Conceptual design of front ends for the advanced photon source multi-bend achromats upgrade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaski, Y., E-mail: jaskiy@aps.anl.gov; Westferro, F., E-mail: westferr@aps.anl.gov; Lee, S. H., E-mail: shlee@aps.anl.gov
2016-07-27
The proposed Advanced Photon Source (APS) upgrade from a double-bend achromats (DBA) to multi-bend achromats (MBA) lattice with ring energy change from 7 GeV to 6 GeV and beam current from 100 mA to 200 mA poses new challenges for front ends. All front ends must be upgraded to fulfill the following requirements: 1) handle the high heat load from two insertion devices in either inline or canted configuration, 2) include a clearing magnet in the front end to deflect and dump any electrons in case the electrons escape from the storage ring during swap-out injection with the safety shuttersmore » open, 3) incorporate the next generation x-ray beam position monitors (XBPMs) into the front end to meet the new stringent beam stability requirements. This paper presents the evaluation of the existing APS front ends and standardizes the insertion device (ID) front ends into two types: one for the single beam and one for the canted beams. The conceptual design of high heat load front end (HHLFE) and canted undulator front end (CUFE) for APS MBA upgrade is presented.« less
Conceptual Design of Front Ends for the Advanced Photon Source Multi-bend Achromats Upgrade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaski, Y.; Westferro, F.; Lee, S. H.
2016-07-27
The proposed Advanced Photon Source (APS) upgrade from a double-bend achromats (DBA) to multi-bend achromats (MBA) lattice with ring energy change from 7 GeV to 6 GeV and beam current from 100 mA to 200 mA poses new challenges for front ends. All front ends must be upgraded to fulfill the following requirements: 1) handle the high heat load from two insertion devices in either inline or canted configuration, 2) include a clearing magnet in the front end to deflect and dump any electrons in case the electrons escape from the storage ring during swap-out injection with the safety shuttersmore » open, 3) incorporate the next generation x-ray beam position monitors (XBPMs) into the front end to meet the new stringent beam stability requirements. This paper presents the evaluation of the existing APS front ends and standardizes the insertion device (ID) front ends into two types: one for the single beam and one for the canted beams. The conceptual design of high heat load front end (HHLFE) and canted undulator front end (CUFE) for APS MBA upgrade is presented.« less
Advanced integrated safeguards using front-end-triggering devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howell, J.A.; Whitty, W.J.
This report addresses potential uses of front-end-triggering devices for enhanced safeguards. Such systems incorporate video surveillance as well as radiation and other sensors. Also covered in the report are integration issues and analysis techniques.
Vortex Generators to Control Boundary Layer Interactions
NASA Technical Reports Server (NTRS)
Babinsky, Holger (Inventor); Loth, Eric (Inventor); Lee, Sang (Inventor)
2014-01-01
Devices for generating streamwise vorticity in a boundary includes various forms of vortex generators. One form of a split-ramp vortex generator includes a first ramp element and a second ramp element with front ends and back ends, ramp surfaces extending between the front ends and the back ends, and vertical surfaces extending between the front ends and the back ends adjacent the ramp surfaces. A flow channel is between the first ramp element and the second ramp element. The back ends of the ramp elements have a height greater than a height of the front ends, and the front ends of the ramp elements have a width greater than a width of the back ends.
40 CFR 63.491 - Batch front-end process vents-recordkeeping requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (b)(2): (i) For an incinerator or non-combustion control device, the percent reduction of organic HAP... the process vent stream is introduced with combustion air or is used as a secondary fuel and is not... combustion device to control halogenated batch front-end process vents or halogenated aggregate batch vent...
Front-end multiplexing—applied to SQUID multiplexing: Athena X-IFU and QUBIC experiments
NASA Astrophysics Data System (ADS)
Prele, D.
2015-08-01
As we have seen for digital camera market and a sensor resolution increasing to "megapixels", all the scientific and high-tech imagers (whatever the wave length - from radio to X-ray range) tends also to always increases the pixels number. So the constraints on front-end signals transmission increase too. An almost unavoidable solution to simplify integration of large arrays of pixels is front-end multiplexing. Moreover, "simple" and "efficient" techniques allow integration of read-out multiplexers in the focal plane itself. For instance, CCD (Charge Coupled Device) technology has boost number of pixels in digital camera. Indeed, this is exactly a planar technology which integrates both the sensors and a front-end multiplexed readout. In this context, front-end multiplexing techniques will be discussed for a better understanding of their advantages and their limits. Finally, the cases of astronomical instruments in the millimeter and in the X-ray ranges using SQUID (Superconducting QUantum Interference Device) will be described.
Integrated seat frame and back support
Martin, Leo
1999-01-01
An integrated seating device comprises a seat frame having a front end and a rear end. The seat frame has a double wall defining an exterior wall and an interior wall. The rear end of the seat frame has a slot cut therethrough both the exterior wall and the interior wall. The front end of the seat frame has a slot cut through just the interior wall thereof. A back support comprising a generally L shape has a horizontal member, and a generally vertical member which is substantially perpendicular to the horizontal member. The horizontal member is sized to be threaded through the rear slot and is fitted into the front slot. Welded slat means secures the back support to the seat frame to result in an integrated seating device.
IMAPS Device Packaging Conference 2017 - Engineered Micro Systems & Devices Track
NASA Technical Reports Server (NTRS)
Varnavas, Kosta
2017-01-01
NASA field center Marshall Space Flight Center (Huntsville, AL), has invested in advanced wireless sensor technology development. Developments for a wireless microcontroller back-end were primarily focused on the commercial Synapse Wireless family of devices. These devices have many useful features for NASA applications, good characteristics and the ability to be programmed Over-The-Air (OTA). The effort has focused on two widely used sensor types, mechanical strain gauges and thermal sensors. Mechanical strain gauges are used extensively in NASA structural testing and even on vehicle instrumentation systems. Additionally, thermal monitoring with many types of sensors is extensively used. These thermal sensors include thermocouples of all types, resistive temperature devices (RTDs), diodes and other thermal sensor types. The wireless thermal board will accommodate all of these types of sensor inputs to an analog front end. The analog front end on each of the sensors interfaces to the Synapse wireless microcontroller, based on the Atmel Atmega128 device. Once the analog sensor output data is digitized by the onboard analog to digital converter (A/D), the data is available for analysis, computation or transmission. Various hardware features allow custom embedded software to manage battery power to enhance battery life. This technology development fits nicely into using numerous additional sensor front ends, including some of the low-cost printed circuit board capacitive moisture content sensors currently being developed at Auburn University.
THz semiconductor-based front-end receiver technology for space applications
NASA Technical Reports Server (NTRS)
Mehdi, Imran; Siegel, Peter
2004-01-01
Advances in the design and fabrication of very low capacitance planar Schottky diodes and millimeter-wave power amplifiers, more accurate device and circuit models for commercial 3-D electromagnetic simulators, and the availability of both MEMS and high precision metal machining, have enabled RF engineers to extend traditional waveguide-based sensor and source technologies well into the TI-Iz frequency regime. This short paper will highlight recent progress in realizing THz space-qualified receiver front-ends based on room temperature semiconductor devices.
Characterization of RF front-ends by long-tail pulse response
NASA Astrophysics Data System (ADS)
Mazzaro, Gregory J.; Ranney, Kenneth I.
2010-04-01
The recognition of unauthorized communications devices at the entry-point of a secure location is one way to guard against the compromise of sensitive information by wireless transmission. Such recognition may be achieved by backscatter x-ray and millimeter-wave imaging; however, implementation of these systems is expensive, and the ability to image the contours of the human body has raised privacy concerns. In this paper, we present a cheaper and less-invasive radio-frequency (RF) alternative for recognizing wireless communications devices. Characterization of the device-under-test (DUT) is accomplished using a stepped-frequency radar waveform. Single-frequency pulses excite resonance in the device's RF front-end. Microsecond periods of zero-signal are placed between each frequency transition to listen for the resonance. The stepped-frequency transmission is swept through known communications bands. Reception of a long-tail decay response between active pulses indicates the presence of a narrowband filter and implies the presence of a front-end circuit. The frequency of the received resonance identifies its communications band. In this work, cellular-band and handheld-radio filters are characterized.
S-Band POSIX Device Drivers for RTEMS
NASA Technical Reports Server (NTRS)
Lux, James P.; Lang, Minh; Peters, Kenneth J.; Taylor, Gregory H.
2011-01-01
This is a set of POSIX device driver level abstractions in the RTEMS RTOS (Real-Time Executive for Multiprocessor Systems real-time operating system) to SBand radio hardware devices that have been instantiated in an FPGA (field-programmable gate array). These include A/D (analog-to-digital) sample capture, D/A (digital-to-analog) sample playback, PLL (phase-locked-loop) tuning, and PWM (pulse-width-modulation)-controlled gain. This software interfaces to Sband radio hardware in an attached Xilinx Virtex-2 FPGA. It uses plug-and-play device discovery to map memory to device IDs. Instead of interacting with hardware devices directly, using direct-memory mapped access at the application level, this driver provides an application programming interface (API) offering that easily uses standard POSIX function calls. This simplifies application programming, enables portability, and offers an additional level of protection to the hardware. There are three separate device drivers included in this package: sband_device (ADC capture and DAC playback), pll_device (RF front end PLL tuning), and pwm_device (RF front end AGC control).
Advanced RF Front End Technology
NASA Technical Reports Server (NTRS)
Herman, M. I.; Valas, S.; Katehi, L. P. B.
2001-01-01
The ability to achieve low-mass low-cost micro/nanospacecraft for Deep Space exploration requires extensive miniaturization of all subsystems. The front end of the Telecommunication subsystem is an area in which major mass (factor of 10) and volume (factor of 100) reduction can be achieved via the development of new silicon based micromachined technology and devices. Major components that make up the front end include single-pole and double-throw switches, diplexer, and solid state power amplifier. JPL's Center For Space Microsystems - System On A Chip (SOAC) Program has addressed the challenges of front end miniaturization (switches and diplexers). Our objectives were to develop the main components that comprise a communication front end and enable integration in a single module that we refer to as a 'cube'. In this paper we will provide the latest status of our Microelectromechanical System (MEMS) switches and surface micromachined filter development. Based on the significant progress achieved we can begin to provide guidelines of the proper system insertion for these emerging technologies. Additional information is contained in the original extended abstract.
Advanced Wireless Sensor Nodes - MSFC
NASA Technical Reports Server (NTRS)
Varnavas, Kosta; Richeson, Jeff
2017-01-01
NASA field center Marshall Space Flight Center (Huntsville, AL), has invested in advanced wireless sensor technology development. Developments for a wireless microcontroller back-end were primarily focused on the commercial Synapse Wireless family of devices. These devices have many useful features for NASA applications, good characteristics and the ability to be programmed Over-The-Air (OTA). The effort has focused on two widely used sensor types, mechanical strain gauges and thermal sensors. Mechanical strain gauges are used extensively in NASA structural testing and even on vehicle instrumentation systems. Additionally, thermal monitoring with many types of sensors is extensively used. These thermal sensors include thermocouples of all types, resistive temperature devices (RTDs), diodes and other thermal sensor types. The wireless thermal board will accommodate all of these types of sensor inputs to an analog front end. The analog front end on each of the sensors interfaces to the Synapse wireless microcontroller, based on the Atmel Atmega128 device. Once the analog sensor output data is digitized by the onboard analog to digital converter (A/D), the data is available for analysis, computation or transmission. Various hardware features allow custom embedded software to manage battery power to enhance battery life. This technology development fits nicely into using numerous additional sensor front ends, including some of the low-cost printed circuit board capacitive moisture content sensors currently being developed at Auburn University.
Wideband monolithically integrated front-end subsystems and components
NASA Astrophysics Data System (ADS)
Mruk, Joseph Rene
This thesis presents the analysis, design, and measurements of passive, monolithically integrated, wideband recta-coax and printed circuit board front-end components. Monolithic fabrication of antennas, impedance transformers, filters, and transitions lowers manufacturing costs by reducing assembly time and enhances performance by removing connectors and cabling between the devices. Computational design, fabrication, and measurements are used to demonstrate the capabilities of these front-end assemblies. Two-arm wideband planar log-periodic antennas fed using a horizontal feed that allows for filters and impedance transformers to be readily fabricated within the radiating region of the antenna are demonstrated. At microwave frequencies, low-cost printed circuit board processes are typically used to produce planar devices. A 1.8 to 11 GHz two-arm planar log-periodic antenna is designed with a monolithically integrated impedance transformer. Band rejection methods based on modifying the antenna aperture, use of an integrated filter, and the application of both methods are investigated with realized gain suppressions of over 25 dB achieved. The ability of standard circuit board technology to fabricate millimeter-wave devices up to 110 GHz is severely limited. Thin dielectrics are required to prevent the excitation of higher order modes in the microstrip substrate. Fabricating the thin line widths required for the antenna aperture also becomes prohibitively challenging. Surface micro-machining typically used in the fabrication of MEMS devices is capable of producing the extremely small features that can be used to fabricate antennas extending through W-band. A directly RF fed 18 to 110 GHz planar log-periodic antenna is developed. The antenna is fabricated with an integrated impedance transformer and additional transitions for measurement characterization. Singly terminated low-loss wideband millimeter-wave filters operating over V- and W- band are developed. High quality performance of an 18 to 100 GHz front-end is realized by dividing the single instantaneous antenna into two apertures operating from 18 to 50 and 50 to 100 GHz. Each channel features an impedance transformer, low-pass (low-frequency) or band-pass (high-frequency) filter, and grounded CPW launch. This dual-aperture front-end demonstrates that micromachining technology is now capable of fabricating broadband millimeter-wave components with a high degree of integration.
Comparison of a Skidder and Front-End Loader for Primary Transport of Short-Rotation Trees
Raffaele Spinelli; Bruce R. Hartsough
1999-01-01
We time-studied a Cat 950F and a Cat 528 grapple skidder as extraction devices for moving bunched whole trees to a landing in a short rotation eucalyptus plantation. The front-end loader was 40 to 60% more productive than the grapple skidder, depending on extraction distance. Alternatively, the single loader could both extract trees and handle the landing duties such...
40 CFR 63.489 - Batch front-end process vents-monitoring equipment.
Code of Federal Regulations, 2013 CFR
2013-07-01
... device (including, but not limited to, a thermocouple, ultra-violet beam sensor, or infrared sensor... temperature monitoring device equipped with a continuous recorder is required. (i) Where an incinerator other than a catalytic incinerator is used, the temperature monitoring device shall be installed in the...
40 CFR 63.489 - Batch front-end process vents-monitoring equipment.
Code of Federal Regulations, 2012 CFR
2012-07-01
... device (including, but not limited to, a thermocouple, ultra-violet beam sensor, or infrared sensor... temperature monitoring device equipped with a continuous recorder is required. (i) Where an incinerator other than a catalytic incinerator is used, the temperature monitoring device shall be installed in the...
40 CFR 63.489 - Batch front-end process vents-monitoring equipment.
Code of Federal Regulations, 2014 CFR
2014-07-01
... device (including, but not limited to, a thermocouple, ultra-violet beam sensor, or infrared sensor... temperature monitoring device equipped with a continuous recorder is required. (i) Where an incinerator other than a catalytic incinerator is used, the temperature monitoring device shall be installed in the...
Mastinu, Enzo; Ortiz-Catalan, Max; Hakansson, Bo
2015-01-01
Compact and low-noise Analog Front-Ends (AFEs) are becoming increasingly important for the acquisition of bioelectric signals in portable system. In this work, we compare two popular AFEs available on the market, namely the ADS1299 (Texas Instruments) and the RHA2216 (Intan Technologies). This work develops towards the identification of suitable acquisition modules to design an affordable, reliable and portable device for electromyography (EMG) acquisition and prosthetic control. Device features such as Common Mode Rejection (CMR), Input Referred Noise (IRN) and Signal to Noise Ratio (SNR) were evaluated, as well as the resulting accuracy in myoelectric pattern recognition (MPR) for the decoding of motion intention. Results reported better noise performances and higher MPR accuracy for the ADS1299 and similar SNR values for both devices.
The Development of Design Tools for Fault Tolerant Quantum Dot Cellular Automata Based Logic
NASA Technical Reports Server (NTRS)
Armstrong, Curtis D.; Humphreys, William M.
2003-01-01
We are developing software to explore the fault tolerance of quantum dot cellular automata gate architectures in the presence of manufacturing variations and device defects. The Topology Optimization Methodology using Applied Statistics (TOMAS) framework extends the capabilities of the A Quantum Interconnected Network Array Simulator (AQUINAS) by adding front-end and back-end software and creating an environment that integrates all of these components. The front-end tools establish all simulation parameters, configure the simulation system, automate the Monte Carlo generation of simulation files, and execute the simulation of these files. The back-end tools perform automated data parsing, statistical analysis and report generation.
Front-end Electronics for Unattended Measurement (FEUM). Results of Prototype Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conrad, Ryan C.; Keller, Daniel T.; Morris, Scott J.
2015-07-01
The International Atomic Energy Agency (IAEA) deploys unattended monitoring systems to provide continuous monitoring of nuclear material within safeguarded facilities around the world. As the number of unattended monitoring instruments increases, the IAEA is challenged to become more efficient in the implementation of those systems. In 2010, the IAEA initiated the Front-End Electronics for Unattended Measurement (FEUM) project with the goals of greater flexibility in the interfaces to various sensors and data acquisition systems, and improved capabilities for remotely located sensors (e.g., where sensor and front-end electronics might be separated by tens of meters). In consultation with the IAEA, amore » technical evaluation of a candidate FEUM device produced by a commercial vendor has been performed. This evaluation assessed the device against the IAEA’s original technical specifications and a broad range of important parameters that include sensor types, cable lengths and types, industrial electromagnetic noise that can degrade signals from remotely located detectors, and high radiation fields. Testing data, interpretation, findings and recommendations are provided.« less
Design of portable electrocardiogram device using DSO138
NASA Astrophysics Data System (ADS)
Abuzairi, Tomy; Matondang, Josef Stevanus; Purnamaningsih, Retno Wigajatri; Basari, Ratnasari, Anita
2018-02-01
Cardiovascular disease has been one of the leading causes of sudden cardiac deaths in many countries, covering Indonesia. Electrocardiogram (ECG) is a medical test to detect cardiac abnormalities by measuring the electrical activity generated by the heart, as the heart contracts. By using ECG, we can observe anomaly at the time of heart abnormalities. In this paper, design of portable ECG device is presented. The portable ECG device was designed to easily use in the village clinic or houses, due to the small size device and other benefits. The device was designed by using four units: (1) ECG electrode; (2) ECG analog front-end; (3) DSO138; and (4) battery. To create a simple electrode system in the portable ECG, 1-lead ECG with two electrodes were applied. The analog front-end circuitry consists of three integrated circuits, an instrumentation amplifier AD820AN, a low noise operational amplifier OPA134, and a low offset operational amplifier TL082. Digital ECG data were transformed to graphical data on DSO138. The results show that the portable ECG is successfully read the signal from 1-lead ECG system.
Reviewed approach to defining the Active Interlock Envelope for Front End ray tracing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seletskiy, S.; Shaftan, T.
To protect the NSLS-II Storage Ring (SR) components from damage from synchrotron radiation produced by insertion devices (IDs) the Active Interlock (AI) keeps electron beam within some safe envelope (a.k.a Active Interlock Envelope or AIE) in the transverse phase space. The beamline Front Ends (FEs) are designed under assumption that above certain beam current (typically 2 mA) the ID synchrotron radiation (IDSR) fan is produced by the interlocked e-beam. These assumptions also define how the ray tracing for FE is done. To simplify the FE ray tracing for typical uncanted ID it was decided to provide the Mechanical Engineering groupmore » with a single set of numbers (x,x’,y,y’) for the AIE at the center of the long (or short) ID straight section. Such unified approach to the design of the beamline Front Ends will accelerate the design process and save valuable human resources. In this paper we describe our new approach to defining the AI envelope and provide the resulting numbers required for design of the typical Front End.« less
The Front-End System For MARE In Milano
NASA Astrophysics Data System (ADS)
Arnaboldi, Claudio; Pessina, Gianluigi
2009-12-01
The first phase of MARE consists of 72 μ-bolometers composed each of a crystal of AgReO4 readout by Si thermistors. The spread in the thermistor characteristics and bolometer thermal coupling leads to different energy conversion gains and optimum operating points of the detectors. Detector biasing levels and voltage gains are completely remote-adjustable by the front end system developed, the subject of this paper, achieving the same signal range at the input of the DAQ system. The front end consists of a cold buffer stage, a second pseudo differential stage followed by a gain stage, an antialiasing filter, and a battery powered detector biasing set up. The DAQ system can be used to set all necessary parameters of the electronics remotely, by writing to a μ-controller located on each board. Fiber optics are used for the serial communication between the DAQ and the front end. To suppress interference noise during normal operation, the clocked devices of the front end are maintained in sleep-mode, except during the set-up phase of the experiment. An automatic DC detector characterization procedure is used to establish the optimum operating point of every detector of the array. A very low noise level has been achieved: about 3nV/□Hz at 1 Hz and 1 nV/□Hz for the white component, high frequencies.
All-Dielectric Photonic-Assisted Radio Front-End Technology
NASA Astrophysics Data System (ADS)
Ayazi, Hossein Ali
The threats to civil society posed by high-power electromagnetic weapons are viewed as a grim but real possibility in the world after 11 September 2001. These weapons produce a power surge capable of destroying or damaging sensitive circuitry in electronic systems. Unfortunately, the trend towards circuits with smaller sizes and voltages renders modern electronics highly susceptible to such damage. Radiofrequency communication systems are particularly vulnerable, because the antenna provides a direct port of entry for electromagnetic radiation. In this work, we present a novel type of radiofrequency receiver front end featuring a complete absence of electronic circuitry and metal interconnects, the traditional 'soft spots' of a conventional radiofrequency receiver. The device exploits a dielectric resonator antenna to capture and deliver the radiofrequency signal onto a whispering-gallery mode electro-optic field sensor. The dielectric approach has an added benefit in that it reduces the physical size of the front end, an important benefit in mobile applications.
Readout ASICs and Electronics for the 144-channel HAPDs for the Aerogel RICH at Belle II
NASA Astrophysics Data System (ADS)
Nishida, S.; Adachi, I.; Ikeda, H.; Hara, K.; Iijima, T.; Iwata, S.; Korpar, S.; Križan, P.; Kuroda, E.; Pestotnik, R.; Seljak, A.; Sumiyoshi, T.; Takagaki, H.
The particle identification (PID) device in the endcap of the Belle detector will be upgraded to a ring imaging Cherenkov counter (RICH) using aerogel as a radiator at the Belle II experiment. We develop the electronics to read out the 70,000 channels of hit information from the 144-channel hybrid avalanche photodetectors (HAPD), of the aerogel RICH detector. A readout ASIC is developed to digitize the HAPD signals, and was used in a beam test with the prototype detector. The performance and plan of the ASIC is reported in this study. We have also designed the readout electronics for the aerogel RICH, which consist of front-end boards with the ASICs merger boards to collect data from the front-end boards. A front-end board that fits in the actual available space for the aerogel RICH electronics was produced.
High Dynamic Range Cognitive Radio Front Ends: Architecture to Evaluation
NASA Astrophysics Data System (ADS)
Ashok, Arun; Subbiah, Iyappan; Varga, Gabor; Schrey, Moritz; Heinen, Stefan
2016-07-01
Advent of TV white space digitization has released frequencies from 470 MHz to 790 MHz to be utilized opportunistically. The secondary user can utilize these so called TV spaces in the absence of primary users. The most important challenge for this coexistence is mutual interference. While the strong TV stations can completely saturate the receiver of the cognitive radio (CR), the cognitive radio spurious tones can disturb other primary users and white space devices. The aim of this paper is to address the challenges for enabling cognitive radio applications in WLAN and LTE. In this process, architectural considerations for the design of cognitive radio front ends are discussed. With high-IF converters, faster and flexible implementation of CR enabled WLAN and LTE are shown. The effectiveness of the architecture is shown by evaluating the CR front ends for compliance of standards namely 802.11b/g (WLAN) and 3GPP TS 36.101 (LTE).
40 CFR 63.1103 - Source category-specific applicability, definitions, and requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... separation of raw materials and by-products from the stabilized polymer. Front end process vent means any... vent systems, control devices, recovery devices, and routing to a fuel gas system or a process), as... allow worker access; passage of material into or out of the enclosure by conveyor, vehicles, or other...
NASA Astrophysics Data System (ADS)
Ito, Keita; Uno, Shoma; Goto, Tatsuya; Takezawa, Yoshiki; Harashima, Takuya; Morikawa, Takumi; Nishino, Satoru; Kino, Hisashi; Kiyoyama, Koji; Tanaka, Tetsu
2017-04-01
For safe electrical stimulation with body-implanted devices, the degradation of stimulus electrodes must be considered because it causes the unexpected electrolysis of water and the destruction of tissues. To monitor the charge injection property (CIP) of stimulus electrodes while these devices are implanted, we have proposed a charge injection monitoring system (CIMS). CIMS can safely read out voltages produced by a biphasic current pulse to a stimulus electrode and CIP is calculated from waveforms of the acquired voltages. In this paper, we describe a wide-range and low-power analog front-end (AFE) for CIMS that has variable gain-frequency characteristics and low-power analog-to-digital (A/D) conversion to adjust to the degradation of stimulus electrodes. The designed AFE was fabricated with 0.18 µm CMOS technology and achieved a valuable gain of 20-60 dB, an upper cutoff frequency of 0.2-10 kHz, and low-power interleaving A/D conversion. In addition, we successfully measured the CIP of stimulus electrodes for body-implanted devices using CIMS.
Ortega, Jason M.; Salari, Kambiz; McCallen, Rose
2010-11-09
A vehicle underbody fairing apparatus for reducing aerodynamic drag caused by a vehicle wheel assembly, by reducing the size of a recirculation zone formed under the vehicle body immediately downstream of the vehicle wheel assembly. The fairing body has a tapered aerodynamic surface that extends from a front end to a rear end of the fairing body with a substantially U-shaped cross-section that tapers in both height and width. Fasteners or other mounting devices secure the fairing body to an underside surface of the vehicle body, so that the front end is immediately downstream of the vehicle wheel assembly and a bottom section of the tapered aerodynamic surface rises towards the underside surface as it extends in a downstream direction.
A low-voltage low-power front-end for wearable EEG systems.
Yates, D; López-Morillo, E; Carvajal, R G; Ramirez-Angulo, J; Rodriguez-Villegas, E
2007-01-01
A low-voltage and low-power front-end for miniaturized, wearable EEG systems is presented. The instrumentation amplifier, which removes the electrode drift and conditions the signal for a 10-bit A/D converter, combines a chopping strategy with quasi-FGMOS (QFG) transistors to minimize low frequency noise whilst enabling operation at 1 V supply. QFG devices are also key to the A/D converter operating at 1.2 V with 70dB of SNR and an oversampling ratio of 64. The whole system consumes less than 2uW at 1.2V.
Visual EKF-SLAM from Heterogeneous Landmarks †
Esparza-Jiménez, Jorge Othón; Devy, Michel; Gordillo, José L.
2016-01-01
Many applications require the localization of a moving object, e.g., a robot, using sensory data acquired from embedded devices. Simultaneous localization and mapping from vision performs both the spatial and temporal fusion of these data on a map when a camera moves in an unknown environment. Such a SLAM process executes two interleaved functions: the front-end detects and tracks features from images, while the back-end interprets features as landmark observations and estimates both the landmarks and the robot positions with respect to a selected reference frame. This paper describes a complete visual SLAM solution, combining both point and line landmarks on a single map. The proposed method has an impact on both the back-end and the front-end. The contributions comprehend the use of heterogeneous landmark-based EKF-SLAM (the management of a map composed of both point and line landmarks); from this perspective, the comparison between landmark parametrizations and the evaluation of how the heterogeneity improves the accuracy on the camera localization, the development of a front-end active-search process for linear landmarks integrated into SLAM and the experimentation methodology. PMID:27070602
A front-end wafer-level microsystem packaging technique with micro-cap array
NASA Astrophysics Data System (ADS)
Chiang, Yuh-Min
2002-09-01
The back-end packaging process is the remaining challenge for the micromachining industry to commercialize microsystem technology (MST) devices at low cost. This dissertation presents a novel wafer level protection technique as a final step of the front-end fabrication process for MSTs. It facilitates improved manufacturing throughput and automation in package assembly, wafer level testing of devices, and enhanced device performance. The method involves the use of a wafer-sized micro-cap array, which consists of an assortment of small caps micro-molded onto a material with adjustable shapes and sizes to serve as protective structures against the hostile environments during packaging. The micro-cap array is first constructed by a micromachining process with micro-molding technique, then sealed to the device wafer at wafer level. Epoxy-based wafer-level micro cap array has been successfully fabricated and showed good compatibility with conventional back-end packaging processes. An adhesive transfer technique was demonstrated to seal the micro cap array with a MEMS device wafer. No damage or gross leak was observed while wafer dicing or later during a gross leak test. Applications of the micro cap array are demonstrated on MEMS, microactuators fabricated using CRONOS MUMPS process. Depending on the application needs, the micro-molded cap can be designed and modified to facilitate additional component functions, such as optical, electrical, mechanical, and chemical functions, which are not easily achieved in the device by traditional means. Successful fabrication of a micro cap array comprised with microlenses can provide active functions as well as passive protection. An optical tweezer array could be one possibility for applications of a micro cap with microlenses. The micro cap itself could serve as micro well for DNA or bacteria amplification as well.
Tele-healthcare for diabetes management: A low cost automatic approach.
Benaissa, M; Malik, B; Kanakis, A; Wright, N P
2012-01-01
In this paper, a telemedicine system for managing diabetic patients with better care is presented. The system is an end to end solution which relies on the integration of front end (patient unit) and backend web server. A key feature of the system developed is the very low cost automated approach. The front-end of the system is capable of reading glucose measurements from any glucose meter and sending them automatically via existing networks to the back-end server. The back-end is designed and developed using n-tier web client architecture based on model-view-controller design pattern using open source technology, a cost effective solution. The back-end helps the health-care provider with data analysis; data visualization and decision support, and allows them to send feedback and therapeutic advice to patients from anywhere using a browser enabled device. This system will be evaluated during the trials which will be conducted in collaboration with a local hospital in phased manner.
49 CFR 232.409 - Inspection and testing of end-of-train devices.
Code of Federal Regulations, 2013 CFR
2013-10-01
... be determined, after charging the train, by comparing the quantitative value of the air pressure displayed on the front unit with the quantitative value of the air pressure displayed on the rear unit or on...
49 CFR 232.409 - Inspection and testing of end-of-train devices.
Code of Federal Regulations, 2010 CFR
2010-10-01
... be determined, after charging the train, by comparing the quantitative value of the air pressure displayed on the front unit with the quantitative value of the air pressure displayed on the rear unit or on...
49 CFR 232.409 - Inspection and testing of end-of-train devices.
Code of Federal Regulations, 2014 CFR
2014-10-01
... be determined, after charging the train, by comparing the quantitative value of the air pressure displayed on the front unit with the quantitative value of the air pressure displayed on the rear unit or on...
49 CFR 232.409 - Inspection and testing of end-of-train devices.
Code of Federal Regulations, 2012 CFR
2012-10-01
... be determined, after charging the train, by comparing the quantitative value of the air pressure displayed on the front unit with the quantitative value of the air pressure displayed on the rear unit or on...
49 CFR 232.409 - Inspection and testing of end-of-train devices.
Code of Federal Regulations, 2011 CFR
2011-10-01
... be determined, after charging the train, by comparing the quantitative value of the air pressure displayed on the front unit with the quantitative value of the air pressure displayed on the rear unit or on...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Xueyun; Wojcik, Roza; Zhang, Xing
Ion mobility spectrometry (IMS) is a widely used analytical technique for rapid molecular separations in the gas phase. IMS alone is useful, but its coupling with mass spectrometry (MS) and front-end separations has been extremely beneficial for increasing measurement sensitivity, peak capacity of complex mixtures, and the scope of molecular information in biological and environmental sample analyses. Multiple studies in disease screening and environmental evaluations have even shown these IMS-based multidimensional separations extract information not possible with each technique individually. This review highlights 3-dimensional separations using IMS-MS in conjunction with a range of front-end techniques, such as gas chromatography (GC),more » supercritical fluid chromatography (SFC), liquid chromatography (LC), solid phase extractions (SPE), capillary electrophoresis (CE), field asymmetric ion mobility spectrometry (FAIMS), and microfluidic devices. The origination, current state, various applications, and future capabilities for these multidimensional approaches are described to provide insight into the utility and potential of each technique.« less
Zheng, Xueyun; Wojcik, Roza; Zhang, Xing; Ibrahim, Yehia M.; Burnum-Johnson, Kristin E.; Orton, Daniel J.; Monroe, Matthew E.; Moore, Ronald J.; Smith, Richard D.; Baker, Erin S.
2017-01-01
Ion mobility spectrometry (IMS) is a widely used analytical technique for rapid molecular separations in the gas phase. Though IMS alone is useful, its coupling with mass spectrometry (MS) and front-end separations is extremely beneficial for increasing measurement sensitivity, peak capacity of complex mixtures, and the scope of molecular information available from biological and environmental sample analyses. In fact, multiple disease screening and environmental evaluations have illustrated that the IMS-based multidimensional separations extract information that cannot be acquired with each technique individually. This review highlights three-dimensional separations using IMS-MS in conjunction with a range of front-end techniques, such as gas chromatography, supercritical fluid chromatography, liquid chromatography, solid-phase extractions, capillary electrophoresis, field asymmetric ion mobility spectrometry, and microfluidic devices. The origination, current state, various applications, and future capabilities of these multidimensional approaches are described in detail to provide insight into their uses and benefits. PMID:28301728
Solid-State Photomultiplier with Integrated Front End Electronics
NASA Astrophysics Data System (ADS)
Christian, James; Stapels, Christopher; Johnson, Erik; Mukhopadhyay, Sharmistha; Jie Chen, Xiao; Miskimen, Rory
2009-10-01
The instrumentation cost of physics experiments has been reduced per channel, by the use of solid-state detectors, but these cost-effective techniques have not been translated to scintillation-based detectors. When considering photodetectors, the cost per channel is determined by the use of high-voltage, analog-to-digital converters, BNC cables, and any other ancillary devices. The overhead associated with device operation limits the number of channels for the detector system, while potentially limiting the scope of physics that can be explored. The PRIMEX experiment at JLab, which is being designed to measure the radiative widths of the η and η' pseudo-scalar mesons for a more comprehensive understanding of QCD at low energies, is an example where CMOS solid-state photomultipliers (SSPMs) can be implemented. The ubiquitous nature of CMOS allows for on-chip signal processing to provide front-end electronics within the detector package. We present the results of the device development for the PRIMEX calorimeter, discussing the characteristics of SSPMs, the potential cost savings, and experimental results of on-chip signal processing.
Flexible pipe crawling device having articulated two axis coupling
Zollinger, William T.
1994-01-01
An apparatus for moving through the linear and non-linear segments of piping systems. The apparatus comprises a front leg assembly, a rear leg assembly, a mechanism for extension and retraction of the front and rear leg assembles with respect to each other, such as an air cylinder, and a pivoting joint. One end of the flexible joint attaches to the front leg assembly and the other end to the air cylinder, which is also connected to the rear leg assembly. The air cylinder allows the front and rear leg assemblies to progress through a pipe in "inchworm" fashion, while the joint provides the flexibility necessary for the pipe crawler to negotiate non-linear piping segments. The flexible connecting joint is coupled with a spring-force suspension system that urges alignment of the front and rear leg assemblies with respect to each other. The joint and suspension system cooperate to provide a firm yet flexible connection between the front and rear leg assemblies to allow the pivoting of one with respect to the other while moving around a non-linear pipe segment, but restoring proper alignment coming out of the pipe bend.
Flexible pipe crawling device having articulated two axis coupling
Zollinger, W.T.
1994-05-10
An apparatus is described for moving through the linear and non-linear segments of piping systems. The apparatus comprises a front leg assembly, a rear leg assembly, a mechanism for extension and retraction of the front and rear leg assembles with respect to each other, such as an air cylinder, and a pivoting joint. One end of the flexible joint attaches to the front leg assembly and the other end to the air cylinder, which is also connected to the rear leg assembly. The air cylinder allows the front and rear leg assemblies to progress through a pipe in inchworm' fashion, while the joint provides the flexibility necessary for the pipe crawler to negotiate non-linear piping segments. The flexible connecting joint is coupled with a spring-force suspension system that urges alignment of the front and rear leg assemblies with respect to each other. The joint and suspension system cooperate to provide a firm yet flexible connection between the front and rear leg assemblies to allow the pivoting of one with respect to the other while moving around a non-linear pipe segment, but restoring proper alignment coming out of the pipe bend. 4 figures.
Collecting Ground Samples for Balloon-Borne Instruments
NASA Technical Reports Server (NTRS)
Jones, Jack; Zimmerman, Wayne; Wu, Jiunn Jenq
2009-01-01
A proposed system in a gondola containing scientific instruments suspended by a balloon over the surface of the Saturn moon Titan would quickly acquire samples of rock or ice from the ground below. Prototypes of a sample-collecting device that would be a major part of the system have been tested under cryogenic and non-cryogenic conditions on Earth. Systems like this one could also be used in non-cryogenic environments on Earth to collect samples of rock, soil, ice, mud, or other ground material from such inaccessible or hazardous locations as sites of suspected chemical spills or biological contamination. The sample-collecting device would be a harpoonlike device that would be connected to the balloon-borne gondola by a tether long enough to reach the ground. The device would be dropped from the gondola to acquire a sample, then would be reeled back up to the gondola, where the sample would be analyzed by the onboard instruments. Each prototype of the sample-collecting device has a sharp front (lower) end, a hollow core for retaining a sample, a spring for holding the sample in the hollow core, and a rear (upper) annular cavity for retaining liquid sample material. Aerodynamic fins at the rear help to keep the front end pointed downward. In tests, these prototype devices were dropped from various heights and used to gather samples of dry sand, moist sand, cryogenic water ice, and warmer water ice.
Chan, U Fai; Chan, Wai Wong; Pun, Sio Hang; Vai, Mang I; Mak, Peng Un
2007-01-01
Traditional/Current electronic circuits for Telemedicine have significant performance on certain bioelectric signal detection. However, it is rarely seen that can handle multiple signals without changing of hardware. This paper introduces a general front-end amplifier for various bioelectric signals based on Field Programmable Analogy Array (FPAA) Technology. Employing FPAA technology, the implemented amplifier can be adapted for various bioelectric signals without alternating the circuitry while its compact size (core parts < 2 cm2) provides an alternative solution for miniaturized Telemedicine system and Wearable Devices. The proposed design implementation has demonstrated, through successfully ECG and EMG signal extractions, a quick way to miniaturize analog biomedical circuit in a convenient and cost effective way.
RF to millimeter wave integration and module technologies
NASA Astrophysics Data System (ADS)
Vähä-Heikkilä, T.
2015-04-01
Radio Frequency (RF) consumer applications have boosted silicon integrated circuits (IC) and corresponding technologies. More and more functions are integrated to ICs and their performance is also increasing. However, RF front-end modules with filters and switches as well as antennas still need other way of integration. This paper focuses to RF front-end module and antenna developments as well as to the integration of millimeter wave radios. VTT Technical Research Centre of Finland has developed both Low Temperature Co-fired Ceramics (LTCC) and Integrated Passive Devices (IPD) integration platforms for RF and millimeter wave integrated modules. In addition to in-house technologies, VTT is using module and component technologies from other commercial sources.
Advancements in DEPMOSFET device developments for XEUS
NASA Astrophysics Data System (ADS)
Treis, J.; Bombelli, L.; Eckart, R.; Fiorini, C.; Fischer, P.; Hälker, O.; Herrmann, S.; Lechner, P.; Lutz, G.; Peric, I.; Porro, M.; Richter, R. H.; Schaller, G.; Schopper, F.; Soltau, H.; Strüder, L.; Wölfel, S.
2006-06-01
DEPMOSFET based Active Pixel Sensor (APS) matrices are a new detector concept for X-ray imaging spectroscopy missions. They can cope with the challenging requirements of the XEUS Wide Field Imager and combine excellent energy resolution, high speed readout and low power consumption with the attractive feature of random accessibility of pixels. From the evaluation of first prototypes, new concepts have been developed to overcome the minor drawbacks and problems encountered for the older devices. The new devices will have a pixel size of 75 μm × 75 μm. Besides 64 × 64 pixel arrays, prototypes with a sizes of 256 × 256 pixels and 128 × 512 pixels and an active area of about 3.6 cm2 will be produced, a milestone on the way towards the fully grown XEUS WFI device. The production of these improved devices is currently on the way. At the same time, the development of the next generation of front-end electronics has been started, which will permit to operate the sensor devices with the readout speed required by XEUS. Here, a summary of the DEPFET capabilities, the concept of the sensors of the next generation and the new front-end electronics will be given. Additionally, prospects of new device developments using the DEPFET as a sensitive element are shown, e.g. so-called RNDR-pixels, which feature repetitive non-destructive readout to lower the readout noise below the 1 e - ENC limit.
NASA Astrophysics Data System (ADS)
Arteche, F.; Rivetta, C.; Iglesias, M.; Echeverria, I.
2016-05-01
Silicon detectors have been used in astrophysics satellites and particle detectors for high energy physics (HEP) experiments. For HEP applications, EMC studies have been conducted in silicon detectors to characterize the impact of external noise on the system. They have shown that problems associated with the new generation of silicon detectors are related with interferences generated by the power supplies and auxiliary equipment connected to the device. Characterization of these interferences along with the coupling and their propagation into the susceptible front-end circuits is required for a successful integration of these systems. This paper presents the analysis of the sensitivity curves and coupling mechanisms between the noise and the front-end electronics that have been observed during the characterization of two silicon detector prototypes: the CMS-Silicon tracker detector (CMS-ST) and Silicon Vertex Detector (Belle II-SVD). As a result of these studies, it is possible to identify critical elements in prototypes to take corrective actions in the design and improve the front-end electronics performance.
FERMI: a digital Front End and Readout MIcrosystem for high resolution calorimetry
NASA Astrophysics Data System (ADS)
Alexanian, H.; Appelquist, G.; Bailly, P.; Benetta, R.; Berglund, S.; Bezamat, J.; Blouzon, F.; Bohm, C.; Breveglieri, L.; Brigati, S.; Cattaneo, P. W.; Dadda, L.; David, J.; Engström, M.; Genat, J. F.; Givoletti, M.; Goggi, V. G.; Gong, S.; Grieco, G. M.; Hansen, M.; Hentzell, H.; Holmberg, T.; Höglund, I.; Inkinen, S. J.; Kerek, A.; Landi, C.; Ledortz, O.; Lippi, M.; Lofstedt, B.; Lund-Jensen, B.; Maloberti, F.; Mutz, S.; Nayman, P.; Piuri, V.; Polesello, G.; Sami, M.; Savoy-Navarro, A.; Schwemling, P.; Stefanelli, R.; Sundblad, R.; Svensson, C.; Torelli, G.; Vanuxem, J. P.; Yamdagni, N.; Yuan, J.; Ödmark, A.; Fermi Collaboration
1995-02-01
We present a digital solution for the front-end electronics of high resolution calorimeters at future colliders. It is based on analogue signal compression, high speed {A}/{D} converters, a fully programmable pipeline and a digital signal processing (DSP) chain with local intelligence and system supervision. This digital solution is aimed at providing maximal front-end processing power by performing waveform analysis using DSP methods. For the system integration of the multichannel device a multi-chip, silicon-on-silicon multi-chip module (MCM) has been adopted. This solution allows a high level of integration of complex analogue and digital functions, with excellent flexibility in mixing technologies for the different functional blocks. This type of multichip integration provides a high degree of reliability and programmability at both the function and the system level, with the additional possibility of customising the microsystem to detector-specific requirements. For enhanced reliability in high radiation environments, fault tolerance strategies, i.e. redundancy, reconfigurability, majority voting and coding for error detection and correction, are integrated into the design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Leon E.; Conrad, Ryan C.; Keller, Daniel T.
The International Atomic Energy Agency (IAEA) deploys unattended monitoring systems to provide continuous monitoring of nuclear material within safeguarded facilities around the world. As the number of unattended monitoring instruments increases, the IAEA is challenged to become more efficient in the implementation of those systems. In 2010, the IAEA initiated the Front-End Electronics for Unattended Measurement (FEUM) project with the goals of greater flexibility in the interfaces to various sensors and data acquisition systems, and improved capabilities for remotely located sensors (e.g., where sensor and front-end electronics might be separated by tens of meters). In consultation with the IAEA, amore » technical evaluation of a candidate FEUM device produced by a commercial vendor is being performed. This evaluation is assessing the device against the IAEA’s original technical specifications and a broad range of important parameters that included sensor types, cable types, and industrial electromagnetic noise that can degrade signals from remotely located detectors. Testing has been performed in a laboratory and also in environments representative of IAEA deployments. The results are expected to inform the IAEA about where and how FEUM devices might be implemented in the field. Data and preliminary findings from the testing performed to date are presented.« less
30 CFR 56.14106 - Falling object protection.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Falling object protection. 56.14106 Section 56... Equipment Safety Devices and Maintenance Requirements § 56.14106 Falling object protection. (a) Fork-lift trucks, front-end loaders, and bulldozers shall be provided with falling object protective structures if...
30 CFR 57.14106 - Falling object protection.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Falling object protection. 57.14106 Section 57... Equipment Safety Devices and Maintenance Requirements § 57.14106 Falling object protection. (a) Fork-lift trucks, front-end loaders, and bulldozers shall be provided with falling object protective structures if...
30 CFR 56.14106 - Falling object protection.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Falling object protection. 56.14106 Section 56... Equipment Safety Devices and Maintenance Requirements § 56.14106 Falling object protection. (a) Fork-lift trucks, front-end loaders, and bulldozers shall be provided with falling object protective structures if...
30 CFR 57.14106 - Falling object protection.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Falling object protection. 57.14106 Section 57... Equipment Safety Devices and Maintenance Requirements § 57.14106 Falling object protection. (a) Fork-lift trucks, front-end loaders, and bulldozers shall be provided with falling object protective structures if...
30 CFR 56.14106 - Falling object protection.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Falling object protection. 56.14106 Section 56... Equipment Safety Devices and Maintenance Requirements § 56.14106 Falling object protection. (a) Fork-lift trucks, front-end loaders, and bulldozers shall be provided with falling object protective structures if...
30 CFR 57.14106 - Falling object protection.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Falling object protection. 57.14106 Section 57... Equipment Safety Devices and Maintenance Requirements § 57.14106 Falling object protection. (a) Fork-lift trucks, front-end loaders, and bulldozers shall be provided with falling object protective structures if...
30 CFR 57.14106 - Falling object protection.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Falling object protection. 57.14106 Section 57... Equipment Safety Devices and Maintenance Requirements § 57.14106 Falling object protection. (a) Fork-lift trucks, front-end loaders, and bulldozers shall be provided with falling object protective structures if...
30 CFR 57.14106 - Falling object protection.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Falling object protection. 57.14106 Section 57... Equipment Safety Devices and Maintenance Requirements § 57.14106 Falling object protection. (a) Fork-lift trucks, front-end loaders, and bulldozers shall be provided with falling object protective structures if...
30 CFR 56.14106 - Falling object protection.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Falling object protection. 56.14106 Section 56... Equipment Safety Devices and Maintenance Requirements § 56.14106 Falling object protection. (a) Fork-lift trucks, front-end loaders, and bulldozers shall be provided with falling object protective structures if...
30 CFR 56.14106 - Falling object protection.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Falling object protection. 56.14106 Section 56... Equipment Safety Devices and Maintenance Requirements § 56.14106 Falling object protection. (a) Fork-lift trucks, front-end loaders, and bulldozers shall be provided with falling object protective structures if...
A digital front-end and readout microsystem for calorimetry at LHC
NASA Astrophysics Data System (ADS)
Alippi, C.; Appelquist, G.; Berglund, S.; Bohm, C.; Breveglieri, L.; Brigati, S.; Carlson, P.; Cattaneo, P.; Dadda, L.; David, J.; Del Buono, L.; Dell'Acqua, A.; Engström, M.; Fumagalli, G.; Gatti, U.; Genat, J. F.; Goggi, G.; Hansen, M.; Hentzell, H.; Höglund, I.; Inkinen, S.; Kerek, A.; Lebbolo, H.; LeDortz, O.; Lofstedt, B.; Maloberti, F.; Nayman, P.; Persson, S.-T.; Piuri, V.; Salice, F.; Sami, M.; Savoy-Navarro, A.; Stefanelli, R.; Sundblad, R.; Svensson, C.; Torelli, G.; Vanuxem, J. P.; Yamdagni, N.; Yuan, J.; Zitoun, R.
1994-04-01
A digital solution to the front-end electronics for calorimetric detectors at future supercolliders is presented. The solution is based on high speed {A}/{D} converters, a fully programmable pipeline/digital filter chain and local intelligence. Questions of error correction, fault-tolerance and system redundancy are also being considered. A system integration of a multichannel device in a multichip, Silicon-on-Silicon Microsystem hybrid, is used. This solution allows a new level of integration of complex analogue and digital functions, with an excellent flexibility in mixing technologies for the different functional blocks. It also allows a high degree of programmability at both the function and the system level, and offers the possibility of customising the microsystem with detector-specific functions.
Analytical Modeling of Triple-Metal Hetero-Dielectric DG SON TFET
NASA Astrophysics Data System (ADS)
Mahajan, Aman; Dash, Dinesh Kumar; Banerjee, Pritha; Sarkar, Subir Kumar
2018-02-01
In this paper, a 2-D analytical model of triple-metal hetero-dielectric DG TFET is presented by combining the concepts of triple material gate engineering and hetero-dielectric engineering. Three metals with different work functions are used as both front- and back gate electrodes to modulate the barrier at source/channel and channel/drain interface. In addition to this, front gate dielectric consists of high-K HfO2 at source end and low-K SiO2 at drain side, whereas back gate dielectric is replaced by air to further improve the ON current of the device. Surface potential and electric field of the proposed device are formulated solving 2-D Poisson's equation and Young's approximation. Based on this electric field expression, tunneling current is obtained by using Kane's model. Several device parameters are varied to examine the behavior of the proposed device. The analytical model is validated with TCAD simulation results for proving the accuracy of our proposed model.
High Temperature Superconductor/Semiconductor Hybrid Microwave Devices and Circuits
NASA Technical Reports Server (NTRS)
Romanofsky, Robert R.; Miranda, Felix A.
1999-01-01
Contents include following: film deposition technique; laser ablation; magnetron sputtering; sequential evaporation; microwave substrates; film characterization at microwave frequencies; complex conductivity; magnetic penetration depth; surface impedance; planar single-mode filters; small antennas; antenna arrays phase noise; tunable oscillations; hybrid superconductor/semiconductor receiver front ends; and noise modeling.
A front-end read out chip for the OPERA scintillator tracker
NASA Astrophysics Data System (ADS)
Lucotte, A.; Bondil, S.; Borer, K.; Campagne, J. E.; Cazes, A.; Hess, M.; de La Taille, C.; Martin-Chassard, G.; Raux, L.; Repellin, J. P.
2004-04-01
Multi-anode photomultipliers H7546 are used to readout signal from the OPERA Scintillator Tracker (CERN/SPSC 2000-028, SPSC/P318, LNGSP 25/2000; CERN/SPSC 2001-025, SPSC/M668, LNGS-EXP30/2001). A 32-channel front-end Read Out Chip prototype accommodating the H7546 has been designed at LAL. This device features a low-noise, variable gain preamplifier to correct for multi-anode non-uniformity, an auto-trigger capability 100% efficient at a 0.3 photo-electron, and a charge measurement extending over a large dynamic range [0-100] photo-electrons. In this article we describe the ASIC architecture that is being implemented for the Target Tracker in OPERA, with a special emphasis put on the designs and the measured performance.
40 CFR 63.489 - Batch front-end process vents-monitoring equipment.
Code of Federal Regulations, 2011 CFR
2011-07-01
... installed in the gas stream immediately before and after the catalyst bed. (2) Where a flare is used, a device (including, but not limited to, a thermocouple, ultra-violet beam sensor, or infrared sensor... at the scrubber influent for liquid flow. Gas stream flow shall be determined using one of the...
40 CFR 63.489 - Batch front-end process vents-monitoring equipment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... installed in the gas stream immediately before and after the catalyst bed. (2) Where a flare is used, a device (including, but not limited to, a thermocouple, ultra-violet beam sensor, or infrared sensor... at the scrubber influent for liquid flow. Gas stream flow shall be determined using one of the...
Ramezany, Alireza; Pourkamali, Siavash
2018-04-11
Channel-selective filtering and amplification in ultrahigh frequency (UHF) receiver front-ends are crucial for realization of cognitive radio systems and the future of wireless communication. In the past decade, there have been significant advances in the performance of microscale electromechanical resonant devices. However, such devices have not yet been able to meet the requirements for direct channel selection at RF. They also occupy a relatively large area on the chip making implementation of large arrays to cover several frequency bands challenging. On the other hand, electromechanical piezoresistive resonant devices are active devices that have recently shown the possibility of simultaneous signal amplification and channel-select filtering at lower frequencies. It has been theoretically predicted that if scaled down into the nanoscale, they can operate in the UHF range with a very low power consumption. Here, for the first time nanomechanical piezoresistive amplifiers with active element dimensions as small as 50 nm × 200 nm are demonstrated. With a device area of less than 1.5 μm 2 a piezoresistive amplifier operating at 730 MHz shows effective quality factor ( Q) of 89,000 for a 50Ω load and gains as high as 10 dB and Q of 330,000 for a 250Ω load while consuming 189 μW of power. On the basis of the measurement results, it is shown that for piezoresistor dimensions of 30 nm × 100 nm it is possible to get a similar performance at 2.4 GHz with device footprint of less than 0.2 μm 2 .
Assessment of a Low-Power 65 nm CMOS Technology for Analog Front-End Design
NASA Astrophysics Data System (ADS)
Manghisoni, Massimo; Gaioni, Luigi; Ratti, Lodovico; Re, Valerio; Traversi, Gianluca
2014-02-01
This work is concerned with the study of the analog properties of MOSFET devices belonging to a 65 nm CMOS technology with emphasis on intrinsic voltage gain and noise performance. This node appears to be a robust and promising solution to cope with the unprecedented requirements set by silicon vertex trackers in experiments upgrades and future colliders as well as by imaging detectors at light sources and free electron lasers. In this scaled-down technology, the impact of new dielectric materials and processing techniques on the analog behavior of MOSFETs has to be carefully evaluated. An inversion level design methodology has been adopted to analyze data obtained from device measurements and provide a powerful tool to establish design criteria for detector front-ends in this nanoscale CMOS process. A comparison with data coming from less scaled technologies, such as 90 nm and 130 nm nodes, is also provided and can be used to evaluate the resolution limits achievable for low-noise charge sensitive amplifiers in the 100 nm minimum feature size range.
Kong, Wei; Huang, Jian; Rollins, Dennis L; Ideker, Raymond E; Smith, William M
2007-03-01
We have developed an eight-channel telemetry system for studying experimental models of chronic cardiovascular disease. The system is an extension of a previous device that has been miniaturized, reduced in power consumption and provided with increased functionality. We added sensors for ventricular dimension, and coronary artery blood flow and arterial blood pressure that are suitable for use with the system. The telemetry system consists of a front end, a backpack and a host PC. The front end is a watertight stainless steel case with all sensor electronics sealed inside; it acquires dimension, flow, pressure and five cardiac electrograms from selected locations on the heart. The backpack includes a control unit, Bluetooth radio, and batteries. The control unit digitizes eight channels of data from the front end and forwards them to the host PC via Bluetooth link. The host PC has a receiving Bluetooth radio and Labview programs to store and display data. The whole system was successfully tested on the bench and in an animal model. This telemetry system will greatly enhance the ability to study events leading to spontaneous sudden cardiac arrest.
NASA Astrophysics Data System (ADS)
Lee, Jung-Youl; Seo, Il-Seok; Ma, Seong-Min; Kim, Hyeon-Soo; Kim, Jin-Woong; Kim, DoOh; Cross, Andrew
2013-03-01
The migration to a 3D implementation for NAND flash devices is seen as the leading contender to replace traditional planar NAND architectures. However the strategy of replacing shrinking design rules with greater aspect ratios is not without its own set of challenges. The yield-limiting defect challenges for the planar NAND front end were primarily bridges, protrusions and residues at the bottom of the gates, while the primary challenges for front end 3D NAND is buried particles, voids and bridges in the top, middle and bottom of high aspect ratio structures. Of particular interest are the yield challenges in the channel hole process module and developing an understanding of the contribution of litho and etch defectivity for this challenging new integration scheme. The key defectivity and process challenges in this module are missing, misshapen channel holes or under-etched channel holes as well as reducing noise sources related to other none yield limiting defect types and noise related to the process integration scheme. These challenges are expected to amplify as the memory density increases. In this study we show that a broadband brightfield approach to defect monitoring can be uniquely effective for the channel hole module. This approach is correlated to end-of-line (EOL) Wafer Bin Map for verification of capability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lombigit, L., E-mail: lojius@nm.gov.my; Rahman, Nur Aira Abd; Mohamad, Glam Hadzir Patai
A radioisotope identifier device based on large volume Co-planar grid CZT detector is current under development at Malaysian Nuclear Agency. This device is planned to be used for in-situ identification of radioisotopes based on their unique energies. This work reports on electronics testing performed on the front-end electronics (FEE) analog section comprising charge sensitive preamplifier-pulse shaping amplifier chain. This test involves measurement of charge sensitivity, pulse parameters and electronics noise. This report also present some preliminary results on the spectral measurement obtained from gamma emitting radioisotopes.
40 CFR 63.492 - Batch front-end process vents-reporting requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... change within 180 days after the process change is made or with the next Periodic Report, whichever is... made or with the next Periodic Report, whichever is later. The following information shall be submitted... control device other than those specified in § 63.489(b) and listed in Table 6 of this subpart or requests...
40 CFR 63.492 - Batch front-end process vents-reporting requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... change within 180 days after the process change is made or with the next Periodic Report, whichever is... made or with the next Periodic Report, whichever is later. The following information shall be submitted... control device other than those specified in § 63.489(b) and listed in Table 6 of this subpart or requests...
40 CFR 63.492 - Batch front-end process vents-reporting requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... change within 180 days after the process change is made or with the next Periodic Report, whichever is... made or with the next Periodic Report, whichever is later. The following information shall be submitted... control device other than those specified in § 63.489(b) and listed in Table 6 of this subpart or requests...
A reconfigurable medically cohesive biomedical front-end with ΣΔ ADC in 0.18µm CMOS.
Jha, Pankaj; Patra, Pravanjan; Naik, Jairaj; Acharya, Amit; Rajalakshmi, P; Singh, Shiv Govind; Dutta, Ashudeb
2015-08-01
This paper presents a generic programmable analog front-end (AFE) for acquisition and digitization of various biopotential signals. This includes a lead-off detection circuit, an ultra-low current capacitively coupled signal conditioning stage with programmable gain and bandwidth, a new mixed signal automatic gain control (AGC) mechanism and a medically cohesive reconfigurable ΣΔ ADC. The full system is designed in UMC 0.18μm CMOS. The AFE achieves an overall linearity of more 10 bits with 0.47μW power consumption. The ADC provides 2(nd) order noise-shaping while using single integrator and an ENOB of ~11 bits with 5μW power consumption. The system was successfully verified for various ECG signals from PTB database. This system is intended for portable batteryless u-Healthcare devices.
An undulator based soft x-ray source for microscopy on the Duke electron storage ring
NASA Astrophysics Data System (ADS)
Johnson, Lewis Elgin
1998-09-01
This dissertation describes the design, development, and installation of an undulator-based soft x-ray source on the Duke Free Electron Laser laboratory electron storage ring. Insertion device and soft x-ray beamline physics and technology are all discussed in detail. The Duke/NIST undulator is a 3.64-m long hybrid design constructed by the Brobeck Division of Maxwell Laboratories. Originally built for an FEL project at the National Institute of Standards and Technology, the undulator was acquired by Duke in 1992 for use as a soft x-ray source for the FEL laboratory. Initial Hall probe measurements on the magnetic field distribution of the undulator revealed field errors of more than 0.80%. Initial phase errors for the device were more than 11 degrees. Through a series of in situ and off-line measurements and modifications we have re-tuned the magnet field structure of the device to produce strong spectral characteristics through the 5th harmonic. A low operating K has served to reduce the effects of magnetic field errors on the harmonic spectral content. Although rms field errors remained at 0.75%, we succeeded in reducing phase errors to less than 5 degrees. Using trajectory simulations from magnetic field data, we have computed the spectral output given the interaction of the Duke storage ring electron beam and the NIST undulator. Driven by a series of concerns and constraints over maximum utility, personnel safety and funding, we have also constructed a unique front end beamline for the undulator. The front end has been designed for maximum throughput of the 1st harmonic around 40A in its standard mode of operation. The front end has an alternative mode of operation which transmits the 3rd and 5th harmonics. This compact system also allows for the extraction of some of the bend magnet produced synchrotron and transition radiation from the storage ring. As with any well designed front end system, it also provides excellent protection to personnel and to the storage ring. A diagnostic beamline consisting of a transmission grating spectrometer and scanning wire beam profile monitor was constructed to measure the spatial and spectral characteristics of the undulator radiation. Test of the system with a circulating electron beam has confirmed the magnetic and focusing properties of the undulator, and verified that it can be used without perturbing the orbit of the beam.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-18
... Division of CareNetwork, Inc., Front End Operations and Account Installation-Product Testing Groups, De... a Division of Carenetwork, Inc. Front End Operations and Account Installation-Product Testing Groups..., a Division of CareNetwork, Inc., Front End Operations and Account Installation- Product Testing...
Implementation of a portable device for real-time ECG signal analysis.
Jeon, Taegyun; Kim, Byoungho; Jeon, Moongu; Lee, Byung-Geun
2014-12-10
Cardiac disease is one of the main causes of catastrophic mortality. Therefore, detecting the symptoms of cardiac disease as early as possible is important for increasing the patient's survival. In this study, a compact and effective architecture for detecting atrial fibrillation (AFib) and myocardial ischemia is proposed. We developed a portable device using this architecture, which allows real-time electrocardiogram (ECG) signal acquisition and analysis for cardiac diseases. A noisy ECG signal was preprocessed by an analog front-end consisting of analog filters and amplifiers before it was converted into digital data. The analog front-end was minimized to reduce the size of the device and power consumption by implementing some of its functions with digital filters realized in software. With the ECG data, we detected QRS complexes based on wavelet analysis and feature extraction for morphological shape and regularity using an ARM processor. A classifier for cardiac disease was constructed based on features extracted from a training dataset using support vector machines. The classifier then categorized the ECG data into normal beats, AFib, and myocardial ischemia. A portable ECG device was implemented, and successfully acquired and processed ECG signals. The performance of this device was also verified by comparing the processed ECG data with high-quality ECG data from a public cardiac database. Because of reduced computational complexity, the ARM processor was able to process up to a thousand samples per second, and this allowed real-time acquisition and diagnosis of heart disease. Experimental results for detection of heart disease showed that the device classified AFib and ischemia with a sensitivity of 95.1% and a specificity of 95.9%. Current home care and telemedicine systems have a separate device and diagnostic service system, which results in additional time and cost. Our proposed portable ECG device provides captured ECG data and suspected waveform to identify sporadic and chronic events of heart diseases. This device has been built and evaluated for high quality of signals, low computational complexity, and accurate detection.
Balasubramanian, Viswanathan; Ruedi, Pierre-Francois; Temiz, Yuksel; Ferretti, Anna; Guiducci, Carlotta; Enz
2013-10-01
This paper presents a novel sensor front-end circuit that addresses the issues of 1/f noise and distortion in a unique way by using canceling techniques. The proposed front-end is a fully differential transimpedance amplifier (TIA) targeted for current mode electrochemical biosensing applications. In this paper, we discuss the architecture of this canceling based front-end and the optimization methods followed for achieving low noise, low distortion performance at minimum current consumption are presented. To validate the employed canceling based front-end, it has been realized in a 0.18 μm CMOS process and the characterization results are presented. The front-end has also been tested as part of a complete wireless sensing system and the cyclic voltammetry (CV) test results from electrochemical sensors are provided. Overall current consumption in the front-end is 50 μA while operating on a 1.8 V supply.
40 CFR 63.487 - Batch front-end process vents-reference control technology.
Code of Federal Regulations, 2010 CFR
2010-07-01
... § 63.487 Batch front-end process vents—reference control technology. (a) Batch front-end process vents... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Batch front-end process vents-reference control technology. 63.487 Section 63.487 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...
Low-power analog integrated circuits for wireless ECG acquisition systems.
Tsai, Tsung-Heng; Hong, Jia-Hua; Wang, Liang-Hung; Lee, Shuenn-Yuh
2012-09-01
This paper presents low-power analog ICs for wireless ECG acquisition systems. Considering the power-efficient communication in the body sensor network, the required low-power analog ICs are developed for a healthcare system through miniaturization and system integration. To acquire the ECG signal, a low-power analog front-end system, including an ECG signal acquisition board, an on-chip low-pass filter, and an on-chip successive-approximation analog-to-digital converter for portable ECG detection devices is presented. A quadrature CMOS voltage-controlled oscillator and a 2.4 GHz direct-conversion transmitter with a power amplifier and upconversion mixer are also developed to transmit the ECG signal through wireless communication. In the receiver, a 2.4 GHz fully integrated CMOS RF front end with a low-noise amplifier, differential power splitter, and quadrature mixer based on current-reused folded architecture is proposed. The circuits have been implemented to meet the specifications of the IEEE 802.15.4 2.4 GHz standard. The low-power ICs of the wireless ECG acquisition systems have been fabricated using a 0.18 μm Taiwan Semiconductor Manufacturing Company (TSMC) CMOS standard process. The measured results on the human body reveal that ECG signals can be acquired effectively by the proposed low-power analog front-end ICs.
A collision model for safety evaluation of autonomous intelligent cruise control.
Touran, A; Brackstone, M A; McDonald, M
1999-09-01
This paper describes a general framework for safety evaluation of autonomous intelligent cruise control in rear-end collisions. Using data and specifications from prototype devices, two collision models are developed. One model considers a train of four cars, one of which is equipped with autonomous intelligent cruise control. This model considers the car in front and two cars following the equipped car. In the second model, none of the cars is equipped with the device. Each model can predict the possibility of rear-end collision between cars under various conditions by calculating the remaining distance between cars after the front car brakes. Comparing the two collision models allows one to evaluate the effectiveness of autonomous intelligent cruise control in preventing collisions. The models are then subjected to Monte Carlo simulation to calculate the probability of collision. Based on crash probabilities, an expected value is calculated for the number of cars involved in any collision. It is found that given the model assumptions, while equipping a car with autonomous intelligent cruise control can significantly reduce the probability of the collision with the car ahead, it may adversely affect the situation for the following cars.
Characterization of edge oscillation in a traveling-wave field-effect transistor.
Narahara, Koichi
2013-07-01
In this study, we characterize the oscillating pulse edges developed in a traveling-wave field-effect transistor (TWFET). Recently, it has been found that a stable shock front can develop on a TWFET, which can travel in one direction only. Once the reflected pulse edge at the far end is transmitted to the input, the shock front develops and begins to travel on the device again. This process establishes a permanent edge oscillation. This paper discusses the device setup necessary to excite such oscillations and how pulse edges oscillate on a TWFET. By applying the phase reduction scheme to the transmission equations of a TWFET, we obtain phase sensitivity, which appropriately explains the measured spatial dependence of the locking range in frequency. Moreover, multiple oscillating edges can develop simultaneously, which are mutually synchronized. The dynamics of these multiple edges are also described.
A miniaturized HTS microwave receiver front-end subsystem for radar and communication applications
NASA Astrophysics Data System (ADS)
Bian, Yongbo; Guo, Jin; Gao, Changzheng; Li, Chunguang; Li, Hong; Wang, Jia; Cui, Bin; He, Xiaofeng; Li, Chao; Li, Na; Li, Guoqiang; Zhang, Qiang; Zhang, Xueqiang; Meng, Jibao; He, Yusheng
2010-08-01
This paper presents a miniaturized high performance high temperature superconducting (HTS) microwave receiver front-end subsystem, which uses a mini stirling cryocooler to cool a high selective HTS filter and a low noise amplifier (LNA). The HTS filter was miniaturized by using specially designed compact resonators and fabricating with double-sided YBCO films on LAO substrate which has a relatively high permittivity. The LNA was specially designed to work at cryogenic temperature with noise figure of 0.27 dB at 71 K. The mini cryocooler, which is widely used in infrared detectors, has a smaller size (60 mm × 80 mm × 100 mm) and a lighter weight (340 g) than the stirling cryocoolers commonly used in other HTS filter subsystem. The whole front-end subsystem, including a HTS filter, a LNA, a cryocooler and the vacuum chamber, has a size of only φ120 mm × 175 mm and a weight of only 3.3 kg. The microwave devices inside the subsystem are working at 71.8 K with a consumed cooling power of 0.325 W. The center frequency of this subsystem is 925.2 MHz and the bandwidth is 2.7 MHz (which is a fractional bandwidth of 0.2%), with the gain of 19.75 dB at center frequency and the return loss better than -18.11 dB in the pass band. The stop band rejection is more than 60 dB and the skirt slope is exceeding 120 dB MHz -1. The noise figure of this subsystem is less than 0.8 dB. This front-end subsystem can be used in radars and communication systems conveniently due to it’s compact size and light weight.
End-Users, Front Ends and Librarians.
ERIC Educational Resources Information Center
Bourne, Donna E.
1989-01-01
The increase in end-user searching, the advantages and limitations of front ends, and the role of the librarian in end-user searching are discussed. It is argued that librarians need to recognize that front ends can be of benefit to themselves and patrons, and to assume the role of advisors and educators for end-users. (37 references) (CLB)
NASA Technical Reports Server (NTRS)
Bolton, Eric K.; Sayler, Gary S.; Nivens, David E.; Rochelle, James M.; Ripp, Steven; Simpson, Michael L.
2002-01-01
We report an integrated CMOS microluminometer optimized for the detection of low-level bioluminescence as part of the bioluminescent bioreporter integrated circuit (BBIC). This microluminometer improves on previous devices through careful management of the sub-femtoampere currents, both signal and leakage, that flow in the front-end processing circuitry. In particular, the photodiode is operated with a reverse bias of only a few mV, requiring special attention to the reset circuitry of the current-to-frequency converter (CFC) that forms the front-end circuit. We report a sub-femtoampere leakage current and a minimum detectable signal (MDS) of 0.15 fA (1510 s integration time) using a room temperature 1.47 mm2 CMOS photodiode. This microluminometer can detect luminescence from as few as 5000 fully induced Pseudomonas fluorescens 5RL bacterial cells. c2002 Elsevier Science B.V. All rights reserved.
Interactive Textiles Front End Analysis. Phase 1
1998-11-01
demonstrated. Active ultrasound and radar were investigated as means to detect the track of projectiles and acoustic signatures were obtained using...technique was used to incorporate pore-forming proteins into various lipid and protein matrices. At a constant pressure the pore-forming protein when added...report. Polymer Gel Sensors and Devices controlled by Infrared Light and Ultrasound Principle Investigator: Z. Hu North Texas State University
System for inspection of stacked cargo containers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Derenzo, Stephen
The present invention relates to a system for inspection of stacked cargo containers. One embodiment of the invention generally comprises a plurality of stacked cargo containers arranged in rows or tiers, each container having a top, a bottom a first side, a second side, a front end, and a back end; a plurality of spacers arranged in rows or tiers; one or more mobile inspection devices for inspecting the cargo containers, wherein the one or more inspection devices are removeably disposed within the spacers, the inspection means configured to move through the spacers to detect radiation within the containers. Themore » invented system can also be configured to inspect the cargo containers for a variety of other potentially hazardous materials including but not limited to explosive and chemical threats.« less
Front End Software for Online Database Searching. Part 2: The Marketplace.
ERIC Educational Resources Information Center
Levy, Louise R.; Hawkins, Donald T.
1986-01-01
This article analyzes the front end software marketplace and discusses some of the complex forces influencing it. Discussion covers intermediary market; end users (library customers, scientific and technical professionals, corporate business specialists, consumers); marketing strategies; a British front end development firm; competitive pressures;…
Concept Design for a 1-Lead Wearable/Implantable ECG Front-End: Power Management
George, Libin; Gargiulo, Gaetano Dario; Lehmann, Torsten; Hamilton, Tara Julia
2015-01-01
Power supply quality and stability are critical for wearable and implantable biomedical applications. For this reason we have designed a reconfigurable switched-capacitor DC-DC converter that, aside from having an extremely small footprint (with an active on-chip area of only 0.04 mm2), uses a novel output voltage control method based upon a combination of adaptive gain and discrete frequency scaling control schemes. This novel DC-DC converter achieves a measured output voltage range of 1.0 to 2.2 V with power delivery up to 7.5 mW with 75% efficiency. In this paper, we present the use of this converter as a power supply for a concept design of a wearable (15 mm × 15 mm) 1-lead ECG front-end sensor device that simultaneously harvests power and communicates with external receivers when exposed to a suitable RF field. Due to voltage range limitations of the fabrication process of the current prototype chip, we focus our analysis solely on the power supply of the ECG front-end whose design is also detailed in this paper. Measurement results show not just that the power supplied is regulated, clean and does not infringe upon the ECG bandwidth, but that there is negligible difference between signals acquired using standard linear power-supplies and when the power is regulated by our power management chip. PMID:26610497
Sautto, Marco; Savoia, Alessandro Stuart; Quaglia, Fabio; Caliano, Giosue; Mazzanti, Andrea
2017-05-01
A formal comparison between fundamental RX amplifier configurations for capacitive micromachined ultrasonic transducers (CMUTs) is proposed in this paper. The impact on both RX and the pulse-echo frequency response and on the output SNR is thoroughly analyzed and discussed. It is shown that the resistive-feedback amplifier yields a bandpass RX frequency response, while both open-loop voltage and capacitive-feedback amplifiers exhibit a low-pass frequency response. For a given power dissipation, it is formally proved that a capacitive-feedback amplifier provides a remarkable SNR improvement against the commonly adopted resistive feedback stage, achieved at the expense of a reduced pulse-echo center frequency, making its use convenient in low-frequency and midfrequency ultrasound imaging applications. The advantage mostly comes from a much lower noise contributed by the active devices, especially with low- Q , broadband transducers. The results of the analysis are applied to the design of a CMUT front end in BIPOLAR-CMOS-DMOS Silicon-on-Insulator technology operating at 10-MHz center frequency. It comprises a low-power RX amplifier, a high-voltage Transmission/Reception switch, and a 100-V TX driver. Extensive electrical characterization, pulse-echo measurements, and imaging results are shown. Compared with previously reported CMUT front ends, this transceiver demonstrates the highest dynamic range and state-of-the-art noise performance with an RX amplifier power dissipation of 1 mW.
Concept Design for a 1-Lead Wearable/Implantable ECG Front-End: Power Management.
George, Libin; Gargiulo, Gaetano Dario; Lehmann, Torsten; Hamilton, Tara Julia
2015-11-19
Power supply quality and stability are critical for wearable and implantable biomedical applications. For this reason we have designed a reconfigurable switched-capacitor DC-DC converter that, aside from having an extremely small footprint (with an active on-chip area of only 0.04 mm²), uses a novel output voltage control method based upon a combination of adaptive gain and discrete frequency scaling control schemes. This novel DC-DC converter achieves a measured output voltage range of 1.0 to 2.2 V with power delivery up to 7.5 mW with 75% efficiency. In this paper, we present the use of this converter as a power supply for a concept design of a wearable (15 mm × 15 mm) 1-lead ECG front-end sensor device that simultaneously harvests power and communicates with external receivers when exposed to a suitable RF field. Due to voltage range limitations of the fabrication process of the current prototype chip, we focus our analysis solely on the power supply of the ECG front-end whose design is also detailed in this paper. Measurement results show not just that the power supplied is regulated, clean and does not infringe upon the ECG bandwidth, but that there is negligible difference between signals acquired using standard linear power-supplies and when the power is regulated by our power management chip.
On the overriding issue of train front end collision in rail vehicle dynamics
NASA Astrophysics Data System (ADS)
Yang, Chao; Li, Qiang; Xiao, Shoune; Wang, Xi
2018-04-01
A three-dimensional dynamic model of crashed vehicles coupled with moving tracks is developed to research the dynamic behaviour of the train front end collision on tangent tracks. The three-dimensional dynamic model consists of a crashed vehicle model, moving track models, a simple wheel-rail contact model, a velocity-based coupler model and the model of energy absorption and anti-climbing devices. The vector method dealing with the nonlinear wheel-rail geometry is put forward in the paper. The developed model is applicable in the scope that central collisions occur on tangent tracks at low speeds. The examples of the vehicle impacting with a rigid wall and the train front end collision are carried out to obtain the dynamic responses of vehicles. The overriding issue is studied on the basis of the wheel rise in train collisions. The results show that the second bogie of the first colliding vehicle possesses the maximal wheel rise. The wheel rise increases with the increase of vehicles. However, the number of vehicles has tiny influence on the overriding in train collisions at low speeds. On the contrary, the impact speed has significant influence on the overriding in train collisions. The wheel rise increases rapidly if the impact speed is close to the critical speed of overriding. The large wheel rise is principally generated by the great coupler force related to the rigid impact in the axial direction.
Menolotto, Matteo; Rossi, Stefano; Dario, Paolo; Della Torre, Luigi
2015-01-01
Wearable systems for remote monitoring of physiological parameter are ready to evolve towards wearable imaging systems. The Electrical Impedance Tomography (EIT) allows the non-invasive investigation of the internal body structure. The characteristics of this low-resolution and low-cost technique match perfectly with the concept of a wearable imaging device. On the other hand low power consumption, which is a mandatory requirement for wearable systems, is not usually discussed for standard EIT applications. In this work a previously developed low power architecture for a wearable bioimpedance sensor is applied to EIT acquisition and reconstruction, to evaluate the impact on the image of the limited signal to noise ratio (SNR), caused by low power design. Some anatomical models of the chest, with increasing geometric complexity, were developed, in order to evaluate and calibrate, through simulations, the parameters of the reconstruction algorithms provided by Electrical Impedance Diffuse Optical Reconstruction Software (EIDORS) project. The simulation results were compared with experimental measurements taken with our bioimpedance device on a phantom reproducing chest tissues properties. The comparison was both qualitative and quantitative through the application of suitable figures of merit; in this way the impact of the noise of the low power front-end on the image quality was assessed. The comparison between simulation and measurement results demonstrated that, despite the limited SNR, the device is accurate enough to be used for the development of an EIT based imaging wearable system.
Rabani, Amir
2016-01-01
The market for process instruments generally requires low cost devices that are robust, small in size, portable, and usable in-plant. Ultrasonic torsional guided wave sensors have received much attention by researchers for measurement of viscosity and/or density of fluids in recent years. The supporting electronic systems for these sensors providing many different settings of sine-wave signals are bulky and expensive. In contrast, a system based on bursts of square waves instead of sine waves would have a considerable advantage in that respect and could be built using simple integrated circuits at a cost that is orders of magnitude lower than for a windowed sine wave device. This paper explores the possibility of using square wave bursts as the driving signal source for the ultrasonic torsional guided wave viscosity sensor. A simple design of a compact and fully automatic analogue square wave front-end for the sensor is also proposed. The successful operation of the system is demonstrated by using the sensor for measuring the viscosity in a representative fluid. This work provides the basis for design and manufacture of low cost compact standalone ultrasonic guided wave sensors and enlightens the possibility of using coded excitation techniques utilising square wave sequences in such applications. PMID:27754324
Rabani, Amir
2016-10-12
The market for process instruments generally requires low cost devices that are robust, small in size, portable, and usable in-plant. Ultrasonic torsional guided wave sensors have received much attention by researchers for measurement of viscosity and/or density of fluids in recent years. The supporting electronic systems for these sensors providing many different settings of sine-wave signals are bulky and expensive. In contrast, a system based on bursts of square waves instead of sine waves would have a considerable advantage in that respect and could be built using simple integrated circuits at a cost that is orders of magnitude lower than for a windowed sine wave device. This paper explores the possibility of using square wave bursts as the driving signal source for the ultrasonic torsional guided wave viscosity sensor. A simple design of a compact and fully automatic analogue square wave front-end for the sensor is also proposed. The successful operation of the system is demonstrated by using the sensor for measuring the viscosity in a representative fluid. This work provides the basis for design and manufacture of low cost compact standalone ultrasonic guided wave sensors and enlightens the possibility of using coded excitation techniques utilising square wave sequences in such applications.
A miniature bidirectional telemetry system for in-vivo gastric slow wave recordings
Farajidavar, Aydin; O’Grady, Gregory; Rao, Smitha M.N.; Cheng, Leo K; Abell, Thomas; Chiao, J.-C.
2012-01-01
Stomach contractions are initiated and coordinated by an underlying electrical activity (slow waves), and electrical dysrhythmias accompany motility diseases. Electrical recordings taken directly from the stomach provide the most valuable data, but face technical constraints. Serosal or mucosal electrodes have cables that traverse the abdominal wall, or a natural orifice, causing discomfort and possible infection, and restricting mobility. These problems motivated the development of a wireless system. The bidirectional telemetric system constitutes a front-end transponder, a back-end receiver and a graphical user interface. The front-end module conditions the analog signals, then digitizes and loads the data into a radio for transmission. Data receipt at the back-end is acknowledged via a transceiver function. The system was validated in a bench-top study, then validated in-vivo using serosal electrodes connected simultaneously to a commercial wired system. The front-end module was 35×35×27 mm3 and weighed 20 g. Bench-top tests demonstrated reliable communication within a distance range of 30 m, power consumption of 13.5 mW, and 124-hour operation when utilizing a 560-mAh, 3-V battery. In-vivo, slow wave frequencies were recorded identically with the wireless and wired reference systems (2.4 cycles/min), automated activation time detection was modestly better for the wireless system (5% vs 14% false positive rate), and signal amplitudes were modestly higher via the wireless system (462 vs 386 μV; p<0.001). This telemetric system for slow wave acquisition is reliable, power efficient, readily portable and potentially implantable. The device will enable chronic monitoring and evaluation of slow wave patterns in animals and patients. PMID:22635054
Loran digital phase-locked loop and RF front-end system error analysis
NASA Technical Reports Server (NTRS)
Mccall, D. L.
1979-01-01
An analysis of the system performance of the digital phase locked loops (DPLL) and RF front end that are implemented in the MINI-L4 Loran receiver is presented. Three of the four experiments deal with the performance of the digital phase locked loops. The other experiment deals with the RF front end and DPLL system error which arise in the front end due to poor signal to noise ratios. The ability of the DPLLs to track the offsets is studied.
Nano-stepper-driven optical shutter for applications in free-space micro-optics
NASA Astrophysics Data System (ADS)
Zawadzka, Justyna; Li, Lijie; Unamuno, Anartz; Uttamchandani, Deepak G.
2002-09-01
In this paper we report a simple design of a micro-optical shutter/attenuator. The standard MUMPS process was used to fabricate the device. A vertically erected, gold-coated, 200x300 mm side length micro-mirror was precisely placed between the end faces of two closely spaced optical fibers. The position of the micro-mirror with respect to the optical fiber end face was controlled by a nano-stepping motor array. Optical and mechanical tests were performed on the device. A 1.55 mm laser beam was sent along the optical fiber. When the micro-mirror was removed from the front of the fiber, the coupling efficiency between two fibers was -10 dBm. Once the micro-mirror was placed in the optical path the coupling efficiency dropped to -51.5 dBm. The best attenuation was obtained when the micro-mirror blocked the whole cross-section of the laser beam diameter. It is evident that the device can operate as a high precision fiber optic attenuator or shutter.
NASA Astrophysics Data System (ADS)
Woody, D. P.
2009-12-01
The modern era of millimeter and submillimeter spectral line observations and interferometry started at end of the 1979 with the invention of the Superconductor-Insulator-Superconductor (SIS) mixer. Tom Phillips co-invented this device while working at Bell Telephone Labs (BTL) in Murray Hill, NJ. His group built the first astronomically useful SIS heterodyne receiver which was deployed on the Leighton 10.4 m telescope at the Caltech Owens Valley Radio Observatory (OVRO) in the same year. Tom Phillips joined the Caltech faculty in the early 1980s where his group continues to lead the way in developing state-of-the-art SIS receivers throughout the millimeter and submillimeter wavelength bands. The rapid progress in millimeter and submillimeter astronomy during 1980s required developments on many fronts including the theoretical understanding of the device physics, advances in device fabrication, microwave and radio frequency (RF) circuit design, mixer block construction, development of wideband low-noise intermediate frequency (IF) amplifiers and the telescopes used for making the observations. Many groups around the world made important contributions to this field but the groups at Caltech and the Jet Propulsion Laboratory (JPL) under the leadership of Tom Phillips made major contributions in all of these areas. The end-to-end understanding and developments from the theoretical device physics to the astronomical observations and interpretation has made this group uniquely productive.
Dedicated multichannel readout ASIC coupled with single crystal diamond for dosimeter application
NASA Astrophysics Data System (ADS)
Fabbri, A.; Falco, M. D.; De Notaristefani, F.; Galasso, M.; Marinelli, M.; Orsolini Cencelli, V.; Tortora, L.; Verona, C.; Verona Rinati, G.
2013-02-01
This paper reports on the tests of a low-noise, multi-channel readout integrated circuit used as a readout electronic front-end for a diamond multi-pixel dosimeter. The system is developed for dose distribution measurement in radiotherapy applications. The first 10-channel prototype chip was designed and fabricated in a 0.18 um CMOS process. Every channel includes a charge integrator with a 10 pF capacitor and a double slope A/D converter. The diamond multi-pixel detector, based on CVD synthetic single crystal diamond Schottky diodes, is made by a 3 × 3 sensor matrix. The overall device has been tested under irradiation with 6 MeV radio therapeutic photon beams at the Policlinico ``Tor Vergata'' (PTV) hospital. Measurements show a 20 fA RMS leakage current from the front-end input stage and a negligible dark current from the diamond detector, a stable temporal response and a good linear behaviour as a function of both dose and dose rate. These characteristics were common to each tested channel.
NASA Astrophysics Data System (ADS)
Ko, Guen Bae; Yoon, Hyun Suk; Kwon, Sun Il; Lee, Chan Mi; Ito, Mikiko; Hong, Seong Jong; Lee, Dong Soo; Lee, Jae Sung
2013-03-01
Silicon photomultipliers (SiPMs) are outstanding photosensors for the development of compact imaging devices and hybrid imaging systems such as positron emission tomography (PET)/ magnetic resonance (MR) scanners because of their small size and MR compatibility. The wide use of this sensor for various types of scintillation detector modules is being accelerated by recent developments in tileable multichannel SiPM arrays. In this work, we present the development of a front-end readout module for multi-channel SiPMs. This readout module is easily extendable to yield a wider detection area by the use of a resistive charge division network (RCN). We applied this readout module to various PET detectors designed for use in small animal PET/MR, optical fiber PET/MR, and double layer depth of interaction (DOI) PET. The basic characteristics of these detector modules were also investigated. The results demonstrate that the PET block detectors developed using the readout module and tileable multi-channel SiPMs had reasonable performance.
Hard X-ray Wiggler Front End Filter Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulte-Schrepping, Horst; Hahn, Ulrich
2007-01-19
The front end filter design and implementation for the new HARWI-II hard X-ray wiggler at DORIS-III at HASYLAB/DESY is presented. The device emits a total power of 30 kW at 150mA storage ring current. The beam has a horizontal width of 3.8mrad and a central power density of 54 W/mm2 at 26m distance to the source. The filter section located in the ring tunnel has been introduced to tailor the thermal loads at the downstream optical components. The high power density and the high total power at the filter section are handled with a layered design. Glassy carbon filters convertmore » the absorbed power into thermal radiation to lower the heat load to an acceptable level for water cooled copper filters. The requirements in beam size and filtering are addressed by separating the filter functions in three units which are switched individually into the beam.« less
Front-end electronics for the Muon Portal project
NASA Astrophysics Data System (ADS)
Garozzo, S.; Marano, D.; Bonanno, G.; Grillo, A.; Romeo, G.; Timpanaro, M. C.; Lo Presti, D.; Riggi, F.; Russo, V.; Bonanno, D.; La Rocca, P.; Longhitano, F.; Bongiovanni, D. G.; Fallica, G.; Valvo, G.
2016-10-01
The Muon Portal Project was born as a joint initiative between Italian research and industrial partners, aimed at the construction of a real-size working detector prototype to inspect the content of traveling containers by means of secondary cosmic-ray muon radiation and recognize potentially dangerous hidden materials. The tomographic image is obtained by reconstructing the incoming and outgoing muon trajectories when crossing the inspected volume, employing two tracker planes located above and below the container under inspection. In this paper, the design and development of the front-end electronics of the Muon Portal detector is presented, with particular emphasis being devoted to the photo-sensor devices detecting the scintillation light and to the read-out circuitry which is in charge of processing and digitizing the analog pulse signals. In addition, the remote control system, mechanical housing, and thermal cooling system of all structural blocks of the Muon Portal tracker are also discussed, demonstrating the effectiveness and functionality of the adopted design.
Kuzay, Tuncer M.; Shu, Deming
1995-01-01
A photon beam position monitor for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade "shadowing". Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation.
A single active nanoelectromechanical tuning fork front-end radio-frequency receiver
NASA Astrophysics Data System (ADS)
Bartsch, Sebastian T.; Rusu, A.; Ionescu, Adrian M.
2012-06-01
Nanoelectromechanical systems (NEMS) offer the potential to revolutionize fundamental methods employed for signal processing in today’s telecommunication systems, owing to their spectral purity and the prospect of integration with existing technology. In this work we present a novel, front-end receiver topology based on a single device silicon nanoelectromechanical mixer-filter. The operation is demonstrated by using the signal amplification in a field effect transistor (FET) merged into a tuning fork resonator. The combination of both a transistor and a mechanical element into a hybrid unit enables on-chip functionality and performance previously unachievable in silicon. Signal mixing, filtering and demodulation are experimentally demonstrated at very high frequencies ( > 100 MHz), maintaining a high quality factor of Q = 800 and stable operation at near ambient pressure (0.1 atm) and room temperature (T = 300 K). The results show that, ultimately miniaturized, silicon NEMS can be utilized to realize multi-band, single-chip receiver systems based on NEMS mixer-filter arrays with reduced system complexity and power consumption.
40 CFR 63.487 - Batch front-end process vents-reference control technology.
Code of Federal Regulations, 2012 CFR
2012-07-01
...-reference control technology. 63.487 Section 63.487 Protection of Environment ENVIRONMENTAL PROTECTION... SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutant Emissions: Group I Polymers and Resins § 63.487 Batch front-end process vents—reference control technology. (a) Batch front-end process...
40 CFR 63.491 - Batch front-end process vents-recordkeeping requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... CATEGORIES National Emission Standards for Hazardous Air Pollutant Emissions: Group I Polymers and Resins § 63.491 Batch front-end process vents—recordkeeping requirements. (a) Group determination records for...) through (a)(6) of this section for each batch front-end process vent subject to the group determination...
40 CFR 63.487 - Batch front-end process vents-reference control technology.
Code of Federal Regulations, 2011 CFR
2011-07-01
... control technology. 63.487 Section 63.487 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... CATEGORIES National Emission Standards for Hazardous Air Pollutant Emissions: Group I Polymers and Resins § 63.487 Batch front-end process vents—reference control technology. (a) Batch front-end process vents...
40 CFR 63.491 - Batch front-end process vents-recordkeeping requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... CATEGORIES National Emission Standards for Hazardous Air Pollutant Emissions: Group I Polymers and Resins § 63.491 Batch front-end process vents—recordkeeping requirements. (a) Group determination records for...) through (a)(6) of this section for each batch front-end process vent subject to the group determination...
40 CFR 63.487 - Batch front-end process vents-reference control technology.
Code of Federal Regulations, 2013 CFR
2013-07-01
...-reference control technology. 63.487 Section 63.487 Protection of Environment ENVIRONMENTAL PROTECTION... SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutant Emissions: Group I Polymers and Resins § 63.487 Batch front-end process vents—reference control technology. (a) Batch front-end process...
40 CFR 63.487 - Batch front-end process vents-reference control technology.
Code of Federal Regulations, 2014 CFR
2014-07-01
...-reference control technology. 63.487 Section 63.487 Protection of Environment ENVIRONMENTAL PROTECTION... SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutant Emissions: Group I Polymers and Resins § 63.487 Batch front-end process vents—reference control technology. (a) Batch front-end process...
40 CFR 63.491 - Batch front-end process vents-recordkeeping requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... CATEGORIES National Emission Standards for Hazardous Air Pollutant Emissions: Group I Polymers and Resins § 63.491 Batch front-end process vents—recordkeeping requirements. (a) Group determination records for...) through (a)(6) of this section for each batch front-end process vent subject to the group determination...
40 CFR 63.491 - Batch front-end process vents-recordkeeping requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... CATEGORIES National Emission Standards for Hazardous Air Pollutant Emissions: Group I Polymers and Resins § 63.491 Batch front-end process vents—recordkeeping requirements. (a) Group determination records for...) through (a)(6) of this section for each batch front-end process vent subject to the group determination...
The Parkes front-end controller and noise-adding radiometer
NASA Technical Reports Server (NTRS)
Brunzie, T. J.
1990-01-01
A new front-end controller (FEC) was installed on the 64-m antenna in Parkes, Australia, to support the 1989 Voyager 2 Neptune encounter. The FEC was added to automate operation of the front-end microwave hardware as part of the Deep Space Network's Parkes-Canberra Telemetry Array. Much of the front-end hardware was refurbished and reimplemented from a front-end system installed in 1985 by the European Space Agency for the Uranus encounter; however, the FEC and its associated noise-adding radiometer (NAR) were new Jet Propulsion Laboratory (JPL) designs. Project requirements and other factors led to the development of capabilities not found in standard Deep Space Network (DSN) controllers and radiometers. The Parkes FEC/NAR performed satisfactorily throughout the Neptune encounter and was removed in October 1989.
1997-12-19
Resource Consultants Inc. (RCI) Science Applications InternatT Corp (SAIC) Veda Inc. Virtual Space Devices (VSD) 1.1 Background The Land Warrior...network. The VICs included: • VIC Alpha - a fully immersive Dismounted Soldier System developed by Veda under a STRICOM applied research effort...consists of the Dismounted Soldier System (DSS), which is characterized as follows: • Developed by Veda under a STRICOM applied research effort
Asymmetric band offsets in silicon heterojunction solar cells: Impact on device performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seif, Johannes Peter; Menda, Deneb; Descoeudres, Antoine
Here, amorphous/crystalline silicon interfaces feature considerably larger valence than conduction band offsets. In this article, we analyze the impact of such band offset asymmetry on the performance of silicon heterojunction solar cells. To this end, we use silicon suboxides as passivation layers -- inserted between substrate and (front or rear) contacts -- since such layers enable intentionally exacerbated band-offset asymmetry. Investigating all topologically possible passivation layer permutations and focussing on light and dark current-voltage characteristics, we confirm that to avoid fill factor losses, wider-bandgap silicon oxide films (of at least several nanometer thin) should be avoided in hole-collecting contacts. Asmore » a consequence, device implementation of such films as window layers -- without degraded carrier collection -- demands electron collection at the front and hole collection at the rear. Furthermore, at elevated operating temperatures, once possible carrier transport barriers are overcome by thermionic (field) emission, the device performance is mainly dictated by the passivation of its surfaces. In this context, compared to the standard amorphous silicon layers, the wide-bandgap oxide layers applied here passivate remarkably better at these temperatures, which may represent an additional benefit under practical operation conditions.« less
Asymmetric band offsets in silicon heterojunction solar cells: Impact on device performance
Seif, Johannes Peter; Menda, Deneb; Descoeudres, Antoine; ...
2016-08-01
Here, amorphous/crystalline silicon interfaces feature considerably larger valence than conduction band offsets. In this article, we analyze the impact of such band offset asymmetry on the performance of silicon heterojunction solar cells. To this end, we use silicon suboxides as passivation layers -- inserted between substrate and (front or rear) contacts -- since such layers enable intentionally exacerbated band-offset asymmetry. Investigating all topologically possible passivation layer permutations and focussing on light and dark current-voltage characteristics, we confirm that to avoid fill factor losses, wider-bandgap silicon oxide films (of at least several nanometer thin) should be avoided in hole-collecting contacts. Asmore » a consequence, device implementation of such films as window layers -- without degraded carrier collection -- demands electron collection at the front and hole collection at the rear. Furthermore, at elevated operating temperatures, once possible carrier transport barriers are overcome by thermionic (field) emission, the device performance is mainly dictated by the passivation of its surfaces. In this context, compared to the standard amorphous silicon layers, the wide-bandgap oxide layers applied here passivate remarkably better at these temperatures, which may represent an additional benefit under practical operation conditions.« less
Asymmetric band offsets in silicon heterojunction solar cells: Impact on device performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seif, Johannes Peter, E-mail: johannes.seif@alumni.epfl.ch; Ballif, Christophe; De Wolf, Stefaan
Amorphous/crystalline silicon interfaces feature considerably larger valence than conduction band offsets. In this article, we analyze the impact of such band offset asymmetry on the performance of silicon heterojunction solar cells. To this end, we use silicon suboxides as passivation layers—inserted between substrate and (front or rear) contacts—since such layers enable intentionally exacerbated band-offset asymmetry. Investigating all topologically possible passivation layer permutations and focussing on light and dark current-voltage characteristics, we confirm that to avoid fill factor losses, wider-bandgap silicon oxide films (of at least several nanometer thin) should be avoided in hole-collecting contacts. As a consequence, device implementation ofmore » such films as window layers—without degraded carrier collection—demands electron collection at the front and hole collection at the rear. Furthermore, at elevated operating temperatures, once possible carrier transport barriers are overcome by thermionic (field) emission, the device performance is mainly dictated by the passivation of its surfaces. In this context, compared to the standard amorphous silicon layers, the wide-bandgap oxide layers applied here passivate remarkably better at these temperatures, which may represent an additional benefit under practical operation conditions.« less
NASA Astrophysics Data System (ADS)
Jie, Cui; Lei, Chen; Peng, Zhao; Xu, Niu; Yi, Liu
2014-06-01
A broadband monolithic linear single pole, eight throw (SP8T) switch has been fabricated in 180 nm thin film silicon-on-insulator (SOI) CMOS technology with a quad-band GSM harmonic filter in integrated passive devices (IPD) technology, which is developed for cellular applications. The antenna switch module (ASM) features 1.2 dB insertion loss with filter on 2G bands and 0.4 dB insertion loss in 3G bands, less than -45 dB isolation and maximum -103 dB intermodulation distortion for mobile front ends by applying distributed architecture and adaptive supply voltage generator.
Rodent wearable ultrasound system for wireless neural recording.
Piech, David K; Kay, Joshua E; Boser, Bernhard E; Maharbiz, Michel M
2017-07-01
Advances in minimally-invasive, distributed biological interface nodes enable possibilities for networks of sensors and actuators to connect the brain with external devices. The recent development of the neural dust sensor mote has shown that utilizing ultrasound backscatter communication enables untethered sub-mm neural recording devices. These implanted sensor motes require a wearable external ultrasound interrogation device to enable in-vivo, freely-behaving neural interface experiments. However, minimizing the complexity and size of the implanted sensors shifts the power and processing burden to the external interrogator. In this paper, we present an ultrasound backscatter interrogator that supports real-time backscatter processing in a rodent-wearable, completely wireless device. We demonstrate a generic digital encoding scheme which is intended for transmitting neural information. The system integrates a front-end ultrasonic interface ASIC with off-the-shelf components to enable a highly compact ultrasound interrogation device intended for rodent neural interface experiments but applicable to other model systems.
Wearable dry sensors with bluetooth connection for use in remote patient monitoring systems.
Gargiulo, Gaetano; Bifulco, Paolo; Cesarelli, Mario; Jin, Craig; McEwan, Alistair; van Schaik, Andre
2010-01-01
Cost reduction has become the primary theme of healthcare reforms globally. More providers are moving towards remote patient monitoring, which reduces the length of hospital stays and frees up their physicians and nurses for acute cases and helps them to tackle staff shortages. Physiological sensors are commonly used in many human specialties e.g. electrocardiogram (ECG) electrodes, for monitoring heart signals, and electroencephalogram (EEG) electrodes, for sensing the electrical activity of the brain, are the most well-known applications. Consequently there is a substantial unmet need for physiological sensors that can be simply and easily applied by the patient or primary carer, are comfortable to wear, can accurately sense parameters over long periods of time and can be connected to data recording systems using Bluetooth technology. We have developed a small, battery powered, user customizable portable monitor. This prototype is capable of recording three-axial body acceleration, skin temperature, and has up to four bio analogical front ends. Moreover, it is also able of continuous wireless transmission to any Bluetooth device including a PDA or a cellular phone. The bio-front end can use long-lasting dry electrodes or novel textile electrodes that can be embedded in clothes. The device can be powered by a standard mobile phone which has a Ni-MH 3.6 V battery, to sustain more than seven days continuous functioning when using the Bluetooth Sniff mode to reduce TX power. In this paper, we present some of the evaluation experiments of our wearable personal monitor device with a focus on ECG applications.
NASA Astrophysics Data System (ADS)
Antony, Joby; Mathuria, D. S.; Chaudhary, Anup; Datta, T. S.; Maity, T.
2017-02-01
Cryogenic network for linear accelerator operations demand a large number of Cryogenic sensors, associated instruments and other control-instrumentation to measure, monitor and control different cryogenic parameters remotely. Here we describe an alternate approach of six types of newly designed integrated intelligent cryogenic instruments called device-servers which has the complete circuitry for various sensor-front-end analog instrumentation and the common digital back-end http-server built together, to make crateless PLC-free model of controls and data acquisition. These identified instruments each sensor-specific viz. LHe server, LN2 Server, Control output server, Pressure server, Vacuum server and Temperature server are completely deployed over LAN for the cryogenic operations of IUAC linac (Inter University Accelerator Centre linear Accelerator), New Delhi. This indigenous design gives certain salient features like global connectivity, low cost due to crateless model, easy signal processing due to integrated design, less cabling and device-interconnectivity etc.
Dorrer, C.; Consentino, A.; Cuffney, R.; ...
2017-10-18
Here, we describe a parametric-amplification–based front end for seeding high-energy Nd:glass laser systems. The front end delivers up to 200 mJ by parametric amplification in 2.5-ns flat-in-time pulses tunable over more than 15 nm. Spectral tunability over a range larger than what is typically achieved by laser media at similar energy levels is implemented to investigate cross-beam energy transfer in multibeam target experiments. The front-end operation is simulated to explain the amplified signal’s sensitivity to the input pump and signal. A large variety of amplified waveforms are generated by closed-loop pulse shaping. Various properties and limitations of this front endmore » are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorrer, C.; Consentino, A.; Cuffney, R.
Here, we describe a parametric-amplification–based front end for seeding high-energy Nd:glass laser systems. The front end delivers up to 200 mJ by parametric amplification in 2.5-ns flat-in-time pulses tunable over more than 15 nm. Spectral tunability over a range larger than what is typically achieved by laser media at similar energy levels is implemented to investigate cross-beam energy transfer in multibeam target experiments. The front-end operation is simulated to explain the amplified signal’s sensitivity to the input pump and signal. A large variety of amplified waveforms are generated by closed-loop pulse shaping. Various properties and limitations of this front endmore » are discussed.« less
ERIC Educational Resources Information Center
Hawkins, Donald T.; Levy, Louise R.
1985-01-01
This initial article in series of three discusses barriers inhibiting use of current online retrieval systems by novice users and notes reasons for front end and gateway online retrieval systems. Definitions, front end features, user interface, location (personal computer, host mainframe), evaluation, and strengths and weaknesses are covered. (16…
Field ionizing elements and applications thereof
NASA Technical Reports Server (NTRS)
Hartley, Frank T. (Inventor)
2003-01-01
A field ionizing element formed of a membrane that houses electrodes therein that are located closer to one another than the mean free path of the gas being ionized. The membrane includes a supporting portion, and a non supporting portion where the ions are formed. The membrane may be used as the front end for a number of different applications including a mass spectrometer, a thruster, an ion mobility element, or an electrochemical device such as a fuel cell.
A miniature bidirectional telemetry system for in vivo gastric slow wave recordings.
Farajidavar, Aydin; O'Grady, Gregory; Rao, Smitha M N; Cheng, Leo K; Abell, Thomas; Chiao, J-C
2012-06-01
Stomach contractions are initiated and coordinated by an underlying electrical activity (slow waves), and electrical dysrhythmias accompany motility diseases. Electrical recordings taken directly from the stomach provide the most valuable data, but face technical constraints. Serosal or mucosal electrodes have cables that traverse the abdominal wall, or a natural orifice, causing discomfort and possible infection, and restricting mobility. These problems motivated the development of a wireless system. The bidirectional telemetric system constitutes a front-end transponder, a back-end receiver and a graphical userinter face. The front-end module conditions the analogue signals, then digitizes and loads the data into a radio for transmission. Data receipt at the backend is acknowledged via a transceiver function. The system was validated in a bench-top study, then validated in vivo using serosal electrodes connected simultaneously to a commercial wired system. The front-end module was 35 × 35 × 27 mm3 and weighed 20 g. Bench-top tests demonstrated reliable communication within a distance range of 30 m, power consumption of 13.5 mW, and 124 h operation when utilizing a 560 mAh, 3 V battery. In vivo,slow wave frequencies were recorded identically with the wireless and wired reference systems (2.4 cycles min−1), automated activation time detection was modestly better for the wireless system (5% versus 14% FP rate), and signal amplitudes were modestly higher via the wireless system (462 versus 3 86μV; p<0.001). This telemetric system for slow wave acquisition is reliable,power efficient, readily portable and potentially implantable. The device will enable chronic monitoring and evaluation of slow wave patterns in animals and patients.0967-3334/
Multiphysical FE-analysis of a front-end bending phenomenon in a hot strip mill
NASA Astrophysics Data System (ADS)
Ilmola, Joonas; Seppälä, Oskari; Leinonen, Olli; Pohjonen, Aarne; Larkiola, Jari; Jokisaari, Juha; Putaansuu, Eero
2018-05-01
In hot steel rolling processes, a slab is generally rolled to a transfer bar in a roughing process and to a strip in a hot strip rolling process. Over several rolling passes the front-end may bend upward or downward due to asymmetrical rolling conditions causing entry problems in the next rolling pass. Many different factors may affect the front-end bending phenomenon and are very challenging to measure. Thus, a customized finite element model is designed and built to simulate the front-end bending phenomenon in a hot strip rolling process. To simulate the functioning of the hot strip mill precisely, automated controlling logic of the mill must be considered. In this paper we studied the effect of roll bite friction conditions and amount of reduction on the front-end bending phenomenon in a hot strip rolling process.
Front and backside processed thin film electronic devices
Evans, Paul G [Madison, WI; Lagally, Max G [Madison, WI; Ma, Zhenqiang [Middleton, WI; Yuan, Hao-Chih [Lakewood, CO; Wang, Guogong [Madison, WI; Eriksson, Mark A [Madison, WI
2012-01-03
This invention provides thin film devices that have been processed on their front- and backside. The devices include an active layer that is sufficiently thin to be mechanically flexible. Examples of the devices include back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.
An 8.4-GHz dual-maser front-end system for Parkes reimplementation
NASA Technical Reports Server (NTRS)
Trowbridge, D. L.; Loreman, J. R.; Brunzie, T. J.; Quinn, R.
1990-01-01
An 8.4-GHz front-end system consisting of a feedhorn, a waveguide feed assembly, dual masers, and downconverters was reimplemented at Parkes as part of the Parkes Canberra Telemetry Array for the Voyager Neptune encounter. The front-end system was originally assembled by the European Space Agency and installed on the Parkes antenna for the Giotto project. It was also used on a time-sharing basis by the Deep Space Network as part of the Parkes Canberra Telemetry Array to enhance the data return from the Voyager Uranus encounter. At the conclusion of these projects in 1986, part of the system was then shipped to JPL on loan for reimplementation at Parkes for the Voyager Neptune encounter. New design and implementation required to make the system operable at Parkes included new microwave front-end control cabinets, closed-cycle refrigeration monitor system, noise-adding radiometer system, front-end controller assembly, X81 local oscillator multiplier, and refurbishment of the original dual 8.4-GHz traveling-wave masers and waveguide feed system. The front-end system met all requirements during the encounter and was disassembled in October 1989 and returned to JPL.
On-wafer, cryogenic characterization of ultra-low noise HEMT devices
NASA Technical Reports Server (NTRS)
Bautista, J. J.; Laskar, J.; Szydlik, P.
1995-01-01
Significant advances in the development of high electron-mobility field-effect transistors (HEMT's) have resulted in cryogenic, low-noise amplifiers (LNA's) whose noise temperatures are within an order of magnitude of the quantum noise limit (hf/k). Further advances in HEMT technology at cryogenic temperatures may eventually lead to the replacement of maser and superconducting insulator superconducting front ends in the 1- to 100-GHz frequency band. Key to identification of the best HEMT's and optimization of cryogenic LNA's are accurate and repeatable device measurements at cryogenic temperatures. This article describes the design and operation of a cryogenic coplanar waveguide probe system for the characterization and modeling of advanced semiconductor transistors at cryogenic temperatures. Results on advanced HEMT devices are presented to illustrate the utility of the measurement system.
Efficient heart beat detection using embedded system electronics
NASA Astrophysics Data System (ADS)
Ramasamy, Mouli; Oh, Sechang; Varadan, Vijay K.
2014-04-01
The present day bio-technical field concentrates on developing various types of innovative ambulatory and wearable devices to monitor several bio-physical, physio-pathological, bio-electrical and bio-potential factors to assess a human body's health condition without intruding quotidian activities. One of the most important aspects of this evolving technology is monitoring heart beat rate and electrocardiogram (ECG) from which many other subsidiary results can be derived. Conventionally, the devices and systems consumes a lot of power since the acquired signals are always processed on the receiver end. Because of this back end processing, the unprocessed raw data is transmitted resulting in usage of more power, memory and processing time. This paper proposes an innovative technique where the acquired signals are processed by a microcontroller in the front end of the module and just the processed signal is then transmitted wirelessly to the display unit. Therefore, power consumption is considerably reduced and clearer data analysis is performed within the module. This also avoids the need for the user to be educated about usage of the device and signal/system analysis, since only the number of heart beats will displayed at the user end. Additionally, the proposed concept also eradicates the other disadvantages like obtrusiveness, high power consumption and size. To demonstrate the above said factors, a commercial controller board was used to extend the monitoring method by using the saved ECG data from a computer.
Lin, C H; Cheng, P H; Shen, S T
2014-01-01
Blinds and severe visual impairments can utilize tactile sticks to assist their walking. However, they cannot fully understand the dangling objects in front of their walking routes. This research proposed a mobile real-time dangling objects sensing (RDOS) prototype, which is located on the cap to sense any front barrier. This device utilized cheap ultrasonic sensor to act as another complement eye for blinds to understand the front dangling objects. Meanwhile, the RDOS device can dynamically adjust the sensor's front angle that is depended on the user's body height and promote the sensing accuracy. Meanwhile, two major required algorithms, height-angle measurement and ultrasonic sensor alignment, are proposed with this prototype. The research team also integrated the RDOS device prototype with mobile Android devices by communicating with Bluetooth to record the walking route.
Percussive arc welding apparatus
Hollar, Jr., Donald L.
2002-01-01
A percussive arc welding apparatus includes a generally cylindrical actuator body having front and rear end portions and defining an internal recess. The front end of the body includes an opening. A solenoid assembly is provided in the rear end portion in the internal recess of the body, and an actuator shaft assembly is provided in the front end portion in the internal recess of the actuator body. The actuator shaft assembly includes a generally cylindrical actuator block having first and second end portions, and an actuator shaft having a front end extending through the opening in the actuator body, and the rear end connected to the first end portion of the actuator block. The second end portion of the actuator block is in operational engagement with the solenoid shaft by a non-rigid connection to reduce the adverse rebound effects of the actuator shaft. A generally transversely extending pin is rigidly secured to the rear end of the shaft. One end of the pin is received in a slot in the nose housing sleeve to prevent rotation of the actuator shaft during operation of the apparatus.
Code of Federal Regulations, 2013 CFR
2013-10-01
... of cab cars and MU locomotives with shaped-noses or crash energy management designs, or both. In any... Front End Structures of Cab Cars and MU Locomotives F Appendix F to Part 238 Transportation Other... Performance Requirements for Front End Structures of Cab Cars and MU Locomotives As specified in § 238.209(b...
Code of Federal Regulations, 2012 CFR
2012-10-01
... of cab cars and MU locomotives with shaped-noses or crash energy management designs, or both. In any... Front End Structures of Cab Cars and MU Locomotives F Appendix F to Part 238 Transportation Other... Performance Requirements for Front End Structures of Cab Cars and MU Locomotives As specified in § 238.209(b...
Code of Federal Regulations, 2011 CFR
2011-10-01
... of cab cars and MU locomotives with shaped-noses or crash energy management designs, or both. In any... Front End Structures of Cab Cars and MU Locomotives F Appendix F to Part 238 Transportation Other... Performance Requirements for Front End Structures of Cab Cars and MU Locomotives As specified in § 238.209(b...
Code of Federal Regulations, 2014 CFR
2014-10-01
... of cab cars and MU locomotives with shaped-noses or crash energy management designs, or both. In any... Front End Structures of Cab Cars and MU Locomotives F Appendix F to Part 238 Transportation Other... Performance Requirements for Front End Structures of Cab Cars and MU Locomotives As specified in § 238.209(b...
Code of Federal Regulations, 2010 CFR
2010-10-01
... Front End Structures of Cab Cars and MU Locomotives F Appendix F to Part 238 Transportation Other... Performance Requirements for Front End Structures of Cab Cars and MU Locomotives As specified in § 238.209(b... and allow for the application of dynamic performance criteria to cab cars and MU locomotives as an...
Spacelab output processing system architectural study
NASA Technical Reports Server (NTRS)
1977-01-01
Two different system architectures are presented. The two architectures are derived from two different data flows within the Spacelab Output Processing System. The major differences between these system architectures are in the position of the decommutation function (the first architecture performs decommutation in the latter half of the system and the second architecture performs that function in the front end of the system). In order to be examined, the system was divided into five stand-alone subsystems; Work Assembler, Mass Storage System, Output Processor, Peripheral Pool, and Resource Monitor. The work load of each subsystem was estimated independent of the specific devices to be used. The candidate devices were surveyed from a wide sampling of off-the-shelf devices. Analytical expressions were developed to quantify the projected workload in conjunction with typical devices which would adequately handle the subsystem tasks. All of the study efforts were then directed toward preparing performance and cost curves for each architecture subsystem.
Front-End Processing of Cell Lysates for Enhanced Chip-Based Detection
2006-07-28
manipulation used in lab-on-a-chip devices. A small unknown sample is first mixed with the PNA surfactants (“PNAA”) to tag the DNA targets, and then the...unknown sample is first mixed with the PNA surfactants (hereafter referred to as “PNA amphiphiles” or “PNAA”) to tag the DNA targets, and then the...prolate ellipsoid, and mixed PNAA/SDS micelles form spherical micelles. On addition of complementary DNA, the PNAA/DNA duplexes do not participate in
Effect of Protective Devices on Brain Trauma Mechanics Under Idealized Shock Wave Loading
2015-03-29
shots was taken 1.5” from the open end. Although the incident pressure measured for both D1 and D2 are similar, the pressure experienced by the head...of the free field shock wave pushing up and underneath the helmet brim , as indicated in the Figure 12. Figure 11 comparisons of (a) maximum...head form and potential shockwave interactions. Blue square indicates location of sensor 1 with respect to the brim of the helmet. The shock fronts
Kuzay, T.M.; Shu, D.
1995-02-07
A photon beam position monitor is disclosed for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade ''shadowing''. Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation. 18 figs.
Low-voltage analog front-end processor design for ISFET-based sensor and H+ sensing applications
NASA Astrophysics Data System (ADS)
Chung, Wen-Yaw; Yang, Chung-Huang; Peng, Kang-Chu; Yeh, M. H.
2003-04-01
This paper presents a modular-based low-voltage analog-front-end processor design in a 0.5mm double-poly double-metal CMOS technology for Ion Sensitive Field Effect Transistor (ISFET)-based sensor and H+ sensing applications. To meet the potentiometric response of the ISFET that is proportional to various H+ concentrations, the constant-voltage and constant current (CVCS) testing configuration has been used. Low-voltage design skills such as bulk-driven input pair, folded-cascode amplifier, bootstrap switch control circuits have been designed and integrated for 1.5V supply and nearly rail-to-rail analog to digital signal processing. Core modules consist of an 8-bit two-step analog-digital converter and bulk-driven pre-amplifiers have been developed in this research. The experimental results show that the proposed circuitry has an acceptable linearity to 0.1 pH-H+ sensing conversions with the buffer solution in the range of pH2 to pH12. The processor has a potential usage in battery-operated and portable healthcare devices and environmental monitoring applications.
JFET front-end circuits integrated in a detector-grade silicon substrate
NASA Astrophysics Data System (ADS)
Manghisoni, M.; Ratti, L.; Re, V.; Speziali, V.; Traversi, G.; Dalla Betta, G. F.; Boscardin, M.; Batignani, G.; Giorgi, M.; Bosisio, L.
2003-08-01
This paper presents the design and experimental results relevant to front-end circuits integrated on detector-grade high resistivity silicon. The fabrication technology is made available by the Istituto per la Ricerca Scientifica e Tecnologica (ITC-IRST), Trento, Italy and allows using a common substrate for different kinds of active devices, such as N-channel JFETs and MOSFETs, and for pixel, microstrip, and PIN detectors. This research activity is being carried out in the framework of a project aiming at the fabrication of a multichannel mixed analog-digital chip for the readout of solid-state detectors integrated in the same substrate. Possible applications are in the field of medical and industrial imaging and space and high energy physics experiments. An all-JFET charge sensitive amplifier, which can use either a resistive or a nonresistive feedback network, has been characterized. The two configurations have been compared to each other, paying particular attention to noise performances, in view of the design of the complete readout channel. Operation capability in harsh radiation environment has been evaluated through exposure to /spl gamma/-rays from a /sup 60/Co source.
Front-end electronics development for TPC detector in the MPD/NICA project
NASA Astrophysics Data System (ADS)
Cheremukhina, G.; Movchan, S.; Vereschagin, S.; Zaporozhets, S.
2017-06-01
The article is aimed at describing the development status, measuring results and design changes of the TPC front-end electronics. The TPC is placed in the middle of Multi-Purpose Detector (MPD) and provides tracing and identifying of charged particles in the pseudorapidity range |η| < 1.2. The readout system is one of the most complex parts of the TPC. The electronics of each readout chamber is an independent system. The whole system contains 95232 channels, 1488 64-channel—front-end cards (FEC), 24 readout control units (RCU). The front-end electronics (FEE) is based on ASICs, FPGAs and high-speed serial links. The concept of the TPC front-end electronics has been motivated from one side—by the requirements concerning the NICA accelerator complex which will operate at the luminosity up to 1027 cm-2 s-1 for Au79+ ions over the energy range of 4 < √SNN < 11 GeV with the trigger rate up to 7 kHz and from the other side—by the requirements of the 4-π geometry to minimize the substance on the end-caps of the TPC.
A 1.2-V CMOS front-end for LTE direct conversion SAW-less receiver
NASA Astrophysics Data System (ADS)
Riyan, Wang; Jiwei, Huang; Zhengping, Li; Weifeng, Zhang; Longyue, Zeng
2012-03-01
A CMOS RF front-end for the long-term evolution (LTE) direct conversion receiver is presented. With a low noise transconductance amplifier (LNA), current commutating passive mixer and transimpedance operational amplifier (TIA), the RF front-end structure enables high-integration, high linearity and simple frequency planning for LTE multi-band applications. Large variable gain is achieved using current-steering transconductance stages. A current commutating passive mixer with 25% duty-cycle LO improves gain, noise and linearity. A direct coupled current-input filter (DCF) is employed to suppress the out-of-band interferer. Fabricated in a 0.13-μm CMOS process, the RF front-end achieves a 45 dB conversion voltage gain, 2.7 dB NF, -7 dBm IIP3, and +60 dBm IIP2 with calibration from 2.3 to 2.7 GHz. The total RF front end with divider draws 40 mA from a single 1.2-V supply.
The sonic window: second generation results
NASA Astrophysics Data System (ADS)
Walker, William F.; Fuller, Michael I.; Brush, Edward V.; Eames, Matthew D. C.; Owen, Kevin; Ranganathan, Karthik; Blalock, Travis N.; Hossack, John A.
2006-03-01
Medical Ultrasound Imaging is widely used clinically because of its relatively low cost, portability, lack of ionizing radiation, and real-time nature. However, even with these advantages ultrasound has failed to permeate the broad array of clinical applications where its use could be of value. A prime example of this untapped potential is the routine use of ultrasound to guide intravenous access. In this particular application existing systems lack the required portability, low cost, and ease-of-use required for widespread acceptance. Our team has been working for a number of years to develop an extremely low-cost, pocket-sized, and intuitive ultrasound imaging system that we refer to as the "Sonic Window." We have previously described the first generation Sonic Window prototype that was a bench-top device using a 1024 element, fully populated array operating at a center frequency of 3.3 MHz. Through a high degree of custom front-end integration combined with multiplexing down to a 2 channel PC based digitizer this system acquired a full set of RF data over a course of 512 transmit events. While initial results were encouraging, this system exhibited limitations resulting from low SNR, relatively coarse array sampling, and relatively slow data acquisition. We have recently begun assembling a second-generation Sonic Window system. This system uses a 3600 element fully sampled array operating at 5.0 MHz with a 300 micron element pitch. This system extends the integration of the first generation system to include front-end protection, pre-amplification, a programmable bandpass filter, four sample and holds, and four A/D converters for all 3600 channels in a set of custom integrated circuits with a combined area smaller than the 1.8 x 1.8 cm footprint of the transducer array. We present initial results from this front-end and present benchmark results from a software beamformer implemented on the Analog Devices BF-561 DSP. We discuss our immediate plans for further integration and testing. This second prototype represents a major reduction in size and forms the foundation of a fully functional, fully integrated, pocket sized prototype.
Efficient audio signal processing for embedded systems
NASA Astrophysics Data System (ADS)
Chiu, Leung Kin
As mobile platforms continue to pack on more computational power, electronics manufacturers start to differentiate their products by enhancing the audio features. However, consumers also demand smaller devices that could operate for longer time, hence imposing design constraints. In this research, we investigate two design strategies that would allow us to efficiently process audio signals on embedded systems such as mobile phones and portable electronics. In the first strategy, we exploit properties of the human auditory system to process audio signals. We designed a sound enhancement algorithm to make piezoelectric loudspeakers sound ”richer" and "fuller." Piezoelectric speakers have a small form factor but exhibit poor response in the low-frequency region. In the algorithm, we combine psychoacoustic bass extension and dynamic range compression to improve the perceived bass coming out from the tiny speakers. We also developed an audio energy reduction algorithm for loudspeaker power management. The perceptually transparent algorithm extends the battery life of mobile devices and prevents thermal damage in speakers. This method is similar to audio compression algorithms, which encode audio signals in such a ways that the compression artifacts are not easily perceivable. Instead of reducing the storage space, however, we suppress the audio contents that are below the hearing threshold, therefore reducing the signal energy. In the second strategy, we use low-power analog circuits to process the signal before digitizing it. We designed an analog front-end for sound detection and implemented it on a field programmable analog array (FPAA). The system is an example of an analog-to-information converter. The sound classifier front-end can be used in a wide range of applications because programmable floating-gate transistors are employed to store classifier weights. Moreover, we incorporated a feature selection algorithm to simplify the analog front-end. A machine learning algorithm AdaBoost is used to select the most relevant features for a particular sound detection application. In this classifier architecture, we combine simple "base" analog classifiers to form a strong one. We also designed the circuits to implement the AdaBoost-based analog classifier.
On Emulation of Flueric Devices in Excitable Chemical Medium
Adamatzky, Andrew
2016-01-01
Flueric devices are fluidic devices without moving parts. Fluidic devices use fluid as a medium for information transfer and computation. A Belousov-Zhabotinsky (BZ) medium is a thin-layer spatially extended excitable chemical medium which exhibits travelling excitation wave-fronts. The excitation wave-fronts transfer information. Flueric devices compute via jets interaction. BZ devices compute via excitation wave-fronts interaction. In numerical model of BZ medium we show that functions of key flueric devices are implemented in the excitable chemical system: signal generator, and, xor, not and nor Boolean gates, delay elements, diodes and sensors. Flueric devices have been widely used in industry since late 1960s and are still employed in automotive and aircraft technologies. Implementation of analog of the flueric devices in the excitable chemical systems opens doors to further applications of excitation wave-based unconventional computing in soft robotics, embedded organic electronics and living technologies. PMID:27997561
On Emulation of Flueric Devices in Excitable Chemical Medium.
Adamatzky, Andrew
2016-01-01
Flueric devices are fluidic devices without moving parts. Fluidic devices use fluid as a medium for information transfer and computation. A Belousov-Zhabotinsky (BZ) medium is a thin-layer spatially extended excitable chemical medium which exhibits travelling excitation wave-fronts. The excitation wave-fronts transfer information. Flueric devices compute via jets interaction. BZ devices compute via excitation wave-fronts interaction. In numerical model of BZ medium we show that functions of key flueric devices are implemented in the excitable chemical system: signal generator, and, xor, not and nor Boolean gates, delay elements, diodes and sensors. Flueric devices have been widely used in industry since late 1960s and are still employed in automotive and aircraft technologies. Implementation of analog of the flueric devices in the excitable chemical systems opens doors to further applications of excitation wave-based unconventional computing in soft robotics, embedded organic electronics and living technologies.
NASA Astrophysics Data System (ADS)
Jeevargi, Chetankumar; Lodhi, Anuj; Sateeshkumar, Allu; Elangovan, D.; Arunkumar, G.
2017-11-01
The need for Renewable Energy Sources (RES) is increasing due to increased demand for the supply of power and it is also environment friendly.In the recent few years, the cost of generation of the power from the RES has been decreased. This paper aims to design the front end power converter which is required for integrating the fuel cells and solar power sources to the micro grid. The simulation of the designed front end converter is carried out in the PSIM 9.1.1 software. The results show that the designed front end power converter is sufficient for integrating the micro grid with fuel cells and solar power sources.
NASA Astrophysics Data System (ADS)
Liang, Albert K.; Koniczek, Martin; Antonuk, Larry E.; El-Mohri, Youcef; Zhao, Qihua
2016-03-01
Pixelated photon counting detectors with energy discrimination capabilities are of increasing clinical interest for x-ray imaging. Such detectors, presently in clinical use for mammography and under development for breast tomosynthesis and spectral CT, usually employ in-pixel circuits based on crystalline silicon - a semiconductor material that is generally not well-suited for economic manufacture of large-area devices. One interesting alternative semiconductor is polycrystalline silicon (poly-Si), a thin-film technology capable of creating very large-area, monolithic devices. Similar to crystalline silicon, poly-Si allows implementation of the type of fast, complex, in-pixel circuitry required for photon counting - operating at processing speeds that are not possible with amorphous silicon (the material currently used for large-area, active matrix, flat-panel imagers). The pixel circuits of two-dimensional photon counting arrays are generally comprised of four stages: amplifier, comparator, clock generator and counter. The analog front-end (in particular, the amplifier) strongly influences performance and is therefore of interest to study. In this paper, the relationship between incident and output count rate of the analog front-end is explored under diagnostic imaging conditions for a promising poly-Si based design. The input to the amplifier is modeled in the time domain assuming a realistic input x-ray spectrum. Simulations of circuits based on poly-Si thin-film transistors are used to determine the resulting output count rate as a function of input count rate, energy discrimination threshold and operating conditions.
NASA Astrophysics Data System (ADS)
Weisbrod, Chad R.; Kaiser, Nathan K.; Syka, John E. P.; Early, Lee; Mullen, Christopher; Dunyach, Jean-Jacques; English, A. Michelle; Anderson, Lissa C.; Blakney, Greg T.; Shabanowitz, Jeffrey; Hendrickson, Christopher L.; Marshall, Alan G.; Hunt, Donald F.
2017-09-01
High resolution mass spectrometry is a key technology for in-depth protein characterization. High-field Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) enables high-level interrogation of intact proteins in the most detail to date. However, an appropriate complement of fragmentation technologies must be paired with FTMS to provide comprehensive sequence coverage, as well as characterization of sequence variants, and post-translational modifications. Here we describe the integration of front-end electron transfer dissociation (FETD) with a custom-built 21 tesla FT-ICR mass spectrometer, which yields unprecedented sequence coverage for proteins ranging from 2.8 to 29 kDa, without the need for extensive spectral averaging (e.g., 60% sequence coverage for apo-myoglobin with four averaged acquisitions). The system is equipped with a multipole storage device separate from the ETD reaction device, which allows accumulation of multiple ETD fragment ion fills. Consequently, an optimally large product ion population is accumulated prior to transfer to the ICR cell for mass analysis, which improves mass spectral signal-to-noise ratio, dynamic range, and scan rate. We find a linear relationship between protein molecular weight and minimum number of ETD reaction fills to achieve optimum sequence coverage, thereby enabling more efficient use of instrument data acquisition time. Finally, real-time scaling of the number of ETD reactions fills during method-based acquisition is shown, and the implications for LC-MS/MS top-down analysis are discussed. [Figure not available: see fulltext.
Zagar, Thomas W.; Schiavo, Anthony L.
2001-01-01
A rotating blade group 90 for a turbo-machine having an improved device for sealing the gap 110 between the edges 112,114 of adjacent blade platforms 96,104. The gap 110 between adjacent blades 92,100 is sealed by a seal pin 20 its central portion 110 and by a seal plate 58,60 at each of the front 54 and rear 56 portions. The seal plates 58,60 are inserted into corresponding grooves 62,64 formed in the adjacent edges 112,114 of adjoining blades 92,100 and held in place by end plates 40,42. The end of the seal plates 58,60 may be chamfered 78,80 to improve the seal against the end plate 40,42. The seal pin 20 provides the required damping between the blades 92,100 and the seal plates 58,60 provide improved sealing effectiveness.
Optimal front light design for reflective displays under different ambient illumination
NASA Astrophysics Data System (ADS)
Wang, Sheng-Po; Chang, Ting-Ting; Li, Chien-Ju; Bai, Yi-Ho; Hu, Kuo-Jui
2011-01-01
The goal of this study is to find out the optimal luminance and color temperature of front light for reflective displays in different ambient illumination by conducting series of psychophysical experiments. A color and brightness tunable front light device with ten LED units was built and been calibrated to present 256 luminance levels and 13 different color temperature at fixed luminance of 200 cd/m2. The experiment results revealed the best luminance and color temperature settings for human observers under different ambient illuminant, which could also assist the e-paper manufacturers to design front light device, and present the best image quality on reflective displays. Furthermore, a similar experiment procedure was conducted by utilizing new flexible e-signage display developed by ITRI and an optimal front light device for the new display panel has been designed and utilized.
FY17 ISCR Scholar End-of-Assignment Report - Robbie Sadre
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadre, R.
2017-10-20
Throughout this internship assignment, I did various tasks that contributed towards the starting of the SASEDS (Safe Active Scanning for Energy Delivery Systems) and CES-21 (California Energy Systems for the 21st Century) projects in the SKYFALL laboratory. The goal of the SKYFALL laboratory is to perform modeling and simulation verification of transmission power system devices, while integrating with high-performance computing. The first thing I needed to do was acquire official Online LabVIEW training from National Instruments. Through these online tutorial modules, I learned the basics of LabVIEW, gaining experience in connecting to NI devices through the DAQmx API as wellmore » as LabVIEW basic programming techniques (structures, loops, state machines, front panel GUI design etc).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polikarpov, M., E-mail: polikarpov.maxim@mail.ru; Snigireva, I.; Snigirev, A.
2016-07-27
Large-aperture cylindrical refractive lenses were manufactured by laser cutting of single-crystal diamond. Five linear single lenses with apertures of 1 mm and the depth of the structure of 1.2 mm were fabricated and tested at the ESRF ID06 beamline performing the focusing of white-beam synchrotron radiation. Uniform linear focus was stable during hours of exposure, representing such lenses as pre-focusing and collimating devices suitable for the front-end sections of today synchrotron radiation sources.
Electronic readout system for the Belle II imaging Time-Of-Propagation detector
NASA Astrophysics Data System (ADS)
Kotchetkov, Dmitri
2017-07-01
The imaging Time-Of-Propagation (iTOP) detector, constructed for the Belle II experiment at the SuperKEKB e+e- collider, is an 8192-channel high precision Cherenkov particle identification detector with timing resolution below 50 ps. To acquire data from the iTOP, a novel front-end electronic readout system was designed, built, and integrated. Switched-capacitor array application-specific integrated circuits are used to sample analog signals. Triggering, digitization, readout, and data transfer are controlled by Xilinx Zynq-7000 system on a chip devices.
Small Magnetic Sensors for Space Applications
Díaz-Michelena, Marina
2009-01-01
Small magnetic sensors are widely used integrated in vehicles, mobile phones, medical devices, etc for navigation, speed, position and angular sensing. These magnetic sensors are potential candidates for space sector applications in which mass, volume and power savings are important issues. This work covers the magnetic technologies available in the marketplace and the steps towards their implementation in space applications, the actual trend of miniaturization the front-end technologies, and the convergence of the mature and miniaturized magnetic sensor to the space sector through the small satellite concept. PMID:22574012
Technical instrumentation R&D for ILD SiW ECAL large scale device
NASA Astrophysics Data System (ADS)
Balagura, V.
2018-03-01
Calorimeters with silicon detectors have many unique features and are proposed for several world-leading experiments. We describe the R&D program of the large scale detector element with up to 12 000 readout channels for the International Large Detector (ILD) at the future e+e‑ ILC collider. The program is focused on the readout front-end electronics embedded inside the calorimeter. The first part with 2 000 channels and two small silicon sensors has already been constructed, the full prototype is planned for the beginning of 2018.
Front-End Analysis Cornerstone of Logistics
NASA Technical Reports Server (NTRS)
Nager, Paul J.
2000-01-01
The presentation provides an overview of Front-End Logistics Support Analysis (FELSA), when it should be performed, benefits of performing FELSA and why it should be performed, how it is conducted, and examples.
Concepts for a Muon Accelerator Front-End
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stratakis, Diktys; Berg, Scott; Neuffer, David
2017-03-16
We present a muon capture front-end scheme for muon based applications. In this Front-End design, a proton bunch strikes a target and creates secondary pions that drift into a capture channel, decaying into muons. A series of rf cavities forms the resulting muon beams into a series of bunches of differerent energies, aligns the bunches to equal central energies, and initiates ionization cooling. We also discuss the design of a chicane system for the removal of unwanted secondary particles from the muon capture region and thus reduce activation of the machine. With the aid of numerical simulations we evaluate themore » performance of this Front-End scheme as well as study its sensitivity against key parameters such as the type of target, the number of rf cavities and the gas pressure of the channel.« less
Design and characterization of the PREC (Prototype Readout Electronics for Counting particles)
NASA Astrophysics Data System (ADS)
Assis, P.; Brogueira, P.; Ferreira, M.; Luz, R.; Mendes, L.
2016-08-01
The design, tests and performance of a novel, low noise, acquisition system—the PREC (Prototype Readout Electronics for Counting particles) is presented in this article. PREC is a system developed using discrete electronics for particle counting applications using RPCs (Resistive Plate Chamber) detectors. PREC can, however, be used with other kind of detectors that present fast pulses, e.g. Silicon Photomultipliers. The PREC system consists in several Front-End boards that transmit data to a purely digital Motherboard. The amplification and discrimination of the signal is performed in the Front-End boards, making them the critical component of the system. In this paper, the Front-End was tested extensively by measuring the gain, noise level, crosstalk, trigger efficiency, propagation time and power consumption. The gain shows a decrease with the working temperature and an increase with the power supply voltage. The Front-End board shows a low noise level (<= 1.6 mV at 3σ level) and no crosstalk is detected above this level. The s-curve of the trigger efficiency is characterized by a 3 mV gap from the region where most of the signals are triggered to almost no signal is triggered. The signal transit time between the Front-End input and the digital Motherboard is estimated to be 5.82 ns. The maximum power consumption is 3.372 W for the Motherboard and 3.576 W and 1.443 W for each Front-End analogue circuitry and digital part, respectively.
NSLS-II storage ring insertion device and front-end commissioning and operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, G., E-mail: gwang@bnl.gov; Shaftan, T.; Amundsen, C.
The National Synchrotron Light Source II (NSLS-II) is a state of the art 3 GeV third generation light source at Brookhaven National Laboratory. During spring/ summer of 2014, the storage ring was commissioned up to 50 mA without insertion devices. In the fall of 2014, we began commissioning of the project beamlines, which included seven insertion devices on six ID ports. Beamlines IXS, HXN, CSX-1, CSX-2, CHX, SRX, and XPD-1 consist of elliptically polarized undulator (EPU), damping wigglers (DW) and in-vacuum undulators (IVU) covering from VUV to hard x-ray range. In this paper, experience with commissioning and operation is discussed.more » We focus on reaching storage ring performance with IDs, including injection, design emittance, compensation of orbit distortions caused by ID residual field, source point stability, beam alignment and tools for control, monitoring and protection of the ring chambers from ID radiation.« less
Ogirala, Ajay; Stachel, Joshua R; Mickle, Marlin H
2011-11-01
Increasing density of wireless communication and development of radio frequency identification (RFID) technology in particular have increased the susceptibility of patients equipped with cardiac rhythmic monitoring devices (CRMD) to environmental electro magnetic interference (EMI). Several organizations reported observing CRMD EMI from different sources. This paper focuses on mathematically analyzing the energy as perceived by the implanted device, i.e., voltage. Radio frequency (RF) energy transmitted by RFID interrogators is considered as an example. A simplified front-end equivalent circuit of a CRMD sensing circuitry is proposed for the analysis following extensive black-box testing of several commercial pacemakers and implantable defibrillators. After careful understanding of the mechanics of the CRMD signal processing in identifying the QRS complex of the heart-beat, a mitigation technique is proposed. The mitigation methodology introduced in this paper is logical in approach, simple to implement and is therefore applicable to all wireless communication protocols.
Digital synthetic impedance for application in vibration damping.
Nečásek, J; Václavík, J; Marton, P
2016-02-01
In this work we present construction details of a precision, standalone, and compact digital synthetic impedance for application in the field of vibration damping. The presented device is based on an embedded ARM microcontroller with external AD and DA converters and a special analog front-end. The performance of the device is tested by comparing the actually synthesized impedance with several prescribed impedances and shows very good match. Fine-tuning ability of the device, which is crucial for the considered application, is also demonstrated and reaches as small step as 0.1% for the most complicated impedance structure and drops below the level of direct measurability with less complex structures. The real application in vibration damping is demonstrated on a simple and well understood case of a one-dimensional vibrating spring-mass system with piezoelectric actuator embedded as the interface between source of vibrations and vibrating mass.
HIGH RESOLUTION EMITTANCE MEASUREMENTS AT SNS FRONT END
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aleksandrov, Alexander V; Zhukov, Alexander P
2013-01-01
The Spallation Neutron Source (SNS) linac accelerates an H- beam from 2.5MeV up to 1GeV. Recently the emittance scanner in the MEBT (2.5 MeV) was upgraded. In addition to the slit - harp measurement, we now can use a slit installed on the same actuator as the harp. In combination with a faraday cup located downstream in DTL part of the linac, it represents a classical slit-slit emittance measurement device. While a slit slit scan takes much longer, it is immune to harp related problems such as wire cross talk, and thus looks promising for accurate halo measurements. Time resolutionmore » of the new device seems to be sufficient to estimate the amount of beam in the chopper gap (the scanner is downstream of the chopper), and probably to measure its emittance. This paper describes the initial measurements with the new device and some model validation data.« less
Digital synthetic impedance for application in vibration damping
NASA Astrophysics Data System (ADS)
Nečásek, J.; Václavík, J.; Marton, P.
2016-02-01
In this work we present construction details of a precision, standalone, and compact digital synthetic impedance for application in the field of vibration damping. The presented device is based on an embedded ARM microcontroller with external AD and DA converters and a special analog front-end. The performance of the device is tested by comparing the actually synthesized impedance with several prescribed impedances and shows very good match. Fine-tuning ability of the device, which is crucial for the considered application, is also demonstrated and reaches as small step as 0.1% for the most complicated impedance structure and drops below the level of direct measurability with less complex structures. The real application in vibration damping is demonstrated on a simple and well understood case of a one-dimensional vibrating spring-mass system with piezoelectric actuator embedded as the interface between source of vibrations and vibrating mass.
NASA Astrophysics Data System (ADS)
Agung, Mochammad Anugrah; Basari
2017-02-01
Electrocardiogram (ECG) devices measure electrical activity of the heart muscle to determine heart conditions. ECG signal quality is the key factor in determining the diseases of the heart. This paper presents the design of 3-lead acquistion on single channel wireless ECG device developed on AD8232 chip platform using microcontroller. To make the system different from others, monopole antenna 2.4 GHz is used in order to send and receive ECG signal. The results show that the system still can receive ECG signal up to 15 meters by line of sight (LOS) condition. The shape of ECG signals is precisely similar with the expected signal, although some delays occur between two consecutive pulses. For further step, the system will be applied with on-body antenna in order to investigate body to body communication that will give variation in connectivity from the others.
High-Frequency Wireless Communications System: 2.45-GHz Front-End Circuit and System Integration
ERIC Educational Resources Information Center
Chen, M.-H.; Huang, M.-C.; Ting, Y.-C.; Chen, H.-H.; Li, T.-L.
2010-01-01
In this article, a course on high-frequency wireless communications systems is presented. With the 145-MHz baseband subsystem available from a prerequisite course, the present course emphasizes the design and implementation of the 2.45-GHz front-end subsystem as well as system integration issues. In this curriculum, the 2.45-GHz front-end…
View southwest, east front, interior bays, and north end ...
View southwest, east front, interior bays, and north end - Abraham Cyrus Farmstead, Equipment Shed, About 320 feet south-southwest of farmhouse at 3271 Cyrus Road (County Road 1/6), Cyrus, Wayne County, WV
4. DETAIL OF SOUTH (FRONT) ELEVATION AT EAST END OF ...
4. DETAIL OF SOUTH (FRONT) ELEVATION AT EAST END OF PORCH WITH STRUCTURAL SYSTEM OF WOOD FRAME WITH BRICK NOGGING REVEALED. - Andalusia, The Cottage, State Road vicinity (Bensalem Township), Andalusia, Bucks County, PA
5. Bombproof barracks, front elevation at southwest end. Doors and ...
5. Bomb-proof barracks, front elevation at southwest end. Doors and windows covered with plywood. Railway and car stop in foreground. - Fort Hamilton, Bomb-Proof Barracks, Rose Island, Newport, Newport County, RI
The front-end electronics of the LSPE-SWIPE experiment
NASA Astrophysics Data System (ADS)
Fontanelli, F.; Biasotti, M.; Bevilacqua, A.; Siccardi, F.
2016-07-01
The SWIPE detector of the Ballon Borne Mission LSPE (see e.g. the contribution of P. de Bernardis et al. in this conference) intends to measure the primordial 'B-mode' polarization of the Cosmic Microwave Background (CMB). For this scope microwave telescopes need sensitive cryogenic bolometers with an overall equivalent noise temperature in the nK range. The detector is a spiderweb bolometer based on transition edge sensor and followed by a SQUID to perform the signal readout. This contribution will concentrate on the design, description and first tests on the front-end electronics which processes the squid output (and controls it). The squid output is first amplified by a very low noise preamplifier based on a discrete JFET input differential architecture followed by a low noise CMOS operational amplifier. Equivalent input noise density is 0.6 nV/Hz and bandwidth extends up to at least 2 MHz. Both devices (JFET and CMOS amplifier) have been tested at liquid nitrogen. The second part of the contribution will discuss design and results of the control electronics, both the flux locked loop for the squid and the slow control chain to monitor and set up the system will be reviewed.
Data Acquisition Backbone Core DABC release v1.0
NASA Astrophysics Data System (ADS)
Adamczewski-Musch, J.; Essel, H. G.; Kurz, N.; Linev, S.
2010-04-01
The Data Acquisition Backbone Core (DABC) is a general purpose software framework designed for the implementation of a wide-range of data acquisition systems - from various small detector test beds to high performance systems. DABC consists of a compact data-flow kernel and a number of plug-ins for various functional components like data inputs, device drivers, user functional modules and applications. DABC provides configurable components for implementing event building over fast networks like InfiniBand or Gigabit Ethernet. A generic Java GUI provides the dynamic control and visualization of control parameters and commands, provided by DIM servers. A first set of application plug-ins has been implemented to use DABC as event builder for the front-end components of the GSI standard DAQ system MBS (Multi Branch System). Another application covers the connection to DAQ readout chains from detector front-end boards (N-XYTER) linked to read-out controller boards (ROC) over UDP into DABC for event building, archiving and data serving. This was applied for data taking in the September 2008 test beamtime for the CBM experiment at GSI. DABC version 1.0 is released and available from the website.
Monolithically Integrated SiGe/Si PIN-HBT Front-End Transimpedance Photoreceivers
NASA Technical Reports Server (NTRS)
Rieh, J.-S.; Qasaimeh, O.; Klotzkin, D.; Lu, L.-H.; Katehi, L. P. B.; Yang, K.; Bhattacharya, P.; Croke, E. T.
1997-01-01
The demand for monolithically integrated photoreceivers based on Si-based technology keeps increasing as low cost and high reliability products are required for the expanding commercial market. Higher speed and wider operating frequency range are expected when SiGe/Si heterojunction is introduced to the circuit design. In this paper, a monolithic SiGe/Si PIN-HBT front-end transimpedance photoreceiver is demonstrated for the first time. For this purpose, mesa-type SiGe/Si PIN-HBT technology was developed. Fabricated HBTs exhibit f(sub max) of 34 GHz with DC gain of 25. SiGe/Si PIN photodiodes, which share base and collector layers of HBTs, demonstrate responsivity of 0.3 A/W at lambda=850 nm and bandwidth of 450 MHz. Based on these devices, single- and dual-feedback transimpedance amplifiers were fabricated and they exhibited the bandwidth of 3.2 GHz and 3.3 GHz with the transimpedance gain of 45.2 dB(Omega) and 47.4 dB(Omega) respectively. Monolithically integrated single-feedback PIN-HBT photoreceivers were implemented and the bandwidth was measured to be approx. 0.5 GHz, which is limited by the bandwidth of PIN photodiodes.
Kumar Thakur, Rupak; Anoop, C S
2015-08-01
Cardio-vascular health monitoring has gained considerable attention in the recent years. Principle of non-contact capacitive electrocardiograph (ECG) and its applicability as a valuable, low-cost, easy-to-use scheme for cardio-vascular health monitoring has been demonstrated in some recent research papers. In this paper, we develop a complete non-contact ECG system using a suitable front-end electronic circuit and a heart-rate (HR) measurement unit using enhanced Fourier interpolation technique. The front-end electronic circuit is realized using low-cost, readily available components and the proposed HR measurement unit is designed to achieve fairly accurate results. The entire system has been extensively tested to verify its efficacy and test results show that the developed system can estimate HR with an accuracy of ±2 beats. Detailed tests have been conducted to validate the performance of the system for different cloth thicknesses of the subject. Some basic tests which illustrate the application of the proposed system for heart-rate variability estimation has been conducted and results reported. The developed system can be used as a portable, reliable, long-term cardiac health monitoring device and can be extended to human drowsiness detection.
Parameter Extraction Method for the Electrical Model of a Silicon Photomultiplier
NASA Astrophysics Data System (ADS)
Licciulli, Francesco; Marzocca, Cristoforo
2016-10-01
The availability of an effective electrical model, able to accurately reproduce the signals generated by a Silicon Photo-Multiplier coupled to the front-end electronics, is mandatory when the performance of a detection system based on this kind of detector has to be evaluated by means of reliable simulations. We propose a complete extraction procedure able to provide the whole set of the parameters involved in a well-known model of the detector, which includes the substrate ohmic resistance. The technique allows achieving very good quality of the fit between simulation results provided by the model and experimental data, thanks to accurate discrimination between the quenching and substrate resistances, which results in a realistic set of extracted parameters. The extraction procedure has been applied to a commercial device considering a wide range of different conditions in terms of input resistance of the front-end electronics and interconnection parasitics. In all the considered situations, very good correspondence has been found between simulations and measurements, especially for what concerns the leading edge of the current pulses generated by the detector, which strongly affects the timing performance of the detection system, thus confirming the effectiveness of the model and the associated parameter extraction technique.
NASA Astrophysics Data System (ADS)
Jain, S.
2017-03-01
The High Granularity Calorimeter (HGCAL) is the technology choice of the CMS collaboration for the endcap calorimetry upgrade planned to cope with the harsh radiation and pileup environment at the High Luminosity-LHC . The HGCAL is realized as a sampling calorimeter, including an electromagnetic compartment comprising 28 layers of silicon pad detectors with pad areas of 0.5-01. cm2 interspersed with absorbers made from tungsten and copper to form a highly compact and granular device. Prototype modules, based on hexagonal silicon pad sensors, with 128 channels, have been constructed and tested in beams at FNAL and at CERN. The modules include many of the features required for this challenging detector, including a PCB glued directly to the sensor, using through-hole wire-bonding for signal readout and 5 mm spacing between layers—including the front-end electronics and all services. Tests in 2016 have used an existing front-end chip —Skiroc2 (designed for the CALICE experiment for ILC). We present results from first tests of these modules both in the laboratory and with beams of electrons, pions and protons, including noise performance, calibration with mips and electron signals.
Front-end electronics of the Belle II drift chamber
NASA Astrophysics Data System (ADS)
Shimazaki, Shoichi; Taniguchi, Takashi; Uchida, Tomohisa; Ikeno, Masahiro; Taniguchi, Nanae; Tanaka, Manobu M.
2014-01-01
This paper describes the performance of the Belle II central drift chamber (CDC) front-end electronics. The front-end electronics consists of a current sensitive preamplifier, a 1/t cancellation circuit, baseline restorers, a comparator for timing measurement and an analog buffer for the dE/dx measurement on a CDC readout card. The CDC readout card is located on the endplate of the CDC. Mass production will be completed after the performance of the chip is verified. The electrical performance and results of a neutron/gamma-ray irradiation test are reported here.
Osterling, Kathy Lemon; D'Andrade, Amy; Austin, Michael J
2008-01-01
Racial/ethnic disproportionality in the child welfare system is a complicated social problem that is receiving increasing amounts of attention from researchers and practitioners. This review of the literature examines disproportionality in the front-end of the child welfare system and interventions that may address it. While none of the interventions had evidence suggesting that they reduced disproportionality in child welfare front-end processes, some of the interventions may improve child welfare case processes related to disproportionality and outcomes for families of color.
VIEW OF BASE END STATION BARLOW SHOWING THE SUGGESTED APPEARANCE ...
VIEW OF BASE END STATION BARLOW SHOWING THE SUGGESTED APPEARANCE DURING USE (TOP IS NOT EXTANT INDICATING POST-USE DAMAGE), PACING NORTHWEST, VIEW IS OF THE FRONT, WITH THE RIGHT FRONT CORNER EXPOSED - White's Point Reservation, Base End Stations, B"1, Bounded by Voyager Circle & Mariner Drive, San Pedro, Los Angeles County, CA
Source-Constrained Recall: Front-End and Back-End Control of Retrieval Quality
ERIC Educational Resources Information Center
Halamish, Vered; Goldsmith, Morris; Jacoby, Larry L.
2012-01-01
Research on the strategic regulation of memory accuracy has focused primarily on monitoring and control processes used to edit out incorrect information after it is retrieved (back-end control). Recent studies, however, suggest that rememberers also enhance accuracy by preventing the retrieval of incorrect information in the first place (front-end…
35. EAST FRONT OF POWERHOUSE AND CAR BARN: East front ...
35. EAST FRONT OF POWERHOUSE AND CAR BARN: East front of powerhouse and car barn. 'Annex' is right end of building. - San Francisco Cable Railway, Washington & Mason Streets, San Francisco, San Francisco County, CA
2. SHED, SOUTH END OF SHORTER BARRACKS, FRONT AND RIGHT ...
2. SHED, SOUTH END OF SHORTER BARRACKS, FRONT AND RIGHT SIDES, LOOKING SOUTHWEST. - NIKE Missile Base C-84, Paint & Oil Storage Shed, South of Launch Area Entrance Drive, near security fence, Barrington, Cook County, IL
2. VIEW OF NORTHWEST SIDE SHOWING NORTHEAST (GABLE END) FRONT. ...
2. VIEW OF NORTHWEST SIDE SHOWING NORTHEAST (GABLE END) FRONT. (BUILDING 114 IS VISIBLE ON RIGHT.) - Fort McPherson, World War II Station Hospital, G. U. Treatment Unit Dispensary, Thorne Avenue, Atlanta, Fulton County, GA
Noise propagation effects in power supply distribution systems for high-energy physics experiments
NASA Astrophysics Data System (ADS)
Arteche, F.; Rivetta, C.; Iglesias, M.; Echeverria, I.; Pradas, A.; Arcega, F. J.
2017-12-01
High-energy physics experiments are supplied by thousands of power supply units placed in distant areas from the front-end electronics. The power supply units and the front-end electronics are connected through long power cables that propagate the output noise from the power supplies to the detector. This paper addresses the effect of long cables on the noise propagation and the impact that those cables have on the conducted emission levels required for the power supplies and the selection of EMI filters for the front-end electronic low-voltage input. This analysis is part of the electromagnetic compatibility based design focused on functional safety to define the type of cable, shield connections, EMI filters and power supply specifications required to ensure the successful integration of the detector and, specifically, to achieve the designed performance of the front-end electronics.
Noise propagation effects in power supply distribution systems for high-energy physics experiments
Arteche, F.; Rivetta, C.; Iglesias, M.; ...
2017-12-05
High-energy physics experiments are supplied by thousands of power supply units placed in distant areas from the front-end electronics. The power supply units and the front-end electronics are connected through long power cables that propagate the output noise from the power supplies to the detector. Here, this paper addresses the effect of long cables on the noise propagation and the impact that those cables have on the conducted emission levels required for the power supplies and the selection of EMI filters for the front-end electronic low-voltage input. Lastly, this analysis is part of the electromagnetic compatibility based design focused onmore » functional safety to define the type of cable, shield connections, EMI filters and power supply specifications required to ensure the successful integration of the detector and, specifically, to achieve the designed performance of the front-end electronics.« less
Noise propagation effects in power supply distribution systems for high-energy physics experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arteche, F.; Rivetta, C.; Iglesias, M.
High-energy physics experiments are supplied by thousands of power supply units placed in distant areas from the front-end electronics. The power supply units and the front-end electronics are connected through long power cables that propagate the output noise from the power supplies to the detector. Here, this paper addresses the effect of long cables on the noise propagation and the impact that those cables have on the conducted emission levels required for the power supplies and the selection of EMI filters for the front-end electronic low-voltage input. Lastly, this analysis is part of the electromagnetic compatibility based design focused onmore » functional safety to define the type of cable, shield connections, EMI filters and power supply specifications required to ensure the successful integration of the detector and, specifically, to achieve the designed performance of the front-end electronics.« less
A multichannel compact readout system for single photon detection: Design and performances
NASA Astrophysics Data System (ADS)
Argentieri, A. G.; Cisbani, E.; Colilli, S.; Cusanno, F.; De Leo, R.; Fratoni, R.; Garibaldi, F.; Giuliani, F.; Gricia, M.; Lucentini, M.; Marra, M.; Musico, Paolo; Santavenere, F.; Torrioli, S.
2010-05-01
Optimal exploitation of Multi Anode PhotoMultiplier Tubes (MAPMT) as imaging devices requires the acquisition of a large number of independent channels; despite the rather wide demand, on-the-shelf electronics for this purpose does not exist. A compact independent channel readout system for an array of MAPMTs has been developed and tested [1,2]. The system can handle up to 4096 independent channels, covering an area of about 20×20 cm2 with pixel size of 3×3 mm2, using Hamamatsu H-9500 devices. The front-end is based on a 64 channels VLSI custom chip called MAROC, developed by IN2P3 Orsay (France) group, controlled by means of a Field Programmable Gate Array (FPGA) which implements configuration, triggering and data conversion controls. Up to 64 front-end cards can be housed in four backplanes and a central unit collects data from all of them, communicating with a control Personal Computer (PC) using an high speed USB 2.0 connection. A complete system has been built and tested. Eight Flat MAPMTs (256 anodes Hamamatsu H-9500) have been arranged on a boundary of a 3×3 matrix for a grand total of 2048 channels. This detector has been used to verify the performances of a focusing aerogel RICH prototype using an electron beam at the Frascati (Rome) INFN National Laboratory Beam Test Facility (BTF) during the last week of January 2009. Data analysis is ongoing: the first results are encouraging, showing that the Cherenkov rings are well identified by this system.
Self-report of physical symptoms associated with using mobile phones and other electrical devices.
Korpinen, Leena H; Pääkkönen, Rauno J
2009-09-01
The aim of our work was to study the working-age population's self-reported physical symptoms associated with using mobile phones and other electrical devices. A qualitative method was applied using an open-ended question in a questionnaire, which included questions about the possible influence of new technical equipment on health. We then created subgroups of respondents for different self-reported symptoms associated with mobile phones and other electrical devices. The research questions were: (1) how the respondents described physical symptoms associated with using mobile phones and other electrical devices and (2) how the answers can be classified into subgroups based on symptoms or devices. We identified the following categories: (1) respondents with different self-reported symptoms which they associated with using mobile phones (headache, earache, or warmth sensations), (2) respondents who had skin symptoms when they stayed in front of a computer screen, (3) respondents who mentioned physical symptoms associated with using mobile phones and other electrical devices. Total prevalence of self-reported physical symptoms associated with using mobile phones and other electrical devices (categories 1 and 2) was 0.7%. In the future it will be possible to obtain new knowledge of these topics by using qualitative methods.
Diagnostic experiments at a 3 MeV test stand at Rutherford Appleton Laboratory (United Kingdom).
Gabor, C; Faircloth, D C; Lee, D A; Lawrie, S R; Letchford, A P; Pozimski, J K
2010-02-01
A front end is currently under construction consisting of a H(-) Penning ion source (65 keV, 60 mA), low energy beam transport (LEBT), and radio frequency quadrupole (3 MeV output energy) with a medium energy beam transport suitable for high power proton applications. Diagnostics can be divided either in destructive techniques such as beam profile monitor, pepperpot, slit-slit emittance scanner (preferably used during commissioning) or nondestructive, permanently installed devices such as photodetachment-based techniques. Another way to determine beam distributions is a scintillator with charge-coupled device camera. First experiments have been performed to control the beam injection into the LEBT. The influence of beam parameters such as particle energy and space-charge compensation on the two-dimensional distribution and profiles will be presented.
Ferroelectric thin film acoustic devices with electrical multiband switching ability.
Ptashnik, Sergey V; Mikhailov, Anatoliy K; Yastrebov, Alexander V; Petrov, Peter K; Liu, Wei; Alford, Neil McN; Hirsch, Soeren; Kozyrev, Andrey B
2017-11-10
Design principles of a new class of microwave thin film bulk acoustic resonators with multiband resonance frequency switching ability are presented. The theory of the excitation of acoustic eigenmodes in multilayer ferroelectric structures is considered, and the principle of selectivity for resonator with an arbitrary number of ferroelectric layers is formulated. A so called "criterion function" is suggested that allows to determine the conditions for effective excitation at one selected resonance mode with suppression of other modes. The proposed theoretical approach is verifiedusing thepreexisting experimental data published elsewhere. Finally, the possible application of the two ferroelectric layers structures for switchable microwave overtone resonators, binary and quadrature phase-shift keying modulators are discussed. These devices could play a pivotal role in the miniaturization of microwave front-end antenna circuits.
Power transmission device for four wheel drive vehicle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iwatsuki, T.; Kawamoto, M.; Kano, T.
This patent describes a power transmission device with an improved differential motion limiting mechanism for a four wheel drive vehicle having automatic transmission means, front wheel differential gear means, differential motion limiting means and transfer unit means including center differential gear means, comprising: a first gear mount casing having a gear adapted to mesh with an output of a transmission; a differential motion limiting device arranged together with a front wheel differential gear in the first gear mount casing. The front wheel differential gear having a first diff-carrier and the differential motion limiting device comprising a hydraulic friction clutch formore » engaging and disengaging the first gear mount casing with the first diff-carrier of the front wheel differential gear; a second gear mount casing disposed coaxially with respect to the first gear mount casing; and a transfer unit including a center differential gear arranged in the second gear mount casing, the center differential gear comprising a second diff-carrier coupled with the first gear mount casing, a first side gear coupled with the first diff-carrier of the front wheel differential gear, and a second side gear coupled with the second gear mount casing for transmitting power to the rear wheels.« less
Sensing Home: A Cost-Effective Design for Smart Home via Heterogeneous Wireless Networks
Fan, Xiaohu; Huang, Hao; Qi, Shipeng; Luo, Xincheng; Zeng, Jing; Xie, Qubo; Xie, Changsheng
2015-01-01
The aging population has inspired the marketing of advanced real time devices for home health care, more and more wearable devices and mobile applications, which have emerged in this field. However, to properly collect behavior information, accurately recognize human activities, and deploy the whole system in a real living environment is a challenging task. In this paper, we propose a feasible wireless-based solution to deploy a data collection scheme, activity recognition model, feedback control and mobile integration via heterogeneous networks. We compared and found a suitable algorithm that can be run on cost-efficient embedded devices. Specifically, we use the Super Set Transformation method to map the raw data into a sparse binary matrix. Furthermore, designed front-end devices of low power consumption gather the living data of the habitant via ZigBee to reduce the burden of wiring work. Finally, we evaluated our approach and show it can achieve a theoretical time-slice accuracy of 98%. The mapping solution we propose is compatible with more wearable devices and mobile apps. PMID:26633424
Sensing Home: A Cost-Effective Design for Smart Home via Heterogeneous Wireless Networks.
Fan, Xiaohu; Huang, Hao; Qi, Shipeng; Luo, Xincheng; Zeng, Jing; Xie, Qubo; Xie, Changsheng
2015-12-03
The aging population has inspired the marketing of advanced real time devices for home health care, more and more wearable devices and mobile applications, which have emerged in this field. However, to properly collect behavior information, accurately recognize human activities, and deploy the whole system in a real living environment is a challenging task. In this paper, we propose a feasible wireless-based solution to deploy a data collection scheme, activity recognition model, feedback control and mobile integration via heterogeneous networks. We compared and found a suitable algorithm that can be run on cost-efficient embedded devices. Specifically, we use the Super Set Transformation method to map the raw data into a sparse binary matrix. Furthermore, designed front-end devices of low power consumption gather the living data of the habitant via ZigBee to reduce the burden of wiring work. Finally, we evaluated our approach and show it can achieve a theoretical time-slice accuracy of 98%. The mapping solution we propose is compatible with more wearable devices and mobile apps.
1. GENERAL VIEW SHOWING NORTHEAST END (FRONT) OF TRANSIT SHED, ...
1. GENERAL VIEW SHOWING NORTHEAST END (FRONT) OF TRANSIT SHED, IN CONTEXT WITH LOADING YARD AND DERRICK, LOOKING WEST - Oakland Army Base, Transit Shed, East of Dunkirk Street & South of Burma Road, Oakland, Alameda County, CA
Electro-optical detector for use in a wide mass range mass spectrometer
NASA Technical Reports Server (NTRS)
Giffin, Charles E. (Inventor)
1976-01-01
An electro-optical detector is disclosed for use in a wide mass range mass spectrometer (MS), in the latter the focal plane is at or very near the exit end of the magnetic analyzer, so that a strong magnetic field of the order of 1000G or more is present at the focal plane location. The novel detector includes a microchannel electron multiplier array (MCA) which is positioned at the focal plane to convert ion beams which are focused by the MS at the focal plane into corresponding electron beams which are then accelerated to form visual images on a conductive phosphored surface. These visual images are then converted into images on the target of a vidicon camera or the like for electronic processing. Due to the strong magnetic field at the focal plane, in one embodiment of the invention, the MCA with front and back parallel ends is placed so that its front end forms an angle of not less than several degrees, preferably on the order of 10.degree.-20.degree., with respect to the focal plane, with the center line of the front end preferably located in the focal plane. In another embodiment the MCA is wedge-shaped, with its back end at an angle of about 10.degree.-20.degree. with respect to the front end. In this embodiment the MCA is placed so that its front end is located at the focal plane.
OPeNDAP Server4: Buidling a High-Performance Server for the DAP by Leveraging Existing Software
NASA Astrophysics Data System (ADS)
Potter, N.; West, P.; Gallagher, J.; Garcia, J.; Fox, P.
2006-12-01
OPeNDAP has been working in conjunction with NCAR/ESSL/HAO to develop a modular, high performance data server that will be the successor to the current OPeNDAP data server. The new server, called Server4, is really two servers: A 'Back-End' data server which reads information from various types of data sources and packages the results in DAP objects; and A 'Front-End' which receives client DAP request and then decides how use features of the Back-End data server to build the correct responses. This architecture can be configured in several interesting ways: The Front- and Back-End components can be run on either the same or different machines, depending on security and performance needs, new Front-End software can be written to support other network data access protocols and local applications can interact directly with the Back-End data server. This new server's Back-End component will use the server infrastructure developed by HAO for use with the Earth System Grid II project. Extensions needed to use it as part of the new OPeNDAP server were minimal. The HAO server was modified so that it loads 'data handlers' at run-time. Each data handler module only needs to satisfy a simple interface which both enabled the existing data handlers written for the old OPeNDAP server to be directly used and also simplifies writing new handlers from scratch. The Back-End server leverages high- performance features developed for the ESG II project, so applications that can interact with it directly can read large volumes of data efficiently. The Front-End module of Server4 uses the Java Servlet system in place of the Common Gateway Interface (CGI) used in the past. New front-end modules can be written to support different network data access protocols, so that same server will ultimately be able to support more than the DAP/2.0 protocol. As an example, we will discuss a SOAP interface that's currently in development. In addition to support for DAP/2.0 and prototypical support for a SOAP interface, the new server includes support for the THREDDS cataloging protocol. THREDDS is tightly integrated into the Front-End of Server4. The Server4 Front-End can make full use of the advanced THREDDS features such as attribute specification and inheritance, custom catalogs which segue into automatically generated catalogs as well as providing a default behavior which requires almost no catalog configuration.
Device for reducing vehicle aerodynamic resistance
Graham, Sean C.
2006-03-07
A device for reducing vehicle aerodynamic resistance for vehicles having a generally rectangular flat front face comprising a plurality of load bearing struts of a predetermined size attached to the flat front face adjacent the sides and top thereof, a pair of pliable opposing flat sheets having an outside edge portion attached to the flat front face adjacent the sides thereof and an upper edge with a predetermined curve; the opposing flat sheets being bent and attached to the struts to form effective curved airfoil shapes, and a top pliable flat sheet disposed adjacent the top of the flat front face and having predetermined curved side edges, which, when the top sheet is bent and attached to the struts to form an effective curved airfoil shape, mate with the curved upper edges of the opposing sheets to complete the aerodynamic device.
4. Photocopy of measured drawing dated January, 1948 FRONT ELEVATION ...
4. Photocopy of measured drawing dated January, 1948 FRONT ELEVATION An addendum to Hanson-Cramer House, Sea Street, south end, Rockport, Knox County, Maine - Hanson-Cramer House, End of Sea Street (moved from Pascal's Avenue), Rockport, Knox County, ME
ERIC Educational Resources Information Center
Perry, Jim
1995-01-01
Discussion of management styles and front-end analysis focuses on a review of Douglas McGregor's theories. Topics include Theories X, Y, and Z; leadership skills; motivational needs of employees; intrinsic and extrinsic rewards; and faulty implementation of instructional systems design processes. (LRW)
NASA Astrophysics Data System (ADS)
Barros Marin, M.; Boccardi, A.; Donat Godichal, C.; Gonzalez, J. L.; Lefevre, T.; Levens, T.; Szuk, B.
2016-02-01
The Giga Bit Transceiver based Expandable Front-End (GEFE) is a multi-purpose FPGA-based radiation tolerant card. It is foreseen to be the new standard FMC carrier for digital front-end applications in the CERN BE-BI group. Its intended use ranges from fast data acquisition systems to slow control installed close to the beamlines, in a radioactive environment exposed to total ionizing doses of up to 750 Gy. This paper introduces the architecture of the GEFE, its features as well as examples of its application in different setups.
Maneuvering impact boring head
Zollinger, W. Thor; Reutzel, Edward W.
1998-01-01
An impact boring head may comprise a main body having an internal cavity with a front end and a rear end. A striker having a head end and a tail end is slidably mounted in the internal cavity of the main body so that the striker can be reciprocated between a forward position and an aft position in response to hydraulic pressure. A compressible gas contained in the internal cavity between the head end of the striker and the front end of the internal cavity returns the striker to the aft position upon removal of the hydraulic pressure.
User Consultation during the Fuzzy Front End: Evaluating Student's Design Outcomes
ERIC Educational Resources Information Center
Conradie, Peter; De Marez, Lieven; Saldien, Jelle
2017-01-01
In this paper we evaluate the involvement of a partially blind user as lead user in the early stages of a product redesign during an undergraduate product design-engineering course. Throughout the early stages of product design, or fuzzy front end, there is a high level of uncertainty. End users, with their increased contextual knowledge can play…
Integrated Arrays on Silicon at Terahertz Frequencies
NASA Technical Reports Server (NTRS)
Chattopadhayay, Goutam; Lee, Choonsup; Jung, Cecil; Lin, Robert; Peralta, Alessandro; Mehdi, Imran; Llombert, Nuria; Thomas, Bertrand
2011-01-01
In this paper we explore various receiver font-end and antenna architecture for use in integrated arrays at terahertz frequencies. Development of wafer-level integrated terahertz receiver front-end by using advanced semiconductor fabrication technologies and use of novel integrated antennas with silicon micromachining are reported. We report novel stacking of micromachined silicon wafers which allows for the 3-dimensional integration of various terahertz receiver components in extremely small packages which easily leads to the development of 2- dimensioanl multi-pixel receiver front-ends in the terahertz frequency range. We also report an integrated micro-lens antenna that goes with the silicon micro-machined front-end. The micro-lens antenna is fed by a waveguide that excites a silicon lens antenna through a leaky-wave or electromagnetic band gap (EBG) resonant cavity. We utilized advanced semiconductor nanofabrication techniques to design, fabricate, and demonstrate a super-compact, low-mass submillimeter-wave heterodyne frontend. When the micro-lens antenna is integrated with the receiver front-end we will be able to assemble integrated heterodyne array receivers for various applications such as multi-pixel high resolution spectrometer and imaging radar at terahertz frequencies.
Front-End/Gateway Software: Availability and Usefulness.
ERIC Educational Resources Information Center
Kesselman, Martin
1985-01-01
Reviews features of front-end software packages (interface between user and online system)--database selection, search strategy development, saving and downloading, hardware and software requirements, training and documentation, online systems and database accession, and costs--and discusses gateway services (user searches through intermediary…
1. VIEW OF NORTHEAST FRONT (GABLE END) FROM THORNE AVENUE, ...
1. VIEW OF NORTHEAST FRONT (GABLE END) FROM THORNE AVENUE, FACING NORTHWEST. (BUILDINGS 114 AND 118 ARE VISIBLE IN THE BACKGROUND.) - Fort McPherson, World War II Station Hospital, G. U. Treatment Unit Dispensary, Thorne Avenue, Atlanta, Fulton County, GA
1. 185/189D in center, north end west facades (190D front ...
1. 185/189-D in center, north end west facades (190-D front left and west facade; 195-D rear right). Looking south. - D-Reactor Complex, Deaeration Plant-Refrigeration Buildings, Area 100-D, Richland, Benton County, WA
Performance assessment of U.S. residential cooking exhaust hoods.
Delp, William W; Singer, Brett C
2012-06-05
This study assessed the performance of seven new residential cooking exhaust hoods representing common U.S. designs. Laboratory tests were conducted to determine fan curves relating airflow to duct static pressure, sound levels, and exhaust gas capture efficiency for front and back cooktop burners and the oven. Airflow rate sensitivity to duct flow resistance was higher for axial fan devices than for centrifugal fan devices. Pollutant capture efficiency (CE) ranged from <15% to >98%, varying across hoods and with airflow and burner position for each hood. CE was higher for back burners relative to front burners, presumably because most hoods covered only part of the front burners. Open hoods had higher CE than those with grease screen and metal-covered bottoms. The device with the highest CE--exceeding 80% for oven and front burners--had a large, open hood that covered most of the front burners. The airflow rate for this hood surpassed the industry-recommended level of 118 L·s(-1) (250 cfm) and produced sound levels too high for normal conversation. For hoods meeting the sound and fan efficacy criteria for Energy Star, CE was <30% for front and oven burners.
Characterization of Photoreceivers for LISA
NASA Technical Reports Server (NTRS)
Cervantes, F. Guzman; Livas, J.; Silverberg, R.; Buchanan, E.; Stebbins, R.
2010-01-01
LISA will use quadrant photo receivers as front-end devices for the phase meter measuring the motion of drag-free test masses in both angular orientation and separation. We have set up a laboratory testbed for the characterization of photo receivers. Some of the limiting noise sources have been identified and their contribution has been either measured or determined from the measured data. We have built a photo receiver with a 0.5 mm diameter quadrant photodiode with an equivalent input noise of better than 1.8 pA/(square root of)Hz below 20 MHz and a 3 dB bandwidth of 34 MHz.
Public Understanding of Science through Evaluations
NASA Astrophysics Data System (ADS)
Dusenbery, P.; Koke, J.
Evaluation is an integral part of exhibition development. It is usually a 3-phase process: front end, formative and summative. This report will compare science misconception studies of students with a number of front-end museum studies in order to elucidate the similarities and differences between student and general public understanding of science. The Space Science Institute (SSI) has recently conducted a major front-end evaluation of its Alien Earths exhibition. Alien Earths has four interrelated exhibit areas: Our Place in Space, Star Birth, PlanetQuest, and Search for Life. Exhibit visitors will explore the awesome events surrounding the birth of stars and planets; they will join scientists in the hunt for planets outside our solar system including those that may be in ``habitable zones'' around other stars; and finally they will be able to learn about the wide range of conditions for life on Earth and how scientists are looking for signs of life beyond Earth. The front-end evaluation elicited visitors' beliefs about the origins of life, what life is dominant on Earth, and the role indirect evidence plays in science. The front-end evaluation also examined visitors' understanding of the tools used in origins research from grand telescopes to microscopes, their ability to decipher and interpret images of star forming regions, and their fluency with the specific terminology likely to be used in the Alien Earths scripts. Front-end evaluation worked to support concept design and development by developing the visitors' entrance narrative -- their pre-existing knowledge, commonly held misconceptions, and their attitudes and interests towards the topic. This served to identify potential points of access and barriers to efficient communication.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, K.; Chen, H.; Wu, W.
We present that in the upgrade of ATLAS experiment, the front-end electronics components are subjected to a large radiation background. Meanwhile high speed optical links are required for the data transmission between the on-detector and off-detector electronics. The GBT architecture and the Versatile Link (VL) project are designed by CERN to support the 4.8 Gbps line rate bidirectional high-speed data transmission which is called GBT link. In the ATLAS upgrade, besides the link with on-detector, the GBT link is also used between different off-detector systems. The GBTX ASIC is designed for the on-detector front-end, correspondingly for the off-detector electronics, themore » GBT architecture is implemented in Field Programmable Gate Arrays (FPGA). CERN launches the GBT-FPGA project to provide examples in different types of FPGA. In the ATLAS upgrade framework, the Front-End LInk eXchange (FELIX) system is used to interface the front end electronics of several ATLAS subsystems. The GBT link is used between them, to transfer the detector data and the timing, trigger, control and monitoring information. The trigger signal distributed in the down-link from FELIX to the front-end requires a fixed and low latency. In this paper, several optimizations on the GBT-FPGA IP core are introduced, to achieve a lower fixed latency. For FELIX, a common firmware will be used to interface different front-ends with support of both GBT modes: the forward error correction mode and the wide mode. The modified GBT-FPGA core has the ability to switch between the GBT modes without FPGA reprogramming. Finally, the system clock distribution of the multi-channel FELIX firmware is also discussed in this paper.« less
Optimization on fixed low latency implementation of the GBT core in FPGA
Chen, K.; Chen, H.; Wu, W.; ...
2017-07-11
We present that in the upgrade of ATLAS experiment, the front-end electronics components are subjected to a large radiation background. Meanwhile high speed optical links are required for the data transmission between the on-detector and off-detector electronics. The GBT architecture and the Versatile Link (VL) project are designed by CERN to support the 4.8 Gbps line rate bidirectional high-speed data transmission which is called GBT link. In the ATLAS upgrade, besides the link with on-detector, the GBT link is also used between different off-detector systems. The GBTX ASIC is designed for the on-detector front-end, correspondingly for the off-detector electronics, themore » GBT architecture is implemented in Field Programmable Gate Arrays (FPGA). CERN launches the GBT-FPGA project to provide examples in different types of FPGA. In the ATLAS upgrade framework, the Front-End LInk eXchange (FELIX) system is used to interface the front end electronics of several ATLAS subsystems. The GBT link is used between them, to transfer the detector data and the timing, trigger, control and monitoring information. The trigger signal distributed in the down-link from FELIX to the front-end requires a fixed and low latency. In this paper, several optimizations on the GBT-FPGA IP core are introduced, to achieve a lower fixed latency. For FELIX, a common firmware will be used to interface different front-ends with support of both GBT modes: the forward error correction mode and the wide mode. The modified GBT-FPGA core has the ability to switch between the GBT modes without FPGA reprogramming. Finally, the system clock distribution of the multi-channel FELIX firmware is also discussed in this paper.« less
Optimization on fixed low latency implementation of the GBT core in FPGA
NASA Astrophysics Data System (ADS)
Chen, K.; Chen, H.; Wu, W.; Xu, H.; Yao, L.
2017-07-01
In the upgrade of ATLAS experiment [1], the front-end electronics components are subjected to a large radiation background. Meanwhile high speed optical links are required for the data transmission between the on-detector and off-detector electronics. The GBT architecture and the Versatile Link (VL) project are designed by CERN to support the 4.8 Gbps line rate bidirectional high-speed data transmission which is called GBT link [2]. In the ATLAS upgrade, besides the link with on-detector, the GBT link is also used between different off-detector systems. The GBTX ASIC is designed for the on-detector front-end, correspondingly for the off-detector electronics, the GBT architecture is implemented in Field Programmable Gate Arrays (FPGA). CERN launches the GBT-FPGA project to provide examples in different types of FPGA [3]. In the ATLAS upgrade framework, the Front-End LInk eXchange (FELIX) system [4, 5] is used to interface the front-end electronics of several ATLAS subsystems. The GBT link is used between them, to transfer the detector data and the timing, trigger, control and monitoring information. The trigger signal distributed in the down-link from FELIX to the front-end requires a fixed and low latency. In this paper, several optimizations on the GBT-FPGA IP core are introduced, to achieve a lower fixed latency. For FELIX, a common firmware will be used to interface different front-ends with support of both GBT modes: the forward error correction mode and the wide mode. The modified GBT-FPGA core has the ability to switch between the GBT modes without FPGA reprogramming. The system clock distribution of the multi-channel FELIX firmware is also discussed in this paper.
TEMPERATURE-GRADIENT PLATES FOR GROWTH OF MICROORGANISMS
Landman, Otto E.; Bausum, Howard T.; Matney, Thomas S.
1962-01-01
Landman, Otto E. (Fort Detrick, Frederick, Md.), Howard T. Bausum, and Thomas S. Matney. Temperature-gradient plates for growth of microorganisms. J. Bacteriol. 83:463–469. 1962.—Different temperature-gradient plates have been devised for the study of microbial growth on solid media through continuous temperature ranges or in liquid media at finely graded temperatures. All plates are made of heavy-gauge aluminum; heat supplied at one end is dissipated along the length of the metal so that a gradient is produced. The shape and range of the gradient depends on the amount of heat supplied, the insulation, the ambient temperature, and other factors. Differences of 0.2 C in temperature sensitivity between bacterial strains can be detected. The plates are simple to construct and operate. The dimensions of the aluminum, the mode of temperature measurement, and the method of heating may all be modified without diminishing the basic utility of the device. A sharp growth front develops at the maximal temperature of growth of bacteria. In most strains, all bacteria below the front form colonies and all bacteria above the front are killed, except for a few temperature-resistant mutants. Images PMID:14461975
Value driven innovation in medical device design: a process for balancing stakeholder voices.
de Ana, F J; Umstead, K A; Phillips, G J; Conner, C P
2013-09-01
The innovation process has often been represented as a linear process which funnels customer needs through various business and process filters. This method may be appropriate for some consumer products, but in the medical device industry there are some inherent limitations to the traditional innovation funnel approach. In the medical device industry, there are a number of stakeholders who need to have their voices heard throughout the innovation process. Each stakeholder has diverse and unique needs relating to the medical device, the needs of one may highly affect the needs of another, and the relationships between stakeholders may be tenuous. This paper describes the application of a spiral innovation process to the development of a medical device which considers three distinct stakeholder voices: the Voice of the Customer, the Voice of the Business and the Voice of the Technology. The process is presented as a case study focusing on the front-end redesign of a class III medical device for an orthopedics company. Starting from project initiation and scope alignment, the process describes four phases, Discover, Envision, Create, and Refine, and concludes with value assessment of the final design features.
Low-noise front-end electronics for detection of intermediate-frequency weak light signals
NASA Astrophysics Data System (ADS)
Lin, Cunbao; Yan, Shuhua; Du, Zhiguang; Wei, Chunhua; Wang, Guochao
2015-02-01
A novel low-noise front-end electronics was proposed for detection of light signals with intensity about 10 μW and frequency above 2.7 MHz. The direct current (DC) power supply, pre-amplifier and main-amplifier were first designed, simulated and then realized. Small-size components were used to make the power supply small, and the pre-amplifier and main-amplifier were the least capacitors to avoid the phase shift of the signals. The performance of the developed front-end electronics was verified in cross-grating diffraction experiments. The results indicated that the output peak-topeak noise of the +/-5 V DC power supply was about 2 mV, and the total output current was 1.25 A. The signal-to-noise ratio (SNR) of the output signal of the pre-amplifier was about 50 dB, and it increased to nearly 60 dB after the mainamplifier, which means this front-end electronics was especially suitable for using in the phase-sensitive and integrated precision measurement systems.
Modeling of an 8-12 GHz receiver front-end based on an in-line MEMS frequency discriminator
NASA Astrophysics Data System (ADS)
Chu, Chenlei; Liao, Xiaoping
2018-06-01
This paper focuses on the modeling of an 8-12 GHz RF (radio frequency) receiver front-end based on an in-line MEMS (microelectromechanical systems) frequency discriminator. Actually, the frequency detection is realized by measuring the output dc thermal voltage generated by the MEMS thermoelectric power sensor. Based on this thermal voltage, it has a great potential to tune the resonant frequency of the VCO (voltage controlled oscillator) in the RF receiver front-end application. The equivalent circuit model of the in-line frequency discriminator is established and the measurement verification is also implemented. Measurement and simulation results show that the output dc thermal voltage has a nearly linear relation with frequency. A new construction of RF receiver front-end is then obtained by connecting the in-line frequency discriminator with the voltage controlling port of VCO. Lastly, a systemic simulation is processed by computer-aided software and the real-time simulation waveform at each key point is observed clearly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
C. Cuevas, B. Raydo, H. Dong, A. Gupta, F.J. Barbosa, J. Wilson, W.M. Taylor, E. Jastrzembski, D. Abbott
We will demonstrate a hardware and firmware solution for a complete fully pipelined multi-crate trigger system that takes advantage of the elegant high speed VXS serial extensions for VME. This trigger system includes three sections starting with the front end crate trigger processor (CTP), a global Sub-System Processor (SSP) and a Trigger Supervisor that manages the timing, synchronization and front end event readout. Within a front end crate, trigger information is gathered from each 16 Channel, 12 bit Flash ADC module at 4 nS intervals via the VXS backplane, to a Crate Trigger Processor (CTP). Each Crate Trigger Processor receivesmore » these 500 MB/S VXS links from the 16 FADC-250 modules, aligns skewed data inherent of Aurora protocol, and performs real time crate level trigger algorithms. The algorithm results are encoded using a Reed-Solomon technique and transmission of this Level 1 trigger data is sent to the SSP using a multi-fiber link. The multi-fiber link achieves an aggregate trigger data transfer rate to the global trigger at 8 Gb/s. The SSP receives and decodes Reed-Solomon error correcting transmission from each crate, aligns the data, and performs the global level trigger algorithms. The entire trigger system is synchronous and operates at 250 MHz with the Trigger Supervisor managing not only the front end event readout, but also the distribution of the critical timing clocks, synchronization signals, and the global trigger signals to each front end readout crate. These signals are distributed to the front end crates on a separate fiber link and each crate is synchronized using a unique encoding scheme to guarantee that each front end crate is synchronous with a fixed latency, independent of the distance between each crate. The overall trigger signal latency is <3 uS, and the proposed 12GeV experiments at Jefferson Lab require up to 200KHz Level 1 trigger rate.« less
Front-end electronics and DAQ for the EURITRACK tagged neutron inspection system
NASA Astrophysics Data System (ADS)
Lunardon, M.; Bottosso, C.; Fabris, D.; Moretto, S.; Nebbia, G.; Pesente, S.; Viesti, G.; Bigongiari, A.; Colonna, A.; Tintori, C.; Valkovic, V.; Sudac, D.; Peerani, P.; Sequeira, V.; Salvato, M.
2007-08-01
The EURopean Illicit TRAfficing Countermeasures Kit (EURITRACK) Front-End and Data Acquisition System is a compact set of VME boards interfaced with a standard PC. The system is part of a cargo container inspection portal based on the tagged neutrons technique. The front-end processes all detector signals and checks coincidences between any of the 64 pixels of the alpha particle detector and any gamma-ray signals in 22 NaI(Tl) scintillators. The system is capable of handling the data flow at neutron flux up to the portal limiting value of 108 neutrons/second. Some typical applications are presented.
A multitasking, multisinked, multiprocessor data acquisition front end
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, R.; Au, R.; Molen, A.V.
1989-10-01
The authors have developed a generalized data acquisition front end system which is based on MC68020 processors running a commercial real time kernel (rhoSOS), and implemented primarily in a high level language (C). This system has been attached to the back end on-line computing system at NSCL via our high performance ETHERNET protocol. Data may be simultaneously sent to any number of back end systems. Fixed fraction sampling along links to back end computing is also supported. A nonprocedural program generator simplifies the development of experiment specific code.
Accuracy of piezoelectric pedometer and accelerometer step counts.
Cruz, Joana; Brooks, Dina; Marques, Alda
2017-04-01
This study aimed to assess step-count accuracy of a piezoeletric pedometer (Yamax PW/EX-510), when worn at different body parts, and a triaxial accelerometer (GT3X+), and to compare device accuracy; and identify the preferred location(s) to wear a pedometer. Sixty-three healthy adults (45.8±20.6 years old) wore 7 pedometers (neck, lateral right and left of the waist, front right and left of the waist, front pockets of the trousers) and 1 accelerometer (over the right hip), while walking 120 m at slow, self-preferred/normal and fast paces. Steps were recorded. Participants identified their preferred location(s) to wear the pedometer. Absolute percent error (APE) and Bland and Altman (BA) method were used to assess device accuracy (criterion measure: manual counts) and BA method for device comparisons. Pedometer APE was below 3% at normal and fast paces despite wearing location, but higher at slow pace (4.5-9.1%). Pedometers were more accurate at the front waist and inside the pockets. Accelerometer APE was higher than pedometer APE (P<0.05); nevertheless, limits of agreement between devices were relatively small. Preferred wearing locations were inside the front right (N.=25) and left (N.=20) pockets of the trousers. Yamax PW/EX-510 pedometers may be preferable than GT3X+ accelerometers to count steps, as they provide more accurate results. These pedometers should be worn at the front right or left positions of the waist or inside the front pockets of the trousers.
Maneuvering impact boring head
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zollinger, W.T.; Reutzel, E.W.
An impact boring head may comprise a main body having an internal cavity with a front end and a rear end. A striker having a head end and a tail end is slidably mounted in the internal cavity of the main body so that the striker can be reciprocated between a forward position and an aft position in response to hydraulic pressure. A compressible gas contained in the internal cavity between the head end of the striker and the front end of the internal cavity returns the striker to the aft position upon removal of the hydraulic pressure. 8 figs.
Maneuvering impact boring head
Zollinger, W.T.; Reutzel, E.W.
1998-08-18
An impact boring head may comprise a main body having an internal cavity with a front end and a rear end. A striker having a head end and a tail end is slidably mounted in the internal cavity of the main body so that the striker can be reciprocated between a forward position and an aft position in response to hydraulic pressure. A compressible gas contained in the internal cavity between the head end of the striker and the front end of the internal cavity returns the striker to the aft position upon removal of the hydraulic pressure. 8 figs.
Effectively Transparent Front Contacts for Optoelectronic Devices
Saive, Rebecca; Borsuk, Aleca M.; Emmer, Hal S.; ...
2016-06-10
Effectively transparent front contacts for optoelectronic devices achieve a measured transparency of up to 99.9% and a measured sheet resistance of 4.8 Ω sq-1. These 3D microscale triangular cross-section grid fingers redirect incoming photons efficiently to the active semiconductor area and can replace standard grid fingers as well as transparent conductive oxide layers in optoelectronic devices. Optoelectronic devices such as light emitting diodes, photodiodes, and solar cells play an important and expanding role in modern technology. Photovoltaics is one of the largest optoelectronic industry sectors and an ever-increasing component of the world's rapidly growing renewable carbon-free electricity generation infrastructure. Inmore » recent years, the photovoltaics field has dramatically expanded owing to the large-scale manufacture of inexpensive crystalline Si and thin film cells and modules. The current record efficiency (η = 25.6%) Si solar cell utilizes a heterostructure intrinsic thin layer (HIT) design[1] to enable increased open circuit voltage, while more mass-manufacturable solar cell architectures feature front contacts.[2, 3] Thus improved solar cell front contact designs are important for future large-scale photovoltaics with even higher efficiency.« less
FRED, a Front End for Databases.
ERIC Educational Resources Information Center
Crystal, Maurice I.; Jakobson, Gabriel E.
1982-01-01
FRED (a Front End for Databases) was conceived to alleviate data access difficulties posed by the heterogeneous nature of online databases. A hardware/software layer interposed between users and databases, it consists of three subsystems: user-interface, database-interface, and knowledge base. Architectural alternatives for this database machine…
29. Interior view, south end of the west (front) wall ...
29. Interior view, south end of the west (front) wall looking at the section between the door and southwestern corner, with scale (note remnants of the post-1915 fire plaster on wall) - Kiskiack, Naval Mine Depot, State Route 238 vicinity, Yorktown, York County, VA
Front-end Electronics for Unattended Measurement (FEUM). Prototype Test Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conrad, Ryan C.; Morris, Scott J.; Smith, Leon E.
2015-09-16
The IAEA has requested that PNNL perform an initial set of tests on front-end electronics for unattended measurement (FEUM) prototypes. The FEUM prototype test plan details the tests to be performed, the criteria for evaluation, and the procedures used to execute the tests.
Musett: A segmented Si array for Recoil-Decay-Tagging studies at VAMOS
NASA Astrophysics Data System (ADS)
Theisen, Ch.; Jeanneau, F.; Sulignano, B.; Druillole, F.; Ljungvall, J.; Paul, B.; Virique, E.; Baron, P.; Bervas, H.; Clément, E.; Delagnes, E.; Dijon, A.; Dossat, E.; Drouart, A.; Farget, F.; Flouzat, Ch.; De France, G.; Görgen, A.; Houarner, Ch.; Jacquot, B.; Korten, W.; Lebertre, G.; Lecornu, B.; Legeard, L.; Lermitage, A.; Lhenoret, S.; Marry, C.; Maugeais, C.; Menager, L.; Meunier, O.; Navin, A.; Nizery, F.; Obertelli, A.; Rauly, E.; Raine, B.; Rejmund, M.; Ropert, J.; Saillant, F.; Savajols, H.; Schmitt, Ch.; Tripon, M.; Wanlin, E.; Wittwer, G.
2014-05-01
A new segmented silicon-array called MUSETT has been built for the study of heavy elements using the Recoil-Decay-Tagging technique. MUSETT is located at the focal plane of the VAMOS spectrometer at GANIL and is used in conjunction with a γ-ray array at the target position. This paper describes the device, which consists of four 10×10 cm2 Si detectors and its associated front-end electronics based on highly integrated ASICs electronics. The triggerless readout electronics, the data acquisition and the analysis tools developed for its characterization are presented. This device was commissioned at GANIL with the EXOGAM γ-ray spectrometer using the fusion-evaporation reaction 197Au(22Ne,5n)214Ac. Additionally, the performance of the VAMOS Wien filter used during the in-beam commissioning is also reported.
The future point-of-care detection of disease and its data capture and handling.
Lopez-Barbosa, Natalia; Gamarra, Jorge D; Osma, Johann F
2016-04-01
Point-of-care detection is a widely studied area that attracts effort and interest from a large number of fields and companies. However, there is also increased interest from the general public in this type of device, which has driven enormous changes in the design and conception of these developments and the way data is handled. Therefore, future point-of-care detection has to include communication with front-end technology, such as smartphones and networks, automation of manufacture, and the incorporation of concepts like the Internet of Things (IoT) and cloud computing. Three key examples, based on different sensing technology, are analyzed in detail on the basis of these items to highlight a route for the future design and development of point-of-care detection devices and their data capture and handling.
Digital correlation detector for low-cost Omega navigation
NASA Technical Reports Server (NTRS)
Chamberlin, K. A.
1976-01-01
Techniques to lower the cost of using the Omega global navigation network with phase-locked loops (PLL) were developed. The technique that was accepted as being "optimal" is called the memory-aided phase-locked loop (MAPLL) since it allows operation on all eight Omega time slots with one PLL through the implementation of a random access memory. The receiver front-end and the signals that it transmits to the PLL were first described. A brief statistical analysis of these signals was then made to allow a rough comparison between the front-end presented in this work and a commercially available front-end to be made. The hardware and theory of application of the MAPLL were described, ending with an analysis of data taken with the MAPLL. Some conclusions and recommendations were also given.
Development of ground-based ELF/VLF receiver system in Wuhan and its first results
NASA Astrophysics Data System (ADS)
Chen, Yanping; Yang, Guobin; Ni, Binbin; Zhao, Zhengyu; Gu, Xudong; Zhou, Chen; Wang, Feng
2016-05-01
A new digital low-frequency receiver system has been developed at Wuhan University for sensitive reception of low-latitude broadband Extremely Low Frequency (ELF) and Very Low Frequency (VLF) radio waves originating from either natural or artificial sources. These low-frequency radio waves are useful for ionospheric remote sensing, geospace environment monitoring, and submarine communications. This paper presents the principle and architecture of the system framework, including magnetic loop antenna design, low-noise analog front-end and digital receiver with data sampling and transmission. A new structure is adopted in the analog front end to provide high common-mode rejection and to reduce interference. On basis of field programmable gate array (FPGA) device and Universal Serial Bus (USB) architecture, the digital receiver is developed along with time keeping and synchronization module. The validity and feasibility of the self-developed ground-based ELF/VLF receiver system is evaluated by first results of experimental data that show the temporal variation of broadband ELF/VLF wave spectral intensity in Wuhan (30.54 °N, 114.37 °E). In addition to the acquisition of VLF transmitter signals at various frequencies, tweek atmospherics are also clearly captured to occur at multiple modes up to n = 6.
A 24-GHz Front-End Integrated on a Multilayer Cellulose-Based Substrate for Doppler Radar Sensors.
Alimenti, Federico; Palazzi, Valentina; Mariotti, Chiara; Virili, Marco; Orecchini, Giulia; Bonafoni, Stefania; Roselli, Luca; Mezzanotte, Paolo
2017-09-12
This paper presents a miniaturized Doppler radar that can be used as a motion sensor for low-cost Internet of things (IoT) applications. For the first time, a radar front-end and its antenna are integrated on a multilayer cellulose-based substrate, built-up by alternating paper, glue and metal layers. The circuit exploits a distributed microstrip structure that is realized using a copper adhesive laminate, so as to obtain a low-loss conductor. The radar operates at 24 GHz and transmits 5 mW of power. The antenna has a gain of 7.4 dBi and features a half power beam-width of 48 degrees. The sensor, that is just the size of a stamp, is able to detect the movement of a walking person up to 10 m in distance, while a minimum speed of 50 mm/s up to 3 m is clearly measured. Beyond this specific result, the present paper demonstrates that the attractive features of cellulose, including ultra-low cost and eco-friendliness (i.e., recyclability and biodegradability), can even be exploited for the realization of future high-frequency hardware. This opens opens the door to the implementation on cellulose of devices and systems which make up the "sensing layer" at the base of the IoT ecosystem.
Motivation and Front-End Analysis.
ERIC Educational Resources Information Center
Harless, Joe
1978-01-01
Relates Front-End Analysis (FEA) to motivation by categorizing it as either Diagnostic FEA or Planning FEA. The former is used to diagnose existing problems and prescribe motivational programs; the latter assumes that motivational programs must be implemented, along with other programs, to build the optimum environment to support the performance.…
Design for an Adaptive Library Catalog.
ERIC Educational Resources Information Center
Buckland, Michael K.; And Others
1992-01-01
Describes OASIS, a prototype adaptive online catalog implemented as a front end to the University of California MELVYL catalog. Topics addressed include the concept of adaptive retrieval systems, strategic search commands, feedback, prototyping using a front-end, the problem of excessive retrieval, commands to limit or increase search results, and…
24 CFR 941.612 - Disbursement of grant funds.
Code of Federal Regulations, 2010 CFR
2010-04-01
... following requirements: (1) Front-end assistance may be used to pay for materials and services related to... Development (Continued) OFFICE OF ASSISTANT SECRETARY FOR PUBLIC AND INDIAN HOUSING, DEPARTMENT OF HOUSING AND... Development of Public Housing Units § 941.612 Disbursement of grant funds. (a) Front-end drawdowns. A PHA may...
Recent progress in InP/polymer-based devices for telecom and data center applications
NASA Astrophysics Data System (ADS)
Kleinert, Moritz; Zhang, Ziyang; de Felipe, David; Zawadzki, Crispin; Maese Novo, Alejandro; Brinker, Walter; Möhrle, Martin; Keil, Norbert
2015-02-01
Recent progress on polymer-based photonic devices and hybrid photonic integration technology using InP-based active components is presented. High performance thermo-optic components, including compact polymer variable optical attenuators and switches are powerful tools to regulate and control the light flow in the optical backbone. Polymer arrayed waveguide gratings integrated with InP laser and detector arrays function as low-cost optical line terminals (OLTs) in the WDM-PON network. External cavity tunable lasers combined with C/L band thinfilm filter, on-chip U-groove and 45° mirrors construct a compact, bi-directional and color-less optical network unit (ONU). A tunable laser integrated with VOAs, TFEs and two 90° hybrids builds the optical front-end of a colorless, dual-polarization coherent receiver. Multicore polymer waveguides and multi-step 45°mirrors are demonstrated as bridging devices between the spatialdivision- multiplexing transmission technology using multi-core fibers and the conventional PLCbased photonic platforms, appealing to the fast development of dense 3D photonic integration.
Universal programming interface with concurrent access
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alferov, Oleg
2004-10-07
There exist a number of devices with a positioning nature of operation, such as mechanical linear stages, temperature controllers, or filterwheels with discrete state, and most of them have different programming interfaces. The Universal Positioner software suggests the way to handle all of them is with a single approach, whereby a particular hardware driver is created from the template and by translating the actual commands used by the hardware to and from the universal programming interface. The software contains the universal API module itself, the demo simulation of hardware, and the front-end programs to help developers write their own softwaremore » drivers along with example drivers for actual hardware controllers. The software allows user application programs to call devices simultaneously without race conditions (multitasking and concurrent access). The template suggested in this package permits developers to integrate various devices easily into their applications using the same API. The drivers can be stacked; i.e., they can call each other via the same interface.« less
Web-based DAQ systems: connecting the user and electronics front-ends
NASA Astrophysics Data System (ADS)
Lenzi, Thomas
2016-12-01
Web technologies are quickly evolving and are gaining in computational power and flexibility, allowing for a paradigm shift in the field of Data Acquisition (DAQ) systems design. Modern web browsers offer the possibility to create intricate user interfaces and are able to process and render complex data. Furthermore, new web standards such as WebSockets allow for fast real-time communication between the server and the user with minimal overhead. Those improvements make it possible to move the control and monitoring operations from the back-end servers directly to the user and to the front-end electronics, thus reducing the complexity of the data acquisition chain. Moreover, web-based DAQ systems offer greater flexibility, accessibility, and maintainability on the user side than traditional applications which often lack portability and ease of use. As proof of concept, we implemented a simplified DAQ system on a mid-range Spartan6 Field Programmable Gate Array (FPGA) development board coupled to a digital front-end readout chip. The system is connected to the Internet and can be accessed from any web browser. It is composed of custom code to control the front-end readout and of a dual soft-core Microblaze processor to communicate with the client.
El-Desouki, Munir M; Qasim, Syed Manzoor; BenSaleh, Mohammed S; Deen, M Jamal
2015-05-07
The demand for radio frequency (RF) transceivers operating at 2.4 GHz band has attracted considerable research interest due to the advancement in short range wireless technologies. The performance of RF transceivers depends heavily on the transmitter and receiver front-ends. The receiver front-end is comprised of a low-noise amplifier (LNA) and a downconversion mixer. There are very few designs that focus on connecting the single-ended output LNA to a double-balanced mixer without the use of on-chip transformer, also known as a balun. The objective of designing such a receiver front-end is to achieve high integration and low power consumption. To meet these requirements, we present the design of fully-integrated 2.4 GHz receiver front-end, consisting of a narrow-band LNA and a double balanced mixer without using a balun. Here, the single-ended RF output signal of the LNA is translated into differential signal using an NMOS-PMOS (n-channel metal-oxide-semiconductor, p-channel metal-oxide-semiconductor) transistor differential pair instead of the conventional NMOS-NMOS transistor configuration, for the RF amplification stage of the double-balanced mixer. The proposed receiver circuit fabricated using TSMC 0.18 µm CMOS technology operates at 2.4 GHz and produces an output signal at 300 MHz. The fabricated receiver achieves a gain of 16.3 dB and consumes only 6.74 mW operating at 1.5 V, while utilizing 2.08 mm2 of chip area. Measurement results demonstrate the effectiveness and suitability of the proposed receiver for short-range wireless applications, such as in wireless sensor network (WSN).
Front and backside processed thin film electronic devices
Yuan, Hao-Chih; Wang, Guogong; Eriksson, Mark A.; Evans, Paul G.; Lagally, Max G.; Ma, Zhenqiang
2010-10-12
This invention provides methods for fabricating thin film electronic devices with both front- and backside processing capabilities. Using these methods, high temperature processing steps may be carried out during both frontside and backside processing. The methods are well-suited for fabricating back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.
Compact Receiver Front Ends for Submillimeter-Wave Applications
NASA Technical Reports Server (NTRS)
Mehdi, Imran; Chattopadhyay, Goutam; Schlecht, Erich T.; Lin, Robert H.; Sin, Seth; Peralta, Alejandro; Lee, Choonsup; Gill, John J.; Gulkis, Samuel; Thomas, Bertrand C.
2012-01-01
The current generation of submillimeter-wave instruments is relatively mass and power-hungry. The receiver front ends (RFEs) of a submillimeter instrument form the heart of the instrument, and any mass reduction achieved in this subsystem is propagated through the instrument. In the current implementation, the RFE consists of different blocks for the mixer and LO circuits. The motivation for this work is to reduce the mass of the RFE by integrating the mixer and LO circuits in one waveguide block. The mixer and its associated LO chips will all be packaged in a single waveguide package. This will reduce the mass of the RFE and also provide a number of other advantages. By bringing the mixer and LO circuits close together, losses in the waveguide will be reduced. Moreover, the compact nature of the block will allow for better thermal control of the block, which is important in order to reduce gain fluctuations. A single waveguide block with a 600- GHz RFE functionality (based on a subharmonically pumped Schottky diode pair) has been demonstrated. The block is about 3x3x3 cubic centimeters. The block combines the mixer and multiplier chip in a single package. 3D electromagnetic simulations were carried out to design the waveguide circuit around the mixer and multiplier chip. The circuit is optimized to provide maximum output power and maximum bandwidth. An integrated submillimeter front end featuring a 520-600-GHz sub-harmonic mixer and a 260-300-GHz frequency tripler in a single cavity was tested. Both devices used GaAs MMIC membrane planar Schottky diode technology. The sub-harmonic mixer/tripler circuit has been tested using conventional metal-machined blocks. Measurement results on the metal block give best DSB (double sideband) mixer noise temperature of 2,360 K and conversion losses of 7.7 dB at 520 GHz. The LO input power required to pump the integrated tripler/sub-harmonic mixer is between 30 and 50 mW.
The DIRC front-end electronics chain for BaBar
NASA Astrophysics Data System (ADS)
Bailly, P.; Beigbeder, C.; Bernier, R.; Breton, D.; Bonneaud, G.; Caceres, T.; Chase, R.; Chauveau, J.; Del Buono, L.; Dohou, F.; Ducorps, A.; Gastaldi, F.; Genat, J. F.; Hrisoho, A.; Imbert, P.; Lebbolo, H.; Matricon, P.; Oxoby, G.; Renard, C.; Roos, L.; Sen, S.; Thiebaux, C.; Truong, K.; Tocut, V.; Vasileiadis, G.; Va'Vra, J.; Verderi, M.; Warner, D.; Wilson, R. J.; Wormser, G.; Zhang, B.; Zomer, F.
2000-12-01
Recent results from the Front-End electronics of the Detector of Internally Reflected Cerenkov light (DIRC) for the BaBar experiment at SLAC (Stanford, USA) are presented. It measures to better than 1 ns the arrival time of Cerenkov photoelectrons detected in a 11000 phototubes array and their amplitude spectra. It mainly comprises 64-channel DIRC Front-End Boards (DFB) equipped with eight full-custom analog chips performing zero-cross discrimination with 2 mV threshold and pulse shaping, four full-custom digital time to digital chips (TDC) for timing measurements with 500 ps binning and a readout logic selecting hits in the trigger window, and DIRC Crate Controller cards (DCC) serializing the data collected front up to 16 DFBs onto a 1.2 Gb/s optical link. Extensive test results of the pre-production chips are presented, as well as system tests.
Thin film photovoltaic devices with a minimally conductive buffer layer
Barnes, Teresa M.; Burst, James
2016-11-15
A thin film photovoltaic device (100) with a tunable, minimally conductive buffer (128) layer is provided. The photovoltaic device (100) may include a back contact (150), a transparent front contact stack (120), and an absorber (140) positioned between the front contact stack (120) and the back contact (150). The front contact stack (120) may include a low resistivity transparent conductive oxide (TCO) layer (124) and a buffer layer (128) that is proximate to the absorber layer (140). The photovoltaic device (100) may also include a window layer (130) between the buffer layer (128) and the absorber (140). In some cases, the buffer layer (128) is minimally conductive, with its resistivity being tunable, and the buffer layer (128) may be formed as an alloy from a host oxide and a high-permittivity oxide. The high-permittivity oxide may further be chosen to have a bandgap greater than the host oxide.
General-Purpose Front End for Real-Time Data Processing
NASA Technical Reports Server (NTRS)
James, Mark
2007-01-01
FRONTIER is a computer program that functions as a front end for any of a variety of other software of both the artificial intelligence (AI) and conventional data-processing types. As used here, front end signifies interface software needed for acquiring and preprocessing data and making the data available for analysis by the other software. FRONTIER is reusable in that it can be rapidly tailored to any such other software with minimum effort. Each component of FRONTIER is programmable and is executed in an embedded virtual machine. Each component can be reconfigured during execution. The virtual-machine implementation making FRONTIER independent of the type of computing hardware on which it is executed.
Studies about the Behavior of the Crash Boxes of a Car Body
NASA Astrophysics Data System (ADS)
Constantin, B. A.; Iozsa, D.; Fratila, G.
2016-11-01
A continuous evolution of requirements and standards sheds over the development of new vehicles (for example EuroNCAP ratings) in order to create competition between same market models customer related. The low speed impact protection has to be permanently improved as the damage of the front end structure of the vehicle to be reduced to minimal. As a consequence, a lower damage implies less repair costs and therefore a lower insurance category. The front end structure, including the bumper, responds for the absorption of the kinetic energy created during the impact with maximum efficiency in order to avoid the large deformation of structural components. This is only one of the constraints that the front end structure has to cope with, additionally we can mention the dimensioning of the front end of the vehicle which can affect the packaging, which is mainly influenced by the design, styling and the pedestrian requirements intended to be accomplished by the vehicle. The present paper focuses on the low speed urban impact, offering an overview over the actual state, the load configuration, the applicable regulation, the challenging requirements of a modern front structure, which the modern bumper has to comply with and the finite element simulation of this kind of test.
25. FRONT END LOADERS MOMENTARILY IN REPOSE IN THE ORE ...
25. FRONT END LOADERS MOMENTARILY IN REPOSE IN THE ORE STORAGE YARD. AN ORE BRIDGE THAT FORMERLY TRANSFERRED ORE WITHIN THE STORAGE YARD WAS DESTROYED BY A BLIZZARD IN 1978. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH
Kral, L
2007-05-01
We present a complex stabilization and control system for a commercially available optical parametric oscillator. The system is able to stabilize the oscillator's output wavelength at a narrow spectral line of atomic iodine with subpicometer precision, allowing utilization of this solid-state parametric oscillator as a front end of a high-power photodissociation laser chain formed by iodine gas amplifiers. In such setup, a precise wavelength matching between the front end and the amplifier chain is necessary due to extremely narrow spectral lines of the gaseous iodine (approximately 20 pm). The system is based on a personal computer, a heated iodine cell, and a few other low-cost components. It automatically identifies the proper peak within the iodine absorption spectrum, and then keeps the oscillator tuned to this peak with high precision and reliability. The use of the solid-state oscillator as the front end allows us to use the whole iodine laser system as a pump laser for the optical parametric chirped pulse amplification, as it enables precise time synchronization with a signal Ti:sapphire laser.
Guo, Li-Li; Hu, Chun-Ting; Huang, Ying-Xin; Huang, Guan; Jing, Fang-Yan; Liu, Chao; Li, Zhuo-Yi; Zhou, Na; Yan, Qian-Wen; Lei, Yan; Zhu, Shi-Jie; Cheng, Zhi-Qiang; Cao, Guang-Wen; Deng, Yong-Jian; Ding, Yan-Qing
2017-01-01
Directional migration is a cost-effective movement allowing invasion and metastatic spread of cancer cells. Although migration related to cytoskeletal assembly and microenvironmental chemotaxis has been elucidated, little is known about interaction between extracellular and intracellular molecules for controlling the migrational directionality. A polarized expression of prohibitin (PHB) in the front ends of CRC cells favors metastasis and is correlated with poor prognosis for 545 CRC patients. A high level of vascular endothelial growth factor (VEGF) in the interstitial tissue of CRC patients is associated with metastasis. VEGF bound to its receptor, neuropilin-1, can stimulate the activation of cell division cycle 42, which recruits intra-mitochondrial PHB to the front end of a CRC cell. This intracellular relocation of PHB results in the polymerization and reorganization of filament actin extending to the front end of the cell. As a result, the migration directionality of CRC cells is targeted towards VEGF. Together, these findings identify PHB as a key modulator of directional migration of CRC cells and a target for metastasis. PMID:29100316
FBI Fingerprint Image Capture System High-Speed-Front-End throughput modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rathke, P.M.
1993-09-01
The Federal Bureau of Investigation (FBI) has undertaken a major modernization effort called the Integrated Automated Fingerprint Identification System (IAFISS). This system will provide centralized identification services using automated fingerprint, subject descriptor, mugshot, and document processing. A high-speed Fingerprint Image Capture System (FICS) is under development as part of the IAFIS program. The FICS will capture digital and microfilm images of FBI fingerprint cards for input into a central database. One FICS design supports two front-end scanning subsystems, known as the High-Speed-Front-End (HSFE) and Low-Speed-Front-End, to supply image data to a common data processing subsystem. The production rate of themore » HSFE is critical to meeting the FBI`s fingerprint card processing schedule. A model of the HSFE has been developed to help identify the issues driving the production rate, assist in the development of component specifications, and guide the evolution of an operations plan. A description of the model development is given, the assumptions are presented, and some HSFE throughput analysis is performed.« less
Al-Ashmouny, Khaled M; Chang, Sun-Il; Yoon, Euisik
2012-10-01
We report an analog front-end prototype designed in 0.25 μm CMOS process for hybrid integration into 3-D neural recording microsystems. For scaling towards massive parallel neural recording, the prototype has investigated some critical circuit challenges in power, area, interface, and modularity. We achieved extremely low power consumption of 4 μW/channel, optimized energy efficiency using moderate inversion in low-noise amplifiers (K of 5.98 × 10⁸ or NEF of 2.9), and minimized asynchronous interface (only 2 per 16 channels) for command and data capturing. We also implemented adaptable operations including programmable-gain amplification, power-scalable sampling (up to 50 kS/s/channel), wide configuration range (9-bit) for programmable gain and bandwidth, and 5-bit site selection capability (selecting 16 out of 128 sites). The implemented front-end module has achieved a reduction in noise-energy-area product by a factor of 5-25 times as compared to the state-of-the-art analog front-end approaches reported to date.
Nie, Bingbing; Zhou, Qing
2016-10-02
Pedestrian lower extremity represents the most frequently injured body region in car-to-pedestrian accidents. The European Directive concerning pedestrian safety was established in 2003 for evaluating pedestrian protection performance of car models. However, design changes have not been quantified since then. The goal of this study was to investigate front-end profiles of representative passenger car models and the potential influence on pedestrian lower extremity injury risk. The front-end styling of sedans and sport utility vehicles (SUV) released from 2008 to 2011 was characterized by the geometrical parameters related to pedestrian safety and compared to representative car models before 2003. The influence of geometrical design change on the resultant risk of injury to pedestrian lower extremity-that is, knee ligament rupture and long bone fracture-was estimated by a previously developed assessment tool assuming identical structural stiffness. Based on response surface generated from simulation results of a human body model (HBM), the tool provided kinematic and kinetic responses of pedestrian lower extremity resulted from a given car's front-end design. Newer passenger cars exhibited a "flatter" front-end design. The median value of the sedan models provided 87.5 mm less bottom depth, and the SUV models exhibited 94.7 mm less bottom depth. In the lateral impact configuration similar to that in the regulatory test methods, these geometrical changes tend to reduce the injury risk of human knee ligament rupture by 36.6 and 39.6% based on computational approximation. The geometrical changes did not significantly influence the long bone fracture risk. The present study reviewed the geometrical changes in car front-ends along with regulatory concerns regarding pedestrian safety. A preliminary quantitative benefit of the lower extremity injury reduction was estimated based on these geometrical features. Further investigation is recommended on the structural changes and inclusion of more accident scenarios.
LightWAVE: Waveform and Annotation Viewing and Editing in a Web Browser.
Moody, George B
2013-09-01
This paper describes LightWAVE, recently-developed open-source software for viewing ECGs and other physiologic waveforms and associated annotations (event markers). It supports efficient interactive creation and modification of annotations, capabilities that are essential for building new collections of physiologic signals and time series for research. LightWAVE is constructed of components that interact in simple ways, making it straightforward to enhance or replace any of them. The back end (server) is a common gateway interface (CGI) application written in C for speed and efficiency. It retrieves data from its data repository (PhysioNet's open-access PhysioBank archives by default, or any set of files or web pages structured as in PhysioBank) and delivers them in response to requests generated by the front end. The front end (client) is a web application written in JavaScript. It runs within any modern web browser and does not require installation on the user's computer, tablet, or phone. Finally, LightWAVE's scribe is a tiny CGI application written in Perl, which records the user's edits in annotation files. LightWAVE's data repository, back end, and front end can be located on the same computer or on separate computers. The data repository may be split across multiple computers. For compatibility with the standard browser security model, the front end and the scribe must be loaded from the same domain.
1. EXTERIOR OVERVIEW SHOWING FRONT (EAST) END AND SOUTH SIDE ...
1. EXTERIOR OVERVIEW SHOWING FRONT (EAST) END AND SOUTH SIDE OF BUILDING 103, ROCK WALL AND MATURE COTTONWOOD TREES IN FOREGROUND, CONTROL SUBSTATION BEHIND BUILDING 103, AND BUILDING 106 BEHIND THE COTTONWOOD TREE IN THE NORTH BACKGROUND. VIEW TO NORTH. - Bishop Creek Hydroelectric System, Control Station, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA
Front End Loader Operator. Open Pit Mining Job Training Series.
ERIC Educational Resources Information Center
Savilow, Bill
This training outline for front end loader operators, one in a series of eight outlines, is designed primarily for company training foremen or supervisors and for trainers to use as an industry-wide guideline for heavy equipment operator training in open pit mining in British Columbia. Intended as a guide for preparation of lesson plans both for…
Testing and Feedback Effects on Front-End Control over Later Retrieval
ERIC Educational Resources Information Center
Thomas, Ruthann C.; McDaniel, Mark A.
2013-01-01
In 2 experiments, we explored differences in cognitive control at retrieval on a final test to better understand the mechanisms underlying the powerful boost in recall of previously tested information. Memory retrieval can be enhanced by front-end control processes that regulate the scope of retrieval or by later processes that monitor retrieval…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-02
... Information Collection for Public Comment Civil Rights Front End and Limited Monitoring Review AGENCY: Office... Office of Management and Budget (OMB) for review, as required by the Paperwork Reduction Act. The...-free Federal Information Relay Service at 800-877-8339. (Other than the HUD USER information line and...
Front Elevation and Floor Plan in 1893, 1894, and 1909; ...
Front Elevation and Floor Plan in 1893, 1894, and 1909; Office End Elevation, Waiting End Elevation, Section A (1894), Section B (1894), Signage (ca. 1908-1911), Map of Rail Lines & Depots on Soldiers' Home - National Home for Disabled Volunteer Soldiers, Pacific Branch, Streetcar Depot, Corner of Pershing & Dewey Avenues, Los Angeles, Los Angeles County, CA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brusati, M.; Camplani, A.; Cannon, M.
SRAM-ba8ed Field Programmable Gate Array (FPGA) logic devices arc very attractive in applications where high data throughput is needed, such as the latest generation of High Energy Physics (HEP) experiments. FPGAs have been rarely used in such experiments because of their sensitivity to radiation. The present paper proposes a mitigation approach applied to commercial FPGA devices to meet the reliability requirements for the front-end electronics of the Liquid Argon (LAr) electromagnetic calorimeter of the ATLAS experiment, located at CERN. Particular attention will be devoted to define a proper mitigation scheme of the multi-gigabit transceivers embedded in the FPGA, which ismore » a critical part of the LAr data acquisition chain. A demonstrator board is being developed to validate the proposed methodology. :!\\litigation techniques such as Triple Modular Redundancy (T:t\\IR) and scrubbing will be used to increase the robustness of the design and to maximize the fault tolerance from Single-Event Upsets (SEUs).« less
Development of a Mobile User Interface for Image-based Dietary Assessment.
Kim, Sungye; Schap, Tusarebecca; Bosch, Marc; Maciejewski, Ross; Delp, Edward J; Ebert, David S; Boushey, Carol J
2010-12-31
In this paper, we present a mobile user interface for image-based dietary assessment. The mobile user interface provides a front end to a client-server image recognition and portion estimation software. In the client-server configuration, the user interactively records a series of food images using a built-in camera on the mobile device. Images are sent from the mobile device to the server, and the calorie content of the meal is estimated. In this paper, we describe and discuss the design and development of our mobile user interface features. We discuss the design concepts, through initial ideas and implementations. For each concept, we discuss qualitative user feedback from participants using the mobile client application. We then discuss future designs, including work on design considerations for the mobile application to allow the user to interactively correct errors in the automatic processing while reducing the user burden associated with classical pen-and-paper dietary records.
Integration of the GET electronics for the CHIMERA and FARCOS devices
NASA Astrophysics Data System (ADS)
De Filippo, E.; Acosta, L.; Auditore, L.; Boiano, C.; Cardella, G.; Castoldi, A.; D’Andrea, M.; De Luca, S.; Favela, F.; Fichera, F.; Giudice, N.; Gnoffo, B.; Grimaldi, A.; Guazzoni, C.; Lanzalone, G.; Librizzi, F.; Litrico, P.; Maiolino, C.; Maffesanti, S.; Martorana, NS; Pagano, A.; Pagano, EV; Papa, M.; Parsani, T.; Passaro, G.; Pirrone, S.; Politi, G.; Previdi, F.; Quattrocchi, L.; Rizzo, F.; Russotto, P.; Saccà, G.; Salemi, G.; Sciliberto, D.; Trifirò, A.; Trimarchi, M.
2018-05-01
A new front-end based on digital GET electronics has been adopted for the readout of the CsI(Tl) detectors of the CHIMERA 4π multi-detector and for the new modular Femtoscopy Array for Correlation and Spectroscopy (FARCOS). It is expected that the coupling of CHIMERA with the FARCOS array, featuring high angular and energy resolution, and the adoption of the new digital electronics will be well suited for improving specific future data analysis, with the full shape storage of the signals, in the field of heavy ion reactions with stable and exotic beams around the Fermi energies domain. Integration of the GET electronics with CHIMERA and FARCOS devices and with the local analog data acquisition will be briefly discussed. We present some results from previous experimental tests and from the first in-beam experiment (Hoyle-Gamma) with the coupled GET+CHIMERA data acquisition.
Lee, Ren-Guey; Lai, Chien-Chih; Chiang, Shao-Shan; Liu, Hsin-Sheng; Chen, Chun-Chang; Hsieh, Guan-Yu
2006-01-01
According to home healthcare requirement of chronic patients, this paper proposes a mobile-care system integrated with a variety of vital-sign monitoring, where all the front-end vital-sign measuring devices are portable and have the ability of short-range wireless communication. In order to make the system more suitable for home applications, the technology of wireless sensor network is introduced to transmit the captured vital signs to the residential gateway by means of multi-hop relay. Then the residential gateway uploads data to the care server via Internet to carry out patient's condition monitoring and the management of pathological data. Furthermore, the system is added in the alarm mechanism, which the portable care device is able to immediately perceive the critical condition of the patient and to send a warning message to medical and nursing personnels in order to achieve the goal of prompt rescue.
NASA Astrophysics Data System (ADS)
Lin, Jianqiang; Kim, Tae-Woo; Antoniadis, Dimitri A.; del Alamo, Jesús A.
2012-06-01
We present a novel n-type InGaAs quantum-well metal-oxide-semiconductor field-effect transistor (QW-MOSFET) fabricated by a self-aligned gate-last process and investigate relevant Si-like manufacturing issues in future III-V MOSFETs. The device structure features a composite InP/Al2O3 gate barrier with a capacitance equivalent thickness (CET) of 3 nm and non alloyed Mo ohmic contacts. We have found that RIE introduces significant damage to the intrinsic device resulting in poor current drive and subthreshold swing. The effect is largely removed through a thermal annealing step. Thermally annealed QW-MOSFETs exhibit a subthreshold swing of 95 mV/dec, indicative of excellent interfacial characteristics. The peak mobility of the MOSFET is 2780 cm2 V-1 s-1.
Choi, Subin; Park, Kyeonghwan; Lee, Seungwook; Lim, Yeongjin; Oh, Byungjoo; Chae, Hee Young; Park, Chan Sam; Shin, Heugjoo; Kim, Jae Joon
2018-03-02
This paper presents a resolution-reconfigurable wide-range resistive sensor readout interface for wireless multi-gas monitoring applications that displays results on a smartphone. Three types of sensing resolutions were selected to minimize processing power consumption, and a dual-mode front-end structure was proposed to support the detection of a variety of hazardous gases with wide range of characteristic resistance. The readout integrated circuit (ROIC) was fabricated in a 0.18 μm CMOS process to provide three reconfigurable data conversions that correspond to a low-power resistance-to-digital converter (RDC), a 12-bit successive approximation register (SAR) analog-to-digital converter (ADC), and a 16-bit delta-sigma modulator. For functional feasibility, a wireless sensor system prototype that included in-house microelectromechanical (MEMS) sensing devices and commercial device products was manufactured and experimentally verified to detect a variety of hazardous gases.
Wang, G; Doyle, E J; Peebles, W A
2016-11-01
A monostatic antenna array arrangement has been designed for the microwave front-end of the ITER low-field-side reflectometer (LFSR) system. This paper presents details of the antenna coupling coefficient analyses performed using GENRAY, a 3-D ray tracing code, to evaluate the plasma height accommodation capability of such an antenna array design. Utilizing modeled data for the plasma equilibrium and profiles for the ITER baseline and half-field scenarios, a design study was performed for measurement locations varying from the plasma edge to inside the top of the pedestal. A front-end antenna configuration is recommended for the ITER LFSR system based on the results of this coupling analysis.
Test of ATLAS RPCs Front-End electronics
NASA Astrophysics Data System (ADS)
Aielli, G.; Camarri, P.; Cardarelli, R.; Di Ciaccio, A.; Di Stante, L.; Liberti, B.; Paoloni, A.; Pastori, E.; Santonico, R.
2003-08-01
The Front-End Electronics performing the ATLAS RPCs readout is a full custom 8 channels GaAs circuit, which integrates in a single die both the analog and digital signal processing. The die is bonded on the Front-End board which is completely closed inside the detector Faraday cage. About 50 000 FE boards are foreseen for the experiment. The complete functionality of the FE boards will be certificated before the detector assembly. We describe here the systematic test devoted to check the dynamic functionality of each single channel and the selection criteria applied. It measures and registers all relevant electronics parameters to build up a complete database for the experiment. The statistical results from more than 1100 channels are presented.
NASA Astrophysics Data System (ADS)
Anderson, J.; Bauer, K.; Borga, A.; Boterenbrood, H.; Chen, H.; Chen, K.; Drake, G.; Dönszelmann, M.; Francis, D.; Guest, D.; Gorini, B.; Joos, M.; Lanni, F.; Lehmann Miotto, G.; Levinson, L.; Narevicius, J.; Panduro Vazquez, W.; Roich, A.; Ryu, S.; Schreuder, F.; Schumacher, J.; Vandelli, W.; Vermeulen, J.; Whiteson, D.; Wu, W.; Zhang, J.
2016-12-01
The ATLAS Phase-I upgrade (2019) requires a Trigger and Data Acquisition (TDAQ) system able to trigger and record data from up to three times the nominal LHC instantaneous luminosity. The Front-End LInk eXchange (FELIX) system provides an infrastructure to achieve this in a scalable, detector agnostic and easily upgradeable way. It is a PC-based gateway, interfacing custom radiation tolerant optical links from front-end electronics, via PCIe Gen3 cards, to a commodity switched Ethernet or InfiniBand network. FELIX enables reducing custom electronics in favour of software running on commercial servers. The FELIX system, the design of the PCIe prototype card and the integration test results are presented in this paper.
The Eye Catching Property of Digital-Signage with Scent and a Scent-Emitting Video Display System
NASA Astrophysics Data System (ADS)
Tomono, Akira; Otake, Syunya
In this paper, the effective method of inducing a glance aimed at the digital signage by emitting a scent is described. The simulation experiment was done using the immersive VR System because there were a lot of restrictions to the experiment in an actual passageway. In order to investigate the eye catching property of the digital signage, the passer-by's eye movement was analyzed. Through the experiment, they were clarified that the digital signage with the scent was paid to attention, and the strong impression remained in the memory. Next, a scent-emitting video display system applying to the digital signage is described. To this end, a scent-emitting device that is able to quickly change the scents it is releasing, and present them from a distance (by the non-contact method), thus maintaining a relationship between the scent and the image, must be developed. We propose a new method where a device that can release pressurized gases is placed behind the display screen filled with tiny pores. Scents are then ejected from this device, traveling through the pores to the front side of the screen. An excellent scent delivery characteristic was obtained because the distance to the user is close and the scent is presented from the front. We also present a method for inducing viewer reactions using on-screen images, thereby enabling scent release to coincide precisely with viewer inhalations. We anticipate that the simultaneous presentation of scents and video images will deepen viewers' comprehension of these images.
Intelligent communication assistant for databases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jakobson, G.; Shaked, V.; Rowley, S.
1983-01-01
An intelligent communication assistant for databases, called FRED (front end for databases) is explored. FRED is designed to facilitate access to database systems by users of varying levels of experience. FRED is a second generation of natural language front-ends for databases and intends to solve two critical interface problems existing between end-users and databases: connectivity and communication problems. The authors report their experiences in developing software for natural language query processing, dialog control, and knowledge representation, as well as the direction of future work. 10 references.
NASA Astrophysics Data System (ADS)
Kramer, J. L. A. M.; Ullings, A. H.; Vis, R. D.
1993-05-01
A real-time data acquisition system for microprobe analysis has been developed at the Free University of Amsterdam. The system is composed of two parts: a front-end real-time and a back-end monitoring system. The front-end consists of a VMEbus based system which reads out a CAMAC crate. The back-end is implemented on a Sun work station running the UNIX operating system. This separation allows the integration of a minimal, and consequently very fast, real-time executive within the sophisticated possibilities of advanced UNIX work stations.
ERIC Educational Resources Information Center
Allen, Jeanne Maree
2011-01-01
In this paper, I show how Mead's theory of emergence can prove explanatory in how the theory-practice gap is co-created and sustained in "front-end loading" university programs. Taking teacher education as an exemplar, I argue that trainee teachers encounter different and oft-times conflicting environmental, social and cultural conditions in the…
Implementation of artificial intelligence rules in a data base management system
NASA Technical Reports Server (NTRS)
Feyock, S.
1986-01-01
The intelligent front end prototype was transformed into a RIM-integrated system. A RIM-based expert system was written which demonstrated the developed capability. The use of rules to produce extensibility of the intelligent front end, including the concept of demons and rule manipulation rules were investigated. Innovative approaches such as syntax programming were to be considered.
Desktop Application Program to Simulate Cargo-Air-Drop Tests
NASA Technical Reports Server (NTRS)
Cuthbert, Peter
2009-01-01
The DSS Application is a computer program comprising a Windows version of the UNIX-based Decelerator System Simulation (DSS) coupled with an Excel front end. The DSS is an executable code that simulates the dynamics of airdropped cargo from first motion in an aircraft through landing. The bare DSS is difficult to use; the front end makes it easy to use. All inputs to the DSS, control of execution of the DSS, and postprocessing and plotting of outputs are handled in the front end. The front end is graphics-intensive. The Excel software provides the graphical elements without need for additional programming. Categories of input parameters are divided into separate tabbed windows. Pop-up comments describe each parameter. An error-checking software component evaluates combinations of parameters and alerts the user if an error results. Case files can be created from inputs, making it possible to build cases from previous ones. Simulation output is plotted in 16 charts displayed on a separate worksheet, enabling plotting of multiple DSS cases with flight-test data. Variables assigned to each plot can be changed. Selected input parameters can be edited from the plot sheet for quick sensitivity studies.
45 Gb/s low complexity optical front-end for soft-decision LDPC decoders.
Sakib, Meer Nazmus; Moayedi, Monireh; Gross, Warren J; Liboiron-Ladouceur, Odile
2012-07-30
In this paper a low complexity and energy efficient 45 Gb/s soft-decision optical front-end to be used with soft-decision low-density parity-check (LDPC) decoders is demonstrated. The results show that the optical front-end exhibits a net coding gain of 7.06 and 9.62 dB for post forward error correction bit error rate of 10(-7) and 10(-12) for long block length LDPC(32768,26803) code. The performance over a hard decision front-end is 1.9 dB for this code. It is shown that the soft-decision circuit can also be used as a 2-bit flash type analog-to-digital converter (ADC), in conjunction with equalization schemes. At bit rate of 15 Gb/s using RS(255,239), LDPC(672,336), (672, 504), (672, 588), and (1440, 1344) used with a 6-tap finite impulse response (FIR) equalizer will result in optical power savings of 3, 5, 7, 9.5 and 10.5 dB, respectively. The 2-bit flash ADC consumes only 2.71 W at 32 GSamples/s. At 45 GSamples/s the power consumption is estimated to be 4.95 W.
Riparian ecosystem consequences of water redistribution along the Colorado Front Range
John D. Wiener; Kathleen A. Dwire; Susan K. Skagen; Robert R. Crifasi; David Yates
2008-01-01
Water has shaped the American West. Nowhere is this more evident than along the Front Range of Colorado. At the west end of the famous Great Plains rainfall gradient, the Front Range extends most of the length of Colorado and is one of the fastest growing metropolitan regions in the nation. Annual precipitation along the Front Range averages about 16 inches, and...
SPring-8 beamline control system.
Ohata, T; Konishi, H; Kimura, H; Furukawa, Y; Tamasaku, K; Nakatani, T; Tanabe, T; Matsumoto, N; Ishii, M; Ishikawa, T
1998-05-01
The SPring-8 beamline control system is now taking part in the control of the insertion device (ID), front end, beam transportation channel and all interlock systems of the beamline: it will supply a highly standardized environment of apparatus control for collaborative researchers. In particular, ID operation is very important in a third-generation synchrotron light source facility. It is also very important to consider the security system because the ID is part of the storage ring and is therefore governed by the synchrotron ring control system. The progress of computer networking systems and the technology of security control require the development of a highly flexible control system. An interlock system that is independent of the control system has increased the reliability. For the beamline control system the so-called standard model concept has been adopted. VME-bus (VME) is used as the front-end control system and a UNIX workstation as the operator console. CPU boards of the VME-bus are RISC processor-based board computers operated by a LynxOS-based HP-RT real-time operating system. The workstation and the VME are linked to each other by a network, and form the distributed system. The HP 9000/700 series with HP-UX and the HP 9000/743rt series with HP-RT are used. All the controllable apparatus may be operated from any workstation.
A 24-GHz Front-End Integrated on a Multilayer Cellulose-Based Substrate for Doppler Radar Sensors †
Mariotti, Chiara; Virili, Marco; Orecchini, Giulia; Roselli, Luca; Mezzanotte, Paolo
2017-01-01
This paper presents a miniaturized Doppler radar that can be used as a motion sensor for low-cost Internet of things (IoT) applications. For the first time, a radar front-end and its antenna are integrated on a multilayer cellulose-based substrate, built-up by alternating paper, glue and metal layers. The circuit exploits a distributed microstrip structure that is realized using a copper adhesive laminate, so as to obtain a low-loss conductor. The radar operates at 24 GHz and transmits 5 mW of power. The antenna has a gain of 7.4 dBi and features a half power beam-width of 48 degrees. The sensor, that is just the size of a stamp, is able to detect the movement of a walking person up to 10 m in distance, while a minimum speed of 50 mm/s up to 3 m is clearly measured. Beyond this specific result, the present paper demonstrates that the attractive features of cellulose, including ultra-low cost and eco-friendliness (i.e., recyclability and biodegradability), can even be exploited for the realization of future high-frequency hardware. This opens opens the door to the implementation on cellulose of devices and systems which make up the “sensing layer” at the base of the IoT ecosystem. PMID:28895914
Photodetectors and front-end electronics for the LHCb RICH upgrade
NASA Astrophysics Data System (ADS)
Cassina, L.; LHCb RICH
2017-12-01
The RICH detectors of the LHCb experiment provide identification of hadrons produced in high energy proton-proton collisions in the LHC at CERN over a wide momentum range (2-100 GeV/c). Cherenkov light is collected on photon detector planes sensitive to single photons. The RICH will be upgraded (in 2019) to read out every bunch crossing, at a rate of 40 MHz. The current hybrid photon detectors (HPD) will be replaced with multi-anode photomultiplier tubes (customisations of the Hamamatsu R11265 and the H12699 MaPMTs). These 8×8 pixel devices meet the experimental requirements thanks to their small pixel size, high gain, negligible dark count rate (∼50 Hz/cm2) and moderate cross-talk. The measured performance of several tubes is reported, together with their long-term stability. A new 8-channel front-end chip, named CLARO, has been designed in 0.35 μm CMOS AMS technology for the MaPMT readout. The CLARO chip operates in binary mode and combines low power consumption (∼1 mW/Ch), wide bandwidth (baseline restored in ⩽ 25 ns) and radiation hardness. A 12-bit digital register permits the optimisation of the dynamic range and the threshold level for each channel and provides tools for the on-site calibration. The design choices and the characterization of the electronics are presented.
Embedded electronics for a 64-channel wireless brain implant
NASA Astrophysics Data System (ADS)
Burgert, Johann D.; Malasek, Jan; Martel, Sylvain M.; Wiseman, Colette; Fofonoff, Timothy; Dyer, Robert; Hunter, Ian W.; Hatsopoulos, Nicholas; Donoghue, John
2001-10-01
The Telemetric Electrode Array System (TEAS) is a surgically implantable device for the study of neural activity in the brain. An 8x8 array of electrodes collects intra-cortical neural signals and connects them to an analog front end. The front end amplifies and digitizes these microvolt-level signals with 12 bits of resolution and at 31KHz per channel. Peak detection is used to extract the information carrying features of these signals, which are transmitted over a Bluetooth-based radio link at 725 Kbit/sec. The electrode array is made up of 1mm tall, 60-micron square electrodes spaced 500 microns tip-to-tip. A flex circuit connector provides mechanical isolation between the brain and the electronics, which are mounted to the cranium. Power consumption and management is a critical aspect of the design. The entire system must operate off a surgically implantable battery. With this power source, the system must provide the functionality of a wireless, 64-channel oscilloscope for several hours. The system also provides a low-power sleep mode during which the battery can be inductively charged. Power dissipation and biocompatibility issues also affect the design of the electronics for the probe. The electronics system must fit between the skull and the skin of the test subject. Thus, circuit miniaturization and microassembly techniques are essential to construct the probe's electronics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, J.; Bauer, K.; Borga, A.
The ATLAS Phase-I upgrade (2019) requires a Trigger and Data Acquisition (TDAQ) system able to trigger and record data from up to three times the nominal LHC instantaneous luminosity. Furthermore, the Front-End LInk eXchange (FELIX) system provides an infrastructure to achieve this in a scalable, detector agnostic and easily upgradeable way. It is a PC-based gateway, interfacing custom radiation tolerant optical links from front-end electronics, via PCIe Gen3 cards, to a commodity switched Ethernet or InfiniBand network. FELIX enables reducing custom electronics in favour of software running on commercial servers. Here, the FELIX system, the design of the PCIe prototypemore » card and the integration test results are presented.« less
NASA Astrophysics Data System (ADS)
Ratti, Lodovico; Manghisoni, Massimo; Re, Valerio; Speziali, Valeria
2001-12-01
This study is concerned with the simulation and design of low-noise front-end electronics monolithically integrated on the same high-resistivity substrate as multielectrode silicon detectors, in a process made available by the Istituto per la Ricerca Scientifica e Tecnologica (ITC-IRST) of Trento, Italy. The integrated front-end solutions described in this paper use N-channel JFETs as basic elements. The first one is based upon an all-NJFET charge preamplifier designed to match detector capacitances of a few picofarads and available in both a resistive and a non resistive feedback configuration. In the second solution, a single NJFET in the source-follower configuration is connected to the detector, while its source is wired to an external readout channel through an integrated capacitor.
Anderson, J.; Bauer, K.; Borga, A.; ...
2016-12-13
The ATLAS Phase-I upgrade (2019) requires a Trigger and Data Acquisition (TDAQ) system able to trigger and record data from up to three times the nominal LHC instantaneous luminosity. Furthermore, the Front-End LInk eXchange (FELIX) system provides an infrastructure to achieve this in a scalable, detector agnostic and easily upgradeable way. It is a PC-based gateway, interfacing custom radiation tolerant optical links from front-end electronics, via PCIe Gen3 cards, to a commodity switched Ethernet or InfiniBand network. FELIX enables reducing custom electronics in favour of software running on commercial servers. Here, the FELIX system, the design of the PCIe prototypemore » card and the integration test results are presented.« less
NASA Astrophysics Data System (ADS)
Bosisio, Luciano; Batignani, Giovanni; Bettarini, Stefano; Boscardin, Maurizio; Dalla Betta, Gian-Franco; Giacomini, Gabriele; Piemonte, Claudio; Verzellesi, Giovanni; Zorzi, Nicola
2006-11-01
Prototypes of ionizing radiation detectors with internal signal amplification based on the bipolar transistor effect have been fabricated at ITC-irst (Trento, Italy). Results from the electrical characterization and preliminary functional tests of the devices have been previously reported. Here, we present a more detailed investigation of the performance of this type of detector, with particular attention to their noise and rate limits. Measurements of the signal waveform and of the gain versus frequency dependence are performed by illuminating the devices with, respectively, pulsed or sinusoidally modulated IR light. Pulse height spectra of X-rays from an Am241 source have been taken with very simple front-end electronics (an LF351 operational amplifier) or by directly reading with an oscilloscope the voltage drop across a load resistor connected to the emitter. An equivalent noise charge (referred to input) of 380 electrons r.m.s. has been obtained with the first setup for a small device, with an active area of 0.5×0.5 mm2 and a depleted thickness of 0.6 mm. The corresponding power dissipation in the BJT was 17 μW. The performance limitations of the devices are discussed.
LWAs computational platform for e-consultation using mobile devices: cases from developing nations.
Olajubu, Emmanuel Ajayi; Odukoya, Oluwatoyin Helen; Akinboro, Solomon Adegbenro
2014-01-01
Mobile devices have been impacting on human standard of living by providing timely and accurate information anywhere and anytime through wireless media in developing nations. Shortage of experts in medical fields is very obvious throughout the whole world but more pronounced in developing nations. Thus, this study proposes a telemedicine platform for the vulnerable areas of developing nations. The vulnerable area are the interior with little or no medical facilities, hence the dwellers are very susceptible to sicknesses and diseases. The framework uses mobile devices that can run LightWeight Agents (LWAs) to send consultation requests to a remote medical expert in urban city from the vulnerable interiors. The feedback is conveyed to the requester through the same medium. The system architecture which contained AgenRoller, LWAs, The front-end (mobile devices) and back-end (the medical server) is presented. The algorithm for the software component of the architecture (AgenRoller) is also presented. The system is modeled as M/M/1/c queuing system, and simulated using Simevents from MATLAB Simulink environment. The simulation result presented show the average queue length, the number of entities in the queue and the number of entities departure from the system. These together present the rate of information processing in the system. A full scale development of this system with proper implementation will help extend the few medical facilities available in the urban cities in developing nations to the interiors thereby reducing the number of casualties in the vulnerable areas of the developing world especially in Sub Saharan Africa.
Extracting whole short rotation trees with a skidder and a front-end loader
R. Spinelli; B.R. Hartsough
2001-01-01
We time-studied a Caterpillar 950F front-end loader and a Caterpillar 528 grapple skidder used to extract bunched whole trees to a landing in a short rotation Eucalyptus plantation. The loader was 40-60% more productive than the grapple skidder, depending on extraction distance. Alternatively, the single loader could both extract trees and handle the landing duties,...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-07
... need to be tied to a single order ID within the CBOEdirect \\7\\ system or in the front end system used... system. Thus, the order would need to be entered in its entirety into the Exchange's system or into the applicable front end system so that the Exchange could clearly identify the total size of the order. For an...
Passive front-ends for wideband millimeter wave electronic warfare
NASA Astrophysics Data System (ADS)
Jastram, Nathan Joseph
This thesis presents the analysis, design and measurements of novel passive front ends of interest to millimeter wave electronic warfare systems. However, emerging threats in the millimeter waves (18 GHz and above) has led to a push for new systems capable of addressing these threats. At these frequencies, traditional techniques of design and fabrication are challenging due to small size, limited bandwidth and losses. The use of surface micromachining technology for wideband direction finding with multiple element antenna arrays for electronic support is demonstrated. A wideband tapered slot antenna is first designed and measured as an array element for the subsequent arrays. Both 18--36 GHz and 75--110 GHz amplitude only and amplitude/phase two element direction finding front ends are designed and measured. The design of arrays using Butler matrix and Rotman lens beamformers for greater than two element direction finding over W band and beyond using is also presented. The design of a dual polarized high power capable front end for electronic attack over an 18--45 GHz band is presented. To combine two polarizations into the same radiating aperture, an orthomode transducer (OMT) based upon a new double ridge waveguide cross section is developed. To provide greater flexibility in needed performance characteristics, several different turnstile junction matching sections are tested. A modular horn section is proposed to address flexible and ever changing operational requirements, and is designed for performance criteria such as constant gain, beamwidth, etc. A multi-section branch guide coupler and low loss Rotman lens based upon the proposed cross section are also developed. Prototyping methods for the herein designed millimeter wave electronic warfare front ends are investigated. Specifically, both printed circuit board (PCB) prototyping of micromachined systems and 3D printing of conventionally machined horns are presented. A 4--8 GHz two element array with integrated beamformer fabricated using the stacking of PCB boards is shown, and measured results compare favorably with the micromachined front ends. A 3D printed small aperture horn is compared with a conventionally machined horn, and measured results show similar performance with a ten-fold reduction in cost and weight.
Blood, Ryan P; Rynell, Patrik W; Johnson, Peter W
2012-12-01
This study measured whole-body vibration (WBV) exposures in front-end loader operators, and evaluated the effects of traction chains and work tasks on their WBV exposures. WBV exposures were measured and compared across three different front-end loader tire configurations: (a) stock rubber tires, (b) rubber tires with ladder chains, and (c) rubber tires with basket chains. The operators completed three distinct standardized tasks: driving on a city street, simulated plowing, and a simulated scooping and dumping task. A portable data acquisition system collected tri-axial time weighted and raw WBV data per ISO 2631-1 and 2631-5 standards. In addition, Global Positioning System (GPS) data were collected in order to compare loader speeds across tire conditions and the standardized tasks. Relative to the stock rubber tires, both types of tire chains significantly increased WBV exposures with the ladder chains having substantially higher WBV exposures compared to basket chains. Additionally, there were task dependent differences in WBV exposures. During the driving task, the z-axis (up and down) was the predominant exposure; the plowing task had a more even distribution of exposure across all three axes; while during scooping and dumping task, the x-axis (fore and aft) had the highest WBV exposures. The GPS data indicated that there were significant speed differences across tasks but not between the basket and ladder chain conditions. Tires with ladder chains increased the front-end loader operators' exposure to WBV above the ISO 2631-1 recommended eight hour action limit increasing risk for adverse health effects. Although more expensive, basket chains are recommended over ladder chains since they substantially lowered the front-end loader operator's exposures and may ultimately reduce vibration related wear and tear on the vehicle. In order to reduce a heavy equipment vehicle (HEV) operator's chances for developing low back pain, this study provides information that health and safety professionals can use to reduce whole-body vibration (WBV) exposures when operating front-end wheel loaders with traction chains. Copyright © 2012 National Safety Council and Elsevier Ltd. All rights reserved.
Resistive flex sensors: a survey
NASA Astrophysics Data System (ADS)
Saggio, Giovanni; Riillo, Francesco; Sbernini, Laura; Quitadamo, Lucia Rita
2016-01-01
Resistive flex sensors can be used to measure bending or flexing with relatively little effort and a relatively low budget. Their lightness, compactness, robustness, measurement effectiveness and low power consumption make these sensors useful for manifold applications in diverse fields. Here, we provide a comprehensive survey of resistive flex sensors, taking into account their working principles, manufacturing aspects, electrical characteristics and equivalent models, useful front-end conditioning circuitry, and physic-bio-chemical aspects. Particular effort is devoted to reporting on and analyzing several applications of resistive flex sensors, related to the measurement of body position and motion, and to the implementation of artificial devices. In relation to the human body, we consider the utilization of resistive flex sensors for the measurement of physical activity and for the development of interaction/interface devices driven by human gestures. Concerning artificial devices, we deal with applications related to the automotive field, robots, orthosis and prosthesis, musical instruments and measuring tools. The presented literature is collected from different sources, including bibliographic databases, company press releases, patents, master’s theses and PhD theses.
Issues in implementing a knowledge-based ECG analyzer for personal mobile health monitoring.
Goh, K W; Kim, E; Lavanya, J; Kim, Y; Soh, C B
2006-01-01
Advances in sensor technology, personal mobile devices, and wireless broadband communications are enabling the development of an integrated personal mobile health monitoring system that can provide patients with a useful tool to assess their own health and manage their personal health information anytime and anywhere. Personal mobile devices, such as PDAs and mobile phones, are becoming more powerful integrated information management tools and play a major role in many people's lives. We focus on designing a health-monitoring system for people who suffer from cardiac arrhythmias. We have developed computer simulation models to evaluate the performance of appropriate electrocardiogram (ECG) analysis techniques that can be implemented on personal mobile devices. This paper describes an ECG analyzer to perform ECG beat and episode detection and classification. We have obtained promising preliminary results from our study. Also, we discuss several key considerations when implementing a mobile health monitoring solution. The mobile ECG analyzer would become a front-end patient health data acquisition module, which is connected to the Personal Health Information Management System (PHIMS) for data repository.
Reconfigurable signal processor designs for advanced digital array radar systems
NASA Astrophysics Data System (ADS)
Suarez, Hernan; Zhang, Yan (Rockee); Yu, Xining
2017-05-01
The new challenges originated from Digital Array Radar (DAR) demands a new generation of reconfigurable backend processor in the system. The new FPGA devices can support much higher speed, more bandwidth and processing capabilities for the need of digital Line Replaceable Unit (LRU). This study focuses on using the latest Altera and Xilinx devices in an adaptive beamforming processor. The field reprogrammable RF devices from Analog Devices are used as analog front end transceivers. Different from other existing Software-Defined Radio transceivers on the market, this processor is designed for distributed adaptive beamforming in a networked environment. The following aspects of the novel radar processor will be presented: (1) A new system-on-chip architecture based on Altera's devices and adaptive processing module, especially for the adaptive beamforming and pulse compression, will be introduced, (2) Successful implementation of generation 2 serial RapidIO data links on FPGA, which supports VITA-49 radio packet format for large distributed DAR processing. (3) Demonstration of the feasibility and capabilities of the processor in a Micro-TCA based, SRIO switching backplane to support multichannel beamforming in real-time. (4) Application of this processor in ongoing radar system development projects, including OU's dual-polarized digital array radar, the planned new cylindrical array radars, and future airborne radars.
Low loss jammed-array wideband sawtooth filter based on a finite reflection virtually imaged array
NASA Astrophysics Data System (ADS)
Tan, Zhongwei; Cao, Dandan; Ding, Zhichao
2018-03-01
An edge filter is a potential technology in the fiber Bragg grating interrogation that has the advantages of fast response speed and suitability for dynamic measurement. To build a low loss, wideband jammed-array wideband sawtooth (JAWS) filter, a finite reflection virtually imaged array (FRVIA) is proposed and demonstrated. FRVIA is different from the virtually imaged phased array in that it has a low reflective front end. This change will lead to many differences in the device's performance in output optical intensity distribution, spectral resolution, output aperture, and tolerance of the manufacture errors. A low loss, wideband JAWS filter based on an FRVIA can provide an edge filter for each channel, respectively.
MIMIC For Millimeter Wave Integrated Circuit Radars
NASA Astrophysics Data System (ADS)
Seashore, C. R.
1987-09-01
A significant program is currently underway in the U.S. to investigate, develop and produce a variety of GaAs analog circuits for use in microwave and millimeter wave sensors and systems. This represents a "new wave" of RF technology which promises to significantly change system engineering thinking relative to RF Architectures. At millimeter wave frequencies, we look forward to a relatively high level of critical component integration based on MESFET and HEMT device implementations. These designs will spawn more compact RF front ends with colocated antenna/transceiver functions and innovative packaging concepts which will survive and function in a typical military operational environment which includes challenging temperature, shock and special handling requirements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Jue-Fei; School of Electronics and Information Engineering, Suzhou Vocational University, Suzhou 215104; Zhou, Liping, E-mail: zhoulp@suda.edu.cn, E-mail: leigao@suda.edu.cn
The electronic transport properties of benzene–porphyrin–benzene (BPB) molecules coupled to gold (Au) electrodes were investigated. By successively removing the front-end Au atoms, several BPB junctions with different molecule-electrode contact symmetries were constructed. The calculated current–voltage (I–V) curves depended strongly on the contact configurations between the BPB molecules and the Au electrodes. In particular, a significant low-voltage negative differential resistance effect appeared at −0.3 V in the junctions with pyramidal electrodes on both sides. Along with the breaking of this tip-contact symmetry, the low-bias negative differential resistance effect gradually disappeared. This tip-contact may be ideal for use in the design ofmore » future molecular devices because of its similarity with experimental processes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ianakiev, Kiril Dimitrov; Iliev, Metodi; Swinhoe, Martyn Thomas
The KM200 device is a versatile, configurable front-end electronics boards that can be used as a functional replacement for Canberra’s JAB-01 boards based on the Amptek A-111 hybrid chip, which continues to be the preferred choice of electronics for large number of the boards in junction boxes of multiplicity counters that process the signal from an array of 3He detectors. Unlike the A-111 chip’s fixed time constants and sensitivity range, the shaping time and sensitivity of the new KM200 can be optimized for demanding applications such as spent fuel, and thus could improve the safeguards measurements of existing systems wheremore » the A-111 or PDT electronics does not perform well.« less
Dust-tolerant electrical connector
NASA Technical Reports Server (NTRS)
Sadick, Shazad (Inventor); Herman, Jason (Inventor); Roberts, Dustyn (Inventor)
2011-01-01
A connector assembly includes releasably mateable plug and receptacle units. At least one socket is enclosed within the receptacle unit and is aligned with at least one permeable membrane disposed in the front end of the receptacle unit. The plug unit includes a body slidably mounted within a longitudinal bore therein. At least one pin extends from the front end of the body and is aligned with at least one permeable membrane disposed in the front end of the plug unit. The plug unit is biased toward a first, de-mate position in which the body is extended rearwardly such that the pin is enclosed with the plug unit and is slidable to a second, mate position in which the body is compressed forwardly such that the pin projects through the permeable membranes of the plug and receptacle units to electrically connect with the socket.
Design of an Intelligent Front-End Signal Conditioning Circuit for IR Sensors
NASA Astrophysics Data System (ADS)
de Arcas, G.; Ruiz, M.; Lopez, J. M.; Gutierrez, R.; Villamayor, V.; Gomez, L.; Montojo, Mª. T.
2008-02-01
This paper presents the design of an intelligent front-end signal conditioning system for IR sensors. The system has been developed as an interface between a PbSe IR sensor matrix and a TMS320C67x digital signal processor. The system architecture ensures its scalability so it can be used for sensors with different matrix sizes. It includes an integrator based signal conditioning circuit, a data acquisition converter block, and a FPGA based advanced control block that permits including high level image preprocessing routines such as faulty pixel detection and sensor calibration in the signal conditioning front-end. During the design phase virtual instrumentation technologies proved to be a very valuable tool for prototyping when choosing the best A/D converter type for the application. Development time was significantly reduced due to the use of this technology.
Development and Demonstration of a Magnesium-Intensive Vehicle Front-End Substructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Logan, Stephen D.; Forsmark, Joy H.; Osborne, Richard
2016-07-01
This project is the final phase (designated Phase III) of an extensive, nine-year effort with the objectives of developing a knowledge base and enabling technologies for the design, fabrication and performance evaluation of magnesium-intensive automotive front-end substructures intended to partially or completely replace all-steel comparators, providing a weight savings approaching 50% of the baseline. Benefits of extensive vehicle weight reduction in terms of fuel economy increase, extended vehicle range, vehicle performance and commensurate reductions in greenhouse gas emissions are well known. An exemplary vehicle substructure considered by the project is illustrated in Figure 1, along with the exterior vehicle appearance.more » This unibody front-end “substructure” is one physical objective of the ultimate design and engineering aspects established at the outset of the larger collective effort.« less
An instrumental electrode model for solving EIT forward problems.
Zhang, Weida; Li, David
2014-10-01
An instrumental electrode model (IEM) capable of describing the performance of electrical impedance tomography (EIT) systems in the MHz frequency range has been proposed. Compared with the commonly used Complete Electrode Model (CEM), which assumes ideal front-end interfaces, the proposed model considers the effects of non-ideal components in the front-end circuits. This introduces an extra boundary condition in the forward model and offers a more accurate modelling for EIT systems. We have demonstrated its performance using simple geometry structures and compared the results with the CEM and full Maxwell methods. The IEM can provide a significantly more accurate approximation than the CEM in the MHz frequency range, where the full Maxwell methods are favoured over the quasi-static approximation. The improved electrode model will facilitate the future characterization and front-end design of real-world EIT systems.
Zhang, Xiaoliang; Aitola, Kerttu; Hägglund, Carl; Kaskela, Antti; Johansson, Malin B; Sveinbjörnsson, Kári; Kauppinen, Esko I; Johansson, Erik M J
2017-01-20
Single-walled carbon nanotubes (SWCNTs) show great potential as an alternative material for front electrodes in photovoltaic applications, especially for flexible devices. In this work, a press-transferred transparent SWCNT film was utilized as front electrode for colloidal quantum dot solar cells (CQDSCs). The solar cells were fabricated on both glass and flexible substrates, and maximum power conversion efficiencies of 5.5 and 5.6 %, respectively, were achieved, which corresponds to 90 and 92 % of an indium-doped tin oxide (ITO)-based device (6.1 %). The SWCNTs are therefore a very good alternative to the ITO-based electrodes especially for flexible solar cells. The optical electric field distribution and optical losses within the devices were simulated theoretically and the results agree with the experimental results. With the optical simulations that were performed it may also be possible to enhance the photovoltaic performance of SWCNT-based solar cells even further by optimizing the device configuration or by using additional optical active layers, thus reducing light reflection of the device and increasing light absorption in the quantum dot layer. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Characterization of 4H <000-1> Silicon Carbide Films Grown by Solvent-Laser Heated Floating Zone
NASA Technical Reports Server (NTRS)
Woodworth, Andrew, A; Sayir, Ali; Neudeck, Philip, G; Raghothamachar, Balaji; Dudley, Michael
2012-01-01
Commercially available bulk silicon carbide (SiC) has a high number (>2000/sq cm) of screw dislocations (SD) that have been linked to degradation of high-field power device electrical performance properties. Researchers at the NASA Glenn Research Center have proposed a method to mass-produce significantly higher quality bulk SiC. In order for this bulk growth method to become reality, growth of long single crystal SiC fibers must first be achieved. Therefore, a new growth method, Solvent-Laser Heated Floating Zone (Solvent-LHFZ), has been implemented. While some of the initial Solvent-LHFZ results have recently been reported, this paper focuses on further characterization of grown crystals and their growth fronts. To this end, secondary ion mass spectroscopy (SIMS) depth profiles, cross section analysis by focused ion beam (FIB) milling and mechanical polishing, and orientation and structural characterization by x-ray transmission Laue diffraction patterns and x-ray topography were used. Results paint a picture of a chaotic growth front, with Fe incorporation dependant on C concentration.
4. EXTERIOR OF SOUTH END OF BUILDING 103 SHOWING 1LIGHT ...
4. EXTERIOR OF SOUTH END OF BUILDING 103 SHOWING 1-LIGHT SIDE EXIT DOOR AND ORIGINAL WOOD-FRAMED SLIDING GLASS KITCHEN WINDOWS AT PHOTO LEFT, CRISS-CROSS WOOD BALUSTRADE AROUND FRONT PORCH WITH OPEN DOOWAY TO BASEMENT BENEATH, AND STONE FACING ALONG ORIGINAL PORTION OF HOUSE FRONT AT PHOTO RIGHT. VIEW TO WEST. - Rush Creek Hydroelectric System, Worker Cottage, Rush Creek, June Lake, Mono County, CA
Detecting Motion from a Moving Platform; Phase 1: Biomimetic Vision Sensor
2011-11-01
optical design software, Zemax , was used to explore various optical configurations that led to the optical front-ends of the hardware prototypes...and a Truly Curved Surface 4.2. Modeling and Simulation Simulations were performed using both Zemax and MATLAB. In particular, the various...tradeoffs for light propagation through the front-end optics were investigated by simulating with Zemax , then building the physical optics for the best
Improved Load Alleviation Capability for the KC-135
1997-09-01
software, such as Matlab, Mathematica, Simulink, and Robotica Front End for Mathematica available in the simulation laboratory Overview This thesis report is...outlined in Spong’s text in order to utilize the Robotica system development software which automates the process of calculating the kinematic and...kinematic and dynamic equations can be accomplished using a computer tool called Robotica Front End (RFE) [ 15], developed by Doctor Spong. Boom Root d3
An RFID tag system-on-chip with wireless ECG monitoring for intelligent healthcare systems.
Wang, Cheng-Pin; Lee, Shuenn-Yuh; Lai, Wei-Chih
2013-01-01
This paper presents a low-power wireless ECG acquisition system-on-chip (SoC), including an RF front-end circuit, a power unit, an analog front-end circuit, and a digital circuitry. The proposed RF front-end circuit can provide the amplitude shift keying demodulation and distance to digital conversion to accurately receive the data from the reader. The received data will wake up the power unit to provide the required supply voltages of analog front-end (AFE) and digital circuitry. The AFE, including a pre-amplifier, an analog filter, a post-amplifier, and an analog-to-digital converter, is used for the ECG acquisition. Moreover, the EPC Class I Gen 2 UHF standard is employed in the digital circuitry for the handshaking of communication and the control of the system. The proposed SoC has been implemented in 0.18-µm standard CMOS process and the measured results reveal the communication is compatible to the RFID protocol. The average power consumption for the operating chip is 12 µW. Using a Sony PR44 battery to the supply power (605mAh@1.4V), the RFID tag SoC operates continuously for about 50,000 hours (>5 years), which is appropriate for wireless wearable ECG monitoring systems.
Choi, Hojong; Li, Xiang; Lau, Sien-Ting; Hu, ChangHong; Zhou, Qifa; Shung, K. Kirk
2012-01-01
This paper describes the design of a front-end circuit consisting of an integrated preamplifier with a Sallen-Key Butterworth filter for very-high-frequency ultrasonic transducers and a low-power handheld receiver. This preamplifier was fabricated using a 0.18-μm 7WL SiGe bi-polar complementary metal oxide semiconductor (BiCMOS) process. The Sallen-Key filter is used to increase the voltage gain of the front-end circuit for high-frequency transducers which are generally low in sensitivity. The measured peak voltage gain of the frontend circuits for the BiCMOS preamplifier with the Sallen-Key filter was 41.28 dB at 100 MHz with a −6-dB bandwidth of 91%, and the dc power consumption of the BiCMOS preamplifier was 49.53 mW. The peak voltage gain of the front-end circuits for the CMOS preamplifier with the Sallen-Key filter was 39.52 dB at 100 MHz with a −6-dB bandwidth of 108%, and the dc power consumption of the CMOS preamplifier was 43.57 mW. Pulse-echo responses and wire phantom images with a single-element ultrasonic transducer have been acquired to demonstrate the performance of the front-end circuit. PMID:23443700
Plasma flow in peripheral region of detached plasma in linear plasma device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayashi, Y., E-mail: hayashi-yuki13@ees.nagoya-u.ac.jp; Ohno, N.; Kajita, S.
2016-01-15
A plasma flow structure is investigated using a Mach probe under detached plasma condition in a linear plasma device NAGDIS-II. A reverse flow along the magnetic field is observed in a steady-state at far-peripheral region of the plasma column in the upstream side from the recombination front. These experimental results indicate that plasma near the recombination front should strongly diffuse across the magnetic field, and it should be transported along the magnetic field in the reverse flow direction. Furthermore, bursty plasma density fluctuations associated with intermittent convective plasma transport are observed in the far-peripheral region of the plasma column inmore » both upstream and downstream sides from the recombination front. Such a nondiffusive transport can contribute to the intermittent reverse plasma flow, and the experimental results indicate that intermittent transports are frequently produced near the recombination front.« less
SOUTH FRONT AND EAST SIDE. January, 1998 Edwards Air ...
SOUTH FRONT AND EAST SIDE. January, 1998 - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Electrical Substation, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
4. NORTHWEST FRONT, WITH FOUR BULLET GLASS WINDOWS. Edwards ...
4. NORTHWEST FRONT, WITH FOUR BULLET GLASS WINDOWS. - Edwards Air Force Base, South Base Sled Track, Observation Block House, Station "O" area, east end of Sled Track, Lancaster, Los Angeles County, CA
Design of area array CCD image acquisition and display system based on FPGA
NASA Astrophysics Data System (ADS)
Li, Lei; Zhang, Ning; Li, Tianting; Pan, Yue; Dai, Yuming
2014-09-01
With the development of science and technology, CCD(Charge-coupled Device) has been widely applied in various fields and plays an important role in the modern sensing system, therefore researching a real-time image acquisition and display plan based on CCD device has great significance. This paper introduces an image data acquisition and display system of area array CCD based on FPGA. Several key technical challenges and problems of the system have also been analyzed and followed solutions put forward .The FPGA works as the core processing unit in the system that controls the integral time sequence .The ICX285AL area array CCD image sensor produced by SONY Corporation has been used in the system. The FPGA works to complete the driver of the area array CCD, then analog front end (AFE) processes the signal of the CCD image, including amplification, filtering, noise elimination, CDS correlation double sampling, etc. AD9945 produced by ADI Corporation to convert analog signal to digital signal. Developed Camera Link high-speed data transmission circuit, and completed the PC-end software design of the image acquisition, and realized the real-time display of images. The result through practical testing indicates that the system in the image acquisition and control is stable and reliable, and the indicators meet the actual project requirements.
40 CFR 63.486 - Batch front-end process vent provisions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... National Emission Standards for Hazardous Air Pollutant Emissions: Group I Polymers and Resins § 63.486... paragraph (b) of this section, owners and operators of new and existing affected sources with batch front...
31. SOUTH FRONT ELEVATION OF BUILDING 232 (MINE SHOP) IN ...
31. SOUTH FRONT ELEVATION OF BUILDING 232 (MINE SHOP) IN ASSEMBLY AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME
40. NORTHWEST FRONT ELEVATION OF BUILDING 269 (PAINT BUILDING) IN ...
40. NORTHWEST FRONT ELEVATION OF BUILDING 269 (PAINT BUILDING) IN ASSEMBLY AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME
25. SOUTHEAST FRONT ELEVATION OF BUILDING 227 (FIRE STATION) IN ...
25. SOUTHEAST FRONT ELEVATION OF BUILDING 227 (FIRE STATION) IN ASSEMBLY AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME
1. MISSILE TEST AND ASSEMBLY BUILDING, FRONT, LOOKING SOUTH. ...
1. MISSILE TEST AND ASSEMBLY BUILDING, FRONT, LOOKING SOUTH. - NIKE Missile Base SL-40, Missile Test & Assembly Building, South end of launch area, northeast of Generator Building No. 3, Hecker, Monroe County, IL
14. WEST FRONT ELEVATION OF BUILDING 343 (STORAGE MAGAZINE) IN ...
14. WEST FRONT ELEVATION OF BUILDING 343 (STORAGE MAGAZINE) IN STORAGE AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME
11. WEST FRONT ELEVATION OF BUILDING 342 (STORAGE MAGAZINE) IN ...
11. WEST FRONT ELEVATION OF BUILDING 342 (STORAGE MAGAZINE) IN STORAGE AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME
1. PAINT AND OIL STORAGE SHED, FRONT, LOOKING SOUTHWEST. ...
1. PAINT AND OIL STORAGE SHED, FRONT, LOOKING SOUTHWEST. - NIKE Missile Base SL-40, Paint & Oil Storage Shed, North end of base, northwest of Mess Hall & south of Basketball Court, Hecker, Monroe County, IL
Monolithic Gallium Arsenide Superheterodyne Front End.
1982-06-01
which also provides a con - venient heat sink (not of primary importance in this application due to the low power dissipation of the monolithic...components utilized in the receiver front end). The thickness of the GaAs is then selected as a compromise between con - flicting requirements. A thick...International ERC41014.2FR 2.4 Analysis and Design for Low Noise The design of monolithic amplifiers for low noise must take into con - sideration active
ERIC Educational Resources Information Center
Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.
THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF DIESEL ENGINE TUNE-UP PROCEDURES AND THE DESIGN OF FRONT END SUSPENSION AND AXLES USED ON DIESEL ENGINE EQUIPMENT. TOPICS ARE (1) PRE-TUNE-UP CHECKS, (2) TIMING THE ENGINE, (3) INJECTOR PLUNGER AND VALVE ADJUSTMENTS, (4) FUEL PUMP ADJUSTMENTS ON THE ENGINE (PTR AND PTG),…
Front End Analysis of Soldier Individual Power Systems
1993-05-01
in the state-of-the-art MOD-GPHS-RTG, but with the fuel being polonium 210 , with a half life of 13.1.4 days, in the form of a gadolinium polonide (GdPo...allies, and industry to evaluate state-of-the-art technologies and integrate them into a system with synergistic improvement in combat effectiveness . The...Schemes ................................................... 79 Front End Analysis of Soldier Individual Power S LIST OF FIGURES I Effect of Mission
Microwave integrated circuit radiometer front-ends for the Push Broom Microwave Radiometer
NASA Technical Reports Server (NTRS)
Harrington, R. F.; Hearn, C. P.
1982-01-01
Microwave integrated circuit front-ends for the L-band, S-band and C-band stepped frequency null-balanced noise-injection Dicke-switched radiometer to be installed in the NASA Langley airborne prototype Push Broom Microwave Radiometer (PBMR) are described. These front-ends were developed for the fixed frequency of 1.413 GHz and the variable frequencies of 1.8-2.8 GHz and 3.8-5.8 GHz. Measurements of the noise temperature of these units were made at 55.8 C, and the results of these tests are given. While the overall performance was reasonable, improvements need to be made in circuit losses and noise temperatures, which in the case of the C-band were from 1000 to 1850 K instead of the 500 K specified. Further development of the prototypes is underway to improve performance and extend the frequency range.
A High Input Impedance Low Noise Integrated Front-End Amplifier for Neural Monitoring.
Zhou, Zhijun; Warr, Paul A
2016-12-01
Within neural monitoring systems, the front-end amplifier forms the critical element for signal detection and pre-processing, which determines not only the fidelity of the biosignal, but also impacts power consumption and detector size. In this paper, a novel combined feedback loop-controlled approach is proposed to compensate for input leakage currents generated by low noise amplifiers when in integrated circuit form alongside signal leakage into the input bias network. This loop topology ensures the Front-End Amplifier (FEA) maintains a high input impedance across all manufacturing and operational variations. Measured results from a prototype manufactured on the AMS 0.35 [Formula: see text] CMOS technology is provided. This FEA consumes 3.1 [Formula: see text] in 0.042 [Formula: see text], achieves input impedance of 42 [Formula: see text], and 18.2 [Formula: see text] input-referred noise.
NASA Astrophysics Data System (ADS)
Gómez-Galán, J. A.; Sánchez-Rodríguez, T.; Sánchez-Raya, M.; Martel, I.; López-Martín, A.; Carvajal, R. G.; Ramírez-Angulo, J.
2014-06-01
This paper evaluates the design of front-end electronics in modern technologies to be used in a new generation of heavy ion detectors—HYDE (FAIR, Germany)—proposing novel architectures to achieve high gain in a low voltage environment. As conventional topologies of operational amplifiers in modern CMOS processes show limitations in terms of gain, novel approaches must be raised. The work addresses the design using transistors with channel length of no more than double the feature size and a supply voltage as low as 1.2 V. A front-end system has been fabricated in a 90 nm process including gain boosting techniques based on regulated cascode circuits. The analog channel has been optimized to match a detector capacitance of 5 pF and exhibits a good performance in terms of gain, speed, linearity and power consumption.
Broadband quantitative NQR for authentication of vitamins and dietary supplements
NASA Astrophysics Data System (ADS)
Chen, Cheng; Zhang, Fengchao; Bhunia, Swarup; Mandal, Soumyajit
2017-05-01
We describe hardware, pulse sequences, and algorithms for nuclear quadrupole resonance (NQR) spectroscopy of medicines and dietary supplements. Medicine and food safety is a pressing problem that has drawn more and more attention. NQR is an ideal technique for authenticating these substances because it is a non-invasive method for chemical identification. We have recently developed a broadband NQR front-end that can excite and detect 14N NQR signals over a wide frequency range; its operating frequency can be rapidly set by software, while sensitivity is comparable to conventional narrowband front-ends over the entire range. This front-end improves the accuracy of authentication by enabling multiple-frequency experiments. We have also developed calibration and signal processing techniques to convert measured NQR signal amplitudes into nuclear spin densities, thus enabling its use as a quantitative technique. Experimental results from several samples are used to illustrate the proposed methods.
Development of a front end controller/heap manager for PHENIX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ericson, M.N.; Allen, M.D.; Musrock, M.S.
1996-12-31
A controller/heap manager has been designed for applicability to all detector subsystem types of PHENIX. the heap manager performs all functions associated with front end electronics control including ADC and analog memory control, data collection, command interpretation and execution, and data packet forming and communication. Interfaces to the unit consist of a timing and control bus, a serial bus, a parallel data bus, and a trigger interface. The topology developed is modular so that many functional blocks are identical for a number of subsystem types. Programmability is maximized through the use of flexible modular functions and implementation using field programmablemore » gate arrays (FPGAs). Details of unit design and functionality will be discussed with particular detail given to subsystems having analog memory-based front end electronics. In addition, mode control, serial functions, and FPGA implementation details will be presented.« less
Development of a data management front-end for use with a LANDSAT-based information system
NASA Technical Reports Server (NTRS)
Turner, B. J.
1982-01-01
The development and implementation of a data management front-end system for use with a LANDSAT based information system that facilitates the processsing of both LANDSAT and ancillary data was examined. The final tasks, reported on here, involved; (1) the implementation of the VICAR image processing software system at Penn State and the development of a user-friendly front-end for this system; (2) the implementation of JPL-developed software based on VICAR, for mosaicking LANDSAT scenes; (3) the creation and storage of a mosiac of 1981 summer LANDSAT data for the entire state of Pennsylvania; (4) demonstrations of the defoliation assessment procedure for Perry and Centre Counties, and presentation of the results at the 1982 National Gypsy Moth Review Meeting, and (5) the training of Pennsylvania Bureau of Forestry personnel in the use of the defoliation analysis system.
A Front-End Analysis Of Rear-End Crashes
DOT National Transportation Integrated Search
1992-05-17
THIS PAPER DESCRIBES THE APPLICATION OF A SEVEN-STEP CRASH PROBLEM ANALYSIS METHODOLOGY, AS DESCRIBED IN THE PRECEDING PAPER BY LEASURE (1), TO REAR-END CRASHES. THE PAPER SHOWS HOW MODELING OF REAR-END CRASH SCENARIOS AND CANDIDATE COUNTERMEASURE AC...
Solid State Lighting Program (Falcon)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meeks, Steven
2012-06-30
Over the past two years, KLA-Tencor and partners successfully developed and deployed software and hardware tools that increase product yield for High Brightness LED (HBLED) manufacturing and reduce product development and factory ramp times. This report summarizes our development effort and details of how the results of the Solid State Light Program (Falcon) have started to help HBLED manufacturers optimize process control by enabling them to flag and correct identified killer defect conditions at any point of origin in the process manufacturing flow. This constitutes a quantum leap in yield management over current practice. Current practice consists of die dispositioningmore » which is just rejection of bad die at end of process based upon probe tests, loosely assisted by optical in-line monitoring for gross process deficiencies. For the first time, and as a result of our Solid State Lighting Program, our LED manufacturing partners have obtained the software and hardware tools that optimize individual process steps to control killer defects at the point in the processes where they originate. Products developed during our two year program enable optimized inspection strategies for many product lines to minimize cost and maximize yield. The Solid State Lighting Program was structured in three phases: i) the development of advanced imaging modes that achieve clear separation between LED defect types, improves signal to noise and scan rates, and minimizes nuisance defects for both front end and back end inspection tools, ii) the creation of defect source analysis (DSA) software that connect the defect maps from back-end and front-end HBLED manufacturing tools to permit the automatic overlay and traceability of defects between tools and process steps, suppress nuisance defects, and identify the origin of killer defects with process step and conditions, and iii) working with partners (Philips Lumileds) on product wafers, obtain a detailed statistical correlation of automated defect and DSA map overlay to failed die identified using end product probe test results. Results from our two year effort have led to “automated end-to-end defect detection” with full defect traceability and the ability to unambiguously correlate device killer defects to optically detected features and their point of origin within the process. Success of the program can be measured by yield improvements at our partner’s facilities and new product orders.« less
Slow Progress in Dune (Left Front Wheel)
NASA Technical Reports Server (NTRS)
2005-01-01
The left front wheel of NASA's Mars Exploration Rover Opportunity makes slow but steady progress through soft dune material in this movie clip of frames taken by the rover's front hazard identification camera over a period of several days. The sequence starts on Opportunity's 460th martian day, or sol (May 10, 2005) and ends 11 days later. In eight drives during that period, Opportunity advanced a total of 26 centimeters (10 inches) while spinning its wheels enough to have driven 46 meters (151 feet) if there were no slippage. The motion appears to speed up near the end of the clip, but that is an artifact of individual frames being taken less frequently.BOWS (bioinformatics open web services) to centralize bioinformatics tools in web services.
Velloso, Henrique; Vialle, Ricardo A; Ortega, J Miguel
2015-06-02
Bioinformaticians face a range of difficulties to get locally-installed tools running and producing results; they would greatly benefit from a system that could centralize most of the tools, using an easy interface for input and output. Web services, due to their universal nature and widely known interface, constitute a very good option to achieve this goal. Bioinformatics open web services (BOWS) is a system based on generic web services produced to allow programmatic access to applications running on high-performance computing (HPC) clusters. BOWS intermediates the access to registered tools by providing front-end and back-end web services. Programmers can install applications in HPC clusters in any programming language and use the back-end service to check for new jobs and their parameters, and then to send the results to BOWS. Programs running in simple computers consume the BOWS front-end service to submit new processes and read results. BOWS compiles Java clients, which encapsulate the front-end web service requisitions, and automatically creates a web page that disposes the registered applications and clients. Bioinformatics open web services registered applications can be accessed from virtually any programming language through web services, or using standard java clients. The back-end can run in HPC clusters, allowing bioinformaticians to remotely run high-processing demand applications directly from their machines.
Satellite-Tracking Millimeter-Wave Reflector Antenna System For Mobile Satellite-Tracking
NASA Technical Reports Server (NTRS)
Densmore, Arthur C. (Inventor); Jamnejad, Vahraz (Inventor); Woo, Kenneth E. (Inventor)
2001-01-01
A miniature dual-band two-way mobile satellite-tracking antenna system mounted on a movable vehicle includes a miniature parabolic reflector dish having an elliptical aperture with major and minor elliptical axes aligned horizontally and vertically, respectively, to maximize azimuthal directionality and minimize elevational directionality to an extent corresponding to expected pitch excursions of the movable ground vehicle. A feed-horn has a back end and an open front end facing the reflector dish and has vertical side walls opening out from the back end to the front end at a lesser horn angle and horizontal top and bottom walls opening out from the back end to the front end at a greater horn angle. An RF circuit couples two different signal bands between the feed-horn and the user. An antenna attitude controller maintains an antenna azimuth direction relative to the satellite by rotating it in azimuth in response to sensed yaw motions of the movable ground vehicle so as to compensate for the yaw motions to within a pointing error angle. The controller sinusoidally dithers the antenna through a small azimuth dither angle greater than the pointing error angle while sensing a signal from the satellite received at the reflector dish, and deduces the pointing angle error from dither-induced fluctuations in the received signal.
A satellite-tracking millimeter-wave reflector antenna system for mobile satellite-tracking
NASA Technical Reports Server (NTRS)
Densmore, Arthur C. (Inventor); Jamnejad, Vahraz (Inventor); Woo, Kenneth E. (Inventor)
1995-01-01
A miniature dual-band two-way mobile satellite tracking antenna system mounted on a movable ground vehicle includes a miniature parabolic reflector dish having an elliptical aperture with major and minor elliptical axes aligned horizontally and vertically, respectively, to maximize azimuthal directionality and minimize elevational directionality to an extent corresponding to expected pitch excursions of the movable ground vehicle. A feed-horn has a back end and an open front end facing the reflector dish and has vertical side walls opening out from the back end to the front end at a lesser horn angle and horizontal top and bottom walls opening out from the back end to the front end at a greater horn angle. An RF circuit couples two different signal bands between the feed-horn and the user. An antenna attitude controller maintains an antenna azimuth direction relative to the satellite by rotating it in azimuth in response to sensed yaw motions of the movable ground vehicle so as to compensate for the yaw motions to within a pointing error angle. The controller sinusoidally dithers the antenna through a small azimuth dither angle greater than the pointing error angle while sensing a signal from the satellite received at the reflector dish, and deduces the pointing angle error from dither-induced fluctuations in the received signal.
A new data acquisition system for the CMS Phase 1 pixel detector
NASA Astrophysics Data System (ADS)
Kornmayer, A.
2016-12-01
A new pixel detector will be installed in the CMS experiment during the extended technical stop of the LHC at the beginning of 2017. The new pixel detector, built from four layers in the barrel region and three layers on each end of the forward region, is equipped with upgraded front-end readout electronics, specifically designed to handle the high particle hit rates created in the LHC environment. The DAQ back-end was entirely redesigned to handle the increased number of readout channels, the higher data rates per channel and the new digital data format. Based entirely on the microTCA standard, new front-end controller (FEC) and front-end driver (FED) cards have been developed, prototyped and produced with custom optical link mezzanines mounted on the FC7 AMC and custom firmware. At the same time as the new detector is being assembled, the DAQ system is set up and its integration into the CMS central DAQ system tested by running the pilot blade detector already installed in CMS. This work describes the DAQ system, integration tests and gives an outline for the activities up to commissioning the final system at CMS in 2017.
Brusati, M.; Camplani, A.; Cannon, M.; ...
2017-02-20
SRAM-ba8ed Field Programmable Gate Array (FPGA) logic devices arc very attractive in applications where high data throughput is needed, such as the latest generation of High Energy Physics (HEP) experiments. FPGAs have been rarely used in such experiments because of their sensitivity to radiation. The present paper proposes a mitigation approach applied to commercial FPGA devices to meet the reliability requirements for the front-end electronics of the Liquid Argon (LAr) electromagnetic calorimeter of the ATLAS experiment, located at CERN. Particular attention will be devoted to define a proper mitigation scheme of the multi-gigabit transceivers embedded in the FPGA, which ismore » a critical part of the LAr data acquisition chain. A demonstrator board is being developed to validate the proposed methodology. :!\\litigation techniques such as Triple Modular Redundancy (T:t\\IR) and scrubbing will be used to increase the robustness of the design and to maximize the fault tolerance from Single-Event Upsets (SEUs).« less
BBIS: Beacon Bus Information System
NASA Astrophysics Data System (ADS)
Kasim, Shahreen; Hafit, Hanayanti; Pei Juin, Kong; Afizah Afif, Zehan; Hashim, Rathiah; Ruslai, Husni; Jahidin, Kamaruzzaman; Syafwan Arshad, Mohammad
2016-11-01
Lack of bus information for example bus timetable, status of the bus and messy advertisement on bulletin board at the bus stop will give negative impact to tourist. Therefore, a real-time update bus information bulletin board provides all information needed so that passengers can save their bus information searching time. Supported with Android or iOS, Beacon Bus Information System (BBIS) provides bus information between Batu Pahat and Kluang area. BBIS is a system that implements physical web technology and interaction on demand. It built on Backend-as-a-Service, a cloud solution and Firebase non relational database as data persistence backend and syncs between user client in the real-time. People walk through bus stop with smart device and do not require any application. Bluetooth Beacon is used to achieve smart device's best performance of data sharing. Intellij IDEA 15 is one of the tools that that used to develop the BBIS system. Multi-language included front end and backend supported Integration development environment (IDE) helped to speed up integration process.
Development of a Mobile User Interface for Image-based Dietary Assessment
Kim, SungYe; Schap, TusaRebecca; Bosch, Marc; Maciejewski, Ross; Delp, Edward J.; Ebert, David S.; Boushey, Carol J.
2011-01-01
In this paper, we present a mobile user interface for image-based dietary assessment. The mobile user interface provides a front end to a client-server image recognition and portion estimation software. In the client-server configuration, the user interactively records a series of food images using a built-in camera on the mobile device. Images are sent from the mobile device to the server, and the calorie content of the meal is estimated. In this paper, we describe and discuss the design and development of our mobile user interface features. We discuss the design concepts, through initial ideas and implementations. For each concept, we discuss qualitative user feedback from participants using the mobile client application. We then discuss future designs, including work on design considerations for the mobile application to allow the user to interactively correct errors in the automatic processing while reducing the user burden associated with classical pen-and-paper dietary records. PMID:24455755
Prospects for charge sensitive amplifiers in scaled CMOS
NASA Astrophysics Data System (ADS)
O'Connor, Paul; De Geronimo, Gianluigi
2002-03-01
Due to its low cost and flexibility for custom design, monolithic CMOS technology is being increasingly employed in charge preamplifiers across a broad range of applications, including both scientific research and commercial products. The associated detectors have capacitances ranging from a few tens of fF to several hundred pF. Applications call for pulse shaping from tens of ns to tens of μs, and constrain the available power per channel from tens of μW to tens of mW. At the same time a new technology generation, with changed device parameters, appears every 2 years or so. The optimum design of the front-end circuitry is examined taking into account submicron device characteristics, weak inversion operation, the reset system, and power supply scaling. Experimental results from recent prototypes will be presented. We will also discuss the evolution of preamplifier topologies and anticipated performance limits as CMOS technology scales down to the 0.1 μm/1.0 V generation in 2006.
1. NORTHWEST SIDE AND SOUTHWEST FRONT. Looking east. Edwards ...
1. NORTHWEST SIDE AND SOUTHWEST FRONT. Looking east. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Firing Control Building, Test Area 1-100, northeast end of Test Area 1-100 Road, Boron, Kern County, CA
29. SOUTHEAST FRONT ELEVATION OF BUILDING 229 (ELECTRIC POWER STATION) ...
29. SOUTHEAST FRONT ELEVATION OF BUILDING 229 (ELECTRIC POWER STATION) IN ASSEMBLY AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME
35. EAST FRONT ELEVATION OF BUILDING 233 (MISSLE ASSEMBLY SHOP) ...
35. EAST FRONT ELEVATION OF BUILDING 233 (MISSLE ASSEMBLY SHOP) IN ASSEMBLY AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME
19. SOUTH FRONT ELEVATION OF BUILDING 216 (AMMUNITION MAINTENANCE SHOP) ...
19. SOUTH FRONT ELEVATION OF BUILDING 216 (AMMUNITION MAINTENANCE SHOP) IN ASSEMBLY AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME
49. NORTHEAST FRONT ELEVATION OF BUILDING 365 (ARMAMENT TESTING BUILDING) ...
49. NORTHEAST FRONT ELEVATION OF BUILDING 365 (ARMAMENT TESTING BUILDING) IN BASE SPARES AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME
52. NORTHWEST FRONT ELEVATION OF BUILDING 367 (ADMINISTRATION OFFICE BUILDING) ...
52. NORTHWEST FRONT ELEVATION OF BUILDING 367 (ADMINISTRATION OFFICE BUILDING) IN BASE SPARES AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME
16. EAST FRONT ELEVATION OF BUILDING 345 (ENTRY CONTROL BUILDING) ...
16. EAST FRONT ELEVATION OF BUILDING 345 (ENTRY CONTROL BUILDING) IN STORAGE AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME
61. SOUTHEAST FRONT ELEVATION OF BUILDING 372 (HAZARDOUS STORAGE) IN ...
61. SOUTHEAST FRONT ELEVATION OF BUILDING 372 (HAZARDOUS STORAGE) IN BASE SPARES AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME
Upgrade of the Minos+ Experiment Data Acquisition for the High Energy NuMI Beam Run
Badgett, William; Hahn, Steve R.; Torretta, Donatella; ...
2016-03-14
The Minos+ experiment is an extension of the Minos experiment at a higher energy and more intense neutrino beam, with the data collection having begun in the fall of 2013. The neutrino beam is provided by the Neutrinos from the Main Injector (NuMI) beam-line at Fermi National Accelerator Laboratory (Fermilab). The detector apparatus consists of two main detectors, one underground at Fermilab and the other in Soudan, Minnesota with the purpose of studying neutrino oscillations at a base line of 735 km. The original data acquisition system has been running for several years collecting data from NuMI, but with themore » extended run from 2013, parts of the system needed to be replaced due to obsolescence, reliability problems, and data throughput limitations. Specifically, we have replaced the front-end readout controllers, event builder, and data acquisition computing and trigger processing farms with modern, modular and reliable devices with few single points of failure. The new system is based on gigabit Ethernet TCP/IP communication to implement the event building and concatenation of data from many front-end VME readout crates. The simplicity and partitionability of the new system greatly eases the debugging and diagnosing process. As a result, the new system improves throughput by about a factor of three compared to the old system, up to 800 megabits per second, and has proven robust and reliable in the current run.« less
Low-resistivity photon-transparent window attached to photo-sensitive silicon detector
Holland, Stephen Edward
2000-02-15
The invention comprises a combination of a low resistivity, or electrically conducting, silicon layer that is transparent to long or short wavelength photons and is attached to the backside of a photon-sensitive layer of silicon, such as a silicon wafer or chip. The window is applied to photon sensitive silicon devices such as photodiodes, charge-coupled devices, active pixel sensors, low-energy x-ray sensors and other radiation detectors. The silicon window is applied to the back side of a photosensitive silicon wafer or chip so that photons can illuminate the device from the backside without interference from the circuit printed on the frontside. A voltage sufficient to fully deplete the high-resistivity photosensitive silicon volume of charge carriers is applied between the low-resistivity back window and the front, patterned, side of the device. This allows photon-induced charge created at the backside to reach the front side of the device and to be processed by any circuitry attached to the front side. Using the inventive combination, the photon sensitive silicon layer does not need to be thinned beyond standard fabrication methods in order to achieve full charge-depletion in the silicon volume. In one embodiment, the inventive backside window is applied to high resistivity silicon to allow backside illumination while maintaining charge isolation in CCD pixels.
Analysis of fractionation in corn-to-ethanol plants
NASA Astrophysics Data System (ADS)
Nelson, Camille
As the dry grind ethanol industry has grown, the research and technology surrounding ethanol production and co-product value has increased. Including use of back-end oil extraction and front-end fractionation. Front-end fractionation is pre-fermentation separation of the corn kernel into 3 fractions: endosperm, bran, and germ. The endosperm fraction enters the existing ethanol plant, and a high protein DDGS product remains after fermentation. High value oil is extracted out of the germ fraction. This leaves corn germ meal and bran as co-products from the other two streams. These 3 co-products have a very different composition than traditional corn DDGS. Installing this technology allows ethanol plants to increase profitability by tapping into more diverse markets, and ultimately could allow for an increase in profitability. An ethanol plant model was developed to evaluate both back-end oil extraction and front-end fractionation technology and predict the change in co-products based on technology installed. The model runs in Microsoft Excel and requires inputs of whole corn composition (proximate analysis), amino acid content, and weight to predict the co-product quantity and quality. User inputs include saccharification and fermentation efficiencies, plant capacity, and plant process specifications including front-end fractionation and backend oil extraction, if applicable. This model provides plants a way to assess and monitor variability in co-product composition due to the variation in whole corn composition. Additionally the co-products predicted in this model are entered into the US Pork Center of Excellence, National Swine Nutrition Guide feed formulation software. This allows the plant user and animal nutritionists to evaluate the value of new co-products in existing animal diets.
Beamline front end for in-vacuum short period undulator at the photon factory storage ring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyauchi, Hiroshi, E-mail: hiroshi.miyauchi@kek.jp; Department of Accelerator Science, School of High Energy Accelerator Science, SOKENDAI; Tahara, Toshihiro, E-mail: ttahara@post.kek.jp
The straight-section upgrade project of the Photon Factory created four new short straight sections capable of housing in-vacuum short period undulators. The first to fourth short period undulators SGU#17, SGU#03, SGU#01 and SGU#15 were installed at the 2.5-GeV Photon Factory storage ring in 2005, 2006, 2009 and 2013, respectively. The beamline front end for SGU#15 is described in this paper.
Maximum-Likelihood Detection Of Noncoherent CPM
NASA Technical Reports Server (NTRS)
Divsalar, Dariush; Simon, Marvin K.
1993-01-01
Simplified detectors proposed for use in maximum-likelihood-sequence detection of symbols in alphabet of size M transmitted by uncoded, full-response continuous phase modulation over radio channel with additive white Gaussian noise. Structures of receivers derived from particular interpretation of maximum-likelihood metrics. Receivers include front ends, structures of which depends only on M, analogous to those in receivers of coherent CPM. Parts of receivers following front ends have structures, complexity of which would depend on N.
2016-09-01
design to control the phase shifters was complex, and the calibration process was time consuming. During the redesign process, we carried out...signals in time domain with a maximum sampling frequency of 20 Giga samples per second. In the previous tests of the design , the performance of...PHOTONIC ARCHITECTURE FOR DIRECTION FINDING OF LPI EMITTERS: FRONT-END ANALOG CIRCUIT DESIGN AND COMPONENT CHARACTERIZATION by Chew K. Tan
YAMM - Yet Another Menu Manager
NASA Technical Reports Server (NTRS)
Mazer, Alan S.; Weidner, Richard J.
1991-01-01
Yet Another Menu Manager (YAMM) computer program an application-independent menuing package of software designed to remove much difficulty and save much time inherent in implementation of front ends of large packages of software. Provides complete menuing front end for wide variety of applications, with provisions for independence from specific types of terminals, configurations that meet specific needs of users, and dynamic creation of menu trees. Consists of two parts: description of menu configuration and body of application code. Written in C.
The new front-end electronics for the ATLAS Tile Calorimeter Phase 2 Upgrade
NASA Astrophysics Data System (ADS)
Gomes, A.
2016-02-01
We present the plans, design, and performance results to date for the new front-end electronics being developed for the Phase 2 Upgrade of the ATLAS Tile Calorimeter. The front-end electronics will be replaced to address the increased luminosity at the HL-LHC around 2025, as well as to upgrade to faster, more modern components with higher radiation tolerance. The new electronics will operate dead-timelessly, pushing full data sets from each beam crossing to the data acquisition system that resides off-detector. The new on-detector electronics contains five main parts: the front-end boards that connect directly to the photomultiplier tubes; the Main Boards that digitize the data; the Daughter Boards that collect the data streams and contain the high speed optical communication links for writing data to the data acquisition system; a programmable high voltage control system; and a new low voltage power supply. There are different options for implementing these subcomponents, which will be described. The new system contains new features that in the current version include power system redundancy, data collection redundancy, data transmission redundancy with 2 QSFP optical transceivers and Kintex-7 FPGAs with firmware enhanced scheme for single event upset mitigation. To date, we have built a Demonstrator—a fully functional prototype of the new system. Performance results and plans are presented.
CMOS Ultralow Power Brain Signal Acquisition Front-Ends: Design and Human Testing.
Karimi-Bidhendi, Alireza; Malekzadeh-Arasteh, Omid; Lee, Mao-Cheng; McCrimmon, Colin M; Wang, Po T; Mahajan, Akshay; Liu, Charles Yu; Nenadic, Zoran; Do, An H; Heydari, Payam
2017-08-01
Two brain signal acquisition (BSA) front-ends incorporating two CMOS ultralow power, low-noise amplifier arrays and serializers operating in mosfet weak inversion region are presented. To boost the amplifier's gain for a given current budget, cross-coupled-pair active load topology is used in the first stages of these two amplifiers. These two BSA front-ends are fabricated in 130 and 180 nm CMOS processes, occupying 5.45 mm 2 and 0.352 mm 2 of die areas, respectively (excluding pad rings). The CMOS 130-nm amplifier array is comprised of 64 elements, where each amplifier element consumes 0.216 μW from 0.4 V supply, has input-referred noise voltage (IRNoise) of 2.19 μV[Formula: see text] corresponding to a power efficiency factor (PEF) of 11.7, and occupies 0.044 mm 2 of die area. The CMOS 180 nm amplifier array employs 4 elements, where each element consumes 0.69 μW from 0.6 V supply with IRNoise of 2.3 μV[Formula: see text] (corresponding to a PEF of 31.3) and 0.051 mm 2 of die area. Noninvasive electroencephalographic and invasive electrocorticographic signals were recorded real time directly on able-bodied human subjects, showing feasibility of using these analog front-ends for future fully implantable BSA and brain- computer interface systems.
2.5 Gbit/s Optical Receiver Front-End Circuit with High Sensitivity and Wide Dynamic Range
NASA Astrophysics Data System (ADS)
Zhu, Tiezhu; Mo, Taishan; Ye, Tianchun
2017-12-01
An optical receiver front-end circuit is designed for passive optical network and fabricated in a 0.18 um CMOS technology. The whole circuit consists of a transimpedance amplifier (TIA), a single-ended to differential amplifier and an output driver. The TIA employs a cascode stage as the input stage and auxiliary amplifier to reduce the miller effect. Current injecting technique is employed to enlarge the input transistor's transconductance, optimize the noise performance and overcome the lack of voltage headroom. To achieve a wide dynamic range, an automatic gain control circuit with self-adaptive function is proposed. Experiment results show an optical sensitivity of -28 dBm for a bit error rate of 10-10 at 2.5 Gbit/s and a maxim input optical power of 2 dBm using an external photodiode. The chip occupies an area of 1×0.9 mm2 and consumes around 30 mW from single 1.8 V supply. The front-end circuit can be used in various optical receivers.
NASA Technical Reports Server (NTRS)
Ozsoy, T.; Ochs, J. B.
1984-01-01
The development of a general link between three dimensional wire frame models and rigid solid models is discussed. An interactive computer graphics program was developed to serve as a front end to an algorithm (COSMIC Program No. ARC-11446) which offers a general solution to the hidden line problem where the input data is either line segments of n-sided planar polygons of the most general type with internal boundaries. The program provides a general interface to CAD/CAM data bases and is implemented for models created on the Unigraphics VAX 11/780-based CAD/CAM systems with the display software written for DEC's VS11 color graphics devices.
Dynamic Compression of the Signal in a Charge Sensitive Amplifier: From Concept to Design
NASA Astrophysics Data System (ADS)
Manghisoni, Massimo; Comotti, Daniele; Gaioni, Luigi; Ratti, Lodovico; Re, Valerio
2015-10-01
This work is concerned with the design of a low-noise Charge Sensitive Amplifier featuring a dynamic signal compression based on the non-linear features of an inversion-mode MOS capacitor. These features make the device suitable for applications where a non-linear characteristic of the front-end is required, such as in imaging instrumentation for free electron laser experiments. The aim of the paper is to discuss a methodology for the proper design of the feedback network enabling the dynamic signal compression. Starting from this compression solution, the design of a low-noise Charge Sensitive Amplifier is also discussed. The study has been carried out by referring to a 65 nm CMOS technology.
Method of multi-channel data readout and acquisition
Degtiarenko, Pavel V.; Popov, Vladimir E.
2010-06-15
A method for dealing with the problem of simultaneous continuous readout of large number of data channels from the set of multiple sensors in instances where the use of multiple amplitude-to-digital converters is not practical or causes undesirable extra noise and distortion in the data. The new method uses sensor front-end s and subsequent electronics to transform the analog input signals and encode them into a series of short pulses that can be transmitted to a long distance via a high frequency transmission line without information loss. Upon arrival at a destination data decoder and analyzer device, the series of short pulses can be decoded and transformed back, to obtain, store, and utilize the sensor information with the required accuracy.
NASA Astrophysics Data System (ADS)
Yerizon; Jazwinarti; Yarman
2018-01-01
Students have difficulties experience in the course Introduction to Operational Research (PRO). The purpose of this study is to analyze the requirement of students in the developing lecturing materials PRO based Problem Based Learning which is valid, practice, and effective. Lecture materials are developed based on Plomp’s model. The development process of this device consists of 3 phases: front-end analysis/preliminary research, development/prototype phase and assessment phase. Preliminary analysis was obtained by observation and interview. From the research, it is found that students need the student’s worksheet (LKM) for several reasons: 1) no LKM available, 2) presentation of subject not yet based on real problem, 3) experiencing difficulties from current learning source.
DESIGN OF MEDICAL RADIOMETER FRONT-END FOR IMPROVED PERFORMANCE
Klemetsen, Ø.; Birkelund, Y.; Jacobsen, S. K.; Maccarini, P. F.; Stauffer, P. R.
2011-01-01
We have investigated the possibility of building a singleband Dicke radiometer that is inexpensive, small-sized, stable, highly sensitive, and which consists of readily available microwave components. The selected frequency band is at 3.25–3.75 GHz which provides a reasonable compromise between spatial resolution (antenna size) and sensing depth for radiometry applications in lossy tissue. Foreseen applications of the instrument are non-invasive temperature monitoring for breast cancer detection and temperature monitoring during heating. We have found off-the-shelf microwave components that are sufficiently small (< 5 mm × 5 mm) and which offer satisfactory overall sensitivity. Two different Dicke radiometers have been realized: one is a conventional design with the Dicke switch at the front-end to select either the antenna or noise reference channels for amplification. The second design places a matched pair of low noise amplifiers in front of the Dicke switch to reduce system noise figure. Numerical simulations were performed to test the design concepts before building prototype PCB front-end layouts of the radiometer. Both designs provide an overall power gain of approximately 50 dB over a 500 MHz bandwidth centered at 3.5 GHz. No stability problems were observed despite using triple-cascaded amplifier configurations to boost the thermal signals. The prototypes were tested for sensitivity after calibration in two different water baths. Experiments showed superior sensitivity (36% higher) when implementing the low noise amplifier before the Dicke switch (close to the antenna) compared to the other design with the Dicke switch in front. Radiometer performance was also tested in a multilayered phantom during alternating heating and radiometric reading. Empirical tests showed that for the configuration with Dicke switch first, the switch had to be locked in the reference position during application of microwave heating to avoid damage to the active components (amplifiers and power meter). For the configuration with a low noise amplifier up front, damage would occur to the active components of the radiometer if used in presence of the microwave heating antenna. Nevertheless, this design showed significantly improved sensitivity of measured temperatures and merits further investigation to determine methods of protecting the radiometer for amplifier first front ends. PMID:21779411
2. BUILDING 8767, SOUTH FRONT AND EAST SIDE. Edwards ...
2. BUILDING 8767, SOUTH FRONT AND EAST SIDE. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunkers for Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
6. BUILDING 8768, NORTHWEST SIDE AND SOUTHWEST FRONT. Edwards ...
6. BUILDING 8768, NORTHWEST SIDE AND SOUTHWEST FRONT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunkers for Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
8. BUILDING 8769, WEST FRONT AND SOUTH SIDE. Edwards ...
8. BUILDING 8769, WEST FRONT AND SOUTH SIDE. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunkers for Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
5. MISSILE TEST AND ASSEMBLY BUILDING, FRONT AND RIGHT SIDES, ...
5. MISSILE TEST AND ASSEMBLY BUILDING, FRONT AND RIGHT SIDES, LOOKING SOUTHEAST. - NIKE Missile Base SL-40, Missile Test & Assembly Building, South end of launch area, northeast of Generator Building No. 3, Hecker, Monroe County, IL
2. DETAIL, CONDUITS ALONG BASE OF NORTH FRONT. Looking east. ...
2. DETAIL, CONDUITS ALONG BASE OF NORTH FRONT. Looking east. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-4, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
43. EAST FRONT ELEVATION OF BUILDING 272 (STORAGE STRUCTURE A2) ...
43. EAST FRONT ELEVATION OF BUILDING 272 (STORAGE STRUCTURE A-2) IN ASSEMBLY AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME
2. PAINT AND OIL STORAGE SHED, FRONT AND RIGHT SIDES, ...
2. PAINT AND OIL STORAGE SHED, FRONT AND RIGHT SIDES, LOOKING SOUTH. - NIKE Missile Base SL-40, Paint & Oil Storage Shed, North end of base, northwest of Mess Hall & south of Basketball Court, Hecker, Monroe County, IL
NASA Astrophysics Data System (ADS)
Kasinski, K.; Koczon, P.; Ayet, S.; Löchner, S.; Schmidt, C. J.
2017-03-01
New fixed target experiments using high intensity beams with energy up to 10 AGeV from the SIS100 synchrotron presently being constructed at FAIR/GSI are under preparation. Most of the readout electronics and power supplies are expected to be exposed to a very high flux of nuclear reaction products and have to be radiation tolerant up to 3 MRad (TID) and sustain up to 1014/cm2 of 1 MeV neutron equivalent in their life time. Moreover, the mostly minimum ionising particles under investigation leave very little signal in the sensors. Therefore very low noise level amplitude measurements are required by the front-end electronics for effective tracking. Sensor and interconnecting micro-cable capacitance and series resistance in conjunction with intrinsic noise of the charge sensitive amplifier are dominant noise sources in the system. However, the single-ended architecture of the amplifiers employed for the charge processing channels implies a potential problem with noise contributions from power supply sources. Strict system-level constraints leave very little freedom in selecting a power supply structure optimal with respect to: power efficiency, cooling capabilities and power density on modules, but also noise injection to the front-end via the power supply lines. Design of the power supply and distribution system of the Silicon Tracking System in the CBM experiment together with details on the front-end ASICs (STS -XYTER2) and measurement results of power supply and conditioning electronics (selected DC/DC converter and LDO regulators) are presented.
Design and Test of a 65nm CMOS Front-End with Zero Dead Time for Next Generation Pixel Detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaioni, L.; Braga, D.; Christian, D.
This work is concerned with the experimental characterization of a synchronous analog processor with zero dead time developed in a 65 nm CMOS technology, conceived for pixel detectors at the HL-LHC experiment upgrades. It includes a low noise, fast charge sensitive amplifier with detector leakage compensation circuit, and a compact, single ended comparator able to correctly process hits belonging to two consecutive bunch crossing periods. A 2-bit Flash ADC is exploited for digital conversion immediately after the preamplifier. A description of the circuits integrated in the front-end processor and the initial characterization results are provided
NASA Astrophysics Data System (ADS)
Wang, Jun; Guo, Jin; Xie, Feng; Wang, Guosheng; Wu, Haoran; Song, Man; Yi, Yuanyuan
2016-10-01
This paper presents the comparative analysis of influence of doping level and doping profile of the active region on zero bias photoresponse characteristics of GaN-based p-i-n ultraviolet (UV) photodetectors operating at front- and back-illuminated. A two dimensional physically-based computer simulation of GaN-based p-i-n UV photodetectors is presented. We implemented GaN material properties and physical models taken from the literature. It is shown that absorption layer doping profile has notable impacts on the photoresponse of the device. Especially, the effect of doping concentration and distribution of the absorption layer on photoresponse is discussed in detail. In the case of front illumination, comparative to uniform n-type doping, the device with n-type Gaussian doping profiles at absorption layer has higher responsivity. Comparative to front illumination, back illuminated detector with p-type doping profiles at absorption layer has higher maximum photoresponse, while the Gaussian doping profiles have a weaker ability to enhance the device responsivity. It is demonstrated that electric field distribution, mobility degradation, and recombinations are jointly responsible for the variance of photoresponse. Our work enriches the understanding and utilization of GaN based p-i-n UV photodetectors.
Bonekamp, Jeffrey E.; Boven, Michelle L.; Gaston, Ryan S.
2014-09-09
The invention is an optoelectronic device comprising an active portion which converts light to electricity or converts electricity to light, the active portion having a front side for the transmittal of the light and a back side opposite from the front side, at least two electrical leads to the active portion to convey electricity to or from the active portion, an enclosure surrounding the active portion and through which the at least two electrical leads pass wherein the hermetically sealed enclosure comprises at the front side of the active portion a barrier material which allows for transmittal of light, one or more getter materials disposed so as to not impede the transmission of light to or from the active portion, and a contiguous gap pathway to the getter material which pathway is disposed between the active portion and the barrier material.
A Study of Direct Digital Manufactured RF/Microwave Packaging
NASA Astrophysics Data System (ADS)
Stratton, John W. I.
Various facets of direct digital manufactured (DDM) microwave packages are studied. The rippled surface inherent in fused deposition modeling (FDM) fabricated geometries is modeled in Ansoft HFSS, and its effect on the performance of microstrip transmission lines is assessed via simulation and measurement. The thermal response of DDM microstrip transmission lines is analyzed over a range of RF input powers, and linearity is confirmed over that range. Two IC packages are embedded into DDM printed circuit boards, and their performance is analyzed. The first is a low power RF switch, and the second is an RF front end device that includes a low noise amplifier (LNA) and a power amplifier (PA). The RF switch is shown to perform well, as compared to a layout designed for a Rogers 4003C microwave laminate substrate. The LNA performs within datasheet specifications. The power amplifier generates substantial heat, so a thermal management attempt is described. Finally, a capacitively loaded 6dB Wilkinson power divider is designed and fabricated using DDM techniques and materials. Its performance is analyzed and compared to simulation. The device is shown to compare favorably to a similar device fabricated on a Rogers 4003C microwave laminate using traditional printed circuit board techniques.
Noise in Charge Amplifiers— A gm/ID Approach
NASA Astrophysics Data System (ADS)
Alvarez, Enrique; Avila, Diego; Campillo, Hernan; Dragone, Angelo; Abusleme, Angel
2012-10-01
Charge amplifiers represent the standard solution to amplify signals from capacitive detectors in high energy physics experiments. In a typical front-end, the noise due to the charge amplifier, and particularly from its input transistor, limits the achievable resolution. The classic approach to attenuate noise effects in MOSFET charge amplifiers is to use the maximum power available, to use a minimum-length input device, and to establish the input transistor width in order to achieve the optimal capacitive matching at the input node. These conclusions, reached by analysis based on simple noise models, lead to sub-optimal results. In this work, a new approach on noise analysis for charge amplifiers based on an extension of the gm/ID methodology is presented. This method combines circuit equations and results from SPICE simulations, both valid for all operation regions and including all noise sources. The method, which allows to find the optimal operation point of the charge amplifier input device for maximum resolution, shows that the minimum device length is not necessarily the optimal, that flicker noise is responsible for the non-monotonic noise versus current function, and provides a deeper insight on the noise limits mechanism from an alternative and more design-oriented point of view.
Compositional Verification with Abstraction, Learning, and SAT Solving
2015-05-01
arithmetic, and bit-vectors (currently, via bit-blasting). The front-end is based on an existing tool called UFO [8] which converts C programs to the Horn...supports propositional logic, linear arithmetic, and bit-vectors (via bit-blasting). The front-end is based on the tool UFO [8]. It encodes safety of...tool UFO [8]. The encoding in Horn-SMT only uses the theory of Linear Rational Arithmetic. All experiments were carried out on an Intel R© CoreTM2 Quad
A front-end automation tool supporting design, verification and reuse of SOC.
Yan, Xiao-lang; Yu, Long-li; Wang, Jie-bing
2004-09-01
This paper describes an in-house developed language tool called VPerl used in developing a 250 MHz 32-bit high-performance low power embedded CPU core. The authors showed that use of this tool can compress the Verilog code by more than a factor of 5, increase the efficiency of the front-end design, reduce the bug rate significantly. This tool can be used to enhance the reusability of an intellectual property model, and facilitate porting design for different platforms.
Nam, Gimoon; Hisette, Marie Laure; Sun, Yuting Liang; Gisler, Thomas; Johner, Albert; Thalmann, Fabrice; Schröder, André Pierre; Marques, Carlos Manuel; Lee, Nam-Kyung
2010-08-20
Stained end-grafted DNA molecules about 20 μm long are scraped away and stretched out by the spreading front of a bioadhesive vesicle. Tethered biotin ligands bind the vesicle bilayer to a streptavidin substrate, stapling the DNAs into frozen confinement paths. Image analysis of the stapled DNA gives access, within optical resolution, to the local stretching values of individual DNA molecules swept by the spreading front, and provides evidence of self-entanglements.
AiGERM: A logic programming front end for GERM
NASA Technical Reports Server (NTRS)
Hashim, Safaa H.
1990-01-01
AiGerm (Artificially Intelligent Graphical Entity Relation Modeler) is a relational data base query and programming language front end for MCC (Mission Control Center)/STP's (Space Test Program) Germ (Graphical Entity Relational Modeling) system. It is intended as an add-on component of the Germ system to be used for navigating very large networks of information. It can also function as an expert system shell for prototyping knowledge-based systems. AiGerm provides an interface between the programming language and Germ.
Frequency to Voltage Converter Analog Front-End Prototype
NASA Technical Reports Server (NTRS)
Mata, Carlos; Raines, Matthew
2012-01-01
The frequency to voltage converter analog front end evaluation prototype (F2V AFE) is an evaluation board designed for comparison of different methods of accurately extracting the frequency of a sinusoidal input signal. A configurable input stage is routed to one or several of five separate, configurable filtering circuits, and then to a configurable output stage. Amplifier selection and gain, filter corner frequencies, and comparator hysteresis and voltage reference are all easily configurable through the use of jumpers and potentiometers.
NAFFS: network attached flash file system for cloud storage on portable consumer electronics
NASA Astrophysics Data System (ADS)
Han, Lin; Huang, Hao; Xie, Changsheng
Cloud storage technology has become a research hotspot in recent years, while the existing cloud storage services are mainly designed for data storage needs with stable high speed Internet connection. Mobile Internet connections are often unstable and the speed is relatively low. These native features of mobile Internet limit the use of cloud storage in portable consumer electronics. The Network Attached Flash File System (NAFFS) presented the idea of taking the portable device built-in NAND flash memory as the front-end cache of virtualized cloud storage device. Modern portable devices with Internet connection have built-in more than 1GB NAND Flash, which is quite enough for daily data storage. The data transfer rate of NAND flash device is much higher than mobile Internet connections[1], and its non-volatile feature makes it very suitable as the cache device of Internet cloud storage on portable device, which often have unstable power supply and intermittent Internet connection. In the present work, NAFFS is evaluated with several benchmarks, and its performance is compared with traditional network attached file systems, such as NFS. Our evaluation results indicate that the NAFFS achieves an average accessing speed of 3.38MB/s, which is about 3 times faster than directly accessing cloud storage by mobile Internet connection, and offers a more stable interface than that of directly using cloud storage API. Unstable Internet connection and sudden power off condition are tolerable, and no data in cache will be lost in such situation.
Li, Guibing; Yang, Jikuang; Simms, Ciaran
2016-07-03
The purpose of this study is to define a computationally efficient virtual test system (VTS) to assess the aggressivity of vehicle front-end designs to pedestrians considering the distribution of pedestrian impact configurations for future vehicle front-end optimization. The VTS should represent real-world impact configurations in terms of the distribution of vehicle impact speeds, pedestrian walking speeds, pedestrian gait, and pedestrian height. The distribution of injuries as a function of body region, vehicle impact speed, and pedestrian size produced using this VTS should match the distribution of injuries observed in the accident data. The VTS should have the predictive ability to distinguish the aggressivity of different vehicle front-end designs to pedestrians. The proposed VTS includes 2 parts: a simulation test sample (STS) and an injury weighting system (IWS). The STS was defined based on MADYMO multibody vehicle to pedestrian impact simulations accounting for the range of vehicle impact speeds, pedestrian heights, pedestrian gait, and walking speed to represent real world impact configurations using the Pedestrian Crash Data Study (PCDS) and anthropometric data. In total 1,300 impact configurations were accounted for in the STS. Three vehicle shapes were then tested using the STS. The IWS was developed to weight the predicted injuries in the STS using the estimated proportion of each impact configuration in the PCDS accident data. A weighted injury number (WIN) was defined as the resulting output of the VTS. The WIN is the weighted number of average Abbreviated Injury Scale (AIS) 2+ injuries recorded per impact simulation in the STS. Then the predictive capability of the VTS was evaluated by comparing the distributions of AIS 2+ injuries to different pedestrian body regions and heights, as well as vehicle types and impact speeds, with that from the PCDS database. Further, a parametric analysis was performed with the VTS to assess the sensitivity of the injury predictions to changes in vehicle shape (type) and stiffness to establish the potential for using the VTS for future vehicle front-end optimization. An STS of 1,300 multibody simulations and an IWS based on the distribution of impact speed, pedestrian height, gait stance, and walking speed is broadly capable of predicting the distribution of pedestrian injuries observed in the PCDS database when the same vehicle type distribution as the accident data is employed. The sensitivity study shows significant variations in the WIN when either vehicle type or stiffness is altered. Injury predictions derived from the VTS give a good representation of the distribution of injuries observed in the PCDS and distinguishing ability on the aggressivity of vehicle front-end designs to pedestrians. The VTS can be considered as an effective approach for assessing pedestrian safety performance of vehicle front-end designs at the generalized level. However, the absolute injury number is substantially underpredicted by the VTS, and this needs further development.
48. FRONT ENTRY DETAIL ON SOUTHWEST ELEVATION OF BUILDING 361 ...
48. FRONT ENTRY DETAIL ON SOUTHWEST ELEVATION OF BUILDING 361 (MUNITIONS MAINTENANCE SQUADRON ADMINISTRATION BUILDING) IN BASE SPARES AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME
VIEW OF THE FRONT SIDE OF BOAT LANDING S370 NEAR ...
VIEW OF THE FRONT SIDE OF BOAT LANDING S370 NEAR NORTH END, FACING WEST - U.S. Naval Base, Pearl Harbor, Boat Landing S370, Along Essex Street at Southeast shore of Ford Island, Pearl City, Honolulu County, HI
VIEW OF THE FRONT SIDE OF BOAT LANDING S370 NEAR ...
VIEW OF THE FRONT SIDE OF BOAT LANDING S370 NEAR SOUTH END, FACING NORTHWEST - U.S. Naval Base, Pearl Harbor, Boat Landing S370, Along Essex Street at Southeast shore of Ford Island, Pearl City, Honolulu County, HI
Electrode configuration for extreme-UV electrical discharge source
Spence, Paul Andrew; Fornaciari, Neal Robert; Chang, Jim Jihchyun
2002-01-01
It has been demonstrated that debris generation within an electric capillary discharge source, for generating extreme ultraviolet and soft x-ray, is dependent on the magnitude and profile of the electric field that is established along the surfaces of the electrodes. An electrode shape that results in uniform electric field strength along its surface has been developed to minimize sputtering and debris generation. The electric discharge plasma source includes: (a) a body that defines a circular capillary bore that has a proximal end and a distal end; (b) a back electrode positioned around and adjacent to the distal end of the capillary bore wherein the back electrode has a channel that is in communication with the distal end and that is defined by a non-uniform inner surface which exhibits a first region which is convex, a second region which is concave, and a third region which is convex wherein the regions are viewed outwardly from the inner surface of the channel that is adjacent the distal end of the capillary bore so that the first region is closest to the distal end; (c) a front electrode positioned around and adjacent to the proximal end of the capillary bore wherein the front electrode has an opening that is communication with the proximal end and that is defined by a non-uniform inner surface which exhibits a first region which is convex, a second region which is substantially linear, and third region which is convex wherein the regions are viewed outwardly from the inner surface of the opening that is adjacent the proximal end of the capillary bore so that the first region is closest to the proximal end; and (d) a source of electric potential that is connected across the front and back electrodes.
A front-end electronic system for large arrays of bolometers
NASA Astrophysics Data System (ADS)
Arnaboldi, C.; Carniti, P.; Cassina, L.; Gotti, C.; Liu, X.; Maino, M.; Pessina, G.; Rosenfeld, C.; Zhu, B. X.
2018-02-01
CUORE is an array of thermal calorimeters composed of 988 crystals held at about 10 mK, whose absorbed energy is read out with semiconductor thermistors. The composition of the crystal is TeO2, and the aim is the study of the double beta decay of 130Te on very long and stable runs. CUPID-0 is an array of 26 Zn82Se crystals with double thermistor readout to study the double beta decay of 82Se. In the present paper, we present an overview of the entire front-end electronic readout chain, from the preamplifier to the anti-aliasing filter. This overview includes motivations, design strategies, circuit implementation and performance results of the electronic system, including other auxiliary yet important elements like power supplies and the slow control communication system. The stringent requirements of stability on the very long experimental runs that are foreseen during CUORE and CUPID-0 operation, are achieved thanks to novel solutions of the front-end preamplifier and of the detector bias circuit setup.
Analog front-end design of the STS/MUCH-XYTER2—full size prototype ASIC for the CBM experiment
NASA Astrophysics Data System (ADS)
Kleczek, Rafal
2017-01-01
The design of the analog front-end of the STS/MUCH-XYTER2 ASIC, a full-size prototype chip for the Silicon Tracking System (STS, based on double-sided silicon strip sensors) and Muon Chamber (MUCH, based on gas sensors) detectors is presented. The ASIC contains 128 charge processing channels, each built of a charge sensitive amplifier, a polarity selection circuit and two pulse shaping amplifiers forming two parallel signal paths. The first path is used for timing measurement with a fast discriminator. The second path allows low-noise amplitude measurement with a 5-bit continuous-time flash ADC. Different operating conditions and constraints posed by two target detectors' applications require front-end electronics flexibility to meet extended system-wise requirements. The presented circuit implements switchable shaper peaking time, gain switching and trimming, input amplifier pulsed reset circuit, fail-safe measures. The power consumption is scalable (for the STS and the MUCH modes), but limited to 10 mW/channel.
Status of the Warm Front End of PIP-II Injector Test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shemyakin, Alexander; Alvarez, Matthew; Andrews, Richard
The Proton Improvement Plan II (PIP-II) at Fermilab is a program of upgrades to the injection complex. At its core is the design and construction of a CW-compatible, pulsed H⁻ SRF linac. To validate the concept of the front-end of such machine, a test accelerator known as PIP-II Injector Test is under construction. It includes a 10 mA DC, 30 keV H⁻ ion source, a 2 m-long Low Energy Beam Transport (LEBT), a 2.1 MeV CW RFQ, followed by a Medium Energy Beam Transport (MEBT) that feeds the first of 2 cryomodules increasing the beam energy to about 25 MeV,more » and a High Energy Beam Transport section (HEBT) that takes the beam to a dump. The ion source, LEBT, RFQ, and initial version of the MEBT have been built, installed, and commissioned. This report presents the overall status of the warm front end.« less
NASA Astrophysics Data System (ADS)
Herrero, Vicente; Colom, Ricardo; Gadea, Rafael; Lerche, Christoph W.; Cerdá, Joaquín; Sebastiá, Ángel; Benlloch, José M.
2007-06-01
Silicon Photomultipliers, though still under development for mass production, may be an alternative to traditional Vacuum Photomultipliers Tubes (VPMT). As a consequence, electronic front-ends initially designed for VPMT will need to be modified. In this simulation, an improved architecture is presented which is able to obtain impact position and depth of interaction of a gamma ray within a continuous scintillation crystal, using either kind of PM. A current sensitive preamplifier stage with individual gain adjustment interfaces the multi-anode PM outputs with a current division resistor network. The preamplifier stage allows to improve front-end processing delay and temporal resolution behavior as well as to increase impact position calculation resolution. Depth of interaction (DOI) is calculated from the width of the scintillation light distribution, which is related to the sum of voltages in resistor network input nodes. This operation is done by means of a high-speed current mode scheme.
Towards on-chip integration of brain imaging photodetectors using standard CMOS process.
Kamrani, Ehsan; Lesage, Frederic; Sawan, Mohamad
2013-01-01
The main effects of on-chip integration on the performance and efficiency of silicon avalanche photodiode (SiAPD) and photodetector front-end is addressed in this paper based on the simulation and fabrication experiments. Two different silicon APDs are fabricated separately and also integrated with a transimpedance amplifier (TIA) front-end using standard CMOS technology. SiAPDs are designed in p+/n-well structure with guard rings realized in different shapes. The TIA front-end has been designed using distributed-gain concept combined with resistive-feedback and common-gate topology to reach low-noise and high gain-bandwidth product (GBW) characteristics. The integrated SiAPDs show higher signal-to-noise ratio (SNR), sensitivity and detection efficiency comparing to the separate SiAPDs. The integration does not show a significant effect on the gain and preserves the low power consumption. Using APDs with p-well guard-ring is preferred due to the higher observed efficiency after integration.
The OPERA muon spectrometer tracking electronics
NASA Astrophysics Data System (ADS)
Ambrosio, M.; Barichello, G.; Brugnera, R.; Carrara, E.; Consiglio, L.; Corradi, A.; Dal Corso, F.; Dusini, S.; Felici, G.; Garfagnini, A.; Manea, C.; Masone, V.; Paoloni, A.; Paoluzzi, G.; Papalino, G.; Parascandolo, P.; Sorrentino, G.; Spinetti, M.; Stanco, L.; Terranova, F.; Votano, L.
2004-11-01
The document describes the front-end electronics that instrument the spectrometer of the OPERA experiment. The spectrometer is made of two separate modules. Each module consists of 22 RPC planes equipped with horizontal and vertical strips readout for a total amount of about 25,000 digital channels. The front end electronics is self-triggered and has single plane readout capability. It is made of three different stages: the Front End Boards (FEBs) system, the Controller Boards (CBs) system and the Timing Boards (TBs) system. The FEB system provides discrimination of the strip incoming signals; a FAST OR output of the input signals is also available for trigger plane signal generation. FEBs discriminated signals are acquired by the CBs system that manages also the communication to the experiment DAQ and Slow Control interface. A Trigger Board allows to operate in both self-trigger (the FEB FAST OR signal starts the plane acquisition) or external-trigger (different conditions can be set on the OR signals generated from different planes) modes.
Modern design of a fast front-end computer
NASA Astrophysics Data System (ADS)
Šoštarić, Z.; Anic̈ić, D.; Sekolec, L.; Su, J.
1994-12-01
Front-end computers (FEC) at Paul Scherrer Institut provide access to accelerator CAMAC-based sensors and actuators by way of a local area network. In the scope of the new generation FEC project, a front-end is regarded as a collection of services. The functionality of one such service is described in terms of Yourdon's environment, behaviour, processor and task models. The computational model (software representation of the environment) of the service is defined separately, using the information model of the Shlaer-Mellor method, and Sather OO language. In parallel with the analysis and later with the design, a suite of test programmes was developed to evaluate the feasibility of different computing platforms for the project and a set of rapid prototypes was produced to resolve different implementation issues. The past and future aspects of the project and its driving forces are presented. Justification of the choice of methodology, platform and requirement, is given. We conclude with a description of the present state, priorities and limitations of our project.
Main stage: See through car with battery, engine, generator, power split device, and electric motor the power split device to the front wheels. Main stage: See through car with battery, engine : See through car with battery, engine, generator, power split device, and electric motor visible while
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xingwen; Wei, Wenfu; Wu, Jian
2013-06-28
Laser produced copper plasmas of different spot sizes in air were investigated using fast photography and optical emission spectroscopy (OES). The laser energy was 33 mJ. There were dramatic changes in the plasma plume expansion into the ambient air when spot sizes changed from {approx}0.1 mm to {approx}0.6 mm. A stream-like structure and a hemispherical structure were, respectively, observed. It appeared that the same spot size resulted in similar expansion dynamics no matter whether the target was located in the front of or behind the focal point, although laser-induced air breakdown sometimes occurred in the latter case. Plasma plume frontmore » positions agree well with the classic blast wave model for the large spot-size cases, while an unexpected stagnation of {approx}80 ns occurred after the laser pulse ends for the small spot size cases. This stagnation can be understood in terms of the evolution of enhanced plasma shielding effects near the plasma front. Axial distributions of plasma components by OES revealed a good confinement effect. Electron number densities were estimated and interpreted using the recorded Intensified Charge Coupled Device (ICCD) images.« less
Rapid detection and identification of pedestrian impacts using a distributed sensor network
NASA Astrophysics Data System (ADS)
Kim, Andrew C.; Chang, Fu-Kuo
2005-05-01
Pedestrian fatalities from automobile accidents often occur as a result of head injuries suffered from impacts with an automobile front end. Active pedestrian protection systems with proper pedestrian recognition algorithms can protect pedestrians from such head trauma. An investigation was conducted to assess the feasibility of using a network of piezoelectric sensors mounted on the front bumper beam of an automobile to discriminate between impacts with "pedestrian" and "non-pedestrian" objects. This information would be used to activate a safety device (e.g., external airbag or pop-up hood) to provide protection for the vulnerable pedestrian. An analytical foundation for the object-bumper impact problem will be presented, as well as the classical beam impact theory. The mechanical waves that propagate in the structure from an external impact contain a wealth of information about the specifics of a particular impact -- object mass, size, impact speed, etc. -- but most notably the object stiffness, which identifies the impacted object. Using the frequency content of the sensor signals, it can be shown that impacts with a "pedestrian" object of varying size, weight, and speed can be easily differentiated from impacts with other "non-pedestrian" objects. Simulation results will illustrate this phenomenon, and experimental tests will verify the results. A comprehensive series of impact tests were performed for validation, using both a stationary front bumper with a drop-pendulum impactor and a moving car with stationary impact objects. Results from both tests will be presented.
Architecture of PAU survey camera readout electronics
NASA Astrophysics Data System (ADS)
Castilla, Javier; Cardiel-Sas, Laia; De Vicente, Juan; Illa, Joseph; Jimenez, Jorge; Maiorino, Marino; Martinez, Gustavo
2012-07-01
PAUCam is a new camera for studying the physics of the accelerating universe. The camera will consist of eighteen 2Kx4K HPK CCDs: sixteen for science and two for guiding. The camera will be installed at the prime focus of the WHT (William Herschel Telescope). In this contribution, the architecture of the readout electronics system is presented. Back- End and Front-End electronics are described. Back-End consists of clock, bias and video processing boards, mounted on Monsoon crates. The Front-End is based on patch panel boards. These boards are plugged outside the camera feed-through panel for signal distribution. Inside the camera, individual preamplifier boards plus kapton cable completes the path to connect to each CCD. The overall signal distribution and grounding scheme is shown in this paper.
Pion Production from 5-15 GeV Beam for the Neutrino Factory Front-End Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prior, Gersende
2010-03-30
For the neutrino factory front-end study, the production of pions from a proton beam of 5-8 and 14 GeV kinetic energy on a Hg jet target has been simulated. The pion yields for two versions of the MARS15 code and two different field configurations have been compared. The particles have also been tracked from the target position down to the end of the cooling channel using the ICOOL code and the neutrino factory baseline lattice. The momentum-angle region of pions producing muons that survived until the end of the cooling channel has been compared with the region covered by HARPmore » data and the number of pions/muons as a function of the incoming beam energy is also reported.« less
Looking north along the west front of the administration building, ...
Looking north along the west front of the administration building, toward the east end of the library. The liberal arts building (a non-contributor) is at the left. - San Bernardino Valley College, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA
1. Northeast front and southeast side of original section. Addition ...
1. Northeast front and southeast side of original section. Addition to rear view to west. - Offutt Air Force Base, Looking Glass Airborne Command Post, Aerospace Ground Equipment (AGE) Storage Facility, Far Northwest end of Project Looking Glass Historic District, Bellevue, Sarpy County, NE
4. Northeast front and northwest side of original section and ...
4. Northeast front and northwest side of original section and addition. View to south. - Offutt Air Force Base, Looking Glass Airborne Command Post, Aerospace Ground Equipment (AGE) Storage Facility, Far Northwest end of Project Looking Glass Historic District, Bellevue, Sarpy County, NE
2. BUILDING 8814, NORTH FRONT AND EAST SIDE. Looking south ...
2. BUILDING 8814, NORTH FRONT AND EAST SIDE. Looking south southwest toward water tank complex. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunker 1-D-3, Test Area 1-125, northwest end of Altair Boulevard, Boron, Kern County, CA
Perl Extension to the Bproc Library
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grunau, Daryl W.
2004-06-07
The Beowulf Distributed process Space (Bproc) software stack is comprised of UNIX/Linux kernel modifications and a support library by which a cluster of machines, each running their own private kernel, can present itself as a unified process space to the user. A Bproc cluster contains a single front-end machine and many back-end nodes which receive and run processes given to them by the front-end. Any process which is migrated to a back-end node is also visible as a ghost process on the fron-end, and may be controlled there using traditional UNIX semantics (e.g. ps(1), kill(1), etc). This software is amore » Perl extension to the Bproc library which enables the Perl programmer to make direct calls to functions within the Bproc library. See http://www.clustermatic.org, http://bproc.sourceforge.net, and http://www.perl.org« less
Packaging of electro-microfluidic devices
Benavides, Gilbert L.; Galambos, Paul C.; Emerson, John A.; Peterson, Kenneth A.; Giunta, Rachel K.; Zamora, David Lee; Watson, Robert D.
2003-04-15
A new architecture for packaging surface micromachined electro-microfluidic devices is presented. This architecture relies on two scales of packaging to bring fluid to the device scale (picoliters) from the macro-scale (microliters). The architecture emulates and utilizes electronics packaging technology. The larger package consists of a circuit board with embedded fluidic channels and standard fluidic connectors (e.g. Fluidic Printed Wiring Board). The embedded channels connect to the smaller package, an Electro-Microfluidic Dual-Inline-Package (EMDIP) that takes fluid to the microfluidic integrated circuit (MIC). The fluidic connection is made to the back of the MIC through Bosch-etched holes that take fluid to surface micromachined channels on the front of the MIC. Electrical connection is made to bond pads on the front of the MIC.
Packaging of electro-microfluidic devices
Benavides, Gilbert L.; Galambos, Paul C.; Emerson, John A.; Peterson, Kenneth A.; Giunta, Rachel K.; Watson, Robert D.
2002-01-01
A new architecture for packaging surface micromachined electro-microfluidic devices is presented. This architecture relies on two scales of packaging to bring fluid to the device scale (picoliters) from the macro-scale (microliters). The architecture emulates and utilizes electronics packaging technology. The larger package consists of a circuit board with embedded fluidic channels and standard fluidic connectors (e.g. Fluidic Printed Wiring Board). The embedded channels connect to the smaller package, an Electro-Microfluidic Dual-Inline-Package (EMDIP) that takes fluid to the microfluidic integrated circuit (MIC). The fluidic connection is made to the back of the MIC through Bosch-etched holes that take fluid to surface micromachined channels on the front of the MIC. Electrical connection is made to bond pads on the front of the MIC.
Method of Fabricating Double Sided Si(Ge)/Sapphire/III-Nitride Hybrid Structure
NASA Technical Reports Server (NTRS)
Choi, Sang Hyouk (Inventor); Park, Yeonjoon (Inventor)
2017-01-01
One aspect of the present invention is a double sided hybrid crystal structure including a trigonal Sapphire wafer containing a (0001) C-plane and having front and rear sides. The Sapphire wafer is substantially transparent to light in the visible and infrared spectra, and also provides insulation with respect to electromagnetic radio frequency noise. A layer of crystalline Si material having a cubic diamond structure aligned with the cubic <111> direction on the (0001) C-plane and strained as rhombohedron to thereby enable continuous integration of a selected (SiGe) device onto the rear side of the Sapphire wafer. The double sided hybrid crystal structure further includes an integrated III-Nitride crystalline layer on the front side of the Sapphire wafer that enables continuous integration of a selected III-Nitride device on the front side of the Sapphire wafer.
Double Sided Si(Ge)/Sapphire/III-Nitride Hybrid Structure
NASA Technical Reports Server (NTRS)
Park, Yeonjoon (Inventor); Choi, Sang Hyouk (Inventor)
2016-01-01
One aspect of the present invention is a double sided hybrid crystal structure including a trigonal Sapphire wafer containing a (0001) C-plane and having front and rear sides. The Sapphire wafer is substantially transparent to light in the visible and infrared spectra, and also provides insulation with respect to electromagnetic radio frequency noise. A layer of crystalline Si material having a cubic diamond structure aligned with the cubic <111> direction on the (0001) C-plane and strained as rhombohedron to thereby enable continuous integration of a selected (SiGe) device onto the rear side of the Sapphire wafer. The double sided hybrid crystal structure further includes an integrated III-Nitride crystalline layer on the front side of the Sapphire wafer that enables continuous integration of a selected III-Nitride device on the front side of the Sapphire wafer.
NASA Technical Reports Server (NTRS)
Chen, Yongkang; Weislogel, Mark; Schaeffer, Ben; Semerjian, Ben; Yang, Lihong; Zimmerli, Gregory
2012-01-01
The mathematical theory of capillary surfaces has developed steadily over the centuries, but it was not until the last few decades that new technologies have put a more urgent demand on a substantially more qualitative and quantitative understanding of phenomena relating to capillarity in general. So far, the new theory development successfully predicts the behavior of capillary surfaces for special cases. However, an efficient quantitative mathematical prediction of capillary phenomena related to the shape and stability of geometrically complex equilibrium capillary surfaces remains a significant challenge. As one of many numerical tools, the open-source Surface Evolver (SE) algorithm has played an important role over the last two decades. The current effort was undertaken to provide a front-end to enhance the accessibility of SE for the purposes of design and analysis. Like SE, the new code is open-source and will remain under development for the foreseeable future. The ultimate goal of the current Surface Evolver Fluid Interface Tool (SEFIT) development is to build a fully integrated front-end with a set of graphical user interface (GUI) elements. Such a front-end enables the access to functionalities that are developed along with the GUIs to deal with pre-processing, convergence computation operation, and post-processing. In other words, SE-FIT is not just a GUI front-end, but an integrated environment that can perform sophisticated computational tasks, e.g. importing industry standard file formats and employing parameter sweep functions, which are both lacking in SE, and require minimal interaction by the user. These functions are created using a mixture of Visual Basic and the SE script language. These form the foundation for a high-performance front-end that substantially simplifies use without sacrificing the proven capabilities of SE. The real power of SE-FIT lies in its automated pre-processing, pre-defined geometries, convergence computation operation, computational diagnostic tools, and crash-handling capabilities to sustain extensive computations. SE-FIT performance is enabled by its so-called file-layer mechanism. During the early stages of SE-FIT development, it became necessary to modify the original SE code to enable capabilities required for an enhanced and synchronized communication. To this end, a file-layer was created that serves as a command buffer to ensure a continuous and sequential execution of commands sent from the front-end to SE. It also establishes a proper means for handling crashes. The file layer logs input commands and SE output; it also supports user interruption requests, back and forward operation (i.e. undo and redo), and others. It especially enables the batch mode computation of a series of equilibrium surfaces and the searching of critical parameter values in studying the stability of capillary surfaces. In this way, the modified SE significantly extends the capabilities of the original SE.
NASA Astrophysics Data System (ADS)
Malmberg, J.-A.; Brunsell, P. R.
2002-01-01
Observations of resistive wall instabilities and tearing mode dynamics in the EXTRAP T2R thin shell (τw=6 ms) reversed field pinch are described. A nonresonant mode (m=1,n=-10) with the same handedness as the internal field grows nearly exponentially with an average growth time of about 2.6 ms (less than 1/2 of the shell time) consistent with linear stability theory. The externally nonresonant unstable modes (m=1,n>0), predicted by linear stability theory, are observed to have only low amplitudes (in the normal low-Θ operation mode of the device). The radial field of the dominant internally resonant tearing modes (m=1,n=-15 to n=-12) remain low due to spontaneous fast mode rotation, corresponding to angular phase velocities up to 280 krad/s. Phase aligned mode structures are observed to rotate toroidally with an average angular velocity of 40 krad/s, in the opposite direction of the plasma current. Toward the end of the discharge, the radial field of the internally resonant modes grows as the modes slow down and become wall-locked, in agreement with nonlinear computations. Fast rotation of the internally resonant modes has been observed only recently and is attributed to a change of the front-end system (vacuum vessel, shell, and TF coil) of the device.
Nakamura, Mikiko; Suzuki, Ayako; Akada, Junko; Tomiyoshi, Keisuke; Hoshida, Hisashi; Akada, Rinji
2015-12-01
Mammalian gene expression constructs are generally prepared in a plasmid vector, in which a promoter and terminator are located upstream and downstream of a protein-coding sequence, respectively. In this study, we found that front terminator constructs-DNA constructs containing a terminator upstream of a promoter rather than downstream of a coding region-could sufficiently express proteins as a result of end joining of the introduced DNA fragment. By taking advantage of front terminator constructs, FLAG substitutions, and deletions were generated using mutagenesis primers to identify amino acids specifically recognized by commercial FLAG antibodies. A minimal epitope sequence for polyclonal FLAG antibody recognition was also identified. In addition, we analyzed the sequence of a C-terminal Ser-Lys-Leu peroxisome localization signal, and identified the key residues necessary for peroxisome targeting. Moreover, front terminator constructs of hepatitis B surface antigen were used for deletion analysis, leading to the identification of regions required for the particle formation. Collectively, these results indicate that front terminator constructs allow for easy manipulations of C-terminal protein-coding sequences, and suggest that direct gene expression with PCR-amplified DNA is useful for high-throughput protein analysis in mammalian cells.
Pipe crawler with stabilizing midsection
Zollinger, W.T.; Treanor, R.C.
1994-12-27
A pipe crawler is described having a midsection that provides the stability and flexibility to allow the pipe crawler to negotiate curved and uneven segments of piping while traveling through piping systems. The pipe crawler comprises a front leg assembly, a rear leg assembly, a midsection with a gimbal at each end for connecting the midsection to the front and rear leg assemblies in a flexible manner, and an air cylinder for changing the distance between the front and rear leg assemblies. The pipe crawler moves in ''inch worm'' fashion with the front and rear leg assemblies alternating between an extended and a retracted position as the air cylinder moves the retracted leg assembly forward. The midsection has a plurality of legs extending radially for holding the midsection within a maximum displacement from the piping axis so that the gimbals are not pivoted to extreme angles where they might lock up or seize. When the midsection is displaced sufficiently, its legs with wheels on each end engage the interior surface of the piping and prevent further displacement. Using two gimbals divides the angle between the planes defined by the front and rear leg assemblies which also helps to prevent excessive gimbal pivoting. 5 figures.
Pipe crawler with stabilizing midsection
Zollinger, William T.; Treanor, Richard C.
1994-01-01
A pipe crawler having a midsection that provides the stability and flexibty to allow the pipe crawler to negotiate curved and uneven segments of piping while traveling through piping systems. The pipe crawler comprises a front leg assembly, a rear leg assembly, a midsection with a gimbal at each end for connecting the midsection to the front and rear leg assemblies in a flexible manner, and an air cylinder for changing the distance between the front and rear leg assemblies. The pipe crawler moves in "inch worm" fashion with the front and rear leg assemblies alternating between an extended and a retracted position as the air cylinder moves the retracted leg assembly forward. The midsection has a plurality of legs extending radially for holding the midsection within a maximum displacement from the piping axis so that the gimbals are not pivoted to extreme angles where they might lock up or seize. When the midsection is displaced sufficiently, its legs with wheels on each end engage the interior surface of the piping and prevent further displacement. Using two gimbals divides the angle between the planes defined by the front and rear leg assemblies which also helps to prevent excessive gimbal pivoting.
Pipe crawler with stabilizing midsection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zollinger, W.T.; Treanor, R.C.
1993-09-20
This invention is comprised of a pipe crawler having a midsection that provides the stability and flexibility to allow the pipe crawler to negotiate curved and uneven segments of piping while traveling through piping systems. The pipe crawler comprises a front leg assembly, a rear leg assembly, a midsection with a gimbal at each end for connecting the midsection to the front and rear leg assemblies in a flexible manner, and an air cylinder for changing the distance between the front and rear leg assemblies. The pipe crawler moves in ``inch worm`` fashion with the front and rear leg assembliesmore » alternating between an extended and a retracted position as the air cylinder moves the retracted leg assembly forward. The midsection has a plurality of legs extending radially for holding the midsection within a maximum displacement from the piping axis so that the gimbals are not pivoted to extreme angles where they might lock up or seize. When the midsection is displaced sufficiently, its legs with wheels on each end engage the interior surface of the piping and prevent further displacement. Using two gimbals divides the angle between the planes defined by the front and rear leg assemblies which also helps to prevent excessive gimbal pivoting.« less
Pipe crawler with stabilizing midsection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zollinger, W.T.; Treanor, R.C.
1994-12-27
A pipe crawler is described having a midsection that provides the stability and flexibility to allow the pipe crawler to negotiate curved and uneven segments of piping while traveling through piping systems. The pipe crawler comprises a front leg assembly, a rear leg assembly, a midsection with a gimbal at each end for connecting the midsection to the front and rear leg assemblies in a flexible manner, and an air cylinder for changing the distance between the front and rear leg assemblies. The pipe crawler moves in ''inch worm'' fashion with the front and rear leg assemblies alternating between anmore » extended and a retracted position as the air cylinder moves the retracted leg assembly forward. The midsection has a plurality of legs extending radially for holding the midsection within a maximum displacement from the piping axis so that the gimbals are not pivoted to extreme angles where they might lock up or seize. When the midsection is displaced sufficiently, its legs with wheels on each end engage the interior surface of the piping and prevent further displacement. Using two gimbals divides the angle between the planes defined by the front and rear leg assemblies which also helps to prevent excessive gimbal pivoting. 5 figures.« less
An excess noise measurement system for weak responsivity avalanche photodiodes
NASA Astrophysics Data System (ADS)
Qiao, Liang; Dimler, Simon J.; Baharuddin, Aina N. A. P.; Green, James E.; David, John P. R.
2018-06-01
A system for measuring, with reduced photocurrent, the excess noise associated with the gain in avalanche photodiodes (APDs), using a transimpedance amplifier front-end and based on phase-sensitive detection is described. The system can reliably measure the excess noise power of devices, even when the un-multiplied photocurrent is low (~10 nA). This is more than one order of magnitude better than previously reported systems and represents a significantly better noise signal to noise ratio. This improvement in performance has been achieved by increasing the value of the feedback resistor and reducing the op-amp bandwidth. The ability to characterise APD performance with such low photocurrents enables the use of low power light sources such as light emitting diode rather than lasers to investigate the APD noise performance.
Cell culture imaging using microimpedance tomography.
Linderholm, Pontus; Marescot, Laurent; Loke, Meng Heng; Renaud, Philippe
2008-01-01
We present a novel, inexpensive, and fast microimpedance tomography system for two-dimensional imaging of cell and tissue cultures. The system is based on four-electrode measurements using 16 planar microelectrodes (5 microm x 4 mm) integrated into a culture chamber. An Agilent 4294A impedance analyzer combined with a front-end amplifier is used for the impedance measurements. Two-dimensional images are obtained using a reconstruction algorithm. This system is capable of accurately resolving the shape and position of a human hair, yielding vertical cross sections of the object. Human epithelial stem cells (YF 29) are also grown directly on the device surface. Tissue growth can be followed over several days. A rapid resistivity decrease caused by permeabilized cell membranes is also monitored, suggesting that this technique can be used in electroporation studies.
NASA Technical Reports Server (NTRS)
Thrivikraman, Tushar; Hoffman, James
2012-01-01
This work presents a new measurement technique, mixed-signal active harmonic load-pull (MSALP) developed by Anterverta-mw in partnership with Maury Microwave, that allows for wide-band ultra-high efficiency amplifiers to be designed using GaN technology. An overview of the theory behind active load-pull is presented and why load-pull is important for high-power device characterization. In addition, an example procedure is presented that outlines a methodology for amplifier design using this measurement system. Lastly, measured results of a 10W GaN amplifier are presented. This work aims to highlight the benefit of using this sophisticated measurement systems for to optimize amplifier design for real radar waveforms that in turn will simplify implementation of space-based radar systems
Analog integrated circuits design for processing physiological signals.
Li, Yan; Poon, Carmen C Y; Zhang, Yuan-Ting
2010-01-01
Analog integrated circuits (ICs) designed for processing physiological signals are important building blocks of wearable and implantable medical devices used for health monitoring or restoring lost body functions. Due to the nature of physiological signals and the corresponding application scenarios, the ICs designed for these applications should have low power consumption, low cutoff frequency, and low input-referred noise. In this paper, techniques for designing the analog front-end circuits with these three characteristics will be reviewed, including subthreshold circuits, bulk-driven MOSFETs, floating gate MOSFETs, and log-domain circuits to reduce power consumption; methods for designing fully integrated low cutoff frequency circuits; as well as chopper stabilization (CHS) and other techniques that can be used to achieve a high signal-to-noise performance. Novel applications using these techniques will also be discussed.
Lyakh, A.; Maulini, R.; Tsekoun, A.; Go, R.; Von der Porten, S.; Pflügl, C.; Diehl, L.; Capasso, Federico; Patel, C. Kumar N.
2010-01-01
A strain-balanced, AlInAs/InGaAs/InP quantum cascade laser structure, designed for light emission at 4.0 μm using nonresonant extraction design approach, was grown by molecular beam epitaxy. Laser devices were processed in buried heterostructure geometry. An air-cooled laser system incorporating a 10-mm × 11.5-μm laser with antireflection-coated front facet and high-reflection-coated back facet delivered over 2 W of single-ended optical power in a collimated beam. Maximum continuous-wave room temperature wall plug efficiency of 5.0% was demonstrated for a high-reflection-coated 3.65-mm × 8.7-μm laser mounted on an aluminum nitride submount.
Digital analyzer for point processes based on first-in-first-out memories
NASA Astrophysics Data System (ADS)
Basano, Lorenzo; Ottonello, Pasquale; Schiavi, Enore
1992-06-01
We present an entirely new version of a multipurpose instrument designed for the statistical analysis of point processes, especially those characterized by high bunching. A long sequence of pulses can be recorded in the RAM bank of a personal computer via a suitably designed front end which employs a pair of first-in-first-out (FIFO) memories; these allow one to build an analyzer that, besides being simpler from the electronic point of view, is capable of sustaining much higher intensity fluctuations of the point process. The overflow risk of the device is evaluated by treating the FIFO pair as a queueing system. The apparatus was tested using both a deterministic signal and a sequence of photoelectrons obtained from laser light scattered by random surfaces.
Kubo, S; Nishiura, M; Tanaka, K; Shimozuma, T; Yoshimura, Y; Igami, H; Takahash, H; Mutoh, T; Tamura, N; Tatematsu, Y; Saito, T; Notake, T; Korsholm, S B; Meo, F; Nielsen, S K; Salewski, M; Stejner, M
2010-10-01
Collective Thomson scattering (CTS) system has been constructed at LHD making use of the high power electron cyclotron resonance heating (ECRH) system in Large Helical Device (LHD). The necessary features for CTS, high power probing beams and receiving beams, both with well defined Gaussian profile and with the fine controllability, are endowed in the ECRH system. The 32 channel radiometer with sharp notch filter at the front end is attached to the ECRH system transmission line as a CTS receiver. The validation of the CTS signal is performed by scanning the scattering volume. A new method to separate the CTS signal from background electron cyclotron emission is developed and applied to derive the bulk and high energy ion components for several combinations of neutral beam heated plasmas.
2. NORTH FRONT, FROM SUPERSTRUCTURE TO FLAME DEFLECTOR. Looking south ...
2. NORTH FRONT, FROM SUPERSTRUCTURE TO FLAME DEFLECTOR. Looking south southwest from Observation Post No. 1 (Building 8767). - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
FELIX: The new detector readout system for the ATLAS experiment
NASA Astrophysics Data System (ADS)
Ryu, Soo; ATLAS TDAQ Collaboration
2017-10-01
After the Phase-I upgrades (2019) of the ATLAS experiment, the Front-End Link eXchange (FELIX) system will be the interface between the data acquisition system and the detector front-end and trigger electronics. FELIX will function as a router between custom serial links and a commodity switch network using standard technologies (Ethernet or Infiniband) to communicate with commercial data collecting and processing components. The system architecture of FELIX will be described and the status of the firmware implementation and hardware development currently in progress will be presented.
Kirschbaum, M.A.
1986-01-01
This deltaic Upper Cretaceous Rock Springs Formation of the Mesaverde Group was deposited during early Campanian time near the end of the regressive phase of the Niobrara cyclothem. On the southwest end of the Uplift, part of the delta system is exposed near the seaward edge of a series of transgressive/regressive sequences, which consist of intertonguing prodelta, delta-front, and delta-plain deposits. Eight major delta-front sandstones are vertically stacked and laterally continuous throughout the main study area.-from Author
The front end test stand high performance H- ion source at Rutherford Appleton Laboratory.
Faircloth, D C; Lawrie, S; Letchford, A P; Gabor, C; Wise, P; Whitehead, M; Wood, T; Westall, M; Findlay, D; Perkins, M; Savage, P J; Lee, D A; Pozimski, J K
2010-02-01
The aim of the front end test stand (FETS) project is to demonstrate that chopped low energy beams of high quality can be produced. FETS consists of a 60 mA Penning Surface Plasma Ion Source, a three solenoid low energy beam transport, a 3 MeV radio frequency quadrupole, a chopper, and a comprehensive suite of diagnostics. This paper details the design and initial performance of the ion source and the laser profile measurement system. Beam current, profile, and emittance measurements are shown for different operating conditions.
Non-Electronic Radio Front-End (NERF)
2007-04-01
electro - optic field sensor. The absence of metallic interconnects and the charge isolation provided by the optics removes the soft spots in a traditional receiver. In the proof-of concept experiment, detection of C band electromagnetic signals at 7.38 GHz with a sensitivity of 4.3x10 -3 V/m.Hz(exp 1/2) is demonstrated. The dielectric approach has an added benefit: it reduces physical size of the front end an important benefit in mobile applications. DIELECTRIC RESONATOR ANTENNA, PHOTONICALLY ISOLATED ANTENNA RECEIVER, ELECTRO - OPTIC DIELECTRIC ANTENNA,
Understanding the Manager of the Project Front-End
NASA Technical Reports Server (NTRS)
Mulenburg, Gerald M.; Imprescia, Cliff (Technical Monitor)
2000-01-01
Historical data and new findings from interviews with managers of major National Aeronautics and Space Administration (NASA) projects confirm literature reports about the criticality of the front-end phase of project development, where systems engineering plays such a key role. Recent research into the management of ten contemporary NASA projects, combined with personal experience of the author in NASA, provide some insight into the relevance and importance of the project manager in this initial part of the project life cycle. The research findings provide evidence of similar approaches taken by the NASA project manager.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Mathew; Bowen, Brian; Coles, Dwight
The Middleware Automated Deployment Utilities consists the these three components: MAD: Utility designed to automate the deployment of java applications to multiple java application servers. The product contains a front end web utility and backend deployment scripts. MAR: Web front end to maintain and update the components inside database. MWR-Encrypt: Web utility to convert a text string to an encrypted string that is used by the Oracle Weblogic application server. The encryption is done using the built in functions if the Oracle Weblogic product and is mainly used to create an encrypted version of a database password.
A mobile trauma database with charge capture.
Moulton, Steve; Myung, Dan; Chary, Aron; Chen, Joshua; Agarwal, Suresh; Emhoff, Tim; Burke, Peter; Hirsch, Erwin
2005-11-01
Charge capture plays an important role in every surgical practice. We have developed and merged a custom mobile database (DB) system with our trauma registry (TRACS), to better understand our billing methods, revenue generators, and areas for improved revenue capture. The mobile database runs on handheld devices using the Windows Compact Edition platform. The front end was written in C# and the back end is SQL. The mobile database operates as a thick client; it includes active and inactive patient lists, billing screens, hot pick lists, and Current Procedural Terminology and International Classification of Diseases, Ninth Revision code sets. Microsoft Information Internet Server provides secure data transaction services between the back ends stored on each device. Traditional, hand written billing information for three of five adult trauma surgeons was averaged over a 5-month period. Electronic billing information was then collected over a 3-month period using handheld devices and the subject software application. One surgeon used the software for all 3 months, and two surgeons used it for the latter 2 months of the electronic data collection period. This electronic billing information was combined with TRACS data to determine the clinical characteristics of the trauma patients who were and were not captured using the mobile database. Total charges increased by 135%, 148%, and 228% for each of the three trauma surgeons who used the mobile DB application. The majority of additional charges were for evaluation and management services. Patients who were captured and billed at the point of care using the mobile DB had higher Injury Severity Scores, were more likely to undergo an operative procedure, and had longer lengths of stay compared with those who were not captured. Total charges more than doubled using a mobile database to bill at the point of care. A subsequent comparison of TRACS data with billing information revealed a large amount of uncaptured patient revenue. Greater familiarity and broader use of mobile database technology holds the potential for even greater revenue capture.
Space-qualified submillimeter radiometer
NASA Technical Reports Server (NTRS)
Huguenin, G. R.
1987-01-01
The purpose of this research was to develop a reliable submillimeter wave spectrometer for space-borne high frequency spectral line work. The emphasis was on improving the efficiency of frequency multipliers to limit the system components to rugged, low power consumption solid-state devices. This research has allowed Millitech to develop increased efficiency and performance in Millitech's existing line of submillimeter components and systems. Millitech has fabricated and tested a complete solid-state spectrometer front end for use at 560 GHz (the 1(sub 10) to 1(sub 01) transition of water vapor). The spectrometer was designed with the rigors of flight conditions in mind. The spectrometer uses a phase-locked, solid-state Gunn diode oscillator as the local oscillator, employing a tripler to produce about 3 mW of power at 285 GHz, and a low noise second harmonic waveguide mixer which requires less than 2 mW of LO power. The LO (and the signal) is injected into the mixer by means of a quasioptical diplexer. The measured system noise temperature is 2800 K (DSB) over 400 MHz. The whole spectrometer front end is compact (21 cm by 21 cm by 24 cm), light (7.4 kg), and has a power consumption of less than 8 W. Other topics explored in this work include compact frequency agile phase lock loops, optical filters, and InP Gunn oscillators for low noise applications. As a result of this research, the improvement in the design of multipliers and harmonic mixers will allow their use as the LO power for a variety of satellite-borne receivers operating in the 200 to 600 GHz frequency range.
Image acquisition device of inspection robot based on adaptive rotation regulation of polarizer
NASA Astrophysics Data System (ADS)
Dong, Maoqi; Wang, Xingguang; Liang, Tao; Yang, Guoqing; Zhang, Chuangyou; Gao, Faqin
2017-12-01
An image processing device of inspection robot with adaptive polarization adjustment is proposed, that the device includes the inspection robot body, the image collecting mechanism, the polarizer and the polarizer automatic actuating device. Where, the image acquisition mechanism is arranged at the front of the inspection robot body for collecting equipment image data in the substation. Polarizer is fixed on the automatic actuating device of polarizer, and installed in front of the image acquisition mechanism, and that the optical axis of the camera vertically goes through the polarizer and the polarizer rotates with the optical axis of the visible camera as the central axis. The simulation results show that the system solves the fuzzy problems of the equipment that are caused by glare, reflection of light and shadow, and the robot can observe details of the running status of electrical equipment. And the full coverage of the substation equipment inspection robot observation target is achieved, which ensures the safe operation of the substation equipment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Hyun-Sik; Jeon, Sanghun, E-mail: jeonsh@korea.ac.kr
Upon light exposure, an indium-zinc-oxide (IZO) thin-film transistor (TFT) presents higher photoconductivity by several orders of magnitude at the negative gate bias region. Among various device geometrical factors, scaling down the channel length of the photo-transistor results in an anomalous increase in photoconductivity. To probe the origin of this high photoconductivity in short-channel device, we measured transient current, current–voltage, and capacitance–voltage characteristics of IZO–TFTs with various channel lengths and widths before and after illumination. Under the illumination, the equilibrium potential region which lies far from front interface exists only in short-channel devices, forming the un-depleted conducting back channel. This regionmore » plays an important role in carrier transport under the illumination, leading to high photoconductivity in short-channel devices. Photon exposure coupled with gate-modulated band bending for short-channel devices leads to the accumulation of V{sub o}{sup ++} at the front channel and screening negative gate bias, thereby generating high current flow in the un-depleted back-channel region.« less
Using the Front Page of "The Wall Street Journal" to Teach Document Design and Audience Analysis.
ERIC Educational Resources Information Center
Moore, Patrick
1989-01-01
Explains an assignment for the audience analysis segment of a business writing course which compares the front page design of "The Wall Street Journal" with that of a local daily newspaper in order to emphasize the use of design devices in effectively writing to busy people. (SR)
A multichannel EEG acquisition scheme based on single ended amplifiers and digital DRL.
Haberman, Marcelo Alejandro; Spinelli, Enrique Mario
2012-12-01
Single ended (SE) amplifiers allow implementing biopotential front-ends with a reduced number of parts, being well suited for preamplified electrodes or compact EEG headboxes. On the other hand, given that each channel has independent gain; mismatching between these gains results in poor common-mode rejection ratios (CMRRs) (about 30 dB considering 1% tolerance components). This work proposes a scheme for multichannel EEG acquisition systems based on SE amplifiers and a novel digital driven right leg (DDRL) circuit, which overcome the poor CMRR of the front-end stage providing a high common mode reduction at power line frequency (up to 80 dB). A functional prototype was built and tested showing the feasibility of the proposed technique. It provided EEG records with negligible power line interference, even in very aggressive EMI environments.
SMART (Sandia's Modular Architecture for Robotics and Teleoperation) Ver. 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Robert
"SMART Ver. 0.8 Beta" provides a system developer with software tools to create a telerobotic control system, i.e., a system whereby an end-user can interact with mechatronic equipment. It consists of three main components: the SMART Editor (tsmed), the SMART Real-time kernel (rtos), and the SMART Supervisor (gui). The SMART Editor is a graphical icon-based code generation tool for creating end-user systems, given descriptions of SMART modules. The SMART real-time kernel implements behaviors that combine modules representing input devices, sensors, constraints, filters, and robotic devices. Included with this software release is a number of core modules, which can be combinedmore » with additional project and device specific modules to create a telerobotic controller. The SMART Supervisor is a graphical front-end for running a SMART system. It is an optional component of the SMART Environment and utilizes the TeVTk windowing and scripting environment. Although the code contained within this release is complete, and can be utilized for defining, running, and interfacing to a sample end-user SMART system, most systems will include additional project and hardware specific modules developed either by the system developer or obtained independently from a SMART module developer. SMART is a software system designed to integrate the different robots, input devices, sensors and dynamic elements required for advanced modes of telerobotic control. "SMART Ver. 0.8 Beta" defines and implements a telerobotic controller. A telerobotic system consists of combinations of modules that implement behaviors. Each real-time module represents an input device, robot device, sensor, constraint, connection or filter. The underlying theory utilizes non-linear discretized multidimensional network elements to model each individual module, and guarantees that upon a valid connection, the resulting system will perform in a stable fashion. Different combinations of modules implement different behaviors. Each module must have at a minimum an initialization routine, a parameter adjustment routine, and an update routine. The SMART runtime kernel runs continuously within a real-time embedded system. Each module is first set-up by the kernel, initialized, and then updated at a fixed rate whenever it is in context. The kernel responds to operator directed commands by changing the state of the system, changing parameters on individual modules, and switching behavioral modes. The SMART Editor is a tool used to define, verify, configure and generate source code for a SMART control system. It uses icon representations of the modules, code patches from valid configurations of the modules, and configuration files describing how a module can be connected into a system to lead the end-user in through the steps needed to create a final system. The SMART Supervisor serves as an interface to a SMART run-time system. It provides an interface on a host computer that connects to the embedded system via TCPIIP ASCII commands. It utilizes a scripting language (Tel) and a graphics windowing environment (Tk). This system can either be customized to fit an end-user's needs or completely replaced as needed.« less
3. DETAIL OF NORTH FRONT AND WEST SIDE, WITH SUPERSTRUCTURE, ...
3. DETAIL OF NORTH FRONT AND WEST SIDE, WITH SUPERSTRUCTURE, FROM NEAR OBSERVATION POST NO. 3. Looking south southeast from below. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
1. BUILDING 8814, NORTH FRONT AND WEST SIDE. BUILDING 8832, ...
1. BUILDING 8814, NORTH FRONT AND WEST SIDE. BUILDING 8832, TEST STAND 1-E, IN LEFT DISTANCE. Looking southeast. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunker 1-D-3, Test Area 1-125, northwest end of Altair Boulevard, Boron, Kern County, CA
14. VARIOUS OUTBUILDINGS: a) OCTAGONAL STRUCTURE (center): WASH HOUSE b) ...
14. VARIOUS OUTBUILDINGS: a) OCTAGONAL STRUCTURE (center): WASH HOUSE b) SQUARE BUILDING WITH HIPPED ROOF (right front): SMOKEHOUSE c) BRICK BUILDING WITH END CHIMNEYS (left front): KITCHEN AND COOK'S BUILDING d) LONG BRICK BUILDING (in background): SERVANTS' QUARTERS (?) - Colonel McNeal House, Union & Bills Streets, Bolivar, Hardeman County, TN
NASA Technical Reports Server (NTRS)
Rignot, E.; MacAyeal, D. R.
1998-01-01
Fifteen synthetic-aperture radar (SAR) images of the Ronne Ice Shelf, Antarctica, obtained by the European Space Agency (ESA)'s Earth Remote Sensing satellites (ERS) 1 & 2 are used to study ice-shelf dynamics near two ends of the iceberg-calving front.
1. Southwest front, dock no. 491. Aircraft tail extends through ...
1. Southwest front, dock no. 491. Aircraft tail extends through gasket in center hangar doors. View to east. - Offutt Air Force Base, Looking Glass Airborne Command Post, Nose Docks, On either side of Hangar Access Apron at Northwest end of Project Looking Glass Historic District, Bellevue, Sarpy County, NE
Direct mounted photovoltaic device with improved front clip
Keenihan, James R; Boven, Michelle; Brown, Jr., Claude; Gaston, Ryan S; Hus, Michael; Langmaid, Joe A; Lesniak, Mike
2013-11-05
The present invention is premised upon a photovoltaic assembly system for securing and/or aligning at least a plurality of vertically adjacent (overlapping) photovoltaic device assemblies to one another. The securing function being accomplished by a clip member that may be a separate component or integral to one or more of the photovoltaic device assemblies.
Wireless recording systems: from noninvasive EEG-NIRS to invasive EEG devices.
Sawan, Mohamad; Salam, Muhammad T; Le Lan, Jérôme; Kassab, Amal; Gelinas, Sébastien; Vannasing, Phetsamone; Lesage, Frédéric; Lassonde, Maryse; Nguyen, Dang K
2013-04-01
In this paper, we present the design and implementation of a wireless wearable electronic system dedicated to remote data recording for brain monitoring. The reported wireless recording system is used for a) simultaneous near-infrared spectrometry (NIRS) and scalp electro-encephalography (EEG) for noninvasive monitoring and b) intracerebral EEG (icEEG) for invasive monitoring. Bluetooth and dual radio links were introduced for these recordings. The Bluetooth-based device was embedded in a noninvasive multichannel EEG-NIRS system for easy portability and long-term monitoring. On the other hand, the 32-channel implantable recording device offers 24-bit resolution, tunable features, and a sampling frequency up to 2 kHz per channel. The analog front-end preamplifier presents low input-referred noise of 5 μ VRMS and a signal-to-noise ratio of 112 dB. The communication link is implemented using a dual-band radio frequency transceiver offering a half-duplex 800 kb/s data rate, 16.5 mW power consumption and less than 10(-10) post-correction Bit-Error Rate (BER). The designed system can be accessed and controlled by a computer with a user-friendly graphical interface. The proposed wireless implantable recording device was tested in vitro using real icEEG signals from two patients with refractory epilepsy. The wirelessly recorded signals were compared to the original signals recorded using wired-connection, and measured normalized root-mean square deviation was under 2%.
Linearity enhancement design of a 16-channel low-noise front-end readout ASIC for CdZnTe detectors
NASA Astrophysics Data System (ADS)
Zeng, Huiming; Wei, Tingcun; Wang, Jia
2017-03-01
A 16-channel front-end readout application-specific integrated circuit (ASIC) with linearity enhancement design for cadmium zinc telluride (CdZnTe) detectors is presented in this paper. The resistors in the slow shaper are realized using a high-Z circuit to obtain constant resistance value instead of using only a metal-oxide-semiconductor (MOS) transistor, thus the shaping time of the slow shaper can be kept constant for different amounts of input energies. As a result, the linearity of conversion gain is improved significantly. The ASIC was designed and fabricated in a 0.35 μm CMOS process with a die size of 2.60 mm×3.53 mm. The tested results show that a typical channel provides an equivalent noise charge (ENC) of 109.7e-+16.3e-/pF with a power consumption of 4 mW and achieves a conversion gain of 87 mV/fC with a nonlinearity of <0.4%. The linearity of conversion gain is improved by at least 86.6% as compared with the traditional approaches using the same front-end readout architecture and manufacture process. Moreover, the inconsistency among channels is <0.3%. An energy resolution of 2.975 keV (FWHM) for gamma rays of 59.5 keV was measured by connecting the ASIC to a 5 mm×5 mm ×2 mm CdZnTe detector at room temperature. The front-end readout ASIC presented in this paper achieves an outstanding linearity performance without compromising the noise, power consumption, and chip size performances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, C.S.; af Ekenstam, G.; Sallstrom, M.
1995-07-01
The Swedish Nuclear Power Inspectorate (SKI) and the US Department of Energy (DOE) sponsored work on a Remote Monitoring System (RMS) that was installed in August 1994 at the Barseback Works north of Malmo, Sweden. The RMS was designed to test the front end detection concept that would be used for unattended remote monitoring activities. Front end detection reduces the number of video images recorded and provides additional sensor verification of facility operations. The function of any safeguards Containment and Surveillance (C/S) system is to collect information which primarily is images that verify the operations at a nuclear facility. Barsebackmore » is ideal to test the concept of front end detection since most activities of safeguards interest is movement of spent fuel which occurs once a year. The RMS at Barseback uses a network of nodes to collect data from microwave motion detectors placed to detect the entrance and exit of spent fuel casks through a hatch. A video system using digital compression collects digital images and stores them on a hard drive and a digital optical disk. Data and images from the storage area are remotely monitored via telephone from Stockholm, Sweden and Albuquerque, NM, USA. These remote monitoring stations operated by SKI and SNL respectively, can retrieve data and images from the RMS computer at the Barseback Facility. The data and images are encrypted before transmission. This paper presents details of the RMS and test results of this approach to front end detection of safeguard activities.« less
Bullock, Alison; Dimond, Rebecca; Webb, Katie; Lovatt, Joseph; Hardyman, Wendy; Stacey, Mark
2015-04-08
The transition from medical school to the workplace can be demanding, with high expectations placed on newly qualified doctors. The provision of up-to-date and accurate information is essential to support doctors at a time when they are managing increased responsibility for patient care. In August 2012, the Wales Deanery issued the Dr.Companion© software with five key medical textbooks (the iDoc app) to newly qualified doctors (the intervention). The aim of the study was to examine how a smartphone app with key medical texts was used in clinical workplace settings by newly qualified doctors in relation to other information sources and to report changes over time. Participants (newly qualified - Foundation Year 1 - doctors) completed a baseline questionnaire before downloading the iDoc app to their own personal smartphone device. At the end of Foundation Year 1 participants (n = 125) completed exit questionnaires one year later. We used Wilcoxon Signed Rank test to analyse matched quantitative data. We report significant changes in our participants' use of workplace information resources over the year. Respondents reduced their use of hard-copy and electronic versions of texts on PCs but made more use of senior medical staff. There was no significant difference in the use of peers and other staff as information sources. We found a significant difference in how doctors felt about using a mobile device containing textbooks in front of patients and senior medical staff in the workplace. Our study indicates that a mobile app enabling timely, internet-free access to key textbooks supports the learning and practice of newly qualified doctors. Although participants changed their use of other resources in the workplace, they continued to consult with seniors. Rather than over-reliance on technology, these findings suggest that the app was used strategically to complement, not replace discussion with members of the medical team. Participants' uncertainty about using a mobile device with textbook app in front of others eased over time.
Method Of Packaging And Assembling Electro-Microfluidic Devices
Benavides, Gilbert L.; Galambos, Paul C.; Emerson, John A.; Peterson, Kenneth A.; Giunta, Rachel K.; Zamora, David Lee; Watson, Robert D.
2004-11-23
A new architecture for packaging surface micromachined electro-microfluidic devices is presented. This architecture relies on two scales of packaging to bring fluid to the device scale (picoliters) from the macro-scale (microliters). The architecture emulates and utilizes electronics packaging technology. The larger package consists of a circuit board with embedded fluidic channels and standard fluidic connectors (e.g. Fluidic Printed Wiring Board). The embedded channels connect to the smaller package, an Electro-Microfluidic Dual-Inline-Package (EMDIP) that takes fluid to the microfluidic integrated circuit (MIC). The fluidic connection is made to the back of the MIC through Bosch-etched holes that take fluid to surface micromachined channels on the front of the MIC. Electrical connection is made to bond pads on the front of the MIC.
Developing a distributed HTML5-based search engine for geospatial resource discovery
NASA Astrophysics Data System (ADS)
ZHOU, N.; XIA, J.; Nebert, D.; Yang, C.; Gui, Z.; Liu, K.
2013-12-01
With explosive growth of data, Geospatial Cyberinfrastructure(GCI) components are developed to manage geospatial resources, such as data discovery and data publishing. However, the efficiency of geospatial resources discovery is still challenging in that: (1) existing GCIs are usually developed for users of specific domains. Users may have to visit a number of GCIs to find appropriate resources; (2) The complexity of decentralized network environment usually results in slow response and pool user experience; (3) Users who use different browsers and devices may have very different user experiences because of the diversity of front-end platforms (e.g. Silverlight, Flash or HTML). To address these issues, we developed a distributed and HTML5-based search engine. Specifically, (1)the search engine adopts a brokering approach to retrieve geospatial metadata from various and distributed GCIs; (2) the asynchronous record retrieval mode enhances the search performance and user interactivity; (3) the search engine based on HTML5 is able to provide unified access capabilities for users with different devices (e.g. tablet and smartphone).
Carboni, Caterina; Bisoni, Lorenzo; Carta, Nicola; Puddu, Roberto; Raspopovic, Stanisa; Navarro, Xavier; Raffo, Luigi; Barbaro, Massimo
2016-04-01
The prototype of an electronic bi-directional interface between the Peripheral Nervous System (PNS) and a neuro-controlled hand prosthesis is presented. The system is composed of 2 integrated circuits: a standard CMOS device for neural recording and a HVCMOS device for neural stimulation. The integrated circuits have been realized in 2 different 0.35μ m CMOS processes available from ams. The complete system incorporates 8 channels each including the analog front-end, the A/D conversion, based on a sigma delta architecture and a programmable stimulation module implemented as a 5-bit current DAC; two voltage boosters supply the output stimulation stage with a programmable voltage scalable up to 17V. Successful in-vivo experiments with rats having a TIME electrode implanted in the sciatic nerve were carried out, showing the capability of recording neural signals in the tens of microvolts, with a global noise of 7μ V r m s , and to selectively elicit the tibial and plantar muscles using different active sites of the electrode.
Evaluation of commercial ADC radiation tolerance for accelerator experiments
Chen, K.; Chen, H.; Kierstead, J.; ...
2015-08-17
Electronic components used in high energy physics experiments are subjected to a radiation background composed of high energy hadrons, mesons and photons. These particles can induce permanent and transient effects that affect the normal device operation. Ionizing dose and displacement damage can cause chronic damage which disable the device permanently. Transient effects or single event effects are in general recoverable with time intervals that depend on the nature of the failure. The magnitude of these effects is technology dependent with feature size being one of the key parameters. Analog to digital converters are components that are frequently used in detectormore » front end electronics, generally placed as close as possible to the sensing elements to maximize signal fidelity. We report on radiation effects tests conducted on 17 commercially available analog to digital converters and extensive single event effect measurements on specific twelve and fourteen bit ADCs that presented high tolerance to ionizing dose. We discuss mitigation strategies for single event effects (SEE) for their use in the large hadron collider environment.« less
NASA Technical Reports Server (NTRS)
Jhabvala, M.; Lin, H. C.
1989-01-01
Hearing-aid device indicates visually whether sound is coming from left, right, back, or front. Device intended to assist individuals who are deaf in at least one ear and unable to discern naturally directions to sources of sound. Device promotes safety in street traffic, on loading docks, and in presence of sirens, alarms, and other warning sounds. Quadraphonic version of device built into pair of eyeglasses and binaural version built into visor.
Performance evaluation of the analogue front-end and ADC prototypes for the Gotthard-II development
NASA Astrophysics Data System (ADS)
Zhang, J.; Andrä, M.; Barten, R.; Bergamaschi, A.; Brückner, M.; Dinapoli, R.; Fröjdh, E.; Greiffenberg, D.; Lopez-Cuenca, C.; Mezza, D.; Mozzanica, A.; Ramilli, M.; Redford, S.; Ruat, M.; Ruder, C.; Schmitt, B.; Shi, X.; Thattil, D.; Tinti, G.; Turcato, M.; Vetter, S.
2017-12-01
Gotthard-II is a silicon microstrip detector developed for the European X-ray Free-Electron Laser (XFEL.EU). Its potential scientific applications include X-ray absorption/emission spectroscopy, hard X-ray high resolution single-shot spectrometry (HiREX), energy dispersive experiments at 4.5 MHz frame rate, beam diagnostics, as well as veto signal generation for pixel detectors. Gotthard-II uses a silicon microstrip sensor with a pitch of 50 μm or 25 μm and with 1280 or 2560 channels wire-bonded to readout chips (ROCs). In the ROC, an adaptive gain switching pre-amplifier (PRE), a fully differential Correlated-Double-Sampling (CDS) stage, an Analog-to-Digital Converter (ADC) as well as a Static Random-Access Memory (SRAM) capable of storing all the 2700 images in an XFEL.EU bunch train will be implemented. Several prototypes with different designs of the analogue front-end (PRE and CDS) and ADC test structures have been fabricated in UMC-110 nm CMOS technology and their performance has been evaluated. In this paper, the performance of the analogue front-end and ADC will be summarized.
Bolotnikov, A E; Ackley, K; Camarda, G S; Cherches, C; Cui, Y; De Geronimo, G; Fried, J; Hodges, D; Hossain, A; Lee, W; Mahler, G; Maritato, M; Petryk, M; Roy, U; Salwen, C; Vernon, E; Yang, G; James, R B
2015-07-01
We developed a robust and low-cost array of virtual Frisch-grid CdZnTe detectors coupled to a front-end readout application-specific integrated circuit (ASIC) for spectroscopy and imaging of gamma rays. The array operates as a self-reliant detector module. It is comprised of 36 close-packed 6 × 6 × 15 mm(3) detectors grouped into 3 × 3 sub-arrays of 2 × 2 detectors with the common cathodes. The front-end analog ASIC accommodates up to 36 anode and 9 cathode inputs. Several detector modules can be integrated into a single- or multi-layer unit operating as a Compton or a coded-aperture camera. We present the results from testing two fully assembled modules and readout electronics. The further enhancement of the arrays' performance and reduction of their cost are possible by using position-sensitive virtual Frisch-grid detectors, which allow for accurate corrections of the response of material non-uniformities caused by crystal defects.
Design of a front-end integrated circuit for 3D acoustic imaging using 2D CMUT arrays.
Ciçek, Ihsan; Bozkurt, Ayhan; Karaman, Mustafa
2005-12-01
Integration of front-end electronics with 2D capacitive micromachined ultrasonic transducer (CMUT) arrays has been a challenging issue due to the small element size and large channel count. We present design and verification of a front-end drive-readout integrated circuit for 3D ultrasonic imaging using 2D CMUT arrays. The circuit cell dedicated to a single CMUT array element consists of a high-voltage pulser and a low-noise readout amplifier. To analyze the circuit cell together with the CMUT element, we developed an electrical CMUT model with parameters derived through finite element analysis, and performed both the pre- and postlayout verification. An experimental chip consisting of 4 X 4 array of the designed circuit cells, each cell occupying a 200 X 200 microm2 area, was formed for the initial test studies and scheduled for fabrication in 0.8 microm, 50 V CMOS technology. The designed circuit is suitable for integration with CMUT arrays through flip-chip bonding and the CMUT-on-CMOS process.
REACH: a high-performance wireless base station front end
NASA Astrophysics Data System (ADS)
Nettleton, Ray W.
1996-01-01
The link budget determines the relationships between range, capacity and transmitted power for any wireless technology. In every case it is a key determinant of the system's performance from both an engineering and an economic point of view. Unfortunately, the new 1.9 GHz PCS systems will begin life with an inherent 7 dB disadvantage over the 800 MHz cellular due to propagation differences. Additionally, system wiring and electronics often degrade performance by a further 5 to 10 dB due to long coaxial runs and noisy front end amplification, both of which are harder issues to deal with at 1.9 GHz than at 800 MHz. SCT's REACHTM products address these shortcomings by packaging critical components--front end amplification, filtering, etc.--in a compact cryoelectronic package intended for mounting near the antennas of the base station. In a recent trial with Qualcomm in San Diego, this package improved the CDMA uplink budget by 6 dB--enough to halve the number of base stations that are needed in most areas. This paper examines the technical and economic ramifications of the REACHTM product.
AFEII Analog Front End Board Design Specifications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubinov, Paul; /Fermilab
2005-04-01
This document describes the design of the 2nd iteration of the Analog Front End Board (AFEII), which has the function of receiving charge signals from the Central Fiber Tracker (CFT) and providing digital hit pattern and charge amplitude information from those charge signals. This second iteration is intended to address limitations of the current AFE (referred to as AFEI in this document). These limitations become increasingly deleterious to the performance of the Central Fiber Tracker as instantaneous luminosity increases. The limitations are inherent in the design of the key front end chips on the AFEI board (the SVXIIe and themore » SIFT) and the architecture of the board itself. The key limitations of the AFEI are: (1) SVX saturation; (2) Discriminator to analog readout cross talk; (3) Tick to tick pedestal variation; and (4) Channel to channel pedestal variation. The new version of the AFE board, AFEII, addresses these limitations by use of a new chip, the TriP-t and by architectural changes, while retaining the well understood and desirable features of the AFEI board.« less
Tunable compensation of GVD-induced FM-AM conversion in the front end of high-power lasers.
Li, Rao; Fan, Wei; Jiang, Youen; Qiao, Zhi; Zhang, Peng; Lin, Zunqi
2017-02-01
Group velocity dispersion (GVD) is one of the main factors leading to frequency modulation (FM) to amplitude modulation (AM) conversion in the front end of high-power lasers. In order to compensate the FM-AM modulation, the influence of GVD, which is mainly induced by the phase filter effect, is theoretically investigated. Based on the theoretical analysis, a high-precision, high-stability, tunable GVD compensatory using gratings is designed and experimentally demonstrated. The results indicate that the compensator can be implemented in high-power laser facilities to compensate the GVD of fiber with a length between 200-500 m when the bandwidth of a phase-modulated laser is 0.34 nm or 0.58 nm and the central wavelength is in the range of 1052.3217-1053.6008 nm. Due to the linear relationship between the dispersion and the spacing distance of the gratings, the compensator can easily achieve closed-loop feedback controlling. The proposed GVD compensator promises significant applications in large laser facilities, especially in the future polarizing fiber front end of high-power lasers.
Programming time-multiplexed reconfigurable hardware using a scalable neuromorphic compiler.
Minkovich, Kirill; Srinivasa, Narayan; Cruz-Albrecht, Jose M; Cho, Youngkwan; Nogin, Aleksey
2012-06-01
Scalability and connectivity are two key challenges in designing neuromorphic hardware that can match biological levels. In this paper, we describe a neuromorphic system architecture design that addresses an approach to meet these challenges using traditional complementary metal-oxide-semiconductor (CMOS) hardware. A key requirement in realizing such neural architectures in hardware is the ability to automatically configure the hardware to emulate any neural architecture or model. The focus for this paper is to describe the details of such a programmable front-end. This programmable front-end is composed of a neuromorphic compiler and a digital memory, and is designed based on the concept of synaptic time-multiplexing (STM). The neuromorphic compiler automatically translates any given neural architecture to hardware switch states and these states are stored in digital memory to enable desired neural architectures. STM enables our proposed architecture to address scalability and connectivity using traditional CMOS hardware. We describe the details of the proposed design and the programmable front-end, and provide examples to illustrate its capabilities. We also provide perspectives for future extensions and potential applications.
Bolotnikov, A. E.; Ackley, K.; Camarda, G. S.; ...
2015-07-28
We developed a robust and low-cost array of virtual Frisch-grid CdZnTe (CZT) detectors coupled to a front-end readout ASIC for spectroscopy and imaging of gamma rays. The array operates as a self-reliant detector module. It is comprised of 36 close-packed 6x6x15 mm 3 detectors grouped into 3x3 sub-arrays of 2x2 detectors with the common cathodes. The front-end analog ASIC accommodates up to 36 anode and 9 cathode inputs. Several detector modules can be integrated into a single- or multi-layer unit operating as a Compton or a coded-aperture camera. We present the results from testing two fully assembled modules and readoutmore » electronics. The further enhancement of the arrays’ performance and reduction of their cost are made possible by using position-sensitive virtual Frisch-grid detectors, which allow for accurate corrections of the response of material non-uniformities caused by crystal defects.« less
Fast front-end electronics for semiconductor tracking detectors: Trends and perspectives
NASA Astrophysics Data System (ADS)
Rivetti, Angelo
2014-11-01
In the past few years, extensive research efforts pursued by both the industry and the academia have lead to major improvements in the performance of Analog to Digital Converters (ADCs) and Time to Digital Converters (TDCs). ADCs achieving 8-10 bit resolution, 50-100 MHz conversion frequency and less than 1 mW power consumption are the today's standard, while TDCs have reached sub-picosecond time resolution. These results have been made possible by architectural upgrades combined with the use of ultra deep submicron CMOS technologies with minimum feature size of 130 nm or smaller. Front-end ASICs in which a prompt digitization is followed by signal conditioning in the digital domain can now be envisaged also within the tight power budget typically available in high density tracking systems. Furthermore, tracking detectors embedding high resolution timing capabilities are gaining interest. In the paper, ADC's and TDC's developments which are of particular relevance for the design front-end electronics for semiconductor trackers are discussed along with the benefits and challenges of exploiting such high performance building blocks in implementing the next generation of ASICs for high granularity particle detectors.
Underwater fiber-wireless communication with a passive front end
NASA Astrophysics Data System (ADS)
Xu, Jing; Sun, Bin; Lyu, Weichao; Kong, Meiwei; Sarwar, Rohail; Han, Jun; Zhang, Wei; Deng, Ning
2017-11-01
We propose and experimentally demonstrate a novel concept on underwater fiber-wireless (Fi-Wi) communication system with a fully passive wireless front end. A low-cost step-index (SI) plastic optical fiber (POF) together with a passive collimating lens at the front end composes the underwater Fi-Wi architecture. We have achieved a 1.71-Gb/s transmission at a mean BER of 4.97 × 10-3 (1.30 × 10-3 when using power loading) over a 50-m SI-POF and 2-m underwater wireless channel using orthogonal frequency division multiplexing (OFDM). Although the wireless part is very short, it actually plays a crucial role in practical underwater implementation, especially in deep sea. Compared with the wired solution (e.g. using a 52-m POF cable without the UWOC part), the proposed underwater Fi-Wi scheme can save optical wet-mate connectors that are sophisticated, very expensive and difficult to install in deep ocean. By combining high-capacity robust POF with the mobility and ubiquity of underwater wireless optical communication (UWOC), the proposed underwater Fi-Wi technology will find wide application in ocean exploration.
Hostetter, Jason; Khanna, Nishanth; Mandell, Jacob C
2018-06-01
The purpose of this study was to integrate web-based forms with a zero-footprint cloud-based Picture Archiving and Communication Systems (PACS) to create a tool of potential benefit to radiology research and education. Web-based forms were created with a front-end and back-end architecture utilizing common programming languages including Vue.js, Node.js and MongoDB, and integrated into an existing zero-footprint cloud-based PACS. The web-based forms application can be accessed in any modern internet browser on desktop or mobile devices and allows the creation of customizable forms consisting of a variety of questions types. Each form can be linked to an individual DICOM examination or a collection of DICOM examinations. Several uses are demonstrated through a series of case studies, including implementation of a research platform for multi-reader multi-case (MRMC) studies and other imaging research, and creation of an online Objective Structure Clinical Examination (OSCE) and an educational case file. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Modeling and analysis of hybrid pixel detector deficiencies for scientific applications
NASA Astrophysics Data System (ADS)
Fahim, Farah; Deptuch, Grzegorz W.; Hoff, James R.; Mohseni, Hooman
2015-08-01
Semiconductor hybrid pixel detectors often consist of a pixellated sensor layer bump bonded to a matching pixelated readout integrated circuit (ROIC). The sensor can range from high resistivity Si to III-V materials, whereas a Si CMOS process is typically used to manufacture the ROIC. Independent, device physics and electronic design automation (EDA) tools are used to determine sensor characteristics and verify functional performance of ROICs respectively with significantly different solvers. Some physics solvers provide the capability of transferring data to the EDA tool. However, single pixel transient simulations are either not feasible due to convergence difficulties or are prohibitively long. A simplified sensor model, which includes a current pulse in parallel with detector equivalent capacitor, is often used; even then, spice type top-level (entire array) simulations range from days to weeks. In order to analyze detector deficiencies for a particular scientific application, accurately defined transient behavioral models of all the functional blocks are required. Furthermore, various simulations, such as transient, noise, Monte Carlo, inter-pixel effects, etc. of the entire array need to be performed within a reasonable time frame without trading off accuracy. The sensor and the analog front-end can be modeling using a real number modeling language, as complex mathematical functions or detailed data can be saved to text files, for further top-level digital simulations. Parasitically aware digital timing is extracted in a standard delay format (sdf) from the pixel digital back-end layout as well as the periphery of the ROIC. For any given input, detector level worst-case and best-case simulations are performed using a Verilog simulation environment to determine the output. Each top-level transient simulation takes no more than 10-15 minutes. The impact of changing key parameters such as sensor Poissonian shot noise, analog front-end bandwidth, jitter due to clock distribution etc. can be accurately analyzed to determine ROIC architectural viability and bottlenecks. Hence the impact of the detector parameters on the scientific application can be studied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fahim, Farah; Deptuch, Grzegorz W.; Hoff, James R.
Semiconductor hybrid pixel detectors often consist of a pixellated sensor layer bump bonded to a matching pixelated readout integrated circuit (ROIC). The sensor can range from high resistivity Si to III-V materials, whereas a Si CMOS process is typically used to manufacture the ROIC. Independent, device physics and electronic design automation (EDA) tools are used to determine sensor characteristics and verify functional performance of ROICs respectively with significantly different solvers. Some physics solvers provide the capability of transferring data to the EDA tool. However, single pixel transient simulations are either not feasible due to convergence difficulties or are prohibitively long.more » A simplified sensor model, which includes a current pulse in parallel with detector equivalent capacitor, is often used; even then, spice type top-level (entire array) simulations range from days to weeks. In order to analyze detector deficiencies for a particular scientific application, accurately defined transient behavioral models of all the functional blocks are required. Furthermore, various simulations, such as transient, noise, Monte Carlo, inter-pixel effects, etc. of the entire array need to be performed within a reasonable time frame without trading off accuracy. The sensor and the analog front-end can be modeling using a real number modeling language, as complex mathematical functions or detailed data can be saved to text files, for further top-level digital simulations. Parasitically aware digital timing is extracted in a standard delay format (sdf) from the pixel digital back-end layout as well as the periphery of the ROIC. For any given input, detector level worst-case and best-case simulations are performed using a Verilog simulation environment to determine the output. Each top-level transient simulation takes no more than 10-15 minutes. The impact of changing key parameters such as sensor Poissonian shot noise, analog front-end bandwidth, jitter due to clock distribution etc. can be accurately analyzed to determine ROIC architectural viability and bottlenecks. Hence the impact of the detector parameters on the scientific application can be studied.« less
49 CFR 393.24 - Requirements for head lamps, auxiliary driving lamps and front fog lamps.
Code of Federal Regulations, 2011 CFR
2011-10-01
... the driver's will and be steady-burning. The headlamps shall be marked in accordance with FMVSS No... this paragraph. (b) Auxiliary driving lamps and front fog lamps. Commercial motor vehicles may be... aim of the lighting device from being disturbed while the vehicle is operating on public roads. (d...
Costa, Tiago; Cardoso, Filipe A; Germano, Jose; Freitas, Paulo P; Piedade, Moises S
2017-10-01
The development of giant magnetoresistive (GMR) sensors has demonstrated significant advantages in nanomedicine, particularly for ultrasensitive point-of-care diagnostics. To this end, the detection system is required to be compact, portable, and low power consuming at the same time that a maximum signal to noise ratio is maintained. This paper reports a CMOS front-end with integrated magnetoresistive sensors for biomolecular recognition detection applications. Based on the characterization of the GMR sensor's signal and noise, CMOS building blocks (i.e., current source, multiplexers, and preamplifier) were designed targeting a negligible noise when compared with the GMR sensor's noise and a low power consumption. The CMOS front-end was fabricated using AMS [Formula: see text] technology and the magnetoresistive sensors were post-fabricated on top of the CMOS chip with high yield ( [Formula: see text]). Due to its low circuit noise (16 [Formula: see text]) and overall equivalent magnetic noise ([Formula: see text]), the full system was able to detect 250 nm magnetic nanoparticles with a circuit imposed signal-to-noise ratio degradation of only -1.4 dB. Furthermore, the low power consumption (6.5 mW) and small dimensions ([Formula: see text] ) of the presented solution guarantees the portability of the detection system allowing its usage at the point-of-care.
An inductorless multi-mode RF front end for GNSS receiver in 55 nm CMOS
NASA Astrophysics Data System (ADS)
Yanbin, Luo; Chengyan, Ma; Yebing, Gan; Min, Qian; Tianchun, Ye
2015-10-01
An inductorless multi-mode RF front end for a global navigation satellite system (GNSS) receiver is presented. Unlike the traditional topology of a low noise amplifier (LNA), the inductorless current-mode noise-canceling LNA is applied in this design. The high-impedance-input radio frequency amplifier (RFA) further amplifies the GNSS signals and changes the single-end signal path into fully differential. The passive mixer down-converts the signals to the intermediate frequency (IF) band and conveys the signals to the analogue blocks. The local oscillator (LO) buffer divides the output frequency of the voltage controlled oscillator (VCO) and generates 25%-duty-cycle quadrature square waves to drive the mixer. Our measurement results display that the implemented RF front end achieves good overall performance while consuming only 6.7 mA from 1.2 V supply. The input return loss is better than -26 dB and the ultra low noise figure of 1.43 dB leads to high sensitivity of the GNSS receiver. The input 1 dB compression point is -43 dBm at the high gain of 48 dB. The designed circuit is fabricated in 55 nm CMOS technology and the die area, which is much smaller than traditional circuit, is around 220 × 280 μm2.
2014-12-01
27 Figure 37. Posttest view of SDC-B experimental specimen...center vertical displacement (y2) vs. time (x). .............................................. 28 Figure 40. Posttest front view of the SDC B top...center column. .......................................................... 30 Figure 41. Posttest front view of end columns
1. NORTHWEST FRONT AND SOUTHWEST SIDE, SHOWING LOCATION OF BUILDING ...
1. NORTHWEST FRONT AND SOUTHWEST SIDE, SHOWING LOCATION OF BUILDING 0520 WEST OF FIRING CONTOL BLOCK HOUSE (BLDG. 0545), BETWEEN SLED TRACK AND CAMERA ACCESS ROAD. - Edwards Air Force Base, South Base Sled Track, Observation Block House, Station "O" area, east end of Sled Track, Lancaster, Los Angeles County, CA
2. OBLIQUE VIEW OF WEST FRONT. The frames on an ...
2. OBLIQUE VIEW OF WEST FRONT. The frames on an angle originally held mirrors for viewing the tests from inside the building. Vertical frame originally held bullet glass. - Edwards Air Force Base, South Base Sled Track, Firing Control Blockhouse, South of Sled Track at east end, Lancaster, Los Angeles County, CA
Mountain Plains Learning Experience Guide: Automotive Repair. Course: Suspension Systems.
ERIC Educational Resources Information Center
Schramm, C.; Osland, Walt
One of twelve individualized courses included in an automotive repair curriculum, this course covers the theory, maintenance, and repair of front-end suspension and steering mechanisms. The course is comprised of five units: (1) Tire Balancing, (2) Manual Steering Gears, (3) Power Steering, (4) Fundamentals of Suspension, and (5) Front-End…
Jang, Hyunwook; Ahmed, Syed Rahin; Neethirajan, Suresh
2017-01-01
Enzyme-linked immunosorbent assay (ELISA) is a popular assay technique for the detection and quantification of various biological substances due its high sensitivity and specificity. More often, it requires large and expensive laboratory instruments, which makes it difficult to conduct when the tests must be performed quickly at the point-of-care (POC). To increase portability and ease of use, we propose a portable diagnostic system based on a Raspberry Pi imaging sensor for the rapid detection of progesterone in milk samples. We designed, assembled, and tested a standalone portable diagnostic reader and validated it for progesterone detection against a standard ELISA assay using a commercial plate reader. The portable POC device yielded consistent results, regardless of differences in the cameras and flashlights between various smartphone devices. An Android application was built to provide front-end access to users, control the diagnostic reader, and display and store the progesterone measurement on the smartphone. The diagnostic reader takes images of the samples, reads the pixel values, processes the results, and presents the results on the handheld device. The proposed POC reader can perform to superior levels of performance as a plate reader, while adding the desirable qualities of portability and ease of use. PMID:28489036
Development of an instrument for time activity curve measurements during PET imaging of rodents
NASA Astrophysics Data System (ADS)
Reymond, Jean-Marc; Guez, David; Kerhoas, Sophie; Mangeot, Philippe; Boisgard, Raphaël; Jan, Sébastien; Tavitian, Bertrand; Trebossen, Régine
2007-02-01
Molecular imaging using PET in small rodents requires commonly the knowledge of the input function of the tracer (quantitative and kinetic studies of the metabolism, development of new drugs or new tracers, etc.). In this paper, we report the status and the performances of the prototype of a counting system that is under development at DAPNIA a in collaboration with SHFJ b. The detection device is made of silicon diodes of 0.3 mm thickness proper to measure the positrons emitted by the radiotracer contained in arterial blood flowing in a thin-wall microtube. Such diodes are poorly efficient for the 511 keV gammas from the rodent and thus require a rather light lead shielding and allow operating very close by to the animal. The detectors, the front-end electronics (for signal preamplification, shaping, and discrimination) and the acquisition circuits are mounted on a single card. The device is connected directly to a portable computer via an USB port. Such a design provides a compact, rugged and portable device for working close to a small animal PET camera. Preliminary results show the performances of this counting system with 18F solution and a time-activity curve for FDG blood samples (with ∣˜30 μL/samples) from a rat.
Jang, Hyunwook; Ahmed, Syed Rahin; Neethirajan, Suresh
2017-05-10
Enzyme-linked immunosorbent assay (ELISA) is a popular assay technique for the detection and quantification of various biological substances due its high sensitivity and specificity. More often, it requires large and expensive laboratory instruments, which makes it difficult to conduct when the tests must be performed quickly at the point-of-care (POC). To increase portability and ease of use, we propose a portable diagnostic system based on a Raspberry Pi imaging sensor for the rapid detection of progesterone in milk samples. We designed, assembled, and tested a standalone portable diagnostic reader and validated it for progesterone detection against a standard ELISA assay using a commercial plate reader. The portable POC device yielded consistent results, regardless of differences in the cameras and flashlights between various smartphone devices. An Android application was built to provide front-end access to users, control the diagnostic reader, and display and store the progesterone measurement on the smartphone. The diagnostic reader takes images of the samples, reads the pixel values, processes the results, and presents the results on the handheld device. The proposed POC reader can perform to superior levels of performance as a plate reader, while adding the desirable qualities of portability and ease of use.
A Universal Intelligent System-on-Chip Based Sensor Interface
Mattoli, Virgilio; Mondini, Alessio; Mazzolai, Barbara; Ferri, Gabriele; Dario, Paolo
2010-01-01
The need for real-time/reliable/low-maintenance distributed monitoring systems, e.g., wireless sensor networks, has been becoming more and more evident in many applications in the environmental, agro-alimentary, medical, and industrial fields. The growing interest in technologies related to sensors is an important indicator of these new needs. The design and the realization of complex and/or distributed monitoring systems is often difficult due to the multitude of different electronic interfaces presented by the sensors available on the market. To address these issues the authors propose the concept of a Universal Intelligent Sensor Interface (UISI), a new low-cost system based on a single commercial chip able to convert a generic transducer into an intelligent sensor with multiple standardized interfaces. The device presented offers a flexible analog and/or digital front-end, able to interface different transducer typologies (such as conditioned, unconditioned, resistive, current output, capacitive and digital transducers). The device also provides enhanced processing and storage capabilities, as well as a configurable multi-standard output interface (including plug-and-play interface based on IEEE 1451.3). In this work the general concept of UISI and the design of reconfigurable hardware are presented, together with experimental test results validating the proposed device. PMID:22163624
The PennBMBI: Design of a General Purpose Wireless Brain-Machine-Brain Interface System.
Liu, Xilin; Zhang, Milin; Subei, Basheer; Richardson, Andrew G; Lucas, Timothy H; Van der Spiegel, Jan
2015-04-01
In this paper, a general purpose wireless Brain-Machine-Brain Interface (BMBI) system is presented. The system integrates four battery-powered wireless devices for the implementation of a closed-loop sensorimotor neural interface, including a neural signal analyzer, a neural stimulator, a body-area sensor node and a graphic user interface implemented on the PC end. The neural signal analyzer features a four channel analog front-end with configurable bandpass filter, gain stage, digitization resolution, and sampling rate. The target frequency band is configurable from EEG to single unit activity. A noise floor of 4.69 μVrms is achieved over a bandwidth from 0.05 Hz to 6 kHz. Digital filtering, neural feature extraction, spike detection, sensing-stimulating modulation, and compressed sensing measurement are realized in a central processing unit integrated in the analyzer. A flash memory card is also integrated in the analyzer. A 2-channel neural stimulator with a compliance voltage up to ± 12 V is included. The stimulator is capable of delivering unipolar or bipolar, charge-balanced current pulses with programmable pulse shape, amplitude, width, pulse train frequency and latency. A multi-functional sensor node, including an accelerometer, a temperature sensor, a flexiforce sensor and a general sensor extension port has been designed. A computer interface is designed to monitor, control and configure all aforementioned devices via a wireless link, according to a custom designed communication protocol. Wireless closed-loop operation between the sensory devices, neural stimulator, and neural signal analyzer can be configured. The proposed system was designed to link two sites in the brain, bridging the brain and external hardware, as well as creating new sensory and motor pathways for clinical practice. Bench test and in vivo experiments are performed to verify the functions and performances of the system.
1980-02-01
fuel. Based on the survey data, wood chips in the NSTL area are sold for $13 to $16 per wet ton ($14 to $18 Der l03 kg wet), bark for $6 to $7 per wet...truck 3 Chip vans (initially) 1 Pickup (3/4 ton) 1 Front-end loader (for handling at chip pile) This equipment combination assumes all material ]-inch...ing sites in chip vans , preferably with live-beds to aid in unloading. At the processing site the chips would be stored in large piles. A Front-end
Signal-processing theory for the TurboRogue receiver
NASA Technical Reports Server (NTRS)
Thomas, J. B.
1995-01-01
Signal-processing theory for the TurboRogue receiver is presented. The signal form is traced from its formation at the GPS satellite, to the receiver antenna, and then through the various stages of the receiver, including extraction of phase and delay. The analysis treats the effects of ionosphere, troposphere, signal quantization, receiver components, and system noise, covering processing in both the 'code mode' when the P code is not encrypted and in the 'P-codeless mode' when the P code is encrypted. As a possible future improvement to the current analog front end, an example of a highly digital front end is analyzed.
Front-end electronics for the LZ experiment
NASA Astrophysics Data System (ADS)
Morad, James; LZ Collaboration
2016-03-01
LZ is a second generation direct dark matter detection experiment with 5.6 tonnes of liquid xenon active target, which will be instrumented as a two-phase time projection chamber (TPC). The peripheral xenon outside the active TPC (``skin'') will also be instrumented. In addition, there will be a liquid scintillator based outer veto surrounding the main cryostat. All of these systems will be read out using photomultiplier tubes. I will present the designs for front-end electronics for all these systems, which have been optimized for shaping times, gains, and low noise. Preliminary results from prototype boards will also be presented.
Light-front field theory in the description of hadrons
NASA Astrophysics Data System (ADS)
Ji, Chueng-Ryong
2017-03-01
We discuss the use of light-front field theory in the descriptions of hadrons. In particular, we clarify the confusion in the prevailing notion of the equivalence between the infinite momentum frame and the light-front dynamics and the advantage of the light-front dynamics in hadron physics. As an application, we present our recent work on the flavor asymmetry in the proton sea and identify the presence of the delta-function contributions associated with end-point singularities arising from the chiral effective theory calculation. The results pave the way for phenomenological applications of pion cloud models that are manifestly consistent with the chiral symmetry properties of QCD.
Texting at the light and other forms of device distraction behind the wheel.
Bernstein, James J; Bernstein, Joseph
2015-09-26
Cell phones are a well-known source of distraction for drivers, and owing to the proliferation of text messaging services, web browsers and interactive apps, modern devices provide ever-increasing temptation for drivers to take their eyes off the road. Although it is probably obvious that drivers' manual engagement of a device while their vehicles are in motion is potentially dangerous, it may not be clear that such engagement when the vehicle is at rest (an activity broadly labeled "texting at the light") can also impose risks. For one thing, a distracted driver at rest may fail to respond quickly to sudden changes in road conditions, such as an ambulance passing through. In addition, texting at the light may decrease so-called "situational awareness" and lead to driving errors even after the device is put down. To our knowledge, the direct comparison of the rate of device usage by drivers at rest with the rate of device usage by drivers in motion has not been reported. We collected information on 2000 passenger vehicles by roadside observation. For the first group of 1000 passenger vehicles stopped at a traffic light, device usage ("texting", "talking", "none"), gender of the driver, vehicle type, seatbelt usage and presence of front seat passengers were recorded. For a second set of 1000 vehicles in motion, device usage alone was noted. Statistical significance for differences in rates was assessed with the chi-square test. We found that 3 % of drivers in motion were texting and 5 % were talking. Among the stopped drivers, 14.5 % were texting and 6.3 % were talking. In the stopped-vehicle set, gender and vehicle type were not associated with significant differences in device usage, but having a front seat passenger and using seatbelts were. Device usage is markedly higher among drivers temporarily at rest compared with those in motion, and the presence of a front seat passenger, who may help alleviate boredom or reprimand bad behavior, is associated with lower device usage rates among vehicles stopped at a light. These observations may help identify suitable steps to decrease distracted driving and thereby minimize traffic trauma.
Gallium Arsenide detectors for X-ray and electron (beta particle) spectroscopy
NASA Astrophysics Data System (ADS)
Lioliou, G.; Barnett, A. M.
2016-11-01
Results characterizing GaAs p+-i-n+ mesa photodiodes with a 10 μm i layer for their spectral response under illumination of X-rays and beta particles are presented. A total of 22 devices, having diameters of 200 μm and 400 μm, were electrically characterized at room temperature. All devices showed comparable characteristics with a measured leakage current ranging from 4 nA/cm2 to 67 nA/cm2 at an internal electric field of 50 kV/cm. Their unintentionally doped i layers were found to be almost fully depleted at 0 V due to their low doping density. 55Fe X-ray spectra were obtained using one 200 μm diameter device and one 400 μm diameter device. The best energy resolution (FWHM at 5.9 keV) achieved was 625 eV using the 200 μm and 740 eV using the 400 μm diameter device, respectively. Noise analysis showed that the limiting factor for the energy resolution of the system was the dielectric noise; if this noise was eliminated by better design of the front end of the readout electronics, the achievable resolution would be 250 eV. 63Ni beta particle spectra obtained using the 200 μm diameter device showed the potential utility of these detectors for electron and beta particle detection. The development of semiconductor electron spectrometers is important particularly for space plasma physics; such devices may find use in future space missions to study the plasma environment of Jupiter and Europa and the predicted electron impact excitation of water vapor plumes from Europa hypothesized as a result of recent Hubble Space Telescope (HST) UV observations.
Systems and methods for advanced ultra-high-performance InP solar cells
Wanlass, Mark
2017-03-07
Systems and Methods for Advanced Ultra-High-Performance InP Solar Cells are provided. In one embodiment, an InP photovoltaic device comprises: a p-n junction absorber layer comprising at least one InP layer; a front surface confinement layer; and a back surface confinement layer; wherein either the front surface confinement layer or the back surface confinement layer forms part of a High-Low (HL) doping architecture; and wherein either the front surface confinement layer or the back surface confinement layer forms part of a heterointerface system architecture.
An open-source data storage and visualization back end for experimental data.
Nielsen, Kenneth; Andersen, Thomas; Jensen, Robert; Nielsen, Jane H; Chorkendorff, Ib
2014-04-01
In this article, a flexible free and open-source software system for data logging and presentation will be described. The system is highly modular and adaptable and can be used in any laboratory in which continuous and/or ad hoc measurements require centralized storage. A presentation component for the data back end has furthermore been written that enables live visualization of data on any device capable of displaying Web pages. The system consists of three parts: data-logging clients, a data server, and a data presentation Web site. The logging of data from independent clients leads to high resilience to equipment failure, whereas the central storage of data dramatically eases backup and data exchange. The visualization front end allows direct monitoring of acquired data to see live progress of long-duration experiments. This enables the user to alter experimental conditions based on these data and to interfere with the experiment if needed. The data stored consist both of specific measurements and of continuously logged system parameters. The latter is crucial to a variety of automation and surveillance features, and three cases of such features are described: monitoring system health, getting status of long-duration experiments, and implementation of instant alarms in the event of failure.
Defect evolution during catastrophic optical damage in 450-nm emitting InGaN/GaN diode lasers
NASA Astrophysics Data System (ADS)
Tomm, Jens W.; Kernke, Robert; Löffler, Andreas; Stojetz, Bernhard; Lell, Alfred; König, Harald
2018-02-01
The catastrophic optical damage (COD) of 450-nm emitting InGaN/GaN diode lasers is investigated with special attention to the kinetics of the process. For this purpose, the COD is triggered artificially by applying individual current pulses. This makes it possible to achieve a sub-µs time resolution for processes monitored by cameras. COD appears as a "hot" process that involves decomposition of quantum well and waveguide materials. We observe the ejection of hot material from the front facets of the laser. This can be seen in two different wavelength ranges, visible/near infrared and mid infrared. The main contributions identified are both thermal radiation and 450-nm laser light scattered by the emitted material. Defect growth during COD is energized by the optical mode. Therefore, the defect pattern resembles its shape. Ultimately, the loss of material leads to the formation of an empty channel along the laser axis. COD in GaAs and GaN-based devices follows similar general scenarios. After ignition of the process, the defect propagation during the process is fed by laser energy. We observe defect propagation velocities of up to 30 m/s for GaAs-based devices and 110 m/s for GaN-based devices. The damage patterns of GaN and GaAs-based devices are completely different. For GaN-based devices, the front facets show holes. Behind them in the interior, we find an empty channel at the position of the optical mode surrounded by intact material. In contrast, earlier studies on GaAs-based devices that were degraded under almost identical conditions resulted in molten, phase separated and both recrystallized and amorphous materials with well-defined melting fronts.
NON-DESTRUCTIVE FLAW DETECTION APPARATUS
Stateman, M.J.; Holloway, H.R.
1957-12-17
An apparatus is described for the non-destructive detection of flaws in electrical conducting articles. The particular feature of the detection apparatus is that a flaw in the front or back of the test article will not be masked by signals caused by the passage of the end and front of the article through the detection apparatus. The present invention alleviates the above problem by mounting detection coils on directly opposite sides of the test passageway so that the axes of the pickup coils are perpendicular to the axis of an energizing coil through which the article is passed. A flaw in the article will cause a change in the voltage induced in one pickup coil, but passage of the end or front of the article will not produce unequal signals. The signals are compared in appropriate electrical circuitry to actuate a recorder only when unequal signals are present, indicating the presence of a flaw.
First results of the Instrumentation Line for the deep-sea ANTARES neutrino telescope
NASA Astrophysics Data System (ADS)
Aguilar, J. A.; Albert, A.; Ameli, F.; Anghinolfi, M.; Anton, G.; Anvar, S.; Aslanides, E.; Aubert, J.-J.; Barbarito, E.; Basa, S.; Battaglieri, M.; Becherini, Y.; Bellotti, R.; Beltramelli, J.; Bertin, V.; Bigi, A.; Billault, M.; Blaes, R.; de Botton, N.; Bouwhuis, M. C.; Bradbury, S. M.; Bruijn, R.; Brunner, J.; Burgio, G. F.; Busto, J.; Cafagna, F.; Caillat, L.; Calzas, A.; Capone, A.; Caponetto, L.; Carmona, E.; Carr, J.; Cartwright, S. L.; Castel, D.; Castorina, E.; Cavasinni, V.; Cecchini, S.; Ceres, A.; Charvis, P.; Chauchot, P.; Chiarusi, T.; Circella, M.; Colnard, C.; Compère, C.; Coniglione, R.; Cottini, N.; Coyle, P.; Cuneo, S.; Cussatlegras, A.-S.; Damy, G.; van Dantzig, R.; De Marzo, C.; Dekeyser, I.; Delagnes, E.; Denans, D.; Deschamps, A.; Dessages-Ardellier, F.; Destelle, J.-J.; Dinkespieler, B.; Distefano, C.; Donzaud, C.; Drogou, J.-F.; Druillole, F.; Durand, D.; Ernenwein, J.-P.; Escoffier, S.; Falchini, E.; Favard, S.; Feinstein, F.; Ferry, S.; Festy, D.; Fiorello, C.; Flaminio, V.; Galeotti, S.; Gallone, J.-M.; Giacomelli, G.; Girard, N.; Gojak, C.; Goret, Ph.; Graf, K.; Hallewell, G.; Harakeh, M. N.; Hartmann, B.; Heijboer, A.; Heine, E.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hoffman, C.; Hogenbirk, J.; Hubbard, J. R.; Jaquet, M.; Jaspers, M.; de Jong, M.; Jouvenot, F.; Kalantar-Nayestanaki, N.; Kappes, A.; Karg, T.; Karkar, S.; Katz, U.; Keller, P.; Kok, H.; Kooijman, P.; Kopper, C.; Korolkova, E. V.; Kouchner, A.; Kretschmer, W.; Kruijer, A.; Kuch, S.; Kudryavstev, V. A.; Lachartre, D.; Lafoux, H.; Lagier, P.; Lahmann, R.; Lamanna, G.; Lamare, P.; Languillat, J. C.; Laschinsky, H.; Le Guen, Y.; Le Provost, H.; Le Van Suu, A.; Legou, T.; Lim, G.; Lo Nigro, L.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Lucarelli, F.; Lyashuk, V.; Marcelin, M.; Margiotta, A.; Masullo, R.; Mazéas, F.; Mazure, A.; McMillan, J. E.; Megna, R.; Melissas, M.; Migneco, E.; Milovanovic, A.; Mongelli, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Musumeci, M.; Naumann, C.; Naumann-Godo, M.; Niess, V.; Olivetto, C.; Ostasch, R.; Palanque-Delabrouille, N.; Payre, P.; Peek, H.; Petta, C.; Piattelli, P.; Pineau, J.-P.; Poinsignon, J.; Popa, V.; Pradier, T.; Racca, C.; Randazzo, N.; van Randwijk, J.; Real, D.; van Rens, B.; Réthoré, F.; Rewiersma, P.; Riccobene, G.; Rigaud, V.; Ripani, M.; Roca, V.; Roda, C.; Rolin, J. F.; Romita, M.; Rose, H. J.; Rostovtsev, A.; Roux, J.; Ruppi, M.; Russo, G. V.; Salesa, F.; Salomon, K.; Sapienza, P.; Schmitt, F.; Schuller, J.-P.; Shanidze, R.; Sokalski, I.; Spona, T.; Spurio, M.; van der Steenhoven, G.; Stolarczyk, T.; Streeb, K.; Stubert, D.; Sulak, L.; Taiuti, M.; Tamburini, C.; Tao, C.; Terreni, G.; Thompson, L. F.; Valdy, P.; Valente, V.; Vallage, B.; Venekamp, G.; Verlaat, B.; Vernin, P.; de Vita, R.; de Vries, G.; van Wijk, R.; de Witt Huberts, P.; Wobbe, G.; de Wolf, E.; Yao, A.-F.; Zaborov, D.; Zaccone, H.; Zornoza, J. D.; Zúñiga, J.
2006-11-01
In 2005, the ANTARES Collaboration deployed and operated at a depth of 2500 m a so-called Mini Instrumentation Line equipped with Optical Modules (MILOM) at the ANTARES site. The various data acquired during the continuous operation from April to December 2005 of the MILOM confirm the satisfactory performance of the Optical Modules, their front-end electronics and readout system, as well as the calibration devices of the detector. The in situ measurement of the Optical Module time response yields a resolution better than 0.5 ns. The performance of the acoustic positioning system, which enables the spatial reconstruction of the ANTARES detector with a precision of about 10 cm, is verified. These results demonstrate that with the full ANTARES neutrino telescope the design angular resolution of better than 0.3° can be realistically achieved.
Huang, Xiwei; Cheong, Jia Hao; Cha, Hyouk-Kyu; Yu, Hongbin; Je, Minkyu; Yu, Hao
2013-01-01
One transimpedance amplifier based CMOS analog front-end (AFE) receiver is integrated with capacitive micromachined ultrasound transducers (CMUTs) towards high frequency 3D ultrasound imaging. Considering device specifications from CMUTs, the TIA is designed to amplify received signals from 17.5MHz to 52.5MHz with center frequency at 35MHz; and is fabricated in Global Foundry 0.18-µm 30-V high-voltage (HV) Bipolar/CMOS/DMOS (BCD) process. The measurement results show that the TIA with power-supply 6V can reach transimpedance gain of 61dBΩ and operating frequency from 17.5MHz to 100MHz. The measured input referred noise is 27.5pA/√Hz. Acoustic pulse-echo testing is conducted to demonstrate the receiving functionality of the designed 3D ultrasound imaging system.
Reliability of Semiconductor Laser Packaging in Space Applications
NASA Technical Reports Server (NTRS)
Gontijo, Ivair; Qiu, Yueming; Shapiro, Andrew A.
2008-01-01
A typical set up used to perform lifetime tests of packaged, fiber pigtailed semiconductor lasers is described, as well as tests performed on a set of four pump lasers. It was found that two lasers failed after 3200, and 6100 hours under device specified bias conditions at elevated temperatures. Failure analysis of the lasers indicates imperfections and carbon contamination of the laser metallization, possibly from improperly cleaned photo resist. SEM imaging of the front facet of one of the lasers, although of poor quality due to the optical fiber charging effects, shows evidence of catastrophic damage at the facet. More stringent manufacturing controls with 100% visual inspection of laser chips are needed to prevent imperfect lasers from proceeding to packaging and ending up in space applications, where failure can result in the loss of a space flight mission.
NASA Astrophysics Data System (ADS)
Kim, Taeho; Hur, Jihyun; Jeon, Sanghun
2016-05-01
Defects in oxide semiconductors not only influence the initial device performance but also affect device reliability. The front channel is the major carrier transport region during the transistor turn-on stage, therefore an understanding of defects located in the vicinity of the interface is very important. In this study, we investigated the dynamics of charge transport in a nanocrystalline hafnium-indium-zinc-oxide thin-film transistor (TFT) by short pulse I-V, transient current and 1/f noise measurement methods. We found that the fast charging behavior of the tested device stems from defects located in both the front channel and the interface, following a multi-trapping mechanism. We found that a silicon-nitride stacked hafnium-indium-zinc-oxide TFT is vulnerable to interfacial charge trapping compared with silicon-oxide counterpart, causing significant mobility degradation and threshold voltage instability. The 1/f noise measurement data indicate that the carrier transport in a silicon-nitride stacked TFT device is governed by trapping/de-trapping processes via defects in the interface, while the silicon-oxide device follows the mobility fluctuation model.
After Opportunity's First Drive in Six Weeks
NASA Technical Reports Server (NTRS)
2007-01-01
NASA's Mars Exploration Rover Opportunity used its front hazard-identification camera to obtain this image at the end of a drive on the rover's 1,271st sol, or Martian day (Aug. 21, 2007). Due to sun-obscuring dust storms limiting the rover's supply of solar energy, Opportunity had not driven since sol 1,232 (July 12, 2007). On sol 1,271, after the sky above Opportunity had been gradually clearing for more than two weeks, the rover rolled 13.38 meters (44 feet). Wheel tracks are visible in front of the rover because the drive ended with a short test of driving backwards. Opportunity's turret of four tools at the end of the robotic arm fills the center of the image. Victoria Crater, site of the rover's next science targets, lies ahead.Design and implementation of a low-power SOI CMOS receiver
NASA Astrophysics Data System (ADS)
Zencir, Ertan
There is a strong demand for wireless communications in civilian and military applications, and space explorations. This work attempts to implement a low-power, high-performance fully-integrated receiver for deep space communications using Silicon on Insulator (SOI) CMOS technology. Design and implementation of a UHF low-IF receiver front-end in a 0.35-mum SOI CMOS technology are presented. Problems and challenges in implementing a highly integrated receiver at UHF are identified. Low-IF architecture, suitable for low-power design, has been adopted to mitigate the noise at the baseband. Design issues of the receiver building blocks including single-ended and differential LNA's, passive and active mixers, and variable gain/bandwidth complex filters are discussed. The receiver is designed to have a variable conversion gain of more than 100 dB with a 70 dB image rejection and a power dissipation of 45 mW from a 2.5-V supply. Design and measured performance of the LNA's, and the mixer are presented. Measurement results of RF front-end blocks including a single-ended LNA, a differential LNA, and a double-balanced mixer demonstrate the low power realizability of RF front-end circuits in SOI CMOS technology. We also report on the design and simulation of the image-rejecting complex IF filter and the full receiver circuit. Gain, noise, and linearity performance of the receiver components prove the viability of fully integrated low-power receivers in SOI CMOS technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimmerman, T.
1997-12-01
This paper is distilled from a talk given at the 3rd International Meeting on Front End Electronics in Taos, N.M. on Nov. 7,1997. It is based on experience gained by designing and testing the SVX3 128 channel silicon strip detector readout chip. The SVX3 chip organization is shown in Fig. 1. The Front End section consists of an integrator and analog pipeline designed at Fermilab, and the Back End section is an ADC plus sparsification and readout logic designed at LBL. SVX3 is a deadtimeless readout chip, which means that the front end is acquiring low level analog signals whilemore » the back end is digitizing and reading out digital signals. It is thus a true mixed signal chip, and demands close attention to avoid disastrous coupling from the digital to the analog sections. SVX3 is designed in a bulk CMOS process (i.e., the circuits sit in a silicon substrate). In such a process, the substrate becomes a potential coupling path. This paper discusses the effect of the substrate resistivity on coupling, and also goes into a more general discussion of grounding and referencing in mixed signal designs and how low resistivity substrates can be used to advantage. Finally, an alternative power supply current conduction method for ASICs is presented as an additional advantage which can be obtained with low resistivity substrates. 1 ref., 13 figs., 1 tab.« less
Sittig, Dean F; Ash, Joan S; Feblowitz, Joshua; Meltzer, Seth; McMullen, Carmit; Guappone, Ken; Carpenter, Jim; Richardson, Joshua; Simonaitis, Linas; Evans, R Scott; Nichol, W Paul; Middleton, Blackford
2011-01-01
Background Clinical decision support (CDS) is a valuable tool for improving healthcare quality and lowering costs. However, there is no comprehensive taxonomy of types of CDS and there has been limited research on the availability of various CDS tools across current electronic health record (EHR) systems. Objective To develop and validate a taxonomy of front-end CDS tools and to assess support for these tools in major commercial and internally developed EHRs. Study design and methods We used a modified Delphi approach with a panel of 11 decision support experts to develop a taxonomy of 53 front-end CDS tools. Based on this taxonomy, a survey on CDS tools was sent to a purposive sample of commercial EHR vendors (n=9) and leading healthcare institutions with internally developed state-of-the-art EHRs (n=4). Results Responses were received from all healthcare institutions and 7 of 9 EHR vendors (response rate: 85%). All 53 types of CDS tools identified in the taxonomy were found in at least one surveyed EHR system, but only 8 functions were present in all EHRs. Medication dosing support and order facilitators were the most commonly available classes of decision support, while expert systems (eg, diagnostic decision support, ventilator management suggestions) were the least common. Conclusion We developed and validated a comprehensive taxonomy of front-end CDS tools. A subsequent survey of commercial EHR vendors and leading healthcare institutions revealed a small core set of common CDS tools, but identified significant variability in the remainder of clinical decision support content. PMID:21415065
Performance of a 2.5 THz Receiver Front-End for Spaceborne Applications
NASA Technical Reports Server (NTRS)
Gaidis, Michael C.; Pickett, H. M.; Siegel, P. H.; Smith, C. D.; Smith, R. P.; Martin, S. C.
1999-01-01
The OH radical plays a significant role in a great many of the known ozone destruction cycles, and has become the focus of an important radiometer development effort for NASA's Earth Observing System Chem I satellite, which will monitor and study many tropospheric and stratospheric gases and is scheduled for launch in 2002. Here we describe the design, fabrication, and testing of a receiver front end used to detect the OH signals at 2.5 THz. This is to be the first Terahertz heterodyne receiver to be flown in space. The challenges of producing the necessary high-performance mixers are numerous, but for this application, there is the added challenge of designing a robust receiver which can withstand the environmental extremes of a rocket launch and five years in space. The receiver front-end consists of the following components: a four-port dual-polarization diplexer, off-axis elliptical feed mirrors, mixers for horizontal and vertical polarization, support structures allowing simple and rugged alignment, low noise IF amplification from 7.7 to 21.1 GHz, and mixer DC bias circuitry. The front-end design, alignment, and operation will be covered in depth, followed by a discussion of the most recent results in receiver noise and dual-mode horn beam patterns. JPL MOMED mixers are employed, and have resulted in receiver noise temperatures of 14,500 K, DSB with LO frequency 2.522 GHz and IF of 12.8 GHz. Horn beam patterns correspond well with theory, with no significant sidelobes above the -25 dB level. Considering the high-quality beam of this receiver, these results are competitive with the best reported in the literature.
An analysis of injuries to front-end loader operators during ingress and egress.
Nasarwanji, Mahiyar F; Pollard, Jonisha; Porter, William
2018-05-01
Slips, trips, and falls from mobile mining equipment have been documented for decades. However, little research has been conducted to determine the events precipitating these incidents during ingress or egress. This study examined slips, trips, and falls sustained during ingress or egress from front-end loaders to determine the frequencies of factors that may contribute to injuries. Non-fatal injuries, when getting on or off of front-end wheel loaders specifically, were identified, coded, and analyzed from the Mine Safety and Health Administration's accidents, injuries, and illnesses database. Overall trends, events that precipitated the injury, injuries sustained, contributing factors, location of the individual, and equipment characteristics were analyzed. More incidents occurred during egress (63%); and egress is believed to be more hazardous than ingress. Foot slips were the most common event that precipitated the incident and the leading cause of these was contaminants on the equipment. Misstep, loss of footing, and step on/in related incidents were more common during egress and are likely due to the operator's reduced visibility when descending a ladder facing the equipment, limiting their ability to detect hazards. Egress also makes an operator less capable of avoiding unsafe ground conditions as indicated by the significant number of step on/in injuries occurring on the ground during egress. Most of the front-end loaders associated with the incidents were found to have bottom rungs with flexible rails, which may also increase fall risk during egress due to inconsistent rung heights and lengthy transition areas from the ground, through the flexible-railed rungs, to the rungs with rigid rails. Recommendations are provided to reduce the risk for slips, trips, and falls from mobile mining equipment.
78 FR 21422 - TSC Distributors LLC and TSC UITS; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-10
... purchase Units on the secondary market at the current public offering price plus a front-end sales charge... Units are offered to the public through the Depositor and dealers at a price which, during the initial... front'' (i.e., at the time an investor purchases the Units). The DSC would be collected subsequently in...
A Wearable Channel Selection-Based Brain-Computer Interface for Motor Imagery Detection.
Lo, Chi-Chun; Chien, Tsung-Yi; Chen, Yu-Chun; Tsai, Shang-Ho; Fang, Wai-Chi; Lin, Bor-Shyh
2016-02-06
Motor imagery-based brain-computer interface (BCI) is a communication interface between an external machine and the brain. Many kinds of spatial filters are used in BCIs to enhance the electroencephalography (EEG) features related to motor imagery. The approach of channel selection, developed to reserve meaningful EEG channels, is also an important technique for the development of BCIs. However, current BCI systems require a conventional EEG machine and EEG electrodes with conductive gel to acquire multi-channel EEG signals and then transmit these EEG signals to the back-end computer to perform the approach of channel selection. This reduces the convenience of use in daily life and increases the limitations of BCI applications. In order to improve the above issues, a novel wearable channel selection-based brain-computer interface is proposed. Here, retractable comb-shaped active dry electrodes are designed to measure the EEG signals on a hairy site, without conductive gel. By the design of analog CAR spatial filters and the firmware of EEG acquisition module, the function of spatial filters could be performed without any calculation, and channel selection could be performed in the front-end device to improve the practicability of detecting motor imagery in the wearable EEG device directly or in commercial mobile phones or tablets, which may have relatively low system specifications. Finally, the performance of the proposed BCI is investigated, and the experimental results show that the proposed system is a good wearable BCI system prototype.