell structure or an accordion type structure. In a further embodiment, the clamshell or accordion type structures can be placed on top of one another. In another embodiment, a pair of dome shaped ceramic devices having opposing temperature characteristics can be placed on top of each other to produce an athermalized ceramic device.

  12. 47 CFR 73.267 - Determining operating power.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... a resistance equal to the transmission line characteristic impedance) and using an electrical device (within ±5% accuracy) or temperature and coolant flow indicator (within ±4% accuracy) to determine the...

  13. Impact of Air Filter Material on Metal Oxide Semiconductor (MOS) Device Characteristics in HF Vapor Environment

    NASA Astrophysics Data System (ADS)

    Hsiao, Chih-Wen; Lou, Jen-Chung; Yeh, Ching-Fa; Hsieh, Chih-Ming; Lin, Shiuan-Jeng; Kusumi, Toshio

    2004-05-01

    Airborne molecular contamination (AMC) is becoming increasingly important as devices are scaled down to the nanometer generation. Optimum ultra low penetration air (ULPA) filter technology can eliminate AMC. In a cleanroom, however, the acid vapor generated from the cleaning process may degrade the ULPA filter, releasing AMC to the air and the surface of wafers, degrading the electrical characteristics of devices. This work proposes the new PTFE ULPA filter, which is resistant to acid vapor corrosion, to solve this problem. Experimental results demonstrate that the PTFE ULPA filter can effectively eliminate the AMC and provide a very clean cleanroom environment.

  14. Induction heating apparatus and methods for selectively energizing an inductor in response to a measured electrical characteristic that is at least partially a function of a temperature of a material being heated

    DOEpatents

    Richardson, John G.; Morrison, John L.; Hawkes, Grant L.

    2006-07-04

    An induction heating apparatus includes a measurement device for indicating an electrical resistance of a material to be heated. A controller is configured for energizing an inductor in response to the indicated resistance. An inductor may be energized with an alternating current, a characteristic of which may be selected in response to an indicated electrical resistance. Alternatively, a temperature of the material may be indicated via measuring the electrical resistance thereof and a characteristic of an alternating current for energizing the inductor may be selected in response to the temperature. Energizing the inductor may minimize the difference between a desired and indicated resistance or the difference between a desired and indicated temperature. A method of determining a temperature of at least one region of at least one material to be induction heated includes correlating a measured electrical resistance thereof to an average temperature thereof.

  15. Electrical and photo-electrical properties of MoS2 nanosheets with and without an Al2O3 capping layer under various environmental conditions.

    PubMed

    Khan, Muhammad Farooq; Nazir, Ghazanfar; Lermolenko, Volodymyr M; Eom, Jonghwa

    2016-01-01

    The electrical and photo-electrical properties of exfoliated MoS 2 were investigated in the dark and in the presence of deep ultraviolet (DUV) light under various environmental conditions (vacuum, N 2 gas, air, and O 2 gas). We examined the effects of environmental gases on MoS 2 flakes in the dark and after DUV illumination through Raman spectroscopy and found that DUV light induced red and blue shifts of peaks (E 1 2 g and A 1 g ) position in the presence of N 2 and O 2 gases, respectively. In the dark, the threshold voltage in the transfer characteristics of few-layer (FL) MoS 2 field-effect transistors (FETs) remained almost the same in vacuum and N 2 gas but shifted toward positive gate voltages in air or O 2 gas because of the adsorption of oxygen atoms/molecules on the MoS 2 surface. We analyzed light detection parameters such as responsivity, detectivity, external quantum efficiency, linear dynamic range, and relaxation time to characterize the photoresponse behavior of FL-MoS 2 FETs under various environmental conditions. All parameters were improved in their performances in N 2 gas, but deteriorated in O 2 gas environment. The photocurrent decayed with a large time constant in N 2 gas, but decayed with a small time constant in O 2 gas. We also investigated the characteristics of the devices after passivating by Al 2 O 3 film on the MoS 2 surface. The devices became almost hysteresis-free in the transfer characteristics and stable with improved mobility. Given its outstanding performance under DUV light, the passivated device may be potentially used for applications in MoS 2 -based integrated optoelectronic circuits, light sensing devices, and solar cells.

  16. Resistive switching mechanism of ZnO/ZrO2-stacked resistive random access memory device annealed at 300 °C by sol-gel method with forming-free operation

    NASA Astrophysics Data System (ADS)

    Jian, Wen-Yi; You, Hsin-Chiang; Wu, Cheng-Yen

    2018-01-01

    In this work, we used a sol-gel process to fabricate a ZnO-ZrO2-stacked resistive switching random access memory (ReRAM) device and investigated its switching mechanism. The Gibbs free energy in ZnO, which is higher than that in ZrO2, facilitates the oxidation and reduction reactions of filaments in the ZnO layer. The current-voltage (I-V) characteristics of the device revealed a forming-free operation because of nonlattice oxygen in the oxide layer. In addition, the device can operate under bipolar or unipolar conditions with a reset voltage of 0 to ±2 V, indicating that in this device, Joule heating dominates at reset and the electric field dominates in the set process. Furthermore, the characteristics reveal why the fabricated device exhibits a greater discrete distribution phenomenon for the set voltage than for the reset voltage. These results will enable the fabrication of future ReRAM devices with double-layer oxide structures with improved characteristics.

  17. Passivation Effect of Atomic Layer Deposition of Al2O3 Film on HgCdTe Infrared Detectors

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Ye, Zhen-Hua; Sun, Chang-Hong; Chen, Yi-Yu; Zhang, Tian-Ning; Chen, Xin; Lin, Chun; Ding, Ring-Jun; He, Li

    2016-09-01

    The passivation effect of atomic layer deposition of (ALD) Al2O3 film on a HgCdTe infrared detector was investigated in this work. The passivation effect of Al2O3 film was evaluated by measuring the minority carrier lifetime, capacitance versus voltage ( C- V) characteristics of metal-insulator-semiconductor devices, and resistance versus voltage ( R- V) characteristics of variable-area photodiodes. The minority carrier lifetime, C- V characteristics, and R- V characteristics of HgCdTe devices passivated by ALD Al2O3 film was comparable to those of HgCdTe devices passivated by e-beam evaporation of ZnS/CdTe film. However, the baking stability of devices passivated by Al2O3 film is inferior to that of devices passivated by ZnS/CdTe film. In future work, by optimizing the ALD Al2O3 film growing process and annealing conditions, it may be feasible to achieve both excellent electrical properties and good baking stability.

  18. Metalorganic chemical vapor deposition of AlGaAs and InGaP heterojunction bipolar transistors

    NASA Astrophysics Data System (ADS)

    Pan, N.; Welser, R. E.; Lutz, C. R.; DeLuca, P. M.; Han, B.; Hong, K.

    2001-05-01

    Heterojunction bipolar transistors (HBT) are now beginning to be widely incorporated as power amplifiers, laser drivers, multiplexers, clock data recovery circuits, as well as transimpedance and broadband amplifiers in high performance millimeter wave circuits (MMICs). The increasing acceptance of this device is principally due to advancements in metalorganic chemical vapor deposition (MOCVD), device processing, and circuit design technologies. Many of the DC electrical characteristics of large area devices can be directly correlated to the DC performance of small area RF devices. A precise understanding of the growth parameters and their relationship to device characteristics is critical for ensuring the high degree of reproducibility required for low cost high-yield volume manufacturing. Significant improvements in the understanding of the MOCVD growth process have been realized through the implementation of statistical process control on the key HBT device parameters. This tool has been successfully used to maintain the high quality of the device characteristics in high-volume production of 4″ GaAs-based HBTs. There is a growing demand to migrate towards 6″ diameter wafer size due to the potential cost reductions and increased volume production that can be realized. Preliminary results, indicating good heterostructure layer characteristics, demonstrate the feasibility of 6″ InGaP-based HBT devices.

  19. Effect of contact barrier on electron transport in graphene.

    PubMed

    Zhou, Yang-Bo; Han, Bing-Hong; Liao, Zhi-Min; Zhao, Qing; Xu, Jun; Yu, Da-Peng

    2010-01-14

    The influence of the barrier between metal electrodes and graphene on the electrical properties was studied on a two-electrode device. A classical barrier model was used to analyze the current-voltage characteristics. Primary parameters including barrier height and effective resistance were achieved. The electron transport properties under magnetic field were further investigated. An abnormal peak-valley-peak shape of voltage-magnetoresistance curve was observed. The underlying mechanisms were discussed under the consideration of the important influence of the contact barrier. Our results indicate electrical properties of graphene based devices are sensitive to the contact interface.

  20. Hollow-Cathode Source Generates Plasma

    NASA Technical Reports Server (NTRS)

    Deininger, W. D.; Aston, G.; Pless, L. C.

    1989-01-01

    Device generates argon, krypton, or xenon plasma via thermionic emission and electrical discharge within hollow cathode and ejects plasma into surrounding vacuum. Goes from cold start up to full operation in less than 5 s after initial application of power. Exposed to moist air between operations without significant degradation of starting and running characteristics. Plasma generated by electrical discharge in cathode barrel sustained and aided by thermionic emission from emitter tube. Emitter tube does not depend on rare-earth oxides, making it vulnerable to contamination by exposure to atmosphere. Device modified for use as source of plasma in laboratory experiments or industrial processes.

  1. The development of the experimental setup for measuring the cell membrane electrical potential by Sucrose-Gap Technique

    NASA Astrophysics Data System (ADS)

    Yuzhakov, AD; Nosarev, AV; Aleinik, AN

    2017-11-01

    This article describes the development of the experimental setup for measuring the cell membrane electrical potential by Double -Sucrose-Gap Technique. The double-gap isolation method allows the simultaneous measurement of electrical activity and tension output from contracting segments of muscle fibers. This technique has been widely used as a convenient tool for recording of the membrane activities from myelinated or unmyelinated nerves and muscle preparations. This device can be an effective way to provide undergraduate biomedical engineering students with invaluable experiences in neurophysiology. The installation design and its main characteristics are described. The advantages of the described device are the simplicity of the experiment, relatively low cost, the possibility of long-term experiment.

  2. Stochastic nonlinear electrical characteristics of graphene

    NASA Astrophysics Data System (ADS)

    Jun Shin, Young; Gopinadhan, Kalon; Narayanapillai, Kulothungasagaran; Kalitsov, Alan; Bhatia, Charanjit S.; Yang, Hyunsoo

    2013-01-01

    A stochastic nonlinear electrical characteristic of graphene is reported. Abrupt current changes are observed from voltage sweeps between the source and drain with an on/off ratio up to 103. It is found that graphene channel experiences the topological change. Active radicals in an uneven graphene channel cause local changes of electrostatic potential. Simulation results based on the self-trapped electron and hole mechanism account well for the experimental data. Our findings illustrate an important issue of reliable electron transports and help for the understanding of transport properties in graphene devices.

  3. Nonpolar p-GaN/n-Si heterojunction diode characteristics: a comparison between ensemble and single nanowire devices

    NASA Astrophysics Data System (ADS)

    Patsha, Avinash; Pandian, Ramanathaswamy; Dhara, Sandip; Tyagi, A. K.

    2015-10-01

    The electrical and photodiode characteristics of ensemble and single p-GaN nanowire and n-Si heterojunction devices were studied. Ideality factor of the single nanowire p-GaN/n-Si device was found to be about three times lower compared to that of the ensemble nanowire device. Apart from the deep-level traps in p-GaN nanowires, defect states due to inhomogeneity in Mg dopants in the ensemble nanowire device are attributed to the origin of the high ideality factor. Photovoltaic mode of the ensemble nanowire device showed an improvement in the fill-factors up to 60% over the single nanowire device with fill-factors up to 30%. Responsivity of the single nanowire device in the photoconducting mode was found to be enhanced by five orders, at 470 nm. The enhanced photoresponse of the single nanowire device also confirms the photoconduction due to defect states in p-GaN nanowires.

  4. Conductive bridging random access memory—materials, devices and applications

    NASA Astrophysics Data System (ADS)

    Kozicki, Michael N.; Barnaby, Hugh J.

    2016-11-01

    We present a review and primer on the subject of conductive bridging random access memory (CBRAM), a metal ion-based resistive switching technology, in the context of current research and the near-term requirements of the electronics industry in ultra-low energy devices and new computing paradigms. We include extensive discussions of the materials involved, the underlying physics and electrochemistry, the critical roles of ion transport and electrode reactions in conducting filament formation and device switching, and the electrical characteristics of the devices. Two general cation material systems are given—a fast ion chacogenide electrolyte and a lower ion mobility oxide ion conductor, and numerical examples are offered to enhance understanding of the operation of devices based on these. The effect of device conditioning on the activation energy for ion transport and consequent switching speed is discussed, as well as the mechanisms involved in the removal of the conducting bridge. The morphology of the filament and how this could be influenced by the solid electrolyte structure is described, and the electrical characteristics of filaments with atomic-scale constrictions are discussed. Consideration is also given to the thermal and mechanical environments within the devices. Finite element and compact modelling illustrations are given and aspects of CBRAM storage elements in memory circuits and arrays are included. Considerable emphasis is placed on the effects of ionizing radiation on CBRAM since this is important in various high reliability applications, and the potential uses of the devices in reconfigurable logic and neuromorphic systems is also discussed.

  5. Research on Efficiency of a Wave Energy Conversion System

    NASA Astrophysics Data System (ADS)

    Lu, Zhongyue; Shang, Jianzhong; Luo, Zirong; Sun, Chongfei; Chen, Gewei

    2018-02-01

    The oceans are rich in wave energy that is green energy, and the wave energy are now being used to generate electricity on a massive scale. It can also be used as a single generator for beacon, buoy or underwater vehicle. Micro small wave energy power generation device is a kind of wave energy power generation devices, main characteristic is mobility is good, and can be directly assembled on various kinds of equipment for the power supply, with good prospects for development. The research object of the paper is a new adaptive reversing wave energy generating device belongs to micro-sized wave energy generating device. Using the upper and lower absorber blade groups, the low speed and large torque wave energy can be converted into electric energy which can be used for load and lithium battery charging.

  6. High rectifying behavior in Al/Si nanocrystal-embedded SiOxNy/p-Si heterojunctions

    NASA Astrophysics Data System (ADS)

    Jacques, E.; Pichon, L.; Debieu, O.; Gourbilleau, F.; Coulon, N.

    2011-05-01

    We examine the electrical properties of MIS devices made of Al/Si nanocrystal-SiOxNy/p-Si. The J-V characteristics of the devices present a high rectifying behavior. Temperature measurements show that the forward current is thermally activated following the thermal diffusion model of carriers. At low reverse bias, the current is governed by thermal emission amplified by the Poole-Frenkel effect of carriers from defects located at the silicon nanocrystals/SiOxNy interfaces, whereas tunnel conduction in silicon oxynitride matrix dominates at high reverse bias. The devices exhibit a rectification ratio >104 for the current measured at V = ± 1 V. Study reveals that thermal annealing in forming gas (H2/N2) improves the electrical properties of the devices due to the passivation of defects.

  7. Photonic bandpass filter characteristics of multimode SOI waveguides integrated with submicron gratings.

    PubMed

    Sah, Parimal; Das, Bijoy Krishna

    2018-03-20

    It has been shown that a fundamental mode adiabatically launched into a multimode SOI waveguide with submicron grating offers well-defined flat-top bandpass filter characteristics in transmission. The transmitted spectral bandwidth is controlled by adjusting both waveguide and grating design parameters. The bandwidth is further narrowed down by cascading two gratings with detuned parameters. A semi-analytical model is used to analyze the filter characteristics (1500  nm≤λ≤1650  nm) of the device operating in transverse-electric polarization. The proposed devices were fabricated with an optimized set of design parameters in a SOI substrate with a device layer thickness of 250 nm. The pass bandwidth of waveguide devices integrated with single-stage gratings are measured to be ∼24  nm, whereas the device with two cascaded gratings with slightly detuned periods (ΔΛ=2  nm) exhibits a pass bandwidth down to ∼10  nm.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liguori, R.; Aprano, S.; Rubino, A.

    In this study we analyzed one of the environmental factors that could affect organic materials. Pentacene thin film samples were fabricated and the degradation of their electrical characteristics was measured when the devices were exposed to ultraviolet light irradiation. The results have been reported in terms of a trap density model, which provides a description of the dynamics of light induced electrically active defects in an organic semiconductor.

  9. Ionic Transport through Chemically Functionalized Hydrogen Peroxide-Sensitive Asymmetric Nanopores.

    PubMed

    Ali, Mubarak; Ahmed, Ishtiaq; Nasir, Saima; Ramirez, Patricio; Niemeyer, Christof M; Mafe, Salvador; Ensinger, Wolfgang

    2015-09-09

    We describe the fabrication of a chemical-sensitive nanofluidic device based on asymmetric nanopores whose transport characteristics can be modulated upon exposure to hydrogen peroxide (H2O2). We show experimentally and theoretically that the current-voltage curves provide a suitable method to monitor the H2O2-mediated change in pore surface characteristics from the electronic readouts. We demonstrate also that the single pore characteristics can be scaled to the case of a multipore membrane whose electric outputs can be readily controlled. Because H2O2 is an agent significant for medical diagnostics, the results should be useful for sensing nanofluidic devices.

  10. The effect of illumination and electrode adjustment on the carrier behavior in special multilayer devices

    NASA Astrophysics Data System (ADS)

    Deng, Yanhong; Ou, Qingdong; Wang, Jinjiang; Zhang, Dengyu; Chen, Liezun; Li, Yanqing

    2017-08-01

    Intermediate connectors play an important role in semiconductor devices, especially in tandem devices. In this paper, four types of different intermediate connectors (e.g. Mg:Alq3/MoO3, MoO3, Mg:Alq3, and none) and two kinds of modified electrode materials (LiF and MoO3) integrated into the special multilayer devices are proposed, with the aim of studying the impact of light illumination and electrode adjustment on the carrier behavior of intermediate connectors through the current density-voltage characteristics, interfacial electronic structures, and capacitance-voltage characteristics. The results show that the illumination enhances the charge generation and separation in intermediate connectors, and further electrode interface modifications enhance the functionality of intermediate connectors. In addition, the device with an efficient intermediate connector structure shows a photoelectric effect, which paves the way for organic photovoltaic devices to realize optical-electrical integration transformation.

  11. Accessory Devices Frequently Used for Endoscopic Submucosal Dissection

    PubMed Central

    Choi, Hyuk Soon; Chun, Hoon Jai

    2017-01-01

    Endoscopic submucosal dissection (ESD) is increasingly being considered an essential component of treatment for early gastrointestinal cancers and subepithelial tumors. The ESD technique owes its popularity to the development of sophisticated instruments used for ESD. With an increase in the number of ESD procedures performed, there is rapid development in the number and types of endoscopic accessory devices used for such procedures. Despite the large numbers of new devices developed and marketed, the use of ESD instruments and accessory devices is largely determined by individual preferences and experiences. Accessory devices frequently used during ESD are important tools for ESD techniques. Each instrument possesses characteristic advantages and disadvantages associated with its use, and no one instrument is superior in all respects to others. In this article, we review the characteristics of endoscopic electrical knives, cap and hood, and hemostatic devices commonly used in ESD. PMID:28609818

  12. Tunable Electrical and Optical Characteristics in Monolayer Graphene and Few-Layer MoS2 Heterostructure Devices.

    PubMed

    Rathi, Servin; Lee, Inyeal; Lim, Dongsuk; Wang, Jianwei; Ochiai, Yuichi; Aoki, Nobuyuki; Watanabe, Kenji; Taniguchi, Takashi; Lee, Gwan-Hyoung; Yu, Young-Jun; Kim, Philip; Kim, Gil-Ho

    2015-08-12

    Lateral and vertical two-dimensional heterostructure devices, in particular graphene-MoS2, have attracted profound interest as they offer additional functionalities over normal two-dimensional devices. Here, we have carried out electrical and optical characterization of graphene-MoS2 heterostructure. The few-layer MoS2 devices with metal electrode at one end and monolayer graphene electrode at the other end show nonlinearity in drain current with drain voltage sweep due to asymmetrical Schottky barrier height at the contacts and can be modulated with an external gate field. The doping effect of MoS2 on graphene was observed as double Dirac points in the transfer characteristics of the graphene field-effect transistor (FET) with a few-layer MoS2 overlapping the middle part of the channel, whereas the underlapping of graphene have negligible effect on MoS2 FET characteristics, which showed typical n-type behavior. The heterostructure also exhibits a strongest optical response for 520 nm wavelength, which decreases with higher wavelengths. Another distinct feature observed in the heterostructure is the peak in the photocurrent around zero gate voltage. This peak is distinguished from conventional MoS2 FETs, which show a continuous increase in photocurrent with back-gate voltage. These results offer significant insight and further enhance the understanding of the graphene-MoS2 heterostructure.

  13. Free-Standing Organic Transistors and Circuits with Sub-Micron Thicknesses

    PubMed Central

    Fukuda, Kenjiro; Sekine, Tomohito; Shiwaku, Rei; Morimoto, Takuya; Kumaki, Daisuke; Tokito, Shizuo

    2016-01-01

    The realization of wearable electronic devices with extremely thin and flexible form factors has been a major technological challenge. While substrates typically limit the thickness of thin-film electronic devices, they are usually necessary for their fabrication and functionality. Here we report on ultra-thin organic transistors and integrated circuits using device components whose substrates that have been removed. The fabricated organic circuits with total device thicknesses down to 350 nm have electrical performance levels close to those fabricated on conventional flexible substrates. Moreover, they exhibit excellent mechanical robustness, whereby their static and dynamic electrical characteristics do not change even under 50% compressive strain. Tests using systematically applied compressive strains reveal that these free-standing organic transistors possess anisotropic mechanical stability, and a strain model for a multilayer stack can be used to describe the strain in this sort of ultra-thin device. These results show the feasibility of ultimate-thin organic electronic devices using free-standing constructions. PMID:27278828

  14. Review on the Modeling of Electrostatic MEMS

    PubMed Central

    Chuang, Wan-Chun; Lee, Hsin-Li; Chang, Pei-Zen; Hu, Yuh-Chung

    2010-01-01

    Electrostatic-driven microelectromechanical systems devices, in most cases, consist of couplings of such energy domains as electromechanics, optical electricity, thermoelectricity, and electromagnetism. Their nonlinear working state makes their analysis complex and complicated. This article introduces the physical model of pull-in voltage, dynamic characteristic analysis, air damping effect, reliability, numerical modeling method, and application of electrostatic-driven MEMS devices. PMID:22219707

  15. About the Power Generation Confirmation of the Induction Motor and the Influence on the Islanding Detection Device

    NASA Astrophysics Data System (ADS)

    Igarashi, Hironobu; Sato, Takashi; Miyamoto, Kazunori; Kurokawa, Kousuke

    The photovoltaic generation system must have protection device and islanding detection devices to connect with utility line of the electric power company. It is regulated in the technological requirement guideline and the electric equipment technology standard that the country provides. The islanding detection device detected purpose install for blackout due to the accident occurrence of the earth fault and the short-circuit in the utility line. When the islanding detection device detects the power blackout, it is necessary to stop the photovoltaic generation system immediately. If the photovoltaic generation system is not stopped immediately, electricity comes to charge the utility power line very at risk. We had already known that the islanding detection device can't detect the islanding phenomenon, if is there the induction motor in the loads. Authors decided to investigate the influence that the induction motors gave to the islanding detection device. The result was the load condition that the induction motors changed generator the voltage is restraining. Moreover, it was clarified that the time of the islanding was long compared with the load condition of not changing into the state of the generator. The value changes into the reactance of the induction motors according to the frequency change after the supply of electric power line stops. The frequency after the supply of electric power line stops changes for the unbalance the reactive power by the effect of the power rate constancy control with PLL of the power conditioner. However, the induction motors is also to the changing frequency, makes amends for the amount of reactive power, and the change in the frequency after the supply of electric power line stops as a result is controlled. When the frequency changed after the supply of electric power line stopped, it was clarified of the action on the direction where it made amends from the change of the constant for the amount of an invalid electric power, and the possession of the characteristic in which the continuance of the individual operation was promoted.

  16. Electrical contacts to individual SWCNTs: A review

    PubMed Central

    Hierold, Christofer; Haluska, Miroslav

    2014-01-01

    Summary Owing to their superior electrical characteristics, nanometer dimensions and definable lengths, single-walled carbon nanotubes (SWCNTs) are considered as one of the most promising materials for various types of nanodevices. Additionally, they can be used as either passive or active elements. To be integrated into circuitry or devices, they are typically connected with metal leads to provide electrical contacts. The properties and quality of these electrical contacts are important for the function and performance of SWCNT-based devices. Since carbon nanotubes are quasi-one-dimensional structures, contacts to them are different from those for bulk semiconductors. Additionally, some techniques used in Si-based technology are not compatible with SWCNT-based device fabrication, such as the contact area cleaning technique. In this review, an overview of the investigations of metal–SWCNT contacts is presented, including the principle of charge carrier injection through the metal–SWCNT contacts and experimental achievements. The methods for characterizing the electrical contacts are discussed as well. The parameters which influence the contact properties are summarized, mainly focusing on the contact geometry, metal type and the cleanliness of the SWCNT surface affected by the fabrication processes. Moreover, the challenges for widespread application of CNFETs are additionally discussed. PMID:25551048

  17. Squeeze-Film Air Damping of a Five-Axis Electrostatic Bearing for Rotary Micromotors

    PubMed Central

    Wang, Shunyue; Han, Fengtian; Sun, Boqian; Li, Haixia

    2017-01-01

    Air-film damping, which dominates over other losses, plays a significant role in the dynamic response of many micro-fabricated devices with a movable mass suspended by various bearing mechanisms. Modeling the damping characteristics accurately will be greatly helpful to the bearing design, control, and test in various micromotor devices. This paper presents the simulated and experimental squeeze-film air damping results of an electrostatic bearing for use in a rotary high-speed micromotor. It is shown that the boundary condition to solve the three-dimensional Reynolds equation, which governs the squeeze-film damping in the air gap between the rotor and its surrounding stator sealed in a three-layer evacuated cavity, behaves with strong cross-axis coupling characteristics. To accurately characterize the damping effect, a set of multiphysics finite-element simulations are performed by computing both the rotor velocity and the distribution of the viscous damping force acting on the rotor. The damping characteristics varying with several key structure parameters are simulated and discussed to optimize the device structure for desirable rotor dynamics. An electrical measurement method is also proposed and applied to validate the numerical results of the damping coefficients experimentally. Given that the frequency response of the electric bearing is critically dependent on the damping coefficients at atmospheric pressure, a solution to the air-film damping measurement problem is presented by taking approximate curve fitting of multi-axis experimental frequency responses. The measured squeeze-film damping coefficients for the five-axis electric bearing agrees well with the numerical solutions. This indicates that numerical multiphysics simulation is an effective method to accurately examine the air-film damping effect for complex device geometry and arbitrary boundary condition. The accurate damping coefficients obtained by FEM simulation will greatly simplify the design of the five-axis bearing control system and facilitate the initial suspension test of the rotor for various micromotor devices. PMID:28505089

  18. Squeeze-Film Air Damping of a Five-Axis Electrostatic Bearing for Rotary Micromotors.

    PubMed

    Wang, Shunyue; Han, Fengtian; Sun, Boqian; Li, Haixia

    2017-05-13

    Air-film damping, which dominates over other losses, plays a significant role in the dynamic response of many micro-fabricated devices with a movable mass suspended by various bearing mechanisms. Modeling the damping characteristics accurately will be greatly helpful to the bearing design, control, and test in various micromotor devices. This paper presents the simulated and experimental squeeze-film air damping results of an electrostatic bearing for use in a rotary high-speed micromotor. It is shown that the boundary condition to solve the three-dimensional Reynolds equation, which governs the squeeze-film damping in the air gap between the rotor and its surrounding stator sealed in a three-layer evacuated cavity, behaves with strong cross-axis coupling characteristics. To accurately characterize the damping effect, a set of multiphysics finite-element simulations are performed by computing both the rotor velocity and the distribution of the viscous damping force acting on the rotor. The damping characteristics varying with several key structure parameters are simulated and discussed to optimize the device structure for desirable rotor dynamics. An electrical measurement method is also proposed and applied to validate the numerical results of the damping coefficients experimentally. Given that the frequency response of the electric bearing is critically dependent on the damping coefficients at atmospheric pressure, a solution to the air-film damping measurement problem is presented by taking approximate curve fitting of multi-axis experimental frequency responses. The measured squeeze-film damping coefficients for the five-axis electric bearing agrees well with the numerical solutions. This indicates that numerical multiphysics simulation is an effective method to accurately examine the air-film damping effect for complex device geometry and arbitrary boundary condition. The accurate damping coefficients obtained by FEM simulation will greatly simplify the design of the five-axis bearing control system and facilitate the initial suspension test of the rotor for various micromotor devices.

  19. Electrical Conductance Tuning and Bistable Switching in Poly(N-vinylcarbazole)-Carbon Nanotube Composite Films.

    PubMed

    Liu, Gang; Ling, Qi-Dan; Teo, Eric Yeow Hwee; Zhu, Chun-Xiang; Chan, D Siu-Hung; Neoh, Koon-Gee; Kang, En-Tang

    2009-07-28

    By varying the carbon nanotube (CNT) content in poly(N-vinylcarbazole) (PVK) composite thin films, the electrical conductance behavior of an indium-tin oxide/PVK-CNT/aluminum (ITO/PVK-CNT/Al) sandwich structure can be tuned in a controlled manner. Distinctly different electrical conductance behaviors, such as (i) insulator behavior, (ii) bistable electrical conductance switching effects (write-once read-many-times (WORM) memory effect and rewritable memory effect), and (iii) conductor behavior, are discernible from the current density-voltage characteristics of the composite films. The turn-on voltage of the two bistable conductance switching devices decreases and the ON/OFF state current ratio of the WORM device increases with the increase in CNT content of the composite film. Both the WORM and rewritable devices are stable under a constant voltage stress or a continuous pulse voltage stress, with an ON/OFF state current ratio in excess of 10(3). The conductance switching effects of the composite films have been attributed to electron trapping in the CNTs of the electron-donating/hole-transporting PVK matrix.

  20. The effect of doping Sb on the electronic structure and the device characteristics of Ovonic Threshold Switches based on Ge-Se.

    PubMed

    Shin, Sang-Yeol; Choi, J M; Seo, Juhee; Ahn, Hyung-Woo; Choi, Yong Gyu; Cheong, Byung-ki; Lee, Suyoun

    2014-11-18

    The Ovonic Threshold Switch (OTS) based on an amorphous chalcogenide material has attracted much interest as a promising candidate for a high-performance thin-film switching device enabling 3D-stacking of memory devices. In this work, we studied on the electronic structure of amorphous Sb-doped Ge(0.6)Se(0.4) (in atomic mole fraction) film and its characteristics as to OTS devices. From the optical absorption spectroscopy measurement, the band gap (Eg) was found to decrease with increasing Sb content. In addition, as Sb content increased, the activation energy (Ea) for electrical conduction was found to decrease down to about one third of Eg from a half. As to the device characteristics, we found that the threshold switching voltage (Vth) drastically decreased with the Sb content. These results, being accountable in terms of the changes in the bonding configuration of constituent atoms as well as in the electronic structure such as the energy gap and trap states, advance an effective method of compositional adjustment to modulate Vth of an OTS device for various applications.

  1. Significant improvement in the electrical characteristics of Schottky barrier diodes on molecularly modified Gallium Nitride surfaces

    NASA Astrophysics Data System (ADS)

    Garg, Manjari; Naik, Tejas R.; Pathak, C. S.; Nagarajan, S.; Rao, V. Ramgopal; Singh, R.

    2018-04-01

    III-Nitride semiconductors face the issue of localized surface states, which causes fermi level pinning and large leakage current at the metal semiconductor interface, thereby degrading the device performance. In this work, we have demonstrated the use of a Self-Assembled Monolayer (SAM) of organic molecules to improve the electrical characteristics of Schottky barrier diodes (SBDs) on n-type Gallium Nitride (n-GaN) epitaxial films. The electrical characteristics of diodes were improved by adsorption of SAM of hydroxyl-phenyl metallated porphyrin organic molecules (Zn-TPPOH) onto the surface of n-GaN. SAM-semiconductor bonding via native oxide on the n-GaN surface was confirmed using X-ray photoelectron spectroscopy measurements. Surface morphology and surface electronic properties were characterized using atomic force microscopy and Kelvin probe force microscopy. Current-voltage characteristics of different metal (Cu, Ni) SBDs on bare n-GaN were compared with those of Cu/Zn-TPPOH/n-GaN and Ni/Zn-TPPOH/n-GaN SBDs. It was found that due to the molecular monolayer, the surface potential of n-GaN was decreased by ˜350 mV. This caused an increase in the Schottky barrier height of Cu and Ni SBDs from 1.13 eV to 1.38 eV and 1.07 eV to 1.22 eV, respectively. In addition to this, the reverse bias leakage current was reduced by 3-4 orders of magnitude for both Cu and Ni SBDs. Such a significant improvement in the electrical performance of the diodes can be very useful for better device functioning.

  2. Magnetic-field-controlled reconfigurable semiconductor logic.

    PubMed

    Joo, Sungjung; Kim, Taeyueb; Shin, Sang Hoon; Lim, Ju Young; Hong, Jinki; Song, Jin Dong; Chang, Joonyeon; Lee, Hyun-Woo; Rhie, Kungwon; Han, Suk Hee; Shin, Kyung-Ho; Johnson, Mark

    2013-02-07

    Logic devices based on magnetism show promise for increasing computational efficiency while decreasing consumed power. They offer zero quiescent power and yet combine novel functions such as programmable logic operation and non-volatile built-in memory. However, practical efforts to adapt a magnetic device to logic suffer from a low signal-to-noise ratio and other performance attributes that are not adequate for logic gates. Rather than exploiting magnetoresistive effects that result from spin-dependent transport of carriers, we have approached the development of a magnetic logic device in a different way: we use the phenomenon of large magnetoresistance found in non-magnetic semiconductors in high electric fields. Here we report a device showing a strong diode characteristic that is highly sensitive to both the sign and the magnitude of an external magnetic field, offering a reversible change between two different characteristic states by the application of a magnetic field. This feature results from magnetic control of carrier generation and recombination in an InSb p-n bilayer channel. Simple circuits combining such elementary devices are fabricated and tested, and Boolean logic functions including AND, OR, NAND and NOR are performed. They are programmed dynamically by external electric or magnetic signals, demonstrating magnetic-field-controlled semiconductor reconfigurable logic at room temperature. This magnetic technology permits a new kind of spintronic device, characterized as a current switch rather than a voltage switch, and provides a simple and compact platform for non-volatile reconfigurable logic devices.

  3. Printing an ITO-free flexible poly (4-vinylphenol) resistive switching device

    NASA Astrophysics Data System (ADS)

    Ali, Junaid; Rehman, Muhammad Muqeet; Siddiqui, Ghayas Uddin; Aziz, Shahid; Choi, Kyung Hyun

    2018-02-01

    Resistive switching in a sandwich structure of silver (Ag)/Polyvinyl phenol (PVP)/carbon nanotube (CNTs)-silver nanowires (AgNWs) coated on a flexible PET substrate is reported in this work. Densely populated networks of one dimensional nano materials (1DNM), CNTs-AgNWs have been used as the conductive bottom electrode with the prominent features of high flexibility and low sheet resistance of 90 Ω/sq. Thin, yet uniform active layer of PVP was deposited on top of the spin coated 1DNM thin film through state of the art printing technique of electrohydrodynamic atomization (EHDA) with an average thickness of 170 ± 28 nm. Ag dots with an active area of ∼0.1 mm2 were deposited through roll to plate printing system as the top electrodes to complete the device fabrication of flexible memory device. Our memory device exhibited suitable electrical characteristics with OFF/ON ratio of 100:1, retention time of 60 min and electrical endurance for 100 voltage sweeps without any noticeable decay in performance. The resistive switching characteristics at a low current compliance of 3 nA were also evaluated for the application of low power consumption. This memory device is flexible and can sustain more than 100 bending cycles at a bending diameter of 2 cm with stable HRS and LRS values. Our proposed device shows promise to be used as a future potential nonvolatile memory device in flexible electronics.

  4. Study of SF6 gas decomposition products based on spectroscopy technology

    NASA Astrophysics Data System (ADS)

    Cai, Ji-xing; Na, Yan-xiang; Ni, Wei-yuan; Li, Guo-wei; Feng, Ke-cheng; Song, Gui-cai

    2011-08-01

    With the rapid development of power industry, the number of SF6 electrical equipment are increasing, it has gradually replaced the traditional insulating oil material as insulation and arc media in the high-voltage electrical equipment. Pure SF6 gas has excellent insulating properties and arc characteristics; however, under the effect of the strong arc, SF6 gas will decompose and generate toxic substances, then corroding electrical equipment, thereby affecting the insulation and arc ability of electrical equipment. If excessive levels of impurities in the gas that will seriously affect the mechanical properties, breaking performance and electrical performance of electrical equipment, it will cause many serious consequences, even threaten the safe operation of the grid. This paper main analyzes the basic properties of SF6 gas and the basic situation of decomposition in the discharge conditions, in order to simulate the actual high-voltage electrical equipment, designed and produced a simulation device that can simulate the decomposition of SF6 gas under a high voltage discharge, and using fourier transform infrared spectroscopy to analyze the sample that produced by the simulation device. The result show that the main discharge decomposition product is SO2F2 (sulfuryl fluoride), the substance can react with water and generate corrosive H2SO4(sulfuric acid) and HF (hydrogen fluoride), also found that the increase in the number with the discharge, SO2F2concentration levels are on the rise. Therefore, the material can be used as one of the main characteristic gases to determine the SF6 electrical equipment failure, and to monitor their concentration levels.

  5. Flexible Thin Metal Film Thermal Sensing System

    NASA Technical Reports Server (NTRS)

    Thomsen, Donald Laurence (Inventor)

    2012-01-01

    A flexible thin metal film thermal sensing system is provided. A thermally-conductive film made from a thermally-insulating material is doped with thermally-conductive material. At least one layer of electrically-conductive metal is deposited directly onto a surface of the thermally-conductive film. One or more devices are coupled to the layer(s) to measure an electrical characteristic associated therewith as an indication of temperature.

  6. Effect of CdS nanocrystals on charge transport mechanism in poly(3-hexylthiophene)

    NASA Astrophysics Data System (ADS)

    Khan, Mohd Taukeer; Almohammedi, Abdullah

    2017-08-01

    The present manuscript demonstrates the optical and electrical characteristics of poly(3-hexylthiophene) (P3HT) and cadmium sulphide (CdS) hybrid nanocomposites. Optical results suggest that there is a formation of charge transfer complex (CTC) between host P3HT and guest CdS nanocrystals (NCs). Electrical properties of P3HT and P3HT-CdS thin films have been studied in hole only device configurations at different temperatures (290 K-150 K), and results were analysed by the space charge limited conduction mechanism. Density of traps and characteristic trap energy increase on incorporation of inorganic NCs in the polymer matrix, which might be due to the additional favourable energy states created by CdS NCs in the band gap of P3HT. These additional trap states assist charge carriers to move quicker which results in enhancement of hole mobility from 7 × 10-6 to 5.5 × 10-5 cm2/V s in nanocomposites. These results suggest that the P3HT-CdS hybrid system has desirable optical and electrical properties for its applications to photovoltaics devices.

  7. Pinch-off mechanism in double-lateral-gate junctionless transistors fabricated by scanning probe microscope based lithography

    PubMed Central

    Dehzangi, Arash; Abedini, Alam; Abdullah, Ahmad Makarimi; Saion, Elias; Hutagalung, Sabar D; Hamidon, Mohd N; Hassan, Jumiah

    2012-01-01

    Summary A double-lateral-gate p-type junctionless transistor is fabricated on a low-doped (1015) silicon-on-insulator wafer by a lithography technique based on scanning probe microscopy and two steps of wet chemical etching. The experimental transfer characteristics are obtained and compared with the numerical characteristics of the device. The simulation results are used to investigate the pinch-off mechanism, from the flat band to the off state. The study is based on the variation of the carrier density and the electric-field components. The device is a pinch-off transistor, which is normally in the on state and is driven into the off state by the application of a positive gate voltage. We demonstrate that the depletion starts from the bottom corner of the channel facing the gates and expands toward the center and top of the channel. Redistribution of the carriers due to the electric field emanating from the gates creates an electric field perpendicular to the current, toward the bottom of the channel, which provides the electrostatic squeezing of the current. PMID:23365794

  8. High performance non-volatile ferroelectric copolymer memory based on a ZnO nanowire transistor fabricated on a transparent substrate

    NASA Astrophysics Data System (ADS)

    Nedic, Stanko; Tea Chun, Young; Hong, Woong-Ki; Chu, Daping; Welland, Mark

    2014-01-01

    A high performance ferroelectric non-volatile memory device based on a top-gate ZnO nanowire (NW) transistor fabricated on a glass substrate is demonstrated. The ZnO NW channel was spin-coated with a poly (vinylidenefluoride-co-trifluoroethylene) (P(VDF-TrFE)) layer acting as a top-gate dielectric without buffer layer. Electrical conductance modulation and memory hysteresis are achieved by a gate electric field induced reversible electrical polarization switching of the P(VDF-TrFE) thin film. Furthermore, the fabricated device exhibits a memory window of ˜16.5 V, a high drain current on/off ratio of ˜105, a gate leakage current below ˜300 pA, and excellent retention characteristics for over 104 s.

  9. A compact model for electroosmotic flows in microfluidic devices

    NASA Astrophysics Data System (ADS)

    Qiao, R.; Aluru, N. R.

    2002-09-01

    A compact model to compute flow rate and pressure in microfluidic devices is presented. The microfluidic flow can be driven by either an applied electric field or a combined electric field and pressure gradient. A step change in the ζ-potential on a channel wall is treated by a pressure source in the compact model. The pressure source is obtained from the pressure Poisson equation and conservation of mass principle. In the proposed compact model, the complex fluidic network is simplified by an electrical circuit. The compact model can predict the flow rate, pressure distribution and other basic characteristics in microfluidic channels quickly with good accuracy when compared to detailed numerical simulation. Using the compact model, fluidic mixing and dispersion control are studied in a complex microfluidic network.

  10. Performance enhancement of a rotational energy harvester utilizing wind-induced vibration of an inclined stay cable

    NASA Astrophysics Data System (ADS)

    Kim, In-Ho; Jang, Seon-Jun; Jung, Hyung-Jo

    2013-07-01

    In this paper, an innovative strategy for improving the performance of a recently developed rotational energy harvester is proposed. Its performance can be considerably enhanced by replacing the electromagnetic induction part, consisting of moving permanent magnets and a fixed solenoid coil, with a moving mass and a rotational generator (i.e., an electric motor). The proposed system is easily tuned to the natural frequency of a target structure using the position change of a proof mass. Owing to the high efficiency of the rotational generator, the device can more effectively harness electrical energy from the wind-induced vibration of a stay cable. Also, this new configuration makes the device more compact and geometrically tunable. In order to validate the effectiveness of the new configuration, a series of laboratory and field tests are carried out with the prototype of the proposed device, which is designed and fabricated based on the dynamic characteristics of the vibration of a stay cable installed in an in-service cable-stayed bridge. From the field test, it is observed that the normalized output power of the proposed system is 35.67 mW (m s-2)-2, while that of the original device is just 5.47 mW (m s-2)-2. These results show that the proposed device generates much more electrical energy than the original device. Moreover, it is verified that the proposed device can generate sufficient electricity to power a wireless sensor node placed on a cable under gentle-moderate wind conditions.

  11. High-density carrier-accumulated and electrically stable oxide thin-film transistors from ion-gel gate dielectric

    PubMed Central

    Fujii, Mami N.; Ishikawa, Yasuaki; Miwa, Kazumoto; Okada, Hiromi; Uraoka, Yukiharu; Ono, Shimpei

    2015-01-01

    The use of indium–gallium–zinc oxide (IGZO) has paved the way for high-resolution uniform displays or integrated circuits with transparent and flexible devices. However, achieving highly reliable devices that use IGZO for low-temperature processes remains a technological challenge. We propose the use of IGZO thin-film transistors (TFTs) with an ionic-liquid gate dielectric in order to achieve high-density carrier-accumulated IGZO TFTs with high reliability, and we discuss a distinctive mechanism for the degradation of this organic–inorganic hybrid device under long-term electrical stress. Our results demonstrated that an ionic liquid or gel gate dielectric provides highly reliable and low-voltage operation with IGZO TFTs. Furthermore, high-density carrier accumulation helps improve the TFT characteristics and reliability, and it is highly relevant to the electronic phase control of oxide materials and the degradation mechanism for organic–inorganic hybrid devices. PMID:26677773

  12. High-density carrier-accumulated and electrically stable oxide thin-film transistors from ion-gel gate dielectric.

    PubMed

    Fujii, Mami N; Ishikawa, Yasuaki; Miwa, Kazumoto; Okada, Hiromi; Uraoka, Yukiharu; Ono, Shimpei

    2015-12-18

    The use of indium-gallium-zinc oxide (IGZO) has paved the way for high-resolution uniform displays or integrated circuits with transparent and flexible devices. However, achieving highly reliable devices that use IGZO for low-temperature processes remains a technological challenge. We propose the use of IGZO thin-film transistors (TFTs) with an ionic-liquid gate dielectric in order to achieve high-density carrier-accumulated IGZO TFTs with high reliability, and we discuss a distinctive mechanism for the degradation of this organic-inorganic hybrid device under long-term electrical stress. Our results demonstrated that an ionic liquid or gel gate dielectric provides highly reliable and low-voltage operation with IGZO TFTs. Furthermore, high-density carrier accumulation helps improve the TFT characteristics and reliability, and it is highly relevant to the electronic phase control of oxide materials and the degradation mechanism for organic-inorganic hybrid devices.

  13. Charge carrier mobility in thin films of organic semiconductors by the gated van der Pauw method

    PubMed Central

    Rolin, Cedric; Kang, Enpu; Lee, Jeong-Hwan; Borghs, Gustaaf; Heremans, Paul; Genoe, Jan

    2017-01-01

    Thin film transistors based on high-mobility organic semiconductors are prone to contact problems that complicate the interpretation of their electrical characteristics and the extraction of important material parameters such as the charge carrier mobility. Here we report on the gated van der Pauw method for the simple and accurate determination of the electrical characteristics of thin semiconducting films, independently from contact effects. We test our method on thin films of seven high-mobility organic semiconductors of both polarities: device fabrication is fully compatible with common transistor process flows and device measurements deliver consistent and precise values for the charge carrier mobility and threshold voltage in the high-charge carrier density regime that is representative of transistor operation. The gated van der Pauw method is broadly applicable to thin films of semiconductors and enables a simple and clean parameter extraction independent from contact effects. PMID:28397852

  14. Electrical characteristics of silicon percolating nanonet-based field effect transistors in the presence of dispersion

    NASA Astrophysics Data System (ADS)

    Cazimajou, T.; Legallais, M.; Mouis, M.; Ternon, C.; Salem, B.; Ghibaudo, G.

    2018-05-01

    We studied the current-voltage characteristics of percolating networks of silicon nanowires (nanonets), operated in back-gated transistor mode, for future use as gas or biosensors. These devices featured P-type field-effect characteristics. It was found that a Lambert W function-based compact model could be used for parameter extraction of electrical parameters such as apparent low field mobility, threshold voltage and subthreshold slope ideality factor. Their variation with channel length and nanowire density was related to the change of conduction regime from direct source/drain connection by parallel nanowires to percolating channels. Experimental results could be related in part to an influence of the threshold voltage dispersion of individual nanowires.

  15. Interactive Physics and Characteristics of Photons and Photoelectrons in Hyperbranched Zinc Oxide Nanostructures

    NASA Astrophysics Data System (ADS)

    Torix, Garrett

    As is commonly known, the world is full of technological wonders, where a multitude of electronic devices and instruments continuously help push the boundaries of scientific knowledge and discovery. These new devices and instruments of science must be utilized at peak efficiency in order to benefit humanity with the most advanced scientific knowledge. In order to attain this level of efficiency, the materials which make up these electronics, or possibly more important, the fundamental characteristics of these materials, must be fully understood. The following research attempted to uncover the properties and characteristics of a selected family of materials. Herein, zinc oxide (ZnO) nanomaterials were investigated and subjected to various, systematical tests, with the aim of discovering new and useful properties. The various nanostructures were grown on a quartz substrate, between a pair of gold electrodes, and subjected to an electrical bias which produced a measurable photocurrent under sufficient lighting conditions. This design formed a novel photodetector device, which, when combined with a simple solar cell and a methodical set of experimental trials, allowed several unique phenomena to be studied. Under various conditions, the device photocurrent as a function of applied voltage, as well as transmitted light, were measured and compared between devices of different ZnO morphologies. Zinc oxide is an absorber of ultraviolet (UV) light. UV absorbing materials and devices have uses in solar cells, long range communications, and astronomical observational equipment, hence, a better understanding of zinc oxide nanostructures and their properties can lead to more efficient utilization of UV light, improved solar cell technology, and a better understanding of the basic science in photon-to-electricity conversion.

  16. Device USB interface and software development for electric parameter measuring instrument

    NASA Astrophysics Data System (ADS)

    Li, Deshi; Chen, Jian; Wu, Yadong

    2003-09-01

    Aimed at general devices development, this paper discussed the development of USB interface and software development. With an example, using PDIUSBD12 which support parallel interface, the paper analyzed its technical characteristics. Designed different interface circuit with 80C52 singlechip microcomputer and TMS320C54 series digital signal processor, analyzed the address allocation, register access. According to USB1.1 standard protocol, designed the device software and application layer protocol. The paper designed the data exchange protocol, and carried out system functions.

  17. Post annealing effects on the electrical characteristics of pentacene thin film transistors on flexible substrates.

    PubMed

    Oh, Tae-Yeon; Jeong, Shin Woo; Chang, Seongpil; Park, Jung-Ho; Kim, Jong-Woo; Choi, Kookhyun; Ha, Hyeon-Jun; Hwang, Bo-Yeon; Ju, Byeong-Kwon

    2013-05-01

    This work studies the effect of post annealing of pentacene on a flexible substrate through the examination of electrical properties and surface morphologies. It is confirmed that the best performance of devices is achieved when the post annealing temperature is 60 degrees C, since the grain size increases, which decrease grain boundaries caused charge transport limit. We can also confirmed the large threshold voltage shift of device annealed at 60 degrees C that means the lower trap density between channel and insulator interface. The device annealed at 60 degrees C exhibits a saturation mobility of 1.99 cm2/V x s, an on/off ratio of 1.87 x 10(4), and a subthreshold slope of 2.5 V/decade.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Po-Tsun; Shieh, Han-Ping; Chou, Yi-Teh

    This work presents the electrical characteristics of the nitrogenated amorphous InGaZnO thin film transistor (a-IGZO:N TFT). The a-IGZO:N film acting as a channel layer of a thin film transistor (TFT) device was prepared by dc reactive sputter with a nitrogen and argon gas mixture at room temperature. Experimental results show that the in situ nitrogen incorporation to IGZO film can properly adjust the threshold voltage and enhance the ambient stability of a TFT device. Furthermore, the a-IGZO:N TFT has a 44% increase in the carrier mobility and electrical reliability and uniformity also progress obviously while comparing with those not implementingmore » a nitrogen doping process.« less

  19. Four-quadrant silicon and silicon carbide photodiodes for beam position monitor applications: electrical characterization and electron irradiation effects

    NASA Astrophysics Data System (ADS)

    Rafí, J. M.; Pellegrini, G.; Godignon, P.; Quirion, D.; Hidalgo, S.; Matilla, O.; Fontserè, A.; Molas, B.; Takakura, K.; Tsunoda, I.; Yoneoka, M.; Pothin, D.; Fajardo, P.

    2018-01-01

    Silicon photodiodes are very useful devices as X-ray beam monitors in synchrotron radiation beamlines, as well as other astronomy and space applications. Owing to their lower susceptibility to variable temperature and illumination conditions, there is also special interest in silicon carbide devices for some of these applications. Moreover, radiation hardness of the involved technologies is a major concern for high-energy physics and space applications. This work presents four-quadrant photodiodes produced on ultrathin (10 μm) and bulk Si, as well as on SiC epilayer substrates. An extensive electrical characterization has been carried out by using current-voltage (I-V) and capacitance-voltage (C-V) techniques. The impact of different temperature (from -50oC to 175oC) and visible light conditions on the electrical characteristics of the devices has been evaluated. Radiation effects caused by 2 MeV electron irradiation up to 1×1014, 1×1015 and 1×1016 e/cm2 fluences have been studied. Special attention has been devoted to the study of charge build-up in diode interquadrant isolation, as well as its impact on interquadrant resistance. The study of these electrical properties and its radiation-induced degradation should be taken into account for device applications.

  20. Junctionless Diode Enabled by Self-Bias Effect of Ion Gel in Single-Layer MoS2 Device.

    PubMed

    Khan, Muhammad Atif; Rathi, Servin; Park, Jinwoo; Lim, Dongsuk; Lee, Yoontae; Yun, Sun Jin; Youn, Doo-Hyeb; Kim, Gil-Ho

    2017-08-16

    The self-biasing effects of ion gel from source and drain electrodes on electrical characteristics of single layer and few layer molybdenum disulfide (MoS 2 ) field-effect transistor (FET) have been studied. The self-biasing effect of ion gel is tested for two different configurations, covered and open, where ion gel is in contact with either one or both, source and drain electrodes, respectively. In open configuration, the linear output characteristics of the pristine device becomes nonlinear and on-off ratio drops by 3 orders of magnitude due to the increase in "off" current for both single and few layer MoS 2 FETs. However, the covered configuration results in a highly asymmetric output characteristics with a rectification of around 10 3 and an ideality factor of 1.9. This diode like behavior has been attributed to the reduction of Schottky barrier width by the electric field of self-biased ion gel, which enables an efficient injection of electrons by tunneling at metal-MoS 2 interface. Finally, finite element method based simulations are carried out and the simulated results matches well in principle with the experimental analysis. These self-biased diodes can perform a crucial role in the development of high-frequency optoelectronic and valleytronic devices.

  1. Temperature-Dependent Electric Field Poling Effects in CH3NH3PbI3 Optoelectronic Devices.

    PubMed

    Zhang, Chuang; Sun, Dali; Liu, Xiaojie; Sheng, Chuan-Xiang; Vardeny, Zeev Valy

    2017-04-06

    Organo-lead halide perovskites show excellent optoelectronic properties; however, the unexpected inconsistency in forward-backward I-V characteristics remains a problem for fabricating solar panels. Here we have investigated the reasons behind this "hysteresis" by following the changes in photocurrent and photoluminescence under electric field poling in transverse CH 3 NH 3 PbI 3 -based devices from 300 to 10 K. We found that the hysteresis disappears at cryogenic temperatures, indicating the "freeze-out" of the ionic diffusion contribution. When the same device is cooled under continuous poling, the built-in electric field from ion accumulation brings significant photovoltaic effect even at 10 K. From the change of photoluminescence upon polling, we found a second dipole-related mechanism which enhances radiative recombination upon the alignment of the organic cations. The ionic origin of hysteresis was also verified by applying a magnetic field to affect the ion diffusion. These findings reveal the coexistence of ionic and dipole-related mechanisms for the hysteresis in hybrid perovskites.

  2. Confinement-induced InAs/GaSb heterojunction electron-hole bilayer tunneling field-effect transistor

    NASA Astrophysics Data System (ADS)

    Padilla, J. L.; Medina-Bailon, C.; Alper, C.; Gamiz, F.; Ionescu, A. M.

    2018-04-01

    Electron-Hole Bilayer Tunneling Field-Effect Transistors are typically based on band-to-band tunneling processes between two layers of opposite charge carriers where tunneling directions and gate-induced electric fields are mostly aligned (so-called line tunneling). However, the presence of intense electric fields associated with the band bending required to trigger interband tunneling, along with strong confinement effects, has made these types of devices to be regarded as theoretically appealing but technologically impracticable. In this work, we propose an InAs/GaSb heterostructure configuration that, although challenging in terms of process flow design and fabrication, could be envisaged for alleviating the electric fields inside the channel, whereas, at the same time, making quantum confinement become the mechanism that closes the broken gap allowing the device to switch between OFF and ON states. The utilization of induced doping prevents the harmful effect of band tails on the device performance. Simulation results lead to extremely steep slope characteristics endorsing its potential interest for ultralow power applications.

  3. Limited output transcranial electrical stimulation (LOTES-2017): Engineering principles, regulatory statutes, and industry standards for wellness, over-the-counter, or prescription devices with low risk.

    PubMed

    Bikson, Marom; Paneri, Bhaskar; Mourdoukoutas, Andoni; Esmaeilpour, Zeinab; Badran, Bashar W; Azzam, Robin; Adair, Devin; Datta, Abhishek; Fang, Xiao Hui; Wingeier, Brett; Chao, Daniel; Alonso-Alonso, Miguel; Lee, Kiwon; Knotkova, Helena; Woods, Adam J; Hagedorn, David; Jeffery, Doug; Giordano, James; Tyler, William J

    We present device standards for low-power non-invasive electrical brain stimulation devices classified as limited output transcranial electrical stimulation (tES). Emerging applications of limited output tES to modulate brain function span techniques to stimulate brain or nerve structures, including transcranial direct current stimulation (tDCS), transcranial alternating current stimulation (tACS), and transcranial pulsed current stimulation (tPCS), have engendered discussion on how access to technology should be regulated. In regards to legal regulations and manufacturing standards for comparable technologies, a comprehensive framework already exists, including quality systems (QS), risk management, and (inter)national electrotechnical standards (IEC). In Part 1, relevant statutes are described for medical and wellness application. While agencies overseeing medical devices have broad jurisdiction, enforcement typically focuses on those devices with medical claims or posing significant risk. Consumer protections regarding responsible marketing and manufacture apply regardless. In Part 2 of this paper, we classify the electrical output performance of devices cleared by the United States Food and Drug Administration (FDA) including over-the-counter (OTC) and prescription electrostimulation devices, devices available for therapeutic or cosmetic purposes, and devices indicated for stimulation of the body or head. Examples include iontophoresis devices, powered muscle stimulators (PMS), cranial electrotherapy stimulation (CES), and transcutaneous electrical nerve stimulation (TENS) devices. Spanning over 13 FDA product codes, more than 1200 electrical stimulators have been cleared for marketing since 1977. The output characteristics of conventional tDCS, tACS, and tPCS techniques are well below those of most FDA cleared devices, including devices that are available OTC and those intended for stimulation on the head. This engineering analysis demonstrates that with regard to output performance and standing regulation, the availability of tDCS, tACS, or tPCS to the public would not introduce risk, provided such devices are responsibly manufactured and legally marketed. In Part 3, we develop voluntary manufacturer guidance for limited output tES that is aligned with current regulatory standards. Based on established medical engineering and scientific principles, we outline a robust and transparent technical framework for ensuring limited output tES devices are designed to minimize risks, while also supporting access and innovation. Alongside applicable medical and government activities, this voluntary industry standard (LOTES-2017) further serves an important role in supporting informed decisions by the public. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Surface patterning of multilayer graphene by ultraviolet laser irradiation in biomolecule sensing devices

    NASA Astrophysics Data System (ADS)

    Chang, Tien-Li; Chen, Zhao-Chi

    2015-12-01

    The study presents a direct process for surface patterning of multilayer graphene on the glass substrate as a biosensing device. In contrast to lithography with etching, the proposed process provides simultaneous surface patterning of multilayer graphene through nanosecond laser irradiation. In this study, the multilayer graphene was prepared by a screen printing process. Additionally, the wavelength of the laser beam was 355 nm. To perform the effective laser process with the small heat affected zone, the surface patterns on the sensing devices could be directly fabricated using the laser with optimal control of the pulse overlap at a fluence threshold of 0.63 J/cm2. The unique patterning of the laser-ablated surface exhibits their electrical and hydrophilic characteristics. The hydrophilic surface of graphene-based sensing devices was achieved in the process with the pulse overlap of 90%. Furthermore, the sensing devices for controlling the electrical response of glucose by using glucose oxidase can be used in sensors in commercial medical applications.

  5. Supramolecular core-shell nanoparticles for photoconductive device applications

    NASA Astrophysics Data System (ADS)

    Cheng, Chih-Chia; Chen, Jem-Kun; Shieh, Yeong-Tarng; Lee, Duu-Jong

    2016-08-01

    We report a breakthrough discovery involving supramolecular-based strategies to construct novel core-shell heterojunction nanoparticles with hydrophilic adenine-functionalized polythiophene (PAT) as the core and hydrophobic phenyl-C61-butyric acid methyl ester (PCBM) as the shell, which enables the conception of new functional supramolecular assemblies for constructing functional nanomaterials for applications in optoelectronic devices. The generated nanoparticles exhibit uniform spherical shape, well-controlled tuning of particle size with narrow size distributions, and excellent electrochemical stability in solution and the solid state owing to highly efficient energy transfer from PAT to PCBM. When the PAT/PCBM nanoparticles were fabricated into a photoconducting layer in an electronic device, the resulting device showed excellent electric conduction characteristics, including an electrically-tunable voltage-controlled switch, and high short-circuit current and open-circuit voltage. These observations demonstrate how the self-assembly of PAT/PCBM into specific nanostructures may help to promote efficient charge generation and transport processes, suggesting potential for a wide variety of applications as a promising candidate material for bulk heterojunction polymer devices.

  6. Correlation between morphological defects, electron beam-induced current imaging, and the electrical properties of 4H-SiC Schottky diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y.; Ali, G.N.; Mikhov, M.K.

    2005-01-01

    Defects in SiC degrade the electrical properties and yield of devices made from this material. This article examines morphological defects in 4H-SiC and defects visible in electron beam-induced current (EBIC) images and their effects on the electrical characteristics of Schottky diodes. Optical Nomarski microscopy and atomic force microscopy were used to observe the morphological defects, which are classified into 26 types based on appearance alone. Forward and reverse current-voltage characteristics were used to extract barrier heights, ideality factors, and breakdown voltages. Barrier heights decrease about linearly with increasing ideality factor, which is explained by discrete patches of low barrier heightmore » within the main contact. Barrier height, ideality, and breakdown voltage all degrade with increasing device diameter, suggesting that discrete defects are responsible. Electroluminescence was observed under reverse bias from microplasmas associated with defects containing micropipes. EBIC measurements reveal several types of features corresponding to recombination centers. The density of dark spots observed by EBIC correlates strongly with ideality factor and barrier height. Most morphological defects do not affect the reverse characteristics when no micropipes are present, but lower the barrier height and worsen the ideality factor. However, certain multiple-tailed defects, irregularly shaped defects and triangular defects with 3C inclusions substantially degrade both breakdown voltage and barrier height, and account for most of the bad devices that do not contain micropipes. Micropipes in these wafers are also frequently found to be of Type II, which do not run parallel to the c axis.« less

  7. Correlation Between Morphological Defects, Electron Beam Induced Current Imaging, and the Electrical Properties of 4H-SiC Schottky Diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang,Y.; Ali, G.; Mikhov, M.

    2005-01-01

    Defects in SiC degrade the electrical properties and yield of devices made from this material. This article examines morphological defects in 4H-SiC and defects visible in electron beam-induced current (EBIC) images and their effects on the electrical characteristics of Schottky diodes. Optical Nomarski microscopy and atomic force microscopy were used to observe the morphological defects, which are classified into 26 types based on appearance alone. Forward and reverse current-voltage characteristics were used to extract barrier heights, ideality factors, and breakdown voltages. Barrier heights decrease about linearly with increasing ideality factor, which is explained by discrete patches of low barrier heightmore » within the main contact. Barrier height, ideality, and breakdown voltage all degrade with increasing device diameter, suggesting that discrete defects are responsible. Electroluminescence was observed under reverse bias from microplasmas associated with defects containing micropipes. EBIC measurements reveal several types of features corresponding to recombination centers. The density of dark spots observed by EBIC correlates strongly with ideality factor and barrier height. Most morphological defects do not affect the reverse characteristics when no micropipes are present, but lower the barrier height and worsen the ideality factor. However, certain multiple-tailed defects, irregularly shaped defects and triangular defects with 3C inclusions substantially degrade both breakdown voltage and barrier height, and account for most of the bad devices that do not contain micropipes. Micropipes in these wafers are also frequently found to be of Type II, which do not run parallel to the c axis.« less

  8. Electrical Characterization of Defects Created by γ-Radiation in HfO2-Based MIS Structures for RRAM Applications

    NASA Astrophysics Data System (ADS)

    García, H.; González, M. B.; Mallol, M. M.; Castán, H.; Dueñas, S.; Campabadal, F.; Acero, M. C.; Sambuco Salomone, L.; Faigón, A.

    2018-04-01

    The γ-radiation effects on the electrical characteristics of metal-insulator-semiconductor capacitors based on HfO2, and on the resistive switching characteristics of the structures have been studied. The HfO2 was grown directly on silicon substrates by atomic layer deposition. Some of the capacitors were submitted to a γ ray irradiation using three different doses (16 kGy, 96 kGy and 386 kGy). We studied the electrical characteristics in the pristine state of the capacitors. The radiation increased the interfacial state densities at the insulator/semiconductor interface, and the slow traps inside the insulator near the interface. However, the leakage current is not increased by the irradiation, and the conduction mechanism is Poole-Frenkel for all the samples. The switching characteristics were also studied, and no significant differences were obtained in the performance of the devices after having been irradiated, indicating that the fabricated capacitors present good radiation hardness for its use as a RS element.

  9. Recent progress on fabrication of memristor and transistor-based neuromorphic devices for high signal processing speed with low power consumption

    NASA Astrophysics Data System (ADS)

    Hadiyawarman; Budiman, Faisal; Goldianto Octensi Hernowo, Detiza; Pandey, Reetu Raj; Tanaka, Hirofumi

    2018-03-01

    The advanced progress of electronic-based devices for artificial neural networks and recent trends in neuromorphic engineering are discussed in this review. Recent studies indicate that the memristor and transistor are two types of devices that can be implemented as neuromorphic devices. The electrical switching characteristics and physical mechanism of neuromorphic devices based on metal oxide, metal sulfide, silicon, and carbon materials are broadly covered in this review. Moreover, the switching performance comparison of several materials mentioned above are well highlighted, which would be useful for the further development of memristive devices. Recent progress in synaptic devices and the application of a switching device in the learning process is also discussed in this paper.

  10. Ionizing radiation effects on electrical and reliability characteristics of sputtered Ta2O5/Si interface

    NASA Astrophysics Data System (ADS)

    Rao, Ashwath; Verma, Ankita; Singh, B. R.

    2015-06-01

    This paper describes the effect of ionizing radiation on the interface properties of Al/Ta2O5/Si metal oxide semiconductor (MOS) capacitors using capacitance-voltage (C-V) and current-voltage (I-V) characteristics. The devices were irradiated with X-rays at different doses ranging from 100 rad to 1 Mrad. The leakage behavior, which is an important parameter for memory applications of Al/Ta2O5/Si MOS capacitors, along with interface properties such as effective oxide charges and interface trap density with and without irradiation has been investigated. Lower accumulation capacitance and shift in flat band voltage toward negative value were observed in annealed devices after exposure to radiation. The increase in interfacial oxide layer thickness after irradiation was confirmed by Rutherford Back Scattering measurement. The effect of post-deposition annealing on the electrical behavior of Ta2O5 MOS capacitors was also investigated. Improved electrical and interface properties were obtained for samples deposited in N2 ambient. The density of interface trap states (Dit) at Ta2O5/Si interface sputtered in pure argon ambient was higher compared to samples reactively sputtered in nitrogen-containing plasma. Our results show that reactive sputtering in nitrogen-containing plasma is a promising approach to improve the radiation hardness of Ta2O5/Si MOS devices.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oruc, Feyza B.; Aygun, Levent E.; Donmez, Inci

    ZnO thin film transistors (TFTs) are fabricated on Si substrates using atomic layer deposition technique. The growth temperature of ZnO channel layers are selected as 80, 100, 120, 130, and 250 °C. Material characteristics of ZnO films are examined using x-ray photoelectron spectroscopy and x-ray diffraction methods. Stoichiometry analyses showed that the amount of both oxygen vacancies and interstitial zinc decrease with decreasing growth temperature. Electrical characteristics improve with decreasing growth temperature. Best results are obtained with ZnO channels deposited at 80 °C; I{sub on}/I{sub off} ratio is extracted as 7.8 × 10{sup 9} and subthreshold slope is extracted as 0.116 V/dec.more » Flexible ZnO TFT devices are also fabricated using films grown at 80 °C. I{sub D}–V{sub GS} characterization results showed that devices fabricated on different substrates (Si and polyethylene terephthalate) show similar electrical characteristics. Sub-bandgap photo sensing properties of ZnO based TFTs are investigated; it is shown that visible light absorption of ZnO based TFTs can be actively controlled by external gate bias.« less

  12. Memory effects in a Al/Ti:HfO2/CuPc metal-oxide-semiconductor device

    NASA Astrophysics Data System (ADS)

    Tripathi, Udbhav; Kaur, Ramneek

    2016-05-01

    Metal oxide semiconductor structured organic memory device has been successfully fabricated. Ti doped hafnium oxide (Ti:HfO2) nanoparticles has been fabricated by precipitation method and further calcinated at 800 °C. Copper phthalocyanine, a hole transporting material has been utilized as an organic semiconductor. The electrical properties of the fabricated device have been studied by measuring the current-voltage and capacitance-voltage characteristics. The amount of charge stored in the nanoparticles has been calculated by using flat band condition. This simple approach for fabricating MOS memory device has opens up opportunities for the development of next generation memory devices.

  13. Current Radiation Issues for Programmable Elements and Devices

    NASA Technical Reports Server (NTRS)

    Katz, R.; Wang, J. J.; Koga, R.; LaBel, A.; McCollum, J.; Brown, R.; Reed, R. A.; Cronquist, B.; Crain, S.; Scott, T.; hide

    1998-01-01

    State of the an programmable devices are utilizing advanced processing technologies, non-standard circuit structures, and unique electrical elements in commercial-off-the-shelf (COTS)-based, high-performance devices. This paper will discuss that the above factors, coupled with the systems application environment, have a strong interplay that affect the radiation hardness of programmable devices and have resultant system impacts in (1) reliability of the unprogrammed, biased antifuse for heavy ions (rupture), (2) logic upset manifesting itself as clock upset, and (3) configuration upset. General radiation characteristics of advanced technologies are examined and manufacturers' modifications to their COTS-based and their impact on future programmable devices will be analyzed.

  14. Research of Characteristics of the Low Voltage Power Line in Underground Coal Mine

    NASA Astrophysics Data System (ADS)

    Wei, Shaoliang; Qin, Shiqun; Gao, Wenchang; Cheng, Fengyu; Cao, Zhongyue

    The power line communications (PLCs) can count on existing electrical connections reaching each corner in the locations where such applications are required, so signal transmission over power lines is nowadays gaining more and more interest for applications like internet. The research of characteristics of the low voltage power line is the fundamental and importance task. This work presents a device to test the characteristics of the low voltage power line. The low voltage power line channel characteristics overground and the channel characteristics underground were tested in using this device. Experiments show that, the characteristics are different between the PLCs channel underground coal mine and the PLC channel overground. Different technology should be adopted to structure the PLCs channel model underground coal mine and transmit high speed digital signal. But how to use the technology better to the high-speed digital communication under coal mine is worth of further studying.

  15. Electrical and Optical Enhancement in Internally Nanopatterned Organic Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Fina, Michael Dane

    Organic light-emitting diodes (OLEDs) have made tremendous technological progress in the past two decades and have emerged as a top competitor for next generation light-emitting displays and lighting. State-of-the-art OLEDs have been reported in literature to approach, and even surpass, white fluorescent tube efficiency. However, despite rapid technological progress, efficiency metrics must be improved to compete with traditional inorganic light-emitting diode (LED) technology. Organic materials possess specialized traits that permit manipulations to the light-emitting cavity. Overall, as demonstrated within, these modifications can be used to improve electrical and optical device efficiencies. This work is focused at analyzing the effects that nanopatterned geometric modifications to the organic active layers play on device efficiency. In general, OLED efficiency is complicated by the complex, coupled processes which contribute to spontaneous dipole emission. A composite of three sub-systems (electrical, exciton and optical) ultimately dictate the OLED device efficiency. OLED electrical operation is believed to take place via a low-mobility-modified Schottky injection process. In the injection-limited regime, geometric effects are expected to modify the local electric field leading to device current enhancement. It is shown that the patterning effect can be used to enhance charge carrier parity, thereby enhancing overall recombination. Current density and luminance characteristics are shown to be improved by OLED nanopatterning from both the model developed within and experimental techniques. Next, the optical enhancement effects produced by the nanopatterned array are considered. Finite-difference time-domain (FDTD) simulations are used to determine positional, spectral optical enhancement for the nanopatterned device. The results show beneficial effects to the device performance. The optical enhancements are related to the reduction in internal radiative quenching (improved internal quantum efficiency) and improvement in light extraction (improved outcoupling efficiency). Furthermore, the electrical model is used to construct a positional radiative efficiency map that when combined with the optical enhancement reveals the overall external quantum efficiency enhancement.

  16. Actuator concepts and mechatronics

    NASA Astrophysics Data System (ADS)

    Gilbert, Michael G.; Horner, Garnett C.

    1998-06-01

    Mechatronic design implies the consideration of integrated mechanical, electrical, and local control characteristics in electromechanical device design. In this paper, mechatronic development of actuation device concepts for active aircraft aerodynamic flow control are presented and discussed. The devices are intended to be embedded in aircraft aerodynamic surfaces to provide zero-net-momentum jets or additional flow-vorticity to control boundary layers and flow- separation. Two synthetic jet device prototypes and one vorticity-on-demand prototype currently in development are described in the paper. The aspects of actuation materials, design approaches to generating jets and vorticity, and the integration of miniaturized electronics are stressed.

  17. Introduction to Piezoelectric Actuators and Transducers

    DTIC Science & Technology

    2003-06-17

    a piezo-device and a metal fork. A piezoelectric buzzer is shown in Fig. 12, which has merits such as high electric power efficiency, compact size...coefficient for surface acoustic wave and so is used for SAW devices with high -stabilized frequencies. The another distinguished characteristic of...quartz is an extremely high mechanical quality factor Qm > 10 5. Lithium niobate and lithium tantalate belong to an isomorphous crystal system and

  18. Resistive switching characteristics of interfacial phase-change memory at elevated temperature

    NASA Astrophysics Data System (ADS)

    Mitrofanov, Kirill V.; Saito, Yuta; Miyata, Noriyuki; Fons, Paul; Kolobov, Alexander V.; Tominaga, Junji

    2018-04-01

    Interfacial phase-change memory (iPCM) devices were fabricated using W and TiN for the bottom and top contacts, respectively, and the effect of operation temperature on the resistive switching was examined over the range between room temperature and 200 °C. It was found that the high-resistance (RESET) state in an iPCM device drops sharply at around 150 °C to a low-resistance (SET) state, which differs by ˜400 Ω from the SET state obtained by electric-field-induced switching. The iPCM device SET state resistance recovered during the cooling process and remained at nearly the same value for the RESET state. These resistance characteristics greatly differ from those of the conventional Ge-Sb-Te (GST) alloy phase-change memory device, underscoring the fundamentally different switching nature of iPCM devices. From the thermal stability measurements of iPCM devices, their optimal temperature operation was concluded to be less than 100 °C.

  19. Novel synaptic memory device for neuromorphic computing

    NASA Astrophysics Data System (ADS)

    Mandal, Saptarshi; El-Amin, Ammaarah; Alexander, Kaitlyn; Rajendran, Bipin; Jha, Rashmi

    2014-06-01

    This report discusses the electrical characteristics of two-terminal synaptic memory devices capable of demonstrating an analog change in conductance in response to the varying amplitude and pulse-width of the applied signal. The devices are based on Mn doped HfO2 material. The mechanism behind reconfiguration was studied and a unified model is presented to explain the underlying device physics. The model was then utilized to show the application of these devices in speech recognition. A comparison between a 20 nm × 20 nm sized synaptic memory device with that of a state-of-the-art VLSI SRAM synapse showed ~10× reduction in area and >106 times reduction in the power consumption per learning cycle.

  20. Motor current signature analysis method for diagnosing motor operated devices

    DOEpatents

    Haynes, Howard D.; Eissenberg, David M.

    1990-01-01

    A motor current noise signature analysis method and apparatus for remotely monitoring the operating characteristics of an electric motor-operated device such as a motor-operated valve. Frequency domain signal analysis techniques are applied to a conditioned motor current signal to distinctly identify various operating parameters of the motor driven device from the motor current signature. The signature may be recorded and compared with subsequent signatures to detect operating abnormalities and degradation of the device. This diagnostic method does not require special equipment to be installed on the motor-operated device, and the current sensing may be performed at remote control locations, e.g., where the motor-operated devices are used in accessible or hostile environments.

  1. Current-voltage characteristics of organic semiconductors: Interfacial control between organic layers and electrodes

    NASA Astrophysics Data System (ADS)

    Kondo, Takeshi

    2007-12-01

    Current-voltage (I-V) characteristics of organic molecular glasses and solution processable materials embedded between two electrodes were studied to find materials possessing high charge-carrier mobilities and to design organic memory devices. The comparison studies between TOF, FET and SCLC measurements confirm the validity of using analyses of I-V characteristics to determine the mobility of organic semiconductors. Hexaazatrinaphthylene derivatives tri-substituted by electron withdrawing groups were characterized as potential electron transporting molecular glasses. The presence of two isomers has important implications for film morphology and effective mobility. The statistical isomer mixture of hexaazatrinaphthylene derivatized with pentafluoro-phenylmethyl ester is able to form amorphous films, and electron mobilities with the range of 10--2 cm2/Vs are observed in their I-V characteristics. Single-layer organic memory devices consisting of a polymer layer embedded between an Al electrode and ITO modified with Ag nanodots (Ag-NDs) prepared by a solution-based surface assembly demonstrated a potential capability as nonvolatile organic memory device with high ON/OFF switching ratios of 10 4. This level of performance could be achieved by modifying the ITO electrodes with some Ag-NDs that act as trapping sites, reducing the current in the OFF state. Based upon the observed electrical characteristics, the currents of the low-resistance state can be attributed to a tunneling through low-resistance pathways of metal particles originating from the metal top electrode in the organic layer and that the high-resistance state is controlled by charge trapping by the metal particles including Ag-NDs. In an alternative approach, complex films of AgNO3: hexaazatrinaphthylene derivatives were studied as the active layers for all-solution processed and air-stable organic memory devices. Rewritable memory effects were observed in the devices comprised of a thin polymer dielectric layer deposited on the bottom electrode, the complex film, and a conducting polymer film as the top electrode. The electrical characteristics indicate that the accumulation of Ag+ ions at the interface of the complex film and the top electrode may contribute to the switching effect.

  2. The effect of doping Sb on the electronic structure and the device characteristics of Ovonic Threshold Switches based on Ge-Se

    PubMed Central

    Shin, Sang-Yeol; Choi, J. M.; Seo, Juhee; Ahn, Hyung-Woo; Choi, Yong Gyu; Cheong, Byung-ki; Lee, Suyoun

    2014-01-01

    The Ovonic Threshold Switch (OTS) based on an amorphous chalcogenide material has attracted much interest as a promising candidate for a high-performance thin-film switching device enabling 3D-stacking of memory devices. In this work, we studied on the electronic structure of amorphous Sb-doped Ge0.6Se0.4 (in atomic mole fraction) film and its characteristics as to OTS devices. From the optical absorption spectroscopy measurement, the band gap (Eg) was found to decrease with increasing Sb content. In addition, as Sb content increased, the activation energy (Ea) for electrical conduction was found to decrease down to about one third of Eg from a half. As to the device characteristics, we found that the threshold switching voltage (Vth) drastically decreased with the Sb content. These results, being accountable in terms of the changes in the bonding configuration of constituent atoms as well as in the electronic structure such as the energy gap and trap states, advance an effective method of compositional adjustment to modulate Vth of an OTS device for various applications. PMID:25403772

  3. Full-range electrical characteristics of WS{sub 2} transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Jatinder; Bellus, Matthew Z.; Chiu, Hsin-Ying, E-mail: chiu@ku.edu

    We fabricated transistors formed by few layers to bulk single crystal WS{sub 2} to quantify the factors governing charge transport. We established a capacitor network to analyze the full-range electrical characteristics of the channel, highlighting the role of quantum capacitance and interface trap density. We find that the transfer characteristics are mainly determined by the interplay between quantum and oxide capacitances. In the OFF-state, the interface trap density (<10{sup 12} cm{sup –2}) is a limiting factor for the subthreshold swing. Furthermore, the superior crystalline quality and the low interface trap density enabled the subthreshold swing to approach the theoretical limit onmore » a back-gated device on SiO{sub 2}/Si substrate.« less

  4. Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates.

    PubMed

    Wang, Xueshen; Li, Qunqing; Xie, Jing; Jin, Zhong; Wang, Jinyong; Li, Yan; Jiang, Kaili; Fan, Shoushan

    2009-09-01

    We report the controlled growth of ultralong single-wall carbon nanotube (SWNT) arrays using an improved chemical vapor deposition strategy. Using ethanol or methane as the feed gas, monodispersed Fe-Mo as the catalyst, and a superaligned carbon nanotube (CNT) film as the catalyst supporting frame, ultralong CNTs over 18.5 cm long were grown on Si substrates. The growth rate of the CNTs was more than 40 mum/s. No catalyst-related residual material was found on the substrates due to the use of a CNT film as the catalyst supporting frame, facilitating any subsequent fabrication of SWNT-based devices. Electrical transport measurements indicated that the electrical characteristics along a single ultralong SWNT were uniform. We also found that maintaining a spatially homogeneous temperature during the growth process was a critical factor for obtaining constant electrical characteristics along the length of the ultralong SWNTs.

  5. Electric Field-aided Selective Activation for Indium-Gallium-Zinc-Oxide Thin Film Transistors.

    PubMed

    Lee, Heesoo; Chang, Ki Soo; Tak, Young Jun; Jung, Tae Soo; Park, Jeong Woo; Kim, Won-Gi; Chung, Jusung; Jeong, Chan Bae; Kim, Hyun Jae

    2016-10-11

    A new technique is proposed for the activation of low temperature amorphous InGaZnO thin film transistor (a-IGZO TFT) backplanes through application of a bias voltage and annealing at 130 °C simultaneously. In this 'electrical activation', the effects of annealing under bias are selectively focused in the channel region. Therefore, electrical activation can be an effective method for lower backplane processing temperatures from 280 °C to 130 °C. Devices fabricated with this method exhibit equivalent electrical properties to those of conventionally-fabricated samples. These results are analyzed electrically and thermodynamically using infrared microthermography. Various bias voltages are applied to the gate, source, and drain electrodes while samples are annealed at 130 °C for 1 hour. Without conventional high temperature annealing or electrical activation, current-voltage curves do not show transfer characteristics. However, electrically activated a-IGZO TFTs show superior electrical characteristics, comparable to the reference TFTs annealed at 280 °C for 1 hour. This effect is a result of the lower activation energy, and efficient transfer of electrical and thermal energy to a-IGZO TFTs. With this approach, superior low-temperature a-IGZO TFTs are fabricated successfully.

  6. Injectable microstimulator for functional electrical stimulation.

    PubMed

    Loeb, G E; Zamin, C J; Schulman, J H; Troyk, P R

    1991-11-01

    A family of digitally controlled devices is constructed for functional electrical stimulation in which each module is an hermetically sealed glass capsule that is small enough to be injected through the lumen of a hypodermic needle. The overall design and component characteristics of microstimulators that receive power and command signals by inductive coupling from a single, externally worn coil are described. Each device stores power between stimulus pulses by charging an electrolytic capacitor formed by its two electrodes, made of sintered, anodised tantalum and electrochemically activated iridium, respectively. Externally, a highly efficient class E amplifier provides power and digitally encoded command signals to control the amplitude, duration and timing of pulses from up to 256 such microstimulators.

  7. Electrokinetic focusing injection methods on microfluidic devices.

    PubMed

    Fu, Lung-Ming; Yang, Ruey-Jen; Lee, Gwo-Bin

    2003-04-15

    This paper presents an experimental and numerical investigation into electrokinetic focusing injection on microfluidic chips. The valving characteristics on microfluidic devices are controlled through appropriate manipulations of the electric potential strengths during the sample loading and dispensing steps. The present study also addresses the design and testing of various injection systems used to deliver a sample plug. A novel double-cross injection microfluidic chip is fabricated, which employs electrokinetic focusing to deliver sample plugs of variable volume. The proposed design combines several functions of traditional sample plug injection systems on a single microfluidic chip. The injection technique uses an unique sequence of loading steps with different electric potential distributions and magnitudes within the various channels to effectuate a virtual valve.

  8. A 2D analytical cylindrical gate tunnel FET (CG-TFET) model: impact of shortest tunneling distance

    NASA Astrophysics Data System (ADS)

    Dash, S.; Mishra, G. P.

    2015-09-01

    A 2D analytical tunnel field-effect transistor (FET) potential model with cylindrical gate (CG-TFET) based on the solution of Laplace’s equation is proposed. The band-to-band tunneling (BTBT) current is derived by the help of lateral electric field and the shortest tunneling distance. However, the analysis is extended to obtain the subthreshold swing (SS) and transfer characteristics of the device. The dependency of drain current, SS and transconductance on gate voltage and shortest tunneling distance is discussed. Also, the effect of scaling the gate oxide thickness and the cylindrical body diameter on the electrical parameters of the device is analyzed.

  9. 10 CFR Appendix A1 to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Electric Refrigerators and Electric...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... freezer compartment volume as defined in HRF-1-1979, in cubic feet. 1.3“Anti-sweat heater” means a device... operating characteristics. 1.7“Standard cycle” means the cycle type in which the anti-sweat heater control... unit under test. Defrost controls are to be operative and the anti-sweat heater switch is to be “on...

  10. Molecular Rotors as Switches

    PubMed Central

    Xue, Mei; Wang, Kang L.

    2012-01-01

    The use of a functional molecular unit acting as a state variable provides an attractive alternative for the next generations of nanoscale electronics. It may help overcome the limits of conventional MOSFETd due to their potential scalability, low-cost, low variability, and highly integratable characteristics as well as the capability to exploit bottom-up self-assembly processes. This bottom-up construction and the operation of nanoscale machines/devices, in which the molecular motion can be controlled to perform functions, have been studied for their functionalities. Being triggered by external stimuli such as light, electricity or chemical reagents, these devices have shown various functions including those of diodes, rectifiers, memories, resonant tunnel junctions and single settable molecular switches that can be electronically configured for logic gates. Molecule-specific electronic switching has also been reported for several of these device structures, including nanopores containing oligo(phenylene ethynylene) monolayers, and planar junctions incorporating rotaxane and catenane monolayers for the construction and operation of complex molecular machines. A specific electrically driven surface mounted molecular rotor is described in detail in this review. The rotor is comprised of a monolayer of redox-active ligated copper compounds sandwiched between a gold electrode and a highly-doped P+ Si. This electrically driven sandwich-type monolayer molecular rotor device showed an on/off ratio of approximately 104, a read window of about 2.5 V, and a retention time of greater than 104 s. The rotation speed of this type of molecular rotor has been reported to be in the picosecond timescale, which provides a potential of high switching speed applications. Current-voltage spectroscopy (I-V) revealed a temperature-dependent negative differential resistance (NDR) associated with the device. The analysis of the device I–V characteristics suggests the source of the observed switching effects to be the result of the redox-induced ligand rotation around the copper metal center and this attribution of switching is consistent with the observed temperature dependence of the switching behavior as well as the proposed energy diagram of the device. The observed resistance switching shows the potential for future non-volatile memories and logic devices applications. This review will discuss the progress and provide a perspective of molecular motion for nanoelectronics and other applications.

  11. Silicon Carbide Diodes Performance Characterization and Comparison With Silicon Devices

    NASA Technical Reports Server (NTRS)

    Lebron-Velilla, Ramon C.; Schwarze, Gene E.; Trapp, Scott

    2003-01-01

    Commercially available silicon carbide (SiC) Schottky diodes from different manufacturers were electrically tested and characterized at room temperature. Performed electrical tests include steady state forward and reverse I-V curves, as well as switching transient tests performed with the diodes operating in a hard switch dc-to-dc buck converter. The same tests were performed in current state of the art silicon (Si) and gallium arsenide (GaAs) Schottky and pn junction devices for evaluation and comparison purposes. The SiC devices tested have a voltage rating of 200, 300, and 600 V. The comparison parameters are forward voltage drop at rated current, reverse current at rated voltage and peak reverse recovery currents in the dc to dc converter. Test results show that steady state characteristics of the tested SiC devices are not superior to the best available Si Schottky and ultra fast pn junction devices. Transient tests reveal that the tested SiC Schottky devices exhibit superior transient behavior. This is more evident at the 300 and 600 V rating where SiC Schottky devices showed drastically lower reverse recovery currents than Si ultra fast pn diodes of similar rating.

  12. Review on the conversion of thermoacoustic power into electricity.

    PubMed

    Timmer, Michael A G; de Blok, Kees; van der Meer, Theo H

    2018-02-01

    Thermoacoustic engines convert heat energy into high amplitude acoustic waves and subsequently into electric power. This article provides a review of the four main methods to convert the (thermo)acoustic power into electricity. First, loudspeakers and linear alternators are discussed in a section on electromagnetic devices. This is followed by sections on piezoelectric transducers, magnetohydrodynamic generators, and bidirectional turbines. Each segment provides a literature review of the given technology for the field of thermoacoustics, focusing on possible configurations, operating characteristics, output performance, and analytical and numerical methods to study the devices. This information is used as an input to discuss the performance and feasibility of each method, and to identify challenges that should be overcome for a more successful implementation in thermoacoustic engines. The work is concluded by a comparison of the four technologies, concentrating on the possible areas of application, the conversion efficiency, maximum electrical power output and more generally the suggested focus for future work in the field.

  13. A Wearable Multi-Site System for NMES-Based Hand Function Restoration.

    PubMed

    Crema, Andrea; Malesevic, Nebojsa; Furfaro, Ivan; Raschella, Flavio; Pedrocchi, Alessandra; Micera, Silvestro

    2018-02-01

    Reaching and grasping impairments significantly affect the quality of life for people who have experienced a stroke or spinal cord injury. The long-term well-being of patients varies greatly according to the restorable residual capabilities. Electrical stimulation could be a promising solution to restore motor functions in these conditions, but its use is not clinically widespread. Here, we introduce the HandNMES, an electrode array (EA) for neuromuscular electrical stimulation (NMES) aimed at grasp training and assistance. The device was designed to deliver electrical stimulation to extrinsic and intrinsic hand muscles. Six independent EAs, positioned on the user forearm and hand, deliver NMES pulses originating from an external stimulator equipped with demultiplexers for interfacing with a large number of electrodes. The garment was designed to be adaptable to user needs and anthropometric characteristics; size, shape, and contact materials can be customized, and stimulation characteristics such as intensity of stimulation and virtual electrode location, and size can be adjusted. We performed extensive tests with nine healthy subjects showing the efficacy of the HandNMES in terms of stimulation performance and personalization. Because encouraging results were achieved, in the coming months, the HandNMES device will be tested in pilot clinical trials.

  14. Material cutting, shaping, and forming: A compilation

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Information is presented concerning cutting, shaping, and forming of materials, and the equipment and techniques required for utilizing these materials. The use of molds, electrical fields, and mechanical devices are related to forming materials. Material cutting methods by devices including borers and slicers are presented along with chemical techniques. Shaping and fabrication techniques are described for tubing, honeycomb panels, and ceramic structures. The characteristics of the materials are described. Patent information is included.

  15. Vibration properties of and power harvested by a system of electromagnetic vibration energy harvesters that have electrical dynamics

    NASA Astrophysics Data System (ADS)

    Cooley, Christopher G.

    2017-09-01

    This study investigates the vibration and dynamic response of a system of coupled electromagnetic vibration energy harvesting devices that each consist of a proof mass, elastic structure, electromagnetic generator, and energy harvesting circuit with inductance, resistance, and capacitance. The governing equations for the coupled electromechanical system are derived using Newtonian mechanics and Kirchhoff circuit laws for an arbitrary number of these subsystems. The equations are cast in matrix operator form to expose the device's vibration properties. The device's complex-valued eigenvalues and eigenvectors are related to physical characteristics of its vibration. Because the electrical circuit has dynamics, these devices have more natural frequencies than typical electromagnetic vibration energy harvesters that have purely resistive circuits. Closed-form expressions for the steady state dynamic response and average power harvested are derived for devices with a single subsystem. Example numerical results for single and double subsystem devices show that the natural frequencies and vibration modes obtained from the eigenvalue problem agree with the resonance locations and response amplitudes obtained independently from forced response calculations. This agreement demonstrates the usefulness of solving eigenvalue problems for these devices. The average power harvested by the device differs substantially at each resonance. Devices with multiple subsystems have multiple modes where large amounts of power are harvested.

  16. Intense deep-blue electroluminescence from ITO/Y₂O₃/Ag structure.

    PubMed

    Yin, Xue; Wang, Shenwei; Li, Ling; Mu, Guangyao; Tang, Ying; Duan, Wubiao; Yi, Lixin

    2015-07-13

    ITO/Y₂O₃/Ag devices were fabricated using Y₂O₃ films as insulator. Four intense and sharp lines with half-peak width of 4 nm were observed for the 293.78 nm InI, 316.10 nm InI, 444.82 nm InII and 403.07 nm InIII transitions. Luminescence mechanism was illustrated by cross-section of the devices based on the analysis of surface morphology. Under the action of strong electric field, the loss of K-shell electrons led to the occurrence of characteristic radiation of indium ions. In addition, the device with turn-on voltage of 10V demonstrates typical I-V diode characteristics. Moreover, Y₂O₃/In₂O₃ multiple films as the insulation layer instead of single Y₂O₃ films was found to improve the device performance with excellent CIE (x, y) coordinates (0.16, 0.03).

  17. Electrical properties of dislocations in III-Nitrides

    NASA Astrophysics Data System (ADS)

    Cavalcoli, D.; Minj, A.; Pandey, S.; Cavallini, A.

    2014-02-01

    Research on GaN, AlN, InN (III-N) and their alloys is achieving new heights due their high potential applications in photonics and electronics. III-N semiconductors are mostly grown epitaxially on sapphire, and due to the large lattice mismatch and the differences in the thermal expansion coefficients, the structures usually contain many threading dislocations (TDs). While their structural properties have been widely investigated, their electrical characteristics and their role in the transport properties of the devices are still debated. In the present contribution we will show conductive AFM studies of TDs in GaN and Al/In GaN ternary alloys to evidence the role of strain, different surface polarity and composition on their electrical properties. Local I-V curves measured at TDs allowed us to clarify their role in the macroscopic electrical properties (leakage current, mobilities) of III-N based devices. Samples obtained by different growers (AIXTRON, III-V Lab) were studied. The comparison between the results obtained in the different alloys allowed us to understand the role of In and Al on the TDs electrical properties.

  18. The effect of the geometry and material properties of a carbon joint produced by electron beam induced deposition on the electrical resistance of a multiwalled carbon nanotube-to-metal contact interface

    NASA Astrophysics Data System (ADS)

    Rykaczewski, Konrad; Henry, Matthew R.; Kim, Song-Kil; Fedorov, Andrei G.; Kulkarni, Dhaval; Singamaneni, Srikanth; Tsukruk, Vladimir V.

    2010-01-01

    Multiwall carbon nanotubes (MWNTs) are promising candidates for yielding next generation electrical and electronic devices such as interconnects and tips for conductive force microscopy. One of the main challenges in MWNT implementation in such devices is the high contact resistance of the MWNT-metal electrode interface. Electron beam induced deposition (EBID) of an amorphous carbon interface has previously been demonstrated to simultaneously lower the electrical contact resistance and improve the mechanical characteristics of the MWNT-electrode connection. In this work, we investigate the influence of process parameters, such as the electron beam energy, current, geometry, and deposition time, on the EBID-made carbon joint geometry and electrical contact resistance. The influence of the composition of the deposited material on its resistivity is also investigated. The relative importance of each component of the contact resistance and the limiting factor of the overall electrical resistance of a MWNT-based interconnect is determined through a combination of a model analysis and comprehensive experiments.

  19. Effect of nitrogen-accommodation ability of electrodes in SiNx-based resistive switching devices

    NASA Astrophysics Data System (ADS)

    Yang, Mei; Wang, Hong; Ma, Xiaohua; Gao, Haixia; Wang, Bin

    2017-12-01

    Nitrides could create opportunities of tuning resistive-switching (RS) characteristics due to their different electrical properties and ionic chemistry with oxides. Here, we reported on the effect of nitrogen-accommodation ability of electrodes in SiNx-based RS devices. The Ti/SiNx/Pt devices show a self-compliance bipolar RS with excellent reliability. The W/SiNx/Pt devices provide an unstable RS and fall to an intermediate resistance state (IRS) after a set process. The low resistance states of the Ti/SiNx/Pt devices obey Ohmic conduction and Frenkel-Poole emission from a conductive channel. The IRS of the W/SiNx/Pt devices conforms to Schottky emission and Fowler-Nordheim tunneling from a conductive channel/insulator/electrode structure. A nitrogen-ion-based model is proposed to explain the experimental results. According to the model, the nitrogen-accommodation ability of the electrodes dominates the nitrogen-reservoir size and the nitrogen-ion migration at the metal/SiNx interface, modulating the RS characteristics of the SiNx memory devices.

  20. Low-voltage organic thin film transistors (OTFTs) using crosslinked polyvinyl alcohol (PVA)/neodymium oxide (Nd2O3) bilayer gate dielectrics

    NASA Astrophysics Data System (ADS)

    Khound, Sagarika; Sarma, Ranjit

    2018-01-01

    We have reported here on the design, processing and dielectric properties of pentacene-based organic thin film transitors (OTFTs) with a bilayer gate dilectrics of crosslinked PVA/Nd2O3 which enables low-voltage organic thin film operations. The dielectric characteristics of PVA/Nd2O3 bilayer films are studied by capacitance-voltage ( C- V) and current-voltage ( I- V) curves in the metal-insulator-metal (MIM) structure. We have analysed the output electrical responses and transfer characteristics of the OTFT devices to determine their performance of OTFT parameters. The mobility of 0.94 cm2/Vs, the threshold voltage of - 2.8 V, the current on-off ratio of 6.2 × 105, the subthreshold slope of 0.61 V/decade are evaluated. Low leakage current of the device is observed from current density-electric field ( J- E) curve. The structure and the morphology of the device are studied using X-ray diffraction (XRD) and atomic force microscope (AFM), respectively. The study demonstrates an effective way to realize low-voltage, high-performance OTFTs at low cost.

  1. Bilayered Oxide thin films for transparent electrode application

    NASA Astrophysics Data System (ADS)

    Dutta, Titas; Narayan, Jagdish

    2008-10-01

    Ga doped ZnO films with electrical and optical properties comparable to indium tin oxide (ITO) is a promising candidate for transparent conducting oxides (TCOs) because of its superior stability in hydrogen environment, benign nature and relatively inexpensive supply. However, ZnO based TCO films suffer from low work function, which is a critical parameter for device applications. We report here the growth of a novel bilayered structure consisting of very thin (few monolayers) ITO, MoOx layer on Zn0.95Ga0.05O film for transparent electrode applications by using pulsed laser deposition technique at different temperatures and oxygen partial pressure. The characteristics of the ITO film and the heterostructure have been investigated in detail using XRD, TEM, XPS, and electrical and optical property measurements. It is envisaged that the overall transmittance and the resistivity are dictated by the thicker layer of ZnGa0.05O beneath the ITO layer. Hence, this study is aimed to improve the surface characteristics without affecting the overall transmittance and sheet resistance. This will enhance the transport of the carriers across the heterojunction in the device, thus, resulting in the increase in device efficiency.

  2. PDSOI and Radiation Effects: An Overview

    NASA Technical Reports Server (NTRS)

    Forgione, Joshua B.

    2005-01-01

    Bulk silicon substrates are a common characteristic of nearly all commercial, Complementary Metal-Oxide-Semiconductor (CMOS), integrated circuits. These devices operate well on Earth, but are not so well received in the space environment. An alternative to bulk CMOS is the Silicon-On-Insulator (SOI), in which a &electric isolates the device layer from the substrate. SO1 behavior in the space environment has certain inherent advantages over bulk, a primary factor in its long-time appeal to space-flight IC designers. The discussion will investigate the behavior of the Partially-Depleted SO1 (PDSOI) device with respect to some of the more common space radiation effects: Total Ionized Dose (TID), Single-Event Upsets (SEUs), and Single-Event Latchup (SEL). Test and simulation results from the literature, bulk and epitaxial comparisons facilitate reinforcement of PDSOI radiation characteristics.

  3. Oxygen-ion-migration-modulated bipolar resistive switching and complementary resistive switching in tungsten/indium tin oxide/gold memory device

    NASA Astrophysics Data System (ADS)

    Wu, Xinghui; Zhang, Qiuhui; Cui, Nana; Xu, Weiwei; Wang, Kefu; Jiang, Wei; Xu, Qixing

    2018-06-01

    In this paper, we report our investigation of room-temperature-fabricated tungsten/indium tin oxide/gold (W/ITO/Au) resistive random access memory (RRAM), which exhibits asymmetric bipolar resistive switching (BRS) behavior. The device displays good write/erase endurance and data retention properties. The device shows complementary resistive switching (CRS) characteristics after controlling the compliance current. A WO x layer electrically formed at the W/ITO in the forming process. Mobile oxygen ions within ITO migrate toward the electrode/ITO interface and produce a semiconductor-like layer that acts as a free-carrier barrier. The CRS characteristic here can be elucidated in light of the evolution of an asymmetric free-carrier blocking layer at the electrode/ITO interface.

  4. Flexible power fabrics made of carbon nanotubes for harvesting thermoelectricity.

    PubMed

    Kim, Suk Lae; Choi, Kyungwho; Tazebay, Abdullah; Yu, Choongho

    2014-03-25

    Thermoelectric energy conversion is very effective in capturing low-grade waste heat to supply electricity particularly to small devices such as sensors, wireless communication units, and wearable electronics. Conventional thermoelectric materials, however, are often inadequately brittle, expensive, toxic, and heavy. We developed both p- and n-type fabric-like flexible lightweight materials by functionalizing the large surfaces and junctions in carbon nanotube (CNT) mats. The poor thermopower and only p-type characteristics of typical CNTs have been converted into both p- and n-type with high thermopower. The changes in the electronic band diagrams of the CNTs were experimentally investigated, elucidating the carrier type and relatively large thermopower values. With our optimized device design to maximally utilize temperature gradients, an electrochromic glucose sensor was successfully operated without batteries or external power supplies, demonstrating self-powering capability. While our fundamental study provides a method of tailoring electronic transport properties, our device-level integration shows the feasibility of harvesting electrical energy by attaching the device to even curved surfaces like human bodies.

  5. Effect of Zinc Oxide Doping on Electroluminescence and Electrical Behavior of Metalloporphyrins-Doped Samarium Complex

    NASA Astrophysics Data System (ADS)

    Janghouri, Mohammad; Amini, Mostafa M.

    2018-02-01

    Samarium complex [(Sm(III)] as a new host material was used for preparation of red organic light-emitting diodes (OLEDs). Devices with configurations of indium-doped tin oxide (ITO)/poly(3,4-ethylenedioxythiophene):(poly(styrenesulfonate) (PEDOT:PSS (50 nm)/polyvinyl carbazole (PVK):[zinc oxide (ZnO)] (50 nm)/[(Sm(III)]:[zinc(II) 2,3-tetrakis(dihydroxyphenyl)-porphyrin and Pt(II) 2,3-dimethoxyporphyrin] (60 nm)/2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) (15 nm)/Al (150 nm) have been fabricated and investigated. An electroplex occurring at the (PVK/Sm: Pt(II) 2,3-dimethoxyporphyrin) interface has been suggested when ZnO nanoparticles were doped in PVK. OLED studies have revealed that the photophysical characteristics and electrical behavior of devices with ZnO nanoparticles are much better than those of devices with pure PVK. The efficiency of devices based on [(Sm(III)] was superior than that of known aluminum tris(8-hydroxyquinoline) (Alq3) and also our earlier reports on red OLEDs under the same conditions.

  6. Realization of Molecular-Based Transistors.

    PubMed

    Richter, Shachar; Mentovich, Elad; Elnathan, Roey

    2018-06-06

    Molecular-based devices are widely considered as significant candidates to play a role in the next generation of "post-complementary metal-oxide-semiconductor" devices. In this context, molecular-based transistors: molecular junctions that can be electrically gated-are of particular interest as they allow new modes of operation. The properties of molecular transistors composed of a single- or multimolecule assemblies, focusing on their practicality as real-world devices, concerning industry demands and its roadmap are compared. Also, the capability of the gate electrode to modulate the molecular transistor characteristics efficiently is addressed, showing that electrical gating can be easily facilitated in single molecular transistors and that gating of transistor composed of molecular assemblies is possible if the device is formed vertically. It is concluded that while the single-molecular transistor exhibits better performance on the lab-scale, its realization faces signifacant challenges when compared to those faced by transistors composed of a multimolecule assembly. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Communicating with residential electrical devices via a vehicle telematics unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, Rebecca C.; Pebbles, Paul H.

    A method of communicating with residential electrical devices using a vehicle telematics unit includes receiving information identifying a residential electrical device to control; displaying in a vehicle one or more controlled features of the identified residential electrical device; receiving from a vehicle occupant a selection of the displayed controlled features of the residential electrical device; sending an instruction from the vehicle telematics unit to the residential electrical device via a wireless carrier system in response to the received selection; and controlling the residential electrical device using the sent instruction.

  8. 47 CFR 73.267 - Determining operating power.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... direct method of power determination for an FM station uses the indications of a calibrated transmission... a resistance equal to the transmission line characteristic impedance) and using an electrical device... the design of the transmitter final amplifier, use a formula specified by the transmitter manufacturer...

  9. 47 CFR 73.267 - Determining operating power.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... direct method of power determination for an FM station uses the indications of a calibrated transmission... a resistance equal to the transmission line characteristic impedance) and using an electrical device... the design of the transmitter final amplifier, use a formula specified by the transmitter manufacturer...

  10. 47 CFR 73.267 - Determining operating power.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... direct method of power determination for an FM station uses the indications of a calibrated transmission... a resistance equal to the transmission line characteristic impedance) and using an electrical device... the design of the transmitter final amplifier, use a formula specified by the transmitter manufacturer...

  11. Repetitive transcranial magnetic stimulator with controllable pulse parameters

    NASA Astrophysics Data System (ADS)

    Peterchev, Angel V.; Murphy, David L.; Lisanby, Sarah H.

    2011-06-01

    The characteristics of transcranial magnetic stimulation (TMS) pulses influence the physiological effect of TMS. However, available TMS devices allow very limited adjustment of the pulse parameters. We describe a novel TMS device that uses a circuit topology incorporating two energy storage capacitors and two insulated-gate bipolar transistor (IGBT) modules to generate near-rectangular electric field pulses with adjustable number, polarity, duration, and amplitude of the pulse phases. This controllable pulse parameter TMS (cTMS) device can induce electric field pulses with phase widths of 10-310 µs and positive/negative phase amplitude ratio of 1-56. Compared to conventional monophasic and biphasic TMS, cTMS reduces energy dissipation up to 82% and 57% and decreases coil heating up to 33% and 41%, respectively. We demonstrate repetitive TMS trains of 3000 pulses at frequencies up to 50 Hz with electric field pulse amplitude and width variability less than the measurement resolution (1.7% and 1%, respectively). Offering flexible pulse parameter adjustment and reduced power consumption and coil heating, cTMS enhances existing TMS paradigms, enables novel research applications and could lead to clinical applications with potentially enhanced potency.

  12. Direct mapping of electrical noise sources in molecular wire-based devices

    PubMed Central

    Cho, Duckhyung; Lee, Hyungwoo; Shekhar, Shashank; Yang, Myungjae; Park, Jae Yeol; Hong, Seunghun

    2017-01-01

    We report a noise mapping strategy for the reliable identification and analysis of noise sources in molecular wire junctions. Here, different molecular wires were patterned on a gold substrate, and the current-noise map on the pattern was measured and analyzed, enabling the quantitative study of noise sources in the patterned molecular wires. The frequency spectra of the noise from the molecular wire junctions exhibited characteristic 1/f2 behavior, which was used to identify the electrical signals from molecular wires. This method was applied to analyze the molecular junctions comprising various thiol molecules on a gold substrate, revealing that the noise in the junctions mainly came from the fluctuation of the thiol bonds. Furthermore, we quantitatively compared the frequencies of such bond fluctuations in different molecular wire junctions and identified molecular wires with lower electrical noise, which can provide critical information for designing low-noise molecular electronic devices. Our method provides valuable insights regarding noise phenomena in molecular wires and can be a powerful tool for the development of molecular electronic devices. PMID:28233821

  13. Repetitive transcranial magnetic stimulator with controllable pulse parameters.

    PubMed

    Peterchev, Angel V; Murphy, David L; Lisanby, Sarah H

    2011-06-01

    The characteristics of transcranial magnetic stimulation (TMS) pulses influence the physiological effect of TMS. However, available TMS devices allow very limited adjustment of the pulse parameters. We describe a novel TMS device that uses a circuit topology incorporating two energy storage capacitors and two insulated-gate bipolar transistor (IGBT) modules to generate near-rectangular electric field pulses with adjustable number, polarity, duration, and amplitude of the pulse phases. This controllable pulse parameter TMS (cTMS) device can induce electric field pulses with phase widths of 10-310 µs and positive/negative phase amplitude ratio of 1-56. Compared to conventional monophasic and biphasic TMS, cTMS reduces energy dissipation up to 82% and 57% and decreases coil heating up to 33% and 41%, respectively. We demonstrate repetitive TMS trains of 3000 pulses at frequencies up to 50 Hz with electric field pulse amplitude and width variability less than the measurement resolution (1.7% and 1%, respectively). Offering flexible pulse parameter adjustment and reduced power consumption and coil heating, cTMS enhances existing TMS paradigms, enables novel research applications and could lead to clinical applications with potentially enhanced potency.

  14. Direct mapping of electrical noise sources in molecular wire-based devices

    NASA Astrophysics Data System (ADS)

    Cho, Duckhyung; Lee, Hyungwoo; Shekhar, Shashank; Yang, Myungjae; Park, Jae Yeol; Hong, Seunghun

    2017-02-01

    We report a noise mapping strategy for the reliable identification and analysis of noise sources in molecular wire junctions. Here, different molecular wires were patterned on a gold substrate, and the current-noise map on the pattern was measured and analyzed, enabling the quantitative study of noise sources in the patterned molecular wires. The frequency spectra of the noise from the molecular wire junctions exhibited characteristic 1/f2 behavior, which was used to identify the electrical signals from molecular wires. This method was applied to analyze the molecular junctions comprising various thiol molecules on a gold substrate, revealing that the noise in the junctions mainly came from the fluctuation of the thiol bonds. Furthermore, we quantitatively compared the frequencies of such bond fluctuations in different molecular wire junctions and identified molecular wires with lower electrical noise, which can provide critical information for designing low-noise molecular electronic devices. Our method provides valuable insights regarding noise phenomena in molecular wires and can be a powerful tool for the development of molecular electronic devices.

  15. Nonaqueous electrolyte for electrical storage devices

    DOEpatents

    McEwen, Alan B.; Yair, Ein-Eli

    1999-01-01

    Improved nonaqueous electrolytes for application in electrical storage devices such as electrochemical capacitors or batteries are disclosed. The electrolytes of the invention contain salts consisting of alkyl substituted, cyclic delocalized aromatic cations, and their perfluoro derivatives, and certain polyatomic anions having a van der Waals volume less than or equal to 100 .ANG..sup.3, preferably inorganic perfluoride anions and most preferably PF.sub.6.sup.-, the salts being dissolved in organic liquids, and preferably alkyl carbonate solvents, or liquid sulfur dioxide or combinations thereof, at a concentration of greater than 0.5M and preferably greater than 1.0M. Exemplary electrolytes comprise 1-ethyl-3-methylimidazolium hexafluorophosphate dissolved in a cyclic or acylic alkyl carbonate, or methyl formate, or a combination therof. These improved electrolytes have useful characteristics such as higher conductivity, higher concentration, higher energy storage capabilities, and higher power characteristics compared to prior art electrolytes. Stacked capacitor cells using electrolytes of the invention permit high energy, high voltage storage.

  16. DDT Characteristics of Laser Driven Exploding Bridgewire Detonators

    NASA Astrophysics Data System (ADS)

    Welle, Eric

    2005-07-01

    The initiation and performance characteristics of Laser Exploding Bridgewire (LEBW) detonators loaded with CL-20, CP and BNCP were examined. LEBW devices, in name, as well as in function, exhibit similarities to their electrically driven counterparts with the exception that the means for energy deposition into the driving metal media results from photon absorption instead of electrical joule heating. CP and BNCP were chosen due to their well-known propensity to rapidly undergo a deflagration-to-detonation transition (DDT) and CL-20 was chosen to explore its utility as a DDT explosive. The explosive loading within the LEBW detonators were similar in nature to traditional EBW devices with regard to %TMD loading of the initial increment as well as quantity of energetic materials. Comparisons of the energy fluences required for initiation of the explosives will be discussed. Additionally, streak camera measurements will be reviewed that were conducted at what would be considered ``hard-fire'' fluence levels as well as conditions closer to the mean firing fluence levels of initiation.

  17. Structural and electrical characteristics of high-κ Er2O3 and Er2TiO5 gate dielectrics for a-IGZO thin-film transistors

    PubMed Central

    2013-01-01

    In this letter, we investigated the structural and electrical characteristics of high-κ Er2O3 and Er2TiO5 gate dielectrics on the amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) devices. Compared with the Er2O3 dielectric, the a-IGZO TFT device incorporating an Er2TiO5 gate dielectric exhibited a low threshold voltage of 0.39 V, a high field-effect mobility of 8.8 cm2/Vs, a small subthreshold swing of 143 mV/decade, and a high Ion/Ioff current ratio of 4.23 × 107, presumably because of the reduction in the oxygen vacancies and the formation of the smooth surface roughness as a result of the incorporation of Ti into the Er2TiO5 film. Furthermore, the reliability of voltage stress can be improved using an Er2TiO5 gate dielectric. PMID:23294730

  18. Structural and electrical characteristics of high-κ Er2O3 and Er2TiO5 gate dielectrics for a-IGZO thin-film transistors.

    PubMed

    Chen, Fa-Hsyang; Her, Jim-Long; Shao, Yu-Hsuan; Matsuda, Yasuhiro H; Pan, Tung-Ming

    2013-01-08

    In this letter, we investigated the structural and electrical characteristics of high-κ Er2O3 and Er2TiO5 gate dielectrics on the amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) devices. Compared with the Er2O3 dielectric, the a-IGZO TFT device incorporating an Er2TiO5 gate dielectric exhibited a low threshold voltage of 0.39 V, a high field-effect mobility of 8.8 cm2/Vs, a small subthreshold swing of 143 mV/decade, and a high Ion/Ioff current ratio of 4.23 × 107, presumably because of the reduction in the oxygen vacancies and the formation of the smooth surface roughness as a result of the incorporation of Ti into the Er2TiO5 film. Furthermore, the reliability of voltage stress can be improved using an Er2TiO5 gate dielectric.

  19. A Simple Memristor Model for Circuit Simulations

    NASA Astrophysics Data System (ADS)

    Fullerton, Farrah-Amoy; Joe, Aaleyah; Gergel-Hackett, Nadine; Department of Chemistry; Physics Team

    This work describes the development of a model for the memristor, a novel nanoelectronic technology. The model was designed to replicate the real-world electrical characteristics of previously fabricated memristor devices, but was constructed with basic circuit elements using a free widely available circuit simulator, LT Spice. The modeled memrsistors were then used to construct a circuit that performs material implication. Material implication is a digital logic that can be used to perform all of the same basic functions as traditional CMOS gates, but with fewer nanoelectronic devices. This memristor-based digital logic could enable memristors' use in new paradigms of computer architecture with advantages in size, speed, and power over traditional computing circuits. Additionally, the ability to model the real-world electrical characteristics of memristors in a free circuit simulator using its standard library of elements could enable not only the development of memristor material implication, but also the development of a virtually unlimited array of other memristor-based circuits.

  20. Electrical transport characteristics of single-layer organic devices from theory and experiment

    NASA Astrophysics Data System (ADS)

    Martin, S. J.; Walker, Alison B.; Campbell, A. J.; Bradley, D. D. C.

    2005-09-01

    An electrical model based on drift diffusion is described. We have explored systematically how the shape of the current density-voltage (J-V) curves is determined by the input parameters, information that isessential when deducing values of these parameters by fitting to experimental data for an ITO/PPV/Al organic light-emitting device (OLED), where ITO is shorthand for indium tin oxide and PPV is poly(phenylene vinylene). Our conclusion is that it is often possible to obtain a unique fit even with several parameters to fit. Our results allowing for a tunneling current show remarkable resemblance to experimental data before and after the contacts are conditioned. We have demonstrated our model on single-layer devices with ITO/PFO/Au and ITO/PEDOT/PFO/Au at room temperature and ITO/TPD/Al over temperatures from 130 to 290 K. PFO is shorthand for poly(9,9'-dialkyl-fluorene-2,7-dyl) and TPD is shorthand for N,N'-diphenyl-N,N'-bis(3-methylphenyl)1-1'-biphenyl-4,4'-diamine. Good fits to experimental data have been obtained, but in the case of the TPD device, only if a larger value for the relative permittivity ɛs than would be expected is used. We infer that a layer of dipoles at the ITO/TPD interface could be responsible for the observed J-V characteristics by locally causing changes in ɛs. The strong temperature dependence of the hole barrier height from fitting J-V characteristics to the experimental data may indicate that the temperature dependence of the thermionic emission model is incorrect.

  1. Advanced Materials for High Temperature, High Performance, Wide Bandgap Power Modules

    NASA Astrophysics Data System (ADS)

    O'Neal, Chad B.; McGee, Brad; McPherson, Brice; Stabach, Jennifer; Lollar, Richard; Liederbach, Ross; Passmore, Brandon

    2016-01-01

    Advanced packaging materials must be utilized to take full advantage of the benefits of the superior electrical and thermal properties of wide bandgap power devices in the development of next generation power electronics systems. In this manuscript, the use of advanced materials for key packaging processes and components in multi-chip power modules will be discussed. For example, to date, there has been significant development in silver sintering paste as a high temperature die attach material replacement for conventional solder-based attach due to the improved thermal and mechanical characteristics as well as lower processing temperatures. In order to evaluate the bond quality and performance of this material, shear strength, thermal characteristics, and void quality for a number of silver sintering paste materials were analyzed as a die attach alternative to solder. In addition, as high voltage wide bandgap devices shift from engineering samples to commercial components, passivation materials become key in preventing premature breakdown in power modules. High temperature, high dielectric strength potting materials were investigated to be used to encapsulate and passivate components internal to a power module. The breakdown voltage up to 30 kV and corresponding leakage current for these materials as a function of temperature is also presented. Lastly, high temperature plastic housing materials are important for not only discrete devices but also for power modules. As the operational temperature of the device and/or ambient temperature increases, the mechanical strength and dielectric properties are dramatically reduced. Therefore, the electrical characteristics such as breakdown voltage and leakage current as a function of temperature for housing materials are presented.

  2. Two-bit multi-level phase change random access memory with a triple phase change material stack structure

    NASA Astrophysics Data System (ADS)

    Gyanathan, Ashvini; Yeo, Yee-Chia

    2012-11-01

    This work demonstrates a novel two-bit multi-level device structure comprising three phase change material (PCM) layers, separated by SiN thermal barrier layers. This triple PCM stack consisted of (from bottom to top), Ge2Sb2Te5 (GST), an ultrathin SiN barrier, nitrogen-doped GST, another ultrathin SiN barrier, and Ag0.5In0.5Sb3Te6. The PCM layers can selectively amorphize to form 4 different resistance levels ("00," "01," "10," and "11") using respective voltage pulses. Electrical characterization was extensively performed on these devices. Thermal analysis was also done to understand the physics behind the phase changing characteristics of the two-bit memory devices. The melting and crystallization temperatures of the PCMs play important roles in the power consumption of the multi-level devices. The electrical resistivities and thermal conductivities of the PCMs and the SiN thermal barrier are also crucial factors contributing to the phase changing behaviour of the PCMs in the two-bit multi-level PCRAM device.

  3. Effect of silicide/silicon hetero-junction structure on thermal conductivity and Seebeck coefficient.

    PubMed

    Choi, Wonchul; Park, Young-Sam; Hyun, Younghoon; Zyung, Taehyoung; Kim, Jaehyeon; Kim, Soojung; Jeon, Hyojin; Shin, Mincheol; Jang, Moongyu

    2013-12-01

    We fabricated a thermoelectric device with a silicide/silicon laminated hetero-structure by using RF sputtering and rapid thermal annealing. The device was observed to have Ohmic characteristics by I-V measurement. The temperature differences and Seebeck coefficients of the proposed silicide/silicon laminated and bulk structure were measured. The laminated thermoelectric device shows suppression of heat flow from the hot to cold side. This is supported by the theory that the atomic mass difference between silicide and silicon creates a scattering center for phonons. The major impact of our work is that phonon transmission is suppressed at the interface between silicide and silicon without degrading electrical conductivity. The estimated thermal conductivity of the 3-layer laminated device is 126.2 +/- 3.7 W/m. K. Thus, by using the 3-layer laminated structure, thermal conductivity is reduced by around 16% compared to bulk silicon. However, the Seebeck coefficient of the thermoelectric device is degraded compared to that of bulk silicon. It is understood that electrical conductivity is improved by using silicide as a scattering center.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widergren, Steven E.; Knight, Mark R.; Melton, Ronald B.

    The Interoperability Strategic Vision whitepaper aims to promote a common understanding of the meaning and characteristics of interoperability and to provide a strategy to advance the state of interoperability as applied to integration challenges facing grid modernization. This includes addressing the quality of integrating devices and systems and the discipline to improve the process of successfully integrating these components as business models and information technology improve over time. The strategic vision for interoperability described in this document applies throughout the electric energy generation, delivery, and end-use supply chain. Its scope includes interactive technologies and business processes from bulk energy levelsmore » to lower voltage level equipment and the millions of appliances that are becoming equipped with processing power and communication interfaces. A transformational aspect of a vision for interoperability in the future electric system is the coordinated operation of intelligent devices and systems at the edges of grid infrastructure. This challenge offers an example for addressing interoperability concerns throughout the electric system.« less

  5. Analysis of Electrically Induced Swirling Flow of Isotonic Saline in a Mixing Microchannel

    NASA Astrophysics Data System (ADS)

    Hirahara, Shuzo; Tsuruta, Tomoyuki; Matsumoto, Yoshinori; Minamitani, Haruyuki

    We have designed a prototype microfluidic device to mix suspended particles with isotonic saline by use of electrically induced swirling flow in the microchannel. However, the principles underlying microfluidic rotation induced by AC electrodes are not well understood, and the characteristics of the rotation velocity are unpredictable. Furthermore, these properties have not been studied using a highly conductive liquid like isotonic saline, which is an important fluid in the medical and biological fields. The lack of such studies causes uncertainty in the design required for high-performance microfluidic devices. We have examined the electrical rotational properties of the microfluid at an isotonic concentration of saline using computer simulation, and here we show that buoyant flow, which has previously been largely ignored, has a significant effect in channels of 100-μm depth or deeper, and that AC electroosmotic flow is not induced at isotonic saline concentrations.

  6. Facile Dry Surface Cleaning of Graphene by UV Treatment

    NASA Astrophysics Data System (ADS)

    Kim, Jin Hong; Haidari, Mohd Musaib; Choi, Jin Sik; Kim, Hakseong; Yu, Young-Jun; Park, Jonghyurk

    2018-05-01

    Graphene has been considered an ideal material for application in transparent lightweight wearable electronics due to its extraordinary mechanical, optical, and electrical properties originating from its ordered hexagonal carbon atomic lattice in a layer. Precise surface control is critical in maximizing its performance in electronic applications. Graphene grown by chemical vapor deposition is widely used but it produces polymeric residue following wet/chemical transfer process, which strongly affects its intrinsic electrical properties and limits the doping efficiency by adsorption. Here, we introduce a facile dry-cleaning method based on UV irradiation to eliminate the organic residues even after device fabrication. Through surface topography, Raman analysis, and electrical transport measurement characteristics, we confirm that the optimized UV treatment can recover the clean graphene surface and improve graphene-FET performance more effectively than thermal treatment. We propose our UV irradiation method as a systematically controllable and damage-free post process for application in large-area devices.

  7. Electrical properties of solid-solution SrZrxTi1-xO3 grown epitaxially on Ge by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Moghadam, Reza; Ahmadi, Kamyar; Xiao, Z.-Y.; Hong, Xia; Ngai, Joseph

    The epitaxial growth of crystalline oxides on semiconductors enables new functionalities to be introduced to semiconductor devices. In particular, dielectric and ferroelectric oxides grown epitaxially on semiconductors provide a pathway to realize ultra-low power logic and memory devices. Here we present electrical characterization of solid-solution SrZrxTi1-xO3 grown epitaxially on Ge through oxide molecular beam epitaxy. SrZrxTi1-xO3 is of particular interest since the band offset with respect to the semiconductor can be tuned through Zr content x. We will present current-voltage, capacitance-voltage and piezoforce microscopy characterization of SrZrxTi1-xO3 -Ge heterojunctions. In particular, we will discuss how the electrical characteristics of SrZrxTi1-xO3 -Ge heterojunctions evolve with respect to composition, annealing and film thickness.

  8. A facile approach for reducing the working voltage of Au/TiO2/Au nanostructured memristors by enhancing the local electric field

    NASA Astrophysics Data System (ADS)

    Arab Bafrani, Hamidreza; Ebrahimi, Mahdi; Bagheri Shouraki, Saeed; Moshfegh, Alireza Z.

    2018-01-01

    Memristor devices have attracted tremendous interest due to different applications ranging from nonvolatile data storage to neuromorphic computing units. Exploring the role of surface roughness of the bottom electrode (BE)/active layer interface provides useful guidelines for the optimization of the memristor switching performance. This study focuses on the effect of surface roughness of the BE electrode on the switching characteristics of Au/TiO2/Au three-layer memristor devices. An optimized wet-etching treatment condition was found to modify the surface roughness of the Au BE where the measurement results indicate that the roughness of the Au BE is affected by both duration time and solution concentrations of the wet-etching process. Then we fabricated arrays of TiO2-based nanostructured memristors sandwiched between two sets of cross-bar Au electrode lines (junction area 900 μm2). The results revealed a reduction in the working voltages in current-voltage characteristic of the device performance when increasing the surface roughness at the Au(BE)/TiO2 active layer interface. The set voltage of the device (Vset) significantly decreased from 2.26-1.93 V when we increased the interface roughness from 4.2-13.1 nm. The present work provides information for better understanding the switching mechanism of titanium-dioxide-based devices, and it can be inferred that enhancing the roughness of the Au BE/TiO2 active layer interface leads to a localized non-uniform electric field distribution that plays a vital role in reducing the energy consumption of the device.

  9. Electromechanical oscillations in bilayer graphene

    PubMed Central

    Benameur, Muhammed M.; Gargiulo, Fernando; Manzeli, Sajedeh; Autès, Gabriel; Tosun, Mahmut; Yazyev, Oleg V.; Kis, Andras

    2015-01-01

    Nanoelectromechanical systems constitute a class of devices lying at the interface between fundamental research and technological applications. Realizing nanoelectromechanical devices based on novel materials such as graphene allows studying their mechanical and electromechanical characteristics at the nanoscale and addressing fundamental questions such as electron–phonon interaction and bandgap engineering. In this work, we realize electromechanical devices using single and bilayer graphene and probe the interplay between their mechanical and electrical properties. We show that the deflection of monolayer graphene nanoribbons results in a linear increase in their electrical resistance. Surprisingly, we observe oscillations in the electromechanical response of bilayer graphene. The proposed theoretical model suggests that these oscillations arise from quantum mechanical interference in the transition region induced by sliding of individual graphene layers with respect to each other. Our work shows that bilayer graphene conceals unexpectedly rich and novel physics with promising potential in applications based on nanoelectromechanical systems. PMID:26481767

  10. Current induced polycrystalline-to-crystalline transformation in vanadium dioxide nanowires

    PubMed Central

    Jeong, Junho; Yong, Zheng; Joushaghani, Arash; Tsukernik, Alexander; Paradis, Suzanne; Alain, David; Poon, Joyce K. S.

    2016-01-01

    Vanadium dioxide (VO2) exhibits a reversible insulator-metal phase transition that is of significant interest in energy-efficient nanoelectronic and nanophotonic devices. In these applications, crystalline materials are usually preferred for their superior electrical transport characteristics as well as spatial homogeneity and low surface roughness over the device area for reduced scattering. Here, we show applied electrical currents can induce a permanent reconfiguration of polycrystalline VO2 nanowires into crystalline nanowires, resulting in a dramatically reduced hysteresis across the phase transition and reduced resistivity. Low currents below 3 mA were sufficient to cause the local temperature in the VO2 to reach about 1780 K to activate the irreversible polycrystalline-to-crystalline transformation. The crystallinity was confirmed by electron microscopy and diffraction analyses. This simple yet localized post-processing of insulator-metal phase transition materials may enable new methods of studying and fabricating nanoscale structures and devices formed from these materials. PMID:27892519

  11. Electrical properties of MOS devices fabricated on the 4H-SiC C-face.

    NASA Astrophysics Data System (ADS)

    Chen, Zengjun; Ahyi, A. C.; Williams, J. R.

    2007-11-01

    The electrical characteristics of MOS devices fabricated on the carbon face of 4H-SiC will be described. The C-face has a higher oxidation rate and a higher interface trap density compared to the Si-face. The thermal oxidation rate and the distribution of interface traps under different oxidation conditions will be discussed in this presentation. Sequential post-oxidation anneals in nitric oxide and hydrogen effectively reduces the interface density (Dit) near the conduction band edge. However, deeper in the band gap, the trap density remains higher compared to the Si-face. Time-dependent dielectric breakdown (TDDB) studies have also been performed to investigate oxide reliability on the C-face, and current-voltage measurements show that a low barrier height against carrier injection likely contributes to oxide degradation. Nevertheless, the effective channel mobility and threshold voltage for n-channel C-face lateral MOSFETs compare favorably with similar Si-face devices.

  12. Origins of large light induced voltage in magnetic tunnel junctions grown on semiconductor substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Y.; Lin, W.; Petit-Watelot, S.

    2016-01-14

    Recently, the study of interactions between electron spins and heat currents has given rise to the field of “Spin Caloritronics”. Experimental studies of these interactions have shown a possibility to combine the use of heat and light to power magnetic tunnel junction (MTJ) devices. Here we present a careful study of an MTJ device on Si substrate that can be powered entirely by light. We analyze the influence of the material properties, device geometry, and laser characteristics on the electric response of the sample. We demonstrate that by engineering the MTJ and its electrical contact, a large photovoltage reaching 100 mVmore » can be generated. This voltage originates from the Si substrate and depends on the MTJ magnetic configuration. Finally, we discuss the origin of the photo-voltage in terms of Seebeck and photovoltaic effects.« less

  13. Performance study of thermo-electric generator

    NASA Astrophysics Data System (ADS)

    Rohit, G.; Manaswini, D.; Kotebavi, Vinod; R, Nagaraja S.

    2017-07-01

    Devices like automobiles, stoves, ovens, boilers, kilns and heaters dissipate large amount of waste heat. Since most of this waste heat goes unused, the efficiency of these devices is drastically reduced. A lot of research is being conducted on the recovery of the waste heat, among which Thermoelectric Generators (TEG) is one of the popular method. TEG is a semiconductor device that produces electric potential difference when a thermal gradient develops on it. This paper deals with the study of performance of a TEG module for different hot surface temperatures. Performance characteristics used here are voltage, current and power developed by the TEG. One side of the TEG was kept on a hot plate where uniform heat flux was supplied to that. And the other side was cooled by supplying cold water. The results show that the output power increases significantly with increase in the temperature of the hot surface.

  14. Collection of low-grade waste heat for enhanced energy harvesting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dede, Ercan M., E-mail: eric.dede@tema.toyota.com; Schmalenberg, Paul; Wang, Chi-Ming

    Enhanced energy harvesting through the collection of low-grade waste heat is experimentally demonstrated. A structural optimization technique is exploited in the design of a thermal-composite substrate to guide and gather the heat emanating from multiple sources to a predetermined location. A thermoelectric generator is then applied at the selected focusing region to convert the resulting low-grade waste heat to electrical power. The thermal characteristics of the device are experimentally verified by direct temperature measurements of the system and numerically validated via heat conduction simulations. Electrical performance under natural and forced convection is measured, and in both cases, the device withmore » optimized heat flow control plus energy harvesting demonstrates increased power generation when compared with a baseline waste heat recovery system. Electronics applications include energy scavenging for autonomously powered sensor networks or self-actuated devices.« less

  15. Effect of Thermal Budget on the Electrical Characterization of Atomic Layer Deposited HfSiO/TiN Gate Stack MOSCAP Structure

    PubMed Central

    Khan, Z. N.; Ahmed, S.; Ali, M.

    2016-01-01

    Metal Oxide Semiconductor (MOS) capacitors (MOSCAP) have been instrumental in making CMOS nano-electronics realized for back-to-back technology nodes. High-k gate stacks including the desirable metal gate processing and its integration into CMOS technology remain an active research area projecting the solution to address the requirements of technology roadmaps. Screening, selection and deposition of high-k gate dielectrics, post-deposition thermal processing, choice of metal gate structure and its post-metal deposition annealing are important parameters to optimize the process and possibly address the energy efficiency of CMOS electronics at nano scales. Atomic layer deposition technique is used throughout this work because of its known deposition kinetics resulting in excellent electrical properties and conformal structure of the device. The dynamics of annealing greatly influence the electrical properties of the gate stack and consequently the reliability of the process as well as manufacturable device. Again, the choice of the annealing technique (migration of thermal flux into the layer), time-temperature cycle and sequence are key parameters influencing the device’s output characteristics. This work presents a careful selection of annealing process parameters to provide sufficient thermal budget to Si MOSCAP with atomic layer deposited HfSiO high-k gate dielectric and TiN gate metal. The post-process annealing temperatures in the range of 600°C -1000°C with rapid dwell time provide a better trade-off between the desirable performance of Capacitance-Voltage hysteresis and the leakage current. The defect dynamics is thought to be responsible for the evolution of electrical characteristics in this Si MOSCAP structure specifically designed to tune the trade-off at low frequency for device application. PMID:27571412

  16. Electrically-controlled nonlinear switching and multi-level storage characteristics in WOx film-based memory cells

    NASA Astrophysics Data System (ADS)

    Duan, W. J.; Wang, J. B.; Zhong, X. L.

    2018-05-01

    Resistive switching random access memory (RRAM) is considered as a promising candidate for the next generation memory due to its scalability, high integration density and non-volatile storage characteristics. Here, the multiple electrical characteristics in Pt/WOx/Pt cells are investigated. Both of the nonlinear switching and multi-level storage can be achieved by setting different compliance current in the same cell. The correlations among the current, time and temperature are analyzed by using contours and 3D surfaces. The switching mechanism is explained in terms of the formation and rupture of conductive filament which is related to oxygen vacancies. The experimental results show that the non-stoichiometric WOx film-based device offers a feasible way for the applications of oxide-based RRAMs.

  17. Investigation of electro-optical properties for electrochemical luminescence device with a new electrode structure

    NASA Astrophysics Data System (ADS)

    Ok, Jung-Woo; Pooyodying, Pattarapon; Anuntahirunrat, Jirapat; Sung, Youl-Moon

    2018-04-01

    In this paper, we investigate electrochemical luminescent (ECL) device with a new structure and the ECL cell device with proposed electrode configuration works reliably at AC voltage. In particular, the conventional ECL cell has counter electrodes in which a cathode and an anode are opposed to each other, whereas the proposed structure has parallel electrodes in which a cathode and an anode are arranged on a single substrate. The proposed electrode configuration has a structural feature that electric short-circuiting is less likely to occur during bending than the conventional electrode configuration. The electro-optical characteristics of the new electrode configuration such as the current density, the light emission intensity, and the time evolution of the emission are investigated. The proposed ECL device exhibited higher light emitting efficiency than the conventional structure. Especially, at AC operation mode, the new structure showed the distinctive luminescence characteristic which is combined the first luminescence near the surface of electrode with the delayed second luminescence near the center of between electrodes. It was closely related to the behavior of luminescent particles. The proposed the ECL cell structure is expected to be utilized as a flexible display device by taking advantage of its characteristics and practicality.

  18. High performance low voltage organic field effect transistors on plastic substrate for amplifier circuits

    NASA Astrophysics Data System (ADS)

    Houin, G.; Duez, F.; Garcia, L.; Cantatore, E.; Torricelli, F.; Hirsch, L.; Belot, D.; Pellet, C.; Abbas, M.

    2016-09-01

    The high performance air stable organic semiconductor small molecule dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT) was chosen as active layer for field effect transistors built to realize flexible amplifier circuits. Initial device on rigid Si/SiO2 substrate showed appreciable performance with hysteresis-free characteristics. A number of approaches were applied to simplify the process, improve device performance and decrease the operating voltage: they include an oxide interfacial layer to decrease contact resistance; a polymer passivation layer to optimize semiconductor/dielectric interface and an anodized high-k oxide as dielectric layer for low voltage operation. The devices fabricated on plastic substrate yielded excellent electrical characteristics, showing mobility of 1.6 cm2/Vs, lack of hysteresis, operation below 5 V and on/off current ratio above 105. An OFET model based on variable ranging hopping theory was used to extract the relevant parameters from the transfer and output characteristics, which enabled us to simulate our devices achieving reasonable agreement with the measurements

  19. 21 CFR 876.5320 - Nonimplanted electrical continence device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nonimplanted electrical continence device. 876... Nonimplanted electrical continence device. (a) Identification. A nonimplanted electrical continence device is a device that consists of a pair of electrodes on a plug or a pessary that are connected by an electrical...

  20. 21 CFR 876.5320 - Nonimplanted electrical continence device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nonimplanted electrical continence device. 876... Nonimplanted electrical continence device. (a) Identification. A nonimplanted electrical continence device is a device that consists of a pair of electrodes on a plug or a pessary that are connected by an electrical...

  1. 21 CFR 876.5320 - Nonimplanted electrical continence device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nonimplanted electrical continence device. 876... Nonimplanted electrical continence device. (a) Identification. A nonimplanted electrical continence device is a device that consists of a pair of electrodes on a plug or a pessary that are connected by an electrical...

  2. 21 CFR 876.5320 - Nonimplanted electrical continence device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nonimplanted electrical continence device. 876... Nonimplanted electrical continence device. (a) Identification. A nonimplanted electrical continence device is a device that consists of a pair of electrodes on a plug or a pessary that are connected by an electrical...

  3. The creation of high-temperature superconducting cables of megawatt range in Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sytnikov, V. E., E-mail: vsytnikov@gmail.com; Bemert, S. E.; Krivetsky, I. V.

    Urgent problems of the power industry in the 21st century require the creation of smart energy systems, providing a high effectiveness of generation, transmission, and consumption of electric power. Simultaneously, the requirements for controllability of power systems and ecological and resource-saving characteristics at all stages of production and distribution of electric power are increased. One of the decision methods of many problems of the power industry is the development of new high-efficiency electrical equipment for smart power systems based on superconducting technologies to ensure a qualitatively new level of functioning of the electric power industry. The intensive research and developmentmore » of new types of electrical devices based on superconductors are being carried out in many industrialized advanced countries. Interest in such developments has especially increased in recent years owing to the discovery of so-called high-temperature superconductors (HTS) that do not require complicated and expensive cooling devices. Such devices can operate at cooling by inexpensive and easily accessible liquid nitrogen. Taking into account the obvious advantages of superconducting cable lines for the transmission of large power flows through an electrical network, as compared with conventional cables, the Federal Grid Company of Unified Energy System (JSC FGC UES) initiated a research and development program including the creation of superconducting HTS AC and DC cable lines. Two cable lines for the transmitted power of 50 MVA/MW at 20 kV were manufactured and tested within the framework of the program.« less

  4. The creation of high-temperature superconducting cables of megawatt range in Russia

    NASA Astrophysics Data System (ADS)

    Sytnikov, V. E.; Bemert, S. E.; Krivetsky, I. V.; Romashov, M. A.; Popov, D. A.; Fedotov, E. V.; Komandenko, O. V.

    2015-12-01

    Urgent problems of the power industry in the 21st century require the creation of smart energy systems, providing a high effectiveness of generation, transmission, and consumption of electric power. Simultaneously, the requirements for controllability of power systems and ecological and resource-saving characteristics at all stages of production and distribution of electric power are increased. One of the decision methods of many problems of the power industry is the development of new high-efficiency electrical equipment for smart power systems based on superconducting technologies to ensure a qualitatively new level of functioning of the electric power industry. The intensive research and development of new types of electrical devices based on superconductors are being carried out in many industrialized advanced countries. Interest in such developments has especially increased in recent years owing to the discovery of so-called high-temperature superconductors (HTS) that do not require complicated and expensive cooling devices. Such devices can operate at cooling by inexpensive and easily accessible liquid nitrogen. Taking into account the obvious advantages of superconducting cable lines for the transmission of large power flows through an electrical network, as compared with conventional cables, the Federal Grid Company of Unified Energy System (JSC FGC UES) initiated a research and development program including the creation of superconducting HTS AC and DC cable lines. Two cable lines for the transmitted power of 50 MVA/MW at 20 kV were manufactured and tested within the framework of the program.

  5. Coupled optical and electrical study of thin-film InGaAs photodetector integrated with surface InP Mie resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Dong; Song, Jiakun; Yu, Hailong

    2016-03-14

    High-index dielectric and semiconductor nanostructures with characteristics of low absorption loss and artificially controlled scattering properties have grasped an increasing attention for improving the performance of thin-film photovoltaic devices. In this work, combined optical and electrical simulations were performed for thin-film InP/In{sub 0.53}Ga{sub 0.47}As/InP hetero-junction photodetector with periodically arranged InP nano-cylinders in the in-coupling configuration. It is found that the carefully designed InP nano-cylinders possess strongly substrate-coupled Mie resonances and can effectively couple incident light into the guided mode, both of which significantly increase optical absorption. Further study from the electrical aspects shows that enhancement of external quantum efficiency ismore » as high as 82% and 83% in the configurations with the optimized nano-cylinders and the optimized period, respectively. Moreover, we demonstrate that the integration of InP nano-cylinders does not degrade the electrical performance, since the surface recombination is effectively suppressed by separating the absorber layer where carriers generate and the air/semiconductor interface. The comprehensive modeling including optical and electrical perspectives provides a more practical description for device performance than the optical-only simulation and is expected to advance the design of thin-film absorber layer based optoelectronic devices for fast response and high efficiency.« less

  6. Quantum-Dot Light-Emitting Diodes with Nitrogen-Doped Carbon Nanodot Hole Transport and Electronic Energy Transfer Layer.

    PubMed

    Park, Young Ran; Jeong, Hu Young; Seo, Young Soo; Choi, Won Kook; Hong, Young Joon

    2017-04-12

    Electroluminescence efficiency is crucial for the application of quantum-dot light-emitting diodes (QD-LEDs) in practical devices. We demonstrate that nitrogen-doped carbon nanodot (N-CD) interlayer improves electrical and luminescent properties of QD-LEDs. The N-CDs were prepared by solution-based bottom up synthesis and were inserted as a hole transport layer (HTL) between other multilayer HTL heterojunction and the red-QD layer. The QD-LEDs with N-CD interlayer represented superior electrical rectification and electroluminescent efficiency than those without the N-CD interlayer. The insertion of N-CD layer was found to provoke the Förster resonance energy transfer (FRET) from N-CD to QD layer, as confirmed by time-integrated and -resolved photoluminescence spectroscopy. Moreover, hole-only devices (HODs) with N-CD interlayer presented high hole transport capability, and ultraviolet photoelectron spectroscopy also revealed that the N-CD interlayer reduced the highest hole barrier height. Thus, more balanced carrier injection with sufficient hole carrier transport feasibly lead to the superior electrical and electroluminescent properties of the QD-LEDs with N-CD interlayer. We further studied effect of N-CD interlayer thickness on electrical and luminescent performances for high-brightness QD-LEDs. The ability of the N-CD interlayer to improve both the electrical and luminescent characteristics of the QD-LEDs would be readily exploited as an emerging photoactive material for high-efficiency optoelectronic devices.

  7. Smart signal processing for an evolving electric grid

    NASA Astrophysics Data System (ADS)

    Silva, Leandro Rodrigues Manso; Duque, Calos Augusto; Ribeiro, Paulo F.

    2015-12-01

    Electric grids are interconnected complex systems consisting of generation, transmission, distribution, and active loads, recently called prosumers as they produce and consume electric energy. Additionally, these encompass a vast array of equipment such as machines, power transformers, capacitor banks, power electronic devices, motors, etc. that are continuously evolving in their demand characteristics. Given these conditions, signal processing is becoming an essential assessment tool to enable the engineer and researcher to understand, plan, design, and operate the complex and smart electronic grid of the future. This paper focuses on recent developments associated with signal processing applied to power system analysis in terms of characterization and diagnostics. The following techniques are reviewed and their characteristics and applications discussed: active power system monitoring, sparse representation of power system signal, real-time resampling, and time-frequency (i.e., wavelets) applied to power fluctuations.

  8. Sublimation measurements and analysis of high temperature thermoelectric materials and devices

    NASA Technical Reports Server (NTRS)

    Shields, V.; Noon, L.

    1983-01-01

    High temperature thermoelectric device sublimation effects are compared for rare earth sulfides, selenides, and state-of-the-art Si-Ge alloys. Although rare earth calcogenides can potentially exhibit superior sublimation characteristics, the state-of-the-art Si-Ge alloy with silicon nitride sublimation-inhibitive coating has been tested to 1000 C. Attention is given to the ceramic electrolyte cells, forming within electrical and thermal insulation, which affect leakage conductance measurements in Si-Ge thermoelectric generators.

  9. Investigation of organic adhesives for hybrid microcircuits

    NASA Technical Reports Server (NTRS)

    Perkins, K. L.; Licari, J. J.

    1975-01-01

    The properties of organic adhesives were investigated to acquire information for a guideline document regarding the selection of adhesives for use in high reliability hybrid microcircuits. Specifically, investigations were made of (1) alternate methods for determining the outgassing of cured adhesives, (2) effects of long term aging at 150 C on the electrical properties of conductive adhesives, (3) effects of shelf life age on adhesive characteristics, (4) bond strengths of electrically conductive adhesives on thick film gold metallization, (5) a copper filled adhesive, (6) effects of products outgassed from cured adhesives on device electrical parameters, (7) metal migration from electrically conductive adhesives, and (8) ionic content of electrically insulative adhesives. The tests performed during these investigations are described, and the results obtained are discussed.

  10. SILAR deposition of nickel sulfide counter electrode for application in quantum dot sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Singh, Navjot; Siwatch, Poonam; Arora, Anmol; Sharma, Jadab; Tripathi, S. K.

    2018-05-01

    Quantum Dot Sensitized Solar Cells are a likely replacement for Silicon-based solar cells. Counter electrodes are a fundamental aspect of QDSSC's performance. NiS being a less expensive material is a decent choice for the purpose. In this paper, we have discussed the synthesis of NiS by Successive Ionic Layer Adsorption Reaction. Optical, Crystallographic and Electrical studies have been presented. Electrical studies of the device with NiS counter electrode is compared with characteristics of the device with CNTs as the counter electrode. SILAR method is easy and less time to consume than chemical bath deposition or any other method. Results show the success of NiS synthesized by SILAR method as the counter electrode.

  11. Apparatus and method for detecting tampering in flexible structures

    DOEpatents

    Maxey, Lonnie C [Knoxville, TN; Haynes, Howard D [Knoxville, TN

    2011-02-01

    A system for monitoring or detecting tampering in a flexible structure includes taking electrical measurements on a sensing cable coupled to the structure, performing spectral analysis on the measured data, and comparing the spectral characteristics of the event to those of known benign and/or known suspicious events. A threshold or trigger value may used to identify an event of interest and initiate data collection. Alternatively, the system may be triggered at preset intervals, triggered manually, or triggered by a signal from another sensing device such as a motion detector. The system may be used to monitor electrical cables and conduits, hoses and flexible ducts, fences and other perimeter control devices, structural cables, flexible fabrics, and other flexible structures.

  12. Comparison of effect of 5 MeV proton and Co-60 gamma irradiation on silicon NPN rf power transistors and N-channel depletion MOSFETs

    NASA Astrophysics Data System (ADS)

    Gnana Prakash, A. P.; Pradeep, T. M.; Hegde, Vinayakprasanna N.; Pushpa, N.; Bajpai, P. K.; Patel, S. P.; Trivedi, Tarkeshwar; Bhushan, K. G.

    2017-12-01

    NPN transistors and N-channel depletion metal oxide semiconductor field effect transistors (MOSFETs) were irradiated with 5 MeV protons and 60Co gamma radiation in the dose ranging from 1 Mrad(Si) to 100 Mrad(Si). The different electrical characteristics of the NPN transistor such as Gummel characteristics, excess base current (ΔIB), dc current gain (hFE), transconductance (gm), displacement damage factor (K) and output characteristics were studied as a function of total dose. The different electrical characteristics of N-channel MOSFETs such as threshold voltage (Vth), density of interface trapped charges (ΔNit), density of oxide trapped charges (ΔNot), transconductance (gm), mobility (µ) and drain saturation current (IDSat) were studied systematically before and after irradiation in the same dose ranges. A considerable increase in the base current (IB) and decrease in the hFE, gm and collector saturation current (ICSat) were observed after irradiation in the case of the NPN transistor. In the N-channel MOSFETs, the ΔNit and ΔNot were found to increase and Vth, gm, µ and IDSat were found to decrease with increase in the radiation dose. The 5 MeV proton irradiation results of both the NPN transistor and N-channel MOSFETs were compared with 60Co gamma-irradiated devices in the same dose ranges. It was observed that the degradation in 5 MeV proton-irradiated devices is more when compared with the 60Co gamma-irradiated devices at higher total doses.

  13. Characteristics of Superjunction Lateral-Double-Diffusion Metal Oxide Semiconductor Field Effect Transistor and Degradation after Electrical Stress

    NASA Astrophysics Data System (ADS)

    Lin, Jyh‑Ling; Lin, Ming‑Jang; Lin, Li‑Jheng

    2006-04-01

    The superjunction lateral double diffusion metal oxide semiconductor field effect has recently received considerable attention. Introducing heavily doped p-type strips to the n-type drift region increases the horizontal depletion capability. Consequently, the doping concentration of the drift region is higher and the conduction resistance is lower than those of conventional lateral-double-diffusion metal oxide semiconductor field effect transistors (LDMOSFETs). These characteristics may increase breakdown voltage (\\mathit{BV}) and reduce specific on-resistance (Ron,sp). In this study, we focus on the electrical characteristics of conventional LDMOSFETs on silicon bulk, silicon-on-insulator (SOI) LDMOSFETs and superjunction LDMOSFETs after bias stress. Additionally, the \\mathit{BV} and Ron,sp of superjunction LDMOSFETs with different N/P drift region widths and different dosages are discussed. Simulation tools, including two-dimensional (2-D) TSPREM-4/MEDICI and three-dimensional (3-D) DAVINCI, were employed to determine the device characteristics.

  14. An electric-eel-inspired soft power source from stacked hydrogels.

    PubMed

    Schroeder, Thomas B H; Guha, Anirvan; Lamoureux, Aaron; VanRenterghem, Gloria; Sept, David; Shtein, Max; Yang, Jerry; Mayer, Michael

    2017-12-13

    Progress towards the integration of technology into living organisms requires electrical power sources that are biocompatible, mechanically flexible, and able to harness the chemical energy available inside biological systems. Conventional batteries were not designed with these criteria in mind. The electric organ of the knifefish Electrophorus electricus (commonly known as the electric eel) is, however, an example of an electrical power source that operates within biological constraints while featuring power characteristics that include peak potential differences of 600 volts and currents of 1 ampere. Here we introduce an electric-eel-inspired power concept that uses gradients of ions between miniature polyacrylamide hydrogel compartments bounded by a repeating sequence of cation- and anion-selective hydrogel membranes. The system uses a scalable stacking or folding geometry that generates 110 volts at open circuit or 27 milliwatts per square metre per gel cell upon simultaneous, self-registered mechanical contact activation of thousands of gel compartments in series while circumventing power dissipation before contact. Unlike typical batteries, these systems are soft, flexible, transparent, and potentially biocompatible. These characteristics suggest that artificial electric organs could be used to power next-generation implant materials such as pacemakers, implantable sensors, or prosthetic devices in hybrids of living and non-living systems.

  15. An electric-eel-inspired soft power source from stacked hydrogels

    NASA Astrophysics Data System (ADS)

    Schroeder, Thomas B. H.; Guha, Anirvan; Lamoureux, Aaron; Vanrenterghem, Gloria; Sept, David; Shtein, Max; Yang, Jerry; Mayer, Michael

    2017-12-01

    Progress towards the integration of technology into living organisms requires electrical power sources that are biocompatible, mechanically flexible, and able to harness the chemical energy available inside biological systems. Conventional batteries were not designed with these criteria in mind. The electric organ of the knifefish Electrophorus electricus (commonly known as the electric eel) is, however, an example of an electrical power source that operates within biological constraints while featuring power characteristics that include peak potential differences of 600 volts and currents of 1 ampere. Here we introduce an electric-eel-inspired power concept that uses gradients of ions between miniature polyacrylamide hydrogel compartments bounded by a repeating sequence of cation- and anion-selective hydrogel membranes. The system uses a scalable stacking or folding geometry that generates 110 volts at open circuit or 27 milliwatts per square metre per gel cell upon simultaneous, self-registered mechanical contact activation of thousands of gel compartments in series while circumventing power dissipation before contact. Unlike typical batteries, these systems are soft, flexible, transparent, and potentially biocompatible. These characteristics suggest that artificial electric organs could be used to power next-generation implant materials such as pacemakers, implantable sensors, or prosthetic devices in hybrids of living and non-living systems.

  16. Electric Field-aided Selective Activation for Indium-Gallium-Zinc-Oxide Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Lee, Heesoo; Chang, Ki Soo; Tak, Young Jun; Jung, Tae Soo; Park, Jeong Woo; Kim, Won-Gi; Chung, Jusung; Jeong, Chan Bae; Kim, Hyun Jae

    2016-10-01

    A new technique is proposed for the activation of low temperature amorphous InGaZnO thin film transistor (a-IGZO TFT) backplanes through application of a bias voltage and annealing at 130 °C simultaneously. In this ‘electrical activation’, the effects of annealing under bias are selectively focused in the channel region. Therefore, electrical activation can be an effective method for lower backplane processing temperatures from 280 °C to 130 °C. Devices fabricated with this method exhibit equivalent electrical properties to those of conventionally-fabricated samples. These results are analyzed electrically and thermodynamically using infrared microthermography. Various bias voltages are applied to the gate, source, and drain electrodes while samples are annealed at 130 °C for 1 hour. Without conventional high temperature annealing or electrical activation, current-voltage curves do not show transfer characteristics. However, electrically activated a-IGZO TFTs show superior electrical characteristics, comparable to the reference TFTs annealed at 280 °C for 1 hour. This effect is a result of the lower activation energy, and efficient transfer of electrical and thermal energy to a-IGZO TFTs. With this approach, superior low-temperature a-IGZO TFTs are fabricated successfully.

  17. Electric Field-aided Selective Activation for Indium-Gallium-Zinc-Oxide Thin Film Transistors

    PubMed Central

    Lee, Heesoo; Chang, Ki Soo; Tak, Young Jun; Jung, Tae Soo; Park, Jeong Woo; Kim, Won-Gi; Chung, Jusung; Jeong, Chan Bae; Kim, Hyun Jae

    2016-01-01

    A new technique is proposed for the activation of low temperature amorphous InGaZnO thin film transistor (a-IGZO TFT) backplanes through application of a bias voltage and annealing at 130 °C simultaneously. In this ‘electrical activation’, the effects of annealing under bias are selectively focused in the channel region. Therefore, electrical activation can be an effective method for lower backplane processing temperatures from 280 °C to 130 °C. Devices fabricated with this method exhibit equivalent electrical properties to those of conventionally-fabricated samples. These results are analyzed electrically and thermodynamically using infrared microthermography. Various bias voltages are applied to the gate, source, and drain electrodes while samples are annealed at 130 °C for 1 hour. Without conventional high temperature annealing or electrical activation, current-voltage curves do not show transfer characteristics. However, electrically activated a-IGZO TFTs show superior electrical characteristics, comparable to the reference TFTs annealed at 280 °C for 1 hour. This effect is a result of the lower activation energy, and efficient transfer of electrical and thermal energy to a-IGZO TFTs. With this approach, superior low-temperature a-IGZO TFTs are fabricated successfully. PMID:27725695

  18. The experimental results of AMTEC and a study of its terrestrial applications in IEE of China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ni, Q.; Tong, J.; Kan, Y.

    1997-12-31

    The R and D activities in the field of AMTEC research at The Institute of Electrical Engineering, Chinese Academy of Sciences are introduced. The outline of experimental facility with a single tube cell is described. The experimental results so far are reported followed by an analysis of electrical characteristic, in particular, an evaluation of characteristic of BASE/porous electrode interface with the effective sheet resistivity and the electrode efficiency. The approaches for improving device performance are discussed. The terrestrial applications of AMTEC in China are considered as an alternative of conventional diesel-generators. The possibility of AMTEC power supply for some separatemore » sites is predicted.« less

  19. Electrical Characterization of Semiconductor Materials and Devices

    NASA Astrophysics Data System (ADS)

    Deen, M.; Pascal, Fabien

    Semiconductor materials and devices continue to occupy a preeminent technological position due to their importance when building integrated electronic systems used in a wide range of applications from computers, cell-phones, personal digital assistants, digital cameras and electronic entertainment systems, to electronic instrumentation for medical diagnositics and environmental monitoring. Key ingredients of this technological dominance have been the rapid advances made in the quality and processing of materials - semiconductors, conductors and dielectrics - which have given metal oxide semiconductor device technology its important characteristics of negligible standby power dissipation, good input-output isolation, surface potential control and reliable operation. However, when assessing material quality and device reliability, it is important to have fast, nondestructive, accurate and easy-to-use electrical characterization techniques available, so that important parameters such as carrier doping density, type and mobility of carriers, interface quality, oxide trap density, semiconductor bulk defect density, contact and other parasitic resistances and oxide electrical integrity can be determined. This chapter describes some of the more widely employed and popular techniques that are used to determine these important parameters. The techniques presented in this chapter range in both complexity and test structure requirements from simple current-voltage measurements to more sophisticated low-frequency noise, charge pumping and deep-level transient spectroscopy techniques.

  20. Temperature dependent electrical properties of polyaniline film grown on paper through aniline vapor polymerization

    NASA Astrophysics Data System (ADS)

    Deb, K.; Bhowmik, K. L.; Bera, A.; Chattopadhyay, K. K.; Saha, B.

    2016-05-01

    Polyaniline thin film has been prepared on paper by aniline vapor deposition technique. Ferric chloride has been used as polymerizing agent in this approach. The prepared films were studied through electrical resistivity and optical properties measurements. The electrical resistivity of the polyaniline film shows significant temperature dependence. The resistance sharply falls with the increase in temperature. The optical absorbance measurements shows characteristics absorbance peak indicating the formation of conducting emeraldine salt form of polyaniline. The optical energy band gap of the film was calculated from the transmittance spectra. The optical energy band gap and electrical conductivity of the polyaniline film is well suited for their applications in electronic devices.

  1. Fabrication of flexible and vertical silicon nanowire electronics.

    PubMed

    Weisse, Jeffrey M; Lee, Chi Hwan; Kim, Dong Rip; Zheng, Xiaolin

    2012-06-13

    Vertical silicon nanowire (SiNW) array devices directly connected on both sides to metallic contacts were fabricated on various non-Si-based substrates (e.g., glass, plastics, and metal foils) in order to fully exploit the nanomaterial properties for final applications. The devices were realized with uniform length Ag-assisted electroless etched SiNW arrays that were detached from their fabrication substrate, typically Si wafers, reattached to arbitrary substrates, and formed with metallic contacts on both sides of the NW array. Electrical characterization of the SiNW array devices exhibits good current-voltage characteristics consistent with the SiNW morphology.

  2. Terahertz detection using double quantum well devices

    NASA Astrophysics Data System (ADS)

    Khodier, Majid; Christodoulou, Christos G.; Simmons, Jerry A.

    2001-12-01

    This paper discusses the principle of operation of an electrically tunable THz detector, working around 2.54 THz, integrated with a bowtie antenna. The detection is based on the idea of photon-assisted tunneling (PAT) in a double quantum well (DQW) device. The bowtie antenna is used to collect the THz radiation and feed it to the detector for processing. The Bowtie antenna geometry is integrated with the DQW device to achieve broadband characteristic, easy design, and compatibility with the detector fabrication process. The principle of operation of the detector is introduced first. Then, results of different bowtie antenna layouts are presented and discussed.

  3. Numerical modeling of reverse recovery characteristic in silicon pin diodes

    NASA Astrophysics Data System (ADS)

    Yamashita, Yusuke; Tadano, Hiroshi

    2018-07-01

    A new numerical reverse recovery model of silicon pin diode is proposed by the approximation of the reverse recovery waveform as a simple shape. This is the first model to calculate the reverse recovery characteristics using numerical equations without adjusted by fitting equations and fitting parameters. In order to verify the validity and the accuracy of the numerical model, the calculation result from the model is verified through the device simulation result. In 1980, he joined Toyota Central R&D Labs, Inc., where he was involved in the research and development of power devices such as SIT, IGBT, diodes and power MOSFETs. Since 2013 he has been a professor at the Graduate School of Pure and Applied Science, University of Tsukuba, Tsukuba, Japan. His current research interest is high-efficiency power conversion circuits for electric vehicles using advanced power devices.

  4. Electrical safety for high voltage arrays

    NASA Technical Reports Server (NTRS)

    Marshall, N. A.

    1983-01-01

    A number of key electrical safety requirements for the high voltage arrays of central station photovoltaic power systems are explored. The suitability of representative industrial DC power switchgear for control and fault protection was evaluated. Included were AC/DC circuit breakers, electromechanical contactors and relays, load interruptors, cold disconnect devices, sectionalizing switches, and high voltage DC fuses. As appropriate, steady state and transient characteristics were analyzed. Failure modes impacting upon operation and maintenance safety were also identified, as were the voltage withstand and current interruption levels.

  5. Magnetic-mechanical-electrical-optical coupling effects in GaN-based LED/rare-earth terfenol-D structures.

    PubMed

    Peng, Mingzeng; Zhang, Yan; Liu, Yudong; Song, Ming; Zhai, Junyi; Wang, Zhong Lin

    2014-10-22

    A multi-field coupling structure is designed and investigated, which combines GaN-based optoelectronic devices and Terfenol-D. The abundant coupling effects and multifunctionalities among magnetics, mechanics, electrics, and optics are investigated by a combination of non-magnetic GaN-based piezoelectronic optoelectronic characteristics and the giant magnetomechanical properties of Terfenol-D. A few potential new areas of studies are proposed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Optoelectronic Materials Center, A Collaborative Program Including University of New Mexico, Stanford University and California Institute of Technology

    DTIC Science & Technology

    1993-05-04

    a highly coherent output beam that can be focused’. MOCVD is used to fabricate the unstble resonator waveguide in these devices and to ensure a high...investigated. Single-mode VCSELs with excellent electrical characteristics were fabricated with a threshold voltage below 2V and an operating voltage of...resulting eye diagram shows that large-signal electrical modulation at 1-2 GB/s is possible. These VCSELs are therefore suitable for multi-GB/s optical

  7. Usage monitoring of electrical devices in a smart home.

    PubMed

    Rahimi, Saba; Chan, Adrian D C; Goubran, Rafik A

    2011-01-01

    Profiling the usage of electrical devices within a smart home can be used as a method for determining an occupant's activities of daily living. A nonintrusive load monitoring system monitors the electrical consumption at a single electrical source (e.g., main electric utility service entry) and the operating schedules of individual devices are determined by disaggregating the composite electrical consumption waveforms. An electrical device's load signature plays a key role in nonintrusive load monitoring systems. A load signature is the unique electrical behaviour of an individual device when it is in operation. This paper proposes a feature-based model, using the real power and reactive power as features for describing the load signatures of individual devices. Experimental results for single device recognition for 7 devices show that the proposed approach can achieve 100% classification accuracy with discriminant analysis using Mahalanobis distances.

  8. Forecasting of the performance of MOS device for space applications

    NASA Technical Reports Server (NTRS)

    Fang, P. H.

    1971-01-01

    Analysis of radiation damage of MOSFET data from Explorer 34 (IMP-F), and radiation damage characteristics of MOSFET with boron diffused between a silicon semiconductor and silicon oxide are considered. The first subject is an interpretation of the discrepancy between the space data and the laboratory data. The second subject is an attempt to analyze the radiation damage characteristic of MOSFET when there is modification of electrical properties in the gate oxide region.

  9. Sintered Cathodes for All-Solid-State Structural Lithium-Ion Batteries

    NASA Technical Reports Server (NTRS)

    Huddleston, William; Dynys, Frederick; Sehirlioglu, Alp

    2017-01-01

    All-solid-state structural lithium ion batteries serve as both structural load-bearing components and as electrical energy storage devices to achieve system level weight savings in aerospace and other transportation applications. This multifunctional design goal is critical for the realization of next generation hybrid or all-electric propulsion systems. Additionally, transitioning to solid state technology improves upon battery safety from previous volatile architectures. This research established baseline solid state processing conditions and performance benchmarks for intercalation-type layered oxide materials for multifunctional application. Under consideration were lithium cobalt oxide and lithium nickel manganese cobalt oxide. Pertinent characteristics such as electrical conductivity, strength, chemical stability, and microstructure were characterized for future application in all-solid-state structural battery cathodes. The study includes characterization by XRD, ICP, SEM, ring-on-ring mechanical testing, and electrical impedance spectroscopy to elucidate optimal processing parameters, material characteristics, and multifunctional performance benchmarks. These findings provide initial conditions for implementing existing cathode materials in load bearing applications.

  10. Enhanced electrical properties of oxide semiconductor thin-film transistors with high conductivity thin layer insertion for the channel region

    NASA Astrophysics Data System (ADS)

    Nguyen, Cam Phu Thi; Raja, Jayapal; Kim, Sunbo; Jang, Kyungsoo; Le, Anh Huy Tuan; Lee, Youn-Jung; Yi, Junsin

    2017-02-01

    This study examined the performance and the stability of indium tin zinc oxide (ITZO) thin film transistors (TFTs) by inserting an ultra-thin indium tin oxide (ITO) layer at the active/insulator interface. The electrical properties of the double channel device (ITO thickness of 5 nm) were improved in comparison with the single channel ITZO or ITO devices. The TFT characteristics of the device with an ITO thickness of less than 5 nm were degraded due to the formation of an island-like morphology and the carriers scattering at the active/insulator interface. The 5 nm-thick ITO inserted ITZO TFTs (optimal condition) exhibited a superior field effect mobility (∼95 cm2/V·s) compared with the ITZO-only TFTs (∼34 cm2/V·s). The best characteristics of the TFT devices with double channel layer are due to the lowest surface roughness (0.14 nm) and contact angle (50.1°) that result in the highest hydrophicility, and the most effective adhesion at the surface. Furthermore, the threshold voltage shifts for the ITO/ITZO double layer device decreased to 0.80 and -2.39 V compared with 6.10 and -6.79 V (for the ITZO only device) under positive and negative bias stress, respectively. The falling rates of EA were 0.38 eV/V and 0.54 eV/V for the ITZO and ITO/ITZO bi-layer devices, respectively. The faster falling rate of the double channel devices suggests that the trap density, including interface trap and semiconductor bulk trap, can be decreased by the ion insertion of a very thin ITO film into the ITZO/SiO2 reference device. These results demonstrate that the double active layer TFT can potentially be applied to the flat panel display.

  11. 21 CFR 876.5270 - Implanted electrical urinary continence device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Implanted electrical urinary continence device... Implanted electrical urinary continence device. (a) Identification. An implanted electrical urinary device is a device intended for treatment of urinary incontinence that consists of a receiver implanted in...

  12. 21 CFR 876.5270 - Implanted electrical urinary continence device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Implanted electrical urinary continence device... Implanted electrical urinary continence device. (a) Identification. An implanted electrical urinary device is a device intended for treatment of urinary incontinence that consists of a receiver implanted in...

  13. 21 CFR 876.5270 - Implanted electrical urinary continence device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Implanted electrical urinary continence device... Implanted electrical urinary continence device. (a) Identification. An implanted electrical urinary device is a device intended for treatment of urinary incontinence that consists of a receiver implanted in...

  14. 21 CFR 876.5270 - Implanted electrical urinary continence device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Implanted electrical urinary continence device... Implanted electrical urinary continence device. (a) Identification. An implanted electrical urinary device is a device intended for treatment of urinary incontinence that consists of a receiver implanted in...

  15. 21 CFR 876.5270 - Implanted electrical urinary continence device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Implanted electrical urinary continence device. (a) Identification. An implanted electrical urinary device is a device intended for treatment of urinary incontinence that consists of a receiver implanted in... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implanted electrical urinary continence device...

  16. US/USSR cooperative program in open-cycle MHD electrical power generation: joint test report No. 4. Tests in the U-25B facility: MHD generator tests No. 6 and 7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Picologlou, B F; Batenin, V M

    1981-01-01

    A description of the main results obtained during Tests No. 6 and 7 at the U-25B Facility using the new channel No. 2 is presented. The purpose of these tests was to operate the MHD generator at its design parameters. Described here are new plasma diagnostic devices: a traversing dual electrical probe for determining distribution of electron concentrations, and a traversing probe that includes a pitot tube for measuring total and static pressure, and a light detector for measuring plasma luminescence. Data are presented on heat flux distribution along the channel, the first data of this type obtained for anmore » MHD facility of such size. Results are given of experimental studies of plasma characteristics, gasdynamic, thermal, and electrical MHD channel performance, and temporal and spatial nonuniformities. Typical modes of operation are analyzed by means of local electrical analyses. Computer models are used to obtain predictions for both localized and overall generator characteristics. These theoretical predictions agree closely with the results of the local analyses, as well as with measurements of the overall gasdynamic and electrical characteristics of the generator.« less

  17. Finite element analysis of a micromechanical deformable mirror device

    NASA Technical Reports Server (NTRS)

    Sheerer, T. J.; Nelson, W. E.; Hornbeck, L. J.

    1989-01-01

    A monolithic spatial light modulator chip was developed consisting of a large number of micrometer-scale mirror cells which can be rotated through an angle by application of an electrostatic field. The field is generated by electronics integral to the chip. The chip has application in photoreceptor based non-impact printing technologies. Chips containing over 16000 cells were fabricated, and were tested to several billions of cycles. Finite Element Analysis (FEA) of the device was used to model both the electrical and mechanical characteristics.

  18. Integration of pyrotechnics into aerospace systems

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J.; Schimmel, Morry L.

    1993-01-01

    The application of pyrotechnics to aerospace systems has been resisted because normal engineering methods cannot be used in design and evaluation. Commonly used approaches for energy sources, such as electrical, hydraulic and pneumatic, do not apply to explosive and pyrotechnic devices. This paper introduces the unique characteristics of pyrotechnic devices, describes how functional evaluations can be conducted, and demonstrates an engineering approach for pyrotechnic integration. Logic is presented that allows evaluation of two basic types of pyrotechnic systems to demonstrate functional margin.

  19. Localized electrical fine tuning of passive microwave and radio frequency devices

    DOEpatents

    Findikoglu, Alp T.

    2001-04-10

    A method and apparatus for the localized electrical fine tuning of passive multiple element microwave or RF devices in which a nonlinear dielectric material is deposited onto predetermined areas of a substrate containing the device. An appropriate electrically conductive material is deposited over predetermined areas of the nonlinear dielectric and the signal line of the device for providing electrical contact with the nonlinear dielectric. Individual, adjustable bias voltages are applied to the electrically conductive material allowing localized electrical fine tuning of the devices. The method of the present invention can be applied to manufactured devices, or can be incorporated into the design of the devices so that it is applied at the time the devices are manufactured. The invention can be configured to provide localized fine tuning for devices including but not limited to coplanar waveguides, slotline devices, stripline devices, and microstrip devices.

  20. Electrical characteristics of TMAH-surface treated Ni/Au/Al2O3/GaN MIS Schottky structures

    NASA Astrophysics Data System (ADS)

    Reddy, M. Siva Pratap; Lee, Jung-Hee; Jang, Ja-Soon

    2014-03-01

    The electrical characteristics and reverse leakage mechanisms of tetramethylammonium hydroxide (TMAH) surface-treated Ni/Au/Al2O3/GaN metal-insulator-semiconductor (MIS) diodes were investigated by using the current-voltage ( I-V) and capacitance-voltage ( C-V) characteristics. The MIS diode was formed on n-GaN after etching the AlGaN in the AlGaN/GaN heterostructures. The TMAH-treated MIS diode showed better Schottky characteristics with a lower ideality factor, higher barrier height and lower reverse leakage current compared to the TMAH-free MIS diode. In addition, the TMAH-free MIS diodes exhibited a transition from Poole-Frenkel emission at low voltages to Schottky emission at high voltages, whereas the TMAH-treated MIS diodes showed Schottky emission over the entire voltage range. Reasonable mechanisms for the improved device-performance characteristics in the TMAH-treated MIS diode are discussed in terms of the decreased interface state density or traps associated with an oxide material and the reduced tunneling probability.

  1. Reevaluation of Performance of Electric Double-layer Capacitors from Constant-current Charge/Discharge and Cyclic Voltammetry

    PubMed Central

    Allagui, Anis; Freeborn, Todd J.; Elwakil, Ahmed S.; Maundy, Brent J.

    2016-01-01

    The electric characteristics of electric-double layer capacitors (EDLCs) are determined by their capacitance which is usually measured in the time domain from constant-current charging/discharging and cyclic voltammetry tests, and from the frequency domain using nonlinear least-squares fitting of spectral impedance. The time-voltage and current-voltage profiles from the first two techniques are commonly treated by assuming ideal SsC behavior in spite of the nonlinear response of the device, which in turn provides inaccurate values for its characteristic metrics. In this paper we revisit the calculation of capacitance, power and energy of EDLCs from the time domain constant-current step response and linear voltage waveform, under the assumption that the device behaves as an equivalent fractional-order circuit consisting of a resistance Rs in series with a constant phase element (CPE(Q, α), with Q being a pseudocapacitance and α a dispersion coefficient). In particular, we show with the derived (Rs, Q, α)-based expressions, that the corresponding nonlinear effects in voltage-time and current-voltage can be encompassed through nonlinear terms function of the coefficient α, which is not possible with the classical RsC model. We validate our formulae with the experimental measurements of different EDLCs. PMID:27934904

  2. Reevaluation of Performance of Electric Double-layer Capacitors from Constant-current Charge/Discharge and Cyclic Voltammetry

    NASA Astrophysics Data System (ADS)

    Allagui, Anis; Freeborn, Todd J.; Elwakil, Ahmed S.; Maundy, Brent J.

    2016-12-01

    The electric characteristics of electric-double layer capacitors (EDLCs) are determined by their capacitance which is usually measured in the time domain from constant-current charging/discharging and cyclic voltammetry tests, and from the frequency domain using nonlinear least-squares fitting of spectral impedance. The time-voltage and current-voltage profiles from the first two techniques are commonly treated by assuming ideal SsC behavior in spite of the nonlinear response of the device, which in turn provides inaccurate values for its characteristic metrics. In this paper we revisit the calculation of capacitance, power and energy of EDLCs from the time domain constant-current step response and linear voltage waveform, under the assumption that the device behaves as an equivalent fractional-order circuit consisting of a resistance Rs in series with a constant phase element (CPE(Q, α), with Q being a pseudocapacitance and α a dispersion coefficient). In particular, we show with the derived (Rs, Q, α)-based expressions, that the corresponding nonlinear effects in voltage-time and current-voltage can be encompassed through nonlinear terms function of the coefficient α, which is not possible with the classical RsC model. We validate our formulae with the experimental measurements of different EDLCs.

  3. Grain Boundary Induced Bias Instability in Soluble Acene-Based Thin-Film Transistors

    PubMed Central

    Nguyen, Ky V.; Payne, Marcia M.; Anthony, John E.; Lee, Jung Hun; Song, Eunjoo; Kang, Boseok; Cho, Kilwon; Lee, Wi Hyoung

    2016-01-01

    Since the grain boundaries (GBs) within the semiconductor layer of organic field-effect transistors (OFETs) have a strong influence on device performance, a substantial number of studies have been devoted to controlling the crystallization characteristics of organic semiconductors. We studied the intrinsic effects of GBs within 5,11-bis(triethylsilylethynyl) anthradithiophene (TES-ADT) thin films on the electrical properties of OFETs. The GB density was easily changed by controlling nulceation event in TES-ADT thin films. When the mixing time was increased, the number of aggregates in as-spun TES-ADT thin films were increased and subsequent exposure of the films to 1,2-dichloroethane vapor led to a significant increase in the number of nuleation sites, thereby increasing the GB density of TES-ADT spherulites. The density of GBs strongly influences the angular spread and crystallographic orientation of TES-ADT spherulites. Accordingly, the FETs with higher GB densities showed much poorer electrical characteristics than devices with lower GB density. Especially, GBs provide charge trapping sites which are responsible for bias-stress driven electrical instability. Dielectric surface treatment with a polystyrene brush layer clarified the GB-induced charge trapping by reducing charge trapping at the semiconductor-dielectric interface. Our study provides an understanding on GB induced bias instability for the development of high performance OFETs. PMID:27615358

  4. Grain Boundary Induced Bias Instability in Soluble Acene-Based Thin-Film Transistors.

    PubMed

    Nguyen, Ky V; Payne, Marcia M; Anthony, John E; Lee, Jung Hun; Song, Eunjoo; Kang, Boseok; Cho, Kilwon; Lee, Wi Hyoung

    2016-09-12

    Since the grain boundaries (GBs) within the semiconductor layer of organic field-effect transistors (OFETs) have a strong influence on device performance, a substantial number of studies have been devoted to controlling the crystallization characteristics of organic semiconductors. We studied the intrinsic effects of GBs within 5,11-bis(triethylsilylethynyl) anthradithiophene (TES-ADT) thin films on the electrical properties of OFETs. The GB density was easily changed by controlling nulceation event in TES-ADT thin films. When the mixing time was increased, the number of aggregates in as-spun TES-ADT thin films were increased and subsequent exposure of the films to 1,2-dichloroethane vapor led to a significant increase in the number of nuleation sites, thereby increasing the GB density of TES-ADT spherulites. The density of GBs strongly influences the angular spread and crystallographic orientation of TES-ADT spherulites. Accordingly, the FETs with higher GB densities showed much poorer electrical characteristics than devices with lower GB density. Especially, GBs provide charge trapping sites which are responsible for bias-stress driven electrical instability. Dielectric surface treatment with a polystyrene brush layer clarified the GB-induced charge trapping by reducing charge trapping at the semiconductor-dielectric interface. Our study provides an understanding on GB induced bias instability for the development of high performance OFETs.

  5. Reevaluation of Performance of Electric Double-layer Capacitors from Constant-current Charge/Discharge and Cyclic Voltammetry.

    PubMed

    Allagui, Anis; Freeborn, Todd J; Elwakil, Ahmed S; Maundy, Brent J

    2016-12-09

    The electric characteristics of electric-double layer capacitors (EDLCs) are determined by their capacitance which is usually measured in the time domain from constant-current charging/discharging and cyclic voltammetry tests, and from the frequency domain using nonlinear least-squares fitting of spectral impedance. The time-voltage and current-voltage profiles from the first two techniques are commonly treated by assuming ideal R s C behavior in spite of the nonlinear response of the device, which in turn provides inaccurate values for its characteristic metrics [corrected]. In this paper we revisit the calculation of capacitance, power and energy of EDLCs from the time domain constant-current step response and linear voltage waveform, under the assumption that the device behaves as an equivalent fractional-order circuit consisting of a resistance R s in series with a constant phase element (CPE(Q, α), with Q being a pseudocapacitance and α a dispersion coefficient). In particular, we show with the derived (R s , Q, α)-based expressions, that the corresponding nonlinear effects in voltage-time and current-voltage can be encompassed through nonlinear terms function of the coefficient α, which is not possible with the classical R s C model. We validate our formulae with the experimental measurements of different EDLCs.

  6. Numerical modeling of high-voltage circuit breaker arcs and their interraction with the power system

    NASA Astrophysics Data System (ADS)

    Orama, Lionel R.

    In this work the interaction between series connected gas and vacuum circuit breaker arcs has been studied. The breakdown phenomena in vacuum interrupters during the post arc current period have been of special interest. Numerical models of gas and vacuum arcs were developed in the form of black box models. Especially, the vacuum post arc model was implemented by combining the existing transition model with an ion density function and expressions for the breakdown mechanisms. The test series studied reflect that for electric fields on the order of 10sp7V/m over the anode, the breakdown of the vacuum gap can result from a combination of both thermal and electrical stresses. For a particular vacuum device, the vacuum model helps to find the interruption limits of the electric field and power density over the anode. The series connection of gas and vacuum interrupters always performs better than the single gas device. Moreover, to take advantage of the good characteristics of both devices, the time between the current zero crossing in each interrupter can be changed. This current zero synchronization is controlled by changing the capacitance in parallel to the gas device. This gas/vacuum interrupter is suitable for interruption of very stressful short circuits in which the product of the dI/dt before current zero and the dV/dt after current zero is very high. Also, a single SF6 interrupter can be replaced by an air circuit breaker of the same voltage rating in series with a vacuum device without compromising the good performance of the SF6 device. Conceptually, a series connected vacuum device can be used for high voltage applications with equal distribution of electrical stresses between the individual interrupters. The equalization can be made by a sequential opening of the individual contact pairs, beginning with the interruptors that are closer to ground potential. This could eliminate the use of grading capacitors.

  7. Measurement system for determination of current-voltage characteristics of PV modules

    NASA Astrophysics Data System (ADS)

    Idzkowski, Adam; Walendziuk, Wojciech; Borawski, Mateusz; Sawicki, Aleksander

    2015-09-01

    The realization of a laboratory stand for testing photovoltaic panels is presented here. The project of the laboratory stand was designed in SolidWorks software. The aim of the project was to control the electrical parameters of a PV panel. For this purpose a meter that measures electrical parameters i.e. voltage, current and power, was realized. The meter was created with the use of LabJack DAQ device and LabVIEW software. The presented results of measurements were obtained in different conditions (variable distance from the source of light, variable tilt angle of the panel). Current voltage characteristics of photovoltaic panel were created and all parameters could be detected in different conditions. The standard uncertainties of sample voltage, current, power measurements were calculated. The paper also gives basic information about power characteristics and efficiency of a solar cell.

  8. Hafnia-based resistive switching devices for non-volatile memory applications and effects of gamma irradiation on device performance

    NASA Astrophysics Data System (ADS)

    Arun, N.; Kumar, K. Vinod; Pathak, A. P.; Avasthi, D. K.; Nageswara Rao, S. V. S.

    2018-04-01

    Non-volatile memory (NVM) devices were fabricated as a Metal- Insulator-Metal (MIM) structures by sandwiching Hafnium dioxide (HfO2) thin film in between two metal electrodes. The top and bottom metal electrodes were deposited by using the thermal evaporation, and the oxide layer was deposited by using the RF magnetron sputtering technique. The Resistive Random Access Memory (RRAM) device structures such as Ag/HfO2/Au/Si were fabricated and I-V characteristics for the pristine and gamma-irradiated devices with a dose 24 kGy were measured. Further we have studied the thermal annealing effects, in the range of 100°-400°C in a tubular furnace for the HfO2/Au/Si samples. The X-ray diffraction (XRD), Rutherford Backscattering Spectrometry (RBS), field emission-scanning electron microscopy (FESEM) analysis measurements were performed to determine the thickness, crystallinity and stoichiometry of these films. The electrical characteristics such as resistive switching, endurance, retention time and switching speed were measured by a semiconductor device analyser. The effects of gamma irradiation on the switching properties of these RRAM devices have been studied.

  9. Revisiting the Characterization of the Losses in Piezoelectric Materials from Impedance Spectroscopy at Resonance.

    PubMed

    González, Amador M; García, Álvaro; Benavente-Peces, César; Pardo, Lorena

    2016-01-26

    Electronic devices using the piezoelectric effect contain piezoelectric materials: often crystals, but in many cases poled ferroelectric ceramics (piezoceramics), polymers or composites. On the one hand, these materials exhibit non-negligible losses, not only dielectric, but also mechanical and piezoelectric. In this work, we made simulations of the effect of the three types of losses in piezoelectric materials on the impedance spectrum at the resonance. We analyze independently each type of loss and show the differences among them. On the other hand, electrical and electronic engineers include piezoelectric sensors in electrical circuits to build devices and need electrical models of the sensor element. Frequently, material scientists and engineers use different languages, and the characteristic material coefficients do not have a straightforward translation to those specific electrical circuit components. To connect both fields of study, we propose the use of accurate methods of characterization from impedance measurements at electromechanical resonance that lead to determination of all types of losses, as an alternative to current standards. We introduce a simplified equivalent circuit model with electrical parameters that account for piezoceramic losses needed for the modeling and design of industrial applications.

  10. Revisiting the Characterization of the Losses in Piezoelectric Materials from Impedance Spectroscopy at Resonance

    PubMed Central

    González, Amador M.; García, Álvaro; Benavente-Peces, César; Pardo, Lorena

    2016-01-01

    Electronic devices using the piezoelectric effect contain piezoelectric materials: often crystals, but in many cases poled ferroelectric ceramics (piezoceramics), polymers or composites. On the one hand, these materials exhibit non-negligible losses, not only dielectric, but also mechanical and piezoelectric. In this work, we made simulations of the effect of the three types of losses in piezoelectric materials on the impedance spectrum at the resonance. We analyze independently each type of loss and show the differences among them. On the other hand, electrical and electronic engineers include piezoelectric sensors in electrical circuits to build devices and need electrical models of the sensor element. Frequently, material scientists and engineers use different languages, and the characteristic material coefficients do not have a straightforward translation to those specific electrical circuit components. To connect both fields of study, we propose the use of accurate methods of characterization from impedance measurements at electromechanical resonance that lead to determination of all types of losses, as an alternative to current standards. We introduce a simplified equivalent circuit model with electrical parameters that account for piezoceramic losses needed for the modeling and design of industrial applications. PMID:28787872

  11. Novel Electrically Tunable Microwave Solenoid Inductor and Compact Phase Shifter Utilizing Permaloy and PZT Thin Films

    DOE PAGES

    Wang, Tengxing; Jiang, Wei; Divan, Ralu; ...

    2017-08-03

    A Permalloy (Py) thin film enabled tunable 3-D solenoid inductor is designed and fabricated. The special configuration of magnetic core is discussed and by selectively patterning Py thin film, the proposed tunable inductor can work at frequency up to several GHz range. The inductance of the solenoid inductor can be electrically tuned by dc current and the tunability is above 10%. Utilizing the implemented Py enabled tunable solenoid inductor and Lead Zirconate Titanate (PZT) thin film enabled metal-insulator-metal (MIM) capacitor, a compact fully electrically tunable lumped elements phase shifter is achieved. The tunable phase shifter has both inductive and capacitivemore » tunability and the dual tunability significantly improves the tuning range and design flexibility. Moreover, the dual tunability is able to retain the equivalent characteristic impedance of the device in the process of the phase being tuned. Here, the phase of the device can be tuned by fully electrical methods and when dc current and dc voltage are provided, the length normalized phase tunability is up to 210°/cm« less

  12. Piezoelectric actuation of helicopter rotor blades

    NASA Astrophysics Data System (ADS)

    Lieven, Nicholas A. J.

    2001-07-01

    The work presented in this paper is concerned with the application of embedded piezo-electric actuators in model helicopter rotor blades. The paper outlines techniques to define the optimal location of actuators to excite particular modes of vibration whilst the blade is rotating. Using composite blades the distribution of strain energy is defined using a Finite Element model with imposed rotor-dynamic and aerodynamics loads. The loads are specified through strip theory to determine the position of maximum bending moment and thus the optimal location of the embedded actuators. The effectiveness of the technique is demonstrated on a 1/4 scale fixed cyclic pitch rotor head. Measurement of the blade displacement is achieved by using strain gauges. In addition a redundant piezo-electric actuator is used to measure the blades' response characteristics. The addition of piezo-electric devices in this application has been shown to exhibit adverse aeroelastic effects, such as counter mass balancing and increased drag. Methods to minimise these effects are suggested. The outcome of the paper is a method for defining the location and orientation of piezo-electric devices in rotor-dynamic applications.

  13. Analysis of electrical characteristics and proposal of design guide for ultra-scaled nanoplate vertical FET and 6T-SRAM

    NASA Astrophysics Data System (ADS)

    Seo, Youngsoo; Kim, Shinkeun; Ko, Kyul; Woo, Changbeom; Kim, Minsoo; Lee, Jangkyu; Kang, Myounggon; Shin, Hyungcheol

    2018-02-01

    In this paper, electrical characteristics of gate-all-around (GAA) nanoplate (NP) vertical FET (VFET) were analyzed for single transistor and 6T-SRAM cell through 3D technology computer-aided design (TCAD) simulation. In VFET, gate and extension lengths are not limited by the area of device because theses lengths are vertically located. The height of NP is assumed in 40 nm considering device fabrication method (top-down approach). According to the sizes of devices, we analyzed the performances of device such as total resistance, capacitance, intrinsic gate delay, sub-threshold swing (S.S), drain-induced barrier lowering (DIBL) and static noise margin (SNM). As the gate length becomes larger, the resistance should be smaller because the total height of NP is fixed in 40 nm. Also, when the channel thickness becomes thicker, the total resistance becomes smaller since the sheet resistances of channel and extension become smaller and the contact resistance becomes smaller due to the increasing contact area. In addition, as the length of channel pitch increases, the parasitic capacitance comes to be larger due to the increasing area of gate-drain and gate-source. The performance of RC delay is best in the shortest gate length (12 nm), the thickest channel (6 nm) and the shortest channel pitch (17 nm) owing to the reduced resistance and parasitic capacitance. However, the other performances such as DIBL, S.S, on/off ratio and SNM are worst because the short channel effect is highest in this situation. Also, we investigated the performance of the multi-channel device. As the number of channels increases, the performance of device and the reliability of SRAM improve because of reduced contact resistance, increased gate dimension and multi-channel compensation effect.

  14. Post-breakdown secondary discharges at the electrode/dielectric interface of a cylindrical barrier discharge

    NASA Astrophysics Data System (ADS)

    Carman, Robert; Ward, Barry; Kane, Deborah

    2011-10-01

    The electrical breakdown characteristics of a double-walled cylindrical dielectric barrier discharge (DBD) lamp with a neon buffer gas under pulsed voltage excitation have been investigated. Following the formation of plasma in the main discharge gap, we have observed secondary breakdown phenomena at the inner and outer mesh electrode/dielectric interfaces under specific operating conditions. Plasma formation at these interfaces is investigated by monitoring the Ozone production rate in controlled flows of ultra high purity oxygen together with the overall electrical voltage-charge characteristics of the lamp. The results show that this secondary breakdown only occurs after the main discharge plasma has been established, and that significant electrical power may be dissipated in generating these spurious secondary plasmas. The results are important with regards to optimising the design and identifying efficient operating regimes of DBD based devices that employ mesh-type or wire/strip electrodes.

  15. Neutron, gamma ray, and temperature effects on the electrical characteristics of thyristors

    NASA Technical Reports Server (NTRS)

    Frasca, A. J.; Schwarze, G. E.

    1992-01-01

    Experimental data showing the effects of neutrons, gamma rays, and temperature on the electrical and switching characteristics of phase-control and inverter-type SCR's are presented. The special test fixture built for mounting, heating, and instrumenting the test devices is described. Four SCR's were neutron irradiated at 300 K and four at 365 K for fluences up to 3.2 x 10 exp 13 n/sq. cm, and eight were gamma irradiated at 300 K only for gamma doses up to 5.1 Mrads. The electrical measurements were made during irradiation and the switching measurements were made only before and after irradiation. Radiation induced crystal defects, resulting primarily from fast neutrons, caused the reduction of minority carrier lifetime through the generation of R-G centers. The reduction in lifetime caused increases in the on-state voltage drop and in the reverse and forward leakage currents, and decreases in the turn-off time.

  16. Neutron, gamma ray, and temperature effects on the electrical characteristics of thyristors

    NASA Technical Reports Server (NTRS)

    Frasca, A. J.; Schwarze, G. E.

    1992-01-01

    Experimental data showing the effects of neutrons, gamma rays, and temperature on the electrical and switching characteristics of phase-control and inverter-type SCR's are presented. The special test fixture built for mounting, heating, and instrumenting the test devices is described. Four SCR's were neutron irradiated at 300 K and four at 365 K for fluences up to 3.2 x 10 exp 13 pn/sq. cm, and eight were gamma irradiated at 300 K only for gamma doses up to 5.1 Mrads. The electrical measurements were made during irradiation and the switching measurements were made only before and after irradiation. Radiation induced crystal defects, resulting primarily from fast neutrons, caused the reduction of minority carrier lifetime through the generation of R-G centers. The reduction in lifetime caused increases in the on-state voltage drop and in the reverse and forward leakage currents, and decreases in the turn-off time.

  17. Nanocrystal-mediated charge screening effects in nanowire field-effect transistors

    NASA Astrophysics Data System (ADS)

    Yoon, C. J.; Yeom, D. H.; Jeong, D. Y.; Lee, M. G.; Moon, B. M.; Kim, S. S.; Choi, C. Y.; Koo, S. M.

    2009-03-01

    ZnO nanowire field-effect transistors having an omega-shaped floating gate (OSFG) have been successfully fabricated by directly coating CdTe nanocrystals (˜6±2.5 nm) at room temperature, and compared to simultaneously prepared control devices without nanocrystals. Herein, we demonstrate that channel punchthrough may occur when the depletion from the OSFG takes place due to the trapped charges in the nanocrystals. Electrical measurements on the OSFG nanowire devices showed static-induction transistorlike behavior in the drain output IDS-VDS characteristics and a hysteresis window as large as ˜3.1 V in the gate transfer IDS-VGS characteristics. This behavior is ascribed to the presence of the CdTe nanocrystals, and is indicative of the trapping and emission of electrons in the nanocrystals. The numerical simulations clearly show qualitatively the same characteristics as the experimental data and confirm the effect, showing that the change in the potential distribution across the channel, induced by both the wrapping-around gate and the drain, affects the transport characteristics of the device. The cross-sectional energy band and potential profile of the OSFG channel corresponding to the "programed (noncharged)" and "erased (charged)" operations for the device are also discussed on the basis of the numerical capacitance-voltage simulations.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jabbar, Muhandis Abdul, E-mail: muhandis.abdul@sci.ui.ac.id; Prawito

    A solar cell is one of many alternative energy which is still being developed and it works by converting sunlight into electricity. In order to use a solar cell, a deep knowledge about the solar cell’s characteristics is needed. The current and voltage (I-V) produced when the light hits the solar cell surface with a certain value of intensity and at a certain value of temperature becomes the basic study to determine solar cell characteristics. In the past decade, there were so many developments of devices to characterize solar cells and solar panels. One of them used a MOSFET devicemore » for varying electronic load to observe solar cell current and voltage responses. However, many devices which have been developed even device on the market using many expensive tools and quite complex. Therefore in this research, a simple low cost electronic controlled device for solar cell characterization is built based on MOSFET method and a microcontroller but still has high reliability and accuracy.« less

  19. Effect of variations in the doping profiles on the properties of doped multiple quantum well avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Menkara, H. M.; Wagner, B. K.; Summers, C. J.

    1996-01-01

    The purpose of this study is to use both theoretical and experimental evidence to determine the impact of doping imbalance and symmetry on the physical and electrical characteristics of doped multiple quantum well avalanche photodiodes (APD). Theoretical models have been developed to calculate the electric field valence and conduction bands, capacitance-voltage (CV), and carrier concentration versus depletion depth profiles. The models showed a strong correlation between the p- and n-doping balance inside the GaAs wells and the number of depleted stages and breakdown voltage of the APD. A periodic doping imbalance in the wells has been shown to result in a gradual increase (or decrease) in the electric field profile throughout the device which gave rise to partially depleted devices at low bias. The MQW APD structures that we modeled consisted of a 1 micron top p(+)-doped (3 x 10(exp 18) cm(exp -3)) GaAs layer followed by a 1 micron region of alternating layers of GaAs (500 A) and Al(0.42)Ga(0.58)As (500 A), and a 1 micron n(+) back layer (3 x 10(exp 18) cm(exp -3)). The GaAs wells were doped with p-i-n layers placed at the center of each well. The simulation results showed that in an APD with nine doped wells, and where the 50 A p-doped layer is off by 10% (p = 1.65 x 10(exp 18) cm(exp -3), n = 1.5 x 10(exp 18) cm(exp -3)), almost half of the MQW stages were shown to be undepleted at low bias which was a result of a reduction in the electric field near the p(+) cap layer by over 50% from its value in the balanced structure. Experimental CV and IV data on similar MBE grown MQW structures have shown very similar depletion and breakdown characteristics. The models have enabled us to better interpret our experimental data and to determine both the extent of the doping imbalances in the devices as well as the overall p- or n-type doping characteristics of the structures.

  20. Operation mode switchable charge-trap memory based on few-layer MoS2

    NASA Astrophysics Data System (ADS)

    Hou, Xiang; Yan, Xiao; Liu, Chunsen; Ding, Shijin; Zhang, David Wei; Zhou, Peng

    2018-03-01

    Ultrathin layered two-dimensional (2D) semiconductors like MoS2 and WSe2 have received a lot of attention because of their excellent electrical properties and potential applications in electronic devices. We demonstrate a charge-trap memory with two different tunable operation modes based on a few-layer MoS2 channel and an Al2O3/HfO2/Al2O3 charge storage stack. Our device shows excellent memory properties under the traditional three-terminal operation mode. More importantly, unlike conventional charge-trap devices, this device can also realize the memory performance with just two terminals (drain and source) because of the unique atomic crystal electrical characteristics. Under the two-terminal operation mode, the erase/program current ratio can reach up to 104 with a stable retention property. Our study indicates that the conventional charge-trap memory cell can also realize the memory performance without the gate terminal based on novel two dimensional materials, which is meaningful for low power consumption and high integration density applications.

  1. Correlation between ambient air and continuous bending stress for the electrical reliability of flexible pentacene-based thin-film transistors

    NASA Astrophysics Data System (ADS)

    Fan, Ching-Lin; Lin, Wei-Chun; Peng, Han-Hsing; Lin, Yu-Zuo; Huang, Bohr-Ran

    2015-01-01

    This study investigated how continuous bending stress affects the electrical characteristics of pentacene-based organic thin-film transistors (OTFTs) with poly(4-vinylphenol) (PVP) gate insulator in a vacuum and in ambient air. In tension mode, the strain direction of the fabricated devices was perpendicular to the device channel length. The OTFT devices that were bent in a vacuum exhibited a decreased on current because of cracking in the pentacene channel layer, which can obstruct the transport of charge carriers and deteriorate the on current of the OTFTs. The OTFT devices that were bent in ambient air exhibited a slightly decreased on current and considerably increased off current and subthreshold swing (SS). It was assumed that air moisture passed through the pentacene cracks into the interface between the PVP and pentacene layer, thereby yielding an increase in polar moisture traps, and leading to an increase in the conductivity of the pentacene, thus yielding a slightly decreased on current and considerably increased off current and SS.

  2. Electrical and Optical Properties of Green Polymer Light Emitting Diodes with Various Structures of Au Nanoparticles.

    PubMed

    Park, Byung Min; Kim, Gi Ppeum; Mun, Sae Chan; Chang, Ho Jung

    2015-10-01

    The green polymer light emitting diodes (PLEDs) were fabricated using the solution precursor synthesis method. To improve the device's electrical. and optical properties, gold (Au) nanoparticles (NPs) were added to the hole injection layer (HIL) with poly(3,4-ethylene- dioxythiophene):poly(styrenesulfolnate) ( PSS) organic material. The green PLED devices with a structure of glass/ITO/PEDOT:PSS+Au NPs/PVK:Ir(ppy)3/TPBi/LiF/Al were prepared by conventional spin-coating and thermal evaporation methods. Various concentrations of Au NPs were doped to the HILs to optimize the device's light emitting characteristic. The effects of Au NPs concentrations on the properties of PLEDs were investigated. The doping concentrations of Au NPs were changed ranging from 0.0 to 1.0 vol%. At the optimized Au NPs concentration of 0.5 vol%, we also studied the effects of various film layers with and without Au NPs on the properties of PLEDs. The maximum luminance and external quantum efficiency of the devices were found to be 20,430 cd/m2 and 7.49%, respectively.

  3. Repetitive Transcranial Magnetic Stimulator with Controllable Pulse Parameters

    PubMed Central

    Peterchev, Angel V; Murphy, David L; Lisanby, Sarah H

    2013-01-01

    The characteristics of transcranial magnetic stimulation (TMS) pulses influence the physiological effect of TMS. However, available TMS devices allow very limited adjustment of the pulse parameters. We describe a novel TMS device that uses a circuit topology incorporating two energy storage capacitors and two insulated-gate bipolar transistor (IGBT) modules to generate near-rectangular electric field pulses with adjustable number, polarity, duration, and amplitude of the pulse phases. This controllable pulse parameter TMS (cTMS) device can induce electric field pulses with phase widths of 10–310 μs and positive/negative phase amplitude ratio of 1–56. Compared to conventional monophasic and biphasic TMS, cTMS reduces energy dissipation by up to 82% and 57%, and decreases coil heating by up to 33% and 41%, respectively. We demonstrate repetitive TMS trains of 3,000 pulses at frequencies up to 50 Hz with electric field pulse amplitude and width variability less than the measurement resolution (1.7% and 1%, respectively). Offering flexible pulse parameter adjustment and reduced power consumption and coil heating, cTMS enhances existing TMS paradigms, enables novel research applications, and could lead to clinical applications with potentially enhanced potency. PMID:21540487

  4. Extracting cancer cell line electrochemical parameters at the single cell level using a microfabricated device.

    PubMed

    Alqabandi, Jassim A; Abdel-Motal, Ussama M; Youcef-Toumi, Kamal

    2009-02-01

    Cancer cells have distinctive electrochemical properties. This work sheds light on the system design aspects and key challenges that should be considered when experimentally analyzing and extracting the electrical characteristics of a tumor cell line. In this study, we developed a cellularbased functional microfabricated device using lithography technology. This device was used to investigate the electrochemical parameters of cultured cancer cells at the single-cell level. Using impedance spectroscopy analyses, we determined the average specific capacitance and resistance of the membrane of the cancer cell line B16-F10 to be 1.154 +/- 0.29 microF/cm(2), and 3.9 +/- 1.15 KOmega.cm(2) (mean +/- SEM, n =14 cells), respectively. The consistency of our findings via different trails manifests the legitimacy of our experimental procedure. Furthermore, the data were compared with a proposed constructed analytical-circuit model. The results of this work may greatly assist researchers in defining an optimal procedure while extracting electrical properties of cancer cells. Detecting electrical signals at the single cell level could lead to the development of novel approaches for analysis of malignant cells in human tissues and biopsies.

  5. Quantum well infrared photodetectors (QWIP) with selectively regrown N-GaAs plugs

    NASA Astrophysics Data System (ADS)

    Matsukura, Yusuke; Nishino, Hironori; Tanaka, Hitoshi; Fujii, Toshio

    2001-10-01

    We fabricated the GaAs/AlGaAs Quantum Well Infrared Photo detector (QWIP) focal plane array with selectively re-grown N- GaAs interconnection plugs and demonstrated its device operation, in order to establish the technology to obtain both complex device functions and device manufacturability. MBE (Molecular Beam Epitaxy) grown QWIP MQW wafers were covered with SiON and SiNx mask films to obtain selectivity of the re-growth process. N-GaAs plugs were re-grown selectively with low-pressure MOCVD (Metal-Organic Chemical Vapor Deposition) with AsH3 and Dimethylgalliumchloride as precursors, only on the bottom surfaces of the holes for the interconnection to extract the electrodes from the underlying epilayer. Cross- sectional SEM observation revealed that the feature of the re- grown N-GaAs plugs was triangular, rather than rectangular as expected. The reason for this discrepancy is not yet clear. The electrical contact between the epilayer and re-grown N- GaAs plug was 'ohmic-like,' without any trace of interfacial barrier. The Current-Voltage characteristics of the fabricated QWIP device showed no tangible leakage current between the N- GaAs plug and device structure, indicating that electrical insulation between the N-GaAs plugs and device structure was sufficient. Fabricated devices were successfully operated as a hybrid focal plane array, indicating the selective re-growth was a promising technique to realize complex QWIP based devices.

  6. Resistive switching effect in the planar structure of all-printed, flexible and rewritable memory device based on advanced 2D nanocomposite of graphene quantum dots and white graphene flakes

    NASA Astrophysics Data System (ADS)

    Muqeet Rehman, Muhammad; Uddin Siddiqui, Ghayas; Kim, Sowon; Choi, Kyung Hyun

    2017-08-01

    Pursuit of the most appropriate materials and fabrication methods is essential for developing a reliable, rewritable and flexible memory device. In this study, we have proposed an advanced 2D nanocomposite of white graphene (hBN) flakes embedded with graphene quantum dots (GQDs) as the functional layer of a flexible memory device owing to their unique electrical, chemical and mechanical properties. Unlike the typical sandwich type structure of a memory device, we developed a cost effective planar structure, to simplify device fabrication and prevent sneak current. The entire device fabrication was carried out using printing technology followed by encapsulation in an atomically thin layer of aluminum oxide (Al2O3) for protection against environmental humidity. The proposed memory device exhibited attractive bipolar switching characteristics of high switching ratio, large electrical endurance and enhanced lifetime, without any crosstalk between adjacent memory cells. The as-fabricated device showed excellent durability for several bending cycles at various bending diameters without any degradation in bistable resistive states. The memory mechanism was deduced to be conductive filamentary; this was validated by illustrating the temperature dependence of bistable resistive states. Our obtained results pave the way for the execution of promising 2D material based next generation flexible and non-volatile memory (NVM) applications.

  7. Flexural plate wave devices fabricated from silicon carbide membrane

    NASA Astrophysics Data System (ADS)

    Diagne, Ndeye Fama

    Flexural Plate Wave (FPW) devices fabricated from Silicon Carbide (SiC) membranes are presented here which exhibit electrical and mechanical characteristics in its transfer functions that makes it very useful as a low voltage probe device capable of functioning in small areas that are commonly inaccessible to ordinary devices. The low input impedance characteristic of this current driven device makes it possible for it to operate at very low voltages, thereby reducing the hazards for flammable or explosive areas to be probed. The Flexural Plate Wave (FPW) devices are of a family of gravimetric type sensors that permit direct measurements of the mass of the vibrating element. The primary objective was to study the suitability of Silicon Carbide (SiC) membranes as a replacement of Silicon Nitride (SiN) membrane in flexural plate wave devices developed by Sandia National Laboratories. Fabrication of the Flexural Plate Wave devices involves the overlaying a silicon wafer with membranes of 3C-SiC thin film upon which conducting meander lines are placed. The input excitation energy is in the form of an input current. The lines of current along the direction of the conducting Meander Lines Transducer (MLTs) and the applied perpendicular external magnetic field set up a mechanical wave perpendicular to both, exciting the membrane by means of a Lorentz force, which in turn sets up flexural waves that propagate along the thin membrane. The physical dimensions, the mass density, the tension in the membrane and the meander spacing are physical characteristics that determine resonance frequency of the Flexural Plate Wave (FPW) device. Of primary interest is the determination of the resonant frequency of the silicon carbide membrane as functions of the device physical characteristic parameters. The appropriate transduction scheme with Meander Line Transducers (IDTs) are used to excite the membrane. Equivalent circuit models characterizing the reflection response S11 (amplitude and phase) for a one-port Flexural PlateWave device and the transmission response S21 of a two-port device are used for the development of the equivalent mechanical characteristics.

  8. Charge transport mechanism in p-type copper ion containing triazine thiolate metallopolymer thin film devices

    NASA Astrophysics Data System (ADS)

    K, Deepak; Roy, Amit; Anjaneyulu, P.; Kandaiah, Sakthivel; Pinjare, Sampatrao L.

    2017-10-01

    The charge transport mechanism in copper ions containing 1,3,5-Triazine-2,4,6-trithiolate (CuTCA) based polymer device in sandwich (Ag/CuTCA/Cu) geometry is studied. The current-voltage (I-V) characteristics of the metallopolymer CuTCA device have shown a transition in the charge transport mechanism from Ohmic to Space-charge limited conduction when temperature and voltage are varied. The carriers in CuTCA devices exhibit hopping transport, in which carriers hop from one site to the other. The hole mobility in this polymer device is found to be dependent on electric field E ( μpα√{E } ) and temperature, which suggests that the polymer has inherent disorder. The electric-field coefficient γ and zero-field mobility μ0 are temperature dependent. The values of mobility and activation energies are estimated from temperature (90-140 K) dependent charge transport studies and found to be in the range of 1 × 10-11-8 × 10-12 m2/(V s) and 16.5 meV, respectively. Temperature dependent electric-field coefficient γ is in the order of 17.8 × 10-4 (m/V)1/2, and the value of zero-field mobility μ0 is in the order of 1.2 × 10-11 m2/(V s) at 140 K. A constant phase element (Q) is used to model the device parameters, which are extracted using the Impedance spectroscopy technique. The bandgap of the polymer is estimated to be 2.6 eV from UV-Vis reflectance spectra.

  9. Design-Oriented Introduction of Nanotechnology into the Electrical and Computer Engineering Curriculum

    ERIC Educational Resources Information Center

    Kim, Donghwi; Kamoua, Ridha; Pacelli, Andrea

    2006-01-01

    Nanoelectronics has the potential, and is indeed expected, to revolutionize information technology by the use of the impressive characteristics of nano-devices such as carbon nanotube transistors, molecular diodes and transistors, etc. A great effort is being put into creating an introductory course in nano-technology. However, practically all…

  10. Temperature dependent electrical properties of polyaniline film grown on paper through aniline vapor polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deb, K.; Bera, A.; Saha, B., E-mail: biswajit.physics@gmail.com

    2016-05-23

    Polyaniline thin film has been prepared on paper by aniline vapor deposition technique. Ferric chloride has been used as polymerizing agent in this approach. The prepared films were studied through electrical resistivity and optical properties measurements. The electrical resistivity of the polyaniline film shows significant temperature dependence. The resistance sharply falls with the increase in temperature. The optical absorbance measurements shows characteristics absorbance peak indicating the formation of conducting emeraldine salt form of polyaniline. The optical energy band gap of the film was calculated from the transmittance spectra. The optical energy band gap and electrical conductivity of the polyaniline filmmore » is well suited for their applications in electronic devices.« less

  11. Modulation of resistive switching characteristics for individual BaTiO3 microfiber by surface oxygen vacancies

    NASA Astrophysics Data System (ADS)

    Miao, Zhilei; Chen, Lei; Zhou, Fang; Wang, Qiang

    2018-01-01

    Different from traditional thin-film BaTiO3 (BTO) RRAM device with planar structure, individual microfiber-shaped RRAM device, showing promising application potentials in the micro-sized non-volatile memory system, has not been investigated so far to demonstrate resistive switching behavior. In this work, individual sol-gel BTO microfiber has been formed using the draw-bench method, followed by annealing in different atmospheres of air and argon, respectively. The resistive switching characteristics of the individual BTO microfiber have been investigated by employing double-probe SEM measurement system, which shows great convenience to test local electrical properties by modulating the contact sites between the W probes and the BTO microfiber. For the sample annealed in air, the average resistive ON/OFF ratio is as high as 108, enhanced about four orders in comparison with the counterpart that annealed in Argon. For the sample annealed in argon ambience, the weakened resistive ON/OFF ratio can be attributed to the increased presence of oxygen vacancies in the surface of BTO fibers, and the underlying electrical conduction mechanisms are also discussed.

  12. A hybrid ferroelectric-flash memory cells

    NASA Astrophysics Data System (ADS)

    Park, Jae Hyo; Byun, Chang Woo; Seok, Ki Hwan; Kim, Hyung Yoon; Chae, Hee Jae; Lee, Sol Kyu; Son, Se Wan; Ahn, Donghwan; Joo, Seung Ki

    2014-09-01

    A ferroelectric-flash (F-flash) memory cells having a metal-ferroelectric-nitride-oxynitride-silicon structure are demonstrated, and the ferroelectric materials were perovskite-dominated Pb(Zr,Ti)O3 (PZT) crystallized by Pt gate electrode. The PZT thin-film as a blocking layer improves electrical and memorial performance where programming and erasing mechanism are different from the metal-ferroelectric-insulator-semiconductor device or the conventional silicon-oxide-nitride-oxide-silicon device. F-flash cells exhibit not only the excellent electrical transistor performance, having 442.7 cm2 V-1 s-1 of field-effect mobility, 190 mV dec-1 of substhreshold slope, and 8 × 105 on/off drain current ratio, but also a high reliable memory characteristics, having a large memory window (6.5 V), low-operating voltage (0 to -5 V), faster P/E switching speed (50/500 μs), long retention time (>10 years), and excellent fatigue P/E cycle (>105) due to the boosting effect, amplification effect, and energy band distortion of nitride from the large polarization. All these characteristics correspond to the best performances among conventional flash cells reported so far.

  13. Chemical Doping Effects in Multilayer MoS2 and its Application in Complementary Inverter.

    PubMed

    Yoo, Hocheon; Hong, Seongin; On, Sungmin; Ahn, Hyungju; Lee, Han-Koo; Hong, Young Ki; Kim, Sunkook; Kim, Jae-Joon

    2018-06-19

    Multilayer MoS2 has been gaining interests as a new semiconducting material for flexible displays, memory devices, chemical/bio sensors, and photodetectors. However, conventional multilayer MoS2 devices have exhibited limited performances due to the Schottky barrier (SB) and defects. Here, we demonstrate PDPP3T doping effects in multilayer MoS2, which results in improved electrical characteristics (~3.2X mobility compared to the baseline and a high current on/off ratio of 106). Synchrotron-based study using X-ray photoelectron spectroscopy (XPS) and grazing-incidence wide-angle X-ray diffraction (GIWAXD) provides mechanisms that align the edge-on crystallites (97.5 %) of the PDPP3T as well as a larger interaction with MoS2 that leads to dipole and charge transfer effects (at annealing temperature of 300 °C), which support the observed enhancement of the electrical characteristics. Furthermore, we demonstrate a hybrid CMOS inverter using the PDPP3T-doped MoS2 and organic DNTT transistors as n- and p-channels, respectively. The proposed hybrid inverter offers an ultra-high voltage gain of ~205 V/V.

  14. Changes in the performance characteristics of a GaAs near infrared light emitting diode when exposed to various current and thermal stresses

    NASA Technical Reports Server (NTRS)

    Thomas, E. F., Jr.

    1974-01-01

    The changes that occurred in the optical and electrical characteristics of a near infrared, GaAs light emitting diode, when operated under various levels and combinations of current and thermal stresses are discussed. A total of forty parts were operated for two thousand hours under eight different sets of dc current and ambient temperature conditions. Degradation in the radiant optical power of these devices was thirty-four percent when operated at their rated current and an ambient temperature of 298K (25 C). Derating the current and/or the thermal stress reduced the degradation of this parameter in approximately a linear manner. All degraded devices behaved similarly, exhibiting rapid nonlinear degradation followed by a gradual linear degradation and finally a period of stable operation. An attempt was made to correlate initial device condition to degradation during stress testing, but met with little success.

  15. Electrical characteristics of proton-irradiated Sc2O3 passivated AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Luo, B.; Kim, Jihyun; Ren, F.; Gillespie, J. K.; Fitch, R. C.; Sewell, J.; Dettmer, R.; Via, G. D.; Crespo, A.; Jenkins, T. J.; Gila, B. P.; Onstine, A. H.; Allums, K. K.; Abernathy, C. R.; Pearton, S. J.; Dwivedi, R.; Fogarty, T. N.; Wilkins, R.

    2003-03-01

    Sc2O3-passivated AlGaN/GaN high electron mobility transistors (HEMTs) were irradiated with 40 MeV protons to a fluence corresponding to approximately 10 years in low-earth orbit (5×109 cm-2). Devices with an AlGaN cap layer showed less degradation in dc characteristics than comparable GaN-cap devices, consistent with differences in average band energy. The changes in device performance could be attributed completely to bulk trapping effects, demonstrating that the effectiveness of the Sc2O3 layers in passivating surface states in the drain-source region was undiminished by the proton irradiation. Sc2O3-passivated AlGaN/HEMTs appear to be attractive candidates for space and terrestrial applications where resistance to high fluxes of ionizing radiation is a criteria.

  16. Electrical Characteristics of Organic Field Effect Transistor Formed by Gas Treatment of High-k Al2O3 at Low Temperature

    NASA Astrophysics Data System (ADS)

    Lee, Sunwoo; Yoon, Seungki; Park, In-Sung; Ahn, Jinho

    2009-04-01

    We studied the electrical characteristics of an organic field effect transistor (OFET) formed by the hydrogen (H2) and nitrogen (N2) mixed gas treatment of a gate dielectric layer. We also investigated how device mobility is related to the length and width variations of the channel. Aluminum oxide (Al2O3) was used as the gate dielectric layer. After the treatment, the mobility and subthreshold swing were observed to be significantly improved by the decreased hole carrier localization at the interfacial layer between the gate oxide and pentacene channel layers. H2 gas plays an important role in removing the defects of the gate oxide layer at temperatures below 100 °C.

  17. Performance of Electricity Generation from Bryophyllum Leaf for Practical Utilisation

    NASA Astrophysics Data System (ADS)

    Khan, Md. Kamrul Alam

    2017-01-01

    Constructing an affordable cost, environment friendly simplified electrical energy source with Pathor Kuchi Leaf (PKL) for power electrifications which will significantly upgrade the life style of 1.6 billion people especially, who live in rural areas of Bangladesh. However, one fifth of the world's population still lack access to electricity-well, mainly in Sub-Saharan Africa and South Asia (Bangladesh, India, Sri Lanka, Pakistan, Nepal and Bhutan). This innovative technology will meet essential requirements as lighting, telecommunication as well as information access. Electrodes are put into the Bryophyllum Pinnatum Leaf (BPL) or Pathor Kuchi Leaf (PKL) sap and they produce substantially sufficient amount of electricity to power energy consumed electronics and electrical appliances. CuSO4.5H2O solution is used as a secondary salt. The role of CuSO4.5H2O solution has been studied. The electrical and chemical properties, a very important factor for PKL electricity generation device have been studied in this research work. The electrical properties are: internal resistance, voltage regulation, energy efficiency, pulse performance, self discharge characteristics, discharge characteristics with load, capacity of the PKL cell, temperature characteristics and life cycle of the PKL cell. The chemical properties are: variation of voltage, current with the variation of [Zn2+], [Cu2+] and time. The performance of the production of the two bi-products (fertilizer and hydrogen gas production) has been studied. Variation of concentration of Zn2+ and Cu2+ with the variation of percentage of the I am grateful to the authority of the Science and technology ministry,Bangladesh for financial support during the research work.

  18. Tunneling and Origin of Large Access Resistance in Layered-Crystal Organic Transistors

    NASA Astrophysics Data System (ADS)

    Hamai, Takamasa; Arai, Shunto; Minemawari, Hiromi; Inoue, Satoru; Kumai, Reiji; Hasegawa, Tatsuo

    2017-11-01

    Layered crystallinity of organic semiconductors is crucial to obtaining high-performance organic thin-film transistors (OTFTs), as it allows both smooth-channel-gate-insulator interface formation and efficient two-dimensional carrier transport along the interface. However, the role of vertical transport across the crystalline molecular layers in device operations has not been a crucial subject so far. Here, we show that the interlayer carrier transport causes unusual nonlinear current-voltage characteristics and enormous access resistance in extremely high-quality single-crystal OTFTs based on 2-decyl-7-phenyl[1]-benzothieno[3 ,2 -b ][1]benzothiophene (Ph -BTBT -C10 ) that involve inherent multiple semiconducting π -conjugated layers interposed, respectively, by electrically inert alkyl-chain layers. The output characteristics present layer-number (n )-dependent nonlinearity that becomes more evident at larger n (1 ≤n ≤15 ), demonstrating tunneling across multiple alkyl-chain layers. The n -dependent device mobility and four-probe measurements reveal that the alkyl-chain layers generate a large access resistance that suppresses the device mobility from the intrinsic value of about 20 cm2 V-1 s-1 . Our findings clarify the reason why device characteristics are distributed in single-crystal OTFTs.

  19. Thermal phase separation of ZrSiO4 thin films and frequency- dependent electrical characteristics of the Al/ZrSiO4/p-Si/Al MOS capacitors

    NASA Astrophysics Data System (ADS)

    Lok, R.; Kaya, S.; Yilmaz, E.

    2018-05-01

    In this work, the thermal phase separation and annealing optimization of ZrSiO4 thin films have been carried out. Following annealing optimization, the frequency-dependent electrical characteristics of the Al/ZrSiO4/p-Si/Al MOS capacitors were investigated in detail. The chemical evolution of the films under various annealing temperatures was determined by Fourier transform infrared spectroscopy (FTIR) measurements. The phase separation was determined by x-ray diffraction (XRD) measurements. The electrical parameters were determined via the capacitance–voltage (C–V), conductance–voltage (G/ω) and leakage-current–voltage (Ig–Vg ). The results demonstrate that zirconium silicate formations are present at 1000 °C annealing with the SiO2 interfacial layer. The film was in amorphous form after annealing at 250 °C. The tetragonal phases of ZrO2 were obtained after annealing at 500 °C. When the temperature approaches 750 °C, transitions from the tetragonal phase to the monoclinic phase were observed. The obtained XRD peaks after 1000 °C annealing matched the crystalline peaks of ZrSiO4. This means that the crystalline zirconium dioxide in the structure has been converted into a crystalline silicate phase. The interface states increased to 5.71 × 1010 and the number of border traps decreased to 7.18 × 1010 cm‑2 with the increasing temperature. These results indicate that an excellent ZrSiO4/Si interface has been fabricated. The order of the leakage current varied from 10‑9 Acm‑2 to 10‑6 Acm‑2. The MOS capacitor fabricated with the films annealed at 1000 °C shows better behavior in terms of its structural, chemical and electrical properties. Hence, detailed frequency-dependent electrical characteristics were performed for the ZrSiO4 thin film annealed at 1000 °C. Very slight capacitance variations were observed under the frequency variations. This shows that the density of frequency-dependent charges is very low at the ZrSiO4/Si interface. The barrier height of the device varies slightly from 0.776 eV to 0.827 eV under frequency dispersion. Briefly, it is concluded that the devices annealed at 1000 °C exhibit promising electrical characteristics.

  20. Method for extracting relevant electrical parameters from graphene field-effect transistors using a physical model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boscá, A., E-mail: alberto.bosca@upm.es; Dpto. de Ingeniería Electrónica, E.T.S.I. de Telecomunicación, Universidad Politécnica de Madrid, Madrid 28040; Pedrós, J.

    2015-01-28

    Due to its intrinsic high mobility, graphene has proved to be a suitable material for high-speed electronics, where graphene field-effect transistor (GFET) has shown excellent properties. In this work, we present a method for extracting relevant electrical parameters from GFET devices using a simple electrical characterization and a model fitting. With experimental data from the device output characteristics, the method allows to calculate parameters such as the mobility, the contact resistance, and the fixed charge. Differentiated electron and hole mobilities and direct connection with intrinsic material properties are some of the key aspects of this method. Moreover, the method outputmore » values can be correlated with several issues during key fabrication steps such as the graphene growth and transfer, the lithographic steps, or the metalization processes, providing a flexible tool for quality control in GFET fabrication, as well as a valuable feedback for improving the material-growth process.« less

  1. Electrical detection and analysis of surface acoustic wave in line-defect two-dimensional piezoelectric phononic crystals

    NASA Astrophysics Data System (ADS)

    Cai, Feida; Li, Honglang; Tian, Yahui; Ke, Yabing; Cheng, Lina; Lou, Wei; He, Shitang

    2018-03-01

    Line-defect piezoelectric phononic crystals (PCs) show good potential applications in surface acoustic wave (SAW) MEMS devices for RF communication systems. To analyze the SAW characteristics in line-defect two-dimensional (2D) piezoelectric PCs, optical methods are commonly used. However, the optical instruments are complex and expensive, whereas conventional electrical methods can only measure SAW transmission of the whole device and lack spatial resolution. In this paper, we propose a new electrical experimental method with multiple receiving interdigital transducers (IDTs) to detect the SAW field distribution, in which an array of receiving IDTs of equal aperture was used to receive the SAW. For this new method, SAW delay lines with perfect and line-defect 2D Al/128°YXLiNbO3 piezoelectric PCs on the transmitting path were designed and fabricated. The experimental results showed that the SAW distributed mainly in the line-defect region, which agrees with the theoretical results.

  2. Monolithic integrated high-T.sub.c superconductor-semiconductor structure

    NASA Technical Reports Server (NTRS)

    Barfknecht, Andrew T. (Inventor); Garcia, Graham A. (Inventor); Russell, Stephen D. (Inventor); Burns, Michael J. (Inventor); de la Houssaye, Paul R. (Inventor); Clayton, Stanley R. (Inventor)

    2000-01-01

    A method for the fabrication of active semiconductor and high-temperature superconducting device of the same substrate to form a monolithically integrated semiconductor-superconductor (MISS) structure is disclosed. A common insulating substrate, preferably sapphire or yttria-stabilized zirconia, is used for deposition of semiconductor and high-temperature superconductor substructures. Both substructures are capable of operation at a common temperature of at least 77 K. The separate semiconductor and superconductive regions may be electrically interconnected by normal metals, refractory metal silicides, or superconductors. Circuits and devices formed in the resulting MISS structures display operating characteristics which are equivalent to those of circuits and devices prepared on separate substrates.

  3. Investigating Dielectric and Metamaterial Effects in a Terahertz Traveling-Wave Tube Amplifier

    NASA Technical Reports Server (NTRS)

    Starinshak, David P.; Wilson, Jeffrey D.

    2008-01-01

    Adding material enhancements to a terahertz traveling-wave tube amplifier is investigated. Isotropic dielectrics, negative-index metamaterials, and anisotropic crystals are simulated, and plans to increase the efficiency of the device are discussed. Early results indicate that adding dielectric to the curved sections of the serpentine-shaped slow-wave circuit produce optimal changes in the cold-test characteristics of the device and a minimal drop in operating frequency. Additional results suggest that materials with simultaneously small relative permittivities and electrical conductivities are best suited for increasing the efficiency of the device. More research is required on the subject, and recommendations are given to determine the direction.

  4. Voltage controlled Bi-mode resistive switching effects in MnO2 based devices

    NASA Astrophysics Data System (ADS)

    Hu, P.; Wu, S. X.; Wang, G. L.; Li, H. W.; Li, D.; Li, S. W.

    2018-01-01

    In this paper, the voltage induced bi-mode resistive switching behavior of an MnO2 thin film based device was studied. The device showed prominent bipolar resistive switching behavior with good reproducibility and high endurance. In addition, complementary resistive switching characteristics can be observed by extending the voltage bias during voltage sweep operations. The electrical measurement data and fitting results indicate that the oxygen vacancies act as defects to form a conductive path, which is connective or disrupted to realize a low resistive state or a high resistive state. Changing the sweep voltage can tune the oxygen vacancies distribution, which will achieve complementary resistive switching.

  5. Miniature Ion-Mobility Spectrometer

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.

    2006-01-01

    The figure depicts a proposed miniature ion-mobility spectrometer that would be fabricated by micromachining. Unlike prior ion-mobility spectrometers, the proposed instrument would not be based on a time-of-flight principle and, consequently, would not have some of the disadvantageous characteristics of prior time-of-flight ion-mobility spectrometers. For example, one of these characteristics is the need for a bulky carrier-gas-feeding subsystem that includes a shutter gate to provide short pulses of gas in order to generate short pulses of ions. For another example, there is need for a complex device to generate pulses of ions from the pulses of gas and the device is capable of ionizing only a fraction of the incoming gas molecules; these characteristics preclude miniaturization. In contrast, the proposed instrument would not require a carrier-gas-feeding subsystem and would include a simple, highly compact device that would ionize all the molecules passing through it. The ionization device in the proposed instrument would be a 0.1-micron-thick dielectric membrane with metal electrodes on both sides. Small conical holes would be micromachined through the membrane and electrodes. An electric potential of the order of a volt applied between the membrane electrodes would give rise to an electric field of the order of several megavolts per meter in the submicron gap between the electrodes. An electric field of this magnitude would be sufficient to ionize all the molecules that enter the holes. Ionization (but not avalanche arcing) would occur because the distance between the ionizing electrodes would be less than the mean free path of gas molecules at the operating pressure of instrument. An accelerating grid would be located inside the instrument, downstream from the ionizing membrane. The electric potential applied to this grid would be negative relative to the potential on the inside electrode of the ionizing membrane and would be of a magnitude sufficient to generate a moderate electric field. Positive ions leaving the membrane holes would be accelerated in this electric field. The resulting flux of ions away from the ionization membrane would create a partial vacuum that would draw more of the gas medium through the membrane. The figure depicts a filter electrode and detector electrodes located along the sides of a drift tube downstream from the accelerator electrode. These electrodes would apply a transverse AC electric field superimposed on a ramped DC electric field. The AC field would effect differential transverse dispersal of ions. At a given instant of time, the trajectories of most of the ions would be bent toward the electrodes, causing most of the ions to collide with the electrodes and thereby become neutralized. The DC field would partly counteract the dispersive effect of the AC field, straightening the trajectories of a selected species of ions; the selection would vary with the magnitude of the applied DC field. The straightening of the trajectories of the selected ions would enable them to pass into the region between the detector electrodes. Depending on the polarity of the voltage applied to the detector electrodes, the electric field between the detector electrodes would draw the selected ions to one of these electrodes. Hence, the current collected by one of the detector electrodes would be a measure of the abundance of ions of the selected species. The ramping of the filter- electrode DC voltage would sweep the selection of ions through the spectrum of ionic species.

  6. Projected phase-change memory devices.

    PubMed

    Koelmans, Wabe W; Sebastian, Abu; Jonnalagadda, Vara Prasad; Krebs, Daniel; Dellmann, Laurent; Eleftheriou, Evangelos

    2015-09-03

    Nanoscale memory devices, whose resistance depends on the history of the electric signals applied, could become critical building blocks in new computing paradigms, such as brain-inspired computing and memcomputing. However, there are key challenges to overcome, such as the high programming power required, noise and resistance drift. Here, to address these, we present the concept of a projected memory device, whose distinguishing feature is that the physical mechanism of resistance storage is decoupled from the information-retrieval process. We designed and fabricated projected memory devices based on the phase-change storage mechanism and convincingly demonstrate the concept through detailed experimentation, supported by extensive modelling and finite-element simulations. The projected memory devices exhibit remarkably low drift and excellent noise performance. We also demonstrate active control and customization of the programming characteristics of the device that reliably realize a multitude of resistance states.

  7. Exchange biased and closed-flux pseudo spin-valve materials, device applications, and electrical reliability

    NASA Astrophysics Data System (ADS)

    Bae, Seongtae

    Since giant magnetoresistance (GMR) and tunneling magnetoresistance (TMR) spinvalve effects were developed for the last two decades after discovered, world wide researches on applying these effects for various kinds of solid state active devices has provided a strong impact on challenging new functional micro-magnetoelectronic devices. In particular, recently developed nano-structured magnetic spin-valve thin film materials for spin-electronic devices are now considered as building blocks of state-of-the-art electronic engineering. This research has been concentrated on developing and designing magneto-electronic solid state devices with high thermal and electrical stability using an alpha-Fe 2O3 and NiO oxide anti-ferromagnetic exchange biased GMR bottom spin-valves (BSV), NiFe/Cu/Co and NiFe/Cu/CoFe based closed-flux metallic pseudo spin-valves, and PtMn exchange biased TMR spin-valves. The category covering this research is divided into four main research steps. First is to investigate exchange bias coupling characteristics of alpha-Fe2 O3 and NiO oxide Anti-ferromagnetic materials (AF)/Ferromagnetic (F) layer systems for optimizing exchange biased BSV and to study magnetic properties of various kinds of magnetic thin films including single through multi-layered structures for the fundamental research on NiFe/Cu/Co and NiFe/Cu/CoFe closed-flux metallic pseudo spin-valves. Second is to develop and improve new kinds of BSVs and closed-flux metallic spinvalves by controlling process parameters in terms of crystalline orientation texture of AF and F layers, interfacial surface roughness, grain size (its size distribution), chemical composition, and kinetics of sputtering film growth. Third is to design, to fabricate, and to investigate the magnetic and electrical properties of magneto-electronic devices as well as their applications such as GMR magnetoresistive random access memory (MRAM), GMR read head, TMR read head, and new kinds of GMR solid state devices, which can be promisingly substituted for current microelectronic devices. Finally, the last is to focus on studying electrical reliability of GMR read sensor and GMR MRAM cell in terms of electromigration-induced failures of various kinds of magnetic thin films, which are currently used in GMR spin-valve materials, and is to investigate the effects of current (or voltage) induced dielectric breakdown in aluminum oxide tunnel barrier under various testing conditions on the electrical stability of real TMR read sensors.

  8. 21 CFR 868.5710 - Electrically powered oxygen tent.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electrically powered oxygen tent. 868.5710 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5710 Electrically powered oxygen tent. (a) Identification. An electrically powered oxygen tent is a device that encloses a patient's...

  9. 21 CFR 868.5710 - Electrically powered oxygen tent.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electrically powered oxygen tent. 868.5710 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5710 Electrically powered oxygen tent. (a) Identification. An electrically powered oxygen tent is a device that encloses a patient's...

  10. 21 CFR 868.5710 - Electrically powered oxygen tent.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrically powered oxygen tent. 868.5710 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5710 Electrically powered oxygen tent. (a) Identification. An electrically powered oxygen tent is a device that encloses a patient's...

  11. 21 CFR 868.5710 - Electrically powered oxygen tent.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electrically powered oxygen tent. 868.5710 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5710 Electrically powered oxygen tent. (a) Identification. An electrically powered oxygen tent is a device that encloses a patient's...

  12. 21 CFR 868.5710 - Electrically powered oxygen tent.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electrically powered oxygen tent. 868.5710 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5710 Electrically powered oxygen tent. (a) Identification. An electrically powered oxygen tent is a device that encloses a patient's...

  13. Bio-sorbable, liquid electrolyte gated thin-film transistor based on a solution-processed zinc oxide layer.

    PubMed

    Singh, Mandeep; Palazzo, Gerardo; Romanazzi, Giuseppe; Suranna, Gian Paolo; Ditaranto, Nicoletta; Di Franco, Cinzia; Santacroce, Maria Vittoria; Mulla, Mohammad Yusuf; Magliulo, Maria; Manoli, Kyriaki; Torsi, Luisa

    2014-01-01

    Among the metal oxide semiconductors, ZnO has been widely investigated as a channel material in thin-film transistors (TFTs) due to its excellent electrical properties, optical transparency and simple fabrication via solution-processed techniques. Herein, we report a solution-processable ZnO-based thin-film transistor gated through a liquid electrolyte with an ionic strength comparable to that of a physiological fluid. The surface morphology and chemical composition of the ZnO films upon exposure to water and phosphate-buffered saline (PBS) are discussed in terms of the operation stability and electrical performance of the ZnO TFT devices. The improved device characteristics upon exposure to PBS are associated with the enhancement of the oxygen vacancies in the ZnO lattice due to Na(+) doping. Moreover, the dissolution kinetics of the ZnO thin film in a liquid electrolyte opens the possible applicability of these devices as an active element in "transient" implantable systems.

  14. Deposition and characterization of vanadium oxide based thin films for MOS device applications

    NASA Astrophysics Data System (ADS)

    Rakshit, Abhishek; Biswas, Debaleen; Chakraborty, Supratic

    2018-04-01

    Vanadium Oxide films are deposited on Si (100) substrate by reactive RF-sputtering of a pure Vanadium metallic target in an Argon-Oxygen plasma environment. The ratio of partial pressures of Argon to Oxygen in the sputtering-chamber is varied by controlling their respective flow rates and the resultant oxide films are obtained. MOS Capacitor based devices are then fabricated using the deposited oxide films. High frequency Capacitance-Voltage (C-V) and gate current-gate voltage (I-V) measurements reveal a significant dependence of electrical characteristics of the deposited films on their sputtering deposition parameters mainly, the relative content of Argon/Oxygen in the plasma chamber. A noteworthy change in the electrical properties is observed for the films deposited under higher relative oxygen content in the plasma atmosphere. Our results show that reactive sputtering serves as an indispensable deposition-setup for fabricating vanadium oxide based MOS devices tailor-made for Non-Volatile Memory (NVM) applications.

  15. Electro-optical characterization of SiPM: A comparative study

    NASA Astrophysics Data System (ADS)

    Dinu, N.; Amara, Z.; Bazin, C.; Chaumat, V.; Cheikali, C.; Guilhem, G.; Puill, V.; Sylvia, C.; Vagnucci, J. F.

    2009-10-01

    This work reports on the development of an electro-optical set-up for the characterization of the Silicon PhotoMultiplier (SiPM) devices as well as on the comparative study of the characteristics of different SiPM prototypes. The electrical set-up allows the measurement of the static (breakdown voltage, overvoltage quenching resistance) and dynamic (gain, dark count rate) characteristics. The optical set-up allows the estimation of the photon detection efficiency as a function of the wavelength and the operation voltage. The comparative study has been performed on SiPM devices covering an area of 1×1 mm 2 and supplied during 2007 by Photonique S.A. (Switzerland), FBK-irst (Italy), SensL (Ireland) and Hamamatsu (Japan).

  16. Veritable electronic characteristics in ZnO nanowire circuits uncovered by the four-terminal method at a low temperature

    NASA Astrophysics Data System (ADS)

    Li, Xin; Zhang, Qi

    2017-04-01

    Understanding the natural electrical properties in semiconductor channels and the carrier transport across the metal-semiconductor contact is essential to improve the performance of nanowire devices. This work presents the true electronic characteristics of ZnO nanowire devices measured by a four-electrode method at a low-temperature environment. The temperature rise leads to the decrease in near-band-gap emission, which is attributed to two non-radiative recombination processes. For ZnO circuits, thermionic emission carrier transport mechanism plays a dominant role at Ti-Au/ZnO interface and the transport mechanism in ZnO nanowires is governed by two competitive thermal activation conduction processes: optical or acoustic phonons assisting hopping.

  17. Equivalent circuit model of Ge/Si separate absorption charge multiplication avalanche photodiode

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Chen, Ting; Yan, Linshu; Bao, Xiaoyuan; Xu, Yuanyuan; Wang, Guang; Wang, Guanyu; Yuan, Jun; Li, Junfeng

    2018-03-01

    The equivalent circuit model of Ge/Si Separate Absorption Charge Multiplication Avalanche Photodiode (SACM-APD) is proposed. Starting from the carrier rate equations in different regions of device and considering the influences of non-uniform electric field, noise, parasitic effect and some other factors, the equivalent circuit model of SACM-APD device is established, in which the steady-state and transient current voltage characteristics can be described exactly. In addition, the proposed Ge/Si SACM APD equivalent circuit model is embedded in PSpice simulator. The important characteristics of Ge/Si SACM APD such as dark current, frequency response, shot noise are simulated, the simulation results show that the simulation with the proposed model are in good agreement with the experimental results.

  18. Al203 thin films on Silicon and Germanium substrates for CMOS and flash memory applications

    NASA Astrophysics Data System (ADS)

    Gopalan, Sundararaman; Dutta, Shibesh; Ramesh, Sivaramakrishnan; Prathapan, Ragesh; Sreehari G., S.

    2017-07-01

    As scaling of device dimensions has continued, it has become necessary to replace traditional SiO2 with high dielectric constant materials in the conventional CMOS devices. In addition, use of metal gate electrodes and Germanium substrates may have to be used in order to address leakage and mobility issues. Al2O3 is one of the potential candidates both for CMOS and as a blocking dielectric for Flash memory applications owing to its low leakage. In this study, the effects of sputtering conditions and post-deposition annealing conditions on the electrical and reliability characteristics of MOS capacitors using Al2O3 films on Si and Ge substrates with Aluminium gate electrodes have been presented. It was observed that higher sputtering power resulted in larger flat-band voltage (Vfb) shifts, more hysteresis, higher interface state density (Dit) and a poorer reliability. Wit was also found that while a short duration high temperature annealing improves film characteristics, a long duration anneal even at 800C was found to be detrimental to MOS characteristics. Finally, the electronic conduction mechanism in Al2O3 films was also studied. It was observed that the conduction mechanism varied depending on the annealing condition, thickness of film and electric field.

  19. The Surface Interface Characteristics of Vertically Aligned Carbon Nanotube and Graphitic Carbon Fiber Arrays Grown by Thermal and Plasma Enhanced Chemical Vapor Deposition

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance; Nguyen, Cattien; Li, Jun; Han, Jie; Meyyappan, M.

    2002-01-01

    The development of nano-arrays for sensors and devices requires the growth of arrays with the proper characteristics. One such application is the growth of vertically aligned carbon nanotubes (CNTs) and graphitic carbon fibers (GCFs) for the chemical attachment of probe molecules. The effectiveness of such an array is dependent not only upon the effectiveness of the probe and the interface between that probe and the array, but also the array and the underlaying substrate. If that array is a growth of vertically aligned CNTs or GCFs then the attachment of that array to the surface is of the utmost importance. This attachment provides the mechanical stability and durability of the array, as well as, the electrical properties of that array. If the detection is to be acquired through an electrical measurement, then the appropriate resistance between the array and the surface need to be fabricated into the device. I will present data on CNTs and GCFs grown from both thermal and plasma enhanced chemical vapor deposition. The focus will be on the characteristics of the metal film from which the CNTs and GCFs are grown and the changes that occur due to changes within the growth process.

  20. Performance and breakdown characteristics of irradiated vertical power GaN P-i-N diodes

    DOE PAGES

    King, M. P.; Armstrong, A. M.; Dickerson, J. R.; ...

    2015-10-29

    Electrical performance and defect characterization of vertical GaN P-i-N diodes before and after irradiation with 2.5 MeV protons and neutrons is investigated. Devices exhibit increase in specific on-resistance following irradiation with protons and neutrons, indicating displacement damage introduces defects into the p-GaN and n- drift regions of the device that impact on-state device performance. The breakdown voltage of these devices, initially above 1700 V, is observed to decrease only slightly for particle fluence <; 10 13 cm -2. Furthermore, the unipolar figure of merit for power devices indicates that while the on-resistance and breakdown voltage degrade with irradiation, vertical GaNmore » P-i-Ns remain superior to the performance of the best available, unirradiated silicon devices and on-par with unirradiated modern SiC-based power devices.« less

  1. Optical absorption and electrical properties of MPc (M =Fe, Cu, Zn)-TCNQ interfaces for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Sánchez Vergara, M. E.; Medrano Gallardo, D.; Vera Estrada, I. L.; Jiménez Sandoval, O.

    2018-04-01

    This research is related to the growth and characterization of doped molecular semiconductor metallophthalocyanine-tetracyanoquinodimethane (MPc-TCNQ) films, with M = Fe, Zn, Cu. FT-IR and Raman spectroscopies were employed to study the chemical interactions taking place in the MPc-TCNQ films. XRD was carried out to determine the crystalline structure present in the samples, due to the facility of the MPcs to be in alpha and/or beta phases. The thin films were analized by SEM and UV-vis spectroscopy in order to study their morphological and optical properties. The absorption spectra recorded in the UV-Vis region for the deposited samples showed two bands, namely the Q and Soret bands. The absorption coefficient (α) and photon energy (hν) were calculated from the UV-vis spectra, to in turn determine the optic activation energy in each film and its semiconductor behavior. The values obtained for direct transitions due to the crystallinity of the films were: 1.2, 1.4 and 2 eV for FePc-TCNQ (MMFe), ZnPc-TCNQ (MMZn) and CuPc-TCNQ (MMCu), respectively. Additionally, I-V characteristics have been obtained from fabricated glass/ITO/MM/Ag devices using ohmic contacts both after annealing. The electrical properties of the devices, e.g. carrier mobility and concentration of thermally generated holes, were extracted from the J-V characteristics. The results show that the conduction process is ohmic for the MMZn and MMCu devices, at low voltages, while at high voltages, a space-charge-limited conduction (SCLC) is present. The effect of temperature on conductivity was also measured in these samples and the lower thermal activation energy calculated was 0.37 eV for MMZn. Moreover, it was found that the temperature-dependent electric current is always higher for the MMZn device and suggests a semiconductor-like behavior with an important conductivity of the order of 103 S cm-1. Anyhow, in terms not only of electric properties, but also of optic behavior, the results suggest that all three devices manufactured, MMFe, MMCu and MMZn, are of potential use in optoelectronics. The doping effect of TCNQ favors the electronic transport, most likely due to the formation of conduction channels caused by the anisotropy induced by the dopant.

  2. 21 CFR 868.2775 - Electrical peripheral nerve stimulator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... a device used to apply an electrical current to a patient to test the level of pharmacological... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electrical peripheral nerve stimulator. 868.2775... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral nerve...

  3. 21 CFR 868.2775 - Electrical peripheral nerve stimulator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... a device used to apply an electrical current to a patient to test the level of pharmacological... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electrical peripheral nerve stimulator. 868.2775... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral nerve...

  4. Perovskites for Photovoltaics in the Spotlight: Photoinduced Physical Changes and Their Implications.

    PubMed

    Gottesman, Ronen; Zaban, Arie

    2016-02-16

    Organic-inorganic halide perovskites are in consensus to revolutionize the field of photovoltaics and optoelectronic devices due to their superior optical and electronic properties which are unprecedented in comparison to those of other solution processed semiconductors. These hybrid materials are used as light absorbers and also as charge carriers which makes them very versatile to be implemented and studied in a multitude of fields. Traditionally, the working paradigm in solar cells and optoelectronic devices' characterization has been that the properties of photovoltaic materials remain stable following illumination of varying times and intensities. However, recently there has been a growing number of reports on prolonged illumination-dependent physical changes in perovskite films and perovskite based devices. The changes are reversible and range from structural transformations and differences in optical characteristics, to an increase in optoelectronic properties and physical parameters. In this Account, we review the physical changes in three reported model systems which display changes under prolonged illumination of light intensities of ∼0.01-1 sun. The three systems are (i) a free-standing perovskite film on a glass substrate, (ii) a symmetrical system with nonselective electrical contacts, and (iii) a working perovskite solar cell (either a planar or a porous structure). We examine each model system and discuss its photoinduced physical changes and conclude with the implications on future experimentation design, data analysis, and characterization that involve organic-inorganic halide perovskites illumination. Since hybrid perovskites are considered to be mixed ionic-electronic conductors in nature, ions that migrate in the perovskite under electrical fields can influence its properties. Therefore, an important distinction is made between photoinduced effects and photo and electric field induced effects. Thus, photoinduced effects are designated as observed effects in illuminated free-standing films or symmetrical devices without selective contacts. In contrast, photo- and electric field induced effects are designated as observed effects under open-circuit potential or during voltage scanning (internal electrical field exists across the device). In the latter case, the two effects are superimposed and it is difficult to evaluate the relative influence of each one (light or electric field). However, we show that the magnitude and the importance of the photoinduced effect are substantial.

  5. Computer simulation of electrical characteristics of singlewalled carbon nanotube (9,0) with Stone-Wales defect

    NASA Astrophysics Data System (ADS)

    Sergeyev, D.; Zhanturina, N.

    2018-05-01

    In the framework of the density functional theory, using the method of nonequilibrium Green's functions and in the local density approximation, the electrical characteristics of different configurations of a single-walled carbon nanotube with Stone-Wales defects are investigated. The calculation is implemented in the Atomistix ToolKit with Virtual NanoLab program. The current-voltage, dI/dV-characteristics and the density of states of the nanostructures under consideration were calculated. It is shown that the nature of the current flowing through defective carbon nanotubes depends on the extent of the Stone-Wales defects. It was found that a carbon nanotube with two consecutively connected Stone-Wales defects at a bias voltage of ± 2.6 V has a negative differential conductivity of -170 μS. The obtained results can be useful for calculations of new promising electronic devices of nanoelectronics based on a carbon nanotube.

  6. Micro spectrometer for parallel light and method of use

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2011-01-01

    A spectrometer system includes an optical assembly for collimating light, a micro-ring grating assembly having a plurality of coaxially-aligned ring gratings, an aperture device defining an aperture circumscribing a target focal point, and a photon detector. An electro-optical layer of the grating assembly may be electrically connected to an energy supply to change the refractive index of the electro-optical layer. Alternately, the gratings may be electrically connected to the energy supply and energized, e.g., with alternating voltages, to change the refractive index. A data recorder may record the predetermined spectral characteristic. A method of detecting a spectral characteristic of a predetermined wavelength of source light includes generating collimated light using an optical assembly, directing the collimated light onto the micro-ring grating assembly, and selectively energizing the micro-ring grating assembly to diffract the predetermined wavelength onto the target focal point, and detecting the spectral characteristic using a photon detector.

  7. Home Use Devices: How to Prepare for and Handle Power Outages for Medical Devices That Require Electricity

    MedlinePlus

    ... Handle Power Outages for Medical Devices that Require Electricity Center for De CDRH vices and Rad lth ... Handle Power Outages for Medical Devices that Require Electricity As a home medical device user, it is ...

  8. 120 MeV Ag ion induced effects in Au/HfO2/Si MOSCAPs

    NASA Astrophysics Data System (ADS)

    Manikanthababu, N.; Prajna, K.; Pathak, A. P.; Rao, S. V. S. Nageswara

    2018-05-01

    HfO2/Si thinfilms were deposited by RF sputtering technique. 120 MeV Ag ion irradiation has been used to study the electrical properties of Au/HfO2/Si MOSCAPs. SHI (120 MeV Ag) induced annealing, defects creation and intermixing effects on the electrical properties of these systems have been studied. Here, we have observed that the high electronic excitation can cause a significant reduction of leakage currents in these MOSCAP devices. Various quantum mechanical tunneling phenomenon has been observed from the I-V characteristics.

  9. ELECTRICAL COIL STRUCTURE

    DOEpatents

    Baker, W.R.; Hartwig, A.

    1962-09-25

    A compactly wound electrical coil is designed for carrying intense pulsed currents such as are characteristic of controlled thermonuclear reaction devices. A flat strip of conductor is tightly wound in a spiral with a matching flat strip of insulator. To provide for a high fluid coolant flow through the coil with minimum pumping pressure, a surface of the conductor is scored with parallel transverse grooves which form short longitudinal coolant pasaages when the conductor is wound in the spiral configuration. Owing to this construction, the coil is extremely resistant to thermal and magnetic shock from sudden high currents. (AEC)

  10. Comparison of Superconducting Transition Characteristics of Two Iridium/Gold Bilayer Transition Edge Sensor Devices

    NASA Astrophysics Data System (ADS)

    Kunieda, Yuichi; Fukuda, Daiji; Ohno, Masashi; Takahashi, Hiroyuki; Nakazawa, Masaharu; Inou, Tadashi; Ataka, Manabu

    2004-05-01

    We are developing a high-energy-resolution X-ray microcalorimeter for X-ray fluorescent spectrometry using a superconducting transition edge sensor (TES) that consists of a bilayer of iridium and gold (Ir/Au). In this paper, we have studied the superconducting transition characteristics of two different bilayer structures. Type 1 is a simple stacked bilayer where a square-pattern film of iridium is covered with an identical pattern of gold. Type 2 is based on the Type 1 Ir/Au film, however, it has Au side banks. The resistance-temperature characteristics of these films are investigated by a four-wired resistance measurement method. As a result, the transition curve of Type 2 obeyed the Ginzburg-Landau (GL) theory; however, the transition curve of Type 1 was entirely different from that of Type 2. The reason there was a difference in these transition curves of the two devices is discussed in terms of the difference in the electric current distribution inside TESs. Even if we assume a uniform bilayer film and a uniform proximity effect over the entire film, the current density inside the device affects the characteristics of the transition curves.

  11. Voltage-induced Interface Reconstruction and Electrical Instability of the Ferromagnet-Semiconductor Device.

    PubMed

    Chang, Shu-Jui; Chang, Po-Chun; Lin, Wen-Chin; Lo, Shao-Hua; Chang, Liang-Chun; Lee, Shang-Fan; Tseng, Yuan-Chieh

    2017-03-23

    Using x-ray magnetic spectroscopy with in-situ electrical characterizations, we investigated the effects of external voltage on the spin-electronic and transport properties at the interface of a Fe/ZnO device. Layer-, element-, and spin-resolved information of the device was obtained by cross-tuning of the x-ray mode and photon energy, when voltage was applied. At the early stage of the operation, the device exhibited a low-resistance state featuring robust Fe-O bonds. However, the Fe-O bonds were broken with increasing voltage. Breaking of the Fe-O bonds caused the formation of oxygen vacancies and resulted in a high-resistance state. Such interface reconstruction was coupled to a charge-transfer effect via Fe-O hybridization, which suppressed/enhanced the magnetization/coercivity of Fe electronically. Nevertheless, the interface became stabilized with the metallic phase if the device was continuously polarized. During this stage, the spin-polarization of Fe was enhanced whereas the coercivity was lowered by voltage, but changes of both characteristics were reversible. This stage is desirable for spintronic device applications, owing to a different voltage-induced electronic transition compared to the first stage. The study enabled a straightforward detection of the spin-electronic state at the ferromagnet-semiconductor interface in relation to the transport and reversal properties during operation process of the device.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sağlam, M.; Güzeldir, B., E-mail: msaglam@atauni.edu.tr

    Highlights: • The CuS thin film used at Cu/n-GaAs structure is grown by SILAR method. • There has been no report on ageing of characteristics of this junction in the literature. • The properties of Cu/CuS/n-GaAs/In structure are examined with different methods. • It has been shown that Cu/CuS/n-GaAs/In structure has a stable interface. - Abstract: The aim of this study is to explain effects of the ageing on the electrical properties of Cu/n-GaAs Shottky barrier diode with Copper Sulphide (CuS) interfacial layer. CuS thin films are deposited on n-type GaAs substrate by Successive Ionic Layer Adsorption and Reaction (SILAR)more » method at room temperature. The structural and the morphological properties of the films have been carried out by Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD) techniques. The XRD analysis of as-grown films showed the single-phase covellite, with hexagonal crystal structure built around two preferred orientations corresponding to (102) and (108) atomic planes. The ageing effects on the electrical properties of Cu/CuS/n-GaAs/In structure have been investigated. The current–voltage (I–V) measurements at room temperature have been carried out to study the change in electrical characteristics of the devices as a function of ageing time. The main electrical parameters, such as ideality factor (n), barrier height (Φ{sub b}), series resistance (R{sub s}), leakage current (I{sub 0}), and interface states (N{sub ss}) for this structure have been calculated. The results show that the main electrical parameters of device remained virtually unchanged.« less

  13. Enhancement of the electrical characteristics of metal-free phthalocyanine films using cold isostatic pressing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsushima, Toshinori, E-mail: tmatusim@opera.kyushu-u.ac.jp, E-mail: adachi@cstf.kyushu-u.ac.jp; Adachi, Chihaya, E-mail: tmatusim@opera.kyushu-u.ac.jp, E-mail: adachi@cstf.kyushu-u.ac.jp; Japan Science and Technology Agency

    2014-12-15

    Spatial gaps between grains and other grains, substrates, or electrodes in organic electronic devices are one of the causes of the reduction in the electrical characteristics. In this study, we demonstrate that cold isostatic pressing (CIP) is an effective method to crush the gaps and enhance the electrical characteristics. CIP of metal-free phthalocyanine (H{sub 2}PC) films induced a decrease in the film thickness by 34%–40% because of the gap crush. The connection of smaller grains into a larger grain and planarization of the film surface were also observed in the CIP film. The crystal axes of the H{sub 2}PC crystallitesmore » were rearranged from the a-axis to the c-axis of the α-phase crystal structure in a direction perpendicular to the substrate by CIP, indicating favorable hole injection and transport in this direction because of a better overlap of π orbitals. Thermally stimulated current measurements showed that deep hole traps disappeared and the total hole-trap density decreased after CIP. These CIP-induced changes of the film thicknesses, crystal axes and the hole traps lead to a marked increase in the hole mobility of the H{sub 2}PC films from 2.0 × 10{sup −7} to 4.0 × 10{sup −4} cm{sup 2}/V s by 2000 times in the perpendicular direction. We believe that these findings are important for unveiling the underlying carrier injection and transport mechanisms of organic films and for enhancing the performance of future organic electronic devices.« less

  14. Trends and problems in development of the power plants electrical part

    NASA Astrophysics Data System (ADS)

    Gusev, Yu. P.

    2015-03-01

    The article discusses some problems relating to development of the electrical part of modern nuclear and thermal power plants, which are stemming from the use of new process and electrical equipment, such as gas turbine units, power converters, and intellectual microprocessor devices in relay protection and automated control systems. It is pointed out that the failure rates of electrical equipment at Russian and foreign power plants tend to increase. The ongoing power plant technical refitting and innovative development processes generate the need to significantly widen the scope of research works on the electrical part of power plants and rendering scientific support to works on putting in use innovative equipment. It is indicated that one of main factors causing the growth of electrical equipment failures is that some of components of this equipment have insufficiently compatible dynamic characteristics. This, in turn may be due to lack or obsolescence of regulatory documents specifying the requirements for design solutions and operation of electric power equipment that incorporates electronic and microprocessor control and protection devices. It is proposed to restore the system of developing new and updating existing departmental regulatory technical documents that existed in the 1970s, one of the fundamental principles of which was placing long-term responsibility on higher schools and leading design institutions for rendering scientific-technical support to innovative development of components and systems forming the electrical part of power plants. This will make it possible to achieve lower failure rates of electrical equipment and to steadily improve the competitiveness of the Russian electric power industry and energy efficiency of generating companies.

  15. 40 CFR 424.10 - Applicability; description of the open electric furnaces with wet air pollution control devices...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... electric furnaces with wet air pollution control devices subcategory. 424.10 Section 424.10 Protection of... MANUFACTURING POINT SOURCE CATEGORY Open Electric Furnaces With Wet Air Pollution Control Devices Subcategory § 424.10 Applicability; description of the open electric furnaces with wet air pollution control devices...

  16. 40 CFR 424.10 - Applicability; description of the open electric furnaces with wet air pollution control devices...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... electric furnaces with wet air pollution control devices subcategory. 424.10 Section 424.10 Protection of... MANUFACTURING POINT SOURCE CATEGORY Open Electric Furnaces With Wet Air Pollution Control Devices Subcategory § 424.10 Applicability; description of the open electric furnaces with wet air pollution control devices...

  17. 40 CFR 424.10 - Applicability; description of the open electric furnaces with wet air pollution control devices...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... electric furnaces with wet air pollution control devices subcategory. 424.10 Section 424.10 Protection of... MANUFACTURING POINT SOURCE CATEGORY Open Electric Furnaces With Wet Air Pollution Control Devices Subcategory § 424.10 Applicability; description of the open electric furnaces with wet air pollution control devices...

  18. 40 CFR 424.10 - Applicability; description of the open electric furnaces with wet air pollution control devices...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... electric furnaces with wet air pollution control devices subcategory. 424.10 Section 424.10 Protection of... MANUFACTURING POINT SOURCE CATEGORY Open Electric Furnaces With Wet Air Pollution Control Devices Subcategory § 424.10 Applicability; description of the open electric furnaces with wet air pollution control devices...

  19. 40 CFR 424.10 - Applicability; description of the open electric furnaces with wet air pollution control devices...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... electric furnaces with wet air pollution control devices subcategory. 424.10 Section 424.10 Protection of... MANUFACTURING POINT SOURCE CATEGORY Open Electric Furnaces With Wet Air Pollution Control Devices Subcategory § 424.10 Applicability; description of the open electric furnaces with wet air pollution control devices...

  20. Gate-tunable transport characteristics of Bi2S3 nanowire transistors

    NASA Astrophysics Data System (ADS)

    Kilcoyne, Colin; Ali, Ahmed H.; Alsaqqa, Ali M.; Rahman, Ajara A.; Whittaker-Brooks, Luisa; Sambandamurthy, Ganapathy

    2018-02-01

    Electrical transport and resistance noise spectroscopy measurements are performed on individual, single crystalline Bi2S3 nanowires in the field-effect geometry. The nanowires exhibit n-type conduction and device characteristics such as activation energy, ON/OFF ratio, and mobility are calculated over a temperature range of 120-320 K and at several bias values. The noise magnitude is measured between 0.01 and 5 Hz at several gate voltages as the device turns from it's OFF to ON state. The presence of mid-gap states which act as charge traps within the band gap can potentially explain the observed transport characteristics. Sulfur vacancies are the likely origin of these mid-gap states which makes Bi2S3 nanowires appealing for defect engineering as a means to enhance its optoelectronic properties and also to better understand the important role of defects in nanoscale semiconductors.

  1. Low power consumption resistance random access memory with Pt/InOx/TiN structure

    NASA Astrophysics Data System (ADS)

    Yang, Jyun-Bao; Chang, Ting-Chang; Huang, Jheng-Jie; Chen, Yu-Ting; Tseng, Hsueh-Chih; Chu, Ann-Kuo; Sze, Simon M.; Tsai, Ming-Jinn

    2013-09-01

    In this study, the resistance switching characteristics of a resistive random access memory device with Pt/InOx/TiN structure is investigated. Unstable bipolar switching behavior is observed during the initial switching cycle, which then stabilizes after several switching cycles. Analyses indicate that the current conduction mechanism in the resistance state is dominated by Ohmic conduction. The decrease in electrical conductance can be attributed to the reduction of the cross-sectional area of the conduction path. Furthermore, the device exhibits low operation voltage and power consumption.

  2. Electrodynamic ratchet motor.

    PubMed

    Lim, Jiufu; Sader, John E; Mulvaney, Paul

    2009-03-01

    Brownian ratchets produce directed motion through rectification of thermal fluctuations and have been used for separation processes and colloidal transport. We propose a flashing ratchet motor that enables the transduction of electrical energy into rotary micromechanical work. This is achieved through torque generation provided by boundary shaping of equipotential surfaces. The present device contrasts to previous implementations that focus on translational motion. Stochastic simulations elucidate the performance characteristics of this device as a function of its geometry. Miniaturization to nanoscale dimensions yields rotational speeds in excess of 1 kHz, which is comparable to biomolecular motors of similar size.

  3. Fabrication of resistively-coupled single-electron device using an array of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Huong, Tran Thi Thu; Matsumoto, Kazuhiko; Moriya, Masataka; Shimada, Hiroshi; Kimura, Yasuo; Hirano-Iwata, Ayumi; Mizugaki, Yoshinao

    2017-08-01

    We demonstrated one type of single-electron device that exhibited electrical characteristics similar to those of resistively-coupled SE transistor (R-SET) at 77 K and room temperature (287 K). Three Au electrodes on an oxidized Si chip served as drain, source, and gate electrodes were formed using electron-beam lithography and evaporation techniques. A narrow (70-nm-wide) gate electrode was patterned using thermal evaporation, whereas wide (800-nm-wide) drain and source electrodes were made using shadow evaporation. Subsequently, aqueous solution of citric acid and 15-nm-diameter gold nanoparticles (Au NPs) and toluene solution of 3-nm-diameter Au NPs chemisorbed via decanethiol were dropped on the chip to make the connections between the electrodes. Current-voltage characteristics between the drain and source electrodes exhibited Coulomb blockade (CB) at both 77 and 287 K. Dependence of the CB region on the gate voltage was similar to that of an R-SET. Simulation results of the model based on the scanning electron microscopy image of the device could reproduce the characteristics like the R-SET.

  4. Improvement in interfacial characteristics of low-voltage carbon nanotube thin-film transistors with solution-processed boron nitride thin films

    NASA Astrophysics Data System (ADS)

    Jeon, Jun-Young; Ha, Tae-Jun

    2017-08-01

    In this article, we demonstrate the potential of solution-processed boron nitride (BN) thin films for high performance single-walled carbon nanotube thin-film transistors (SWCNT-TFTs) with low-voltage operation. The use of BN thin films between solution-processed high-k dielectric layers improved the interfacial characteristics of metal-insulator-metal devices, thereby reducing the current density by three orders of magnitude. We also investigated the origin of improved device performance in SWCNT-TFTs by employing solution-processed BN thin films as an encapsulation layer. The BN encapsulation layer improves the electrical characteristics of SWCNT-TFTs, which includes the device key metrics of linear field-effect mobility, sub-threshold swing, and threshold voltage as well as the long-term stability against the aging effect in air. Such improvements can be achieved by reduced interaction of interfacial localized states with charge carriers. We believe that this work can open up a promising route to demonstrate the potential of solution-processed BN thin films on nanoelectronics.

  5. Nonlinear current-voltage characteristics and enhanced negative differential conductance in graphene field effect transistors.

    PubMed

    Wang, Lin; Chen, Xiaoshuang; Hu, Yibin; Yu, Anqi; Lu, Wei

    2014-11-07

    Recent observations of the negative differential conductance (NDC) phenomenon in graphene field-effect transistors (FET) open up new opportunities for their application in graphene-based fast switches, frequency multipliers and, most importantly, in high frequency oscillators up to the terahertz regime. Unlike conventional two-terminal NDC devices that rely on resonant tunneling and inter-valley transferring, in the present work, it has been shown that the universal NDC phenomenon of graphene-based FETs originates from their intrinsic nonlinear carrier transport under a strong electric field. The operation of graphene-NDC devices depends strongly on the interface between graphene and dielectric materials, the scattering-limited carrier mobility, and on the saturation velocity. To reveal such NDC behavior, the output characteristics of GFET are investigated rigorously, with both an analytical model and self-consistent transport equation, and with a multi-electrical parameter simulation. It is demonstrated that the contact-induced doping effect plays an important role in the operational efficiency of graphene-based NDC devices, rather than the ambipolar behavior associated with the competition between electron and hole conductances. In the absence of a NDC regime or beyond one, ambipolar transport starts at Vds > 2Vgs at the drain end, and as the dielectric layer begins to thin down, the kink-like saturation output characteristic is enhanced by the quantum capacitance contribution. These observations reveal the intrinsic mechanism of the NDC effect and open up new opportunities for the performance improvement of GFETs in future high-frequency applications, beyond the current paradigm based on two-terminal diodes.

  6. Passive safety device and internal short tested method for energy storage cells and systems

    DOEpatents

    Keyser, Matthew; Darcy, Eric; Long, Dirk; Pesaran, Ahmad

    2015-09-22

    A passive safety device for an energy storage cell for positioning between two electrically conductive layers of the energy storage cell. The safety device also comprising a separator and a non-conductive layer. A first electrically conductive material is provided on the non-conductive layer. A first opening is formed through the separator between the first electrically conductive material and one of the electrically conductive layers of the energy storage device. A second electrically conductive material is provided adjacent the first electrically conductive material on the non-conductive layer, wherein a space is formed on the non-conductive layer between the first and second electrically conductive materials. A second opening is formed through the non-conductive layer between the second electrically conductive material and another of the electrically conductive layers of the energy storage device. The first and second electrically conductive materials combine and exit at least partially through the first and second openings to connect the two electrically conductive layers of the energy storage device at a predetermined temperature.

  7. Coherent Structure Dynamics and Turbulent Effects of Horizontal Axis Marine Energy Devices

    NASA Astrophysics Data System (ADS)

    Gajardo, D. I.; Escauriaza, C. R.; Ingram, D.

    2016-12-01

    Harnessing the energy available in the oceans constitutes one of the most promising alternatives for generating clean electricity. There are vast amounts of energy present both in waves and tidal currents so it is anticipated that marine energy will have a major role in non-conventional renewable energy generation in the near to mid future. Nevertheless, before marine hydrokinetic (MHK) devices can be installed in large numbers a better understanding of the physical, social and environmental implications of their operation is needed. This includes understanding the: hydrodynamic processes, interaction with bathymetry, and the local flow characteristics. This study is focused on the effects horizontal axis MHK devices have on flow turbulence and coherent structures. This is especially relevant considering that sites with favourable conditions for MHK devices are tidal channels where a delicate balance exists between the strong tidal currents and the ecosystems. Understanding how MHK devices influence flow conditions, turbulence and energy flux is essential for predicting and assessing the environmental implications of deploying MHK technologies. We couple a Blade Element Momentum Actuator Disk (BEM-AD) model to a Detached Eddy Simulation (DES) flow solver in order to study flow conditions for different configurations of horizontal axis MHK turbines. In this study, we contribute to the understanding of the hydrodynamic behaviour of MHK technologies, and give insights into the effects devices will have on their environment, with emphasis in ambient turbulence and flow characteristics, while keeping in mind that these effects can alter electricity quality and device performance. Work supported by CONICYT grant 80160084, Fondecyt grant 1130940, Chile's Marine Energy Research & Innovation Center (MERIC) CORFO project 14CEI2-28228, and the collaboration between the Pontificia Universidad Católica de Chile and the University of Edinburgh, UK, partially supported by the RC UK Energy Programme's UK Centre for Marine Energy Research (EP/I027912/1).

  8. Enhanced UV photoresponse of KrF-laser-synthesized single-wall carbon nanotubes/n-silicon hybrid photovoltaic devices.

    PubMed

    Le Borgne, V; Gautier, L A; Castrucci, P; Del Gobbo, S; De Crescenzi, M; El Khakani, M A

    2012-06-01

    We report on the KrF-laser ablation synthesis, purification and photocurrent generation properties of single-wall carbon nanotubes (SWCNTs). The thermally purified SWCNTs are integrated into hybrid photovoltaic (PV) devices by spin-coating them onto n-Si substrates. These novel SWCNTs/n-Si hybrid devices are shown to generate significant photocurrent (PC) over the entire 250-1050 nm light spectrum with external quantum efficiencies (EQE) reaching up to ~23%. Our SWCNTs/n-Si hybrid devices are not only photoactive in the traditional spectral range of Si solar cells, but generate also significant PC in the UV domain (below 400 nm). This wider spectral response is believed to be the result of PC generation from both the SWCNTs themselves and the tremendous number of local p-n junctions created at the nanotubes/Si interface. To assess the prevalence of these two contributions, the EQE spectra and J-V characteristics of these hybrid devices were investigated in both planar and top-down configurations, as a function of SWCNTs' film thickness. A sizable increase in EQE in the near UV with respect to the silicon is observed in both configurations, with a more pronounced UV photoresponse in the planar mode, confirming thereby the role of SWCNTs in the photogeneration process. The PC generation is found to reach its maximum for an optimal the SWCNT film thickness, which is shown to correspond to the best trade-off between lowest electrical resistance and highest optical transparency. Finally, by analyzing the J-V characteristics of our SWCNTs/n-Si devices with an equivalent circuit model, we were able to point out the contribution of the various electrical components involved in the photogeneration process. The SWCNTs-based devices demonstrated here open up the prospect for their use in highly effective photovoltaics and/or UV-light sensors.

  9. Two-Dimensional Quantum Model of a Nanotransistor

    NASA Technical Reports Server (NTRS)

    Govindan, T. R.; Biegel, B.; Svizhenko, A.; Anantram, M. P.

    2009-01-01

    A mathematical model, and software to implement the model, have been devised to enable numerical simulation of the transport of electric charge in, and the resulting electrical performance characteristics of, a nanotransistor [in particular, a metal oxide/semiconductor field-effect transistor (MOSFET) having a channel length of the order of tens of nanometers] in which the overall device geometry, including the doping profiles and the injection of charge from the source, gate, and drain contacts, are approximated as being two-dimensional. The model and software constitute a computational framework for quantitatively exploring such device-physics issues as those of source-drain and gate leakage currents, drain-induced barrier lowering, and threshold voltage shift due to quantization. The model and software can also be used as means of studying the accuracy of quantum corrections to other semiclassical models.

  10. 21 CFR 882.4360 - Electric cranial drill motor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electric cranial drill motor. 882.4360 Section 882...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4360 Electric cranial drill motor. (a) Identification. An electric cranial drill motor is an electrically operated power source used...

  11. 21 CFR 882.4360 - Electric cranial drill motor.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electric cranial drill motor. 882.4360 Section 882...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4360 Electric cranial drill motor. (a) Identification. An electric cranial drill motor is an electrically operated power source used...

  12. 21 CFR 882.4360 - Electric cranial drill motor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electric cranial drill motor. 882.4360 Section 882...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4360 Electric cranial drill motor. (a) Identification. An electric cranial drill motor is an electrically operated power source used...

  13. 21 CFR 882.4360 - Electric cranial drill motor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electric cranial drill motor. 882.4360 Section 882...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4360 Electric cranial drill motor. (a) Identification. An electric cranial drill motor is an electrically operated power source used...

  14. 21 CFR 882.4360 - Electric cranial drill motor.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electric cranial drill motor. 882.4360 Section 882...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4360 Electric cranial drill motor. (a) Identification. An electric cranial drill motor is an electrically operated power source used...

  15. Radical production efficiency and electrical characteristics of a coplanar barrier discharge built by multilayer ceramic technology

    NASA Astrophysics Data System (ADS)

    Jõgi, Indrek; Erme, Kalev; Levoll, Erik; Stamate, Eugen

    2017-11-01

    The present study investigated the electrical characteristics and radical production efficiency of a coplanar barrier discharge (CBD) device manufactured by Kyocera by multilayer ceramic technology. The device consisted of a number of linear electrodes with electrode and gap widths of 0.75 mm, immersed into a ceramic dielectric barrier. A closed flow-through system necessary for the measurements was prepared by placing a quartz plate at a height of 3 mm from the ceramic barrier. The production of nitrogen radicals was determined from the removal of a trace amount of NO in pure N2 gas, while the production of oxygen radicals was determined by ozone production in pure O2 or synthetic air. The production efficiency of N and O radicals and NO oxidation in synthetic air was comparable with the efficiency of a volume barrier discharge device. The power density per unit of surface area of the CBD device was more than two times larger than that of a similar volume barrier discharge setup, which makes the CBD device a compact alternative for gas treatment. The production of ozone and different nitrogen oxides was also evaluated for the open system of the CBD which is usable for surface treatment. The ozone concentration of this system was nearly independent from the input power, while the concentration of nitrogen oxides increased with input power. The open system of the CBD was additionally tested for the treatment of a silicon surface. An increase of applied power decreased the time required to reduce the water contact angle below 10 degrees but also started to have an impact on the surface roughness.

  16. Characterization of the distribution of rotational torque on electrorotation chips with 3D electrodes.

    PubMed

    Bahrieh, Garsha; Özgür, Ebru; Koyuncuoğlu, Aziz; Erdem, Murat; Gündüz, Ufuk; Külah, Haluk

    2015-08-01

    This is a study of in-plane and out-of-plane distribution of rotational torque (ROT-T) and effective electric field (EEF) on electrorotation (ER) devices with 3D electrodes using finite element modeling (FEM) and experimental method. The objective of this study is to investigate electrical characteristics of the ER devices with five different electrode geometries and obtain an optimum structure for ER experiments. Further, it provides a comparison between characteristics of the 3D electrodes and traditionally used 2D electrodes. 3D distributions of EEF were studied by the time-variant FEM. FEM results were verified experimentally by studying the rotation of biological cells. The results show that the variations of ROT-T and EEF over the measurement area of the devices are considerably large. This can potentially lead to misinterpretation of recorded data. Therefore, it is essential to specify the boundaries of the measurement area with minimum deviation from the central EEF. For this purpose, FE analyses were utilized to specify the optimal region. Thereby, with confining the measurements to these regions, the dependency of ROT-T on the spatial position of the particles can be eliminated. Comparisons have been made on the sustainability of the EEF and ROT-T distributions for each device, to find an optimum design. Analyses of the devices prove that utilization of the 3D electrodes eliminate irregularities of EEF and ROT-T along the z-axis. The Results show that triangular electrodes provide the highest sustainability for the in-plane ROT-T and EEF distribution, while the oblate elliptical and circular electrodes have the lowest variances along the z-axis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Confirmation of filament dissolution behavior by analyzing electrical field effect during reset process in oxide-based RRAM

    NASA Astrophysics Data System (ADS)

    Pan, Chih-Hung; Chang, Ting-Chang; Tsai, Tsung-Ming; Chang, Kuan-Chang; Chu, Tian-Jian; Lin, Wen-Yan; Chen, Min-Chen; Sze, Simon M.

    2016-09-01

    In this letter, we demonstrate completely different characteristics with different operating modes and analyze the electrical field effect to confirm the filament dissolution behavior. The device exhibited a larger memory window when using a single voltage sweep method during reset process rather than the traditional double sweep method. The phenomenon was verified by using fast I-V measurement to simulate the two operating methods. A better high resistance state (HRS) will be obtained with a very short rising time pulse, but quite notably, lower power consumption was needed. We proposed the electrical field effect to explain the phenomenon and demonstrate distribution by COMSOL simulation.

  18. Space propulsion systems. Present performance limits and application and development trends

    NASA Technical Reports Server (NTRS)

    Buehler, R. D.; Lo, R. E.

    1981-01-01

    Typical spaceflight programs and their propulsion requirements as a comparison for possible propulsion systems are summarized. Chemical propulsion systems, solar, nuclear, or even laser propelled rockets with electrical or direct thermal fuel acceleration, nonrockets with air breathing devices and solar cells are considered. The chemical launch vehicles have similar technical characteristics and transportation costs. A possible improvement of payload by using air breathing lower stages is discussed. The electrical energy supply installations which give performance limits of electrical propulsion and the electrostatic ion propulsion systems are described. The development possibilities of thermal, magnetic, and electrostatic rocket engines and the state of development of the nuclear thermal rocket and propulsion concepts are addressed.

  19. Voltage-matched, monolithic, multi-band-gap devices

    DOEpatents

    Wanlass, Mark W.; Mascarenhas, Angelo

    2006-08-22

    Monolithic, tandem, photonic cells include at least a first semiconductor layer and a second semiconductor layer, wherein each semiconductor layer includes an n-type region, a p-type region, and a given band-gap energy. Formed within each semiconductor layer is a sting of electrically connected photonic sub-cells. By carefully selecting the numbers of photonic sub-cells in the first and second layer photonic sub-cell string(s), and by carefully selecting the manner in which the sub-cells in a first and second layer photonic sub-cell string(s) are electrically connected, each of the first and second layer sub-cell strings may be made to achieve one or more substantially identical electrical characteristics.

  20. Voltage-Matched, Monolithic, Multi-Band-Gap Devices

    DOEpatents

    Wanlass, M. W.; Mascarenhas, A.

    2006-08-22

    Monolithic, tandem, photonic cells include at least a first semiconductor layer and a second semiconductor layer, wherein each semiconductor layer includes an n-type region, a p-type region, and a given band-gap energy. Formed within each semiconductor layer is a string of electrically connected photonic sub-cells. By carefully selecting the numbers of photonic sub-cells in the first and second layer photonic sub-cell string(s), and by carefully selecting the manner in which the sub-cells in a first and second layer photonic sub-cell string(s) are electrically connected, each of the first and second layer sub-cell strings may be made to achieve one or more substantially identical electrical characteristics.

  1. Toward an automated signature recognition toolkit for mission operations

    NASA Technical Reports Server (NTRS)

    Cleghorn, T.; Laird, P; Perrine, L.; Culbert, C.; Macha, M.; Saul, R.; Hammen, D.; Moebes, T.; Shelton, R.

    1994-01-01

    Signature recognition is the problem of identifying an event or events from its time series. The generic problem has numerous applications to science and engineering. At NASA's Johnson Space Center, for example, mission control personnel, using electronic displays and strip chart recorders, monitor telemetry data from three-phase electrical buses on the Space Shuttle and maintain records of device activation and deactivation. Since few electrical devices have sensors to indicate their actual status, changes of state are inferred from characteristic current and voltage fluctuations. Controllers recognize these events both by examining the waveform signatures and by listening to audio channels between ground and crew. Recently the authors have developed a prototype system that identifies major electrical events from the telemetry and displays them on a workstation. Eventually the system will be able to identify accurately the signatures of over fifty distinct events in real time, while contending with noise, intermittent loss of signal, overlapping events, and other complications. This system is just one of many possible signature recognition applications in Mission Control. While much of the technology underlying these applications is the same, each application has unique data characteristics, and every control position has its own interface and performance requirements. There is a need, therefore, for CASE tools that can reduce the time to implement a running signature recognition application from months to weeks or days. This paper describes our work to date and our future plans.

  2. Toward an automated signature recognition toolkit for mission operations

    NASA Astrophysics Data System (ADS)

    Cleghorn, T.; Laird, P.; Perrine, L.; Culbert, C.; Macha, M.; Saul, R.; Hammen, D.; Moebes, T.; Shelton, R.

    1994-10-01

    Signature recognition is the problem of identifying an event or events from its time series. The generic problem has numerous applications to science and engineering. At NASA's Johnson Space Center, for example, mission control personnel, using electronic displays and strip chart recorders, monitor telemetry data from three-phase electrical buses on the Space Shuttle and maintain records of device activation and deactivation. Since few electrical devices have sensors to indicate their actual status, changes of state are inferred from characteristic current and voltage fluctuations. Controllers recognize these events both by examining the waveform signatures and by listening to audio channels between ground and crew. Recently the authors have developed a prototype system that identifies major electrical events from the telemetry and displays them on a workstation. Eventually the system will be able to identify accurately the signatures of over fifty distinct events in real time, while contending with noise, intermittent loss of signal, overlapping events, and other complications. This system is just one of many possible signature recognition applications in Mission Control. While much of the technology underlying these applications is the same, each application has unique data characteristics, and every control position has its own interface and performance requirements. There is a need, therefore, for CASE tools that can reduce the time to implement a running signature recognition application from months to weeks or days. This paper describes our work to date and our future plans.

  3. Self-assembled nanostructured resistive switching memory devices fabricated by templated bottom-up growth

    PubMed Central

    Song, Ji-Min; Lee, Jang-Sik

    2016-01-01

    Metal-oxide-based resistive switching memory device has been studied intensively due to its potential to satisfy the requirements of next-generation memory devices. Active research has been done on the materials and device structures of resistive switching memory devices that meet the requirements of high density, fast switching speed, and reliable data storage. In this study, resistive switching memory devices were fabricated with nano-template-assisted bottom up growth. The electrochemical deposition was adopted to achieve the bottom-up growth of nickel nanodot electrodes. Nickel oxide layer was formed by oxygen plasma treatment of nickel nanodots at low temperature. The structures of fabricated nanoscale memory devices were analyzed with scanning electron microscope and atomic force microscope (AFM). The electrical characteristics of the devices were directly measured using conductive AFM. This work demonstrates the fabrication of resistive switching memory devices using self-assembled nanoscale masks and nanomateirals growth from bottom-up electrochemical deposition. PMID:26739122

  4. Preliminary design development of 100 KW rotary power transfer device

    NASA Technical Reports Server (NTRS)

    Weinberger, S. M.

    1981-01-01

    Contactless power transfer devices for transferring electrical power across a rotating spacecraft interface were studied. A power level of 100 KW was of primary interest and the study was limited to alternating current devices. Rotary transformers and rotary capacitors together with the required dc to ac power conditioning electronics were examined. Microwave devices were addressed. The rotary transformer with resonant circuit power conditioning was selected as the most feasible approach. The rotary capacitor would be larger while microwave devices would be less efficient. A design analysis was made of a 100 KW, 20 kHz power transfer device consisting of a rotary transformer, power conditioning electronics, drive mechanism and heat rejection system. The size, weight and efficiency of the device were determined. The characteristics of a baseline slip ring were presented. Aspects of testing the 100 KW power transfer device were examined. The power transfer device is a feasible concept which can be implemented using presently available technologies.

  5. Electronic devices containing switchably conductive silicon oxides as a switching element and methods for production and use thereof

    DOEpatents

    Tour, James M.; Yao, Jun; Natelson, Douglas; Zhong, Lin; He, Tao

    2015-09-08

    In various embodiments, electronic devices containing switchably conductive silicon oxide as a switching element are described herein. The electronic devices are two-terminal devices containing a first electrical contact and a second electrical contact in which at least one of the first electrical contact or the second electrical contact is deposed on a substrate to define a gap region therebetween. A switching layer containing a switchably conductive silicon oxide resides in the gap region between the first electrical contact and the second electrical contact. The electronic devices exhibit hysteretic current versus voltage properties, enabling their use in switching and memory applications. Methods for configuring, operating and constructing the electronic devices are also presented herein.

  6. Electrical Characteristics of MnO2 Doped Bismuth Borate Glass Systems

    NASA Astrophysics Data System (ADS)

    Nissar, Umair; Ahmad, Javed; Rana, Anwar Manzoor; Bukhari, S. H.; Jamil, M. T.; Khan, J. Alam; Shakeel, R.; Nadeem, M. Y.

    2018-02-01

    Transparent glasses have a large number of applications in the industry of electronics as well as optical devices. xMnO2-(25- x) Bi2O3-75H3BO3 (0 ≤ x ≤ 1.5 mol.%) transparent glasses have been prepared via melt-quench technique and characterized using dc electrical measurements, and by analyzing x-ray diffraction and Fourier transform infrared (FTIR) spectra. These characteristics were examined to understand the role of modifier oxides, i.e., Bi2O3 and MnO2 in the B2O3 glass network. Adding MnO2 into a glass network causes structural changes, which are responsible for any variations in electrical characteristics of bismuth borate glasses. Manganese bismuth borate glasses (MBBG) show Ohmic conduction at low fields; however, glasses with higher manganese content seem to conduct through bulk limited Poole-Frenkel mechanism. FTIR spectroscopy analyses depict the presence of BO3 and BO4 groups along with B-O-B and Bi-O-Bi bonding vibrations. Glasses with higher MnO2 content also show Mn-O bond vibrations. The reduction of BO4 groups and increase of BO3 units lead to the formation of non-bridging oxygens (NBOs) which are responsible for the variations in the electrical properties of these glasses.

  7. Magnetic field characteristics of electric bed-heating devices.

    PubMed

    Wilson, B W; Lee, G M; Yost, M G; Davis, K C; Heimbigner, T; Buschbom, R L

    1996-01-01

    Measurements of the flux density and spectra of magnetic fields (MFs) generated by several types of electric bed heaters (EBH) were made in order to characterize the MFs to which the fetus may be exposed in utero from the mother's use of these devices. Data on MPs were gathered from more than 1,300 in-home and laboratory spot measurements. In-home measurements taken at seven different positions 10 cm from the EBHs determined that the mean flux density at the estimated position of the fetus relative to the device was 0.45 microT (4.5 mG) for electric blankets and 0.20 microT (2.0 mG) for electrically heated water beds. A rate-of-change (RC) metric applied to the nighttime segment of 24 h EMDEX-C personal-dosimeter measurements, which were taken next to the bed of volunteers, yielded an approximate fourfold to sixfold higher value for electric blanket users compared to water-bed heater users. These same data records yielded an approximate twofold difference for the same measurements when evaluated by the time-weighted-average (TWA)MF exposure metric. Performance of exposure meters was checked against standard fields generated in the laboratory, and studies of sources of variance in the in-home measurement protocols were carried out. Spectral measurements showed that the EBH's measured produced no appreciable high-frequency MFs. Data gathered during this work will be used in interpreting results from a component of the California Pregnancy Outcome Study, which evaluates the use of EBHs as a possible risk factor in miscarriage.

  8. Adaptive oxide electronics: A review

    NASA Astrophysics Data System (ADS)

    Ha, Sieu D.; Ramanathan, Shriram

    2011-10-01

    Novel information processing techniques are being actively explored to overcome fundamental limitations associated with CMOS scaling. A new paradigm of adaptive electronic devices is emerging that may reshape the frontiers of electronics and enable new modalities. Creating systems that can learn and adapt to various inputs has generally been a complex algorithm problem in information science, albeit with wide-ranging and powerful applications from medical diagnosis to control systems. Recent work in oxide electronics suggests that it may be plausible to implement such systems at the device level, thereby drastically increasing computational density and power efficiency and expanding the potential for electronics beyond Boolean computation. Intriguing possibilities of adaptive electronics include fabrication of devices that mimic human brain functionality: the strengthening and weakening of synapses emulated by electrically, magnetically, thermally, or optically tunable properties of materials.In this review, we detail materials and device physics studies on functional metal oxides that may be utilized for adaptive electronics. It has been shown that properties, such as resistivity, polarization, and magnetization, of many oxides can be modified electrically in a non-volatile manner, suggesting that these materials respond to electrical stimulus similarly as a neural synapse. We discuss what device characteristics will likely be relevant for integration into adaptive platforms and then survey a variety of oxides with respect to these properties, such as, but not limited to, TaOx, SrTiO3, and Bi4-xLaxTi3O12. The physical mechanisms in each case are detailed and analyzed within the framework of adaptive electronics. We then review theoretically formulated and current experimentally realized adaptive devices with functional oxides, such as self-programmable logic and neuromorphic circuits. Finally, we speculate on what advances in materials physics and engineering may be needed to realize the full potential of adaptive oxide electronics.

  9. Ultrathin, transferred layers of thermally grown silicon dioxide as biofluid barriers for biointegrated flexible electronic systems.

    PubMed

    Fang, Hui; Zhao, Jianing; Yu, Ki Jun; Song, Enming; Farimani, Amir Barati; Chiang, Chia-Han; Jin, Xin; Xue, Yeguang; Xu, Dong; Du, Wenbo; Seo, Kyung Jin; Zhong, Yiding; Yang, Zijian; Won, Sang Min; Fang, Guanhua; Choi, Seo Woo; Chaudhuri, Santanu; Huang, Yonggang; Alam, Muhammad Ashraful; Viventi, Jonathan; Aluru, N R; Rogers, John A

    2016-10-18

    Materials that can serve as long-lived barriers to biofluids are essential to the development of any type of chronic electronic implant. Devices such as cardiac pacemakers and cochlear implants use bulk metal or ceramic packages as hermetic enclosures for the electronics. Emerging classes of flexible, biointegrated electronic systems demand similar levels of isolation from biofluids but with thin, compliant films that can simultaneously serve as biointerfaces for sensing and/or actuation while in contact with the soft, curved, and moving surfaces of target organs. This paper introduces a solution to this materials challenge that combines (i) ultrathin, pristine layers of silicon dioxide (SiO 2 ) thermally grown on device-grade silicon wafers, and (ii) processing schemes that allow integration of these materials onto flexible electronic platforms. Accelerated lifetime tests suggest robust barrier characteristics on timescales that approach 70 y, in layers that are sufficiently thin (less than 1 μm) to avoid significant compromises in mechanical flexibility or in electrical interface fidelity. Detailed studies of temperature- and thickness-dependent electrical and physical properties reveal the key characteristics. Molecular simulations highlight essential aspects of the chemistry that governs interactions between the SiO 2 and surrounding water. Examples of use with passive and active components in high-performance flexible electronic devices suggest broad utility in advanced chronic implants.

  10. Design Optimization of Ge/GaAs-Based Heterojunction Gate-All-Around (GAA) Arch-Shaped Tunneling Field-Effect Transistor (A-TFET).

    PubMed

    Seo, Jae Hwa; Yoon, Young Jun; Kang, In Man

    2018-09-01

    The Ge/GaAs-based heterojunction gate-all-around (GAA) arch-shaped tunneling field-effect transistor (A-TFET) have been designed and optimized using technology computer-aided design (TCAD) simulations. In our previous work, the silicon-based A-TFET was designed and demonstrated. However, to progress the electrical characteristics of A-TFET, the III-V compound heterojunction structures which has enhanced electrical properties must be adopted. Thus, the germanium with gallium arsenide (Ge/GaAs) is considered as key materials of A-TFET. The proposed device has a Ge-based p-doped source, GaAs-based i-doped channel and GaAs-based n-doped drain. Due to the critical issues of device performances, the doping concentration of source and channel region (Dsource, Dchannel), height of source region (Hsource) and epitaxially grown thickness of channel (tepi) was selected as design optimization variables of Ge/GaAs-based GAA A-TFET. The DC characteristics such as on-state current (ion), off-state current (ioff), subthreshold-swing (S) were of extracted and analyzed. Finally, the proposed device has a gate length (LG) of 90 nm, Dsource 5 × 1019 cm-3, Dchannel of 1018 cm-3, tepi of 4 nm, Hsource of 90 nm, R of 10 nm and demonstrate an ion of 2 mA/μm, S of 12.9 mV/dec.

  11. Ultrathin, transferred layers of thermally grown silicon dioxide as biofluid barriers for biointegrated flexible electronic systems

    PubMed Central

    Fang, Hui; Yu, Ki Jun; Song, Enming; Farimani, Amir Barati; Chiang, Chia-Han; Jin, Xin; Xu, Dong; Du, Wenbo; Seo, Kyung Jin; Zhong, Yiding; Yang, Zijian; Won, Sang Min; Fang, Guanhua; Choi, Seo Woo; Chaudhuri, Santanu; Huang, Yonggang; Alam, Muhammad Ashraful; Viventi, Jonathan; Aluru, N. R.; Rogers, John A.

    2016-01-01

    Materials that can serve as long-lived barriers to biofluids are essential to the development of any type of chronic electronic implant. Devices such as cardiac pacemakers and cochlear implants use bulk metal or ceramic packages as hermetic enclosures for the electronics. Emerging classes of flexible, biointegrated electronic systems demand similar levels of isolation from biofluids but with thin, compliant films that can simultaneously serve as biointerfaces for sensing and/or actuation while in contact with the soft, curved, and moving surfaces of target organs. This paper introduces a solution to this materials challenge that combines (i) ultrathin, pristine layers of silicon dioxide (SiO2) thermally grown on device-grade silicon wafers, and (ii) processing schemes that allow integration of these materials onto flexible electronic platforms. Accelerated lifetime tests suggest robust barrier characteristics on timescales that approach 70 y, in layers that are sufficiently thin (less than 1 μm) to avoid significant compromises in mechanical flexibility or in electrical interface fidelity. Detailed studies of temperature- and thickness-dependent electrical and physical properties reveal the key characteristics. Molecular simulations highlight essential aspects of the chemistry that governs interactions between the SiO2 and surrounding water. Examples of use with passive and active components in high-performance flexible electronic devices suggest broad utility in advanced chronic implants. PMID:27791052

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Work under DOE Grant No. DE-FG47-93R701314, to investigate a Novel Process for Fabricating MOSFET Devices, has progressed to a point where feasibility of producing MOSFETS using Chromium Disilicide Schottky barrier junctions at Source and Drain has been shown. Devices fabricated, however, show inconsistent operating characteristics from device to device, and further work is required to overcome the defects. Some fabrication procedures have produced a relatively high, (e.g., ninety-five (95%) percent), yield of devices on a substrate which show at least some transistor action, while others have resulted in very low yield, (e.g., five (5%) percent). Consistency of results from devicemore » to device is less than desired. However, considering that the University of Nebraska at Lincoln (UNL) Electrical Engineering Fabrication Lab is not what industry can provide, it is reasonable to project that essentially one-hundred (99.99+%) percent yield should be achievable in an industrial setting because of the simplicity in the fabrication procedure.« less

  13. Superconducting transition edge sensors and methods for design and manufacture thereof

    NASA Technical Reports Server (NTRS)

    Sadleir, John E. (Inventor)

    2013-01-01

    Methods for forming sensors using transition edge sensors (TES) and sensors therefrom are described. The method includes forming a plurality of sensor arrays includes at least one TES device. The TES device includes a TES device body, a first superconducting lead contacting a first portion of the TES device body, and a second superconducting lead contacting of a second portion of the TES device body, where the first and second superconducting leads separated on the TES device body by a lead spacing. The lead spacing can be selected to be different for at least two of the plurality of sensor arrays. The method also includes determining a transition temperature for each of the plurality of sensor arrays and generating a signal responsive to detecting a change in the electrical characteristics of one of the plurality of sensor arrays meeting a transition temperature criterion.

  14. Collection-limited theory interprets the extraordinary response of single semiconductor organic solar cells

    PubMed Central

    Ray, Biswajit; Baradwaj, Aditya G.; Khan, Mohammad Ryyan; Boudouris, Bryan W.; Alam, Muhammad Ashraful

    2015-01-01

    The bulk heterojunction (BHJ) organic photovoltaic (OPV) architecture has dominated the literature due to its ability to be implemented in devices with relatively high efficiency values. However, a simpler device architecture based on a single organic semiconductor (SS-OPV) offers several advantages: it obviates the need to control the highly system-dependent nanoscale BHJ morphology, and therefore, would allow the use of broader range of organic semiconductors. Unfortunately, the photocurrent in standard SS-OPV devices is typically very low, which generally is attributed to inefficient charge separation of the photogenerated excitons. Here we show that the short-circuit current density from SS-OPV devices can be enhanced significantly (∼100-fold) through the use of inverted device configurations, relative to a standard OPV device architecture. This result suggests that charge generation may not be the performance bottleneck in OPV device operation. Instead, poor charge collection, caused by defect-induced electric field screening, is most likely the primary performance bottleneck in regular-geometry SS-OPV cells. We justify this hypothesis by: (i) detailed numerical simulations, (ii) electrical characterization experiments of functional SS-OPV devices using multiple polymers as active layer materials, and (iii) impedance spectroscopy measurements. Furthermore, we show that the collection-limited photocurrent theory consistently interprets typical characteristics of regular SS-OPV devices. These insights should encourage the design and OPV implementation of high-purity, high-mobility polymers, and other soft materials that have shown promise in organic field-effect transistor applications, but have not performed well in BHJ OPV devices, wherein they adopt less-than-ideal nanostructures when blended with electron-accepting materials. PMID:26290582

  15. Collection-limited theory interprets the extraordinary response of single semiconductor organic solar cells.

    PubMed

    Ray, Biswajit; Baradwaj, Aditya G; Khan, Mohammad Ryyan; Boudouris, Bryan W; Alam, Muhammad Ashraful

    2015-09-08

    The bulk heterojunction (BHJ) organic photovoltaic (OPV) architecture has dominated the literature due to its ability to be implemented in devices with relatively high efficiency values. However, a simpler device architecture based on a single organic semiconductor (SS-OPV) offers several advantages: it obviates the need to control the highly system-dependent nanoscale BHJ morphology, and therefore, would allow the use of broader range of organic semiconductors. Unfortunately, the photocurrent in standard SS-OPV devices is typically very low, which generally is attributed to inefficient charge separation of the photogenerated excitons. Here we show that the short-circuit current density from SS-OPV devices can be enhanced significantly (∼100-fold) through the use of inverted device configurations, relative to a standard OPV device architecture. This result suggests that charge generation may not be the performance bottleneck in OPV device operation. Instead, poor charge collection, caused by defect-induced electric field screening, is most likely the primary performance bottleneck in regular-geometry SS-OPV cells. We justify this hypothesis by: (i) detailed numerical simulations, (ii) electrical characterization experiments of functional SS-OPV devices using multiple polymers as active layer materials, and (iii) impedance spectroscopy measurements. Furthermore, we show that the collection-limited photocurrent theory consistently interprets typical characteristics of regular SS-OPV devices. These insights should encourage the design and OPV implementation of high-purity, high-mobility polymers, and other soft materials that have shown promise in organic field-effect transistor applications, but have not performed well in BHJ OPV devices, wherein they adopt less-than-ideal nanostructures when blended with electron-accepting materials.

  16. Electrical characterization of FBK small-pitch 3D sensors after γ-ray, neutron and proton irradiations

    NASA Astrophysics Data System (ADS)

    Dalla Betta, G.-F.; Boscardin, M.; Hoeferkamp, M.; Mendicino, R.; Seidel, S.; Sultan, D. M. S.

    2017-11-01

    In view of applications in the tracking detectors at the High Luminosity LHC (HL-LHC), we have developed a new generation of 3D pixel sensors featuring small-pitch (50 × 50 or 25 × 100 μ m2) and thin active layer (~ 100 μ m). Owing to the very short inter-electrode distance (~ 30 μ m), charge trapping effects can be strongly mitigated, making these sensors extremely radiation hard. However, the downscaled sensor structure also lends itself to high electric fields as the bias voltage is increased, motivating investigation of leakage current increase in order to prevent premature electrical breakdown due to impact ionization. In order to assess the characteristics of heavily irradiated samples, using 3D diodes as test devices, we have carried out a dedicated campaign that included several irradiations (γ -rays, neutrons, and protons) at different facilities. In this paper, we report on the electrical characterization of a subset of the irradiated samples, also in comparison to their pre-irradiation properties. Results demonstrate that hadron irradiated devices can be safely operated at a voltage high enough to allow for full depletion (hence high efficiency) also at the maximum fluence foreseen at the HL-LHC.

  17. A new approach for two-terminal electronic memory devices - Storing information on silicon nanowires

    NASA Astrophysics Data System (ADS)

    Saranti, Konstantina; Alotaibi, Sultan; Paul, Shashi

    2016-06-01

    The work described in this paper focuses on the utilisation of silicon nanowires as the information storage element in flash-type memory devices. Silicon nanostructures have attracted attention due to interesting electrical and optical properties, and their potential integration into electronic devices. A detailed investigation of the suitability of silicon nanowires as the charge storage medium in two-terminal non-volatile memory devices are presented in this report. The deposition of the silicon nanostructures was carried out at low temperatures (less than 400 °C) using a previously developed a novel method within our research group. Two-terminal non-volatile (2TNV) memory devices and metal-insulator-semiconductor (MIS) structures containing the silicon nanowires were fabricated and an in-depth study of their characteristics was carried out using current-voltage and capacitance techniques.

  18. High temperature electrical energy storage: advances, challenges, and frontiers.

    PubMed

    Lin, Xinrong; Salari, Maryam; Arava, Leela Mohana Reddy; Ajayan, Pulickel M; Grinstaff, Mark W

    2016-10-24

    With the ongoing global effort to reduce greenhouse gas emission and dependence on oil, electrical energy storage (EES) devices such as Li-ion batteries and supercapacitors have become ubiquitous. Today, EES devices are entering the broader energy use arena and playing key roles in energy storage, transfer, and delivery within, for example, electric vehicles, large-scale grid storage, and sensors located in harsh environmental conditions, where performance at temperatures greater than 25 °C are required. The safety and high temperature durability are as critical or more so than other essential characteristics (e.g., capacity, energy and power density) for safe power output and long lifespan. Consequently, significant efforts are underway to design, fabricate, and evaluate EES devices along with characterization of device performance limitations such as thermal runaway and aging. Energy storage under extreme conditions is limited by the material properties of electrolytes, electrodes, and their synergetic interactions, and thus significant opportunities exist for chemical advancements and technological improvements. In this review, we present a comprehensive analysis of different applications associated with high temperature use (40-200 °C), recent advances in the development of reformulated or novel materials (including ionic liquids, solid polymer electrolytes, ceramics, and Si, LiFePO 4 , and LiMn 2 O 4 electrodes) with high thermal stability, and their demonstrative use in EES devices. Finally, we present a critical overview of the limitations of current high temperature systems and evaluate the future outlook of high temperature batteries with well-controlled safety, high energy/power density, and operation over a wide temperature range.

  19. Performance of RF sputtered p-Si/n-ZnO nanoparticle thin film heterojunction diodes in high temperature environment

    NASA Astrophysics Data System (ADS)

    Singh, Satyendra Kumar; Hazra, Purnima

    2017-04-01

    In this article, temperature-dependent current-voltage characteristics of n-ZnO/p-Si nanoparticle thin film heterojunction diode grown by RF sputtering technique are analyzed in the temperature range of 300-433 k to investigate the performance of the device in high temperature environment. The microstructural, morphological, optical and temptrature dependent electrical properties of as-grown nanoparticle thin film were characterized by X-ray diffractometer (XRD), atomic force microscopy (AFM), field emmision scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), variable angle ellipsometer and semiconductor device analyzer. XRD spectra of as-grown ZnO films are exhibited that highly c-axis oriented ZnO nanostructures are grown on p- Si〈100〉 substrate whereas AFM and FESEM images confirm the homogeneous deposition of ZnO nanoparticles on surface of Si substratewith minimum roughness.The optical propertiesof as-grown ZnO nanoparticles have been measured in the spectral range of 300-800 nm using variable angle ellipsometer.To measure electrical parameters of the device prototype in the temperature range of room temperature (300 K) to 433 K, large area ohmic contacts were fabricated on both side of the ZnO/Si heterostructure. From the current-voltage charcteristics of ZnO/Si heterojunction device, it is observed that the device exhibits rectifing nature at room temperature. However, with increase in temperature, reverse saturation current and barrier height are found to increase, whereas ideality factor is started decreasing. This phenomenon confirms that barrier inhomogeneities are present at the interface of ZnO/Si heterojunction, as a result of lattice constant and thermal coefficient mismatch between Si and ZnO. Therefore, a modified value of Richardson constant [33.06 Acm-2K-2] has been extracted from the temperature-dependent electrical characteristics after assuming the Gaussian distribution of special barrier height inhomogeneities across the Si/ZnO interface which is close to its theoretical value [32 Acm-2K-2]. This result indicates that regardless of presence of barrier height inmogeneities, ZnO/Si heterojunction diode still hasability to perform well in high temperature environment.

  20. Flexible TFTs based on solution-processed ZnO nanoparticles.

    PubMed

    Jun, Jin Hyung; Park, Byoungjun; Cho, Kyoungah; Kim, Sangsig

    2009-12-16

    Flexible electronic devices which are lightweight, thin and bendable have attracted increasing attention in recent years. In particular, solution processes have been spotlighted in the field of flexible electronics, since they provide the opportunity to fabricate flexible electronics using low-temperature processes at low-cost with high throughput. However, there are few reports which describe the characteristics of electronic devices on flexible substrates. In this study, we fabricated flexible thin-film transistors (TFTs) on plastic substrates with channel layers formed by the spin-coating of ZnO nanoparticles and investigated their electrical properties in the flat and bent states. To the best of our knowledge, this study is the first attempt to fabricate fully functional ZnO TFTs on flexible substrates through the solution process. The ZnO TFTs showed n-channel device characteristics and operated in enhancement mode. In the flat state, a representative ZnO TFT presented a very low field-effect mobility of 1.2 x 10(-5) cm(2) V(-1) s(-1), while its on/off ratio was as high as 1.5 x 10(3). When the TFT was in the bent state, some of the device parameters changed. The changes of the device parameters and the possible reasons for these changes will be described. The recovery characteristics of the TFTs after being subjected to cyclic bending will be discussed as well.

  1. Nano-fabrication of molecular electronic junctions by targeted modification of metal-molecule bonds

    NASA Astrophysics Data System (ADS)

    Jafri, S. Hassan M.; Löfås, Henrik; Blom, Tobias; Wallner, Andreas; Grigoriev, Anton; Ahuja, Rajeev; Ottosson, Henrik; Leifer, Klaus

    2015-09-01

    Reproducibility, stability and the coupling between electrical and molecular properties are central challenges in the field of molecular electronics. The field not only needs devices that fulfill these criteria but they also need to be up-scalable to application size. In this work, few-molecule based electronics devices with reproducible electrical characteristics are demonstrated. Our previously reported 5 nm gold nanoparticles (AuNP) coated with ω-triphenylmethyl (trityl) protected 1,8-octanedithiol molecules are trapped in between sub-20 nm gap spacing gold nanoelectrodes forming AuNP-molecule network. When the trityl groups are removed, reproducible devices and stable Au-thiol junctions are established on both ends of the alkane segment. The resistance of more than 50 devices is reduced by orders of magnitude as well as a reduction of the spread in the resistance histogram is observed. By density functional theory calculations the orders of magnitude decrease in resistance can be explained and supported by TEM observations thus indicating that the resistance changes and strongly improved resistance spread are related to the establishment of reproducible and stable metal-molecule bonds. The same experimental sequence is carried out using 1,6-hexanedithiol functionalized AuNPs. The average resistances as a function of molecular length, demonstrated herein, are comparable to the one found in single molecule devices.

  2. 21 CFR 868.2775 - Electrical peripheral nerve stimulator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrical peripheral nerve stimulator. 868.2775... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral nerve stimulator. (a) Identification. An electrical peripheral nerve stimulator (neuromuscular blockade monitor) is...

  3. 21 CFR 868.2775 - Electrical peripheral nerve stimulator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electrical peripheral nerve stimulator. 868.2775... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral nerve stimulator. (a) Identification. An electrical peripheral nerve stimulator (neuromuscular blockade monitor) is...

  4. 21 CFR 868.2775 - Electrical peripheral nerve stimulator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electrical peripheral nerve stimulator. 868.2775... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral nerve stimulator. (a) Identification. An electrical peripheral nerve stimulator (neuromuscular blockade monitor) is...

  5. Advances in CCD detector technology for x-ray diffraction applications

    NASA Astrophysics Data System (ADS)

    Thorson, Timothy A.; Durst, Roger D.; Frankel, Dan; Bordwell, Rex L.; Camara, Jose R.; Leon-Guerrero, Edward; Onishi, Steven K.; Pang, Francis; Vu, Paul; Westbrook, Edwin M.

    2004-01-01

    Phosphor-coupled CCDs are established as one of the most successful technologies for x-ray diffraction. This application demands that the CCD simultaneously achieve both the highest possible sensitivity and high readout speeds. Recently, wafer-scale, back illuminated devices have become available which offer significantly higher quantum efficiency than conventional devices (the Fairchild Imaging CCD 486 BI). However, since back thinning significantly changes the electrical properties of the CCD the high speed operation of wafer-scale, back-illuminated devices is not well understood. Here we describe the operating characteristics (including noise, linearity, full well capacity and CTE) of the back-illuminated CCD 486 at readout speeds up to 4 MHz.

  6. Synaptic plasticity and oscillation at zinc tin oxide/silver oxide interfaces

    NASA Astrophysics Data System (ADS)

    Murdoch, Billy J.; McCulloch, Dougal G.; Partridge, James G.

    2017-02-01

    Short-term plasticity, long-term potentiation, and pulse interval dependent plasticity learning/memory functions have been observed in junctions between amorphous zinc-tin-oxide and silver-oxide. The same junctions exhibited current-controlled negative differential resistance and when connected in an appropriate circuit, they behaved as relaxation oscillators. These oscillators produced voltage pulses suitable for device programming. Transmission electron microscopy, energy dispersive X-ray spectroscopy, and electrical measurements suggest that the characteristics of these junctions arise from Ag+/O- electromigration across a highly resistive interface layer. With memory/learning functions and programming spikes provided in a single device structure, arrays of similar devices could be used to form transistor-free neuromorphic circuits.

  7. Tunable bi-functional photonic device based on one-dimensional photonic crystal infiltrated with a bistable liquid-crystal layer.

    PubMed

    Wu, Chong-Yin; Zou, Yi-Hong; Timofeev, Ivan; Lin, Yu-Ting; Zyryanov, Victor Ya; Hsu, Jy-Shan; Lee, Wei

    2011-04-11

    We investigated the optical properties of a one-dimensional photonic crystal infiltrated with a bistable chiral tilted homeotropic nematic liquid crystal as the central defect layer. By modulating the nematic director orientation with applied voltage, the electrical tunability of the defect modes was observed in the transmission spectrum. The composite not only is a general tunable device but also involves the green concept in that it can operate in two stable states at 0 V. Under the parallel-polarizer scheme, the spectral characteristics suggest a potential application for this device as an energy-efficient multichannel optical switch. © 2011 Optical Society of America

  8. Method for making a monolithic integrated high-T.sub.c superconductor-semiconductor structure

    NASA Technical Reports Server (NTRS)

    Burns, Michael J. (Inventor); de la Houssaye, Paul R. (Inventor); Russell, Stephen D. (Inventor); Garcia, Graham A. (Inventor); Barfknecht, Andrew T. (Inventor); Clayton, Stanley R. (Inventor)

    2000-01-01

    A method for the fabrication of active semiconductor and high-temperature perconducting devices on the same substrate to form a monolithically integrated semiconductor-superconductor (MISS) structure is disclosed. A common insulating substrate, preferably sapphire or yttria-stabilized zirconia, is used for deposition of semiconductor and high-temperature superconductor substructures. Both substructures are capable of operation at a common temperature of at least 77 K. The separate semiconductor and superconductive regions may be electrically interconnected by normal metals, refractory metal silicides, or superconductors. Circuits and devices formed in the resulting MISS structures display operating characteristics which are equivalent to those of circuits and devices prepared on separate substrates.

  9. A disposable power source in resource-limited environments: A paper-based biobattery generating electricity from wastewater.

    PubMed

    Fraiwan, Arwa; Kwan, Landen; Choi, Seokheun

    2016-11-15

    We report a novel paper-based biobattery which generates power from microorganism-containing liquid derived from renewable and sustainable wastewater which is readily accessible in the local environment. The device fuses the art of origami and the technology of microbial fuel cells (MFCs) and has the potential to shift the paradigm for flexible and stackable paper-based batteries by enabling exceptional electrical characteristics and functionalities. 3D, modular, and retractable battery stack is created from (i) 2D paper sheets through high degrees of folding and (ii) multifunctional layers sandwiched for MFC device configuration. The stack is based on ninja star-shaped origami design formed by eight MFC modular blades, which is retractable from sharp shuriken (closed) to round frisbee (opened). The microorganism-containing wastewater is added into an inlet of the closed battery stack and it is transported into each MFC module through patterned fluidic pathways in the paper layers. During operation, the battery stack is transformed into the round frisbee to connect eight MFC modules in series for improving the power output and simultaneously expose all air-cathodes to the air for their cathodic reactions. The device generates desired values of electrical current and potential for powering an LED for more than 20min. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Effect of ultraviolet illumination and ambient gases on the photoluminescence and electrical properties of nanoporous silicon layer for organic vapor sensor.

    PubMed

    Atiwongsangthong, Narin

    2012-08-01

    The purpose of this research, the nanoporous silicon layer were fabricated and investigated the physical properties such as photoluminescence and the electrical properties in order to develop organic vapor sensor by using nanoporous silicon. The Changes in the photoluminescence intensity of nanoporous silicon samples are studied during ultraviolet illumination in various ambient gases such as nitrogen, oxigen and vacuum. In this paper, the nanoporous silicon layer was used as organic vapor adsorption and sensing element. The advantage of this device are simple process compatible in silicon technology and usable in room temperature. The structure of this device consists of nanoporous silicon layer which is formed by anodization of silicon wafer in hydrofluoric acid solution and aluminum electrode which deposited on the top of nanoporous silicon layer by evaporator. The nanoporous silicon sensors were placed in a gas chamber with various organic vapor such as ethanol, methanol and isopropyl alcohol. From studying on electrical characteristics of this device, it is found that the nanoporous silicon layer can detect the different organic vapor. Therefore, the nanoporous silicon is important material for organic vapor sensor and it can develop to other applications about gas sensors in the future.

  11. Thermal Design and Characterization of Heterogeneously Integrated InGaP/GaAs HBTs

    DOE PAGES

    Choi, Sukwon; Peake, Gregory M.; Keeler, Gordon A.; ...

    2016-04-21

    Flip-chip heterogeneously integrated n-p-n InGaP/GaAs heterojunction bipolar transistors (HBTs) with integrated thermal management on wide-bandgap AlN substrates followed by GaAs substrate removal are demonstrated. Without thermal management, substrate removal after integration significantly aggravates self-heating effects, causing poor I–V characteristics due to excessive device self-heating. An electrothermal codesign scheme is demonstrated that involves simulation (design), thermal characterization, fabrication, and evaluation. Thermoreflectance thermal imaging, electrical-temperature sensitive parameter-based thermometry, and infrared thermography were utilized to assess the junction temperature rise in HBTs under diverse configurations. In order to reduce the thermal resistance of integrated devices, passive cooling schemes assisted by structural modification, i.e.,more » positioning indium bump heat sinks between the devices and the carrier, were employed. By implementing thermal heat sinks in close proximity to the active region of flip-chip integrated HBTs, the junction-to-baseplate thermal resistance was reduced over a factor of two, as revealed by junction temperature measurements and improvement of electrical performance. In conclusion, the suggested heterogeneous integration method accounts for not only electrical but also thermal requirements providing insight into realization of advanced and robust III–V/Si heterogeneously integrated electronics.« less

  12. Determination of P3HT Trap Site Energies by Thermally Stimulated Current

    NASA Astrophysics Data System (ADS)

    Souza, J. F. P.; Serbena, J. P. M.; Kowalski, E. L.; Akcelrud, L. C.

    2018-02-01

    The thermal, electrical and morphological characterization of poly(3-hexylthiophene-2,5diyl) (P3HT) is presented and discussed. Thermal analyses revealed high glass transition, melting and degradation temperatures, indicating high stability of the polymer to annealings in the range 25-200°C. Electrical measurements were performed in spin-coated devices constructed using indium tin oxide (ITO) and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) in the sandwich structure ITO/PEDOT:PSS/P3HT/Al. The devices were thermally treated at 25°C, 100°C, 150°C, and 200°C prior to the measurements. Characteristic curves of current density versus voltage showed that the injection of charge carriers is governed by tunneling at high electric fields. Hole mobility was estimated by impedance spectroscopy, showing a maximum value of 8.6 × 10-5 cm2/Vs for annealed films at 150°C. A thermally stimulated current technique was used to analyze the trap density in the P3HT and its respective energies for all devices, presenting the lowest trap density for annealed films at 150°C. Morphological features observed by atomic force microscopy showed that the 150°C thermally treated film presents the best interface condition of the four investigated annealing temperatures.

  13. Electric charge requirements of pediatric cochlear implant recipients enrolled in the Childhood Development After Cochlear Implantation study.

    PubMed

    Zwolan, Teresa A; O'Sullivan, Mary Beth; Fink, Nancy E; Niparko, John K

    2008-02-01

    To evaluate mapping characteristics of children with cochlear implants who are enrolled in the Childhood Development After Cochlear Implantation (CDACI) multicenter study. Longitudinal evaluation during 24 months of speech processor maps of children with cochlear implants prospectively enrolled in the study. Six tertiary referral centers. One hundred eighty-eight children enrolled in the CDACI study who were 5 years old or younger at the time of enrollment. Of these children, 184 received unilateral implants, and 4 received simultaneous bilateral implants. Children attended regular mapping sessions at their implant clinic as part of the study protocol. Maps were examined for each subject at 4 different time intervals: at device activation and 6, 12, and 24 months postactivation. Mean C/M levels (in charge per phase) were compared for 4 different time intervals, for 3 different devices, for 6 different implant centers, and for children with normal and abnormal cochleae. All 3 types of implant devices demonstrate significant increases in C/M levels between device activation and the 24-month appointment. Significant differences in mean C/M levels were noted between devices. Children with cochlear anomalies demonstrate significantly greater C/M levels than children with normal cochleae. The CDACI study has enabled us to evaluate the mapping characteristics of pediatric patients who use 3 different devices and were implanted at a variety of implant centers. Analysis of such data enables us to better understand the mapping characteristics of children with cochlear implants.

  14. Benzocyclobutene-based electric micromachines supported on microball bearings: Design, fabrication, and characterization

    NASA Astrophysics Data System (ADS)

    Modafe, Alireza

    This dissertation summarizes the research activities that led to the development of the first microball-bearing-supported linear electrostatic micromotor with benzocyclobutene (BCB) low-k polymer insulating layers. The primary application of this device is long-range, high-speed linear micropositioning. The future generations of this device include rotary electrostatic micromotors and microgenerators. The development of the first generation of microball-bearing-supported micromachines, including device theory, design, and modeling, material characterization, process development, device fabrication, and device test and characterization is presented. The first generation of these devices is based on a 6-phase, bottom-drive, linear, variable-capacitance micromotor (B-LVCM). The design of the electrical and mechanical components of the micromotor, lumped-circuit modeling of the device and electromechanical characteristics, including variable capacitance, force, power, and speed are presented. Electrical characterization of BCB polymers, characterization of BCB chemical mechanical planarization (CMP), development of embedded BCB in silicon (EBiS) process, and integration of device components using microfabrication techniques are also presented. The micromotor consists of a silicon stator, a silicon slider, and four stainless-steel microballs. The aligning force profile of the micromotor was extracted from simulated and measured capacitances of all phases. An average total aligning force of 0.27 mN with a maximum of 0.41 mN, assuming a 100 V peak-to-peak square-wave voltage, was measured. The operation of the micromotor was verified by applying square-wave voltages and characterizing the slider motion. An average slider speed of 7.32 mm/s when excited by a 40 Hz, 120 V square-wave voltage was reached without losing the synchronization. This research has a pivotal impact in the field of power microelectromechanical systems (MEMS). It establishes the foundation for the development of more reliable, efficient electrostatic micromachines with variety of applications such as micropropulsion, high-speed micropumping, microfluid delivery, and microsystem power generation.

  15. Ge/IIIV fin field-effect transistor common gate process and numerical simulations

    NASA Astrophysics Data System (ADS)

    Chen, Bo-Yuan; Chen, Jiann-Lin; Chu, Chun-Lin; Luo, Guang-Li; Lee, Shyong; Chang, Edward Yi

    2017-04-01

    This study investigates the manufacturing process of thermal atomic layer deposition (ALD) and analyzes its thermal and physical mechanisms. Moreover, experimental observations and computational fluid dynamics (CFD) are both used to investigate the formation and deposition rate of a film for precisely controlling the thickness and structure of the deposited material. First, the design of the TALD system model is analyzed, and then CFD is used to simulate the optimal parameters, such as gas flow and the thermal, pressure, and concentration fields, in the manufacturing process to assist the fabrication of oxide-semiconductors and devices based on them, and to improve their characteristics. In addition, the experiment applies ALD to grow films on Ge and GaAs substrates with three-dimensional (3-D) transistors having high electric performance. The electrical analysis of dielectric properties, leakage current density, and trapped charges for the transistors is conducted by high- and low-frequency measurement instruments to determine the optimal conditions for 3-D device fabrication. It is anticipated that the competitive strength of such devices in the semiconductor industry will be enhanced by the reduction of cost and improvement of device performance through these optimizations.

  16. Tunable Schottky barrier and high responsivity in graphene/Si-nanotip optoelectronic device

    NASA Astrophysics Data System (ADS)

    Di Bartolomeo, Antonio; Giubileo, Filippo; Luongo, Giuseppe; Iemmo, Laura; Martucciello, Nadia; Niu, Gang; Fraschke, Mirko; Skibitzki, Oliver; Schroeder, Thomas; Lupina, Grzegorz

    2017-03-01

    We demonstrate tunable Schottky barrier height and record photo-responsivity in a new-concept device made of a single-layer CVD graphene transferred onto a matrix of nanotips patterned on n-type Si wafer. The original layout, where nano-sized graphene/Si heterojunctions alternate to graphene areas exposed to the electric field of the Si substrate, which acts both as diode cathode and transistor gate, results in a two-terminal barristor with single-bias control of the Schottky barrier. The nanotip patterning favors light absorption, and the enhancement of the electric field at the tip apex improves photo-charge separation and enables internal gain by impact ionization. These features render the device a photodetector with responsivity (3 {{A}} {{{W}}}-1 for white LED light at 3 {{mW}} {{{cm}}}-2 intensity) almost an order of magnitude higher than commercial photodiodes. We extensively characterize the voltage and the temperature dependence of the device parameters, and prove that the multi-junction approach does not add extra-inhomogeneity to the Schottky barrier height distribution. We also introduce a new phenomenological graphene/semiconductor diode equation, which well describes the experimental I-V characteristics both in forward and reverse bias.

  17. Diester Molecules for Organic-Based Electrical and Photoelectrical Devices

    NASA Astrophysics Data System (ADS)

    Topal, Giray; Tombak, Ahmet; Yigitalp, Esref; Batibay, Derya; Kilicoglu, Tahsin; Ocak, Yusuf Selim

    2017-07-01

    Diester derivatives of terephthalic acid molecules were synthesized according to the literature. Au/Diester derivatives/ n-Si organic-inorganic (OI) heterojunction-type devices were fabricated, and the current-voltage ( I- V) characteristics of the devices have been investigated at room temperature. I- V characteristics demonstrated that all diodes had excellent rectification properties. Primary diode parameters such as series resistance and barrier height were extracted by using semi-log I- V plots and Norde methods, and were compared. It was seen that there was a substantial agreement between results obtained from two methods. Calculated barrier height values were about the same with 0.02-eV differences that were attributed to the series resistance. Ideality factors, which show how the diode closes to ideal diodes, were also extracted from semi-log I- V plots. Thus, the modification of the Au/ n-Si diode potential barrier was accomplished using diester derivatives as an interlayer. The I- V measurements were repeated to characterize the devices at 100 mW/cm2 illumination intensity with the help of a solar simulator with an AM1.5G filter.

  18. GaN-based superluminescent diodes with long lifetime

    NASA Astrophysics Data System (ADS)

    Castiglia, A.; Rossetti, M.; Matuschek, N.; Rezzonico, R.; Duelk, M.; Vélez, C.; Carlin, J.-F.; Grandjean, N.

    2016-02-01

    We report on the reliability of GaN-based super-luminescent light emitting diodes (SLEDs) emitting at a wavelength of 405 nm. We show that the Mg doping level in the p-type layers has an impact on both the device electro-optical characteristics and their reliability. Optimized doping levels allow decreasing the operating voltage on single-mode devices from more than 6 V to less than 5 V for an injection current of 100 mA. Furthermore, maximum output powers as high as 350 mW (for an injection current of 500 mA) have been achieved in continuous-wave operation (CW) at room temperature. Modules with standard and optimized p-type layers were finally tested in terms of lifetime, at a constant output power of 10 mW, in CW operation and at a case temperature of 25 °C. The modules with non-optimized p-type doping showed a fast and remarkable increase in the drive current during the first hundreds of hours together with an increase of the device series resistance. No degradation of the electrical characteristics was observed over 2000 h on devices with optimized p-type layers. The estimated lifetime for those devices was longer than 5000 h.

  19. Processing of speech signals for physical and sensory disabilities.

    PubMed Central

    Levitt, H

    1995-01-01

    Assistive technology involving voice communication is used primarily by people who are deaf, hard of hearing, or who have speech and/or language disabilities. It is also used to a lesser extent by people with visual or motor disabilities. A very wide range of devices has been developed for people with hearing loss. These devices can be categorized not only by the modality of stimulation [i.e., auditory, visual, tactile, or direct electrical stimulation of the auditory nerve (auditory-neural)] but also in terms of the degree of speech processing that is used. At least four such categories can be distinguished: assistive devices (a) that are not designed specifically for speech, (b) that take the average characteristics of speech into account, (c) that process articulatory or phonetic characteristics of speech, and (d) that embody some degree of automatic speech recognition. Assistive devices for people with speech and/or language disabilities typically involve some form of speech synthesis or symbol generation for severe forms of language disability. Speech synthesis is also used in text-to-speech systems for sightless persons. Other applications of assistive technology involving voice communication include voice control of wheelchairs and other devices for people with mobility disabilities. Images Fig. 4 PMID:7479816

  20. Double-injection, deep-impurity switch development

    NASA Technical Reports Server (NTRS)

    Selim, F. A.; Whitson, D. W.

    1983-01-01

    The overall objective of this program is the development of device design and process techniques for the fabrication of a double-injection, deep-impurity (DI)(2) silicon switch that operates in the 1-10 kV range with conduction current of 10 and 1A, respectively. Other major specifications include a holding voltage of 0 to 5 volts at 1 A anode current, 10 microsecond switching time, and power dissipation of 50 W at 75 C. This report describes work that shows how the results obtained at the University of Cincinnati under NASA Grant NSG-3022 have been applied to larger area and higher voltage devices. The investigations include theoretical, analytical, and experimental studies of device design and processing. Methods to introduce deep levels, such as Au diffusion and electron irradiation, have been carried out to "pin down' the Fermi level and control device-switching characteristics. Different anode, cathode, and gate configurations are presented. Techniques to control the surface electric field of planar structures used for (DI)(2) switches are examined. Various sections of this report describe the device design, wafer-processing techniques, and various measurements which include ac and dc characteristics, 4-point probe, and spreading resistance.

  1. Processing of Speech Signals for Physical and Sensory Disabilities

    NASA Astrophysics Data System (ADS)

    Levitt, Harry

    1995-10-01

    Assistive technology involving voice communication is used primarily by people who are deaf, hard of hearing, or who have speech and/or language disabilities. It is also used to a lesser extent by people with visual or motor disabilities. A very wide range of devices has been developed for people with hearing loss. These devices can be categorized not only by the modality of stimulation [i.e., auditory, visual, tactile, or direct electrical stimulation of the auditory nerve (auditory-neural)] but also in terms of the degree of speech processing that is used. At least four such categories can be distinguished: assistive devices (a) that are not designed specifically for speech, (b) that take the average characteristics of speech into account, (c) that process articulatory or phonetic characteristics of speech, and (d) that embody some degree of automatic speech recognition. Assistive devices for people with speech and/or language disabilities typically involve some form of speech synthesis or symbol generation for severe forms of language disability. Speech synthesis is also used in text-to-speech systems for sightless persons. Other applications of assistive technology involving voice communication include voice control of wheelchairs and other devices for people with mobility disabilities.

  2. Energy management system for a rotary machine and method therefor

    DOEpatents

    Bowman, Michael John; Sinha, Gautam; Sheldon, Karl Edward

    2004-11-09

    In energy management system is provided for a power generating device having a working fluid intake in which the energy management system comprises an electrical dissipation device coupled to the power generating device and a dissipation device cooling system configured to direct a portion of a working fluid to the electrical dissipation device so as to provide thermal control to the electrical dissipation device.

  3. Development of Wave Turbine Emulator in a Laboratory Environment

    NASA Astrophysics Data System (ADS)

    Vinatha, U.; Vittal K, P.

    2013-07-01

    Wave turbine emulator (WTE) is an important equipment for developing wave energy conversion system. The emulator reflects the actual behavior of the wave turbine by reproducing the characteristics of real wave turbine without reliance on natural wave resources and actual wave turbine. It offers a controllable test environment that allows the evaluation and improvement of control schemes for electric generators. The emulator can be used for research applications to drive an electrical generator in a similar way as a practical wave turbine. This article presents the development of a WTE in a laboratory environment and studies on the behavior of electrical generator coupled to the emulator. The structure of a WTE consists of a PC where the characteristics of the turbine are implemented, ac drive to emulate the turbine rotor, feedback mechanism from the drive and power electronic equipment to control the drive. The feedback signal is acquired by the PC through an A/D converter, and the signal for driving the power electronic device comes from the PC through a D/A converter.

  4. Research and development of a new RF-assisted device for bloodless rapid transection of the liver: Computational modeling and in vivo experiments

    PubMed Central

    Burdío, Fernando; Berjano, Enrique J; Navarro, Ana; Burdío, José M; Grande, Luis; Gonzalez, Ana; Cruz, Ignacio; Güemes, Antonio; Sousa, Ramón; Subirá, Jorge; Castiella, Tomás; Poves, Ignasi; Lequerica, Juan L

    2009-01-01

    Background Efficient and safe transection of biological tissue in liver surgery is strongly dependent on the ability to address both parenchymal division and hemostasis simultaneously. In addition to the conventional clamp crushing or finger fracture methods other techniques based on radiofrequency (RF) currents have been extensively employed to reduce intraoperative blood loss. In this paper we present our broad research plan for a new RF-assisted device for bloodless, rapid resection of the liver. Methods Our research plan includes computer modeling and in vivo studies. Computer modeling was based on the Finite Element Method (FEM) and allowed us to estimate the distribution of electrical power deposited in the tissue, along with assessing the effect of the characteristics of the device on the temperature profiles. Studies based on in vivo pig liver models provided a comparison of the performance of the new device with other techniques (saline-linked technology) currently employed in clinical practice. Finally, the plan includes a pilot clinical trial, in which both the new device and the accessory equipment are seen to comply with all safety requirements. Results The FEM results showed a high electrical gradient around the tip of the blade, responsible for the maximal increase of temperature at that point, where temperature reached 100°C in only 3.85 s. Other hot points with lower temperatures were located at the proximal edge of the device. Additional simulations with an electrically insulated blade produced more uniform and larger lesions (assessed as the 55°C isotherm) than the electrically conducting blade. The in vivo study, in turn, showed greater transection speed (3 ± 0 and 3 ± 1 cm2/min for the new device in the open and laparoscopic approaches respectively) and also lower blood loss (70 ± 74 and 26 ± 34 mL) during transection of the liver, as compared to saline-linked technology (2 ± 1 cm2/min with P = 0.002, and 527 ± 273 mL with P = 0.001). Conclusion A new RF-assisted device for bloodless, rapid liver resection was designed, built and tested. The results demonstrate the potential advantages of this device over others currently employed. PMID:19296852

  5. Schottky Emission Distance and Barrier Height Properties of Bipolar Switching Gd:SiOx RRAM Devices under Different Oxygen Concentration Environments

    PubMed Central

    Chen, Kai-Huang; Tsai, Tsung-Ming; Cheng, Chien-Min; Huang, Shou-Jen; Chang, Kuan-Chang; Liang, Shu-Ping; Young, Tai-Fa

    2017-01-01

    In this study, the hopping conduction distance and bipolar switching properties of the Gd:SiOx thin film by (radio frequency, rf) rf sputtering technology for applications in RRAM devices were calculated and investigated. To discuss and verify the electrical switching mechanism in various different constant compliance currents, the typical current versus applied voltage (I-V) characteristics of gadolinium oxide RRAM devices was transferred and fitted. Finally, the transmission electrons’ switching behavior between the TiN bottom electrode and Pt top electrode in the initial metallic filament forming process of the gadolinium oxide thin film RRAM devices for low resistance state (LRS)/high resistance state (HRS) was described and explained in a simulated physical diagram model. PMID:29283368

  6. Using electric pulse and laser to trigger a sharp and nonvolatile change of lateral photovoltage in nano-carbon film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gan, Zhikai; Zhou, Peiqi; Huang, Xu

    A greatly enhanced lateral photovoltage (LPV) triggered by electric pulse has been observed in nano-carbon oxide semiconductor (COS) structures. The original maximal output signal of lateral photovoltage achieved in these structures is 9.8 mV. However, by combining the application of a 60 V voltage pulse with laser illumination, the LPV can reach a very high value of 183 mV and the change ratio after 60 V pulse is nearly 1800%. In addition, the states of these light and electric-pulse triggered COSs are permanently changed, showing a non-volatile characteristic. We attribute this phenomenon to the trapping effect of stimulated electrons in COSs. The work suggestsmore » an approach for tailoring LPV-based devices by electric pulse and will be useful for the development of electric pulse modulated photodetectors.« less

  7. Electrical Properties of MWCNT/HDPE Composite-Based MSM Structure Under Neutron Irradiation

    NASA Astrophysics Data System (ADS)

    Kasani, H.; Khodabakhsh, R.; Taghi Ahmadi, M.; Rezaei Ochbelagh, D.; Ismail, Razali

    2017-04-01

    Because of their low cost, low energy consumption, high performance, and exceptional electrical properties, nanocomposites containing carbon nanotubes are suitable for use in many applications such as sensing systems. In this research work, a metal-semiconductor-metal (MSM) structure based on a multiwall carbon nanotube/high-density polyethylene (MWCNT/HDPE) nanocomposite is introduced as a neutron sensor. Scanning electron microscopy, Fourier-transform infrared, and infrared spectroscopy techniques were used to characterize the morphology and structure of the fabricated device. Current-voltage ( I- V) characteristic modeling showed that the device can be assumed to be a reversed-biased Schottky diode, if the voltage is high enough. To estimate the depletion layer length of the Schottky contact, impedance spectroscopy was employed. Therefore, the real and imaginary parts of the impedance of the MSM system were used to obtain electrical parameters such as the carrier mobility and dielectric constant. Experimental observations of the MSM structure under irradiation from an americium-beryllium (Am-Be) neutron source showed that the current level in the device decreased significantly. Subsequently, current pulses appeared in situ I- V and current-time ( I- t) curve measurements when increasing voltage was applied to the MSM system. The experimentally determined depletion region length as well as the space-charge-limited current mechanism for carrier transport were compared with the range for protons calculated using Monte Carlo n-particle extended (MCNPX) code, yielding the maximum energy of recoiled protons detectable by the device.

  8. Low-voltage Organic Thin Film Transistors (OTFTs) with Solution-processed High-k Dielectric cum Interface Engineering

    NASA Astrophysics Data System (ADS)

    Su, Yaorong

    Although impressive progress has been made in improving the performance of organic thin film transistors (OTFTs), the high operation voltage resulting from the low gate areal capacitance of traditional SiO 2 remains a severe limitation that hinders OTFTs' development in practical applications. In this regard, developing new materials with high- k characteristics at low cost is of great scientific and technological importance in the area of both academia and industry. In this thesis, we first describe a simple solution-based method to fabricate a high-k bilayer Al2Oy/TiOx (ATO) dielectric system at low temperature. Then the dielectric properties of the ATO are characterized and discussed in detail. Furthermore, by employing the high-k ATO as gate dielectric, low-voltage copper phthalocyanine (CuPc) based OTFTs are successfully developed. Interestingly, the obtained low-voltage CuPc TFT exhibits outstanding electrical performance, which is even higher than the device fabricated on traditional low-k SiO2. The above results seem to be contradictory to the reported results due to the fact that high-k usually shows adverse effect on the device performance. This abnormal phenomenon is then studied in detail. Characterization on the initial growth shows that the CuPc molecules assemble in a "rod-like" nano crystal with interconnected network on ATO, which probably promotes the charge carrier transport, whereas, they form isolated small islands with amorphous structure on SiO2. In addition, a better metal/organic contact is observed on ATO, which benefits the charge carrier injection. Our studies suggest that the low-temperature, solution-processed high-k ATO is a promising candidate for fabrication of high-performance, low-voltage OTFTs. Furthermore, it is well known that the properties of the dielectric/semiconductor and electrode/semiconductor interfaces are crucial in controlling the electrical properties of OTFTs. Hence, investigation the effects of interfaces engineering on improving the electrical characteristics of OTFTs is of great technological importance. For the dielectric/semiconductor interface, an octadecylphosphonic acid (ODPA) self-assembled monolayer (SAM) is used to modify the surface of ATO (ODPA/ATO). For the electrode/semiconductor interface, a simple in-situ modified Cu (M-Cu) is employed as source-drain (S/D) electrodes in stead of commonly used Au. The electrical characteristics of pentacene TFT are drastically enhanced upon interfaces modification. Moreover, by encapsulating the M-Cu with a thin layer of Au (Au/ M-Cu), the device performance is further improved. The detailed mechanism is systematically explored. Finally, organic electronic devices on flexible plastic substrates have attracted much attention due to their low-cost, rollability, large-area processability, and so on. One of the most critical issues in realization flexible OTFTs is the integration of gate dielectrics with flexible substrates. We have successfully incorporated the ODPA/ATO with Au coated flexible polyimide (PI) substrate. By using Au/M-Cu as S/D electrode, the flexible pentacene TFTs show outstanding electrical performance. In addition, the mechanical flexibility and reliability of the devices are studied in detail. Our approach demonstrates an effective way to realize low-cost, high-performance flexible OTFTs.

  9. Ternary Synaptic Plasticity Arising from Memdiode Behavior of TiOx Single Nanowire

    NASA Astrophysics Data System (ADS)

    Hong, Deshun; Chen, Yuansha; Sun, Jirong; Shen, Baogen; Group 3 of Magnetism Laboratory, Beijing National LaboratoryCondensed Matter Physics Team

    Electric field-induced resistive switching (RS) effect has been widely explored as a novel nonvolatile memory over the past few years. Recently, the RS behavior with continuous transition has received considerable attention for its promising prospect in neuromorphic simulation. Here, the switching characteristics of a planar-structured TiOx single nanowire device were systematically investigated. It exhibited a strong electrical history-dependent rectifying behavior that was defined as a ''memdiode''. We further demonstrated that a ternary synaptic plasticity could be realized in such a TiOx nanowire device, characterized by the resistance and photocurrent responses. For a given state of the memdiode, a conjugated memristive characteristic and a distinct photocurrent can be simulaneously obtained, resulting in a synchronous implementation of various Hebbian plasticities with the same temporal order of spikes. These intriguing properties of TiOx memdiode provide a feasible way toward the designing of multifunctional electronic synapses as well as programmable artificial neural network This work has been partially supported by the National Basic Research of China (2013CB921700), the ``Strategic Priority Research Program (B)'' of the Chinese Academy of Sciences (XDB07030200) and the National Natural Science Foundation of China (11374339).

  10. Low Temperature Electrical Spin Injection from Highly Spin Polarized Co₂CrAl Heusler Alloy into p-Si.

    PubMed

    Kar, Uddipta; Panda, J; Nath, T K

    2018-06-01

    The low temperature spin accumulation in p-Si using Co2CrAl/SiO2 tunnel junction has been investigated in detail. The heterojunction has been fabricated using electron beam evaporation (EBE) technique. The 3-terminal contacts in Hanle geometry has been made for spin transport measurements. The electrical transport properties have been investigated at different isothermal conditions in the temperature range of 10-300 K. The current-voltage characteristics of the junction shows excellent rectifying magnetic diode like behaviour in lower temperature range (below 200 K). At higher temperature, the junction shows nonlinear behaviour without rectifying characteristics. We have observed spin accumulation signal in p-Si semiconductor using SiO2/Co2CrAl tunnel junction in the low temperature regime (30-100 K). Hence the highly spin polarized Full Heusler alloys compounds, like Co2CrAl etc., are very attractive and can act as efficient tunnel device for spin injection in the area of spintronics devices in near future. The estimated spin life time is τ = 54 pS and spin diffusion length inside p-Si is LSD = 289 nm at 30 K for this heterostructure.

  11. Flexible Memristive Devices Based on InP/ZnSe/ZnS Core-Multishell Quantum Dot Nanocomposites.

    PubMed

    Kim, Do Hyeong; Wu, Chaoxing; Park, Dong Hyun; Kim, Woo Kyum; Seo, Hae Woon; Kim, Sang Wook; Kim, Tae Whan

    2018-05-02

    The effects of the ZnS shell layer on the memory performances of flexible memristive devices based on quantum dots (QDs) with an InP/ZnSe/ZnS core-multishell structure embedded in a poly(methylmethacrylate) layer were investigated. The on/off ratios of the devices based on QDs with an InP/ZnSe core-shell structure and with an InP/ZnSe/ZnS core-multishell structure were approximately 4.2 × 10 2 and 8.5 × 10 3 , respectively, indicative of enhanced charge storage capability in the latter. After bending, the memory characteristics of the memristive devices based on QDs with the InP/ZnSe/ZnS structure were similar to those before bending. In addition, those devices maintained the same on/off ratios for retention time of 1 × 10 4 s, and the number of endurance cycles was above 1 × 10 2 . The reset voltages ranged from -2.3 to -3.1 V, and the set voltages ranged from 1.3 to 2.1 V, indicative of reliable electrical characteristics. Furthermore, the possible operating mechanisms of the devices are presented on the basis of the electron trapping and release mode.

  12. Advanced Vehicle system concepts. [nonpetroleum passenger transportation

    NASA Technical Reports Server (NTRS)

    Hardy, K. S.; Langendoen, J. M.

    1983-01-01

    Various nonpetroleum vehicle system concepts for passenger vehicles in the 1990's are being considered as part of the Advanced Vehicle (AV) Assessment at the Jet Propulsion Laboratory. The vehicle system and subsystem performance requirements, the projected characteristics of mature subsystem candidates, and promising systems are presented. The system candidates include electric and hybrid vehicles powered by electricity with or without a nonpetroleum power source. The subsystem candidates include batteries (aqueous-mobile, flow, high-temperature, and metal-air), fuel cells (phosphoric acid, advanced acids, and solid polymer electrolyte), nonpetroleum heat engines, advanced dc and ac propulsion components, power-peaking devices, and transmissions.

  13. Electrical insulation design requirements and reliability goals

    NASA Astrophysics Data System (ADS)

    Ross, R. G., Jr.

    1983-11-01

    The solar cells in a photovoltaic module which must be electrically isolated from module exterior surfaces to satisfy a variety of safety and operating considerations are discussed. The performance and reliability of the insulation system are examined. Technical requirements involve the capability of withstanding the differential voltage from the solar cells to the module frame. The maximum system voltage includes consideration of maximum open circuit array voltages achieved under low-temperature, high-irradiance conditions, and transient overvoltages due to system feedback of lightning transients. The latter is bounded by the characteristics of incorporated voltage limiting devices such as MOVs.

  14. Stacking fault induced tunnel barrier in platelet graphite nanofiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lan, Yann-Wen, E-mail: chiidong@phys.sinica.edu.tw, E-mail: ywlan@phys.sinica.edu.tw; Chang, Yuan-Chih; Chang, Chia-Seng

    A correlation study using image inspection and electrical characterization of platelet graphite nanofiber devices is conducted. Close transmission electron microscopy and diffraction pattern inspection reveal layers with inflection angles appearing in otherwise perfectly stacked graphene platelets, separating nanofibers into two domains. Electrical measurement gives a stability diagram consisting of alternating small-large Coulomb blockade diamonds, suggesting that there are two charging islands coupled together through a tunnel junction. Based on these two findings, we propose that a stacking fault can behave as a tunnel barrier for conducting electrons and is responsible for the observed double-island single electron transistor characteristics.

  15. Ultrastrong Graphene-Copper Core-Shell Wires for High-Performance Electrical Cables.

    PubMed

    Kim, Sang Jin; Shin, Dong Heon; Choi, Yong Seok; Rho, Hokyun; Park, Min; Moon, Byung Joon; Kim, Youngsoo; Lee, Seuoung-Ki; Lee, Dong Su; Kim, Tae-Wook; Lee, Sang Hyun; Kim, Keun Soo; Hong, Byung Hee; Bae, Sukang

    2018-03-27

    Recent development in mobile electronic devices and electric vehicles requires electrical wires with reduced weight as well as enhanced stability. In addition, since electric energy is mostly generated from power plants located far from its consuming places, mechanically stronger and higher electric power transmission cables are strongly demanded. However, there has been no alternative materials that can practically replace copper materials. Here, we report a method to prepare ultrastrong graphene fibers (GFs)-Cu core-shell wires with significantly enhanced electrical and mechanical properties. The core GFs are synthesized by chemical vapor deposition, followed by electroplating of Cu shells, where the large surface area of GFs in contact with Cu maximizes the mechanical toughness of the core-shell wires. At the same time, the unique electrical and thermal characteristics of graphene allow a ∼10 times higher current density limit, providing more efficient and reliable delivery of electrical energies through the GFs-Cu wires. We believe that our results would be useful to overcome the current limit in electrical wires and cables for lightweight, energy-saving, and high-power applications.

  16. Investigation of HCl-based surface treatment for GaN devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okada, Hiroshi, E-mail: okada@ee.tut.ac.jp; Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi 441-8580; Shinohara, Masatohi

    2016-02-01

    Surface treatments of GaN in HCl-based solutions are studied by X-ray photoelectron spectroscopy (XPS) and electrical characterization of fabricated GaN surfaces. A dilute-HCl treatment (HCl:H{sub 2}O=1:1) at room temperature and a boiled-HCl treatment (undiluted HCl) at 108°C are made on high-temperature annealed n-GaN. From the XPS study, removal of surface oxide by the dilute-HCl treatment was found, and more thoroughly oxide-removal was confirmed in the boiled-HCl treatment. Effect of the surface treatment on electrical characteristics on AlGaN/GaN transistor is also studied by applying treatment processes prior to the surface SiN deposition. Increase of drain current is found in boiled-HCl treatedmore » samples. The results suggest that the boiled-HCl treatment is effective for GaN device fabrication.« less

  17. Vertical pillar-superlattice array and graphene hybrid light emitting diodes.

    PubMed

    Lee, Jung Min; Choung, Jae Woong; Yi, Jaeseok; Lee, Dong Hyun; Samal, Monica; Yi, Dong Kee; Lee, Chul-Ho; Yi, Gyu-Chul; Paik, Ungyu; Rogers, John A; Park, Won Il

    2010-08-11

    We report a type of device that combines vertical arrays of one-dimensional (1D) pillar-superlattice (PSL) structures with 2D graphene sheets to yield a class of light emitting diode (LED) with interesting mechanical, optical, and electrical characteristics. In this application, graphene sheets coated with very thin metal layers exhibit good mechanical and electrical properties and an ability to mount, in a freely suspended configuration, on the PSL arrays as a top window electrode. Optical characterization demonstrates that graphene exhibits excellent optical transparency even after deposition of the thin metal films. Thermal annealing of the graphene/metal (Gr/M) contact to the GaAs decreases the contact resistance, to provide enhanced carrier injection. The resulting PSL-Gr/M LEDs exhibit bright light emission over large areas. The result suggests the utility of graphene-based materials as electrodes in devices with unusual, nonplanar 3D architectures.

  18. Growth of low temperature silicon nano-structures for electronic and electrical energy generation applications.

    PubMed

    Gabrielyan, Nare; Saranti, Konstantina; Manjunatha, Krishna Nama; Paul, Shashi

    2013-02-15

    This paper represents the lowest growth temperature for silicon nano-wires (SiNWs) via a vapour-liquid-solid method, which has ever been reported in the literature. The nano-wires were grown using plasma-enhanced chemical vapour deposition technique at temperatures as low as 150°C using gallium as the catalyst. This study investigates the structure and the size of the grown silicon nano-structure as functions of growth temperature and catalyst layer thickness. Moreover, the choice of the growth temperature determines the thickness of the catalyst layer to be used.The electrical and optical characteristics of the nano-wires were tested by incorporating them in photovoltaic solar cells, two terminal bistable memory devices and Schottky diode. With further optimisation of the growth parameters, SiNWs, grown by our method, have promising future for incorporation into high performance electronic and optical devices.

  19. Growth of low temperature silicon nano-structures for electronic and electrical energy generation applications

    PubMed Central

    2013-01-01

    This paper represents the lowest growth temperature for silicon nano-wires (SiNWs) via a vapour-liquid–solid method, which has ever been reported in the literature. The nano-wires were grown using plasma-enhanced chemical vapour deposition technique at temperatures as low as 150°C using gallium as the catalyst. This study investigates the structure and the size of the grown silicon nano-structure as functions of growth temperature and catalyst layer thickness. Moreover, the choice of the growth temperature determines the thickness of the catalyst layer to be used. The electrical and optical characteristics of the nano-wires were tested by incorporating them in photovoltaic solar cells, two terminal bistable memory devices and Schottky diode. With further optimisation of the growth parameters, SiNWs, grown by our method, have promising future for incorporation into high performance electronic and optical devices. PMID:23413969

  20. Photoconductive circuit element reflectometer

    DOEpatents

    Rauscher, Christen

    1990-01-01

    A photoconductive reflectometer for characterizing semiconductor devices at millimeter wavelength frequencies where a first photoconductive circuit element (PCE) is biased by a direct current voltage source and produces short electrical pulses when excited into conductance by short first laser light pulses. The electrical pulses are electronically conditioned to improve the frequency related amplitude characteristics of the pulses which thereafter propagate along a transmission line to a device under test. Second PCEs are connected along the transmission line to sample the signals on the transmission line when excited into conductance by short second laser light pulses, spaced apart in time a variable period from the first laser light pulses. Electronic filters connected to each of the second PCEs act as low-pass filters and remove parasitic interference from the sampled signals and output the sampled signals in the form of slowed-motion images of the signals on the transmission line.

  1. Photoconductive circuit element reflectometer

    DOEpatents

    Rauscher, C.

    1987-12-07

    A photoconductive reflectometer for characterizing semiconductor devices at millimeter wavelength frequencies where a first photoconductive circuit element (PCE) is biased by a direct current voltage source and produces short electrical pulses when excited into conductance by short first laser light pulses. The electrical pulses are electronically conditioned to improve the frequency related amplitude characteristics of the pulses which thereafter propagate along a transmission line to a device under test. Second PCEs are connected along the transmission line to sample the signals on the transmission line when excited into conductance by short second laser light pulses, spaced apart in time a determinable period from the first laser light pulses. Electronic filters connected to each of the second PCEs act as low-pass filters and remove parasitic interference from the sampled signals and output the sampled signals in the form of slowed-motion images of the signals on the transmission line. 4 figs.

  2. Dopingless ferroelectric tunnel FET architecture for the improvement of performance of dopingless n-channel tunnel FETs

    NASA Astrophysics Data System (ADS)

    Lahgere, Avinash; Panchore, Meena; Singh, Jawar

    2016-08-01

    In this paper, we propose a novel tunnel field-effect transistor (TFET) based on charge plasma (CP) and negative capacitance (NC) for enhanced ON-current and steep subthreshold swing (SS). It is shown that the replacement of standard insulator for gate stack with ferroelectric (Fe) insulator yields NC and high electric field at the tunneling junction. Similarly, use of dopingless silicon nanowire with CP has a genuine advantage in process engineering. Therefore, combination of both technology boosters (CP and NC) in the proposed device enable low thermal budget, process variation immunity, and excellent electrical characteristics in contrast with its counterpart dopingless (DL) TFET (DL-TFET). An optimized device accomplishes an impressive 10× improvement in on-current, 100× reduced leakage current, 3× more transconductance (gm), and on-off current ratio of ∼1011 as compared to DL-TFET.

  3. Upgrading non-oxidized carbon nanotubes by thermally decomposed hydrazine

    NASA Astrophysics Data System (ADS)

    Wang, Pen-Cheng; Liao, Yu-Chun; Liu, Li-Hung; Lai, Yu-Ling; Lin, Ying-Chang; Hsu, Yao-Jane

    2014-06-01

    We found that the electrical properties of conductive thin films based on non-oxidized carbon nanotubes (CNTs) could be further improved when the CNTs consecutively underwent a mild hydrazine adsorption treatment and then a sufficiently effective thermal desorption treatment. We also found that, after several rounds of vapor-phase hydrazine treatments and baking treatments were applied to an inferior single-CNT field-effect transistor device, the device showed improvement in Ion/Ioff ratio and reduction in the extent of gate-sweeping hysteresis. Our experimental results indicate that, even though hydrazine is a well-known reducing agent, the characteristics of our hydrazine-exposed CNT samples subject to certain treatment conditions could become more graphenic than graphanic, suggesting that the improvement in the electrical and electronic properties of CNT samples could be related to the transient bonding and chemical scavenging of thermally decomposed hydrazine on the surface of CNTs.

  4. Mobility overestimation due to gated contacts in organic field-effect transistors

    PubMed Central

    Bittle, Emily G.; Basham, James I.; Jackson, Thomas N.; Jurchescu, Oana D.; Gundlach, David J.

    2016-01-01

    Parameters used to describe the electrical properties of organic field-effect transistors, such as mobility and threshold voltage, are commonly extracted from measured current–voltage characteristics and interpreted by using the classical metal oxide–semiconductor field-effect transistor model. However, in recent reports of devices with ultra-high mobility (>40 cm2 V−1 s−1), the device characteristics deviate from this idealized model and show an abrupt turn-on in the drain current when measured as a function of gate voltage. In order to investigate this phenomenon, here we report on single crystal rubrene transistors intentionally fabricated to exhibit an abrupt turn-on. We disentangle the channel properties from the contact resistance by using impedance spectroscopy and show that the current in such devices is governed by a gate bias dependence of the contact resistance. As a result, extracted mobility values from d.c. current–voltage characterization are overestimated by one order of magnitude or more. PMID:26961271

  5. Analysis of the Electrical Properties of an Electron Injection Layer in Alq3-Based Organic Light Emitting Diodes.

    PubMed

    Kim, Soonkon; Choi, Pyungho; Kim, Sangsub; Park, Hyoungsun; Baek, Dohyun; Kim, Sangsoo; Choi, Byoungdeog

    2016-05-01

    We investigated the carrier transfer and luminescence characteristics of organic light emitting diodes (OLEDs) with structure ITO/HAT-CN/NPB/Alq3/Al, ITO/HAT-CN/NPB/Alq3/Liq/Al, and ITO/HAT-CN/NPB/Alq3/LiF/A. The performance of the OLED device is improved by inserting an electron injection layer (EIL), which induces lowering of the electron injection barrier. We also investigated the electrical transport behaviors of p-Si/Alq3/Al, p-Si/Alq3/Liq/Al, and p-Si/Alq3/LiF/Al Schottky diodes, by using current-voltage (L-V) and capacitance-voltage (C-V) characterization methods. The parameters of diode quality factor n and barrier height φ(b) were dependent on the interlayer materials between Alq3 and Al. The barrier heights φ(b) were 0.59, 0.49, and 0.45 eV, respectively, and the diode quality factors n were 1.34, 1.31, and 1.30, respectively, obtained from the I-V characteristics. The built in potentials V(bi) were 0.41, 0.42, and 0.42 eV, respectively, obtained from the C-V characteristics. In this experiment, Liq and LiF thin film layers improved the carrier transport behaviors by increasing electron injection from Al to Alq3, and the LiF schottky diode showed better I-V performance than the Liq schottky diode. We confirmed that a Liq or LiF thin film inter-layer governs electron and hole transport at the Al/Alq3 interface, and has an important role in determining the electrical properties of OLED devices.

  6. Developing Control System of Electrical Devices with Operational Expense Prediction

    NASA Astrophysics Data System (ADS)

    Sendari, Siti; Wahyu Herwanto, Heru; Rahmawati, Yuni; Mukti Putranto, Dendi; Fitri, Shofiana

    2017-04-01

    The purpose of this research is to develop a system that can monitor and record home electrical device’s electricity usage. This system has an ability to control electrical devices in distance and predict the operational expense. The system was developed using micro-controllers and WiFi modules connected to PC server. The communication between modules is arranged by server via WiFi. Beside of reading home electrical devices electricity usage, the unique point of the proposed-system is the ability of micro-controllers to send electricity data to server for recording the usage of electrical devices. The testing of this research was done by Black-box method to test the functionality of system. Testing system run well with 0% error.

  7. Flex-gear electrical power transmission

    NASA Technical Reports Server (NTRS)

    Vranish, John; Peritt, Jonathan

    1993-01-01

    This study was conducted to develop an alternative way of transferring electricity across a continuously rotating joint, with little wear and the potential for low electrical noise. The problems with wires, slip rings, electromagnetic couplings, and recently invented roll-rings are discussed. Flex-gears, an improvement of roll-rings, are described. An entire class of flexgear devices is developed. Finally, the preferred flex-gear device is optimized for maximum electrical contact and analyzed for average mechanical power loss and maximum stress. For a device diameter of six inches, the preferred device is predicted to have a total electrical contact area of 0.066 square inches. In the preferred device, a small amount of internal sliding produces a 0.003 inch-pound torque that resists the motion of the device.

  8. Electronic devices containing switchably conductive silicon oxides as a switching element and methods for production and use thereof

    DOEpatents

    Tour, James M; Yao, Jun; Natelson, Douglas; Zhong, Lin; He, Tao

    2013-11-26

    In various embodiments, electronic devices containing switchably conductive silicon oxide as a switching element are described herein. The electronic devices are two-terminal devices containing a first electrical contact and a second electrical contact in which at least one of the first electrical contact or the second electrical contact is deposed on a substrate to define a gap region therebetween. A switching layer containing a switchably conductive silicon oxide resides in the the gap region between the first electical contact and the second electrical contact. The electronic devices exhibit hysteretic current versus voltage properties, enabling their use in switching and memory applications. Methods for configuring, operating and constructing the electronic devices are also presented herein.

  9. Advances in Carbon Nanotubes-Hydrogel Hybrids in Nanomedicine for Therapeutics.

    PubMed

    Vashist, Arti; Kaushik, Ajeet; Vashist, Atul; Sagar, Vidya; Ghosal, Anujit; Gupta, Y K; Ahmad, Sharif; Nair, Madhavan

    2018-05-01

    In spite of significant advancement in hydrogel technology, low mechanical strength and lack of electrical conductivity have limited their next-level biomedical applications for skeletal muscles, cardiac and neural cells. Host-guest chemistry based hybrid nanocomposites systems have gained attention as they completely overcome these pitfalls and generate bioscaffolds with tunable electrical and mechanical characteristics. In recent years, carbon nanotube (CNT)-based hybrid hydrogels have emerged as innovative candidates with diverse applications in regenerative medicines, tissue engineering, drug delivery devices, implantable devices, biosensing, and biorobotics. This article is an attempt to recapitulate the advancement in synthesis and characterization of hybrid hydrogels and provide deep insights toward their functioning and success as biomedical devices. The improved comparative performance and biocompatibility of CNT-hydrogels hybrids systems developed for targeted biomedical applications are addressed here. Recent updates toward diverse applications and limitations of CNT hybrid hydrogels is the strength of the review. This will provide a holistic approach toward understanding of CNT-based hydrogels and their applications in nanotheranostics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Dielectrophoretic trapping of DNA-coated gold nanoparticles on silicon based vertical nanogap devices.

    PubMed

    Strobel, Sebastian; Sperling, Ralph A; Fenk, Bernhard; Parak, Wolfgang J; Tornow, Marc

    2011-06-07

    We report on the successful dielectrophoretic trapping and electrical characterization of DNA-coated gold nanoparticles on vertical nanogap devices (VNDs). The nanogap devices with an electrode distance of 13 nm were fabricated from Silicon-on-Insulator (SOI) material using a combination of anisotropic reactive ion etching (RIE), selective wet chemical etching and metal thin-film deposition. Au nanoparticles (diameter 40 nm) coated with a monolayer of dithiolated 8 base pairs double stranded DNA were dielectrophoretically trapped into the nanogap from electrolyte buffer solution at MHz frequencies as verified by scanning and transmission electron microscopy (SEM/TEM) analysis. First electrical transport measurements through the formed DNA-Au-DNA junctions partially revealed an approximately linear current-voltage characteristic with resistance in the range of 2-4 GΩ when measured in solution. Our findings point to the importance of strong covalent bonding to the electrodes in order to observe DNA conductance, both in solution and in the dry state. We propose our setup for novel applications in biosensing, addressing the direct interaction of biomolecular species with DNA in aqueous electrolyte media.

  11. Towards the Development of Electrical Biosensors Based on Nanostructured Porous Silicon

    PubMed Central

    Recio-Sánchez, Gonzalo; Torres-Costa, Vicente; Manso, Miguel; Gallach, Darío; López-García, Juan; Martín-Palma, Raúl J.

    2010-01-01

    The typical large specific surface area and high reactivity of nanostructured porous silicon (nanoPS) make this material very suitable for the development of sensors. Moreover, its biocompatibility and biodegradability opens the way to the development of biosensors. As such, in this work the use of nanoPS in the field of electrical biosensing is explored. More specifically, nanoPS-based devices with Al/nanoPS/Al and Au-NiCr/nanoPS/Au-NiCr structures were fabricated for the electrical detection of glucose and Escherichia Coli bacteria at different concentrations. The experimental results show that the current-voltage characteristics of these symmetric metal/nanoPS/metal structures strongly depend on the presence/absence and concentration of species immobilized on the surface.

  12. Reflectin as a Material for Neural Stem Cell Growth

    PubMed Central

    2015-01-01

    Cephalopods possess remarkable camouflage capabilities, which are enabled by their complex skin structure and sophisticated nervous system. Such unique characteristics have in turn inspired the design of novel functional materials and devices. Within this context, recent studies have focused on investigating the self-assembly, optical, and electrical properties of reflectin, a protein that plays a key role in cephalopod structural coloration. Herein, we report the discovery that reflectin constitutes an effective material for the growth of human neural stem/progenitor cells. Our findings may hold relevance both for understanding cephalopod embryogenesis and for developing improved protein-based bioelectronic devices. PMID:26703760

  13. Digital electronic bone growth stimulator

    DOEpatents

    Kronberg, James W.

    1995-01-01

    A device for stimulating bone tissue by applying a low level alternating current signal directly to the patient's skin. A crystal oscillator, a binary divider chain and digital logic gates are used to generate the desired waveforms that reproduce the natural electrical characteristics found in bone tissue needed for stimulating bone growth and treating osteoporosis. The device, powered by a battery, contains a switch allowing selection of the correct waveform for bone growth stimulation or osteoporosis treatment so that, when attached to the skin of the patient using standard skin contact electrodes, the correct signal is communicated to the underlying bone structures.

  14. Interface standards for computer equipment

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The ability to configure data systems using modules provided by independent manufacturers is complicated by the wide range of electrical, mechanical, and functional characteristics exhibited within the equipment provided by different manufacturers of computers, peripherals, and terminal devices. A number of international organizations were and still are involved in the creation of standards that enable devices to be interconnected with minimal difficulty, usually involving only a cable or data bus connection that is defined by the standard. The elements covered by an interface standard are covered and the most prominent interface standards presently in use are identified and described.

  15. Microcrystalline silicon thin-film transistors for large area electronic applications

    NASA Astrophysics Data System (ADS)

    Chan, Kah-Yoong; Bunte, Eerke; Knipp, Dietmar; Stiebig, Helmut

    2007-11-01

    Thin-film transistors (TFTs) based on microcrystalline silicon (µc-Si:H) exhibit high charge carrier mobilities exceeding 35 cm2 V-1 s-1. The devices are fabricated by plasma-enhanced chemical vapor deposition at substrate temperatures below 200 °C. The fabrication process of the µc-Si:H TFTs is similar to the low temperature fabrication of amorphous silicon TFTs. The electrical characteristics of the µc-Si:H-based transistors will be presented. As the device charge carrier mobility of short channel TFTs is limited by the contacts, the influence of the drain and source contacts on the device parameters including the device charge carrier mobility and the device threshold voltage will be discussed. The experimental data will be described by a modified standard transistor model which accounts for the contact effects. Furthermore, the transmission line method was used to extract the device parameters including the contact resistance. The modified standard transistor model and the transmission line method will be compared in terms of the extracted device parameters and contact resistances.

  16. Total ionizing dose effect in an input/output device for flash memory

    NASA Astrophysics Data System (ADS)

    Liu, Zhang-Li; Hu, Zhi-Yuan; Zhang, Zheng-Xuan; Shao, Hua; Chen, Ming; Bi, Da-Wei; Ning, Bing-Xu; Zou, Shi-Chang

    2011-12-01

    Input/output devices for flash memory are exposed to gamma ray irradiation. Total ionizing dose has been shown great influence on characteristic degradation of transistors with different sizes. In this paper, we observed a larger increase of off-state leakage in the short channel device than in long one. However, a larger threshold voltage shift is observed for the narrow width device than for the wide one, which is well known as the radiation induced narrow channel effect. The radiation induced charge in the shallow trench isolation oxide influences the electric field of the narrow channel device. Also, the drain bias dependence of the off-state leakage after irradiation is observed, which is called the radiation enhanced drain induced barrier lowing effect. Finally, we found that substrate bias voltage can suppress the off-state leakage, while leading to more obvious hump effect.

  17. Protective carrier for microcircuit devices

    DOEpatents

    Robinson, Lyle A.

    1976-10-26

    An improved protective carrier for microcircuit devices having beam leads wherein a compressible member is disposed on the carrier base beneath and overlapping the periphery of an aperture in a flexible circuit element, the element being adapted to receive and make electrical contact with microcircuit device beam leads, the compressible member disposed or arranged to achieve flexing of the circuit element against the microcircuit device beam leads to conform to variations in thicknesses of the device beam leads or circuit element electrical paths and thereby insure electrical connection between the beam leads and the electrical paths.

  18. Broadband active electrically small superconductor antennas

    NASA Astrophysics Data System (ADS)

    Kornev, V. K.; Kolotinskiy, N. V.; Sharafiev, A. V.; Soloviev, I. I.; Mukhanov, O. A.

    2017-10-01

    A new type of broadband active electrically small antenna (ESA) based on superconducting quantum arrays (SQAs) has been proposed and developed. These antennas are capable of providing both sensing and amplification of broadband electromagnetic signals with a very high spurious-free dynamic range (SFDR)—up to 100 dB (and even more)—with high sensitivity. The frequency band can range up to tens of gigahertz, depending on Josephson junction characteristic frequency, set by fabrication. In this paper we review theoretical and experimental studies of SQAs and SQA-based antenna prototypes of both transformer and transformer-less types. The ESA prototypes evaluated were fabricated using a standard Nb process with critical current density 4.5 kA cm-2. Measured device characteristics, design issues and comparative analysis of various ESA types, as well as requirements for interfaces, are reviewed and discussed.

  19. Initial leakage current paths in the vertical-type GaN-on-GaN Schottky barrier diodes

    NASA Astrophysics Data System (ADS)

    Sang, Liwen; Ren, Bing; Sumiya, Masatomo; Liao, Meiyong; Koide, Yasuo; Tanaka, Atsushi; Cho, Yujin; Harada, Yoshitomo; Nabatame, Toshihide; Sekiguchi, Takashi; Usami, Shigeyoshi; Honda, Yoshio; Amano, Hiroshi

    2017-09-01

    Electrical characteristics of leakage current paths in vertical-type n-GaN Schottky barrier diodes (SBDs) on free-standing GaN substrates are investigated by using photon emission microscopy (PEM). The PEM mapping shows that the initial failure of the SBD devices at low voltages is due to the leakage current paths from polygonal pits in the GaN epilayers. It is observed that these polygonal pits originate from carbon impurity accumulation to the dislocations with a screw-type component by microstructure analysis. For the SBD without polygonal pits, no initial failure is observed and the first leakage appeals at the edge of electrodes as a result of electric field concentration. The mechanism of leakage at pits is explained in terms of trap assisted tunneling through fitting current-voltage characteristics.

  20. Systems and methods of varying charged particle beam spot size

    DOEpatents

    Chen, Yu-Jiuan

    2014-09-02

    Methods and devices enable shaping of a charged particle beam. A modified dielectric wall accelerator includes a high gradient lens section and a main section. The high gradient lens section can be dynamically adjusted to establish the desired electric fields to minimize undesirable transverse defocusing fields at the entrance to the dielectric wall accelerator. Once a baseline setting with desirable output beam characteristic is established, the output beam can be dynamically modified to vary the output beam characteristics. The output beam can be modified by slightly adjusting the electric fields established across different sections of the modified dielectric wall accelerator. Additional control over the shape of the output beam can be excreted by introducing intentional timing de-synchronization offsets and producing an injected beam that is not fully matched to the entrance of the modified dielectric accelerator.

  1. Collection-limited theory interprets the extraordinary response of single semiconductor organic solar cells

    DOE PAGES

    Ray, Biswajit; Baradwaj, Aditya G.; Khan, Mohammad Ryyan; ...

    2015-08-19

    The bulk heterojunction (BHJ) organic photovoltaic (OPV) architecture has dominated the literature due to its ability to be implemented in devices with relatively high efficiency values. However, a simpler device architecture based on a single organic semiconductor (SS-OPV) offers several advantages: it obviates the need to control the highly system-dependent nanoscale BHJ morphology, and therefore, would allow the use of broader range of organic semiconductors. Unfortunately, the photocurrent in standard SS-OPV devices is typically very low, which generally is attributed to inefficient charge separation of the photogenerated excitons. In this paper, we show that the short-circuit current density from SS-OPVmore » devices can be enhanced significantly (~100-fold) through the use of inverted device configurations, relative to a standard OPV device architecture. This result suggests that charge generation may not be the performance bottleneck in OPV device operation. Instead, poor charge collection, caused by defect-induced electric field screening, is most likely the primary performance bottleneck in regular-geometry SS-OPV cells. We justify this hypothesis by: ( i) detailed numerical simulations, ( ii) electrical characterization experiments of functional SS-OPV devices using multiple polymers as active layer materials, and ( iii) impedance spectroscopy measurements. Furthermore, we show that the collection-limited photocurrent theory consistently interprets typical characteristics of regular SS-OPV devices. Finally, these insights should encourage the design and OPV implementation of high-purity, high-mobility polymers, and other soft materials that have shown promise in organic field-effect transistor applications, but have not performed well in BHJ OPV devices, wherein they adopt less-than-ideal nanostructures when blended with electron-accepting materials.« less

  2. 1KW Power Transmission Using Wireless Acoustic-Electric Feed-Through (WAEF)

    NASA Technical Reports Server (NTRS)

    Sherrit, S.; Bao, X.; Badescu, M.; Aldrich, J.; Bar-Cohen, Y.; Biederman, W.

    2008-01-01

    A variety of space applications require the delivery of power into sealed structures. Since the structural integrity can be degraded by holes for cabling we present an alternative method of delivering power and information using stress waves to the internal space of a sealed structure. One particular application of this technology is in sample return missions where it is critical to preserve the sample integrity and to prevent earth contamination. Therefore, the container has to be hermetically sealed and the integrity of the seal must be monitored in order to insure to a high degree of reliability the integrity of the sample return vessel. In this study we investigated the use of piezoelectric acoustic-electric power feed-through devices to transfer electric power wirelessly through a solid wall by using elastic or acoustic waves. The technology is applicable to a range of space and terrestrial applications where power is required by electronic equipment inside sealed containers, vacuum or pressure vessels, etc., where holes in the wall are prohibitive or may result in significant structural performance degradation or unnecessarily complex designs. To meet requirements of higher power applications, the feasibility to transfer kilowatts level power was investigated. Pre-stressed longitudinal piezoelectric feed-through devices were analyzed by finite element models and an equivalent circuit model was developed to predict the power transfer characteristics to different electric loads. Based on the results of the analysis a prototype device was designed, fabricated and a demonstration of the transmission of electric power up to 1.068-kW was successfully conducted. Efficiencies in the 80-90% range were also demonstrated and methods to increase the efficiency further are currently being considered.

  3. Batteries and fuel cells for emerging electric vehicle markets

    NASA Astrophysics Data System (ADS)

    Cano, Zachary P.; Banham, Dustin; Ye, Siyu; Hintennach, Andreas; Lu, Jun; Fowler, Michael; Chen, Zhongwei

    2018-04-01

    Today's electric vehicles are almost exclusively powered by lithium-ion batteries, but there is a long way to go before electric vehicles become dominant in the global automotive market. In addition to policy support, widespread deployment of electric vehicles requires high-performance and low-cost energy storage technologies, including not only batteries but also alternative electrochemical devices. Here, we provide a comprehensive evaluation of various batteries and hydrogen fuel cells that have the greatest potential to succeed in commercial applications. Three sectors that are not well served by current lithium-ion-powered electric vehicles, namely the long-range, low-cost and high-utilization transportation markets, are discussed. The technological properties that must be improved to fully enable these electric vehicle markets include specific energy, cost, safety and power grid compatibility. Six energy storage and conversion technologies that possess varying combinations of these improved characteristics are compared and separately evaluated for each market. The remainder of the Review briefly discusses the technological status of these clean energy technologies, emphasizing barriers that must be overcome.

  4. Electric turbocompound control system

    DOEpatents

    Algrain, Marcelo C [Dunlap, IL

    2007-02-13

    Turbocompound systems can be used to affect engine operation using the energy in exhaust gas that is driving the available turbocharger. A first electrical device acts as a generator in response to turbocharger rotation. A second electrical device acts as a motor to put mechanical power into the engine, typically at the crankshaft. Apparatus, systems, steps, and methods are described to control the generator and motor operations to control the amount of power being recovered. This can control engine operation closer to desirable parameters for given engine-related operating conditions compared to actual. The electrical devices can also operate in "reverse," going between motor and generator functions. This permits the electrical device associated with the crankshaft to drive the electrical device associated with the turbocharger as a motor, overcoming deficient engine operating conditions such as associated with turbocharger lag.

  5. Photonic crystal active and passive device components in III-V semiconductors

    NASA Astrophysics Data System (ADS)

    Sabarinathan, Jayshri

    Photonic crystals (PC's) are emerging as potentially important candidates in propelling the development in planar photonic integrated circuits, high capacity optical fibers and nanoscopic lasers. Photonic crystals are expected to play a role analogous to that played by crystalline semiconductors in the development of electronic circuits. What makes these photonic crystals more interesting is that introducing "defects"---a missing period or phase slip, in the PC lattice introduces defect modes that lie within the bandgap of the PC. In this investigation, both two dimensional and three dimensional photonic crystals have been fabricated and studied using III-V compound semiconductors which are presently the most useful material systems for integrating with existing optoelectronic technology. A novel single step epitaxial technique to fabricate GaAs-based 3D photonic crystals with sub-micron feature size has been developed employing MBE growth on patterned substrates, ebeam and optical lithography, and lateral wet oxidation of AlGaAs. Transmission characteristics of the fabricated 3D PCs have been measured revealing a 10dB stopband centered at 1 mum for the smallest feature sizes. Electrically injected 2D photonic crystal defect microcavities were designed and fabricated to realize low threshold vertically emitting light sources. The electroluminescent devices were fabricated with GaAs- and InP-based quantum wells heterostructures with emission wavelengths at 0.94mum and 1.55 mum respectively. The light-current, spectral, near- and far-field characteristics of these devices have been studied in detail. The processing and high-aspect ratio etch techniques were carefully developed to create the 2D PCs embedded in the electrically injected apertures. Quantum dots with emission wavelength of 1.04 mum were incorporated into electrically injected 2D PC microcavities to study the electrical and optical confinement simultaneously provided in this configuration. Weak microcavity effects were observed in the fabricated devices. Passive 2D PC's with linear defects, which act as efficient waveguides to confine and channel light even around very sharp bends, have also been investigated. A novel microfluidic sensor using 2D GaAs-based photonic crystal waveguides to detect one or more fluids on the basis of their refractive index properties have been designed, fabricated and demonstrated for the first time.

  6. Customized electric power storage device for inclusion in a collective microgrid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinett, III, Rush D.; Wilson, David G.; Goldsmith, Steven Y.

    An electric power storage device is described herein, wherein the electric power storage device is included in a microgrid. The electric power storage device has at least one of a charge rate, a discharge rate, or a power retention capacity that has been customized for a collective microgrid. The collective microgrid includes at least two connected microgrids. The at least one of the charge rate, the discharge rate, or the power retention capacity of the electric power storage device is computed based at least in part upon specified power source parameters in the at least two connected microgrids and specifiedmore » load parameters in the at least two connected microgrids.« less

  7. Resistive switching mechanisms in random access memory devices incorporating transition metal oxides: TiO2, NiO and Pr0.7Ca0.3MnO3.

    PubMed

    Magyari-Köpe, Blanka; Tendulkar, Mihir; Park, Seong-Geon; Lee, Hyung Dong; Nishi, Yoshio

    2011-06-24

    Resistance change random access memory (RRAM) cells, typically built as MIM capacitor structures, consist of insulating layers I sandwiched between metal layers M, where the insulator performs the resistance switching operation. These devices can be electrically switched between two or more stable resistance states at a speed of nanoseconds, with long retention times, high switching endurance, low read voltage, and large switching windows. They are attractive candidates for next-generation non-volatile memory, particularly as a flash successor, as the material properties can be scaled to the nanometer regime. Several resistance switching models have been suggested so far for transition metal oxide based devices, such as charge trapping, conductive filament formation, Schottky barrier modulation, and electrochemical migration of point defects. The underlying fundamental principles of the switching mechanism still lack a detailed understanding, i.e. how to control and modulate the electrical characteristics of devices incorporating defects and impurities, such as oxygen vacancies, metal interstitials, hydrogen, and other metallic atoms acting as dopants. In this paper, state of the art ab initio theoretical methods are employed to understand the effects that filamentary types of stable oxygen vacancy configurations in TiO(2) and NiO have on the electronic conduction. It is shown that strong electronic interactions between metal ions adjacent to oxygen vacancy sites results in the formation of a conductive path and thus can explain the 'ON' site conduction in these materials. Implication of hydrogen doping on electroforming is discussed for Pr(0.7)Ca(0.3)MnO(3) devices based on electrical characterization and FTIR measurements.

  8. Hybrid plasmonic electro-optical absorption modulator based on epsilon-near-zero characteristics of ITO

    NASA Astrophysics Data System (ADS)

    Abdelatty, M. Y.; Badr, M. M.; Swillam, M. A.

    2018-03-01

    Using transparent conducting oxides (TCOs), like indium-tin-oxide (ITO), for optical modulation attracted research interest because of their epsilon-near-zero (ENZ) characteristics at telecom wavelengths. Utilizing indium-tin-oxide (ITO) in multilayer structure modulators, optical absorption of the active ITO layer can be electrically modulated over a large spectrum range. Although they show advances over common silicon electro-optical modulators (EOMs), they suffer from high insertion losses. To reduce insertion losses and device footprints without sacrificing bandwidth and modulation strength, slot waveguides are promising options because of their high optical confinement. In this paper, we present the study and the design of an electro-optical absorption modulator based on electrically tuning ITO carrier density inside a MOS structure. The device structure is based on dielectric slot waveguide with an ITO plasmonic waveguide modulation section. By changing the dimensions, the effective refractive indices for the slot mode and the off-sate mode of the plasmonic section can be matched. When applying electric field to the plasmonic section (on-state), carriers are generated at the ITO-dielectric interface that result in changing the layer where the electric field is confined from a transparent layer into a lossy layer. A finite difference time domain method with perfect matching layer (PML) absorbing boundary conditions is taken up to simulate and analyze this design. An extinction ratio of 2.3 dB is achieved for a 1-μm-short modulation section, at the telecommunications wavelength (1.55 μm). This EOM has advantages of simple design, easy fabrication, compact size, compatibility with existing silicon photonics platforms, as well as broadband performance.

  9. Electrophoretic Separation of Single Particles Using Nanoscale Thermoplastic Columns.

    PubMed

    Weerakoon-Ratnayake, Kumuditha M; Uba, Franklin I; Oliver-Calixte, Nyoté J; Soper, Steven A

    2016-04-05

    Phenomena associated with microscale electrophoresis separations cannot, in many cases, be applied to the nanoscale. Thus, understanding the electrophoretic characteristics associated with the nanoscale will help formulate relevant strategies that can optimize the performance of separations carried out on columns with at least one dimension below 150 nm. Electric double layer (EDL) overlap, diffusion, and adsorption/desorption properties and/or dielectrophoretic effects giving rise to stick/slip motion are some of the processes that can play a role in determining the efficiency of nanoscale electrophoretic separations. We investigated the performance characteristics of electrophoretic separations carried out in nanoslits fabricated in poly(methyl methacrylate), PMMA, devices. Silver nanoparticles (AgNPs) were used as the model system with tracking of their transport via dark field microscopy and localized surface plasmon resonance. AgNPs capped with citrate groups and the negatively charged PMMA walls (induced by O2 plasma modification of the nanoslit walls) enabled separations that were not apparent when these particles were electrophoresed in microscale columns. The separation of AgNPs based on their size without the need for buffer additives using PMMA nanoslit devices is demonstrated herein. Operational parameters such as the electric field strength, nanoslit dimensions, and buffer composition were evaluated as to their effects on the electrophoretic performance, both in terms of efficiency (plate numbers) and resolution. Electrophoretic separations performed at high electric field strengths (>200 V/cm) resulted in higher plate numbers compared to lower fields due to the absence of stick/slip motion at the higher electric field strengths. Indeed, 60 nm AgNPs could be separated from 100 nm particles in free solution using nanoscale electrophoresis with 100 μm long columns.

  10. Nonvolatile memory behavior of nanocrystalline cellulose/graphene oxide composite films

    NASA Astrophysics Data System (ADS)

    Valentini, L.; Cardinali, M.; Fortunati, E.; Kenny, J. M.

    2014-10-01

    With the continuous advance of modern electronics, the demand for nonvolatile memory cells rapidly grows. In order to develop post-silicon electronic devices, it is necessary to find innovative solutions to the eco-sustainability problem of materials for nonvolatile memory cells. In this work, we realized a resistive memory device based on graphene oxide (GO) and GO/cellulose nanocrystals (CNC) thin films. Aqueous solutions of GO and GO with CNC have been prepared and drop cast between two metal electrodes. Such thin-film based devices showed a transition between low and high conductivity states upon the forward and backward sweeping of an external electric field. This reversible current density transition behavior demonstrates a typical memory characteristic. The obtained results open an easy route for electronic information storage based on the integration of nanocrystalline cellulose onto graphene based devices.

  11. Direct evidence on Ta-Metal Phases Igniting Resistive Switching in TaOx Thin Film

    PubMed Central

    Kyu Yang, Min; Ju, Hyunsu; Hwan Kim, Gun; Lee, Jeon-Kook; Ryu, Han-Cheol

    2015-01-01

    A Ta/TaOx/Pt stacked capacitor-like device for resistive switching was fabricated and examined. The tested device demonstrated stable resistive switching characteristics including uniform distribution of resistive switching operational parameters, highly promising endurance, and retention properties. To reveal the resistive switching mechanism of the device, micro structure analysis using high-resolution transmission electron microscope (HR-TEM) was performed. From the observation results, two different phases of Ta-metal clusters of cubic α-Ta and tetragonal β-Ta were founded in the amorphous TaOx mother-matrix after the device was switched from high resistance state (HRS) to low resistance state (LRS) by externally applied voltage bias. The observed Ta metal clusters unveiled the origin of the electric conduction paths in the TaOx thin film at the LRS. PMID:26365532

  12. Direct evidence on Ta-Metal Phases Igniting Resistive Switching in TaOx Thin Film

    NASA Astrophysics Data System (ADS)

    Kyu Yang, Min; Ju, Hyunsu; Hwan Kim, Gun; Lee, Jeon-Kook; Ryu, Han-Cheol

    2015-09-01

    A Ta/TaOx/Pt stacked capacitor-like device for resistive switching was fabricated and examined. The tested device demonstrated stable resistive switching characteristics including uniform distribution of resistive switching operational parameters, highly promising endurance, and retention properties. To reveal the resistive switching mechanism of the device, micro structure analysis using high-resolution transmission electron microscope (HR-TEM) was performed. From the observation results, two different phases of Ta-metal clusters of cubic α-Ta and tetragonal β-Ta were founded in the amorphous TaOx mother-matrix after the device was switched from high resistance state (HRS) to low resistance state (LRS) by externally applied voltage bias. The observed Ta metal clusters unveiled the origin of the electric conduction paths in the TaOx thin film at the LRS.

  13. Status of Electrical Actuator Applications

    NASA Technical Reports Server (NTRS)

    Roth, Mary Ellen; Taylor, Linda M.; Hansen, Irving G.

    1996-01-01

    An ever increasing number of actuation functions historically performed by hydraulics or pneumatics are being accomplished by electric actuation. If 'end to end' systems are considered, electric actuators (EA's) are potentially lighter and more efficient. In general, system redundancies may be more easily implemented and operationally monitored. Typically, electrical components exhibit longer mean times to failure and projected lifetime costs of EA's are potentially much lower than those of other options. EA's have certain characteristics which must be considered in their application. The actual mechanical loadings must be established, for the more easily controlled EA may be operated much closer to its full capabilities. At higher rates of motion, EA's are operating as constant power devices. Therefore, it may be possible to start a movement that can not be stopped. The incorporation of high power electronics into remote locations introduces new concerns of EMI and thermal control. It is the management of these and other characteristics that forms the engineering design challenges. Work is currently in progress on EA's for aircraft and expendable launch vehicles. These applications span from ten to 40+ horsepower. The systematics and status of these actuators will be reported along with current technical trends in this area.

  14. AC Electric Field Activated Shape Memory Polymer Composite

    NASA Technical Reports Server (NTRS)

    Kang, Jin Ho; Siochi, Emilie J.; Penner, Ronald K.; Turner, Travis L.

    2011-01-01

    Shape memory materials have drawn interest for applications like intelligent medical devices, deployable space structures and morphing structures. Compared to other shape memory materials like shape memory alloys (SMAs) or shape memory ceramics (SMCs), shape memory polymers (SMPs) have high elastic deformation that is amenable to tailored of mechanical properties, have lower density, and are easily processed. However, SMPs have low recovery stress and long response times. A new shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive fillers to enhance its thermo-mechanical characteristics. A new composition of shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive functionalized graphene sheets (FGS) to enhance its thermo-mechanical characteristics. The elastic modulus of LaRC-SMPC is approximately 2.7 GPa at room temperature and 4.3 MPa above its glass transition temperature. Conductive FGSs-doped LaRC-SMPC exhibited higher conductivity compared to pristine LaRC SMP. Applying an electric field at between 0.1 Hz and 1 kHz induced faster heating to activate the LaRC-SMPC s shape memory effect relative to applying DC electric field or AC electric field at frequencies exceeding1 kHz.

  15. Electrical switching dynamics and broadband microwave characteristics of VO2 radio frequency devices

    NASA Astrophysics Data System (ADS)

    Ha, Sieu D.; Zhou, You; Fisher, Christopher J.; Ramanathan, Shriram; Treadway, Jacob P.

    2013-05-01

    Vanadium dioxide (VO2) is a correlated electron system that features a metal-insulator phase transition (MIT) above room temperature and is of interest in high speed switching devices. Here, we integrate VO2 into two-terminal coplanar waveguides and demonstrate a large resistance modulation of the same magnitude (>103) in both electrically (i.e., by bias voltage, referred to as E-MIT) and thermally (T-MIT) driven transitions. We examine transient switching characteristics of the E-MIT and observe two distinguishable time scales for switching. We find an abrupt jump in conductivity with a rise time of the order of 10 ns followed by an oscillatory damping to steady state on the order of several μs. We characterize the RF power response in the On state and find that high RF input power drives VO2 further into the metallic phase, indicating that electromagnetic radiation-switching of the phase transition may be possible. We measure S-parameter RF properties up to 13.5 GHz. Insertion loss is markedly flat at 2.95 dB across the frequency range in the On state, and sufficient isolation of over 25 dB is observed in the Off state. We are able to simulate the RF response accurately using both lumped element and 3D electromagnetic models. Extrapolation of our results suggests that optimizing device geometry can reduce insertion loss further and maintain broadband flatness up to 40 GHz.

  16. Monolithic integration of a resonant tunneling diode and a quantum well semiconductor laser

    NASA Astrophysics Data System (ADS)

    Grave, I.; Kan, S. C.; Griffel, G.; Wu, S. W.; Sa'Ar, A.

    1991-01-01

    A monolithic integration of a double barrier AlAs/GaAs resonant tunneling diode and a GaAs/AlGaAs quantum well laser is reported. Negative differential resistance and negative differential optical response are observed at room temperature. The device displays bistable electrical and optical characteristics which are voltage controlled. Operation as a two-state optical memory is demonstrated.

  17. Electro-optic characteristics of 4-domain vertical alignment nematic liquid crystal display with interdigital electrode

    NASA Astrophysics Data System (ADS)

    Hong, S. H.; Jeong, Y. H.; Kim, H. Y.; Cho, H. M.; Lee, W. G.; Lee, S. H.

    2000-06-01

    We have fabricated a vertically aligned 4-domain nematic liquid crystal display cell with thin film transistor. Unlike the conventional method constructing 4-domain, i.e., protrusion and surrounding electrode which needs additional processes, in this study the pixel design forming 4-domain with interdigital electrodes is suggested. In the device, one pixel is divided into two parts. One part has a horizontal electric field in the vertical direction and the other part has a horizontal one in the horizontal direction. Such fields in the horizontal and vertical direction drive the liquid crystal director to tilt down in four directions. In this article, the electro-optic characteristics of cells with 2 and 4 domain have been studied. The device with 4 domain shows faster response time than normal twisted-nematic and in-plane switching cells, wide viewing angle with optical compensation film, and more stable color characteristics than 2-domain vertical alignment cell with similar structure.

  18. Bipolar resistive switching of single gold-in-Ga2O3 nanowire.

    PubMed

    Hsu, Chia-Wei; Chou, Li-Jen

    2012-08-08

    We have fabricated single nanowire chips on gold-in-Ga(2)O(3) core-shell nanowires using the electron-beam lithography techniques and realized bipolar resistive switching characteristics having invariable set and reset voltages. We attribute the unique property of invariance to the built-in conduction path of gold core. This invariance allows us to fabricate many resistive switching cells with the same operating voltage by simple depositing repetitive metal electrodes along a single nanowire. Other characteristics of these core-shell resistive switching nanowires include comparable driving electric field with other thin film and nanowire devices and a remarkable on/off ratio more than 3 orders of magnitude at a low driving voltage of 2 V. A smaller but still impressive on/off ratio of 10 can be obtained at an even lower bias of 0.2 V. These characteristics of gold-in-Ga(2)O(3) core-shell nanowires make fabrication of future high-density resistive memory devices possible.

  19. Electrical device fabrication from nanotube formations

    DOEpatents

    Nicholas, Nolan Walker; Kittrell, W. Carter; Kim, Myung Jong; Schmidt, Howard K.

    2013-03-12

    A method for forming nanotube electrical devices, arrays of nanotube electrical devices, and device structures and arrays of device structures formed by the methods. Various methods of the present invention allow creation of semiconducting and/or conducting devices from readily grown SWNT carpets rather than requiring the preparation of a patterned growth channel and takes advantage of the self-controlling nature of these carpet heights to ensure a known and controlled channel length for reliable electronic properties as compared to the prior methods.

  20. Hole transport characteristics in phosphorescent dye-doped NPB films by admittance spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Chen, Jiangshan; Huang, Jinying; Dai, Yanfeng; Zhang, Zhiqiang; Liu, Su; Ma, Dongge

    2014-05-01

    Admittance spectroscopy is a powerful tool to determine the carrier mobility. The carrier mobility is a significant parameter to understand the behavior or to optimize the organic light-emitting diode or other organic semiconductor devices. Hole transport in phosphorescent dye, bis[2-(9,9-diethyl-9H-fluoren-2-yl)-1-phenyl-1Hbenzoimidazol-N,C3] iridium(acetylacetonate [(fbi)2Ir(acac)]) doped into N,N-diphenyl-N,N-bis(1-naphthylphenyl)-1,1-biphenyl-4,4-diamine (NPB) films was investigated by admittance spectroscopy. The results show that doped (fbi)2Ir(acac) molecules behave as hole traps in NPB, and lower the hole mobility. For thicker films(≳300 nm), the electric field dependence of hole mobility is as expected positive, i.e., the mobility increases exponentially with the electric field. However, for thinner films (≲300 nm), the electric field dependence of hole mobility is negative, i.e., the hole mobility decreases exponentially with the electric field. Physical mechanisms behind the negative field dependence of hole mobility are discussed. In addition, three frequency regions were divided to analyze the behaviors of the capacitance in the hole-only device and the physical mechanism was explained by trap theory and the parasitic capacitance effect.

Top