Strengthening the Role of Nurses in Medical Device Development.
Castner, Jessica; Sullivan, Suzanne S; Titus, Albert H; Klingman, Karen J
2016-01-01
Medical devices and innovative technology promise to revolutionize health care. Despite the importance of involving nurses in the collaborative medical device development processes, there are few learning opportunities in nursing programs. The purpose of this article is to provide a conceptual guide for nurse educators and researchers to engage nursing expertise in medical device development processes. A review of the literature guided the creation of the "Strengthening the Role of Nurses in Medical Device Development Roadmap" model. The model was used to describe how nurses can be engaged in multidisciplinary design of medical devices. An academic transdisciplinary team piloted the application of the model. The model includes the stages of needs assessment, planned brainstorm, feasibility determination, concept design, and prototype building. A transdisciplinary team case study of improving an asthma home-monitoring devices illustrates effective application of the model. Nurse leaders in the academic setting can effectively use the "Strengthening the Role of Nurses in Medical Device Development Roadmap" to inform their engagement of nurses in early medical device development and innovation processes. Copyright © 2016 Elsevier Inc. All rights reserved.
Development of a laboratory demonstration model active cleaning device
NASA Technical Reports Server (NTRS)
Shannon, R. L.; Gillette, R. B.
1975-01-01
A laboratory demonstration model of a device for removing contaminant films from optical surfaces in space was developed. The development of a plasma tube, which would produce the desired cleaning effects under high vacuum conditions, represented the major problem in the program. This plasma tube development is discussed, and the resulting laboratory demonstration-model device is described.
47 CFR 2.1204 - Import conditions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... generations of a particular model under development are considered to be separate devices. (4) The radio... particular model under development are considered to be separate devices. (5) The radio frequency device is... offered for sale or marketed. (9) The radio frequency device is a medical implant transmitter inserted in...
47 CFR 2.1204 - Import conditions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... generations of a particular model under development are considered to be separate devices. (4) The radio... particular model under development are considered to be separate devices. (5) The radio frequency device is... offered for sale or marketed. (9) The radio frequency device is a medical implant transmitter inserted in...
Formal verification of software-based medical devices considering medical guidelines.
Daw, Zamira; Cleaveland, Rance; Vetter, Marcus
2014-01-01
Software-based devices have increasingly become an important part of several clinical scenarios. Due to their critical impact on human life, medical devices have very strict safety requirements. It is therefore necessary to apply verification methods to ensure that the safety requirements are met. Verification of software-based devices is commonly limited to the verification of their internal elements without considering the interaction that these elements have with other devices as well as the application environment in which they are used. Medical guidelines define clinical procedures, which contain the necessary information to completely verify medical devices. The objective of this work was to incorporate medical guidelines into the verification process in order to increase the reliability of the software-based medical devices. Medical devices are developed using the model-driven method deterministic models for signal processing of embedded systems (DMOSES). This method uses unified modeling language (UML) models as a basis for the development of medical devices. The UML activity diagram is used to describe medical guidelines as workflows. The functionality of the medical devices is abstracted as a set of actions that is modeled within these workflows. In this paper, the UML models are verified using the UPPAAL model-checker. For this purpose, a formalization approach for the UML models using timed automaton (TA) is presented. A set of requirements is verified by the proposed approach for the navigation-guided biopsy. This shows the capability for identifying errors or optimization points both in the workflow and in the system design of the navigation device. In addition to the above, an open source eclipse plug-in was developed for the automated transformation of UML models into TA models that are automatically verified using UPPAAL. The proposed method enables developers to model medical devices and their clinical environment using clinical workflows as one UML diagram. Additionally, the system design can be formally verified automatically.
NASA Astrophysics Data System (ADS)
Utegulov, B. B.; Utegulov, A. B.; Meiramova, S.
2018-02-01
The paper proposes the development of a self-learning machine for creating models of microprocessor-based single-phase ground fault protection devices in networks with an isolated neutral voltage higher than 1000 V. Development of a self-learning machine for creating models of microprocessor-based single-phase earth fault protection devices in networks with an isolated neutral voltage higher than 1000 V. allows to effectively implement mathematical models of automatic change of protection settings. Single-phase earth fault protection devices.
CMOS compatible thin-film ALD tungsten nanoelectromechanical devices
NASA Astrophysics Data System (ADS)
Davidson, Bradley Darren
This research focuses on the development of a novel, low-temperature, CMOS compatible, atomic-layer-deposition (ALD) enabled NEMS fabrication process for the development of ALD Tungsten (WALD) NEMS devices. The devices are intended for use in CMOS/NEMS hybrid systems, and NEMS based micro-processors/controllers capable of reliable operation in harsh environments not accessible to standard CMOS technologies. The majority of NEMS switches/devices to date have been based on carbon-nano-tube (CNT) designs. The devices consume little power during actuation, and as expected, have demonstrated actuation voltages much smaller than MEMS switches. Unfortunately, NEMS CNT switches are not typically CMOS integrable due to the high temperatures required for their growth, and their fabrication typically results in extremely low and unpredictable yields. Thin-film NEMS devices offer great advantages over reported CNT devices for several reasons, including: higher fabrication yields, low-temperature (CMOS compatible) deposition techniques like ALD, and increased control over design parameters/device performance metrics, i.e., device geometry. Furthermore, top-down, thin-film, nano-fabrication techniques are better capable of producing complicated device geometries than CNT based processes, enabling the design and development of multi-terminal switches well-suited for low-power hybrid NEMS/CMOS systems as well as electromechanical transistors and logic devices for use in temperature/radiation hard computing architectures. In this work several novel, low-temperature, CMOS compatible fabrication technologies, employing WALD as a structural layer for MEMS or NEMS devices, were developed. The technologies developed are top-down nano-scale fabrication processes based on traditional micro-machining techniques commonly used in the fabrication of MEMS devices. Using these processes a variety of novel WALD NEMS devices have been successfully fabricated and characterized. Using two different WALD fabrication technologies two generations of 2-terminal WALD NEMS switches have been developed. These devices have functional gap heights of 30-50 nm, and actuation voltages typically ranging from 3--5 Volts. Via the extension of a two terminal WALD technology novel 3-terminal WALD NEMS devices were developed. These devices have actuation voltages ranging from 1.5--3 Volts, reliabilities in excess of 2 million cycles, and have been designed to be the fundamental building blocks for WALD NEMS complementary inverters. Through the development of these devices several advancements in the modeling and design of thin-film NEMS devices were achieved. A new model was developed to better characterize pre-actuation currents commonly measured for NEMS switches with nano-scale gate-to-source gap heights. The developed model is an extension of the standard field-emission model and considers the electromechanical response, and electric field effects specific to thin-film NEMS switches. Finally, a multi-physics FEM/FD based model was developed to simulate the dynamic behavior of 2 or 3-terminal electrostatically actuated devices whose electrostatic domains have an aspect ratio on the order of 10-3. The model uses a faux-Lagrangian finite difference method to solve Laplaces equation in a quasi-statatically deforming domain. This model allows for the numerical characterization and design of thin-film NEMS devices not feasible using typical non-specialized BEM/FEM based software. Using this model several novel and feasible designs for fixed-fixed 3-terminal WALD NEMS switches capable for the construction of complementary inverters were discovered.
Animal models of contraception: utility and limitations
Liechty, Emma R; Bergin, Ingrid L; Bell, Jason D
2015-01-01
Appropriate animal modeling is vital for the successful development of novel contraceptive devices. Advances in reproductive biology have identified novel pathways for contraceptive intervention. Here we review species-specific anatomic and physiologic considerations impacting preclinical contraceptive testing, including efficacy testing, mechanistic studies, device design, and modeling off-target effects. Emphasis is placed on the use of nonhuman primate models in contraceptive device development. PMID:29386922
Simulation of Ultra-Small MOSFETs Using a 2-D Quantum-Corrected Drift-Diffusion Model
NASA Technical Reports Server (NTRS)
Biegal, Bryan A.; Rafferty, Connor S.; Yu, Zhiping; Ancona, Mario G.; Dutton, Robert W.; Saini, Subhash (Technical Monitor)
1998-01-01
The continued down-scaling of electronic devices, in particular the commercially dominant MOSFET, will force a fundamental change in the process of new electronics technology development in the next five to ten years. The cost of developing new technology generations is soaring along with the price of new fabrication facilities, even as competitive pressure intensifies to bring this new technology to market faster than ever before. To reduce cost and time to market, device simulation must become a more fundamental, indeed dominant, part of the technology development cycle. In order to produce these benefits, simulation accuracy must improve markedly. At the same time, device physics will become more complex, with the rapid increase in various small-geometry and quantum effects. This work describes both an approach to device simulator development and a physical model which advance the effort to meet the tremendous electronic device simulation challenge described above. The device simulation approach is to specify the physical model at a high level to a general-purpose (but highly efficient) partial differential equation solver (in this case PROPHET, developed by Lucent Technologies), which then simulates the model in 1-D, 2-D, or 3-D for a specified device and test regime. This approach allows for the rapid investigation of a wide range of device models and effects, which is certainly essential for device simulation to catch up with, and then stay ahead of, electronic device technology of the present and future. The physical device model used in this work is the density-gradient (DG) quantum correction to the drift-diffusion model [Ancona, Phys. Rev. B 35(5), 7959 (1987)]. This model adds tunneling and quantum smoothing of carrier density profiles to the drift-diffusion model. We used the DG model in 1-D and 2-D (for the first time) to simulate both bipolar and unipolar devices. Simulations of heavily-doped, short-base diodes indicated that the DG quantum corrections do not have a large effect on the IN characteristics of electronic devices without heteroj unction s. On the other hand, ultra-small MOSFETs certainly exhibit important quantum effects that the DG model will include: quantum repulsion of the inversion and gate charges from the oxide interfaces, and quantum tunneling through thin gate oxides. We present initial results of 2-D DG simulations of ultra-small MOSFETs. Subtle but important issues involving the specification of the model, boundary conditions, and interface constraints for DG simulation of MOSFETs will also be illuminated.
Main principles of developing exploitation models of semiconductor devices
NASA Astrophysics Data System (ADS)
Gradoboev, A. V.; Simonova, A. V.
2018-05-01
The paper represents primary tasks, solutions of which allow to develop the exploitation modes of semiconductor devices taking into account complex and combined influence of ionizing irradiation and operation factors. The structure of the exploitation model of the semiconductor device is presented, which is based on radiation and reliability models. Furthermore, it was shown that the exploitation model should take into account complex and combine influence of various ionizing irradiation types and operation factors. The algorithm of developing the exploitation model of the semiconductor devices is proposed. The possibility of creating the radiation model of Schottky barrier diode, Schottky field-effect transistor and Gunn diode is shown based on the available experimental data. The basic exploitation model of IR-LEDs based upon double AlGaAs heterostructures is represented. The practical application of the exploitation models will allow to output the electronic products with guaranteed operational properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Windl, Wolfgang; Blue, Thomas
In this project, we have designed a 4H-SiC Schottky diode detector device in order to monitor actinide concentrations in extreme environments, such as present in pyroprocessing of spent fuel. For the first time, we have demonstrated high temperature operation of such a device up to 500 °C in successfully detecting alpha particles. We have used Am-241 as an alpha source for our laboratory experiments. Along with the experiments, we have developed a multiscale model to study the phenomena controlling the device behavior and to be able to predict the device performance. Our multiscale model consists of ab initio modeling tomore » understand defect energetics and their effect on electronic structure and carrier mobility in the material. Further, we have developed the basis for a damage evolution model incorporating the outputs from ab initio model in order to predict respective defect concentrations in the device material. Finally, a fully equipped TCAD-based device model has been developed to study the phenomena controlling the device behavior. Using this model, we have proven our concept that the detector is capable of performing alpha detection in a salt bath with the mixtures of actinides present in a pyroprocessing environment.« less
Simulation-based instruction of technical skills
NASA Technical Reports Server (NTRS)
Towne, Douglas M.; Munro, Allen
1991-01-01
A rapid intelligent tutoring development system (RAPIDS) was developed to facilitate the production of interactive, real-time graphical device models for use in instructing the operation and maintenance of complex systems. The tools allowed subject matter experts to produce device models by creating instances of previously defined objects and positioning them in the emerging device model. These simulation authoring functions, as well as those associated with demonstrating procedures and functional effects on the completed model, required no previous programming experience or use of frame-based instructional languages. Three large simulations were developed in RAPIDS, each involving more than a dozen screen-sized sections. Seven small, single-view applications were developed to explore the range of applicability. Three workshops were conducted to train others in the use of the authoring tools. Participants learned to employ the authoring tools in three to four days and were able to produce small working device models on the fifth day.
A Computational Model for Thrombus Formation in Response to Cardiovascular Implantable Devices
NASA Astrophysics Data System (ADS)
Horn, John; Ortega, Jason; Maitland, Duncan
2014-11-01
Cardiovascular implantable devices elicit complex physiological responses within blood. Notably, alterations in blood flow dynamics and interactions between blood proteins and biomaterial surface chemistry may lead to the formation of thrombus. For some devices, such as stents and heart valves, this is an adverse outcome. For other devices, such as embolic aneurysm treatments, efficient blood clot formation is desired. Thus a method to study how biomedical devices induce thrombosis is paramount to device development and optimization. A multiscale, multiphysics computational model is developed to predict thrombus formation within the vasculature. The model consists of a set of convection-diffusion-reaction partial differential equations for blood protein constituents involved in the progression of the clotting cascades. This model is used to study thrombus production from endovascular devices with the goal of optimizing the device design to generate the desired clotting response. This work was performed in part under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Frequency Domain Modeling of SAW Devices
NASA Technical Reports Server (NTRS)
Wilson, W. C.; Atkinson, G. M.
2007-01-01
New SAW sensors for integrated vehicle health monitoring of aerospace vehicles are being investigated. SAW technology is low cost, rugged, lightweight, and extremely low power. However, the lack of design tools for MEMS devices in general, and for Surface Acoustic Wave (SAW) devices specifically, has led to the development of tools that will enable integrated design, modeling, simulation, analysis and automatic layout generation of SAW devices. A frequency domain model has been created. The model is mainly first order, but it includes second order effects from triple transit echoes. This paper presents the model and results from the model for a SAW delay line device.
Rho, Mi Jung; Kim, Hun-Sung; Yoon, Kun-Ho; Choi, In Young
2017-04-01
Knowledge regarding compliance patterns and service utilization in e-health is important for the development of effective services. To develop proper e-health, the characteristics of compliance patterns and utilization of e-health should be studied. We studied these for glucose monitoring of diabetic patients from primary clinics. Data were collected from 160 outpatients who participated in e-health for glucose monitoring funded by the Korean government. Specifically, this study focused on two device types: a standalone Internet gateway and a tablet device. The SPSS 18.0 software was used for statistical analyses of demographic characteristics, survival data, and Cox proportional hazards regression model. Standalone Internet gateway users demonstrated a more stable compliance pattern than did tablet device users. The compliance rate differed according to the device type. Typically, compliance decreases considerably around 8 months. In these results, standalone Internet gateway users utilized the service for longer periods than tablet device users. Gateway type and location also influenced utilization (p < 0.05). The service should be designed according to the device type to develop appropriate service models. Thus, service designers should understand the different characteristics of service devices. This study provides insight into compliance patterns and utilization to develop appropriate service models and service interventions depending on the device.
Vacuum Microelectronic Field Emission Array Devices for Microwave Amplification.
NASA Astrophysics Data System (ADS)
Mancusi, Joseph Edward
This dissertation presents the design, analysis, and measurement of vacuum microelectronic devices which use field emission to extract an electron current from arrays of silicon cones. The arrays of regularly-spaced silicon cones, the field emission cathodes or emitters, are fabricated with an integrated gate electrode which controls the electric field at the tip of the cone, and thus the electron current. An anode or collector electrode is placed above the array to collect the emission current. These arrays, which are fabricated in a standard silicon processing facility, are developed for use as high power microwave amplifiers. Field emission has been studied extensively since it was first characterized in 1928, however due to the large electric fields required practical field emission devices are difficult to make. With the development of the semiconductor industry came the development of fabrication equipment and techniques which allow for the manufacture of the precision micron-scale structures necessary for practical field emission devices. The active region of a field emission device is a vacuum, therefore the electron travel is ballistic. This analysis of field emission devices includes electric field and electron emission modeling, development of a device equivalent circuit, analysis of the parameters in the equivalent circuit, and device testing. Variations in device structure are taken into account using a statistical model based upon device measurements. Measurements of silicon field emitter arrays at DC and RF are presented and analyzed. In this dissertation, the equivalent circuit is developed from the analysis of the device structure. The circuit parameters are calculated from geometrical considerations and material properties, or are determined from device measurements. It is necessary to include the emitter resistance in the equivalent circuit model since relatively high resistivity silicon wafers are used. As is demonstrated, the circuit model accurately predicts the magnitude of the emission current at a number of typical bias current levels when the device is operating at frequencies within the range of 10 MHz to 1 GHz. At low frequencies and at high frequencies within this range, certain parameters are negligible, and simplifications may be made in the equivalent circuit model.
Synthesis of a hybrid model of the VSC FACTS devices and HVDC technologies
NASA Astrophysics Data System (ADS)
Borovikov, Yu S.; Gusev, A. S.; Sulaymanov, A. O.; Ufa, R. A.
2014-10-01
The motivation of the presented research is based on the need for development of new methods and tools for adequate simulation of FACTS devices and HVDC systems as part of real electric power systems (EPS). The Research object: An alternative hybrid approach for synthesizing VSC-FACTS and -HVDC hybrid model is proposed. The results: the VSC- FACTS and -HVDC hybrid model is designed in accordance with the presented concepts of hybrid simulation. The developed model allows us to carry out adequate simulation in real time of all the processes in HVDC, FACTS devices and EPS as a whole without any decomposition and limitation on their duration, and also use the developed tool for effective solution of a design, operational and research tasks of EPS containing such devices.
Microfluidic devices for modeling cell-cell and particle-cell interactions in the microvasculature
Prabhakarpandian, Balabhaskar; Shen, Ming-Che; Pant, Kapil; Kiani, Mohammad F.
2011-01-01
Cell-fluid and cell-cell interactions are critical components of many physiological and pathological conditions in the microvasculature. Similarly, particle-cell interactions play an important role in targeted delivery of therapeutics to tissue. Development of in vitro fluidic devices to mimic these microcirculatory processes has been a critical step forward in our understanding of the inflammatory process, development of nano-particulate drug carriers, and developing realistic in vitro models of the microvasculature and its surrounding tissue. However, widely used parallel plate flow based devices and assays have a number of important limitations for studying the physiological conditions in vivo. In addition, these devices are resource hungry and time consuming for performing various assays. Recently developed, more realistic, microfluidic based devices have been able to overcome many of these limitations. In this review, an overview of the fluidic devices and their use in studying the effects of shear forces on cell-cell and cell-particle interactions is presented. In addition, use of mathematical models and Computational Fluid Dynamics (CFD) based models for interpreting the complex flow patterns in the microvasculature are highlighted. Finally, the potential of 3D microfluidic devices and imaging for better representing in vivo conditions under which cell-cell and cell-particle interactions take place are discussed. PMID:21763328
Advanced Modeling of Micromirror Devices
NASA Technical Reports Server (NTRS)
Michalicek, M. Adrian; Sene, Darren E.; Bright, Victor M.
1995-01-01
The flexure-beam micromirror device (FBMD) is a phase only piston style spatial light modulator demonstrating properties which can be used for phase adaptive corrective optics. This paper presents a complete study of a square FBMD, from advanced model development through final device testing and model verification. The model relates the electrical and mechanical properties of the device by equating the electrostatic force of a parallel-plate capacitor with the counter-acting spring force of the device's support flexures. The capacitor solution is derived via the Schwartz-Christoffel transformation such that the final solution accounts for non-ideal electric fields. The complete model describes the behavior of any piston-style device, given its design geometry and material properties. It includes operational parameters such as drive frequency and temperature, as well as fringing effects, mirror surface deformations, and cross-talk from neighboring devices. The steps taken to develop this model can be applied to other micromirrors, such as the cantilever and torsion-beam designs, to produce an advanced model for any given device. The micromirror devices studied in this paper were commercially fabricated in a surface micromachining process. A microscope-based laser interferometer is used to test the device in which a beam reflected from the device modulates a fixed reference beam. The mirror displacement is determined from the relative phase which generates a continuous set of data for each selected position on the mirror surface. Plots of this data describe the localized deflection as a function of drive voltage.
Gohean, Jeffrey R; George, Mitchell J; Pate, Thomas D; Kurusz, Mark; Longoria, Raul G; Smalling, Richard W
2013-01-01
The purpose of this investigation is to use a computational model to compare a synchronized valveless pulsatile left ventricular assist device with continuous flow left ventricular assist devices at the same level of device flow, and to verify the model with in vivo porcine data. A dynamic system model of the human cardiovascular system was developed to simulate the support of a healthy or failing native heart from a continuous flow left ventricular assist device or a synchronous pulsatile valveless dual-piston positive displacement pump. These results were compared with measurements made during in vivo porcine experiments. Results from the simulation model and from the in vivo counterpart show that the pulsatile pump provides higher cardiac output, left ventricular unloading, cardiac pulsatility, and aortic valve flow as compared with the continuous flow model at the same level of support. The dynamic system model developed for this investigation can effectively simulate human cardiovascular support by a synchronous pulsatile or continuous flow ventricular assist device.
Gohean, Jeffrey R.; George, Mitchell J.; Pate, Thomas D.; Kurusz, Mark; Longoria, Raul G.; Smalling, Richard W.
2012-01-01
The purpose of this investigation is to utilize a computational model to compare a synchronized valveless pulsatile left ventricular assist device to continuous flow left ventricular assist devices at the same level of device flow, and to verify the model with in vivo porcine data. A dynamic system model of the human cardiovascular system was developed to simulate support of a healthy or failing native heart from a continuous flow left ventricular assist device or a synchronous, pulsatile, valveless, dual piston positive displacement pump. These results were compared to measurements made during in vivo porcine experiments. Results from the simulation model and from the in vivo counterpart show that the pulsatile pump provides higher cardiac output, left ventricular unloading, cardiac pulsatility, and aortic valve flow as compared to the continuous flow model at the same level of support. The dynamic system model developed for this investigation can effectively simulate human cardiovascular support by a synchronous pulsatile or continuous flow ventricular assist device. PMID:23438771
Finite-element analysis of NiTi wire deflection during orthodontic levelling treatment
NASA Astrophysics Data System (ADS)
Razali, M. F.; Mahmud, A. S.; Mokhtar, N.; Abdullah, J.
2016-02-01
Finite-element analysis is an important product development tool in medical devices industry for design and failure analysis of devices. This tool helps device designers to quickly explore various design options, optimizing specific designs and providing a deeper insight how a device is actually performing. In this study, three-dimensional finite-element models of superelastic nickel-titanium arch wire engaged in a three brackets system were developed. The aim was to measure the effect of binding friction developed on wire-bracket interaction towards the remaining recovery force available for tooth movement. Uniaxial and three brackets bending test were modelled and validated against experimental works. The prediction made by the three brackets bending models shows good agreement with the experimental results.
An improved mounting device for attaching intracranial probes in large animal models.
Dunster, Kimble R
2015-12-01
The rigid support of intracranial probes can be difficult when using animal models, as mounting devices suitable for the probes are either not available, or designed for human use and not suitable in animal skulls. A cheap and reliable mounting device for securing intracranial probes in large animal models is described. Using commonly available clinical consumables, a universal mounting device for securing intracranial probes to the skull of large animals was developed and tested. A simply made mounting device to hold a variety of probes from 500 μm to 1.3 mm in diameter to the skull was developed. The device was used to hold probes to the skulls of sheep for up to 18 h. No adhesives or cements were used. The described device provides a reliable method of securing probes to the skull of animals.
Modeling reacting gases and aftertreatment devices for internal combustion engines
NASA Astrophysics Data System (ADS)
Depcik, Christopher David
As more emphasis is placed worldwide on reducing greenhouse gas emissions, automobile manufacturers have to create more efficient engines. Simultaneously, legislative agencies want these engines to produce fewer problematic emissions such as nitrogen oxides and particulate matter. In response, newer combustion methods, like homogeneous charge compression ignition and fuel cells, are being researched alongside the old standard of efficiency, the compression ignition or diesel engine. These newer technologies present a number of benefits but still have significant challenges to overcome. As a result, renewed interest has risen in making diesel engines cleaner. The key to cleaning up the diesel engine is the placement of aftertreatment devices in the exhaust. These devices have shown great potential in reducing emission levels below regulatory levels while still allowing for increased fuel economy versus a gasoline engine. However, these devices are subject to many flow control issues. While experimental evaluation of these devices helps to understand these issues better, it is impossible to solve the problem through experimentation alone because of time and cost constraints. Because of this, accurate models are needed in conjunction with the experimental work. In this dissertation, the author examines the entire exhaust system including reacting gas dynamics and aftertreatment devices, and develops a complete numerical model for it. The author begins by analyzing the current one-dimensional gas-dynamics simulation models used for internal combustion engine simulations. It appears that more accurate and faster numerical method is available, in particular, those developed in aeronautical engineering, and the author successfully implements one for the exhaust system. The author then develops a comprehensive literature search to better understand the aftertreatment devices. A number of these devices require a secondary injection of fuel or reductant in the exhaust stream. Accordingly, the author develops a simple post-cylinder injection model which can be easily tuned to match experimental findings. In addition, the author creates a general catalyst model which can be used to model virtually all of the different aftertreatment devices. Extensive validation of this model with experimental data is presented along with all of the numerical algorithms needed to reproduce the model.
NASA Astrophysics Data System (ADS)
Ammouri, Aymen; Ben Salah, Walid; Khachroumi, Sofiane; Ben Salah, Tarek; Kourda, Ferid; Morel, Hervé
2014-05-01
Design of integrated power converters needs prototype-less approaches. Specific simulations are required for investigation and validation process. Simulation relies on active and passive device models. Models of planar devices, for instance, are still not available in power simulator tools. There is, thus, a specific limitation during the simulation process of integrated power systems. The paper focuses on the development of a physically-based planar inductor model and its validation inside a power converter during transient switching. The planar inductor model remains a complex device to model, particularly when the skin, the proximity and the parasitic capacitances effects are taken into account. Heterogeneous simulation scheme, including circuit and device models, is successfully implemented in VHDL-AMS language and simulated in Simplorer platform. The mixed simulation results has been favorably tested and compared with practical measurements. It is found that the multi-domain simulation results and measurements data are in close agreement.
A Co-modeling Method Based on Component Features for Mechatronic Devices in Aero-engines
NASA Astrophysics Data System (ADS)
Wang, Bin; Zhao, Haocen; Ye, Zhifeng
2017-08-01
Data-fused and user-friendly design of aero-engine accessories is required because of their structural complexity and stringent reliability. This paper gives an overview of a typical aero-engine control system and the development process of key mechatronic devices used. Several essential aspects of modeling and simulation in the process are investigated. Considering the limitations of a single theoretic model, feature-based co-modeling methodology is suggested to satisfy the design requirements and compensate for diversity of component sub-models for these devices. As an example, a stepper motor controlled Fuel Metering Unit (FMU) is modeled in view of the component physical features using two different software tools. An interface is suggested to integrate the single discipline models into the synthesized one. Performance simulation of this device using the co-model and parameter optimization for its key components are discussed. Comparison between delivery testing and the simulation shows that the co-model for the FMU has a high accuracy and the absolute superiority over a single model. Together with its compatible interface with the engine mathematical model, the feature-based co-modeling methodology is proven to be an effective technical measure in the development process of the device.
NASA Technical Reports Server (NTRS)
Humphreys, B. T.; Thompson, W. K.; Lewandowski, B. E.; Cadwell, E. E.; Newby, N. J.; Fincke, R. S.; Sheehan, C.; Mulugeta, L.
2012-01-01
NASA's Digital Astronaut Project (DAP) implements well-vetted computational models to predict and assess spaceflight health and performance risks, and enhance countermeasure development. DAP provides expertise and computation tools to its research customers for model development, integration, or analysis. DAP is currently supporting the NASA Exercise Physiology and Countermeasures (ExPC) project by integrating their biomechanical models of specific exercise movements with dynamic models of the devices on which the exercises were performed. This presentation focuses on the development of a high fidelity dynamic module of the Advanced Resistive Exercise Device (ARED) on board the ISS. The ARED module, illustrated in the figure below, was developed using the Adams (MSC Santa Ana, California) simulation package. The Adams package provides the capabilities to perform multi rigid body, flexible body, and mixed dynamic analyses of complex mechanisms. These capabilities were applied to accurately simulate: Inertial and mass properties of the device such as the vibration isolation system (VIS) effects and other ARED components, Non-linear joint friction effects, The gas law dynamics of the vacuum cylinders and VIS components using custom written differential state equations, The ARED flywheel dynamics, including torque limiting clutch. Design data from the JSC ARED Engineering team was utilized in developing the model. This included solid modeling geometry files, component/system specifications, engineering reports and available data sets. The Adams ARED module is importable into LifeMOD (Life Modeler, Inc., San Clemente, CA) for biomechanical analyses of different resistive exercises such as squat and dead-lift. Using motion capture data from ground test subjects, the ExPC developed biomechanical exercise models in LifeMOD. The Adams ARED device module was then integrated with the exercise subject model into one integrated dynamic model. This presentation will describe the development of the Adams ARED module including its capabilities, limitations, and assumptions. Preliminary results, validation activities, and a practical application of the module to inform the relative effect of the flywheels on exercise will be discussed.
Rapid SAW Sensor Development Tools
NASA Technical Reports Server (NTRS)
Wilson, William C.; Atkinson, Gary M.
2007-01-01
The lack of integrated design tools for Surface Acoustic Wave (SAW) devices has led us to develop tools for the design, modeling, analysis, and automatic layout generation of SAW devices. These tools enable rapid development of wireless SAW sensors. The tools developed have been designed to integrate into existing Electronic Design Automation (EDA) tools to take advantage of existing 3D modeling, and Finite Element Analysis (FEA). This paper presents the SAW design, modeling, analysis, and automated layout generation tools.
A passive cold storage device economic model to evaluate selected immunization location scenarios.
Norman, Bryan A; Nourollahi, Sevnaz; Chen, Sheng-I; Brown, Shawn T; Claypool, Erin G; Connor, Diana L; Schmitz, Michelle M; Rajgopal, Jayant; Wateska, Angela R; Lee, Bruce Y
2013-10-25
The challenge of keeping vaccines cold at health posts given the unreliability of power sources in many low- and middle-income countries and the expense and maintenance requirements of solar refrigerators has motivated the development of passive cold storage devices (PCDs), containers that keep vaccines cold without using an active energy source. With different PCDs under development, manufacturers, policymakers and funders need guidance on how varying different PCD characteristics may affect the devices' cost and utility. We developed an economic spreadsheet model representing the lowest two levels of a typical Expanded Program on Immunization (EPI) vaccine supply chain: a district store, the immunization locations that the district store serves, and the transport vehicles that operate between the district store and the immunization locations. The model compares the use of three vaccine storage device options [(1) portable PCDs, (2) stationary PCDs, or (3) solar refrigerators] and allows the user to vary different device (e.g., size and cost) and scenario characteristics (e.g., catchment area population size and vaccine schedule). For a sample set of select scenarios and equipment specification, we found the portable PCD to generally be better suited to populations of 5,000 or less. The stationary PCD replenished once per month can be a robust design especially with a 35L capacity and a cost of $2,500 or less. The solar device was generally a reasonable alternative for most of the scenarios explored if the cost was $2,100 or less (including installation). No one device type dominated over all explored circumstances. Therefore, the best device may vary from country-to-country and location-to-location within a country. This study introduces a quantitative model to help guide PCD development. Although our selected set of explored scenarios and device designs was not exhaustive, future explorations can further alter model input values to represent additional scenarios and device designs. Copyright © 2013 Elsevier Ltd. All rights reserved.
Development of a simulated smart pump interface.
Elias, Beth L; Moss, Jacqueline A; Shih, Alan; Dillavou, Marcus
2014-01-01
Medical device user interfaces are increasingly complex, resulting in a need for evaluation in clinicallyaccurate settings. Simulation of these interfaces can allow for evaluation, training, and use for research without the risk of harming patients and with a significant cost reduction over using the actual medical devices. This pilot project was phase 1 of a study to define and evaluate a methodology for development of simulated medical device interface technology to be used for education, device development, and research. Digital video and audio recordings of interface interactions were analyzed to develop a model of a smart intravenous medication infusion pump user interface. This model was used to program a high-fidelity simulated smart intravenous medication infusion pump user interface on an inexpensive netbook platform.
Saunders, A B; Keefe, L; Birch, S A; Wierzbicki, M A; Maitland, D J
2017-06-01
The purpose of this study was to evaluate a canine patent ductus arteriosus (PDA) model developed for practicing device placement and to determine practices and perceptions regarding transcatheter closure of PDA from the veterinary cardiology community. A silicone model was developed from images obtained from a dog with a PDA and device placement was performed with catheter equipment and a document camera to simulate fluoroscopy. A total of 36 individuals including 24 diplomates and 12 residents participated, and the feedback was obtained. The study included an initial questionnaire, practice with the model, observation of device placement using the model, and a follow-up questionnaire. A total of 92% of participants including 100% of residents indicated they did not have the opportunity to practice device placement before performing the procedure and obtained knowledge of the procedure from reading journal articles or observation. Participants indicated selecting the appropriate device size (30/36, 83%) and ensuring the device is appropriately positioned before release (18/36, 50%) as the most common areas of difficulty with device placement. Confidence level was higher after practicing with the model for residents when compared with diplomates and for participants that had performed 1-15 procedures when compared with those that had performed >15 procedures. These findings suggest those that have performed fewer procedures may benefit the most from practicing with a model. This preliminary study demonstrates the feasibility of a PDA model for practicing device placement and suggests that there is a potential benefit from providing additional training resources. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sanchez, P.; Hinojosa, J.; Ruiz, R.
2005-06-01
Recently, neuromodeling methods of microwave devices have been developed. These methods are suitable for the model generation of novel devices. They allow fast and accurate simulations and optimizations. However, the development of libraries makes these methods to be a formidable task, since they require massive input-output data provided by an electromagnetic simulator or measurements and repeated artificial neural network (ANN) training. This paper presents a strategy reducing the cost of library development with the advantages of the neuromodeling methods: high accuracy, large range of geometrical and material parameters and reduced CPU time. The library models are developed from a set of base prior knowledge input (PKI) models, which take into account the characteristics common to all the models in the library, and high-level ANNs which give the library model outputs from base PKI models. This technique is illustrated for a microwave multiconductor tunable phase shifter using anisotropic substrates. Closed-form relationships have been developed and are presented in this paper. The results show good agreement with the expected ones.
Real-time localization of mobile device by filtering method for sensor fusion
NASA Astrophysics Data System (ADS)
Fuse, Takashi; Nagara, Keita
2017-06-01
Most of the applications with mobile devices require self-localization of the devices. GPS cannot be used in indoor environment, the positions of mobile devices are estimated autonomously by using IMU. Since the self-localization is based on IMU of low accuracy, and then the self-localization in indoor environment is still challenging. The selflocalization method using images have been developed, and the accuracy of the method is increasing. This paper develops the self-localization method without GPS in indoor environment by integrating sensors, such as IMU and cameras, on mobile devices simultaneously. The proposed method consists of observations, forecasting and filtering. The position and velocity of the mobile device are defined as a state vector. In the self-localization, observations correspond to observation data from IMU and camera (observation vector), forecasting to mobile device moving model (system model) and filtering to tracking method by inertial surveying and coplanarity condition and inverse depth model (observation model). Positions of a mobile device being tracked are estimated by system model (forecasting step), which are assumed as linearly moving model. Then estimated positions are optimized referring to the new observation data based on likelihood (filtering step). The optimization at filtering step corresponds to estimation of the maximum a posterior probability. Particle filter are utilized for the calculation through forecasting and filtering steps. The proposed method is applied to data acquired by mobile devices in indoor environment. Through the experiments, the high performance of the method is confirmed.
Computational Hemodynamics Involving Artificial Devices
NASA Technical Reports Server (NTRS)
Kwak, Dochan; Kiris, Cetin; Feiereisen, William (Technical Monitor)
2001-01-01
This paper reports the progress being made towards developing complete blood flow simulation capability in human, especially, in the presence of artificial devices such as valves and ventricular assist devices. Devices modeling poses unique challenges different from computing the blood flow in natural hearts and arteries. There are many elements needed such as flow solvers, geometry modeling including flexible walls, moving boundary procedures and physiological characterization of blood. As a first step, computational technology developed for aerospace applications was extended in the recent past to the analysis and development of mechanical devices. The blood flow in these devices is practically incompressible and Newtonian, and thus various incompressible Navier-Stokes solution procedures can be selected depending on the choice of formulations, variables and numerical schemes. Two primitive variable formulations used are discussed as well as the overset grid approach to handle complex moving geometry. This procedure has been applied to several artificial devices. Among these, recent progress made in developing DeBakey axial flow blood pump will be presented from computational point of view. Computational and clinical issues will be discussed in detail as well as additional work needed.
Investigation of advanced fault insertion and simulator methods
NASA Technical Reports Server (NTRS)
Dunn, W. R.; Cottrell, D.
1986-01-01
The cooperative agreement partly supported research leading to the open-literature publication cited. Additional efforts under the agreement included research into fault modeling of semiconductor devices. Results of this research are presented in this report which is summarized in the following paragraphs. As a result of the cited research, it appears that semiconductor failure mechanism data is abundant but of little use in developing pin-level device models. Failure mode data on the other hand does exist but is too sparse to be of any statistical use in developing fault models. What is significant in the failure mode data is that, unlike classical logic, MSI and LSI devices do exhibit more than 'stuck-at' and open/short failure modes. Specifically they are dominated by parametric failures and functional anomalies that can include intermittent faults and multiple-pin failures. The report discusses methods of developing composite pin-level models based on extrapolation of semiconductor device failure mechanisms, failure modes, results of temperature stress testing and functional modeling. Limitations of this model particularly with regard to determination of fault detection coverage and latency time measurement are discussed. Indicated research directions are presented.
NASA Astrophysics Data System (ADS)
Yazdani, Armin; Chen, Renyu; Dunham, Scott T.
2017-03-01
This work models competitive gettering of metals (Cu, Ni, Fe, Mo, and W) by boron, phosphorus, and dislocation loops, and connects those results directly to device performance. Density functional theory calculations were first performed to determine the binding energies of metals to the gettering sites, and based on that, continuum models were developed to model the redistribution and trapping of the metals. Our models found that Fe is most strongly trapped by the dislocation loops while Cu and Ni are most strongly trapped by the P4V clusters formed in high phosphorus concentrations. In addition, it is found that none of the mentioned gettering sites are effective in gettering Mo and W. The calculated metal redistribution along with the associated capture cross sections and trap energy levels are passed to device simulation via the recombination models to calculate carrier lifetime and the resulting device performance. Thereby, a comprehensive and predictive TCAD framework is developed to optimize the processing conditions to maximize performance of lifetime sensitive devices.
Physics-based process modeling, reliability prediction, and design guidelines for flip-chip devices
NASA Astrophysics Data System (ADS)
Michaelides, Stylianos
Flip Chip on Board (FCOB) and Chip-Scale Packages (CSPs) are relatively new technologies that are being increasingly used in the electronic packaging industry. Compared to the more widely used face-up wirebonding and TAB technologies, flip-chips and most CSPs provide the shortest possible leads, lower inductance, higher frequency, better noise control, higher density, greater input/output (I/O), smaller device footprint and lower profile. However, due to the short history and due to the introduction of several new electronic materials, designs, and processing conditions, very limited work has been done to understand the role of material, geometry, and processing parameters on the reliability of flip-chip devices. Also, with the ever-increasing complexity of semiconductor packages and with the continued reduction in time to market, it is too costly to wait until the later stages of design and testing to discover that the reliability is not satisfactory. The objective of the research is to develop integrated process-reliability models that will take into consideration the mechanics of assembly processes to be able to determine the reliability of face-down devices under thermal cycling and long-term temperature dwelling. The models incorporate the time and temperature-dependent constitutive behavior of various materials in the assembly to be able to predict failure modes such as die cracking and solder cracking. In addition, the models account for process-induced defects and macro-micro features of the assembly. Creep-fatigue and continuum-damage mechanics models for the solder interconnects and fracture-mechanics models for the die have been used to determine the reliability of the devices. The results predicted by the models have been successfully validated against experimental data. The validated models have been used to develop qualification and test procedures for implantable medical devices. In addition, the research has helped develop innovative face-down devices without the underfill, based on the thorough understanding of the failure modes. Also, practical design guidelines for material, geometry and process parameters for reliable flip-chip devices have been developed.
NASA Technical Reports Server (NTRS)
Ukanwa, A. O.; Stermole, F. J.; Golden, J. O.
1972-01-01
Natural convection effects in phase change thermal control devices were studied. A mathematical model was developed to evaluate natural convection effects in a phase change test cell undergoing solidification. Although natural convection effects are minimized in flight spacecraft, all phase change devices are ground tested. The mathematical approach to the problem was to first develop a transient two-dimensional conduction heat transfer model for the solidification of a normal paraffin of finite geometry. Next, a transient two-dimensional model was developed for the solidification of the same paraffin by a combined conduction-natural-convection heat transfer model. Throughout the study, n-hexadecane (n-C16H34) was used as the phase-change material in both the theoretical and the experimental work. The models were based on the transient two-dimensional finite difference solutions of the energy, continuity, and momentum equations.
Towards end to end technology modeling: Carbon nanotube and thermoelectric devices
NASA Astrophysics Data System (ADS)
Salamat, Shuaib
The goal of this work is to demonstrate the feasibility of end-to-end ("atoms to applications") technology modeling. Two different technologies were selected to drive this work. The first technology is carbon nanotube field-effect transistors (CNTFETs), and the goal is to model device level variability and identify the origin of variations in these devices. Recently, there has been significant progress in understanding the physics of carbon nanotube electronic devices and in identifying their potential applications. For nanotubes, the carrier mobility is high, so low bias transport across several hundred nanometers is nearly ballistic, and the deposition of high-k gate dielectrics does not degrade the carrier mobility. The conduction and valence bands are symmetric (useful for complimentary application) and the bandstructure is direct (enables optical emission). Because of these striking features, carbon nanotubes (CNTs) have received much attention. Carbon nanotubes field-effect transistors (CNTFETs) are one of the main potential candidates for large-area electronics. In this research model, systematic simulation approaches are applied to understand the intrinsic performance variability in CNTFETs. It is shown that control over diameter distribution is critically important process parameter for attaining high performance transistors and circuits with characteristics rivaling those of state-of-the-art Si technology. The second technology driver concerns the development of a multi-scale framework for thermoelectric device design. An essential step in the development of new materials and devices for thermoelectrics is to develop accurate, efficient, and realistic models. The ready availability of user friendly ab-initio codes and the ever-increasing computing power have made the band structure calculations routine. Thermoelectric device design, however, is still largely done at the effective mass level. Tools that allow device designers to make use of sophisticated electronic structure and phonon dispersion calculations are needed. We have developed a proof-of-concept, integrated, multi-scale design framework for TE technology. Beginning from full electronic and phonon dispersions, Landauer approach is used to evaluate the temperature-dependent thermoelectric transport parameters needed for device simulation. A comprehensive SPICE-based model for electro-thermal transport has also been developed to serve as a bridge between the materials and device level descriptions and the system level simulations. This prototype framework has been used to design a thermoelectric cooler for managing hot spots in the integrated circuit chips. What's more, as a byproduct of this research a suite of educational and simulation resources have been developed and deployed, on the nanoHUB.org science gateway to serve as a resource for the TE community.
DOT National Transportation Integrated Search
2009-05-01
The primary objective of this research was to develop models that predict the resilient modulus of cohesive and granular soils from the test results of various in-situ test devices for possible application in QA/QC during construction of pavement str...
Rule-based interface generation on mobile devices for structured documentation.
Kock, Ann-Kristin; Andersen, Björn; Handels, Heinz; Ingenerf, Josef
2014-01-01
In many software systems to date, interactive graphical user interfaces (GUIs) are represented implicitly in the source code, together with the application logic. Hence, the re-use, development, and modification of these interfaces is often very laborious. Flexible adjustments of GUIs for various platforms and devices as well as individual user preferences are furthermore difficult to realize. These problems motivate a software-based separation of content and GUI models on the one hand, and application logic on the other. In this project, a software solution for structured reporting on mobile devices is developed. Clinical content archetypes developed in a previous project serve as the content model while the Android SDK provides the GUI model. The necessary bindings between the models are specified using the Jess Rule Language.
Modeling and Simulation of Explosively Driven Electromechanical Devices
NASA Astrophysics Data System (ADS)
Demmie, Paul N.
2002-07-01
Components that store electrical energy in ferroelectric materials and produce currents when their permittivity is explosively reduced are used in a variety of applications. The modeling and simulation of such devices is a challenging problem since one has to represent the coupled physics of detonation, shock propagation, and electromagnetic field generation. The high fidelity modeling and simulation of complicated electromechanical devices was not feasible prior to having the Accelerated Strategic Computing Initiative (ASCI) computers and the ASCI developed codes at Sandia National Laboratories (SNL). The EMMA computer code is used to model such devices and simulate their operation. In this paper, I discuss the capabilities of the EMMA code for the modeling and simulation of one such electromechanical device, a slim-loop ferroelectric (SFE) firing set.
NASA Technical Reports Server (NTRS)
Jackson, C. M., Jr.; Summerfield, D. G. (Inventor)
1974-01-01
The design and development of a wind tunnel model equipped with pressure measuring devices are discussed. The pressure measuring orifices are integrally constructed in the wind tunnel model and do not contribute to distortions of the aerodynamic surface. The construction of a typical model is described and a drawing of the device is included.
Thermal modeling of wide bandgap semiconductor devices for high frequency power converters
NASA Astrophysics Data System (ADS)
Sharath Sundar Ram, S.; Vijayakumari, A.
2018-02-01
The emergence of wide bandgap semiconductors has led to development of new generation semiconductor switches that are highly efficient and scalable. To exploit the advantages of GaNFETs in power converters, in terms of reduction in the size of heat sinks and filters, a thorough understanding of the thermal behavior of the device is essential. This paper aims to establish a thermal model for wideband gap semiconductor GaNFETs commercially available, which will enable power electronic designers to obtain the thermal characteristics of the device more effectively. The model parameters is obtained from the manufacturer’s data sheet by adopting an exponential curve fitting technique and the thermal model is validated using PSPICE simulations. The model was developed based on the parametric equivalence that exists between the thermal and electrical components, such that it responds for transient thermal stresses. A suitable power profile has been generated to evaluate the GaNFET model under different power dissipation scenarios. The results were compared with a Silicon MOSFETs to further highlight the advantages of the GaN devices. The proposed modeling approach can be extended for other GaN devices and can provide a platform for the thermal study and heat sink optimization.
Edenharter, Günther M; Gartner, Daniel; Pförringer, Dominik
2017-06-01
Increasing costs of material resources challenge hospitals to stay profitable. Particularly in anesthesia departments and intensive care units, bronchoscopes are used for various indications. Inefficient management of single- and multiple-use systems can influence the hospitals' material costs substantially. Using mathematical modeling, we developed a strategic decision support tool to determine the optimum mix of disposable and reusable bronchoscopy devices in the setting of an intensive care unit. A mathematical model with the objective to minimize costs in relation to demand constraints for bronchoscopy devices was formulated. The stochastic model decides whether single-use, multi-use, or a strategically chosen mix of both device types should be used. A decision support tool was developed in which parameters for uncertain demand such as mean, standard deviation, and a reliability parameter can be inserted. Furthermore, reprocessing costs per procedure, procurement, and maintenance costs for devices can be parameterized. Our experiments show for which demand pattern and reliability measure, it is efficient to only use reusable or disposable devices and under which circumstances the combination of both device types is beneficial. To determine the optimum mix of single-use and reusable bronchoscopy devices effectively and efficiently, managers can enter their hospital-specific parameters such as demand and prices into the decision support tool.The software can be downloaded at: https://github.com/drdanielgartner/bronchomix/.
1991-01-01
EXPERIENCE IN DEVELOPING INTEGRATED OPTICAL DEVICES, NONLINEAR MAGNETIC-OPTIC MATERIALS, HIGH FREQUENCY MODULATORS, COMPUTER-AIDED MODELING AND SOPHISTICATED... HIGH -LEVEL PRESENTATION AND DISTRIBUTED CONTROL MODELS FOR INTEGRATING HETEROGENEOUS MECHANICAL ENGINEERING APPLICATIONS AND TOOLS. THE DESIGN IS FOCUSED...STATISTICALLY ACCURATE WORST CASE DEVICE MODELS FOR CIRCUIT SIMULATION. PRESENT METHODS OF WORST CASE DEVICE DESIGN ARE AD HOC AND DO NOT ALLOW THE
1985-12-01
development of an improved Universal Network Interface Device (UNID II). The UNID II’s architecture was based on a preliminary design project at...interface device, performing all functions required ,: the multi-ring LAN. The device depicted by RADC’s studies would connect a highly variable group of host...used the ISO Open Systems Ilterconnection (OSI) seven layer model as the basic structure for data flow and program development . In 1982 Cuomo
A generic approach for examining the effectiveness of traffic control devices in school zones.
Zhao, Xiaohua; Li, Jiahui; Ding, Han; Zhang, Guohui; Rong, Jian
2015-09-01
The effectiveness and performance of traffic control devices in school zones have been impacted significantly by many factors, such as driver behavioral attributes, roadway geometric features, environmental characteristics, weather and visibility conditions, region-wide traffic regulations and policies, control modes, etc. When deploying traffic control devices in school zones, efforts are needed to clarify: (1) whether traffic control device installation is warranted; and (2) whether other device effectively complements this traffic control device and strengthens its effectiveness. In this study, a generic approach is developed to examine and evaluate the effectiveness of various traffic control devices deployed in school zones through driving simulator-based experiments. A Traffic Control Device Selection Model (TCDSM) is developed and two representative school zones are selected as the testbed in Beijing for driving simulation implementation to enhance its applicability. Statistical analyses are conducted to extract the knowledge from test data recorded by a driving simulator. Multiple measures of effectiveness (MOEs) are developed and adopted including average speed, relative speed difference, and standard deviation of acceleration for traffic control device performance quantification. The experimental tests and analysis results reveal that the appropriateness of the installation of certain traffic control devices can be statistically verified by TCDSM. The proposed approach provides a generic framework to assess traffic control device performance in school zones including experiment design, statistical formulation, data analysis, simulation model implementation, data interpretation, and recommendation development. Copyright © 2015 Elsevier Ltd. All rights reserved.
Modeling synchronous voltage source converters in transmission system planning studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kosterev, D.N.
1997-04-01
A Voltage Source Converter (VSC) can be beneficial to power utilities in many ways. To evaluate the VSC performance in potential applications, the device has to be represented appropriately in planning studies. This paper addresses VSC modeling for EMTP, powerflow, and transient stability studies. First, the VSC operating principles are overviewed, and the device model for EMTP studies is presented. The ratings of VSC components are discussed, and the device operating characteristics are derived based on these ratings. A powerflow model is presented and various control modes are proposed. A detailed stability model is developed, and its step-by-step initialization proceduremore » is described. A simplified stability model is also derived under stated assumptions. Finally, validation studies are performed to demonstrate performance of developed stability models and to compare it with EMTP simulations.« less
Andalam, Sidharta; Ramanna, Harshavardhan; Malik, Avinash; Roop, Parthasarathi; Patel, Nitish; Trew, Mark L
2016-08-01
Virtual heart models have been proposed for closed loop validation of safety-critical embedded medical devices, such as pacemakers. These models must react in real-time to off-the-shelf medical devices. Real-time performance can be obtained by implementing models in computer hardware, and methods of compiling classes of Hybrid Automata (HA) onto FPGA have been developed. Models of ventricular cardiac cell electrophysiology have been described using HA which capture the complex nonlinear behavior of biological systems. However, many models that have been used for closed-loop validation of pacemakers are highly abstract and do not capture important characteristics of the dynamic rate response. We developed a new HA model of cardiac cells which captures dynamic behavior and we implemented the model in hardware. This potentially enables modeling the heart with over 1 million dynamic cells, making the approach ideal for closed loop testing of medical devices.
Biomechanical Modeling Analysis of Loads Configuration for Squat Exercise
NASA Technical Reports Server (NTRS)
Gallo, Christopher A.; Thompson, William K.; Lewandowski, Beth E.; Jagodnik, Kathleen; De Witt, John K.
2017-01-01
INTRODUCTION: Long duration space travel will expose astronauts to extended periods of reduced gravity. Since gravity is not present to assist loading, astronauts will use resistive and aerobic exercise regimes for the duration of the space flight to minimize loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the area available for an exercise device in the next generation of spacecraft for travel to the Moon or to Mars is limited and therefore compact resistance exercise device prototypes are being developed. The Advanced Resistive Exercise Device (ARED) currently on the ISS is being used as a benchmark for the functional performance of these new devices. Biomechanical data collection and computational modeling aid the device design process by quantifying the joint torques and the musculoskeletal forces that occur during exercises performed on the prototype devices. METHODS The computational models currently under development utilize the OpenSim [1] software platform, consisting of open source code for musculoskeletal modeling, using biomechanical input data from test subjects for estimation of muscle and joint loads. The OpenSim Full Body Model [2] is used for all analyses. The model incorporates simplified wrap surfaces, a new knee model and updated lower body muscle parameters derived from cadaver measurements and magnetic resonance imaging of young adults. The upper body uses torque actuators at the lumbar and extremity joints. The test subjects who volunteer for this study are instrumented with reflective markers for motion capture data collection while performing squat exercising on the Hybrid Ultimate Lifting Kit (HULK) prototype device (ZIN Technologies, Middleburg Heights, OH). Ground reaction force data is collected with force plates under the feet, and device loading is recorded through load cells internal to the HULK. Test variables include the applied device load and the dual cable long bar or single cable T-bar interface between the test subject and the device. Data is also obtained using free weights with the identical loading for a comparison to the resistively loaded exercise device trials. The data drives the OpenSim biomechanical model, which has been scaled to match the anthropometrics of the test subject, to calculate the body loads. RESULTS Lower body kinematics, joint moments, joint forces and muscle forces are obtained from the OpenSim biomechanical analysis of the squat exercises under different loading conditions. Preliminary results from the model for the loading conditions will be presented as will hypotheses developed for follow on work.
Use of a design challenge to develop postural support devices for intermediate wheelchair users
Tanuku, Deepti; Moller, Nathaniel C.
2017-01-01
The provision of an appropriate wheelchair, one that provides proper fit and postural support, promotes wheelchair users’ physical health and quality of life. Many wheelchair users have postural difficulties, requiring supplemental postural support devices for added trunk support. However, in many low- and middle-income settings, postural support devices are inaccessible, inappropriate or unaffordable. This article describes the use of the design challenge model, informed by a design thinking approach, to catalyse the development of an affordable, simple and robust postural support device for low- and middle-income countries. The article also illustrates how not-for-profit organisations can utilise design thinking and, in particular, the design challenge model to successfully support the development of innovative solutions to product or process challenges. PMID:28936418
Development and control of a magnetorheological haptic device for robot assisted surgery.
Shokrollahi, Elnaz; Goldenberg, Andrew A; Drake, James M; Eastwood, Kyle W; Kang, Matthew
2017-07-01
A prototype magnetorheological (MR) fluid-based actuator has been designed for tele-robotic surgical applications. This device is capable of generating forces up to 47 N, with input currents ranging from 0 to 1.5 A. We begin by outlining the physical design of the device, and then discuss a novel nonlinear model of the device's behavior. The model was developed using the Hammerstein-Wiener (H-W) nonlinear black-box technique and is intended to accurately capture the hysteresis behavior of the MR-fluid. Several experiments were conducted on the device to collect estimation and validation datasets to construct the model and assess its performance. Different estimating functions were used to construct the model, and their effectiveness is assessed based on goodness-of-fit and final-prediction-error measurements. A sigmoid network was found to have a goodness-of-fit of 95%. The model estimate was then used to tune a PID controller. Two control schemes were proposed to eliminate the hysteresis behavior present in the MR fluid device. One method uses a traditional force feedback control loop and the other is based on measuring the magnetic field using a Hall-effect sensor embedded within the device. The Hall-effect sensor scheme was found to be superior in terms of cost, simplicity and real-time control performance compared to the force control strategy.
A Collective Study on Modeling and Simulation of Resistive Random Access Memory
NASA Astrophysics Data System (ADS)
Panda, Debashis; Sahu, Paritosh Piyush; Tseng, Tseung Yuen
2018-01-01
In this work, we provide a comprehensive discussion on the various models proposed for the design and description of resistive random access memory (RRAM), being a nascent technology is heavily reliant on accurate models to develop efficient working designs and standardize its implementation across devices. This review provides detailed information regarding the various physical methodologies considered for developing models for RRAM devices. It covers all the important models reported till now and elucidates their features and limitations. Various additional effects and anomalies arising from memristive system have been addressed, and the solutions provided by the models to these problems have been shown as well. All the fundamental concepts of RRAM model development such as device operation, switching dynamics, and current-voltage relationships are covered in detail in this work. Popular models proposed by Chua, HP Labs, Yakopcic, TEAM, Stanford/ASU, Ielmini, Berco-Tseng, and many others have been compared and analyzed extensively on various parameters. The working and implementations of the window functions like Joglekar, Biolek, Prodromakis, etc. has been presented and compared as well. New well-defined modeling concepts have been discussed which increase the applicability and accuracy of the models. The use of these concepts brings forth several improvements in the existing models, which have been enumerated in this work. Following the template presented, highly accurate models would be developed which will vastly help future model developers and the modeling community.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreno, Gilberto
Thermal modeling was conducted to evaluate and develop thermal management strategies for high-temperature wide-bandgap (WBG)-based power electronics systems. WBG device temperatures of 175 degrees C to 250 degrees C were modeled under various under-hood temperature environments. Modeling result were used to identify the most effective capacitor cooling strategies under high device temperature conditions.
NASA Astrophysics Data System (ADS)
Gribkov, V.; Van Oost, G.; Malaquias, A.; Herrera, J.
2006-10-01
Common research topics that are being studied in small, medium and large devices such as H-mode like or improved confinement, turbulence and transport are reported. These included modelling and diagnostic developments for edge and core, to characterize plasma density, temperature, electric potential, plasma flows, turbulence scale, etc. Innovative diagnostic methods were designed and implemented which could be used to develop experiments in small devices (in some cases not possible in large devices due to higher power deposition) to allow a better understanding of plasma edge and core properties. Reports are given addressing research in linear devices that can be used to study particular plasma physics topics relevant for other magnetic confinement devices such as the radial transport and the modelling of self-organized plasma jets involved in spheromak-like plasma formation. Some aspects of the work presented are of interest to the astrophysics community since they are believed to shed light on the basis of the physics of stellar jets. On the dense magnetized plasmas (DMP) topic, the present status of research, operation of new devices, plasma dynamics modelling and diagnostic developments is reported. The main devices presented belong to the class of Z-pinches, mostly plasma foci, and several papers were presented under this topic. The physics of DMP is important both for the main-stream fusion investigations as well as for providing the basis for elaboration of new concepts. New high-current technology introduced in the DMP devices design and construction make these devices nowadays more reliably fitted to various applications and give the possibility to widen the energy range used by them in both directions—to the multi-MJ level facilities and down to miniature plasma focus devices with energy of just a few J.
Organic and Hybrid Organic Solid-State Photovoltaic Materials and Devices
2014-03-06
Microscopy Research, 2012, 7, 158-169. Organic photovoltaic materials, hybrid organic devices, solar cells 6 1 FINAL TECHNICAL REPORT 1... hybrids have potential applications in solar cells and may thus provide mobile energy sources for aircraft and soldier technologies. Modeling and...modeling and simulation developed in this project are encouraging further development. 2. Technical Activities Hybrid organic solar cells are an
Efficient design of nanoplasmonic waveguide devices using the space mapping algorithm.
Dastmalchi, Pouya; Veronis, Georgios
2013-12-30
We show that the space mapping algorithm, originally developed for microwave circuit optimization, can enable the efficient design of nanoplasmonic waveguide devices which satisfy a set of desired specifications. Space mapping utilizes a physics-based coarse model to approximate a fine model accurately describing a device. Here the fine model is a full-wave finite-difference frequency-domain (FDFD) simulation of the device, while the coarse model is based on transmission line theory. We demonstrate that simply optimizing the transmission line model of the device is not enough to obtain a device which satisfies all the required design specifications. On the other hand, when the iterative space mapping algorithm is used, it converges fast to a design which meets all the specifications. In addition, full-wave FDFD simulations of only a few candidate structures are required before the iterative process is terminated. Use of the space mapping algorithm therefore results in large reductions in the required computation time when compared to any direct optimization method of the fine FDFD model.
A Conceptual Project of a Device for Human Wrist Functional Rehabilitation
NASA Astrophysics Data System (ADS)
Lewandowski, B.; Olinski, M.; Wudarczyk, S.; Gronowicz, A.
2016-12-01
In the paper, the problems of devices supporting functional rehabilitation of a human wrist were addressed. A literature review and a description of selected devices together with an indication of their advantages and disadvantages were conducted. The biomechanical structure of a human wrist was analyzed. On this basis and after taking into consideration ranges of motion of the selected joints the concept of a new mechanism was developed. A 3D model of the device was built in the Autodesk Inventor system. For the purpose of simulations another model was developed in the MSC Adams system. Issues of drives and sensors selection, as well as requirements for the control system, were examined.
Experimental Investigation and Modeling of Scale Effects in Micro Jet Pumps
NASA Astrophysics Data System (ADS)
Gardner, William Geoffrey
2011-12-01
Since the mid-1990s there has been an active effort to develop hydrocarbon-fueled power generation and propulsion systems on the scale of centimeters or smaller. This effort led to the creation and expansion of a field of research focused around the design and reduction to practice of Power MEMS (microelectromechanical systems) devices, beginning first with microscale jet engines and a generation later more broadly encompassing MEMS devices which generate power or pump heat. Due to small device scale and fabrication techniques, design constraints are highly coupled and conventional solutions for device requirements may not be practicable. This thesis describes the experimental investigation, modeling and potential applications for two classes of microscale jet pumps: jet ejectors and jet injectors. These components pump fluids with no moving parts and can be integrated into Power MEMS devices to satisfy pumping requirements by supplementing or replacing existing solutions. This thesis presents models developed from first principles which predict losses experienced at small length scales and agree well with experimental results. The models further predict maximum achievable power densities at the onset of detrimental viscous losses.
NASA Technical Reports Server (NTRS)
Werner, C. R.; Humphreys, B. T.; Mulugeta, L.
2014-01-01
The Advanced Resistive Exercise Device (ARED) is the resistive exercise device used by astronauts on the International Space Station (ISS) to mitigate bone loss and muscle atrophy due to extended exposure to microgravity (micro g). The Digital Astronaut Project (DAP) has developed a multi-body dynamics model of biomechanics models for use in spaceflight exercise physiology research and operations. In an effort to advance model maturity and credibility of the ARED model, the DAP performed verification, validation and credibility (VV and C) assessment of the analyses of the model in accordance to NASA-STD-7009 'Standards for Models and Simulations'.
Active cleaning technique device
NASA Technical Reports Server (NTRS)
Shannon, R. L.; Gillette, R. B.
1973-01-01
The objective of this program was to develop a laboratory demonstration model of an active cleaning technique (ACT) device. The principle of this device is based primarily on the technique for removing contaminants from optical surfaces. This active cleaning technique involves exposing contaminated surfaces to a plasma containing atomic oxygen or combinations of other reactive gases. The ACT device laboratory demonstration model incorporates, in addition to plasma cleaning, the means to operate the device as an ion source for sputtering experiments. The overall ACT device includes a plasma generation tube, an ion accelerator, a gas supply system, a RF power supply and a high voltage dc power supply.
ERIC Educational Resources Information Center
Cole, Charles; Cantero, Pablo; Ungar, Andras
2000-01-01
This article focuses on a study of undergraduates writing an essay for a remedial writing course that tested two devices, an uncertainty expansion device and an uncertainty reduction device. Highlights include Kuhlthau's information search process model, and enabling technology devices for the information needs of information retrieval system…
An ex vivo rat eye model to aid development of high-resolution retina imaging devices for rodents
NASA Astrophysics Data System (ADS)
van Oterendorp, Christian; Martin, Keith R.; Zhong, Jiang Jian; Diaz-Santana, Luis
2010-09-01
High resolution in vivo retinal imaging in rodents is becoming increasingly important in eye research. Development of suitable imaging devices currently requires many lengthy animal procedures. We present an ex vivo rat model eye with fluorescently labelled retinal ganglion cells (RGC) and nerve fibre bundles that reduces the need for animal procedures while preserving key properties of the living rat eye. Optical aberrations and scattering of four model eyes and eight live rat eyes were quantified using a Shack-Hartmann sensor. Fluorescent images from RGCs were obtained using a prototype scanning laser ophthalmoscope. The wavefront aberration root mean square value without defocus did not significantly differ between model and living eyes. Higher order aberrations were slightly higher but RGC image quality was comparable to published in vivo work. Overall, the model allows a large reduction in number and duration of animal procedures required to develop new in vivo retinal imaging devices.
Staging workers' use of hearing protection devices: application of the transtheoretical model.
Raymond, Delbert M; Lusk, Sally L
2006-04-01
The threat of noise-induced hearing loss is a serious concern for many workers. This study explores use of the transtheoretical model as a framework for defining stages of workers' acceptance of hearing protection devices. A secondary analysis was performed using a cross-section of data from a randomized, controlled clinical trial of an intervention to increase use of hearing protection. Use of hearing protection devices was well distributed across the theorized stages of change. Chi-square analysis and analysis of variance revealed significant differences between stages for the variables studied. Discrete stages of hearing protection device use can be identified, laying the foundation for further work investigating use of the transtheoretical model for promoting hearing protection device use. The model can provide a framework for tailoring interventions and evaluating their effects. With further development of the transtheoretical model, nurses may be able to easily identify workers' readiness to use hearing protection devices and tailor training toward that goal.
Medical Device Guidebook: A browser information resource for medical device users.
Clarkson, Douglas M
2017-03-01
A web based information resource - the 'Medical Device Guidebook' - for the enabling of safe use of medical devices is described. Medical devices are described within a 'catalogue' of specific models and information on a specific model is provided within a consistent set of information 'keys'. These include 'user manuals', 'points of caution', 'clinical use framework', 'training/assessment material', 'frequently asked questions', 'authorised user comments' and 'consumables'. The system allows identification of known risk/hazards associated with specific devices, triggered, for example, by national alerts or locally raised safety observations. This provides a mechanism for more effective briefing of equipment users on the associated hazards of equipment. A feature of the system is the inclusion of a specific 'Operational Procedure' for each device, where the lack of this focus is shown in the literature to often be a key factor in equipment misuse and associated patient injury. The 'Guidebook' provides a mechanism for the development of an information resource developed within local clinical networks and encourages a consistent approach to medical device use. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
The opportunistic transmission of wireless worms between mobile devices
NASA Astrophysics Data System (ADS)
Rhodes, C. J.; Nekovee, M.
2008-12-01
The ubiquity of portable wireless-enabled computing and communications devices has stimulated the emergence of malicious codes (wireless worms) that are capable of spreading between spatially proximal devices. The potential exists for worms to be opportunistically transmitted between devices as they move around, so human mobility patterns will have an impact on epidemic spread. The scenario we address in this paper is proximity attacks from fleetingly in-contact wireless devices with short-range communication range, such as Bluetooth-enabled smart phones. An individual-based model of mobile devices is introduced and the effect of population characteristics and device behaviour on the outbreak dynamics is investigated. The model uses straight-line motion to achieve population, though it is recognised that this is a highly simplified representation of human mobility patterns. We show that the contact rate can be derived from the underlying mobility model and, through extensive simulation, that mass-action epidemic models remain applicable to worm spreading in the low density regime studied here. The model gives useful analytical expressions against which more refined simulations of worm spread can be developed and tested.
A computational workflow for designing silicon donor qubits
Humble, Travis S.; Ericson, M. Nance; Jakowski, Jacek; ...
2016-09-19
Developing devices that can reliably and accurately demonstrate the principles of superposition and entanglement is an on-going challenge for the quantum computing community. Modeling and simulation offer attractive means of testing early device designs and establishing expectations for operational performance. However, the complex integrated material systems required by quantum device designs are not captured by any single existing computational modeling method. We examine the development and analysis of a multi-staged computational workflow that can be used to design and characterize silicon donor qubit systems with modeling and simulation. Our approach integrates quantum chemistry calculations with electrostatic field solvers to performmore » detailed simulations of a phosphorus dopant in silicon. We show how atomistic details can be synthesized into an operational model for the logical gates that define quantum computation in this particular technology. In conclusion, the resulting computational workflow realizes a design tool for silicon donor qubits that can help verify and validate current and near-term experimental devices.« less
Squat Biomechanical Modeling Results from Exercising on the Hybrid Ultimate Lifting Kit
NASA Technical Reports Server (NTRS)
Gallo, Christopher A.; Thompson, William K.; Lewandowski, Beth E.; Jagodnik, Kathleen M.
2016-01-01
Long duration space travel will expose astronauts to extended periods of reduced gravity. Since gravity is not present to aid loading, astronauts will use resistive and aerobic exercise regimes for the duration of the space flight to minimize loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the area available for an exercise device in the next generation of spacecraft is limited and therefore compact resistance exercise device prototypes are being developed. The Advanced Resistive Exercise Device (ARED) currently on the ISS is being used as a benchmark for the functional performance of these new devices. Biomechanical data collection and computational modeling aid the device design process by quantifying the joint torques and the musculoskeletal forces that occur during exercises performed on the prototype devices. The computational models currently under development utilize the OpenSim software, an open source code for musculoskeletal modeling, with biomechanical input data from test subjects for estimation of muscle and joint loads. The subjects are instrumented with reflective markers for motion capture data collection while exercising on the Hybrid Ultimate Lifting Kit (HULK) prototype device. Ground reaction force data is collected with force plates under the feet and device loading is recorded through load cells internal to the HULK. Test variables include applied device load, narrow or wide foot stance, slow or fast cadence and the harness or long bar interface between the test subject and the device. Data is also obtained using free weights for a comparison to the resistively loaded exercise device. This data is input into the OpenSim biomechanical model, which has been scaled to match the anthropometrics of the test subject, to calculate the body loads. The focus of this presentation is to summarize the results from the full squat exercises across the different test variables.
NASA Technical Reports Server (NTRS)
Kim, Quiesup
2001-01-01
Key elements of space qualification of opto-electric and photonic optical devices were overviewed. Efforts were concentrated on the reliability concerns of the devices needed for potential applications in space environments. The ultimate goal for this effort is to gradually establish enough data to develop a space qualification plan of newly developed specific photonic parts using empirical and numerical models to assess the life-time and degradation of the devices for potential long term space missions.
Simulation of an ankle rehabilitation system based on scotch- yoke mechanism
NASA Astrophysics Data System (ADS)
Racu (Cazacu, C. M.; Doroftei, I.; Plesu, Ghe; Doroftei, I. A.
2016-08-01
Due to injuries that occur on the ankle joint, everyday all around the world, more and more rehabilitation devices have been developed in recent years. The prices for ankle rehabilitation systems are still high, thus we developed a new device that we indented to be low cost and easy to manufacture. A model of an ankle rehabilitation device is presented in this paper. The device has two degrees of freedom, for flexion-extension and inversion-eversion move, and will ensure functionality with minimum dimensions. For the 3D model that we design, the dimensions are taken so that the proposed system will ensure functionality but also have a small dimensions and low mass, considering the physiological dimensions of the foot and lower leg.
NASA Technical Reports Server (NTRS)
Mahefkey, E. T.; Richter, R.
1981-01-01
The major design and performance test subtasks in the development of small (200 to 1,000 whr) integral heat pipe/thermal energy storage devices for use with thermally driven spacecraft cryo-coolers are described. The design of the integral heat pipe/thermal energy storage device was based on a quasi steady resistance heat transfer, lumped capacitance model. Design considerations for the heat pipe and thermal storage annuli are presented. The thermomechanical stress and insulation system design for the device are reviewed. Experimental correlations are described, as are the plans for the further development of the concept.
Design and development of integral heat pipe/thermal energy storage devices
NASA Astrophysics Data System (ADS)
Mahefkey, E. T.; Richter, R.
1981-06-01
The major design and performance test subtasks in the development of small (200 to 1,000 whr) integral heat pipe/thermal energy storage devices for use with thermally driven spacecraft cryo-coolers are described. The design of the integral heat pipe/thermal energy storage device was based on a quasi steady resistance heat transfer, lumped capacitance model. Design considerations for the heat pipe and thermal storage annuli are presented. The thermomechanical stress and insulation system design for the device are reviewed. Experimental correlations are described, as are the plans for the further development of the concept.
Modelling of TES X-ray Microcalorimeters with a Novel Absorber Design
NASA Technical Reports Server (NTRS)
Iyomoto, Naoko; Bandler, Simon; Brefosky, Regis; Brown, Ari; Chervenak, James; Figueroa-Feliciano, Enectali; Finkbeiner, Frederick; Kelley, Richard; Kilbourne, Caroline; Lindeman, Mark;
2007-01-01
Our development of a novel x-ray absorber design that has enabled the incorporation of high-conductivity electroplated gold into our absorbers has yielded devices that not only have achieved breakthrough performance at 6 keV, but also are extraordinarily well modelled. We have determined device parameters that reproduce complex impedance curves and noise spectra throughout transition. Observed pulse heights, decay time and baseline energy resolution were in good agreement with simulated results using the same parameters. In the presentation, we will show these results in detail and we will also show highlights of the characterization of our gold/bismuth-absorber devices. We will discuss possible improvement of our current devices and expected performance of future devices using the modelling results.
Forward-bias tunneling - A limitation to bipolar device scaling
NASA Technical Reports Server (NTRS)
Del Alamo, Jesus A.; Swanson, Richard M.
1986-01-01
Forward-bias tunneling is observed in heavily doped p-n junctions of bipolar transistors. A simple phenomenological model suitable to incorporation in device codes is developed. The model identifies as key parameters the space-charge-region (SCR) thickness at zero bias and the reduced doping level at its edges which can both be obtained from CV characteristics. This tunneling mechanism may limit the maximum gain achievable from scaled bipolar devices.
NASA Technical Reports Server (NTRS)
Thompson, William K.; Gallo, Christopher A.; Crentsil, Lawton; Lewandowski, Beth E.; Humphreys, Brad T.; DeWitt, John K.; Fincke, Renita S.; Mulugeta, Lealem
2015-01-01
The NASA Digital Astronaut Project (DAP) implements well-vetted computational models to predict and assess spaceflight health and performance risks, and to enhance countermeasure development. The DAP Musculoskeletal Modeling effort is developing computational models to inform exercise countermeasure development and to predict physical performance capabilities after a length of time in space. For example, integrated exercise device-biomechanical models can determine localized loading, which will be used as input to muscle and bone adaptation models to estimate the effectiveness of the exercise countermeasure. In addition, simulations of mission tasks can be used to estimate the astronaut's ability to perform the task after exposure to microgravity and after using various exercise countermeasures. The software package OpenSim (Stanford University, Palo Alto, CA) (Ref. 1) is being used to create the DAP biomechanical models and its built-in muscle model is the starting point for the DAP muscle model. During Exploration missions, such as those to asteroids and Mars, astronauts will be exposed to reduced gravity for extended periods. Therefore, the crew must have access to exercise countermeasures that can maintain their musculoskeletal and aerobic health. Exploration vehicles may have very limited volume and power available to accommodate such capabilities, even more so than the International Space Station (ISS). The exercise devices flown on Exploration missions must be designed to provide sufficient load during the performance of various resistance and aerobic/anaerobic exercises while meeting potential additional requirements of limited mass, volume and power. Given that it is not practical to manufacture and test (ground, analog and/or flight) all candidate devices, nor is it always possible to obtain data such as localized muscle and bone loading empirically, computational modeling can estimate the localized loading during various exercise modalities performed on a given device to help formulate exercise prescriptions and other operational considerations. With this in mind, NASA's Digital Astronaut Project (DAP) is supporting the Advanced Exercise Concepts (AEC) Project, Exercise Physiology and Countermeasures (ExPC) laboratory and NSBRI-funded researchers by developing and implementing well-validated computational models of exercises with advanced exercise device concepts. This report focuses specifically on lower-body resistance exercises performed with the Hybrid Ultimate Lifting Kit (HULK) device as a deliverable to the AEC Project.
ERIC Educational Resources Information Center
Yuliani, Kiki; Saragih, Sahat
2015-01-01
The purpose of this research was to: 1) development of learning devices based guided discovery model in improving of understanding concept and critical thinking mathematically ability of students at Islamic Junior High School; 2) describe improvement understanding concept and critical thinking mathematically ability of students at MTs by using…
NASA Astrophysics Data System (ADS)
Chakraborty, S.; Dasgupta, A.; Das, R.; Kar, M.; Kundu, A.; Sarkar, C. K.
2017-12-01
In this paper, we explore the possibility of mapping devices designed in TCAD environment to its modeled version developed in cadence virtuoso environment using a look-up table (LUT) approach. Circuit simulation of newly designed devices in TCAD environment is a very slow and tedious process involving complex scripting. Hence, the LUT based modeling approach has been proposed as a faster and easier alternative in cadence environment. The LUTs are prepared by extracting data from the device characteristics obtained from device simulation in TCAD. A comparative study is shown between the TCAD simulation and the LUT-based alternative to showcase the accuracy of modeled devices. Finally the look-up table approach is used to evaluate the performance of circuits implemented using 14 nm nMOSFET.
Modelling and fabrication of high-efficiency silicon solar cells
NASA Astrophysics Data System (ADS)
Rohatgi, A.; Smith, A. W.; Salami, J.
1991-10-01
This report covers the research conducted on modelling and development of high efficiency silicon solar cells during the period May 1989 to August 1990. First, considerable effort was devoted toward developing a ray tracing program for the photovoltaic community to quantify and optimize surface texturing for solar cells. Second, attempts were made to develop a hydrodynamic model for device simulation. Such a model is somewhat slower than drift-diffusion type models like PC-1D, but it can account for more physical phenomena in the device, such as hot carrier effects, temperature gradients, thermal diffusion, and lattice heat flow. In addition, Fermi-Dirac statistics have been incorporated into the model to deal with heavy doping effects more accurately. The third and final component of the research includes development of silicon cell fabrication capabilities and fabrication of high efficiency silicon cells.
Digitally-bypassed transducers: interfacing digital mockups to real-time medical equipment.
Sirowy, Scott; Givargis, Tony; Vahid, Frank
2009-01-01
Medical device software is sometimes initially developed by using a PC simulation environment that executes models of both the device and a physiological system, and then later by connecting the actual medical device to a physical mockup of the physiological system. An alternative is to connect the medical device to a digital mockup of the physiological system, such that the device believes it is interacting with a physiological system, but in fact all interaction is entirely digital. Developing medical device software by interfacing with a digital mockup enables development without costly or dangerous physical mockups, and enables execution that is faster or slower than real time. We introduce digitally-bypassed transducers, which involve a small amount of hardware and software additions, and which enable interfacing with digital mockups.
NASA Astrophysics Data System (ADS)
Dwivedi, Neeraj; Dhand, Chetna; Rawal, Ishpal; Kumar, Sushil; Malik, Hitendra K.; Lakshminarayanan, Rajamani
2017-06-01
A longstanding concern in the research of amorphous carbon films is their poor electrical conductivity at room temperature which constitutes a major barrier for the development of cost effective electronic and optoelectronic devices. Here, we propose metal/carbon hybrid multijunction devices as a promising facile way to overcome room temperature electron transport issues in amorphous carbon films. By the tuning of carbon thickness and swapping metal layers, we observe giant (upto ˜7 orders) reduction of electrical resistance in metal/carbon multijunction devices with respect to monolithic amorphous carbon device. We engineer the maximum current (electrical resistance) from about 10-7 to 10-3 A (˜107 to 103 Ω) in metal (Cu or Ti)/carbon hybrid multijunction devices with a total number of 10 junctions. The introduction of thin metal layers breaks the continuity of relatively higher resistance carbon layer as well as promotes the nanostructuring of carbon. These contribute to low electrical resistance of metal/carbon hybrid multijunction devices, with respect to monolithic carbon device, which is further reduced by decreasing the thickness of carbon layers. We also propose and discuss equivalent circuit model to explain electrical resistance in monolithic carbon and metal/carbon multijunction devices. Cu/carbon multijunction devices display relatively better electrical transport than Ti/carbon devices owing to low affinity of Cu with carbon that restricts carbide formation. We also observe that in metal/carbon multijunction devices, the transport mechanism changes from Poole-Frenkel/Schottky model to the hopping model with a decrease in carbon thickness. Our approach opens a new route to develop carbon-based inexpensive electronic and optoelectronic devices.
FACTS Devices Cost Recovery During Congestion Management in Deregulated Electricity Markets
NASA Astrophysics Data System (ADS)
Sharma, Ashwani Kumar; Mittapalli, Ram Kumar; Pal, Yash
2016-09-01
In future electricity markets, flexible alternating current transmission system (FACTS) devices will play key role for providing ancillary services. Since huge cost is involved for the FACTS devices placement in the power system, the cost invested has to be recovered in their life time for the replacement of these devices. The FACTS devices in future electricity markets can act as an ancillary services provider and have to be remunerated. The main contributions of the paper are: (1) investment recovery of FACTS devices during congestion management such as static VAR compensator and unified power flow controller along with thyristor controlled series compensator using non-linear bid curves, (2) the impact of ZIP load model on the FACTS cost recovery of the devices, (3) the comparison of results obtained without ZIP load model for both pool and hybrid market model, (4) secure bilateral transactions incorporation in hybrid market model. An optimal power flow based approach has been developed for maximizing social welfare including FACTS devices cost. The optimal placement of the FACTS devices have been obtained based on maximum social welfare. The results have been obtained for both pool and hybrid electricity market for IEEE 24-bus RTS.
Prakash, Punit; Salgaonkar, Vasant A.; Diederich, Chris J.
2014-01-01
Endoluminal and catheter-based ultrasound applicators are currently under development and are in clinical use for minimally invasive hyperthermia and thermal ablation of various tissue targets. Computational models play a critical role in in device design and optimization, assessment of therapeutic feasibility and safety, devising treatment monitoring and feedback control strategies, and performing patient-specific treatment planning with this technology. The critical aspects of theoretical modeling, applied specifically to endoluminal and interstitial ultrasound thermotherapy, are reviewed. Principles and practical techniques for modeling acoustic energy deposition, bioheat transfer, thermal tissue damage, and dynamic changes in the physical and physiological state of tissue are reviewed. The integration of these models and applications of simulation techniques in identification of device design parameters, development of real time feedback-control platforms, assessing the quality and safety of treatment delivery strategies, and optimization of inverse treatment plans are presented. PMID:23738697
Distributed user interfaces for clinical ubiquitous computing applications.
Bång, Magnus; Larsson, Anders; Berglund, Erik; Eriksson, Henrik
2005-08-01
Ubiquitous computing with multiple interaction devices requires new interface models that support user-specific modifications to applications and facilitate the fast development of active workspaces. We have developed NOSTOS, a computer-augmented work environment for clinical personnel to explore new user interface paradigms for ubiquitous computing. NOSTOS uses several devices such as digital pens, an active desk, and walk-up displays that allow the system to track documents and activities in the workplace. We present the distributed user interface (DUI) model that allows standalone applications to distribute their user interface components to several devices dynamically at run-time. This mechanism permit clinicians to develop their own user interfaces and forms to clinical information systems to match their specific needs. We discuss the underlying technical concepts of DUIs and show how service discovery, component distribution, events and layout management are dealt with in the NOSTOS system. Our results suggest that DUIs--and similar network-based user interfaces--will be a prerequisite of future mobile user interfaces and essential to develop clinical multi-device environments.
An Exploration of Pre-Service Teachers' Intention to Use Mobile Devices for Teaching
ERIC Educational Resources Information Center
Hur, Jung Won; Shen, Ying W.; Kale, Ugur; Cullen, Theresa A.
2015-01-01
Teachers in the US have been increasingly adopting mobile devices for teaching, but little research has examined how pre-service teachers perceive mobile device integration in classrooms. To address this issue, the study developed a research model that explained factors affecting pre-service teachers' intention to use mobile devices and the…
Microwave Switching and Attenuation with Superconductors.
NASA Astrophysics Data System (ADS)
Poulin, Grant Darcy
1995-01-01
The discovery of high temperature superconducting (HTS) materials having a critical temperature above the boiling point of liquid nitrogen has generated a large amount of interest in both the basic and applied scientific communities. Considerable research effort has been expended in developing HTS microwave devices, since thin film, passive, microwave components will likely be the first area to be successfully commercialized. This thesis describes a new thin film HTS microwave device that can be operated as a switch or as a continuously variable attenuator. It is well suited for low power analog signal control applications and can easily be integrated with other HTS devices. Due to its small size and mass, the device is expected to find application as a receiver protection switch or as an automatic gain control element, both used in satellite communications receivers. The device has a very low insertion loss, and the isolation in the OFF state is continuously variable to 25 dB. With minor modifications, an isolation exceeding 50 dB is readily achievable. A patent application for the device has been filed, with the patent rights assigned to COM DEV. The device is based on an unusual non-linear response in HTS materials. Under a non-zero DC voltage bias, the current through a superconducting bridge is essentially voltage independent. We have proposed a thermal instability to account for this behaviour. Thermal modelling in conjunction with direct temperature measurements were used to confirm the validity of the model. We have developed a detailed model explaining the microwave response of the device. The model accurately predicts the microwave attenuation as a function of the applied DC control voltage and fully explains the device operation. A key feature is that the device acts as a pure resistive element at microwave frequencies, with no reactance. The resistance is continuously variable, controlled by the DC bias voltage. This distinguishes it from a PIN diode, since PIN diodes have a capacitive reactance that limits their frequency range. Measurements made to confirm the microwave model validity resulted in the development of a new cryogenic de-embedding technique. The technique allows accurate microwave measurements to be made on devices at cryogenic temperatures using only room temperature calibration standards. We have also investigated the effect of kinetic inductance on coplanar waveguide transmission lines, and indicate under what conditions kinetic inductance must be considered in transmission line design.
NASA Astrophysics Data System (ADS)
Iftekhar, Ahmed Tashfin; Ho, Jenny Che-Ting; Mellinger, Axel; Kaya, Tolga
2017-03-01
Sweat-based physiological monitoring has been intensively explored in the last decade with the hopes of developing real-time hydration monitoring devices. Although the content of sweat (electrolytes, lactate, urea, etc.) provides significant information about the physiology, it is also very important to know the rate of sweat at the time of sweat content measurements because the sweat rate is known to alter the concentrations of sweat compounds. We developed a calorimetric based flow rate sensor using PolydimethylSiloxane that is suitable for sweat rate applications. Our simple approach on using temperature-based flow rate detection can easily be adapted to multiple sweat collection and analysis devices. Moreover, we have developed a 3D finite element analysis model of the device using COMSOL Multiphysics™ and verified the flow rate measurements. The experiment investigated flow rate values from 0.3 μl/min up to 2.1 ml/min, which covers the human sweat rate range (0.5 μl/min-10 μl/min). The 3D model simulations and analytical model calculations covered an even wider range in order to understand the main physical mechanisms of the device. With a verified 3D model, different environmental heat conditions could be further studied to shed light on the physiology of the sweat rate.
Lai, WeiJen; Midorikawa, Yoshiyuki; Kanno, Zuisei; Takemura, Hiroshi; Suga, Kazuhiro; Soga, Kohei; Ono, Takashi; Uo, Motohiro
2016-12-01
We developed a device to evaluate the orthodontic force applied by systems requiring high operability. A life-sized, two-tooth model was designed, and the measurements were performed using a custom-made jointed attachment, referred to as an "action stick", to allow clearance for the oversized six-axis sensors. This tooth-sensor apparatus was accurately calibrated, and the error was limited. Vector analysis and rotating coordinate transformation were required to derive the force and moment at the tooth from the sensor readings. The device was then used to obtain measurements of the force and moment generated by the V-bend system. Our device was effective, providing results that were consistent with those of previous studies. This measurement device can be manufactured with force sensors of any size, and it can also be expanded to models with any number of teeth.
Blood Pump Development Using Rocket Engine Flow Simulation Technology
NASA Technical Reports Server (NTRS)
Kwak, Dochan; Kiris, Cetin
2001-01-01
This paper reports the progress made towards developing complete blood flow simulation capability in humans, especially in the presence of artificial devices such as valves and ventricular assist devices. Devices modeling poses unique challenges different from computing the blood flow in natural hearts and arteries. There are many elements needed to quantify the flow in these devices such as flow solvers, geometry modeling including flexible walls, moving boundary procedures and physiological characterization of blood. As a first step, computational technology developed for aerospace applications was extended to the analysis and development of a ventricular assist device (VAD), i.e., a blood pump. The blood flow in a VAD is practically incompressible and Newtonian, and thus an incompressible Navier-Stokes solution procedure can be applied. A primitive variable formulation is used in conjunction with the overset grid approach to handle complex moving geometry. The primary purpose of developing the incompressible flow analysis capability was to quantify the flow in advanced turbopump for space propulsion system. The same procedure has been extended to the development of NASA-DeBakey VAD that is based on an axial blood pump. Due to massive computing requirements, high-end computing is necessary for simulating three-dimensional flow in these pumps. Computational, experimental, and clinical results are presented.
Optimization of Microelectronic Devices for Sensor Applications
NASA Technical Reports Server (NTRS)
Cwik, Tom; Klimeck, Gerhard
2000-01-01
The NASA/JPL goal to reduce payload in future space missions while increasing mission capability demands miniaturization of active and passive sensors, analytical instruments and communication systems among others. Currently, typical system requirements include the detection of particular spectral lines, associated data processing, and communication of the acquired data to other systems. Advances in lithography and deposition methods result in more advanced devices for space application, while the sub-micron resolution currently available opens a vast design space. Though an experimental exploration of this widening design space-searching for optimized performance by repeated fabrication efforts-is unfeasible, it does motivate the development of reliable software design tools. These tools necessitate models based on fundamental physics and mathematics of the device to accurately model effects such as diffraction and scattering in opto-electronic devices, or bandstructure and scattering in heterostructure devices. The software tools must have convenient turn-around times and interfaces that allow effective usage. The first issue is addressed by the application of high-performance computers and the second by the development of graphical user interfaces driven by properly developed data structures. These tools can then be integrated into an optimization environment, and with the available memory capacity and computational speed of high performance parallel platforms, simulation of optimized components can proceed. In this paper, specific applications of the electromagnetic modeling of infrared filtering, as well as heterostructure device design will be presented using genetic algorithm global optimization methods.
OpenSim Model Improvements to Support High Joint Angle Resistive Exercising
NASA Technical Reports Server (NTRS)
Gallo, Christopher; Thompson, William; Lewandowski, Beth; Humphreys, Brad
2016-01-01
Long duration space travel to Mars or to an asteroid will expose astronauts to extended periods of reduced gravity. Since gravity is not present to aid loading, astronauts will use resistive and aerobic exercise regimes for the duration of the space flight to minimize the loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the area available for an exercise device in the next generation of spacecraft is limited. Therefore, compact resistance exercise device prototypes are being developed. The Advanced Resistive Exercise Device (ARED) currently on the ISS is being used as a benchmark for the functional performance of these new devices. Rigorous testing of these proposed devices in space flight is difficult so computational modeling provides an estimation of the muscle forces and joint loads during exercise to gain insight on the efficacy to protect the musculoskeletal health of astronauts. The NASA Digital Astronaut Project (DAP) is supporting the Advanced Exercise Concepts (AEC) Project, Exercise Physiology and Countermeasures (ExPC) project and the National Space Biomedical Research Institute (NSBRI) funded researchers by developing computational models of exercising with these new advanced exercise device concepts
Issues and challenges of involving users in medical device development.
Bridgelal Ram, Mala; Grocott, Patricia R; Weir, Heather C M
2008-03-01
User engagement has become a central tenet of health-care policy. This paper reports on a case study in progress that highlights user engagement in the research process in relation to medical device development. To work with a specific group of medical device users to uncover unmet needs, translating these into design concepts, novel technologies and products. To validate a knowledge transfer model that may be replicated for a range of medical device applications and user groups. In depth qualitative case study to elicit and analyse user needs. The focus is on identifying design concepts for medical device applications from unmet needs, and validating these in an iterative feedback loop to the users. The case study has highlighted three interrelated challenges: ensuring unmet needs drive new design concepts and technology development; managing user expectations and managing the research process. Despite the challenges, active participation of users is crucial to developing usable and clinically effective devices.
Levelized Cost of Energy Analysis of Marine and Hydrokinetic Reference Models: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenne, D. S.; Yu, Y. H.; Neary, V.
2015-04-24
In 2010 the U.S. Department of Energy initiated the development of six marine energy converter reference models. The reference models are point designs of well-known marine energy converters. Each device was designed to operate in a specific marine resource, instead of a generic device that can be deployed at any location. This method allows each device to be used as a benchmark for future reference model to benchmark future devices. The six designs consist of three current energy converters and three wave energy converters. The reference model project has generated both technical and economic data sets that are available inmore » the public domain. The methodology to calculate the levelized cost of energy for the reference model project and an overall comparison of the cost of energy from these six reference-model designs are presented in this paper.« less
A hysteretic model considering Stribeck effect for small-scale magnetorheological damper
NASA Astrophysics Data System (ADS)
Zhao, Yu-Liang; Xu, Zhao-Dong
2018-06-01
Magnetorheological (MR) damper is an ideal semi-active control device for vibration suppression. The mechanical properties of this type of devices show strong nonlinear characteristics, especially the performance of the small-scale dampers. Therefore, developing an ideal model that can accurately describe the nonlinearity of such device is crucial to control design. In this paper, the dynamic characteristics of a small-scale MR damper developed by our research group is tested, and the Stribeck effect is observed in the low velocity region. Then, an improved model based on sigmoid model is proposed to describe this Stribeck effect observed in the experiment. After that, the parameters of this model are identified by genetic algorithms, and the mathematical relationship between these parameters and the input current, excitation frequency and amplitude is regressed. Finally, the predicted forces of the proposed model are validated with the experimental data. The results show that this model can well predict the mechanical properties of the small-scale damper, especially the Stribeck effect in the low velocity region.
Wave energy converter effects on wave propagation: A sensitivity study in Monterey Bay, CA
NASA Astrophysics Data System (ADS)
Chang, G.; Jones, C. A.; Roberts, J.; Magalen, J.; Ruehl, K.; Chartrand, C.
2014-12-01
The development of renewable offshore energy in the United States is growing rapidly and wave energy is one of the largest resources currently being evaluated. The deployment of wave energy converter (WEC) arrays required to harness this resource could feasibly number in the hundreds of individual devices. The WEC arrays have the potential to alter nearshore wave propagation and circulation patterns and ecosystem processes. As the industry progresses from pilot- to commercial-scale it is important to understand and quantify the effects of WECs on the natural nearshore processes that support a local, healthy ecosystem. To help accelerate the realization of commercial-scale wave power, predictive modeling tools have been developed and utilized to evaluate the likelihood of environmental impact. At present, direct measurements of the effects of different types of WEC arrays on nearshore wave propagation are not available; therefore wave model simulations provide the groundwork for investigations of the sensitivity of model results to prescribed WEC characteristics over a range of anticipated wave conditions. The present study incorporates a modified version of an industry standard wave modeling tool, SWAN (Simulating WAves Nearshore), to simulate wave propagation through a hypothetical WEC array deployment site on the California coast. The modified SWAN, referred to as SNL-SWAN, incorporates device-specific WEC power take-off characteristics to more accurately evaluate a WEC device's effects on wave propagation. The primary objectives were to investigate the effects of a range of WEC devices and device and array characteristics (e.g., device spacing, number of WECs in an array) on nearshore wave propagation using SNL-SWAN model simulations. Results showed that significant wave height was most sensitive to variations in WEC device type and size and the number of WEC devices in an array. Locations in the lee centerline of the arrays in each modeled scenario showed the largest potential changes in wave height. The SNL-SWAN model simulations for various WEC devices provide the basis for a solid model understanding, giving the confidence necessary for future WEC evaluations.
Legislative aspects of the development of medical devices.
Marešová, Petra; Klímová, Blanka; Krejcar, Ondřej; Kuča, Kamil
2015-09-01
European industry of medical device technologies represents 30% of all worlds sales. New health technologies bring effective treatment approaches, help shorten stays in hospital1),bring better treatment results and accelerate rehabilitation which leads to the earlier patients recovery.Legislative aspects are one of the key areas influencing the speed of development of medical devices and their launching. The aim of this article is to specify current state of legislation in the development of medical devices in the European Union in comparison with the market leaders such as China, Japan and USA.The best established market of medical devices is in the USA. Both Japan and China follow the USA model. However, a non-professional code of ethics in China in some respect contributes to the decrease of quality of medical devices, while Japan as well as the EU countries try really hard to conform to all the regulations imposed on the manufacturing of medical devices.
New directions in photonics simulation: Lanczos recursion and finite-difference time-domain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hawkins, R.J.; McLeod, R.R.; Kallman, J.S.
1992-06-01
Computational Integrated Photonics (CIP) is the area of computational physics that treats the propagation of light in optical fibers and in integrated optical circuits. The purpose of integrated photonics simulation is to develop the computational tools that will support the design of photonic and optoelectronic integrated devices. CIP has, in general, two thrusts: (1) predictive models of photonic device behavior that can be used reliably to enhance significantly the speed with which designs axe optimized for development applications, and (2) to further our ability to describe the linear and nonlinear processes that occur - and can be exploited - inmore » real photonic devices. Experimental integrated optics has been around for over a decade with much of the work during this period. centered on proof-of-principle devices that could be described using simple analytic and numerical models. Recent advances in material growths, photolithography, and device complexity have conspired to reduce significantly the number of devices that can be designed with simple models and to increase dramatically the interest in CIP. In the area of device design, CIP is viewed as critical to understanding device behavior and to optimization. In the area of propagation physics, CIP is an important tool in the study of nonlinear processes in integrated optical devices and fibers. In this talk I will discuss two of the new directions we have been investigating in CIP: Lanczos recursion and finite-difference time-domain.« less
Tomblin, J. Bruce; Peng, Shu-Chen; Spencer, Linda J.; Lu, Nelson
2011-01-01
Purpose This study characterized the development of speech sound production in prelingually deaf children with a minimum of 8 years of cochlear implant (CI) experience. Method Twenty-seven pediatric CI recipients' spontaneous speech samples from annual evaluation sessions were phonemically transcribed. Accuracy for these speech samples was evaluated in piecewise regression models. Results As a group, pediatric CI recipients showed steady improvement in speech sound production following implantation, but the improvement rate declined after 6 years of device experience. Piecewise regression models indicated that the slope estimating the participants' improvement rate was statistically greater than 0 during the first 6 years postimplantation, but not after 6 years. The group of pediatric CI recipients' accuracy of speech sound production after 4 years of device experience reasonably predicts their speech sound production after 5–10 years of device experience. Conclusions The development of speech sound production in prelingually deaf children stabilizes after 6 years of device experience, and typically approaches a plateau by 8 years of device use. Early growth in speech before 4 years of device experience did not predict later rates of growth or levels of achievement. However, good predictions could be made after 4 years of device use. PMID:18695018
Scattering effects on the performance of carbon nanotube field effect transistor in a compact model
NASA Astrophysics Data System (ADS)
Hamieh, S. D.; Desgreys, P.; Naviner, J. F.
2010-01-01
Carbon nanotube field-effect transistors (CNTFET) are being extensively studied as possible successors to CMOS. Device simulators have been developed to estimate their performance in sub-10-nm and device structures have been fabricated. In this work, a new compact model of single-walled semiconducting CNTFET is proposed implementing the calculation of energy conduction sub-band minima and the treatment of scattering effects through energy shift in CNTFET. The developed model has been used to simulate I-V characteristics using VHDL-AMS simulator.
River Devices to Recover Energy with Advanced Materials (River DREAM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMahon, Daniel P.
2013-07-03
The purpose of this project is to develop a generator called a Galloping Hydroelectric Energy Extraction Device (GHEED). It uses a galloping prism to convert water flow into linear motion. This motion is converted into electricity via a dielectric elastomer generator (DEG). The galloping mechanism and the DEG are combined to create a system to effectively generate electricity. This project has three research objectives: 1. Oscillator development and design a. Characterize galloping behavior, evaluate control surface shape change on oscillator performance and demonstrate shape change with water flow change. 2. Dielectric Energy Generator (DEG) characterization and modeling a. Characterize andmore » model the performance of the DEG based on oscillator design 3. Galloping Hydroelectric Energy Extraction Device (GHEED) system modeling and integration a. Create numerical models for construction of a system performance model and define operating capabilities for this approach Accomplishing these three objectives will result in the creation of a model that can be used to fully define the operating parameters and performance capabilities of a generator based on the GHEED design. This information will be used in the next phase of product development, the creation of an integrated laboratory scale generator to confirm model predictions.« less
Neural Network Modeling for Gallium Arsenide IC Fabrication Process and Device Characteristics.
NASA Astrophysics Data System (ADS)
Creech, Gregory Lee, I.
This dissertation presents research focused on the utilization of neurocomputing technology to achieve enhanced yield and effective yield prediction in integrated circuit (IC) manufacturing. Artificial neural networks are employed to model complex relationships between material and device characteristics at critical stages of the semiconductor fabrication process. Whole wafer testing was performed on the starting substrate material and during wafer processing at four critical steps: Ohmic or Post-Contact, Post-Recess, Post-Gate and Final, i.e., at completion of fabrication. Measurements taken and subsequently used in modeling include, among others, doping concentrations, layer thicknesses, planar geometries, layer-to-layer alignments, resistivities, device voltages, and currents. The neural network architecture used in this research is the multilayer perceptron neural network (MLPNN). The MLPNN is trained in the supervised mode using the generalized delta learning rule. It has one hidden layer and uses continuous perceptrons. The research focuses on a number of different aspects. First is the development of inter-process stage models. Intermediate process stage models are created in a progressive fashion. Measurements of material and process/device characteristics taken at a specific processing stage and any previous stages are used as input to the model of the next processing stage characteristics. As the wafer moves through the fabrication process, measurements taken at all previous processing stages are used as input to each subsequent process stage model. Secondly, the development of neural network models for the estimation of IC parametric yield is demonstrated. Measurements of material and/or device characteristics taken at earlier fabrication stages are used to develop models of the final DC parameters. These characteristics are computed with the developed models and compared to acceptance windows to estimate the parametric yield. A sensitivity analysis is performed on the models developed during this yield estimation effort. This is accomplished by analyzing the total disturbance of network outputs due to perturbed inputs. When an input characteristic bears no, or little, statistical or deterministic relationship to the output characteristics, it can be removed as an input. Finally, neural network models are developed in the inverse direction. Characteristics measured after the final processing step are used as the input to model critical in-process characteristics. The modeled characteristics are used for whole wafer mapping and its statistical characterization. It is shown that this characterization can be accomplished with minimal in-process testing. The concepts and methodologies used in the development of the neural network models are presented. The modeling results are provided and compared to the actual measured values of each characteristic. An in-depth discussion of these results and ideas for future research are presented.
Xyce Parallel Electronic Simulator : users' guide, version 2.0.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoekstra, Robert John; Waters, Lon J.; Rankin, Eric Lamont
2004-06-01
This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator capable of simulating electrical circuits at a variety of abstraction levels. Primarily, Xyce has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability the current state-of-the-art in the following areas: {sm_bullet} Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). Note that this includes support for most popular parallel and serial computers. {sm_bullet} Improved performance for allmore » numerical kernels (e.g., time integrator, nonlinear and linear solvers) through state-of-the-art algorithms and novel techniques. {sm_bullet} Device models which are specifically tailored to meet Sandia's needs, including many radiation-aware devices. {sm_bullet} A client-server or multi-tiered operating model wherein the numerical kernel can operate independently of the graphical user interface (GUI). {sm_bullet} Object-oriented code design and implementation using modern coding practices that ensure that the Xyce Parallel Electronic Simulator will be maintainable and extensible far into the future. Xyce is a parallel code in the most general sense of the phrase - a message passing of computing platforms. These include serial, shared-memory and distributed-memory parallel implementation - which allows it to run efficiently on the widest possible number parallel as well as heterogeneous platforms. Careful attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows. One feature required by designers is the ability to add device models, many specific to the needs of Sandia, to the code. To this end, the device package in the Xyce These input formats include standard analytical models, behavioral models look-up Parallel Electronic Simulator is designed to support a variety of device model inputs. tables, and mesh-level PDE device models. Combined with this flexible interface is an architectural design that greatly simplifies the addition of circuit models. One of the most important feature of Xyce is in providing a platform for computational research and development aimed specifically at the needs of the Laboratory. With Xyce, Sandia now has an 'in-house' capability with which both new electrical (e.g., device model development) and algorithmic (e.g., faster time-integration methods) research and development can be performed. Ultimately, these capabilities are migrated to end users.« less
Model Railroading and Computer Fundamentals
ERIC Educational Resources Information Center
McCormick, John W.
2007-01-01
Less than one half of one percent of all processors manufactured today end up in computers. The rest are embedded in other devices such as automobiles, airplanes, trains, satellites, and nearly every modern electronic device. Developing software for embedded systems requires a greater knowledge of hardware than developing for a typical desktop…
Design of memristive interface between electronic neurons
NASA Astrophysics Data System (ADS)
Gerasimova, S. A.; Mikhaylov, A. N.; Belov, A. I.; Korolev, D. S.; Guseinov, D. V.; Lebedeva, A. V.; Gorshkov, O. N.; Kazantsev, V. B.
2018-05-01
Nonlinear dynamics of two electronic oscillators coupled via a memristive device has been investigated. Such model mimics the interaction between synaptically coupled brain neurons with the memristive device imitating neuron axon. The synaptic connection is provided by the adaptive behavior of memristive device that changes its resistance under the action of spike-like activity. Mathematical model of such a memristive interface has been developed to describe and predict the experimentally observed regularities of forced synchronization of neuron-like oscillators.
Multidisciplinary collaboration as a sustainable research model for device development.
Chandra, Ankur
2013-02-01
The concurrent problems of research sustainability and decreased clinician involvement with medical device development can be jointly addressed through a novel, multidisciplinary solution. The University of Rochester Cardiovascular Device Design Program is a sustainable program in medical device design supported through a collaboration between the Schools of Medicine and Engineering. This article provides a detailed description of the motivation for starting the program, the current structure of the program, the methods of financial sustainability, and the direct impact it intends to have on the national vascular surgery community. The further expansion of this program and encouragement for development of similar programs throughout the country aims to address many of our current challenges in both research funding and device development education. Copyright © 2013 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.
Clinical performance of dental fiberscope image guided system for endodontic treatment.
Yamazaki, Yasushi; Ogawa, Takumi; Shigeta, Yuko; Ikawa, Tomoko; Kasama, Shintaro; Hattori, Asaki; Suzuki, Naoki; Yamamoto, Takatsugu; Ozawa, Toshiko; Arai, Takashi
2011-01-01
We developed a dental fiberscope that can be navigated. As a result we are able to better grasp the device position relative to the teeth, aiming at the lesion more precisely. However, the device position and the precise target setting were difficult to consistently ascertain. The aim of this study is to navigate the position of tip of the dental fiberscope fiber in the root canal with our navigation system. A 3D tooth model was made from the raw dental CT data. In addition, the optical position of the measurement device, OPTOTRAK system was used for registration of the 3D model and actual teeth position and to chase the scope movement. We developed exclusive software to unify information. We were subsequently able to precisely indicate the relation of the position between the device and the teeth on the 3D model in the monitor. This allowed us to aim at the lesion more precisely, as the revised endoscopic image matched the 3D model. The application of this endoscopic navigation system could increase the success rate for root canal treatments with recalcitrant lesion.
Pan, Wenxiao; Galvin, Janine; Huang, Wei Ling; ...
2018-03-25
In this paper we aim to develop a validated device-scale CFD model that can predict quantitatively both hydrodynamics and CO 2 capture efficiency for an amine-based solvent absorber column with random Pall ring packing. A Eulerian porous-media approach and a two-fluid model were employed, in which the momentum and mass transfer equations were closed by literature-based empirical closure models. We proposed a hierarchical approach for calibrating the parameters in the closure models to make them accurate for the packed column. Specifically, a parameter for momentum transfer in the closure was first calibrated based on data from a single experiment. Withmore » this calibrated parameter, a parameter in the closure for mass transfer was next calibrated under a single operating condition. Last, the closure of the wetting area was calibrated for each gas velocity at three different liquid flow rates. For each calibration, cross validations were pursued using the experimental data under operating conditions different from those used for calibrations. This hierarchical approach can be generally applied to develop validated device-scale CFD models for different absorption columns.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Wenxiao; Galvin, Janine; Huang, Wei Ling
In this paper we aim to develop a validated device-scale CFD model that can predict quantitatively both hydrodynamics and CO 2 capture efficiency for an amine-based solvent absorber column with random Pall ring packing. A Eulerian porous-media approach and a two-fluid model were employed, in which the momentum and mass transfer equations were closed by literature-based empirical closure models. We proposed a hierarchical approach for calibrating the parameters in the closure models to make them accurate for the packed column. Specifically, a parameter for momentum transfer in the closure was first calibrated based on data from a single experiment. Withmore » this calibrated parameter, a parameter in the closure for mass transfer was next calibrated under a single operating condition. Last, the closure of the wetting area was calibrated for each gas velocity at three different liquid flow rates. For each calibration, cross validations were pursued using the experimental data under operating conditions different from those used for calibrations. This hierarchical approach can be generally applied to develop validated device-scale CFD models for different absorption columns.« less
NASA Astrophysics Data System (ADS)
Hosenfeld, Fabian; Horst, Fabian; Iñíguez, Benjamín; Lime, François; Kloes, Alexander
2017-11-01
Source-to-drain (SD) tunneling decreases the device performance in MOSFETs falling below the 10 nm channel length. Modeling quantum mechanical effects including SD tunneling has gained more importance specially for compact model developers. The non-equilibrium Green's function (NEGF) has become a state-of-the-art method for nano-scaled device simulation in the past years. In the sense of a multi-scale simulation approach it is necessary to bridge the gap between compact models with their fast and efficient calculation of the device current, and numerical device models which consider quantum effects of nano-scaled devices. In this work, an NEGF based analytical model for nano-scaled double-gate (DG) MOSFETs is introduced. The model consists of a closed-form potential solution of a classical compact model and a 1D NEGF formalism for calculating the device current, taking into account quantum mechanical effects. The potential calculation omits the iterative coupling and allows the straightforward current calculation. The model is based on a ballistic NEGF approach whereby backscattering effects are considered as second order effect in a closed-form. The accuracy and scalability of the non-iterative DG MOSFET model is inspected in comparison with numerical NanoMOS TCAD data for various channel lengths. With the help of this model investigations on short-channel and temperature effects are performed.
Predictive Models for Semiconductor Device Design and Processing
NASA Technical Reports Server (NTRS)
Meyyappan, Meyya; Arnold, James O. (Technical Monitor)
1998-01-01
The device feature size continues to be on a downward trend with a simultaneous upward trend in wafer size to 300 mm. Predictive models are needed more than ever before for this reason. At NASA Ames, a Device and Process Modeling effort has been initiated recently with a view to address these issues. Our activities cover sub-micron device physics, process and equipment modeling, computational chemistry and material science. This talk would outline these efforts and emphasize the interaction among various components. The device physics component is largely based on integrating quantum effects into device simulators. We have two parallel efforts, one based on a quantum mechanics approach and the second, a semiclassical hydrodynamics approach with quantum correction terms. Under the first approach, three different quantum simulators are being developed and compared: a nonequlibrium Green's function (NEGF) approach, Wigner function approach, and a density matrix approach. In this talk, results using various codes will be presented. Our process modeling work focuses primarily on epitaxy and etching using first-principles models coupling reactor level and wafer level features. For the latter, we are using a novel approach based on Level Set theory. Sample results from this effort will also be presented.
Corredor, Iván; Bernardos, Ana M; Iglesias, Josué; Casar, José R
2012-01-01
Advances in electronics nowadays facilitate the design of smart spaces based on physical mash-ups of sensor and actuator devices. At the same time, software paradigms such as Internet of Things (IoT) and Web of Things (WoT) are motivating the creation of technology to support the development and deployment of web-enabled embedded sensor and actuator devices with two major objectives: (i) to integrate sensing and actuating functionalities into everyday objects, and (ii) to easily allow a diversity of devices to plug into the Internet. Currently, developers who are applying this Internet-oriented approach need to have solid understanding about specific platforms and web technologies. In order to alleviate this development process, this research proposes a Resource-Oriented and Ontology-Driven Development (ROOD) methodology based on the Model Driven Architecture (MDA). This methodology aims at enabling the development of smart spaces through a set of modeling tools and semantic technologies that support the definition of the smart space and the automatic generation of code at hardware level. ROOD feasibility is demonstrated by building an adaptive health monitoring service for a Smart Gym.
Driscoll, Mark; Mac-Thiong, Jean-Marc; Labelle, Hubert; Parent, Stefan
2013-01-01
A large spectrum of medical devices exists; it aims to correct deformities associated with spinal disorders. The development of a detailed volumetric finite element model of the osteoligamentous spine would serve as a valuable tool to assess, compare, and optimize spinal devices. Thus the purpose of the study was to develop and initiate validation of a detailed osteoligamentous finite element model of the spine with simulated correction from spinal instrumentation. A finite element of the spine from T1 to L5 was developed using properties and geometry from the published literature and patient data. Spinal instrumentation, consisting of segmental translation of a scoliotic spine, was emulated. Postoperative patient and relevant published data of intervertebral disc stress, screw/vertebra pullout forces, and spinal profiles was used to evaluate the models validity. Intervertebral disc and vertebral reaction stresses respected published in vivo, ex vivo, and in silico values. Screw/vertebra reaction forces agreed with accepted pullout threshold values. Cobb angle measurements of spinal deformity following simulated surgical instrumentation corroborated with patient data. This computational biomechanical analysis validated a detailed volumetric spine model. Future studies seek to exploit the model to explore the performance of corrective spinal devices. PMID:23991426
Simulation of Ultra-Small MOSFETs Using a 2-D Quantum-Corrected Drift-Diffusion Model
NASA Technical Reports Server (NTRS)
Biegel, Bryan A.; Rafferty, Conor S.; Yu, Zhiping; Dutton, Robert W.; Ancona, Mario G.; Saini, Subhash (Technical Monitor)
1998-01-01
We describe an electronic transport model and an implementation approach that respond to the challenges of device modeling for gigascale integration. We use the density-gradient (DG) transport model, which adds tunneling and quantum smoothing of carrier density profiles to the drift-diffusion model. We present the current implementation of the DG model in PROPHET, a partial differential equation solver developed by Lucent Technologies. This implementation approach permits rapid development and enhancement of models, as well as run-time modifications and model switching. We show that even in typical bulk transport devices such as P-N diodes and BJTs, DG quantum effects can significantly modify the I-V characteristics. Quantum effects are shown to be even more significant in small, surface transport devices, such as sub-0.1 micron MOSFETs. In thin-oxide MOS capacitors, we find that quantum effects may reduce gate capacitance by 25% or more. The inclusion of quantum effects in simulations dramatically improves the match between C-V simulations and measurements. Significant quantum corrections also occur in the I-V characteristics of short-channel MOSFETs due to the gate capacitance correction.
Micro-Columnated Loop Heat Pipe: The Future of Electronic Substrates
NASA Astrophysics Data System (ADS)
Dhillon, Navdeep Singh
The modern world is run by semiconductor-based electronic systems. Due to continuous improvements in semiconductor device fabrication, there is a clear trend in the market towards the development of electronic devices and components that not only deliver enhanced computing power, but are also more compact. Thermal management has emerged as the primary challenge in this scenario where heat flux dissipation of electronic chips is increasing exponentially, but conventional cooling solutions such as conduction and convection are no longer feasible. To keep device junction temperatures within the safe operating limit, there is an urgent requirement for ultra-high-conductivity thermal substrates that not only absorb and transport large heat fluxes, but can also provide localized cooling to thermal hotspots. This dissertation describes the design, modeling, and fabrication of a phase change-based, planar, ultra-thin, passive thermal transport system that is inspired by the concept of loop heat pipes and capillary pumped loops. Fabricated on silicon and Pyrex wafers using microfabrication techniques, the micro-columnated loop heat pipe (muCLHP) can be integrated directly with densely packed or multiply-stacked electronic substrates, to provide localized high-heat-flux thermal management. The muCLHP employs a dual-scale coherent porous silicon(CPS)-based micro-columnated wicking structure, where the primary CPS wick provides large capillary forces for fluid transport, while a secondary surface-wick maximizes the rate of thin-film evaporation. To overcome the wick thickness limitation encountered in conventional loop heat pipes, strategies based on MEMS surface micromachining techniques were developed to reduce parasitic heat flow from the evaporator to the compensation chamber of the device. Finite element analysis was used to confirm this reduction in a planar evaporator design, thus enabling the generation of a large motive temperature head for continuous device operation. To predict the overall heat carrying capacity of the muCLHP in the capillary pumping limit, an analytical model was developed to account for a steady state pressure balance in the device flow loop. Based on this model, a design optimization study, employing monotonicity analysis and numerical optimization techniques, was undertaken. It was found that an optimized muCLHP device can absorb heat fluxes as large as 1293 W/cm2 when water is used as a working fluid. A finite volume method-based numerical model was also developed to compute the rates of thin-film evaporation from the patterned surface of the secondary wick. The numerical results indicated that, by properly optimizing the dual-scale wick topology, allowable evaporative heat fluxes can be made commensurate with the heat flux performance predicted by the capillary pumping limit. The latter part of the dissertation deals with the fabrication, packaging, and experimental testing of several in-plane-wicking micro loop heat pipe (muLHP) prototypes. These devices were fabricated on silicon and Pyrex substrates and closely resemble the muCLHP design philosophy, with the exception that the CPS wick is substituted with an easier to fabricate in-plane wick. A novel thermal-flux method was developed for the degassing and fluid charging of the muLHP prototypes. Experiments were conducted to study the process of evaporation and dynamics of the liquid and vapor phases in the device flow loop. Using these results, the overall device and individual component topologies critical to the operation of the two-phase flow loop were identified. A continuous two-phase device flow loop was demonstrated for applied evaporator heat fluxes as high as 41 W/cm2. The performance of these devices, currently found to be limited by the motive temperature head requirement, can be significantly improved by implementing the parasitic heat flow-reduction strategies developed in this work. The 3-D thin-film evaporation model, when integrated into the overall device modeling framework, will enable a design optimization of the micro-columnated wick for further device performance enhancements.
Krishnan, Shankar
2013-01-01
The worldwide need for rapid expansion and diversification of medical devices and the corresponding requirements in industry pose arduous challenges for educators to train undergraduate biomedical engineering (BME) students. Preparing BME students for working in the research and development (R&D) in medical device industry is not easily accomplished by adopting traditional pedagogical methods. Even with the inclusion of the design and development elements in capstone projects, medical device industry may be still experience a gap in fulfilling their needs in R&D. This paper proposes a new model based on interdisciplinary project-based learning (IDPBL) to address the requirements of building the necessary skill sets in academia for carrying out R&D in medical device industry. The proposed model incorporates IDPBL modules distributed in a stepwise fashion through the four years of a typical BME program. The proposed model involves buy-in and collaboration from faculty as well as students. The implementation of the proposed design in an undergraduate BME program is still in process. However, a variant of the proposed IDPBL method has been attempted at a limited scale at the postgraduate level and has shown some success. Extrapolating the previous results, the adoption of the IDPBL to BME training seems to suggest promising outcomes. Despite numerous implementation challenges, with continued efforts, the proposed IDPBL will be valuable n academia for skill sets building for medical device R&D.
Research status of wave energy conversion (WEC) device of raft structure
NASA Astrophysics Data System (ADS)
Dong, Jianguo; Gao, Jingwei; Tao, Liang; Zheng, Peng
2017-10-01
This paper has briefly described the concept of wave energy generation and six typical conversion devices. As for raft structure, detailed analysis is provided from its development process to typical devices. Taking the design process and working principle of Plamis as an example, the general principle of raft structure is briefly described. After that, a variety of raft structure models are introduced. Finally, the advantages and disadvantages, and development trend of raft structure are pointed out.
NASA Astrophysics Data System (ADS)
Li, Yang; Yao, Zhao; Fu, Xiao-Qian; Li, Zhi-Ming; Shan, Fu-Kai; Wang, Cong
2017-05-01
Recently, integrated passive devices have become increasingly popular; inductor realization, in particular, offers interesting high performance for RF modules and systems. In this paper, a development of differential inductor fabricated by integrated passive devices technology using a double air-bridge structure is presented. A study of the model development of the differential inductor is first demonstrated. In this model section, a segment box analysis method is applied to provide a clear presentation of the differential inductor. Compared with other work that only shows a brief description of the process, the integrated passive devices process used to fabricate the inductor in this study is elaborated on. Finally, a characterization of differential inductors with different physical layout parameters is illustrated based on inductance and quality factors, which provides a valuable reference for realizing high performance. The proposed work provides a good solution for the design, fabrication and practical application of RF modules and systems.
Flexible piezoelectric energy harvesting from jaw movements
NASA Astrophysics Data System (ADS)
Delnavaz, Aidin; Voix, Jérémie
2014-10-01
Piezoelectric fiber composites (PFC) represent an interesting subset of smart materials that can function as sensor, actuator and energy converter. Despite their excellent potential for energy harvesting, very few PFC mechanisms have been developed to capture the human body power and convert it into an electric current to power wearable electronic devices. This paper provides a proof of concept for a head-mounted device with a PFC chin strap capable of harvesting energy from jaw movements. An electromechanical model based on the bond graph method is developed to predict the power output of the energy harvesting system. The optimum resistance value of the load and the best stretch ratio in the strap are also determined. A prototype was developed and tested and its performances were compared to the analytical model predictions. The proposed piezoelectric strap mechanism can be added to all types of head-mounted devices to power small-scale electronic devices such as hearing aids, electronic hearing protectors and communication earpieces.
A Simulation Model for Procedure Inference from a Mental Model for a Simple Device.
1984-05-25
can flow to, and the indicator lights show where the power is present. According to these results, the critical information is the system topology...show the flow of power into the energon storage system. Maintenance of a collapsed energon ring requires a supply of vector bosons which is...model; in some tasks there is clearly no effect. The device model in that study was developed intuitivIy. But upon examining the model in light of the
Green IT Model for IT Departments in Gulf Cooperation Council (GCC) Organisations
ERIC Educational Resources Information Center
Albahlal, Abdulaziz
2016-01-01
Environmental problems such as climate change, pollution, non-sustainable energy, resource depletion, and recycling Information Technology (IT) devices considered the biggest glitches which are facing developed and developing countries. IT devices have become a critical issue due to the great amount of environmental damage caused by IT companies…
Interpretation and mapping of geological features using mobile devices for 3D outcrop modelling
NASA Astrophysics Data System (ADS)
Buckley, Simon J.; Kehl, Christian; Mullins, James R.; Howell, John A.
2016-04-01
Advances in 3D digital geometric characterisation have resulted in widespread adoption in recent years, with photorealistic models utilised for interpretation, quantitative and qualitative analysis, as well as education, in an increasingly diverse range of geoscience applications. Topographic models created using lidar and photogrammetry, optionally combined with imagery from sensors such as hyperspectral and thermal cameras, are now becoming commonplace in geoscientific research. Mobile devices (tablets and smartphones) are maturing rapidly to become powerful field computers capable of displaying and interpreting 3D models directly in the field. With increasingly high-quality digital image capture, combined with on-board sensor pose estimation, mobile devices are, in addition, a source of primary data, which can be employed to enhance existing geological models. Adding supplementary image textures and 2D annotations to photorealistic models is therefore a desirable next step to complement conventional field geoscience. This contribution reports on research into field-based interpretation and conceptual sketching on images and photorealistic models on mobile devices, motivated by the desire to utilise digital outcrop models to generate high quality training images (TIs) for multipoint statistics (MPS) property modelling. Representative training images define sedimentological concepts and spatial relationships between elements in the system, which are subsequently modelled using artificial learning to populate geocellular models. Photorealistic outcrop models are underused sources of quantitative and qualitative information for generating TIs, explored further in this research by linking field and office workflows through the mobile device. Existing textured models are loaded to the mobile device, allowing rendering in a 3D environment. Because interpretation in 2D is more familiar and comfortable for users, the developed application allows new images to be captured with the device's digital camera, and an interface is available for annotating (interpreting) the image using lines and polygons. Image-to-geometry registration is then performed using a developed algorithm, initialised using the coarse pose from the on-board orientation and positioning sensors. The annotations made on the captured images are then available in the 3D model coordinate system for overlay and export. This workflow allows geologists to make interpretations and conceptual models in the field, which can then be linked to and refined in office workflows for later MPS property modelling.
A Calibration Method for Nanowire Biosensors to Suppress Device-to-device Variation
Ishikawa, Fumiaki N.; Curreli, Marco; Chang, Hsiao-Kang; Chen, Po-Chiang; Zhang, Rui; Cote, Richard J.; Thompson, Mark E.; Zhou, Chongwu
2009-01-01
Nanowire/nanotube biosensors have stimulated significant interest; however the inevitable device-to-device variation in the biosensor performance remains a great challenge. We have developed an analytical method to calibrate nanowire biosensor responses that can suppress the device-to-device variation in sensing response significantly. The method is based on our discovery of a strong correlation between the biosensor gate dependence (dIds/dVg) and the absolute response (absolute change in current, ΔI). In2O3 nanowire based biosensors for streptavidin detection were used as the model system. Studying the liquid gate effect and ionic concentration dependence of strepavidin sensing indicates that electrostatic interaction is the dominant mechanism for sensing response. Based on this sensing mechanism and transistor physics, a linear correlation between the absolute sensor response (ΔI) and the gate dependence (dIds/dVg) is predicted and confirmed experimentally. Using this correlation, a calibration method was developed where the absolute response is divided by dIds/dVg for each device, and the calibrated responses from different devices behaved almost identically. Compared to the common normalization method (normalization of the conductance/resistance/current by the initial value), this calibration method was proved advantageous using a conventional transistor model. The method presented here substantially suppresses device-to-device variation, allowing the use of nanosensors in large arrays. PMID:19921812
Modelling an Institutional Mobile Learning Readiness Analyser
ERIC Educational Resources Information Center
Ireri, Bonface Ngari; Omwenga, Elijah I.
2015-01-01
Due to the affordability, ease of use and availability of mobile devices, many people in Africa and developing countries have acquired at least a mobile device. The penetration of mobile devices places many learning institution in a position to adopt mobile learning, however there are few tools for measuring mobile learning readiness for an…
Ag2S atomic switch-based `tug of war' for decision making
NASA Astrophysics Data System (ADS)
Lutz, C.; Hasegawa, T.; Chikyow, T.
2016-07-01
For a computing process such as making a decision, a software controlled chip of several transistors is necessary. Inspired by how a single cell amoeba decides its movements, the theoretical `tug of war' computing model was proposed but not yet implemented in an analogue device suitable for integrated circuits. Based on this model, we now developed a new electronic element for decision making processes, which will have no need for prior programming. The devices are based on the growth and shrinkage of Ag filaments in α-Ag2+δS gap-type atomic switches. Here we present the adapted device design and the new materials. We demonstrate the basic `tug of war' operation by IV-measurements and Scanning Electron Microscopy (SEM) observation. These devices could be the base for a CMOS-free new computer architecture.For a computing process such as making a decision, a software controlled chip of several transistors is necessary. Inspired by how a single cell amoeba decides its movements, the theoretical `tug of war' computing model was proposed but not yet implemented in an analogue device suitable for integrated circuits. Based on this model, we now developed a new electronic element for decision making processes, which will have no need for prior programming. The devices are based on the growth and shrinkage of Ag filaments in α-Ag2+δS gap-type atomic switches. Here we present the adapted device design and the new materials. We demonstrate the basic `tug of war' operation by IV-measurements and Scanning Electron Microscopy (SEM) observation. These devices could be the base for a CMOS-free new computer architecture. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00690f
NASA Technical Reports Server (NTRS)
Jagodnik, K. M.; Thompson, W. K.; Gallo, C. A.; Crentsil, L.; Funk, J. H.; Funk, N. W.; Perusek, G. P.; Sheehan, C. C.; Lewandowski, B. E.
2016-01-01
Extended spaceflight typically results in the loss of muscular strength and bone density due to exposure to microgravity. Resistive exercise countermeasures have been developed to maintain musculoskeletal health during spaceflight. The Advanced Resistive Exercise Device (ARED) is the "gold standard" of available devices; however, its footprint and volume are too large for use in space capsules employed in exploration missions. The Hybrid Ultimate Lifting Kit (HULK) device, with its smaller footprint, is a prototype exercise device for exploration missions. This work models the deadlift exercise being performed on the HULK device using biomechanical simulation, with the long-term goal to improve and optimize astronauts' exercise prescriptions, to maximize the benefit of exercise while minimizing time and effort invested.
Learning Based Bidding Strategy for HVAC Systems in Double Auction Retail Energy Markets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yannan; Somani, Abhishek; Carroll, Thomas E.
In this paper, a bidding strategy is proposed using reinforcement learning for HVAC systems in a double auction market. The bidding strategy does not require a specific model-based representation of behavior, i.e., a functional form to translate indoor house temperatures into bid prices. The results from reinforcement learning based approach are compared with the HVAC bidding approach used in the AEP gridSMART® smart grid demonstration project and it is shown that the model-free (learning based) approach tracks well the results from the model-based behavior. Successful use of model-free approaches to represent device-level economic behavior may help develop similar approaches tomore » represent behavior of more complex devices or groups of diverse devices, such as in a building. Distributed control requires an understanding of decision making processes of intelligent agents so that appropriate mechanisms may be developed to control and coordinate their responses, and model-free approaches to represent behavior will be extremely useful in that quest.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2015-06-01
WEC-Sim is a DOE-funded software tool being jointly developed by NREL and SNL. WEC-Sim computationally models wave energy converters (WEC), devices that generate electricity using movement of water systems such as oceans, rivers, etc. There is great potential for WECs to generate electricity, but as of yet, the industry has yet to establish a commercially viable concept. Modeling, design, and simulations tools are essential to the successful development of WECs. Commercial WEC modeling software tools can't be modified by the user. In contrast, WEC-Sim is a free, open-source, and flexible enough to be modified to meet the rapidly evolving needsmore » of the WEC industry. By modeling the power generation performance and dynamic loads of WEC designs, WEC-Sim can help support the development of new WEC devices by optimizing designs for cost of energy and competitiveness. By being easily accessible, WEC-Sim promises to help level the playing field in the WEC industry. Importantly, WEC-Sim is also excellent at its job! In 2014, WEC-Sim was used in conjunction with NREL’s FAST modeling software to win a hydrodynamic modeling competition. WEC-Sim and FAST performed very well at predicting the motion of a test device in comparison to other modeling tools. The most recent version of WEC-Sim (v1.1) was released in April 2015.« less
Empirically based device modeling of bulk heterojunction organic photovoltaics
NASA Astrophysics Data System (ADS)
Pierre, Adrien; Lu, Shaofeng; Howard, Ian A.; Facchetti, Antonio; Arias, Ana Claudia
2013-04-01
We develop an empirically based optoelectronic model to accurately simulate the photocurrent in organic photovoltaic (OPV) devices with novel materials including bulk heterojunction OPV devices based on a new low band gap dithienothiophene-DPP donor polymer, P(TBT-DPP), blended with PC70BM at various donor-acceptor weight ratios and solvent compositions. Our devices exhibit power conversion efficiencies ranging from 1.8% to 4.7% at AM 1.5G. Electron and hole mobilities are determined using space-charge limited current measurements. Bimolecular recombination coefficients are both analytically calculated using slowest-carrier limited Langevin recombination and measured using an electro-optical pump-probe technique. Exciton quenching efficiencies in the donor and acceptor domains are determined from photoluminescence spectroscopy. In addition, dielectric and optical constants are experimentally determined. The photocurrent and its bias-dependence that we simulate using the optoelectronic model we develop, which takes into account these physically measured parameters, shows less than 7% error with respect to the experimental photocurrent (when both experimentally and semi-analytically determined recombination coefficient is used). Free carrier generation and recombination rates of the photocurrent are modeled as a function of the position in the active layer at various applied biases. These results show that while free carrier generation is maximized in the center of the device, free carrier recombination is most dominant near the electrodes even in high performance devices. Such knowledge of carrier activity is essential for the optimization of the active layer by enhancing light trapping and minimizing recombination. Our simulation program is intended to be freely distributed for use in laboratories fabricating OPV devices.
NASA Astrophysics Data System (ADS)
Pollard, Thomas B
Recent advances in microbiology, computational capabilities, and microelectromechanical-system fabrication techniques permit modeling, design, and fabrication of low-cost, miniature, sensitive and selective liquid-phase sensors and lab-on-a-chip systems. Such devices are expected to replace expensive, time-consuming, and bulky laboratory-based testing equipment. Potential applications for devices include: fluid characterization for material science and industry; chemical analysis in medicine and pharmacology; study of biological processes; food analysis; chemical kinetics analysis; and environmental monitoring. When combined with liquid-phase packaging, sensors based on surface-acoustic-wave (SAW) technology are considered strong candidates. For this reason such devices are focused on in this work; emphasis placed on device modeling and packaging for liquid-phase operation. Regarding modeling, topics considered include mode excitation efficiency of transducers; mode sensitivity based on guiding structure materials/geometries; and use of new piezoelectric materials. On packaging, topics considered include package interfacing with SAW devices, and minimization of packaging effects on device performance. In this work novel numerical models are theoretically developed and implemented to study propagation and transduction characteristics of sensor designs using wave/constitutive equations, Green's functions, and boundary/finite element methods. Using developed simulation tools that consider finite-thickness of all device electrodes, transduction efficiency for SAW transducers with neighboring uniform or periodic guiding electrodes is reported for the first time. Results indicate finite electrode thickness strongly affects efficiency. Using dense electrodes, efficiency is shown to approach 92% and 100% for uniform and periodic electrode guiding, respectively; yielding improved sensor detection limits. A numerical sensitivity analysis is presented targeting viscosity using uniform-electrode and shear-horizontal mode configurations on potassium-niobate, langasite, and quartz substrates. Optimum configurations are determined yielding maximum sensitivity. Results show mode propagation-loss and sensitivity to viscosity are correlated by a factor independent of substrate material. The analysis is useful for designing devices meeting sensitivity and signal level requirements. A novel, rapid and precise microfluidic chamber alignment/bonding method was developed for SAW platforms. The package is shown to have little effect on device performance and permits simple macrofluidic interfacing. Lastly, prototypes were designed, fabricated, and tested for viscosity and biosensor applications; results show ability to detect as low as 1% glycerol in water and surface-bound DNA crosslinking.
Multi-junction Thin-film Solar Cells on Flexible Substrates for Space Power
NASA Technical Reports Server (NTRS)
Hepp, Aloysius F.; Smith, Mark; Scofield, John H.; Dickman, John E.; Lush, Gregory B.; Morel, Donald L.; Ferekides, Christos; Dhere, Neelkanth G.
2002-01-01
The ultimate objective of the thin-film program at NASA GRC is development of a 20 percent AM0 thin-film device technology with high power/weight ratio. Several approaches are outlined to improve overall device efficiency and power/weight ratio. One approach involves the use of very lightweight flexible substrates such as polyimides (i.e., Kapton(Trademark)) or metal foil. Also, a compound semiconductor tandem device structure that can meet this objective is proposed and simulated using Analysis of Microelectronic and Photonic Structures (AMPS). AMPS modeling of current devices in tandem format indicate that AM0 efficiencies near 20 percent can be achieved. And with improvements in materials, efficiencies approaching 25 percent are achievable. Several important technical issues need to be resolved to realize these complex devices: development of a wide bandgap material with good electronic properties, development of transparent contacts, and targeting a 2-terminal device structure (with more complicated processing and tunnel junction) or 4-terminal device. Recent progress in the NASA GRC program is outlined.
Measurement and Modeling of Blocking Contacts for Cadmium Telluride Gamma Ray Detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beck, Patrick R.
2010-01-07
Gamma ray detectors are important in national security applications, medicine, and astronomy. Semiconductor materials with high density and atomic number, such as Cadmium Telluride (CdTe), offer a small device footprint, but their performance is limited by noise at room temperature; however, improved device design can decrease detector noise by reducing leakage current. This thesis characterizes and models two unique Schottky devices: one with an argon ion sputter etch before Schottky contact deposition and one without. Analysis of current versus voltage characteristics shows that thermionic emission alone does not describe these devices. This analysis points to reverse bias generation current ormore » leakage through an inhomogeneous barrier. Modeling the devices in reverse bias with thermionic field emission and a leaky Schottky barrier yields good agreement with measurements. Also numerical modeling with a finite-element physics-based simulator suggests that reverse bias current is a combination of thermionic emission and generation. This thesis proposes further experiments to determine the correct model for reverse bias conduction. Understanding conduction mechanisms in these devices will help develop more reproducible contacts, reduce leakage current, and ultimately improve detector performance.« less
Schertzer, Eliran; Riemer, Raziel
2015-03-20
Harvesting energy from human motion is an innovative alternative to using batteries as a source of electrical power for portable devices. Yet there are no guidelines as to whether energy harvesting should be preferred over batteries. This paper introduces an approach to determine which source of energy should be preferred. The proposed approach compares the metabolic power while harvesting energy and while using batteries (or any other power supply, e.g., solar panels), which provide equal amount of energy. Energy harvesting is preferred over batteries if the metabolic power required to harvest the energy is lower than that required to carry the batteries. Metabolic power can be experimentally measured. However, for design purposes, it is essential to assess differences in metabolic power as a function of the device parameters. To this end, based on the proposed approach, we develop a mathematical model that considers the following parameters: the device's mass, its location on the human body, the electrical power output, cost of harvesting (COH), walking time, and the specific energy of the battery. We apply the model in two ways. First, we conduct case studies to examine current ankle, knee, and back energy harvesting devices, and assess the walking times that would make these devices preferable over batteries. Second, we conduct a design scenarios analysis, which examines future device developments. The case studies reveal that to be preferred over batteries, current harvesting devices located on the ankle, knee, or back would require walking for 227 hours, 98 hours, or 260 hours, respectively. This would replace batteries weighing 6.81 kg (ankle), 5.88 kg (knee), or 2.6 kg (back). The design scenarios analysis suggests that for harvesting devices to be beneficial with less than 25 walking hours, future development should focus on light harvesting devices (less than 0.2 kg) with low COH (equal or lower than 0). Finally, a comparison with portable commercial solar panels reveals that under ideal sun exposure conditions, solar panels outperform the current harvesting devices. Our model offers a tool for assessing the performance of energy harvesting devices.
Phillips, Reid H; Jain, Rahil; Browning, Yoni; Shah, Rachana; Kauffman, Peter; Dinh, Doan; Lutz, Barry R
2016-08-16
Fluid control remains a challenge in development of portable lab-on-a-chip devices. Here, we show that microfluidic networks driven by single-frequency audio tones create resonant oscillating flow that is predicted by equivalent electrical circuit models. We fabricated microfluidic devices with fluidic resistors (R), inductors (L), and capacitors (C) to create RLC networks with band-pass resonance in the audible frequency range available on portable audio devices. Microfluidic devices were fabricated from laser-cut adhesive plastic, and a "buzzer" was glued to a diaphragm (capacitor) to integrate the actuator on the device. The AC flowrate magnitude was measured by imaging oscillation of bead tracers to allow direct comparison to the RLC circuit model across the frequency range. We present a systematic build-up from single-channel systems to multi-channel (3-channel) networks, and show that RLC circuit models predict complex frequency-dependent interactions within multi-channel networks. Finally, we show that adding flow rectifying valves to the network creates pumps that can be driven by amplified and non-amplified audio tones from common audio devices (iPod and iPhone). This work shows that RLC circuit models predict resonant flow responses in multi-channel fluidic networks as a step towards microfluidic devices controlled by audio tones.
NASA Astrophysics Data System (ADS)
Makhijani, Vinod B.; Przekwas, Andrzej J.
2002-10-01
This report presents results of a DARPA/MTO Composite CAD Project aimed to develop a comprehensive microsystem CAD environment, CFD-ACE+ Multiphysics, for bio and microfluidic devices and complete microsystems. The project began in July 1998, and was a three-year team effort between CFD Research Corporation, California Institute of Technology (CalTech), University of California, Berkeley (UCB), and Tanner Research, with Mr. Don Verlee from Abbott Labs participating as a consultant on the project. The overall objective of this project was to develop, validate and demonstrate several applications of a user-configurable VLSI-type mixed-dimensionality software tool for design of biomicrofluidics devices and integrated systems. The developed tool would provide high fidelity 3-D multiphysics modeling capability, l-D fluidic circuits modeling, and SPICE interface for system level simulations, and mixed-dimensionality design. It would combine tools for layouts and process fabrication, geometric modeling, and automated grid generation, and interfaces to EDA tools (e.g. Cadence) and MCAD tools (e.g. ProE).
NASA Astrophysics Data System (ADS)
Juromskiy, V. M.
2016-09-01
It is developed a mathematical model for an electric drive of high-speed separation device in terms of the modeling dynamic systems Simulink, MATLAB. The model is focused on the study of the automatic control systems of the power factor (Cosφ) of an actuator by compensating the reactive component of the total power by switching a capacitor bank in series with the actuator. The model is based on the methodology of the structural modeling of dynamic processes.
SF-FDTD analysis of a predictive physical model for parallel aligned liquid crystal devices
NASA Astrophysics Data System (ADS)
Márquez, Andrés.; Francés, Jorge; Martínez, Francisco J.; Gallego, Sergi; Alvarez, Mariela L.; Calzado, Eva M.; Pascual, Inmaculada; Beléndez, Augusto
2017-08-01
Recently we demonstrated a novel and simplified model enabling to calculate the voltage dependent retardance provided by parallel aligned liquid crystal devices (PA-LCoS) for a very wide range of incidence angles and any wavelength in the visible. To our knowledge it represents the most simplified approach still showing predictive capability. Deeper insight into the physics behind the simplified model is necessary to understand if the parameters in the model are physically meaningful. Since the PA-LCoS is a black-box where we do not have information about the physical parameters of the device, we cannot perform this kind of analysis using the experimental retardance measurements. In this work we develop realistic simulations for the non-linear tilt of the liquid crystal director across the thickness of the liquid crystal layer in the PA devices. We consider these profiles to have a sine-like shape, which is a good approximation for typical ranges of applied voltage in commercial PA-LCoS microdisplays. For these simulations we develop a rigorous method based on the split-field finite difference time domain (SF-FDTD) technique which provides realistic retardance values. These values are used as the experimental measurements to which the simplified model is fitted. From this analysis we learn that the simplified model is very robust, providing unambiguous solutions when fitting its parameters. We also learn that two of the parameters in the model are physically meaningful, proving a useful reverse-engineering approach, with predictive capability, to probe into internal characteristics of the PA-LCoS device.
Finite Element Modeling of Micromachined MEMS Photon Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Datskos, P.G.; Evans, B.M.; Schonberger, D.
1999-09-20
The technology of microelectronics that has evolved over the past half century is one of great power and sophistication and can now be extended to many applications (MEMS and MOEMS) other than electronics. An interesting application of MEMS quantum devices is the detection of electromagnetic radiation. The operation principle of MEMS quantum devices is based on the photoinduced stress in semiconductors, and the photon detection results from the measurement of the photoinduced bending. These devices can be described as micromechanical photon detectors. In this work, we have developed a technique for simulating electronic stresses using finite element analysis. We havemore » used our technique to model the response of micromechanical photon devices to external stimuli and compared these results with experimental data. Material properties, geometry, and bimaterial design play an important role in the performance of micromechanical photon detectors. We have modeled these effects using finite element analysis and included the effects of bimaterial thickness coating, effective length of the device, width, and thickness.« less
Finite element modeling of micromachined MEMS photon devices
NASA Astrophysics Data System (ADS)
Evans, Boyd M., III; Schonberger, D. W.; Datskos, Panos G.
1999-09-01
The technology of microelectronics that has evolved over the past half century is one of great power and sophistication and can now be extended to many applications (MEMS and MOEMS) other than electronics. An interesting application of MEMS quantum devices is the detection of electromagnetic radiation. The operation principle of MEMS quantum devices is based on the photoinduced stress in semiconductors, and the photon detection results from the measurement of the photoinduced bending. These devices can be described as micromechanical photon detectors. In this work, we have developed a technique for simulating electronic stresses using finite element analysis. We have used our technique to model the response of micromechanical photon devices to external stimuli and compared these results with experimental data. Material properties, geometry, and bimaterial design play an important role in the performance of micromechanical photon detectors. We have modeled these effects using finite element analysis and included the effects of bimaterial thickness coating, effective length of the device, width, and thickness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Kandler A.
The goal of this project is to create thermal solutions and models for community energy storage devices using both purpose-designed batteries and EV or PHEV batteries. Modeling will be employed to identify major factors of a device's lifetime and performance. Simultaneously, several devices will be characterized to determine their electrical and thermal performance under controlled conditions. After the factors are identified, a variety of thermal design approaches will be evaluated to improve the performance of energy storage devices. Upon completion of this project, recommendations for community energy storage device enclosures, thermal management systems, and/or battery sourcing will be made. NREL'smore » interest is in both new and aged batteries.« less
Finite Element Study of a Lumbar Intervertebral Disc Nucleus Replacement Device.
Coogan, Jessica S; Francis, W Loren; Eliason, Travis D; Bredbenner, Todd L; Stemper, Brian D; Yoganandan, Narayan; Pintar, Frank A; Nicolella, Daniel P
2016-01-01
Nucleus replacement technologies are a minimally invasive alternative to spinal fusion and total disc replacement that have the potential to reduce pain and restore motion for patients with degenerative disc disease. Finite element modeling can be used to determine the biomechanics associated with nucleus replacement technologies. The current study focuses on a new nucleus replacement device designed as a conforming silicone implant with an internal void. A validated finite element model of the human lumbar L3-L4 motion segment was developed and used to investigate the influence of the nucleus replacement device on spine biomechanics. In addition, the effect of device design changes on biomechanics was determined. A 3D, L3-L4 finite element model was constructed from medical imaging data. Models were created with the normal intact nucleus, the nucleus replacement device, and a solid silicone implant. Probabilistic analysis was performed on the normal model to provide quantitative validation metrics. Sensitivity analysis was performed on the silicone Shore A durometer of the device. Models were loaded under axial compression followed by flexion/extension, lateral bending, or axial rotation. Compressive displacement, endplate stresses, reaction moment, and annulus stresses were determined and compared between the different models. The novel nucleus replacement device resulted in similar compressive displacement, endplate stress, and annulus stress and slightly higher reaction moment compared with the normal nucleus. The solid implant resulted in decreased displacement, increased endplate stress, decreased annulus stress, and decreased reaction moment compared with the novel device. With increasing silicone durometer, compressive displacement decreased, endplate stress increased, reaction moment increased, and annulus stress decreased. Finite element analysis was used to show that the novel nucleus replacement device results in similar biomechanics compared with the normal intact nucleus.
Finite Element Study of a Lumbar Intervertebral Disc Nucleus Replacement Device
Coogan, Jessica S.; Francis, W. Loren; Eliason, Travis D.; Bredbenner, Todd L.; Stemper, Brian D.; Yoganandan, Narayan; Pintar, Frank A.; Nicolella, Daniel P.
2016-01-01
Nucleus replacement technologies are a minimally invasive alternative to spinal fusion and total disc replacement that have the potential to reduce pain and restore motion for patients with degenerative disc disease. Finite element modeling can be used to determine the biomechanics associated with nucleus replacement technologies. The current study focuses on a new nucleus replacement device designed as a conforming silicone implant with an internal void. A validated finite element model of the human lumbar L3–L4 motion segment was developed and used to investigate the influence of the nucleus replacement device on spine biomechanics. In addition, the effect of device design changes on biomechanics was determined. A 3D, L3–L4 finite element model was constructed from medical imaging data. Models were created with the normal intact nucleus, the nucleus replacement device, and a solid silicone implant. Probabilistic analysis was performed on the normal model to provide quantitative validation metrics. Sensitivity analysis was performed on the silicone Shore A durometer of the device. Models were loaded under axial compression followed by flexion/extension, lateral bending, or axial rotation. Compressive displacement, endplate stresses, reaction moment, and annulus stresses were determined and compared between the different models. The novel nucleus replacement device resulted in similar compressive displacement, endplate stress, and annulus stress and slightly higher reaction moment compared with the normal nucleus. The solid implant resulted in decreased displacement, increased endplate stress, decreased annulus stress, and decreased reaction moment compared with the novel device. With increasing silicone durometer, compressive displacement decreased, endplate stress increased, reaction moment increased, and annulus stress decreased. Finite element analysis was used to show that the novel nucleus replacement device results in similar biomechanics compared with the normal intact nucleus. PMID:27990418
Non-Invasive Tension Measurement Devices for Parachute Cordage
NASA Technical Reports Server (NTRS)
Litteken, Douglas A.; Daum, Jared S.
2016-01-01
The need for lightweight and non-intrusive tension measurements has arisen alongside the development of high-fidelity computer models of textile and fluid dynamics. In order to validate these computer models, data must be gathered in the operational environment without altering the design, construction, or performance of the test article. Current measurement device designs rely on severing a cord and breaking the load path to introduce a load cell. These load cells are very reliable, but introduce an area of high stiffness in the load path, directly affecting the structural response, adding excessive weight, and possibly altering the dynamics of the parachute during a test. To capture the required data for analysis validation without affecting the response of the system, non-invasive measurement devices have been developed and tested by NASA. These tension measurement devices offer minimal impact to the mass, form, fit, and function of the test article, while providing reliable, axial tension measurements for parachute cordage.
Tribology of flexible and sliding spinal implants: Development of experimental and numerical models.
Le Cann, Sophie; Chaves-Jacob, Julien; Rossi, Jean-Marie; Linares, Jean-Marc; Chabrand, Patrick
2018-01-01
New fusionless devices are being developed to get over the limits of actual spinal surgical treatment, based on arthrodesis. However, due to their recentness, no standards exist to test and validate those devices, especially concerning the wear. A new tribological first approach to the definition of an in vitro wear protocol to study wear of flexible and sliding spinal devices is presented in this article, and was applied to a new concept. A simplified synthetic spine portion (polyethylene) was developed to reproduce a simple supra-physiological spinal flexion (10° between two vertebrae). The device studied with this protocol was tested in wet environment until 1 million cycles (Mc). We obtained an encouraging estimated wear volume of same order of magnitude compared to similar devices. An associated finite element (FE) numerical model has permitted to access contact information and study the effect of misalignment of one screw. First results could point out how to improve the design and suggest that a vertical misalignment of a screw (under or over-screwing) has more impact than a horizontal one. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 104-111, 2018. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Chaudhary, Tarun; Khanna, Gargi
2017-03-01
The purpose of this paper is to explore junctionless double gate vertical slit field effect transistor (JLDG VeSFET) with reduced short channel effects and to develop an analytical threshold voltage model for the device considering the impact of thermal variations for the very first time. The model has been derived by solving 2D Poisson's equation and the effects of variation in temperature on various electrical parameters of the device such as Rout, drain current, mobility, subthreshold slope and DIBL has been studied and described in the paper. The model provides a deep physical insight of the device behavior and is also very helpful in contributing to the design space exploration for JLDG VeSFET. The proposed model is verified with simulative analysis at different radii of the device and it has been observed that there is a good agreement between the analytical model and simulation results.
Sansinena, Marina; Santos, Maria Victoria; Chirife, Jorge; Zaritzky, Noemi
2018-05-01
Heat transfer during cooling and warming is difficult to measure in cryo-devices; mathematical modelling is an alternative method that can describe these processes. In this study, we tested the validity of one such model by assessing in-vitro development of vitrified and warmed bovine oocytes after parthenogenetic activation and culture. The viability of oocytes vitrified in four different cryo-devices was assessed. Consistent with modelling predictions, oocytes vitrified using cryo-devices with the highest modelled cooling rates had significantly (P < 0.05) better cleavage and blastocyst formation rates. We then evaluated a two-step sample removal process, in which oocytes were held in nitrogen vapour for 15 s to simulate sample identification during clinical application, before being removed completely and warmed. Oocytes exposed to this procedure showed reduced developmental potential, according to the model, owing to thermodynamic instability and devitrification at relatively low temperatures. These findings suggest that cryo-device selection and handling, including method of removal from nitrogen storage, are critical to survival of vitrified oocytes. Limitations of the study include use of parthenogenetically activated rather than fertilized ova and lack of physical measurement of recrystallization. We suggest mathematical modelling could be used to predict the effect of critical steps in cryopreservation. Copyright © 2018 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
Device considerations for development of conductance-based biosensors
Lee, Kangho; Nair, Pradeep R.; Scott, Adina; Alam, Muhammad A.; Janes, David B.
2009-01-01
Design and fabrication of electronic biosensors based on field-effect-transistor (FET) devices require understanding of interactions between semiconductor surfaces and organic biomolecules. From this perspective, we review practical considerations for electronic biosensors with emphasis on molecular passivation effects on FET device characteristics upon immobilization of organic molecules and an electrostatic model for FET-based biosensors. PMID:24753627
Zhang, Jiafeng; Zhang, Pei; Fraser, Katharine H.; Griffith, Bartley P.; Wu, Zhongjun J.
2012-01-01
With the recent advances in computer technology, computational fluid dynamics (CFD) has become an important tool to design and improve blood contacting artificial organs, and to study the device-induced blood damage. Commercial CFD software packages are readily available, and multiple CFD models are provided by CFD software developers. However, the best approach of using CFD effectively to characterize fluid flow and to predict blood damage in these medical devices remains debatable. This study aimed to compare these CFD models and provide useful information on the accuracy of each model in modeling blood flow in circulatory assist devices. The laminar and five turbulence models (Spalart-Allmaras, k-ε (k-epsilon), k-ω (k-omega), SST (Menter’s Shear Stress Transport), and Reynolds Stress) were implemented to predict blood flow in a clinically used circulatory assist device, CentriMag® centrifugal blood pump (Thoratec, MA). In parallel, a transparent replica of the CentriMag® pump was constructed and selected views of the flow fields were measured with digital particle image velocimetry (DPIV). CFD results were compared with the DPIV experimental results. Compared with the experiment, all the selected CFD models predicted the flow pattern fairly well except the area of the outlet. However, quantitatively, the laminar model results were the most deviated from the experimental data. On the other hand, k-ε RNG models and Reynolds Stress model are the most accurate. In conclusion, for the circulatory assist devices, turbulence models provide more accurate results than laminar model. Among the selected turbulence models, k-ε and Reynolds Stress Method models are recommended. PMID:23441681
Combustion Device Failures During Space Shuttle Main Engine Development
NASA Technical Reports Server (NTRS)
Goetz, Otto K.; Monk, Jan C.
2005-01-01
Major Causes: Limited Initial Materials Properties. Limited Structural Models - especially fatigue. Limited Thermal Models. Limited Aerodynamic Models. Human Errors. Limited Component Test. High Pressure. Complicated Control.
Shin, Min-Ho; Kim, Hyo-Jun; Kim, Young-Joo
2017-02-20
We proposed an optical simulation model for the quantum dot (QD) nanophosphor based on the mean free path concept to understand precisely the optical performance of optoelectronic devices. A measurement methodology was also developed to get the desired optical characteristics such as the mean free path and absorption spectra for QD nanophosphors which are to be incorporated into the simulation. The simulation results for QD-based white LED and OLED displays show good agreement with the experimental values from the fabricated devices in terms of spectral power distribution, chromaticity coordinate, CCT, and CRI. The proposed simulation model and measurement methodology can be applied easily to the design of lots of optoelectronics devices using QD nanophosphors to obtain high efficiency and the desired color characteristics.
Modelling and Control of an Annular Momentum Control Device
NASA Technical Reports Server (NTRS)
Downer, James R.; Johnson, Bruce G.
1988-01-01
The results of a modelling and control study for an advanced momentum storage device supported on magnetic bearings are documented. The control challenge posed by this device lies in its dynamics being such a strong function of flywheel rotational speed. At high rotational speed, this can lead to open loop instabilities, resulting in requirements for minimum and maximum control bandwidths and gains for the stabilizing controllers. Using recently developed analysis tools for systems described by complex coefficient differential equations, the closed properties of the controllers were analyzed and stability properties established. Various feedback controllers are investigated and discussed. Both translational and angular dynamics compensators are developed, and measures of system stability and robustness to plant and operational speed variations are presented.
Determining Training Device Requirements in Army Aviation Systems
NASA Technical Reports Server (NTRS)
Poumade, M. L.
1984-01-01
A decision making methodology which applies the systems approach to the training problem is discussed. Training is viewed as a total system instead of a collection of individual devices and unrelated techniques. The core of the methodology is the use of optimization techniques such as the transportation algorithm and multiobjective goal programming with training task and training device specific data. The role of computers, especially automated data bases and computer simulation models, in the development of training programs is also discussed. The approach can provide significant training enhancement and cost savings over the more traditional, intuitive form of training development and device requirements process. While given from an aviation perspective, the methodology is equally applicable to other training development efforts.
Morrison, Tina M.; Dreher, Maureen L.; Nagaraja, Srinidhi; Angelone, Leonardo M.; Kainz, Wolfgang
2018-01-01
The total product life cycle (TPLC) of medical devices has been defined by four stages: discovery and ideation, regulatory decision, product launch, and postmarket monitoring. Manufacturers of medical devices intended for use in the peripheral vasculature, such as stents, inferior vena cava (IVC) filters, and stent-grafts, mainly use computational modeling and simulation (CM&S) to aid device development and design optimization, supplement bench testing for regulatory decisions, and assess postmarket changes or failures. For example, computational solid mechanics and fluid dynamics enable the investigation of design limitations in the ideation stage. To supplement bench data in regulatory submissions, manufactures can evaluate the effects of anatomical characteristics and expected in vivo loading environment on device performance. Manufacturers might also harness CM&S to aid root-cause analyses that are necessary when failures occur postmarket, when the device is exposed to broad clinical use. Once identified, CM&S tools can then be used for redesign to address the failure mode and re-establish the performance profile with the appropriate models. The Center for Devices and Radiological Health (CDRH) wants to advance the use of CM&S for medical devices and supports the development of virtual physiological patients, clinical trial simulations, and personalized medicine. Thus, the purpose of this paper is to describe specific examples of how CM&S is currently used to support regulatory submissions at different phases of the TPLC and to present some of the stakeholder-led initiatives for advancing CM&S for regulatory decision-making. PMID:29479395
Morrison, Tina M; Dreher, Maureen L; Nagaraja, Srinidhi; Angelone, Leonardo M; Kainz, Wolfgang
2017-01-01
The total product life cycle (TPLC) of medical devices has been defined by four stages: discovery and ideation, regulatory decision, product launch, and postmarket monitoring. Manufacturers of medical devices intended for use in the peripheral vasculature, such as stents, inferior vena cava (IVC) filters, and stent-grafts, mainly use computational modeling and simulation (CM&S) to aid device development and design optimization, supplement bench testing for regulatory decisions, and assess postmarket changes or failures. For example, computational solid mechanics and fluid dynamics enable the investigation of design limitations in the ideation stage. To supplement bench data in regulatory submissions, manufactures can evaluate the effects of anatomical characteristics and expected in vivo loading environment on device performance. Manufacturers might also harness CM&S to aid root-cause analyses that are necessary when failures occur postmarket, when the device is exposed to broad clinical use. Once identified, CM&S tools can then be used for redesign to address the failure mode and re-establish the performance profile with the appropriate models. The Center for Devices and Radiological Health (CDRH) wants to advance the use of CM&S for medical devices and supports the development of virtual physiological patients, clinical trial simulations, and personalized medicine. Thus, the purpose of this paper is to describe specific examples of how CM&S is currently used to support regulatory submissions at different phases of the TPLC and to present some of the stakeholder-led initiatives for advancing CM&S for regulatory decision-making.
Corredor, Iván; Bernardos, Ana M.; Iglesias, Josué; Casar, José R.
2012-01-01
Advances in electronics nowadays facilitate the design of smart spaces based on physical mash-ups of sensor and actuator devices. At the same time, software paradigms such as Internet of Things (IoT) and Web of Things (WoT) are motivating the creation of technology to support the development and deployment of web-enabled embedded sensor and actuator devices with two major objectives: (i) to integrate sensing and actuating functionalities into everyday objects, and (ii) to easily allow a diversity of devices to plug into the Internet. Currently, developers who are applying this Internet-oriented approach need to have solid understanding about specific platforms and web technologies. In order to alleviate this development process, this research proposes a Resource-Oriented and Ontology-Driven Development (ROOD) methodology based on the Model Driven Architecture (MDA). This methodology aims at enabling the development of smart spaces through a set of modeling tools and semantic technologies that support the definition of the smart space and the automatic generation of code at hardware level. ROOD feasibility is demonstrated by building an adaptive health monitoring service for a Smart Gym. PMID:23012544
Proposal and Evaluation of BLE Discovery Process Based on New Features of Bluetooth 5.0.
Hernández-Solana, Ángela; Perez-Diaz-de-Cerio, David; Valdovinos, Antonio; Valenzuela, Jose Luis
2017-08-30
The device discovery process is one of the most crucial aspects in real deployments of sensor networks. Recently, several works have analyzed the topic of Bluetooth Low Energy (BLE) device discovery through analytical or simulation models limited to version 4.x. Non-connectable and non-scannable undirected advertising has been shown to be a reliable alternative for discovering a high number of devices in a relatively short time period. However, new features of Bluetooth 5.0 allow us to define a variant on the device discovery process, based on BLE scannable undirected advertising events, which results in higher discovering capacities and also lower power consumption. In order to characterize this new device discovery process, we experimentally model the real device behavior of BLE scannable undirected advertising events. Non-detection packet probability, discovery probability, and discovery latency for a varying number of devices and parameters are compared by simulations and experimental measurements. We demonstrate that our proposal outperforms previous works, diminishing the discovery time and increasing the potential user device density. A mathematical model is also developed in order to easily obtain a measure of the potential capacity in high density scenarios.
Proposal and Evaluation of BLE Discovery Process Based on New Features of Bluetooth 5.0
2017-01-01
The device discovery process is one of the most crucial aspects in real deployments of sensor networks. Recently, several works have analyzed the topic of Bluetooth Low Energy (BLE) device discovery through analytical or simulation models limited to version 4.x. Non-connectable and non-scannable undirected advertising has been shown to be a reliable alternative for discovering a high number of devices in a relatively short time period. However, new features of Bluetooth 5.0 allow us to define a variant on the device discovery process, based on BLE scannable undirected advertising events, which results in higher discovering capacities and also lower power consumption. In order to characterize this new device discovery process, we experimentally model the real device behavior of BLE scannable undirected advertising events. Non-detection packet probability, discovery probability, and discovery latency for a varying number of devices and parameters are compared by simulations and experimental measurements. We demonstrate that our proposal outperforms previous works, diminishing the discovery time and increasing the potential user device density. A mathematical model is also developed in order to easily obtain a measure of the potential capacity in high density scenarios. PMID:28867786
Brinjikji, Waleed; Ding, Yong H; Kallmes, David F; Kadirvel, Ramanathan
2016-01-01
Summary Pre-clinical studies are important in helping practitioners and device developers improve techniques and tools for endovascular treatment of intracranial aneurysms. Thus, an understanding of the major animal models used in such studies is important. The New Zealand rabbit elastase induced arterial aneurysm of the common carotid artery is one of the most commonly used models in testing the safety and efficacy of new endovascular devices. In this review we discuss 1) various techniques used to create the aneurysm, 2) complications of aneurysm creation, 3) natural history of the arterial aneurysm, 4) histopathologic and hemodynamic features of the aneurysm 5) devices tested using this model and 6) weaknesses of the model. We demonstrate how pre-clinical studies using this model are applied in treatment of intracranial aneurysms in humans. The model has a similar hemodynamic, morphological and histologic characteristics to human aneurysms and demonstrates similar healing responses to coiling as human aneurysms. Despite these strengths however, the model does have many weaknesses including the fact that the model does not emulate the complex inflammatory processes affecting growing and ruptured aneurysms. Furthermore the model’s extracranial location affects its ability to be used in preclinical safety assessments of new devices. We conclude that the rabbit elastase model has characteristics that make it a simple and effective model for preclinical studies on the endovascular treatment of intracranial aneurysms however further work is needed to develop aneurysm models that simulate the histopathologic and morphologic characteristics of growing and ruptured aneurysms. PMID:25904642
2D model of plasma current sheath propagation in a Mather type plasma focus device
NASA Astrophysics Data System (ADS)
Mohamad, Saiful Najmee; Rashid, Natashah Abdul; Halim, Mohd Mahadi; Ali, Jalil
2018-06-01
Plasma focus device is initially developed by two known researchers back in the 1960s, Mather and Filippov. The interest on the research built due to its capability to produce high energetic neutron from a fusion reaction. The relevance of the research in Plasma Focus device remain after decade is because of its competence to produce multi radiation yield and its known physics during nanosecond of plasma compression remain open for discussed. In the recent years, the direction of the plasma research is in device optimisation, where many possible configurations have been present, discuss and highlighting its performance for differences conditions. The significant difference between the electrode configuration is the profile of the dynamics inductance. In this context, this paper comparatively discusses the 1D dynamics model of the plasma current sheath (PSC) propagation axially and radially with the 2D model. The 2D model algorithm for the PSC propagation is developed using macro (Excel) by incorporating a drag force to solve the momentum exchange of the PCS with neutral gas. The discharge current profile of both model successfully calibrated to agree with each other with 2% difference at 1.83 µs after discharge but with an expense of different assumption.
NASA Astrophysics Data System (ADS)
Pan, Chengbin; Miranda, Enrique; Villena, Marco A.; Xiao, Na; Jing, Xu; Xie, Xiaoming; Wu, Tianru; Hui, Fei; Shi, Yuanyuan; Lanza, Mario
2017-06-01
Despite the enormous interest raised by graphene and related materials, recent global concern about their real usefulness in industry has raised, as there is a preoccupying lack of 2D materials based electronic devices in the market. Moreover, analytical tools capable of describing and predicting the behavior of the devices (which are necessary before facing mass production) are very scarce. In this work we synthesize a resistive random access memory (RRAM) using graphene/hexagonal-boron-nitride/graphene (G/h-BN/G) van der Waals structures, and we develop a compact model that accurately describes its functioning. The devices were fabricated using scalable methods (i.e. CVD for material growth and shadow mask for electrode patterning), and they show reproducible resistive switching (RS). The measured characteristics during the forming, set and reset processes were fitted using the model developed. The model is based on the nonlinear Landauer approach for mesoscopic conductors, in this case atomic-sized filaments formed within the 2D materials system. Besides providing excellent overall fitting results (which have been corroborated in log-log, log-linear and linear-linear plots), the model is able to explain the dispersion of the data obtained from cycle-to-cycle in terms of the particular features of the filamentary paths, mainly their confinement potential barrier height.
A model of user engagement in medical device development.
Grocott, Patricia; Weir, Heather; Ram, Mala Bridgelal
2007-01-01
The purpose of this paper is to address three topical themes: user involvement in health services research; determining the value of new medical technologies in patient care pathways, furthering knowledge related to quality in health and social care; and knowledge exchange between manufacturers, health service supply chain networks and device users. The model is being validated in a case study in progress. The latter is a "proving ground" study for a translational research company. Medical devices play a pivotal role in the management of chronic diseases, across all care settings. Failure to engage users in device development inevitably affects the quality of clinical outcomes. A model of user engagement is presented, turning unmet needs for medical devices into viable commercial propositions. A case study investigating the perceptions of individuals with Epidermolysis Bullosa (EB), their lay and professional carers into unmet needs. EB is an inherited condition affecting the skin and mucosal linings that leads to blistering and wounds. Qualitative data are being collected to generate understanding of unmet needs and wound care products. These needs are being translated into new design concepts and prototypes. Prototypes will be evaluated in an n = 1 experimental design, generating quantitative outcomes data. There are generalisations from the case study, and the model outlined. New products for managing EB wounds can logically benefit other groups. The model is transferable to other clinical problems, which can benefit from research and technological advances that are integral to clinical needs and care.
The development of neural stimulators: a review of preclinical safety and efficacy studies.
Shepherd, Robert K; Villalobos, Joel; Burns, Owen; Nayagam, David
2018-05-14
Given the rapid expansion of the field of neural stimulation and the rigorous regulatory approval requirements required before these devices can be applied clinically, it is important that there is clarity around conducting preclinical safety and efficacy studies required for the development of this technology. The present review examines basic design principles associated with the development of a safe neural stimulator and describes the suite of preclinical safety studies that need to be considered when taking a device to clinical trial. Neural stimulators are active implantable devices that provide therapeutic intervention, sensory feedback or improved motor control via electrical stimulation of neural or neuro-muscular tissue in response to trauma or disease. Because of their complexity, regulatory bodies classify these devices in the highest risk category (Class III), and they are therefore required to go through a rigorous regulatory approval process before progressing to market. The successful development of these devices is achieved through close collaboration across disciplines including engineers, scientists and a surgical/clinical team, and the adherence to clear design principles. Preclinical studies form one of several key components in the development pathway from concept to product release of neural stimulators. Importantly, these studies provide iterative feedback in order to optimise the final design of the device. Key components of any preclinical evaluation include: in vitro studies that are focussed on device reliability and include accelerated testing under highly controlled environments; in vivo studies using animal models of the disease or injury in order to assess safety and, given an appropriate animal model, the efficacy of the technology under both passive and electrically active conditions; and human cadaver and ex vivo studies designed to ensure the device's form factor conforms to human anatomy, to optimise the surgical approach and to develop any specialist surgical tooling required. The pipeline from concept to commercialisation of these devices is long and expensive; careful attention to both device design and its preclinical evaluation will have significant impact on the duration and cost associated with taking a device through to commercialisation. Carefully controlled in vitro and in vivo studies together with ex vivo and human cadaver trials are key components of a thorough preclinical evaluation of any new neural stimulator. © 2018 IOP Publishing Ltd.
Early-stage valuation of medical devices: the role of developmental uncertainty.
Girling, Alan; Young, Terry; Brown, Celia; Lilford, Richard
2010-08-01
At the concept stage, many uncertainties surround the commercial viability of a new medical device. These include the ultimate functionality of the device, the cost of producing it and whether, and at what price, it can be sold to a health-care provider (HCP). Simple assessments of value can be made by estimating such unknowns, but the levels of uncertainty may mean that their operational value for investment decisions is unclear. However, many decisions taken at the concept stage are reversible and will be reconsidered later before the product is brought to market. This flexibility can be exploited to enhance early-stage valuations. To develop a framework for valuing a new medical device at the concept stage that balances benefit to the HCP against commercial costs. This is done within a simplified stage-gated model of the development cycle for new products. The approach is intended to complement existing proposals for the evaluation of the commercial headroom available to new medical products. A model based on two decision gates can lead to lower bounds (underestimates) for product value that can serve to support a decision to develop the product. Quantifiable uncertainty that can be resolved before the device is brought to market will generally enhance early-stage valuations of the device, and this remains true even when some components of uncertainty cannot be fully described. Clinical trials and other evidence-gathering activities undertaken as part of the development process can contribute to early-stage estimates of value.
NASA Astrophysics Data System (ADS)
Kalinkina, M. E.; Kozlov, A. S.; Labkovskaia, R. I.; Pirozhnikova, O. I.; Tkalich, V. L.; Shmakov, N. A.
2018-05-01
The object of research is the element base of devices of control and automation systems, including in its composition annular elastic sensitive elements, methods of their modeling, calculation algorithms and software complexes for automation of their design processes. The article is devoted to the development of the computer-aided design system of elastic sensitive elements used in weight- and force-measuring automation devices. Based on the mathematical modeling of deformation processes in a solid, as well as the results of static and dynamic analysis, the calculation of elastic elements is given using the capabilities of modern software systems based on numerical simulation. In the course of the simulation, the model was a divided hexagonal grid of finite elements with a maximum size not exceeding 2.5 mm. The results of modal and dynamic analysis are presented in this article.
Virumbrales-Muñoz, María; Ayuso, José María; Olave, Marta; Monge, Rosa; de Miguel, Diego; Martínez-Lostao, Luis; Le Gac, Séverine; Doblare, Manuel; Ochoa, Ignacio; Fernandez, Luis J
2017-09-20
The tumour microenvironment is very complex, and essential in tumour development and drug resistance. The endothelium is critical in the tumour microenvironment: it provides nutrients and oxygen to the tumour and is essential for systemic drug delivery. Therefore, we report a simple, user-friendly microfluidic device for co-culture of a 3D breast tumour model and a 2D endothelium model for cross-talk and drug delivery studies. First, we demonstrated the endothelium was functional, whereas the tumour model exhibited in vivo features, e.g., oxygen gradients and preferential proliferation of cells with better access to nutrients and oxygen. Next, we observed the endothelium structure lost its integrity in the co-culture. Following this, we evaluated two drug formulations of TRAIL (TNF-related apoptosis inducing ligand): soluble and anchored to a LUV (large unilamellar vesicle). Both diffused through the endothelium, LUV-TRAIL being more efficient in killing tumour cells, showing no effect on the integrity of endothelium. Overall, we have developed a simple capillary force-based microfluidic device for 2D and 3D cell co-cultures. Our device allows high-throughput approaches, patterning different cell types and generating gradients without specialised equipment. We anticipate this microfluidic device will facilitate drug screening in a relevant microenvironment thanks to its simple, effective and user-friendly operation.
Drag Reduction Devices for Aircraft (Latest Citations from the Aerospace Database)
NASA Technical Reports Server (NTRS)
1996-01-01
The bibliography contains citations concerning the modeling, application, testing, and development of drag reduction devices for aircraft. Slots, flaps, fences, large-eddy breakup (LEBU) devices, vortex generators and turbines, Helmholtz resonators, and winglets are among the devices discussed. Contour shaping to ensure laminar flow, control boundary layer transition, or minimize turbulence is also covered. Applications include the wings, nacelles, fuselage, empennage, and externals of aircraft designed for high-lift, subsonic, or supersonic operation. The design, testing, and development of directional grooves, commonly called riblets, are covered in a separate bibliography.(Contains 50-250 citations and includes a subject term index and title list.)
Quantum Well and Quantum Dot Modeling for Advanced Infrared Detectors and Focal Plane Arrays
NASA Technical Reports Server (NTRS)
Ting, David; Gunapala, S. D.; Bandara, S. V.; Hill, C. J.
2006-01-01
This viewgraph presentation reviews the modeling of Quantum Well Infrared Detectors (QWIP) and Quantum Dot Infrared Detectors (QDIP) in the development of Focal Plane Arrays (FPA). The QWIP Detector being developed is a dual band detector. It is capable of running on two bands Long-Wave Infrared (LWIR) and Medium Wavelength Infrared (MWIR). The same large-format dual-band FPA technology can be applied to Quantum Dot Infrared Photodetector (QDIP) with no modification, once QDIP exceeds QWIP in single device performance. Details of the devices are reviewed.
Noise Source Identification and Dynamic Modeling of a Pneumatic Nailing Device =
NASA Astrophysics Data System (ADS)
Nili Ahmadabadi, Zahra
Exposure to hazardous noise levels emitted by pneumatic nailing devices contributes significantly to risk of hearing damage among the construction workers throughout the world. This health problem comes from the lack of appropriate technology such as low noise devices which in turn results from the lack of scientific knowledge about designing reduced noise devices. This study contributes to the design improvement of pneumatic nailing devices through identifying the noise sources and developing the simulation tool required to redesign the pneumatic nailing device. To identify the noise sources, the study uses a combination of two complementary experimental approaches. The first makes use of time-synchronized data analysis of several variables during the machine operation. This strategy allows identifying the physical processes and provides a detailed separation of the noise generation mechanisms in successive time sequences. However, since multiple noise sources radiate at the same time, this observation approach is not sufficient for noise source identification and ranking. Thus, it is completed by a selective wrapping and muffler procedure. This technique provides overall generated noise associated with each process, as well as ranking of the three major sources: (1) exhaust noise, (2) machine body vibrations, and (3) workpiece vibrations. A special investigation is conducted on this third one with two cases: a workpiece/worktable setup representative of the actual field usage of a nailing device and a workpiece/sandbox setup used in a standardized laboratory test. The study evaluates the efficiency of the workpiece/sandbox setup in reducing the workpiece radiation and obtains a typical workpiece contribution on an actual worksite. To provide a simulation tool, a dynamic model of the pneumatic nailing device needs to be developed. Dynamic modeling of the nailing device requires mathematical modeling of the physical processes involved in its operation. All of these processes can be described through already existing mathematical relations, except for the penetration resistance force (PRF) imposed on the nails when penetrating the wood. The PRF depends on various factors. This study follows two approaches in parallel to develop an empirical prediction law for the PRF: quasi-static and high-speed. The quasi-static approach provides a rapid and precise representation of the law at quasistatic penetration velocities. The law covers the entire displacement range, various nail geometries and sizes, and wood types. The high-speed approach aims to provide a law which covers a much wider range of penetration velocities. The approach is complicated since it requires a sophisticated test machine to conduct the nail driving tests at high penetration velocities. The study designs and fabricates an advanced test machine to later extend the prediction range of the PRF law. The last part of this study develops the dynamic model of a nail gun while integrating the quasi-static PRF law. The model includes dynamics of all the air chambers and the moving parts, and interactions and impacts/contacts between different parts. The study integrates a comprehensive experimental validation of the model. Future improvements in the dynamic model precision will be possible by using the extended version of the PRF law.
Two dimensional analytical model for a reconfigurable field effect transistor
NASA Astrophysics Data System (ADS)
Ranjith, R.; Jayachandran, Remya; Suja, K. J.; Komaragiri, Rama S.
2018-02-01
This paper presents two-dimensional potential and current models for a reconfigurable field effect transistor (RFET). Two potential models which describe subthreshold and above-threshold channel potentials are developed by solving two-dimensional (2D) Poisson's equation. In the first potential model, 2D Poisson's equation is solved by considering constant/zero charge density in the channel region of the device to get the subthreshold potential characteristics. In the second model, accumulation charge density is considered to get above-threshold potential characteristics of the device. The proposed models are applicable for the device having lightly doped or intrinsic channel. While obtaining the mathematical model, whole body area is divided into two regions: gated region and un-gated region. The analytical models are compared with technology computer-aided design (TCAD) simulation results and are in complete agreement for different lengths of the gated regions as well as at various supply voltage levels.
NASA Technical Reports Server (NTRS)
Tsao, D. Teh-Wei; Okos, M. R.; Sager, J. C.; Dreschel, T. W.
1992-01-01
A physical model of the Porous Ceramic Tube Plant Nutrification System (PCTPNS) was developed through microscopic observations of the tube surface under various operational conditions. In addition, a mathematical model of this system was developed which incorporated the effects of the applied suction pressure, surface tension, and gravitational forces as well as the porosity and physical dimensions of the tubes. The flow of liquid through the PCTPNS was thus characterized for non-biological situations. One of the key factors in the verification of these models is the accurate and rapid measurement of the 'wetness' or holding capacity of the ceramic tubes. This study evaluated a thermistor based moisture sensor device and recommendations for future research on alternative sensing devices are proposed. In addition, extensions of the physical and mathematical models to include the effects of plant physiology and growth are also discussed for future research.
Patel, Shyamal; McGinnis, Ryan S; Silva, Ikaro; DiCristofaro, Steve; Mahadevan, Nikhil; Jortberg, Elise; Franco, Jaime; Martin, Albert; Lust, Joseph; Raj, Milan; McGrane, Bryan; DePetrillo, Paolo; Aranyosi, A J; Ceruolo, Melissa; Pindado, Jesus; Ghaffari, Roozbeh
2016-08-01
Wearable sensors have the potential to enable clinical-grade ambulatory health monitoring outside the clinic. Technological advances have enabled development of devices that can measure vital signs with great precision and significant progress has been made towards extracting clinically meaningful information from these devices in research studies. However, translating measurement accuracies achieved in the controlled settings such as the lab and clinic to unconstrained environments such as the home remains a challenge. In this paper, we present a novel wearable computing platform for unobtrusive collection of labeled datasets and a new paradigm for continuous development, deployment and evaluation of machine learning models to ensure robust model performance as we transition from the lab to home. Using this system, we train activity classification models across two studies and track changes in model performance as we go from constrained to unconstrained settings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blansett, Ethan L.; Schroeppel, Richard Crabtree; Tang, Jason D.
With the build-out of large transport networks utilizing optical technologies, more and more capacity is being made available. Innovations in Dense Wave Division Multiplexing (DWDM) and the elimination of optical-electrical-optical conversions have brought on advances in communication speeds as we move into 10 Gigabit Ethernet and above. Of course, there is a need to encrypt data on these optical links as the data traverses public and private network backbones. Unfortunately, as the communications infrastructure becomes increasingly optical, advances in encryption (done electronically) have failed to keep up. This project examines the use of optical logic for implementing encryption in themore » photonic domain to achieve the requisite encryption rates. In order to realize photonic encryption designs, technology developed for electrical logic circuits must be translated to the photonic regime. This paper examines two classes of all optical logic (SEED, gain competition) and how each discrete logic element can be interconnected and cascaded to form an optical circuit. Because there is no known software that can model these devices at a circuit level, the functionality of the SEED and gain competition devices in an optical circuit were modeled in PSpice. PSpice allows modeling of the macro characteristics of the devices in context of a logic element as opposed to device level computational modeling. By representing light intensity as voltage, 'black box' models are generated that accurately represent the intensity response and logic levels in both technologies. By modeling the behavior at the systems level, one can incorporate systems design tools and a simulation environment to aid in the overall functional design. Each black box model of the SEED or gain competition device takes certain parameters (reflectance, intensity, input response), and models the optical ripple and time delay characteristics. These 'black box' models are interconnected and cascaded in an encrypting/scrambling algorithm based on a study of candidate encryption algorithms. We found that a low gate count, cascadable encryption algorithm is most feasible given device and processing constraints. The modeling and simulation of optical designs using these components is proceeding in parallel with efforts to perfect the physical devices and their interconnect. We have applied these techniques to the development of a 'toy' algorithm that may pave the way for more robust optical algorithms. These design/modeling/simulation techniques are now ready to be applied to larger optical designs in advance of our ability to implement such systems in hardware.« less
NASA Astrophysics Data System (ADS)
Modafe, Alireza
This dissertation summarizes the research activities that led to the development of the first microball-bearing-supported linear electrostatic micromotor with benzocyclobutene (BCB) low-k polymer insulating layers. The primary application of this device is long-range, high-speed linear micropositioning. The future generations of this device include rotary electrostatic micromotors and microgenerators. The development of the first generation of microball-bearing-supported micromachines, including device theory, design, and modeling, material characterization, process development, device fabrication, and device test and characterization is presented. The first generation of these devices is based on a 6-phase, bottom-drive, linear, variable-capacitance micromotor (B-LVCM). The design of the electrical and mechanical components of the micromotor, lumped-circuit modeling of the device and electromechanical characteristics, including variable capacitance, force, power, and speed are presented. Electrical characterization of BCB polymers, characterization of BCB chemical mechanical planarization (CMP), development of embedded BCB in silicon (EBiS) process, and integration of device components using microfabrication techniques are also presented. The micromotor consists of a silicon stator, a silicon slider, and four stainless-steel microballs. The aligning force profile of the micromotor was extracted from simulated and measured capacitances of all phases. An average total aligning force of 0.27 mN with a maximum of 0.41 mN, assuming a 100 V peak-to-peak square-wave voltage, was measured. The operation of the micromotor was verified by applying square-wave voltages and characterizing the slider motion. An average slider speed of 7.32 mm/s when excited by a 40 Hz, 120 V square-wave voltage was reached without losing the synchronization. This research has a pivotal impact in the field of power microelectromechanical systems (MEMS). It establishes the foundation for the development of more reliable, efficient electrostatic micromachines with variety of applications such as micropropulsion, high-speed micropumping, microfluid delivery, and microsystem power generation.
High-Bandgap Silicon Nanocrystal Solar Cells: Device Fabrication, Characterization, and Modeling
NASA Astrophysics Data System (ADS)
Löper, Philipp; Canino, Mariaconcetta; Schnabel, Manuel; Summonte, Caterina; Janz, Stefan; Zacharias, Margit
Silicon nanocrystals (Si NCs) embedded in Si-based dielectrics provide a Si-based high-bandgap material (1.7 eV) and enable the construction of crystalline Si tandem solar cells. This chapter focusses on Si NC embedded in silicon carbide, because silicon carbide offers electrical conduction through the matrix material. The material development is reviewed, and optical modeling is introduced as a powerful method to monitor the four material components, amorphous and crystalline silicon as well as amorphous and crystalline silicon carbide. In the second part of this chapter, recent device developments for the photovoltaic characterization of Si NCs are examined. The controlled growth of Si NCs involves high-temperature annealing which deteriorates the properties of any previously established selective contacts. A membrane-based device is presented to overcome these limitations. In this approach, the formation of both selective contacts is carried out after high-temperature annealing and is therefore not affected by the latter. We examine p-i-n solar cells with an intrinsic region made of Si NCs embedded in silicon carbide. Device failure due to damaged insulation layers is analyzed by light beam-induced current measurements. An optical model of the device is presented for improving the cell current. A characterization scheme for Si NC p-i-n solar cells is presented which aims at determining the fundamental transport and recombination properties, i.e., the effective mobility lifetime product, of the nanocrystal layer at device level. For this means, an illumination-dependent analysis of Si NC p-i-n solar cells is carried out within the framework of the constant field approximation. The analysis builds on an optical device model, which is used to assess the photogenerated current in each of the device layers. Illumination-dependent current-voltage curves are modelled with a voltage-dependent current collection function with only two free parameters, and excellent agreement is found between theory and experiment. An effective mobility lifetime product of 10-10 cm2/V is derived and confirmed independently from an alternative method. The procedure discussed in this chapter is proposed as a characterization scheme for further material development, providing an optimization parameter (the effective mobility lifetime product) relevant for the photovoltaic performance of Si NC films.
NASA Technical Reports Server (NTRS)
MacLeod, Todd, C.; Ho, Fat Duen
2006-01-01
All present ferroelectric transistors have been made on the micrometer scale. Existing models of these devices do not take into account effects of nanoscale ferroelectric transistors. Understanding the characteristics of these nanoscale devices is important in developing a strategy for building and using future devices. This paper takes an existing microscale ferroelectric field effect transistor (FFET) model and adds effects that become important at a nanoscale level, including electron velocity saturation and direct tunneling. The new model analyzed FFETs ranging in length from 40,000 nanometers to 4 nanometers and ferroelectric thickness form 200 nanometers to 1 nanometer. The results show that FFETs can operate on the nanoscale but have some undesirable characteristics at very small dimensions.
Thermal Remote Anemometer Device
NASA Technical Reports Server (NTRS)
Heyman, Joseph S.; Heath, D. Michele; Winfree, William P.; Miller, William E.; Welch, Christopher S.
1988-01-01
Thermal Remote Anemometer Device developed for remote, noncontacting, passive measurement of thermal properties of sample. Model heated locally by scanning laser beam and cooled by wind in tunnel. Thermal image of model analyzed to deduce pattern of airflow around model. For materials applications, system used for evaluation of thin films and determination of thermal diffusivity and adhesive-layer contact. For medical applications, measures perfusion through skin to characterize blood flow and used to determine viabilities of grafts and to characterize tissues.
Animal Model Development for the Penn State Pediatric Ventricular Assist Device
Carney, Elizabeth L.; Clark, J. Brian; Myers, John L.; Peterson, Rebecca; Wilson, Ronald P.; Weiss, William J.
2009-01-01
In March 2004, the National Heart, Lung, and Blood Institute (NHLBI) awarded five contracts to develop devices providing circulatory support for infants and small children with congenital and acquired cardiac disease. Since 2004, the team at Penn State College of Medicine has developed a pneumatically-actuated ventricular assist device (VAD) with mechanical tilting disk valves. To date, hemodynamic performance, thrombogenesis, and hemolysis have been chronically evaluated in 16 animals, including 4 pygmy goats and 12 sheep. Major complications, mainly respiratory failure, have been encountered and resolved by a multi-disciplinary team. Multi-modal analgesia, appropriate antibiotic therapy, and attentive animal care have contributed to successful outcomes. Time after implant has ranged from 0–40 days. Most recently, a sheep implanted with Version 3 Infant VAD was electively terminated at 35 days post-implant, with no major adverse events. This report describes a successful in vivo model for evaluating a pediatric VAD. PMID:19849686
The SAMR Model as a Framework for Evaluating mLearning
ERIC Educational Resources Information Center
Romrell, Danae; Kidder, Lisa C.; Wood, Emma
2014-01-01
As mobile devices become more prominent in the lives of students, the use of mobile devices has the potential to transform learning. Mobile learning, or mLearning, is defined as learning that is personalized, situated, and connected through the use of a mobile device. As mLearning activities are developed, there is a need for a framework within…
Bending induced electrical response variations in ultra-thin flexible chips and device modeling
NASA Astrophysics Data System (ADS)
Heidari, Hadi; Wacker, Nicoleta; Dahiya, Ravinder
2017-09-01
Electronics that conform to 3D surfaces are attracting wider attention from both academia and industry. The research in the field has, thus far, focused primarily on showcasing the efficacy of various materials and fabrication methods for electronic/sensing devices on flexible substrates. As the device response changes are bound to change with stresses induced by bending, the next step will be to develop the capacity to predict the response of flexible systems under various bending conditions. This paper comprehensively reviews the effects of bending on the response of devices on ultra-thin chips in terms of variations in electrical parameters such as mobility, threshold voltage, and device performance (static and dynamic). The discussion also includes variations in the device response due to crystal orientation, applied mechanics, band structure, and fabrication processes. Further, strategies for compensating or minimizing these bending-induced variations have been presented. Following the in-depth analysis, this paper proposes new mathematical relations to simulate and predict the device response under various bending conditions. These mathematical relations have also been used to develop new compact models that have been verified by comparing simulation results with the experimental values reported in the recent literature. These advances will enable next generation computer-aided-design tools to meet the future design needs in flexible electronics.
Microfluidic Devices in Advanced Caenorhabditis elegans Research.
Muthaiyan Shanmugam, Muniesh; Subhra Santra, Tuhin
2016-08-02
The study of model organisms is very important in view of their potential for application to human therapeutic uses. One such model organism is the nematode worm, Caenorhabditis elegans. As a nematode, C. elegans have ~65% similarity with human disease genes and, therefore, studies on C. elegans can be translated to human, as well as, C. elegans can be used in the study of different types of parasitic worms that infect other living organisms. In the past decade, many efforts have been undertaken to establish interdisciplinary research collaborations between biologists, physicists and engineers in order to develop microfluidic devices to study the biology of C. elegans. Microfluidic devices with the power to manipulate and detect bio-samples, regents or biomolecules in micro-scale environments can well fulfill the requirement to handle worms under proper laboratory conditions, thereby significantly increasing research productivity and knowledge. The recent development of different kinds of microfluidic devices with ultra-high throughput platforms has enabled researchers to carry out worm population studies. Microfluidic devices primarily comprises of chambers, channels and valves, wherein worms can be cultured, immobilized, imaged, etc. Microfluidic devices have been adapted to study various worm behaviors, including that deepen our understanding of neuromuscular connectivity and functions. This review will provide a clear account of the vital involvement of microfluidic devices in worm biology.
Simplified human thermoregulatory model for designing wearable thermoelectric devices
NASA Astrophysics Data System (ADS)
Wijethunge, Dimuthu; Kim, Donggyu; Kim, Woochul
2018-02-01
Research on wearable and implantable devices have become popular with the strong need in market. A precise understanding of the thermal properties of human skin, which are not constant values but vary depending on ambient condition, is required for the development of such devices. In this paper, we present simplified human thermoregulatory model for accurately estimating the thermal properties of the skin without applying rigorous calculations. The proposed model considers a variable blood flow rate through the skin, evaporation functions, and a variable convection heat transfer from the skin surface. In addition, wearable thermoelectric generation (TEG) and refrigeration devices were simulated. We found that deviations of 10-60% can be resulted in estimating TEG performance without considering human thermoregulatory model owing to the fact that thermal resistance of human skin is adapted to ambient condition. Simplicity of the modeling procedure presented in this work could be beneficial for optimizing and predicting the performance of any applications that are directly coupled with skin thermal properties.
A Comparison of RF-DNA Fingerprinting Using High/Low Value Receivers with ZigBee Devices
2014-03-27
99) Device Classification using Hybrid Cross-Receiver model and USRP only testing . 54 V. Conclusion This chapter provides a summary of reseach ...Finally, when developing a Hybrid Cross-Receiver model using fingerprints from both receivers, testing with PXIe-only fingerprints proved to be the most...22 3.2 Post -Collection Processing . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2.1 Burst Detection
Extending MAM5 Meta-Model and JaCalIV E Framework to Integrate Smart Devices from Real Environments.
Rincon, J A; Poza-Lujan, Jose-Luis; Julian, V; Posadas-Yagüe, Juan-Luis; Carrascosa, C
2016-01-01
This paper presents the extension of a meta-model (MAM5) and a framework based on the model (JaCalIVE) for developing intelligent virtual environments. The goal of this extension is to develop augmented mirror worlds that represent a real and virtual world coupled, so that the virtual world not only reflects the real one, but also complements it. A new component called a smart resource artifact, that enables modelling and developing devices to access the real physical world, and a human in the loop agent to place a human in the system have been included in the meta-model and framework. The proposed extension of MAM5 has been tested by simulating a light control system where agents can access both virtual and real sensor/actuators through the smart resources developed. The results show that the use of real environment interactive elements (smart resource artifacts) in agent-based simulations allows to minimize the error between simulated and real system.
Extending MAM5 Meta-Model and JaCalIV E Framework to Integrate Smart Devices from Real Environments
2016-01-01
This paper presents the extension of a meta-model (MAM5) and a framework based on the model (JaCalIVE) for developing intelligent virtual environments. The goal of this extension is to develop augmented mirror worlds that represent a real and virtual world coupled, so that the virtual world not only reflects the real one, but also complements it. A new component called a smart resource artifact, that enables modelling and developing devices to access the real physical world, and a human in the loop agent to place a human in the system have been included in the meta-model and framework. The proposed extension of MAM5 has been tested by simulating a light control system where agents can access both virtual and real sensor/actuators through the smart resources developed. The results show that the use of real environment interactive elements (smart resource artifacts) in agent-based simulations allows to minimize the error between simulated and real system. PMID:26926691
System theoretic models for high density VLSI structures
NASA Astrophysics Data System (ADS)
Dickinson, Bradley W.; Hopkins, William E., Jr.
This research project involved the development of mathematical models for analysis, synthesis, and simulation of large systems of interacting devices. The work was motivated by problems that may become important in high density VLSI chips with characteristic feature sizes less than 1 micron: it is anticipated that interactions of neighboring devices will play an important role in the determination of circuit properties. It is hoped that the combination of high device densities and such local interactions can somehow be exploited to increase circuit speed and to reduce power consumption. To address these issues from the point of view of system theory, research was pursued in the areas of nonlinear and stochastic systems and into neural network models. Statistical models were developed to characterize various features of the dynamic behavior of interacting systems. Random process models for studying the resulting asynchronous modes of operation were investigated. The local interactions themselves may be modeled as stochastic effects. The resulting behavior was investigated through the use of various scaling limits, and by a combination of other analytical and simulation techniques. Techniques arising in a variety of disciplines where models of interaction were formulated and explored were considered and adapted for use.
Psikuta, Agnes; Koelblen, Barbara; Mert, Emel; Fontana, Piero; Annaheim, Simon
2017-12-07
Following the growing interest in the further development of manikins to simulate human thermal behaviour more adequately, thermo-physiological human simulators have been developed by coupling a thermal sweating manikin with a thermo-physiology model. Despite their availability and obvious advantages, the number of studies involving these devices is only marginal, which plausibly results from the high complexity of the development and evaluation process and need of multi-disciplinary expertise. The aim of this paper is to present an integrated approach to develop, validate and operate such devices including technical challenges and limitations of thermo-physiological human simulators, their application and measurement protocol, strategy for setting test scenarios, and the comparison to standard methods and human studies including details which have not been published so far. A physical manikin controlled by a human thermoregulation model overcame the limitations of mathematical clothing models and provided a complementary method to investigate thermal interactions between the human body, protective clothing, and its environment. The opportunities of these devices include not only realistic assessment of protective clothing assemblies and equipment but also potential application in many research fields ranging from biometeorology, automotive industry, environmental engineering, and urban climate to clinical and safety applications.
PSIKUTA, Agnes; KOELBLEN, Barbara; MERT, Emel; FONTANA, Piero; ANNAHEIM, Simon
2017-01-01
Following the growing interest in the further development of manikins to simulate human thermal behaviour more adequately, thermo-physiological human simulators have been developed by coupling a thermal sweating manikin with a thermo-physiology model. Despite their availability and obvious advantages, the number of studies involving these devices is only marginal, which plausibly results from the high complexity of the development and evaluation process and need of multi-disciplinary expertise. The aim of this paper is to present an integrated approach to develop, validate and operate such devices including technical challenges and limitations of thermo-physiological human simulators, their application and measurement protocol, strategy for setting test scenarios, and the comparison to standard methods and human studies including details which have not been published so far. A physical manikin controlled by a human thermoregulation model overcame the limitations of mathematical clothing models and provided a complementary method to investigate thermal interactions between the human body, protective clothing, and its environment. The opportunities of these devices include not only realistic assessment of protective clothing assemblies and equipment but also potential application in many research fields ranging from biometeorology, automotive industry, environmental engineering, and urban climate to clinical and safety applications. PMID:28966294
NASA Astrophysics Data System (ADS)
Kodigala, Subba Ramaiah
2016-11-01
This article emphasizes verification of Fowler-Nordheim electron tunneling mechanism in the Ni/SiO2/n-4H SiC MOS devices by developing three different kinds of models. The standard semiconductor equations are categorically solved to obtain the change in Fermi energy level of semiconductor with effect of temperature and field that extend support to determine sustainable and accurate tunneling current through the oxide layer. The forward and reverse bias currents with variation of electric field are simulated with help of different models developed by us for MOS devices by applying adequate conditions. The latter is quite different from former in terms of tunneling mechanism in the MOS devices. The variation of barrier height with effect of quantum mechanical, temperature, and fields is considered as effective barrier height for the generation of current-field (J-F) curves under forward and reverse biases but quantum mechanical effect is void in the latter. In addition, the J-F curves are also simulated with variation of carrier concentration in the n-type 4H SiC semiconductor of MOS devices and the relation between them is established.
Design optimization of beta- and photovoltaic conversion devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wichner, R.; Blum, A.; Fischer-Colbrie, E.
1976-01-08
This report presents the theoretical and experimental results of an LLL Electronics Engineering research program aimed at optimizing the design and electronic-material parameters of beta- and photovoltaic p-n junction conversion devices. To meet this objective, a comprehensive computer code has been developed that can handle a broad range of practical conditions. The physical model upon which the code is based is described first. Then, an example is given of a set of optimization calculations along with the resulting optimized efficiencies for silicon (Si) and gallium-arsenide (GaAs) devices. The model we have developed, however, is not limited to these materials. Itmore » can handle any appropriate material--single or polycrystalline-- provided energy absorption and electron-transport data are available. To check code validity, the performance of experimental silicon p-n junction devices (produced in-house) were measured under various light intensities and spectra as well as under tritium beta irradiation. The results of these tests were then compared with predicted results based on the known or best estimated device parameters. The comparison showed very good agreement between the calculated and the measured results.« less
Development of a Portable Knee Rehabilitation Device That Uses Mechanical Loading.
Fitzwater, Daric; Dodge, Todd; Chien, Stanley; Yokota, Hiroki; Anwar, Sohel
2013-12-01
Joint loading is a recently developed mechanical modality, which potentially provides a therapeutic regimen to activate bone formation and prevent degradation of joint tissues. To our knowledge, however, few joint loading devices are available for clinical or point-of-care applications. Using a voice-coil actuator, we developed an electromechanical loading system appropriate for human studies and preclinical trials that should prove both safe and effective. Two specific tasks for this loading system were development of loading conditions (magnitude and frequency) suitable for humans, and provision of a convenient and portable joint loading apparatus. Desktop devices have been previously designed to evaluate the effects of various loading conditions using small and large animals. However, a portable knee loading device is more desirable from a usability point of view. In this paper, we present such a device that is designed to be portable, providing a compact, user-friendly loader. The portable device was employed to evaluate its capabilities using a human knee model. The portable device was characterized for force-pulse width modulation duty cycle and loading frequency properties. The results demonstrate that the device is capable of producing the necessary magnitude of forces at appropriate frequencies to promote the stimulation of bone growth and which can be used in clinical studies for further evaluations.
Distributed geospatial model sharing based on open interoperability standards
Feng, Min; Liu, Shuguang; Euliss, Ned H.; Fang, Yin
2009-01-01
Numerous geospatial computational models have been developed based on sound principles and published in journals or presented in conferences. However modelers have made few advances in the development of computable modules that facilitate sharing during model development or utilization. Constraints hampering development of model sharing technology includes limitations on computing, storage, and connectivity; traditional stand-alone and closed network systems cannot fully support sharing and integrating geospatial models. To address this need, we have identified methods for sharing geospatial computational models using Service Oriented Architecture (SOA) techniques and open geospatial standards. The service-oriented model sharing service is accessible using any tools or systems compliant with open geospatial standards, making it possible to utilize vast scientific resources available from around the world to solve highly sophisticated application problems. The methods also allow model services to be empowered by diverse computational devices and technologies, such as portable devices and GRID computing infrastructures. Based on the generic and abstract operations and data structures required for Web Processing Service (WPS) standards, we developed an interactive interface for model sharing to help reduce interoperability problems for model use. Geospatial computational models are shared on model services, where the computational processes provided by models can be accessed through tools and systems compliant with WPS. We developed a platform to help modelers publish individual models in a simplified and efficient way. Finally, we illustrate our technique using wetland hydrological models we developed for the prairie pothole region of North America.
NASA Astrophysics Data System (ADS)
Drobny, Jon; Curreli, Davide; Ruzic, David; Lasa, Ane; Green, David; Canik, John; Younkin, Tim; Blondel, Sophie; Wirth, Brian
2017-10-01
Surface roughness greatly impacts material erosion, and thus plays an important role in Plasma-Surface Interactions. Developing strategies for efficiently introducing rough surfaces into ion-solid interaction codes will be an important step towards whole-device modeling of plasma devices and future fusion reactors such as ITER. Fractal TRIDYN (F-TRIDYN) is an upgraded version of the Monte Carlo, BCA program TRIDYN developed for this purpose that includes an explicit fractal model of surface roughness and extended input and output options for file-based code coupling. Code coupling with both plasma and material codes has been achieved and allows for multi-scale, whole-device modeling of plasma experiments. These code coupling results will be presented. F-TRIDYN has been further upgraded with an alternative, statistical model of surface roughness. The statistical model is significantly faster than and compares favorably to the fractal model. Additionally, the statistical model compares well to alternative computational surface roughness models and experiments. Theoretical links between the fractal and statistical models are made, and further connections to experimental measurements of surface roughness are explored. This work was supported by the PSI-SciDAC Project funded by the U.S. Department of Energy through contract DOE-DE-SC0008658.
A Percutaneously Implantable Fetal Pacemaker
Zhou, Li; Vest, Adriana N.; Chmait, Ramen H.; Bar-Cohen, Yaniv; Pruetz, Jay; Silka, Michael; Zheng, Kaihui; Peck, Ray; Loeb, Gerald E.
2015-01-01
A miniaturized, self-contained pacemaker that could be implanted with a minimally invasive technique would dramatically improve the survival rate for fetuses that develop hydrops fetalis as a result of congenital heart block. We are currently validating a device that we developed to address this bradyarrhythmia. Preclinical studies in a fetal sheep model are underway to demonstrate that the device can be implanted via a minimally invasive approach, can mechanically withstand the harsh bodily environment, can induce effective contractions of the heart muscle with an adequate safety factor, and can successfully operate for the required device lifetime of three months using the previously-developed closed loop transcutaneous recharging system. PMID:25570982
Competency-Based Human Resource Development Strategy
ERIC Educational Resources Information Center
Gangani, Noordeen T.; McLean, Gary N.; Braden, Richard A.
2004-01-01
This paper explores issues in developing and implementing a competency-based human resource development strategy. The paper summarizes a literature review on how competency models can improve HR performance. A case study is presented of American Medical Systems (AMS), a mid-sized health-care and medical device company, where the model is being…
On the Initiation Mechanism in Exploding Bridgewire and Laser Detonators
NASA Astrophysics Data System (ADS)
Stewart, D. Scott; Thomas, Keith A.; Clarke, S.; Mallett, H.; Martin, E.; Martinez, M.; Munger, A.; Saenz, Juan
2006-07-01
Since its invention by Los Alamos during the Manhattan Project era the exploding bridgewire detonator (EBW) has seen tremendous use and study. Recent development of a laser-powered device with detonation properties similar to an EBW is reviving interest in the basic physics of the deflagration-to-detonation (DDT) process in both of these devices. Cutback experiments using both laser interferometry and streak camera observations are providing new insight into the initiation mechanism in EBWs. These measurements are being correlated to a DDT model of compaction to detonation and shock to detonation developed previously by Xu and Stewart. The DDT model is incorporated into a high-resolution, multi-material model code for simulating the complete process. Model formulation and the modeling issues required to describe the test data will be discussed.
An efficient solid modeling system based on a hand-held 3D laser scan device
NASA Astrophysics Data System (ADS)
Xiong, Hanwei; Xu, Jun; Xu, Chenxi; Pan, Ming
2014-12-01
The hand-held 3D laser scanner sold in the market is appealing for its port and convenient to use, but price is expensive. To develop such a system based cheap devices using the same principles as the commercial systems is impossible. In this paper, a simple hand-held 3D laser scanner is developed based on a volume reconstruction method using cheap devices. Unlike convenient laser scanner to collect point cloud of an object surface, the proposed method only scan few key profile curves on the surface. Planar section curve network can be generated from these profile curves to construct a volume model of the object. The details of design are presented, and illustrated by the example of a complex shaped object.
Economic benefits of safety-engineered sharp devices in Belgium - a budget impact model.
Hanmore, Emma; Maclaine, Grant; Garin, Fiona; Alonso, Alexander; Leroy, Nicolas; Ruff, Lewis
2013-11-25
Measures to protect healthcare workers where there is risk of injury or infection from medical sharps became mandatory in the European Union (EU) from May 2013. Our research objective was to estimate the net budget impact of introducing safety-engineered devices (SEDs) for prevention of needlestick injuries (NSIs) in a Belgian hospital. A 5-year incidence-based budget impact model was developed from the hospital inpatient perspective, comparing costs and outcomes with SEDs and prior-used conventional (non-safety) devices. The model accounts for device acquisition costs and costs of NSI management in 4 areas of application where SEDs are currently used: blood collection, infusion, injection and diabetes insulin administration. Model input data were sourced from the Institut National d'Assurance Maladie-Invalidité, published studies, clinical guidelines and market research. Costs are discounted at 3%. For a 420-bed hospital, 100% substitution of conventional devices by SEDs is estimated to decrease the cumulative 5-year incidence of NSIs from 310 to 75, and those associated with exposure to blood-borne viral diseases from 60 to 15. Cost savings from managing fewer NSIs more than offset increased device acquisition costs, yielding estimated 5-year overall savings of €51,710. The direction of these results is robust to a range of sensitivity and model scenario analyses. The model was most sensitive to variation in the acquisition costs of SEDs, rates of NSI associated with conventional devices, and the acquisition costs of conventional devices. NSIs are a significant potential risk with the use of sharp devices. The incidence of NSIs and the costs associated with their management can be reduced through the adoption of safer work practices, including investment in SEDs. For a Belgian hospital, the budget impact model reports that the incremental acquisition costs of SEDs are offset by the savings from fewer NSIs. The availability of more robust data for NSI reduction rates, and broadening the scope of the model to include ancillary measures for hospital conversion to SED usage, outpatient and paramedic device use, and transmission of other blood-borne diseases, would strengthen the model.
Analytical Modeling of Acoustic Phonon-Limited Mobility in Strained Graphene Nanoribbons
NASA Astrophysics Data System (ADS)
Yousefvand, Ali; Ahmadi, Mohammad T.; Meshginqalam, Bahar
2017-11-01
Recent advances in graphene nanoribbon-based electronic devices encourage researchers to develop modeling and simulation methods to explore device physics. On the other hand, increasing the operating speed of nanoelectronic devices has recently attracted significant attention, and the modification of acoustic phonon interactions because of their important effect on carrier mobility can be considered as a method for carrier mobility optimization which subsequently enhances the device speed. Moreover, strain has an important influence on the electronic properties of the nanoelectronic devices. In this paper, the acoustic phonons mobility of armchair graphene nanoribbons ( n-AGNRs) under uniaxial strain is modeled analytically. In addition, strain, width and temperature effects on the acoustic phonon mobility of strained n-AGNRs are investigated. An increment in the strained AGNR acoustic phonon mobility by increasing the ribbon width is reported. Additionally, two different behaviors for the acoustic phonon mobility are verified by increasing the applied strain in 3 m, 3 m + 2 and 3 m + 1 AGNRs. Finally, the temperature effect on the modeled AGNR phonon mobility is explored, and mobility reduction by raising the temperature is reported.
Ex vivo study of the home-use TriPollar RF device using an experimental human skin model.
Boisnic, Sylvie; Branchet, Marie Christine
2010-09-01
A wide variety of professional radio frequency (RF) aesthetic treatments for anti-aging are available aiming at skin tightening. A new home-use RF device for facial treatments has recently been developed based on TriPollar technology. To evaluate the mechanism of the new home-use device, in the process of collagen remodeling, using an ex vivo skin model. Human skin samples were collected in order to evaluate the anti-aging effect of a home-use device for facial treatments on an ex vivo human skin model. Skin tightening was evaluated by dermal histology, quantitative analysis of collagen fibers and dosage of collagen synthesis. Significant collagen remodeling following RF treatment with the device was found in the superficial and mid-deep dermis. Biochemical measurement of newly synthesized collagen showed an increase of 41% in the treated samples as compared to UV-aged control samples. The new home-use device has been demonstrated to affect significant collagen remodeling, in terms of the structural and biochemical improvement of dermal collagen on treated skin samples.
Illumination modelling of a mobile device environment for effective use in driving mobile apps
NASA Astrophysics Data System (ADS)
Marhoubi, Asmaa H.; Saravi, Sara; Edirisinghe, Eran A.; Bez, Helmut E.
2015-05-01
The present generation of Ambient Light Sensors (ALS) of a mobile handheld device suffer from two practical shortcomings. The ALSs are narrow angle, i.e. they respond effectively only within a narrow angle of operation and there is a latency of operation. As a result mobile applications that operate based on the ALS readings could perform sub-optimally especially when operated in environments with non-uniform illumination. The applications will either adopt with unacceptable levels of latency or/and may demonstrate a discrete nature of operation. In this paper we propose a framework to predict the ambient illumination of an environment in which a mobile device is present. The predictions are based on an illumination model that is developed based on a small number of readings taken during an application calibration stage. We use a machine learning based approach in developing the models. Five different regression models were developed, implemented and compared based on Polynomial, Gaussian, Sum of Sine, Fourier and Smoothing Spline functions. Approaches to remove noisy data, missing values and outliers were used prior to the modelling stage to remove their negative effects on modelling. The prediction accuracy for all models were found to be above 0.99 when measured using R-Squared test with the best performance being from Smoothing Spline. In this paper we will discuss mathematical complexity of each model and investigate how to make compromises in finding the best model.
Computational study for optimization of a plasmon FET as a molecular biosensor
NASA Astrophysics Data System (ADS)
Ciappesoni, Mark; Cho, Seongman; Tian, Jieyuan; Kim, Sung Jin
2018-02-01
Surface Plasmon Resonance (SPR) is currently being widely studied as it exhibits sensitive optical properties to changes in in the refractive index of the surrounding medium. As novel devices using SPR have been developing rapidly there is a necessity to develop models and simulation environments that will allow for continued development and optimization of these devices. A biological sensing device of interest is the Plasmon FET which has been proven experimentally to have a limit of detection (LOD) of 20pg/ml while being immune to the absorption of the medium. The Plasmon FET is a metal-semiconductor-metal detector which employ functionalized gold nanostructures on a semi-conducting layer. This direct approach has the advantages of not requiring readout optics reducing size and allowing for point-of -care measurements. Using Lumerical FDTD and Device numerical solvers, we can report an advanced simulation environment illustrating several key sensor specifications including LOD, resolution, sensitivity, and dynamic range, for a variety of biological markers providing a comprehensive analysis of a Direct Plasmon-to-Electric conversion device designed to function with colored mediums (eg.whole blood). This model allows for the simulation and optimization of a plasmonic sensor that already o ers advantages in size, operability, and multiplexing-capability, with real time monitoring.
Silicon Micromachining in RF and Photonic Applications
NASA Technical Reports Server (NTRS)
Lin, Tsen-Hwang; Congdon, Phil; Magel, Gregory; Pang, Lily; Goldsmith, Chuck; Randall, John; Ho, Nguyen
1995-01-01
Texas Instruments (TI) has developed membrane and micromirror devices since the late 1970s. An eggcrate space membrane was used as the spatial light modulator in the early years. Discrete micromirrors supported by cantilever beams created a new era for micromirror devices. Torsional micromirror and flexure-beam micromirror devices were promising for mass production because of their stable supports. TI's digital torsional micromirror device is an amplitude modulator (known as the digital micromirror device (DMD) and is in production development, discussed elsewhere. We also use a torsional device for a 4 x 4 fiber-optic crossbar switch in a 2 cm x 2 cm package. The flexure-beam micromirror device is an analog phase modulator and is considered more efficient than amplitude modulators for use in optical processing systems. TI also developed millimeter-sized membranes for integrated optical switches for telecommunication and network applications. Using a member in radio frequency (RF) switch applications is a rapidly growing area because of the micromechanical device performance in microsecond-switching characteristics. Our preliminary membrane RF switch test structure results indicate promising speed and RF switching performance. TI collaborated with MIT for modeling of metal-based micromachining.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panaccione, Charles; Staab, Greg; Meuleman, Erik
ION has developed a mathematically driven model for a contacting device incorporating mass transfer, heat transfer, and computational fluid dynamics. This model is based upon a parametric structure for purposes of future commercialization. The most promising design from modeling was 3D printed and tested in a bench scale CO 2 capture unit and compared to commercially available structured packing tested in the same unit.
Light Extraction From Solution-Based Processable Electrophosphorescent Organic Light-Emitting Diodes
NASA Astrophysics Data System (ADS)
Krummacher, Benjamin C.; Mathai, Mathew; So, Franky; Choulis, Stelios; Choong, And-En, Vi
2007-06-01
Molecular dye dispersed solution processable blue emitting organic light-emitting devices have been fabricated and the resulting devices exhibit efficiency as high as 25 cd/A. With down-conversion phosphors, white emitting devices have been demonstrated with peak efficiency of 38 cd/A and luminous efficiency of 25 lm/W. The high efficiencies have been a product of proper tuning of carrier transport, optimization of the location of the carrier recombination zone and, hence, microcavity effect, efficient down-conversion from blue to white light, and scattering/isotropic remission due to phosphor particles. An optical model has been developed to investigate all these effects. In contrast to the common misunderstanding that light out-coupling efficiency is about 22% and independent of device architecture, our device data and optical modeling results clearly demonstrated that the light out-coupling efficiency is strongly dependent on the exact location of the recombination zone. Estimating the device internal quantum efficiencies based on external quantum efficiencies without considering the device architecture could lead to erroneous conclusions.
Developing Implantable Neuroprosthetics: a New Model in Pig
Yin, Ming; Aceros, Juan; Agha, Naubahar; Minxha, Juri; Komar, Jacob; Patterson, William; Bull, Christopher; Nurmikko, Arto
2014-01-01
A new model has been established in the domestic pig for neural prosthetic device development and testing. To this end, we report on a complete neural prosthetic developmental system using a wireless sensor as the implant, a pig as the animal model, and a novel data acquisition paradigm for actuator control. A new type of stereotactic frame with clinically-inspired fixations pins that place the pig brain in standard surgical plane was developed and tested with success during the implantation of the microsystem. The microsystem implanted was an ultralow power (12.5mW) 16-channel intracortical/epicranial device transmitting broadband (40kS/s) data over a wireless infrared telemetric link. Pigs were implanted and neural data was collected over a period of 5 weeks, clearly showing single unit spiking activity. PMID:22254977
Developing implantable neuroprosthetics: a new model in pig.
Borton, David; Yin, Ming; Aceros, Juan; Agha, Naubahar; Minxha, Juri; Komar, Jacob; Patterson, William; Bull, Christopher; Nurmikko, Arto
2011-01-01
A new model has been established in the domestic pig for neural prosthetic device development and testing. To this end, we report on a complete neural prosthetic developmental system using a wireless sensor as the implant, a pig as the animal model, and a novel data acquisition paradigm for actuator control. A new type of stereotactic frame with clinically-inspired fixations pins that place the pig brain in standard surgical plane was developed and tested with success during the implantation of the microsystem. The microsystem implanted was an ultra-low power (12.5 mW) 16-channel intracortical/epicranial device transmitting broadband (40 kS/s) data over a wireless infrared telemetric link. Pigs were implanted and neural data was collected over a period of 5 weeks, clearly showing single unit spiking activity.
Gupta, Rajesh; Patel, Rajan; Murty, Naganand; Panicker, Rahul; Chen, Jane
2015-02-01
Relative to drugs, diagnostics, and vaccines, efforts to develop other global health technologies, such as medical devices, are limited and often focus on the short-term goal of prototype development instead of the long-term goal of a sustainable business model. To develop a medical device to address neonatal hypothermia for use in resource-limited settings, we turned to principles of design theory: (1) define the problem with consideration of appropriate integration into relevant health policies, (2) identify the users of the technology and the scenarios in which the technology would be used, and (3) use a highly iterative product design and development process that incorporates the perspective of the user of the technology at the outset and addresses scalability. In contrast to our initial idea, to create a single device, the process guided us to create two separate devices, both strikingly different from current solutions. We offer insights from our initial experience that may be helpful to others engaging in global health technology development.
Research and Development Strategies in the Semiconductor Industry
NASA Astrophysics Data System (ADS)
Bowling, Allen
2003-03-01
In the 21st Century semiconductor industry, there is a critical balance between internally funded semiconductor research and development (R) and externally funded R. External R may include jointly-funded research collaborations/partnerships with other device manufacturers, jointly-funded consortia-based R, and individually-funded research programs at universities and other contract research locations. Each of these approaches has merits and each has costs. There is a critical balance between keeping the internal research and development pipeline filled and keeping it from being overspent. To meet both competitive schedule and cost goals, a semiconductor device manufacturer must decide on a model for selection of internal versus external R. Today, one of the most critical decisions is whether or not to do semiconductor research and development on 300 mm silicon wafers. Equipment suppliers are doing first development on 300 mm equipment. So, for the device manufacturer, there is a balance between the cost of doing development on 300 mm wafers and the development time schedule driven by equipment availability. In the face of these cost and schedule elements, device manufacturers are looking to consortia such as SEMATECH, SRC, and SRC MARCO for early development and screening of new materials and device structure approaches. This also causes much more close development collaboration between device manufacturer and equipment supplier. Many device manufacturers are also making use of direct contract research with universities and other contract-research organizations, such as IMEC, LETI, and other government-funded research organizations around the world. To get the most out of these external research interactions, the company must develop a strategy for management and technology integration of external R.
Modeling and control of a brushless DC axial flow ventricular assist device.
Giridharan, Guruprasad A; Skliar, Mikhail; Olsen, Donald B; Pantalos, George M
2002-01-01
This article presents an integrated model of the human circulatory system that incorporates circulatory support by a brushless DC axial flow ventricular assist device (VAD), and a feedback VAD controller designed to maintain physiologically sufficient perfusion. The developed integrated model combines a network type model of the circulatory system with a nonlinear dynamic model of the brushless DC pump We show that maintaining a reference differential pressure between the left ventricle and aorta leads to adequate perfusion for different pathologic cases, ranging from normal heart to left heart asystole, and widely varying physical activity scenarios from rest to exercise.
Passive device based on plastic optical fibers to determine the indices of refraction of liquids.
Zubia, J; Garitaonaindía, G; Arrúe, J
2000-02-20
We have designed and measured a passive device based on plastic optical fibers (POF's) that one can use to determine the indices of refraction of liquids. A complementary software has also been designed to simulate the behavior of the device. We report on the theoretical model developed for the device, its implementation in a simulation software program, and the results of the simulation. A comparison of the experimental and calculated results is also shown and discussed.
Numerical modeling of reverse recovery characteristic in silicon pin diodes
NASA Astrophysics Data System (ADS)
Yamashita, Yusuke; Tadano, Hiroshi
2018-07-01
A new numerical reverse recovery model of silicon pin diode is proposed by the approximation of the reverse recovery waveform as a simple shape. This is the first model to calculate the reverse recovery characteristics using numerical equations without adjusted by fitting equations and fitting parameters. In order to verify the validity and the accuracy of the numerical model, the calculation result from the model is verified through the device simulation result. In 1980, he joined Toyota Central R&D Labs, Inc., where he was involved in the research and development of power devices such as SIT, IGBT, diodes and power MOSFETs. Since 2013 he has been a professor at the Graduate School of Pure and Applied Science, University of Tsukuba, Tsukuba, Japan. His current research interest is high-efficiency power conversion circuits for electric vehicles using advanced power devices.
TAXONOMY OF MEDICAL DEVICES IN THE LOGIC OF HEALTH TECHNOLOGY ASSESSMENT.
Henschke, Cornelia; Panteli, Dimitra; Perleth, Matthias; Busse, Reinhard
2015-01-01
The suitability of general HTA methodology for medical devices is gaining interest as a topic of scientific discourse. Given the broad range of medical devices, there might be differences between groups of devices that impact both the necessity and the methods of their assessment. Our aim is to develop a taxonomy that provides researchers and policy makers with an orientation tool on how to approach the assessment of different types of medical devices. Several classifications for medical devices based on varying rationales for different regulatory and reporting purposes were analyzed in detail to develop a comprehensive taxonomic model. The taxonomy is based on relevant aspects of existing classification schemes incorporating elements of risk and functionality. Its 9 × 6 matrix distinguishes between the diagnostic or therapeutic nature of devices and considers whether the medical device is directly used by patients, constitutes part of a specific procedure, or can be used for a variety of procedures. We considered the relevance of different device categories in regard to HTA to be considerably variable, ranging from high to low. Existing medical device classifications cannot be used for HTA as they are based on different underlying logics. The developed taxonomy combines different device classification schemes used for different purposes. It aims at providing decision makers with a tool enabling them to consider device characteristics in detail across more than one dimension. The placement of device groups in the matrix can provide decision support on the necessity of conducting a full HTA.
Development of a pheromone elution rate physical model
USDA-ARS?s Scientific Manuscript database
A first principle modeling approach is applied to available data describing the elution of semiochemicals from pheromone dispensers. These data include field data for 27 products developed by several manufacturers, including homemade devices, as well as laboratory data collected on three semiochemi...
Development of Powder Processing Models and Techniques for Meso-scale Devices: Perspirable Skin
2008-03-31
of Powder Processing Models and Techniques for Meso-scale Devices: Perspirable Skin Contract Number ...Skin 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-05-1-0202 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Patrick Kwon, Michigan State University 5d...PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Patrick Kwon Department of
The article reports the development of a new method of calculating electrical conditions in wire-duct electrostatic precipitation devices. The method, based on a numerical solution to the governing differential equations under a suitable choice of boundary conditions, accounts fo...
(Invited) Comprehensive Assessment of Oxide Memristors As Post-CMOS Memory and Logic Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, X.; Mamaluy, D.; Cyr, E. C.
As CMOS technology approaches the end of its scaling, oxide-based memristors have become one of the leading candidates for post-CMOS memory and logic devices. In orderTo facilitate the understanding of physical switching mechanisms and accelerate experimental development of memristors, we have developed a three-dimensional fully-coupled electrical and thermal transport model, which captures all the important processes that drive memristive switching and is applicable for simulating a wide range of memristors. Moreover, the model is applied to simulate the RESET and SET switching in a 3D filamentary TaOx memristor. Extensive simulations show that the switching dynamics of the bipolar device ismore » determined by thermally-activated field-dominant processes: with Joule heating, the raised temperature enables the movement of oxygen vacancies, and the field drift dominates the overall motion of vacancies. Simulated current-voltage hysteresis and device resistance profiles as a function of time and voltage during RESET and SET switching show good agreement with experimental measurement.« less
(Invited) Comprehensive Assessment of Oxide Memristors As Post-CMOS Memory and Logic Devices
Gao, X.; Mamaluy, D.; Cyr, E. C.; ...
2016-05-10
As CMOS technology approaches the end of its scaling, oxide-based memristors have become one of the leading candidates for post-CMOS memory and logic devices. In orderTo facilitate the understanding of physical switching mechanisms and accelerate experimental development of memristors, we have developed a three-dimensional fully-coupled electrical and thermal transport model, which captures all the important processes that drive memristive switching and is applicable for simulating a wide range of memristors. Moreover, the model is applied to simulate the RESET and SET switching in a 3D filamentary TaOx memristor. Extensive simulations show that the switching dynamics of the bipolar device ismore » determined by thermally-activated field-dominant processes: with Joule heating, the raised temperature enables the movement of oxygen vacancies, and the field drift dominates the overall motion of vacancies. Simulated current-voltage hysteresis and device resistance profiles as a function of time and voltage during RESET and SET switching show good agreement with experimental measurement.« less
Physical layer simulation study for the coexistence of WLAN standards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howlader, M. K.; Keiger, C.; Ewing, P. D.
This paper presents the results of a study on the performance of wireless local area network (WLAN) devices in the presence of interference from other wireless devices. To understand the coexistence of these wireless protocols, simplified physical-layer-system models were developed for the Bluetooth, Wireless Fidelity (WiFi), and Zigbee devices, all of which operate within the 2.4-GHz frequency band. The performances of these protocols were evaluated using Monte-Carlo simulations under various interference and channel conditions. The channel models considered were basic additive white Gaussian noise (AWGN), Rayleigh fading, and site-specific fading. The study also incorporated the basic modulation schemes, multiple accessmore » techniques, and channel allocations of the three protocols. This research is helping the U.S. Nuclear Regulatory Commission (NRC) understand the coexistence issues associated with deploying wireless devices and could prove useful in the development of a technical basis for guidance to address safety-related issues with the implementation of wireless systems in nuclear facilities. (authors)« less
Formally verifying human–automation interaction as part of a system model: limitations and tradeoffs
Bass, Ellen J.
2011-01-01
Both the human factors engineering (HFE) and formal methods communities are concerned with improving the design of safety-critical systems. This work discusses a modeling effort that leveraged methods from both fields to perform formal verification of human–automation interaction with a programmable device. This effort utilizes a system architecture composed of independent models of the human mission, human task behavior, human-device interface, device automation, and operational environment. The goals of this architecture were to allow HFE practitioners to perform formal verifications of realistic systems that depend on human–automation interaction in a reasonable amount of time using representative models, intuitive modeling constructs, and decoupled models of system components that could be easily changed to support multiple analyses. This framework was instantiated using a patient controlled analgesia pump in a two phased process where models in each phase were verified using a common set of specifications. The first phase focused on the mission, human-device interface, and device automation; and included a simple, unconstrained human task behavior model. The second phase replaced the unconstrained task model with one representing normative pump programming behavior. Because models produced in the first phase were too large for the model checker to verify, a number of model revisions were undertaken that affected the goals of the effort. While the use of human task behavior models in the second phase helped mitigate model complexity, verification time increased. Additional modeling tools and technological developments are necessary for model checking to become a more usable technique for HFE. PMID:21572930
Enhanced model of photovoltaic cell/panel/array considering the direct and reverse modes
NASA Astrophysics Data System (ADS)
Zegaoui, Abdallah; Boutoubat, Mohamed; Sawicki, Jean-Paul; Kessaissia, Fatma Zohra; Djahbar, Abdelkader; Aillerie, Michel
2018-05-01
This paper presents an improved generalized physical model for photovoltaic, PV cells, panels and arrays taking into account the behavior of these devices when considering their biasing existing in direct and reverse modes. Existing PV physical models generally are very efficient for simulating influence of irradiation changes on the short circuit current but they could not visualize the influences of temperature changes. The Enhanced Direct and Reverse Mode model, named EDRM model, enlightens the influence on the short-circuit current of both temperature and irradiation in the reverse mode of the considered PV devices. Due to its easy implementation, the proposed model can be a useful power tool for the development of new photovoltaic systems taking into account and in a more exhaustive manner, environmental conditions. The developed model was tested on a marketed PV panel and it gives a satisfactory results compared with parameters given in the manufacturer datasheet.
Surface photovoltage measurements and finite element modeling of SAW devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donnelly, Christine
2012-03-01
Over the course of a Summer 2011 internship with the MEMS department of Sandia National Laboratories, work was completed on two major projects. The first and main project of the summer involved taking surface photovoltage measurements for silicon samples, and using these measurements to determine surface recombination velocities and minority carrier diffusion lengths of the materials. The SPV method was used to fill gaps in the knowledge of material parameters that had not been determined successfully by other characterization methods. The second project involved creating a 2D finite element model of a surface acoustic wave device. A basic form ofmore » the model with the expected impedance response curve was completed, and the model is ready to be further developed for analysis of MEMS photonic resonator devices.« less
NASA Astrophysics Data System (ADS)
Wang, Guilian; Zhou, Xiaoqin; Ma, Peiqun; Wang, Rongqi; Meng, Guangwei; Yang, Xu
2018-01-01
The vibration assisted polishing has widely application fields because of higher machining frequency and better polishing quality, especially the polishing with the non-resonant mode that is regarded as a kind of promising polishing method. This paper reports a novel vibration assisted polishing device, consisting of the flexible hinge mechanism driven by the piezoelectric actuators, which is suitable for polishing planes or curve surfaces with slow curvature. Firstly, the generation methods of vibration trajectory are investigated for the same frequency and different frequency signals' inputs, respectively, and then the types of elliptic and Lissajous's vibration trajectories are generated respectively. Secondly, a flexural mechanism consisting of the right circular flexible hinges and the leaf springs is developed to produce two-dimensional vibration trajectory. Statics and dynamics investigating of this flexible mechanism are finished in detail. The analytical models about input and output compliances of the flexural mechanism are established according to the matrix-based compliance modeling, and the dynamic model of the flexural mechanism based on the Euler-Lagrange equation is also presented. The finite element model of the flexural mechanism was established to carry out the numerical simulation in order to testify the rationality of device design. Finally, the polishing experiment is carried out to prove the effectiveness of the vibration device. The experimental results show that this novel vibration assisted polishing device developed in this study can remove more effectively the cutting marks left by last process and obviously reduce the workpiece surface roughness.
NASA Technical Reports Server (NTRS)
Hunt, W. D.; Brennan, K. F.; Summers, C. J.; Cameron, Thomas P.
1996-01-01
This thesis addresses the acoustoelectric issues concerning the amplification of surface acoustic waves (SAWs) and the reflection of SAWs from slanted reflector gratings on GaAs, with application to a novel acoustic charge transport (ACT) device architecture. First a simple model of the SAWAMP was developed, which was subsequently used to define the epitaxially grown material structure necessary to provide simultaneously high resistance and high electron mobility. In addition, a segmented SAWAMP structure was explored with line widths on the order of an acoustic wavelength. This resulted in the demonstration of SAWAMPS with an order of magnitude less voltage and power requirements than previously reported devices. A two-dimensional model was developed to explain the performance of devices with charge confinement layers less then 0.5 mm, which was experimentally verified. This model was extended to predict a greatly increased gain from the addition of a ZnO overlay. These overlays were experimentally attempted, but no working devices were reported due to process incompatibilities. In addition to the SAWAMP research, the reflection of SAWs from slanted gratings on GaAs was also studied and experimentally determined reflection coefficients for both 45 deg grooves and Al stripes on GaAs have been reported for the first time. The SAWAMp and reflector gratings were combined to investigate the integrated ring oscillator for application to the proposed ACT device and design parameters for this device have been provided.
A description of the new 3D electron gun and collector modeling tool: MICHELLE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petillo, J.; Mondelli, A.; Krueger, W.
1999-07-01
A new 3D finite element gun and collector modeling code is under development at SAIC in collaboration with industrial partners and national laboratories. This development program has been designed specifically to address the shortcomings of current simulation and modeling tools. In particular, although there are 3D gun codes that exist today, their ability to address fine scale features is somewhat limited in 3D due to disparate length scales of certain classes of devices. Additionally, features like advanced emission rules, including thermionic Child's law and comprehensive secondary emission models also need attention. The program specifically targets problems classes including gridded-guns, sheet-beammore » guns, multi-beam devices, and anisotropic collectors. The presentation will provide an overview of the program objectives, the approach to be taken by the development team, and a status of the project.« less
NASA Technical Reports Server (NTRS)
Jagodnik, K. M.; Thompson, W. K.; Gallo, C. A.; DeWitt, J. K.; Funk, J. H.; Funk, N. W.; Perusek, G. P.; Sheehan, C. C.; Lewandowski, B. E.
2016-01-01
During long-duration spaceflight missions, astronauts exposure to microgravity without adequate countermeasures can result in losses of muscular strength and endurance, as well as loss of bone mass. As a countermeasure to this challenge, astronauts engage in resistive exercise during spaceflight to maintain their musculoskeletal function. The Hybrid Ultimate Lifting Kit (HULK) has been designed as a prototype exercise device for an exploration-class vehicle; the HULK features a much smaller footprint than previous devices such as the Advanced Resistive Exercise Device (ARED) on the International Space Station (ISS), which makes the HULK suitable for extended spaceflight missions in vehicles with limited volume. As current ISS exercise countermeasure equipment represents an improvement over previous generations of such devices, the ARED is being employed as a benchmark of functional performance. This project involves the development of a biomechanical model of the deadlift exercise, and is novel in that it is the first exercise analyzed in this context to include the upper limbs in the loading path, in contrast to the squat, single-leg squat, and heel raise exercises also being modeled by our team. OpenSim software is employed to develop these biomechanical models of humans performing resistive exercises to assess and improve the new exercise device designs. Analyses include determining differences in joint and muscle forces when using different loading strategies with the device, comparing and contrasting with the ARED benchmark, and determining whether the loading is sufficient to maintain musculoskeletal health. During data collection, the number of repetitions, load, cadence, stance, and grip width are controlled in order to facilitate comparisons between loading configurations. To date, data have been collected for two human subjects performing the deadlift exercise on the HULK device using two different loading conditions. Recorded data include motion capture, electromyography (EMG), ground reaction forces, device load cell data, photos and videos, and anthropometric data. Work is ongoing to perform biomechanical analyses including inverse kinematics and inverse dynamics to compare different versions of the deadlift model in order to determine which provides an appropriate level of detail to study this exercise. This work is supported by the National Space Biomedical Research Institute through NCC 9-58.
Accelerated Aging with Electrical Overstress and Prognostics for Power MOSFETs
NASA Technical Reports Server (NTRS)
Saha, Sankalita; Celaya, Jose Ramon; Vashchenko, Vladislav; Mahiuddin, Shompa; Goebel, Kai F.
2011-01-01
Power electronics play an increasingly important role in energy applications as part of their power converter circuits. Understanding the behavior of these devices, especially their failure modes as they age with nominal usage or sudden fault development is critical in ensuring efficiency. In this paper, a prognostics based health management of power MOSFETs undergoing accelerated aging through electrical overstress at the gate area is presented. Details of the accelerated aging methodology, modeling of the degradation process of the device and prognostics algorithm for prediction of the future state of health of the device are presented. Experiments with multiple devices demonstrate the performance of the model and the prognostics algorithm as well as the scope of application. Index Terms Power MOSFET, accelerated aging, prognostics
A computer model of the pediatric circulatory system for testing pediatric assist devices.
Giridharan, Guruprasad A; Koenig, Steven C; Mitchell, Michael; Gartner, Mark; Pantalos, George M
2007-01-01
Lumped parameter computer models of the pediatric circulatory systems for 1- and 4-year-olds were developed to predict hemodynamic responses to mechanical circulatory support devices. Model parameters, including resistance, compliance and volume, were adjusted to match hemodynamic pressure and flow waveforms, pressure-volume loops, percent systole, and heart rate of pediatric patients (n = 6) with normal ventricles. Left ventricular failure was modeled by adjusting the time-varying compliance curve of the left heart to produce aortic pressures and cardiac outputs consistent with those observed clinically. Models of pediatric continuous flow (CF) and pulsatile flow (PF) ventricular assist devices (VAD) and intraaortic balloon pump (IABP) were developed and integrated into the heart failure pediatric circulatory system models. Computer simulations were conducted to predict acute hemodynamic responses to PF and CF VAD operating at 50%, 75% and 100% support and 2.5 and 5 ml IABP operating at 1:1 and 1:2 support modes. The computer model of the pediatric circulation matched the human pediatric hemodynamic waveform morphology to within 90% and cardiac function parameters with 95% accuracy. The computer model predicted PF VAD and IABP restore aortic pressure pulsatility and variation in end-systolic and end-diastolic volume, but diminish with increasing CF VAD support.
Wen, Lei; Li, Feng; Cheng, Hui-Ming
2016-06-01
Flexible electrochemical energy storage (FEES) devices have received great attention as a promising power source for the emerging field of flexible and wearable electronic devices. Carbon nanotubes (CNTs) and graphene have many excellent properties that make them ideally suited for use in FEES devices. A brief definition of FEES devices is provided, followed by a detailed overview of various structural models for achieving different FEES devices. The latest research developments on the use of CNTs and graphene in FEES devices are summarized. Finally, future prospects and important research directions in the areas of CNT- and graphene-based flexible electrode synthesis and device integration are discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Biomedical devices and systems security.
Arney, David; Venkatasubramanian, Krishna K; Sokolsky, Oleg; Lee, Insup
2011-01-01
Medical devices have been changing in revolutionary ways in recent years. One is in their form-factor. Increasing miniaturization of medical devices has made them wearable, light-weight, and ubiquitous; they are available for continuous care and not restricted to clinical settings. Further, devices are increasingly becoming connected to external entities through both wired and wireless channels. These two developments have tremendous potential to make healthcare accessible to everyone and reduce costs. However, they also provide increased opportunity for technology savvy criminals to exploit them for fun and profit. Consequently, it is essential to consider medical device security issues. In this paper, we focused on the challenges involved in securing networked medical devices. We provide an overview of a generic networked medical device system model, a comprehensive attack and adversary model, and describe some of the challenges present in building security solutions to manage the attacks. Finally, we provide an overview of two areas of research that we believe will be crucial for making medical device system security solutions more viable in the long run: forensic data logging, and building security assurance cases.
Sims, A J; Reay, C A; Bousfield, D R; Menes, J A; Murray, A
2005-01-01
To measure the repeatability and pressure pulse envelope of simulators used for testing oscillometric non-invasive blood pressure (NIBP) devices; to study the effect of different envelopes on NIBP devices, and to measure the difference between NIBP devices due to different oscillometric algorithms. Three different models of NIBP simulator and 18 different patient monitors with NIBP function were studied. We developed a pressure measurement system (accuracy 0.048?mmHg) to measure the repeatability of simulators. The effect of changing the envelope was measured by using three simulators with one NIBP device. Differences between 18 NIBP devices were measured using one simulator at seven blood pressure settings. Simulators generate repeatable pressure pulse envelopes (< 0.2 mmHg) but the magnitude and shape depends on the model of simulator. Oscillometric NIBP devices are highly repeatable (< 2 mmHg) when presented with a repeatable pressure pulse envelope, but different devices employ different algorithms and give different results. For a simulated standard blood pressure setting of 120/80 mmHg, estimates of systolic pressure ranged from 112.6 to 126.6 mmHg (sd of 3.0 mmHg), and diastolic pressure ranged from 74.8 to 86.9 mmHg (sd of 3.5 mmHg). Simulators and NIBP devices are sufficiently repeatable for clinical use, but further systematic clinical studies are required to better characterize the pressure pulse envelope for different patient groups.
Development library of finite elements for computer-aided design system of reed sensors
NASA Astrophysics Data System (ADS)
Kozlov, A. S.; Shmakov, N. A.; Tkalich, V. L.; Labkovskaia, R. I.; Kalinkina, M. E.; Pirozhnikova, O. I.
2018-05-01
The article is devoted to the development of a modern highly reliable element base of devices for security and fire alarm systems, in particular, to the improvement of the quality of contact cores (reed and membrane) of reed sensors. Modeling of elastic sensitive elements uses quadrangular elements of plates and shells, considered in the system of curvilinear orthogonal coordinates. The developed mathematical models and the formed finite element library are designed for systems of automated design of reed switch detectors to create competitive devices alarms. The finite element library is used for the automated system production of reed switch detectors both in series production and in the implementation of individual orders.
NASA Astrophysics Data System (ADS)
Choirunnisak; Ibrahim, M.; Yuliani
2018-01-01
The purpose of this research was to develop a guided inquiry-based learning devices on photosynthesis and respiration matter that are feasible (valid, practical, and effective) to train students’ science literacy. This research used 4D development model and tested on 15 students of biology education 2016 the State University of Surabaya with using one group pretest-posttest design. Learning devices developed include (a) Semester Lesson Plan (b) Lecture Schedule, (c) Student Activity Sheet, (d) Student Textbook, and (e) testability of science literacy. Research data obtained through validation method, observation, test, and questionnaire. The results were analyzed descriptively quantitative and qualitative. The ability of science literacy was analyzed by n-gain. The results of this research showed that (a) learning devices that developed was categorically very valid, (b) learning activities performed very well, (c) student’s science literacy skills improved that was a category as moderate, and (d) students responses were very positively to the learning that already held. Based on the results of the analysis and discussion, it is concluded that the development of guided inquiry-based learning devices on photosynthesis and respiration matter was feasible to train students literacy science skills.
Calculation for simulation of archery goal value using a web camera and ultrasonic sensor
NASA Astrophysics Data System (ADS)
Rusjdi, Darma; Abdurrasyid, Wulandari, Dewi Arianti
2017-08-01
Development of the device simulator digital indoor archery-based embedded systems as a solution to the limitations of the field or open space is adequate, especially in big cities. Development of the device requires simulations to calculate the value of achieving the target based on the approach defined by the parabolic motion variable initial velocity and direction of motion of the arrow reaches the target. The simulator device should be complemented with an initial velocity measuring device using ultrasonic sensors and measuring direction of the target using a digital camera. The methodology uses research and development of application software from modeling and simulation approach. The research objective to create simulation applications calculating the value of the achievement of the target arrows. Benefits as a preliminary stage for the development of the simulator device of archery. Implementation of calculating the value of the target arrows into the application program generates a simulation game of archery that can be used as a reference development of the digital archery simulator in a room with embedded systems using ultrasonic sensors and web cameras. Applications developed with the simulation calculation comparing the outer radius of the circle produced a camera from a distance of three meters.
NASA Astrophysics Data System (ADS)
Vos, Jeffrey A.; Livengood, Ryan H.; Jessop, Morris; Coad, James E.
2011-03-01
Novel non-ablative hyperthermic medical devices are currently being developed, in association with cryogen surface cooling, to rejuvenate tissues without collagen scarring. These devices have been designed to remodel skin, manage urinary stress incontinence, and more recently, treat vaginal laxity. In contrast to the thermal injury and reparative healing associated with higher energy ablation systems, these lower energy non-ablative systems are designed to subtly modify the collagen, stimulate the fibroblasts, and maintain a functional tissue architecture that subsequently promotes tissue rejuvenation and restoration. While these devices have primarily relied on clinical outcome questionnaires and satisfaction surveys to establish efficacy, a physiologic explanation for the induced tissue changes and tightening has not been well documented. Recent histology studies, using the Viveve ovine vaginal treatment model, have identified changes that propose both a mechanism of action and a tissue remodeling timeline for such non-ablative hyperthermic devices. The Viveve model results are consistent with subtle connective tissue changes leading to fibroblast stimulation and subsequent collagen replacement and augmentation. Unlike tissue ablation devices that cause thermal necrosis, these non-ablative devices renew the targeted tissue without dense collagenous scarring over a period of 3 or more months. The spectrum of histologic findings, as illustrated in the Viveve ovine vaginal model, further support the previously documented safety and efficacy profiles for low-dose non-ablative hyperthermic devices that rejuvenate and tighten submucosal tissues.
Numerical investigations of MRI RF field induced heating for external fixation devices
2013-01-01
Background The magnetic resonance imaging (MRI) radio frequency (RF) field induced heating on external fixation devices can be very high in the vicinity of device screws. Such induced RF heating is related to device constructs, device placements, as well as the device insertion depth into human subjects. In this study, computational modeling is performed to determine factors associated with such induced heating. Methods Numerical modeling, based on the finite-difference time-domain (FDTD) method, is used to evaluate the temperature rises near external device screw tips inside the ASTM phantom for both 1.5-T and 3-T MRI systems. The modeling approach consists of 1) the development of RF coils for 1.5-T and 3-T, 2) the electromagnetic simulations of energy deposition near the screw tips of external fixation devices, and 3) the thermal simulations of temperature rises near the tips of these devices. Results It is found that changing insertion depth and screw spacing could largely affect the heating of these devices. In 1.5-T MRI system, smaller insertion depth and larger pin spacing will lead to higher temperature rise. However, for 3-T MRI system, the relation is not very clear when insertion depth is larger than 5 cm or when pin spacing became larger than 20 cm. The effect of connection bar material on device heating is also studied and the heating mechanism of the device is analysed. Conclusions Numerical simulation is used to study RF heating for external fixation devices in both 1.5-T and 3-T MRI coils. Typically, shallower insertion depth and larger pin spacing with conductive bar lead to higher RF heating. The heating mechanism is explained using induced current along the device and power decay inside ASTM phantom. PMID:23394173
Levelized cost of energy for a Backward Bent Duct Buoy
Bull, Diana; Jenne, D. Scott; Smith, Christopher S.; ...
2016-07-18
The Reference Model Project, supported by the U.S. Department of Energy, was developed to provide publicly available technical and economic benchmarks for a variety of marine energy converters. The methodology to achieve these benchmarks is to develop public domain designs that incorporate power performance estimates, structural models, anchor and mooring designs, power conversion chain designs, and estimates of the operations and maintenance, installation, and environmental permitting required. The reference model designs are intended to be conservative, robust, and experimentally verified. The Backward Bent Duct Buoy (BBDB) presented in this paper is one of three wave energy conversion devices studied withinmore » the Reference Model Project. Furthermore, comprehensive modeling of the BBDB in a Northern California climate has enabled a full levelized cost of energy (LCOE) analysis to be completed on this device.« less
Levelized cost of energy for a Backward Bent Duct Buoy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bull, Diana; Jenne, D. Scott; Smith, Christopher S.
2016-12-01
The Reference Model Project, supported by the U.S. Department of Energy, was developed to provide publically available technical and economic benchmarks for a variety of marine energy converters. The methodology to achieve these benchmarks is to develop public domain designs that incorporate power performance estimates, structural models, anchor and mooring designs, power conversion chain designs, and estimates of the operations and maintenance, installation, and environmental permitting required. The reference model designs are intended to be conservative, robust, and experimentally verified. The Backward Bent Duct Buoy (BBDB) presented in this paper is one of three wave energy conversion devices studied withinmore » the Reference Model Project. Comprehensive modeling of the BBDB in a Northern California climate has enabled a full levelized cost of energy (LCOE) analysis to be completed on this device.« less
He, Wei; Yurkevich, Igor V; Canham, Leigh T; Loni, Armando; Kaplan, Andrey
2014-11-03
We develop an analytical model based on the WKB approach to evaluate the experimental results of the femtosecond pump-probe measurements of the transmittance and reflectance obtained on thin membranes of porous silicon. The model allows us to retrieve a pump-induced nonuniform complex dielectric function change along the membrane depth. We show that the model fitting to the experimental data requires a minimal number of fitting parameters while still complying with the restriction imposed by the Kramers-Kronig relation. The developed model has a broad range of applications for experimental data analysis and practical implementation in the design of devices involving a spatially nonuniform dielectric function, such as in biosensing, wave-guiding, solar energy harvesting, photonics and electro-optical devices.
Reed, Shelby D.; Shea, Alisa M.
2007-01-01
Objective To evaluate the impact of regulatory scenarios on the financial viability of medical device companies. Design We developed a model to calculate the expected net present value of a hypothetical product throughout preclinical development, clinical testing, regulatory approval, and postmarketing. We tested 3 scenarios: (1) the current regulatory environment; (2) a scenario in which medical devices are subject to the same evidence standards required for pharmaceuticals; and (3) a scenario consistent with the Coverage with Evidence Development: Coverage with Study Participation (CSP) policy proposed by the Centers for Medicare and Medicaid Services, whereby Medicare will pay for beneficiaries to receive new devices that are not currently determined to be “reasonable and necessary” if the patients participate in clinical studies or registries. Measurements and Main results When applying assumptions consistent with the implantable cardioverter-defibrillator market, the net present value at the start of development was an estimated $553 million in the current regulatory environment, $322 million in the pharmaceutical scenario, and $403 million in the CSP scenario. Sensitivity analyses showed that the device industry would likely be profitable in all 3 scenarios over a range of assumptions. Conclusions The environment in which the medical device industry operates is financially attractive. Furthermore, when compared with the alternative of applying the same evidence standards for pharmaceuticals to medical devices, the CSP policy offers improved financial incentives for medical device companies. PMID:18095045
An experimental approach towards the development of an in vitro cortical-thalamic co-culture model.
Kanagasabapathi, Thirukumaran T; Massobrio, Paolo; Tedesco, Mariateresa; Martinoia, Sergio; Wadman, Wytse J; Decré, Michel M J
2011-01-01
In this paper, we propose an experimental approach to develop an in vitro dissociated cortical-thalamic co-culture model using a dual compartment neurofluidic device. The device has two compartments separated by 10 μm wide and 3 μm high microchannels. The microchannels provide a physical isolation of neurons allowing only neurites to grow between the compartments. Long-term viable co-culture was maintained in the compartmented device, neurite growth through the microchannels was verified using immunofluorescence staining, and electrophysiological recordings from the co-culture system was investigated. Preliminary analysis of spontaneous activities from the co-culture shows a distinctively different firing pattern associated with cultures of individual cell types and further analysis is proposed for a deeper understanding of the dynamics involved in the network connectivity in such a co-culture system.
Probabilistic Multi-Sensor Fusion Based Indoor Positioning System on a Mobile Device
He, Xiang; Aloi, Daniel N.; Li, Jia
2015-01-01
Nowadays, smart mobile devices include more and more sensors on board, such as motion sensors (accelerometer, gyroscope, magnetometer), wireless signal strength indicators (WiFi, Bluetooth, Zigbee), and visual sensors (LiDAR, camera). People have developed various indoor positioning techniques based on these sensors. In this paper, the probabilistic fusion of multiple sensors is investigated in a hidden Markov model (HMM) framework for mobile-device user-positioning. We propose a graph structure to store the model constructed by multiple sensors during the offline training phase, and a multimodal particle filter to seamlessly fuse the information during the online tracking phase. Based on our algorithm, we develop an indoor positioning system on the iOS platform. The experiments carried out in a typical indoor environment have shown promising results for our proposed algorithm and system design. PMID:26694387
Probabilistic Multi-Sensor Fusion Based Indoor Positioning System on a Mobile Device.
He, Xiang; Aloi, Daniel N; Li, Jia
2015-12-14
Nowadays, smart mobile devices include more and more sensors on board, such as motion sensors (accelerometer, gyroscope, magnetometer), wireless signal strength indicators (WiFi, Bluetooth, Zigbee), and visual sensors (LiDAR, camera). People have developed various indoor positioning techniques based on these sensors. In this paper, the probabilistic fusion of multiple sensors is investigated in a hidden Markov model (HMM) framework for mobile-device user-positioning. We propose a graph structure to store the model constructed by multiple sensors during the offline training phase, and a multimodal particle filter to seamlessly fuse the information during the online tracking phase. Based on our algorithm, we develop an indoor positioning system on the iOS platform. The experiments carried out in a typical indoor environment have shown promising results for our proposed algorithm and system design.
Logic-centered architecture for ubiquitous health monitoring.
Lewandowski, Jacek; Arochena, Hisbel E; Naguib, Raouf N G; Chao, Kuo-Ming; Garcia-Perez, Alexeis
2014-09-01
One of the key points to maintain and boost research and development in the area of smart wearable systems (SWS) is the development of integrated architectures for intelligent services, as well as wearable systems and devices for health and wellness management. This paper presents such a generic architecture for multiparametric, intelligent and ubiquitous wireless sensing platforms. It is a transparent, smartphone-based sensing framework with customizable wireless interfaces and plug'n'play capability to easily interconnect third party sensor devices. It caters to wireless body, personal, and near-me area networks. A pivotal part of the platform is the integrated inference engine/runtime environment that allows the mobile device to serve as a user-adaptable personal health assistant. The novelty of this system lays in a rapid visual development and remote deployment model. The complementary visual Inference Engine Editor that comes with the package enables artificial intelligence specialists, alongside with medical experts, to build data processing models by assembling different components and instantly deploying them (remotely) on patient mobile devices. In this paper, the new logic-centered software architecture for ubiquitous health monitoring applications is described, followed by a discussion as to how it helps to shift focus from software and hardware development, to medical and health process-centered design of new SWS applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michalicek, M.A.; Comtois, J.H.; Barron, C.C.
This paper describes the design and characterization of several types of micromirror devices to include process capabilities, device modeling, and test data resulting in deflection versus applied potential curves. These micromirror devices are the first to be fabricated in the state-of-the-art four-level planarized polysilicon process available at Sandia National Laboratories known as the Sandia Ultra-planar Multi-level MEMS Technology (SUMMiT). This enabling process permits the development of micromirror devices with near-ideal characteristics which have previously been unrealizable in standard three-layer polysilicon processes. This paper describes such characteristics as elevated address electrodes, individual address wiring beneath the device, planarized mirror surfaces usingmore » Chemical Mechanical Polishing (CMP), unique post-process metallization, and the best active surface area to date. This paper presents the design, fabrication, modeling, and characterization of several variations of Flexure-Beam (FBMD) and Axial-Rotation Micromirror Devices (ARMD). The released devices are first metallized using a standard sputtering technique relying on metallization guards and masks that are fabricated next to the devices. Such guards are shown to enable the sharing of bond pads between numerous arrays of micromirrors in order to maximize the number of on-chip test arrays. The devices are modeled and then empirically characterized using a laser interferometer setup located at the Air Force Institute of Technology (AFIT) at Wright-Patterson AFB in Dayton, Ohio. Unique design considerations for these devices and the process are also discussed.« less
Reduced Order Modeling of Combustion Instability in a Gas Turbine Model Combustor
NASA Astrophysics Data System (ADS)
Arnold-Medabalimi, Nicholas; Huang, Cheng; Duraisamy, Karthik
2017-11-01
Hydrocarbon fuel based propulsion systems are expected to remain relevant in aerospace vehicles for the foreseeable future. Design of these devices is complicated by combustion instabilities. The capability to model and predict these effects at reduced computational cost is a requirement for both design and control of these devices. This work focuses on computational studies on a dual swirl model gas turbine combustor in the context of reduced order model development. Full fidelity simulations are performed utilizing URANS and Hybrid RANS-LES with finite rate chemistry. Following this, data decomposition techniques are used to extract a reduced basis representation of the unsteady flow field. These bases are first used to identify sensor locations to guide experimental interrogations and controller feedback. Following this, initial results on developing a control-oriented reduced order model (ROM) will be presented. The capability of the ROM will be further assessed based on different operating conditions and geometric configurations.
Suzuki, Yuma; Shimizu, Tetsuhide; Yang, Ming
2017-01-01
The quantitative evaluation of the biomolecules transport with multi-physics in nano/micro scale is demanded in order to optimize the design of microfluidics device for the biomolecules detection with high detection sensitivity and rapid diagnosis. This paper aimed to investigate the effectivity of the computational simulation using the numerical model of the biomolecules transport with multi-physics near a microchannel surface on the development of biomolecules-detection devices. The biomolecules transport with fluid drag force, electric double layer (EDL) force, and van der Waals force was modeled by Newtonian Equation of motion. The model validity was verified in the influence of ion strength and flow velocity on biomolecules distribution near the surface compared with experimental results of previous studies. The influence of acting forces on its distribution near the surface was investigated by the simulation. The trend of its distribution to ion strength and flow velocity was agreement with the experimental result by the combination of all acting forces. Furthermore, EDL force dominantly influenced its distribution near its surface compared with fluid drag force except for the case of high velocity and low ion strength. The knowledges from the simulation might be useful for the design of biomolecules-detection devices and the simulation can be expected to be applied on its development as the design tool for high detection sensitivity and rapid diagnosis in the future.
Early decision-analytic modeling - a case study on vascular closure devices.
Brandes, Alina; Sinner, Moritz F; Kääb, Stefan; Rogowski, Wolf H
2015-10-27
As economic considerations become more important in healthcare reimbursement, decisions about the further development of medical innovations need to take into account not only medical need and potential clinical effectiveness, but also cost-effectiveness. Already early in the innovation process economic evaluations can support decisions on development in specific indications or patient groups by anticipating future reimbursement and implementation decisions. One potential concept for early assessment is value-based pricing. The objective is to assess the feasibility of value-based pricing and product design for a hypothetical vascular closure device in the pre-clinical stage which aims at decreasing bleeding events. A deterministic decision-analytic model was developed to estimate the cost-effectiveness of established vascular closure devices from the perspective of the Statutory Health Insurance system. To identify early benchmarks for pricing and product design, three strategies of determining the product's value are explored: 1) savings from complications avoided by the new device; 2) valuation of the avoided complications based on an assumed willingness-to-pay-threshold (the efficiency frontier approach); 3) value associated with modifying the care pathways within which the device would be applied. Use of established vascular closure devices is dominated by manual compression. The hypothetical vascular closure device reduces overall complication rates at higher costs than manual compression. Maximum cost savings of only about €4 per catheterization could be realized by applying the hypothetical device. Extrapolation of an efficiency frontier is only possible for one subgroup where vascular closure devices are not a dominated strategy. Modifying care in terms of same-day discharge of patients treated with vascular closure devices could result in cost savings of €400-600 per catheterization. It was partially feasible to calculate value-based prices for the novel closure device which can be used to inform product design. However, modifying the care pathway may generate much more value from the payers' perspective than modifying the device per se. Manufacturers should thus explore the feasibility of combining reimbursement of their product with arrangements that make same-day discharge attractive also for hospitals. Due to the early nature of the product, the results are afflicted with substantial uncertainty.
Annular Momentum Control Device (AMCD). Volume 1: Laboratory model development
NASA Technical Reports Server (NTRS)
1975-01-01
The annular momentum control device (AMCD) a thin hoop-like wheel with neither shaft nor spokes is described. The wheel floats in a magnetic field and can be rotated by a segmented motor. Potential advantages of such a wheel are low weight, configuration flexibility, a wheel that stiffens with increased speed, vibration isolation, and increased reliability. The analysis, design, fabrication, and testing is described of the laboratory model of the AMCD.
Neinstein, Aaron; Wong, Jenise; Look, Howard; Arbiter, Brandon; Quirk, Kent; McCanne, Steve; Sun, Yao; Blum, Michael; Adi, Saleh
2016-03-01
Develop a device-agnostic cloud platform to host diabetes device data and catalyze an ecosystem of software innovation for type 1 diabetes (T1D) management. An interdisciplinary team decided to establish a nonprofit company, Tidepool, and build open-source software. Through a user-centered design process, the authors created a software platform, the Tidepool Platform, to upload and host T1D device data in an integrated, device-agnostic fashion, as well as an application ("app"), Blip, to visualize the data. Tidepool's software utilizes the principles of modular components, modern web design including REST APIs and JavaScript, cloud computing, agile development methodology, and robust privacy and security. By consolidating the currently scattered and siloed T1D device data ecosystem into one open platform, Tidepool can improve access to the data and enable new possibilities and efficiencies in T1D clinical care and research. The Tidepool Platform decouples diabetes apps from diabetes devices, allowing software developers to build innovative apps without requiring them to design a unique back-end (e.g., database and security) or unique ways of ingesting device data. It allows people with T1D to choose to use any preferred app regardless of which device(s) they use. The authors believe that the Tidepool Platform can solve two current problems in the T1D device landscape: 1) limited access to T1D device data and 2) poor interoperability of data from different devices. If proven effective, Tidepool's open source, cloud model for health data interoperability is applicable to other healthcare use cases. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association.
Wong, Jenise; Look, Howard; Arbiter, Brandon; Quirk, Kent; McCanne, Steve; Sun, Yao; Blum, Michael; Adi, Saleh
2016-01-01
Objective Develop a device-agnostic cloud platform to host diabetes device data and catalyze an ecosystem of software innovation for type 1 diabetes (T1D) management. Materials and Methods An interdisciplinary team decided to establish a nonprofit company, Tidepool, and build open-source software. Results Through a user-centered design process, the authors created a software platform, the Tidepool Platform, to upload and host T1D device data in an integrated, device-agnostic fashion, as well as an application (“app”), Blip, to visualize the data. Tidepool’s software utilizes the principles of modular components, modern web design including REST APIs and JavaScript, cloud computing, agile development methodology, and robust privacy and security. Discussion By consolidating the currently scattered and siloed T1D device data ecosystem into one open platform, Tidepool can improve access to the data and enable new possibilities and efficiencies in T1D clinical care and research. The Tidepool Platform decouples diabetes apps from diabetes devices, allowing software developers to build innovative apps without requiring them to design a unique back-end (e.g., database and security) or unique ways of ingesting device data. It allows people with T1D to choose to use any preferred app regardless of which device(s) they use. Conclusion The authors believe that the Tidepool Platform can solve two current problems in the T1D device landscape: 1) limited access to T1D device data and 2) poor interoperability of data from different devices. If proven effective, Tidepool’s open source, cloud model for health data interoperability is applicable to other healthcare use cases. PMID:26338218
Zhu, Shidong; Luo, Lin; Yang, Bibo; Li, Xinghui; Wang, Xiaohao
2017-12-01
Ventricular assist devices (LVADs) are increasingly recognized for supporting blood circulation in heart failure patients who are non-transplant eligible. Because of its volume, the traditional pulsatile device is not easy to implant intracorporeally. Continuous flow LVADs (CF-LVADs) reduce arterial pulsatility and only offer continuous flow, which is different from physiological flow, and may cause long-term complications in the cardiovascular system. The aim of this study was to design a new pulsatile assist device that overcomes this disadvantage, and to test this device in the cardiovascular system. Firstly, the input and output characteristics of the new device were tested in a simple cardiovascular mock system. A detailed mathematical model was established by fitting the experimental data. Secondly, the model was tested in four pathological cases, and was simulated and coupled with a fifth-order cardiovascular system and a new device model using Matlab software. Using assistance of the new device, we demonstrated that the left ventricle pressure, aortic pressure, and aortic flow of heart failure patients improved to the levels of a healthy individual. Especially, in state IV level heart failure patients, the systolic blood pressure increased from 81.34 mmHg to 132.1 mmHg, whereas the diastolic blood pressure increased from 54.28 mmHg to 78.7 mmHg. Cardiac output increased from 3.21 L/min to 5.16 L/min. The newly-developed assist device not only provided a physiological flow that was similar to healthy individuals, but also effectively improved the ability of the pathological ventricular volume. Finally, the effects of the new device on other hemodynamic parameters are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birkmire, R.W.; Phillips, J.E.; Shafarman, W.N.
2000-08-25
This report describes results achieved during phase 1 of a three-phase subcontract to develop and understand thin-film solar cell technology associated to CuInSe{sub 2} and related alloys, a-Si and its alloys, and CdTe. Modules based on all these thin films are promising candidates to meet DOE long-range efficiency, reliability, and manufacturing cost goals. The critical issues being addressed under this program are intended to provide the science and engineering basis for the development of viable commercial processes and to improve module performance. The generic research issues addressed are: (1) quantitative analysis of processing steps to provide information for efficient commercial-scalemore » equipment design and operation; (2) device characterization relating the device performance to materials properties and process conditions; (3) development of alloy materials with different bandgaps to allow improved device structures for stability and compatibility with module design; (4) development of improved window/heterojunction layers and contacts to improve device performance and reliability; and (5) evaluation of cell stability with respect to illumination, temperature, and ambient and with respect to device structure and module encapsulation.« less
FDA Benchmark Medical Device Flow Models for CFD Validation.
Malinauskas, Richard A; Hariharan, Prasanna; Day, Steven W; Herbertson, Luke H; Buesen, Martin; Steinseifer, Ulrich; Aycock, Kenneth I; Good, Bryan C; Deutsch, Steven; Manning, Keefe B; Craven, Brent A
Computational fluid dynamics (CFD) is increasingly being used to develop blood-contacting medical devices. However, the lack of standardized methods for validating CFD simulations and blood damage predictions limits its use in the safety evaluation of devices. Through a U.S. Food and Drug Administration (FDA) initiative, two benchmark models of typical device flow geometries (nozzle and centrifugal blood pump) were tested in multiple laboratories to provide experimental velocities, pressures, and hemolysis data to support CFD validation. In addition, computational simulations were performed by more than 20 independent groups to assess current CFD techniques. The primary goal of this article is to summarize the FDA initiative and to report recent findings from the benchmark blood pump model study. Discrepancies between CFD predicted velocities and those measured using particle image velocimetry most often occurred in regions of flow separation (e.g., downstream of the nozzle throat, and in the pump exit diffuser). For the six pump test conditions, 57% of the CFD predictions of pressure head were within one standard deviation of the mean measured values. Notably, only 37% of all CFD submissions contained hemolysis predictions. This project aided in the development of an FDA Guidance Document on factors to consider when reporting computational studies in medical device regulatory submissions. There is an accompanying podcast available for this article. Please visit the journal's Web site (www.asaiojournal.com) to listen.
Accurate analytical modeling of junctionless DG-MOSFET by green's function approach
NASA Astrophysics Data System (ADS)
Nandi, Ashutosh; Pandey, Nilesh
2017-11-01
An accurate analytical model of Junctionless double gate MOSFET (JL-DG-MOSFET) in the subthreshold regime of operation is developed in this work using green's function approach. The approach considers 2-D mixed boundary conditions and multi-zone techniques to provide an exact analytical solution to 2-D Poisson's equation. The Fourier coefficients are calculated correctly to derive the potential equations that are further used to model the channel current and subthreshold slope of the device. The threshold voltage roll-off is computed from parallel shifts of Ids-Vgs curves between the long channel and short-channel devices. It is observed that the green's function approach of solving 2-D Poisson's equation in both oxide and silicon region can accurately predict channel potential, subthreshold current (Isub), threshold voltage (Vt) roll-off and subthreshold slope (SS) of both long & short channel devices designed with different doping concentrations and higher as well as lower tsi/tox ratio. All the analytical model results are verified through comparisons with TCAD Sentaurus simulation results. It is observed that the model matches quite well with TCAD device simulations.
A Model for Predicting Thermoelectric Properties of Bi2Te3
NASA Technical Reports Server (NTRS)
Lee, Seungwon; VonAllmen, Paul
2009-01-01
A parameterized orthogonal tight-binding mathematical model of the quantum electronic structure of the bismuth telluride molecule has been devised for use in conjunction with a semiclassical transport model in predicting the thermoelectric properties of doped bismuth telluride. This model is expected to be useful in designing and analyzing Bi2Te3 thermoelectric devices, including ones that contain such nano - structures as quantum wells and wires. In addition, the understanding gained in the use of this model can be expected to lead to the development of better models that could be useful for developing other thermoelectric materials and devices having enhanced thermoelectric properties. Bi2Te3 is one of the best bulk thermoelectric materials and is widely used in commercial thermoelectric devices. Most prior theoretical studies of the thermoelectric properties of Bi2Te3 have involved either continuum models or ab-initio models. Continuum models are computationally very efficient, but do not account for atomic-level effects. Ab-initio models are atomistic by definition, but do not scale well in that computation times increase excessively with increasing numbers of atoms. The present tight-binding model bridges the gap between the well-scalable but non-atomistic continuum models and the atomistic but poorly scalable ab-initio models: The present tight-binding model is atomistic, yet also computationally efficient because of the reduced (relative to an ab-initio model) number of basis orbitals and flexible parameterization of the Hamiltonian.
Coupled Modeling of Hydrodynamics and Sound in Coastal Ocean for Renewable Ocean Energy Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Wen; Jung, Ki Won; Yang, Zhaoqing
An underwater sound model was developed to simulate sound propagation from marine and hydrokinetic energy (MHK) devices or offshore wind (OSW) energy platforms. Finite difference methods were developed to solve the 3D Helmholtz equation for sound propagation in the coastal environment. A 3D sparse matrix solver with complex coefficients was formed for solving the resulting acoustic pressure field. The Complex Shifted Laplacian Preconditioner (CSLP) method was applied to solve the matrix system iteratively with MPI parallelization using a high performance cluster. The sound model was then coupled with the Finite Volume Community Ocean Model (FVCOM) for simulating sound propagation generatedmore » by human activities, such as construction of OSW turbines or tidal stream turbine operations, in a range-dependent setting. As a proof of concept, initial validation of the solver is presented for two coastal wedge problems. This sound model can be useful for evaluating impacts on marine mammals due to deployment of MHK devices and OSW energy platforms.« less
A Simple Memristor Model for Circuit Simulations
NASA Astrophysics Data System (ADS)
Fullerton, Farrah-Amoy; Joe, Aaleyah; Gergel-Hackett, Nadine; Department of Chemistry; Physics Team
This work describes the development of a model for the memristor, a novel nanoelectronic technology. The model was designed to replicate the real-world electrical characteristics of previously fabricated memristor devices, but was constructed with basic circuit elements using a free widely available circuit simulator, LT Spice. The modeled memrsistors were then used to construct a circuit that performs material implication. Material implication is a digital logic that can be used to perform all of the same basic functions as traditional CMOS gates, but with fewer nanoelectronic devices. This memristor-based digital logic could enable memristors' use in new paradigms of computer architecture with advantages in size, speed, and power over traditional computing circuits. Additionally, the ability to model the real-world electrical characteristics of memristors in a free circuit simulator using its standard library of elements could enable not only the development of memristor material implication, but also the development of a virtually unlimited array of other memristor-based circuits.
Analysis of dynamical response of air blast loaded safety device
NASA Astrophysics Data System (ADS)
Tropkin, S. N.; Tlyasheva, R. R.; Bayazitov, M. I.; Kuzeev, I. R.
2018-03-01
Equipment of many oil and gas processing plants in the Russian Federation is considerably worn-out. This causes the decrease of reliability and durability of equipment and rises the accident rate. An air explosion is the one of the most dangerous cases for plants in oil and gas industry, usually caused by uncontrolled emission and inflammation of oil products. Air explosion can lead to significant danger for life and health of plant staff, so it necessitates safety device usage. A new type of a safety device is designed. Numerical simulation is necessary to analyse design parameters and performance of the safety device, subjected to air blast loading. Coupled fluid-structure interaction analysis is performed to determine strength of the protective device and its performance. The coupled Euler-Lagrange method, allowable in Abaqus by SIMULIA, is selected as the most appropriate analysis tool to study blast wave interaction with the safety device. Absorption factors of blast wave are evaluated for the safety device. This factors allow one to assess efficiency of the safety device, and its main structural component – dampener. Usage of CEL allowed one to model fast and accurately the dampener behaviour, and to develop the parametric model to determine safety device sizes.
ERIC Educational Resources Information Center
Derlina; Sabani; Mihardi, Satria
2015-01-01
Education Research in Indonesia has begun to lead to the development of character education and is no longer fixated on the outcomes of cognitive learning. This study purposed to produce character education based general physics learning model (CEBGP Learning Model) and with valid, effective and practical peripheral devices to improve character…
HEADROOM APPROACH TO DEVICE DEVELOPMENT: CURRENT AND FUTURE DIRECTIONS.
Girling, Alan; Lilford, Richard; Cole, Amanda; Young, Terry
2015-01-01
The headroom approach to medical device development relies on the estimation of a value-based price ceiling at different stages of the development cycle. Such price-ceilings delineate the commercial opportunities for new products in many healthcare systems. We apply a simple model to obtain critical business information as the product proceeds along a development pathway, and indicate some future directions for the development of the approach. Health economic modelling in the supply-side development cycle for new products. The headroom can be used: initially as a 'reality check' on the viability of the device in the healthcare market; to support product development decisions using a real options approach; and to contribute to a pricing policy which respects uncertainties in the reimbursement outlook. The headroom provides a unifying thread for business decisions along the development cycle for a new product. Over the course of the cycle attitudes to uncertainty will evolve, based on the timing and manner in which new information accrues. Within this framework the developmental value of new information can justify the costs of clinical trials and other evidence-gathering activities. Headroom can function as a simple shared tool to parties in commercial negotiations around individual products or groups of products. The development of similar approaches in other contexts holds promise for more rational planning of service provision.
Salazar-Gamarra, Rodrigo; Seelaus, Rosemary; da Silva, Jorge Vicente Lopes; da Silva, Airton Moreira; Dib, Luciano Lauria
2016-05-25
The aim of this study is to present the development of a new technique to obtain 3D models using photogrammetry by a mobile device and free software, as a method for making digital facial impressions of patients with maxillofacial defects for the final purpose of 3D printing of facial prostheses. With the use of a mobile device, free software and a photo capture protocol, 2D captures of the anatomy of a patient with a facial defect were transformed into a 3D model. The resultant digital models were evaluated for visual and technical integrity. The technical process and resultant models were described and analyzed for technical and clinical usability. Generating 3D models to make digital face impressions was possible by the use of photogrammetry with photos taken by a mobile device. The facial anatomy of the patient was reproduced by a *.3dp and a *.stl file with no major irregularities. 3D printing was possible. An alternative method for capturing facial anatomy is possible using a mobile device for the purpose of obtaining and designing 3D models for facial rehabilitation. Further studies must be realized to compare 3D modeling among different techniques and systems. Free software and low cost equipment could be a feasible solution to obtain 3D models for making digital face impressions for maxillofacial prostheses, improving access for clinical centers that do not have high cost technology considered as a prior acquisition.
Predicting the Emplacement of Improvised Explosive Devices: An Innovative Solution
ERIC Educational Resources Information Center
Lerner, Warren D.
2013-01-01
In this quantitative correlational study, simulated data were employed to examine artificial-intelligence techniques or, more specifically, artificial neural networks, as they relate to the location prediction of improvised explosive devices (IEDs). An ANN model was developed to predict IED placement, based upon terrain features and objects…
Finite Element Analysis of Stresses Developed in the Blood Sac of a Left Ventricular Assist Device
Haut Donahue, T. L.; Dehlin, W.; Gillespie, J.; Weiss, W.J.; Rosenberg, G.
2009-01-01
The goal of this research is to develop a 3D finite element (FE) model of a left ventricular assist device (LVAD) to predict stresses in the blood sac. The hyperelastic stress-strain curves for the segmented poly(ether polyurethane urea) blood sac were determined in both tension and compression using a servo-hydraulic testing system at various strain rates. Over the range of strain rates studied, the sac was not strain rate sensitive, however the material response was different for tension versus compression. The experimental tension and compression properties were used in a FE model that consisted of the pusher plate, blood sac and pump case. A quasi-static analysis was used to allow for nonlinearities due to contact and material deformation. The 3D FE model showed that blood sac stresses are not adversely affected by the location of the inlet and outlet ports of the device and that over the systolic ejection phase of the simulation the prediction of blood sac stresses from the full 3D model and an axisymmetric model are the same. Minimizing stresses in the blood sac will increase the longevity of the blood sac in vivo. PMID:19131267
Modeling and Prediction of Krueger Device Noise
NASA Technical Reports Server (NTRS)
Guo, Yueping; Burley, Casey L.; Thomas, Russell H.
2016-01-01
This paper presents the development of a noise prediction model for aircraft Krueger flap devices that are considered as alternatives to leading edge slotted slats. The prediction model decomposes the total Krueger noise into four components, generated by the unsteady flows, respectively, in the cove under the pressure side surface of the Krueger, in the gap between the Krueger trailing edge and the main wing, around the brackets supporting the Krueger device, and around the cavity on the lower side of the main wing. For each noise component, the modeling follows a physics-based approach that aims at capturing the dominant noise-generating features in the flow and developing correlations between the noise and the flow parameters that control the noise generation processes. The far field noise is modeled using each of the four noise component's respective spectral functions, far field directivities, Mach number dependencies, component amplitudes, and other parametric trends. Preliminary validations are carried out by using small scale experimental data, and two applications are discussed; one for conventional aircraft and the other for advanced configurations. The former focuses on the parametric trends of Krueger noise on design parameters, while the latter reveals its importance in relation to other airframe noise components.
NASA Technical Reports Server (NTRS)
Badescu, Mircea
2014-01-01
Subsurface penetration by coring, drilling or abrading is of great importance for a large number of space and earth applications. An Ultrasonic/Sonic Drill/Corer (USDC) has been in development at JPL's Nondestructive Evaluation and Advanced Actuators (NDEAA) lab as an adaptable tool for many of these applications. The USDC uses a novel drive mechanism to transform the high frequency ultrasonic or sonic vibrations of the tip of a horn into a lower frequency sonic hammering of a drill bit through an intermediate free-flying mass. The USDC device idea has been implemented at various scales from handheld drills to large diameter coring devices. A series of computer programs that model the function and performance of the USDC device were developed and were later integrated into an automated modeling package. The USDC has also evolved from a purely hammering drill to a rotary hammer drill as the design requirements increased form small diameter shallow drilling to large diameter deep coring. A synthesis of the Auto-Gopher development is presented in this paper.
Simulation of multispectral multisource for device of consumer and medicine products analysis
NASA Astrophysics Data System (ADS)
Korolev, Timofey K.; Peretyagin, Vladimir S.
2017-06-01
One of the results of intensive development of led technology was the creation of a multi-component, managed devices and illumination/irradiation used in various fields of production (e.g., food industry analysis, food quality). The use of LEDs has become possible due to their structure determining spatial, energy, electrical, thermal and other characteristics. However, the development of the devices for illumination/irradiation require closer attention in the case if you want to provide precise illumination to the area of analysis, located at a specified distance from the radiation source. The present work is devoted to the development and modelling of a specialized source of radiation intended for solving problems of analysis of food products, medicines and water for suitability in drinking. In this work, we provided a mathematical model of spatial and spectral distribution of irridation from the source of infrared radiation ring structure. When you create this kind of source, you address factors such spectral component, the power settings, the spatial and energy components of the diodes.
Advanced underwater lift device
NASA Technical Reports Server (NTRS)
Flanagan, David T.; Hopkins, Robert C.
1993-01-01
Flexible underwater lift devices ('lift bags') are used in underwater operations to provide buoyancy to submerged objects. Commercially available designs are heavy, bulky, and awkward to handle, and thus are limited in size and useful lifting capacity. An underwater lift device having less than 20 percent of the bulk and less than 10 percent of the weight of commercially available models was developed. The design features a dual membrane envelope, a nearly homogeneous envelope membrane stress distribution, and a minimum surface-to-volume ratio. A proof-of-concept model of 50 kg capacity was built and tested. Originally designed to provide buoyancy to mock-ups submerged in NASA's weightlessness simulators, the device may have application to water-landed spacecraft which must deploy flotation upon impact, and where launch weight and volume penalties are significant. The device may also be useful for the automated recovery of ocean floor probes or in marine salvage applications.
Energy Models for One-Carrier Transport in Semiconductor Devices
NASA Technical Reports Server (NTRS)
Jerome, Joseph W.; Shu, Chi-Wang
1991-01-01
Moment models of carrier transport, derived from the Boltzmann equation, made possible the simulation of certain key effects through such realistic assumptions as energy dependent mobility functions. This type of global dependence permits the observation of velocity overshoot in the vicinity of device junctions, not discerned via classical drift-diffusion models, which are primarily local in nature. It was found that a critical role is played in the hydrodynamic model by the heat conduction term. When ignored, the overshoot is inappropriately damped. When the standard choice of the Wiedemann-Franz law is made for the conductivity, spurious overshoot is observed. Agreement with Monte-Carlo simulation in this regime required empirical modification of this law, or nonstandard choices. Simulations of the hydrodynamic model in one and two dimensions, as well as simulations of a newly developed energy model, the RT model, are presented. The RT model, intermediate between the hydrodynamic and drift-diffusion model, was developed to eliminate the parabolic energy band and Maxwellian distribution assumptions, and to reduce the spurious overshoot with physically consistent assumptions. The algorithms employed for both models are the essentially non-oscillatory shock capturing algorithms. Some mathematical results are presented and contrasted with the highly developed state of the drift-diffusion model.
The MMI Device Ontology: Enabling Sensor Integration
NASA Astrophysics Data System (ADS)
Rueda, C.; Galbraith, N.; Morris, R. A.; Bermudez, L. E.; Graybeal, J.; Arko, R. A.; Mmi Device Ontology Working Group
2010-12-01
The Marine Metadata Interoperability (MMI) project has developed an ontology for devices to describe sensors and sensor networks. This ontology is implemented in the W3C Web Ontology Language (OWL) and provides an extensible conceptual model and controlled vocabularies for describing heterogeneous instrument types, with different data characteristics, and their attributes. It can help users populate metadata records for sensors; associate devices with their platforms, deployments, measurement capabilities and restrictions; aid in discovery of sensor data, both historic and real-time; and improve the interoperability of observational oceanographic data sets. We developed the MMI Device Ontology following a community-based approach. By building on and integrating other models and ontologies from related disciplines, we sought to facilitate semantic interoperability while avoiding duplication. Key concepts and insights from various communities, including the Open Geospatial Consortium (eg., SensorML and Observations and Measurements specifications), Semantic Web for Earth and Environmental Terminology (SWEET), and W3C Semantic Sensor Network Incubator Group, have significantly enriched the development of the ontology. Individuals ranging from instrument designers, science data producers and consumers to ontology specialists and other technologists contributed to the work. Applications of the MMI Device Ontology are underway for several community use cases. These include vessel-mounted multibeam mapping sonars for the Rolling Deck to Repository (R2R) program and description of diverse instruments on deepwater Ocean Reference Stations for the OceanSITES program. These trials involve creation of records completely describing instruments, either by individual instances or by manufacturer and model. Individual terms in the MMI Device Ontology can be referenced with their corresponding Uniform Resource Identifiers (URIs) in sensor-related metadata specifications (e.g., SensorML, NetCDF). These identifiers can be resolved through a web browser, or other client applications via HTTP against the MMI Ontology Registry and Repository (ORR), where the ontology is maintained. SPARQL-based query capabilities, which are enhanced with reasoning, along with several supported output formats, allow the effective interaction of diverse client applications with the semantic information associated with the device ontology. In this presentation we describe the process for the development of the MMI Device Ontology and illustrate extensions and applications that demonstrate the benefits of adopting this semantic approach, including example queries involving inference. We also highlight the issues encountered and future work.
Functional reasoning in diagnostic problem solving
NASA Technical Reports Server (NTRS)
Sticklen, Jon; Bond, W. E.; Stclair, D. C.
1988-01-01
This work is one facet of an integrated approach to diagnostic problem solving for aircraft and space systems currently under development. The authors are applying a method of modeling and reasoning about deep knowledge based on a functional viewpoint. The approach recognizes a level of device understanding which is intermediate between a compiled level of typical Expert Systems, and a deep level at which large-scale device behavior is derived from known properties of device structure and component behavior. At this intermediate functional level, a device is modeled in three steps. First, a component decomposition of the device is defined. Second, the functionality of each device/subdevice is abstractly identified. Third, the state sequences which implement each function are specified. Given a functional representation and a set of initial conditions, the functional reasoner acts as a consequence finder. The output of the consequence finder can be utilized in diagnostic problem solving. The paper also discussed ways in which this functional approach may find application in the aerospace field.
A numerical model for explaining the role of the interface morphology in composite solar cells
NASA Astrophysics Data System (ADS)
Martin, C. M.; Burlakov, V. M.; Assender, H. E.; Barkhouse, D. A. R.
2007-11-01
We have developed a numerical model that simulates the operation of organic/inorganic photovoltaic devices. Using this model, we have investigated the effect of the interface morphology and have shown that for a given system, there is both a most efficient device thickness and the interfacial feature size for overall power conversion. The variation of current-voltage (I-V) curves with differing recombination rates, anode barrier height, and light intensity has been simulated with reducing the recombination rate and lowering the anode barrier height shown to lead to improved open circuit voltages and fill factors. Through this model, we show that the increase in fill factor observed when the lithium salt Li[CF3SO2]2N is added to devices can be explained by an increase in the polymer hole mobility.
Simple model of a coherent molecular photocell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ernzerhof, Matthias, E-mail: Matthias.Ernzerhof@UMontreal.ca; Bélanger, Marc-André; Mayou, Didier
2016-04-07
Electron transport in molecular electronic devices is often dominated by a coherent mechanism in which the wave function extends from the left contact over the molecule to the right contact. If the device is exposed to light, photon absorption in the molecule might occur, turning the device into a molecular photocell. The photon absorption promotes an electron to higher energy levels and thus modifies the electron transmission probability through the device. A model for such a molecular photocell is presented that minimizes the complexity of the problem while providing a non-trivial description of the device mechanism. In particular, the rolemore » of the molecule in the photocell is investigated. It is described within the Hückel method and the source-sink potential approach [F. Goyer, M. Ernzerhof, and M. Zhuang, J. Chem. Phys. 126, 144104 (2007)] is used to eliminate the contacts in favor of complex-valued potentials. Furthermore, the photons are explicitly incorporated into the model through a second-quantized field. This facilitates the description of the photon absorption process with a stationary state calculation, where eigenvalues and eigenvectors are determined. The model developed is applied to various generic molecular photocells.« less
NASA Astrophysics Data System (ADS)
Siewnicka, Alicja; Fajdek, Bartlomiej; Janiszowski, Krzysztof
2010-01-01
This paper presents a model of the human circulatory system with the possible addition of a parallel assist device, which was developed for the purpose of artificial heart monitoring. Information about an identification experiment of an extracorporeal ventricle assist device POLVAD is included. The modelling methods applied and the corresponding functional blocks in a PExSim package are presented. The results of the simulation for physiological conditions, left ventricle failure and pathological conditions with parallel assistance are included.
Simulation of Aluminum Micro-mirrors for Space Applications at Cryogenic Temperatures
NASA Technical Reports Server (NTRS)
Kuhn, J. L.; Dutta, S. B.; Greenhouse, M. A.; Mott, D. B.
2000-01-01
Closed form and finite element models are developed to predict the device response of aluminum electrostatic torsion micro-mirrors fabricated on silicon substrate for space applications at operating temperatures of 30K. Initially, closed form expressions for electrostatic pressure arid mechanical restoring torque are used to predict the pull-in and release voltages at room temperature. Subsequently, a detailed mechanical finite element model is developed to predict stresses and vertical beam deflection induced by the electrostatic and thermal loads. An incremental and iterative solution method is used in conjunction with the nonlinear finite element model and closed form electrostatic equations to solve. the coupled electro-thermo-mechanical problem. The simulation results are compared with experimental measurements at room temperature of fabricated micro-mirror devices.
A novel vacuum assisted closure therapy model for use with percutaneous devices.
Cook, Saranne J; Nichols, Francesca R; Brunker, Lucille B; Bachus, Kent N
2014-06-01
Long-term maintenance of a dermal barrier around a percutaneous prosthetic device remains a common clinical problem. A technique known as Negative Pressure Wound Therapy (NPWT) uses negative pressure to facilitate healing of impaired and complex soft tissue wounds. However, the combination of using negative pressure with percutaneous prosthetic devices has not been investigated. The goal of this study was to develop a methodology to apply negative pressure to the tissues surrounding a percutaneous device in an animal model; no tissue healing outcomes are presented. Specifically, four hairless rats received percutaneous porous coated titanium devices implanted on the dorsum and were bandaged with a semi occlusive film dressing. Two of these animals received NPWT; two animals received no NPWT and served as baseline controls. Over a 28-day period, both the number of dressing changes required between the two groups as well as the pressures were monitored. Negative pressures were successfully applied to the periprosthetic tissues in a clinically relevant range with a manageable number of dressing changes. This study provides a method for establishing, maintaining, and quantifying controlled negative pressures to the tissues surrounding percutaneous devices using a small animal model. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Dhakal, S.; Bhandary, N. P.; Yatabe, R.; Kinoshita, N.
2012-04-01
In a previous companion paper, we presented a three-tier modelling of a particular type of rockfall protective cable-net structure (barrier), developed newly in Japan. Therein, we developed a three-dimensional, Finite Element based, nonlinear numerical model having been calibrated/back-calculated and verified with the element- and structure-level physical tests. Moreover, using a very simple, lumped-mass, single-degree-of-freedom, equivalently linear analytical model, a global-displacement-predictive correlation was devised by modifying the basic equation - obtained by combining the principles of conservation of linear momentum and energy - based on the back-analysis of the tests on the numerical model. In this paper, we use the developed models to explore the performance enhancement potential of the structure in terms of (a) the control of global displacement - possibly the major performance criterion for the proposed structure owing to a narrow space available in the targeted site, and (b) the increase in energy dissipation by the existing U-bolt-type Friction-brake Devices - which are identified to have performed weakly when integrated into the structure. A set of parametric investigations have revealed correlations to achieve the first objective in terms of the structure's mass, particularly by manipulating the wire-net's characteristics, and has additionally disclosed the effects of the impacting-block's parameters. Towards achieving the second objective, another set of parametric investigations have led to a proposal of a few innovative improvements in the constitutive behaviour (model) of the studied brake device (dissipator), in addition to an important recommendation of careful handling of the device based on the identified potential flaw.
NASA Astrophysics Data System (ADS)
Neylon, John; Hasse, Katelyn; Sheng, Ke; Santhanam, Anand P.
2016-03-01
Breast radiation therapy is typically delivered to the patient in either supine or prone position. Each of these positioning systems has its limitations in terms of tumor localization, dose to the surrounding normal structures, and patient comfort. We envision developing a pneumatically controlled breast immobilization device that will enable the benefits of both supine and prone positioning. In this paper, we present a physics-based breast deformable model that aids in both the design of the breast immobilization device as well as a control module for the device during every day positioning. The model geometry is generated from a subject's CT scan acquired during the treatment planning stage. A GPU based deformable model is then generated for the breast. A mass-spring-damper approach is then employed for the deformable model, with the spring modeled to represent a hyperelastic tissue behavior. Each voxel of the CT scan is then associated with a mass element, which gives the model its high resolution nature. The subject specific elasticity is then estimated from a CT scan in prone position. Our results show that the model can deform at >60 deformations per second, which satisfies the real-time requirement for robotic positioning. The model interacts with a computer designed immobilization device to position the breast and tumor anatomy in a reproducible location. The design of the immobilization device was also systematically varied based on the breast geometry, tumor location, elasticity distribution and the reproducibility of the desired tumor location.
Monolithic integration of SOI waveguide photodetectors and transimpedance amplifiers
NASA Astrophysics Data System (ADS)
Li, Shuxia; Tarr, N. Garry; Ye, Winnie N.
2018-02-01
In the absence of commercial foundry technologies offering silicon-on-insulator (SOI) photonics combined with Complementary Metal Oxide Semiconductor (CMOS) transistors, monolithic integration of conventional electronics with SOI photonics is difficult. Here we explore the implementation of lateral bipolar junction transistors (LBJTs) and Junction Field Effect Transistors (JFETs) in a commercial SOI photonics technology lacking MOS devices but offering a variety of n- and p-type ion implants intended to provide waveguide modulators and photodetectors. The fabrication makes use of the commercial Institute of Microelectronics (IME) SOI photonics technology. Based on knowledge of device doping and geometry, simple compact LBJT and JFET device models are developed. These models are then used to design basic transimpedance amplifiers integrated with optical waveguides. The devices' experimental current-voltage characteristics results are reported.
Processing of Cells' Trajectories Data for Blood Flow Simulation Model*
NASA Astrophysics Data System (ADS)
Slavík, Martin; Kovalčíková, Kristína; Bachratý, Hynek; Bachratá, Katarína; Smiešková, Monika
2018-06-01
Simulations of the red blood cells (RBCs) flow as a movement of elastic objects in a fluid, are developed to optimize microfluidic devices used for a blood sample analysis for diagnostic purposes in the medicine. Tracking cell behaviour during simulation helps to improve the model and adjust its parameters. For the optimization of the microfluidic devices, it is also necessary to analyse cell trajectories as well as likelihood and frequency of their occurrence in a particular device area, especially in the parts, where they can affect circulating tumour cells capture. In this article, we propose and verify several ways of processing and analysing the typology and trajectory stability in simulations with single or with a large number of red blood cells (RBCs) in devices with different topologies containing cylindrical obstacles.
Enabling Medical Device Interoperability for the Integrated Clinical Environment
2016-02-01
Pajic M, Mangharam R, Sokolsky O, Arney D, Goldman JM, Lee I. Model-Driven Safety Analysis of Closed - Loop Medical Systems. IEEE Transactions on...Manigel J, Osborn D, Roellike T, Weininger S, Westenskow D, “Development of a Standard for Physiologic Closed Loop Controllers in Medical Devices...3 2010. 27. Arney D, Pajic M, Goldman JM, Lee I, Mangharam R, Sokolsky O, “Toward Patient Safety in Closed - Loop Medical Device Systems,” In
Microfocus computed tomography in medicine
NASA Astrophysics Data System (ADS)
Obodovskiy, A. V.
2018-02-01
Recent advances in the field of high-frequency power schemes for X-ray devices allow the creation of high-resolution instruments. At the department of electronic devices and Equipment of the St. Petersburg State Electrotechnical University, a model of a microfocus computer tomograph was developed. Used equipment allows to receive projection data with an increase up to 100 times. A distinctive feature of the device is the possibility of implementing various schemes for obtaining projection data.
NASA Technical Reports Server (NTRS)
Tucker, Warren A.; Comisarow, Paul
1946-01-01
During the first flight tests of the Republic XP-84 airplane it was discovered that there was a complete lack of stall warning. A short series of development tests of a suitable stall-warning device for the airplane was therefore made on a 1/5-scale model in the Langley 300 MPH 7- by 10-foot tunnel. Two similar stall-warning devices, each designed to produce early root stall which would provide a buffet warning, were tested. It appeared that either device would give a satisfactory buffet warning in the flap-up configuration, at the cost of an increase of 8 or 10 miles per hour in minimum speed. Although neither device seemed to give a true buffet warning in the flaps-down configuration, it appeared that either device would improve the flaps-down stalling characteristics by lessening the severity of the stall and by maintaining better control at the stall. The flaps-down minimum-speed increase caused by the devices was only 1 or 2 miles per hour.
Design and analysis of DNA strand displacement devices using probabilistic model checking
Lakin, Matthew R.; Parker, David; Cardelli, Luca; Kwiatkowska, Marta; Phillips, Andrew
2012-01-01
Designing correct, robust DNA devices is difficult because of the many possibilities for unwanted interference between molecules in the system. DNA strand displacement has been proposed as a design paradigm for DNA devices, and the DNA strand displacement (DSD) programming language has been developed as a means of formally programming and analysing these devices to check for unwanted interference. We demonstrate, for the first time, the use of probabilistic verification techniques to analyse the correctness, reliability and performance of DNA devices during the design phase. We use the probabilistic model checker prism, in combination with the DSD language, to design and debug DNA strand displacement components and to investigate their kinetics. We show how our techniques can be used to identify design flaws and to evaluate the merits of contrasting design decisions, even on devices comprising relatively few inputs. We then demonstrate the use of these components to construct a DNA strand displacement device for approximate majority voting. Finally, we discuss some of the challenges and possible directions for applying these methods to more complex designs. PMID:22219398
Standard-compliant real-time transmission of ECGs: harmonization of ISO/IEEE 11073-PHD and SCP-ECG.
Trigo, Jesús D; Chiarugi, Franco; Alesanco, Alvaro; Martínez-Espronceda, Miguel; Chronaki, Catherine E; Escayola, Javier; Martínez, Ignacio; García, José
2009-01-01
Ambient assisted living and integrated care in an aging society is based on the vision of the lifelong Electronic Health Record calling for HealthCare Information Systems and medical device interoperability. For medical devices this aim can be achieved by the consistent implementation of harmonized international interoperability standards. The ISO/IEEE 11073 (x73) family of standards is a reference standard for medical device interoperability. In its Personal Health Device (PHD) version several devices have been included, but an ECG device specialization is not yet available. On the other hand, the SCP-ECG standard for short-term diagnostic ECGs (EN1064) has been recently approved as an international standard ISO/IEEE 11073-91064:2009. In this paper, the relationships between a proposed x73-PHD model for an ECG device and the fields of the SCP-ECG standard are investigated. A proof-of-concept implementation of the proposed x73-PHD ECG model is also presented, identifying open issues to be addressed by standards development for the wider interoperability adoption of x73-PHD standards.
DOT National Transportation Integrated Search
2008-04-01
The objective of this study was to develop resilient modulus prediction models for possible application in the quality control/quality assurance (QC/QA) procedures during and after the construction of pavement layers. Field and laboratory testing pro...
Design, fabrication, testing, and delivery of improved beam steering devices
NASA Technical Reports Server (NTRS)
1973-01-01
The development, manufacture, and testing of an optical steerer intended for use in spaceborne optical radar systems are described. Included are design principles and design modifications made to harden the device against launch and space environments, the quality program and procedures developed to insure consistent product quality throughout the manufacturing phase, and engineering qualification model testing and evaluation. The delivered hardware design is considered conditionally qualified pending action on further recommended design modifications.
2D Quantum Transport Modeling in Nanoscale MOSFETs
NASA Technical Reports Server (NTRS)
Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, Bryan
2001-01-01
With the onset of quantum confinement in the inversion layer in nanoscale MOSFETs, behavior of the resonant level inevitably determines all device characteristics. While most classical device simulators take quantization into account in some simplified manner, the important details of electrostatics are missing. Our work addresses this shortcoming and provides: (a) a framework to quantitatively explore device physics issues such as the source-drain and gate leakage currents, DIBL, and threshold voltage shift due to quantization, and b) a means of benchmarking quantum corrections to semiclassical models (such as density- gradient and quantum-corrected MEDICI). We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions, oxide tunneling and phase-breaking scattering are treated on equal footing. Electrons in the ellipsoids of the conduction band are treated within the anisotropic effective mass approximation. Quantum simulations are focused on MIT 25, 50 and 90 nm "well- tempered" MOSFETs and compared to classical and quantum corrected models. The important feature of quantum model is smaller slope of Id-Vg curve and consequently higher threshold voltage. These results are quantitatively consistent with I D Schroedinger-Poisson calculations. The effect of gate length on gate-oxide leakage and sub-threshold current has been studied. The shorter gate length device has an order of magnitude smaller current at zero gate bias than the longer gate length device without a significant trade-off in on-current. This should be a device design consideration.
The Use of Computational Fluid Dynamics in the Development of Ventricular Assist Devices
Fraser, Katharine H.; Taskin, M. Ertan; Griffith, Bartley P.; Wu, Zhongjun J.
2010-01-01
Progress in the field of prosthetic cardiovascular devices has significantly contributed to the rapid advancements in cardiac therapy during the last four decades. The concept of mechanical circulatory assistance was established with the first successful clinical use of heart-lung machines for cardiopulmonary bypass. Since then a variety of devices have been developed to replace or assist diseased components of the cardiovascular system. Ventricular assist devices (VADs) are basically mechanical pumps designed to augment or replace the function of one or more chambers of the failing heart. Computational Fluid Dynamics (CFD) is an attractive tool in the development process of VADs, allowing numerous different designs to be characterized for their functional performance virtually, for a wide range of operating conditions, without the physical device being fabricated. However, VADs operate in a flow regime which is traditionally difficult to simulate; the transitional region at the boundary of laminar and turbulent flow. Hence different methods have been used and the best approach is debatable. In addition to these fundamental fluid dynamic issues, blood consists of biological cells. Device-induced biological complications are a serious consequence of VAD use. The complications include blood damage (haemolysis, blood cell activation), thrombosis and emboli. Patients are required to take anticoagulation medication constantly which may cause bleeding. Despite many efforts blood damage models have still not been implemented satisfactorily into numerical analysis of VADs, which severely undermines the full potential of CFD. This paper reviews the current state of the art CFD for analysis of blood pumps, including a practical critical review of the studies to date, which should help device designers choose the most appropriate methods; a summary of blood damage models and the difficulties in implementing them into CFD; and current gaps in knowledge and areas for future work. PMID:21075669
Optical to optical interface device
NASA Technical Reports Server (NTRS)
Oliver, D. S.; Vohl, P.; Nisenson, P.
1972-01-01
The development, fabrication, and testing of a preliminary model of an optical-to-optical (noncoherent-to-coherent) interface device for use in coherent optical parallel processing systems are described. The developed device demonstrates a capability for accepting as an input a scene illuminated by a noncoherent radiation source and providing as an output a coherent light beam spatially modulated to represent the original noncoherent scene. The converter device developed under this contract employs a Pockels readout optical modulator (PROM). This is a photosensitive electro-optic element which can sense and electrostatically store optical images. The stored images can be simultaneously or subsequently readout optically by utilizing the electrostatic storage pattern to control an electro-optic light modulating property of the PROM. The readout process is parallel as no scanning mechanism is required. The PROM provides the functions of optical image sensing, modulation, and storage in a single active material.
A Novel Small-Specimen Planar Biaxial Testing System With Full In-Plane Deformation Control.
Potter, Samuel; Graves, Jordan; Drach, Borys; Leahy, Thomas; Hammel, Chris; Feng, Yuan; Baker, Aaron; Sacks, Michael S
2018-05-01
Simulations of soft tissues require accurate and robust constitutive models, whose form is derived from carefully designed experimental studies. For such investigations of membranes or thin specimens, planar biaxial systems have been used extensively. Yet, all such systems remain limited in their ability to: (1) fully prescribe in-plane deformation gradient tensor F2D, (2) ensure homogeneity of the applied deformation, and (3) be able to accommodate sufficiently small specimens to ensure a reasonable degree of material homogeneity. To address these issues, we have developed a novel planar biaxial testing device that overcomes these difficulties and is capable of full control of the in-plane deformation gradient tensor F2D and of testing specimens as small as ∼4 mm × ∼4 mm. Individual actuation of the specimen attachment points, combined with a robust real-time feedback control, enabled the device to enforce any arbitrary F2D with a high degree of accuracy and homogeneity. Results from extensive device validation trials and example tissues illustrated the ability of the device to perform as designed and gather data needed for developing and validating constitutive models. Examples included the murine aortic tissues, allowing for investigators to take advantage of the genetic manipulation of murine disease models. These capabilities highlight the potential of the device to serve as a platform for informing and verifying the results of inverse models and for conducting robust, controlled investigation into the biomechanics of very local behaviors of soft tissues and membrane biomaterials.
Pham, Thuy; Deherrera, Milton; Sun, Wei
2013-01-01
Recent clinical studies of the percutaneous transvenous mitral annuloplasty (PTMA) devices have shown a short-term reduction of mitral regurgitation (MR) after implantation. However, adverse events associated with the devices such as compression and perforation of vessel branches, device migration and fracture were reported. In this study, a finite element analysis was performed to investigate the biomechanical interaction between the proximal anchor stent of a PTMA device and the coronary sinus (CS) vessel in three steps including i) the stent release and contact with the CS wall, ii) the axial pull at the stent connector and iii) the pressure inflation of the vessel wall. To investigate the impact of the material properties of tissues and stents on the interactive responses, the CS vessel was modeled with human and porcine material properties, and the proximal stent was modeled with two different Nitinol materials with one being stiffer than the other. The results indicated that the vessel wall stresses and contact forces imposed by the stents were much higher in human than porcine models. However, the mechanical differences induced by the two stent types were relatively small. The softer stent exhibited a better fatigue safety factor when deployed in the human model than in the porcine model. These results underscored the importance of the CS tissue mechanical properties. Higher vessel wall stress and stent radial force were obtained in human model than those in porcine model, which also brought up questions as to the validity of using porcine model to assess device mechanical function. The quantification of these biomechanical interactions can offer scientific insight into the development and optimization of PTMA device design. PMID:23405942
NASA Technical Reports Server (NTRS)
Cady, E. C.
1977-01-01
A design analysis, is developed based on experimental data, to predict the effects of transient flow and pressure surges (caused either by valve or pump operation, or by boiling of liquids in warm lines) on the retention performance of screen acquisition systems. A survey of screen liquid acquisition system applications was performed to determine appropriate system environment and classification. A screen model was developed which assumed that the screen device was a uniformly distributed composite orthotropic structure, and which accounted for liquid inflow/outflow, gas ingestion quality, screen stress, and liquid spill. A series of 177 tests using 13 specimens (5 screen meshes, 4 screen device construction/backup methods, and 2 orientations) with three test fluids (isopropyl alcohol, Freon 114, and LH2) provided data which verified important features of the screen model and resulted in a design tool which could accurately predict the transient startup performance acquisition devices.
[The global harmonization task force : successes and challenges].
Rotter, R G
2009-06-01
With the move towards globalized international commerce and trade, a call for harmonization of medical device regulatory requirements and practices has evolved. The purpose of the Global Harmonization Task Force (GHTF) is to encourage convergence of regulatory requirements and practices at a global level through consensus to achieve four principle goals: promote safety, quality and performance/effectiveness of medical devices; encourage technological innovation; foster international trade; and serve as a forum of information exchange - all in the interests of protecting and promoting public health. The GHTF is governed by a Steering Committee, and the principle development of the GHTF regulatory model has been, and continues to be, done through five working groups known as Study Groups and supplemented recently by the creation of several Ad Hoc Working Groups. Since its creation in 1992, the members of the GHTF have worked collaboratively to develop what is now ready to be called a global model for the regulation of medical devices.
NASA Technical Reports Server (NTRS)
Shannon, R. L.; Gillette, R. B.
1974-01-01
The technique which utilizes exposure to a plasma to remove contaminants from a surface was incorporated into a laboratory model which demonstrates active cleaning by both plasma cleaning and ion sputtering modes of operation. The development phase is reported and includes discussion of the plasma tube configuration, device design, and performance tests. A general description of the active cleaning device is provided which includes information on the main power/plasma discharge sensors, and the power, gas supply, and ion accelerator systems. Development of the active cleaning species at high vacuum conditions is described and results indicate that plasma cleaning occurs in the region of a visible plume which extends from the end of the plasma tube. Recommendations are made for research to determine the plasma cleaning mechanism and the plasma species responsible for the cleaning, as well limitations on the type of contaminants that can be removed.
Nanoscale RRAM-based synaptic electronics: toward a neuromorphic computing device.
Park, Sangsu; Noh, Jinwoo; Choo, Myung-Lae; Sheri, Ahmad Muqeem; Chang, Man; Kim, Young-Bae; Kim, Chang Jung; Jeon, Moongu; Lee, Byung-Geun; Lee, Byoung Hun; Hwang, Hyunsang
2013-09-27
Efforts to develop scalable learning algorithms for implementation of networks of spiking neurons in silicon have been hindered by the considerable footprints of learning circuits, which grow as the number of synapses increases. Recent developments in nanotechnologies provide an extremely compact device with low-power consumption.In particular, nanoscale resistive switching devices (resistive random-access memory (RRAM)) are regarded as a promising solution for implementation of biological synapses due to their nanoscale dimensions, capacity to store multiple bits and the low energy required to operate distinct states. In this paper, we report the fabrication, modeling and implementation of nanoscale RRAM with multi-level storage capability for an electronic synapse device. In addition, we first experimentally demonstrate the learning capabilities and predictable performance by a neuromorphic circuit composed of a nanoscale 1 kbit RRAM cross-point array of synapses and complementary metal-oxide-semiconductor neuron circuits. These developments open up possibilities for the development of ubiquitous ultra-dense, ultra-low-power cognitive computers.
NASA Astrophysics Data System (ADS)
Michalicek, M. Adrian; Comtois, John H.; Schriner, Heather K.
1998-04-01
This paper describes the design and characterization of several types of micromirror devices to include process capabilities, device modeling, and test data resulting in deflection versus applied potential curves and surface contour measurements. These devices are the first to be fabricated in the state-of-the-art four-level planarized polysilicon process available at Sandia National Laboratories known as the Sandia Ultra-planar Multi-level MEMS Technology. This enabling process permits the development of micromirror devices with near-ideal characteristics which have previously been unrealizable in standard three-layer polysilicon processes. This paper describes such characteristics which have previously been unrealizable in standard three-layer polysilicon processes. This paper describes such characteristics as elevated address electrodes, various address wiring techniques, planarized mirror surfaces suing Chemical Mechanical Polishing, unique post-process metallization, and the best active surface area to date.
The Stanford how things work project
NASA Technical Reports Server (NTRS)
Fikes, Richard; Gruber, Tom; Iwasaki, Yumi
1994-01-01
We provide an overview of the Stanford How Things Work (HTW) project, an ongoing integrated collection of research activities in the Knowledge Systems Laboratory at Stanford University. The project is developing technology for representing knowledge about engineered devices in a form that enables the knowledge to be used in multiple systems for multiple reasoning tasks and reasoning methods that enable the represented knowledge to be effectively applied to the performance of the core engineering task of simulating and analyzing device behavior. The central new capabilities currently being developed in the project are automated assistance with model formulation and with verification that a design for an electro-mechanical device satisfies its functional specification.
Georgiev, Stanimir; Tanase, Daniel; Genz, Thomas; Ewert, Peter; Naumann, Susanne; Pozza, Robert Dalla; Eicken, Andreas
2018-07-01
This study aimed to develop a method for retrieval of the new meshed nitinol atrial septal defect occluders - Ceraflex and Occlutech. The newly developed atrial septal defect occluders have potential benefits considering implantation, but concerns regarding their removal in case of embolisation have been raised. Over 21 years, 1449 patients underwent interventional atrial septal defect occlusion in our institution. We reviewed the cases of embolisation of the device, developed a strategy for device removal, and tested it on the benchside and in animal tests. In 11 patients (0.8%), the intended atrial septal defect occlusion was complicated by an embolisation of the device. In contrast to the Amplatzer septal occluders, retrieval of Occlutech devices larger than 16 mm with snare techniques was impossible. In benchside tests, this was confirmed and a new method for removal of large meshed devices was developed. This involved the commercially available Maslanka® biopsy forceps. The feasibility of this technique in vivo was tested in a pig model. During animal tests, using the Maslanka biopsy forceps it was possible to interventionally retrieve embolised Ceraflex and Occlutech devices of different sizes - 10, 16, 30, and 40 mm - into a 12-F sheath. It was impossible to retrieve Occlutech and Ceraflex devices larger than 16 mm into a large sheath in vivo and during benchside tests. However, this was feasible on the bench and in vivo using the Maslanka biopsy forceps even with the largest available devices.
An adaptive Hidden Markov Model for activity recognition based on a wearable multi-sensor device
USDA-ARS?s Scientific Manuscript database
Human activity recognition is important in the study of personal health, wellness and lifestyle. In order to acquire human activity information from the personal space, many wearable multi-sensor devices have been developed. In this paper, a novel technique for automatic activity recognition based o...
ERIC Educational Resources Information Center
Cabielles-Hernandez, David; Pérez-Pérez, Juan-Ramón; Paule-Ruiz, MPuerto; Fernández-Fernández, Samuel
2017-01-01
New possibilities offered by mobile devices for special education students have led to the design of skill acquisition software applications. Advances in mobile technologies development have made progress possible in helping teachers with autistic students modelling and evaluation. "Chain of Words" theoretical basis is the autism…
NASA Astrophysics Data System (ADS)
Bravo, Agustín; Barham, Richard; Ruiz, Mariano; López, Juan Manuel; De Arcas, Guillermo; Alonso, Jesus
2012-12-01
In part I, the feasibility of using three-dimensional (3D) finite elements (FEs) to model the acoustic behaviour of the IEC 60318-1 artificial ear was studied and the numerical approach compared with classical lumped elements modelling. It was shown that by using a more complex acoustic model that took account of thermo-viscous effects, geometric shapes and dimensions, it was possible to develop a realistic model. This model then had clear advantages in comparison with the models based on equivalent circuits using lumped parameters. In fact results from FE modelling produce a better understanding about the physical phenomena produced inside ear simulator couplers, facilitating spatial and temporal visualization of the sound fields produced. The objective of this study (part II) is to extend the investigation by validating the numerical calculations against measurements on an ear simulator conforming to IEC 60318-1. For this purpose, an appropriate commercially available device is taken and a complete 3D FE model developed for it. The numerical model is based on key dimensional data obtained with a non-destructive x-ray inspection technique. Measurements of the acoustic transfer impedance have been carried out on the same device at a national measurement institute using the method embodied in IEC 60318-1. Having accounted for the actual device dimensions, the thermo-viscous effects inside narrow slots and holes and environmental conditions, the results of the numerical modelling were found to be in good agreement with the measured values.
Engineering and evaluating drug delivery particles in microfluidic devices.
Björnmalm, Mattias; Yan, Yan; Caruso, Frank
2014-09-28
The development of new and improved particle-based drug delivery is underpinned by an enhanced ability to engineer particles with high fidelity and integrity, as well as increased knowledge of their biological performance. Microfluidics can facilitate these processes through the engineering of spatiotemporally highly controlled environments using designed microstructures in combination with physical phenomena present at the microscale. In this review, we discuss microfluidics in the context of addressing key challenges in particle-based drug delivery. We provide an overview of how microfluidic devices can: (i) be employed to engineer particles, by providing highly controlled interfaces, and (ii) be used to establish dynamic in vitro models that mimic in vivo environments for studying the biological behavior of engineered particles. Finally, we discuss how the flexible and modular nature of microfluidic devices provides opportunities to create increasingly realistic models of the in vivo milieu (including multi-cell, multi-tissue and even multi-organ devices), and how ongoing developments toward commercialization of microfluidic tools are opening up new opportunities for the engineering and evaluation of drug delivery particles. Copyright © 2014 Elsevier B.V. All rights reserved.
Testing and performance of a new friction damper for seismic vibration control
NASA Astrophysics Data System (ADS)
Martínez, Carlos A.; Curadelli, Oscar
2017-07-01
In the last two decades, great efforts were carried out to reduce the seismic demand on structures through the concept of energy dissipation instead of increasing the stiffness and strength. Several devices based on different energy dissipation principles have been developed and implemented worldwide, however, most of the dissipation devices are usually installed using diagonal braces, which entail certain drawbacks on apertures for circulation, lighting or ventilation and architectural or functional requirements often preclude this type of installations. In this work, a conceptual development of a novel energy dissipation device, called Multiple Friction Damper (MFD), is proposed and examined. To verify its characteristics and performance, the MFD was implemented on a single storey steel frame experimental model and tested under different conditions of normal force and real time acceleration records. Experimental results demonstrated that the new MFD constitutes an effective and reliable alternative to control the structural response in terms of displacement and acceleration. A mathematical formulation based on the Wen's model reflecting the nonlinear behaviour of the device is also presented.
Hemodialysis Reliable Outflow (HeRO) device in end-stage dialysis access: a decision analysis model.
Dageforde, Leigh Anne; Bream, Peter R; Moore, Derek E
2012-09-01
The Hemodialysis Reliable Outflow (HeRO) dialysis access device is a permanent tunneled dialysis graft connected to a central venous catheter and is used in patients with end-stage dialysis access (ESDA) issues secondary to central venous stenosis. The safety and effectiveness of the HeRO device has previously been proven, but no study thus far has compared the cost of its use with tunneled dialysis catheters (TDCs) and thigh grafts in patients with ESDA. A decision analytic model was developed to simulate outcomes for patients with ESDA undergoing placement of a HeRO dialysis access device, TDC, or thigh graft. Outcomes of interest were infection, thrombosis, and ischemic events. Baseline values, ranges, and costs were determined from a systematic review of the literature. Total costs were based on 1 year of post-procedure outcomes. Sensitivity analyses were conducted to test model strength. The HeRO dialysis access device is the least costly dialysis access with an average 1-year cost of $6521. The 1-year cost for a TDC was $8477. A thigh graft accounted for $9567 in a 1-year time period. The HeRO dialysis access device is the least costly method of ESDA. The primary determinants of cost in this model are infection in TDCs and leg ischemia necessitating amputation in thigh grafts. Further study is necessary to incorporate patient preference and quality of life into the model. Copyright © 2012 Elsevier Inc. All rights reserved.
Percutaneous Ventricular Assist Devices: A Health Technology Assessment.
2017-01-01
Percutaneous coronary intervention (PCI)-using a catheter to place a stent to keep blood vessels open-is increasingly used for high-risk patients who cannot undergo surgery. Cardiogenic shock (when the heart suddenly cannot pump enough blood) is associated with a high mortality rate. The percutaneous ventricular assist device can help control blood pressure and increase blood flow in these high-risk conditions. This health technology assessment examined the benefits, harms, and budget impact of the Impella percutaneous ventricular assist device in high-risk PCI and cardiogenic shock. We also analyzed cost-effectiveness of the Impella device in high-risk PCI. We performed a systematic search of the literature for studies examining the effects of the Impella percutaneous ventricular assist device in high-risk PCI and cardiogenic shock, and appraised the evidence according to the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) Working Group criteria, focusing on hemodynamic stability, mortality, major adverse cardiac events, bleeding, and vascular complications. We developed a Markov decision-analytical model to assess the cost- effectiveness of Impella devices versus intra-aortic balloon pumps (IABPs), calculated incremental cost-effectiveness ratios (ICERs) using a 10-year time horizon, and conducted sensitivity analyses to examine the robustness of the estimates. The economic model was conducted from the perspective of the Ontario Ministry of Health and Long-Term Care. Eighteen studies (one randomized controlled trial and 10 observational studies for high-risk PCI, and one randomized controlled trial and six observational studies for cardiogenic shock) were included in the clinical review. Compared with IABPs, Impella 2.5, one model of the device, improved hemodynamic parameters (GRADE low-very low) but showed no significant difference in mortality (GRADE low), major adverse cardiac events (GRADE low), bleeding (GRADE low), or vascular complications (GRADE low) in high-risk PCI and cardiogenic shock. No randomized controlled trials or prospective observational studies with a control group have studied Impella CP and Impella 5.0 (other models of the device) in patients undergoing high-risk PCI or patients with cardiogenic shock. The economic model predicted that treatment with the Impella device would have fewer quality-adjusted life-years (QALYs) and higher costs than IABP in high-risk PCI patients. These observations were consistent even when uncertainty in model inputs and parameters was considered. We estimated that adopting Impella would increase costs by $2.9 to $11.5 million per year. On the basis of evidence of low to very low quality, Impella 2.5 devices were associated with improved hemodynamic stability, but had mortality rates and safety profile similar to IABPs in high-risk PCI and cardiogenic shock. Our cost-effectiveness analysis indicated that Impella 2.5 is likely associated with greater costs and fewer quality-adjusted life years than IABP.
An u-Service Model Based on a Smart Phone for Urban Computing Environments
NASA Astrophysics Data System (ADS)
Cho, Yongyun; Yoe, Hyun
In urban computing environments, all of services should be based on the interaction between humans and environments around them, which frequently and ordinarily in home and office. This paper propose an u-service model based on a smart phone for urban computing environments. The suggested service model includes a context-aware and personalized service scenario development environment that can instantly describe user's u-service demand or situation information with smart devices. To do this, the architecture of the suggested service model consists of a graphical service editing environment for smart devices, an u-service platform, and an infrastructure with sensors and WSN/USN. The graphic editor expresses contexts as execution conditions of a new service through a context model based on ontology. The service platform deals with the service scenario according to contexts. With the suggested service model, an user in urban computing environments can quickly and easily make u-service or new service using smart devices.
Chadha, Shelly; Moussy, Francis; Friede, Martin Howell
2014-09-01
Philanthropy continues to play an important role in provision of hearing devices and is often the only alternative for the majority of those in need of these devices. While this leads to improved access to services it may also create unsustainable service delivery models. Over the past decade, World Health Organization (WHO) has been making consistent efforts towards promoting accessibility and affordability of high-quality hearing devices, especially in Low- and Middle-Income Countries (LMIC). WHO developed and updated the "Guidelines for Hearing Aids and Services in Developing Countries", in 2004. In 2006, WHO supported the establishment of "World Wide (WW) Hearing", to promote hearing aid access across the globe. In the past year, WHO has renewed these efforts. As the first step and following a consultation on promoting access to hearing devices, WHO has developed a preferred product profile in order to facilitate the development and access of appropriate and affordable hearing aids for developing countries. The Convention on the Rights of Persons with Disabilities (article 32), calls for international collaboration to promote access to assistive technology including hearing devices. A coordinated global effort is required to promote availability and affordability of high-quality hearing devices. Such an undertaking requires the cooperation of all stakeholders: WHO, Member States, Non-Governmental Organizations (NGOs), philanthropists, manufacturers and users, to fulfill the international obligation and bring about a change in the quality of life of millions of people with hearing loss. Development of preferred product profile for hearing aids in LMICs can improve development and provision of high-quality, affordable hearing devices. Investment made by the recipients, such as partial financial contribution towards the cost of device or through purchase of ear mould or batteries, leads to a greater sense of responsibility towards the device and its maintenance. Low level of awareness about hearing loss and the potential benefits of hearing aids contribute to the underutilization of hearing aids.
Development of a QDots 800 based fluorescent solid phantom for validation of NIRF imaging platforms
NASA Astrophysics Data System (ADS)
Zhu, Banghe; Sevick-Muraca, Eva M.
2013-02-01
Over the past decade, we developed near-infrared fluorescence (NIRF) devices for non-invasive lymphatic imaging using microdosages of ICG in humans and for detection of lymph node metastasis in animal models mimicking metastatic human prostate cancer. To validate imaging, a NIST traceable phantom is needed so that developed "first-inhumans" drugs may be used with different luorescent imaging platforms. In this work, we developed a QDots 800 based fluorescent solid phantom for installation and operational qualification of clinical and preclinical, NIRF imaging devices. Due to its optical clearance, polyurethane was chosen as the base material. Titanium dioxide was used as the scattering agent because of its miscibility in polyurethane. QDots 800 was chosen owing to its stability and NIR emission spectra. A first phantom was constructed for evaluation of the noise floor arising from excitation light leakage, a phenomenon that can be minimized during engineering and design of fluorescent imaging systems. A second set of phantoms were constructed to enable quantification of device sensitivity associated with our preclinical and clinical devices. The phantoms have been successfully applied for installation and operational qualification of our preclinical and clinical devices. Assessment of excitation light leakage provides a figure of merit for "noise floor" and imaging sensitivity can be used to benchmark devices for specific imaging agents.
The design of an energy harvesting device for prolonging the working time of DC equipment
NASA Astrophysics Data System (ADS)
Wen, Yayuan; Deng, Huaxia; Zhang, Jin; Yu, Liandong
2016-01-01
Energy harvesting (EH) derives from the idea of converting the ambient energy into electric energy, which can solve the problem of DC supply for some electronic equipment. PZT is a typical piezoelectric material of inorganic, which has been developed as EH devices to transfer ambient vibration energy into electric energy. However, these PZT devices require relatively violent excitation, and easy to be fatigue fracture under the resonance condition. In this paper, PVDF, which is a kind of soft piezoelectric polymer, is adopted for developing transducer. The PVDF devices are flexible and have longer life time than PZT devices under the harmonic environment. The EH researches are mainly focused on the development of energy transfer efficiency either by the mechanical structure of transducer or the improvement of circuit. However, the practicality and stability of the EH devices are important in the practical engineering applications. In this paper, a charge amplifier is introduced in the circuit in order to guarantee the stability of the battery charging under small ambient vibration conditions. The model of the mechanical structure of PVDF and the electric performance of circuit are developed. The experimental results and simulation show that the stability of battery charging is improved and the working time of DC equipment is prolonged.
Transition Models for Engineering Calculations
NASA Technical Reports Server (NTRS)
Fraser, C. J.
2007-01-01
While future theoretical and conceptual developments may promote a better understanding of the physical processes involved in the latter stages of boundary layer transition, the designers of rotodynamic machinery and other fluid dynamic devices need effective transition models now. This presentation will therefore center around the development of of some transition models which have been developed as design aids to improve the prediction codes used in the performance evaluation of gas turbine blading. All models are based on Narasimba's concentrated breakdown and spot growth.
Effects of vibration on inertial wind-tunnel model attitude measurement devices
NASA Technical Reports Server (NTRS)
Young, Clarence P., Jr.; Buehrle, Ralph D.; Balakrishna, S.; Kilgore, W. Allen
1994-01-01
Results of an experimental study of a wind tunnel model inertial angle-of-attack sensor response to a simulated dynamic environment are presented. The inertial device cannot distinguish between the gravity vector and the centrifugal accelerations associated with wind tunnel model vibration, this situation results in a model attitude measurement bias error. Significant bias error in model attitude measurement was found for the model system tested. The model attitude bias error was found to be vibration mode and amplitude dependent. A first order correction model was developed and used for estimating attitude measurement bias error due to dynamic motion. A method for correcting the output of the model attitude inertial sensor in the presence of model dynamics during on-line wind tunnel operation is proposed.
MOEMS Modeling Using the Geometrical Matrix Toolbox
NASA Technical Reports Server (NTRS)
Wilson, William C.; Atkinson, Gary M.
2005-01-01
New technologies such as MicroOptoElectro-Mechanical Systems (MOEMS) require new modeling tools. These tools must simultaneously model the optical, electrical, and mechanical domains and the interactions between these domains. To facilitate rapid prototyping of these new technologies an optical toolbox has been developed for modeling MOEMS devices. The toolbox models are constructed using MATLAB's dynamical simulator, Simulink. Modeling toolboxes will allow users to focus their efforts on system design and analysis as opposed to developing component models. This toolbox was developed to facilitate rapid modeling and design of a MOEMS based laser ultrasonic receiver system.
Command, Control, Communications and Intelligence (C3I) Project Book: Fiscal Year 1992
1992-05-12
PSC-3 is a rugged, lightweight (less than 35 lbs including batteries and whip and mdium gain antennas) portable device capable of being paged while...as Materiel Change (NC) projects. They Include: TACFWR Wpgade NC; Water Entry Resolution NC; FIREFIWER Training Device Upgrade MC; and Backplmn Wiringj... devices consist of a sensor . processor addigital display ibplWsd on an Individual air defense mopon system(FAM and NWWI). Two models are in development
NASA Astrophysics Data System (ADS)
Frolov, Vladimir; Backhaus, Scott; Chertkov, Misha
2014-10-01
We explore optimization methods for planning the placement, sizing and operations of flexible alternating current transmission system (FACTS) devices installed to relieve transmission grid congestion. We limit our selection of FACTS devices to series compensation (SC) devices that can be represented by modification of the inductance of transmission lines. Our master optimization problem minimizes the l1 norm of the inductance modification subject to the usual line thermal-limit constraints. We develop heuristics that reduce this non-convex optimization to a succession of linear programs (LP) that are accelerated further using cutting plane methods. The algorithm solves an instance of the MatPower Polish Grid model (3299 lines and 2746 nodes) in 40 seconds per iteration on a standard laptop—a speed that allows the sizing and placement of a family of SC devices to correct a large set of anticipated congestions. We observe that our algorithm finds feasible solutions that are always sparse, i.e., SC devices are placed on only a few lines. In a companion manuscript, we demonstrate our approach on realistically sized networks that suffer congestion from a range of causes, including generator retirement. In this manuscript, we focus on the development of our approach, investigate its structure on a small test system subject to congestion from uniform load growth, and demonstrate computational efficiency on a realistically sized network.
Frolov, Vladimir; Backhaus, Scott; Chertkov, Misha
2014-10-24
We explore optimization methods for planning the placement, sizing and operations of Flexible Alternating Current Transmission System (FACTS) devices installed to relieve transmission grid congestion. We limit our selection of FACTS devices to Series Compensation (SC) devices that can be represented by modification of the inductance of transmission lines. Our master optimization problem minimizes the l 1 norm of the inductance modification subject to the usual line thermal-limit constraints. We develop heuristics that reduce this non-convex optimization to a succession of Linear Programs (LP) which are accelerated further using cutting plane methods. The algorithm solves an instance of the MatPowermore » Polish Grid model (3299 lines and 2746 nodes) in 40 seconds per iteration on a standard laptop—a speed up that allows the sizing and placement of a family of SC devices to correct a large set of anticipated congestions. We observe that our algorithm finds feasible solutions that are always sparse, i.e., SC devices are placed on only a few lines. In a companion manuscript, we demonstrate our approach on realistically-sized networks that suffer congestion from a range of causes including generator retirement. In this manuscript, we focus on the development of our approach, investigate its structure on a small test system subject to congestion from uniform load growth, and demonstrate computational efficiency on a realistically-sized network.« less
NASA Technical Reports Server (NTRS)
Kirkman, K. L.; Brown, C. E.; Goodman, A.
1973-01-01
The effectiveness of various candidate aircraft-wing devices for attenuation of trailing vortices generated by large aircraft is evaluated on basis of results of experiments conducted with a 0.03-scale model of a Boeing 747 transport aircraft using a technique developed at the HYDRONAUTICS Ship Model Basin. Emphasis is on the effects produced by these devices in the far-field (up to 8 kilometers downstream of full-scale generating aircraft) where the unaltered vortex-wakes could still be hazardous to small following aircraft. The evaluation is based primarily on quantitative measurements of the respective vortex velocity distributions made by means of hot-film probe traverses in a transverse plane at selected stations downstream. The effects of these altered wakes on rolling moment induced on a small following aircraft are also studied using a modified lifting-surface theory with a synthesized Gates Learjet as a typical example. Lift and drag measurements concurrently obtained in the model tests are used to appraise the effects of each device investigated on the performance characteristics of the generating aircraft.
Cognitive Inference Device for Activity Supervision in the Elderly
2014-01-01
Human activity, life span, and quality of life are enhanced by innovations in science and technology. Aging individual needs to take advantage of these developments to lead a self-regulated life. However, maintaining a self-regulated life at old age involves a high degree of risk, and the elderly often fail at this goal. Thus, the objective of our study is to investigate the feasibility of implementing a cognitive inference device (CI-device) for effective activity supervision in the elderly. To frame the CI-device, we propose a device design framework along with an inference algorithm and implement the designs through an artificial neural model with different configurations, mapping the CI-device's functions to minimise the device's prediction error. An analysis and discussion are then provided to validate the feasibility of CI-device implementation for activity supervision in the elderly. PMID:25405211
NASA Astrophysics Data System (ADS)
Kartalov, Emil P.; Scherer, Axel; Quake, Stephen R.; Taylor, Clive R.; Anderson, W. French
2007-03-01
A systematic experimental study and theoretical modeling of the device physics of polydimethylsiloxane "pushdown" microfluidic valves are presented. The phase space is charted by 1587 dimension combinations and encompasses 45-295μm lateral dimensions, 16-39μm membrane thickness, and 1-28psi closing pressure. Three linear models are developed and tested against the empirical data, and then combined into a fourth-power-polynomial superposition. The experimentally validated final model offers a useful quantitative prediction for a valve's properties as a function of its dimensions. Typical valves (80-150μm width) are shown to behave like thin springs.
Allen, Paul B; Salyer, Steven W; Dubick, Michael A; Holcomb, John B; Blackbourne, Lorne H
2010-07-01
The purpose of this study was to develop an in vitro torso model constructed with fluid bags and to determine whether this model could be used to differentiate between the heat prevention performance of devices with active chemical or radiant forced-air heating systems compared with passive heat loss prevention devices. We tested three active (Hypothermia Prevention Management Kit [HPMK], Ready-Heat, and Bair Hugger) and five passive (wool, space blankets, Blizzard blankets, human remains pouch, and Hot Pocket) hypothermia prevention products. Active warming devices included products with chemically or electrically heated systems. Both groups were tested on a fluid model warmed to 37 degrees C versus a control with no warming device. Core temperatures were recorded every 5 minutes for 120 minutes in total. Products that prevent heat loss with an actively heated element performed better than most passive prevention methods. The original HPMK achieved and maintained significantly higher temperatures than all other methods and the controls at 120 minutes (p < 0.05). None of the devices with an actively heated element achieved the sustained 44 degrees C that could damage human tissue if left in place for 6 hours. The best passive methods of heat loss prevention were the Hot Pocket and Blizzard blanket, which performed the same as two of the three active heating methods tested at 120 minutes. Our in vitro fluid bag "torso" model seemed sensitive to detect heat loss in the evaluation of several active or passive warming devices. All active and most passive devices were better than wool blankets. Under conditions near room temperature, passive warming methods (Blizzard blanket or the Hot Pocket) were as effective as active warming devices other than the original HPMK. Further studies are necessary to determine how these data can translate to field conditions in preventing heat loss in combat casualties.
Understanding the Implications of a LINAC’s Microstructure on Devices and Photocurrent Models
McLain, Michael Lee; McDonald, Joseph Kyle; Hembree, Charles E.; ...
2017-10-20
Here, the effect of a linear accelerator’s (LINAC’s) microstructure (i.e., train of narrow pulses) on devices and the associated transient photocurrent models are investigated. The data indicate that the photocurrent response of Si-based RF bipolar junction transistors and RF p-i-n diodes is considerably higher when taking into account the microstructure effects. Similarly, the response of diamond, SiO 2, and GaAs photoconductive detectors (standard radiation diagnostics) is higher when taking into account the microstructure. This has obvious hardness assurance implications when assessing the transient response of devices because the measured photocurrent and dose rate levels could be underestimated if microstructure effectsmore » are not captured. Indeed, the rate the energy is deposited in a material during the microstructure peaks is much higher than the filtered rate which is traditionally measured. In addition, photocurrent models developed with filtered LINAC data may be inherently inaccurate if a device is able to respond to the microstructure.« less
Understanding the Implications of a LINAC’s Microstructure on Devices and Photocurrent Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLain, Michael Lee; McDonald, Joseph Kyle; Hembree, Charles E.
Here, the effect of a linear accelerator’s (LINAC’s) microstructure (i.e., train of narrow pulses) on devices and the associated transient photocurrent models are investigated. The data indicate that the photocurrent response of Si-based RF bipolar junction transistors and RF p-i-n diodes is considerably higher when taking into account the microstructure effects. Similarly, the response of diamond, SiO 2, and GaAs photoconductive detectors (standard radiation diagnostics) is higher when taking into account the microstructure. This has obvious hardness assurance implications when assessing the transient response of devices because the measured photocurrent and dose rate levels could be underestimated if microstructure effectsmore » are not captured. Indeed, the rate the energy is deposited in a material during the microstructure peaks is much higher than the filtered rate which is traditionally measured. In addition, photocurrent models developed with filtered LINAC data may be inherently inaccurate if a device is able to respond to the microstructure.« less
U.S. Department of Energy Reference Model Program RM1: Experimental Results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, Craig; Neary, Vincent Sinclair; Gunawan, Budi
The Reference Model Project (RMP), sponsored by the U.S. Department of Energy’s (DOE) Wind and Water Power Technologies Program within the Office of Energy Efficiency & Renewable Energy (EERE), aims at expediting industry growth and efficiency by providing nonproprietary Reference Models (RM) of MHK technology designs as study objects for opensource research and development (Neary et al. 2014a,b). As part of this program, MHK turbine models were tested in a large open channel facility at the University of Minnesota’s St. Anthony Falls Laboratory (UMN-SAFL). Reference Model 1 (RM1) is a 1:40 geometric scale dual-rotor axial flow horizontal axis device withmore » counter-rotating rotors, each with a rotor diameter dT = 0.5m. Precise blade angular position and torque measurements were synchronized with three acoustic Doppler velocimeters (ADVs) aligned with each rotor and the midpoint for RM1. Flow conditions for each case were controlled such that depth, h = 1m, and volumetric flow rate, Qw = 2.425m3s-1, resulting in a hub height velocity of approximately Uhub = 1.05ms-1 and blade chord length Reynolds numbers of Rec ≈ 3.0x105. Vertical velocity profiles collected in the wake of each device from 1 to 10 rotor diameters are used to estimate the velocity recovery and turbulent characteristics in the wake, as well as the interaction of the counter-rotating rotor wakes. The development of this high resolution laboratory investigation provides a robust dataset that enables assessing turbulence performance models and their ability to accurately predict device performance metrics, including computational fluid dynamics (CFD) models that can be used to predict turbulent inflow environments, reproduce wake velocity deficit, recovery and higher order turbulent statistics, as well as device performance metrics.« less
Automatic Adviser on stationary devices status identification and anticipated change
NASA Astrophysics Data System (ADS)
Shabelnikov, A. N.; Liabakh, N. N.; Gibner, Ya M.; Pushkarev, E. A.
2018-05-01
A task is defined to synthesize an Automatic Adviser to identify the automation systems stationary devices status using an autoregressive model of changing their key parameters. An applied model type was rationalized and the research objects monitoring process algorithm was developed. A complex of mobile objects status operation simulation and prediction results analysis was proposed. Research results are commented using a specific example of a hump yard compressor station. The work was supported by the Russian Fundamental Research Fund, project No. 17-20-01040.
Biomechanical Modeling of Split-leg Squat and Heel Raise on the Hybrid Ultimate Lifting Kit (HULK)
NASA Technical Reports Server (NTRS)
Thompson, William K.; Gallo, Christopher A.; Lewandowski, Beth E.; Jagodnik, Kathleen M.; Humphreys, Brad; Funk, Justin; Funk, Nathan; Dewitt, John K.
2016-01-01
Long duration space travel will expose astronauts to extended periods of reduced gravity. Since gravity is not present to aid loading, astronauts will use resistive and aerobic exercise regimes for the duration of the space flight to minimize the loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the area available for an exercise device in the next generation of spacecraft is limited and therefore compact resistance exercise device prototypes are being developed. The Advanced Resistive Exercise Device (ARED) currently on the ISS is being used as a benchmark for the functional performance of these new devices. Biomechanical data collection and computational modeling aid the device design process by quantifying the joint torques and musculoskeletal forces that occur during exercises performed on the prototype devices. Computational models currently use OpenSim software, an open source code for musculoskeletal modeling, with biomechanical input data from subjects for estimation of muscle and joint loads. Subjects are instrumented with reflective markers for motion capture data collection while exercising on the Hybrid Ultimate Lifting Kit (HULK) prototype device. Ground reaction force data is collected with force plates under the feet and device loading is recorded through load cells internal to the HULK. This data is input into the OpenSim biomechanical model, which has been scaled to match the anthropometrics of the test subject, to calculate the loads on the body. Multiple exercises are performed and evaluated during a test session such as a full squat, single leg squat, heel raise and dead lift. Variables for these exercises include applied device load, narrow or wide foot stance, slow or fast cadence and the harness or long bar interface between the test subject and the device. Data from free weights are compared to the resistively loaded exercise device. The focus of this presentation is to summarize the results from the single-leg squat and heel raise exercises performed during three sessions occurring in 2015. Differences in loading configuration, cadence and stance produce differences in kinematics, joint toques and force and muscle forces.
Development of a pheromone elution rate physical model
M.E. Teske; H.W. Thistle; B.L. Strom; H. Zhu
2015-01-01
A first principle modeling approach has been applied to available data describing the elution of semiochemicals from pheromone dispensers. These data included field data for 27 products developed by several manufacturers, including homemade devices, as well as environmental chamber data collected on three semiochemical products. The goal of this effort was to...
Design and development of a device to measure the deformities of clubfoot.
Khas, Kanwaljit S; Pandey, Pulak M; Ray, Alok R
2015-03-01
Clubfoot describes a range of foot abnormalities usually present at birth, in which the foot of a baby is twisted out of shape or position. In order to develop an effective treatment plan for clubfoot and/or assess the extent to which existing interventions are successful, medical practitioners need to be able to accurately measure the nature and extent of the deformity. This is typically performed using a goniometer. However, this device is only able to measure one dimension at a time. As such, a complete assessment of the condition of a foot can be extremely burdensome and time-consuming. This article describes a new device that can quickly and efficiently take several measurements on feet of various sizes and shapes. The use of this device was verified by measuring the deformities of real clubfeet. A silicone rubber clubfoot model was also used in this study to clearly illustrate the effectiveness with which the proposed device can measure the various deformities of clubfoot. It is envisaged that the use of this device will significantly reduce the time and effort orthopedists require to measure clubfoot deformities and develop and assess treatment plans. © IMechE 2015.
Smart Materials for Electromagnetic and Optical Applications
NASA Astrophysics Data System (ADS)
Ramesh, Prashanth
The research presented in this dissertation focuses on the development of solid-state materials that have the ability to sense, act, think and communicate. Two broad classes of materials, namely ferroelectrics and wideband gap semiconductors were investigated for this purpose. Ferroelectrics possess coupled electromechanical behavior which makes them sensitive to mechanical strains and fluctuations in ambient temperature. Use of ferroelectrics in antenna structures, especially those subject to mechanical and thermal loads, requires knowledge of the phenomenological relationship between the ferroelectric properties of interest (especially dielectric permittivity) and the external physical variables, viz. electric field(s), mechanical strains and temperature. To this end, a phenomenological model of ferroelectric materials based on the Devonshire thermodynamic theory was developed. This model was then used to obtain a relationship expressing the dependence of the dielectric permittivity on the mechanical strain, applied electric field and ambient temperature. The relationship is shown to compare well with published experimental data and other related models in literature. A model relating ferroelectric loss tangent to the applied electric field and temperature is also discussed. Subsequently, relationships expressing the dependence of antenna operating frequency and radiation efficiency on those external physical quantities are described. These relationships demonstrate the tunability of load-bearing antenna structures that integrate ferroelectrics when they are subjected to mechanical and thermal loads. In order to address the inability of ferroelectrics to integrate microelectronic devices, a feature needed in a material capable of sensing, acting, thinking and communicating, the material Gallium Nitride (GaN) is pursued next. There is an increasing utilization of GaN in the area of microelectronics due to the advantages it offers over other semiconductors. This dissertation demonstrates GaN as a candidate material well suited for novel microelectromechanical systems. The potential of GaN for MEMS is demonstrated via the design, analysis, fabrication, testing and characterization of an optical microswitch device actuated by piezoelectric and electrostrictive means. The piezoelectric and electrostrictive properties of GaN and its differences from common piezoelectrics are discussed before elaborating on the device configuration used to implement the microswitch device. Next, the development of two recent fabrication technologies, Photoelectrochemical etch and Bias-enabled Dark Electrochemical etch, used to realize the 3-dimensional device structure in GaN are described in detail. Finally, an ultra-low-cost, laser-based, non-contact approach to test and characterize the microswitch device is described, followed by the device testing results.
Compensating for pneumatic distortion in pressure sensing devices
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.; Leondes, Cornelius T.
1990-01-01
A technique of compensating for pneumatic distortion in pressure sensing devices was developed and verified. This compensation allows conventional pressure sensing technology to obtain improved unsteady pressure measurements. Pressure distortion caused by frictional attenuation and pneumatic resonance within the sensing system makes obtaining unsteady pressure measurements by conventional sensors difficult. Most distortion occurs within the pneumatic tubing which transmits pressure impulses from the aircraft's surface to the measurement transducer. To avoid pneumatic distortion, experiment designers mount the pressure sensor at the surface of the aircraft, (called in-situ mounting). In-situ transducers cannot always fit in the available space and sometimes pneumatic tubing must be run from the aircraft's surface to the pressure transducer. A technique to measure unsteady pressure data using conventional pressure sensing technology was developed. A pneumatic distortion model is reduced to a low-order, state-variable model retaining most of the dynamic characteristics of the full model. The reduced-order model is coupled with results from minimum variance estimation theory to develop an algorithm to compensate for the effects of pneumatic distortion. Both postflight and real-time algorithms are developed and evaluated using simulated and flight data.
A Hybrid Actuation System Demonstrating Significantly Enhanced Electromechanical Performance
NASA Technical Reports Server (NTRS)
Su, Ji; Xu, Tian-Bing; Zhang, Shujun; Shrout, Thomas R.; Zhang, Qiming
2004-01-01
A hybrid actuation system (HYBAS) utilizing advantages of a combination of electromechanical responses of an electroactive polymer (EAP), an electrostrictive copolymer, and an electroactive ceramic single crystal, PZN-PT single crystal, has been developed. The system employs the contribution of the actuation elements cooperatively and exhibits a significantly enhanced electromechanical performance compared to the performances of the device made of each constituting material, the electroactive polymer or the ceramic single crystal, individually. The theoretical modeling of the performances of the HYBAS is in good agreement with experimental observation. The consistence between the theoretical modeling and experimental test make the design concept an effective route for the development of high performance actuating devices for many applications. The theoretical modeling, fabrication of the HYBAS and the initial experimental results will be presented and discussed.
Thrombosis in Cerebral Aneurysms and the Computational Modeling Thereof: A Review
Ngoepe, Malebogo N.; Frangi, Alejandro F.; Byrne, James V.; Ventikos, Yiannis
2018-01-01
Thrombosis is a condition closely related to cerebral aneurysms and controlled thrombosis is the main purpose of endovascular embolization treatment. The mechanisms governing thrombus initiation and evolution in cerebral aneurysms have not been fully elucidated and this presents challenges for interventional planning. Significant effort has been directed towards developing computational methods aimed at streamlining the interventional planning process for unruptured cerebral aneurysm treatment. Included in these methods are computational models of thrombus development following endovascular device placement. The main challenge with developing computational models for thrombosis in disease cases is that there exists a wide body of literature that addresses various aspects of the clotting process, but it may not be obvious what information is of direct consequence for what modeling purpose (e.g., for understanding the effect of endovascular therapies). The aim of this review is to present the information so it will be of benefit to the community attempting to model cerebral aneurysm thrombosis for interventional planning purposes, in a simplified yet appropriate manner. The paper begins by explaining current understanding of physiological coagulation and highlights the documented distinctions between the physiological process and cerebral aneurysm thrombosis. Clinical observations of thrombosis following endovascular device placement are then presented. This is followed by a section detailing the demands placed on computational models developed for interventional planning. Finally, existing computational models of thrombosis are presented. This last section begins with description and discussion of physiological computational clotting models, as they are of immense value in understanding how to construct a general computational model of clotting. This is then followed by a review of computational models of clotting in cerebral aneurysms, specifically. Even though some progress has been made towards computational predictions of thrombosis following device placement in cerebral aneurysms, many gaps still remain. Answering the key questions will require the combined efforts of the clinical, experimental and computational communities. PMID:29670533
Thrombosis in Cerebral Aneurysms and the Computational Modeling Thereof: A Review.
Ngoepe, Malebogo N; Frangi, Alejandro F; Byrne, James V; Ventikos, Yiannis
2018-01-01
Thrombosis is a condition closely related to cerebral aneurysms and controlled thrombosis is the main purpose of endovascular embolization treatment. The mechanisms governing thrombus initiation and evolution in cerebral aneurysms have not been fully elucidated and this presents challenges for interventional planning. Significant effort has been directed towards developing computational methods aimed at streamlining the interventional planning process for unruptured cerebral aneurysm treatment. Included in these methods are computational models of thrombus development following endovascular device placement. The main challenge with developing computational models for thrombosis in disease cases is that there exists a wide body of literature that addresses various aspects of the clotting process, but it may not be obvious what information is of direct consequence for what modeling purpose (e.g., for understanding the effect of endovascular therapies). The aim of this review is to present the information so it will be of benefit to the community attempting to model cerebral aneurysm thrombosis for interventional planning purposes, in a simplified yet appropriate manner. The paper begins by explaining current understanding of physiological coagulation and highlights the documented distinctions between the physiological process and cerebral aneurysm thrombosis. Clinical observations of thrombosis following endovascular device placement are then presented. This is followed by a section detailing the demands placed on computational models developed for interventional planning. Finally, existing computational models of thrombosis are presented. This last section begins with description and discussion of physiological computational clotting models, as they are of immense value in understanding how to construct a general computational model of clotting. This is then followed by a review of computational models of clotting in cerebral aneurysms, specifically. Even though some progress has been made towards computational predictions of thrombosis following device placement in cerebral aneurysms, many gaps still remain. Answering the key questions will require the combined efforts of the clinical, experimental and computational communities.
H+-type and OH--type biological protonic semiconductors and complementary devices
NASA Astrophysics Data System (ADS)
Deng, Yingxin; Josberger, Erik; Jin, Jungho; Rousdari, Anita Fadavi; Helms, Brett A.; Zhong, Chao; Anantram, M. P.; Rolandi, Marco
2013-10-01
Proton conduction is essential in biological systems. Oxidative phosphorylation in mitochondria, proton pumping in bacteriorhodopsin, and uncoupling membrane potentials by the antibiotic Gramicidin are examples. In these systems, H+ hop along chains of hydrogen bonds between water molecules and hydrophilic residues - proton wires. These wires also support the transport of OH- as proton holes. Discriminating between H+ and OH- transport has been elusive. Here, H+ and OH- transport is achieved in polysaccharide- based proton wires and devices. A H+- OH- junction with rectifying behaviour and H+-type and OH--type complementary field effect transistors are demonstrated. We describe these devices with a model that relates H+ and OH- to electron and hole transport in semiconductors. In turn, the model developed for these devices may provide additional insights into proton conduction in biological systems.
H+-type and OH−-type biological protonic semiconductors and complementary devices
Deng, Yingxin; Josberger, Erik; Jin, Jungho; Rousdari, Anita Fadavi; Helms, Brett A.; Zhong, Chao; Anantram, M. P.; Rolandi, Marco
2013-01-01
Proton conduction is essential in biological systems. Oxidative phosphorylation in mitochondria, proton pumping in bacteriorhodopsin, and uncoupling membrane potentials by the antibiotic Gramicidin are examples. In these systems, H+ hop along chains of hydrogen bonds between water molecules and hydrophilic residues – proton wires. These wires also support the transport of OH− as proton holes. Discriminating between H+ and OH− transport has been elusive. Here, H+ and OH− transport is achieved in polysaccharide- based proton wires and devices. A H+- OH− junction with rectifying behaviour and H+-type and OH−-type complementary field effect transistors are demonstrated. We describe these devices with a model that relates H+ and OH− to electron and hole transport in semiconductors. In turn, the model developed for these devices may provide additional insights into proton conduction in biological systems. PMID:24089083
Spike train generation and current-to-frequency conversion in silicon diodes
NASA Technical Reports Server (NTRS)
Coon, D. D.; Perera, A. G. U.
1989-01-01
A device physics model is developed to analyze spontaneous neuron-like spike train generation in current driven silicon p(+)-n-n(+) devices in cryogenic environments. The model is shown to explain the very high dynamic range (0 to the 7th) current-to-frequency conversion and experimental features of the spike train frequency as a function of input current. The devices are interesting components for implementation of parallel asynchronous processing adjacent to cryogenically cooled focal planes because of their extremely low current and power requirements, their electronic simplicity, and their pulse coding capability, and could be used to form the hardware basis for neural networks which employ biologically plausible means of information coding.
Study and characterization of a MEMS micromirror device
NASA Astrophysics Data System (ADS)
Furlong, Cosme; Pryputniewicz, Ryszard J.
2004-08-01
In this paper, advances in our study and characterization of a MEMS micromirror device are presented. The micromirror device, of 510 mm characteristic length, operates in a dynamic mode with a maximum displacement on the order of 10 mm along its principal optical axis and oscillation frequencies of up to 1.3 kHz. Developments are carried on by analytical, computational, and experimental methods. Analytical and computational nonlinear geometrical models are developed in order to determine the optimal loading-displacement operational characteristics of the micromirror. Due to the operational mode of the micromirror, the experimental characterization of its loading-displacement transfer function requires utilization of advanced optical metrology methods. Optoelectronic holography (OEH) methodologies based on multiple wavelengths that we are developing to perform such characterization are described. It is shown that the analytical, computational, and experimental approach is effective in our developments.
NASA's Cryogenic Fluid Management Technology Project
NASA Technical Reports Server (NTRS)
Tramel, Terri L.; Motil, Susan M.
2008-01-01
The Cryogenic Fluid Management (CFM) Project's primary objective is to develop storage, transfer, and handling technologies for cryogens that will support the enabling of high performance cryogenic propulsion systems, lunar surface systems and economical ground operations. Such technologies can significantly reduce propellant launch mass and required on-orbit margins, reduce or even eliminate propellant tank fluid boil-off losses for long term missions, and simplify vehicle operations. This paper will present the status of the specific technologies that the CFM Project is developing. The two main areas of concentration are analysis models development and CFM hardware development. The project develops analysis tools and models based on thermodynamics, hydrodynamics, and existing flight/test data. These tools assist in the development of pressure/thermal control devices (such as the Thermodynamic Vent System (TVS), and Multi-layer insulation); with the ultimate goal being to develop a mature set of tools and models that can characterize the performance of the pressure/thermal control devices incorporated in the design of an entire CFM system with minimal cryogen loss. The project does hardware development and testing to verify our understanding of the physical principles involved, and to validate the performance of CFM components, subsystems and systems. This database provides information to anchor our analytical models. This paper describes some of the current activities of the NASA's Cryogenic Fluid Management Project.
Computational Models of Exercise on the Advanced Resistance Exercise Device (ARED)
NASA Technical Reports Server (NTRS)
Newby, Nate; Caldwell, Erin; Scott-Pandorf, Melissa; Peters,Brian; Fincke, Renita; DeWitt, John; Poutz-Snyder, Lori
2011-01-01
Muscle and bone loss remain a concern for crew returning from space flight. The advanced resistance exercise device (ARED) is used for on-orbit resistance exercise to help mitigate these losses. However, characterization of how the ARED loads the body in microgravity has yet to be determined. Computational models allow us to analyze ARED exercise in both 1G and 0G environments. To this end, biomechanical models of the squat, single-leg squat, and deadlift exercise on the ARED have been developed to further investigate bone and muscle forces resulting from the exercises.
A compact model for selectors based on metal doped electrolyte
NASA Astrophysics Data System (ADS)
Zhang, Lu; Song, Wenhao; Yang, J. Joshua; Li, Hai; Chen, Yiran
2018-04-01
A selector device that demonstrates high nonlinearity and low switching voltages was fabricated using HfOx as a solid electrolyte doped with Ag electrodes. The electronic conductance of the volatile conductive filaments responsible for the switching was studied under both static and dynamic conditions. A compact model is developed from this study that describes the physical processes of the formation and rupture of the Ag filament(s). A dynamic capacitance model is used to fit the transient current traces under different voltage bias, which enables the extraction of parameters associated with the various parasitic components in the device.
Novel delivery device for monolithical solid oral dosage forms for personalized medicine.
Wening, Klaus; Breitkreutz, Jörg
2010-08-16
There is an evident need for solid oral dosage forms allowing patients' tailor-made dosing due to variations in metabolization or small therapeutic indexes of drug substances. The objective of this work is the development of a device equipped with a novel solid dosage form, containing carvedilol as model drug, for the delivery of monolithical drug carriers in individual doses. The device was developed and constructed enabling an exact feed rate and dose adjustment by a cutting mechanism. A twin-screw extruder was used for producing cylindrical solid dosage forms. Divided doses were characterized by mass variation, cutting behavior and drug dissolution in order to investigate their applicability for practical use. Different formulations could be extruded obtaining straight cylindrical rods, which are divisible in exact slices by using the novel device. Forces below 20 N were needed to divide doses which comply with pharmacopoeial specification "conformity of mass". The developed formulations exhibit a sustained release of carvedilol within a range from 7 up to 16 h. A novel system consisting of a device and a cylindrical dosage form was developed. Patients' individual doses can be applied as monolithical solid dosage forms for oral use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, Emily L.; Deceglie, Michael G.; Stradins, Paul
Three-terminal (3T) tandem cells fabricated by combining an interdigitated back contact (IBC) Si device with a wider bandgap top cell have the potential to provide a robust operating mechanism to efficiently capture the solar spectrum without the need to current match sub-cells or fabricate complicated metal interconnects between cells. Here we develop a two dimensional device physics model to study the behavior of IBC Si solar cells operated in a 3T configuration. We investigate how different cell designs impact device performance and discuss the analysis protocol used to understand and optimize power produced from a single junction, 3T device.
Retention modeling for ultra-thin density of Cu-based conductive bridge random access memory (CBRAM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aga, Fekadu Gochole; Woo, Jiyong; Lee, Sangheon
We investigate the effect of Cu concentration On-state resistance retention characteristics of W/Cu/Ti/HfO{sub 2}/Pt memory cell. The development of RRAM device for application depends on the understanding of the failure mechanism and the key parameters for device optimization. In this study, we develop analytical expression for cations (Cu{sup +}) diffusion model using Gaussian distribution for detailed analysis of data retention time at high temperature. It is found that the improvement of data retention time depends not only on the conductive filament (CF) size but also on Cu atoms concentration density in the CF. Based on the simulation result, better datamore » retention time is observed for electron wave function associated with Cu{sup +} overlap and an extended state formation. This can be verified by analytical calculation of Cu atom defects inside the filament, based on Cu{sup +} diffusion model. The importance of Cu diffusion for the device reliability and the corresponding local temperature of the filament were analyzed by COMSOL Multiphysics simulation.« less
NASA Astrophysics Data System (ADS)
Deoghare, Ashish B.; Kashyap, Siddharth; Padole, Pramod M.
2013-03-01
Degenerative disc disease is a major source of lower back pain and significantly alters the biomechanics of the lumbar spine. Dynamic stabilization device is a remedial technique which uses flexible materials to stabilize the affected lumbar region while preserving the natural anatomy of the spine. The main objective of this research work is to investigate the stiffness variation of dynamic stabilization device under various loading conditions under compression, axial rotation and flexion. Three dimensional model of the two segment lumbar spine is developed using computed tomography (CT) scan images. The lumbar structure developed is analyzed in ANSYS workbench. Two types of dynamic stabilization are considered: one with stabilizing device as pedicle instrumentation and second with stabilization device inserted around the inter-vertebral disc. Analysis suggests that proper positioning of the dynamic stabilization device is of paramount significance prior to the surgery. Inserting the device in the posterior region indicates the adverse effects as it shows increase in the deformation of the inter-vertebral disc. Analysis executed by positioning stabilizing device around the inter-vertebral disc yields better result for various stiffness values under compression and other loadings. [Figure not available: see fulltext.
Nanoscale hotspots due to nonequilibrium thermal transport.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinha, Sanjiv; Goodson, Kenneth E.
2004-01-01
Recent experimental and modeling efforts have been directed towards the issue of temperature localization and hotspot formation in the vicinity of nanoscale heat generating devices. The nonequilibrium transport conditions which develop around these nanoscale devices results in elevated temperatures near the heat source which can not be predicted by continuum diffusion theory. Efforts to determine the severity of this temperature localization phenomena in silicon devices near and above room temperature are of technological importance to the development of microelectronics and other nanotechnologies. In this work, we have developed a new modeling tool in order to explore the magnitude of themore » additional thermal resistance which forms around nanoscale hotspots from temperatures of 100-1000K. The models are based on a two fluid approximation in which thermal energy is transferred between ''stationary'' optical phonons and fast propagating acoustic phonon modes. The results of the model have shown excellent agreement with experimental results of localized hotspots in silicon at lower temperatures. The model predicts that the effect of added thermal resistance due to the nonequilibrium phonon distribution is greatest at lower temperatures, but is maintained out to temperatures of 1000K. The resistance predicted by the numerical code can be easily integrated with continuum models in order to predict the temperature distribution around nanoscale heat sources with improved accuracy. Additional research efforts also focused on the measurements of the thermal resistance of silicon thin films at higher temperatures, with a focus on polycrystalline silicon. This work was intended to provide much needed experimental data on the thermal transport properties for micro and nanoscale devices built with this material. Initial experiments have shown that the exposure of polycrystalline silicon to high temperatures may induce recrystallization and radically increase the thermal transport properties at room temperature. In addition, the defect density was observed to play a major role in the rate of change in thermal resistivity as a function of temperature.« less
Investigation of the capillary flow through open surface microfluidic structures
NASA Astrophysics Data System (ADS)
Taher, Ahmed; Jones, Benjamin; Fiorini, Paolo; Lagae, Liesbet
2017-02-01
The passive nature of capillary microfluidics for pumping and actuation of fluids is attractive for many applications including point of care medical diagnostics. For such applications, there is often the need to spot dried chemical reagents in the bottom of microfluidic channels after device fabrication; it is often more practical to have open surface devices (i.e., without a cover or lid). However, the dynamics of capillary driven flow in open surface devices have not been well studied for many geometries of interest. In this paper, we investigate capillary flow in an open surface microchannel with a backward facing step. An analytical model is developed to calculate the capillary pressure as the liquid-vapor interface traverses a backward facing step in an open microchannel. The developed model is validated against results from Surface Evolver liquid-vapor surface simulations and ANSYS Fluent two-phase flow simulations using the volume of fluid approach. Three different aspect ratios (inlet channel height by channel width) were studied. The analytical model shows good agreement with the simulation results from both modeling methods for all geometries. The analytical model is used to derive an expression for the critical aspect ratio (the minimum channel aspect ratio for flow to proceed across the backward facing step) as a function of contact angle.
Review of electronic transport models for thermoelectric materials
NASA Astrophysics Data System (ADS)
Bulusu, A.; Walker, D. G.
2008-07-01
Thermoelectric devices have gained importance in recent years as viable solutions for applications such as spot cooling of electronic components, remote power generation in space stations and satellites etc. These solid-state devices have long been known for their reliability rather than their efficiency; they contain no moving parts, and their performance relies primarily on material selection, which has not generated many excellent candidates. Research in recent years has been focused on developing both thermoelectric structures and materials that have high efficiency. In general, thermoelectric research is two-pronged with (1) experiments focused on finding new materials and structures with enhanced thermoelectric performance and (2) analytical models that predict thermoelectric behavior to enable better design and optimization of materials and structures. While numerous reviews have discussed the importance of and dependence on materials for thermoelectric performance, an overview of how to predict the performance of various materials and structures based on fundamental quantities is lacking. In this paper we present a review of the theoretical models that were developed since thermoelectricity was first observed in 1821 by Seebeck and how these models have guided experimental material search for improved thermoelectric devices. A new quantum model is also presented, which provides opportunities for the optimization of nanoscale materials to enhance thermoelectric performance.
Jahromi, Hamed Dehdashti; Mahmoodi, Ali; Sheikhi, Mohammad Hossein; Zarifkar, Abbas
2016-10-20
Reduction of dark current at high-temperature operation is a great challenge in conventional quantum dot infrared photodetectors, as the rate of thermal excitations resulting in the dark current increases exponentially with temperature. A resonant tunneling barrier is the best candidate for suppression of dark current, enhancement in signal-to-noise ratio, and selective extraction of different wavelength response. In this paper, we use a physical model developed by the authors recently to design a proper resonant tunneling barrier for quantum infrared photodetectors and to study and analyze the spectral response of these devices. The calculated transmission coefficient of electrons by this model and its dependency on bias voltage are in agreement with experimental results. Furthermore, based on the calculated transmission coefficient, the dark current of a quantum dot infrared photodetector with a resonant tunneling barrier is calculated and compared with the experimental data. The validity of our model is proven through this comparison. Theoretical dark current by our model shows better agreement with the experimental data and is more accurate than the previously developed model. Moreover, noise in the device is calculated. Finally, the effect of different parameters, such as temperature, size of quantum dots, and bias voltage, on the performance of the device is simulated and studied.
Dynamics of blood flow in a microfluidic ladder network
NASA Astrophysics Data System (ADS)
Maddala, Jeevan; Zilberman-Rudenko, Jevgenia; McCarty, Owen
The dynamics of a complex mixture of cells and proteins, such as blood, in perturbed shear flow remains ill-defined. Microfluidics is a promising technology for improving the understanding of blood flow under complex conditions of shear; as found in stent implants and in tortuous blood vessels. We model the fluid dynamics of blood flow in a microfluidic ladder network with dimensions mimicking venules. Interaction of blood cells was modeled using multiagent framework, where cells of different diameters were treated as spheres. This model served as the basis for predicting transition regions, collision pathways, re-circulation zones and residence times of cells dependent on their diameters and device architecture. Based on these insights from the model, we were able to predict the clot formation configurations at various locations in the device. These predictions were supported by the experiments using whole blood. To facilitate platelet aggregation, the devices were coated with fibrillar collagen and tissue factor. Blood was perfused through the microfluidic device for 9 min at a physiologically relevant venous shear rate of 600 s-1. Using fluorescent microscopy, we observed flow transitions near the channel intersections and at the areas of blood flow obstruction, which promoted larger thrombus formation. This study of integrating model predictions with experimental design, aids in defining the dynamics of blood flow in microvasculature and in development of novel biomedical devices.
An Integrated Device View on Photo-Electrochemical Solar-Hydrogen Generation.
Modestino, Miguel A; Haussener, Sophia
2015-01-01
Devices that directly capture and store solar energy have the potential to significantly increase the share of energy from intermittent renewable sources. Photo-electrochemical solar-hydrogen generators could become an important contributor, as these devices can convert solar energy into fuels that can be used throughout all sectors of energy. Rather than focusing on scientific achievement on the component level, this article reviews aspects of overall component integration in photo-electrochemical water-splitting devices that ultimately can lead to deployable devices. Throughout the article, three generalized categories of devices are considered with different levels of integration and spanning the range of complete integration by one-material photo-electrochemical approaches to complete decoupling by photovoltaics and electrolyzer devices. By using this generalized framework, we describe the physical aspects, device requirements, and practical implications involved with developing practical photo-electrochemical water-splitting devices. Aspects reviewed include macroscopic coupled multiphysics device models, physical device demonstrations, and economic and life cycle assessments, providing the grounds to draw conclusions on the overall technological outlook.
Bai, Lin; Ren, Yulan; Guo, Taipin; Chen, Lin; Zhou, Yumei; Feng, Shuwei; Li, Ji; Liang, Fanrong
2016-11-12
To perform a bibliometrics analysis on patent literature regarding diagnosis and treatment devices of acupuncture in China, aiming to provide references for the development of diagnosis and treatment devices of acupuncture. Based on SooPAT, a patent database, the patent literature regarding diagnosis and treatment devices of acupuncture in China was collected. With bibliometrics methods, the annual distribution of type, quantity, classification and content of diagnosis and treatment devices of acupuncture were analyzed. The number of acupuncture diagnosis and treatment devices reached its peak in 2012 and 2013 in China. The A61N in patent and utility model patent were the most, which were mainly related to electrotherapy, magnetic therapy, radioactive therapy and ultrasound therapy, etc. The main content was acupuncture treatment devices and meridian treatment devices. The 24-01 in design patent was the most, involving fixation devices used by doctors, hospitals and laboratories, etc. Currently the majority of diagnosis and treatment devices of acupuncture is therapeutic apparatus, while the acupuncture diagnosis devices are needed.
First-Order SPICE Modeling of Extreme-Temperature 4H-SiC JFET Integrated Circuits
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.; Spry, David J.; Chen, Liang-Yu
2016-01-01
A separate submission to this conference reports that 4H-SiC Junction Field Effect Transistor (JFET) digital and analog Integrated Circuits (ICs) with two levels of metal interconnect have reproducibly demonstrated electrical operation at 500 C in excess of 1000 hours. While this progress expands the complexity and durability envelope of high temperature ICs, one important area for further technology maturation is the development of reasonably accurate and accessible computer-aided modeling and simulation tools for circuit design of these ICs. Towards this end, we report on development and verification of 25 C to 500 C SPICE simulation models of first order accuracy for this extreme-temperature durable 4H-SiC JFET IC technology. For maximum availability, the JFET IC modeling is implemented using the baseline-version SPICE NMOS LEVEL 1 model that is common to other variations of SPICE software and importantly includes the body-bias effect. The first-order accuracy of these device models is verified by direct comparison with measured experimental device characteristics.
NASA Astrophysics Data System (ADS)
Ferhati, H.; Djeffal, F.
2017-12-01
In this paper, a new MSM-UV-photodetector (PD) based on dual wide band-gap material (DM) engineering aspect is proposed to achieve high-performance self-powered device. Comprehensive analytical models for the proposed sensor photocurrent and the device properties are developed incorporating the impact of DM aspect on the device photoelectrical behavior. The obtained results are validated with the numerical data using commercial TCAD software. Our investigation demonstrates that the adopted design amendment modulates the electric field in the device, which provides the possibility to drive appropriate photo-generated carriers without an external applied voltage. This phenomenon suggests achieving the dual role of effective carriers' separation and an efficient reduce of the dark current. Moreover, a new hybrid approach based on analytical modeling and Particle Swarm Optimization (PSO) is proposed to achieve improved photoelectric behavior at zero bias that can ensure favorable self-powered MSM-based UV-PD. It is found that the proposed design methodology has succeeded in identifying the optimized design that offers a self-powered device with high-responsivity (98 mA/W) and superior ION/IOFF ratio (480 dB). These results make the optimized MSM-UV-DM-PD suitable for providing low cost self-powered devices for high-performance optical communication and monitoring applications.
Basori, Rabaya; Kumar, Manoranjan; Raychaudhuri, Arup K.
2016-01-01
We report a new type of sustained and reversible unipolar resistive switching in a nanowire device made from a single strand of Cu:7,7,8,8-tetracyanoquinodimethane (Cu:TCNQ) nanowire (diameter <100 nm) that shows high ON/OFF ratio (~103), low threshold voltage of switching (~3.5 V) and large cycling endurance (>103). This indicates a promising material for high density resistive random access memory (ReRAM) device integration. Switching is observed in Cu:TCNQ single nanowire devices with two different electrode configuration: symmetric (C-Pt/Cu:TCNQ/C-Pt) and asymmetric (Cu/Cu:TCNQ/C-Pt), where contacts connecting the nanowire play an important role. This report also developed a method of separating out the electrode and material contributions in switching using metal-semiconductor-metal (MSM) device model along with a direct 4-probe resistivity measurement of the nanowire in the OFF as well as ON state. The device model was followed by a phenomenological model of current transport through the nanowire device which shows that lowering of potential barrier at the contacts likely occur due to formation of Cu filaments in the interface between nanowire and contact electrodes. We obtain quantitative agreement of numerically analyzed results with the experimental switching data. PMID:27245099
Modelling of resonant MEMS magnetic field sensor with electromagnetic induction sensing
NASA Astrophysics Data System (ADS)
Liu, Song; Xu, Huaying; Xu, Dehui; Xiong, Bin
2017-06-01
This paper presents an analytical model of resonant MEMS magnetic field sensor with electromagnetic induction sensing. The resonant structure vibrates in square extensional (SE) mode. By analyzing the vibration amplitude and quality factor of the resonant structure, the magnetic field sensitivity as a function of device structure parameters and encapsulation pressure is established. The developed analytical model has been verified by comparing calculated results with experiment results and the deviation between them is only 10.25%, which shows the feasibility of the proposed device model. The model can provide theoretical guidance for further design optimization of the sensor. Moreover, a quantitative study of the magnetic field sensitivity is conducted with respect to the structure parameters and encapsulation pressure based on the proposed model.
Hollow laser plasma self-confined microjet generation
NASA Astrophysics Data System (ADS)
Sizyuk, Valeryi; Hassanein, Ahmed; CenterMaterials under Extreme Environment Team
2017-10-01
Hollow laser beam produced plasma (LPP) devices are being used for the generation of the self-confined cumulative microjet. Most important place by this LPP device construction is achieving of an annular distribution of the laser beam intensity by spot. An integrated model is being developed to detailed simulation of the plasma generation and evolution inside the laser beam channel. The model describes in two temperature approximation hydrodynamic processes in plasma, laser absorption processes, heat conduction, and radiation energy transport. The total variation diminishing scheme in the Lax-Friedrich formulation for the description of plasma hydrodynamic is used. Laser absorption and radiation transport models on the base of Monte Carlo method are being developed. Heat conduction part on the implicit scheme with sparse matrixes using is realized. The developed models are being integrated into HEIGHTS-LPP computer simulation package. The integrated modeling of the hollow beam laser plasma generation showed the self-confinement and acceleration of the plasma microjet inside the laser channel. It was found dependence of the microjet parameters including radiation emission on the hole and beam radiuses ratio. This work is supported by the National Science Foundation, PIRE project.
NASA Technical Reports Server (NTRS)
Gassaway, J. D.; Mahmood, Q.; Trotter, J. D.
1980-01-01
Quarterly report describes progress in three programs: dc sputtering machine for aluminum and aluminum alloys; two dimensional computer modeling of MOS transistors; and development of computer techniques for calculating redistribution diffusion of dopants in silicon on sapphire films.
E-Learning: Students Input for Using Mobile Devices in Science Instructional Settings
ERIC Educational Resources Information Center
Yilmaz, Ozkan
2016-01-01
A variety of e-learning theories, models, and strategy have been developed to support educational settings. There are many factors for designing good instructional settings. This study set out to determine functionality of mobile devices, students who already have, and the student needs and views in relation to e-learning settings. The study…
Jeschke, Marc G; Sadri, Ali-Reza; Belo, Cassandra; Amini-Nik, Saeid
2017-04-01
Due to the poor regenerative capacity of adult mammalian skin, there is a need to develop effective skin substitutes for promoting skin regeneration after a severe wound. However, the complexity of skin biology has made it difficult to enable perfect regeneration of skin. Thus, animal models are being used to test potential skin substitutes. Murine models are valuable but their healing process involves dermal contraction. We have developed a device called a dome that is able to eliminate the contraction effect of rodent skin while simultaneously housing a bioengineered skin graft. The dome comes in two models, which enables researchers to evaluate the cells that contribute in wound healing from neighboring intact tissue during skin healing/regeneration. This protocol simplifies grafting of skin substitutes, eliminates the contraction effect of surrounding skin, and summarizes a simple method for animal surgery for wound healing and skin regeneration studies.
Nakayama, Hidenari; Kimura, Hiroshi; Fujii, Teruo; Sakai, Yasuyuki
2014-06-01
We recently developed a polydimethylsiloxane (PDMS)-based three-compartment microfluidic cocultivation device enabling real-time interactions of different cell populations as an advanced physiologically-relevant cell-based assay. This device had valves and small magnetic stirrer-based internal pumps for easy and flexible perfusion operations. In this study, we applied this device for the evaluation of Irinotecan (CPT-11) toxicity to the lung, because it is detoxified by the liver and accumulated in the fat in humans. We successfully cultured representative three different tissue model cells in each compartment under the individual culture conditions and also in entire perfusion. Growth inhibition of rat lung epithelial cell line L-2, was measured when administered with 50 μM CPT-11 under various cocultivation conditions with respect to the presences and absence of primary rat hepatocytes (liver tissue model) and adipocyte-like cells (fat tissue model) induced from a mouse fibroblast cell line, 3T3-L1. Although CPT-11 showed moderate toxicity to the pure culture of L-2 cells in the device after 72 h of perfusion culture, this was lowered mainly in the presence of the liver tissue. Inhibition of the L-2 cell growth agreed with the area under curve (AUC) values obtained from fluorescent image-based analyses in each compartment. These results demonstrate that developed simple and flexible microfluidic cocultivation device, with appropriate image-based analyses, can be used in evaluating toxicokinetic behaviors of drug candidates in systemic levels. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Sakaoka, Atsushi; Koshimizu, Masafumi; Nakamura, Shintaro; Matsumura, Kiyoshi
2018-05-10
Swine are the most common animal model in preclinical studies of cardiovascular devices. Because of the recent trend for development of new devices for percutaneous catheterization, especially for the renal arteries (RAs), we examined the quantitative anatomical dimensions of the RAs and adjacent aorta in swine. Angiographic images were analyzed in 66 female Yorkshire/Landrace crossbred swine. The diameter of both the right and left main RA was 5.4 ± 0.6 mm. The length of the right main RA was significantly longer than that of the left (29.8 ± 7.5 mm vs. 20.6 ± 5.4 mm, respectively; P<0.001). The diameter of both the right and left branch RA with diameters ≥3 mm (the target vessel diameter of recently developed devices) was 3.8 ± 0.5 mm. The right branch RA was significantly longer than that of the left (18.9 ± 7.8 mm vs. 16.4 ± 7.4 mm, respectively; P<0.05). The branching angle of the right RA from the aorta was significantly smaller than that of the left (91 ± 12° vs. 103 ± 15°, respectively; P<0.001). The diameters of the suprarenal and infrarenal aorta were 10.6 ± 1.1 mm and 9.7 ± 0.9 mm, respectively. In conclusion, because of their similar dimensions to human, swine are an appropriate animal model for assessing the safety of, and determining optimal design of, catheter devices for RAs in simulated clinical use. However, there were species differences in the branching angle and adjacent aorta diameter, suggesting that swine models alone are inadequate to assess the delivery performance of catheter devices for RAs.
Sakaoka, Atsushi; Koshimizu, Masafumi; Nakamura, Shintaro; Matsumura, Kiyoshi
2018-01-01
Swine are the most common animal model in preclinical studies of cardiovascular devices. Because of the recent trend for development of new devices for percutaneous catheterization, especially for the renal arteries (RAs), we examined the quantitative anatomical dimensions of the RAs and adjacent aorta in swine. Angiographic images were analyzed in 66 female Yorkshire/Landrace crossbred swine. The diameter of both the right and left main RA was 5.4 ± 0.6 mm. The length of the right main RA was significantly longer than that of the left (29.8 ± 7.5 mm vs. 20.6 ± 5.4 mm, respectively; P<0.001). The diameter of both the right and left branch RA with diameters ≥3 mm (the target vessel diameter of recently developed devices) was 3.8 ± 0.5 mm. The right branch RA was significantly longer than that of the left (18.9 ± 7.8 mm vs. 16.4 ± 7.4 mm, respectively; P<0.05). The branching angle of the right RA from the aorta was significantly smaller than that of the left (91 ± 12° vs. 103 ± 15°, respectively; P<0.001). The diameters of the suprarenal and infrarenal aorta were 10.6 ± 1.1 mm and 9.7 ± 0.9 mm, respectively. In conclusion, because of their similar dimensions to human, swine are an appropriate animal model for assessing the safety of, and determining optimal design of, catheter devices for RAs in simulated clinical use. However, there were species differences in the branching angle and adjacent aorta diameter, suggesting that swine models alone are inadequate to assess the delivery performance of catheter devices for RAs. PMID:29353822
Chitosan-based coatings in the prevention of intravascular catheter-associated infections.
Mendoza, Gracia; Regiel-Futyra, Anna; Tamayo, Alejandra; Monzon, Marta; Irusta, Silvia; de Gregorio, Miguel Angel; Kyzioł, Agnieszka; Arruebo, Manuel
2018-01-01
Central venous access devices play an important role in patients with prolonged intravenous administration requirements. In the last years, the coating of these devices with bactericidal compounds has emerged as a potential tool to prevent bacterial colonization. Our study describes the modification of 3D-printed reservoirs and silicone-based catheters, mimicking central venous access devices, through different approaches including their coating with the well known biocompatible and bactericidal polymer chitosan, with the anionic polysaccharide alginate; also, plasma treated surfaces were included in the study to promote polymer adhesion. The evaluation of the antimicrobial action of those surface modifications compared to that exerted by a model antibiotic (ciprofloxacin) adsorbed on the surface of the devices was carried out. Surface characterization was developed by different methodologies and the bactericidal effects of the different coatings were assayed in an in vitro model of Staphylococcus aureus infection. Our results showed a significant reduction in the reservoir roughness (≤73%) after coating though no changes were observed for coated catheters which was also confirmed by scanning electron microscopy, pointing to the importance of the surface device topography for the successful attachment of the coating and for the subsequent development of bactericidal effects. Furthermore, the single presence of chitosan on the reservoirs was enough to fully inhibit bacterial growth exerting the same efficiency as that showed by the model antibiotic. Importantly, chitosan coating showed low cytotoxicity against human keratinocytes, human lung adenocarcinoma epithelial cells, and murine colon carcinoma cells displaying viability percentages in the range of the control samples (>95%). Chitosan-based coatings are proposed as an effective and promising solution in the prevention of microbial infections associated to medical devices.
Development of Bread Board Model of TRMM precipitation radar
NASA Astrophysics Data System (ADS)
Okamoto, Ken'ichi; Ihara, Toshio; Kumagai, Hiroshi
The active array radar was selected as a reliable candidate for the TRMM (Tropical Rainfall Measuring Mission) precipitation radar after the trade off studies performed by Communications Research Laboratory (CRL) in the US-Japan joint feasibility study of TRMM in 1987-1988. Main system parameters and block diagram for TRMM precipitation radar are shown as the result of feasibility study. CRL developed key devices for the active array precipitation radar such as 8-element slotted waveguide array antenna, the 5 bit PIN diode phase shifters, solid state power amplifiers and low noise amplifiers in 1988-1990. Integration of these key devices was made to compose 8-element Bread Board Model of TRMM precipitation radar.
NASA Astrophysics Data System (ADS)
Way, Yusoff
2018-01-01
The main aim of this research is to develop a new prototype and to conduct cost analysis of the existing roller clamp which is one of parts attached to Intravenous (I.V) Tubing used in Intravenous therapy medical device. Before proceed with the process to manufacture the final product using Fused Deposition Modeling (FDM) Technology, the data collected from survey were analyzed using Product Design Specifications approach. Selected concept has been proven to have better quality, functions and criteria compared to the existing roller clamp and the cost analysis of fabricating the roller clamp prototype was calculated.
NASA Technical Reports Server (NTRS)
Virakas, G. I.; Matsyulevichyus, R. A.; Minkevichyus, K. P.; Potsyus, Z. Y.; Shirvinskas, B. D.
1973-01-01
Problems in measurement of irregularities in angular velocity of rotating assemblies in memory devices with rigid and flexible magnetic data carriers are discussed. A device and method for determination of change in angular velocities in various frequency and rotation rate ranges are examined. A schematic diagram of a photoelectric sensor for recording the signal pulses is provided. Mathematical models are developed to show the amount of error which can result from misalignment of the test equipment.
A Material Model for the Cyclic Behavior of Nitinol
NASA Astrophysics Data System (ADS)
Rebelo, Nuno; Zipse, Achim; Schlun, Martin; Dreher, Gael
2011-07-01
The uniaxial behavior of Nitinol in different forms and at different temperatures has been well documented in the literature. Mathematical models for the three-dimensional behavior of this class of materials, covering superelasticity, plasticity, and shape memory effects have been previously developed. Phenomenological models embedded in FEA analysis are part of common practice today in the development of devices made out of Nitinol. In vivo loading of medical devices has cyclic characteristics. There have been some indications in the literature that cyclic loading of Nitinol modifies substantially its behavior. A consortium of several stent manufacturers, Safe Technology and Dassault Systèmes Simulia Corp., dedicated to the development of fatigue laws suitable for life prediction of Nitinol devices, has conducted an extensive experimental study of the modifications in uniaxial behavior of both Nitinol wire and tubing due to cyclic loading. The Abaqus Nitinol material model has been extended to capture some of the phenomena observed and is described in this article. Namely, a preload beyond 6% strain alters the transformation plateaus; if the cyclic load amplitude is large enough, permanent deformations (residual martensite) are observed; the lower plateau increases; and the upper plateau changes. The modifications to the upper plateau are very interesting in the sense that it appears broken: its start stress gets lowered creating a new plateau up to the highest level of cyclic strain, followed by resuming the original plateau until full transformation. Since quite often the geometry of a device at the point at which it is subjected to cyclic loading is very much dependent on the manufacturing, deployment, and preloading sequence, it is important that analyses be conducted with the original material behavior up to that point, and then with the cyclic behavior thereafter.
NASA Astrophysics Data System (ADS)
Agrawal, Anant
Optical coherence tomography (OCT) is a powerful medical imaging modality that uniquely produces high-resolution cross-sectional images of tissue using low energy light. Its clinical applications and technological capabilities have grown substantially since its invention about twenty years ago, but efforts have been limited to develop tools to assess performance of OCT devices with respect to the quality and content of acquired images. Such tools are important to ensure information derived from OCT signals and images is accurate and consistent, in order to support further technology development, promote standardization, and benefit public health. The research in this dissertation investigates new physical and computational models which can provide unique insights into specific performance characteristics of OCT devices. Physical models, known as phantoms, are fabricated and evaluated in the interest of establishing standardized test methods to measure several important quantities relevant to image quality. (1) Spatial resolution is measured with a nanoparticle-embedded phantom and model eye which together yield the point spread function under conditions where OCT is commonly used. (2) A multi-layered phantom is constructed to measure the contrast transfer function along the axis of light propagation, relevant for cross-sectional imaging capabilities. (3) Existing and new methods to determine device sensitivity are examined and compared, to better understand the detection limits of OCT. A novel computational model based on the finite-difference time-domain (FDTD) method, which simulates the physics of light behavior at the sub-microscopic level within complex, heterogeneous media, is developed to probe device and tissue characteristics influencing the information content of an OCT image. This model is first tested in simple geometric configurations to understand its accuracy and limitations, then a highly realistic representation of a biological cell, the retinal cone photoreceptor, is created and its resulting OCT signals studied. The phantoms and their associated test methods have successfully yielded novel types of data on the specific performance parameters of interest, which can feed standardization efforts within the OCT community. The level of signal detail provided by the computational model is unprecedented and gives significant insights into the effects of subcellular structures on OCT signals. Together, the outputs of this research effort serve as new tools in the toolkit to examine the intricate details of how and how well OCT devices produce information-rich images of biological tissue.
New Technique for Tibiotalar Arthrodesis Using a New Intramedullary Nail Device: A Cadaveric Study
Eisenstein, Emmanuel D.; Rodriguez, Mario
2016-01-01
Introduction. Ankle arthrodesis is performed in a variety of methods. We propose a new technique for tibiotalar arthrodesis using a newly designed intramedullary nail. Methods. We proposed development of an intramedullary device for ankle arthrodesis which spared the subtalar joint using a sinus tarsi approach. Standard saw bones models and computer assisted modeling and stress analysis were used to develop different nail design geometries and determine the feasibility of insertion. After the final design was constructed, the device was tested on three cadaveric specimens. Results. Four basic nail geometries were developed. The optimal design was composed of two relatively straight segments, each with a different radius of curvature for their respective tibial and talar component. We successfully implemented this design into three cadaveric specimens. Conclusion. Our newly designed tibiotalar nail provides a new technique for isolated tibiotalar fusion. It utilizes the advantages of a tibiotalar calcaneal nail and spares the subtalar joint. This design serves as the foundation for future research to include compression options across the tibiotalar joint and eventual transition to clinical practice. PMID:27818800
New Technique for Tibiotalar Arthrodesis Using a New Intramedullary Nail Device: A Cadaveric Study.
Eisenstein, Emmanuel D; Rodriguez, Mario; Abdelgawad, Amr A
2016-01-01
Introduction . Ankle arthrodesis is performed in a variety of methods. We propose a new technique for tibiotalar arthrodesis using a newly designed intramedullary nail. Methods . We proposed development of an intramedullary device for ankle arthrodesis which spared the subtalar joint using a sinus tarsi approach. Standard saw bones models and computer assisted modeling and stress analysis were used to develop different nail design geometries and determine the feasibility of insertion. After the final design was constructed, the device was tested on three cadaveric specimens. Results . Four basic nail geometries were developed. The optimal design was composed of two relatively straight segments, each with a different radius of curvature for their respective tibial and talar component. We successfully implemented this design into three cadaveric specimens. Conclusion . Our newly designed tibiotalar nail provides a new technique for isolated tibiotalar fusion. It utilizes the advantages of a tibiotalar calcaneal nail and spares the subtalar joint. This design serves as the foundation for future research to include compression options across the tibiotalar joint and eventual transition to clinical practice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, D.
2012-09-01
Organic-based solar cells offer the potential for low cost, scalable conversion of solar energy. This project will try to utilize the extensive organic synthetic capabilities of ConocoPhillips to produce novel acceptor and donor materials as well potentially as interface modifiers to produce improved OPV devices with greater efficiency and stability. The synthetic effort will be based on the knowledge base and modeling being done at NREL to identify new candidate materials.
Analyzing the cost of screening selectee and non-selectee baggage.
Virta, Julie L; Jacobson, Sheldon H; Kobza, John E
2003-10-01
Determining how to effectively operate security devices is as important to overall system performance as developing more sensitive security devices. In light of recent federal mandates for 100% screening of all checked baggage, this research studies the trade-offs between screening only selectee checked baggage and screening both selectee and non-selectee checked baggage for a single baggage screening security device deployed at an airport. This trade-off is represented using a cost model that incorporates the cost of the baggage screening security device, the volume of checked baggage processed through the device, and the outcomes that occur when the device is used. The cost model captures the cost of deploying, maintaining, and operating a single baggage screening security device over a one-year period. The study concludes that as excess baggage screening capacity is used to screen non-selectee checked bags, the expected annual cost increases, the expected annual cost per checked bag screened decreases, and the expected annual cost per expected number of threats detected in the checked bags screened increases. These results indicate that the marginal increase in security per dollar spent is significantly lower when non-selectee checked bags are screened than when only selectee checked bags are screened.
Corbett, Timothy J; Callanan, Anthony; O'Donnell, Michael R; McGloughlin, Tim M
2010-02-01
To develop an improved methodology for investigating the parameters influencing stent-graft migration, with particular focus on the limitations of existing methods. A physiological silicone rubber abdominal aortic aneurysm (AAA) model for fixation studies was manufactured based on an idealized AAA geometry: the model had a 24-mm neck, a 50-mm aneurysm, 12-mm-diameter legs, a 60 degrees bifurcation angle, and 2-mm-thick walls. The models were authenticated in neck fixation experiments. The displacement force required to migrate stent-grafts in physiological pulsatile flow was tested dynamically in water at 37 degrees C. A commercially available longitudinally rigid stent-graft (AneuRx) and a homemade device with little longitudinal rigidity were studied in a number of different configurations to investigate the effect of neck fixation length and systolic pressure on displacement force. The AneuRx (6.95+/-0.49 to 8.52+/-0.5 N) performed significantly better than the homemade device (2.57+/-0.11 to 4.62+/-0.25 N) in pulsatile flow. The opposite was true in the neck fixation tests because the longitudinal stiffness of the AneuRx was not accounted for. Increasing pressure or decreasing fixation length compromised the fixation of the homemade device. This relationship was not as clear for the AneuRx because decreasing proximal fixation resulted in an increase in iliac fixation, which could assist fixation in this device. Assessing the migration resistance of stent-grafts based solely on proximal fixation discriminates against devices that are longitudinally stiff. Current in vivo models may give inaccurate displacement forces due to the high degree of oversizing in these studies. A novel in vitro approach, accounting for longitudinal rigidity and realistic graft oversizing, was developed to determine the resistance of aortic stent-grafts to migration in the period immediately after device implantation.
Petrini, Lorenza; Bertini, Alessandro; Berti, Francesca; Pennati, Giancarlo; Migliavacca, Francesco
2017-05-01
Nickel-titanium alloys are commonly adopted for producing cardiovascular minimally invasive devices such as self-expandable stents, aortic valves and stent-grafts. These devices are subjected to cyclic loads (due to blood pulsatility, leg or heart movements), that can induce fatigue fracture, and may also be subjected to very large deformations (due to crimping procedure, a tortuous physiological path or overloads), that can induce material yield. Recently, the authors developed a new constitutive model that considers inelastic strains due to not-completed reverse phase transformation (not all the stress-induced martensite turns back to austenite) or/and plasticity and their accumulation during cyclic loads. In this article, the model is implemented in the finite element code ABAQUS/Standard and it is used to investigate the effects of inelastic strain accumulation on endovascular nickel-titanium devices. In particular, the behavior of a transcatheter aortic valve is studied considering the following steps: (1) crimping, (2) expansion in a tube resembling a durability test chamber and (3) cyclic loads due to pressure variation applied on the inner surface of the tube. The analyses are performed twice, activating and not activating that part of the new model which describes the development of irreversible strain. From the results, it is interesting to note that plasticity has a very significant effect on the local material response, inducing stress modification from compression to tension. However, permanent deformations are concentrated in few zones of the stent frame and their presence does not affect the global behavior of the device that maintains its capability of recovering the original shape. In conclusion, this work suggests that at least for cardiovascular devices where the crimping is high (local strain may reach values of 8%-9%), taking into account inelastic effects due to plasticity and not-completed reverse phase transformation can be important, and hence using a suitable constitutive model is recommended.
Chavez, Pierre-François; Meeus, Joke; Robin, Florent; Schubert, Martin Alexander; Somville, Pascal
2018-01-01
The evaluation of drug–polymer miscibility in the early phase of drug development is essential to ensure successful amorphous solid dispersion (ASD) manufacturing. This work investigates the comparison of thermodynamic models, conventional experimental screening methods (solvent casting, quench cooling), and a novel atomization screening device based on their ability to predict drug–polymer miscibility, solid state properties (Tg value and width), and adequate polymer selection during the development of spray-dried amorphous solid dispersions (SDASDs). Binary ASDs of four drugs and seven polymers were produced at 20:80, 40:60, 60:40, and 80:20 (w/w). Samples were systematically analyzed using modulated differential scanning calorimetry (mDSC) and X-ray powder diffraction (XRPD). Principal component analysis (PCA) was used to qualitatively assess the predictability of screening methods with regards to SDASD development. Poor correlation was found between theoretical models and experimentally-obtained results. Additionally, the limited ability of usual screening methods to predict the miscibility of SDASDs did not guarantee the appropriate selection of lead excipient for the manufacturing of robust SDASDs. Contrary to standard approaches, our novel screening device allowed the selection of optimal polymer and drug loading and established insight into the final properties and performance of SDASDs at an early stage, therefore enabling the optimization of the scaled-up late-stage development. PMID:29518936
NASA Astrophysics Data System (ADS)
Kim, Jung-Hun; Choi, Jung-Eun; Choi, Bong-Jun; Chung, Seok-Ho; Seo, Heung-Won
2015-06-01
Energy-saving devices for 317K VLCC have been developed from a propulsion standpoint. Two ESD candidates were designed via computational tools. The first device WAFon composes of flow-control fins adapted for the ship wake to reduce the loss of rotational energy. The other is WAFon-D, which is a WAFon with a duct to obtain additional thrust and to distribute the inflow velocity on the propeller plane uniform. After selecting the candidates from the computed results, the speed performances were validated with model-tests. The hydrodynamic characteristics of the ESDs may be found in improved hull and propulsive efficiencies through increased wake fraction.
Methods of measurement for semiconductor materials, process control, and devices
NASA Technical Reports Server (NTRS)
Bullis, W. M. (Editor)
1972-01-01
Activities directed toward the development of methods of measurement for semiconductor materials, process control, and devices are described. Accomplishments include the determination of the reasons for differences in measurements of transistor delay time, identification of an energy level model for gold-doped silicon, and the finding of evidence that it does not appear to be necessary for an ultrasonic bonding tool to grip the wire and move it across the substrate metallization to make the bond. Work is continuing on measurement of resistivity of semiconductor crystals; study of gold-doped silicon; development of the infrared response technique; evaluation of wire bonds and die attachment; measurement of thermal properties of semiconductor devices, delay time, and related carrier transport properties in junction devices, and noise properties of microwave diodes; and characterization of silicon nuclear radiation detectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreno, Gilbert; Bennion, Kevin
This project will develop thermal management strategies to enable efficient and high-temperature wide-bandgap (WBG)-based power electronic systems (e.g., emerging inverter and DC-DC converter designs). The use of WBG-based devices in automotive power electronics will improve efficiency and increase driving range in electric-drive vehicles; however, the implementation of this technology is limited, in part, due to thermal issues. This project will develop system-level thermal models to determine the thermal limitations of current automotive power modules under elevated device temperature conditions. Additionally, novel cooling concepts and material selection will be evaluated to enable high-temperature silicon and WBG devices in power electronics components.more » WBG devices (silicon carbide [SiC], gallium nitride [GaN]) promise to increase efficiency, but will be driven as hard as possible. This creates challenges for thermal management and reliability.« less
Bennett, Allyson J; Perkins, Chaney M; Harty, Nicole M; Niu, Mengyao; Buelo, Audrey K; Luck, Melissa L; Pierre, Peter J
2014-01-01
Continued progress to move evidence-based best practices into community and regulatory animal welfare standards depends in part on developing common metrics to assess cost, benefit, and relative value. Here we describe a model approach to evidence-based evaluation and an example of comprehensive cost–benefit assessment for a common element of environmental enrichment plans for laboratory-housed nonhuman primates. Foraging devices encourage a species-typical activity that dominates the time budget of primates outside captivity and provide inherent cognitive challenges, physical activity demands, and multi-sensory stimulation. However, their implementation is not standard, and is challenged by perception of high costs and labor; nutritional and health concerns; and identification of best practices in implementation (that is, device types, food type, frequency of delivery and rotation). To address these issues, we directly compared monkeys’ engagement with different foraging devices and the comprehensive cost of implementing foraging opportunities. We recorded 14 adult male cynomolgus monkeys’ interactions with 7 types of devices filled with a range of enrichment foods. All devices elicited foraging behavior, but there were significant differences among them both initially and over subsequent observations. Devices that afforded opportunity for extraction of small food items and that posed manipulative challenge elicited greater manipulation. The cost of providing a foraging opportunity to a single monkey is roughly US$1, with approximately 80% attributable to labor. This study is the first to perform a rigorous cost–benefit analysis and comparison of common foraging devices included in environmental enrichment. Its broader significance lies in its contribution to the development of methods to facilitate improvement in evidence-based practices and common standards to enhance laboratory animal welfare. PMID:25255067
Kinematic control model for light weighting mechanism of excavator attached to rotary working device
NASA Astrophysics Data System (ADS)
Lee, Choongho; Lee, Sangsik; Cho, Youngtae; Im, Kwanghee
2007-07-01
An excavator attached to a rotary working device is used principally in industrial work. In particular, they are used in the building industry and public works. This research concerns the rotary automatic control of an excavator attached to a rotary working device. The drilling excavator is used in the crushed stone industry and the dragline excavation system is employed in the construction industry. Cases of the excavator's use in agriculture have been the subject of a relatively few studies. However, several modified excavator designs have been released in recent years. Applied excavator products are primarily utilized under relatively severe environmental conditions. In this study, we focus on the uses of an excavator in agricultural work. The readjustment of arable land and the reduction of weeds in agricultural applications both require skilled hand-operation of the machines. As such workers have been shown to develop problems with regard to working posture and proper positioning while laboring, a more appropriate excavator design may prove useful in such applications. Therefore, this pilot study is focused primarily on the rotary automatic control of an excavator attached to a rotary working device, and will adapt smart materials to the excavator applications for developing redesigned excavator having a light weight. The excavator is attached to a rotary working device on a normal excavator's platform, and the position and orientation of the mechanism between the joints and the rotary working device was determined. Simulations were also conducted of the excavator attached to the rotary working device. With an eye toward the use of this mechanism in agricultural work, we also conducted a set of kinematic analyses. The rotary working device was assumed to have 3 DOF, and was comprised of 5 links. Computer simulations were also conducted using the developed excavator model. In order to adequately evaluate the possible performance of such a system, kinetic analysis, simulation with a soil model, FEM analysis with structural strength analysis, and changes to the smart materials with high rigidity will be required in the future. In addition, experiment and analysis of a prototype, durability experiments, and analyses utilizing S-N curves will be necessary, as well further research into the overall reliability of such a product.
Extended behavioural modelling of FET and lattice-mismatched HEMT devices
NASA Astrophysics Data System (ADS)
Khawam, Yahya; Albasha, Lutfi
2017-07-01
This study presents an improved large signal model that can be used for high electron mobility transistors (HEMTs) and field effect transistors using measurement-based behavioural modelling techniques. The steps for accurate large and small signal modelling for transistor are also discussed. The proposed DC model is based on the Fager model since it compensates between the number of model's parameters and accuracy. The objective is to increase the accuracy of the drain-source current model with respect to any change in gate or drain voltages. Also, the objective is to extend the improved DC model to account for soft breakdown and kink effect found in some variants of HEMT devices. A hybrid Newton's-Genetic algorithm is used in order to determine the unknown parameters in the developed model. In addition to accurate modelling of a transistor's DC characteristics, the complete large signal model is modelled using multi-bias s-parameter measurements. The way that the complete model is performed is by using a hybrid multi-objective optimisation technique (Non-dominated Sorting Genetic Algorithm II) and local minimum search (multivariable Newton's method) for parasitic elements extraction. Finally, the results of DC modelling and multi-bias s-parameters modelling are presented, and three-device modelling recommendations are discussed.
McKim, James M; Keller, Donald J; Gorski, Joel R
2012-12-01
Chemical sensitization is a serious condition caused by small reactive molecules and is characterized by a delayed type hypersensitivity known as allergic contact dermatitis (ACD). Contact with these molecules via dermal exposure represent a significant concern for chemical manufacturers. Recent legislation in the EU has created the need to develop non-animal alternative methods for many routine safety studies including sensitization. Although most of the alternative research has focused on pure chemicals that possess reasonable solubility properties, it is important for any successful in vitro method to have the ability to test compounds with low aqueous solubility. This is especially true for the medical device industry where device extracts must be prepared in both polar and non-polar vehicles in order to evaluate chemical sensitization. The aim of this research was to demonstrate the functionality and applicability of the human reconstituted skin models (MatTek Epiderm(®) and SkinEthic RHE) as a test system for the evaluation of chemical sensitization and its potential use for medical device testing. In addition, the development of the human 3D skin model should allow the in vitro sensitization assay to be used for finished product testing in the personal care, cosmetics, and pharmaceutical industries. This approach combines solubility, chemical reactivity, cytotoxicity, and activation of the Nrf2/ARE expression pathway to identify and categorize chemical sensitizers. Known chemical sensitizers representing extreme/strong-, moderate-, weak-, and non-sensitizing potency categories were first evaluated in the skin models at six exposure concentrations ranging from 0.1 to 2500 µM for 24 h. The expression of eight Nrf2/ARE, one AhR/XRE and two Nrf1/MRE controlled gene were measured by qRT-PCR. The fold-induction at each exposure concentration was combined with reactivity and cytotoxicity data to determine the sensitization potential. The results demonstrated that both the MatTek and SkinEthic models performed in a manner consistent with data previously reported with the human keratinocyte (HaCaT) cell line. The system was tested further by evaluating chemicals known to be associated with the manufacture of medical devices. In all cases, the human skin models performed as well or better than the HaCaT cell model previously evaluated. In addition, this study identifies a clear unifying trigger that controls both the Nrf2/ARE pathway and essential biochemical events required for the development of ACD. Finally, this study has demonstrated that by utilizing human reconstructed skin models, it is possible to evaluate non-polar extracts from medical devices and low solubility finished products.
Orion Parachute Riser Cutter Development
NASA Technical Reports Server (NTRS)
Oguz, Sirri; Salazar, Frank
2011-01-01
This paper presents the tests and analytical approach used on the development of a steel riser cutter for the CEV Parachute Assembly System (CPAS) used on the Orion crew module. Figure 1 shows the riser cutter and the steel riser bundle which consists of six individual cables. Due to the highly compressed schedule, initial unavailability of the riser material and the Orion Forward Bay mechanical constraints, JSC primarily relied on a combination of internal ballistics analysis and LS-DYNA simulation for this project. Various one dimensional internal ballistics codes that use standard equation of state and conservation of energy have commonly used in the development of CAD devices for initial first order estimates and as an enhancement to the test program. While these codes are very accurate for propellant performance prediction, they usually lack a fully defined kinematic model for dynamic predictions. A simple piston device can easily and accurately be modeled using an equation of motion. However, the accuracy of analytical models is greatly reduced on more complicated devices with complex external loads, nonlinear trajectories or unique unlocking features. A 3D finite element model of CAD device with all critical features included can vastly improve the analytical ballistic predictions when it is used as a supplement to the ballistic code. During this project, LS-DYNA structural 3D model was used to predict the riser resisting load that was needed for the ballistic code. A Lagrangian model with eroding elements shown in Figure 2 was used for the blade, steel riser and the anvil. The riser material failure strain was fine tuned by matching the dent depth on the anvil with the actual test data. LS-DYNA model was also utilized to optimize the blade tip design for the most efficient cut. In parallel, the propellant type and the amount were determined by using CADPROG internal ballistics code. Initial test results showed a good match with LS-DYNA and CADPROG simulations. Final paper will present a detailed roadmap from initial ballistic modeling and LS-DYNA simulation to the performance testing. Blade shape optimization study will also be presented.
Quantitative modeling of total ionizing dose reliability effects in device silicon dioxide layers
NASA Astrophysics Data System (ADS)
Rowsey, Nicole L.
The electrical breakdown of oxides and oxide/semiconductor interfaces is one of the main reasons for device failure in integrated circuits, especially devices under high-stress conditions. One high-stress environment of interest is the space environment. All electronics are vulnerable to ionizing radiation; any high-energy particle that passes through an insulating layer will deposit unwanted charge there, causing shifts in device characteristics. Designing electronics for use in space can be a challenge, because much more energetic radiation exits in space than on Earth, as there is no atmosphere in space to collide with, and thereby reduce the energy of, energetic particles. Although oxide charging due to ionizing radiation creates well-known changes in device characteristics, or total ionizing dose effects, it is still poorly-understood exactly how these changes come about. There are many theories that draw upon a large body of both experimental work and, more recently, quantum-mechanical first principles calculations at the molecular level. This work uses FLOODS, a 3D object-oriented device simulator with multi-physics capability, to investigate these theories, by simulating oxide degradation in realistic device geometries, and comparing the subsequent degradation in device characteristics to experimental measurements. The charge trapping and defect-modulated transport models developed and implemented here have resulted in the first quantitative account of the enhanced low-dose-rate sensitivity effect, and are applicable in a comprehensive range of hydrogen environments. Measurements show that devices exposed to ionizing radiation at high dose rates exhibit less degradation that those exposed at low dose rates. Furthermore, the observed trend differs depending on the amount of hydrogen available before, during, and after irradiation. It is therefore important to understand and take into account the effects of dose rate and hydrogen when developing accelerated testing procedures for devices which have been exposed to various levels of hydrogen during processing and packaging, and which must be deployed in the low-dose-rate space environment. Thus, this work represents a substantial increase in the state-of-the-art, since a quantitative model has not previously been available. The success of the model is due in great part to the use of first-principles calculations of defect and hydrogen bond energies. Vanderbilt collaborators provided the results of these calculations as input to the FLOODS simulations. Using these physical insights, a sensitivity analysis in FLOODS yielded insights into key controlling parameters.
NASA Astrophysics Data System (ADS)
Bach, David S.; Armstrong, William F.; Erbel, Raimund; Ellis, Stephen G.; Sousa, Joao; Rosenschein, Uri
1992-08-01
Cavitation previously has been observed in association with ultrasonic angioplasty and high- frequency rotational atherectomy. This study evaluates the production of cavitation accompanying the use of several catheter-based devices under development or in current use in the practice of interventional cardiology. Catheters were examined in an in vitro model, and cavitation was evaluated using standard ultrasound imaging equipment. Cavitation was detected with each of the devices that effects tissue ablation, but not tissue resection. Devices produced characteristic patterns of cavitation dependent on the mode of energy release of the device. The size, but not the intensity, of the cavitation effect was proportional to the energy output of the devices. The precise role of cavitation in the mechanism of tissue ablation remains uncertain.
Adolescents' Use of Basic, Intermediate, and Advanced Device Types for Vaping.
Pepper, Jessica K; MacMonegle, Anna J; Nonnemaker, James M
2017-12-23
Advanced models of electronic vaping products (EVPs) likely pose a greater risk to adolescent health than basic or intermediate models because advanced models deliver nicotine more effectively and heat e-liquid to higher temperatures, producing more harmful chemical emissions. However, little is known about adolescents' risk factors for using different device types. We used social media to recruit an online sample of 1,508 U.S. adolescents aged 15-17 who reported past 30-day use of e-cigarettes. We assessed tobacco use, beliefs and knowledge about EVPs, and EVP use behavior, including the device type participants use most frequently. We used multinomial logistic regression to examine differences between adolescents who usually use intermediate versus basic and advanced versus basic devices. Most respondents usually used modifiable advanced devices (56.8%) rather than basic "cigalike" (14.5%) or pen-style intermediate (28.7%) devices. Use of multiple device types was common, particularly among those who primarily used basic devices. Younger age and less frequent vaping were associated with mainly using basic devices. Adolescents who were older, male, personally bought their main device, and had ever mixed e-liquids were at elevated risk for usually using advanced devices. Adolescents who primarily use basic devices may be newer users who are experimenting with multiple devices. Future research should examine which adolescents are most likely to transition to advanced devices in order to develop targeted interventions. Regulators should consider strategies to reduce access to all types of EVPs, such as better enforcement of the current ban on sales to minors. This research addresses two gaps in research on adolescent electronic vaping product use: (1) characterizing use of advanced devices as distinct from intermediate devices rather than grouping them together and (2) examining factors associated with use of specific device types. This study suggests that there are distinct profiles of adolescents who use primarily basic, intermediate, or advanced devices. Adolescents who most often use basic devices may be new users experimenting with vaping, whereas adolescents who most often use advanced devices appear to be buying devices for themselves and engaging in risky behaviors such as mixing their own e-liquid. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Micro-optical elements produced using an photo-embossing technique in photopolymers
NASA Astrophysics Data System (ADS)
O'Neill, Feidhlim T.; Rowsome, Ita C.; Carr, Alun J.; Daniels, Stephen M.; Gleeson, Michael R.; Kelly, John V.; Close, Ciara; Lawrence, Justin R.; Sheridan, John T.
2005-09-01
Micro-optical devices are very important in current high-tech consumer items. The development of future products depends on both the evolution of fabrication techniques and on the development of new low cost mass production methods. Polymers offer ease of fabrication and low cost and are therefore excellent materials for the development of micro-optical devices. Polymer optical devices include passive optical elements, such as microlens arrays and waveguides, as well as active devices such as polymer based lasers. One of the most important areas of micro-optics is that of microlens design, manufacture and testing. The wide diversity of fabrication methods used for the production of these elements indicates their importance. One of these fabrication techniques is photo-embossing. The use of the photo-embossing technique and a photopolymer holographic recording material will be examined in this paper. A discussion of current attempts to model the fabrication process and a review of the experimental method will be given.
Low power adder based auditory filter architecture.
Rahiman, P F Khaleelur; Jayanthi, V S
2014-01-01
Cochlea devices are powered up with the help of batteries and they should possess long working life to avoid replacing of devices at regular interval of years. Hence the devices with low power consumptions are required. In cochlea devices there are numerous filters, each responsible for frequency variant signals, which helps in identifying speech signals of different audible range. In this paper, multiplierless lookup table (LUT) based auditory filter is implemented. Power aware adder architectures are utilized to add the output samples of the LUT, available at every clock cycle. The design is developed and modeled using Verilog HDL, simulated using Mentor Graphics Model-Sim Simulator, and synthesized using Synopsys Design Compiler tool. The design was mapped to TSMC 65 nm technological node. The standard ASIC design methodology has been adapted to carry out the power analysis. The proposed FIR filter architecture has reduced the leakage power by 15% and increased its performance by 2.76%.
A device that operates within a self-assembled 3D DNA crystal
NASA Astrophysics Data System (ADS)
Hao, Yudong; Kristiansen, Martin; Sha, Ruojie; Birktoft, Jens J.; Hernandez, Carina; Mao, Chengde; Seeman, Nadrian C.
2017-08-01
Structural DNA nanotechnology finds applications in numerous areas, but the construction of objects, 2D and 3D crystalline lattices and devices is prominent among them. Each of these components has been developed individually, and most of them have been combined in pairs. However, to date there are no reports of independent devices contained within 3D crystals. Here we report a three-state 3D device whereby we change the colour of the crystals by diffusing strands that contain dyes in or out of the crystals through the mother-liquor component of the system. Each colouring strand is designed to pair with an extended triangle strand by Watson-Crick base pairing. The arm that contains the dyes is quite flexible, but it is possible to establish the presence of the duplex proximal to the triangle by X-ray crystallography. We modelled the transition between the red and blue states through a simple kinetic model.
Ultra-high-frequency chaos in a time-delay electronic device with band-limited feedback.
Illing, Lucas; Gauthier, Daniel J
2006-09-01
We report an experimental study of ultra-high-frequency chaotic dynamics generated in a delay-dynamical electronic device. It consists of a transistor-based nonlinearity, commercially-available amplifiers, and a transmission-line for feedback. The feedback is band-limited, allowing tuning of the characteristic time-scales of both the periodic and high-dimensional chaotic oscillations that can be generated with the device. As an example, periodic oscillations ranging from 48 to 913 MHz are demonstrated. We develop a model and use it to compare the experimentally observed Hopf bifurcation of the steady-state to existing theory [Illing and Gauthier, Physica D 210, 180 (2005)]. We find good quantitative agreement of the predicted and the measured bifurcation threshold, bifurcation type and oscillation frequency. Numerical integration of the model yields quasiperiodic and high dimensional chaotic solutions (Lyapunov dimension approximately 13), which match qualitatively the observed device dynamics.
Nonreciprocal quantum Hall devices with driven edge magnetoplasmons in two-dimensional materials
NASA Astrophysics Data System (ADS)
Bosco, S.; DiVincenzo, D. P.
2017-05-01
We develop a theory that describes the response of nonreciprocal devices employing two-dimensional materials in the quantum Hall regime capacitively coupled to external electrodes. As the conduction in these devices is understood to be associated to the edge magnetoplasmons (EMPs), we first investigate the EMP problem by using the linear response theory in the random phase approximation. Our model can incorporate several cases that were often treated on different grounds in literature. In particular, we analyze plasmonic excitations supported by a smooth and sharp confining potential in a two-dimensional electron gas, and in monolayer graphene, and we point out the similarities and differences in these materials. We also account for a general time-dependent external drive applied to the system. Finally, we describe the behavior of a nonreciprocal quantum Hall device: the response contains additional resonant features, which were not foreseen from previous models.
Neuromuscular interfacing: establishing an EMG-driven model for the human elbow joint.
Pau, James W L; Xie, Shane S Q; Pullan, Andrew J
2012-09-01
Assistive devices aim to mitigate the effects of physical disability by aiding users to move their limbs or by rehabilitating through therapy. These devices are commonly embodied by robotic or exoskeletal systems that are still in development and use the electromyographic (EMG) signal to determine user intent. Not much focus has been placed on developing a neuromuscular interface (NI) that solely relies on the EMG signal, and does not require modifications to the end user's state to enhance the signal (such as adding weights). This paper presents the development of a flexible, physiological model for the elbow joint that is leading toward the implementation of an NI, which predicts joint motion from EMG signals for both able-bodied and less-abled users. The approach uses musculotendon models to determine muscle contraction forces, a proposed musculoskeletal model to determine total joint torque, and a kinematic model to determine joint rotational kinematics. After a sensitivity analysis and tuning using genetic algorithms, subject trials yielded an average root-mean-square error of 6.53° and 22.4° for a single cycle and random cycles of movement of the elbow joint, respectively. This helps us to validate the elbow model and paves the way toward the development of an NI.
Model-based testing with UML applied to a roaming algorithm for bluetooth devices.
Dai, Zhen Ru; Grabowski, Jens; Neukirchen, Helmut; Pals, Holger
2004-11-01
In late 2001, the Object Management Group issued a Request for Proposal to develop a testing profile for UML 2.0. In June 2003, the work on the UML 2.0 Testing Profile was finally adopted by the OMG. Since March 2004, it has become an official standard of the OMG. The UML 2.0 Testing Profile provides support for UML based model-driven testing. This paper introduces a methodology on how to use the testing profile in order to modify and extend an existing UML design model for test issues. The application of the methodology will be explained by applying it to an existing UML Model for a Bluetooth device.
Simulation studies of carbon nanotube field-effect transistors
NASA Astrophysics Data System (ADS)
John, David Llewellyn
Simulation studies of carbon nanotube field-effect transistors (CNFETs) are presented using models of increasing rigour and versatility that have been systematically developed. Firstly, it is demonstrated how one may compute the standard tight-binding band structure. From this foundation, a self-consistent solution for computing the equilibrium energy band diagram of devices with Schottky-barrier source and drain contacts is developed. While this does provide insight into the likely behaviour of CNFETs, a non-equilibrium model is required in order to predict the current-voltage relation. To this end, the effective-mass approximation is utilized, where a parabolic fit to the band structure is used in order to develop a Schrodinger-Poisson solver. This model is employed to predict both DC behaviour and switching times for CNFETs, and was one of the first models that captured quantum effects, such as tunneling and resonance, in these devices. In addition, this model has been used in order to validate compact models that incorporated tunneling via the WKB approximation. A modified WKB derivation is provided in order to account for the non-zero reflection of carriers above a potential energy step. In order to allow for greater flexibility in the CNFET geometries, and to lift the effective-mass approximation, a non-equilibrium Green's function method is finally developed, which uses an atomistic tight-binding Hamiltonian to model doped-contact, as opposed to Schottky-barrier-contact, devices. This approach benefits by being able to account for both inter- and intra-band tunneling, and by utilizing a quadratic matrix equation in order to improve the computation time for the required self-energy matrices. Within this technique, an expression for the local inter-atomic current is derived in order to provide more detailed information than the usual compact expression for the terminal current. With this final model, an investigation is presented into the effects of geometrical variations, contact thicknesses, and azimuthal variation in the surface potential of the nanotube.
Microprocessor controlled proof-mass actuator
NASA Technical Reports Server (NTRS)
Horner, Garnett C.
1987-01-01
The objective of the microprocessor controlled proof-mass actuator is to develop the capability to mount a small programmable device on laboratory models. This capability will allow research in the active control of flexible structures. The approach in developing the actuator will be to mount all components as a single unit. All sensors, electronic and control devices will be mounted with the actuator. The goal for the force output capability of the actuator will be one pound force. The programmable force actuator developed has approximately a one pound force capability over the usable frequency range, which is above 2 Hz.
Lambropoulos, Nicholas A; Reimers, Jeffrey R; Crossley, Maxwell J; Hush, Noel S; Silverbrook, Kia
2013-12-20
A general method useful in molecular electronics design is developed that integrates modelling on the nano-scale (using quantum-chemical software) and on the micro-scale (using finite-element methods). It is applied to the design of an n-bit shift register memory that could conceivably be built using accessible technologies. To achieve this, the entire complex structure of the device would be built to atomic precision using feedback-controlled lithography to provide atomic-level control of silicon devices, controlled wet-chemical synthesis of molecular insulating pillars above the silicon, and controlled wet-chemical self-assembly of modular molecular devices to these pillars that connect to external metal electrodes (leads). The shift register consists of n connected cells that read data from an input electrode, pass it sequentially between the cells under the control of two external clock electrodes, and deliver it finally to an output device. The proposed cells are trimeric oligoporphyrin units whose internal states are manipulated to provide functionality, covalently connected to other cells via dipeptide linkages. Signals from the clock electrodes are conveyed by oligoporphyrin molecular wires, and μ-oxo porphyrin insulating columns are used as the supporting pillars. The developed multiscale modelling technique is applied to determine the characteristics of this molecular device, with in particular utilization of the inverted region for molecular electron-transfer processes shown to facilitate latching and control using exceptionally low energy costs per logic operation compared to standard CMOS shift register technology.
NASA Astrophysics Data System (ADS)
Lambropoulos, Nicholas A.; Reimers, Jeffrey R.; Crossley, Maxwell J.; Hush, Noel S.; Silverbrook, Kia
2013-12-01
A general method useful in molecular electronics design is developed that integrates modelling on the nano-scale (using quantum-chemical software) and on the micro-scale (using finite-element methods). It is applied to the design of an n-bit shift register memory that could conceivably be built using accessible technologies. To achieve this, the entire complex structure of the device would be built to atomic precision using feedback-controlled lithography to provide atomic-level control of silicon devices, controlled wet-chemical synthesis of molecular insulating pillars above the silicon, and controlled wet-chemical self-assembly of modular molecular devices to these pillars that connect to external metal electrodes (leads). The shift register consists of n connected cells that read data from an input electrode, pass it sequentially between the cells under the control of two external clock electrodes, and deliver it finally to an output device. The proposed cells are trimeric oligoporphyrin units whose internal states are manipulated to provide functionality, covalently connected to other cells via dipeptide linkages. Signals from the clock electrodes are conveyed by oligoporphyrin molecular wires, and μ-oxo porphyrin insulating columns are used as the supporting pillars. The developed multiscale modelling technique is applied to determine the characteristics of this molecular device, with in particular utilization of the inverted region for molecular electron-transfer processes shown to facilitate latching and control using exceptionally low energy costs per logic operation compared to standard CMOS shift register technology.
Percutaneous Ventricular Assist Devices: A Health Technology Assessment
Lee, Christine; Djalalov, Sandjar; Xie, Xuanqian; Holubowich, Corinne
2017-01-01
Background Percutaneous coronary intervention (PCI)—using a catheter to place a stent to keep blood vessels open—is increasingly used for high-risk patients who cannot undergo surgery. Cardiogenic shock (when the heart suddenly cannot pump enough blood) is associated with a high mortality rate. The percutaneous ventricular assist device can help control blood pressure and increase blood flow in these high-risk conditions. This health technology assessment examined the benefits, harms, and budget impact of the Impella percutaneous ventricular assist device in high-risk PCI and cardiogenic shock. We also analyzed cost-effectiveness of the Impella device in high-risk PCI. Methods We performed a systematic search of the literature for studies examining the effects of the Impella percutaneous ventricular assist device in high-risk PCI and cardiogenic shock, and appraised the evidence according to the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) Working Group criteria, focusing on hemodynamic stability, mortality, major adverse cardiac events, bleeding, and vascular complications. We developed a Markov decision-analytical model to assess the cost- effectiveness of Impella devices versus intra-aortic balloon pumps (IABPs), calculated incremental cost-effectiveness ratios (ICERs) using a 10-year time horizon, and conducted sensitivity analyses to examine the robustness of the estimates. The economic model was conducted from the perspective of the Ontario Ministry of Health and Long-Term Care. Results Eighteen studies (one randomized controlled trial and 10 observational studies for high-risk PCI, and one randomized controlled trial and six observational studies for cardiogenic shock) were included in the clinical review. Compared with IABPs, Impella 2.5, one model of the device, improved hemodynamic parameters (GRADE low–very low) but showed no significant difference in mortality (GRADE low), major adverse cardiac events (GRADE low), bleeding (GRADE low), or vascular complications (GRADE low) in high-risk PCI and cardiogenic shock. No randomized controlled trials or prospective observational studies with a control group have studied Impella CP and Impella 5.0 (other models of the device) in patients undergoing high-risk PCI or patients with cardiogenic shock. The economic model predicted that treatment with the Impella device would have fewer quality-adjusted life-years (QALYs) and higher costs than IABP in high-risk PCI patients. These observations were consistent even when uncertainty in model inputs and parameters was considered. We estimated that adopting Impella would increase costs by $2.9 to $11.5 million per year. Conclusions On the basis of evidence of low to very low quality, Impella 2.5 devices were associated with improved hemodynamic stability, but had mortality rates and safety profile similar to IABPs in high-risk PCI and cardiogenic shock. Our cost-effectiveness analysis indicated that Impella 2.5 is likely associated with greater costs and fewer quality-adjusted life years than IABP. PMID:28232854
External shading devices for energy efficient building
NASA Astrophysics Data System (ADS)
Shahdan, M. S.; Ahmad, S. S.; Hussin, M. A.
2018-02-01
External shading devices on a building façade is an important passive design strategy as they reduce solar radiation. Although studies have proven the benefits of external shading devices, many are designed solely for aesthetic purposes without fully considering its high potential to reduce solar radiation and glare. Furthermore, explorations into shading devices by the design team are mostly left too late in the design development phases. Hence, the paper looks into the effectiveness of external shading devices on a building towards more energy efficient building. The study aims to analyse the effects of various configurations of external shading devices towards the energy consumption of a case study building based on computer simulations. This study uses Building Information Modelling (BIM) through Autodesk Revit software as simulation tool. The constant variables for the simulation are the orientation of the building, types of glazing used by the building and the internal loads of the building. Whereas, the manipulated variable is the types of shading device used. The data were sorted according to the categories and translated into a chart. Analysis of the findings indicate that shading devices with different configurations show significant results in the energy consumption and the best configuration is the egg-crate shading devices. The study recommends that the consideration for shading device as a passive design strategy needs to be developed at the early stage of the building design.
Design and biocompatibility of endovascular aneurysm filling devices
Rodriguez, Jennifer N.; Hwang, Wonjun; Horn, John; ...
2014-08-04
We report that the rupture of an intracranial aneurysm, which can result in severe mental disabilities or death, affects approximately 30,000 people in the United States annually. The traditional surgical method of treating these arterial malformations involves a full craniotomy procedure, wherein a clip is placed around the aneurysm neck. In recent decades, research and device development have focused on new endovascular treatment methods to occlude the aneurysm void space. These methods, some of which are currently in clinical use, utilize metal, polymeric, or hybrid devices delivered via catheter to the aneurysm site. In this review, we present several suchmore » devices, including those that have been approved for clinical use, and some that are currently in development. We present several design requirements for a successful aneurysm filling device and discuss the success or failure of current and past technologies. Lastly, we also present novel polymeric based aneurysm filling methods that are currently being tested in animal models that could result in superior healing.« less
Enhanced Sensitivity of Wireless Chemical Sensor Based on Love Wave Mode
NASA Astrophysics Data System (ADS)
Wang, Wen; Oh, Haekwan; Lee, Keekeun; Yang, Sangsik
2008-09-01
A 440 MHz wireless and passive Love-wave-based chemical sensor was developed for CO2 detection. The developed device was composed of a reflective delay line patterned on 41° YX LiNbO3 piezoelectric substrate, a poly(methyl methacrylate) (PMMA) waveguide layer, and Teflon AF 2400 sensitive film. A theoretical model is presented to describe wave propagation in Love wave devices with large piezoelectricity and to allow the design of an optimized structure. In wireless device testing using a network analyzer, infusion of CO2 into the testing chamber induced large phase shifts of the reflection peaks owing to the interaction between the sensing film and the test gas (CO2). Good linearity and repeatability were observed at CO2 concentrations of 0-350 ppm. The obtained sensitivity from the Love wave device was approximately 7.07° ppm-1. The gas response properties of the fabricated Love-wave sensor in terms of linearity and sensitivity were provided, and a comparison to surface acoustic wave devices was also discussed.
Binaural integration: a challenge to overcome for children with hearing loss.
Gordon, Karen A; Cushing, Sharon L; Easwar, Vijayalakshmi; Polonenko, Melissa J; Papsin, Blake C
2017-12-01
Access to bilateral hearing can be provided to children with hearing loss by fitting appropriate hearing devices to each affected ear. It is not clear, however, that bilateral input is properly integrated through hearing devices to promote binaural hearing. In the present review, we examine evidence indicating that abnormal binaural hearing continues to be a challenge for children with hearing loss despite early access to bilateral input. Behavioral responses and electrophysiological data in children, combined with data from developing animal models, reveal that deafness in early life disrupts binaural hearing and that present hearing devices are unable to reverse these changes and/or promote expected development. Possible limitations of hearing devices include mismatches in binaural place, level, and timing of stimulation. Such mismatches could be common in children with hearing loss. One potential solution is to modify present device fitting beyond providing audibility to each ear by implementing binaural fitting targets. Efforts to better integrate bilateral input could improve spatial hearing in children with hearing loss.
Design and biocompatibility of endovascular aneurysm filling devices
Rodriguez, Jennifer N.; Hwang, Wonjun; Horn, John; Landsman, Todd L.; Boyle, Anthony; Wierzbicki, Mark A.; Hasan, Sayyeda M.; Follmer, Douglas; Bryant, Jesse; Small, Ward; Maitland, Duncan J.
2014-01-01
The rupture of an intracranial aneurysm, which can result in severe mental disabilities or death, affects approximately 30,000 people in the United States annually. The traditional surgical method of treating these arterial malformations involves a full craniotomy procedure, wherein a clip is placed around the aneurysm neck. In recent decades, research and device development have focused on new endovascular treatment methods to occlude the aneurysm void space. These methods, some of which are currently in clinical use, utilize metal, polymeric, or hybrid devices delivered via catheter to the aneurysm site. In this review, we present several such devices, including those that have been approved for clinical use, and some that are currently in development. We present several design requirements for a successful aneurysm filling device and discuss the success or failure of current and past technologies. We also present novel polymeric based aneurysm filling methods that are currently being tested in animal models that could result in superior healing. PMID:25044644
Conceptual Model Learning Objects and Design Recommendations for Small Screens
ERIC Educational Resources Information Center
Churchill, Daniel
2011-01-01
This article presents recommendations for the design of conceptual models for applications via handheld devices such as personal digital assistants and some mobile phones. The recommendations were developed over a number of years through experience that involves design of conceptual models, and applications of these multimedia representations with…
Vairis, Achilles; Stefanoudakis, George; Petousis, Markos; Vidakis, Nectarios; Tsainis, Andreas-Marios; Kandyla, Betina
2016-02-01
The human knee joint has a three-dimensional geometry with multiple body articulations that produce complex mechanical responses under loads that occur in everyday life and sports activities. Understanding the complex mechanical interactions of these load-bearing structures is of use when the treatment of relevant diseases is evaluated and assisting devices are designed. The anterior cruciate ligament (ACL) in the knee is one of four main ligaments that connects the femur to the tibia and is often torn during sudden twisting motions, resulting in knee instability. The objective of this work is to study the mechanical behavior of the human knee joint and evaluate the differences in its response for three different states, i.e., intact, ACL-deficient, and surgically treated (reconstructed) knee. The finite element models corresponding to these states were developed. For the reconstructed model, a novel repair device was developed and patented by the author in previous work. Static load cases were applied, as have already been presented in a previous work, in order to compare the calculated results produced by the two models the ACL-deficient and the surgically reconstructed knee joint, under the exact same loading conditions. Displacements were calculated in different directions for the load cases studied and were found to be very close to those from previous modeling work and were in good agreement with experimental data presented in literature. The developed finite element model for both the intact and the ACL-deficient human knee joint is a reliable tool to study the kinematics of the human knee, as results of this study show. In addition, the reconstructed human knee joint model had kinematic behavior similar to the intact knee joint, showing that such reconstruction devices can restore human knee stability to an adequate extent.
Wave Amplitude Dependent Engineering Model of Propellant Slosh in Spherical Tanks
NASA Technical Reports Server (NTRS)
Brodnick, Jacob; Westra, Douglas G.; Eberhart, Chad J.; Yang, Hong Q.; West, Jeffrey S.
2016-01-01
Liquid propellant slosh is often a concern for the controllability of flight vehicles. Anti-slosh devices are traditionally included in propellant tank designs to limit the amount of sloshing allowed during flight. These devices and any necessary supports can be quite heavy to meet various structural requirements. Some of the burden on anti-slosh devices can be relieved by exploiting the nonlinear behavior of slosh waves in bare smooth wall tanks. A nonlinear regime slosh model for bare spherical tanks was developed through a joint analytical and experimental effort by NASA/MSFC. The developed slosh model accounts for the large damping inherent in nonlinear slosh waves which is more accurate and drives conservatism from vehicle stability analyses that use traditional bare tank slosh models. A more accurate slosh model will result in more realistic predicted slosh forces during flight reducing or removing the need for active controls during a maneuver or baffles in the tank design. Lower control gains and smaller or fewer tank baffles can reduce cost and system complexity while increasing vehicle performance. Both Computational Fluid Dynamics (CFD) simulation and slosh testing of three different spherical tank geometries were performed to develop the proposed slosh model. Several important findings were made during this effort in addition to determining the parameters to the nonlinear regime slosh model. The linear regime slosh damping trend for spherical tanks reported in NASA SP-106 was shown to be inaccurate for certain regions of a tank. Additionally, transition to the nonlinear regime for spherical tanks was only found to occur at very large wave amplitudes in the lower hemisphere and was a strong function of the propellant fill level in the upper hemisphere. The nonlinear regime damping trend was also found to be a function of the propellant fill level.
Human Engineering Principles Applied to a Laboratory Development Model: A Demonstration.
1979-05-22
Nov 6 SIs OSOLIKTE NCAS KlE SMH 0102.LP.0144601NCASIFE $1ECURITY CLASSIFICATION OF THIS PAGE fmi Deas FWG S3JS CLASSIAWWFI o fmm e 20. ABSTRACT...of a cathode -ray-tube (CRT) display device and an eight-button function key control device. These are shown in Figure 8. Design of the keyboard for
Medical Device Integration Model Based on the Internet of Things
Hao, Aiyu; Wang, Ling
2015-01-01
At present, hospitals in our country have basically established the HIS system, which manages registration, treatment, and charge, among many others, of patients. During treatment, patients need to use medical devices repeatedly to acquire all sorts of inspection data. Currently, the output data of the medical devices are often manually input into information system, which is easy to get wrong or easy to cause mismatches between inspection reports and patients. For some small hospitals of which information construction is still relatively weak, the information generated by the devices is still presented in the form of paper reports. When doctors or patients want to have access to the data at a given time again, they can only look at the paper files. Data integration between medical devices has long been a difficult problem for the medical information system, because the data from medical devices are lack of mandatory unified global standards and have outstanding heterogeneity of devices. In order to protect their own interests, manufacturers use special protocols, etc., thus causing medical decices to still be the "lonely island" of hospital information system. Besides, unfocused application of the data will lead to failure to achieve a reasonable distribution of medical resources. With the deepening of IT construction in hospitals, medical information systems will be bound to develop towards mobile applications, intelligent analysis, and interconnection and interworking, on the premise that there is an effective medical device integration (MDI) technology. To this end, this paper presents a MDI model based on the Internet of Things (IoT). Through abstract classification, this model is able to extract the common characteristics of the devices, resolve the heterogeneous differences between them, and employ a unified protocol to integrate data between devices. And by the IoT technology, it realizes interconnection network of devices and conducts associate matching between the data and the inspected at the device terminal in a timely manner. PMID:26628938
Medical Device Integration Model Based on the Internet of Things.
Hao, Aiyu; Wang, Ling
2015-01-01
At present, hospitals in our country have basically established the HIS system, which manages registration, treatment, and charge, among many others, of patients. During treatment, patients need to use medical devices repeatedly to acquire all sorts of inspection data. Currently, the output data of the medical devices are often manually input into information system, which is easy to get wrong or easy to cause mismatches between inspection reports and patients. For some small hospitals of which information construction is still relatively weak, the information generated by the devices is still presented in the form of paper reports. When doctors or patients want to have access to the data at a given time again, they can only look at the paper files. Data integration between medical devices has long been a difficult problem for the medical information system, because the data from medical devices are lack of mandatory unified global standards and have outstanding heterogeneity of devices. In order to protect their own interests, manufacturers use special protocols, etc., thus causing medical decices to still be the "lonely island" of hospital information system. Besides, unfocused application of the data will lead to failure to achieve a reasonable distribution of medical resources. With the deepening of IT construction in hospitals, medical information systems will be bound to develop towards mobile applications, intelligent analysis, and interconnection and interworking, on the premise that there is an effective medical device integration (MDI) technology. To this end, this paper presents a MDI model based on the Internet of Things (IoT). Through abstract classification, this model is able to extract the common characteristics of the devices, resolve the heterogeneous differences between them, and employ a unified protocol to integrate data between devices. And by the IoT technology, it realizes interconnection network of devices and conducts associate matching between the data and the inspected at the device terminal in a timely manner.
Quasi-static modeling of human limb for intra-body communications with experiments.
Pun, Sio Hang; Gao, Yue Ming; Mak, PengUn; Vai, Mang I; Du, Min
2011-11-01
In recent years, the increasing number of wearable devices on human has been witnessed as a trend. These devices can serve for many purposes: personal entertainment, communication, emergency mission, health care supervision, delivery, etc. Sharing information among the devices scattered across the human body requires a body area network (BAN) and body sensor network (BSN). However, implementation of the BAN/BSN with the conventional wireless technologies cannot give optimal result. It is mainly because the high requirements of light weight, miniature, energy efficiency, security, and less electromagnetic interference greatly limit the resources available for the communication modules. The newly developed intra-body communication (IBC) can alleviate most of the mentioned problems. This technique, which employs the human body as a communication channel, could be an innovative networking method for sensors and devices on the human body. In order to encourage the research and development of the IBC, the authors are favorable to lay a better and more formal theoretical foundation on IBC. They propose a multilayer mathematical model using volume conductor theory for galvanic coupling IBC on a human limb with consideration on the inhomogeneous properties of human tissue. By introducing and checking with quasi-static approximation criteria, Maxwell's equations are decoupled and capacitance effect is included to the governing equation for further improvement. Finally, the accuracy and potential of the model are examined from both in vitro and in vivo experimental results.
Xyce Parallel Electronic Simulator Users' Guide Version 6.8
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keiter, Eric R.; Aadithya, Karthik Venkatraman; Mei, Ting
This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been de- signed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel com- puting platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows onemore » to develop new types of analysis without requiring the implementation of analysis-specific device models. Device models that are specifically tailored to meet Sandia's needs, including some radiation- aware devices (for Sandia users only). Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase$-$ a message passing parallel implementation $-$ which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows.« less
A new exposure model to evaluate smoked illicit drugs in rodents: A study of crack cocaine.
Hueza, Isis M; Ponce, Fernando; Garcia, Raphael C T; Marcourakis, Tânia; Yonamine, Maurício; Mantovani, Cínthia de C; Kirsten, Thiago B
2016-01-01
The use of smoked illicit drugs has spread dramatically, but few studies use proper devices to expose animals to inhalational abused drugs despite the availability of numerous smoking devices that mimic tobacco exposure in rodents. Therefore, the present study developed an inexpensive device to easily expose laboratory animals to smoked drugs. We used crack cocaine as the drug of abuse, and the cocaine plasma levels and the behaviors of animals intoxicated with the crack cocaine were evaluated to prove inhaled drug absorption and systemic activity. We developed an acrylic device with two chambers that were interconnected and separated by a hatch. Three doses of crack (100, 250, or 500 mg), which contained 63.7% cocaine, were burned in a pipe, and the rats were exposed to the smoke for 5 or 10 min (n=5/amount/period). Exposure to the 250-mg dose for 10 min achieved cocaine plasma levels that were similar to those of users (170 ng/mL). Behavioral evaluations were also performed to validate the methodology. Rats (n=10/group) for these evaluations were exposed to 250 mg of crack cocaine or air for 10 min, twice daily, for 28 consecutive days. Open-field evaluations were performed at three different periods throughout the experimental design. Exposed animals exhibited transient anorexia, increased motor activity, and shorter stays in central areas of the open field, which suggests reduced anxiety. Therefore, the developed model effectively exposed animals to crack cocaine, and this model may be useful for the investigation of other inhalational abused drugs. Copyright © 2015 Elsevier Inc. All rights reserved.
Development of advanced micromirror arrays by flip-chip assembly
NASA Astrophysics Data System (ADS)
Michalicek, M. Adrian; Bright, Victor M.
2001-10-01
This paper presents the design, commercial prefabrication, modeling and testing of advanced micromirror arrays fabricated using a novel, simple and inexpensive flip-chip assembly technique. Several polar piston arrays and rectangular cantilever arrays were fabricated using flip-chip assembly by which the upper layers of the array are fabricated on a separate chip and then transferred to a receiving module containing the lower layers. Typical polar piston arrays boast 98.3% active surface area, highly planarized surfaces, low address potentials compatible with CMOS electronics, highly standardized actuation between devices, and complex segmentation of mirror surfaces which allows for custom aberration configurations. Typical cantilever arrays boast large angles of rotation as well as an average surface planarity of only 1.779 nm of RMS roughness across 100 +m mirrors. Continuous torsion devices offer stable operation through as much as six degrees of rotation while binary operation devices offer stable activated positions with as much as 20 degrees of rotation. All arrays have desirable features of costly fabrication services like five structural layers and planarized mirror surfaces, but are prefabricated in the less costly MUMPs process. Models are developed for all devices and used to compare empirical data.
Numerical modeling of high-voltage circuit breaker arcs and their interraction with the power system
NASA Astrophysics Data System (ADS)
Orama, Lionel R.
In this work the interaction between series connected gas and vacuum circuit breaker arcs has been studied. The breakdown phenomena in vacuum interrupters during the post arc current period have been of special interest. Numerical models of gas and vacuum arcs were developed in the form of black box models. Especially, the vacuum post arc model was implemented by combining the existing transition model with an ion density function and expressions for the breakdown mechanisms. The test series studied reflect that for electric fields on the order of 10sp7V/m over the anode, the breakdown of the vacuum gap can result from a combination of both thermal and electrical stresses. For a particular vacuum device, the vacuum model helps to find the interruption limits of the electric field and power density over the anode. The series connection of gas and vacuum interrupters always performs better than the single gas device. Moreover, to take advantage of the good characteristics of both devices, the time between the current zero crossing in each interrupter can be changed. This current zero synchronization is controlled by changing the capacitance in parallel to the gas device. This gas/vacuum interrupter is suitable for interruption of very stressful short circuits in which the product of the dI/dt before current zero and the dV/dt after current zero is very high. Also, a single SF6 interrupter can be replaced by an air circuit breaker of the same voltage rating in series with a vacuum device without compromising the good performance of the SF6 device. Conceptually, a series connected vacuum device can be used for high voltage applications with equal distribution of electrical stresses between the individual interrupters. The equalization can be made by a sequential opening of the individual contact pairs, beginning with the interruptors that are closer to ground potential. This could eliminate the use of grading capacitors.
Research to Develop and Apply Biophotonics to Military Medicine Needs
2012-06-14
brains were hit by a pneumatic (cortical) impact device and imaged by intravital two-photon confocal scanning microscopy via a polished and...Doppler optical frequency domain imaging . In this proposal, we will develop a windowed model of TBI. Using this model, we will characterize for the...following approach to study the microvascular kinetics following TBI. Optical Frequency Domain Imaging . We have developed an instrument in our lab
Hollow-Fiber Cartridges: Model Systems for Virus Removal from Blood
NASA Astrophysics Data System (ADS)
Jacobitz, Frank; Menon, Jeevan
2005-11-01
Aethlon Medical is developing a hollow-fiber hemodialysis device designed to remove viruses and toxins from blood. Possible target viruses include HIV and pox-viruses. The filter could reduce virus and viral toxin concentration in the patient's blood, delaying illness so the patient's immune system can fight off the virus. In order to optimize the design of such a filter, the fluid mechanics of the device is both modeled analytically and investigated experimentally. The flow configuration of the proposed device is that of Starling flow. Polysulfone hollow-fiber dialysis cartridges were used. The cartridges are charged with water as a model fluid for blood and fluorescent latex beads are used in the experiments as a model for viruses. In the experiments, properties of the flow through the cartridge are determined through pressure and volume flow rate measurements of water. The removal of latex beads, which are captured in the porous walls of the fibers, was measured spectrophotometrically. Experimentally derived coefficients derived from these experiments are used in the analytical model of the flow and removal predictions from the model are compared to those obtained from the experiments.
Fluid flow sensing with ionic polymer-metal composites
NASA Astrophysics Data System (ADS)
Stalbaum, Tyler; Trabia, Sarah; Shen, Qi; Kim, Kwang J.
2016-04-01
Ionic polymer-metal composite (IPMC) actuators and sensors have been developed and modeled over the last two decades for use as soft-robotic deformable actuators and sensors. IPMC devices have been suggested for application as underwater actuators, energy harvesting devices, and medical devices such as in guided catheter insertion. Another interesting application of IPMCs in flow sensing is presented in this study. IPMC interaction with fluid flow is of interest to investigate the use of IPMC actuators as flow control devices and IPMC sensors as flow sensing devices. An organized array of IPMCs acting as interchanging sensors and actuators could potentially be designed for both flow measurement and control, providing an unparalleled tool in maritime operations. The underlying physics for this system include the IPMC ion transport and charge fundamental framework along with fluid dynamics to describe the flow around IPMCs. An experimental setup for an individual rectangular IPMC sensor with an externally controlled fluid flow has been developed to investigate this phenomenon and provide further insight into the design and application of this type of device. The results from this portion of the study include recommendations for IPMC device designs in flow control.
Computational Nanoelectronics and Nanotechnology at NASA ARC
NASA Technical Reports Server (NTRS)
Saini, Subhash; Kutler, Paul (Technical Monitor)
1998-01-01
Both physical and economic considerations indicate that the scaling era of CMOS will run out of steam around the year 2010. However, physical laws also indicate that it is possible to compute at a rate of a billion times present speeds with the expenditure of only one Watt of electrical power. NASA has long-term needs where ultra-small semiconductor devices are needed for critical applications: high performance, low power, compact computers for intelligent autonomous vehicles and Petaflop computing technology are some key examples. To advance the design, development, and production of future generation micro- and nano-devices, IT Modeling and Simulation Group has been started at NASA Ames with a goal to develop an integrated simulation environment that addresses problems related to nanoelectronics and molecular nanotechnology. Overview of nanoelectronics and nanotechnology research activities being carried out at Ames Research Center will be presented. We will also present the vision and the research objectives of the IT Modeling and Simulation Group including the applications of nanoelectronic based devices relevant to NASA missions.
Computational Nanoelectronics and Nanotechnology at NASA ARC
NASA Technical Reports Server (NTRS)
Saini, Subhash
1998-01-01
Both physical and economic considerations indicate that the scaling era of CMOS will run out of steam around the year 2010. However, physical laws also indicate that it is possible to compute at a rate of a billion times present speeds with the expenditure of only one Watt of electrical power. NASA has long-term needs where ultra-small semiconductor devices are needed for critical applications: high performance, low power, compact computers for intelligent autonomous vehicles and Petaflop computing technolpgy are some key examples. To advance the design, development, and production of future generation micro- and nano-devices, IT Modeling and Simulation Group has been started at NASA Ames with a goal to develop an integrated simulation environment that addresses problems related to nanoelectronics and molecular nanotecnology. Overview of nanoelectronics and nanotechnology research activities being carried out at Ames Research Center will be presented. We will also present the vision and the research objectives of the IT Modeling and Simulation Group including the applications of nanoelectronic based devices relevant to NASA missions.
NASA Astrophysics Data System (ADS)
Jakubský, Michal; Lenhard, Richard; Vantúch, Martin; Malcho, Milan
2012-04-01
In the call OPVaV-2008/2.2/01-SORO Operational Programme Research and Development - knowledge and technology transfer from research and development into practice (ITMS-26220220057), whose strategic goal is "Device to use low-potential geothermal heat without forced circulation of heat carrier deep in the well "in the Department of Energy laboratory techniques to construct a simulator of transport low potential of geothermal energy in comparative test-drilling in the laboratory. The article describes a device that was designed as a scale model of two deep boreholes each of which withdraws the earth's heat by heat transfer technology and heat carrier. Device using forced circulation of heat carrier will respond in the construction of equipment currently used to transport heat from deep borehole. As the heat carrier will be used CO2. Facilities without using forced circulation of heat carrier, the new technology, which will be used as heat carrier ammonia (NH3).
NASA Astrophysics Data System (ADS)
Perconti, Philip; Bedair, Sarah S.; Bajaj, Jagmohan; Schuster, Jonathan; Reed, Meredith
2016-09-01
To increase Soldier readiness and enhance situational understanding in ever-changing and complex environments, there is a need for rapid development and deployment of Army technologies utilizing sensors, photonics, and electronics. Fundamental aspects of these technologies include the research and development of semiconductor materials and devices which are ubiquitous in numerous applications. Since many Army technologies are considered niche, there is a lack of significant industry investment in the fundamental research and understanding of semiconductor technologies relevant to the Army. To address this issue, the US Army Research Laboratory is establishing a Center for Semiconductor Materials and Device Modeling and seeks to leverage expertise and resources across academia, government and industry. Several key research areas—highlighted and addressed in this paper—have been identified by ARL and external partners and will be pursued in a collaborative fashion by this Center. This paper will also address the mechanisms by which the Center is being established and will operate.
Analytic model for low-frequency noise in nanorod devices.
Lee, Jungil; Yu, Byung Yong; Han, Ilki; Choi, Kyoung Jin; Ghibaudo, Gerard
2008-10-01
In this work analytic model for generation of excess low-frequency noise in nanorod devices such as field-effect transistors are developed. In back-gate field-effect transistors where most of the surface area of the nanorod is exposed to the ambient, the surface states could be the major noise source via random walk of electrons for the low-frequency or 1/f noise. In dual gate transistors, the interface states and oxide traps can compete with each other as the main noise source via random walk and tunneling, respectively.
NASA Technical Reports Server (NTRS)
Biegel, Bryan A.
1999-01-01
We are on the path to meet the major challenges ahead for TCAD (technology computer aided design). The emerging computational grid will ultimately solve the challenge of limited computational power. The Modular TCAD Framework will solve the TCAD software challenge once TCAD software developers realize that there is no other way to meet industry's needs. The modular TCAD framework (MTF) also provides the ideal platform for solving the TCAD model challenge by rapid implementation of models in a partial differential solver.
Numerical Modeling of Nanoelectronic Devices
NASA Technical Reports Server (NTRS)
Klimeck, Gerhard; Oyafuso, Fabiano; Bowen, R. Chris; Boykin, Timothy
2003-01-01
Nanoelectronic Modeling 3-D (NEMO 3-D) is a computer program for numerical modeling of the electronic structure properties of a semiconductor device that is embodied in a crystal containing as many as 16 million atoms in an arbitrary configuration and that has overall dimensions of the order of tens of nanometers. The underlying mathematical model represents the quantummechanical behavior of the device resolved to the atomistic level of granularity. The system of electrons in the device is represented by a sparse Hamiltonian matrix that contains hundreds of millions of terms. NEMO 3-D solves the matrix equation on a Beowulf-class cluster computer, by use of a parallel-processing matrix vector multiplication algorithm coupled to a Lanczos and/or Rayleigh-Ritz algorithm that solves for eigenvalues. In a recent update of NEMO 3-D, a new strain treatment, parameterized for bulk material properties of GaAs and InAs, was developed for two tight-binding submodels. The utility of the NEMO 3-D was demonstrated in an atomistic analysis of the effects of disorder in alloys and, in particular, in bulk In(x)Ga(l-x)As and in In0.6Ga0.4As quantum dots.
Design, Development and Validation of the Eurostar 3000 Large Propellant Tank
NASA Astrophysics Data System (ADS)
Autric, J.-M.; Catherall, D.; Figues, C.; Brockhoff, T.; Lafranconi, R.
2004-10-01
EADS Astrium has undertaken the design and development of an enlarged propellant tank for its high modular Eurostar 3000 telecom satellites platform. The design and development activities included fracture, stress and functional analysis, the manufacturing of development models for the propellant management device, the qualification of new manufacturing processes and the optimization of the design with respect to the main requirements. The successful design and development-testing phase has allowed starting the manufacturing of the qualification model.
Feasibility of Energy Harvesting Using a Piezoelectric Tire
NASA Astrophysics Data System (ADS)
Malotte, Christopher
While the piezoelectric effect has been around for some time, it has only recently caught interest as a potential sustainable energy harvesting device. Piezoelectric energy harvesting has been developed for shoes and panels, but has yet to be integrated into a marketable bicycle tire. For this thesis, the development and feasibility of a piezoelectric tire was done. This includes the development of a circuit that incorporates piezoceramic elements, energy harvesting circuitry, and an energy storage device. A single phase circuit was designed using an ac-dc diode rectifier. An electrolytic capacitor was used as the energy storage device. A financial feasibility was also done to determine targets for manufacturing cost and sales price. These models take into account market trends for high performance tires, economies of scale, and the possibility of government subsidies. This research will help understand the potential for the marketability of a piezoelectric energy harvesting tire that can create electricity for remote use. This study found that there are many obstacles that must be addressed before a piezoelectric tire can be marketed to the general public. The power output of this device is minuscule compared to an alkaline battery. In order for this device to approach the power output of an alkaline battery the weight of the device would also become an issue. Additionally this device is very costly compared to the average bicycle tire. Lastly, this device is extreme fragile and easily broken. In order for this device to become marketable the issues of power output, cost, weight, and durability must all be successfully overcome.
Automated design of genetic toggle switches with predetermined bistability.
Chen, Shuobing; Zhang, Haoqian; Shi, Handuo; Ji, Weiyue; Feng, Jingchen; Gong, Yan; Yang, Zhenglin; Ouyang, Qi
2012-07-20
Synthetic biology aims to rationally construct biological devices with required functionalities. Methods that automate the design of genetic devices without post-hoc adjustment are therefore highly desired. Here we provide a method to predictably design genetic toggle switches with predetermined bistability. To accomplish this task, a biophysical model that links ribosome binding site (RBS) DNA sequence to toggle switch bistability was first developed by integrating a stochastic model with RBS design method. Then, to parametrize the model, a library of genetic toggle switch mutants was experimentally built, followed by establishing the equivalence between RBS DNA sequences and switch bistability. To test this equivalence, RBS nucleotide sequences for different specified bistabilities were in silico designed and experimentally verified. Results show that the deciphered equivalence is highly predictive for the toggle switch design with predetermined bistability. This method can be generalized to quantitative design of other probabilistic genetic devices in synthetic biology.
NASA Astrophysics Data System (ADS)
Kim, Sang Min; Cho, Won Ju; Yu, Chong Gun; Park, Jong Tae
2018-04-01
In this work, the lifetime prediction models of amorphous InGaZnO thin film transistors (a-IGZO TFTs) were suggested for the application of display device and BEOL (Back End Of line) transistors with embedded a-IGZO TFTs. Four different types of test devices according to the active layer thickness, source/drain electrode materials and thermal treatments have been used to verify the suggested model. The device lifetimes under high gate bias stress and hot carrier stress were extracted through fittings of the stretched-exponential equation for threshold voltage shifts and the current estimation method for drain current degradations. Our suggested lifetime prediction models could be used in any kinds of structures of a-IGZO TFTs for the application of display device and BEOL transistors. The a-IGZO TFTs with embedded ITO local conducting layer under source/drain is better for BEOL transistor application and a-IGZO TFTs with InGaZnO thin film as source/drain electrodes may be better for the application of display devices. From 1983 to 1985, he was a Researcher at Gold-Star Semiconductor, Inc., Korea, where he worked on the development of SRAM. He joined the Department of Electronics Engineering, University of Incheon, Incheon, Korea, in 1987, where he is a Professor. As a visiting scientist at Massachusetts Institute of Technology, Cambridge, in 1991, he conducted research in hot carrier reliability of CMOS. As a visiting scholar at University of California, Davis, in 2001, he conducted research on the device structure of Nano-scale SOI CMOS. His recent interests are device structure and reliability of Nano-scale CMOS devices, flash memory, and thin film transistors.
New technology continues to invade healthcare. What are the strategic implications/outcomes?
Smith, Coy
2004-01-01
Healthcare technology continues to advance and be implemented in healthcare organizations. Nurse executives must strategically evaluate the effectiveness of each proposed system or device using a strategic planning process. Clinical information systems, computer-chip-based clinical monitoring devices, advanced Web-based applications with remote, wireless communication devices, clinical decision support software--all compete for capital and registered nurse salary dollars. The concept of clinical transformation is developed with new models of care delivery being supported by technology rather than driving care delivery. Senior nursing leadership's role in clinical transformation and healthcare technology implementation is developed. Proposed standards, expert group action, business and consumer groups, and legislation are reviewed as strategic drivers in the development of an electronic health record and healthcare technology. A matrix of advancing technology and strategic decision-making parameters are outlined.
Microfabricated Modular Scale-Down Device for Regenerative Medicine Process Development
Reichen, Marcel; Macown, Rhys J.; Jaccard, Nicolas; Super, Alexandre; Ruban, Ludmila; Griffin, Lewis D.; Veraitch, Farlan S.; Szita, Nicolas
2012-01-01
The capacity of milli and micro litre bioreactors to accelerate process development has been successfully demonstrated in traditional biotechnology. However, for regenerative medicine present smaller scale culture methods cannot cope with the wide range of processing variables that need to be evaluated. Existing microfabricated culture devices, which could test different culture variables with a minimum amount of resources (e.g. expensive culture medium), are typically not designed with process development in mind. We present a novel, autoclavable, and microfabricated scale-down device designed for regenerative medicine process development. The microfabricated device contains a re-sealable culture chamber that facilitates use of standard culture protocols, creating a link with traditional small-scale culture devices for validation and scale-up studies. Further, the modular design can easily accommodate investigation of different culture substrate/extra-cellular matrix combinations. Inactivated mouse embryonic fibroblasts (iMEF) and human embryonic stem cell (hESC) colonies were successfully seeded on gelatine-coated tissue culture polystyrene (TC-PS) using standard static seeding protocols. The microfluidic chip included in the device offers precise and accurate control over the culture medium flow rate and resulting shear stresses in the device. Cells were cultured for two days with media perfused at 300 µl.h−1 resulting in a modelled shear stress of 1.1×10−4 Pa. Following perfusion, hESC colonies stained positively for different pluripotency markers and retained an undifferentiated morphology. An image processing algorithm was developed which permits quantification of co-cultured colony-forming cells from phase contrast microscope images. hESC colony sizes were quantified against the background of the feeder cells (iMEF) in less than 45 seconds for high-resolution images, which will permit real-time monitoring of culture progress in future experiments. The presented device is a first step to harness the advantages of microfluidics for regenerative medicine process development. PMID:23284952
Three-compartment model for contaminant accumulation by semipermeable membrane devices
Gale, Robert W.
1998-01-01
Passive sampling of dissolved hydrophobic contaminants with lipid (triolein)-containing semipermeable membrane devices (SPMDs) has been gaining acceptance for environmental monitoring. Understanding of the accumulation process has employed a simple polymer film-control model of uptake by the polymer-enclosed lipid, while aqueous film control has been only briefly discussed. A more complete three-compartment model incorporating both aqueous film (turbulent-diffusive) and polymer film (diffusive) mass transfer is developed here and is fit to data from accumulation studies conducted in constant-concentration, flow-through dilutors. This model predicts aqueous film control of the whole device for moderate to high Kow compounds, rather than polymer film control. Uptake rates for phenanthrene and 2,2‘,5,5‘-tetrachlorobiphenyl were about 4.8 and 4.2 L/day/standard SPMD, respectively. Maximum 28 day SPMD concentration factors of 30 000 are predicted for solutes with log Kow values of >5.5. Effects of varying aqueous and polymer film thicknesses and solute diffusivities in the polymer film are modeled, and overall accumulation by the whole device is predicted to remain under aqueous film control, although accumulation in the triolein may be subject to polymer film control. The predicted half-life and integrative response of SPMDs to pulsed concentration events is proportional to log KSPMD.
An Automatic Occlusion Device for Remote Control of Tumor Tissue Ischemia
El-Dahdah, Hamid; Wang, Bei; He, Guanglong; Xu, Ronald X.
2015-01-01
We developed an automatic occlusion device for remote control of tumor tissue ischemia. The device consists of a flexible cannula encasing a shape memory alloy wire with its distal end connected to surgical suture. Regional tissue occlusion was tested on both the benchtop and the animal models. In the benchtop test, the occlusion device introduced quantitative and reproducible changes of blood flow in a tissue simulating phantom embedding a vessel simulator. In the animal test, the device generated a cyclic pattern of reversible ischemia in the right hinder leg tissue of a black male C57BL/6 mouse. We also developed a multimodal detector that integrates near infrared spectroscopy and electron paramagnetic resonance spectroscopy for continuous monitoring of tumor tissue oxygenation, blood content, and oxygen tension changes. The multimodal detector was tested on a cancer xenograft nude mouse undergoing reversible tumor ischemia. The automatic occlusion device and the multi-modal detector can be potentially integrated for closed-loop feedback control of tumor tissue ischemia. Such an integrated occlusion device may be used in multiple clinical applications such as regional hypoperfusion control in tumor resection surgeries and thermal ablation processes. In addition, the proposed occlusion device can also be used as a research tool to understand tumor oxygen transport and hemodynamic characteristics. PMID:20082532
Investigation of the DSMC Approach for Ion/neutral Species in Modeling Low Pressure Plasma Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng Hao; Li, Z.; Levin, D.
2011-05-20
Low pressure plasma reactors are important tools for ionized metal physical vapor deposition (IMPVD), a semiconductor plasma processing technology that is increasingly being applied to deposit Cu seed layers on semiconductor surfaces of trenches and vias with the high aspect ratio (e.g., >5:1). A large fraction of ionized atoms produced by the IMPVD process leads to an anisotropic deposition flux towards the substrate, a feature which is critical for attaining a void-free and uniform fill. Modeling such devices is challenging due to their high plasma density, reactive environment, but low gas pressure. A modular code developed by the Computational Opticalmore » and Discharge Physics Group, the Hybrid Plasma Equipment Model (HPEM), has been successfully applied to the numerical investigations of IMPVD by modeling a hollow cathode magnetron (HCM) device. However, as the development of semiconductor devices progresses towards the lower pressure regime (e.g., <5 mTorr), the breakdown of the continuum assumption limits the application of the fluid model in HPEM and suggests the incorporation of the kinetic method, such as the direct simulation Monte Carlo (DSMC), in the plasma simulation.The DSMC method, which solves the Boltzmann equation of transport, has been successfully applied in modeling micro-fluidic flows in MEMS devices with low Reynolds numbers, a feature shared with the HCM. Modeling of the basic physical and chemical processes for ion/neutral species in plasma have been developed and implemented in DSMC, which include ion particle motion due to the Lorentz force, electron impact reactions, charge exchange reactions, and charge recombination at the surface. The heating of neutrals due to collisions with ions and the heating of ions due to the electrostatic field will be shown to be captured by the DSMC simulations. In this work, DSMC calculations were coupled with the modules from HPEM so that the plasma can be self-consistently solved. Differences in the Ar results, the dominant species in the reactor, produced by the DSMC-HPEM coupled simulation will be shown in comparison with the original HPEM results. The effects of the DSMC calculations for ion/neutral species on HPEM plasma simulation will be further analyzed.« less
Real-time volume rendering of digital medical images on an iOS device
NASA Astrophysics Data System (ADS)
Noon, Christian; Holub, Joseph; Winer, Eliot
2013-03-01
Performing high quality 3D visualizations on mobile devices, while tantalizingly close in many areas, is still a quite difficult task. This is especially true for 3D volume rendering of digital medical images. Allowing this would empower medical personnel a powerful tool to diagnose and treat patients and train the next generation of physicians. This research focuses on performing real time volume rendering of digital medical images on iOS devices using custom developed GPU shaders for orthogonal texture slicing. An interactive volume renderer was designed and developed with several new features including dynamic modification of render resolutions, an incremental render loop, a shader-based clipping algorithm to support OpenGL ES 2.0, and an internal backface culling algorithm for properly sorting rendered geometry with alpha blending. The application was developed using several application programming interfaces (APIs) such as OpenSceneGraph (OSG) as the primary graphics renderer coupled with iOS Cocoa Touch for user interaction, and DCMTK for DICOM I/O. The developed application rendered volume datasets over 450 slices up to 50-60 frames per second, depending on the specific model of the iOS device. All rendering is done locally on the device so no Internet connection is required.
Device research task (processing and high-efficiency solar cells)
NASA Technical Reports Server (NTRS)
1986-01-01
This task has been expanded since the last 25th Project Integration Meeting (PIM) to include process research in addition to device research. The objective of this task is to assist the Flat-plate Solar Array (FSA) Project in meeting its near- and long-term goals by identifying and implementing research in the areas of device physics, device structures, measurement techniques, material-device interactions, and cell processing. The research efforts of this task are described and reflect the deversity of device research being conducted. All of the contracts being reported are either completed or near completion and culminate the device research efforts of the FSA Project. Optimazation methods and silicon solar cell numerical models, carrier transport and recombination parameters in heavily doped silicon, development and analysis of silicon solar cells of near 20% efficiency, and SiN sub x passivation of silicon surfaces are discussed.
Development and Utility of a Piloted Flight Simulator for Icing Effects Training
NASA Technical Reports Server (NTRS)
Ratvasky, Thomas P.; Ranaudo, Richard J.; Barnhart, Billy P.; Dickes, Edward G.; Gingras, David R.
2003-01-01
A piloted flight simulator called the Ice Contamination Effects Flight Training Device (ICEFTD), which uses low cost desktop components and a generic cockpit replication is being developed. The purpose of this device is to demonstrate the effectiveness of its use for training pilots to recognize and recover from aircraft handling anomalies that result from airframe ice formations. High-fidelity flight simulation models for various baseline (non-iced) and iced configurations were developed from wind tunnel tests of a subscale DeHavilland DHC-6 Twin Otter aircraft model. These simulation models were validated with flight test data from the NASA Twin Otter Icing Research Aircraft, which included the effects of ice on wing and tail stall characteristics. These simulation models are being implemented into an ICEFTD that will provide representative aircraft characteristics due to airframe icing. Scenario-based exercises are being constructed to give an operational-flavor to the simulation. Training pilots will learn to recognize iced aircraft characteristics from the baseline, and will practice and apply appropriate recovery procedures to a handling event.
Business model innovation in the water sector in developing countries.
Gebauer, Heiko; Saul, Caroline Jennings
2014-08-01
Various technologies have been deployed in household devices or micro-water treatment plants for mitigating fluoride and arsenic, and thereby provide safe and affordable drinking water in low-income countries. While the technologies have improved considerably, organizations still face challenges in making them financially sustainable. Financial sustainability questions the business models behind these water technologies. This article makes three contributions to business models in the context of fluoride and arsenic mitigation. Firstly, we describe four business models: A) low-value devices given away to people living in extreme poverty, B) high-value devices sold to low-income customers, C) communities as beneficiaries of micro-water treatment plants and D) entrepreneurs as franchisees for selling water services and highlight the emergence of hybrid business models. Secondly, we show current business model innovations such as cost transparency & cost reductions, secured & extended water payments, business diversification and distribution channels. Thirdly, we describe skills and competencies as part of capacity building for creating even more business model innovations. Together, these three contributions will create more awareness of the role of business models in scaling-up water treatment technologies. Copyright © 2014 Elsevier B.V. All rights reserved.
High-Power Piezoelectric Acoustic-Electric Power Feedthru for Metal Walls
NASA Technical Reports Server (NTRS)
Bao, Xiaoqi; Biederman, Will; Sherrit, Stewart; Badescu, Mircea; Bar-Cohen, Yoseph; Jones, Christopher; Aldrich, Jack; Chang, Zensheu
2008-01-01
Piezoelectric acoustic-electric power feed-through devices transfer electric power wirelessly through a solid wall by using acoustic waves. This approach allows for the removal of holes through structures. The technology is applicable to power supply for electric equipment inside sealed containers, vacuum or pressure vessels, etc where the holes on the wall are prohibitive or result in significant performance degrade or complex designs. In the author's previous work, 100-W electric power was transferred through a metal wall by a small, simple-structure piezoelectric device. To meet requirements of higher power applications, the feasibility to transfer kilowatts level power was investigated. Pre-stressed longitudinal piezoelectric feedthru devices were analyzed by finite element model. An equivalent circuit model was developed to predict the power transfer characteristics to different electric loads. Based on the analysis results, a prototype device was designed, fabricated and a demonstration of the transmission of electric power up to 1-kW was successfully conducted. The methods to minimize the plate wave excitation on the wall were also analyzed. Both model analysis and experimental results are presented in detail in this presentation.
NASA Astrophysics Data System (ADS)
Anwar, Sarkar R. M.
High mobility alternative channel materials to silicon are critical to the continued scaling of metal oxide semiconductor (MOS) devices. However, before they can be incorporated into advanced devices, some major issues need to be solved. The high mobility materials suffer from lower allowable thermal budgets compared to Si (before desorption and defect formation becomes an issue) and the absence of a good quality native oxide has further increased the interest in the use of high-k dielectrics. However, the high interface state density and high electric fields at these semiconductor/high-k interfaces can significantly impact the capacitance-voltage (C-V) profile, and current C-V modeling software cannot account for these effects. This in turn affects the parameters extracted from the C-V data of the high mobility semiconductor/high-k interface, which are crucial to fully understand the interface properties and expedite process development. To address this issue, we developed a model which takes into account quantum corrections which can be applied to a number of these alternative channel materials including SixGe1-x, Ge, InGaAs, and GaAs. The C-V simulation using this QM correction model is orders of magnitude faster compared to a full band Schrodinger-Poisson solver. The simulated C-V is directly benchmarked to a self consistent Schrodinger-Poisson solution for each bulk semiconductor material, and from the benchmarking process the QM correction parameters are extracted. The full program, C-V Alternative Channel Extraction (CV ACE), incorporates a quantum mechanical correction model, along with the interface state density model, and can extract device parameters such as equivalent oxide thickness (EOT), doping density and flat band voltage (Vfb) as well as the interface state density profile using multiple measurements performed at different frequencies and temperatures, simultaneously. The program was used to analyze experimentally measured C-V profiles and the extracted device parameters show excellent agreement with the known device structure and previously published results. CV ACE has been applied in the development of a process flow for germanium interface passivation in Ge based MOS devices using a GeOx interlayer. A post atomic layer deposition (ALD) plasma oxidation (PPO) process was developed using radio frequency (RF) plasma in a plasma enhanced chemical vapor deposition (PECVD) chamber and demonstrated significant surface passivation. Various gases were investigated and 1% O2/Ar was found to reduce the growth rate and provide excellent control over the degradation of EOT. A 100 W plasma with 1% O2/Ar was found to provide the best combination of EOT and low Dit and is concluded to be the optimum process for PPO of germanium surfaces. CV ACE and PPO were also utilized to investigate other process development challenges. A study of the impact of low temperature anneals on Ge-based MOS devices was found to result in a degradation of the electrical thickness and a change in fixed charge, indicating that the process window is very narrow and at much lower temperatures than for Si.
Organic and Hybrid Organic Solid-State Photovoltaic Materials and Devices
2014-02-19
hybrids have potential applications in solar cells and may thus provide mobile energy sources for aircraft and soldier technologies. Modeling and...modeling and simulation developed in this project are encouraging further development. 2. Technical Activities Hybrid organic solar cells are an...between surface-modified semiconducting nanoparticles and polymers often contributes to the limited efficiency of hybrid photovoltaic cells and
Reconfigurable nanoscale spin-wave directional coupler
Wang, Qi; Pirro, Philipp; Verba, Roman; Slavin, Andrei; Hillebrands, Burkard; Chumak, Andrii V.
2018-01-01
Spin waves, and their quanta magnons, are prospective data carriers in future signal processing systems because Gilbert damping associated with the spin-wave propagation can be made substantially lower than the Joule heat losses in electronic devices. Although individual spin-wave signal processing devices have been successfully developed, the challenging contemporary problem is the formation of two-dimensional planar integrated spin-wave circuits. Using both micromagnetic modeling and analytical theory, we present an effective solution of this problem based on the dipolar interaction between two laterally adjacent nanoscale spin-wave waveguides. The developed device based on this principle can work as a multifunctional and dynamically reconfigurable signal directional coupler performing the functions of a waveguide crossing element, tunable power splitter, frequency separator, or multiplexer. The proposed design of a spin-wave directional coupler can be used both in digital logic circuits intended for spin-wave computing and in analog microwave signal processing devices. PMID:29376117
Predicting scattering scanning near-field optical microscopy of mass-produced plasmonic devices
NASA Astrophysics Data System (ADS)
Otto, Lauren M.; Burgos, Stanley P.; Staffaroni, Matteo; Ren, Shen; Süzer, Özgün; Stipe, Barry C.; Ashby, Paul D.; Hammack, Aeron T.
2018-05-01
Scattering scanning near-field optical microscopy enables optical imaging and characterization of plasmonic devices with nanometer-scale resolution well below the diffraction limit. This technique enables developers to probe and understand the waveguide-coupled plasmonic antenna in as-fabricated heat-assisted magnetic recording heads. In order to validate and predict results and to extract information from experimental measurements that is physically comparable to simulations, a model was developed to translate the simulated electric field into expected near-field measurements using physical parameters specific to scattering scanning near-field optical microscopy physics. The methods used in this paper prove that scattering scanning near-field optical microscopy can be used to determine critical sub-diffraction-limited dimensions of optical field confinement, which is a crucial metrology requirement for the future of nano-optics, semiconductor photonic devices, and biological sensing where the near-field character of light is fundamental to device operation.
Reconfigurable nanoscale spin-wave directional coupler.
Wang, Qi; Pirro, Philipp; Verba, Roman; Slavin, Andrei; Hillebrands, Burkard; Chumak, Andrii V
2018-01-01
Spin waves, and their quanta magnons, are prospective data carriers in future signal processing systems because Gilbert damping associated with the spin-wave propagation can be made substantially lower than the Joule heat losses in electronic devices. Although individual spin-wave signal processing devices have been successfully developed, the challenging contemporary problem is the formation of two-dimensional planar integrated spin-wave circuits. Using both micromagnetic modeling and analytical theory, we present an effective solution of this problem based on the dipolar interaction between two laterally adjacent nanoscale spin-wave waveguides. The developed device based on this principle can work as a multifunctional and dynamically reconfigurable signal directional coupler performing the functions of a waveguide crossing element, tunable power splitter, frequency separator, or multiplexer. The proposed design of a spin-wave directional coupler can be used both in digital logic circuits intended for spin-wave computing and in analog microwave signal processing devices.
Liu, Hung-Ping; Chu, Yen; Wu, Yi-Cheng; Hsieh, Ming-Ju; Liu, Chieng-Ying; Chen, Tzu-Ping; Chao, Yin-Kai; Wu, Ching-Yang; Yeh, Chi-Ju; Ko, Po-Jen; Liu, Yun-Hen
2016-05-01
Safe pulmonary vessel sealing device plays a crucial role in anatomic lung resection. In 2014, we reported high rates of massive bleeding complications during transumbilical lobectomy in a canine model due to difficulty in managing the pulmonary vessel with an endostapler. In this animal survival series, we aimed to evaluate the outcome of pulmonary vessel sealing with an electrocautery device to simplify the transumbilical thoracic surgery. Under general anesthesia, a 3-cm longitudinal incision was made over the umbilicus. Under video guidance, a bronchoscope was inserted through the incision for exploration. The diaphragmatic wound was created with an electrocautery knife and used as the entrance into the thoracic cavity. Using the transumbilical technique, anatomic lobectomy was performed with electrosurgical devices and endoscopic vascular staplers in 15 canines. Transumbilical endoscopic anatomic lobectomy was successfully completed in 12 of the 15 animals. Intraoperative bleeding developed in three animals during pulmonary hilum dissection, where one animal was killed due to hemodynamic instability and the other two animals required thoracotomy to complete the operation. There were five delayed bleeding and surgical mortality cases caused by inadequate vessel sealing by electrosurgical devices. Postmortem examination confirmed correct transumbilical lobectomy in the twelve animals that survived the operations. Transumbilical anatomic lobectomy is technically feasible in a canine model; however, the electrosurgical devices were not effective in sealing the pulmonary vessel in the current canine model.
Al Mamoon, Ishtiak; Muzahidul Islam, A K M; Baharun, Sabariah; Ahmed, Ashir; Komaki, Shozo
2016-08-01
Due to the rapid growth of wireless medical devices in near future, wireless healthcare services may face some inescapable issue such as medical spectrum scarcity, electromagnetic interference (EMI), bandwidth constraint, security and finally medical data communication model. To mitigate these issues, cognitive radio (CR) or opportunistic radio network enabled wireless technology is suitable for the upcoming wireless healthcare system. The up-to-date research on CR based healthcare has exposed some developments on EMI and spectrum problems. However, the investigation recommendation on system design and network model for CR enabled hospital is rare. Thus, this research designs a hierarchy based hybrid network architecture and network maintenance protocols for previously proposed CR hospital system, known as CogMed. In the previous study, the detail architecture of CogMed and its maintenance protocols were not present. The proposed architecture includes clustering concepts for cognitive base stations and non-medical devices. Two cluster head (CH selector equations are formulated based on priority of location, device, mobility rate of devices and number of accessible channels. In order to maintain the integrity of the proposed network model, node joining and node leaving protocols are also proposed. Finally, the simulation results show that the proposed network maintenance time is very low for emergency medical devices (average maintenance period 9.5 ms) and the re-clustering effects for different mobility enabled non-medical devices are also balanced.
Modeling How, When, and What Is Learned in a Simple Fault-Finding Task
ERIC Educational Resources Information Center
Ritter, Frank E.; Bibby, Peter A.
2008-01-01
We have developed a process model that learns in multiple ways while finding faults in a simple control panel device. The model predicts human participants' learning through its own learning. The model's performance was systematically compared to human learning data, including the time course and specific sequence of learned behaviors. These…
Development of a Carbon Nanotube-Based Micro-CT and its Applications in Preclinical Research
NASA Astrophysics Data System (ADS)
Burk, Laurel May
Due to the dependence of researchers on mouse models for the study of human disease, diagnostic tools available in the clinic must be modified for use on these much smaller subjects. In addition to high spatial resolution, cardiac and lung imaging of mice presents extreme temporal challenges, and physiological gating methods must be developed in order to image these organs without motion blur. Commercially available micro-CT imaging devices are equipped with conventional thermionic x-ray sources and have a limited temporal response and are not ideal for in vivo small animal studies. Recent development of a field-emission x-ray source with carbon nanotube (CNT) cathode in our lab presented the opportunity to create a micro-CT device well-suited for in vivo lung and cardiac imaging of murine models for human disease. The goal of this thesis work was to present such a device, to develop and refine protocols which allow high resolution in vivo imaging of free-breathing mice, and to demonstrate the use of this new imaging tool for the study many different disease models. In Chapter 1, I provide background information about x-rays, CT imaging, and small animal micro-CT. In Chapter 2, CNT-based x-ray sources are explained, and details of a micro-focus x-ray tube specialized for micro-CT imaging are presented. In Chapter 3, the first and second generation CNT micro-CT devices are characterized, and successful respiratory- and cardiac-gated live animal imaging on normal, wild-type mice is achieved. In Chapter 4, respiratory-gated imaging of mouse disease models is demonstrated, limitations to the method are discussed, and a new contactless respiration sensor is presented which addresses many of these limitations. In Chapter 5, cardiac-gated imaging of disease models is demonstrated, including studies of aortic calcification, left ventricular hypertrophy, and myocardial infarction. In Chapter 6, several methods for image and system improvement are explored, and radiation therapy-related micro-CT imaging is present. Finally, in Chapter 7 I discuss future directions for this research and for the CNT micro-CT.
NASA Astrophysics Data System (ADS)
Henderson, Gregory Newell
Semiconductor device dimensions are rapidly approaching a fundamental limit where drift-diffusion equations and the depletion approximation are no longer valid. In this regime, quantum effects can dominate device response. To increase further device density and speed, new devices must be designed that use these phenomena to positive advantage. In addition, quantum effects provide opportunities for a new class of devices which can perform functions previously unattainable with "conventional" semiconductor devices. This thesis has described research in the analysis of electron wave effects in semiconductors and the development of methods for the design, fabrication, and characterization of quantum devices based on these effects. First, an exact set of quantitative analogies are presented which allow the use of well understood optical design and analysis tools for the development of electron wave semiconductor devices. Motivated by these analogies, methods are presented for modeling electron wave grating diffraction using both an exact rigorous coupled-wave analysis and approximate analyses which are useful for grating design. Example electron wave grating switch and multiplexer designs are presented. In analogy to thin-film optics, the design and analysis of electron wave Fabry-Perot interference filters are also discussed. An innovative technique has been developed for testing these (and other) electron wave structures using Ballistic Electron Emission Microscopy (BEEM). This technique uses a liquid-helium temperature scanning tunneling microscope (STM) to perform spectroscopy of the electron transmittance as a function of electron energy. Experimental results show that BEEM can resolve even weak quantum effects, such as the reflectivity of a single interface between materials. Finally, methods are discussed for incorporating asymmetric electron wave Fabry-Perot filters into optoelectronic devices. Theoretical and experimental results show that such structures could be the basis for a new type of electrically pumped mid - to far-infrared semiconductor laser.
2D Quantum Mechanical Study of Nanoscale MOSFETs
NASA Technical Reports Server (NTRS)
Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, B.; Kwak, Dochan (Technical Monitor)
2000-01-01
With the onset of quantum confinement in the inversion layer in nanoscale MOSFETs, behavior of the resonant level inevitably determines all device characteristics. While most classical device simulators take quantization into account in some simplified manner, the important details of electrostatics are missing. Our work addresses this shortcoming and provides: (a) a framework to quantitatively explore device physics issues such as the source-drain and gate leakage currents, DIBL, and threshold voltage shift due to quantization, and b) a means of benchmarking quantum corrections to semiclassical models (such as density-gradient and quantum-corrected MEDICI). We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions and oxide tunneling are treated on an equal footing. Electrons in the ellipsoids of the conduction band are treated within the anisotropic effective mass approximation. We present the results of our simulations of MIT 25, 50 and 90 nm "well-tempered" MOSFETs and compare them to those of classical and quantum corrected models. The important feature of quantum model is smaller slope of Id-Vg curve and consequently higher threshold voltage. Surprisingly, the self-consistent potential profile shows lower injection barrier in the channel in quantum case. These results are qualitatively consistent with ID Schroedinger-Poisson calculations. The effect of gate length on gate-oxide leakage and subthreshold current has been studied. The shorter gate length device has an order of magnitude smaller current at zero gate bias than the longer gate length device without a significant trade-off in on-current. This should be a device design consideration.
How Multi-Organ Microdevices Can Help Foster Drug Development
Esch, Mandy B.; Smith, Alec; Prot, Jean-Matthieu; Sancho, Carlotta Oleaga; Hickman, James; Shuler, Michael L.
2014-01-01
Multi-organ microdevices can mimic tissue-tissue interactions that occur as a result of metabolite travel from one tissue to other tissues in vitro. These systems are capable of simulating human metabolism, including the conversion of a pro-drug to its effective metabolite as well as its subsequent therapeutic actions and toxic side effects. Since tissue-tissue interactions in the human body can play a significant role in determining the success of new pharmaceuticals, the development and use of multi-organ microdevices presents an opportunity to improve the drug development process. The goals are to predict potential toxic side effects with higher accuracy before a drug enters the expensive phase of clinical trials as well as to estimate efficacy and dose response. Multi-organ microdevices also have the potential to aid in the development of new therapeutic strategies by providing a platform for testing in the context of human metabolism (as opposed to animal models). Further, when operated with human biopsy samples, the devices could be a gateway for the development of individualized medicine. Here we review studies in which multi-organ microdevices have been developed and used in a ways that demonstrate how the devices’ capabilities can present unique opportunities for the study of drug action. We also discuss the challenges that are inherent in the development of multi-organ microdevices. Among these are how to design the devices, and how to create devices that mimic the human metabolism with high authenticity. Since single organ devices are testing platforms for tissues that can later be combined with other tissues within multi-organ devices, we will also mention single organ devices where appropriate in the discussion. PMID:24412641
DAVE: A plug and play model for distributed multimedia application development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mines, R.F.; Friesen, J.A.; Yang, C.L.
1994-07-01
This paper presents a model being used for the development of distributed multimedia applications. The Distributed Audio Video Environment (DAVE) was designed to support the development of a wide range of distributed applications. The implementation of this model is described. DAVE is unique in that it combines a simple ``plug and play`` programming interface, supports both centralized and fully distributed applications, provides device and media extensibility, promotes object reuseability, and supports interoperability and network independence. This model enables application developers to easily develop distributed multimedia applications and create reusable multimedia toolkits. DAVE was designed for developing applications such as videomore » conferencing, media archival, remote process control, and distance learning.« less
Wang, Li; Cai, Xuejiao; Cheng, Ping
2018-05-30
The management of medical devices is crucial to safe, high-quality surgical care, but has received little attention in the medical literature. This study explored the effect of a sub-specialties management model in the Central Sterile Supply Department (CSSD). A traditional routine management model (control) was applied from September 2015 through April 2016, and a newly developed sub-specialties management model (observation) was applied from July 2016 through February 2017. Health personnel from various clinical departments were randomly selected to participate as the control (n = 86) and observation (n = 90) groups, respectively. The groups were compared for rates of personnel satisfaction, complaints regarding device errors, and damage of medical devices. The satisfaction score of the observation group (95.8 ± 1.2) was significantly higher than that of the control (90.2 ± 2.3; P = 0.000). The rate of complaints of the observation group (3.3%) was significantly lower than that of the control (11.6%; P = 0.035). The quality control regarding recycle and packing was significantly higher during the observation period than the control period, which favorably influenced the scores for satisfaction. The rate of damage to specialist medical devices during the observation period (0.40%) was lower than during the control period (0.61%; P = 0.003). The theoretical knowledge and practical skills of the CSSD professionals improved after application of the sub-specialties management model. A management model that considers the requirements of specialist medical devices can improve quality control in the CSSD.
Simulation Model Development for Icing Effects Flight Training
NASA Technical Reports Server (NTRS)
Barnhart, Billy P.; Dickes, Edward G.; Gingras, David R.; Ratvasky, Thomas P.
2003-01-01
A high-fidelity simulation model for icing effects flight training was developed from wind tunnel data for the DeHavilland DHC-6 Twin Otter aircraft. First, a flight model of the un-iced airplane was developed and then modifications were generated to model the icing conditions. The models were validated against data records from the NASA Twin Otter Icing Research flight test program with only minimal refinements being required. The goals of this program were to demonstrate the effectiveness of such a simulator for training pilots to recognize and recover from icing situations and to establish a process for modeling icing effects to be used for future training devices.
Laparoscopic training model using fresh human cadavers without the establishment of penumoperitoneum
Imakuma, Ernesto Sasaki; Ussami, Edson Yassushi; Meyer, Alberto
2016-01-01
BACKGROUND: Laparoscopy is a well-established alternative to open surgery for treating many diseases. Although laparoscopy has many advantages, it is also associated with disadvantages, such as slow learning curves and prolonged operation time. Fresh frozen cadavers may be an interesting resource for laparoscopic training, and many institutions have access to cadavers. One of the main obstacles for the use of cadavers as a training model is the difficulty in introducing a sufficient pneumoperitoneum to distend the abdominal wall and provide a proper working space. The purpose of this study was to describe a fresh human cadaver model for laparoscopic training without requiring a pneumoperitoneum. MATERIALS AND METHODS AND RESULTS: A fake abdominal wall device was developed to allow for laparoscopic training without requiring a pneumoperitoneum in cadavers. The device consists of a table-mounted retractor, two rail clamps, two independent frame arms, two adjustable handle and rotating features, and two frames of the abdominal wall. A handycam is fixed over a frame arm, positioned and connected through a USB connection to a television and dissector; scissors and other laparoscopic materials are positioned inside trocars. The laparoscopic procedure is thus simulated. CONCLUSION: Cadavers offer a very promising and useful model for laparoscopic training. We developed a fake abdominal wall device that solves the limitation of space when performing surgery on cadavers and removes the need to acquire more costly laparoscopic equipment. This model is easily accessible at institutions in developing countries, making it one of the most promising tools for teaching laparoscopy. PMID:27073318
NASA Astrophysics Data System (ADS)
Chindalore, Gowrishankar L.
The development of fast, multi-functional, and energy efficient integrated circuits, is made possible by aggressively scaling the gate lengths of the MOS devices into the sub-quarter micron regime. However, with the increasing cost of fabrication, there is a strong need for the development of reliable and accurate device simulation capabilities. The development of the theoretical models for simulators is guided by extensive experimental data, which enable an experimental verification of the models, and lead to a better understanding of the underlying physics. This dissertation presents the methodology and the results for one such experimental effort, where two important physical effects in the inversion layer and the accumulation layer of a MOS device, namely, the quantum mechanical (QM) effects and the carrier mobility are investigated. Accordingly, this dissertation has been divided into two parts, with the first part discussing the increase in the threshold voltage and the accumulation electrical oxide thickness due to QM effects. The second part discusses the methodology and the experimental results for the extraction of the majority carrier mobilities in the accumulation layers of a MOSFET. The continued scaling of the MOS gate length requires decreased gate oxide thickness (tox) and increased channel doping (NB) in order to improve device performance while suppressing the short- channel effects. The combination of the two result in large enough transverse electric fields to cause significant quantization of the carriers in the potential well at the Si/SiO2 interface. Hence, compared to the classical calculations (where the QM effects are ignored), the QM effects are found to lead to an increase in the experimental threshold voltage by approximately 100mV, and an overestimation of the physical oxide thickness by approximately 3-4A, in MOSFET devices with a gate oxide thickness and the doping level anticipated for technologies with sub-quarter micron gate lengths. Thus, the experimental results indicate the need for using accurate QM models for simulating sub-quarter micron devices. Carrier mobility is a fundamental semiconductor device transport parameter that has been extensively characterized for both electrons and holes in the silicon bulk and MOS inversion layers. Accumulation layer mobility (μacc) has become increasingly important as the MOS devices have scaled to deep submicron gate lengths, and much effort has been required to achieve increased drive current. However, very little experimental data has been reported for carrier mobility in the MOS accumulation layers (Sun80, Man89). Hence, in this research work, the accumulation layer mobilities were extracted using buried-channel MOSFETs for both the electrons and holes, and for a wide range of doping levels at temperatures ranging from 25C to 150C. The experimental μacc is found to be greater than the corresponding bulk and the inversion layer mobilities, at low to moderate effective fields. However, at very high effective fields, where phonon and surface roughness scattering are dominant, the mobility behavior is found to be very similar to that of the inversion carriers. The extensive set of experimental data will enable the development of accurate local accumulation mobility models for inclusion in 2-D device simulators.
Modelling of evaporation of a dispersed liquid component in a chemically active gas flow
NASA Astrophysics Data System (ADS)
Kryukov, V. G.; Naumov, V. I.; Kotov, V. Yu.
1994-01-01
A model has been developed to investigate evaporation of dispersed liquids in chemically active gas flow. Major efforts have been directed at the development of algorithms for implementing this model. The numerical experiments demonstrate that, in the boundary layer, significant changes in the composition and temperature of combustion products take place. This gives the opportunity to more correctly model energy release processes in combustion chambers of liquid-propellant rocket engines, gas-turbine engines, and other power devices.
Length-free near infrared measurement of newborn malnutrition
NASA Astrophysics Data System (ADS)
Mustafa, Fatin Hamimi; Bek, Emily J.; Huvanandana, Jacqueline; Jones, Peter W.; Carberry, Angela E.; Jeffery, Heather E.; Jin, Craig T.; McEwan, Alistair L.
2016-11-01
Under-nutrition in neonates can cause immediate mortality, impaired cognitive development and early onset adult disease. Body fat percentage measured using air-displacement-plethysmography has been found to better indicate under-nutrition than conventional birth weight percentiles. However, air-displacement-plethysmography equipment is expensive and non-portable, so is not suited for use in developing communities where the burden is often the greatest. We proposed a new body fat measurement technique using a length-free model with near-infrared spectroscopy measurements on a single site of the body - the thigh. To remove the need for length measurement, we developed a model with five discrete wavelengths and a sex parameter. The model was developed using air-displacement-plethysmography measurements in 52 neonates within 48 hours of birth. We identified instrumentation required in a low-cost LED-based screening device and incorporated a receptor device that can increase the amount of light collected. This near-infrared method may be suitable as a low cost screening tool for detecting body fat levels and monitoring nutritional interventions for malnutrition in neonates and young children in resource-constrained communities.
Integration of implant planning workflows into the PACS infrastructure
NASA Astrophysics Data System (ADS)
Gessat, Michael; Strauß, Gero; Burgert, Oliver
2008-03-01
The integration of imaging devices, diagnostic workstations, and image servers into Picture Archiving and Communication Systems (PACS) has had an enormous effect on the efficiency of radiology workflows. The standardization of the information exchange between the devices with the DICOM standard has been an essential precondition for that development. For surgical procedures, no such infrastructure exists. With the increasingly important role computerized planning and assistance systems play in the surgical domain, an infrastructure that unifies the communication between devices becomes necessary. In recent publications, the need for a modularized system design has been established. A reference architecture for a Therapy Imaging and Model Management System (TIMMS) has been proposed. It was accepted by the DICOM Working Group 6 as the reference architecture for DICOM developments for surgery. In this paper we propose the inclusion of implant planning systems into the PACS infrastructure. We propose a generic information model for the patient specific selection and positioning of implants from a repository according to patient image data. The information models are based on clinical workflows from ENT, cardiac, and orthopedic surgery as well as technical requirements derived from different use cases and systems. We show an exemplary implementation of the model for application in ENT surgery: the selection and positioning of an ossicular implant in the middle ear. An implant repository is stored in the PACS. It makes use of an experimental implementation of the Surface Mesh Module that is currently being developed as extension to the DICOM standard.
Laboratory development and testing of spacecraft diagnostics
NASA Astrophysics Data System (ADS)
Amatucci, William; Tejero, Erik; Blackwell, Dave; Walker, Dave; Gatling, George; Enloe, Lon; Gillman, Eric
2017-10-01
The Naval Research Laboratory's Space Chamber experiment is a large-scale laboratory device dedicated to the creation of large-volume plasmas with parameters scaled to realistic space plasmas. Such devices make valuable contributions to the investigation of space plasma phenomena under controlled, reproducible conditions, allowing for the validation of theoretical models being applied to space data. However, in addition to investigations such as plasma wave and instability studies, such devices can also make valuable contributions to the development and testing of space plasma diagnostics. One example is the plasma impedance probe developed at NRL. Originally developed as a laboratory diagnostic, the sensor has now been flown on a sounding rocket, is included on a CubeSat experiment, and will be included on the DoD Space Test Program's STP-H6 experiment on the International Space Station. In this talk, we will describe how the laboratory simulation of space plasmas made this development path possible. Work sponsored by the US Naval Research Laboratory Base Program.
Technology Acceptance Model for Wireless Internet.
ERIC Educational Resources Information Center
Lu, June; Yu, Chun-Sheng; Liu, Chang; Yao, James E.
2003-01-01
Develops a technology acceptance model (TAM) for wireless Internet via mobile devices (WIMD) and proposes that constructs, such as individual differences, technology complexity, facilitating conditions, social influences, and wireless trust environment determine user-perceived short and long-term usefulness, and ease of using WIMD. Twelve…
NASA Astrophysics Data System (ADS)
Gong, Jiawei
Among various photovoltaic technologies available in the emerging market, dye-sensitized solar cells (DSSCs) are deemed as an effective, competitive solution to the increasing demand for high-efficiency PV devices. To move towards full commercialization, challenges remain in further improvement of device stability as well as reduction of material and manufacturing costs. This study aims at rational synthesis and photovoltaic characterization of two nanostructured electrode materials (i.e. SnO2 nanofibers and activated graphene nanoplatelets) for use as photoanode and counter electrode in dye-sensitized solar cells. The main objective is to explore the favorable charge transport features of SnO2 nanofiber network and simultaneously replace the high-priced conventional electrocatalytic nanomaterials (e.g. Pt nanoparticles) used in existing counter electrode of DSSCs. To achieve this objective, a multiphysics model of electrode kinetics was developed to optimize various design parameters and cell configurations. The porous hollow SnO2 nanofibers were successfully synthesized via a facile route consisting of electrospinning precursor polymer nanofibers, followed by controlled carbonization. The novel SnO2/TiO2 composite photoanode materials carry advantages of SnO2 nanofiber network (e.g. nanostructural continuity, high electron mobility) and TiO2 nanoparticles (e.g. high specific area), and therefore show excellent photovoltaic properties including improved short-circuit current and fill factors. In addition, hydrothermally activated graphene nanoplatelets (aGNP) were used as a catalytic counter electrode material to substitute for conventionally used platinum nanoparticles. Improved catalytic performance of aGNP electrode was achieved through increased surface area and better control of morphology. Dye-sensitized solar cells using these aGNP electrodes had power conversion efficiencies comparable to those using platinum nanoparticles with I-/I3- redox mediators. Moreover, a multiphysics model at the device level was developed to predict the power output characteristics of DSSC using different electrode materials. The developed model was validated by the experimental data acquired from lab-fabricated DSSCs. Further, parametric simulation was conducted to analyze the effect of series resistance, shunt resistance, interfacial overpotential, as well as difference between the conduction band and formal redox potentials on device performance. This model correlates the maximum power output of DSSC devices to various design and operating parameters, and it also provides insight into the working principles of newly designed devices.
NASA Astrophysics Data System (ADS)
Youssef, Sarah; El-Batawy, Yasser M.; Abouelsaood, Ahmed A.
2016-09-01
A theoretical method for calculating the electron mobility in quantum dot infrared photodetectors is developed. The mobility calculation is based on a time-dependent, finite-difference solution of the Boltzmann transport equation in a bulk semiconductor material with randomly positioned conical quantum dots. The quantum dots act as scatterers of current carriers (conduction-band electrons in our case), resulting in limiting their mobility. In fact, carrier scattering by quantum dots is typically the dominant factor in determining the mobility in the active region of the quantum dot device. The calculated values of the mobility are used in a recently developed generalized drift-diffusion model for the dark current of the device [Ameen et al., J. Appl. Phys. 115, 063703 (2014)] in order to fix the overall current scale. The results of the model are verified by comparing the predicted dark current characteristics to those experimentally measured and reported for actual InAs/GaAs quantum dot infrared photodetectors. Finally, the effect of the several relevant device parameters, including the operating temperature and the quantum dot average density, is studied.
NASA Astrophysics Data System (ADS)
Satyanarayana, S.; Indrakanti, S.; Kim, J.; Kim, C.; Pamidi, S.
2017-12-01
Benefits of an integrated high temperature superconducting (HTS) power system and the associated cryogenic systems on board an electric ship or aircraft are discussed. A versatile modelling methodology developed to assess the cryogenic thermal behavior of the integrated system with multiple HTS devices and the various potential configurations are introduced. The utility and effectiveness of the developed modelling methodology is demonstrated using a case study involving a hypothetical system including an HTS propulsion motor, an HTS generator and an HTS power cable cooled by an integrated cryogenic helium circulation system. Using the methodology, multiple configurations are studied. The required total cooling power and the ability to maintain each HTS device at the required operating temperatures are considered for each configuration and the trade-offs are discussed for each configuration. Transient analysis of temperature evolution in the cryogenic helium circulation loop in case of a system failure is carried out to arrive at the required critical response time. The analysis was also performed for a similar liquid nitrogen circulation for an isobaric condition and the cooling capacity ratio is used to compare the relative merits of the two cryogens.
Zhang, J F; Yang, C J; Wu, T; Li, J H; Xu, Z S; Chen, Y
2009-11-01
Legg-Calvé-Perthes disease (LCPD) is a significant problem in healthcare because it so commonly affects young adults and immature athletes, primarily gymnasts. In this paper, a two-degree-of-freedom (2-DOF) hip exoskeleton device was developed for study on an immature animal model of exercise-induced LCPD. The exoskeleton device can reproduce the repetitive actions and forceful centrality impingements on the coxafemoral head that occur in sports such as gymnastics and acrobatics. It initiated a new method rather than the traditional medical or physiological operation method to establish an animal model of LCPD and allowed for the development and testing of new treatments. Ten immature New Zealand white rabbits were selected for the experiment. Their right legs were driven to achieve repetitive extension/ flexion and abduction/adduction beyond the normal range of motion, with centrality impingements at the maximum flexion position, while their left legs were kept in the initial healthy status and acted as the comparing reference. Four weeks later, the basic symptoms of early LCPD of the femoral head appeared. The results of X-ray, magnetic resonance imaging (MRI), gross anatomy observation, and H-E section also revealed it.
A Parametric Computational Model of the Action Potential of Pacemaker Cells.
Ai, Weiwei; Patel, Nitish D; Roop, Partha S; Malik, Avinash; Andalam, Sidharta; Yip, Eugene; Allen, Nathan; Trew, Mark L
2018-01-01
A flexible, efficient, and verifiable pacemaker cell model is essential to the design of real-time virtual hearts that can be used for closed-loop validation of cardiac devices. A new parametric model of pacemaker action potential is developed to address this need. The action potential phases are modeled using hybrid automaton with one piecewise-linear continuous variable. The model can capture rate-dependent dynamics, such as action potential duration restitution, conduction velocity restitution, and overdrive suppression by incorporating nonlinear update functions. Simulated dynamics of the model compared well with previous models and clinical data. The results show that the parametric model can reproduce the electrophysiological dynamics of a variety of pacemaker cells, such as sinoatrial node, atrioventricular node, and the His-Purkinje system, under varying cardiac conditions. This is an important contribution toward closed-loop validation of cardiac devices using real-time heart models.
Computational model of miniature pulsating heat pipes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez, Mario J.; Givler, Richard C.
The modeling work described herein represents Sandia National Laboratories (SNL) portion of a collaborative three-year project with Northrop Grumman Electronic Systems (NGES) and the University of Missouri to develop an advanced, thermal ground-plane (TGP), which is a device, of planar configuration, that delivers heat from a source to an ambient environment with high efficiency. Work at all three institutions was funded by DARPA/MTO; Sandia was funded under DARPA/MTO project number 015070924. This is the final report on this project for SNL. This report presents a numerical model of a pulsating heat pipe, a device employing a two phase (liquid andmore » its vapor) working fluid confined in a closed loop channel etched/milled into a serpentine configuration in a solid metal plate. The device delivers heat from an evaporator (hot zone) to a condenser (cold zone). This new model includes key physical processes important to the operation of flat plate pulsating heat pipes (e.g. dynamic bubble nucleation, evaporation and condensation), together with conjugate heat transfer with the solid portion of the device. The model qualitatively and quantitatively predicts performance characteristics and metrics, which was demonstrated by favorable comparisons with experimental results on similar configurations. Application of the model also corroborated many previous performance observations with respect to key parameters such as heat load, fill ratio and orientation.« less
Computer simulation of heterogeneous polymer photovoltaic devices
NASA Astrophysics Data System (ADS)
Kodali, Hari K.; Ganapathysubramanian, Baskar
2012-04-01
Polymer-based photovoltaic devices have the potential for widespread usage due to their low cost per watt and mechanical flexibility. Efficiencies close to 9.0% have been achieved recently in conjugated polymer based organic solar cells (OSCs). These devices were fabricated using solvent-based processing of electron-donating and electron-accepting materials into the so-called bulk heterojunction (BHJ) architecture. Experimental evidence suggests that a key property determining the power-conversion efficiency of such devices is the final morphological distribution of the donor and acceptor constituents. In order to understand the role of morphology on device performance, we develop a scalable computational framework that efficiently interrogates OSCs to investigate relationships between the morphology at the nano-scale with the device performance. In this work, we extend the Buxton and Clarke model (2007 Modelling Simul. Mater. Sci. Eng. 15 13-26) to simulate realistic devices with complex active layer morphologies using a dimensionally independent, scalable, finite-element method. We incorporate all stages involved in current generation, namely (1) exciton generation and diffusion, (2) charge generation and (3) charge transport in a modular fashion. The numerical challenges encountered during interrogation of realistic microstructures are detailed. We compare each stage of the photovoltaic process for two microstructures: a BHJ morphology and an idealized sawtooth morphology. The results are presented for both two- and three-dimensional structures.
ERIC Educational Resources Information Center
Gorsev, Gonca; Turkmen, Ugur; Askin, Cihat
2017-01-01
In today's world, in order to obtain the information in education, various approaches, methods and devices have been developed. Like many developing countries, e-learning and distance learning (internet based learning) are used today in many areas of education in Turkey. This research aims to contribute to education systems and develop a…
[Animal experimentation, computer simulation and surgical research].
Carpentier, Alain
2009-11-01
We live in a digital world In medicine, computers are providing new tools for data collection, imaging, and treatment. During research and development of complex technologies and devices such as artificial hearts, computer simulation can provide more reliable information than experimentation on large animals. In these specific settings, animal experimentation should serve more to validate computer models of complex devices than to demonstrate their reliability.
2009-01-01
pro- gram requirements, and administering local and federal funding. Emergency services—organizations that provide for public safety by the...chemicals Nerve agent Chlorine tank explosion Major earthquake Major hurricane Radiological dispersal device Improvised explosive device Food ...state Locally Developed Software 1 city 1 county 1 city 1 county 3 states Lotus Notes Suite 1 NGO MABAS.ORG 1 county
Manufacturing Methods and Technology Project Summary Reports
1981-06-01
a tough urethane film. The basic principle is to pump two components to a spinning disc, mixing the components just prior to depositing in a well...and check out an electronic target scoring device using developed scientific principles without drastically modifying existing commercial...equipment. The scoring device selected and installed was an Accubar Model ATS-16D using the underlying physics principle of acoustic shock wave propagation
Computational and Mathematical Modeling of Coupled Superconducting Quantum Interference Devices
NASA Astrophysics Data System (ADS)
Berggren, Susan Anne Elizabeth
This research focuses on conducting an extensive computational investigation and mathematical analysis into the average voltage response of arrays of Superconducting Quantum Interference Devices (SQUIDs). These arrays will serve as the basis for the development of a sensitive, low noise, significantly lower Size, Weight and Power (SWaP) antenna integrated with Low-Noise Amplifier (LNA) using the SQUID technology. The goal for this antenna is to be capable of meeting all requirements for Guided Missile Destroyers (DDG) 1000 class ships for Information Operations/Signals Intelligence (IO/SIGINT) applications in Very High Frequency/Ultra High Frequency (V/UHF) bands. The device will increase the listening capability of receivers by moving technology into a new regime of energy detection allowing wider band, smaller size, more sensitive, stealthier systems. The smaller size and greater sensitivity will allow for ships to be “de-cluttered” of their current large dishes and devices, replacing everything with fewer and smaller SQUID antenna devices. The fewer devices present on the deck of a ship, the more invisible the ship will be to enemy forces. We invent new arrays of SQUIDs, optimized for signal detection with very high dynamic range and excellent spur-free dynamic range, while maintaining extreme small size (and low radar cross section), wide bandwidth, and environmentally noise limited sensitivity, effectively shifting the bottle neck of receiver systems forever away from the antenna itself deeper into the receiver chain. To accomplish these goals we develop and validate mathematical models for different designs of SQUID arrays and use them to invent a new device and systems design. This design is capable of significantly exceeding, per size weight and power, state-of-the-art receiver system measures of performance, such as bandwidth, sensitivity, dynamic range, and spurious-free dynamic range.
Multiphysics modeling of non-linear laser-matter interactions for optically active semiconductors
NASA Astrophysics Data System (ADS)
Kraczek, Brent; Kanp, Jaroslaw
Development of photonic devices for sensors and communications devices has been significantly enhanced by computational modeling. We present a new computational method for modelling laser propagation in optically-active semiconductors within the paraxial wave approximation (PWA). Light propagation is modeled using the Streamline-upwind/Petrov-Galerkin finite element method (FEM). Material response enters through the non-linear polarization, which serves as the right-hand side of the FEM calculation. Maxwell's equations for classical light propagation within the PWA can be written solely in terms of the electric field, producing a wave equation that is a form of the advection-diffusion-reaction equations (ADREs). This allows adaptation of the computational machinery developed for solving ADREs in fluid dynamics to light-propagation modeling. The non-linear polarization is incorporated using a flexible framework to enable the use of multiple methods for carrier-carrier interactions (e.g. relaxation-time-based or Monte Carlo) to enter through the non-linear polarization, as appropriate to the material type. We demonstrate using a simple carrier-carrier model approximating the response of GaN. Supported by ARL Materials Enterprise.
NASA Technical Reports Server (NTRS)
Turner, Travis L.; Moore, James B.; Long, David L.
2017-01-01
Airframe noise is a growing concern in the vicinity of airports because of population growth and gains in engine noise reduction that have rendered the airframe an equal contributor during the approach and landing phases of flight for many transport aircraft. The leading-edge-slat device of a typical high-lift system for transport aircraft is a prominent source of airframe noise. Two technologies have significant potential for slat noise reduction; the slat-cove filler (SCF) and the slat-gap filler (SGF). Previous work was done on a 2D section of a transport-aircraft wing to demonstrate the implementation feasibility of these concepts. Benchtop hardware was developed in that work for qualitative parametric study. The benchtop models were mechanized for quantitative measurements of performance. Computational models of the mechanized benchtop apparatus for the SCF were developed and the performance of the system for five different SCF assemblies is demonstrated.
Microfabricated multijunction thermal converters
NASA Astrophysics Data System (ADS)
Wunsch, Thomas Franzen
2001-12-01
In order to develop improved standards for the measurement of ac voltages and currents, a new thin-film fabrication technique for the multijunction thermal converter has been developed. The ability of a thermal converter to relate an rms ac voltage or current to a dc value is characterized by a quantity called `ac-dc difference' that is ideally zero. The best devices produced using the new techniques have ac-dc differences below 1 × 10-6 in the range of frequencies from 20 Hz to 10 kHz and below 7.5 × 10-6 in the range of frequencies from 20 kHz to 300 kHz. This is a reduction of two orders of magnitude in the lower frequency range and one order of magnitude in the higher frequency range over devices produced at the National Institute of Standards and Technology in 1996. The performance achieved is competitive with the best techniques in the world for ac measurements and additional evaluation is therefore warranted to determine the suitability of the devices for use as national standards that form the legal basis for traceable rms voltage measurements of time varying waveforms in the United States. The construction of the new devices is based on thin-film fabrication of a heated wire supported by a thermally isolated thin-film membrane. The membrane is produced utilizing a reactive ion plasma etch. A photoresist lift- off technique is used to pattern the metal thin-film layers that form the heater and the multijunction thermocouple circuit. The etching and lift-off allow the device to be produced without wet chemical etches that are time consuming and impede the investigation of structures with differing materials. These techniques result in an approach to fabrication that is simple, inexpensive, and free from the manual construction techniques used in the fabrication of conventional single and multijunction thermoelements. Thermal, thermoelectric, and electrical models have been developed to facilitate designs that reduce the low- frequency error. At high frequencies, from 300 kHz to 1 MHz, the performance of the device is degraded by a capacitive coupling effect that produces an ac-dc difference of approximately -90 × 10-6 at 1 MHz. A model is developed that explains this behavior. The model shows that an improvement in performance in the high-frequency range is possible through the use of very high or very low resistivity silicon substrates.
Kate's Model Verification Tools
NASA Technical Reports Server (NTRS)
Morgan, Steve
1991-01-01
Kennedy Space Center's Knowledge-based Autonomous Test Engineer (KATE) is capable of monitoring electromechanical systems, diagnosing their errors, and even repairing them when they crash. A survey of KATE's developer/modelers revealed that they were already using a sophisticated set of productivity enhancing tools. They did request five more, however, and those make up the body of the information presented here: (1) a transfer function code fitter; (2) a FORTRAN-Lisp translator; (3) three existing structural consistency checkers to aid in syntax checking their modeled device frames; (4) an automated procedure for calibrating knowledge base admittances to protect KATE's hardware mockups from inadvertent hand valve twiddling; and (5) three alternatives for the 'pseudo object', a programming patch that currently apprises KATE's modeling devices of their operational environments.
Haptic Recreation of Elbow Spasticity
Kim, Jonghyun; Damiano, Diane L.
2013-01-01
The aim of this paper is to develop a haptic device capable of presenting standardized recreation of elbow spasticity. Using the haptic device, clinicians will be able to repeatedly practice the assessment of spasticity without requiring patient involvement, and these practice opportunities will help improve accuracy and reliability of the assessment itself. Haptic elbow spasticity simulator (HESS) was designed and prototyped according to mechanical requirements to recreate the feel of elbow spasticity. Based on the data collected from subjects with elbow spasticity, a mathematical model representing elbow spasticity is proposed. As an attempt to differentiate the feel of each score in Modified Ashworth Scale (MAS), parameters of the model were obtained respectively for three different MAS scores 1, 1+, and 2. The implemented haptic recreation was evaluated by experienced clinicians who were asked to give MAS scores by manipulating the haptic device. The clinicians who participated in the study were blinded to each other’s scores and to the given models. They distinguished the three models and the MAS scores given to the recreated models matched 100% with the original MAS scores from the patients. PMID:22275660
Haddad, Tarek; Himes, Adam; Thompson, Laura; Irony, Telba; Nair, Rajesh
2017-01-01
Evaluation of medical devices via clinical trial is often a necessary step in the process of bringing a new product to market. In recent years, device manufacturers are increasingly using stochastic engineering models during the product development process. These models have the capability to simulate virtual patient outcomes. This article presents a novel method based on the power prior for augmenting a clinical trial using virtual patient data. To properly inform clinical evaluation, the virtual patient model must simulate the clinical outcome of interest, incorporating patient variability, as well as the uncertainty in the engineering model and in its input parameters. The number of virtual patients is controlled by a discount function which uses the similarity between modeled and observed data. This method is illustrated by a case study of cardiac lead fracture. Different discount functions are used to cover a wide range of scenarios in which the type I error rates and power vary for the same number of enrolled patients. Incorporation of engineering models as prior knowledge in a Bayesian clinical trial design can provide benefits of decreased sample size and trial length while still controlling type I error rate and power.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wenger, Katharina, E-mail: kwenger@stud.uni-frankfurt.de; Nagl, Frank, E-mail: fnagl@acandis.com; Wagner, Marlies, E-mail: Marlies.Wagner@kgu.de
In vitro experiments were performed to evaluate the efficacy of mechanical intracranial thrombectomy comparing the newly developed Aperio stent retriever and standard devices for stroke treatment. The Aperio (A), with an increased working length of 4 cm and a special cell design for capturing and withholding clots, was compared to three benchmark devices: the Solitaire retrievable stent (B), the Merci X6 (C), and the Merci L5 retriever (D). In a vascular glass model with pulsatile flow, reminiscent of the M1 segment of the middle cerebral artery, we repeatedly induced occlusion by generating thrombi via a modified Chandler loop system. Themore » numbers of recanalization attempts, peripheral embolizations, and recanalizations at the site of occlusion were recorded during 10 retrieval experiments with each device. Eleven devices were able to remove the blood clots from the occluded branch. In 34 of 40 experiments, restoration of flow was obtained in 1-3 attempts. The main differences between the study devices were observed in terms of clot withholding and fragmentation during retrieval. Although there was only one fragmentation recorded for device A, disengagement of the whole clot or peripheral embolization of fragments occurred more frequently (5-7 times) with devices B, C, and D. In a vascular model, the design of device A was best at capturing and withholding thrombi during retrieval. Further study will be necessary to see whether this holds true in clinical applications.« less
Kim, Hyun-Suk; Park, Joon Seok; Jeong, Hyun-Kwang; Son, Kyoung Seok; Kim, Tae Sang; Seon, Jong-Baek; Lee, Eunha; Chung, Jae Gwan; Kim, Dae Hwan; Ryu, Myungkwan; Lee, Sang Yoon
2012-10-24
A novel method to design metal oxide thin-film transistor (TFT) devices with high performance and high photostability for next-generation flat-panel displays is reported. Here, we developed bilayer metal oxide TFTs, where the front channel consists of indium-zinc-oxide (IZO) and the back channel material on top of it is hafnium-indium-zinc-oxide (HIZO). Density-of-states (DOS)-based modeling and device simulation were performed in order to determine the optimum thickness ratio within the IZO/HIZO stack that results in the best balance between device performance and stability. As a result, respective values of 5 and 40 nm for the IZO and HIZO layers were determined. The TFT devices that were fabricated accordingly exhibited mobility values up to 48 cm(2)/(V s), which is much elevated compared to pure HIZO TFTs (∼13 cm(2)/(V s)) but comparable to pure IZO TFTs (∼59 cm(2)/(V s)). Also, the stability of the bilayer device (-1.18 V) was significantly enhanced compared to the pure IZO device (-9.08 V). Our methodology based on the subgap DOS model and simulation provides an effective way to enhance the device stability while retaining a relatively high mobility, which makes the corresponding devices suitable for ultradefinition, large-area, and high-frame-rate display applications.
Kehtari, Mousa; Zeynali, Bahman; Soleimani, Masoud; Kabiri, Mahboubeh; Seyedjafari, Ehsan
2018-04-27
Primary hepatocytes, as the gold standard cell type for in vitro models, lose their characteristic morphology and functions after few days. There is an urgent need to develop physiologically relevant models that recapitulate liver microenvironment to obtain mature hepatocyte from stem cells. We designed and fabricated a micro-bioreactor device mimicking the physiological shear stress and cell-cell interaction in liver sinusoid microenvironment. Induced pluripotent stem cells (iPSCs) were co-cultured with human umbilical vein endothelial cells (HUVECs) in the micro-bioreactor device with continuous perfusion of hepatic differentiation medium (100 μL/h). Simulation results showed that flow field inside our perfusion device was uniform and shear stress was adjusted to physiological condition (<2 dyne/cm 2 ). IPSCs-derived hepatocytes (iPSCs-Heps) that were cultured in micro-bioreactor device showed a higher level of hepatic markers compared to those in static condition. Flow cytometry and immunocytochemistry analysis revealed iPSCs cultured in the device sequentially acquired characteristics of definitive endodermal cells (SOX17 positive), hepatoblasts (AFP positive) and mature hepatocyte (ALB positive). Moreover, the albumin and urea secretion were significantly higher in micro-bioreactor device than those cultured in culture dishes during experiment. Thus, based on our results, we propose our micro-bioreactor as a beneficial device to generate mature hepatocytes for drug screening and basic research.
NASA Astrophysics Data System (ADS)
Wang, Haiyuan; Huang, Rui; Yang, Maotao; Chen, Hao
2017-12-01
At present, the electric energy metering device is classified according to the amount of electric energy and the degree of importance of the measurement object. The measuring device is also selected according to the characteristics of the traditional metering object.With the continuous development of smart grid, the diversification of measurement objects increasingly appear, the traditional measurement object classification has been unable to meet the new measurement object of personalized, differentiated needs.Withal, this paper constructs the subdivision model based on the object feature-system evaluation, classifies according to the characteristics of the measurement object, and carries on the empirical analysis with some kind of measurement object as the research object.The results show that the model works well and can be used to subdivide the metrological objects into different customer groups, which can be reasonably configured and managed for the metering devices. The research of this paper has effectively improved the economy and rationality of the energy metering device management, and improved the working efficiency.
Chung, Philip; Heller, J Alex; Etemadi, Mozziyar; Ottoson, Paige E; Liu, Jonathan A; Rand, Larry; Roy, Shuvo
2014-06-27
Biologically inert elastomers such as silicone are favorable materials for medical device fabrication, but forming and curing these elastomers using traditional liquid injection molding processes can be an expensive process due to tooling and equipment costs. As a result, it has traditionally been impractical to use liquid injection molding for low-cost, rapid prototyping applications. We have devised a method for rapid and low-cost production of liquid elastomer injection molded devices that utilizes fused deposition modeling 3D printers for mold design and a modified desiccator as an injection system. Low costs and rapid turnaround time in this technique lower the barrier to iteratively designing and prototyping complex elastomer devices. Furthermore, CAD models developed in this process can be later adapted for metal mold tooling design, enabling an easy transition to a traditional injection molding process. We have used this technique to manufacture intravaginal probes involving complex geometries, as well as overmolding over metal parts, using tools commonly available within an academic research laboratory. However, this technique can be easily adapted to create liquid injection molded devices for many other applications.
Mechanical model for simulating the conditioning of air in the respiratory tract.
Bergonse Neto, Nelson; Von Bahten, Luiz Carlos; Moura, Luís Mauro; Coelho, Marlos de Souza; Stori Junior, Wilson de Souza; Bergonse, Gilberto da Fontoura Rey
2007-01-01
To create a mechanical model that could be regulated to simulate the conditioning of inspired and expired air with the same normal values of temperature, pressure, and relative humidity as those of the respiratory system of a healthy young man on mechanical ventilation. Using several types of materials, a mechanical device was built and regulated using normal values of vital capacity, tidal volume, maximal inspiratory pressure, positive end-expiratory pressure, and gas temperature in the system. The device was submitted to mechanical ventilation for a period of 29.8 min. The changes in the temperature of the air circulating in the system were recorded every two seconds. The statistical analysis of the data collected revealed that the device was approximately as efficient in the conditioning of air as is the respiratory system of a human being. By the study endpoint, we had developed a mechanical device capable of simulating the conditioning of air in the respiratory tract. The device mimics the conditions of temperature, pressure, and relative humidity seen in the respiratory system of healthy individuals.
NASA Astrophysics Data System (ADS)
Liu, Ruiwen; Jiao, Binbin; Kong, Yanmei; Li, Zhigang; Shang, Haiping; Lu, Dike; Gao, Chaoqun; Chen, Dapeng
2013-09-01
Micro-devices with a bi-material-cantilever (BMC) commonly suffer initial curvature due to the mismatch of residual stress. Traditional corrective methods to reduce the residual stress mismatch generally involve the development of different material deposition recipes. In this paper, a new method for reducing residual stress mismatch in a BMC is proposed based on various previously developed deposition recipes. An initial material film is deposited using two or more developed deposition recipes. This first film is designed to introduce a stepped stress gradient, which is then balanced by overlapping a second material film on the first and using appropriate deposition recipes to form a nearly stress-balanced structure. A theoretical model is proposed based on both the moment balance principle and total equal strain at the interface of two adjacent layers. Experimental results and analytical models suggest that the proposed method is effective in producing multi-layer micro cantilevers that display balanced residual stresses. The method provides a generic solution to the problem of mismatched initial stresses which universally exists in micro-electro-mechanical systems (MEMS) devices based on a BMC. Moreover, the method can be incorporated into a MEMS design automation package for efficient design of various multiple material layer devices from MEMS material library and developed deposition recipes.
Using a Communication Model to Collect Measurement Data through Mobile Devices
Bravo, José; Villarreal, Vladimir; Hervás, Ramón; Urzaiz, Gabriel
2012-01-01
Wireless systems and services have undergone remarkable development since the first mobile phone system was introduced in the early 1980s. The use of sensors in an Ambient Intelligence approach is a great solution in a medical environment. We define a communication architecture to facilitate the information transfer between all connected devices. This model is based in layers to allow the collection of measurement data to be used in our framework monitoring architecture. An overlay-based solution is built between network elements in order to provide an efficient and highly functional communication platform that allows the connection of a wide variety of devices and technologies, and serves also to perform additional functions such as the possibility to perform some processing in the network that may help to improve overall performance. PMID:23012542
Optimization and evaluation of the human fall detection system
NASA Astrophysics Data System (ADS)
Alzoubi, Hadeel; Ramzan, Naeem; Shahriar, Hasan; Alzubi, Raid; Gibson, Ryan; Amira, Abbes
2016-10-01
Falls are the most critical health problem for elderly people, which are often, cause significant injuries. To tackle a serious risk that made by the fall, we develop an automatic wearable fall detection system utilizing two devices (mobile phone and wireless sensor) based on three axes accelerometer signals. The goal of this study is to find an effective machine learning method that distinguish falls from activities of daily living (ADL) using only a single triaxial accelerometer. In addition, comparing the performance results for wearable sensor and mobile device data .The proposed model detects the fall by using seven different classifiers and the significant performance is demonstrated using accuracy, recall, precision and F-measure. Our model obtained accuracy over 99% on wearable device data and over 97% on mobile phone data.
Computational Modeling Using OpenSim to Simulate a Squat Exercise Motion
NASA Technical Reports Server (NTRS)
Gallo, C. A.; Thompson, W. K.; Lewandowski, B. E.; Humphreys, B. T.; Funk, J. H.; Funk, N. H.; Weaver, A. S.; Perusek, G. P.; Sheehan, C. C.; Mulugeta, L.
2015-01-01
Long duration space travel to destinations such as Mars or an asteroid will expose astronauts to extended periods of reduced gravity. Astronauts will use an exercise regime for the duration of the space flight to minimize the loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Since the area available in the spacecraft for an exercise device is limited and gravity is not present to aid loading, compact resistance exercise device prototypes are being developed. Since it is difficult to rigorously test these proposed devices in space flight, computational modeling provides an estimation of the muscle forces, joint torques and joint loads during exercise to gain insight on the efficacy to protect the musculoskeletal health of astronauts.
Control and Diagnostic Model of Brushless Dc Motor
NASA Astrophysics Data System (ADS)
Abramov, Ivan V.; Nikitin, Yury R.; Abramov, Andrei I.; Sosnovich, Ella V.; Božek, Pavol
2014-09-01
A simulation model of brushless DC motor (BLDC) control and diagnostics is considered. The model has been developed using a freeware complex "Modeling in technical devices". Faults and diagnostic parameters of BLDC are analyzed. A logicallinguistic diagnostic model of BLDC has been developed on basis of fuzzy logic. The calculated rules determine dependence of technical condition on diagnostic parameters, their trends and utilized lifetime of BLDC. Experimental results of BLDC technical condition diagnostics are discussed. It is shown that in the course of BLDC degradation the motor condition change depends on diagnostic parameter values
Modeling of a Surface Acoustic Wave Strain Sensor
NASA Technical Reports Server (NTRS)
Wilson, W. C.; Atkinson, Gary M.
2010-01-01
NASA Langley Research Center is investigating Surface Acoustic Wave (SAW) sensor technology for harsh environments aimed at aerospace applications. To aid in development of sensors a model of a SAW strain sensor has been developed. The new model extends the modified matrix method to include the response of Orthogonal Frequency Coded (OFC) reflectors and the response of SAW devices to strain. These results show that the model accurately captures the strain response of a SAW sensor on a Langasite substrate. The results of the model of a SAW Strain Sensor on Langasite are presented
NASA Astrophysics Data System (ADS)
Yakunin, Alexander N.; Aban'shin, Nikolay P.; Avetisyan, Yuri A.; Akchurin, Georgy G.; Akchurin, Garif G.
2018-04-01
A model for calculating the electrostatic field in the system "probe of a tunnel microscope - a nanostructure based on a DLC film" was developed. A finite-element modeling of the localization of the field was carried out, taking into account the morphological and topological features of the nanostructure. The obtained results and their interpretation contribute to the development of the concepts to the model of tunnel electric transport processes. The possibility for effective usage of the tunneling microscopy methods in the development of new nanophotonic devices is shown.
Zhang, Bao-cheng; Liu, Hai-bo; Cai, Xian-hua; Wang, Zhi-hua; Xu, Feng; Kang, Hui; Ding, Ran; Luo, Xiao-qing
2015-09-22
The transoral atlantoaxial reduction plate (TARP) fixation has been introduced to achieve reduction, decompression, fixation and fusion of C1-C2 through a transoral-only approach. However, it may also be associated with potential disadvantages, including dysphagia and load shielding of the bone graft. To prevent potential disadvantages related to TARP fixation, a novel transoral atlantoaxial fusion cage with integrated plate (Cage + Plate) device for stabilization of the C1-C2 segment is designed. The aims of the present study were to compare the biomechanical differences between Cage + Plate device and Cage + TARP device for the treatment of basilar invagination (BI) with irreducible atlantoaxial dislocation (IAAD). A detailed, nonlinear finite element model (FEM) of the intact upper cervical spine had been developed and validated. Then a FEM of an unstable BI model treated with Cage + Plate fixation, was compared to that with Cage + TARP fixation. All models were subjected to vertical load with pure moments in flexion, extension, lateral bending and axial rotation. Range of motion (ROM) of C1-C2 segment and maximum von Mises Stress of the C2 endplate and bone graft were quantified for the two devices. Both devices significantly reduced ROM compared with the intact state. In comparison with the Cage + Plate model, the Cage + TARP model reduced the ROM by 82.5 %, 46.2 %, 10.0 % and 74.3 % in flexion, extension, lateral bending, and axial rotation. The Cage + Plate model showed a higher increase stresses on C2 endplate and bone graft than the Cage + TARP model in all motions. Our results indicate that the novel Cage + Plate device may provide lower biomechanical stability than the Cage + TARP device in flexion, extension, and axial rotation, however, it may reduce stress shielding of the bone graft for successful fusion and minimize the risk of postoperative dysphagia. Clinical trials are now required to validate the reproducibility and advantages of our findings using this anchored cage for the treatment of BI with IAAD.
The strain capacitor: A novel energy storage device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deb Shuvra, Pranoy; McNamara, Shamus, E-mail: shamus.mcnamara@louisville.edu
2014-12-15
A novel electromechanical energy storage device is reported that has the potential to have high energy densities. It can efficiently store both mechanical strain energy and electrical energy in the form of an electric field between the electrodes of a strain-mismatched bilayer capacitor. When the charged device is discharged, both the electrical and mechanical energy are extracted in an electrical form. The charge-voltage profile of the device is suitable for energy storage applications since a larger portion of the stored energy can be extracted at higher voltage levels compared to a normal capacitor. Its unique features include the potential formore » long lifetime, safety, portability, wide operating temperature range, and environment friendliness. The device can be designed to operate over varied operating voltage ranges by selecting appropriate materials and by changing the dimensions of the device. In this paper a finite element model of the device is developed to verify and demonstrate the potential of the device as an energy storage element. This device has the potential to replace conventional energy storage devices.« less
Analytical models integrated with satellite images for optimized pest management
USDA-ARS?s Scientific Manuscript database
The global field protection (GFP) was developed to protect and optimize pest management resources integrating satellite images for precise field demarcation with physical models of controlled release devices of pesticides to protect large fields. The GFP was implemented using a graphical user interf...
Solving data-at-rest for the storage and retrieval of files in ad hoc networks
NASA Astrophysics Data System (ADS)
Knobler, Ron; Scheffel, Peter; Williams, Jonathan; Gaj, Kris; Kaps, Jens-Peter
2013-05-01
Based on current trends for both military and commercial applications, the use of mobile devices (e.g. smartphones and tablets) is greatly increasing. Several military applications consist of secure peer to peer file sharing without a centralized authority. For these military applications, if one or more of these mobile devices are lost or compromised, sensitive files can be compromised by adversaries, since COTS devices and operating systems are used. Complete system files cannot be stored on a device, since after compromising a device, an adversary can attack the data at rest, and eventually obtain the original file. Also after a device is compromised, the existing peer to peer system devices must still be able to access all system files. McQ has teamed with the Cryptographic Engineering Research Group at George Mason University to develop a custom distributed file sharing system to provide a complete solution to the data at rest problem for resource constrained embedded systems and mobile devices. This innovative approach scales very well to a large number of network devices, without a single point of failure. We have implemented the approach on representative mobile devices as well as developed an extensive system simulator to benchmark expected system performance based on detailed modeling of the network/radio characteristics, CONOPS, and secure distributed file system functionality. The simulator is highly customizable for the purpose of determining expected system performance for other network topologies and CONOPS.
Predictors of nurses' acceptance of an intravenous catheter safety device.
Rivers, Dianna Lipp; Aday, Lu Ann; Frankowski, Ralph F; Felknor, Sarah; White, Donna; Nichols, Brenda
2003-01-01
It is important to determine the factors that predict whether nurses accept and use a new intravenous (IV) safety device because there are approximately 800,000 needlesticks per year with the risk of contracting a life-threatening bloodborne disease such as HIV or hepatitis C. To determine the predictors of nurses' acceptance of the Protectiv Plus IV catheter safety needle device at a teaching hospital in Texas. A one-time cross-sectional survey of nurses (N = 742) was conducted using a 34-item questionnaire. A framework was developed identifying organizational and individual predictors of acceptance. The three principal dimensions of acceptance were (a) satisfaction with the device, (b) extent to which the device is always used, and (c) nurse recommendations over other safety devices. Measurements included developing summary subscales for the variables of safety climate and acceptance. Descriptive statistics and multiple linear and logistic regression models were computed. The findings showed widespread acceptance of the device. Nurses who had adequate training and a positive institutional safety climate were more accepting (p
A comparison of WEC control strategies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, David G.; Bacelli, Giorgio; Coe, Ryan Geoffrey
2016-04-01
The operation of Wave Energy Converter (WEC) devices can pose many challenging problems to the Water Power Community. A key research question is how to significantly improve the performance of these WEC devices through improving the control system design. This report summarizes an effort to analyze and improve the performance of WEC through the design and implementation of control systems. Controllers were selected to span the WEC control design space with the aim of building a more comprehensive understanding of different controller capabilities and requirements. To design and evaluate these control strategies, a model scale test-bed WEC was designed formore » both numerical and experimental testing (see Section 1.1). Seven control strategies have been developed and applied on a numerical model of the selected WEC. This model is capable of performing at a range of levels, spanning from a fully-linear realization to varying levels of nonlinearity. The details of this model and its ongoing development are described in Section 1.2.« less
High pressure rotating reverse osmosis for long term space missions
NASA Astrophysics Data System (ADS)
Christensen Pederson, Cynthia Lynn
Rotating reverse osmosis, which uses reverse osmosis to purify water and rotating filtration to improve the efficacy of filtration, has great potential for wastewater recycling on a long term space mission. Previous investigations of a proof-of-concept device indicated that the most efficient method to improve rotating reverse osmosis performance is to increase the operational pressure. Thus, a second generation device and fluid circuit were designed, fabricated, and tested to permit high pressure operation for long time periods. The design overcame several obstacles including membrane attachment, rotating seal design, and fluid and pressure management. A theoretical model of rotating reverse osmosis was modified to properly account for the flow conditions in the new design. Tests lasting a week were conducted with a variety of model wastewaters. Significant fouling and a decrease in flux were observed after three days of testing regardless of the operational parameters. A semi-empirical model, the fouling potential, was added to the theoretical model to account for the fouling. This allowed the simulation of 48 hour cleaning cycles that significantly increased the flux of the device. Experimental investigation of the rotational speed and concentrate flow rate indicated that an increase in either parameter decreased the fouling slightly. A week long test of a wastewater ersatz with a biocide did not exhibit a decrease in flux around day three that otherwise occurred. Therefore, biofouling was identified as the primary mechanism of fouling. Rotating reverse osmosis was compared with conventional spiral wound reverse osmosis and displayed increased rejection under dead end filtration conditions. The rotating device exhibited similar rejection and increased flux compared to a tubular reverse osmosis device previously used in a NASA wastewater recovery system. The integration of the rotating device into a NASA water recovery management system was evaluated. Lastly, a theoretical model of rotating hemofiltration was developed that demonstrated that the device is not clinically feasible given the permeability of available hemofiltration membranes.
A Disposable Tear Glucose Biosensor—Part 1: Design and Concept Testing
Bishop, Daniel K.; La Belle, Jeffrey T.; Vossler, Stephen R.; Patel, Dharmendra R.; Cook, Curtiss B.
2010-01-01
Background Tear glucose has been suggested previously as a potential approach for the noninvasive estimation of blood glucose. While the topic remains unresolved, an overview of previous studies suggests the importance of a tear sampling approach and warrants new technology development. A concept device is presented that meets the needs of a tear glucose biosensor. Methods Three approaches to chronoamperometric glucose sensing were evaluated, including glucose oxidase mediated by potassium ferricyanide or oxygen with a hydrogen peroxide catalyst, Prussian blue, and potassium ferricyanide-mediated glucose dehydrogenase. For tear sampling, calcium alginate, poly(2-hydroxyethyl methacrylate), and polyurethane foam were screened as an absorbent tear sampling material. A quantitative model based on the proposed function of concept device was created. Results For glucose sensing, it was found that potassium ferricyanide with glucose dehydrogenase was ideal, featuring oxygen insensitivity, long-term stability, and a lower limit of detection of 2 μM glucose. Polyurethane foam possessed all of the required characteristics for tear sampling, including reproducible sampling from a hydrogel-simulated, eye surface (4.2 ± 0.5 μl; n = 8). It is estimated that 100 μM of glucose tear fluid would yield 135 nA (14.9% relative standard deviation). Conclusion A novel concept device for tear glucose sampling was presented, and the key functions of this device were tested and used to model the performance of the final device. Based on these promising initial results, the device is achievable and within reach of current technical capabilities, setting the stage for prototype development. PMID:20307389
Multi-scale Modeling and Analysis of Nano-RFID Systems on HPC Setup
NASA Astrophysics Data System (ADS)
Pathak, Rohit; Joshi, Satyadhar
In this paper we have worked out on some the complex modeling aspects such as Multi Scale modeling, MATLAB Sugar based modeling and have shown the complexities involved in the analysis of Nano RFID (Radio Frequency Identification) systems. We have shown the modeling and simulation and demonstrated some novel ideas and library development for Nano RFID. Multi scale modeling plays a very important role in nanotech enabled devices properties of which cannot be explained sometimes by abstraction level theories. Reliability and packaging still remains one the major hindrances in practical implementation of Nano RFID based devices. And to work on them modeling and simulation will play a very important role. CNTs is the future low power material that will replace CMOS and its integration with CMOS, MEMS circuitry will play an important role in realizing the true power in Nano RFID systems. RFID based on innovations in nanotechnology has been shown. MEMS modeling of Antenna, sensors and its integration in the circuitry has been shown. Thus incorporating this we can design a Nano-RFID which can be used in areas like human implantation and complex banking applications. We have proposed modeling of RFID using the concept of multi scale modeling to accurately predict its properties. Also we give the modeling of MEMS devices that are proposed recently that can see possible application in RFID. We have also covered the applications and the advantages of Nano RFID in various areas. RF MEMS has been matured and its devices are being successfully commercialized but taking it to limits of nano domains and integration with singly chip RFID needs a novel approach which is being proposed. We have modeled MEMS based transponder and shown the distribution for multi scale modeling for Nano RFID.
A model for the development of university curricula in nanoelectronics
NASA Astrophysics Data System (ADS)
Bruun, E.; Nielsen, I.
2010-12-01
Nanotechnology is having an increasing impact on university curricula in electrical engineering and in physics. Major influencers affecting developments in university programmes related to nanoelectronics are discussed and a model for university programme development is described. The model takes into account that nanotechnology affects not only physics but also electrical engineering and computer engineering because of the advent of new nanoelectronics devices. The model suggests that curriculum development tends to follow one of three major tracks: physics; electrical engineering; computer engineering. Examples of European curricula following this framework are identified and described. These examples may serve as sources of inspiration for future developments and the model presented may provide guidelines for a systematic selection of topics in the university programmes.
Layout optimization of GGISCR structure for on-chip system level ESD protection applications
NASA Astrophysics Data System (ADS)
Zeng, Jie; Dong, Shurong; Wong, Hei; Hu, Tao; Li, Xiang
2016-12-01
To improve the holding voltage, area efficiency and robustness, a comparative study on single finger, 4-finger and round shape layout of gate-grounded-nMOS incorporated SCR (GGISCR) devices are conducted. The devices were fabricated with a commercial 0.35 μm HV-CMOS process without any additional mask or process modification. To have a fair comparison, we develop a new Figure-of-Merit (FOM) modeling for the performance evaluation of these devices. We found that the ring type device which has an It2 value of 18.9 A is area efficient and has smaller effective capacitance. The different characteristics were explained with the different effective ESD currents in these layout structures.
Creating single-copy genetic circuits
Lee, Jeong Wook; Gyorgy, Andras; Cameron, D. Ewen; Pyenson, Nora; Choi, Kyeong Rok; Way, Jeffrey C.; Silver, Pamela A.; Del Vecchio, Domitilla; Collins, James J.
2017-01-01
SUMMARY Synthetic biology is increasingly used to develop sophisticated living devices for basic and applied research. Many of these genetic devices are engineered using multi-copy plasmids, but as the field progresses from proof-of-principle demonstrations to practical applications, it is important to develop single-copy synthetic modules that minimize consumption of cellular resources and can be stably maintained as genomic integrants. Here we use empirical design, mathematical modeling and iterative construction and testing to build single-copy, bistable toggle switches with improved performance and reduced metabolic load that can be stably integrated into the host genome. Deterministic and stochastic models led us to focus on basal transcription to optimize circuit performance and helped to explain the resulting circuit robustness across a large range of component expression levels. The design parameters developed here provide important guidance for future efforts to convert functional multi-copy gene circuits into optimized single-copy circuits for practical, real-world use. PMID:27425413