Wireless device monitoring systems and monitoring devices, and associated methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCown, Steven H; Derr, Kurt W; Rohde, Kenneth W
Wireless device monitoring systems and monitoring devices include a communications module for receiving wireless communications of a wireless device. Processing circuitry is coupled with the communications module and configured to process the wireless communications to determine whether the wireless device is authorized or unauthorized to be present at the monitored area based on identification information of the wireless device. Methods of monitoring for the presence and identity of wireless devices are also provided.
Shared performance monitor in a multiprocessor system
Chiu, George; Gara, Alan G; Salapura, Valentina
2014-12-02
A performance monitoring unit (PMU) and method for monitoring performance of events occurring in a multiprocessor system. The multiprocessor system comprises a plurality of processor devices units, each processor device for generating signals representing occurrences of events in the processor device, and, a single shared counter resource for performance monitoring. The performance monitor unit is shared by all processor cores in the multiprocessor system. The PMU is further programmed to monitor event signals issued from non-processor devices.
Remote maintenance monitoring system
NASA Technical Reports Server (NTRS)
Simpkins, Lorenz G. (Inventor); Owens, Richard C. (Inventor); Rochette, Donn A. (Inventor)
1992-01-01
A remote maintenance monitoring system retrofits to a given hardware device with a sensor implant which gathers and captures failure data from the hardware device, without interfering with its operation. Failure data is continuously obtained from predetermined critical points within the hardware device, and is analyzed with a diagnostic expert system, which isolates failure origin to a particular component within the hardware device. For example, monitoring of a computer-based device may include monitoring of parity error data therefrom, as well as monitoring power supply fluctuations therein, so that parity error and power supply anomaly data may be used to trace the failure origin to a particular plane or power supply within the computer-based device. A plurality of sensor implants may be rerofit to corresponding plural devices comprising a distributed large-scale system. Transparent interface of the sensors to the devices precludes operative interference with the distributed network. Retrofit capability of the sensors permits monitoring of even older devices having no built-in testing technology. Continuous real time monitoring of a distributed network of such devices, coupled with diagnostic expert system analysis thereof, permits capture and analysis of even intermittent failures, thereby facilitating maintenance of the monitored large-scale system.
Wireless device monitoring methods, wireless device monitoring systems, and articles of manufacture
McCown, Steven H [Rigby, ID; Derr, Kurt W [Idaho Falls, ID; Rohde, Kenneth W [Idaho Falls, ID
2012-05-08
Wireless device monitoring methods, wireless device monitoring systems, and articles of manufacture are described. According to one embodiment, a wireless device monitoring method includes accessing device configuration information of a wireless device present at a secure area, wherein the device configuration information comprises information regarding a configuration of the wireless device, accessing stored information corresponding to the wireless device, wherein the stored information comprises information regarding the configuration of the wireless device, comparing the device configuration information with the stored information, and indicating the wireless device as one of authorized and unauthorized for presence at the secure area using the comparing.
Shared performance monitor in a multiprocessor system
Chiu, George; Gara, Alan G.; Salapura, Valentina
2012-07-24
A performance monitoring unit (PMU) and method for monitoring performance of events occurring in a multiprocessor system. The multiprocessor system comprises a plurality of processor devices units, each processor device for generating signals representing occurrences of events in the processor device, and, a single shared counter resource for performance monitoring. The performance monitor unit is shared by all processor cores in the multiprocessor system. The PMU comprises: a plurality of performance counters each for counting signals representing occurrences of events from one or more the plurality of processor units in the multiprocessor system; and, a plurality of input devices for receiving the event signals from one or more processor devices of the plurality of processor units, the plurality of input devices programmable to select event signals for receipt by one or more of the plurality of performance counters for counting, wherein the PMU is shared between multiple processing units, or within a group of processors in the multiprocessing system. The PMU is further programmed to monitor event signals issued from non-processor devices.
A remote drip infusion monitoring system employing Bluetooth.
Amano, Hikaru; Ogawa, Hidekuni; Maki, Hiromichi; Tsukamoto, Sosuke; Yonezawa, Yoshiharu; Caldwell, W Morton
2012-01-01
We have developed a remote drip infusion monitoring system for use in hospitals. The system consists of several infusion monitoring devices and a central monitor. The infusion monitoring device employing a Bluetooth module can detect the drip infusion rate and an empty infusion solution bag, and then these data are sent to the central monitor placed at the nurses' station via the Bluetooth. The central monitor receives the data from several infusion monitoring devices and then displays graphically them. Therefore, the developed system can monitor intensively the drip infusion situation of the several patients at the nurses' station.
21 CFR 884.2800 - Computerized Labor Monitoring System.
Code of Federal Regulations, 2014 CFR
2014-04-01
... monitoring system is a system intended to continuously measure cervical dilation and fetal head descent and... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Computerized Labor Monitoring System. 884.2800... (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Obstetrical and Gynecological Monitoring...
21 CFR 884.2800 - Computerized Labor Monitoring System.
Code of Federal Regulations, 2012 CFR
2012-04-01
... monitoring system is a system intended to continuously measure cervical dilation and fetal head descent and... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Computerized Labor Monitoring System. 884.2800... (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Obstetrical and Gynecological Monitoring...
21 CFR 884.2800 - Computerized Labor Monitoring System.
Code of Federal Regulations, 2013 CFR
2013-04-01
... monitoring system is a system intended to continuously measure cervical dilation and fetal head descent and... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Computerized Labor Monitoring System. 884.2800... (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Obstetrical and Gynecological Monitoring...
21 CFR 880.2420 - Electronic monitor for gravity flow infusion systems.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electronic monitor for gravity flow infusion... and Personal Use Monitoring Devices § 880.2420 Electronic monitor for gravity flow infusion systems. (a) Identification. An electronic monitor for gravity flow infusion systems is a device used to...
21 CFR 880.2420 - Electronic monitor for gravity flow infusion systems.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electronic monitor for gravity flow infusion... and Personal Use Monitoring Devices § 880.2420 Electronic monitor for gravity flow infusion systems. (a) Identification. An electronic monitor for gravity flow infusion systems is a device used to...
21 CFR 880.2420 - Electronic monitor for gravity flow infusion systems.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electronic monitor for gravity flow infusion... and Personal Use Monitoring Devices § 880.2420 Electronic monitor for gravity flow infusion systems. (a) Identification. An electronic monitor for gravity flow infusion systems is a device used to...
21 CFR 880.2420 - Electronic monitor for gravity flow infusion systems.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electronic monitor for gravity flow infusion... and Personal Use Monitoring Devices § 880.2420 Electronic monitor for gravity flow infusion systems. (a) Identification. An electronic monitor for gravity flow infusion systems is a device used to...
21 CFR 880.2420 - Electronic monitor for gravity flow infusion systems.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electronic monitor for gravity flow infusion... and Personal Use Monitoring Devices § 880.2420 Electronic monitor for gravity flow infusion systems. (a) Identification. An electronic monitor for gravity flow infusion systems is a device used to...
Dynamic Computation Offloading for Low-Power Wearable Health Monitoring Systems.
Kalantarian, Haik; Sideris, Costas; Mortazavi, Bobak; Alshurafa, Nabil; Sarrafzadeh, Majid
2017-03-01
The objective of this paper is to describe and evaluate an algorithm to reduce power usage and increase battery lifetime for wearable health-monitoring devices. We describe a novel dynamic computation offloading scheme for real-time wearable health monitoring devices that adjusts the partitioning of data processing between the wearable device and mobile application as a function of desired classification accuracy. By making the correct offloading decision based on current system parameters, we show that we are able to reduce system power by as much as 20%. We demonstrate that computation offloading can be applied to real-time monitoring systems, and yields significant power savings. Making correct offloading decisions for health monitoring devices can extend battery life and improve adherence.
Thermal energy storage devices, systems, and thermal energy storage device monitoring methods
Tugurlan, Maria; Tuffner, Francis K; Chassin, David P.
2016-09-13
Thermal energy storage devices, systems, and thermal energy storage device monitoring methods are described. According to one aspect, a thermal energy storage device includes a reservoir configured to hold a thermal energy storage medium, a temperature control system configured to adjust a temperature of the thermal energy storage medium, and a state observation system configured to provide information regarding an energy state of the thermal energy storage device at a plurality of different moments in time.
Code of Federal Regulations, 2014 CFR
2014-07-01
... non-vacuum regeneration systems, an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent, capable of recording the total regeneration stream mass for each regeneration cycle. For non-vacuum regeneration systems, an integrating regeneration stream flow monitoring device...
Code of Federal Regulations, 2013 CFR
2013-07-01
... non-vacuum regeneration systems, an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent, capable of recording the total regeneration stream mass for each regeneration cycle. For non-vacuum regeneration systems, an integrating regeneration stream flow monitoring device...
Application accelerator system having bunch control
Wang, Dunxiong; Krafft, Geoffrey Arthur
1999-01-01
An application accelerator system for monitoring the gain of a free electron laser. Coherent Synchrotron Radiation (CSR) detection techniques are used with a bunch length monitor for ultra short, picosec to several tens of femtosec, electron bunches. The monitor employs an application accelerator, a coherent radiation production device, an optical or beam chopping device, an infrared radiation collection device, a narrow-banding filter, an infrared detection device, and a control.
[Wireless device for monitoring the patients with chronic disease].
Ciorap, R; Zaharia, D; Corciovă, C; Ungureanu, Monica; Lupu, R; Stan, A
2008-01-01
Remote monitoring of chronic diseases can improve health outcomes and potentially lower health care costs. The high number of the patients, suffering of chronically diseases, who wish to stay at home rather then in a hospital increasing the need of homecare monitoring and have lead to a high demand of wearable medical devices. Also, extended patient monitoring during normal activity has become a very important target. In this paper are presented the design of the wireless monitoring devices based on ultra low power circuits, high storage memory flash, bluetooth communication and the firmware for the management of the monitoring device. The monitoring device is built using an ultra low power microcontroller (MSP430 from Texas Instruments) that offers the advantage of high integration of some circuits. The custom made electronic boards used for biosignal acquisition are also included modules for storage device (SD/MMC card) with FAT32 file system and Bluetooth device for short-range communication used for data transmission between monitoring device and PC or PDA. The work was focused on design and implementation of an ultra low power wearable device able to acquire patient vital parameters, causing minimal discomfort and allowing high mobility. The proposed wireless device could be used as a warning system for monitoring during normal activity.
Application accelerator system having bunch control
Wang, D.; Krafft, G.A.
1999-06-22
An application accelerator system for monitoring the gain of a free electron laser is disclosed. Coherent Synchrotron Radiation (CSR) detection techniques are used with a bunch length monitor for ultra short, picosec to several tens of femtosec, electron bunches. The monitor employs an application accelerator, a coherent radiation production device, an optical or beam chopping device, an infrared radiation collection device, a narrow-banding filter, an infrared detection device, and a control. 1 fig.
Design and Development of Patient Monitoring System
NASA Astrophysics Data System (ADS)
Hazwanie Azizulkarim, Azra; Jamil, Muhammad Mahadi Abdul; Ambar, Radzi
2017-08-01
Patient monitoring system allows continuous monitoring of patient vital signs, support decision making among medical personnel and help enhance patient care. This system can consist of devices that measure, display and record human’s vital signs, including body temperature, heart rate, blood pressure and other health-related criteria. This paper proposes a system to monitor the patient’s conditions by monitoring the body temperature and pulse rate. The system consists of a pulse rate monitoring software and a wearable device that can measure a subject’s temperature and pulse rate only by using a fingertip. The device is able to record the measurement data and interface to PC via Arduino microcontroller. The recorded data can be viewed as a historical file or can be archived for further analysis. This work also describes the preliminary experimental results of the selected sensors to show the usefulness of the sensors for the proposed patient monitoring system.
A design of the u-health monitoring system using a Nintendo DS game machine.
Lee, Sangjoon; Kim, Jinkwon; Kim, Jungkuk; Lee, Myoungho
2009-01-01
In this paper, we used the hand held type a Nintendo DS Game Machine for consisting of a u-Health Monitoring system. This system is consists of four parts. Biosignal acquire device is the first. The Second is a wireless sensor network device. The third is a wireless base-station for connecting internet network. Displaying units are the last part which were a personal computer and a Nintendo DS game machine. The bio-signal measurement device among the four parts the u-health monitoring system can acquire 7-channels data which have 3-channels ECG(Electrocardiogram), 3-axis accelerometer and tilting sensor data. Acquired data connect up the internet network throughout the wireless sensor network and a base-station. In the experiment, we concurrently display the bio-signals on to a monitor of personal computer and LCD of a Nintendo DS using wireless internet protocol and those monitoring devices placed off to the one side an office building. The result of the experiment, this proposed system effectively can transmit patient's biosignal data as a long time and a long distance. This suggestion of the u-health monitoring system need to operate in the ambulance, general hospitals and geriatric institutions as a u-health monitoring device.
Sloane, E B; Gelhot, V
2004-01-01
This research is motivated by the rapid pace of medical device and information system integration. Although the ability to interconnect many medical devices and information systems may help improve patient care, there is no way to detect if incompatibilities between one or more devices might cause critical events such as patient alarms to go unnoticed or cause one or more of the devices to become stuck in a disabled state. Petri net tools allow automated testing of all possible states and transitions between devices and/or systems to detect potential failure modes in advance. This paper describes an early research project to use Petri nets to simulate and validate a multi-modality central patient monitoring system. A free Petri net tool, HPSim, is used to simulate two wireless patient monitoring networks: one with 44 heart monitors and a central monitoring system and a second version that includes an additional 44 wireless pulse oximeters. In the latter Petri net simulation, a potentially dangerous heart arrhythmia and pulse oximetry alarms were detected.
40 CFR 65.156 - General monitoring requirements for control and recovery devices.
Code of Federal Regulations, 2010 CFR
2010-07-01
... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONSOLIDATED FEDERAL AIR RULE Closed Vent Systems, Control Devices, and Routing to a Fuel Gas System or a Process § 65.156 General monitoring requirements for... systems. (1) All monitoring equipment shall be installed, calibrated, maintained, and operated according...
Comparison of lancing devices for self-monitoring of blood glucose regarding lancing pain.
Kocher, Serge; Tshiananga, J K Tshiang; Koubek, Richard
2009-09-01
Self-monitoring of blood glucose empowers diabetes patients to effectively control their blood glucose (BG) levels. A potential barrier to frequent BG controls is lancing pain, intrinsically linked to pricking the finger several times a day. In this study, we compared different state-of-the-art lancing devices from leading manufacturers regarding lancing pain, and we intended to identify lancing devices that are less painful. First, 165 subjects compared 6 different BG monitoring systems-consisting of a lancing device and a BG meter-at home for 36 days and at least 3 BG tests per day. Second, the subjects directly compared 6 different lancing devices-independent from a BG meter-in a laboratory setting. The test results were collected in questionnaires, and lancing pain was rated on a numerical rating scale. One hundred fifty-seven subjects were included in the analysis. Accu-Chek BG monitoring systems were significantly (p < or = .006) preferred to competitor BG monitoring systems and were rated by >50% of the subjects as "less painful" than competitor BG monitoring systems. Accu-Chek lancing devices were significantly (p < .001) preferred to competitor lancing devices and were rated by >60% of the subjects as "less painful" than competitor lancing devices. We found significant differences in lancing pain between lancing devices. Diabetes patients clearly preferred lancing devices that cause less lancing pain. In order to improve patient compliance with respect to an adequate glycemic control, the medical staff should preferentially prescribe lancing devices that cause less lancing pain. 2009 Diabetes Technology Society.
Usage monitoring of electrical devices in a smart home.
Rahimi, Saba; Chan, Adrian D C; Goubran, Rafik A
2011-01-01
Profiling the usage of electrical devices within a smart home can be used as a method for determining an occupant's activities of daily living. A nonintrusive load monitoring system monitors the electrical consumption at a single electrical source (e.g., main electric utility service entry) and the operating schedules of individual devices are determined by disaggregating the composite electrical consumption waveforms. An electrical device's load signature plays a key role in nonintrusive load monitoring systems. A load signature is the unique electrical behaviour of an individual device when it is in operation. This paper proposes a feature-based model, using the real power and reactive power as features for describing the load signatures of individual devices. Experimental results for single device recognition for 7 devices show that the proposed approach can achieve 100% classification accuracy with discriminant analysis using Mahalanobis distances.
Surface Acoustic Wave Monitor for Deposition and Analysis of Ultra-Thin Films
NASA Technical Reports Server (NTRS)
Hines, Jacqueline H. (Inventor)
2015-01-01
A surface acoustic wave (SAW) based thin film deposition monitor device and system for monitoring the deposition of ultra-thin films and nanomaterials and the analysis thereof is characterized by acoustic wave device embodiments that include differential delay line device designs, and which can optionally have integral reference devices fabricated on the same substrate as the sensing device, or on a separate device in thermal contact with the film monitoring/analysis device, in order to provide inherently temperature compensated measurements. These deposition monitor and analysis devices can include inherent temperature compensation, higher sensitivity to surface interactions than quartz crystal microbalance (QCM) devices, and the ability to operate at extreme temperatures.
Real-Time Remote Monitoring with Data Acquisition System
NASA Astrophysics Data System (ADS)
Faizal Zainal Abidin, Ahmad; Huzaimy Jusoh, Mohammad; James, Elster; Junid, Syed Abdul Mutalib Al; Mohd Yassin, Ahmad Ihsan
2015-11-01
The purpose of this system is to provide monitoring system for an electrical device and enable remote monitoring via web based application. This monitoring system allow the user to monitor the device condition from anywhere as the information will be synchronised to the website. The current and voltage reading of the monitored equipment, ambient temperature and humidity level are monitored and recorded. These parameters will be updated on the web page. All these sensor are connected to the microcontroller and the data will saved in micro secure digital (SD) card and send all the gathered information to a web page using the GPRS service connection synchronously. The collected data will be displayed on the website and the user enable to download the data directly from the website. The system will help user to monitor the devices condition and ambient changes with ease. The system is successfully developed, tested and has been installed at residential area in Taman Cahaya Alam, Section U12, Shah Alam, Selangor, Malaysia.
Monitoring system of hydraulic lifting device based on the fiber optic sensors
NASA Astrophysics Data System (ADS)
Fajkus, Marcel; Nedoma, Jan; Novak, Martin; Martinek, Radek; Vanus, Jan; Mec, Pavel; Vasinek, Vladimir
2017-10-01
This article deals with the description of the monitoring system of hydraulic lifting device based on the fiber-optic sensors. For minimize the financial costs of the proposed monitoring system, the power evaluation of measured signal has been chosen. The solution is based on an evaluation of the signal obtained using the single point optic fiber sensors with overlapping reflective spectra. For encapsulation of the sensors was used polydimethylsiloxane (PDMS) polymer. To obtain a information of loading is uses the action of deformation of the lifting device on the pair single point optic fiber sensors mounted on the lifting device of the tested car. According to the proposed algorithm is determined information of pressure with an accuracy of +/- 5 %. Verification of the proposed system was realized on the various types of the tested car with different loading. The original contribution of the paper is to verify the new low-cost system for monitoring the hydraulic lifting device based on the fiber-optic sensors.
An intelligent remote monitoring system for artificial heart.
Choi, Jaesoon; Park, Jun W; Chung, Jinhan; Min, Byoung G
2005-12-01
A web-based database system for intelligent remote monitoring of an artificial heart has been developed. It is important for patients with an artificial heart implant to be discharged from the hospital after an appropriate stabilization period for better recovery and quality of life. Reliable continuous remote monitoring systems for these patients with life support devices are gaining practical meaning. The authors have developed a remote monitoring system for this purpose that consists of a portable/desktop monitoring terminal, a database for continuous recording of patient and device status, a web-based data access system with which clinicians can access real-time patient and device status data and past history data, and an intelligent diagnosis algorithm module that noninvasively estimates blood pump output and makes automatic classification of the device status. The system has been tested with data generation emulators installed on remote sites for simulation study, and in two cases of animal experiments conducted at remote facilities. The system showed acceptable functionality and reliability. The intelligence algorithm also showed acceptable practicality in an application to animal experiment data.
Weitz, Karl K [Pasco, WA; Moore, Ronald J [West Richland, WA
2010-07-13
A method and device are disclosed that provide for detection of fluid leaks in analytical instruments and instrument systems. The leak detection device includes a collection tube, a fluid absorbing material, and a circuit that electrically couples to an indicator device. When assembled, the leak detection device detects and monitors for fluid leaks, providing a preselected response in conjunction with the indicator device when contacted by a fluid.
Comparison of Lancing Devices for Self-Monitoring of Blood Glucose Regarding Lancing Pain
Kocher, Serge; Tshiananga, J. K. Tshiang; Koubek, Richard
2009-01-01
Background Self-monitoring of blood glucose empowers diabetes patients to effectively control their blood glucose (BG) levels. A potential barrier to frequent BG controls is lancing pain, intrinsically linked to pricking the finger several times a day. In this study, we compared different state-of-the-art lancing devices from leading manufacturers regarding lancing pain, and we intended to identify lancing devices that are less painful. Methods First, 165 subjects compared 6 different BG monitoring systems—consisting of a lancing device and a BG meter—at home for 36 days and at least 3 BG tests per day. Second, the subjects directly compared 6 different lancing devices—independent from a BG meter—in a laboratory setting. The test results were collected in questionnaires, and lancing pain was rated on a numerical rating scale. Results One hundred fifty-seven subjects were included in the analysis. Accu-Chek BG monitoring systems were significantly (p ≤ .006) preferred to competitor BG monitoring systems and were rated by >50% of the subjects as “less painful” than competitor BG monitoring systems. Accu-Chek lancing devices were significantly (p < .001) preferred to competitor lancing devices and were rated by >60% of the subjects as “less painful” than competitor lancing devices. Conclusions We found significant differences in lancing pain between lancing devices. Diabetes patients clearly preferred lancing devices that cause less lancing pain. In order to improve patient compliance with respect to an adequate glycemic control, the medical staff should preferentially prescribe lancing devices that cause less lancing pain. PMID:20144427
Design and Development of Intelligent Electrodes for Future Digital Health Monitoring: A Review
NASA Astrophysics Data System (ADS)
Khairuddin, A. M.; Azir, K. N. F. Ku; Kan, P. Eh
2018-03-01
Electrodes are sensors used in electrocardiography (ECG) monitoring system to diagnose heart diseases. Over the years, diverse types of electrodes have been designed and developed to improve ECG monitoring system. However, more recently, with the technological advances and capabilities from the Internet of Things (IoT), cloud computing and data analytics in personalized healthcare, researchers are attempting to design and develop more effective as well as flexible ECG devices by using intelligent electrodes. This paper reviews previous works on electrodes used in electrocardiography (ECG) monitoring devices to identify the key ftures for designing and developing intelligent electrodes in digital health monitoring devices.
Xu, Xiu; Zhang, Honglei; Li, Yiming; Li, Bin
2015-07-01
Developed the information centralization and management integration system for monitors of different brands and models with wireless sensor network technologies such as wireless location and wireless communication, based on the existing wireless network. With adaptive implementation and low cost, the system which possesses the advantages of real-time, efficiency and elaboration is able to collect status and data of the monitors, locate the monitors, and provide services with web server, video server and locating server via local network. Using an intranet computer, the clinical and device management staffs can access the status and parameters of monitors. Applications of this system provide convenience and save human resource for clinical departments, as well as promote the efficiency, accuracy and elaboration for the device management. The successful achievement of this system provides solution for integrated and elaborated management of the mobile devices including ventilator and infusion pump.
Remote monitoring of patients with implanted devices: data exchange and integration.
Van der Velde, Enno T; Atsma, Douwe E; Foeken, Hylke; Witteman, Tom A; Hoekstra, Wybo H G J
2013-06-01
Remote follow-up of implanted implantable cardioverter defibrillators (ICDs) may offer a solution to the problem of overcrowded outpatient clinics, and may also be effective in detecting clinical events early. Data obtained from remote follow up systems, as developed by all major device companies, are stored in a central database system, operated and owned by the device company. A problem now arises that the patient's clinical information is partly stored in the local electronic health record (EHR) system in the hospital, and partly in the remote monitoring database, which may potentially result in patient safety issues. To address the requirement of integrating remote monitoring data in the local EHR, the Integrating the Healthcare Enterprise (IHE) Implantable Device Cardiac Observation (IDCO) profile has been developed. This IHE IDCO profile has been adapted by all major device companies. In our hospital, we have implemented the IHE IDCO profile to import data from the remote databases from two device vendors into the departmental Cardiology Information System (EPD-Vision). Data is exchanged via a HL7/XML communication protocol, as defined in the IHE IDCO profile. By implementing the IHE IDCO profile, we have been able to integrate the data from the remote monitoring databases in our local EHRs. It can be expected that remote monitoring systems will develop into dedicated monitoring and therapy platforms. Data retrieved from these systems should form an integral part of the electronic patient record as more and more out-patient clinic care will shift to personalized care provided at a distance, in other words at the patient's home.
Automatic cross-sectioning and monitoring system locates defects in electronic devices
NASA Technical Reports Server (NTRS)
Jacobs, G.; Slaughter, B.
1971-01-01
System consists of motorized grinding and lapping apparatus, sample holder, and electronic control circuit. Low power microscope examines device to pinpoint location of circuit defect, and monitor displays output signal when defect is located exactly.
Dedicated real-time monitoring system for health care using ZigBee.
Alwan, Omar S; Prahald Rao, K
2017-08-01
Real-time monitoring systems (RTMSs) have drawn considerable attentions in the last decade. Several commercial versions of RTMS for patient monitoring are available which are used by health care professionals. Though they are working satisfactorily on various communication protocols, their range, power consumption, data rate and cost are really bothered. In this study, the authors present an efficient embedded system based wireless health care monitoring system using ZigBee. Their system has a capability to transmit the data between two embedded systems through two transceivers over a long range. In this, wireless transmission has been applied through two categories. The first part which contains Arduino with ZigBee will send the signals to the second device, which contains Raspberry with ZigBee. The second device will measure the patient data and send it to the first device through ZigBee transceiver. The designed system is demonstrated on volunteers to measure the body temperature which is clinically important to monitor and diagnose for fever in the patients.
Dedicated real-time monitoring system for health care using ZigBee
Alwan, Omar S.
2017-01-01
Real-time monitoring systems (RTMSs) have drawn considerable attentions in the last decade. Several commercial versions of RTMS for patient monitoring are available which are used by health care professionals. Though they are working satisfactorily on various communication protocols, their range, power consumption, data rate and cost are really bothered. In this study, the authors present an efficient embedded system based wireless health care monitoring system using ZigBee. Their system has a capability to transmit the data between two embedded systems through two transceivers over a long range. In this, wireless transmission has been applied through two categories. The first part which contains Arduino with ZigBee will send the signals to the second device, which contains Raspberry with ZigBee. The second device will measure the patient data and send it to the first device through ZigBee transceiver. The designed system is demonstrated on volunteers to measure the body temperature which is clinically important to monitor and diagnose for fever in the patients. PMID:28868152
NASA Astrophysics Data System (ADS)
Minakuchi, Shu; Tsukamoto, Haruka; Takeda, Nobuo
2009-03-01
This study proposes novel hierarchical sensing concept for detecting damages in composite structures. In the hierarchical system, numerous three-dimensionally structured sensor devices are distributed throughout the whole structural area and connected with the optical fiber network through transducing mechanisms. The distributed "sensory nerve cell" devices detect the damage, and the fiber optic "spinal cord" network gathers damage signals and transmits the information to a measuring instrument. This study began by discussing the basic concept of the hierarchical sensing system thorough comparison with existing fiber optic based systems and nerve systems in the animal kingdom. Then, in order to validate the proposed sensing concept, impact damage detection system for the composite structure was proposed. The sensor devices were developed based on Comparative Vacuum Monitoring (CVM) system and the Brillouin based distributed strain sensing was utilized to gather the damage signals from the distributed devices. Finally a verification test was conducted using prototype devices. Occurrence of barely visible impact damage was successfully detected and it was clearly indicated that the hierarchical system has better repairability, higher robustness, and wider monitorable area compared to existing systems utilizing embedded optical fiber sensors.
Design of smart neonatal health monitoring system using SMCC
Mukherjee, Anwesha; Bhakta, Ishita
2016-01-01
Automated health monitoring and alert system development is a demanding research area today. Most of the currently available monitoring and controlling medical devices are wired which limits freeness of working environment. Wireless sensor network (WSN) is a better alternative in such an environment. Neonatal intensive care unit is used to take care of sick and premature neonates. Hypothermia is an independent risk factor for neonatal mortality and morbidity. To prevent it an automated monitoring system is required. In this Letter, an automated neonatal health monitoring system is designed using sensor mobile cloud computing (SMCC). SMCC is based on WSN and MCC. In the authors’ system temperature sensor, acceleration sensor and heart rate measurement sensor are used to monitor body temperature, acceleration due to body movement and heart rate of neonates. The sensor data are stored inside the cloud. The health person continuously monitors and accesses these data through the mobile device using an Android Application for neonatal monitoring. When an abnormal situation arises, an alert is generated in the mobile device of the health person. By alerting health professional using such an automated system, early care is provided to the affected babies and the probability of recovery is increased. PMID:28261491
Design of smart neonatal health monitoring system using SMCC.
De, Debashis; Mukherjee, Anwesha; Sau, Arkaprabha; Bhakta, Ishita
2017-02-01
Automated health monitoring and alert system development is a demanding research area today. Most of the currently available monitoring and controlling medical devices are wired which limits freeness of working environment. Wireless sensor network (WSN) is a better alternative in such an environment. Neonatal intensive care unit is used to take care of sick and premature neonates. Hypothermia is an independent risk factor for neonatal mortality and morbidity. To prevent it an automated monitoring system is required. In this Letter, an automated neonatal health monitoring system is designed using sensor mobile cloud computing (SMCC). SMCC is based on WSN and MCC. In the authors' system temperature sensor, acceleration sensor and heart rate measurement sensor are used to monitor body temperature, acceleration due to body movement and heart rate of neonates. The sensor data are stored inside the cloud. The health person continuously monitors and accesses these data through the mobile device using an Android Application for neonatal monitoring. When an abnormal situation arises, an alert is generated in the mobile device of the health person. By alerting health professional using such an automated system, early care is provided to the affected babies and the probability of recovery is increased.
Meyer, Jochen; Hein, Andreas
2013-01-01
Cardiovascular diseases (CVD) are one of the major causes of death worldwide. Personal behavior such as physical activity considerably influences the risk of incurring a CVD. In the last years numerous products such as pedometers have become available on the mass market that allow monitoring relevant behaviors and vital parameters. These devices are sufficiently precise, affordable, and easy to use. While today they are mostly lifestyle oriented they also have considerable potential for health and prevention. Our goal is to investigate how recent low-cost devices can be used in real-life settings for the prevention of CVD, and whether using these devices has an advantage over subjective self-assessment. We also examine whether it is feasible to use multiple of such devices in parallel. We observe whether and how persons are willing and able to use multiple devices in their daily lives. We compare the devices' measurements with subjective self-assessment. We make use of existing low-cost consumer devices to monitor a user's behavior. By mapping the devices' features with pre-defined prevention goals we ensure that the system collects meaningful data that can be used to monitor the individual's behavior. We conducted a user study with 10 healthy adults to measure usability and to identify problems with sensor use in real life. The participants used the devices' original portals to monitor their behavior. The subjects (age range 35-75) used an off-the-shelf pedometer and a sports watch for 4 weeks. The participants responded in principle positively to the use of the devices. Analyzing the sensor data, we found that the users had some difficulties in operating the devices. We also found that the participants' self-assessment of their health behavior was too optimistic compared to the monitored data. They rated the usability of the overall system with 71 of up to 100 points in the "System Usability Scale". Our study indicates that today's devices are suitable for a long term monitoring of health for the prevention of CVD. Using the devices provides more precise data than a subjective self-assessment. However usability and acceptance of the systems are still major topics.
Use of Low-Cost Acquisition Systems with an Embedded Linux Device for Volcanic Monitoring
Moure, David; Torres, Pedro; Casas, Benito; Toma, Daniel; Blanco, María José; Del Río, Joaquín; Manuel, Antoni
2015-01-01
This paper describes the development of a low-cost multiparameter acquisition system for volcanic monitoring that is applicable to gravimetry and geodesy, as well as to the visual monitoring of volcanic activity. The acquisition system was developed using a System on a Chip (SoC) Broadcom BCM2835 Linux operating system (based on DebianTM) that allows for the construction of a complete monitoring system offering multiple possibilities for storage, data-processing, configuration, and the real-time monitoring of volcanic activity. This multiparametric acquisition system was developed with a software environment, as well as with different hardware modules designed for each parameter to be monitored. The device presented here has been used and validated under different scenarios for monitoring ocean tides, ground deformation, and gravity, as well as for monitoring with images the island of Tenerife and ground deformation on the island of El Hierro. PMID:26295394
Use of Low-Cost Acquisition Systems with an Embedded Linux Device for Volcanic Monitoring.
Moure, David; Torres, Pedro; Casas, Benito; Toma, Daniel; Blanco, María José; Del Río, Joaquín; Manuel, Antoni
2015-08-19
This paper describes the development of a low-cost multiparameter acquisition system for volcanic monitoring that is applicable to gravimetry and geodesy, as well as to the visual monitoring of volcanic activity. The acquisition system was developed using a System on a Chip (SoC) Broadcom BCM2835 Linux operating system (based on DebianTM) that allows for the construction of a complete monitoring system offering multiple possibilities for storage, data-processing, configuration, and the real-time monitoring of volcanic activity. This multiparametric acquisition system was developed with a software environment, as well as with different hardware modules designed for each parameter to be monitored. The device presented here has been used and validated under different scenarios for monitoring ocean tides, ground deformation, and gravity, as well as for monitoring with images the island of Tenerife and ground deformation on the island of El Hierro.
Method to monitor HC-SCR catalyst NOx reduction performance for lean exhaust applications
Viola, Michael B [Macomb Township, MI; Schmieg, Steven J [Troy, MI; Sloane, Thompson M [Oxford, MI; Hilden, David L [Shelby Township, MI; Mulawa, Patricia A [Clinton Township, MI; Lee, Jong H [Rochester Hills, MI; Cheng, Shi-Wai S [Troy, MI
2012-05-29
A method for initiating a regeneration mode in selective catalytic reduction device utilizing hydrocarbons as a reductant includes monitoring a temperature within the aftertreatment system, monitoring a fuel dosing rate to the selective catalytic reduction device, monitoring an initial conversion efficiency, selecting a determined equation to estimate changes in a conversion efficiency of the selective catalytic reduction device based upon the monitored temperature and the monitored fuel dosing rate, estimating changes in the conversion efficiency based upon the determined equation and the initial conversion efficiency, and initiating a regeneration mode for the selective catalytic reduction device based upon the estimated changes in conversion efficiency.
21 CFR 870.2600 - Signal isolation system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Signal isolation system. 870.2600 Section 870.2600...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2600 Signal isolation system. (a) Identification. A signal isolation system is a device that electrically isolates the patient...
21 CFR 870.2600 - Signal isolation system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Signal isolation system. 870.2600 Section 870.2600...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2600 Signal isolation system. (a) Identification. A signal isolation system is a device that electrically isolates the patient...
21 CFR 870.2600 - Signal isolation system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Signal isolation system. 870.2600 Section 870.2600...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2600 Signal isolation system. (a) Identification. A signal isolation system is a device that electrically isolates the patient...
Pillarisetti, Ajay; Allen, Tracy; Ruiz-Mercado, Ilse; Edwards, Rufus; Chowdhury, Zohir; Garland, Charity; Johnson, Michael; Litton, Charles D.; Lam, Nicholas L.; Pennise, David; Smith, Kirk R.
2017-01-01
Over the last 20 years, the Kirk R. Smith research group at the University of California Berkeley—in collaboration with Electronically Monitored Ecosystems, Berkeley Air Monitoring Group, and other academic institutions—has developed a suite of relatively inexpensive, rugged, battery-operated, microchip-based devices to quantify parameters related to household air pollution. These devices include two generations of particle monitors; data-logging temperature sensors to assess time of use of household energy devices; a time-activity monitoring system using ultrasound; and a CO2-based tracer-decay system to assess ventilation rates. Development of each system involved numerous iterations of custom hardware, software, and data processing and visualization routines along with both lab and field validation. The devices have been used in hundreds of studies globally and have greatly enhanced our understanding of heterogeneous household air pollution (HAP) concentrations and exposures and factors influencing them. PMID:28812989
Pillarisetti, Ajay; Allen, Tracy; Ruiz-Mercado, Ilse; Edwards, Rufus; Chowdhury, Zohir; Garland, Charity; Hill, L Drew; Johnson, Michael; Litton, Charles D; Lam, Nicholas L; Pennise, David; Smith, Kirk R
2017-08-16
Over the last 20 years, the Kirk R. Smith research group at the University of California Berkeley-in collaboration with Electronically Monitored Ecosystems, Berkeley Air Monitoring Group, and other academic institutions-has developed a suite of relatively inexpensive, rugged, battery-operated, microchip-based devices to quantify parameters related to household air pollution. These devices include two generations of particle monitors; data-logging temperature sensors to assess time of use of household energy devices; a time-activity monitoring system using ultrasound; and a CO₂-based tracer-decay system to assess ventilation rates. Development of each system involved numerous iterations of custom hardware, software, and data processing and visualization routines along with both lab and field validation. The devices have been used in hundreds of studies globally and have greatly enhanced our understanding of heterogeneous household air pollution (HAP) concentrations and exposures and factors influencing them.
40 CFR 60.695 - Monitoring of operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... device outlet gas stream or inlet and outlet gas stream shall be used. (i) For a carbon adsorption system... adsorption system that does not regenerate the carbon bed directly onsite in the control device (e.g., a... carbon adsorption system shall be monitored on a regular schedule, and the existing carbon shall be...
40 CFR 60.695 - Monitoring of operations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... device outlet gas stream or inlet and outlet gas stream shall be used. (i) For a carbon adsorption system... adsorption system that does not regenerate the carbon bed directly onsite in the control device (e.g., a... carbon adsorption system shall be monitored on a regular schedule, and the existing carbon shall be...
Wearable sweat detector device design for health monitoring and clinical diagnosis
NASA Astrophysics Data System (ADS)
Wu, Qiuchen; Zhang, Xiaodong; Tian, Bihao; Zhang, Hongyan; Yu, Yang; Wang, Ming
2017-06-01
Miniaturized sensor is necessary part for wearable detector for biomedical applications. Wearable detector device is indispensable for online health care. This paper presents a concept of an wearable digital health monitoring device design for sweat analysis. The flexible sensor is developed to quantify the amount of hydrogen ions in sweat and skin temperature in real time. The detection system includes pH sensor, temperature sensor, signal processing module, power source, microprocessor, display module and so on. The sweat monitoring device is designed for sport monitoring or clinical diagnosis.
Telemetric implantable pressure sensor for short- and long-term monitoring of intracranial pressure.
Frischholz, M; Sarmento, L; Wenzel, M; Aquilina, K; Edwards, R; Coakham, H B
2007-01-01
Patients with hydrocephalus, idiopathic intracranial hypertension and head injury frequently require monitoring of intracranial pressure (ICP) and may need repeated episodes of monitoring months or years apart. The gold standard for measurement of ICP remains the external ventricular catheter. This is a fluid-filled catheter transducer system that allows regular recalibration and correction of zero drift by its position relative to a fixed anatomical reference. It also allows drainage of cerebrospinal fluid (CSF), providing a means of lowering the ICP. Several catheter tip transducer systems are currently in clinical use, including using strain gauges or fiber-optical pressure sensing techniques. In these devices, zero drift and calibration cannot be checked in vivo. All the ICP monitoring devices in current clinical use require a physical connection between the brain and the external environment. This is a source of infection and limits the duration of monitoring. A number of telemetric monitoring devices, in which data is in some way transmitted transcutaneously, have been developed over the last twenty years, but significant technical problems have precluded their use in routine clinical practice. All current ICP monitors are temporary percutaneous implanted devices. Placement of these devices carries significant morbidity, particularly infection. Patients undergoing repeated monitoring require multiple surgical procedures. Apart from decreasing the risk of infection in patients with severe head injury, the clinical value of an accurate telemetric ICP monitoring system which maintains its reliability over a long period of implantation is high.
21 CFR 884.2800 - Computerized Labor Monitoring System.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Computerized Labor Monitoring System. 884.2800... Devices § 884.2800 Computerized Labor Monitoring System. (a) Identification. A computerized labor monitoring system is a system intended to continuously measure cervical dilation and fetal head descent and...
40 CFR 60.665 - Reporting and recordkeeping requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Volatile Organic Compound (VOC) Emissions From Synthetic Organic Chemical Manufacturing Industry (SOCMI... level or reading indicated by the organics monitoring device at the outlet of the absorber, condenser... the final recovery device in a recovery system, and where an organic compound monitoring device is not...
40 CFR 60.665 - Reporting and recordkeeping requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Volatile Organic Compound (VOC) Emissions From Synthetic Organic Chemical Manufacturing Industry (SOCMI... level or reading indicated by the organics monitoring device at the outlet of the absorber, condenser... the final recovery device in a recovery system, and where an organic compound monitoring device is not...
21 CFR 862.3900 - Tobramycin test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test Systems § 862... device are used in the diagnosis and treatment of tobramycin overdose and in monitoring levels of...
Radiation-Tolerance Assessment of a Redundant Wireless Device
NASA Astrophysics Data System (ADS)
Huang, Q.; Jiang, J.
2018-01-01
This paper presents a method to evaluate radiation-tolerance without physical tests for a commercial off-the-shelf (COTS)-based monitoring device for high level radiation fields, such as those found in post-accident conditions in a nuclear power plant (NPP). This paper specifically describes the analysis of radiation environment in a severe accident, radiation damages in electronics, and the redundant solution used to prolong the life of the system, as well as the evaluation method for radiation protection and the analysis method of system reliability. As a case study, a wireless monitoring device with redundant and diversified channels is evaluated by using the developed method. The study results and system assessment data show that, under the given radiation condition, performance of the redundant device is more reliable and more robust than those non-redundant devices. The developed redundant wireless monitoring device is therefore able to apply in those conditions (up to 10 M Rad (Si)) during a severe accident in a NPP.
21 CFR 862.3555 - Lidocaine test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test Systems § 862... device are used in the diagnosis and treatment of lidocaine overdose or in monitoring levels of lidocaine...
Sejdić, E.; Millecamps, A.; Teoli, J.; Rothfuss, M. A.; Franconi, N. G.; Perera, S.; Jones, A. K.; Brach, J. S.; Mickle, M. H.
2015-01-01
Gait function is traditionally assessed using well-lit, unobstructed walkways with minimal distractions. In patients with subclinical physiological abnormalities, these conditions may not provide enough stress on their ability to adapt to walking. The introduction of challenging walking conditions in gait can induce responses in physiological systems in addition to the locomotor system. There is a need for a device that is capable of monitoring multiple physiological systems in various walking conditions. To address this need, an Android-based gait-monitoring device was developed that enabled the recording of a patient's physiological systems during walking. The gait-monitoring device was tested during self-regulated overground walking sessions of fifteen healthy subjects that included 6 females and 9 males aged 18 to 35 years. The gait-monitoring device measures the patient's stride interval, acceleration, electrocardiogram, skin conductance and respiratory rate. The data is stored on an Android phone and is analyzed offline through the extraction of features in the time, frequency and time-frequency domains. The analysis of the data depicted multisystem physiological interactions during overground walking in healthy subjects. These interactions included locomotion-electrodermal, locomotion-respiratory and cardiolocomotion couplings. The current results depicting strong interactions between the locomotion system and the other considered systems (i.e., electrodermal, respiratory and cardivascular systems) warrant further investigation into multisystem interactions during walking, particularly in challenging walking conditions with older adults. PMID:26390946
DOE Office of Scientific and Technical Information (OSTI.GOV)
Derr, Kurt W.; Richardson, John G.
Monitoring devices and systems comprise a plurality of data channel modules coupled to processing circuitry. Each data channel module of the plurality of data channel modules is configured to capture wireless communications for a selected frequency channel. The processing circuitry is configured to receive captured wireless communications from the plurality of data channel modules and to organize received wireless communications according to at least one parameter. Related methods of monitoring wireless communications are also disclosed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuracko, K. L.; Parang, M.; Landguth, D. C.
2004-09-13
TOADS (Total On-line Access Data System) is a new generation of real-time monitoring and information management system developed to support unattended environmental monitoring and long-term stewardship of U.S. Department of Energy facilities and sites. TOADS enables project managers, regulators, and stakeholders to view environmental monitoring information in realtime over the Internet. Deployment of TOADS at government facilities and sites will reduce the cost of monitoring while increasing confidence and trust in cleanup and long term stewardship activities. TOADS: Reliably interfaces with and acquires data from a wide variety of external databases, remote systems, and sensors such as contaminant monitors, areamore » monitors, atmospheric condition monitors, visual surveillance systems, intrusion devices, motion detectors, fire/heat detection devices, and gas/vapor detectors; Provides notification and triggers alarms as appropriate; Performs QA/QC on data inputs and logs the status of instruments/devices; Provides a fully functional data management system capable of storing, analyzing, and reporting on data; Provides an easy-to-use Internet-based user interface that provides visualization of the site, data, and events; and Enables the community to monitor local environmental conditions in real time. During this Phase II STTR project, TOADS has been developed and successfully deployed for unattended facility, environmental, and radiological monitoring at a Department of Energy facility.« less
NASA Astrophysics Data System (ADS)
Yussup, F.; Ibrahim, M. M.; Haris, M. F.; Soh, S. C.; Hasim, H.; Azman, A.; Razalim, F. A. A.; Yapp, R.; Ramli, A. A. M.
2016-01-01
With the growth of technology, many devices and equipments can be connected to the network and internet to enable online data acquisition for real-time data monitoring and control from monitoring devices located at remote sites. Centralized radiation monitoring system (CRMS) is a system that enables area radiation level at various locations in Malaysian Nuclear Agency (Nuklear Malaysia) to be monitored centrally by using a web browser. The Local Area Network (LAN) in Nuclear Malaysia is utilized in CRMS as a communication media for data acquisition of the area radiation levels from radiation detectors. The development of the system involves device configuration, wiring, network and hardware installation, software and web development. This paper describes the software upgrading on the system server that is responsible to acquire and record the area radiation readings from the detectors. The recorded readings are called in a web programming to be displayed on a website. Besides the main feature which is acquiring the area radiation levels in Nuclear Malaysia centrally, the upgrading involves new features such as uniform time interval for data recording and exporting, warning system and dose triggering.
21 CFR 862.3700 - Propoxyphene test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test Systems § 862... device are used in the diagnosis and treatment of propoxyphene use or overdose or in monitoring levels of...
21 CFR 876.1725 - Gastrointestinal motility monitoring system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Gastrointestinal motility monitoring system. 876... Gastrointestinal motility monitoring system. (a) Identification. A gastrointestinal motility monitoring system is a device used to measure peristalic activity or pressure in the stomach or esophagus by means of a probe...
Healthcare Blockchain System Using Smart Contracts for Secure Automated Remote Patient Monitoring.
Griggs, Kristen N; Ossipova, Olya; Kohlios, Christopher P; Baccarini, Alessandro N; Howson, Emily A; Hayajneh, Thaier
2018-06-06
As Internet of Things (IoT) devices and other remote patient monitoring systems increase in popularity, security concerns about the transfer and logging of data transactions arise. In order to handle the protected health information (PHI) generated by these devices, we propose utilizing blockchain-based smart contracts to facilitate secure analysis and management of medical sensors. Using a private blockchain based on the Ethereum protocol, we created a system where the sensors communicate with a smart device that calls smart contracts and writes records of all events on the blockchain. This smart contract system would support real-time patient monitoring and medical interventions by sending notifications to patients and medical professionals, while also maintaining a secure record of who has initiated these activities. This would resolve many security vulnerabilities associated with remote patient monitoring and automate the delivery of notifications to all involved parties in a HIPAA compliant manner.
GSM module for wireless radiation monitoring system via SMS
NASA Astrophysics Data System (ADS)
Rahman, Nur Aira Abd; Hisyam Ibrahim, Noor; Lombigit, Lojius; Azman, Azraf; Jaafar, Zainudin; Arymaswati Abdullah, Nor; Hadzir Patai Mohamad, Glam
2018-01-01
A customised Global System for Mobile communication (GSM) module is designed for wireless radiation monitoring through Short Messaging Service (SMS). This module is able to receive serial data from radiation monitoring devices such as survey meter or area monitor and transmit the data as text SMS to a host server. It provides two-way communication for data transmission, status query, and configuration setup. The module hardware consists of GSM module, voltage level shifter, SIM circuit and Atmega328P microcontroller. Microcontroller provides control for sending, receiving and AT command processing to GSM module. The firmware is responsible to handle task related to communication between device and host server. It process all incoming SMS, extract, and store new configuration from Host, transmits alert/notification SMS when the radiation data reach/exceed threshold value, and transmits SMS data at every fixed interval according to configuration. Integration of this module with radiation survey/monitoring device will create mobile and wireless radiation monitoring system with prompt emergency alert at high-level radiation.
A portable, inexpensive, wireless vital signs monitoring system.
Kaputa, David; Price, David; Enderle, John D
2010-01-01
The University of Connecticut, Department of Biomedical Engineering has developed a device to be used by patients to collect physiological data outside of a medical facility. This device facilitates modes of data collection that would be expensive, inconvenient, or impossible to obtain by traditional means within the medical facility. Data can be collected on specific days, at specific times, during specific activities, or while traveling. The device uses biosensors to obtain information such as pulse oximetry (SpO2), heart rate, electrocardiogram (ECG), non-invasive blood pressure (NIBP), and weight which are sent via Bluetooth to an interactive monitoring device. The data can then be downloaded to an electronic storage device or transmitted to a company server, physician's office, or hospital. The data collection software is usable on any computer device with Bluetooth capability, thereby removing the need for special hardware for the monitoring device and reducing the total cost of the system. The modular biosensors can be added or removed as needed without changing the monitoring device software. The user is prompted by easy-to-follow instructions written in non-technical language. Additional features, such as screens with large buttons and large text, allow for use by those with limited vision or limited motor skills.
Abraham, William T
2013-06-01
Heart failure represents a major public health concern, associated with high rates of morbidity and mortality. A particular focus of contemporary heart failure management is reduction of hospital admission and readmission rates. While optimal medical therapy favourably impacts the natural history of the disease, devices such as cardiac resynchronization therapy devices and implantable cardioverter defibrillators have added incremental value in improving heart failure outcomes. These devices also enable remote patient monitoring via device-based diagnostics. Device-based measurement of physiological parameters, such as intrathoracic impedance and heart rate variability, provide a means to assess risk of worsening heart failure and the possibility of future hospitalization. Beyond this capability, implantable haemodynamic monitors have the potential to direct day-to-day management of heart failure patients to significantly reduce hospitalization rates. The use of a pulmonary artery pressure measurement system has been shown to significantly reduce the risk of heart failure hospitalization in a large randomized controlled study, the CardioMEMS Heart Sensor Allows Monitoring of Pressure to Improve Outcomes in NYHA Class III Heart Failure Patients (CHAMPION) trial. Observations from a pilot study also support the potential use of a left atrial pressure monitoring system and physician-directed patient self-management paradigm; these observations are under further investigation in the ongoing LAPTOP-HF trial. All these devices depend upon high-intensity remote monitoring for successful detection of parameter deviations and for directing and following therapy.
40 CFR 63.3000 - What notifications and reports must I submit?
Code of Federal Regulations, 2010 CFR
2010-07-01
... reporting period. (v) The date of the latest continuous parameter monitoring system certification or audit... parameter monitoring system, or add-on control device since the last semiannual reporting period. (4) No...-on control devices no later than 60 days after completing the tests as specified in § 63.10(d)(2...
Networking and data management for health care monitoring of mobile patients.
Amato, Giuseppe; Chessa, Stefano; Conforti, Fabrizio; Macerata, Alberto; Marchesi, Carlo
2005-01-01
The problem of medical devices and data integration in health care is discussed and a proposal for remote monitoring of patients based on recent developments in networking and data management is presented. In particular the paper discusses the benefits of the integration of personal medical devices into a Medical Information System and how wireless sensor networks and open protocols could be employed as building blocks of a patient monitoring system.
21 CFR 870.2855 - Implantable Intra-aneurysm Pressure Measurement System.
Code of Federal Regulations, 2012 CFR
2012-04-01
... System. 870.2855 Section 870.2855 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2855 Implantable Intra-aneurysm Pressure Measurement System. (a) Identification. Implantable intra...
21 CFR 870.2855 - Implantable Intra-aneurysm Pressure Measurement System.
Code of Federal Regulations, 2013 CFR
2013-04-01
... System. 870.2855 Section 870.2855 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2855 Implantable Intra-aneurysm Pressure Measurement System. (a) Identification. Implantable intra...
21 CFR 870.2855 - Implantable Intra-aneurysm Pressure Measurement System.
Code of Federal Regulations, 2014 CFR
2014-04-01
... System. 870.2855 Section 870.2855 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2855 Implantable Intra-aneurysm Pressure Measurement System. (a) Identification. Implantable intra...
NASA Astrophysics Data System (ADS)
Ibrahim, Maslina Mohd; Yussup, Nolida; Haris, Mohd Fauzi; Soh @ Shaari, Syirrazie Che; Azman, Azraf; Razalim, Faizal Azrin B. Abdul; Yapp, Raymond; Hasim, Harzawardi; Aslan, Mohd Dzul Aiman
2017-01-01
One of the applications for radiation detector is area monitoring which is crucial for safety especially at a place where radiation source is involved. An environmental radiation monitoring system is a professional system that combines flexibility and ease of use for data collection and monitoring. Nowadays, with the growth of technology, devices and equipment can be connected to the network and Internet to enable online data acquisition. This technology enables data from the area monitoring devices to be transmitted to any place and location directly and faster. In Nuclear Malaysia, area radiation monitor devices are located at several selective locations such as laboratories and radiation facility. This system utilizes an Ethernet as a communication media for data acquisition of the area radiation levels from radiation detectors and stores the data at a server for recording and analysis. This paper discusses on the design and development of website that enable all user in Nuclear Malaysia to access and monitor the radiation level for each radiation detectors at real time online. The web design also included a query feature for history data from various locations online. The communication between the server's software and web server is discussed in detail in this paper.
Dedov, Vadim N; Dedova, Irina V
2015-07-01
Sustained exercise training could significantly improve patient rehabilitation and management of noncommunicable diseases in the community. This study aimed to develop a universal telecare system for delivery of exercise rehabilitation and cardiovascular training services at home. An innovative bilateral leg training device was equipped with an electronic system for the ongoing measurement of training activities with the device. A single-item parameter reflecting the intensity of training was monitored using several modern telecommunication technologies. According to the application protocol, eight volunteers first tried the device for 30-60 min to determine their personal training capacity. Then, they were provided with equipment to use at home for 4 weeks. Adherence to daily training was assessed by the number of training days per week, training intensity, and duration of training sessions. The system provided reliable recording of training activities with the device using (1) long-term data logging without an ongoing connection to the computer, (2) wireless monitoring and recording of training activities on a stand-alone computer, and (3) a secure cloud-based monitoring over the Internet connection using electronic devices, including smartphones. Overall analysis of recordings and phone feedbacks to participants took only approximately 5 h for the duration of study. This study, although of a pilot nature, described the comprehensive exercise telerehabilitation system integrating mobile training equipment with personalized training protocols and remote monitoring. A single-item electronic parameter of the system usage facilitated time-effective data management. Wireless connection allowed various locations of device application and several monitoring arrangements ranging from real-time monitoring to long-term recording of exercise activities. A cloud-based software platform enabled management of multiple users at distance. Implementation of this model may facilitate both accessibility and availability of personalized exercise telerehabilitation services. Further studies would validate it in the clinical and healthcare environment.
FPGA Based "Intelligent Tap" Device for Real-Time Ethernet Network Monitoring
NASA Astrophysics Data System (ADS)
Cupek, Rafał; Piękoś, Piotr; Poczobutt, Marcin; Ziębiński, Adam
This paper describes an "Intelligent Tap" - hardware device dedicated to support real-time Ethernet networks monitoring. Presented solution was created as a student project realized in Institute of Informatics, Silesian University of Technology with support from Softing A.G company. Authors provide description of realized FPGA based "Intelligent Tap" architecture dedicated for Real-Time Ethernet network monitoring systems. The practical device realization and feasibility study conclusions are presented also.
Czugala, Monika; Gorkin, Robert; Phelan, Thomas; Gaughran, Jennifer; Curto, Vincenzo Fabio; Ducrée, Jens; Diamond, Dermot; Benito-Lopez, Fernando
2012-12-07
This work describes the first use of a wireless paired emitter detector diode device (PEDD) as an optical sensor for water quality monitoring in a lab-on-a-disc device. The microfluidic platform, based on an ionogel sensing area combined with a low-cost optical sensor, is applied for quantitative pH and qualitative turbidity monitoring of water samples at point-of-need. The autonomous capabilities of the PEDD system, combined with the portability and wireless communication of the full device, provide the flexibility needed for on-site water testing. Water samples from local fresh and brackish sources were successfully analysed using the device, showing very good correlation with standard bench-top systems.
Computation offloading for real-time health-monitoring devices.
Kalantarian, Haik; Sideris, Costas; Tuan Le; Hosseini, Anahita; Sarrafzadeh, Majid
2016-08-01
Among the major challenges in the development of real-time wearable health monitoring systems is to optimize battery life. One of the major techniques with which this objective can be achieved is computation offloading, in which portions of computation can be partitioned between the device and other resources such as a server or cloud. In this paper, we describe a novel dynamic computation offloading scheme for real-time wearable health monitoring devices that adjusts the partitioning of data between the wearable device and mobile application as a function of desired classification accuracy.
21 CFR 884.2740 - Perinatal monitoring system and accessories.
Code of Federal Regulations, 2012 CFR
2012-04-01
... monitoring system is a device used to show graphically the relationship between maternal labor and the fetal heart rate by means of combining and coordinating uterine contraction and fetal heart monitors with...
21 CFR 884.2740 - Perinatal monitoring system and accessories.
Code of Federal Regulations, 2013 CFR
2013-04-01
... monitoring system is a device used to show graphically the relationship between maternal labor and the fetal heart rate by means of combining and coordinating uterine contraction and fetal heart monitors with...
21 CFR 884.2740 - Perinatal monitoring system and accessories.
Code of Federal Regulations, 2014 CFR
2014-04-01
... monitoring system is a device used to show graphically the relationship between maternal labor and the fetal heart rate by means of combining and coordinating uterine contraction and fetal heart monitors with...
21 CFR 884.2740 - Perinatal monitoring system and accessories.
Code of Federal Regulations, 2011 CFR
2011-04-01
... monitoring system is a device used to show graphically the relationship between maternal labor and the fetal heart rate by means of combining and coordinating uterine contraction and fetal heart monitors with...
21 CFR 884.2740 - Perinatal monitoring system and accessories.
Code of Federal Regulations, 2010 CFR
2010-04-01
... monitoring system is a device used to show graphically the relationship between maternal labor and the fetal heart rate by means of combining and coordinating uterine contraction and fetal heart monitors with...
Predictive monitoring research: Summary of the PREMON system
NASA Technical Reports Server (NTRS)
Doyle, Richard J.; Sellers, Suzanne M.; Atkinson, David J.
1987-01-01
Traditional approaches to monitoring are proving inadequate in the face of two important issues: the dynamic adjustment of expectations about sensor values when the behavior of the device is too complex to enumerate beforehand, and the selective but effective interpretation of sensor readings when the number of sensors becomes overwhelming. This system addresses these issues by building an explicit model of a device and applying common-sense theories of physics to model causality in the device. The resulting causal simulation of the device supports planning decisions about how to efficiently yet reliably utilize a limited number of sensors to verify correct operation of the device.
The Environmental Technology Verification report discusses the technology and performance of a gaseous-emissions monitoring system for large, natural-gas-fired internal combustion engines. The device tested is the Parametric Emissions Monitoring System (PEMS) manufactured by ANR ...
Samborsky, James K.
1993-01-01
A device for the purpose of monitoring light transmissions in optical fibers comprises a fiber optic tap that optically diverts a fraction of a transmitted optical signal without disrupting the integrity of the signal. The diverted signal is carried, preferably by the fiber optic tap, to a lens or lens system that disperses the light over a solid angle that facilitates viewing. The dispersed light indicates whether or not the monitored optical fiber or system of optical fibers is currently transmitting optical information.
Energy Power Research Institute Shows Benefits of Grid-Connected Devices at
product availability. With real-time status monitoring of the connected devices, a utility system could be devices, this approach can provide grid operators or other load management systems with real-time measure
Internet based ECG medical information system.
James, D A; Rowlands, D; Mahnovetski, R; Channells, J; Cutmore, T
2003-03-01
Physiological monitoring of humans for medical applications is well established and ready to be adapted to the Internet. This paper describes the implementation of a Medical Information System (MIS-ECG system) incorporating an Internet based ECG acquisition device. Traditionally clinical monitoring of ECG is largely a labour intensive process with data being typically stored on paper. Until recently, ECG monitoring applications have also been constrained somewhat by the size of the equipment required. Today's technology enables large and fixed hospital monitoring systems to be replaced by small portable devices. With an increasing emphasis on health management a truly integrated information system for the acquisition, analysis, patient particulars and archiving is now a realistic possibility. This paper describes recent Internet and technological advances and presents the design and testing of the MIS-ECG system that utilises those advances.
Development and testing of an artificial arterial and venous pulse oximeter.
Cloete, G; Fourie, P R; Scheffer, C
2013-01-01
The monitoring of patients healthcare is of a prime importance to ensure their efficient and effective treatment. Monitoring blood oxygen saturation is a field which has grown significantly in recent times and more specifically in tissues affected by diseases or conditions that may negatively affect the function of the tissue. This study involved the development and testing of a highly sensitive non-invasive blood oxygen saturation monitoring device. A device that can be used to continuously monitor the condition of tissue affected by diseases which affect the blood flow through the tissue, and the oxygen usage in tissue. The device's system was designed to specifically monitor occluded tissue which has low oxygen saturations and low perfusion. Although with limitted validation the system was unable to accurately measure the venous oxygenation specifically, but it was able to measure the mixed oxygen saturation. With further research it would be possible to validate the system for measuring both the arterial and venous oxygen saturations.
2004-11-01
peripheral devices , such as a heart- rate monitor, oximeter, etc., over a wireless link. Interfacing to peripheral sensors requires installation of... devices are powered from wall outlets. However, for networks comprising mobile devices , and in particular for a PAN comprising body-worn sensors ...SpO2) cost in excess of $25K per system 2. Size, weight, and power – Excluding the sensors , the mobile components (comm link and data archiving
Ver-i-Fus: an integrated access control and information monitoring and management system
NASA Astrophysics Data System (ADS)
Thomopoulos, Stelios C.; Reisman, James G.; Papelis, Yiannis E.
1997-01-01
This paper describes the Ver-i-Fus Integrated Access Control and Information Monitoring and Management (IAC-I2M) system that INTELNET Inc. has developed. The Ver-i-Fus IAC-I2M system has been designed to meet the most stringent security and information monitoring requirements while allowing two- way communication between the user and the system. The systems offers a flexible interface that permits to integrate practically any sensing device, or combination of sensing devices, including a live-scan fingerprint reader, thus providing biometrics verification for enhanced security. Different configurations of the system provide solutions to different sets of access control problems. The re-configurable hardware interface, tied together with biometrics verification and a flexible interface that allows to integrate Ver-i-Fus with an MIS, provide an integrated solution to security, time and attendance, labor monitoring, production monitoring, and payroll applications.
40 CFR 60.734 - Monitoring of emissions and operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... operator of an affected facility subject to the provisions of this subpart who uses a dry control device to... control device. (b) In lieu of a continuous opacity monitoring system, the owner or operator of a ball... vermiculite fluid bed dryer, or a vermiculite rotary dryer who uses a dry control device may have a certified...
A Wireless Physiological Signal Monitoring System with Integrated Bluetooth and WiFi Technologies.
Yu, Sung-Nien; Cheng, Jen-Chieh
2005-01-01
This paper proposes a wireless patient monitoring system which integrates Bluetooth and WiFi wireless technologies. A wireless portable multi-parameter device was designated to acquire physiological signals and transmit them to a local server via Bluetooth wireless technology. Four kinds of monitor units were designed to communicate via the WiFi wireless technology, including a local monitor unit, a control center, mobile devices (personal digital assistant; PDA), and a web page. The use of various monitor units is intending to meet different medical requirements for different medical personnel. This system was demonstrated to promote the mobility and flexibility for both the patients and the medical personnel, which further improves the quality of health care.
Mobile devices for community-based REDD+ monitoring: a case study for Central Vietnam.
Pratihast, Arun Kumar; Herold, Martin; Avitabile, Valerio; de Bruin, Sytze; Bartholomeus, Harm; Souza, Carlos M; Ribbe, Lars
2012-12-20
Monitoring tropical deforestation and forest degradation is one of the central elements for the Reduced Emissions from Deforestation and Forest Degradation in developing countries (REDD+) scheme. Current arrangements for monitoring are based on remote sensing and field measurements. Since monitoring is the periodic process of assessing forest stands properties with respect to reference data, adopting the current REDD+ requirements for implementing monitoring at national levels is a challenging task. Recently, the advancement in Information and Communications Technologies (ICT) and mobile devices has enabled local communities to monitor their forest in a basic resource setting such as no or slow internet connection link, limited power supply, etc. Despite the potential, the use of mobile device system for community based monitoring (CBM) is still exceptional and faces implementation challenges. This paper presents an integrated data collection system based on mobile devices that streamlines the community-based forest monitoring data collection, transmission and visualization process. This paper also assesses the accuracy and reliability of CBM data and proposes a way to fit them into national REDD+ Monitoring, Reporting and Verification (MRV) scheme. The system performance is evaluated at Tra Bui commune, Quang Nam province, Central Vietnam, where forest carbon and change activities were tracked. The results show that the local community is able to provide data with accuracy comparable to expert measurements (index of agreement greater than 0.88), but against lower costs. Furthermore, the results confirm that communities are more effective to monitor small scale forest degradation due to subsistence fuel wood collection and selective logging, than high resolution remote sensing SPOT imagery.
Mobile Devices for Community-Based REDD+ Monitoring: A Case Study for Central Vietnam
Pratihast, Arun Kumar; Herold, Martin; Avitabile, Valerio; de Bruin, Sytze; Bartholomeus, Harm; Souza, Carlos M.; Ribbe, Lars
2013-01-01
Monitoring tropical deforestation and forest degradation is one of the central elements for the Reduced Emissions from Deforestation and Forest Degradation in developing countries (REDD+) scheme. Current arrangements for monitoring are based on remote sensing and field measurements. Since monitoring is the periodic process of assessing forest stands properties with respect to reference data, adopting the current REDD+ requirements for implementing monitoring at national levels is a challenging task. Recently, the advancement in Information and Communications Technologies (ICT) and mobile devices has enabled local communities to monitor their forest in a basic resource setting such as no or slow internet connection link, limited power supply, etc. Despite the potential, the use of mobile device system for community based monitoring (CBM) is still exceptional and faces implementation challenges. This paper presents an integrated data collection system based on mobile devices that streamlines the community-based forest monitoring data collection, transmission and visualization process. This paper also assesses the accuracy and reliability of CBM data and proposes a way to fit them into national REDD+ Monitoring, Reporting and Verification (MRV) scheme. The system performance is evaluated at Tra Bui commune, Quang Nam province, Central Vietnam, where forest carbon and change activities were tracked. The results show that the local community is able to provide data with accuracy comparable to expert measurements (index of agreement greater than 0.88), but against lower costs. Furthermore, the results confirm that communities are more effective to monitor small scale forest degradation due to subsistence fuel wood collection and selective logging, than high resolution remote sensing SPOT imagery. PMID:23344371
21 CFR 862.3150 - Barbiturate test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test Systems § 862... in monitoring levels of barbiturate to ensure appropriate therapy. (b) Classification. Class II. ...
21 CFR 862.3830 - Salicylate test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test Systems § 862... salicylate overdose and in monitoring salicylate levels to ensure appropriate therapy. (b) Classification...
Biofouling detection monitoring devices: status assessment. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hillman, R.E.; Anson, D.; Corliss, J.M.
1985-03-01
An inventory of devices to detect and monitor biofouling in power plant condenser systems was prepared. The inventory was developed through a review of manufacturers' product information brochures, a general literature review, and limited personal contact with users and manufacturers. Two macrofouling and seventeen microfouling detection devices were reviewed. A summary analysis of the principal features of each device was prepared. Macrofouling devices are generally simple devices located at or near cooling water intakes. They monitor the growth of larger organisms such as mussels, barnacles, and large seaweeds. Microfouling detectors are usually located in or near the condenser tubes. Theymore » detect and monitor the growth of slime films on the tubes. Some of the devices measure changes in heat transfer or pressure drop in the condenser tubes. Other types include condenser simulators, biofilm samplers, or devices that measure the acoustic properties of the fouling films. Most devices are still in the development stage. Of the few available for general use, the type that measures heat transfer and/or pressure drop are developed to a greater degree than the other types. Recommendations for further research into development of a biofouling detection and monitoring devices include a side-by-side field comparison of selected devices, and the continued development of an effective acoustic device.« less
Code of Federal Regulations, 2014 CFR
2014-07-01
... add-on control device, you must monitor the total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each regeneration cycle, the carbon bed temperature after each regeneration and cooling... regeneration desorbing gas mass flow monitor must be an integrating device having a measurement sensitivity of...
Experimental Microfluidic System
NASA Technical Reports Server (NTRS)
Culbertson, Christopher; Gonda, Steve; Ramsey, John Michael
2005-01-01
The ultimate goal of this project is to integrate microfluidic devices with NASA's space bioreactor systems. In such a system, the microfluidic device would provide realtime feedback control of the bioreactor by monitoring pH, glucose, and lactate levels in the cell media; and would provide an analytical capability to the bioreactor in exterrestrial environments for monitoring bioengineered cell products and health changes in cells due to environmental stressors. Such integrated systems could be used as biosentinels both in space and on planet surfaces. The objective is to demonstrate the ability of microfabricated devices to repeatedly and reproducibly perform bead cytometry experiments in micro, lunar, martian, and hypergravity (1.8g).
System and Method for Monitoring Piezoelectric Material Performance
NASA Technical Reports Server (NTRS)
Moses, Robert W. (Inventor); Fox, Christopher L. (Inventor); Fox, Melanie L. (Inventor); Chattin, Richard L. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor)
2007-01-01
A system and method are provided for monitoring performance capacity of a piezoelectric material that may form part of an actuator or sensor device. A switch is used to selectively electrically couple an inductor to the piezoelectric material to form an inductor-capacitor circuit. Resonance is induced in the inductor-capacitor circuit when the switch is operated to create the circuit. The resonance of the inductor-capacitor circuit is monitored with the frequency of the resonance being indicative of performance capacity of the device's piezoelectric material.
Serial Interface through Stream Protocol on EPICS Platform for Distributed Control and Monitoring
NASA Astrophysics Data System (ADS)
Das Gupta, Arnab; Srivastava, Amit K.; Sunil, S.; Khan, Ziauddin
2017-04-01
Remote operation of any equipment or device is implemented in distributed systems in order to control and proper monitoring of process values. For such remote operations, Experimental Physics and Industrial Control System (EPICS) is used as one of the important software tool for control and monitoring of a wide range of scientific parameters. A hardware interface is developed for implementation of EPICS software so that different equipment such as data converters, power supplies, pump controllers etc. could be remotely operated through stream protocol. EPICS base was setup on windows as well as Linux operating system for control and monitoring while EPICS modules such as asyn and stream device were used to interface the equipment with standard RS-232/RS-485 protocol. Stream Device protocol communicates with the serial line with an interface to asyn drivers. Graphical user interface and alarm handling were implemented with Motif Editor and Display Manager (MEDM) and Alarm Handler (ALH) command line channel access utility tools. This paper will describe the developed application which was tested with different equipment and devices serially interfaced to the PCs on a distributed network.
Nekton Interaction Monitoring System
DOE Office of Scientific and Technical Information (OSTI.GOV)
2017-03-15
The software provides a real-time processing system for sonar to detect and track animals, and to extract water column biomass statistics in order to facilitate continuous monitoring of an underwater environment. The Nekton Interaction Monitoring System (NIMS) extracts and archives tracking and backscatter statistics data from a real-time stream of data from a sonar device. NIMS also sends real-time tracking messages over the network that can be used by other systems to generate other metrics or to trigger instruments such as an optical video camera. A web-based user interface provides remote monitoring and control. NIMS currently supports three popular sonarmore » devices: M3 multi-beam sonar (Kongsberg), EK60 split-beam echo-sounder (Simrad) and BlueView acoustic camera (Teledyne).« less
Zippel, Claus; Bohnet-Joschko, Sabine
2017-08-01
Medical devices play a central role in the diagnosis and treatment of diseases but also bring the potential for adverse events, hazards or malfunction with serious consequences for patients and users. Medical device manufacturers are therefore required by law to monitor the performance of medical devices that have been approved by the competent authorities (post market surveillance). Conducting a nationwide online-survey in the German medical device sector in Q2/2014 in order to explore the current status of the use of post market instruments we obtained a total of 118 complete data sets, for a return rate of 36%. The survey included manufacturers of different sizes, producing medical devices of all risk classes. The post market instruments most frequently reported covered the fields of production monitoring and quality management as well as literature observation, regulatory vigilance systems, customer knowledge management and market observation while Post Market Clinical Follow-up and health services research were being used less for product monitoring. We found significant differences between the different risk classes of medical devices produced and the intensity of use of post market instruments. Differences between company size and the intensity of instruments used were hardly detected. Results may well contribute to the development of device monitoring which is a crucial element of the policy and regulatory system to identify device-related safety issues. Copyright © 2017 Elsevier B.V. All rights reserved.
Bae, Myungsoo; Lee, Sangmin; Kim, Namkug
2018-07-01
To develop and validate a robust and cost-effective 3D respiratory monitoring system based on a Kinect device with a custom-made simple marker. A 3D respiratory monitoring system comprising the simple marker and the Microsoft Kinect v2 device was developed. The marker was designed for simple and robust detection, and the tracking algorithm was developed using the depth, RGB, and infra-red images acquired from the Kinect sensor. A Kalman filter was used to suppress movement noises. The major movements of the marker attached to the four different locations of body surface were determined from the initially collected tracking points of the marker while breathing. The signal level of respiratory motion with the tracking point was estimated along the major direction vector. The accuracy of the results was evaluated through a comparison with those of the conventional stereovision navigation system (NDI Polaris Spectra). Sixteen normal volunteers were enrolled to evaluate the accuracy of this system. The correlation coefficients between the respiratory motion signal from the Kinect device and conventional navigation system ranged from 0.970 to 0.999 and from 0.837 to 0.995 at the abdominal and thoracic surfaces, respectively. The respiratory motion signal from this system was obtained at 27-30 frames/s. This system with the Kinect v2 device and simple marker could be used for cost-effective, robust and accurate 3D respiratory motion monitoring. In addition, this system is as reliable for respiratory motion signal generation and as practically useful as the conventional stereovision navigation system and is less sensitive to patient posture. Copyright © 2018 Elsevier B.V. All rights reserved.
Rapid deployment of internet-connected environmental monitoring devices
USDA-ARS?s Scientific Manuscript database
Advances in electronic sensing and monitoring systems and the growth of the communications infrastructure have enabled users to gain immediate access to information and interaction with physical devices. To facilitate the uploading, viewing, and sharing of data via the internet, while avoiding the ...
21 CFR 862.3300 - Digitoxin test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test Systems § 862... diagnosis and treatment of digitoxin overdose and in monitoring levels of digitoxin to ensure appropriate...
21 CFR 862.3170 - Benzodiazepine test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test Systems § 862... benzodiazepine use or overdose and in monitoring levels of benzodiazepines to ensure appropriate therapy. (b...
21 CFR 862.3380 - Ethosuximide test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test Systems § 862... used in the diagnosis and treatment of ethosuximide overdose and in monitoring levels of ethosuximide...
21 CFR 862.3520 - Kanamycin test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test Systems § 862... diagnosis and treatment of kanamycin overdose and in monitoring levels of kanamycin to ensure appropriate...
21 CFR 862.3450 - Gentamicin test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test Systems § 862... in the diagnosis and treatment of gentamicin overdose and in monitoring levels of gentamicin to...
21 CFR 862.3320 - Digoxin test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test Systems § 862... diagnosis and treatment of digoxin overdose and in monitoring levels of digoxin to ensure appropriate...
21 CFR 862.3950 - Vancomycin test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test Systems § 862... diagnosis and treatment of vancomycin overdose and in monitoring the level of vancomycin to ensure...
21 CFR 862.3640 - Morphine test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test Systems § 862... monitoring levels of morphine and its analogs to ensure appropriate therapy. (b) Classification. Class II. ...
21 CFR 862.3680 - Primidone test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test Systems § 862... diagnosis and treatment of primidone overdose and in monitoring levels of primidone to ensure appropriate...
Compact Embedded Wireless Sensor-Based Monitoring of Concrete Curing.
Cabezas, Joaquín; Sánchez-Rodríguez, Trinidad; Gómez-Galán, Juan Antonio; Cifuentes, Héctor; González Carvajal, Ramón
2018-03-15
This work presents the design, construction and testing of a new embedded sensor system for monitoring concrete curing. A specific mote has been implemented to withstand the aggressive environment without affecting the measured variables. The system also includes a real-time monitoring application operating from a remote computer placed in a central location. The testing was done in two phases: the first in the laboratory, to validate the functional requirements of the developed devices; and the second on civil works to evaluate the functional features of the devices, such as range, robustness and flexibility. The devices were successfully implemented resulting in a low cost, highly reliable, compact and non-destructive solution.
Compact Embedded Wireless Sensor-Based Monitoring of Concrete Curing
Cabezas, Joaquín; Sánchez-Rodríguez, Trinidad; González Carvajal, Ramón
2018-01-01
This work presents the design, construction and testing of a new embedded sensor system for monitoring concrete curing. A specific mote has been implemented to withstand the aggressive environment without affecting the measured variables. The system also includes a real-time monitoring application operating from a remote computer placed in a central location. The testing was done in two phases: the first in the laboratory, to validate the functional requirements of the developed devices; and the second on civil works to evaluate the functional features of the devices, such as range, robustness and flexibility. The devices were successfully implemented resulting in a low cost, highly reliable, compact and non-destructive solution. PMID:29543765
Printable thermoelectric devices and conductive patterns for medical applications
NASA Astrophysics Data System (ADS)
Lee, Jungmin; Kim, Hyunjung; Chen, Linfeng; Choi, Sang H.; Varadan, Vijay K.
2012-10-01
Remote point-of-care is expected to revolutionize the modern medical practice, and many efforts have been made for the development of wireless health monitoring systems for continuously detecting the physiological signals of patients. To make the remote point-of-care generally accepted and widely used, it is necessary to develop cost-effective and durable wireless health monitoring systems. Printing technique will be helpful for the fabrication of high-quality and low-cost medical devices and systems because it allows high-resolution and high-speed fabrication, low material consumption and nano-sized patterning on both flexible and rigid substrates. Furthermore, application of thermoelectric generators can replace conventional batteries as the power sources for wireless health monitoring systems because thermoelectric generators can convert the wasted heat or the heat from nature into electricity which is required for the operation of the wireless health monitoring systems. In this research, we propose the concept of printable thermoelectric devices and conductive patterns for the realization of more portable and cost-effective medical devices. To print thermoelectric generators and conductive patterns on substrates, printing inks with special characteristics should be developed. For the development of thermoelectric inks, nano-structured thermoelectric materials are synthesized and characterized; and for the development of conductive inks, two kinds of surface treated carbon nanotubes are used as active materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Physical device safety is typically implemented locally using embedded controllers, while operations safety is primarily performed in control centers. Safe operations can be enhanced by correct design of device-level control algorithms, and protocols, procedures and operator training at the control-room level, but all can fail. Moreover, these elements exchange data and issue commands via vulnerable communication layers. In order to secure these gaps and enhance operational safety, we believe monitoring of command sequences must be combined with an awareness of physical device limitations and automata models that capture safety mechanisms. One way of doing this is by leveraging specification-based intrusionmore » detection to monitor for physical constraint violations. The method can also verify that physical infrastructure state is consistent with monitoring information and control commands exchanged between field devices and control centers. This additional security layer enhances protection from both outsider attacks and insider mistakes. We implemented specification-based SCADA command analyzers using physical constraint algorithms directly in the Bro framework and Broccoli APIs for three separate scenarios: a water heater, an automated distribution system, and an over-current protection scheme. To accomplish this, we added low-level analyzers capable of examining control system-specific protocol packets for both Modbus TCP and DNP3, and also higher-level analyzers able to interpret device command and data streams within the context of each device's physical capabilities and present operational state. Thus the software that we are making available includes the Bro/Broccoli scripts for these three scenarios, as well as simulators, written in C, of those scenarios that generate sample traffic that is monitored by the Bro/Broccoli scripts. In addition, we have also implemented systems to directly pull cyber-physical information from the OSIsoft PI historian system. We have included the Python scripts used to perform that monitoring.« less
21 CFR 862.3850 - Sulfonamide test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test Systems § 862... monitoring sulfonamide levels to ensure appropriate therapy. (b) Classification. Class I. [52 FR 16122, May 1...
Integrating policy-based management and SLA performance monitoring
NASA Astrophysics Data System (ADS)
Liu, Tzong-Jye; Lin, Chin-Yi; Chang, Shu-Hsin; Yen, Meng-Tzu
2001-10-01
Policy-based management system provides the configuration capability for the system administrators to focus on the requirements of customers. The service level agreement performance monitoring mechanism helps system administrators to verify the correctness of policies. However, it is difficult for a device to process the policies directly because the policies are the management concept. This paper proposes a mechanism to decompose a policy into rules that can be efficiently processed by a device. Thus, the device may process the rule and collect the performance statistics information efficiently; and the policy-based management system may collect these performance statistics information and report the service-level agreement performance monitoring information to the system administrator. The proposed policy-based management system achieves both the policy configuration and service-level agreement performance monitoring requirements. A policy consists of a condition part and an action part. The condition part is a Boolean expression of a source host IP group, a destination host IP group, etc. The action part is the parameters of services. We say that an address group is compact if it only consists of a range of IP address that can be denoted by a pair of IP address and corresponding IP mask. If the condition part of a policy only consists of the compact address group, we say that the policy is a rule. Since a device can efficiently process a compact address and a system administrator prefers to define a range of IP address, the policy-based management system has to translate policy into rules and supplements the gaps between policy and rules. The proposed policy-based management system builds the relationships between VPN and policies, policy and rules. Since the system administrator wants to monitor the system performance information of VPNs and policies, the proposed policy-based management system downloads the relationships among VPNs, policies and rules to the SNMP agents. The SNMP agents build the management information base (MIB) of all VPNs, policies and rules according to the relationships obtained from the management server. Thus, the proposed policy-based management system may get all performance monitoring information of VPNs and policies from agents. The proposed policy-based manager achieves two goals: a) provide a management environment for the system administrator to configure their network only considering the policy requirement issues and b) let the device have only to process the packet and then collect the required performance information. These two things make the proposed management system satisfy both the user and device requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... adsorber as an add-on control device, you must monitor the total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each regeneration cycle, the carbon bed temperature after each regeneration and... regeneration desorbing gas mass flow monitor must be an integrating device having an accuracy of ±10 percent...
Code of Federal Regulations, 2013 CFR
2013-07-01
... adsorber as an add-on control device, you must monitor the total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each regeneration cycle, the carbon bed temperature after each regeneration and... regeneration desorbing gas mass flow monitor must be an integrating device having an accuracy of ±10 percent...
Code of Federal Regulations, 2014 CFR
2014-07-01
... adsorber as an add-on control device, you must monitor the total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each regeneration cycle, the carbon bed temperature after each regeneration and... regeneration desorbing gas mass flow monitor must be an integrating device having an accuracy of ±10 percent...
The Camino intracranial pressure device in clinical practice. Assessment in a 1000 cases.
Gelabert-González, M; Ginesta-Galan, V; Sernamito-García, R; Allut, A G; Bandin-Diéguez, J; Rumbo, R M
2006-04-01
Intracranial pressure (ICP) monitoring has become standard in the management of neurocritical patients. A variety of monitoring techniques and devices are available, each offering advantages and disadvantages. Analysis of large populations has never been performed. A prospective study was designed to evaluate the Camino fiberoptic intraparenchymal cerebral pressure monitor for complications and accuracy. Between 1992-2004 one thousand consecutive patients had a fiberoptic ICP monitor placed. The most frequent indication for monitoring was severe head injury (697 cases). The average duration of ICP monitoring was 184.6 +/- 94.3 hours; the range was 16-581 hours. Zero drift (range, -17 to 21 mm Hg; mean 7.3 +/- 5.1) was recorded after the devices were removed from 624 patients. Mechanical complications such as: breakage of the optical fiber (n = 17); dislocations of the fixation screw (n = 15) or the probe (n = 13); and failure of ICP recording for unknown reasons (n = 4) were found in 49 Camino devices. The Camino ICP sensor remains one of the most popular ICP monitoring devices for use in critical neurosurgical patients. The system offers reliable ICP measurements in an acceptable percentage of device complications and the advantage of in vivo recalibration. The incidence of technical complications was low and similar to others devices.
[Design and implementation of real-time continuous glucose monitoring instrument].
Huang, Yonghong; Liu, Hongying; Tian, Senfu; Jia, Ziru; Wang, Zi; Pi, Xitian
2017-12-01
Real-time continuous glucose monitoring can help diabetics to control blood sugar levels within the normal range. However, in the process of practical monitoring, the output of real-time continuous glucose monitoring system is susceptible to glucose sensor and environment noise, which will influence the measurement accuracy of the system. Aiming at this problem, a dual-calibration algorithm for the moving-window double-layer filtering algorithm combined with real-time self-compensation calibration algorithm is proposed in this paper, which can realize the signal drift compensation for current data. And a real-time continuous glucose monitoring instrument based on this study was designed. This real-time continuous glucose monitoring instrument consisted of an adjustable excitation voltage module, a current-voltage converter module, a microprocessor and a wireless transceiver module. For portability, the size of the device was only 40 mm × 30 mm × 5 mm and its weight was only 30 g. In addition, a communication command code algorithm was designed to ensure the security and integrity of data transmission in this study. Results of experiments in vitro showed that current detection of the device worked effectively. A 5-hour monitoring of blood glucose level in vivo showed that the device could continuously monitor blood glucose in real time. The relative error of monitoring results of the designed device ranged from 2.22% to 7.17% when comparing to a portable blood meter.
21 CFR 870.2600 - Signal isolation system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Signal isolation system. 870.2600 Section 870.2600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2600 Signal isolation...
21 CFR 870.2600 - Signal isolation system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Signal isolation system. 870.2600 Section 870.2600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2600 Signal isolation...
Autonomous microfluidic system for phosphate detection.
McGraw, Christina M; Stitzel, Shannon E; Cleary, John; Slater, Conor; Diamond, Dermot
2007-02-28
Miniaturization of analytical devices through the advent of microfluidics and micro total analysis systems is an important step forward for applications such as medical diagnostics and environmental monitoring. The development of field-deployable instruments requires that the entire system, including all necessary peripheral components, be miniaturized and packaged in a portable device. A sensor for long-term monitoring of phosphate levels has been developed that incorporates sampling, reagent and waste storage, detection, and wireless communication into a complete, miniaturized system. The device employs a low-power detection and communication system, so the entire instrument can operate autonomously for 7 days on a single rechargeable, 12V battery. In addition, integration of a wireless communication device allows the instrument to be controlled and results to be downloaded remotely. This autonomous system has a limit of detection of 0.3mg/L and a linear dynamic range between 0 and 20mg/L.
A new passive radon-thoron discriminative measurement system.
Sciocchetti, G; Sciocchetti, A; Giovannoli, P; DeFelice, P; Cardellini, F; Cotellessa, G; Pagliari, M
2010-10-01
A new passive radon-thoron discriminative measurement system has been developed for monitoring radon and thoron individually. It consists of a 'couple' of passive integrating devices with a CR39 nuclear track detector (NTD). The experimental prototype is based on the application of a new concept of NTD instrument developed at ENEA, named Alpha-PREM, acronym of piston radon exposure meter, which allows controlling the detector exposure with a patented sampling technique (Int. Eu. Pat. and US Pat.). The 'twin diffusion chambers system' was based on two A-PREM devices consisting of the standard device, named NTD-Rn, and a modified version, named NTD-Rn/Tn, which was set up to improve thoron sampling efficiency of the diffusion chamber, without changing the geometry and the start/stop function of the NTD-Rn device. Coupling devices fitted on each device allowed getting a system, which works as a double-chamber structure when deployed at the monitoring position. In this paper both technical and physical aspects are considered.
Thelen, Sebastian; Czaplik, Michael; Meisen, Philipp; Schilberg, Daniel; Jeschke, Sabina
2015-01-01
In order to study new methods of telemedicine usage in the context of emergency medical services, researchers need to prototype integrated telemedicine systems. To conduct a one-year trial phase-intended to study a new application of telemedicine in German emergency medical services-we used off-the-shelf medical devices and software to realize real-time patient monitoring within an integrated telemedicine system prototype. We demonstrate its feasibility by presenting the integrated real-time patient monitoring solution, by studying signal delay and transmission robustness regarding changing communication channel characteristics, and by evaluating issues reported by the physicians during the trial phase. Where standards like HL7 and the IEEE 11073 family are intended to enable interoperability of product grade medical devices, we show that research prototypes benefit from the use of web technologies and simple device interfaces, as they simplify product development for a manufacturer and ease integration efforts for research teams. Embracing this approach for the development of new medical devices eases the constraint to use off-the-shelf products for research trials investigating innovative use of telemedicine.
Inherently safe passive gas monitoring system
Cordaro, Joseph V.; Bellamy, John Stephen; Shuler, James M.; Shull, Davis J.; Leduc, Daniel R.
2016-09-06
Generally, the present disclosure is directed to gas monitoring systems that use inductive power transfer to safely power an electrically passive device included within a nuclear material storage container. In particular, the electrically passive device can include an inductive power receiver for receiving inductive power transfer through a wall of the nuclear material storage container. The power received by the inductive power receiver can be used to power one or more sensors included in the device. Thus, the device is not required to include active power generation components such as, for example, a battery, that increase the risk of a spark igniting flammable gases within the container.
NASA Astrophysics Data System (ADS)
Varadan, Vijay K.
2007-04-01
Nanotechnology has been broadly defined as the one for not only the creation of functional materials and devices as well as systems through control of matter at the scale of 1-100 nm, but also the exploitation of novel properties and phenomena at the same scale. Growing needs in the point-of-care (POC) that is an increasing market for improving patient's quality of life, are driving the development of nanotechnologies for diagnosis and treatment of various life threatening diseases. This paper addresses the recent development of nanodiagnostic sensors and nanotherapeutic devices with functionalized carbon nanotube and/or nanowire on a flexible organic thin film electronics to monitor and control of the three leading diseases namely 1) neurodegenerative diseases, 2) cardiovascular diseases, and 3) diabetes and metabolic diseases. The sensors developed include implantable and biocompatible devices, light weight wearable devices in wrist-watches, hats, shoes and clothes. The nanotherapeutics devices include nanobased drug delivery system. Many of these sensors are integrated with the wireless systems for the remote physiological monitoring. The author's research team has also developed a wireless neural probe using nanowires and nanotubes for monitoring and control of Parkinson's disease. Light weight and compact EEG, EOG and EMG monitoring system in a hat developed is capable of monitoring real time epileptic patients and patients with neurological and movement disorders using the Internet and cellular network. Physicians could be able to monitor these signals in realtime using portable computers or cell phones and will give early warning signal if these signals cross a pre-determined threshold level. In addition the potential impact of nanotechnology for applications in medicine is that, the devices can be designed to interact with cells and tissues at the molecular level, which allows high degree of functionality. Devices engineered at nanometer scale imply a controlled manipulation of individual molecules and atoms that can interact with the human body at sub-cellular level. The recent progress in microelectronics and nanosensors crates very powerful tools for the early detection and diagnosis. The nanowire integrated potassium and dopamine sensors are ideal for the monitoring and control of many cardiovascular diseases and neurological disorders. Selected movies illustrating the applications of nanodevices to patients will be shown at the talk.
ETV TEST OF PCDD/F EMISSIONS MONITORING SYSTEMS
Four polychlorinated dibenzodioxin and furan (PCDD/F) emission monitors were tested under the EPA Environmental Technology and Verification (ETV) program. Two long-term sampling devices, the DioxinMonitoringSystem and Adsorption Method for Sampling Dioxins and Furans, and two sem...
21 CFR 862.3270 - Codeine test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test Systems § 862... in the diagnosis and treatment of codeine use or overdose and in monitoring levels of codeine to...
21 CFR 862.3035 - Amikacin test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test Systems § 862... used in the diagnosis and treatment of amikacin overdose and in monitoring levels of amikacin to ensure...
Use of electronic monitoring in clinical nursing research.
Ailinger, Rita L; Black, Patricia L; Lima-Garcia, Natalie
2008-05-01
In the past decade, the introduction of electronic monitoring systems for monitoring medication adherence has contributed to the dialog about what works and what does not work in monitoring adherence. The purpose of this article is to describe the use of the Medication Event Monitoring System (MEMS) in a study of patients receiving isoniazid for latent tuberculosis infection. Three case examples from the study illustrate the data that are obtained from the electronic device compared to self-reports and point to the disparities that may occur in electronic monitoring. The strengths and limitations of using the MEMS and ethical issues in utilizing this technology are discussed. Nurses need to be aware of these challenges when using electronic measuring devices to monitor medication adherence in clinical nursing practice and research.
Evaluation of a video image detection system : final report.
DOT National Transportation Integrated Search
1994-05-01
A video image detection system (VIDS) is an advanced wide-area traffic monitoring system : that processes input from a video camera. The Autoscope VIDS coupled with an information : management system was selected as the monitoring device because test...
Monitoring the health of power transformers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirtley, J.L. Jr.; Hagman, W.H.; Lesieutre, B.C.
This article reviews MIT`s model-based system which offers adaptive, intelligent surveillance of transformers, and summons attention to anomalous operation through paging devices. Failures of large power transformers are problematic for four reasons. Generally, large transformers are situated so that failures present operational problems to the system. In addition, large power transformers are encased in tanks of flammable and environmentally hazardous fluid. Failures are often accompanied by fire and/or spillage of this fluid. This presents hazards to people, other equipment and property, and the local environment. Finally, large power transformers are costly devices. There is a clear incentive for utilities tomore » keep track of the health of their power transformers. Massachusetts Institute of Technology (MIT) has developed an adaptive, intelligent, monitoring system for large power transformers. Four large transformers on the Boston Edison system are under continuous surveillance by this system, which can summon attention to anomalous operation through paging devices. The monitoring system offers two advantages over more traditional (not adaptive) methods of tracking transformer operation.« less
Villalonga, Claudia; Damas, Miguel
2014-01-01
Technological advances on the development of mobile devices, medical sensors, and wireless communication systems support a new generation of unobtrusive, portable, and ubiquitous health monitoring systems for continuous patient assessment and more personalized health care. There exist a growing number of mobile apps in the health domain; however, little contribution has been specifically provided, so far, to operate this kind of apps with wearable physiological sensors. The PhysioDroid, presented in this paper, provides a personalized means to remotely monitor and evaluate users' conditions. The PhysioDroid system provides ubiquitous and continuous vital signs analysis, such as electrocardiogram, heart rate, respiration rate, skin temperature, and body motion, intended to help empower patients and improve clinical understanding. The PhysioDroid is composed of a wearable monitoring device and an Android app providing gathering, storage, and processing features for the physiological sensor data. The versatility of the developed app allows its use for both average users and specialists, and the reduced cost of the PhysioDroid puts it at the reach of most people. Two exemplary use cases for health assessment and sports training are presented to illustrate the capabilities of the PhysioDroid. Next technical steps include generalization to other mobile platforms and health monitoring devices. PMID:25295301
Banos, Oresti; Villalonga, Claudia; Damas, Miguel; Gloesekoetter, Peter; Pomares, Hector; Rojas, Ignacio
2014-01-01
Technological advances on the development of mobile devices, medical sensors, and wireless communication systems support a new generation of unobtrusive, portable, and ubiquitous health monitoring systems for continuous patient assessment and more personalized health care. There exist a growing number of mobile apps in the health domain; however, little contribution has been specifically provided, so far, to operate this kind of apps with wearable physiological sensors. The PhysioDroid, presented in this paper, provides a personalized means to remotely monitor and evaluate users' conditions. The PhysioDroid system provides ubiquitous and continuous vital signs analysis, such as electrocardiogram, heart rate, respiration rate, skin temperature, and body motion, intended to help empower patients and improve clinical understanding. The PhysioDroid is composed of a wearable monitoring device and an Android app providing gathering, storage, and processing features for the physiological sensor data. The versatility of the developed app allows its use for both average users and specialists, and the reduced cost of the PhysioDroid puts it at the reach of most people. Two exemplary use cases for health assessment and sports training are presented to illustrate the capabilities of the PhysioDroid. Next technical steps include generalization to other mobile platforms and health monitoring devices.
Wireless physiological monitoring system for psychiatric patients.
Rademeyer, A J; Blanckenberg, M M; Scheffer, C
2009-01-01
Patients in psychiatric hospitals that are sedated or secluded are at risk of death or injury if they are not continuously monitored. Some psychiatric patients are restless and aggressive, and hence the monitoring device should be robust and must transmit the data wirelessly. Two devices, a glove that measures oxygen saturation and a dorsally-mounted device that measures heart rate, skin temperature and respiratory rate were designed and tested. Both devices connect to one central monitoring station using two separate Bluetooth connections, ensuring a completely wireless setup. A Matlab graphical user interface (GUI) was developed for signal processing and monitoring of the vital signs of the psychiatric patient. Detection algorithms were implemented to detect ECG arrhythmias such as premature ventricular contraction and atrial fibrillation. The prototypes were manufactured and tested in a laboratory setting on healthy volunteers.
21 CFR 870.2855 - Implantable Intra-aneurysm Pressure Measurement System.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Implantable Intra-aneurysm Pressure Measurement System. 870.2855 Section 870.2855 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices...
21 CFR 870.2855 - Implantable Intra-aneurysm Pressure Measurement System.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implantable Intra-aneurysm Pressure Measurement System. 870.2855 Section 870.2855 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices...
Comoretto, Rosanna Irene; Facchin, Domenico; Ghidina, Marco; Proclemer, Alessandro; Gregori, Dario
2017-08-01
Health-related quality of life (HRQoL) improves shortly after pacemaker (PM) implantation. No studies have investigated the HRQoL trend for elderly patients with a remote device monitoring follow-up system. Using EuroQol-5D Questionnaire and the PM-specific Assessment of Quality of Life and Related Events Questionnaire, HRQoL was measured at baseline and then repeatedly during the 6 months following PM implantation in a cohort of 42 consecutive patients. Twenty-five patients were followed-up with standard outpatient visits, while 17 used a remote monitoring system. Aquarel scores were significantly higher in patients with remote device monitoring system regarding chest discomfort and arrhythmia subscales the first month after PM implant and remained stable until 6 months. Remote monitoring affected the rate of HRQoL improvement in the first 3 months after pacemaker implantation more than ambulatory follow-up. Remote device monitoring has a significant impact on HRQoL in pacemaker patients, increasing its levels up to 6 months after implant. © 2017 John Wiley & Sons, Ltd.
40 CFR 60.705 - Reporting and recordkeeping requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Volatile Organic Compound Emissions From Synthetic Organic Chemical Manufacturing Industry (SOCMI) Reactor...) (i), (ii) or (iii), the concentration level or reading indicated by the organics monitoring device at... recovery system, and where an organic compound monitoring device is not used: (i) All 3-hour periods of...
40 CFR 60.705 - Reporting and recordkeeping requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Volatile Organic Compound Emissions From Synthetic Organic Chemical Manufacturing Industry (SOCMI) Reactor...) (i), (ii) or (iii), the concentration level or reading indicated by the organics monitoring device at... recovery system, and where an organic compound monitoring device is not used: (i) All 3-hour periods of...
40 CFR 60.613 - Monitoring of emissions and operations.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., photoionization, or thermal conductivity, each equipped with a continuous recorder. (2) Where a condenser is the final recovery device in a recovery system: (i) A condenser exit (product side) temperature monitoring... incinerator, boiler, process heater, or flare; or recovery devices other than an absorber, condenser, or...
Telemedicine and cardiac implants: what is the benefit?
Varma, Niraj; Ricci, Renato Pietro
2013-01-01
Cardiac implantable electronic devices are increasing in prevalence. The post-implant follow-up is important for monitoring both device function and patient condition. However, practice is inconsistent. For example, ICD follow-up schedules vary from 3 monthly to yearly according to facility and physician preference and availability of resources. Recommended follow-up schedules impose significant burden. Importantly, no surveillance occurs between follow-up visits. In contrast, implantable devices with automatic remote monitoring capability provide a means for performing constant surveillance, with the ability to identify salient problems rapidly. Remote home monitoring reduces the volume of device clinic visits and provides early detection of patient and/or system problems. PMID:23211231
21 CFR 870.2640 - Portable leakage current alarm.
Code of Federal Regulations, 2014 CFR
2014-04-01
... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2640 Portable... the electrical leakage current between any two points of an electrical system and to sound an alarm if...
21 CFR 870.2640 - Portable leakage current alarm.
Code of Federal Regulations, 2013 CFR
2013-04-01
... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2640 Portable... the electrical leakage current between any two points of an electrical system and to sound an alarm if...
21 CFR 870.2640 - Portable leakage current alarm.
Code of Federal Regulations, 2012 CFR
2012-04-01
... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2640 Portable... the electrical leakage current between any two points of an electrical system and to sound an alarm if...
A programmable point-of-care device for external CSF drainage and monitoring.
Simkins, Jeffrey R; Subbian, Vignesh; Beyette, Fred R
2014-01-01
This paper presents a prototype of a programmable cerebrospinal fluid (CSF) external drainage system that can accurately measure the dispensed fluid volume. It is based on using a miniature spectrophotometer to collect color data to inform drain rate and pressure monitoring. The prototype was machined with 1 μm dimensional accuracy. The current device can reliably monitor the total accumulated fluid volume, the drain rate, the programmed pressure, and the pressure read from the sensor. Device requirements, fabrication processes, and preliminary results with an experimental set-up are also presented.
Development of a mini-mobile digital radiography system by using wireless smart devices.
Jeong, Chang-Won; Joo, Su-Chong; Ryu, Jong-Hyun; Lee, Jinseok; Kim, Kyong-Woo; Yoon, Kwon-Ha
2014-08-01
The current technologies that trend in digital radiology (DR) are toward systems using portable smart mobile as patient-centered care. We aimed to develop a mini-mobile DR system by using smart devices for wireless connection into medical information systems. We developed a mini-mobile DR system consisting of an X-ray source and a Complementary Metal-Oxide Semiconductor (CMOS) sensor based on a flat panel detector for small-field diagnostics in patients. It is used instead of the systems that are difficult to perform with a fixed traditional device. We also designed a method for embedded systems in the development of portable DR systems. The external interface used the fast and stable IEEE 802.11n wireless protocol, and we adapted the device for connections with Picture Archiving and Communication System (PACS) and smart devices. The smart device could display images on an external monitor other than the monitor in the DR system. The communication modules, main control board, and external interface supporting smart devices were implemented. Further, a smart viewer based on the external interface was developed to display image files on various smart devices. In addition, the advantage of operators is to reduce radiation dose when using remote smart devices. It is integrated with smart devices that can provide X-ray imaging services anywhere. With this technology, it can permit image observation on a smart device from a remote location by connecting to the external interface. We evaluated the response time of the mini-mobile DR system to compare to mobile PACS. The experimental results show that our system outperforms conventional mobile PACS in this regard.
21 CFR 866.5910 - Quality control material for cystic fibrosis nucleic acid assays.
Code of Federal Regulations, 2010 CFR
2010-04-01
... HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5910 Quality control material for cystic fibrosis nucleic acid assays. (a... cystic fibrosis nucleic acid assays is a device intended to help monitor reliability of a test system by...
40 CFR 63.653 - Monitoring, recordkeeping, and implementation plan for emissions averaging.
Code of Federal Regulations, 2013 CFR
2013-07-01
... § 63.120 of subpart G; and (ii) For closed vent systems with control devices, conduct an initial design..., monitoring, recordkeeping, and reporting equivalent to that required for Group 1 emission points complying... control device. (2) The source shall implement the following procedures for each miscellaneous process...
Flexible Sensing Electronics for Wearable/Attachable Health Monitoring.
Wang, Xuewen; Liu, Zheng; Zhang, Ting
2017-07-01
Wearable or attachable health monitoring smart systems are considered to be the next generation of personal portable devices for remote medicine practices. Smart flexible sensing electronics are components crucial in endowing health monitoring systems with the capability of real-time tracking of physiological signals. These signals are closely associated with body conditions, such as heart rate, wrist pulse, body temperature, blood/intraocular pressure and blood/sweat bio-information. Monitoring such physiological signals provides a convenient and non-invasive way for disease diagnoses and health assessments. This Review summarizes the recent progress of flexible sensing electronics for their use in wearable/attachable health monitoring systems. Meanwhile, we present an overview of different materials and configurations for flexible sensors, including piezo-resistive, piezo-electrical, capacitive, and field effect transistor based devices, and analyze the working principles in monitoring physiological signals. In addition, the future perspectives of wearable healthcare systems and the technical demands on their commercialization are briefly discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wireless recording systems: from noninvasive EEG-NIRS to invasive EEG devices.
Sawan, Mohamad; Salam, Muhammad T; Le Lan, Jérôme; Kassab, Amal; Gelinas, Sébastien; Vannasing, Phetsamone; Lesage, Frédéric; Lassonde, Maryse; Nguyen, Dang K
2013-04-01
In this paper, we present the design and implementation of a wireless wearable electronic system dedicated to remote data recording for brain monitoring. The reported wireless recording system is used for a) simultaneous near-infrared spectrometry (NIRS) and scalp electro-encephalography (EEG) for noninvasive monitoring and b) intracerebral EEG (icEEG) for invasive monitoring. Bluetooth and dual radio links were introduced for these recordings. The Bluetooth-based device was embedded in a noninvasive multichannel EEG-NIRS system for easy portability and long-term monitoring. On the other hand, the 32-channel implantable recording device offers 24-bit resolution, tunable features, and a sampling frequency up to 2 kHz per channel. The analog front-end preamplifier presents low input-referred noise of 5 μ VRMS and a signal-to-noise ratio of 112 dB. The communication link is implemented using a dual-band radio frequency transceiver offering a half-duplex 800 kb/s data rate, 16.5 mW power consumption and less than 10(-10) post-correction Bit-Error Rate (BER). The designed system can be accessed and controlled by a computer with a user-friendly graphical interface. The proposed wireless implantable recording device was tested in vitro using real icEEG signals from two patients with refractory epilepsy. The wirelessly recorded signals were compared to the original signals recorded using wired-connection, and measured normalized root-mean square deviation was under 2%.
Implantable device for in-vivo intracranial and cerebrospinal fluid pressure monitoring
Ericson, Milton N.; McKnight, Timothy E.; Smith, Stephen F.; Hylton, James O.
2003-01-01
The present invention relates to a completely implantable intracranial pressure monitor, which can couple to existing fluid shunting systems as well as other internal monitoring probes. The implant sensor produces an analog data signal which is then converted electronically to a digital pulse by generation of a spreading code signal and then transmitted to a location outside the patient by a radio-frequency transmitter to an external receiver. The implanted device can receive power from an internal source as well as an inductive external source. Remote control of the implant is also provided by a control receiver which passes commands from an external source to the implant system logic. Alarm parameters can be programmed into the device which are capable of producing an audible or visual alarm signal. The utility of the monitor can be greatly expanded by using multiple pressure sensors simultaneously or by combining sensors of various physiological types.
NASA Astrophysics Data System (ADS)
Yu, Yanan; Wang, Xiaoxun; He, Chengcheng; Lai, Chenlong; Liu, Yuanchao
2015-11-01
For overcoming the problems such as remote operation and dangerous tasks, multi-terminal remote monitoring and warning system based on STC89C52 Micro Control Unit and wireless communication technique was proposed. The system with MCU as its core adopted multiple sets of sensor device to monitor environment parameters of different locations, such as temperature, humidity, smoke other harmful gas concentration. Data information collected was transmitted remotely by wireless transceiver module, and then multi-channel data parameter was processed and displayed through serial communication protocol between the module and PC. The results of system could be checked in the form of web pages within a local network which plays a wireless monitoring and warning role. In a remote operation, four-rotor micro air vehicle which fixed airborne data acquisition device was utilized as a middleware between collecting terminal and PC to increase monitoring scope. Whole test system has characteristics of simple construction, convenience, real time ability and high reliability, which could meet the requirements of actual use.
Design of wireless communication system for environmental monitoring
NASA Astrophysics Data System (ADS)
Jiang, Li; Zhang, Xiaoyang; Sun, Zhixiang; Tian, Youcheng; Wang, Juan; Guo, Jianghua
2017-05-01
This paper introduces the basic principle and advantages of GPRS data transmission, and discusses in detail about the hardware structure of the GPRS module, the connection mode and the research process of GPRS application in the device. The feasibility and superiority of GPRS data transmission in wireless water quality monitoring device have been tested and proved, which provides great convenience for water quality monitoring, and has good application prospect.
Wearable health monitoring using capacitive voltage-mode Human Body Communication.
Maity, Shovan; Das, Debayan; Sen, Shreyas
2017-07-01
Rapid miniaturization and cost reduction of computing, along with the availability of wearable and implantable physiological sensors have led to the growth of human Body Area Network (BAN) formed by a network of such sensors and computing devices. One promising application of such a network is wearable health monitoring where the collected data from the sensors would be transmitted and analyzed to assess the health of a person. Typically, the devices in a BAN are connected through wireless (WBAN), which suffers from energy inefficiency due to the high-energy consumption of wireless transmission. Human Body Communication (HBC) uses the relatively low loss human body as the communication medium to connect these devices, promising order(s) of magnitude better energy-efficiency and built-in security compared to WBAN. In this paper, we demonstrate a health monitoring device and system built using Commercial-Off-The-Shelf (COTS) sensors and components, that can collect data from physiological sensors and transmit it through a) intra-body HBC to another device (hub) worn on the body or b) upload health data through HBC-based human-machine interaction to an HBC capable machine. The system design constraints and signal transfer characteristics for the implemented HBC-based wearable health monitoring system are measured and analyzed, showing reliable connectivity with >8× power savings compared to Bluetooth low-energy (BTLE).
A wearable, low-power, health-monitoring instrumentation based on a Programmable System-on-Chip.
Massot, Bertrand; Gehin, Claudine; Nocua, Ronald; Dittmar, Andre; McAdams, Eric
2009-01-01
Improvement in quality and efficiency of health and medicine, at home and in hospital, has become of paramount importance. The solution of this problem would require the continuous monitoring of several key patient parameters, including the assessment of autonomic nervous system (ANS) activity using non-invasive sensors, providing information for emotional, sensorial, cognitive and physiological analysis of the patient. Recent advances in embedded systems, microelectronics, sensors and wireless networking enable the design of wearable systems capable of such advanced health monitoring. The subject of this article is an ambulatory system comprising a small wrist device connected to several sensors for the detection of the autonomic nervous system activity. It affords monitoring of skin resistance, skin temperature and heart activity. It is also capable of recording the data on a removable media or sending it to computer via a wireless communication. The wrist device is based on a Programmable System-on-Chip (PSoC) from Cypress: PSoCs are mixed-signal arrays, with dynamic, configurable digital and analogical blocks and an 8-bit Microcontroller unit (MCU) core on a single chip. In this paper we present first of all the hardware and software architecture of the device, and then results obtained from initial experiments.
Noninvasive health condition monitoring device for workers at high altitudes conditions.
Aqueveque, Pablo; Gutierrez, Cristopher; Saavedra, Francisco; Pino, Esteban J
2016-08-01
This work presents the design and implementation of a continuous monitoring device to control the health state of workers, for instance miners, at high altitudes. The extreme ambient conditions are harmful for peoples' health; therefore a continuous control of the workers' vital signs is necessary. The developed system includes physiological variables: electrocardiogram (ECG), respiratory activity and body temperature (BT), and ambient variables: ambient temperature (AT) and relative humidity (RH). The noninvasive sensors are incorporated in a t-shirt to deliver a functional device, and maximum comfort to the users. The device is able to continuously calculate heart rate (HR) and respiration rate (RR), and establish a wireless data transmission to a central monitoring station.
Diagnostic/drug delivery "sense-respond" devices, systems, and uses thereof
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polsky, Ronen; Miller, Philip Rocco; Edwards, Thayne L.
The present invention is directed to devices, systems, and methods for detecting and/or monitoring one or more markers in a sample. In particular, such devices integrate a plurality of hollow needles configured to extract or obtain a fluid sample from a subject, as well as transducers to detect a marker of interest.
21 CFR 862.1190 - Copper test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... nervous system). Test results are also used in monitoring patients with Hodgkin's disease (a disease... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Copper test system. 862.1190 Section 862.1190 Food... DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1190...
21 CFR 862.1190 - Copper test system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... nervous system). Test results are also used in monitoring patients with Hodgkin's disease (a disease... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Copper test system. 862.1190 Section 862.1190 Food... DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1190...
21 CFR 862.1190 - Copper test system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... nervous system). Test results are also used in monitoring patients with Hodgkin's disease (a disease... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Copper test system. 862.1190 Section 862.1190 Food... DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1190...
21 CFR 862.1190 - Copper test system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... nervous system). Test results are also used in monitoring patients with Hodgkin's disease (a disease... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Copper test system. 862.1190 Section 862.1190 Food... DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1190...
21 CFR 862.1190 - Copper test system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... nervous system). Test results are also used in monitoring patients with Hodgkin's disease (a disease... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Copper test system. 862.1190 Section 862.1190 Food... DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1190...
21 CFR 862.1600 - Potassium test system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Potassium test system. 862.1600 Section 862.1600....1600 Potassium test system. (a) Identification. A potassium test system is a device intended to measure potassium in serum, plasma, and urine. Measurements obtained by this device are used to monitor electrolyte...
21 CFR 862.1600 - Potassium test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Potassium test system. 862.1600 Section 862.1600....1600 Potassium test system. (a) Identification. A potassium test system is a device intended to measure potassium in serum, plasma, and urine. Measurements obtained by this device are used to monitor electrolyte...
21 CFR 862.1600 - Potassium test system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Potassium test system. 862.1600 Section 862.1600....1600 Potassium test system. (a) Identification. A potassium test system is a device intended to measure potassium in serum, plasma, and urine. Measurements obtained by this device are used to monitor electrolyte...
21 CFR 862.1600 - Potassium test system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Potassium test system. 862.1600 Section 862.1600....1600 Potassium test system. (a) Identification. A potassium test system is a device intended to measure potassium in serum, plasma, and urine. Measurements obtained by this device are used to monitor electrolyte...
21 CFR 862.1600 - Potassium test system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Potassium test system. 862.1600 Section 862.1600....1600 Potassium test system. (a) Identification. A potassium test system is a device intended to measure potassium in serum, plasma, and urine. Measurements obtained by this device are used to monitor electrolyte...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-15
... human specimens or bacterial growth detected by continuous monitoring blood culture systems. This draft... versus SA in either human specimens or bacterial growth detected by continuous monitoring blood culture... devices that detect MRSA by growth in culture media or those devices that test for the protein, penicillin...
A High-Resolution Minimicroscope System for Wireless Real-Time Monitoring.
Wang, Zongjie; Boddeda, Akash; Parker, Benjamin; Samanipour, Roya; Ghosh, Sanjoy; Menard, Frederic; Kim, Keekyoung
2018-07-01
Compact, cost-effective, and high-performance microscope that enables the real-time imaging of cells and lab-on-a-chip devices is highly demanded for cell biology and biomedical engineering. This paper aims to present the design and application of an inexpensive wireless minimicroscope with resolution up to 2592 × 1944 pixels and speed up to 90 f/s. The minimicroscope system was built on a commercial embedded system (Raspberry Pi). We modified a camera module and adopted an inverse dual lens system to obtain the clear field of view and appropriate magnification for tens of micrometer objects. The system was capable of capturing time-lapse images and transferring image data wirelessly. The entire system can be operated wirelessly and cordlessly in a conventional cell culturing incubator. The developed minimicroscope was used to monitor the attachment and proliferation of NIH-3T3 and HEK 293 cells inside an incubator for 50 h. In addition, the minimicroscope was used to monitor a droplet generation process in a microfluidic device. The high-quality images captured by the minimicroscope enabled us an automated analysis of experimental parameters. The successful applications prove the great potential of the developed minimicroscope for monitoring various biological samples and microfluidic devices. This paper presents the design of a high-resolution minimicroscope system that enables the wireless real-time imaging of cells inside the incubator. This system has been verified to be a useful tool to obtain high-quality images and videos for the automated quantitative analysis of biological samples and lab-on-a-chip devices in the long term.
A GPS-based Real-time Road Traffic Monitoring System
NASA Astrophysics Data System (ADS)
Tanti, Kamal Kumar
In recent years, monitoring systems are astonishingly inclined towards ever more automatic; reliably interconnected, distributed and autonomous operation. Specifically, the measurement, logging, data processing and interpretation activities may be carried out by separate units at different locations in near real-time. The recent evolution of mobile communication devices and communication technologies has fostered a growing interest in the GIS & GPS-based location-aware systems and services. This paper describes a real-time road traffic monitoring system based on integrated mobile field devices (GPS/GSM/IOs) working in tandem with advanced GIS-based application software providing on-the-fly authentications for real-time monitoring and security enhancement. The described system is developed as a fully automated, continuous, real-time monitoring system that employs GPS sensors and Ethernet and/or serial port communication techniques are used to transfer data between GPS receivers at target points and a central processing computer. The data can be processed locally or remotely based on the requirements of client’s satisfaction. Due to the modular architecture of the system, other sensor types may be supported with minimal effort. Data on the distributed network & measurements are transmitted via cellular SIM cards to a Control Unit, which provides for post-processing and network management. The Control Unit may be remotely accessed via an Internet connection. The new system will not only provide more consistent data about the road traffic conditions but also will provide methods for integrating with other Intelligent Transportation Systems (ITS). For communication between the mobile device and central monitoring service GSM technology is used. The resulting system is characterized by autonomy, reliability and a high degree of automation.
A Waveform Archiving System for the GE Solar 8000i Bedside Monitor.
Fanelli, Andrea; Jaishankar, Rohan; Filippidis, Aristotelis; Holsapple, James; Heldt, Thomas
2018-01-01
Our objective was to develop, deploy, and test a data-acquisition system for the reliable and robust archiving of high-resolution physiological waveform data from a variety of bedside monitoring devices, including the GE Solar 8000i patient monitor, and for the logging of ancillary clinical and demographic information. The data-acquisition system consists of a computer-based archiving unit and a GE Tram Rac 4A that connects to the GE Solar 8000i monitor. Standard physiological front-end sensors connect directly to the Tram Rac, which serves as a port replicator for the GE monitor and provides access to these waveform signals through an analog data interface. Together with the GE monitoring data streams, we simultaneously collect the cerebral blood flow velocity envelope from a transcranial Doppler ultrasound system and a non-invasive arterial blood pressure waveform along a common time axis. All waveform signals are digitized and archived through a LabView-controlled interface that also allows for the logging of relevant meta-data such as clinical and patient demographic information. The acquisition system was certified for hospital use by the clinical engineering team at Boston Medical Center, Boston, MA, USA. Over a 12-month period, we collected 57 datasets from 11 neuro-ICU patients. The system provided reliable and failure-free waveform archiving. We measured an average temporal drift between waveforms from different monitoring devices of 1 ms every 66 min of recorded data. The waveform acquisition system allows for robust real-time data acquisition, processing, and archiving of waveforms. The temporal drift between waveforms archived from different devices is entirely negligible, even for long-term recording.
Lab-on-a-chip based total-phosphorus analysis device utilizing a photocatalytic reaction
NASA Astrophysics Data System (ADS)
Jung, Dong Geon; Jung, Daewoong; Kong, Seong Ho
2018-02-01
A lab-on-a-chip (LOC) device for total phosphorus (TP) analysis was fabricated for water quality monitoring. Many commercially available TP analysis systems used to estimate water quality have good sensitivity and accuracy. However, these systems also have many disadvantages such as bulky size, complex pretreatment processes, and high cost, which limit their application. In particular, conventional TP analysis systems require an indispensable pretreatment step, in which the fluidic analyte is heated to 120 °C for 30 min to release the dissolved phosphate, because many phosphates are soluble in water at a standard temperature and pressure. In addition, this pretreatment process requires elevated pressures of up to 1.1 kg cm-2 in order to prevent the evaporation of the heated analyte. Because of these limiting conditions required by the pretreatment processes used in conventional systems, it is difficult to miniaturize TP analysis systems. In this study, we employed a photocatalytic reaction in the pretreatment process. The reaction was carried out by illuminating a photocatalytic titanium dioxide (TiO2) surface formed in a microfluidic channel with ultraviolet (UV) light. This pretreatment process does not require elevated temperatures and pressures. By applying this simplified, photocatalytic-reaction-based pretreatment process to a TP analysis system, greater degrees of freedom are conferred to the design and fabrication of LOC devices for TP monitoring. The fabricated LOC device presented in this paper was characterized by measuring the TP concentration of an unknown sample, and comparing the results with those measured by a conventional TP analysis system. The TP concentrations of the unknown sample measured by the proposed LOC device and the conventional TP analysis system were 0.018 mgP/25 mL and 0.019 mgP/25 mL, respectively. The experimental results revealed that the proposed LOC device had a performance comparable to the conventional bulky TP analysis system. Therefore, our device could be directly employed in water quality monitoring as an alternative to conventional TP analysis systems.
Wireless patient monitoring system for a moving-actuator type artificial heart.
Nam, K W; Chung, J; Choi, S W; Sun, K; Min, B G
2006-10-01
In this study, we developed a wireless monitoring system for outpatients equipped with a moving-actuator type pulsatile bi-ventricular assist device, AnyHeart. The developed monitoring system consists of two parts; a Bluetooth-based short-distance self-monitoring system that can monitor and control the operating status of a VAD using a Bluetooth-embedded personal digital assistant or a personal computer within a distance of 10 meters, and a cellular network-based remote monitoring system that can continuously monitor and control the operating status of AnyHeart at any location. Results of in vitro experiments demonstrate the developed system's ability to monitor the operational status of an implanted AnyHeart.
Prototype of a wearable system for remote fetal monitoring during pregnancy.
Fanelli, Andrea; Ferrario, Manuela; Piccini, Luca; Andreoni, Giuseppe; Matrone, Giulia; Magenes, Giovanni; Signorini, Maria G
2010-01-01
Fetal Heart Rate (FHR) monitoring gives important information about the fetus health state during pregnancy. This paper presents a new prototype for remote fetal monitoring. The device will allow to monitor FHR in a domiciliary context and to send fetal ECG traces to a hospital facility, where clinicians can interpret them. In this way the mother could receive prompt feedback about fetal wellbeing. The system is characterized by two units: (i) a wearable unit endowed with textile electrodes for abdominal ECG recordings and with a Field Programmable Gate Array (FPGA) board for fetal heart rate (FHR) extraction; (ii) a dock station for the transmission of the data through the telephone line. The system will allow to reduce costs in fetal monitoring, improving the assessment of fetal conditions. The device is actually in development state. In this paper, the most crucial aspects behind its fulfillment are discussed.
21 CFR 862.3350 - Diphenylhydantoin test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test... monitoring levels of diphenylhydantoin to ensure appropriate therapy. (b) Classification. Class II. ...
Health State Utilities Associated with Glucose Monitoring Devices.
Matza, Louis S; Stewart, Katie D; Davies, Evan W; Hellmund, Richard; Polonsky, William H; Kerr, David
2017-03-01
Glucose monitoring is important for patients with diabetes treated with insulin. Conventional glucose monitoring requires a blood sample, typically obtained by pricking the finger. A new sensor-based system called "flash glucose monitoring" monitors glucose levels with a sensor worn on the arm, without requiring blood samples. To estimate the utility difference between these two glucose monitoring approaches for use in cost-utility models. In time trade-off interviews, general population participants in the United Kingdom (London and Edinburgh) valued health states that were drafted and refined on the basis of literature, clinician input, and a pilot study. The health states had identical descriptions of diabetes and insulin treatment, differing only in glucose monitoring approach. A total of 209 participants completed the interviews (51.7% women; mean age = 42.1 years). Mean utilities were 0.851 ± 0.140 for conventional monitoring and 0.882 ± 0.121 for flash monitoring (significant difference between the mean utilities; t = 8.3; P < 0.0001). Of the 209 participants, 78 (37.3%) had a higher utility for flash monitoring, 2 (1.0%) had a higher utility for conventional monitoring, and 129 (61.7%) had the same utility for both health states. The flash glucose monitoring system was associated with a significantly greater utility than the conventional monitoring system. This difference may be useful in cost-utility models comparing the value of glucose monitoring devices for patients with diabetes. This study adds to the literature on treatment process utilities, suggesting that time trade-off methods may be used to quantify preferences among medical devices. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
Self-testing security sensor for monitoring closure of vault doors and the like
Cawthorne, Duane C.
1997-05-27
A self-testing device is provided for a monitoring system for monitoring whether a closure member such as a door or window is closed. The monitoring system includes a switch unit mounted on the frame of the closure member being monitored and including magnetically biased switches connected in one or more electrical monitoring circuits, and a door magnet unit mounted on the closure member being monitored. The door magnet includes one or more permanent magnets that produce a magnetic field which, when the closure member is closed, cause said switches to assume a first state. When the closure member is opened, the switches switch to a second, alarm state. The self-testing device is electrically controllable from a remote location and produces a canceling or diverting magnetic field which simulates the effect of movement of the closure member from the closed position thereof without any actual movement of the member.
Self-testing security sensor for monitoring closure of vault doors and the like
Cawthorne, D.C.
1997-05-27
A self-testing device is provided for a monitoring system for monitoring whether a closure member such as a door or window is closed. The monitoring system includes a switch unit mounted on the frame of the closure member being monitored and including magnetically biased switches connected in one or more electrical monitoring circuits, and a door magnet unit mounted on the closure member being monitored. The door magnet includes one or more permanent magnets that produce a magnetic field which, when the closure member is closed, cause said switches to assume a first state. When the closure member is opened, the switches switch to a second, alarm state. The self-testing device is electrically controllable from a remote location and produces a canceling or diverting magnetic field which simulates the effect of movement of the closure member from the closed position thereof without any actual movement of the member. 5 figs.
Integrated otpical monitoring of MEMS for closed-loop control
NASA Astrophysics Data System (ADS)
Dawson, Jeremy M.; Wang, Limin; McCormick, W. B.; Rittenhouse, S. A.; Famouri, Parviz F.; Hornak, Lawrence A.
2003-01-01
Robust control and failure assessment of MEMS employed in physically demanding, mission critical applications will allow for higher degrees of quality assurance in MEMS operation. Device fault detection and closed-loop control require detailed knowledge of the operational states of MEMS over the lifetime of the device, obtained by a means decoupled from the system. Preliminary through-wafer optical monitoring research efforts have shown that through-wafer optical probing is suitable for characterizing and monitoring the behavior of MEMS, and can be implemented in an integrated optical monitoring package for continuous in-situ device monitoring. This presentation will discuss research undertaken to establish integrated optical device metrology for closed-loop control of a MUMPS fabricated lateral harmonic oscillator. Successful linear closed-loop control results using a through-wafer optical microprobe position feedback signal will be presented. A theoretical optical output field intensity study of grating structures, fabricated on the shuttle of the resonator, was performed to improve the position resolution of the optical microprobe position signal. Through-wafer microprobe signals providing a positional resolution of 2 μm using grating structures will be shown, along with initial binary Fresnel diffractive optical microelement design layout, process development, and testing results. Progress in the design, fabrication, and test of integrated optical elements for multiple microprobe signal delivery and recovery will be discussed, as well as simulation of device system model parameter changes for failure assessment.
Drug-induced cellular death dynamics monitored by a highly sensitive organic electrochemical system.
Romeo, Agostino; Tarabella, Giuseppe; D'Angelo, Pasquale; Caffarra, Cristina; Cretella, Daniele; Alfieri, Roberta; Petronini, Pier Giorgio; Iannotta, Salvatore
2015-06-15
We propose and demonstrate a sensitive diagnostic device based on an Organic Electrochemical Transistor (OECT) for direct in-vitro monitoring cell death. The system efficiently monitors cell death dynamics, being able to detect signals related to specific death mechanisms, namely necrosis or early/late apoptosis, demonstrating a reproducible correlation between the OECT electrical response and the trends of standard cell death assays. The innovative design of the Twell-OECT system has been modeled to better correlate electrical signals with cell death dynamics. To qualify the device, we used a human lung adenocarcinoma cell line (A549) that was cultivated on the micro-porous membrane of a Transwell (Twell) support, and exposed to the anticancer drug doxorubicin. Time-dependent and dose-dependent dynamics of A549 cells exposed to doxorubicin are evaluated by monitoring cell death upon exposure to a range of doses and times that fully covers the protocols used in cancer treatment. The demonstrated ability to directly monitor cell stress and death dynamics upon drug exposure using simple electronic devices and, possibly, achieving selectivity to different cell dynamics is of great interest for several application fields, including toxicology, pharmacology, and therapeutics. Copyright © 2015 Elsevier B.V. All rights reserved.
[Telemetry in the clinical setting].
Hilbel, Thomas; Helms, Thomas M; Mikus, Gerd; Katus, Hugo A; Zugck, Christian
2008-09-01
Telemetric cardiac monitoring was invented in 1949 by Norman J Holter. Its clinical use started in the early 1960s. In the hospital, biotelemetry allows early mobilization of patients with cardiovascular risk and addresses the need for arrhythmia or oxygen saturation monitoring. Nowadays telemetry either uses vendor-specific UHF band broadcasting or the digital ISM band (Industrial, Scientific, and Medical Band) standardized Wi-Fi network technology. Modern telemetry radio transmitters can measure and send multiple physiological parameters like multi-channel ECG, NIPB and oxygen saturation. The continuous measurement of oxygen saturation is mandatory for the remote monitoring of patients with cardiac pacemakers. Real 12-lead ECG systems with diagnostic quality are an advantage for monitoring patients with chest pain syndromes or in drug testing wards. Modern systems are light-weight and deliver a maximum of carrying comfort due to optimized cable design. Important for the system selection is a sophisticated detection algorithm with a maximum reduction of artifacts. Home-monitoring of implantable cardiac devices with telemetric functionalities are becoming popular because it allows remote diagnosis of proper device functionality and also optimization of the device settings. Continuous real-time monitoring at home for patients with chronic disease may be possible in the future using Digital Video Broadcasting Terrestrial (DVB-T) technology in Europe, but is currently not yet available.
Web-based monitoring and management system for integrated enterprise-wide imaging networks
NASA Astrophysics Data System (ADS)
Ma, Keith; Slik, David; Lam, Alvin; Ng, Won
2003-05-01
Mass proliferation of IP networks and the maturity of standards has enabled the creation of sophisticated image distribution networks that operate over Intranets, Extranets, Communities of Interest (CoI) and even the public Internet. Unified monitoring, provisioning and management of such systems at the application and protocol levels represent a challenge. This paper presents a web based monitoring and management tool that employs established telecom standards for the creation of an open system that enables proactive management, provisioning and monitoring of image management systems at the enterprise level and across multi-site geographically distributed deployments. Utilizing established standards including ITU-T M.3100, and web technologies such as XML/XSLT, JSP/JSTL, and J2SE, the system allows for seamless device and protocol adaptation between multiple disparate devices. The goal has been to develop a unified interface that provides network topology views, multi-level customizable alerts, real-time fault detection as well as real-time and historical reporting of all monitored resources, including network connectivity, system load, DICOM transactions and storage capacities.
Remote monitoring of electromagnetic signals and seismic events using smart mobile devices
NASA Astrophysics Data System (ADS)
Georgiadis, Pantelis; Cavouras, Dionisis; Sidiropoulos, Konstantinos; Ninos, Konstantinos; Nomicos, Constantine
2009-06-01
This study presents the design and development of a novel mobile wireless system to be used for monitoring seismic events and related electromagnetic signals, employing smart mobile devices like personal digital assistants (PDAs) and wireless communication technologies such as wireless local area networks (WLANs), general packet radio service (GPRS) and universal mobile telecommunications system (UMTS). The proposed system enables scientists to access critical data while being geographically independent of the sites of data sources, rendering it as a useful tool for preliminary scientific analysis.
Sloane, Elliot; Gehlot, Vijay
2005-01-01
Hospitals and manufacturers are designing and deploying the IEEE 802.x wireless technologies in medical devices to promote patient mobility and flexible facility use. There is little information, however, on the reliability or ultimate safety of connecting multiple wireless life-critical medical devices from multiple vendors using commercial 802.11a, 802.11b, 802.11g or pre-802.11n devices. It is believed that 802.11-type devices can introduce unintended life-threatening risks unless delivery of critical patient alarms to central monitoring systems and/or clinical personnel is assured by proper use of 802.11e Quality of Service (QoS) methods. Petri net tools can be used to simulate all possible states and transitions between devices and/or systems in a wireless device network, and can identify failure modes in advance. Colored Petri Net (CPN) tools are ideal, in fact, as they allow tracking and controlling each message in a network based on pre-selected criteria. This paper describes a research project using CPN to simulate and validate alarm integrity in a small multi-modality wireless patient monitoring system. A 20-monitor wireless patient monitoring network is created in two versions: one with non-prioritized 802.x CSM protocols and the second with simulated Quality of Service (QoS) capabilities similar to 802.11e (i.e., the second network allows message priority management.) In the standard 802.x network, dangerous heart arrhythmia and pulse oximetry alarms could not be reliably and rapidly communicated, but the second network's QoS priority management reduced that risk significantly.
Issues in implementing a knowledge-based ECG analyzer for personal mobile health monitoring.
Goh, K W; Kim, E; Lavanya, J; Kim, Y; Soh, C B
2006-01-01
Advances in sensor technology, personal mobile devices, and wireless broadband communications are enabling the development of an integrated personal mobile health monitoring system that can provide patients with a useful tool to assess their own health and manage their personal health information anytime and anywhere. Personal mobile devices, such as PDAs and mobile phones, are becoming more powerful integrated information management tools and play a major role in many people's lives. We focus on designing a health-monitoring system for people who suffer from cardiac arrhythmias. We have developed computer simulation models to evaluate the performance of appropriate electrocardiogram (ECG) analysis techniques that can be implemented on personal mobile devices. This paper describes an ECG analyzer to perform ECG beat and episode detection and classification. We have obtained promising preliminary results from our study. Also, we discuss several key considerations when implementing a mobile health monitoring solution. The mobile ECG analyzer would become a front-end patient health data acquisition module, which is connected to the Personal Health Information Management System (PHIMS) for data repository.
Microprocessor controlled compliance monitor for eye drop medication.
Hermann, M M; Diestelhorst, M
2006-07-01
The effectiveness of a self administered eye drop medication can only be assessed if the compliance is known. The authors studied the specificity and sensitivity of a new microprocessor controlled monitoring device. The monitoring system was conducted by an 8 bit microcontroller for data acquisition and storage with sensors measuring applied pressure to the bottle, temperature, and vertical position. 10 devices were mounted under commercial 10 ml eye drops. Test subjects had to note down each application manually. A total of 15 applications each within 3 days was intended. Manual reports confirmed 15 applications for each of the 10 bottles. The monitoring devices detected a total of 149 events; one was missed; comprising a sensitivity of 99%. Two devices registered three applications, which did not appear in the manual protocols, indicating a specificity of about 98%. Refrigerated bottles were correctly identified. The battery lifetime exceeded 60 days. The new monitoring device demonstrated a high reliability of the collected compliance data. The important, yet often unknown, influence of compliance in patient care and clinical trials shall be illuminated by the new device. This may lead to a better adapted patient care. Studies will profit from a higher credibility and results will be less influenced by non-compliance.
Jiang, Peng; Zhao, Shuai; Zhu, Rong
2015-01-01
This paper presents a smart sensing strip for noninvasively monitoring respiratory flow in real time. The monitoring system comprises a monolithically-integrated flexible hot-film flow sensor adhered on a molded flexible silicone case, where a miniaturized conditioning circuit with a Bluetooth4.0 LE module are packaged, and a personal mobile device that wirelessly acquires respiratory data transmitted from the flow sensor, executes extraction of vital signs, and performs medical diagnosis. The system serves as a wearable device to monitor comprehensive respiratory flow while avoiding use of uncomfortable nasal cannula. The respiratory sensor is a flexible flow sensor monolithically integrating four elements of a Wheatstone bridge on single chip, including a hot-film resistor, a temperature-compensating resistor, and two balancing resistors. The monitor takes merits of small size, light weight, easy operation, and low power consumption. Experiments were conducted to verify the feasibility and effectiveness of monitoring and diagnosing respiratory diseases using the proposed system. PMID:26694401
Specification and Verification of Medical Monitoring System Using Petri-nets.
Majma, Negar; Babamir, Seyed Morteza
2014-07-01
To monitor the patient behavior, data are collected from patient's body by a medical monitoring device so as to calculate the output using embedded software. Incorrect calculations may endanger the patient's life if the software fails to meet the patient's requirements. Accordingly, the veracity of the software behavior is a matter of concern in the medicine; moreover, the data collected from the patient's body are fuzzy. Some methods have already dealt with monitoring the medical monitoring devices; however, model based monitoring fuzzy computations of such devices have been addressed less. The present paper aims to present synthesizing a fuzzy Petri-net (FPN) model to verify behavior of a sample medical monitoring device called continuous infusion insulin (INS) because Petri-net (PN) is one of the formal and visual methods to verify the software's behavior. The device is worn by the diabetic patients and then the software calculates the INS dose and makes a decision for injection. The input and output of the infusion INS software are not crisp in the real world; therefore, we present them in fuzzy variables. Afterwards, we use FPN instead of clear PN to model the fuzzy variables. The paper follows three steps to synthesize an FPN to deal with verification of the infusion INS device: (1) Definition of fuzzy variables, (2) definition of fuzzy rules and (3) design of the FPN model to verify the software behavior.
Network-Oriented Radiation Monitoring System (NORMS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahmat Aryaeinejad; David F. Spencer
2007-10-01
We have developed a multi-functional pocket radiation monitoring system capable of detecting and storing gamma ray and neutron data and then sending the data through a wireless connection to a remote central facility upon request. The device has programmable alarm trigger levels that can be modified for specific applications. The device could be used as a stand-alone device or in conjunction with an array to cover a small or large area. The data is stored with a date/time stamp. The device may be remotely configured. Data can be transferred and viewed on a PDA via direct connection or wirelessly. Functional/benchmore » tests have been completed successfully. The device detects low-level neutron and gamma sources within a shielded container in a radiation field of 10 uR/hr above the ambient background level.« less
21 CFR 26.45 - Monitoring continued equivalence.
Code of Federal Regulations, 2010 CFR
2010-04-01
... MUTUAL RECOGNITION OF PHARMACEUTICAL GOOD MANUFACTURING PRACTICE REPORTS, MEDICAL DEVICE QUALITY SYSTEM AUDIT REPORTS, AND CERTAIN MEDICAL DEVICE PRODUCT EVALUATION REPORTS: UNITED STATES AND THE EUROPEAN...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shanmugam, Senthilkumar
Purpose: The purpose of this present work was to fabricate an in-house software based respiratory monitoring, controlling and breath-hold device using computer software programme which guides the patient to have uniform breath hold in response to request during the gated radiotherapy. Methods: The respiratory controlling device consists of a computer, inhouse software, video goggles, a highly sensitive sensor for measurement of distance, mounting systems, a camera, a respiratory signal device, a speaker and a visual indicator. The computer is used to display the respiratory movements of the patient with digital as well as analogue respiration indicators during the respiration cycle,more » to control, breath-hold and analyze the respiratory movement using indigenously developed software. Results: Studies were conducted with anthropomophic phantoms by simulating the respiratory motion on phantoms and recording the respective movements using the respiratory monitoring device. The results show good agreement between the simulated and measured movements. Further studies were conducted for 60 cancer patients with several types of cancers in the thoracic region. The respiratory movement cycles for each fraction of radiotherapy treatment were recorded and compared. Alarm indications are provided in the system to indicate when the patient breathing movement exceeds the threshold level. This will help the patient to maintain uniform breath hold during the radiotherapy treatment. Our preliminary clinical test results indicate that our device is highly reliable and able to maintain the uniform respiratory motion and breathe hold during the entire course of gated radiotherapy treatment. Conclusion: An indigenous respiratory monitoring device to guide the patient to have uniform breath hold device was fabricated. The alarm feature and the visual waveform indicator in the system guide the patient to have normal respiration. The signal from the device can be connected to the radiation unit in near future to carry out the gated radiotherapy treatment.« less
Polarimeter based on video matrix
NASA Astrophysics Data System (ADS)
Pavlov, Andrey; Kontantinov, Oleg; Shmirko, Konstantin; Zubko, Evgenij
2017-11-01
In this paper we present a new measurement tool - polarimeter, based on video matrix. Polarimetric measure- ments are usefull, for example, when monitoring water areas pollutions and atmosphere constituents. New device is small enough to mount on unmanned aircraft vehicles (quadrocopters) and stationary platforms. Device and corresponding software turns it into real-time monitoring system, that helps to solve some research problems.
System for Multiplexing Acoustic Emission (AE) Instrumentation
NASA Technical Reports Server (NTRS)
Prosser, William H. (Inventor); Perey, Daniel F. (Inventor); Gorman, Michael R. (Inventor); Scales, Edgar F. (Inventor)
2003-01-01
An acoustic monitoring device has at least two acoustic sensors with a triggering mechanism and a multiplexing circuit. After the occurrence of a triggering event at a sensor, the multiplexing circuit allows a recording component to record acoustic emissions at adjacent sensors. The acoustic monitoring device is attached to a solid medium to detect the occurrence of damage.
Code of Federal Regulations, 2010 CFR
2010-07-01
... section for each gas temperature monitoring device. (i) Locate the temperature sensor in a position that... temperature sensor system from electromagnetic interference and chemical contaminants. (iv) If a gas...) of this section. (1) For a thermal oxidizer, install a gas temperature monitor in the firebox of the...
Code of Federal Regulations, 2011 CFR
2011-07-01
... section for each gas temperature monitoring device. (i) Locate the temperature sensor in a position that... temperature sensor system from electromagnetic interference and chemical contaminants. (iv) If a gas...) of this section. (1) For a thermal oxidizer, install a gas temperature monitor in the firebox of the...
ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) TEST OF DIOXIN EMISSION MONITORS
The performance of four dioxin emission monitors including two long-term sampling devices, the DMS (DioxinMonitoringSystem) and AMESA (Adsorption Method for Sampling Dioxins and Furans), and two semi-real-time continuous monitors, RIMMPA-TOFMS (Resonance Ionization with Multi-Mir...
Panfili, G; Piccini, L; Maggi, L; Parini, S; Andreoni, G
2006-01-01
In this study we explored the possibility to realize a low power device for Cardiac Output continuous monitoring based on impedance cardiography technique. We assessed the possibility to develop a system able to record data allow an intra-subjective analysis based on the daily variations of this measure. The device was able to acquire and to send signals using a wireless Bluetooth transmission. The electronic circuit was designed in order to minimize power consumption, dimension and weight. The reported results were interesting for what concerns the power consumption and then noise level. In this way was obtained a wearable device that will permit to define specific clinical protocols based on continuous monitoring of the Cardiac Output signal.
Advanced Pulse Oximetry System for Remote Monitoring and Management
Pak, Ju Geon; Park, Kee Hyun
2012-01-01
Pulse oximetry data such as saturation of peripheral oxygen (SpO2) and pulse rate are vital signals for early diagnosis of heart disease. Therefore, various pulse oximeters have been developed continuously. However, some of the existing pulse oximeters are not equipped with communication capabilities, and consequently, the continuous monitoring of patient health is restricted. Moreover, even though certain oximeters have been built as network models, they focus on exchanging only pulse oximetry data, and they do not provide sufficient device management functions. In this paper, we propose an advanced pulse oximetry system for remote monitoring and management. The system consists of a networked pulse oximeter and a personal monitoring server. The proposed pulse oximeter measures a patient's pulse oximetry data and transmits the data to the personal monitoring server. The personal monitoring server then analyzes the received data and displays the results to the patient. Furthermore, for device management purposes, operational errors that occur in the pulse oximeter are reported to the personal monitoring server, and the system configurations of the pulse oximeter, such as thresholds and measurement targets, are modified by the server. We verify that the proposed pulse oximetry system operates efficiently and that it is appropriate for monitoring and managing a pulse oximeter in real time. PMID:22933841
Advanced pulse oximetry system for remote monitoring and management.
Pak, Ju Geon; Park, Kee Hyun
2012-01-01
Pulse oximetry data such as saturation of peripheral oxygen (SpO(2)) and pulse rate are vital signals for early diagnosis of heart disease. Therefore, various pulse oximeters have been developed continuously. However, some of the existing pulse oximeters are not equipped with communication capabilities, and consequently, the continuous monitoring of patient health is restricted. Moreover, even though certain oximeters have been built as network models, they focus on exchanging only pulse oximetry data, and they do not provide sufficient device management functions. In this paper, we propose an advanced pulse oximetry system for remote monitoring and management. The system consists of a networked pulse oximeter and a personal monitoring server. The proposed pulse oximeter measures a patient's pulse oximetry data and transmits the data to the personal monitoring server. The personal monitoring server then analyzes the received data and displays the results to the patient. Furthermore, for device management purposes, operational errors that occur in the pulse oximeter are reported to the personal monitoring server, and the system configurations of the pulse oximeter, such as thresholds and measurement targets, are modified by the server. We verify that the proposed pulse oximetry system operates efficiently and that it is appropriate for monitoring and managing a pulse oximeter in real time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
William H. Morrison; Jon P. Christophersen; Patrick Bald
With the increasing demand for electric and hybrid electric vehicles and the explosion in popularity of mobile and portable electronic devices such as laptops, cell phones, e-readers, tablet computers and the like, reliance on portable energy storage devices such as batteries has likewise increased. The concern for the availability of critical systems in turn drives the availability of battery systems and thus the need for accurate battery health monitoring has become paramount. Over the past decade the Idaho National Laboratory (INL), Montana Tech of the University of Montana (Tech), and Qualtech Systems, Inc. (QSI) have been developing the Smart Batterymore » Status Monitor (SBSM), an integrated battery management system designed to monitor battery health, performance and degradation and use this knowledge for effective battery management and increased battery life. Key to the success of the SBSM is an in-situ impedance measurement system called the Impedance Measurement Box (IMB). One of the challenges encountered has been development of an accurate, simple, robust calibration process. This paper discusses the successful realization of this process.« less
Remote media vision-based computer input device
NASA Astrophysics Data System (ADS)
Arabnia, Hamid R.; Chen, Ching-Yi
1991-11-01
In this paper, we introduce a vision-based computer input device which has been built at the University of Georgia. The user of this system gives commands to the computer without touching any physical device. The system receives input through a CCD camera; it is PC- based and is built on top of the DOS operating system. The major components of the input device are: a monitor, an image capturing board, a CCD camera, and some software (developed by use). These are interfaced with a standard PC running under the DOS operating system.
Sundaram, S Kamakshi [Richland, WA; Riley, Brian J [West Richland, WA; Weber, Thomas J [Richland, WA; Sacksteder, Colette A [West Richland, WA; Addleman, R Shane [Benton City, WA
2011-06-07
An ATR-FTIR device and system are described that defect live-cell responses to stimuli and perturbations in real-time. The system and device can monitor perturbations resulting from exposures to various physical, chemical, and biological materials in real-time, as well as those sustained over a long period of time, including those associated with stimuli having unknown modes-of-action (e.g. nanoparticles). The device and system can also be used to identify specific chemical species or substances that profile cellular responses to these perturbations.
Stretchable inorganic nanomembrane electronics for healthcare devices
NASA Astrophysics Data System (ADS)
Kim, Dae-Hyeong; Son, Donghee; Kim, Jaemin
2015-05-01
Flexible or stretchable electronic devices for healthcare technologies have attracted much attention in terms of usefulness to assist doctors in their operating rooms and to monitor patients' physical conditions for a long period of time. Each device to monitor the patients' physiological signals real-time, such as strain, pressure, temperature, and humidity, etc. has been reported recently. However, their limitations are found in acquisition of various physiological signals simultaneously because all the functions are not assembled in one skin-like electronic system. Here, we describe a skin-like, multi-functional healthcare system, which includes single crystalline silicon nanomembrane based sensors, nanoparticle-integrated non-volatile memory modules, electro-resistive thermal actuators, and drug delivery. Smart prosthetics coupled with therapeutic electronic system would provide new approaches to personalized healthcare.
Gamma ray spectroscopy monitoring method and apparatus
Stagg, William R; Policke, Timothy A
2017-05-16
The present invention relates generally to the field of gamma ray spectroscopy monitoring and a system for accomplishing same to monitor one or more aspects of various isotope production processes. In one embodiment, the present invention relates to a monitoring system, and method of utilizing same, for monitoring one or more aspects of an isotope production process where the monitoring system comprises: (A) at least one sample cell; (B) at least one measuring port; (C) at least one adjustable collimator device; (D) at least one shutter; and (E) at least one high resolution gamma ray spectrometer.
Safety status system for operating room devices.
Guédon, Annetje C P; Wauben, Linda S G L; Overvelde, Marlies; Blok, Joleen H; van der Elst, Maarten; Dankelman, Jenny; van den Dobbelsteen, John J
2014-01-01
Since the increase of the number of technological aids in the operating room (OR), equipment-related incidents have come to be a common kind of adverse events. This underlines the importance of adequate equipment management to improve the safety in the OR. A system was developed to monitor the safety status (periodic maintenance and registered malfunctions) of OR devices and to facilitate the notification of malfunctions. The objective was to assess whether the system is suitable for use in an busy OR setting and to analyse its effect on the notification of malfunctions. The system checks automatically the safety status of OR devices through constant communication with the technical facility management system, informs the OR staff real-time and facilitates notification of malfunctions. The system was tested for a pilot period of six months in four ORs of a Dutch teaching hospital and 17 users were interviewed on the usability of the system. The users provided positive feedback on the usability. For 86.6% of total time, the localisation of OR devices was accurate. 62 malfunctions of OR devices were reported, an increase of 12 notifications compared to the previous year. The safety status system was suitable for an OR complex, both from a usability and technical point of view, and an increase of reported malfunctions was observed. The system eases monitoring the safety status of equipment and is a promising tool to improve the safety related to OR devices.
The CUORE slow monitoring systems
NASA Astrophysics Data System (ADS)
Gladstone, L.; Biare, D.; Cappelli, L.; Cushman, J. S.; Del Corso, F.; Fujikawa, B. K.; Hickerson, K. P.; Moggi, N.; Pagliarone, C. E.; Schmidt, B.; Wagaarachchi, S. L.; Welliver, B.; Winslow, L. A.
2017-09-01
CUORE is a cryogenic experiment searching primarily for neutrinoless double decay in 130Te. It will begin data-taking operations in 2016. To monitor the cryostat and detector during commissioning and data taking, we have designed and developed Slow Monitoring systems. In addition to real-time systems using LabVIEW, we have an alarm, analysis, and archiving website that uses MongoDB, AngularJS, and Bootstrap software. These modern, state of the art software packages make the monitoring system transparent, easily maintainable, and accessible on many platforms including mobile devices.
Dielectric cure monitoring: Preliminary studies
NASA Technical Reports Server (NTRS)
Goldberg, B. E.; Semmel, M. L.
1984-01-01
Preliminary studies have been conducted on two types of dielectric cure monitoring systems employing both epoxy resins and phenolic composites. An Audrey System was used for 23 cure monitoring runs with very limited success. Nine complete cure monitoring runs have been investigated using a Micromet System. Two additional measurements were performed to investigate the Micromet's sensitivity to water absorption in a post-cure carbon-phenolic material. While further work is needed to determine data significance, the Micromet system appears to show promise as a feedback control device during processing.
Head-Impact-Measurement Devices: A Systematic Review.
O'Connor, Kathryn L; Rowson, Steven; Duma, Stefan M; Broglio, Steven P
2017-03-01
With an estimated 3.8 million sport- and recreation-related concussions occurring annually, targeted prevention and diagnostic methods are needed. Biomechanical analysis of head impacts may provide quantitative information that can inform both prevention and diagnostic strategies. To assess available head-impact devices and their clinical utility. We performed a systematic search of the electronic database PubMed for peer-reviewed publications, using the following phrases: accelerometer and concussion, head impact telemetry, head impacts and concussion and sensor, head impacts and sensor, impact sensor and concussion, linear acceleration and concussion, rotational acceleration and concussion, and xpatch concussion. In addition to the literature review, a Google search for head impact monitor and concussion monitor yielded 15 more devices. Included studies were performed in vivo, used commercially available devices, and focused on sport-related concussion. One author reviewed the title and abstract of each study for inclusion and exclusion criteria and then reviewed each full-text article to confirm inclusion criteria. Controversial articles were reviewed by all authors to reach consensus. In total, 61 peer-reviewed articles involving 4 head-impact devices were included. Participants in boxing, football, ice hockey, soccer, or snow sports ranged in age from 6 to 24 years; 18% (n = 11) of the studies included female athletes. The Head Impact Telemetry System was the most widely used device (n = 53). Fourteen additional commercially available devices were presented. Measurements collected by impact monitors provided real-time data to estimate player exposure but did not have the requisite sensitivity to concussion. Proper interpretation of previously reported head-impact kinematics across age, sport, and position may inform future research and enable staff clinicians working on the sidelines to monitor athletes. However, head-impact-monitoring systems have limited clinical utility due to error rates, designs, and low specificity in predicting concussive injury.
Implementation of a WAP-based telemedicine system for patient monitoring.
Hung, Kevin; Zhang, Yuan-Ting
2003-06-01
Many parties have already demonstrated telemedicine applications that use cellular phones and the Internet. A current trend in telecommunication is the convergence of wireless communication and computer network technologies, and the emergence of wireless application protocol (WAP) devices is an example. Since WAP will also be a common feature found in future mobile communication devices, it is worthwhile to investigate its use in telemedicine. This paper describes the implementation and experiences with a WAP-based telemedicine system for patient-monitoring that has been developed in our laboratory. It utilizes WAP devices as mobile access terminals for general inquiry and patient-monitoring services. Authorized users can browse the patients' general data, monitored blood pressure (BP), and electrocardiogram (ECG) on WAP devices in store-and-forward mode. The applications, written in wireless markup language (WML), WMLScript, and Perl, resided in a content server. A MySQL relational database system was set up to store the BP readings, ECG data, patient records, clinic and hospital information, and doctors' appointments with patients. A wireless ECG subsystem was built for recording ambulatory ECG in an indoor environment and for storing ECG data into the database. For testing, a WAP phone compliant with WAP 1.1 was used at GSM 1800 MHz by circuit-switched data (CSD) to connect to the content server through a WAP gateway, which was provided by a mobile phone service provider in Hong Kong. Data were successfully retrieved from the database and displayed on the WAP phone. The system shows how WAP can be feasible in remote patient-monitoring and patient data retrieval.
Smart-Home Architecture Based on Bluetooth mesh Technology
NASA Astrophysics Data System (ADS)
Wan, Qing; Liu, Jianghua
2018-03-01
This paper describes the smart home network system based on Nordic nrf52832 device. Nrf52832 is new generation RF SOC device focus on sensor monitor and low power Bluetooth connection applications. In this smart home system, we set up a self-organizing network system which consists of one control node and a lot of monitor nodes. The control node manages the whole network works; the monitor nodes collect the sensor information such as light intensity, temperature, humidity, PM2.5, etc. Then update to the control node by Bluetooth mesh network. The design results show that the Bluetooth mesh wireless network system is flexible and construction cost is low, which is suitable for the communication characteristics of a smart home network. We believe it will be wildly used in the future.
NASA Technical Reports Server (NTRS)
1988-01-01
TherEx Inc.'s AT-1 Computerized Ataxiameter precisely evaluates posture and balance disturbances that commonly accompany neurological and musculoskeletal disorders. Complete system includes two-strain gauged footplates, signal conditioning circuitry, a computer monitor, printer and a stand-alone tiltable balance platform. AT-1 serves as assessment tool, treatment monitor, and rehabilitation training device. It allows clinician to document quantitatively the outcome of treatment and analyze data over time to develop outcome standards for several classifications of patients. It can evaluate specifically the effects of surgery, drug treatment, physical therapy or prosthetic devices.
Aiolfi, Alberto; Khor, Desmond; Cho, Jayun; Benjamin, Elizabeth; Inaba, Kenji; Demetriades, Demetrios
2018-03-01
OBJECTIVE Intracranial pressure (ICP) monitoring has become the standard of care in the management of severe head trauma. Intraventricular devices (IVDs) and intraparenchymal devices (IPDs) are the 2 most commonly used techniques for ICP monitoring. Despite the widespread use of these devices, very few studies have investigated the effect of device type on outcomes. The purpose of the present study was to compare outcomes between 2 types of ICP monitoring devices in patients with isolated severe blunt head trauma. METHODS This retrospective observational study was based on the American College of Surgeons Trauma Quality Improvement Program database, which was searched for all patients with isolated severe blunt head injury who had an ICP monitor placed in the 2-year period from 2013 to 2014. Extracted variables included demographics, comorbidities, mechanisms of injury, head injury specifics (epidural, subdural, subarachnoid, intracranial hemorrhage, and diffuse axonal injury), Abbreviated Injury Scale (AIS) score for each body area, Injury Severity Score (ISS), vital signs in the emergency department, and craniectomy. Outcomes included 30-day mortality, complications, number of ventilation days, intensive care unit and hospital lengths of stay, and functional independence. RESULTS During the study period, 105,721 patients had isolated severe traumatic brain injury (head AIS score ≥ 3). Overall, an ICP monitoring device was placed in 2562 patients (2.4%): 1358 (53%) had an IVD and 1204 (47%) had an IPD. The severity of the head AIS score did not affect the type of ICP monitoring selected. There was no difference in the median ISS; ISS > 15; head AIS Score 3, 4, or 5; or the need for craniectomy between the 2 device groups. Unadjusted 30-day mortality was significantly higher in the group with IVDs (29% vs 25.5%, p = 0.046); however, stepwise logistic regression analysis showed that the type of ICP monitoring was not an independent risk factor for death, complications, or functional outcome at discharge. CONCLUSIONS This study demonstrated that compliance with the Brain Trauma Foundation guidelines for ICP monitoring is poor. In isolated severe blunt head injuries, the type of ICP monitoring device does not have any effect on survival, systemic complications, or functional outcome.
Embedded programmable blood pressure monitoring system
NASA Astrophysics Data System (ADS)
Hasan, Md. Mahmud-Ul; Islam, Md. Kafiul; Shawon, Mehedi Azad; Nowrin, Tasnuva Faruk
2010-02-01
A more efficient newer algorithm of detecting systolic and diastolic pressure of human body along with a complete package of an effective user-friendly embedded programmable blood pressure monitoring system has been proposed in this paper to reduce the overall workload of medical personals as well as to monitor patient's condition more conveniently and accurately. Available devices for measuring blood pressure have some problems and limitations in case of both analog and digital devices. The sphygmomanometer, being analog device, is still being used widely because of its reliability and accuracy over digital ones. But it requires a skilled person to measure the blood pressure and obviously not being automated as well as time consuming. Our proposed system being a microcontroller based embedded system has the advantages of the available digital blood pressure machines along with a much improved form and has higher accuracy at the same time. This system can also be interfaced with computer through serial port/USB to publish the measured blood pressure data on the LAN or internet. The device can be programmed to determine the patient's blood pressure after each certain interval of time in a graphical form. To sense the pressure of human body, a pressure to voltage transducer is used along with a cuff in our system. During the blood pressure measurement cycle, the output voltage of the transducer is taken by the built-in ADC of microcontroller after an amplifier stage. The recorded data are then processed and analyzed using the effective software routine to determine the blood pressure of the person under test. Our proposed system is thus expected to certainly enhance the existing blood pressure monitoring system by providing accuracy, time efficiency, user-friendliness and at last but not the least the 'better way of monitoring patient's blood pressure under critical care' all together at the same time.
Monitoring of Vital Signs with Flexible and Wearable Medical Devices.
Khan, Yasser; Ostfeld, Aminy E; Lochner, Claire M; Pierre, Adrien; Arias, Ana C
2016-06-01
Advances in wireless technologies, low-power electronics, the internet of things, and in the domain of connected health are driving innovations in wearable medical devices at a tremendous pace. Wearable sensor systems composed of flexible and stretchable materials have the potential to better interface to the human skin, whereas silicon-based electronics are extremely efficient in sensor data processing and transmission. Therefore, flexible and stretchable sensors combined with low-power silicon-based electronics are a viable and efficient approach for medical monitoring. Flexible medical devices designed for monitoring human vital signs, such as body temperature, heart rate, respiration rate, blood pressure, pulse oxygenation, and blood glucose have applications in both fitness monitoring and medical diagnostics. As a review of the latest development in flexible and wearable human vitals sensors, the essential components required for vitals sensors are outlined and discussed here, including the reported sensor systems, sensing mechanisms, sensor fabrication, power, and data processing requirements. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lucani, Daniel; Cataldo, Giancarlos; Cruz, Julio; Villegas, Guillermo; Wong, Sara
2006-01-01
A prototype of a portable ECG-monitoring device has been developed for clinical and non-clinical environments as part of a telemedicine system to provide remote and continuous surveillance of patients. The device can acquire, store and/or transmit ECG signals to computer-based platforms or specially configured access points (AP) with Intranet/Internet capabilities in order to reach remote monitoring stations. Acquired data can be stored in a flash memory card in FAT16 format for later recovery, or transmitted via Bluetooth or USB to a local station or AP. This data acquisition module (DAM) operates in two modes: Holter and on-line transmission.
Automated Cryocooler Monitor and Control System
NASA Technical Reports Server (NTRS)
Britcliffe, Michael J.; Hanscon, Theodore R.; Fowler, Larry E.
2011-01-01
A system was designed to automate cryogenically cooled low-noise amplifier systems used in the NASA Deep Space Network. It automates the entire operation of the system including cool-down, warm-up, and performance monitoring. The system is based on a single-board computer with custom software and hardware to monitor and control the cryogenic operation of the system. The system provides local display and control, and can be operated remotely via a Web interface. The system controller is based on a commercial single-board computer with onboard data acquisition capability. The commercial hardware includes a microprocessor, an LCD (liquid crystal display), seven LED (light emitting diode) displays, a seven-key keypad, an Ethernet interface, 40 digital I/O (input/output) ports, 11 A/D (analog to digital) inputs, four D/A (digital to analog) outputs, and an external relay board to control the high-current devices. The temperature sensors used are commercial silicon diode devices that provide a non-linear voltage output proportional to temperature. The devices are excited with a 10-microamp bias current. The system is capable of monitoring and displaying three temperatures. The vacuum sensors are commercial thermistor devices. The output of the sensors is a non-linear voltage proportional to vacuum pressure in the 1-Torr to 1-millitorr range. Two sensors are used. One measures the vacuum pressure in the cryocooler and the other the pressure at the input to the vacuum pump. The helium pressure sensor is a commercial device that provides a linear voltage output from 1 to 5 volts, corresponding to a gas pressure from 0 to 3.5 MPa (approx. = 500 psig). Control of the vacuum process is accomplished with a commercial electrically operated solenoid valve. A commercial motor starter is used to control the input power of the compressor. The warm-up heaters are commercial power resistors sized to provide the appropriate power for the thermal mass of the particular system, and typically provide 50 watts of heat. There are four basic operating modes. "Cool " mode commands the system to cool to normal operating temperature. "Heat " mode is used to warm the device to a set temperature near room temperature. "Pump " mode is a maintenance function that allows the vacuum system to be operated alone to remove accumulated contaminants from the vacuum area. In "Off " mode, no power is applied to the system.
Framework of sensor-based monitoring for pervasive patient care.
Triantafyllidis, Andreas K; Koutkias, Vassilis G; Chouvarda, Ioanna; Adami, Ilia; Kouroubali, Angelina; Maglaveras, Nicos
2016-09-01
Sensor-based health systems can often become difficult to use, extend and sustain. The authors propose a framework for designing sensor-based health monitoring systems aiming to provide extensible and usable monitoring services in the scope of pervasive patient care. The authors' approach relies on a distributed system for monitoring the patient health status anytime-anywhere and detecting potential health complications, for which healthcare professionals and patients are notified accordingly. Portable or wearable sensing devices measure the patient's physiological parameters, a smart mobile device collects and analyses the sensor data, a Medical Center system receives notifications on the detected health condition, and a Health Professional Platform is used by formal caregivers in order to review the patient condition and configure monitoring schemas. A Service-oriented architecture is utilised to provide extensible functional components and interoperable interactions among the diversified system components. The framework was applied within the REMOTE ambient-assisted living project in which a prototype system was developed, utilising Bluetooth to communicate with the sensors and Web services for data exchange. A scenario of using the REMOTE system and preliminary usability results show the applicability, usefulness and virtue of our approach.
Framework of sensor-based monitoring for pervasive patient care
Koutkias, Vassilis G.; Chouvarda, Ioanna; Adami, Ilia; Kouroubali, Angelina; Maglaveras, Nicos
2016-01-01
Sensor-based health systems can often become difficult to use, extend and sustain. The authors propose a framework for designing sensor-based health monitoring systems aiming to provide extensible and usable monitoring services in the scope of pervasive patient care. The authors’ approach relies on a distributed system for monitoring the patient health status anytime-anywhere and detecting potential health complications, for which healthcare professionals and patients are notified accordingly. Portable or wearable sensing devices measure the patient's physiological parameters, a smart mobile device collects and analyses the sensor data, a Medical Center system receives notifications on the detected health condition, and a Health Professional Platform is used by formal caregivers in order to review the patient condition and configure monitoring schemas. A Service-oriented architecture is utilised to provide extensible functional components and interoperable interactions among the diversified system components. The framework was applied within the REMOTE ambient-assisted living project in which a prototype system was developed, utilising Bluetooth to communicate with the sensors and Web services for data exchange. A scenario of using the REMOTE system and preliminary usability results show the applicability, usefulness and virtue of our approach. PMID:27733920
21 CFR 862.1550 - Urinary pH (nonquantitative) test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test... the monitoring of patients with certain diets. (b) Classification. Class I (general controls). The...
Smartphone-based Continuous Blood Pressure Measurement Using Pulse Transit Time.
Gholamhosseini, Hamid; Meintjes, Andries; Baig, Mirza; Linden, Maria
2016-01-01
The increasing availability of low cost and easy to use personalized medical monitoring devices has opened the door for new and innovative methods of health monitoring to emerge. Cuff-less and continuous methods of measuring blood pressure are particularly attractive as blood pressure is one of the most important measurements of long term cardiovascular health. Current methods of noninvasive blood pressure measurement are based on inflation and deflation of a cuff with some effects on arteries where blood pressure is being measured. This inflation can also cause patient discomfort and alter the measurement results. In this work, a mobile application was developed to collate the PhotoPlethysmoGramm (PPG) waveform provided by a pulse oximeter and the electrocardiogram (ECG) for calculating the pulse transit time. This information is then indirectly related to the user's systolic blood pressure. The developed application successfully connects to the PPG and ECG monitoring devices using Bluetooth wireless connection and stores the data onto an online server. The pulse transit time is estimated in real time and the user's systolic blood pressure can be estimated after the system has been calibrated. The synchronization between the two devices was found to pose a challenge to this method of continuous blood pressure monitoring. However, the implemented continuous blood pressure monitoring system effectively serves as a proof of concept. This combined with the massive benefits that an accurate and robust continuous blood pressure monitoring system would provide indicates that it is certainly worthwhile to further develop this system.
Remote physiological monitoring in an austere environment: a future for battlefield care provision?
Smyth, Matthew J; Round, J A; Mellor, A J
2018-05-14
Wearable technologies are making considerable advances into the mainstream as they become smaller and more user friendly. The global market for such devices is forecasted to be worth over US$5 billion in 2018, with one in six people owning a device. Many professional sporting teams use self-monitoring to assess physiological parameters and work rate on the pitch, highlighting the potential utility for military command chains. As size of device reduces and sensitivity improves, coupled with remote connectivity technology, integration into the military environment could be relatively seamless. Remote monitoring of personnel on the ground, giving live updates on their physiological status, would allow commanders or medical officers the ability to manage their soldiers appropriately and improve combat effectiveness. This paper explores a proof of concept for the use of a self-monitoring system in the austere high altitude environment of the Nepalese Himalayas, akin to those experienced by modern militaries fighting in remote locations. It also reviews, in part, the historical development of remote monitoring technologies. The system allowed for physiological recordings, plotted against GPS position, to be remotely monitored in Italy. Examples of the data recorded are given and the performance of the system is discussed, including limitations, potential areas of development and how systems like this one could be integrated into the military environment. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Predictive modeling for corrective maintenance of imaging devices from machine logs.
Patil, Ravindra B; Patil, Meru A; Ravi, Vidya; Naik, Sarif
2017-07-01
In the cost sensitive healthcare industry, an unplanned downtime of diagnostic and therapy imaging devices can be a burden on the financials of both the hospitals as well as the original equipment manufacturers (OEMs). In the current era of connectivity, it is easier to get these devices connected to a standard monitoring station. Once the system is connected, OEMs can monitor the health of these devices remotely and take corrective actions by providing preventive maintenance thereby avoiding major unplanned downtime. In this article, we present an overall methodology of predicting failure of these devices well before customer experiences it. We use data-driven approach based on machine learning to predict failures in turn resulting in reduced machine downtime, improved customer satisfaction and cost savings for the OEMs. One of the use-case of predicting component failure of PHILIPS iXR system is explained in this article.
NASA Astrophysics Data System (ADS)
Sihombing, Oloan; Zendrato, Niskarto; Laia, Yonata; Nababan, Marlince; Sitanggang, Delima; Purba, Windania; Batubara, Diarmansyah; Aisyah, Siti; Indra, Evta; Siregar, Saut
2018-04-01
In the era of technological development today, the technology has become the need for the life of today's society. One is needed to create a smart home in turning on and off electronic devices via smartphone. So far in turning off and turning the home electronic device is done by pressing the switch or remote button, so in control of electronic device control less effective. The home smart design is done by simulation concept by testing system, network configuration, and wireless home gateway computer network equipment required by a smart home network on cisco packet tracer using Internet Thing (IoT) control. In testing the IoT home network wireless network gateway system, multiple electronic devices can be controlled and monitored via smartphone based on predefined configuration conditions. With the Smart Ho me can potentially increase energy efficiency, decrease energy usage costs, control electronics and change the role of residents.
The Mesa Arizona Pupil Tracking System
NASA Technical Reports Server (NTRS)
Wright, D. L.
1973-01-01
A computer-based Pupil Tracking/Teacher Monitoring System was designed for Mesa Public Schools, Mesa, Arizona. The established objectives of the system were to: (1) facilitate the economical collection and storage of student performance data necessary to objectively evaluate the relative effectiveness of teachers, instructional methods, materials, and applied concepts; and (2) identify, on a daily basis, those students requiring special attention in specific subject areas. The system encompasses computer hardware/software and integrated curricula progression/administration devices. It provides daily evaluation and monitoring of performance as students progress at class or individualized rates. In the process, it notifies the student and collects information necessary to validate or invalidate subject presentation devices, methods, materials, and measurement devices in terms of direct benefit to the students. The system utilizes a small-scale computer (e.g., IBM 1130) to assure low-cost replicability, and may be used for many subjects of instruction.
Sensor Buoy System for Monitoring Renewable Marine Energy Resources.
García, Emilio; Quiles, Eduardo; Correcher, Antonio; Morant, Francisco
2018-03-22
In this paper we present a multi-sensor floating system designed to monitor marine energy parameters, in order to sample wind, wave, and marine current energy resources. For this purpose, a set of dedicated sensors to measure the height and period of the waves, wind, and marine current intensity and direction have been selected and installed in the system. The floating device incorporates wind and marine current turbines for renewable energy self-consumption and to carry out complementary studies on the stability of such a system. The feasibility, safety, sensor communications, and buoy stability of the floating device have been successfully checked in real operating conditions.
Microcomputer monitor system and device for non-touch measurement of turbine blade vibration
NASA Astrophysics Data System (ADS)
Zheng, Shu-Chen; Liu, Bo; Qu, Zhi-Huan; Din, Ke-Ke
To study the aeroelastic phenomena in turbomachinery, a microcomputer monitor system and device for nonintrusive measurement of turbine blade vibration is developed. The system can continuously measure blade amplitude of vibration, phase angle, and torsional angle, when the machinery blades encounter vibration. In the case of turbine operation, it can display and print the vibrating parameters measured by the system, automatically give out the warning when blade amplitude of vibration is bigger than safety value, or blades break. The vibrating parameters in a span of time before the break occurs is recorded. A forecast is produced as blades enter the flutter boundary.
Sensor Buoy System for Monitoring Renewable Marine Energy Resources
García, Emilio; Morant, Francisco
2018-01-01
In this paper we present a multi-sensor floating system designed to monitor marine energy parameters, in order to sample wind, wave, and marine current energy resources. For this purpose, a set of dedicated sensors to measure the height and period of the waves, wind, and marine current intensity and direction have been selected and installed in the system. The floating device incorporates wind and marine current turbines for renewable energy self-consumption and to carry out complementary studies on the stability of such a system. The feasibility, safety, sensor communications, and buoy stability of the floating device have been successfully checked in real operating conditions. PMID:29565823
Development of a feed monitor system for a helium-cooled Michelson intererometer for the Spacelab
NASA Technical Reports Server (NTRS)
Essenwanger, P.
1980-01-01
A Michelson interferometer feed monitor system developed for Spacelab is described. The device is helium cooled and is to be used to measure far infrared radiation sources in space. Performance data and development sequence are presented.
Home oxygen therapy: re-thinking the role of devices.
Melani, Andrea S; Sestini, Piersante; Rottoli, Paola
2018-03-01
A range of devices are available for delivering and monitoring home oxygen therapy (HOT). Guidelines do not give indications for the choice of the delivery device but recommend the use of an ambulatory system in subjects on HOT whilst walking. Areas covered: We provide a clinical overview of HOT and review traditional and newer delivery and monitoring devices for HOT. Despite relevant technology advancements, clinicians, faced with many challenges when they prescribe oxygen therapy, often remain familiar to traditional devices and continuous flow delivery of oxygen. Some self-filling delivery-less devices could increase the users' level of independence with ecological advantage and, perhaps, reduced cost. Some newer portable oxygen concentrators are being available, but more work is needed to understand their performances in different diseases and clinical settings. Pulse oximetry has gained large diffusion worldwide and some models permit long-term monitoring. Some closed-loop portable monitoring devices are also able to adjust oxygen flow automatically in accordance with the different needs of everyday life. This might help to improve adherence and the practice of proper oxygen titration that has often been omitted because difficult to perform and time-consuming. Expert commentary: The prescribing physicians should know the characteristics of newer devices and use technological advancements to improve the practice of HOT.
Gaussian processes for personalized e-health monitoring with wearable sensors.
Clifton, Lei; Clifton, David A; Pimentel, Marco A F; Watkinson, Peter J; Tarassenko, Lionel
2013-01-01
Advances in wearable sensing and communications infrastructure have allowed the widespread development of prototype medical devices for patient monitoring. However, such devices have not penetrated into clinical practice, primarily due to a lack of research into "intelligent" analysis methods that are sufficiently robust to support large-scale deployment. Existing systems are typically plagued by large false-alarm rates, and an inability to cope with sensor artifact in a principled manner. This paper has two aims: 1) proposal of a novel, patient-personalized system for analysis and inference in the presence of data uncertainty, typically caused by sensor artifact and data incompleteness; 2) demonstration of the method using a large-scale clinical study in which 200 patients have been monitored using the proposed system. This latter provides much-needed evidence that personalized e-health monitoring is feasible within an actual clinical environment, at scale, and that the method is capable of improving patient outcomes via personalized healthcare.
PVDF Sensor Stimulated by Infrared Radiation for Temperature Monitoring in Microfluidic Devices.
Pullano, Salvatore A; Mahbub, Ifana; Islam, Syed K; Fiorillo, Antonino S
2017-04-13
This paper presents a ferroelectric polymer-based temperature sensor designed for microfluidic devices. The integration of the sensor into a system-on-a-chip platform facilitates quick monitoring of localized temperature of a biological fluid, avoiding errors in the evaluation of thermal evolution of the fluid during analysis. The contact temperature sensor is fabricated by combining a thin pyroelectric film together with an infrared source, which stimulates the active element located on the top of the microfluidic channel. An experimental setup was assembled to validate the analytical model and to characterize the response rate of the device. The evaluation procedure and the operating range of the temperature also make this device suitable for applications where the localized temperature monitoring of biological samples is necessary. Additionally, ease of integration with standard microfluidic devices makes the proposed sensor an attractive option for in situ analysis of biological fluids.
An automated method for the evaluation of the pointing accuracy of sun-tracking devices
NASA Astrophysics Data System (ADS)
Baumgartner, Dietmar J.; Rieder, Harald E.; Pötzi, Werner; Freislich, Heinrich; Strutzmann, Heinz
2016-04-01
The accuracy of measurements of solar radiation (direct and diffuse radiation) depends significantly on the accuracy of the operational sun-tracking device. Thus rigid targets for instrument performance and operation are specified for international monitoring networks, such as e.g., the Baseline Surface Radiation Network (BSRN) operating under the auspices of the World Climate Research Program (WCRP). Sun-tracking devices fulfilling these accuracy targets are available from various instrument manufacturers, however none of the commercially available systems comprises a secondary accuracy control system, allowing platform operators to independently validate the pointing accuracy of sun-tracking sensors during operation. Here we present KSO-STREAMS (KSO-SunTRackEr Accuracy Monitoring System), a fully automated, system independent and cost-effective method for evaluating the pointing accuracy of sun-tracking devices. We detail the monitoring system setup, its design and specifications and results from its application to the sun-tracking system operated at the Austrian RADiation network (ARAD) site Kanzelhöhe Observatory (KSO). Results from KSO-STREAMS (for mid-March to mid-June 2015) show that the tracking accuracy of the device operated at KSO lies well within BSRN specifications (i.e. 0.1 degree accuracy). We contrast results during clear-sky and partly cloudy conditions documenting sun-tracking performance at manufacturer specified accuracies for active tracking (0.02 degrees) and highlight accuracies achieved during passive tracking i.e. periods with less than 300 W m-2 direct radiation. Furthermore we detail limitations to tracking surveillance during overcast conditions and periods of partial solar limb coverage by clouds.
Usability Study of a Wireless Monitoring System among Alzheimer's Disease Elderly Population
Avvenuti, Marco
2014-01-01
Healthcare technologies are slowly entering into our daily lives, replacing old devices and techniques with newer intelligent ones. Although they are meant to help people, the reaction and willingness to use such new devices by the people can be unexpected, especially among the elderly. We conducted a usability study of a fall monitoring system in a long-term nursing home. The subjects were the elderly with advanced Alzheimer's disease. The study presented here highlights some of the challenges faced in the use of wearable devices and the lessons learned. The results gave us useful insights, leading to ergonomics and aesthetics modifications to our wearable systems that significantly improved their usability and acceptance. New evaluating metrics were designed for the performance evaluation of usability and acceptability. PMID:24963289
Health Monitoring System for Car Seat
NASA Technical Reports Server (NTRS)
Elrod, Susan Vinz (Inventor); Dabney, Richard W. (Inventor)
2004-01-01
A health monitoring system for use with a child car seat has sensors mounted in the seat to monitor one or more health conditions of the seat's occupant. A processor monitors the sensor's signals and generates status signals related to the monitored conditions. A transmitter wireless transmits the status signals to a remotely located receiver. A signaling device coupled to the receiver produces at least one sensory (e.g., visual, audible, tactile) output based on the status signals.
Microprocessor controlled compliance monitor for eye drop medication
Hermann, M M; Diestelhorst, M
2006-01-01
Background/aims The effectiveness of a self administered eye drop medication can only be assessed if the compliance is known. The authors studied the specificity and sensitivity of a new microprocessor controlled monitoring device. Methods The monitoring system was conducted by an 8 bit microcontroller for data acquisition and storage with sensors measuring applied pressure to the bottle, temperature, and vertical position. 10 devices were mounted under commercial 10 ml eye drops. Test subjects had to note down each application manually. A total of 15 applications each within 3 days was intended. Results Manual reports confirmed 15 applications for each of the 10 bottles. The monitoring devices detected a total of 149 events; one was missed; comprising a sensitivity of 99%. Two devices registered three applications, which did not appear in the manual protocols, indicating a specificity of about 98%. Refrigerated bottles were correctly identified. The battery lifetime exceeded 60 days. Conclusion The new monitoring device demonstrated a high reliability of the collected compliance data. The important, yet often unknown, influence of compliance in patient care and clinical trials shall be illuminated by the new device. This may lead to a better adapted patient care. Studies will profit from a higher credibility and results will be less influenced by non‐compliance. PMID:16540488
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yussup, F., E-mail: nolida@nm.gov.my; Ibrahim, M. M., E-mail: maslina-i@nm.gov.my; Soh, S. C.
With the growth of technology, many devices and equipments can be connected to the network and internet to enable online data acquisition for real-time data monitoring and control from monitoring devices located at remote sites. Centralized radiation monitoring system (CRMS) is a system that enables area radiation level at various locations in Malaysian Nuclear Agency (Nuklear Malaysia) to be monitored centrally by using a web browser. The Local Area Network (LAN) in Nuclear Malaysia is utilized in CRMS as a communication media for data acquisition of the area radiation levels from radiation detectors. The development of the system involves devicemore » configuration, wiring, network and hardware installation, software and web development. This paper describes the software upgrading on the system server that is responsible to acquire and record the area radiation readings from the detectors. The recorded readings are called in a web programming to be displayed on a website. Besides the main feature which is acquiring the area radiation levels in Nuclear Malaysia centrally, the upgrading involves new features such as uniform time interval for data recording and exporting, warning system and dose triggering.« less
In Vivo Self-Powered Wireless Cardiac Monitoring via Implantable Triboelectric Nanogenerator.
Zheng, Qiang; Zhang, Hao; Shi, Bojing; Xue, Xiang; Liu, Zhuo; Jin, Yiming; Ma, Ye; Zou, Yang; Wang, Xinxin; An, Zhao; Tang, Wei; Zhang, Wei; Yang, Fan; Liu, Yang; Lang, Xilong; Xu, Zhiyun; Li, Zhou; Wang, Zhong Lin
2016-07-26
Harvesting biomechanical energy in vivo is an important route in obtaining sustainable electric energy for powering implantable medical devices. Here, we demonstrate an innovative implantable triboelectric nanogenerator (iTENG) for in vivo biomechanical energy harvesting. Driven by the heartbeat of adult swine, the output voltage and the corresponding current were improved by factors of 3.5 and 25, respectively, compared with the reported in vivo output performance of biomechanical energy conversion devices. In addition, the in vivo evaluation of the iTENG was demonstrated for over 72 h of implantation, during which the iTENG generated electricity continuously in the active animal. Due to its excellent in vivo performance, a self-powered wireless transmission system was fabricated for real-time wireless cardiac monitoring. Given its outstanding in vivo output and stability, iTENG can be applied not only to power implantable medical devices but also possibly to fabricate a self-powered, wireless healthcare monitoring system.
Infrared transmission of electronic information via LAN in the operating room.
Hagihira, S; Takashina, M; Mori, T; Taenaka, N; Mashimo, T; Yoshiya, I
2000-01-01
Recent advances in technology have brought many kinds of monitoring devices into the operating room (OR). The information gathered by monitors can be channeled to the operating ward information system via a local area network (LAN). Connecting patients to monitors and monitors to the LAN, however, requires a large number of cables. This wiring is generally inconvenient and particularly troublesome if the layout of the OR is rearranged. From this point of view, wireless transmission seems ideally suited to clinical settings. Currently, two modes of wireless connectivity are available: radio-frequency (RF) waves or infrared (IR) waves. Some reports suggest that RF transmission is likely to cause electromagnetic interference (EMI) in medical devices such as cardiac pacemakers or infusion pumps. The risk of malfunctioning life-sustaining devices and the catastrophic consequences this would have on seriously ill patients rules out the use of RF. Here, we report an IR system using IR modems for LAN connectivity in the OR. In this study, we focused on the possible detrimental effects of EMI during wireless connectivity. In our trial, we found no evidence of EMI of IR modems with any of the medical devices we tested. Furthermore, IR modems showed similar performance to a wired system even in an electrically noisy environment. We conclude that IR wireless connectivity can be safely and effectively used in ORs.
21 CFR 884.2730 - Home uterine activity monitor.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Home uterine activity monitor. 884.2730 Section... Devices § 884.2730 Home uterine activity monitor. (a) Identification. A home uterine activity monitor (HUAM) is an electronic system for at home antepartum measurement of uterine contractions, data...
21 CFR 884.2730 - Home uterine activity monitor.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Home uterine activity monitor. 884.2730 Section... Devices § 884.2730 Home uterine activity monitor. (a) Identification. A home uterine activity monitor (HUAM) is an electronic system for at home antepartum measurement of uterine contractions, data...
21 CFR 884.2730 - Home uterine activity monitor.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Home uterine activity monitor. 884.2730 Section... Devices § 884.2730 Home uterine activity monitor. (a) Identification. A home uterine activity monitor (HUAM) is an electronic system for at home antepartum measurement of uterine contractions, data...
21 CFR 884.2730 - Home uterine activity monitor.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Home uterine activity monitor. 884.2730 Section... Devices § 884.2730 Home uterine activity monitor. (a) Identification. A home uterine activity monitor (HUAM) is an electronic system for at home antepartum measurement of uterine contractions, data...
21 CFR 884.2730 - Home uterine activity monitor.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Home uterine activity monitor. 884.2730 Section... Devices § 884.2730 Home uterine activity monitor. (a) Identification. A home uterine activity monitor (HUAM) is an electronic system for at home antepartum measurement of uterine contractions, data...
Toda, Kei; Hato, Yuki; Ohira, Shin-ichi; Namihira, Takao
2007-11-05
In this paper, novel microsystems for gas analysis and gas generation are described. The same microchannel devices covered with a gas permeable membrane were used for both the gas collection and the gas generation. For the first time, a dual liquid flow system was utilized in a micro-gas analysis system. Even though micropumps are utilized in the dual line microsystem, a good baseline was obtained in the NO2 measurement with Griess-Saltzman chemistry. The system was developed for on-site measurements in medical treatment; the treatment is of respiratory disease syndrome by NO inhalation and the monitoring is of the product NO and the harmful byproduct NO2. The system was also applied to mobile atmospheric monitoring. Chemical NO generation using the microchannel device was investigated for safe NO inhalation as an alternative to a NO generator based on pulsed arc discharge.
Smart wearable body sensors for patient self-assessment and monitoring.
Appelboom, Geoff; Camacho, Elvis; Abraham, Mickey E; Bruce, Samuel S; Dumont, Emmanuel Lp; Zacharia, Brad E; D'Amico, Randy; Slomian, Justin; Reginster, Jean Yves; Bruyère, Olivier; Connolly, E Sander
2014-01-01
Innovations in mobile and electronic healthcare are revolutionizing the involvement of both doctors and patients in the modern healthcare system by extending the capabilities of physiological monitoring devices. Despite significant progress within the monitoring device industry, the widespread integration of this technology into medical practice remains limited. The purpose of this review is to summarize the developments and clinical utility of smart wearable body sensors. We reviewed the literature for connected device, sensor, trackers, telemonitoring, wireless technology and real time home tracking devices and their application for clinicians. Smart wearable sensors are effective and reliable for preventative methods in many different facets of medicine such as, cardiopulmonary, vascular, endocrine, neurological function and rehabilitation medicine. These sensors have also been shown to be accurate and useful for perioperative monitoring and rehabilitation medicine. Although these devices have been shown to be accurate and have clinical utility, they continue to be underutilized in the healthcare industry. Incorporating smart wearable sensors into routine care of patients could augment physician-patient relationships, increase the autonomy and involvement of patients in regards to their healthcare and will provide for novel remote monitoring techniques which will revolutionize healthcare management and spending.
Ohta, Hidetoshi; Izumi, Shintaro; Yoshimoto, Masahiko
2015-01-01
Several types of implant devices have been proposed and introduced into healthcare and telemedicine systems for monitoring physiological parameters, sometimes for very long periods of time. To our disappointment, most of the devices are implanted invasively and by surgery. We often have to surgically remove such devices after they have finished their mission or before the battery becomes worn out. Wearable devices have the possibility to become new modalities for monitoring vital parameters less-invasively. However, for round-the-clock monitoring of data from sensors over long periods of time, it would be better to put them inside the body to avoid causing inconvenience to patients in their daily lives. This study tested a less invasive endoluminal approach and innovative tools (developed during our research into therapeutic capsule endoscopy) for remotely anchoring ingestible sensors to the stomach wall. Preliminary investigations are also described about wireless communication (NFC, ZigBee, and Bluetooth) for low power consumption and inductive extracorporeal power feeding wirelessly to the circuits in a phantom lined with swine gastric mucosa. Electrocardiogram and pH were monitored and those parameters were successfully transmitted by wireless communication ICs to the Internet via a portable device.
The CUORE slow monitoring systems
Gladstone, L.; Biare, D.; Cappelli, L.; ...
2017-09-20
CUORE is a cryogenic experiment searching primarily for neutrinoless double decay inmore » $$^{130}$$Te. It will begin data-taking operations in 2016. To monitor the cryostat and detector during commissioning and data taking, we have designed and developed Slow Monitoring systems. In addition to real-time systems using LabVIEW, we have an alarm, analysis, and archiving website that uses MongoDB, AngularJS, and Bootstrap software. These modern, state of the art software packages make the monitoring system transparent, easily maintainable, and accessible on many platforms including mobile devices.« less
The CUORE slow monitoring systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gladstone, L.; Biare, D.; Cappelli, L.
CUORE is a cryogenic experiment searching primarily for neutrinoless double decay inmore » $$^{130}$$Te. It will begin data-taking operations in 2016. To monitor the cryostat and detector during commissioning and data taking, we have designed and developed Slow Monitoring systems. In addition to real-time systems using LabVIEW, we have an alarm, analysis, and archiving website that uses MongoDB, AngularJS, and Bootstrap software. These modern, state of the art software packages make the monitoring system transparent, easily maintainable, and accessible on many platforms including mobile devices.« less
Monitoring activities of daily living based on wearable wireless body sensor network.
Kańtoch, E; Augustyniak, P; Markiewicz, M; Prusak, D
2014-01-01
With recent advances in microprocessor chip technology, wireless communication, and biomedical engineering it is possible to develop miniaturized ubiquitous health monitoring devices that are capable of recording physiological and movement signals during daily life activities. The aim of the research is to implement and test the prototype of health monitoring system. The system consists of the body central unit with Bluetooth module and wearable sensors: the custom-designed ECG sensor, the temperature sensor, the skin humidity sensor and accelerometers placed on the human body or integrated with clothes and a network gateway to forward data to a remote medical server. The system includes custom-designed transmission protocol and remote web-based graphical user interface for remote real time data analysis. Experimental results for a group of humans who performed various activities (eg. working, running, etc.) showed maximum 5% absolute error compared to certified medical devices. The results are promising and indicate that developed wireless wearable monitoring system faces challenges of multi-sensor human health monitoring during performing daily activities and opens new opportunities in developing novel healthcare services.
A Smartphone-Based Driver Safety Monitoring System Using Data Fusion
Lee, Boon-Giin; Chung, Wan-Young
2012-01-01
This paper proposes a method for monitoring driver safety levels using a data fusion approach based on several discrete data types: eye features, bio-signal variation, in-vehicle temperature, and vehicle speed. The driver safety monitoring system was developed in practice in the form of an application for an Android-based smartphone device, where measuring safety-related data requires no extra monetary expenditure or equipment. Moreover, the system provides high resolution and flexibility. The safety monitoring process involves the fusion of attributes gathered from different sensors, including video, electrocardiography, photoplethysmography, temperature, and a three-axis accelerometer, that are assigned as input variables to an inference analysis framework. A Fuzzy Bayesian framework is designed to indicate the driver’s capability level and is updated continuously in real-time. The sensory data are transmitted via Bluetooth communication to the smartphone device. A fake incoming call warning service alerts the driver if his or her safety level is suspiciously compromised. Realistic testing of the system demonstrates the practical benefits of multiple features and their fusion in providing a more authentic and effective driver safety monitoring. PMID:23247416
Thurow, Kerstin; Stoll, Regina
2017-01-01
Objectives Wearable devices are currently at the heart of just about every discussion related to the Internet of Things. The requirement for self-health monitoring and preventive medicine is increasing due to the projected dramatic increase in the number of elderly people until 2020. Developed technologies are truly able to reduce the overall costs for prevention and monitoring. This is possible by constantly monitoring health indicators in various areas, and in particular, wearable devices are considered to carry this task out. These wearable devices and mobile apps now have been integrated with telemedicine and telehealth efficiently, to structure the medical Internet of Things. This paper reviews wearable health care devices both in scientific papers and commercial efforts. Methods MIoT is demonstrated through a defined architecture design, including hardware and software dealing with wearable devices, sensors, smart phones, medical application, and medical station analyzers for further diagnosis and data storage. Results Wearables, with the help of improved technology have been developed greatly and are considered reliable tools for long-term health monitoring systems. These are applied in the observation of a large variety of health monitoring indicators in the environment, vital signs, and fitness. Conclusions Wearable devices are now used for a wide range of healthcare observation. One of the most important elements essential in data collection is the sensor. During recent years with improvement in semiconductor technology, sensors have made investigation of a full range of parameters closer to realization. PMID:28261526
Haghi, Mostafa; Thurow, Kerstin; Stoll, Regina
2017-01-01
Wearable devices are currently at the heart of just about every discussion related to the Internet of Things. The requirement for self-health monitoring and preventive medicine is increasing due to the projected dramatic increase in the number of elderly people until 2020. Developed technologies are truly able to reduce the overall costs for prevention and monitoring. This is possible by constantly monitoring health indicators in various areas, and in particular, wearable devices are considered to carry this task out. These wearable devices and mobile apps now have been integrated with telemedicine and telehealth efficiently, to structure the medical Internet of Things. This paper reviews wearable health care devices both in scientific papers and commercial efforts. MIoT is demonstrated through a defined architecture design, including hardware and software dealing with wearable devices, sensors, smart phones, medical application, and medical station analyzers for further diagnosis and data storage. Wearables, with the help of improved technology have been developed greatly and are considered reliable tools for long-term health monitoring systems. These are applied in the observation of a large variety of health monitoring indicators in the environment, vital signs, and fitness. Wearable devices are now used for a wide range of healthcare observation. One of the most important elements essential in data collection is the sensor. During recent years with improvement in semiconductor technology, sensors have made investigation of a full range of parameters closer to realization.
Motoi, Kosuke; Ogawa, Mitsuhiro; Ueno, Hiroshi; Kuwae, Yutaka; Ikarashi, Akira; Yuji, Tadahiko; Higashi, Yuji; Tanaka, Shinobu; Fujimoto, Toshiro; Asanoi, Hidetsugu; Yamakoshi, Ken-ichi
2009-01-01
Daily monitoring of health condition is important for an effective scheme for early diagnosis, treatment and prevention of lifestyle-related diseases such as adiposis, diabetes, cardiovascular diseases and other diseases. Commercially available devices for health care monitoring at home are cumbersome in terms of self-attachment of biological sensors and self-operation of the devices. From this viewpoint, we have been developing a non-conscious physiological monitor installed in a bath, a lavatory, and a bed for home health care and evaluated its measurement accuracy by simultaneous recordings of a biological sensors directly attached to the body surface. In order to investigate its applicability to health condition monitoring, we have further developed a new monitoring system which can automatically monitor and store the health condition data. In this study, by evaluation on 3 patients with cardiac infarct or sleep apnea syndrome, patients' health condition such as body and excretion weight in the toilet and apnea and hypopnea during sleeping were successfully monitored, indicating that the system appears useful for monitoring the health condition during daily living.
Billis, Antonis S.; Batziakas, Asterios; Bratsas, Charalampos; Tsatali, Marianna S.; Karagianni, Maria
2016-01-01
Smart monitoring of seniors behavioural patterns and more specifically activities of daily living have attracted immense research interest in recent years. Development of smart decision support systems to support the promotion of health smart homes has also emerged taking advantage of the plethora of smart, inexpensive and unobtrusive monitoring sensors, devices and software tools. To this end, a smart monitoring system has been used in order to extract meaningful information about television (TV) usage patterns and subsequently associate them with clinical findings of experts. The smart TV operating state remote monitoring system was installed in four elderly women homes and gathered data for more than 11 months. Results suggest that TV daily usage (time the TV is turned on) can predict mental health change. Conclusively, the authors suggest that collection of smart device usage patterns could strengthen the inference capabilities of existing health DSSs applied in uncontrolled settings such as real senior homes. PMID:27284457
Billis, Antonis S; Batziakas, Asterios; Bratsas, Charalampos; Tsatali, Marianna S; Karagianni, Maria; Bamidis, Panagiotis D
2016-03-01
Smart monitoring of seniors behavioural patterns and more specifically activities of daily living have attracted immense research interest in recent years. Development of smart decision support systems to support the promotion of health smart homes has also emerged taking advantage of the plethora of smart, inexpensive and unobtrusive monitoring sensors, devices and software tools. To this end, a smart monitoring system has been used in order to extract meaningful information about television (TV) usage patterns and subsequently associate them with clinical findings of experts. The smart TV operating state remote monitoring system was installed in four elderly women homes and gathered data for more than 11 months. Results suggest that TV daily usage (time the TV is turned on) can predict mental health change. Conclusively, the authors suggest that collection of smart device usage patterns could strengthen the inference capabilities of existing health DSSs applied in uncontrolled settings such as real senior homes.
[Implementation of ECG Monitoring System Based on Internet of Things].
Lu, Liangliang; Chen, Minya
2015-11-01
In order to expand the capabilities of hospital's traditional ECG device and enhance medical staff's work efficiency, an ECG monitoring system based on internet of things is introduced. The system can monitor ECG signals in real time and analyze data using ECG sensor, PDA, Web servers, which embeds C language, Android systems, .NET, wireless network and other technologies. After experiments, it can be showed that the system has high reliability and stability and can bring the convenience to medical staffs.
Mnati, Mohannad Jabbar; Van den Bossche, Alex; Chisab, Raad Farhood
2017-01-01
In this paper, a new smart voltage and current monitoring system (SVCMS) technique is proposed. It monitors a three phase electrical system using an Arduino platform as a microcontroller to read the voltage and current from sensors and then wirelessly send the measured data to monitor the results using a new Android application. The integrated SVCMS design uses an Arduino Nano V3.0 as the microcontroller to measure the results from three voltage and three current sensors and then send this data, after calculation, to the Android smartphone device of an end user using Bluetooth HC-05. The Arduino Nano V3.0 controller and Bluetooth HC-05 are a cheap microcontroller and wireless device, respectively. The new Android smartphone application that monitors the voltage and current measurements uses the open source MIT App Inventor 2 software. It allows for monitoring some elementary fundamental voltage power quality properties. An effort has been made to investigate what is possible using available off-the-shelf components and open source software. PMID:28420132
Mnati, Mohannad Jabbar; Van den Bossche, Alex; Chisab, Raad Farhood
2017-04-15
In this paper, a new smart voltage and current monitoring system (SVCMS) technique is proposed. It monitors a three phase electrical system using an Arduino platform as a microcontroller to read the voltage and current from sensors and then wirelessly send the measured data to monitor the results using a new Android application. The integrated SVCMS design uses an Arduino Nano V3.0 as the microcontroller to measure the results from three voltage and three current sensors and then send this data, after calculation, to the Android smartphone device of an end user using Bluetooth HC-05. The Arduino Nano V3.0 controller and Bluetooth HC-05 are a cheap microcontroller and wireless device, respectively. The new Android smartphone application that monitors the voltage and current measurements uses the open source MIT App Inventor 2 software. It allows for monitoring some elementary fundamental voltage power quality properties. An effort has been made to investigate what is possible using available off-the-shelf components and open source software.
Lab-on-Skin: A Review of Flexible and Stretchable Electronics for Wearable Health Monitoring.
Liu, Yuhao; Pharr, Matt; Salvatore, Giovanni Antonio
2017-10-24
Skin is the largest organ of the human body, and it offers a diagnostic interface rich with vital biological signals from the inner organs, blood vessels, muscles, and dermis/epidermis. Soft, flexible, and stretchable electronic devices provide a novel platform to interface with soft tissues for robotic feedback and control, regenerative medicine, and continuous health monitoring. Here, we introduce the term "lab-on-skin" to describe a set of electronic devices that have physical properties, such as thickness, thermal mass, elastic modulus, and water-vapor permeability, which resemble those of the skin. These devices can conformally laminate on the epidermis to mitigate motion artifacts and mismatches in mechanical properties created by conventional, rigid electronics while simultaneously providing accurate, non-invasive, long-term, and continuous health monitoring. Recent progress in the design and fabrication of soft sensors with more advanced capabilities and enhanced reliability suggest an impending translation of these devices from the research lab to clinical environments. Regarding these advances, the first part of this manuscript reviews materials, design strategies, and powering systems used in soft electronics. Next, the paper provides an overview of applications of these devices in cardiology, dermatology, electrophysiology, and sweat diagnostics, with an emphasis on how these systems may replace conventional clinical tools. The review concludes with an outlook on current challenges and opportunities for future research directions in wearable health monitoring.
Primary response of high-aspect-ratio thermoresistive sensors
NASA Astrophysics Data System (ADS)
Majlesein, H. R.; Mitchell, D. L.; Bhattacharya, Pradeep K.; Singh, A.; Anderson, James A.
1997-07-01
There is a growing need for sensors in monitoring performance in modern quality products such as in electronics to monitor heat build up, substrate delaminations, and thermal runaway. In processing instruments, intelligent sensors are needed to measure deposited layer thickness and resistivities for process control, and in environmental electrical enclosures, they are used for climate monitoring and control. A yaw sensor for skid prevention utilizes very fine moveable components, and an automobile engine controller blends a microprocessor and sensor on the same chip. An Active-Pixel Image Sensor is integrated with a digital readout circuit to perform most of the functions in a video camera. Magnetostrictive transducers sense and damp vibrations. Improved acoustic sensors will be used in flow detection of air and other fluids, even at subsonic speeds. Optoelectronic sensor systems are being developed for installation on rocket engines to monitor exhaust gases for signs of wear in the engines. With new freon-free coolants being available the problems of A/C system corrosion have gone up in automobiles and need to be monitored more frequently. Defense cutbacks compel the storage of hardware in safe-custody for an indeterminate period of time, and this makes monitoring more essential. Just-in-time customized manufacturing in modern industries also needs dramatic adjustment in productivity of various selected items, leaving some manufacturing equipment idle for a long time, and therefore, it will be prone to more corrosion, and corrosion sensors are needed. In the medical device industry, development of implantable medical devices using both potentiometric and amperometric determination of parameters has, until now, been used with insufficient micro miniaturization, and thus, requires surgical implantation. In many applications, high-aspect- ratio devices, made possible by the use of synchrotron radiation lithography, allow more useful devices to be produced. High-aspect-ratio sensors will permit industries and various other users to attain more accurate measurements of physical properties and chemical compositions in many systems. Considerable engineering research has recently been focused on this type of fabrication effect. This paper looks at a high-aspect-ratio sensor bus thermorestrictive device with increased aspect-ratio of the interconnects to the device, using unique simulation software resources.
Bluetooth telemetry system for a wearable electrocardiogram
NASA Astrophysics Data System (ADS)
Green, Ryan B.
The rise of wireless networks has led to a new market in medicine: remote patient monitoring. Practitioners now desire to monitor the health conditions of their patients after hospital release. With the large number of cardiac related deaths and this new demand in medicine being the motivation, this study developed a BluetoothRTM telemetry system for a wearable Electrocardiogram. This study also developed a compression t-shirt to hold the ECG and telemetry system. This device communicates the ECG signal of a patient to an Android device within the ISM frequency bands (2.4-2.48 GHz) where the data is displayed and stored in real time. This study is a stepping stone toward more portable heart monitoring that can communicate with the doctor in real time from remote locations.
Adapting smartphones for low-cost optical medical imaging
NASA Astrophysics Data System (ADS)
Pratavieira, Sebastião.; Vollet-Filho, José D.; Carbinatto, Fernanda M.; Blanco, Kate; Inada, Natalia M.; Bagnato, Vanderlei S.; Kurachi, Cristina
2015-06-01
Optical images have been used in several medical situations to improve diagnosis of lesions or to monitor treatments. However, most systems employ expensive scientific (CCD or CMOS) cameras and need computers to display and save the images, usually resulting in a high final cost for the system. Additionally, this sort of apparatus operation usually becomes more complex, requiring more and more specialized technical knowledge from the operator. Currently, the number of people using smartphone-like devices with built-in high quality cameras is increasing, which might allow using such devices as an efficient, lower cost, portable imaging system for medical applications. Thus, we aim to develop methods of adaptation of those devices to optical medical imaging techniques, such as fluorescence. Particularly, smartphones covers were adapted to connect a smartphone-like device to widefield fluorescence imaging systems. These systems were used to detect lesions in different tissues, such as cervix and mouth/throat mucosa, and to monitor ALA-induced protoporphyrin-IX formation for photodynamic treatment of Cervical Intraepithelial Neoplasia. This approach may contribute significantly to low-cost, portable and simple clinical optical imaging collection.
NASA Astrophysics Data System (ADS)
Laghrouche, M.; Haddab, S.; Lotmani, S.; Mekdoud, K.; Ameur, S.
2010-01-01
Nowadays, many medical devices have been developed for the purposes of diagnosing and treatment. Wearable sensors and systems have evolved to the point that they can be considered ready for clinical application. The use of wearable monitoring devices that allow continuous or intermittent monitoring of physiological signals is critical for the advancement of both the diagnosis as well as treatment of diseases. Patient vital sign monitoring within hospitals requires the use of noninvasive sensors that are hardwired to bedside monitors. This paper describes the initial bench testing of a wireless wearable pulse oximeter. Arterial oxygen saturation in the patient's blood signal was measured with an optical sensor, and then converted to digital data using a microcontroller system. The digital data were then sent to a receiver where it is in 433 MHz FM/FSK transmitter. At the receiver, the digital data were reconverted to analog signal to be monitored and recorded on the PC.
A chest drainage system with a real-time pressure monitoring device
Liu, Tsang-Pai; Huang, Tung-Sung; Liu, Hung-Chang; Chen, Chao-Hung
2015-01-01
Background Tube thoracostomy is a common procedure. A chest bottle may be used to both collect fluids and monitor the recovery of the chest condition. The presence of the “tidaling phenomenon” in the bottle can be reflective of the extent of patient’s recovery. Objectives However, current practice essentially depends on gross observation of the bottle. The device used here is designed for a real-time monitoring of change in pleural pressure to allow clinicians to objectively determine when the lung has recovered, which is crucially important in order to judge when to remove the chest tube. Methods The device is made of a pressure sensor with an operating range between −100 to +100 cmH2O and an amplifying using the “Wheatstone bridge” concept. Recording and analysis was performed with LABview software. The data can be shown in real-time on screen and also be checked retrospectively. The device was connected to the second part of a three-bottle drain system by a three-way connector. Results The test animals were two 40-kg pigs. We used a thoracoscopic procedure to create an artificial lung laceration with endoscopic scissors. Active air leaks could result in vigorous tidaling phenomenon up to 20 cmH2O. In the absence of gross tidaling phenomenon, the pressure changes were around 0.25 cmH2O. Conclusions This real-time pleural pressure monitoring device can help clinicians objectively judge the extent of recovery of the chest condition. It can be used as an effective adjunct with the current chest drain system. PMID:26380726
A chest drainage system with a real-time pressure monitoring device.
Chen, Chih-Hao; Liu, Tsang-Pai; Chang, Ho; Huang, Tung-Sung; Liu, Hung-Chang; Chen, Chao-Hung
2015-07-01
Tube thoracostomy is a common procedure. A chest bottle may be used to both collect fluids and monitor the recovery of the chest condition. The presence of the "tidaling phenomenon" in the bottle can be reflective of the extent of patient's recovery. However, current practice essentially depends on gross observation of the bottle. The device used here is designed for a real-time monitoring of change in pleural pressure to allow clinicians to objectively determine when the lung has recovered, which is crucially important in order to judge when to remove the chest tube. The device is made of a pressure sensor with an operating range between -100 to +100 cmH2O and an amplifying using the "Wheatstone bridge" concept. Recording and analysis was performed with LABview software. The data can be shown in real-time on screen and also be checked retrospectively. The device was connected to the second part of a three-bottle drain system by a three-way connector. The test animals were two 40-kg pigs. We used a thoracoscopic procedure to create an artificial lung laceration with endoscopic scissors. Active air leaks could result in vigorous tidaling phenomenon up to 20 cmH2O. In the absence of gross tidaling phenomenon, the pressure changes were around 0.25 cmH2O. This real-time pleural pressure monitoring device can help clinicians objectively judge the extent of recovery of the chest condition. It can be used as an effective adjunct with the current chest drain system.
Human Machine Interface Programming and Testing
NASA Technical Reports Server (NTRS)
Foster, Thomas Garrison
2013-01-01
Human Machine Interface (HMI) Programming and Testing is about creating graphical displays to mimic mission critical ground control systems in order to provide NASA engineers with the ability to monitor the health management of these systems in real time. The Health Management System (HMS) is an online interactive human machine interface system that monitors all Kennedy Ground Control Subsystem (KGCS) hardware in the field. The Health Management System is essential to NASA engineers because it allows remote control and monitoring of the health management systems of all the Programmable Logic Controllers (PLC) and associated field devices. KGCS will have equipment installed at the launch pad, Vehicle Assembly Building, Mobile Launcher, as well as the Multi-Purpose Processing Facility. I am designing graphical displays to monitor and control new modules that will be integrated into the HMS. The design of the display screen will closely mimic the appearance and functionality of the actual modules. There are many different field devices used to monitor health management and each device has its own unique set of health management related data, therefore each display must also have its own unique way to display this data. Once the displays are created, the RSLogix5000 application is used to write software that maps all the required data read from the hardware to the graphical display. Once this data is mapped to its corresponding display item, the graphical display and hardware device will be connected through the same network in order to test all possible scenarios and types of data the graphical display was designed to receive. Test Procedures will be written to thoroughly test out the displays and ensure that they are working correctly before being deployed to the field. Additionally, the Kennedy Ground Controls Subsystem's user manual will be updated to explain to the NASA engineers how to use the new module displays.
Disruption in the diabetic device care market
Mohammed, Raihan
2018-01-01
As diabetes mellitus (DM) has approached pandemic proportions, the pressure for effective glycemic management is mounting. The starting point for managing and living well with DM involves early diagnosis and monitoring blood glucose levels. Therefore, self-monitoring of blood glucose (SMBG) can help patients maintain their blood glucose levels within the appropriate range. The general principle behind the current SMBG method involves a finger prick test to obtain a blood drop, which is applied onto a reagent strip and read by an automated device. Novel techniques are currently under evaluation to create the next generation of painless and accurate glucose monitoring for DM. We began by outlining how the emerging technology of the noninvasive glucose monitoring devices (NIGMDs) provides both economic and clinical benefits for health systems and patients. We further explored the engineering and techniques behind these upcoming devices. Finally, we evaluated how the NIGMDs disrupt the diabetic device care market and drive health care consumerism. We postulated that the NIGMDs play a pivotal role in the implementation of next generation of diabetes prevention strategies. PMID:29440935
The future of remote ECG monitoring systems.
Guo, Shu-Li; Han, Li-Na; Liu, Hong-Wei; Si, Quan-Jin; Kong, De-Feng; Guo, Fu-Su
2016-09-01
Remote ECG monitoring systems are becoming commonplace medical devices for remote heart monitoring. In recent years, remote ECG monitoring systems have been applied in the monitoring of various kinds of heart diseases, and the quality of the transmission and reception of the ECG signals during remote process kept advancing. However, there remains accompanying challenges. This report focuses on the three components of the remote ECG monitoring system: patient (the end user), the doctor workstation, and the remote server, reviewing and evaluating the imminent challenges on the wearable systems, packet loss in remote transmission, portable ECG monitoring system, patient ECG data collection system, and ECG signals transmission including real-time processing ST segment, R wave, RR interval and QRS wave, etc. This paper tries to clarify the future developmental strategies of the ECG remote monitoring, which can be helpful in guiding the research and development of remote ECG monitoring.
Blood Glucose Monitoring Devices
... of interferences ability to transmit data to a computer cost of the meter cost of the test ... Performance FDA expands indication for continuous glucose monitoring system, first to replace fingerstick testing for diabetes treatment ...
NASA Astrophysics Data System (ADS)
Mayevsky, Avraham; Deutsch, Assaf; Dekel, Nava; Pevzner, Eliyahu; Jaronkin, Alex
2005-04-01
Real time Monitoring of mitochondrial function in vivo is a significant factor in the understanding of tissue vitality. Nevertheless a single parameter monitoring device is not appropriate and effective in clinical diagnosis of tissue vitality. Therefore we have developed a multi-parametric monitoring system that monitors, in addition to mitochondrial NADH redox state, tissue microcirculatory blood flow, tissue total back-scattered light as an indication of blood volume and blood oxygenation (Hb02). In the present communication a new device named "CritiView" is described. This device was developed in order to enable real time monitoring of the four parameters from various organs in the body. The main medical application of the CritiView is in critical care medicine of patients hospitalized in the Intensive Care Units (ICUs) and intraoperatively in operating rooms. The physiological basis for our clinical monitoring approach is based on the well known response to the development of body emergency situation, such as shock or trauma. Under such conditions a process of blood flow redistribution will give preference to vital organs (Brain, Heart) neglecting less vital organs (Skin, G-I tract or the urinary system). Under such condition the brain will by hyperperfused and O2 supply will increase to provide the need of the activated mitochondria. The non-vital organs will be hypoperfused and mitochondial function will be inhibited leading to energy failure. This differentiation between the two types of organs could be used for the early detection of body deterioration by monitoring of the non-vital organ vitality. A fiber optic sensor was embedded in a Foley catheter, enabling the monitoring of Urethral wall vitality, to serve as an early warning signal of body deterioration.
Gibson, C Michael; Krucoff, Mitchell; Kirtane, Ajay J; Rao, Sunil V; Mackall, Judith A; Matthews, Ray; Saba, Samir; Waksman, Ron; Holmes, David
2014-10-01
In the setting of ST-segment elevation myocardial infarction, timely restoration of normal blood flow is associated with improved myocardial salvage and survival. Despite improvements in door-to-needle and door-to-balloon times, there remains an unmet need with respect to improved symptom-to-door times. A prior report of an implanted device to monitor ST-segment deviation demonstrated very short times to reperfusion among patients with an acute coronary syndrome (ACS) with documented thrombotic occlusion. The goal of the ANALYZE ST study is to evaluate the safety and effectiveness of a novel ST-segment monitoring feature using an existing implantable cardioverter-defibrillator (ICD) among patients with known coronary artery disease. The ANALYZE ST study is a prospective, nonrandomized, multicenter, pivotal Investigational Device Exemption study enrolling 5,228 patients with newly implanted ICD systems for standard clinical indications who also have a documented history of coronary artery disease. Patients will be monitored for 48 months, during which effectiveness of the device for the purpose of early detection of cardiac injury will be evaluated by analyzing the sensitivity of the ST monitoring feature to identify clinical ACS events. In addition, the safety of the ST monitoring feature will be evaluated through the assessment of the percentage of patients for which monitoring produces a false-positive event over the course of 12 months. The ANALYZE ST trial is testing the hypothesis that the ST monitoring feature in the Fortify ST ICD system (St. Jude Medical, Inc., St. Paul, MN) (or other ICD systems with the ST monitoring feature) will accurately identify patients with clinical ACS events. Copyright © 2014 Mosby, Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Caplin, R. S.; Royer, E. R.
1977-01-01
Design analysis of a microbial load monitor system flight engineering model was presented. Checkout of the card taper and media pump system was fabricated as well as the final two incubating reading heads, the sample receiving and card loading device assembly, related sterility testing, and software. Progress in these areas was summarized.
An Oil/Water disperser device for use in an oil content Monitor/Control system
NASA Astrophysics Data System (ADS)
Kempel, F. D.
1985-07-01
This patent application discloses an oil content monitor/control unit system, including an oil/water disperser device, which is configured to automatically monitor and control processed effluent from an associated oil/water separator so that if the processed effluent exceeds predetermine in-port or at-sea oil concentration lmits, it is either recirculated to an associated oil/water separator via a ship's bilge for additional processing, or diverted to a holding tank for storage. On the other hand, if the oil concentration of the processed effluent is less than predetermine in-port or at-sea limits, it is discharged overboard. The oil/water disperser device is configured to break up any oil present in the processed effluent into uniform droplets for more accurate sensing of the oil present in the processed effluent into uniform droplets for more accurate sensing of the oil-in-water concentration level thereof. The oil/water disperser device has a flow-actuated variable orifice configured into a spring-loaded polyethylene plunger which provides the uniform distribution of oil droplets.
Studying fish near ocean energy devices using underwater video
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matzner, Shari; Hull, Ryan E.; Harker-Klimes, Genevra EL
The effects of energy devices on fish populations are not well-understood, and studying the interactions of fish with tidal and instream turbines is challenging. To address this problem, we have evaluated algorithms to automatically detect fish in underwater video and propose a semi-automated method for ocean and river energy device ecological monitoring. The key contributions of this work are the demonstration of a background subtraction algorithm (ViBE) that detected 87% of human-identified fish events and is suitable for use in a real-time system to reduce data volume, and the demonstration of a statistical model to classify detections as fish ormore » not fish that achieved a correct classification rate of 85% overall and 92% for detections larger than 5 pixels. Specific recommendations for underwater video acquisition to better facilitate automated processing are given. The recommendations will help energy developers put effective monitoring systems in place, and could lead to a standard approach that simplifies the monitoring effort and advances the scientific understanding of the ecological impacts of ocean and river energy devices.« less
A Cardiac Early Warning System with Multi Channel SCG and ECG Monitoring for Mobile Health
Sahoo, Prasan Kumar; Thakkar, Hiren Kumar; Lee, Ming-Yih
2017-01-01
Use of information and communication technology such as smart phone, smart watch, smart glass and portable health monitoring devices for healthcare services has made Mobile Health (mHealth) an emerging research area. Coronary Heart Disease (CHD) is considered as a leading cause of death world wide and an increasing number of people die prematurely due to CHD. Under such circumstances, there is a growing demand for a reliable cardiac monitoring system to catch the intermittent abnormalities and detect critical cardiac behaviors which lead to sudden death. Use of mobile devices to collect Electrocardiography (ECG), Seismocardiography (SCG) data and efficient analysis of those data can monitor a patient’s cardiac activities for early warning. This paper presents a novel cardiac data acquisition method and combined analysis of Electrocardiography (ECG) and multi channel Seismocardiography (SCG) data. An early warning system is implemented to monitor the cardiac activities of a person and accuracy assessment of the early warning system is conducted for the ECG data only. The assessment shows 88% accuracy and effectiveness of our proposed analysis, which implies the viability and applicability of the proposed early warning system. PMID:28353681
A Cardiac Early Warning System with Multi Channel SCG and ECG Monitoring for Mobile Health.
Sahoo, Prasan Kumar; Thakkar, Hiren Kumar; Lee, Ming-Yih
2017-03-29
Use of information and communication technology such as smart phone, smart watch, smart glass and portable health monitoring devices for healthcare services has made Mobile Health (mHealth) an emerging research area. Coronary Heart Disease (CHD) is considered as a leading cause of death world wide and an increasing number of people die prematurely due to CHD. Under such circumstances, there is a growing demand for a reliable cardiac monitoring system to catch the intermittent abnormalities and detect critical cardiac behaviors which lead to sudden death. Use of mobile devices to collect Electrocardiography (ECG), Seismocardiography (SCG) data and efficient analysis of those data can monitor a patient's cardiac activities for early warning. This paper presents a novel cardiac data acquisition method and combined analysis of Electrocardiography (ECG) and multi channel Seismocardiography (SCG) data. An early warning system is implemented to monitor the cardiac activities of a person and accuracy assessment of the early warning system is conducted for the ECG data only. The assessment shows 88% accuracy and effectiveness of our proposed analysis, which implies the viability and applicability of the proposed early warning system.
Development of a thick film PZT foil sensor for use in structural health monitoring applications.
Pickwell, Andrew J; Dorey, Robert A; Mba, David
2013-02-01
Acoustic emission (AE) monitoring is a technique of growing interest in the field of nondestructive testing (NDT). The use of AE devices to monitor the health of structural components is currently limited by the cost of AE equipment, which prohibits the permanent placement of AE devices on structures for the purposes of continuous monitoring and the monitoring of areas with limited access. Micro electromechanical systems (MEMS) can provide solutions to these problems. We present the manufacture of a 4.4-μm-thick lead zirconate titanate (PZT) film on a 110-μm-thick titanium foil substrate for use as an AE sensor. The thick-film sensor is benchmarked against commercially available AE sensors in static and dynamic monitoring applications. The thick-film AE device is found to perform well in the detection of AE in static applications. A low signal-to-noise ratio is found to prohibit the detection of AE in a dynamic application.
Schulz, William H.; Ellis, William L.
2007-01-01
The Johnson Creek landslide is a translational, primarily bedrock landslide located along the Oregon coast about 5 km north of Newport. The landslide has damaged U.S. Highway 101 many times since construction of the highway and at least two geological and geotechnical investigations of the landslide have been performed by Oregon State agencies. In cooperation with the Oregon Department of Geology and Mineral Industries and the Oregon Department of Transportation, the U.S. Geological Survey upgraded landslide monitoring systems and installed additional monitoring devices at the landslide beginning in 2004. Monitoring devices at the landslide measured landslide displacement, rainfall, air temperature, shallow soil-water content, and ground-water temperature and pressure. The devices were connected to automatic dataloggers and read at one-hour and, more recently, 15-minute intervals. Monitoring results were periodically downloaded from the dataloggers using cellular telemetry. The purposes of this report are to describe and present preliminary monitoring data from November 19, 2004, to March 31, 2007.
Kaiser, Peter K; Wang, Yi-Zhong; He, Yu-Guang; Weisberger, Annemarie; Wolf, Stephane; Smith, Craig H
2013-10-01
This pilot study evaluated the feasibility of the Health Management Tool (HMT), a novel computing system using mobile handheld devices, to remotely monitor retinal visual function daily in patients with neovascular age-related macular degeneration treated with ranibizumab. Patients with neovascular age-related macular degeneration in at least 1 eye (newly diagnosed or successfully treated < 1 year) and eligible for ranibizumab therapy were enrolled in this 16-week, prospective, open-label, single-arm study. Patients performed a shape discrimination hyperacuity test (myVisionTrack [mVT]) daily on the HMT device (iPhone 3GS) remotely and at all clinic visits. Data entered into HMT devices were collected in the HMT database, which also sent reminders for patients to take mVT. Among 160 patients from 24 U.S. centers enrolled in the study (103 [64%] ≥ 75 years of age), 84.7% on average complied with daily mVT testing and ≈ 98.9% complied with at least weekly mVT testing. The HMT database successfully uploaded more than 17,000 mVT assessment values and sent more than 9,000 reminders. Elderly patients with neovascular age-related macular degeneration were willing and able to comply with daily self-testing of retinal visual function using mobile handheld devices in this novel system of remote vision monitoring.
NASA Astrophysics Data System (ADS)
Khokhlova, L. A.; Seleznev, A. I.; Zhdanov, D. S.; Zemlyakov, I. Yu; Kiseleva, E. Yu
2016-01-01
The problem of monitoring fetal health is topical at the moment taking into account a reduction in the level of fertile-age women's health and changes in the concept of perinatal medicine with reconsideration of live birth criteria. Fetal heart rate monitoring is a valuable means of assessing fetal health during pregnancy. The routine clinical measurements are usually carried out by the means of ultrasound cardiotocography. Although the cardiotocography monitoring provides valuable information on the fetal health status, the high quality ultrasound devices are expensive, they are not available for home care use. The recommended number of measurement is also limited. The passive and fully non-invasive acoustic recording provides an alternative low-cost measurement method. The article describes a device for fetal and maternal health monitoring by analyzing the frequency and periodicity of heart beats by means of acoustic signal received on the maternal abdomen. Based on the usage of this device a phonocardiographic fetal telemedicine system, which will allow to reduce the antenatal fetal mortality rate significantly due to continuous monitoring over the state of fetus regardless of mother's location, can be built.
40 CFR 63.5767 - What records must I keep?
Code of Federal Regulations, 2011 CFR
2011-07-01
... by an add-on control device (i.e., you are complying with organic HAP content limits, application...-average organic HAP content as determined in § 63.5749. (d) If your facility has an add-on control device... malfunction events; control device performance tests; and continuous monitoring system performance evaluations. ...
40 CFR 63.5767 - What records must I keep?
Code of Federal Regulations, 2010 CFR
2010-07-01
... by an add-on control device (i.e., you are complying with organic HAP content limits, application...-average organic HAP content as determined in § 63.5749. (d) If your facility has an add-on control device... malfunction events; control device performance tests; and continuous monitoring system performance evaluations. ...
Remote health monitoring system for detecting cardiac disorders.
Bansal, Ayush; Kumar, Sunil; Bajpai, Anurag; Tiwari, Vijay N; Nayak, Mithun; Venkatesan, Shankar; Narayanan, Rangavittal
2015-12-01
Remote health monitoring system with clinical decision support system as a key component could potentially quicken the response of medical specialists to critical health emergencies experienced by their patients. A monitoring system, specifically designed for cardiac care with electrocardiogram (ECG) signal analysis as the core diagnostic technique, could play a vital role in early detection of a wide range of cardiac ailments, from a simple arrhythmia to life threatening conditions such as myocardial infarction. The system that the authors have developed consists of three major components, namely, (a) mobile gateway, deployed on patient's mobile device, that receives 12-lead ECG signals from any ECG sensor, (b) remote server component that hosts algorithms for accurate annotation and analysis of the ECG signal and (c) point of care device of the doctor to receive a diagnostic report from the server based on the analysis of ECG signals. In the present study, their focus has been toward developing a system capable of detecting critical cardiac events well in advance using an advanced remote monitoring system. A system of this kind is expected to have applications ranging from tracking wellness/fitness to detection of symptoms leading to fatal cardiac events.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santos, Bruno; Carvalho, Paulo F.; Rodrigues, A.P.
The ATCA standard specifies a mandatory Shelf Manager (ShM) unit which is a key element for the system operation. It includes the Intelligent Platform Management Controller (IPMC) which monitors the system health, retrieves inventory information and controls the Field Replaceable Units (FRUs). These elements enable the intelligent health monitoring, providing high-availability and safety operation, ensuring the correct system operation. For critical systems like ones of tokamak ITER these features are mandatory to support the long pulse operation. The Nominal Device Support (NDS) was designed and developed for the ITER CODAC Core System (CCS), which will be the responsible for plantmore » Instrumentation and Control (I and C), supervising and monitoring on ITER. It generalizes the Enhanced Physics and Industrial Control System (EPICS) device support interface for Data Acquisition (DAQ) and timing devices. However the support for health management features and ATCA ShM are not yet provided. This paper presents the implementation and test of a NDS for the ATCA ShM, using the ITER Fast Plant System Controller (FPSC) prototype environment. This prototype is fully compatible with the ITER CCS and uses the EPICS Channel Access (CA) protocol as the interface with the Plant Operation Network (PON). The implemented solution running in an EPICS Input / Output Controller (IOC) provides Process Variables (PV) to the PON network with the system information. These PVs can be used for control and monitoring by all CA clients, such as EPICS user interface clients and alarm systems. The results are presented, demonstrating the fully integration and the usability of this solution. (authors)« less
Practical method for appearance match between soft copy and hard copy
NASA Astrophysics Data System (ADS)
Katoh, Naoya
1994-04-01
CRT monitors are often used as a soft proofing device for the hard copy image output. However, what the user sees on the monitor does not match its output, even if the monitor and the output device are calibrated with CIE/XYZ or CIE/Lab. This is especially obvious when correlated color temperature (CCT) of CRT monitor's white point significantly differs from ambient light. In a typical office environment, one uses a computer graphic monitor having a CCT of 9300K in a room of white fluorescent light of 4150K CCT. In such a case, human visual system is partially adapted to the CRT monitor's white point and partially to the ambient light. The visual experiments were performed on the effect of the ambient lighting. Practical method for soft copy color reproduction that matches the hard copy image in appearance is presented in this paper. This method is fundamentally based on a simple von Kries' adaptation model and takes into account the human visual system's partial adaptation and contrast matching.
Monitoring system for testing the radiation hardness of a KINTEX-7 FPGA
NASA Astrophysics Data System (ADS)
Cojocariu, L. N.; Placinta, V. M.; Dumitru, L.
2016-03-01
A much more efficient Ring Imaging Cherenkov sub-detector system will be rebuilt in the second long shutdown of Large Hadron Collider for the LHCb experiment. Radiation-hard electronic components together with Commercial Off-The-Shelf ones will be used in the new Cherenkov photon detection system architecture. An irradiation program was foreseen to determine the radiation tolerance for the new electronic devices, including a Field Programmable Gate Array from KINTEX-7 family of XILINX. An automated test bench for online monitoring of the XC7K70T KINTEX-7 device operation in radiation conditions was designed and implemented by the LHCb Romanian group.
Ultrasound monitoring of inter-knee distances during gait.
Lai, Daniel T H; Wrigley, Tim V; Palaniswami, M
2009-01-01
Knee osteoarthritis is an extremely common, debilitating disease associated with pain and loss of function. There is considerable interest in monitoring lower limb alignment due to its close association with joint overload leading to disease progression. The effects of gait modifications that can lower joint loading are of particular interest. Here we describe an ultrasound-based system for monitoring an important aspect of dynamic lower limb alignment, the inter-knee distance during walking. Monitoring this gait parameter should facilitate studies in reducing knee loading, a primary risk factor of knee osteoarthritis progression. The portable device is composed of an ultrasound sensor connected to an Intel iMote2 equipped with Bluetooth wireless capability. Static tests and calibration results show that the sensor possesses an effective beam envelope of 120 degrees, with maximum distance errors of 10% at the envelope edges. Dynamic walking trials reveal close correlation of inter-knee distance trends between that measured by an optical system (Optotrak Certus NDI) and the sensor device. The maximum average root mean square error was found to be 1.46 cm. Future work will focus on improving the accuracy of the device.
High Power K Sub a -band Transmitter for Planetary Radar and Spacecraft Uplink
NASA Technical Reports Server (NTRS)
Bhanji, A. M.; Hoppe, D. J.; Hartop, R. W.; Stone, E. W.; Imbriale, W. A.; Stone, D.; Caplan, M.
1984-01-01
A proposed conceptual design of a 400 kW continuous wave (CW)K sub a band transmitter and associated microwave components to be used for planetary radar and serve as a prototype for future spacecraft uplinks is discussed. System requirements for such a transmitter are presented. Performance of the proposed high-power millimeter wave tube, the gyroklystron is discussed. Parameters of the proposed power amplifier, beam supply, and monitor and control devices are also presented. Microwave transmission line components consisting of signal monitoring devices, signal filtering devices, and an overmoded corrugated feed are discussed. Finally, an assessment of the state of the art technology to meet the system requirements is given and possible areas of difficulty are summarized.
Viegas, Vítor; Dias Pereira, J. M.; Postolache, Octavian; Girão, Pedro Silva
2018-01-01
This paper presents a measurement system intended to monitor the usage of walker assistive devices. The goal is to guide the user in the correct use of the device in order to prevent risky situations and maximize comfort. Two risk indicators are defined: one related to force unbalance and the other related to motor incoordination. Force unbalance is measured by load cells attached to the walker legs, while motor incoordination is estimated by synchronizing force measurements with distance data provided by an optical sensor. The measurement system is equipped with a Bluetooth link that enables local supervision on a computer or tablet. Calibration and experimental results are included in the paper. PMID:29439428
40 CFR Table 7 to Subpart Vvvv of... - Applicability and Timing of Notifications
Code of Federal Regulations, 2010 CFR
2010-07-01
... § 63.9(e). b. A notification of the date for the continuous monitoring system performance evaluation as... control device performance test and continuous monitoring system performance evaluation. ... Notifications 7 Table 7 to Subpart VVVV of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...
Silvetti, Massimo S; Saputo, Fabio A; Palmieri, Rosalinda; Placidi, Silvia; Santucci, Lorenzo; Di Mambro, Corrado; Righi, Daniela; Drago, Fabrizio
2016-01-01
Remote monitoring is increasingly used in the follow-up of patients with cardiac implantable electronic devices. Data on paediatric populations are still lacking. The aim of our study was to follow-up young patients both in-hospital and remotely to enhance device surveillance. This is an observational registry collecting data on consecutive patients followed-up with the CareLink system. Inclusion criteria were a Medtronic device implanted and patient's willingness to receive CareLink. Patients were stratified according to age and presence of congenital/structural heart defects (CHD). A total of 221 patients with a device - 200 pacemakers, 19 implantable cardioverter defibrillators, and two loop recorders--were enrolled (median age of 17 years, range 1-40); 58% of patients were younger than 18 years of age and 73% had CHD. During a follow-up of 12 months (range 4-18), 1361 transmissions (8.9% unscheduled) were reviewed by technicians. Time for review was 6 ± 2 minutes (mean ± standard deviation). Missed transmissions were 10.1%. Events were documented in 45% of transmissions, with 2.7% yellow alerts and 0.6% red alerts sent by wireless devices. No significant differences were found in transmission results according to age or presence of CHD. Physicians reviewed 6.3% of transmissions, 29 patients were contacted by phone, and 12 patients underwent unscheduled in-hospital visits. The event recognition with remote monitoring occurred 76 days (range 16-150) earlier than the next scheduled in-office follow-up. Remote follow-up/monitoring with the CareLink system is useful to enhance device surveillance in young patients. The majority of events were not clinically relevant, and the remaining led to timely management of problems.
Head-Impact–Measurement Devices: A Systematic Review
O'Connor, Kathryn L.; Rowson, Steven; Duma, Stefan M.; Broglio, Steven P.
2017-01-01
Context: With an estimated 3.8 million sport- and recreation-related concussions occurring annually, targeted prevention and diagnostic methods are needed. Biomechanical analysis of head impacts may provide quantitative information that can inform both prevention and diagnostic strategies. Objective: To assess available head-impact devices and their clinical utility. Data Sources: We performed a systematic search of the electronic database PubMed for peer-reviewed publications, using the following phrases: accelerometer and concussion, head impact telemetry, head impacts and concussion and sensor, head impacts and sensor, impact sensor and concussion, linear acceleration and concussion, rotational acceleration and concussion, and xpatch concussion. In addition to the literature review, a Google search for head impact monitor and concussion monitor yielded 15 more devices. Study Selection: Included studies were performed in vivo, used commercially available devices, and focused on sport-related concussion. Data Extraction: One author reviewed the title and abstract of each study for inclusion and exclusion criteria and then reviewed each full-text article to confirm inclusion criteria. Controversial articles were reviewed by all authors to reach consensus. Data Synthesis: In total, 61 peer-reviewed articles involving 4 head-impact devices were included. Participants in boxing, football, ice hockey, soccer, or snow sports ranged in age from 6 to 24 years; 18% (n = 11) of the studies included female athletes. The Head Impact Telemetry System was the most widely used device (n = 53). Fourteen additional commercially available devices were presented. Conclusions: Measurements collected by impact monitors provided real-time data to estimate player exposure but did not have the requisite sensitivity to concussion. Proper interpretation of previously reported head-impact kinematics across age, sport, and position may inform future research and enable staff clinicians working on the sidelines to monitor athletes. However, head-impact–monitoring systems have limited clinical utility due to error rates, designs, and low specificity in predicting concussive injury. PMID:28387553
A mainstream monitoring system for respiratory CO2 concentration and gasflow.
Yang, Jiachen; Chen, Bobo; Burk, Kyle; Wang, Haitao; Zhou, Jianxiong
2016-08-01
Continuous respiratory gas monitoring is an important tool for clinical monitoring. In particular, measurement of respiratory [Formula: see text] concentration and gasflow can reflect the status of a patient by providing parameters such as volume of carbon dioxide, end-tidal [Formula: see text] respiratory rate and alveolar deadspace. However, in the majority of previous work, [Formula: see text] concentration and gasflow have been studied separately. This study focuses on a mainstream system which simultaneously measures respiratory [Formula: see text] concentration and gasflow at the same location, allowing for volumetric capnography to be implemented. A non-dispersive infrared monitor is used to measure [Formula: see text] concentration and a differential pressure sensor is used to measure gasflow. In developing this new device, we designed a custom airway adapter which can be placed in line with the breathing circuit and accurately monitor relevant respiratory parameters. Because the airway adapter is used both for capnography and gasflow, our system reduces mechanical deadspace. The finite element method was used to design the airway adapter which can provide a strong differential pressure while reducing airway resistance. Statistical analysis using the coefficient of variation was performed to find the optimal driving voltage of the pressure transducer. Calibration between variations and flows was used to avoid pressure signal drift. We carried out targeted experiments using the proposed device and confirmed that the device can produce stable signals.
Chung, Seungmin; Yi, Joohee
2013-01-01
Electromagnetic interference (EMI) can affect various medical devices. Herein, we report the case of EMI from wireless local area network (WLAN) on an electrocardiogram (ECG) monitoring system. A patient who had a prior myocardial infarction participated in the cardiac rehabilitation program in the sports medicine center of our hospital under the wireless ECG monitoring system. After WLAN was installed, wireless ECG monitoring system failed to show a proper ECG signal. ECG signal was distorted when WLAN was turned on, but it was normalized after turning off the WLAN. PMID:23613696
Design of a Customized Multipurpose Nano-Enabled Implantable System for In-Vivo Theranostics
Juanola-Feliu, Esteve; Miribel-Català, Pere Ll.; Páez Avilés, Cristina; Colomer-Farrarons, Jordi; González-Piñero, Manel; Samitier, Josep
2014-01-01
The first part of this paper reviews the current development and key issues on implantable multi-sensor devices for in vivo theranostics. Afterwards, the authors propose an innovative biomedical multisensory system for in vivo biomarker monitoring that could be suitable for customized theranostics applications. At this point, findings suggest that cross-cutting Key Enabling Technologies (KETs) could improve the overall performance of the system given that the convergence of technologies in nanotechnology, biotechnology, micro&nanoelectronics and advanced materials permit the development of new medical devices of small dimensions, using biocompatible materials, and embedding reliable and targeted biosensors, high speed data communication, and even energy autonomy. Therefore, this article deals with new research and market challenges of implantable sensor devices, from the point of view of the pervasive system, and time-to-market. The remote clinical monitoring approach introduced in this paper could be based on an array of biosensors to extract information from the patient. A key contribution of the authors is that the general architecture introduced in this paper would require minor modifications for the final customized bio-implantable medical device. PMID:25325336
An ultrasound wearable system for the monitoring and acceleration of fracture healing in long bones.
Protopappas, Vasilios C; Baga, Dina A; Fotiadis, Dimitrios I; Likas, Aristidis C; Papachristos, Athanasios A; Malizos, Konstantinos N
2005-09-01
An ultrasound wearable system for remote monitoring and acceleration of the healing process in fractured long bones is presented. The so-called USBone system consists of a pair of ultrasound transducers, implanted into the fracture region, a wearable device and a centralized unit. The wearable device is responsible to carry out ultrasound measurements using the axial-transmission technique and initiate therapy sessions of low-intensity pulsed ultrasound. The acquired measurements and other data are wirelessly transferred from the patient-site to the centralized unit, which is located in a clinical setting. The evaluation of the system on an animal tibial osteotomy model is also presented. A dataset was constructed for monitoring purposes consisting of serial ultrasound measurements, follow-up radiographs, quantitative computed tomography-based densitometry and biomechanical data. The animal study demonstrated the ability of the system to collect ultrasound measurements in an effective and reliable fashion and participating orthopaedic surgeons accepted the system for future clinical application. Analysis of the acquired measurements showed that the pattern of evolution of the ultrasound velocity through healing bones over the postoperative period monitors a dynamic healing process. Furthermore, the ultrasound velocity of radiographically healed bones returns to 80% of the intact bone value, whereas the correlation coefficient of the velocity with the material and mechanical properties of the healing bone ranges from 0.699 to 0.814. The USBone system constitutes the first telemedicine system for the out-hospital management of patients sustained open fractures and treated with external fixation devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
1996-05-01
The Network Information System (NWIS) was initially implemented in May 1996 as a system in which computing devices could be recorded so that unique names could be generated for each device. Since then the system has grown to be an enterprise wide information system which is integrated with other systems to provide the seamless flow of data through the enterprise. The system Iracks data for two main entities: people and computing devices. The following are the type of functions performed by NWIS for these two entities: People Provides source information to the enterprise person data repository for select contractors andmore » visitors Generates and tracks unique usernames and Unix user IDs for every individual granted cyber access Tracks accounts for centrally managed computing resources, and monitors and controls the reauthorization of the accounts in accordance with the DOE mandated interval Computing Devices Generates unique names for all computing devices registered in the system Tracks the following information for each computing device: manufacturer, make, model, Sandia property number, vendor serial number, operating system and operating system version, owner, device location, amount of memory, amount of disk space, and level of support provided for the machine Tracks the hardware address for network cards Tracks the P address registered to computing devices along with the canonical and alias names for each address Updates the Dynamic Domain Name Service (DDNS) for canonical and alias names Creates the configuration files for DHCP to control the DHCP ranges and allow access to only properly registered computers Tracks and monitors classified security plans for stand-alone computers Tracks the configuration requirements used to setup the machine Tracks the roles people have on machines (system administrator, administrative access, user, etc...) Allows systems administrators to track changes made on the machine (both hardware and software) Generates an adjustment history of changes on selected fields« less
NASA Technical Reports Server (NTRS)
2009-01-01
Topics covered include: Image-Capture Devices Extend Medicine's Reach; Medical Devices Assess, Treat Balance Disorders; NASA Bioreactors Advance Disease Treatments; Robotics Algorithms Provide Nutritional Guidelines; "Anti-Gravity" Treadmills Speed Rehabilitation; Crew Management Processes Revitalize Patient Care; Hubble Systems Optimize Hospital Schedules; Web-based Programs Assess Cognitive Fitness; Electrolyte Concentrates Treat Dehydration; Tools Lighten Designs, Maintain Structural Integrity; Insulating Foams Save Money, Increase Safety; Polyimide Resins Resist Extreme Temperatures; Sensors Locate Radio Interference; Surface Operations Systems Improve Airport Efficiency; Nontoxic Resins Advance Aerospace Manufacturing; Sensors Provide Early Warning of Biological Threats; Robot Saves Soldier's Lives Overseas (MarcBot); Apollo-Era Life Raft Saves Hundreds of Sailors; Circuits Enhance Scientific Instruments and Safety Devices; Tough Textiles Protect Payloads and Public Safety Officers; Forecasting Tools Point to Fishing Hotspots; Air Purifiers Eliminate Pathogens, Preserve Food; Fabrics Protect Sensitive Skin from UV Rays; Phase Change Fabrics Control Temperature; Tiny Devices Project Sharp, Colorful Images; Star-Mapping Tools Enable Tracking of Endangered Animals; Nanofiber Filters Eliminate Contaminants; Modeling Innovations Advance Wind Energy Industry; Thermal Insulation Strips Conserve Energy; Satellite Respondent Buoys Identify Ocean Debris; Mobile Instruments Measure Atmospheric Pollutants; Cloud Imagers Offer New Details on Earth's Health; Antennas Lower Cost of Satellite Access; Feature Detection Systems Enhance Satellite Imagery; Chlorophyll Meters Aid Plant Nutrient Management; Telemetry Boards Interpret Rocket, Airplane Engine Data; Programs Automate Complex Operations Monitoring; Software Tools Streamline Project Management; Modeling Languages Refine Vehicle Design; Radio Relays Improve Wireless Products; Advanced Sensors Boost Optical Communication, Imaging; Tensile Fabrics Enhance Architecture Around the World; Robust Light Filters Support Powerful Imaging Devices; Thermoelectric Devices Cool, Power Electronics; Innovative Tools Advance Revolutionary Weld Technique; Methods Reduce Cost, Enhance Quality of Nanotubes; Gauging Systems Monitor Cryogenic Liquids; Voltage Sensors Monitor Harmful Static; and Compact Instruments Measure Heat Potential.
Chew, Emily Y; Clemons, Traci E; Bressler, Susan B; Elman, Michael J; Danis, Ronald P; Domalpally, Amitha; Heier, Jeffrey S; Kim, Judy E; Garfinkel, Richard A
2014-03-01
To evaluate the effects of a home-monitoring device with tele-monitoring compared with standard care in detection of progression to choroidal neovascularization (CNV) associated with age-related macular degeneration (AMD), the leading cause of blindness in the US. Participants, aged 55 to 90 years, at high risk of developing CNV associated with AMD were recruited to the HOme Monitoring of Eye (HOME) Study, an unmasked, multi-center, randomized trial of the ForeseeHome (FH) device plus standard care vs. standard care alone. The FH device utilizes preferential hyperacuity perimetry and tele-monitoring to detect changes in vision function associated with development of CNV, potentially prior to symptom and visual acuity loss. After establishing baseline measurements, subsequent changes on follow-up are detected by the device, causing the monitoring center to alert the clinical center to recall participants for an exam. Standard care consists of instructions for self-monitoring visual changes with subsequent self-report to the clinical center. The primary objective of this study is to determine whether home monitoring plus standard care in comparison with standard care alone, results in earlier detection of incident CNV with better present visual acuity. The primary outcome is the decline in visual acuity at CNV diagnosis from baseline. Detection of CNV prior to substantial vision loss is critical as vision outcome following anti-angiogenic therapy is dependent on the visual acuity at initiation of treatment. HOME Study is the first large scale study to test the use of home tele-monitoring system in the management of AMD patients. Published by Elsevier Inc.
An electronic circuit for sensing malfunctions in test instrumentation
NASA Technical Reports Server (NTRS)
Miller, W. M., Jr.
1969-01-01
Monitoring device differentiates between malfunctions occurring in the system undergoing test and malfunctions within the test instrumentation itself. Electronic circuits in the monitor use transistors to commutate silicon controlled rectifiers by removing the drive voltage, display circuits are then used to monitor multiple discrete lines.
Developing Control System of Electrical Devices with Operational Expense Prediction
NASA Astrophysics Data System (ADS)
Sendari, Siti; Wahyu Herwanto, Heru; Rahmawati, Yuni; Mukti Putranto, Dendi; Fitri, Shofiana
2017-04-01
The purpose of this research is to develop a system that can monitor and record home electrical device’s electricity usage. This system has an ability to control electrical devices in distance and predict the operational expense. The system was developed using micro-controllers and WiFi modules connected to PC server. The communication between modules is arranged by server via WiFi. Beside of reading home electrical devices electricity usage, the unique point of the proposed-system is the ability of micro-controllers to send electricity data to server for recording the usage of electrical devices. The testing of this research was done by Black-box method to test the functionality of system. Testing system run well with 0% error.
NASA Astrophysics Data System (ADS)
Cahill, Paul; Michalis, Panagiotis; Solman, Hrvoje; Kerin, Igor; Bekic, Damir; Pakrashi, Vikram; McKeogh, Eamon
2017-04-01
With the effects of climate change becoming more apparent, extreme weather events are now occurring with greater frequency throughout the world. Such extreme events have resulted in increased high intensity flood events which are having devastating consequences on hydro-structures, especially on bridge infrastructure. The remote and often inaccessible nature of such bridges makes inspections problematic, a major concern if safety assessments are required during and after extreme flood events. A solution to this is the introduction of smart, low cost sensing solutions at locations susceptible to hydro-hazards. Such solutions can provide real-time information on the health of the bridge and its environments, with such information aiding in the mitigation of the risks associated with extreme weather events. This study presents the development of an intelligent system for remote, real-time monitoring of hydro-hazards to bridge infrastructure. The solution consists of two types of remote monitoring stations which have the capacity to monitor environmental conditions and provide real-time information to a centralized, big data database solution, from which an intelligent decision support system will accommodate the results to control and manage bridge, river and catchment assets. The first device developed as part of the system is the Weather Information Logging Device (WILD), which monitors rainfall, temperature and air and soil moisture content. The ability of the WILD to monitor rainfall in real time enables flood early warning alerts and predictive river flow conditions, thereby enabling decision makers the ability to make timely and effective decisions about critical infrastructures in advance of extreme flood events. The WILD is complemented by a second monitoring device, the Bridge Information Recording Device (BIRD), which monitors water levels at a given location in real-time. The monitoring of water levels of a river allows for, among other applications, hydraulic modelling to assess the likely impact that severe flood events will have on a bridges foundation, particularly due to scour. The process of reading and validating data from the WILD and BIRD buffer servers is outlined, as is the transmission protocol used for the sending of recorded data to a centralized repository for further use and analysis. Finally, the development of a centralized repository for the collection of data from the WILD and BIRD devices is presented. Eventually the big data solution would be used to receive, store and send the monitored data to the hydrological models, whether existing or developed, and the results would be transmitted to the intelligent decision support system based on a web-based platform, for managing, planning and executing data, processes and procedures for bridge assets. The development of intelligent hydroinformatic system is an important tool for the protection of key infrastructure assets from the increasingly common effects of climate change. Acknowledgement The authors wish to acknowledge the financial support of the European Commission, through the Marie Curie Industry-Academia Partnership and Pathways Network BRIDGE SMS (Intelligent Bridge Assessment Maintenance and Management System) - FP7-People-2013-IAPP- 612517.
Interdependent networks: the fragility of control
Morris, Richard G.; Barthelemy, Marc
2013-01-01
Recent work in the area of interdependent networks has focused on interactions between two systems of the same type. However, an important and ubiquitous class of systems are those involving monitoring and control, an example of interdependence between processes that are very different. In this Article, we introduce a framework for modelling ‘distributed supervisory control' in the guise of an electrical network supervised by a distributed system of control devices. The system is characterised by degrees of freedom salient to real-world systems— namely, the number of control devices, their inherent reliability, and the topology of the control network. Surprisingly, the behavior of the system depends crucially on the reliability of control devices. When devices are completely reliable, cascade sizes are percolation controlled; the number of devices being the relevant parameter. For unreliable devices, the topology of the control network is important and can dramatically reduce the resilience of the system. PMID:24067404
Improving medical device regulation: the United States and Europe in perspective.
Sorenson, Corinna; Drummond, Michael
2014-03-01
Recent debates and events have brought into question the effectiveness of existing regulatory frameworks for medical devices in the United States and Europe to ensure their performance, safety, and quality. This article provides a comparative analysis of medical device regulation in the two jurisdictions, explores current reforms to improve the existing systems, and discusses additional actions that should be considered to fully meet this aim. Medical device regulation must be improved to safeguard public health and ensure that high-quality and effective technologies reach patients. We explored and analyzed medical device regulatory systems in the United States and Europe in accordance with the available gray and peer-reviewed literature and legislative documents. The two regulatory systems differ in their mandate and orientation, organization, pre- and postmarket evidence requirements, and transparency of process. Despite these differences, both jurisdictions face similar challenges for ensuring that only safe and effective devices reach the market, monitoring real-world use, and exchanging pertinent information on devices with key users such as clinicians and patients. To address these issues, reforms have recently been introduced or debated in the United States and Europe that are principally focused on strengthening regulatory processes, enhancing postmarket regulation through more robust surveillance systems, and improving the traceability and monitoring of devices. Some changes in premarket requirements for devices are being considered. Although the current reforms address some of the outstanding challenges in device regulation, additional steps are needed to improve existing policy. We examine a number of actions to be considered, such as requiring high-quality evidence of benefit for medium- and high-risk devices; moving toward greater centralization and coordination of regulatory approval in Europe; creating links between device identifier systems and existing data collection tools, such as electronic health records; and fostering increased and more effective use of registries to ensure safe postmarket use of new and existing devices. © 2014 Milbank Memorial Fund.
Improving Medical Device Regulation: The United States and Europe in Perspective
SORENSON, CORINNA; DRUMMOND, MICHAEL
2014-01-01
Context: Recent debates and events have brought into question the effectiveness of existing regulatory frameworks for medical devices in the United States and Europe to ensure their performance, safety, and quality. This article provides a comparative analysis of medical device regulation in the two jurisdictions, explores current reforms to improve the existing systems, and discusses additional actions that should be considered to fully meet this aim. Medical device regulation must be improved to safeguard public health and ensure that high-quality and effective technologies reach patients. Methods: We explored and analyzed medical device regulatory systems in the United States and Europe in accordance with the available gray and peer-reviewed literature and legislative documents. Findings: The two regulatory systems differ in their mandate and orientation, organization, pre-and postmarket evidence requirements, and transparency of process. Despite these differences, both jurisdictions face similar challenges for ensuring that only safe and effective devices reach the market, monitoring real-world use, and exchanging pertinent information on devices with key users such as clinicians and patients. To address these issues, reforms have recently been introduced or debated in the United States and Europe that are principally focused on strengthening regulatory processes, enhancing postmarket regulation through more robust surveillance systems, and improving the traceability and monitoring of devices. Some changes in premarket requirements for devices are being considered. Conclusions: Although the current reforms address some of the outstanding challenges in device regulation, additional steps are needed to improve existing policy. We examine a number of actions to be considered, such as requiring high-quality evidence of benefit for medium-and high-risk devices; moving toward greater centralization and coordination of regulatory approval in Europe; creating links between device identifier systems and existing data collection tools, such as electronic health records; and fostering increased and more effective use of registries to ensure safe postmarket use of new and existing devices. PMID:24597558
40 CFR 63.7188 - What are my monitoring installation, operation, and maintenance requirements?
Code of Federal Regulations, 2011 CFR
2011-07-01
... Semiconductor Manufacturing Compliance Requirements § 63.7188 What are my monitoring installation, operation... emissions of your semiconductor process vent through a closed vent system to a control device, you must...
40 CFR 63.7188 - What are my monitoring installation, operation, and maintenance requirements?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Semiconductor Manufacturing Compliance Requirements § 63.7188 What are my monitoring installation, operation... emissions of your semiconductor process vent through a closed vent system to a control device, you must...
21 CFR 26.15 - Monitoring continued equivalence.
Code of Federal Regulations, 2010 CFR
2010-04-01
... MUTUAL RECOGNITION OF PHARMACEUTICAL GOOD MANUFACTURING PRACTICE REPORTS, MEDICAL DEVICE QUALITY SYSTEM... COMMUNITY Specific Sector Provisions for Pharmaceutical Good Manufacturing Practices § 26.15 Monitoring... number of joint inspections; and the conduct of common training sessions. ...
21 CFR 26.15 - Monitoring continued equivalence.
Code of Federal Regulations, 2011 CFR
2011-04-01
... MUTUAL RECOGNITION OF PHARMACEUTICAL GOOD MANUFACTURING PRACTICE REPORTS, MEDICAL DEVICE QUALITY SYSTEM... COMMUNITY Specific Sector Provisions for Pharmaceutical Good Manufacturing Practices § 26.15 Monitoring... number of joint inspections; and the conduct of common training sessions. ...
Accelerometer-based on-body sensor localization for health and medical monitoring applications
Vahdatpour, Alireza; Amini, Navid; Xu, Wenyao; Sarrafzadeh, Majid
2011-01-01
In this paper, we present a technique to recognize the position of sensors on the human body. Automatic on-body device localization ensures correctness and accuracy of measurements in health and medical monitoring systems. In addition, it provides opportunities to improve the performance and usability of ubiquitous devices. Our technique uses accelerometers to capture motion data to estimate the location of the device on the user’s body, using mixed supervised and unsupervised time series analysis methods. We have evaluated our technique with extensive experiments on 25 subjects. On average, our technique achieves 89% accuracy in estimating the location of devices on the body. In order to study the feasibility of classification of left limbs from right limbs (e.g., left arm vs. right arm), we performed analysis, based of which no meaningful classification was observed. Personalized ultraviolet monitoring and wireless transmission power control comprise two immediate applications of our on-body device localization approach. Such applications, along with their corresponding feasibility studies, are discussed. PMID:22347840
NASA Astrophysics Data System (ADS)
Park, Chan-Hee; Lee, Cholwoo
2016-04-01
Raspberry Pi series is a low cost, smaller than credit-card sized computers that various operating systems such as linux and recently even Windows 10 are ported to run on. Thanks to massive production and rapid technology development, the price of various sensors that can be attached to Raspberry Pi has been dropping at an increasing speed. Therefore, the device can be an economic choice as a small portable computer to monitor temporal hydrogeological data in fields. In this study, we present a Raspberry Pi system that measures a flow rate, and temperature of groundwater at sites, stores them into mysql database, and produces interactive figures and tables such as google charts online or bokeh offline for further monitoring and analysis. Since all the data are to be monitored on internet, any computers or mobile devices can be good monitoring tools at convenience. The measured data are further integrated with OpenGeoSys, one of the hydrogeological models that is also ported to the Raspberry Pi series. This leads onsite hydrogeological modeling fed by temporal sensor data to meet various needs.
Code of Federal Regulations, 2011 CFR
2011-07-01
... section for each gas temperature monitoring device. (i) Locate the temperature sensor in a position that..., install a gas temperature monitor in the firebox of the thermal oxidizer or in the duct immediately... a gas temperature monitor according to paragraph (c)(2)(i) or (ii) of this section. (i) If you...
Code of Federal Regulations, 2010 CFR
2010-07-01
... (ii) of this section for each gas temperature monitoring device. (i) Locate the temperature sensor in... oxidizer, install a gas temperature monitor in the firebox of the thermal oxidizer or in the duct... oxidizer, install a gas temperature monitor according to paragraph (c)(2)(i) or (ii) of this section. (i...
Code of Federal Regulations, 2010 CFR
2010-07-01
... section for each gas temperature monitoring device. (i) Locate the temperature sensor in a position that..., install a gas temperature monitor in the firebox of the thermal oxidizer or in the duct immediately... a gas temperature monitor according to paragraph (c)(2)(i) or (ii) of this section. (i) If you...
Code of Federal Regulations, 2011 CFR
2011-07-01
... section for each gas temperature monitoring device. (i) Locate the temperature sensor in a position that... oxidizer, install a gas temperature monitor in the firebox of the thermal oxidizer or in the duct... oxidizer, install a gas temperature monitor in the gas stream immediately before the catalyst bed, and if...
Code of Federal Regulations, 2010 CFR
2010-07-01
... section for each gas temperature monitoring device. (i) Locate the temperature sensor in a position that... oxidizer, install a gas temperature monitor in the firebox of the thermal oxidizer or in the duct... oxidizer, install a gas temperature monitor in the gas stream immediately before the catalyst bed, and if...
Code of Federal Regulations, 2011 CFR
2011-07-01
... (ii) of this section for each gas temperature monitoring device. (i) Locate the temperature sensor in... oxidizer, install a gas temperature monitor in the firebox of the thermal oxidizer or in the duct... oxidizer, install a gas temperature monitor according to paragraph (c)(2)(i) or (ii) of this section. (i...
An automated method for the evaluation of the pointing accuracy of Sun-tracking devices
NASA Astrophysics Data System (ADS)
Baumgartner, Dietmar J.; Pötzi, Werner; Freislich, Heinrich; Strutzmann, Heinz; Veronig, Astrid M.; Rieder, Harald E.
2017-03-01
The accuracy of solar radiation measurements, for direct (DIR) and diffuse (DIF) radiation, depends significantly on the precision of the operational Sun-tracking device. Thus, rigid targets for instrument performance and operation have been specified for international monitoring networks, e.g., the Baseline Surface Radiation Network (BSRN) operating under the auspices of the World Climate Research Program (WCRP). Sun-tracking devices that fulfill these accuracy requirements are available from various instrument manufacturers; however, none of the commercially available systems comprise an automatic accuracy control system allowing platform operators to independently validate the pointing accuracy of Sun-tracking sensors during operation. Here we present KSO-STREAMS (KSO-SunTRackEr Accuracy Monitoring System), a fully automated, system-independent, and cost-effective system for evaluating the pointing accuracy of Sun-tracking devices. We detail the monitoring system setup, its design and specifications, and the results from its application to the Sun-tracking system operated at the Kanzelhöhe Observatory (KSO) Austrian radiation monitoring network (ARAD) site. The results from an evaluation campaign from March to June 2015 show that the tracking accuracy of the device operated at KSO lies within BSRN specifications (i.e., 0.1° tracking accuracy) for the vast majority of observations (99.8 %). The evaluation of manufacturer-specified active-tracking accuracies (0.02°), during periods with direct solar radiation exceeding 300 W m-2, shows that these are satisfied in 72.9 % of observations. Tracking accuracies are highest during clear-sky conditions and on days where prevailing clear-sky conditions are interrupted by frontal movement; in these cases, we obtain the complete fulfillment of BSRN requirements and 76.4 % of observations within manufacturer-specified active-tracking accuracies. Limitations to tracking surveillance arise during overcast conditions and periods of partial solar-limb coverage by clouds. On days with variable cloud cover, 78.1 % (99.9 %) of observations meet active-tracking (BSRN) accuracy requirements while for days with prevailing overcast conditions these numbers reduce to 64.3 % (99.5 %).
Prado, Manuel; Roa, Laura M
2007-01-01
Despite first written references to permanent developmental stuttering occurred more than 2500 years ago, the mechanisms underlying this disorder are still unknown. This paper briefly reviews stuttering causal hypothesis and treatments, and presents the requirements that a new stuttering therapeutic device should verify. As a result of the analysis, an adaptive altered auditory feedback device based on a multimodal intelligent monitor, within the framework of a knowledge-based telehealthcare system, is presented. The subsequent discussion, based partly on the successful outcomes of a similar intelligent monitor, suggests that this novel device is feasible and could help to fill the gap between research and clinic.
Monitoring human health behaviour in one's living environment: a technological review.
Lowe, Shane A; Ólaighin, Gearóid
2014-02-01
The electronic monitoring of human health behaviour using computer techniques has been an active research area for the past few decades. A wide array of different approaches have been investigated using various technologies including inertial sensors, Global Positioning System, smart homes, Radio Frequency IDentification and others. It is only in recent years that research has turned towards a sensor fusion approach using several different technologies in single systems or devices. These systems allow for an increased volume of data to be collected and for activity data to be better used as measures of behaviour. This change may be due to decreasing hardware costs, smaller sensors, increased power efficiency or increases in portability. This paper is intended to act as a reference for the design of multi-sensor behaviour monitoring systems. The range of technologies that have been used in isolation for behaviour monitoring both in research and commercial devices are reviewed and discussed. Filtering, range, sensitivity, usability and other considerations of different technologies are discussed. A brief overview of commercially available activity monitors and their technology is also included. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.
Method and apparatus for monitoring a hydrocarbon-selective catalytic reduction device
Schmieg, Steven J; Viola, Michael B; Cheng, Shi-Wai S; Mulawa, Patricia A; Hilden, David L; Sloane, Thompson M; Lee, Jong H
2014-05-06
A method for monitoring a hydrocarbon-selective catalytic reactor device of an exhaust aftertreatment system of an internal combustion engine operating lean of stoichiometry includes injecting a reductant into an exhaust gas feedstream upstream of the hydrocarbon-selective catalytic reactor device at a predetermined mass flowrate of the reductant, and determining a space velocity associated with a predetermined forward portion of the hydrocarbon-selective catalytic reactor device. When the space velocity exceeds a predetermined threshold space velocity, a temperature differential across the predetermined forward portion of the hydrocarbon-selective catalytic reactor device is determined, and a threshold temperature as a function of the space velocity and the mass flowrate of the reductant is determined. If the temperature differential across the predetermined forward portion of the hydrocarbon-selective catalytic reactor device is below the threshold temperature, operation of the engine is controlled to regenerate the hydrocarbon-selective catalytic reactor device.
Senthil Kumar, S; Suresh Babu, S S; Anand, P; Dheva Shantha Kumari, G
2012-06-01
The purpose of our study was to fabricate in-house web-camera based automatic continuous patient movement monitoring device and control the movement of the patients during EXRT. Web-camera based patient movement monitoring device consists of a computer, digital web-camera, mounting system, breaker circuit, speaker, and visual indicator. The computer is used to control and analyze the patient movement using indigenously developed software. The speaker and the visual indicator are placed in the console room to indicate the positional displacement of the patient. Studies were conducted on phantom and 150 patients with different types of cancers. Our preliminary clinical results indicate that our device is highly reliable and can accurately report smaller movements of the patients in all directions. The results demonstrated that the device was able to detect patient's movements with the sensitivity of about 1 mm. When a patient moves, the receiver activates the circuit; an audible warning sound will be produced in the console. Through real-time measurements, an audible alarm can alert the radiation technologist to stop the treatment if the user defined positional threshold is violated. Simultaneously, the electrical circuit to the teletherapy machine will be activated and radiation will be halted. Patient's movement during the course for radiotherapy was studied. The beam is halted automatically when the threshold level of the system is exceeded. By using the threshold provided in the system, it is possible to monitor the patient continuously with certain fixed limits. An additional benefit is that it has reduced the tension and stress of a treatment team associated with treating patients who are not immobilized. It also enables the technologists to do their work more efficiently, because they don't have to continuously monitor patients with as much scrutiny as was required. © 2012 American Association of Physicists in Medicine.
Energy scavenging system by acoustic wave and integrated wireless communication
NASA Astrophysics Data System (ADS)
Kim, Albert
The purpose of the project was developing an energy-scavenging device for other bio implantable devices. Researchers and scientist have studied energy scavenging method because of the limitation of traditional power source, especially for bio-implantable devices. In this research, piezoelectric power generator that activates by acoustic wave, or music was developed. Follow by power generator, a wireless communication also integrated with the device for monitoring the power generation. The Lead Zirconate Titanate (PZT) bimorph cantilever with a proof mass at the free end tip was studied to convert acoustic wave to power. The music or acoustic wave played through a speaker to vibrate piezoelectric power generator. The LC circuit integrated with the piezoelectric material for purpose of wireless monitoring power generation. However, wireless monitoring can be used as wireless power transmission, which means the signal received via wireless communication also can be used for power for other devices. Size of 74 by 7 by 7cm device could generate and transmit 100mVp from 70 mm distance away with electrical resonant frequency at 420.2 kHz..
33 CFR 154.525 - Monitoring devices.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Monitoring devices. 154.525... Monitoring devices. The COTP may require the facility to install monitoring devices if the installation of monitoring devices at the facility would significantly limit the size of a discharge of oil or hazardous...
Brans, Toon; Strubbe, Filip; Schreuer, Caspar; Vandewiele, Stijn; Neyts, Kristiaan; Beunis, Filip
2015-09-01
Electric fields offer a variety of functionalities to Lab-on-a-Chip devices. The use of these fields often results in significant Joule heating, affecting the overall performance of the system. Precise knowledge of the temperature profile inside a microfluidic device is necessary to evaluate the implications of heat dissipation. This article demonstrates how an optically trapped microsphere can be used as a temperature probe to monitor Joule heating in these devices. The Brownian motion of the bead at room temperature is compared with the motion when power is dissipated in the system. This gives an estimate of the temperature increase at a specific location in a microfluidic channel. We demonstrate this method with solutions of different ionic strengths, and establish a precision of 0.9 K and an accuracy of 15%. Furthermore, it is demonstrated that transient heating processes can be monitored with this technique, albeit with a limited time resolution. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sowan, Azizeh Khaled; Reed, Charles Calhoun; Staggers, Nancy
2016-09-30
Large datasets of the audit log of modern physiologic monitoring devices have rarely been used for predictive modeling, capturing unsafe practices, or guiding initiatives on alarm systems safety. This paper (1) describes a large clinical dataset using the audit log of the physiologic monitors, (2) discusses benefits and challenges of using the audit log in identifying the most important alarm signals and improving the safety of clinical alarm systems, and (3) provides suggestions for presenting alarm data and improving the audit log of the physiologic monitors. At a 20-bed transplant cardiac intensive care unit, alarm data recorded via the audit log of bedside monitors were retrieved from the server of the central station monitor. Benefits of the audit log are many. They include easily retrievable data at no cost, complete alarm records, easy capture of inconsistent and unsafe practices, and easy identification of bedside monitors missed from a unit change of alarm settings adjustments. Challenges in analyzing the audit log are related to the time-consuming processes of data cleaning and analysis, and limited storage and retrieval capabilities of the monitors. The audit log is a function of current capabilities of the physiologic monitoring systems, monitor's configuration, and alarm management practices by clinicians. Despite current challenges in data retrieval and analysis, large digitalized clinical datasets hold great promise in performance, safety, and quality improvement. Vendors, clinicians, researchers, and professional organizations should work closely to identify the most useful format and type of clinical data to expand medical devices' log capacity.
Wireless pilot monitoring system for extreme race conditions.
Pino, Esteban J; Arias, Diego E; Aqueveque, Pablo; Melin, Pedro; Curtis, Dorothy W
2012-01-01
This paper presents the design and implementation of an assistive device to monitor car drivers under extreme conditions. In particular, this system is designed in preparation for the 2012 Atacama Solar Challenge to be held in the Chilean desert. Actual preliminary results show the feasibility of such a project including physiological and ambient sensors, real-time processing algorithms, wireless data transmission and a remote monitoring station. Implementation details and field results are shown along with a discussion of the main problems found in real-life telemetry monitoring.
Cheon, Gyeongwoo; Shin, Il Hyung; Jung, Min Yang; Kim, Hee Chan
2009-01-01
We developed a gateway server to support various types of bio-signal monitoring devices for ubiquitous emergency healthcare in a reliable, effective, and scalable way. The server provides multiple channels supporting real-time N-to-N client connections. We applied our system to four types of health monitoring devices including a 12-channel electrocardiograph (ECG), oxygen saturation (SpO(2)), and medical imaging devices (a ultrasonograph and a digital skin microscope). Different types of telecommunication networks were tested: WIBRO, CDMA, wireless LAN, and wired internet. We measured the performance of our system in terms of the transmission rate and the number of simultaneous connections. The results show that the proposed network communication strategy can be successfully applied to the ubiquitous emergency healthcare service by providing a fast rate enough for real-time video transmission and multiple connections among patients and medical personnel.
DOT National Transportation Integrated Search
1976-01-01
The FOLLOWING TOO CLOSELY (FTC) MONITOR system is an experimental device designed to measure vehicle gaps at a point along the highway and to advise the motorist, by means of a flashing message on a sign, that he is following the car in front of him ...
Monitoring elbow isometric contraction by novel wearable fabric sensing device
NASA Astrophysics Data System (ADS)
Wang, Xi; Tao, Xiaoming; So, Raymond C. H.; Shu, Lin; Yang, Bao; Li, Ying
2016-12-01
Fabric-based wearable technology is highly desirable in sports, as it is light, flexible, soft, and comfortable with little interference to normal sport activities. It can provide accurate information on the in situ deformation of muscles in a continuous and wireless manner. During elbow flexion in isometric contraction, upper arm circumference increases with the contraction of elbow flexors, and it is possible to monitor the muscles’ contraction by limb circumferential strains. This paper presents a new wireless wearable anthropometric monitoring device made from fabric strain sensors for the human upper arm. The materials, structural design and calibration of the device are presented. Using an isokinetic testing system (Biodex3®) and the fabric monitoring device simultaneously, in situ measurements were carried out on elbow flexors in isometric contraction mode with ten subjects for a set of positions. Correlations between the measured values of limb circumferential strain and normalized torque were examined, and a linear relationship was found during isometric contraction. The average correlation coefficient between them is 0.938 ± 0.050. This wearable anthropometric device thus provides a useful index, the limb circumferential strain, for upper arm muscle contraction in isometric mode.
Implant for in-vivo parameter monitoring, processing and transmitting
Ericson, Milton N [Knoxville, TN; McKnight, Timothy E [Greenback, TN; Smith, Stephen F [London, TN; Hylton, James O [Clinton, TN
2009-11-24
The present invention relates to a completely implantable intracranial pressure monitor, which can couple to existing fluid shunting systems as well as other internal monitoring probes. The implant sensor produces an analog data signal which is then converted electronically to a digital pulse by generation of a spreading code signal and then transmitted to a location outside the patient by a radio-frequency transmitter to an external receiver. The implanted device can receive power from an internal source as well as an inductive external source. Remote control of the implant is also provided by a control receiver which passes commands from an external source to the implant system logic. Alarm parameters can be programmed into the device which are capable of producing an audible or visual alarm signal. The utility of the monitor can be greatly expanded by using multiple pressure sensors simultaneously or by combining sensors of various physiological types.
A multiparameter wearable physiologic monitoring system for space and terrestrial applications
NASA Technical Reports Server (NTRS)
Mundt, Carsten W.; Montgomery, Kevin N.; Udoh, Usen E.; Barker, Valerie N.; Thonier, Guillaume C.; Tellier, Arnaud M.; Ricks, Robert D.; Darling, Robert B.; Cagle, Yvonne D.; Cabrol, Nathalie A.;
2005-01-01
A novel, unobtrusive and wearable, multiparameter ambulatory physiologic monitoring system for space and terrestrial applications, termed LifeGuard, is presented. The core element is a wearable monitor, the crew physiologic observation device (CPOD), that provides the capability to continuously record two standard electrocardiogram leads, respiration rate via impedance plethysmography, heart rate, hemoglobin oxygen saturation, ambient or body temperature, three axes of acceleration, and blood pressure. These parameters can be digitally recorded with high fidelity over a 9-h period with precise time stamps and user-defined event markers. Data can be continuously streamed to a base station using a built-in Bluetooth RF link or stored in 32 MB of on-board flash memory and downloaded to a personal computer using a serial port. The device is powered by two AAA batteries. The design, laboratory, and field testing of the wearable monitors are described.
21 CFR 868.2375 - Breathing frequency monitor.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breathing frequency monitor. 868.2375 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2375 Breathing frequency monitor. (a) Identification. A breathing (ventilatory) frequency monitor is a device intended to measure or monitor a patient...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, M; Kim, T; Kang, S
Purpose: The purpose of this work is to develop a new patient set-up monitoring system using force sensing resistor (FSR) sensors that can confirm pressure of contact surface and evaluate its feasibility. Methods: In this study, we focused on develop the patient set-up monitoring system to compensate for the limitation of existing optical based monitoring system, so the developed system can inform motion in the radiation therapy. The set-up monitoring system was designed consisting of sensor units (FSR sensor), signal conditioning devices (USB cable/interface electronics), a control PC, and a developed analysis software. The sensor unit was made by attachingmore » FSR sensor and dispersing pressure sponge to prevent error which is caused by concentrating specific point. Measured signal from the FSR sensor was sampled to arduino mega 2560 microcontroller, transferred to control PC by using serial communication. The measured data went through normalization process. The normalized data was displayed through the developed graphic user interface (GUI) software. The software was designed to display a single sensor unit intensity (maximum 16 sensors) and display 2D pressure distribution (using 16 sensors) according to the purpose. Results: Changes of pressure value according to motion was confirmed by the developed set-up monitoring system. Very small movement such as little physical change in appearance can be confirmed using a single unit and using 2D pressure distribution. Also, the set-up monitoring system can observe in real time. Conclusion: In this study, we developed the new set-up monitoring system using FSR sensor. Especially, we expect that the new set-up monitoring system is suitable for motion monitoring of blind area that is hard to confirm existing optical system and compensate existing optical based monitoring system. As a further study, an integrated system will be constructed through correlation of existing optical monitoring system. This work was supported by the Industrial R&D program of MOTIE/KEIT. [10048997, Development of the core technology for integrated therapy devices based on real-time MRI guided tumor tracking] and the Mid-career Researcher Program (2014R1A2A1A10050270) through the National Research Foundation of Korea funded by the Ministry of Science, ICT&Future Planning.« less
An embedded system developed for hand held assay used in water monitoring
NASA Astrophysics Data System (ADS)
Wu, Lin; Wang, Jianwei; Ramakrishna, Bharath; Hsueh, Mingkai; Liu, Jonathan; Wu, Qufei; Wu, Chao-Cheng; Cao, Mang; Chang, Chein-I.; Jensen, Janet L.; Jensen, James O.; Knapp, Harlan; Daniel, Robert; Yin, Ray
2005-11-01
The US Army Joint Service Agent Water Monitor (JSAWM) program is currently interested in an approach that can implement a hardware- designed device in ticket-based hand-held assay (currently being developed) used for chemical/biological agent detection. This paper presents a preliminary investigation of the proof of concept. Three components are envisioned to accomplish the task. One is the ticket development which has been undertaken by the ANP, Inc. Another component is the software development which has been carried out by the Remote Sensing Signal and Image Processing Laboratory (RSSIPL) at the University of Maryland, Baltimore County (UMBC). A third component is an embedded system development which can be used to drive the UMBC-developed software to analyze the ANP-developed HHA tickets on a small pocket-size device like a PDA. The main focus of this paper is to investigate the third component that is viable and is yet to be explored. In order to facilitate to prove the concept, a flatbed scanner is used to replace a ticket reader to serve as an input device. The Stargate processor board is used as the embedded System with Embedded Linux installed. It is connected to an input device such as scanner as well as output devices such as LCD display or laptop etc. It executes the C-Coded processing program developed for this embedded system and outputs its findings on a display device. The embedded system to be developed and investigated in this paper is the core of a future hardware device. Several issues arising in such an embedded system will be addressed. Finally, the proof-of-concept pilot embedded system will be demonstrated.
Evans, Jarrett; Papadopoulos, Amy; Silvers, Christine Tsien; Charness, Neil; Boot, Walter R; Schlachta-Fairchild, Loretta; Crump, Cindy; Martinez, Michele; Ent, Carrie Beth
2016-06-01
Remote health monitoring technology has been suggested as part of an early intervention and prevention care model. Older adults with a chronic health condition have been shown to benefit from remote monitoring but often have challenges with complex technology. The current study reports on the usability of and adherence with an integrated, real-time monitoring system over an extended period of time by older adults with and without a chronic health condition. Older adults 55 years of age and over with and without heart failure participated in a study in which a telehealth system was used for 6 months each. The system consisted of a wireless wristwatch-based monitoring device that continuously collected temperature and motion data. Other health information was collected daily using a weight scale, blood pressure cuff, and tablet that participants used for health surveys. Data were automatically analyzed and summarized by the system and presented to study nurses. Forty-one older adults participated. Seventy-one percent of surveys, 75% of blood pressure readings, and 81% of daily weight measurements were taken. Participants wore the watch monitor 77% of the overall 24/7 time requested. The weight scale had the highest usability rating in both groups. The groups did not otherwise differ on device usage. The findings indicate that a health monitoring system designed for older adults can and will be used for an extended period of time and may help older adults with chronic conditions reside longer in their own homes in partnership with the healthcare system.
NASA Astrophysics Data System (ADS)
Zhang, H. Y.; Zhai, Q. P.; Chen, L.; Liu, Y. J.; Zhou, K. Q.; Wang, Y. S.; Dou, Y. D.
2017-09-01
The features of the landslide geological disaster are wide distribution, variety, high frequency, high intensity, destructive and so on. It has become a natural disaster with harmful and wide range of influence. The technology of ground-based synthetic aperture radar is a novel deformation monitoring technology developed in recent years. The features of the technology are large monitoring area, high accuracy, long distance without contact and so on. In this paper, fast ground-based synthetic aperture radar (Fast-GBSAR) based on frequency modulated continuous wave (FMCW) system is used to collect the data of Ma Liuzui landslide in Chongqing. The device can reduce the atmospheric errors caused by rapidly changing environment. The landslide deformation can be monitored in severe weather conditions (for example, fog) by Fast-GBSAR with acquisition speed up to 5 seconds per time. The data of Ma Liuzui landslide in Chongqing are analyzed in this paper. The result verifies that the device can monitor landslide deformation under severe weather conditions.
Network architecture for global biomedical monitoring service.
Lopez-Casado, Carmen; Tejero-Calado, Juan; Bernal-Martin, Antonio; Lopez-Gomez, Miguel; Romero-Romero, Marco; Quesada, Guillermo; Lorca, Julio; Garcia, Eugenia
2005-01-01
Most of the patients who are in hospitals and, increasingly, patients controlled remotely from their homes, at-home monitoring, are continuously monitored in order to control their evolution. The medical devices used up to now, force the sanitary staff to go to the patients' room to control the biosignals that are being monitored, although in many cases, patients are in perfect conditions. If patient is at home, it is he or she who has to go to the hospital to take the record of the monitored signal. New wireless technologies, such as BlueTooth and WLAN, make possible the deployment of systems that allow the display and storage of those signals in any place where the hospital intranet is accessible. In that way, unnecessary displacements are avoided. This paper presents a network architecture that allows the identification of the biosignal acquisition device as IP network nodes. The system is based on a TCP/IP architecture which is scalable and avoids the deployment of a specific purpose network.
Garbin, Scott; Wylie, Jason; Krishna, K. C. Bal
2017-01-01
A Modified Robbins Device (MRD) was installed in a full-scale water distribution system to investigate biofouling and metal depositions on concrete, high-density polyethylene (HDPE) and stainless steel surfaces. Bulk water monitoring and a KIWA monitor (with glass media) were used to offline monitor biofilm development on pipe wall surfaces. Results indicated that adenosine triphosphate (ATP) and metal concentrations on coupons increased with time. However, bacterial diversities decreased. There was a positive correlation between increase of ATP and metal deposition on pipe surfaces of stainless steel and HDPE and no correlation was observed on concrete and glass surfaces. The shared bacterial diversity between bulk water and MRD was less than 20% and the diversity shared between the MRD and KIWA monitor was only 10%. The bacterial diversity on biofilm of plumbing material of MRD however, did not show a significant difference suggesting a lack of influence from plumbing material during early stage of biofilm development. PMID:28060947
Conductivity detection for monitoring mixing reactions in microfluidic devices.
Liu, Y; Wipf, D O; Henry, C S
2001-08-01
A conductivity detector was coupled to poly(dimethylsiloxane)-glass capillary electrophoresis microchips to monitor microfluidic flow. Electroosmotic flow was investigated with both conductivity detection (CD) and the current monitoring method. No significant variation was observed between these methods, but CD showed a lower relative standard deviation. Gradient mixing experiments were employed to investigate the relationship between the electrolyte conductivity and the electrolyte concentration. A good linear response of conductivity to concentration was obtained for solutions whose difference in concentrations were less than 27 mM. The new system holds great promise for precision mixing in microfluidic devices using electrically driven flows.
Validation of Contact-Free Sleep Monitoring Device with Comparison to Polysomnography
Tal, Asher; Shinar, Zvika; Shaki, David; Codish, Shlomi; Goldbart, Aviv
2017-01-01
Study Objectives: To validate a contact-free system designed to achieve maximal comfort during long-term sleep monitoring, together with high monitoring accuracy. Methods: We used a contact-free monitoring system (EarlySense, Ltd., Israel), comprising an under-the-mattress piezoelectric sensor and a smartphone application, to collect vital signs and analyze sleep. Heart rate (HR), respiratory rate (RR), body movement, and calculated sleep-related parameters from the EarlySense (ES) sensor were compared to data simultaneously generated by the gold standard, polysomnography (PSG). Subjects in the sleep laboratory underwent overnight technician-attended full PSG, whereas subjects at home were recorded for 1 to 3 nights with portable partial PSG devices. Data were compared epoch by epoch. Results: A total of 63 subjects (85 nights) were recorded under a variety of sleep conditions. Compared to PSG, the contact-free system showed similar values for average total sleep time (TST), % wake, % rapid eye movement, and % non-rapid eye movement sleep, with 96.1% and 93.3% accuracy of continuous measurement of HR and RR, respectively. We found a linear correlation between TST measured by the sensor and TST determined by PSG, with a coefficient of 0.98 (R = 0.87). Epoch-by-epoch comparison with PSG in the sleep laboratory setting revealed that the system showed sleep detection sensitivity, specificity, and accuracy of 92.5%, 80.4%, and 90.5%, respectively. Conclusions: TST estimates with the contact-free sleep monitoring system were closely correlated with the gold-standard reference. This system shows good sleep staging capability with improved performance over accelerometer-based apps, and collects additional physiological information on heart rate and respiratory rate. Citation: Tal A, Shinar Z, Shaki D, Codish S, Goldbart A. Validation of contact-free sleep monitoring device with comparison to polysomnography. J Clin Sleep Med. 2017;13(3):517–522. PMID:27998378
A reliable transmission protocol for ZigBee-based wireless patient monitoring.
Chen, Shyr-Kuen; Kao, Tsair; Chan, Chia-Tai; Huang, Chih-Ning; Chiang, Chih-Yen; Lai, Chin-Yu; Tung, Tse-Hua; Wang, Pi-Chung
2012-01-01
Patient monitoring systems are gaining their importance as the fast-growing global elderly population increases demands for caretaking. These systems use wireless technologies to transmit vital signs for medical evaluation. In a multihop ZigBee network, the existing systems usually use broadcast or multicast schemes to increase the reliability of signals transmission; however, both the schemes lead to significantly higher network traffic and end-to-end transmission delay. In this paper, we present a reliable transmission protocol based on anycast routing for wireless patient monitoring. Our scheme automatically selects the closest data receiver in an anycast group as a destination to reduce the transmission latency as well as the control overhead. The new protocol also shortens the latency of path recovery by initiating route recovery from the intermediate routers of the original path. On the basis of a reliable transmission scheme, we implement a ZigBee device for fall monitoring, which integrates fall detection, indoor positioning, and ECG monitoring. When the triaxial accelerometer of the device detects a fall, the current position of the patient is transmitted to an emergency center through a ZigBee network. In order to clarify the situation of the fallen patient, 4-s ECG signals are also transmitted. Our transmission scheme ensures the successful transmission of these critical messages. The experimental results show that our scheme is fast and reliable. We also demonstrate that our devices can seamlessly integrate with the next generation technology of wireless wide area network, worldwide interoperability for microwave access, to achieve real-time patient monitoring.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., install a gas temperature monitor in the firebox of the thermal oxidizer or in the duct immediately... gas temperature monitors upstream and/or downstream of the catalyst bed as required in § 63.3967(b... (a) and (c)(3)(i) through (v) of this section for each gas temperature monitoring device. (i) Locate...
Code of Federal Regulations, 2011 CFR
2011-07-01
..., install a gas temperature monitor in the firebox of the thermal oxidizer or in the duct immediately... gas temperature monitors upstream and/or downstream of the catalyst bed as required in § 63.3967(b... (a) and (c)(3)(i) through (v) of this section for each gas temperature monitoring device. (i) Locate...
Provider experiences with negative-pressure wound therapy systems.
Kaufman-Rivi, Diana; Hazlett, Antoinette C; Hardy, Mary Anne; Smith, Jacquelyn M; Seid, Heather B
2013-07-01
MedWatch, the Food and Drug Administration's (FDA's) nationwide adverse event reporting system, serves to monitor device performance after a medical device is approved or cleared for market. Through the MedWatch adverse event reporting system, the FDA receives Medical Device Reports of deaths and serious injuries with negative-pressure wound therapy (NPWT) systems, many of which are used in homes and in extended-care facilities. In response to reported events, this study was conducted to obtain additional information about device issues that healthcare professionals face in these settings, as well as challenges that caregivers might encounter using this technology at home. The study was exploratory and descriptive in nature. The FDA surveyed wound care specialists and professional home healthcare providers to learn about users' experiences with NPWT. In the first phase of the study, a semistructured questionnaire was developed for telephone interviews and self-administration. In the second phase, a web-based survey was adapted from the semistructured instrument. Respondent concerns primarily centered on issues not directly related to the NPWT devices: NPWT prescription, provider education in addition to patient training and appropriate wound management practices, notably ongoing wound assessment, and patient monitoring. Overall, respondents thought that there was a definite benefit to NPWT, regardless of the care setting, and that it was a safe therapy when prescribed and administered appropriately.
Mooney, Deirdre M; Fung, Erik; Doshi, Rahul N; Shavelle, David M
2015-01-01
Heart failure (HF) is a costly, challenging and highly prevalent medical condition. Hospitalization for acute decompensation is associated with high morbidity and mortality. Despite application of evidence-based medical therapies and technologies, HF remains a formidable challenge for virtually all healthcare systems. Repeat hospitalizations for acute decompensated HF (ADHF) can have major financial impact on institutions and resources. Early and accurate identification of impending ADHF is of paramount importance yet there is limited high quality evidence or infrastructure to guide management in the outpatient setting. Historically, ADHF was identified by physical exam findings or invasive hemodynamic monitoring during a hospital admission; however, advances in medical microelectronics and the advent of device-based diagnostics have enabled long-term ambulatory monitoring of HF patients in the outpatient setting. These monitors have evolved from piggybacking on cardiac implantable electrophysiologic devices to standalone implantable hemodynamic monitors that transduce left atrial or pulmonary artery pressures as surrogate measures of left ventricular filling pressure. As technology evolves, devices will likely continue to miniaturize while their capabilities grow. An important, persistent challenge that remains is developing systems to translate the large volumes of real-time data, particularly data trends, into actionable information that leads to appropriate, safe and timely interventions without overwhelming outpatient cardiology and general medical practices. Future directions for implantable hemodynamic monitors beyond their utility in heart failure may include management of other major chronic diseases such as pulmonary hypertension, end stage renal disease and portal hypertension.
2006 Pathogen and Toxin Concentration Systems for Water Monitoring
2012-07-24
design and construct a compact, portable automated device enabling the simultaneous concentration of protozoa , bacteria, bacterial spores, algae and...portable automated device enabling the simultaneous concentration of protozoa , bacteria, bacterial spores, algae and viruses from large volumes of various...construct a compact, portable automated device enabling the simultaneous concentration of protozoa , bacteria, bacterial spores, algae and viruses
Basic equipment requirements for hemodynamic monitoring.
Morton, B C
1979-01-01
Hemodynamic monitoring in the critically ill patient requires the use of sophisticated electronic devices. To use this equipment one should have a general understanding of the principles involved and the requirements of a reliable system. This communication serves to explain the requirements of the various components of a hemodynamic monitoring system and to demonstrate how they interact to produce accurate and safe electronic signals from mechanical wave forms obtained from the patient. Images FIG. 5 PMID:497978
Integrated software system for improving medical equipment management.
Bliznakov, Z; Pappous, G; Bliznakova, K; Pallikarakis, N
2003-01-01
The evolution of biomedical technology has led to an extraordinary use of medical devices in health care delivery. During the last decade, clinical engineering departments (CEDs) turned toward computerization and application of specific software systems for medical equipment management in order to improve their services and monitor outcomes. Recently, much emphasis has been given to patient safety. Through its Medical Device Directives, the European Union has required all member nations to use a vigilance system to prevent the reoccurrence of adverse events that could lead to injuries or death of patients or personnel as a result of equipment malfunction or improper use. The World Health Organization also has made this issue a high priority and has prepared a number of actions and recommendations. In the present workplace, a new integrated, Windows-oriented system is proposed, addressing all tasks of CEDs but also offering a global approach to their management needs, including vigilance. The system architecture is based on a star model, consisting of a central core module and peripheral units. Its development has been based on the integration of 3 software modules, each one addressing specific predefined tasks. The main features of this system include equipment acquisition and replacement management, inventory archiving and monitoring, follow up on scheduled maintenance, corrective maintenance, user training, data analysis, and reports. It also incorporates vigilance monitoring and information exchange for adverse events, together with a specific application for quality-control procedures. The system offers clinical engineers the ability to monitor and evaluate the quality and cost-effectiveness of the service provided by means of quality and cost indicators. Particular emphasis has been placed on the use of harmonized standards with regard to medical device nomenclature and classification. The system's practical applications have been demonstrated through a pilot evaluation trial.
NASA Technical Reports Server (NTRS)
Milos, Frank S.; Arnold, Jim (Technical Monitor)
2001-01-01
Health diagnostics is an area where major improvements have been identified for potential implementation into the design of new reusable launch vehicles (RLVs) in order to reduce life cycle costs, to increase safety margins, and to improve mission reliability. NASA Ames is leading the effort to develop inspection and health management technologies for thermal protection systems. This paper summarizes a joint project between NASA Ames and industry partners to develop "wireless" devices that can be embedded in the thermal protection system to monitor temperature or other quantities of interest. These devices are sensors integrated with radio-frequency identification (RFID) microchips to enable non-contact communication of sensor data to an external reader that may be a hand-held scanner or a large portal. Both passive and active prototype devices have been developed. The passive device uses a thermal fuse to indicate the occurrence of excessive temperature. This device has a diameter under 0.13 cm. (suitable for placement in gaps between ceramic TPS tiles on an RLV) and can withstand 370 C for 15 minutes. The active device contains a small battery to provide power to a thermocouple for recording a temperature history during flight. The bulk of the device must be placed beneath the TPS for protection from high temperature, but the thermocouple can be placed in a hot location such as near the external surface.
NASA Astrophysics Data System (ADS)
Lee, Seung Yup; Pakela, Julia M.; Helton, Michael C.; Vishwanath, Karthik; Chung, Yooree G.; Kolodziejski, Noah J.; Stapels, Christopher J.; McAdams, Daniel R.; Fernandez, Daniel E.; Christian, James F.; O'Reilly, Jameson; Farkas, Dana; Ward, Brent B.; Feinberg, Stephen E.; Mycek, Mary-Ann
2017-12-01
In reconstructive surgery, the ability to detect blood flow interruptions to grafted tissue represents a critical step in preventing postsurgical complications. We have developed and pilot tested a compact, fiber-based device that combines two complimentary modalities-diffuse correlation spectroscopy (DCS) and diffuse reflectance spectroscopy-to quantitatively monitor blood perfusion. We present a proof-of-concept study on an in vivo porcine model (n=8). With a controllable arterial blood flow supply, occlusion studies (n=4) were performed on surgically isolated free flaps while the device simultaneously monitored blood flow through the supplying artery as well as flap perfusion from three orientations: the distal side of the flap and two transdermal channels. Further studies featuring long-term monitoring, arterial failure simulations, and venous failure simulations were performed on flaps that had undergone an anastomosis procedure (n=4). Additionally, benchtop verification of the DCS system was performed on liquid flow phantoms. Data revealed relationships between diffuse optical measures and state of occlusion as well as the ability to detect arterial and venous compromise. The compact construction of the device, along with its noninvasive and quantitative nature, would make this technology suitable for clinical translation.
21 CFR 868.2450 - Lung water monitor.
Code of Federal Regulations, 2014 CFR
2014-04-01
... DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2450 Lung water monitor. (a) Identification. A lung water monitor is a device used to monitor the trend of fluid volume changes in a patient's lung by... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Lung water monitor. 868.2450 Section 868.2450 Food...
21 CFR 868.2450 - Lung water monitor.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lung water monitor. 868.2450 Section 868.2450 Food... DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2450 Lung water monitor. (a) Identification. A lung water monitor is a device used to monitor the trend of fluid volume changes in a patient's lung by...
21 CFR 868.2450 - Lung water monitor.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Lung water monitor. 868.2450 Section 868.2450 Food... DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2450 Lung water monitor. (a) Identification. A lung water monitor is a device used to monitor the trend of fluid volume changes in a patient's lung by...
21 CFR 868.2450 - Lung water monitor.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Lung water monitor. 868.2450 Section 868.2450 Food... DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2450 Lung water monitor. (a) Identification. A lung water monitor is a device used to monitor the trend of fluid volume changes in a patient's lung by...
21 CFR 868.2450 - Lung water monitor.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Lung water monitor. 868.2450 Section 868.2450 Food... DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2450 Lung water monitor. (a) Identification. A lung water monitor is a device used to monitor the trend of fluid volume changes in a patient's lung by...
Toward flexible and wearable human-interactive health-monitoring devices.
Takei, Kuniharu; Honda, Wataru; Harada, Shingo; Arie, Takayuki; Akita, Seiji
2015-03-11
This Progress Report introduces flexible wearable health-monitoring devices that interact with a person by detecting from and stimulating the body. Interactive health-monitoring devices should be highly flexible and attach to the body without awareness like a bandage. This type of wearable health-monitoring device will realize a new class of electronics, which will be applicable not only to health monitoring, but also to other electrical devices. However, to realize wearable health-monitoring devices, many obstacles must be overcome to economically form the active electrical components on a flexible substrate using macroscale fabrication processes. In particular, health-monitoring sensors and curing functions need to be integrated. Here recent developments and advancements toward flexible health-monitoring devices are presented, including conceptual designs of human-interactive devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Usability of digital media in patients with COPD: a pilot study.
Cheung, Amy; Janssen, Anton; Amft, Oliver; Wouters, Emiel F M; Spruit, Martijn A
2013-04-01
Digital media can be integrated in tele-monitoring solutions, serving as the main interface between the patient and the caregiver. Consequently, the selection of the most appropriate digital medium for the specified target group is critical to ensure compliance with the tele-monitoring system. This pilot study aims to gather insights from patients with chronic obstructive pulmonary disease (COPD) on the ease-of-use, efficacy, effectiveness, and satisfaction of different types of digital media. Five off-the-shelf digital media devices were tested on nine patients at CIRO+ in Horn, The Netherlands. Usability was evaluated by asking patients to use each device to answer questions related to their symptoms and health status. Subsequently, patients completed a paper-based device usability questionnaire, which assessed prior experience with digital media, device dimensions, device controllability, response speed, screen readability, ease-of-use, and overall satisfaction. After testing all the devices, patients ranked the devices according to their preference. We identified the netbook as the preferred type of device due to its good controllability, fast response time, and large screen size. The smartphone was the least favorite device as patients found the size of the screen to be too small, which made it difficult to interact with. The pilot study has provided important insights to guide the selection of the most appropriate type of digital medium for implementation in tele-monitoring solutions for patients with COPD. As the digital medium is an important interface to the patient in tele-monitoring solutions, it is essential that patients feel motivated to interact with the digital medium on a regular basis.
Integrated photovoltaic (PV) monitoring system
NASA Astrophysics Data System (ADS)
Mahinder Singh, Balbir Singh; Husain, NurSyahidah; Mohamed, Norani Muti
2012-09-01
The main aim of this research work is to design an accurate and reliable monitoring system to be integrated with solar electricity generating system. The performance monitoring system is required to ensure that the PVEGS is operating at an optimum level. The PV monitoring system is able to measure all the important parameters that determine an optimum performance. The measured values are recorded continuously, as the data acquisition system is connected to a computer, and data is stored at fixed intervals. The data can be locally used and can also be transmitted via internet. The data that appears directly on the local monitoring system is displayed via graphical user interface that was created by using Visual basic and Apache software was used for data transmission The accuracy and reliability of the developed monitoring system was tested against the data that captured simultaneously by using a standard power quality analyzer device. The high correlation which is 97% values indicates the level of accuracy of the monitoring system. The aim of leveraging on a system for continuous monitoring system is achieved, both locally, and can be viewed simultaneously at a remote system.
ERIC Educational Resources Information Center
Zahadat, Nima
2016-01-01
With the rapid increase of smartphones and tablets, security concerns have also been on the rise. Traditionally, Information Technology (IT) departments set up devices, apply security, and monitor them. Such approaches do not apply to today's mobile devices due to a phenomenon called Bring Your Own Device or BYOD. Employees find it desirable to…
21 CFR 882.5500 - Lesion temperature monitor.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Lesion temperature monitor. 882.5500 Section 882...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5500 Lesion temperature monitor. (a) Identification. A lesion temperature monitor is a device used to monitor the tissue...
21 CFR 882.5500 - Lesion temperature monitor.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Lesion temperature monitor. 882.5500 Section 882...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5500 Lesion temperature monitor. (a) Identification. A lesion temperature monitor is a device used to monitor the tissue...
21 CFR 882.5500 - Lesion temperature monitor.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Lesion temperature monitor. 882.5500 Section 882...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5500 Lesion temperature monitor. (a) Identification. A lesion temperature monitor is a device used to monitor the tissue...
Remote Monitoring of Cardiac Implantable Electronic Devices.
Cheung, Christopher C; Deyell, Marc W
2018-01-08
Over the past decade, technological advancements have transformed the delivery of care for arrhythmia patients. From early transtelephonic monitoring to new devices capable of wireless and cellular transmission, remote monitoring has revolutionized device care. In this article, we review the current evolution and evidence for remote monitoring in patients with cardiac implantable electronic devices. From passive transmission of device diagnostics, to active transmission of patient- and device-triggered alerts, remote monitoring can shorten the time to diagnosis and treatment. Studies have shown that remote monitoring can reduce hospitalization and emergency room visits, and improve survival. Remote monitoring can also reduce the health care costs, while providing increased access to patients living in rural or marginalized communities. Unfortunately, as many as two-thirds of patients with remote monitoring-capable devices do not use, or are not offered, this feature. Current guidelines recommend remote monitoring and interrogation, combined with annual in-person evaluation in all cardiac device patients. Remote monitoring should be considered in all eligible device patients and should be considered standard of care. Copyright © 2018 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.
Hardware Architecture for Measurements for 50-V Battery Modules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patrick Bald; Evan Juras; Jon P. Christophersen
Energy storage devices, especially batteries, have become critical for several industries including automotive, electric utilities, military and consumer electronics. With the increasing demand for electric and hybrid electric vehicles and the explosion in popularity of mobile and portable electronic devices such as laptops, cell phones, e-readers, tablet computers and the like, reliance on portable energy storage devices such as batteries has likewise increased. Because many of the systems these batteries integrated into are critical, there is an increased need for an accurate in-situ method of monitoring battery state-of-health. Over the past decade the Idaho National Laboratory (INL), Montana Tech ofmore » the University of Montana (Tech), and Qualtech Systems, Inc. (QSI) have been developing the Smart Battery Status Monitor (SBSM), an integrated battery management system designed to monitor battery health, performance and degradation and use this knowledge for effective battery management and increased battery life. Key to the success of the SBSM is an in-situ impedance measurement system called the Impedance Measurement Box (IMB). One of the challenges encountered has been development of a compact IMB system that will perform rapid accurate measurements of a battery impedance spectrum working with higher voltage batteries of up to 300 volts. This paper discusses the successful realization of a system that will work up to 50 volts.« less
Securing health sensing using integrated circuit metric.
Tahir, Ruhma; Tahir, Hasan; McDonald-Maier, Klaus
2015-10-20
Convergence of technologies from several domains of computing and healthcare have aided in the creation of devices that can help health professionals in monitoring their patients remotely. An increase in networked healthcare devices has resulted in incidents related to data theft, medical identity theft and insurance fraud. In this paper, we discuss the design and implementation of a secure lightweight wearable health sensing system. The proposed system is based on an emerging security technology called Integrated Circuit Metric (ICMetric) that extracts the inherent features of a device to generate a unique device identification. In this paper, we provide details of how the physical characteristics of a health sensor can be used for the generation of hardware "fingerprints". The obtained fingerprints are used to deliver security services like authentication, confidentiality, secure admission and symmetric key generation. The generated symmetric key is used to securely communicate the health records and data of the patient. Based on experimental results and the security analysis of the proposed scheme, it is apparent that the proposed system enables high levels of security for health monitoring in resource optimized manner.
Securing Health Sensing Using Integrated Circuit Metric
Tahir, Ruhma; Tahir, Hasan; McDonald-Maier, Klaus
2015-01-01
Convergence of technologies from several domains of computing and healthcare have aided in the creation of devices that can help health professionals in monitoring their patients remotely. An increase in networked healthcare devices has resulted in incidents related to data theft, medical identity theft and insurance fraud. In this paper, we discuss the design and implementation of a secure lightweight wearable health sensing system. The proposed system is based on an emerging security technology called Integrated Circuit Metric (ICMetric) that extracts the inherent features of a device to generate a unique device identification. In this paper, we provide details of how the physical characteristics of a health sensor can be used for the generation of hardware “fingerprints”. The obtained fingerprints are used to deliver security services like authentication, confidentiality, secure admission and symmetric key generation. The generated symmetric key is used to securely communicate the health records and data of the patient. Based on experimental results and the security analysis of the proposed scheme, it is apparent that the proposed system enables high levels of security for health monitoring in resource optimized manner. PMID:26492250
Maktabi, Marianne; Neumuth, Thomas
2017-12-22
The complexity of surgical interventions and the number of technologies involved are constantly rising. Hospital staff has to learn how to handle new medical devices efficiently. However, if medical device-related incidents occur, the patient treatment is delayed. Patient safety could therefore be supported by an optimized assistance system that helps improve the management of technical equipment by nonmedical hospital staff. We developed a system for the optimal monitoring of networked medical device activity and maintenance requirements, which works in conjunction with a vendor-independent integrated operating room and an accurate surgical intervention Time And Resource Management System. An integrated situation-dependent risk assessment system gives the medical engineers optimal awareness of the medical devices in the operating room. A qualitative and quantitative survey among ten medical engineers from three different hospitals was performed to evaluate the approach. A series of 25 questions was used to evaluate various aspects of our system as well as the system currently used. Moreover, the respondents were asked to perform five tasks related to system supervision and incident handling. Our system received a very positive feedback. The evaluation studies showed that the integration of information, the structured presentation of information, and the assistance modules provide valuable support to medical engineers. An automated operating room monitoring system with an integrated risk assessment and Time And Resource Management System module is a new way to assist the staff being outside of a vendor-independent integrated operating room, who are nevertheless involved in processes in the operating room.
40 CFR Table 10 to Subpart Eeee of... - Continuous Compliance With Work Practice Standards
Code of Federal Regulations, 2010 CFR
2010-07-01
... liquids, operate a vapor balancing system. i. Monitoring each potential source of vapor leakage in the... requirements of 40 CFR part 63, subpart TT, UU, or H. i. Carrying out a leak detection and repair program in... relief devices, monitoring each potential source of vapor leakage in the system, including, but not...
40 CFR 63.5725 - What are the requirements for monitoring and demonstrating continuous compliance?
Code of Federal Regulations, 2014 CFR
2014-07-01
... Pollutants for Boat Manufacturing Demonstrating Compliance for Open Molding Operations Controlled by Add-on... successive cycles of operation to have a valid hour of data. (2) You must have valid data from at least 90... parameter monitoring system and collect emission capture system and add-on control device parameter data at...
40 CFR 63.5725 - What are the requirements for monitoring and demonstrating continuous compliance?
Code of Federal Regulations, 2013 CFR
2013-07-01
... Pollutants for Boat Manufacturing Demonstrating Compliance for Open Molding Operations Controlled by Add-on... successive cycles of operation to have a valid hour of data. (2) You must have valid data from at least 90... parameter monitoring system and collect emission capture system and add-on control device parameter data at...
21 CFR 26.69 - Monitoring of conformity assessment bodies.
Code of Federal Regulations, 2010 CFR
2010-04-01
... MUTUAL RECOGNITION OF PHARMACEUTICAL GOOD MANUFACTURING PRACTICE REPORTS, MEDICAL DEVICE QUALITY SYSTEM AUDIT REPORTS, AND CERTAIN MEDICAL DEVICE PRODUCT EVALUATION REPORTS: UNITED STATES AND THE EUROPEAN... cause to maintain, ongoing surveillance over their CAB's by means of regular audit or assessment; (b...
NASA Technical Reports Server (NTRS)
Bentley, Nicole L.; Brower, David V.; Le, Suy Q.; Seaman, Calvin H.; Tang, Henry H.
2017-01-01
This paper presents the design and development of a friction-based coupling device for a fiber-optic monitoring system that can be deployed on existing subsea structures. This paper provides a summary of the design concept, prototype development, prototype performance testing, and design refinements of the device. The results of the laboratory testing of the first prototype performed at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) are included in this paper. Limitations of the initial design were identified and future design improvements were proposed. These new features will enhance the coupling of the device and improve the monitoring system measurement capabilities. A major challenge of a post-installed instrumentation monitoring system is to ensure adequate coupling between the instruments and the structure of interest for reliable measurements. Friction-based coupling devices have the potential to overcome coupling limitations caused by marine growth and soil contamination on subsea structures, flowlines or risers. The work described in this paper investigates the design of a friction-based coupling device (friction clamp), which is applicable for pipelines and structures that are suspended in the water column and those that are resting on the seabed. The monitoring elements consist of fiber-optic sensors that are bonded to a metal clamshell with a high-friction coating. The friction clamp has a single hinge design to facilitate the operation of the clamp and dual rows of opposing fasteners to distribute the clamping force on the structure. The friction clamp can be installed by divers in shallow depths or by remotely operated vehicles in deep-water applications. NASA-JSC was involved in the selection and testing of the friction coating, and in the design and testing of the prototype clamp device. Four-inch diameter and eight-inch diameter sub-scale friction clamp prototypes were built and tested to evaluate the strain measuring capabilities of the design under different loading scenarios. The testing revealed some limitations of the initial design concept, and subsequent refinements were explored to improve the measurement performance of the system. This study was part of a collaboration between NASA-JSC and Astro Technology, Inc. within a study called Clear Gulf. The primary objective of the Clear Gulf study is to develop advanced instrumentation technologies that will improve operational safety and reduce the risk of hydrocarbon spillage. NASA provided unique insights, expansive test facilities, and technical expertise to advance these technologies that would benefit the environment, the public, and commercial industries.
NASA Technical Reports Server (NTRS)
Bentley, Nicole; Brower, David; Le, Suy Q.; Seaman, Calvin; Tang, Henry
2017-01-01
This paper presents the design and development of a friction-based coupling device for a fiber-optic monitoring system that can be deployed on existing subsea structures. This paper provides a summary of the design concept, prototype development, prototype performance testing, and design refinements of the device. The results of the laboratory testing of the first prototype performed at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) are included in this paper. Limitations of the initial design were identified and future design improvements were proposed. These new features will enhance the coupling of the device and improve the monitoring system measurement capabilities. A major challenge of a post-installed instrumentation monitoring system is to ensure adequate coupling between the instruments and the structure of interest for reliable measurements. Friction-based coupling devices have the potential to overcome coupling limitations caused by marine growth and soil contamination on subsea structures, flowlines or risers. The work described in this paper investigates the design of a friction-based coupling device (friction clamp), which is applicable for pipelines and structures that are suspended in the water column and those that are resting on the seabed. The monitoring elements consist of fiber-optic sensors that are bonded to a metal clamshell with a high-friction coating. The friction clamp has a single hinge design to facilitate the operation of the clamp and dual rows of opposing fasteners to distribute the clamping force on the structure. The friction clamp can be installed by divers in shallow depths or by remotely operated vehicles in deep-water applications. NASA-JSC was involved in the selection and testing of the friction coating, and in the design and testing of the prototype clamp device. Four-inch diameter and eight-inch diameter sub-scale friction clamp prototypes were built and tested to evaluate the strain measuring capabilities of the design under different loading scenarios. The testing revealed some limitations of the initial design concept, and subsequent refinements were explored to improve the measurement performance of the system. This study was part of a collaboration between NASA-JSC and Astro Technology, Inc. within a study called Clear Gulf. The primary objective of the Clear Gulf study is to develop advanced instrumentation technologies that will improve operational safety and reduce the risk of hydrocarbon spillage. NASA provided unique insights, expansive test facilities, and technical expertise to advance these technologies that would benefit the environment, the public, and commercial industries.
Color reproduction system based on color appearance model and gamut mapping
NASA Astrophysics Data System (ADS)
Cheng, Fang-Hsuan; Yang, Chih-Yuan
2000-06-01
By the progress of computer, computer peripherals such as color monitor and printer are often used to generate color image. However, cross media color reproduction by human perception is usually different. Basically, the influence factors are device calibration and characterization, viewing condition, device gamut and human psychology. In this thesis, a color reproduction system based on color appearance model and gamut mapping is proposed. It consists of four parts; device characterization, color management technique, color appearance model and gamut mapping.
A Gas Chromatographic Continuous Emissions Monitoring System for the Determination of VOCs and HAPs.
Coleman, William M; Gordon, Bert M
1996-01-01
This article describes a new gas chromatography-based emissions monitoring system for measuring volatile organic compounds (VOCs) and hazardous air pollutants (HAPs). The system is composed of a dual-column gas chromatograph equipped with thermal conductivity detectors, in which separation is optimized for fast chromatography. The system has the necessary valving for stream selection, which allows automatic calibration of the system at predetermined times and successive measurement of individual VOCs before and after a control device. Nine different VOCs (two of which are HAPs), plus methane (CH4) and carbon dioxide (CO2) are separated and quantified every two minutes. The accuracy and precision of this system has been demonstrated to be greater than 95%. The system employs a mass flow measurement device and also calculates and displays processed emission data, such as control device efficiency and total weight emitted during given time periods. Two such systems have been operational for one year in two separate gravure printing facilities; minimal upkeep is required, about one hour per month. One of these systems, used before and after a carbon adsorber, has been approved by the pertinent local permitting authority.
40 CFR 60.343 - Monitoring of emissions and operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... device for the continuous measurement of the pressure loss of the gas stream through the scrubber. The monitoring device must be accurate within ±250 pascals (one inch of water). (2) A monitoring device for continuous measurement of the scrubbing liquid supply pressure to the control device. The monitoring device...
NASA Technical Reports Server (NTRS)
Podio, Fernando; Vollrath, William; Williams, Joel; Kobler, Ben; Crouse, Don
1998-01-01
Sophisticated network storage management applications are rapidly evolving to satisfy a market demand for highly reliable data storage systems with large data storage capacities and performance requirements. To preserve a high degree of data integrity, these applications must rely on intelligent data storage devices that can provide reliable indicators of data degradation. Error correction activity generally occurs within storage devices without notification to the host. Early indicators of degradation and media error monitoring 333 and reporting (MEMR) techniques implemented in data storage devices allow network storage management applications to notify system administrators of these events and to take appropriate corrective actions before catastrophic errors occur. Although MEMR techniques have been implemented in data storage devices for many years, until 1996 no MEMR standards existed. In 1996 the American National Standards Institute (ANSI) approved the only known (world-wide) industry standard specifying MEMR techniques to verify stored data on optical disks. This industry standard was developed under the auspices of the Association for Information and Image Management (AIIM). A recently formed AIIM Optical Tape Subcommittee initiated the development of another data integrity standard specifying a set of media error monitoring tools and media error monitoring information (MEMRI) to verify stored data on optical tape media. This paper discusses the need for intelligent storage devices that can provide data integrity metadata, the content of the existing data integrity standard for optical disks, and the content of the MEMRI standard being developed by the AIIM Optical Tape Subcommittee.
Design of a prototype device for remote patient care with mild cognitive impairment
NASA Astrophysics Data System (ADS)
Sanchez-Ocampo, M.; Segura-Giraldo, B.; Floréz-Hurtado, R.; Cortés-Aguirre, C.
2016-04-01
This paper describes the design of a prototype telecare system, which allows to provide home care to patients with mild cognitive impairment and thus ensures their permanence in their usual environment. Telecare is oriented towards people who require constant attention due to conditions of advanced age, illness, physical risk or limited capabilities. Telecare offers these people a greater degree of independence. QFD methodology is used to develop electronic devices intended to monitor the environment and physiological state of the user continuously, providing communication between the telecare system and a monitoring center in order to take the most appropriate actions in any abnormal event.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Leon E.; Conrad, Ryan C.; Keller, Daniel T.
The International Atomic Energy Agency (IAEA) deploys unattended monitoring systems to provide continuous monitoring of nuclear material within safeguarded facilities around the world. As the number of unattended monitoring instruments increases, the IAEA is challenged to become more efficient in the implementation of those systems. In 2010, the IAEA initiated the Front-End Electronics for Unattended Measurement (FEUM) project with the goals of greater flexibility in the interfaces to various sensors and data acquisition systems, and improved capabilities for remotely located sensors (e.g., where sensor and front-end electronics might be separated by tens of meters). In consultation with the IAEA, amore » technical evaluation of a candidate FEUM device produced by a commercial vendor is being performed. This evaluation is assessing the device against the IAEA’s original technical specifications and a broad range of important parameters that included sensor types, cable types, and industrial electromagnetic noise that can degrade signals from remotely located detectors. Testing has been performed in a laboratory and also in environments representative of IAEA deployments. The results are expected to inform the IAEA about where and how FEUM devices might be implemented in the field. Data and preliminary findings from the testing performed to date are presented.« less
MONITORING THE AIR FOR TOXIC AND GENOTOXIC COMPOUNDS
A time-integrated sampling system interfaced with a toxicity-based assay is reported for monitoring volatile toxic industrial chemicals (TICs). Semipermeable membrane devices (SPMDs) using dimethyl sulfoxide (DMSO) as the fill solvent accumulated each of 17 TICs from the vapor p...
An Automated and Continuous Plant Weight Measurement System for Plant Factory
Chen, Wei-Tai; Yeh, Yu-Hui F.; Liu, Ting-Yu; Lin, Ta-Te
2016-01-01
In plant factories, plants are usually cultivated in nutrient solution under a controllable environment. Plant quality and growth are closely monitored and precisely controlled. For plant growth evaluation, plant weight is an important and commonly used indicator. Traditional plant weight measurements are destructive and laborious. In order to measure and record the plant weight during plant growth, an automated measurement system was designed and developed herein. The weight measurement system comprises a weight measurement device and an imaging system. The weight measurement device consists of a top disk, a bottom disk, a plant holder and a load cell. The load cell with a resolution of 0.1 g converts the plant weight on the plant holder disk to an analog electrical signal for a precise measurement. The top disk and bottom disk are designed to be durable for different plant sizes, so plant weight can be measured continuously throughout the whole growth period, without hindering plant growth. The results show that plant weights measured by the weight measurement device are highly correlated with the weights estimated by the stereo-vision imaging system; hence, plant weight can be measured by either method. The weight growth of selected vegetables growing in the National Taiwan University plant factory were monitored and measured using our automated plant growth weight measurement system. The experimental results demonstrate the functionality, stability and durability of this system. The information gathered by this weight system can be valuable and beneficial for hydroponic plants monitoring research and agricultural research applications. PMID:27066040
An Automated and Continuous Plant Weight Measurement System for Plant Factory.
Chen, Wei-Tai; Yeh, Yu-Hui F; Liu, Ting-Yu; Lin, Ta-Te
2016-01-01
In plant factories, plants are usually cultivated in nutrient solution under a controllable environment. Plant quality and growth are closely monitored and precisely controlled. For plant growth evaluation, plant weight is an important and commonly used indicator. Traditional plant weight measurements are destructive and laborious. In order to measure and record the plant weight during plant growth, an automated measurement system was designed and developed herein. The weight measurement system comprises a weight measurement device and an imaging system. The weight measurement device consists of a top disk, a bottom disk, a plant holder and a load cell. The load cell with a resolution of 0.1 g converts the plant weight on the plant holder disk to an analog electrical signal for a precise measurement. The top disk and bottom disk are designed to be durable for different plant sizes, so plant weight can be measured continuously throughout the whole growth period, without hindering plant growth. The results show that plant weights measured by the weight measurement device are highly correlated with the weights estimated by the stereo-vision imaging system; hence, plant weight can be measured by either method. The weight growth of selected vegetables growing in the National Taiwan University plant factory were monitored and measured using our automated plant growth weight measurement system. The experimental results demonstrate the functionality, stability and durability of this system. The information gathered by this weight system can be valuable and beneficial for hydroponic plants monitoring research and agricultural research applications.
21 CFR 868.2025 - Ultrasonic air embolism monitor.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ultrasonic air embolism monitor. 868.2025 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2025 Ultrasonic air embolism monitor. (a) Identification. An ultrasonic air embolism monitor is a device used to detect air bubbles in...
21 CFR 868.2025 - Ultrasonic air embolism monitor.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ultrasonic air embolism monitor. 868.2025 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2025 Ultrasonic air embolism monitor. (a) Identification. An ultrasonic air embolism monitor is a device used to detect air bubbles in...
21 CFR 868.2025 - Ultrasonic air embolism monitor.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic air embolism monitor. 868.2025 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2025 Ultrasonic air embolism monitor. (a) Identification. An ultrasonic air embolism monitor is a device used to detect air bubbles in...
21 CFR 868.2600 - Airway pressure monitor.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Airway pressure monitor. 868.2600 Section 868.2600...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2600 Airway pressure monitor. (a) Identification. An airway pressure monitor is a device used to measure the pressure in a patient's upper airway...
Mass and stiffness estimation using mobile devices for structural health monitoring
NASA Astrophysics Data System (ADS)
Le, Viet; Yu, Tzuyang
2015-04-01
In the structural health monitoring (SHM) of civil infrastructure, dynamic methods using mass, damping, and stiffness for characterizing structural health have been a traditional and widely used approach. Changes in these system parameters over time indicate the progress of structural degradation or deterioration. In these methods, capability of predicting system parameters is essential to their success. In this paper, research work on the development of a dynamic SHM method based on perturbation analysis is reported. The concept is to use externally applied mass to perturb an unknown system and measure the natural frequency of the system. Derived theoretical expressions for mass and stiffness prediction are experimentally verified by a building model. Dynamic responses of the building model perturbed by various masses in free vibration were experimentally measured by a mobile device (cell phone) to extract the natural frequency of the building model. Single-degreeof- freedom (SDOF) modeling approach was adopted for the sake of using a cell phone. From the experimental result, it is shown that the percentage error of predicted mass increases when the mass ratio increases, while the percentage error of predicted stiffness decreases when the mass ratio increases. This work also demonstrated the potential use of mobile devices in the health monitoring of civil infrastructure.
NASA Astrophysics Data System (ADS)
Kuang, K. S. C.
2014-03-01
A novel application of chemiluminescence resulting from the chemical reaction in a glow-stick as sensors for structural health monitoring is demonstrated here. By detecting the presence of light emitting from these glow-sticks, it is possible to develop a low-cost sensing device with the potential to provide early warning of damage in a variety of engineering applications such as monitoring of cracks or damage in concrete shear walls, detecting of ground settlement, soil liquefaction, slope instability, liquefaction-related damage of underground structure and others. In addition, this paper demonstrates the ease of incorporating wireless capability to the sensor device and the possibility of making the sensor system self-sustaining by means of a renewable power source for the wireless module. A significant advantage of the system compared to previous work on the use of plastic optical fibre (POF) for damage detection is that here the system does not require an electrically-powered light source. Here, the sensing device, embedded in a cement host, is shown to be capable of detecting damage. A series of specimens with embedded glow-sticks have been investigated and an assessment of their damage detection capability will be reported. The specimens were loaded under flexure and the sensor responses were transmitted via a wireless connection.
A mobile device system for early warning of ECG anomalies.
Szczepański, Adam; Saeed, Khalid
2014-06-20
With the rapid increase in computational power of mobile devices the amount of ambient intelligence-based smart environment systems has increased greatly in recent years. A proposition of such a solution is described in this paper, namely real time monitoring of an electrocardiogram (ECG) signal during everyday activities for identification of life threatening situations. The paper, being both research and review, describes previous work of the authors, current state of the art in the context of the authors' work and the proposed aforementioned system. Although parts of the solution were described in earlier publications of the authors, the whole concept is presented completely for the first time along with the prototype implementation on mobile device-a Windows 8 tablet with Modern UI. The system has three main purposes. The first goal is the detection of sudden rapid cardiac malfunctions and informing the people in the patient's surroundings, family and friends and the nearest emergency station about the deteriorating health of the monitored person. The second goal is a monitoring of ECG signals under non-clinical conditions to detect anomalies that are typically not found during diagnostic tests. The third goal is to register and analyze repeatable, long-term disturbances in the regular signal and finding their patterns.
Pit-a-Pat: A Smart Electrocardiogram System for Detecting Arrhythmia.
Park, Juyoung; Lee, Kuyeon; Kang, Kyungtae
2015-10-01
Electrocardiogram (ECG) telemonitoring is one of the most promising applications of medical telemetry. However, previous approaches to ECG telemonitoring have largely relied on public databases of ECG results. In this article we propose a smart ECG system called Pit-a-Pat, which extracts features from ECG signals and detects arrhythmia. It is designed to run on an Android™ (Google, Mountain View, CA) device, without requiring modifications to other software. We implemented the Pit-a-Pat system using a commercial ECG device, and the experimental results demonstrate the effectiveness and accuracy of Pit-a-Pat for monitoring the ECG signal and analyzing the cardiac activity of a mobile patient. The proposed system allows monitoring of cardiac activity with automatic analysis, thereby providing a convenient, inexpensive, and ubiquitous adjunct to personal healthcare.
NASA Astrophysics Data System (ADS)
Andriushin, A. V.; Dolbikova, N. S.; Kiet, S. V.; Merzlikina, E. I.; Nikitina, I. S.
2017-11-01
The reliability of the main equipment of any power station depends on the correct water chemistry. In order to provide it, it is necessary to monitor the heat carrier quality, which, in its turn, is provided by the chemical monitoring system. Thus, the monitoring system reliability plays an important part in providing reliability of the main equipment. The monitoring system reliability is determined by the reliability and structure of its hardware and software consisting of sensors, controllers, HMI and so on [1,2]. Workers of a power plant dealing with the measuring equipment must be informed promptly about any breakdowns in the monitoring system, in this case they are able to remove the fault quickly. A computer consultant system for personnel maintaining the sensors and other chemical monitoring equipment can help to notice faults quickly and identify their possible causes. Some technical solutions for such a system are considered in the present paper. The experimental results were obtained on the laboratory and experimental workbench representing a physical model of a part of the chemical monitoring system.
Proton beam therapy control system
Baumann, Michael A [Riverside, CA; Beloussov, Alexandre V [Bernardino, CA; Bakir, Julide [Alta Loma, CA; Armon, Deganit [Redlands, CA; Olsen, Howard B [Colton, CA; Salem, Dana [Riverside, CA
2008-07-08
A tiered communications architecture for managing network traffic in a distributed system. Communication between client or control computers and a plurality of hardware devices is administered by agent and monitor devices whose activities are coordinated to reduce the number of open channels or sockets. The communications architecture also improves the transparency and scalability of the distributed system by reducing network mapping dependence. The architecture is desirably implemented in a proton beam therapy system to provide flexible security policies which improve patent safety and facilitate system maintenance and development.
Proton beam therapy control system
Baumann, Michael A.; Beloussov, Alexandre V.; Bakir, Julide; Armon, Deganit; Olsen, Howard B.; Salem, Dana
2010-09-21
A tiered communications architecture for managing network traffic in a distributed system. Communication between client or control computers and a plurality of hardware devices is administered by agent and monitor devices whose activities are coordinated to reduce the number of open channels or sockets. The communications architecture also improves the transparency and scalability of the distributed system by reducing network mapping dependence. The architecture is desirably implemented in a proton beam therapy system to provide flexible security policies which improve patent safety and facilitate system maintenance and development.
Proton beam therapy control system
Baumann, Michael A; Beloussov, Alexandre V; Bakir, Julide; Armon, Deganit; Olsen, Howard B; Salem, Dana
2013-06-25
A tiered communications architecture for managing network traffic in a distributed system. Communication between client or control computers and a plurality of hardware devices is administered by agent and monitor devices whose activities are coordinated to reduce the number of open channels or sockets. The communications architecture also improves the transparency and scalability of the distributed system by reducing network mapping dependence. The architecture is desirably implemented in a proton beam therapy system to provide flexible security policies which improve patent safety and facilitate system maintenance and development.
Proton beam therapy control system
Baumann, Michael A; Beloussov, Alexandre V; Bakir, Julide; Armon, Deganit; Olsen, Howard B; Salem, Dana
2013-12-03
A tiered communications architecture for managing network traffic in a distributed system. Communication between client or control computers and a plurality of hardware devices is administered by agent and monitor devices whose activities are coordinated to reduce the number of open channels or sockets. The communications architecture also improves the transparency and scalability of the distributed system by reducing network mapping dependence. The architecture is desirably implemented in a proton beam therapy system to provide flexible security policies which improve patent safety and facilitate system maintenance and development.
Monitoring and detection platform to prevent anomalous situations in home care.
Villarrubia, Gabriel; Bajo, Javier; De Paz, Juan F; Corchado, Juan M
2014-06-05
Monitoring and tracking people at home usually requires high cost hardware installations, which implies they are not affordable in many situations. This study/paper proposes a monitoring and tracking system for people with medical problems. A virtual organization of agents based on the PANGEA platform, which allows the easy integration of different devices, was created for this study. In this case, a virtual organization was implemented to track and monitor patients carrying a Holter monitor. The system includes the hardware and software required to perform: ECG measurements, monitoring through accelerometers and WiFi networks. Furthermore, the use of interactive television can moderate interactivity with the user. The system makes it possible to merge the information and facilitates patient tracking efficiently with low cost.
Li, Michelle W; Martin, R Scott
2007-07-01
Here we describe a reversibly sealed microchip device that incorporates poly(dimethylsiloxane) (PDMS)-based valves for the rapid injection of analytes from a continuously flowing stream into a channel network for analysis with microchip electrophoresis. The microchip was reversibly sealed to a PDMS-coated glass substrate and microbore tubing was used for the introduction of gas and fluids to the microchip device. Two pneumatic valves were incorporated into the design and actuated on the order of hundreds of milliseconds, allowing analyte from a continuously flowing sampling stream to be injected into an electrophoresis separation channel. The device was characterized in terms of the valve actuation time and pushback voltage. It was also found that the addition of sodium dodecyl sulfate (SDS) to the buffer system greatly increased the reproducibility of the injection scheme and enabled the analysis of amino acids derivatized with naphthalene-2,3-dicarboxaldehyde/cyanide. Results from continuous injections of a 0.39 nL fluorescein plug into the optimized system showed that the injection process was reproducible (RSD of 0.7%, n = 10). Studies also showed that the device was capable of monitoring off-chip changes in concentration with a device lag time of 90 s. Finally, the ability of the device to rapidly monitor on-chip concentration changes was demonstrated by continually sampling from an analyte plug that was derivatized upstream from the electrophoresis/continuous flow interface. A reversibly sealed device of this type will be useful for the continuous monitoring and analysis of processes that occur either off-chip (such as microdialysis sampling) or on-chip from other integrated functions.
An Electronic Pillbox for Continuous Monitoring of Medication Adherence
Hayes, Tamara. L.; Hunt, John M.; Adami, Andre; Kaye, Jeffrey A.
2010-01-01
We have developed an instrumented pillbox, called a MedTracker, which allows monitoring of medication adherence on a continuous basis. This device improves on existing systems by providing mobility, frequent and automatic data collection, more detailed information about nonadherence and medication errors, and the familiar interface of a 7-day drug store pillbox. We report on the design of the MedTracker, and on the results of a field trial in 39 homes to evaluate the device. PMID:17946369
Mobile health-monitoring system through visible light communication.
Tan, Yee-Yong; Chung, Wan-Young
2014-01-01
Promising development in the light emitting diode (LED) technology has spurred the interest to adapt LED for both illumination and data transmission. This has fostered the growth of interest in visible light communication (VLC), with on-going research to utilize VLC in various applications. This paper presents a mobile-health monitoring system, where healthcare information such as biomedical signals and patient information are transmitted via the LED lighting. A small and portable receiver module is designed and developed to be attached to the mobile device, providing a seamless monitoring environment. Three different healthcare information including ECG, PPG signals and HL7 text information is transmitted simultaneously, using a single channel VLC. This allows for a more precise and accurate monitoring and diagnosis. The data packet size is carefully designed, to transmit information in a minimal packet error rate. A comprehensive monitoring application is designed and developed through the use of a tablet computer in our study. Monitoring and evaluation such as heart rate and arterial blood pressure measurement can be performed concurrently. Real-time monitoring is demonstrated through experiment, where non-hazardous transmission method can be implemented alongside a portable device for better and safer healthcare service.
Ulate-Campos, Adriana; Tsuboyama, Melissa; Loddenkemper, Tobias
2017-12-25
Good sleep quality is essential for a child's wellbeing. Early sleep problems have been linked to the later development of emotional and behavioral disorders and can negatively impact the quality of life of the child and his or her family. Sleep-associated conditions are frequent in the pediatric population, and even more so in children with neurological problems. Monitoring devices can help to better characterize sleep efficiency and sleep quality. They can also be helpful to better characterize paroxysmal nocturnal events and differentiate between nocturnal seizures, parasomnias, and obstructive sleep apnea, each of which has a different management. Overnight ambulatory detection devices allow for a tolerable, low cost, objective assessment of sleep quality in the patient's natural environment. They can also be used as a notification system to allow for rapid recognition and prompt intervention of events like seizures. Optimal monitoring devices will be patient- and diagnosis-specific, but may include a combination of modalities such as ambulatory electroencephalograms, actigraphy, and pulse oximetry. We will summarize the current literature on ambulatory sleep devices for detecting sleep disorders in children with neurological diseases.
Apparatus and method for detecting tampering in flexible structures
Maxey, Lonnie C [Knoxville, TN; Haynes, Howard D [Knoxville, TN
2011-02-01
A system for monitoring or detecting tampering in a flexible structure includes taking electrical measurements on a sensing cable coupled to the structure, performing spectral analysis on the measured data, and comparing the spectral characteristics of the event to those of known benign and/or known suspicious events. A threshold or trigger value may used to identify an event of interest and initiate data collection. Alternatively, the system may be triggered at preset intervals, triggered manually, or triggered by a signal from another sensing device such as a motion detector. The system may be used to monitor electrical cables and conduits, hoses and flexible ducts, fences and other perimeter control devices, structural cables, flexible fabrics, and other flexible structures.
Development of an Electronic Kit for detecting asthma in Human Respiratory System
NASA Astrophysics Data System (ADS)
Shek Hong, Cheow; Ghani, Ahmad Shahrizan Abdul; Khairuddin, Ismail Mohd
2018-03-01
In this paper, a prototype of a carbon dioxide (CO2) measurement device is designed to detect and used to monitor asthma patients. Nowadays, capnogram device is widely used in monitoring asthma and asthma related medical services. However, capnogram is very costly and unaffordable for patient especially those who are in low income household. Thus, the proposed device is cost effective, affordable, and produced to detect and monitor the severity of asthma. Meanwhile, flow meter will cause patient to have chest pain as they needed maximum effort to blow in the device. To overcome these limitations, this prototype electronic kit is easy to use and suitable for all range patients. This prototype electronic kit consists of MH-Z14A carbon dioxide (CO2) sensor to detect the concentration of carbon dioxide from the user exhaled air. Arduino microcontroller is used to process the data while TFT Display shield is applied for data presentation. In addition, HC-06 Bluetooth module is used to communicate with PC for further analysis of the captured graph. This device was tested with 3 asthmatics and 3 normal users. The results showed that asthmatic user has a different graph pattern compared with normal user and these graphs are clearly differentiated on the device TFT screen. Asthmatic user produces “shark fin”-like pattern whereas normal user produces “square wave”-like pattern. This device has successfully produced distinguished-patterns difference between asthmatic and normal user; therefore, it is suitable for asthma monitoring.
Borusiak, Peter; Bast, Thomas; Kluger, Gerhard; Weidenfeld, Andrea; Langer, Thorsten; Jenke, Andreas C W; Wiegand, Gert
2016-08-01
Most studies on seizure detection systems focus more on the effectiveness of devices than on their practicability in and impact on everyday life. Our study investigated the impact of a technical monitoring system on subjective quality of sleep and the lives of affected families. Furthermore, we evaluated the impact of anxiety levels on seizure monitoring and vice versa. Forty-three patients with newly diagnosed epilepsy were included. Initially, the families decided whether they did (group 1, n=27) or did not (group 2, n=16) want to use a monitoring device. In group 1, patients were randomly assigned to using Epi-Care® (group 1A, n=14) or an audio baby monitor (group 1B, n=13). Quality of life was assessed at two points (t1, at the start of the study and t2, at 5-7months of follow-up) using the SF-12, Kindl-R, and "Familien-Belastungs-Fragebogen" (German version of the "Impact on Family Scale"). In addition, parental anxiety was measured using the State-Trait Anxiety-Inventory, and subjective quality of sleep was measured using the Pittsburgh Sleep Quality Index. Statistical analysis focused on the possible differences between groups 1 and 2 that may influence parents' decisions and the effects of the presence and types of technical monitoring over time. Anxiety levels were not significantly different between the groups with and without monitoring (group 1 vs. group 2). We also found no statistically significant, substantial baseline differences between the Epi-Care® and audio baby monitor groups, with at least medium effect sizes (group 1A vs. group 1B). Parents' health-related mental quality of life measured via the SF-12 increased significantly over time in all groups. By tendency, the fear of further seizures as well as the frequency of cosleeping arrangements in the monitoring group decreased during the study and approached the stable values of the control group. Individual parental anxiety levels are not crucial in the decision regarding the use of a monitoring device. A monitoring system may help some families in certain aspects of daily life. During the first months following a diagnosis of epilepsy, quality of life increases independently of the use of a monitoring system. Copyright © 2016 Elsevier Inc. All rights reserved.
VAPOR SAMPLING DEVICE FOR INTERFACE WITH MICROTOX ASSAY FOR SCREENING TOXIC INDUSTRIAL CHEMICALS
A time-integrated sampling system interfaced with a toxicity-based assay is reported for monitoring volatile toxic industrial chemicals (TICs). Semipermeable membrane devices (SPMDs) using dimethyl sulfoxide (DMSO) as the fill solvent accumulated each of 17 TICs from the vapor...
DOT National Transportation Integrated Search
2004-01-01
The Virginia Department of Transportation (VDOT) has invested in extensive closed-circuit television (CCTV) systems to monitor freeways in urban areas. Generally, these devices are installed as part of freeway management systems (Smart Traffic Center...
Progress toward an advanced condition monitoring system for reusable rocket engines
NASA Technical Reports Server (NTRS)
Maram, J.; Barkhoudarian, S.
1987-01-01
A new generation of advanced sensor technologies will allow the direct measurement of critical/degradable rocket engine components' health and the detection of degraded conditions before component deterioration affects engine performance, leading to substantial improvements in reusable engines' operation and maintenance. When combined with a computer-based engine condition-monitoring system, these sensors can furnish a continuously updated data base for the prediction of engine availability and advanced warning of emergent maintenance requirements. Attention is given to the case of a practical turbopump and combustion device diagnostic/prognostic health-monitoring system.
21 CFR 868.2600 - Airway pressure monitor.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Airway pressure monitor. 868.2600 Section 868.2600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2600 Airway pressure monitor. (a) Identification. An airway pressure monitor is a devic...
Nano-enabled sensors, electronics and energy source on polymer, paper and thread substrates
NASA Astrophysics Data System (ADS)
Mostafalu, Pooria
Over the past decades, design and development of portable devices for monitoring of biomarkers especially for at risk patients is receiving considerable attention. These devices are either single use diagnostic platforms, wearable on body or on fabric, or they are implanted close to the tissue and organ that it monitors and cures. Sensors, energy sources, and data acquisition devices are the main components of a such monitoring platform. Sensors collect the information using bio-recognition tools such as enzymes and antibodies. Then, the transducers (electrodes, fluorophore, etc) convert it to the appropriate format, for instance electrical and optical signals. After that, data acquisition system amplifies and digitizes the signal and transfers the data to the recording instruments for further processing. Moreover, energy sources are necessary for powering the sensors and electronics. In wearable and implantable applications, these devices need to be flexible, light weight and biocompatible, and their performance should be similar to their rigid counterparts. In this dissertation we address these requirement for wearable and implantable devices. We showed integrated sensors, electronics, and energy sources on flexible polymers, paper, and thread. These devices provide many advantages for monitoring of the physiological condition of a patient and treatment accordingly. Real-time capability of the platform was enabled using wireless telemetry. One of the major innovations of this dissertation is the use of thread as a substrate for making medical diagnostic devices. While conventional substrates (glass, silicon, polyimide, PDMS etc) hold great promise for making wearable and implantable devices, their overall structure and form has remained essentially two dimensional, limiting their function to tissue surfaces such as skin. However, the ability to integrate functional components such as sensors, actuators, and electronics in a way that they penetrate multiple layers of tissues in a 3D topology would be a significant surgical advance. We have devised an integrated thread-based diagnostic (TDD) system with the ability to measure physical (strain and temperature) and chemical (pH and glucose) markers in the body in vivo. Such device was made from threads, which have been widely used in the apparel industry and is readily available as a low-cost biocompatible material.
Property-Based Monitoring of Analog and Mixed-Signal Systems
NASA Astrophysics Data System (ADS)
Havlicek, John; Little, Scott; Maler, Oded; Nickovic, Dejan
In the recent past, there has been a steady growth of the market for consumer embedded devices such as cell phones, GPS and portable multimedia systems. In embedded systems, digital, analog and software components are combined on a single chip, resulting in increasingly complex designs that introduce richer functionality on smaller devices. As a consequence, the potential insertion of errors into a design becomes higher, yielding an increasing need for automated analog and mixed-signal validation tools. In the purely digital setting, formal verification based on properties expressed in industrial specification languages such as PSL and SVA is nowadays successfully integrated in the design flow. On the other hand, the validation of analog and mixed-signal systems still largely depends on simulation-based, ad-hoc methods. In this tutorial, we consider some ingredients of the standard verification methodology that can be successfully exported from digital to analog and mixed-signal setting, in particular property-based monitoring techniques. Property-based monitoring is a lighter approach to the formal verification, where the system is seen as a "black-box" that generates sets of traces, whose correctness is checked against a property, that is its high-level specification. Although incomplete, monitoring is effectively used to catch faults in systems, without guaranteeing their full correctness.
9 CFR 318.307 - Record review and maintenance.
Code of Federal Regulations, 2013 CFR
2013-01-01
... temperature/time recording devices shall be identified by production date, container code, processing vessel... made available to Program employees for review. (b) Automated process monitoring and recordkeeping. Automated process monitoring and recordkeeping systems shall be designed and operated in a manner that will...
9 CFR 318.307 - Record review and maintenance.
Code of Federal Regulations, 2012 CFR
2012-01-01
... temperature/time recording devices shall be identified by production date, container code, processing vessel... made available to Program employees for review. (b) Automated process monitoring and recordkeeping. Automated process monitoring and recordkeeping systems shall be designed and operated in a manner that will...
9 CFR 318.307 - Record review and maintenance.
Code of Federal Regulations, 2014 CFR
2014-01-01
... temperature/time recording devices shall be identified by production date, container code, processing vessel... made available to Program employees for review. (b) Automated process monitoring and recordkeeping. Automated process monitoring and recordkeeping systems shall be designed and operated in a manner that will...
9 CFR 318.307 - Record review and maintenance.
Code of Federal Regulations, 2011 CFR
2011-01-01
... temperature/time recording devices shall be identified by production date, container code, processing vessel... made available to Program employees for review. (b) Automated process monitoring and recordkeeping. Automated process monitoring and recordkeeping systems shall be designed and operated in a manner that will...
9 CFR 318.307 - Record review and maintenance.
Code of Federal Regulations, 2010 CFR
2010-01-01
... temperature/time recording devices shall be identified by production date, container code, processing vessel... made available to Program employees for review. (b) Automated process monitoring and recordkeeping. Automated process monitoring and recordkeeping systems shall be designed and operated in a manner that will...
Characterizing Graphene-modified Electrodes for Interfacing with Arduino®-based Devices.
Arris, Farrah Aida; Ithnin, Mohamad Hafiz; Salim, Wan Wardatul Amani Wan
2016-08-01
Portable low-cost platform and sensing systems for identification and quantitative measurement are in high demand for various environmental monitoring applications, especially in field work. Quantifying parameters in the field requires both minimal sample handling and a device capable of performing measurements with high sensitivity and stability. Furthermore, the one-device-fits-all concept is useful for continuous monitoring of multiple parameters. Miniaturization of devices can be achieved by introducing graphene as part of the transducer in an electrochemical sensor. In this project, we characterize graphene deposition methods on glassy-carbon electrodes (GCEs) with the goal of interfacing with an Arduino-based user-friendly microcontroller. We found that a galvanostatic electrochemical method yields the highest peak current of 10 mA, promising a highly sensitive electrochemical sensor. An Atlas Scientific™ printed circuit board (PCB) was connected to an Arduino® microcontroller using a multi-circuit connection that can be interfaced with graphene-based electrochemical sensors for environmental monitoring.
An IoT-Based Computational Framework for Healthcare Monitoring in Mobile Environments.
Mora, Higinio; Gil, David; Terol, Rafael Muñoz; Azorín, Jorge; Szymanski, Julian
2017-10-10
The new Internet of Things paradigm allows for small devices with sensing, processing and communication capabilities to be designed, which enable the development of sensors, embedded devices and other 'things' ready to understand the environment. In this paper, a distributed framework based on the internet of things paradigm is proposed for monitoring human biomedical signals in activities involving physical exertion. The main advantages and novelties of the proposed system is the flexibility in computing the health application by using resources from available devices inside the body area network of the user. This proposed framework can be applied to other mobile environments, especially those where intensive data acquisition and high processing needs take place. Finally, we present a case study in order to validate our proposal that consists in monitoring footballers' heart rates during a football match. The real-time data acquired by these devices presents a clear social objective of being able to predict not only situations of sudden death but also possible injuries.
An IoT-Based Computational Framework for Healthcare Monitoring in Mobile Environments
Szymanski, Julian
2017-01-01
The new Internet of Things paradigm allows for small devices with sensing, processing and communication capabilities to be designed, which enable the development of sensors, embedded devices and other ‘things’ ready to understand the environment. In this paper, a distributed framework based on the internet of things paradigm is proposed for monitoring human biomedical signals in activities involving physical exertion. The main advantages and novelties of the proposed system is the flexibility in computing the health application by using resources from available devices inside the body area network of the user. This proposed framework can be applied to other mobile environments, especially those where intensive data acquisition and high processing needs take place. Finally, we present a case study in order to validate our proposal that consists in monitoring footballers’ heart rates during a football match. The real-time data acquired by these devices presents a clear social objective of being able to predict not only situations of sudden death but also possible injuries. PMID:28994743
Geovisualization for Smart Video Surveillance
NASA Astrophysics Data System (ADS)
Oves García, R.; Valentín, L.; Serrano, S. A.; Palacios-Alonso, M. A.; Sucar, L. Enrique
2017-09-01
Nowadays with the emergence of smart cities and the creation of new sensors capable to connect to the network, it is not only possible to monitor the entire infrastructure of a city, including roads, bridges, rail/subways, airports, communications, water, power, but also to optimize its resources, plan its preventive maintenance and monitor security aspects while maximizing services for its citizens. In particular, the security aspect is one of the most important issues due to the need to ensure the safety of people. However, if we want to have a good security system, it is necessary to take into account the way that we are going to present the information. In order to show the amount of information generated by sensing devices in real time in an understandable way, several visualization techniques are proposed for both local (involves sensing devices in a separated way) and global visualization (involves sensing devices as a whole). Taking into consideration that the information is produced and transmitted from a geographic location, the integration of a Geographic Information System to manage and visualize the behavior of data becomes very relevant. With the purpose of facilitating the decision-making process in a security system, we have integrated the visualization techniques and the Geographic Information System to produce a smart security system, based on a cloud computing architecture, to show relevant information about a set of monitored areas with video cameras.
[Microinjection Monitoring System Design Applied to MRI Scanning].
Xu, Yongfeng
2017-09-30
A microinjection monitoring system applied to the MRI scanning was introduced. The micro camera probe was used to stretch into the main magnet for real-time video injection monitoring of injection tube terminal. The programming based on LabVIEW was created to analysis and process the real-time video information. The feedback signal was used for intelligent controlling of the modified injection pump. The real-time monitoring system can make the best use of injection under the condition that the injection device was away from the sample which inside the magnetic room and unvisible. 9.4 T MRI scanning experiment showed that the system in ultra-high field can work stability and doesn't affect the MRI scans.
Sub-bandage sensing system for remote monitoring of chronic wounds in healthcare
NASA Astrophysics Data System (ADS)
Hariz, Alex; Mehmood, Nasir; Voelcker, Nico
2015-12-01
Chronic wounds, such as venous leg ulcers, can be monitored non-invasively by using modern sensing devices and wireless technologies. The development of such wireless diagnostic tools may improve chronic wound management by providing evidence on efficacy of treatments being provided. In this paper we present a low-power portable telemetric system for wound condition sensing and monitoring. The system aims at measuring and transmitting real-time information of wound-site temperature, sub-bandage pressure and moisture level from within the wound dressing. The system comprises commercially available non-invasive temperature, moisture, and pressure sensors, which are interfaced with a telemetry device on a flexible 0.15 mm thick printed circuit material, making up a lightweight biocompatible sensing device. The real-time data obtained is transmitted wirelessly to a portable receiver which displays the measured values. The performance of the whole telemetric sensing system is validated on a mannequin leg using commercial compression bandages and dressings. A number of trials on a healthy human volunteer are performed where treatment conditions were emulated using various compression bandage configurations. A reliable and repeatable performance of the system is achieved under compression bandage and with minimal discomfort to the volunteer. The system is capable of reporting instantaneous changes in bandage pressure, moisture level and local temperature at wound site with average measurement resolutions of 0.5 mmHg, 3.0 %RH, and 0.2 °C respectively. Effective range of data transmission is 4-5 m in an open environment.
Possible designs of medication monitors. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moulding, T.S.
A medication monitor is a device which utilizes radioactive material and photographic film to determine when patients remove medication from a dispenser. The material presents multiple, largely mechanical, ideas for making this type of dispenser so it can be used for a wide range of medication regimens. The description includes using the idea of a digital clock and memory chips for the time recording system. It also includes details on (1) choice of radioactive source and method of sealing source, (2) methods of locking or sealing medication monitors, (3) detailed instructions for using existing devices, (4) a simplified film developmentmore » system, (5) a mechanical and electronic means for creating a dispenser to reduce the chance of suicidal overdosage, and (6) an electronic means to allow a patient to compensate for medication forgotten without taking an excessive dose of medication.« less
Wireless microsensor network solutions for neurological implantable devices
NASA Astrophysics Data System (ADS)
Abraham, Jose K.; Whitchurch, Ashwin; Varadan, Vijay K.
2005-05-01
The design and development of wireless mocrosensor network systems for the treatment of many degenerative as well as traumatic neurological disorders is presented in this paper. Due to the advances in micro and nano sensors and wireless systems, the biomedical sensors have the potential to revolutionize many areas in healthcare systems. The integration of nanodevices with neurons that are in communication with smart microsensor systems has great potential in the treatment of many neurodegenerative brain disorders. It is well established that patients suffering from either Parkinson"s disease (PD) or Epilepsy have benefited from the advantages of implantable devices in the neural pathways of the brain to alter the undesired signals thus restoring proper function. In addition, implantable devices have successfully blocked pain signals and controlled various pelvic muscles in patients with urinary and fecal incontinence. Even though the existing technology has made a tremendous impact on controlling the deleterious effects of disease, it is still in its infancy. This paper presents solutions of many problems of today's implantable and neural-electronic interface devices by combining nanowires and microelectronics with BioMEMS and applying them at cellular level for the development of a total wireless feedback control system. The only device that will actually be implanted in this research is the electrodes. All necessary controllers will be housed in accessories that are outside the body that communicate with the implanted electrodes through tiny inductively-coupled antennas. A Parkinson disease patient can just wear a hat-system close to the implantable neural probe so that the patient is free to move around, while the sensors continually monitor, record, transmit all vital information to health care specialist. In the event of a problem, the system provides an early warning to the patient while they are still mobile thus providing them the opportunity to react and trigger the feed back system or contact a point-of-care office that can remotely control the implantable system. The remote monitoring technology can be adaptable to EEG monitoring of children with epilepsy, implantable cardioverters/defibrillators, pacemakers, chronic pain management systems, treatment for sleep disorders, patients with implantable devices for diabetes. In addition, the development of a wireless neural electronics interface to detect, transmit and analyze neural signals could help patients with spinal injuries to regain some semblance of mobile activity.
NASA Astrophysics Data System (ADS)
Tarhan, Mehmet C.; Lafitte, Nicolas; Tauran, Yannick; Jalabert, Laurent; Kumemura, Momoko; Perret, Grégoire; Kim, Beomjoon; Coleman, Anthony W.; Fujita, Hiroyuki; Collard, Dominique
2016-06-01
Monitoring biological reactions using the mechanical response of macromolecules is an alternative approach to immunoassays for providing real-time information about the underlying molecular mechanisms. Although force spectroscopy techniques, e.g. AFM and optical tweezers, perform precise molecular measurements at the single molecule level, sophisticated operation prevent their intensive use for systematic biosensing. Exploiting the biomechanical assay concept, we used micro-electro mechanical systems (MEMS) to develop a rapid platform for monitoring bio/chemical interactions of bio macromolecules, e.g. DNA, using their mechanical properties. The MEMS device provided real-time monitoring of reaction dynamics without any surface or molecular modifications. A microfluidic device with a side opening was fabricated for the optimal performance of the MEMS device to operate at the air-liquid interface for performing bioassays in liquid while actuating/sensing in air. The minimal immersion of the MEMS device in the channel provided long-term measurement stability (>10 h). Importantly, the method allowed monitoring effects of multiple solutions on the same macromolecule bundle (demonstrated with DNA bundles) without compromising the reproducibility. We monitored two different types of effects on the mechanical responses of DNA bundles (stiffness and viscous losses) exposed to pH changes (2.1 to 4.8) and different Ag+ concentrations (1 μM to 0.1 M).
Engineering Novel Lab Devices Using 3D Printing and Microcontrollers.
Courtemanche, Jean; King, Samson; Bouck, David
2018-03-01
The application of 3D printing and microcontrollers allows users to rapidly engineer novel hardware solutions useful in a laboratory environment. 3D printing is transformative as it enables the rapid fabrication of adapters, housings, jigs, and small structural elements. Microcontrollers allow for the creation of simple, inexpensive machines that receive input from one or more sensors to trigger a mechanical or electrical output. Bringing these technologies together, we have developed custom solutions that improve capabilities and reduce costs, errors, and human intervention. In this article, we describe three devices: JetLid, TipWaster, and Remote Monitoring Device (REMIND). JetLid employs a microcontroller and presence sensor to trigger a high-speed fan that reliably de-lids microtiter plates on a high-throughput screening system. TipWaster uses a presence sensor to activate an active tip waste chute when tips are ejected from a pipetting head. REMIND is a wireless, networked lab monitoring device. In its current implementation, it monitors the liquid level of waste collection vessels or bulk liquid reagent containers. The modularity of this device makes adaptation to other sensors (temperature, humidity, light/darkness, movement, etc.) relatively simple. These three devices illustrate how 3D printing and microcontrollers have enabled the process of rapidly turning ideas into useful devices.
Real-Time Optical Monitoring of Pt Catalyst Under the Potentiodynamic Conditions
NASA Astrophysics Data System (ADS)
Song, Hyeon Don; Lee, Minzae; Kim, Gil-Pyo; Choi, Inhee; Yi, Jongheop
2016-12-01
In situ monitoring of electrode materials reveals detailed physicochemical transition in electrochemical device. The key challenge is to explore the localized features of electrode surfaces, since the performance of an electrochemical device is determined by the summation of local architecture of the electrode material. Adaptive in situ techniques have been developed for numerous investigations; however, they require restricted measurement environments and provide limited information, which has impeded their widespread application. In this study, we realised an optics-based electrochemical in situ monitoring system by combining a dark-field micro/spectroscopy with an electrochemical workstation to investigate the physicochemical behaviours of Pt catalyst. We found that the localized plasmonic trait of a Pt-decorated Au nanoparticle as a model system varied in terms of its intensity and wavelength during the iterations of a cyclic voltammetry test. Furthermore, we show that morphological and compositional changes of the Pt catalyst can be traced in real time using changes in quantified plasmonic characteristics, which is a distinct advantage over the conventional electrochemistry-based in situ monitoring systems. These results indicate the substantial promise of online operando observation in a wide range of electrical energy conversion systems and electrochemical sensing areas.
Cherry, Colleen O'Brien; Chumbler, Neale R; Richards, Kimberly; Huff, Amber; Wu, David; Tilghman, Laura M; Butler, Andrew
2017-01-01
The present study reports on a robotic stroke therapy delivery and monitoring system intervention. The aims of this pilot implementation project were to determine participants' general impressions about the benefits and barriers of using robotic therapy devices for in-home rehabilitation. We used a qualitative study design employing ethnographic-based anthropological methods including direct observation of the in-home environment and in-depth semi-structured interviews with 10 users of the hand or foot robotic devices. Thematic analysis was conducted using an inductive approach. Participants reported positive experiences with the robotic stroke therapy delivery and monitoring system. Benefits included convenience, self-reported increased mobility, improved mood and an outlet for physical and mental tension and anxiety. Barriers to use were few and included difficulties with placing the device on the body, bulkiness of the monitor and modem connection problems. Telerehabilitation robotic devices can be used as a tool to extend effective, evidence-based and specialized rehabilitation services for upper and lower limb rehabilitation to rural Veterans with poor access to care. Implications for Rehabilitation Participants whose formal therapy services had ended either because they had exhausted their benefits or because traveling to outpatient therapy was too cumbersome due to distance were able to perform therapeutic activities in the home daily (or at least multiple times per week). Participants who were still receiving formal therapy services either in-home or in the clinic were able to perform therapeutic activities in the home on the days they were not attending/receiving formal therapy. Based on the feedback from these veterans and their caregivers, the manufacturing company is working on modifying the devices to be less cumbersome and more user-friendly (lighter-weight, more mobile, changing software, etc.), as well as more adaptable to participants' homes. Removing these specific barriers will potentially allow participants to utilize the device more easily and more frequently. Since participants expressed that they wished they could have the device in their homes longer than the 3-month usage period required for this pilot project, the project team is working on a proposal to extend this project to a wider area and the new paradigm would extend the usage period until the patient reaches a plateau in progress or no longer wants to use the device.
Wearable physiological systems and technologies for metabolic monitoring.
Gao, Wei; Brooks, George A; Klonoff, David C
2018-03-01
Wearable sensors allow continuous monitoring of metabolites for diabetes, sports medicine, exercise science, and physiology research. These sensors can continuously detect target analytes in skin interstitial fluid (ISF), tears, saliva, and sweat. In this review, we will summarize developments on wearable devices and their potential applications in research, clinical practice, and recreational and sporting activities. Sampling skin ISF can require insertion of a needle into the skin, whereas sweat, tears, and saliva can be sampled by devices worn outside the body. The most widely sampled metabolite from a wearable device is glucose in skin ISF for monitoring diabetes patients. Continuous ISF glucose monitoring allows estimation of the glucose concentration in blood without the pain, inconvenience, and blood waste of fingerstick capillary blood glucose testing. This tool is currently used by diabetes patients to provide information for dosing insulin and determining a diet and exercise plan. Similar technologies for measuring concentrations of other analytes in skin ISF could be used to monitor athletes, emergency responders, warfighters, and others in states of extreme physiological stress. Sweat is a potentially useful substrate for sampling analytes for metabolic monitoring during exercise. Lactate, sodium, potassium, and hydrogen ions can be measured in sweat. Tools for converting the concentrations of these analytes sampled from sweat, tears, and saliva into blood concentrations are being developed. As an understanding of the relationships between the concentrations of analytes in blood and easily sampled body fluid increases, then the benefits of new wearable devices for metabolic monitoring will also increase.
21 CFR 880.5200 - Intravascular catheter.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Devices § 880.5200 Intravascular catheter. (a) Identification. An intravascular catheter is a device that consists of a slender tube and any necessary connecting fittings and that is inserted into the patient's vascular system for short term use (less than 30 days) to sample blood, monitor blood pressure, or...
Hemkens, Lars G; Hilden, Kristian M; Hartschen, Stephan; Kaiser, Thomas; Didjurgeit, Ulrike; Hansen, Roland; Bender, Ralf; Sawicki, Peter T
2008-08-01
In addition to the metrological quality of international normalized ratio (INR) monitoring devices used in patients' self-management of long-term anticoagulation, the effectiveness of self-monitoring with such devices has to be evaluated under real-life conditions with a focus on clinical implications. An approach to evaluate the clinical significance of inaccuracies is the error-grid analysis as already established in self-monitoring of blood glucose. Two anticoagulation monitors were compared in a real-life setting and a novel error-grid instrument for oral anticoagulation has been evaluated. In a randomized crossover study 16 patients performed self-management of anticoagulation using the INRatio and the CoaguChek S system. Main outcome measures were clinically relevant INR differences according to established criteria and to the error-grid approach. A lower rate of clinically relevant disagreements according to Anderson's criteria was found with CoaguChek S than with INRatio without statistical significance (10.77% vs. 12.90%; P = 0.787). Using the error-grid we found principally consistent results: More measurement pairs with discrepancies of no or low clinical relevance were found with CoaguChek S, whereas with INRatio we found more differences with a moderate clinical relevance. A high rate of patients' satisfaction with both of the point of care devices was found with only marginal differences. A principal appropriateness of the investigated point-of-care devices to adequately monitor the INR is shown. The error-grid is useful for comparing monitoring methods with a focus on clinical relevance under real-life conditions beyond assessing the pure metrological quality, but we emphasize that additional trials using this instrument with larger patient populations are needed to detect differences in clinically relevant disagreements.
Spacelab output processing system architectural study
NASA Technical Reports Server (NTRS)
1977-01-01
Two different system architectures are presented. The two architectures are derived from two different data flows within the Spacelab Output Processing System. The major differences between these system architectures are in the position of the decommutation function (the first architecture performs decommutation in the latter half of the system and the second architecture performs that function in the front end of the system). In order to be examined, the system was divided into five stand-alone subsystems; Work Assembler, Mass Storage System, Output Processor, Peripheral Pool, and Resource Monitor. The work load of each subsystem was estimated independent of the specific devices to be used. The candidate devices were surveyed from a wide sampling of off-the-shelf devices. Analytical expressions were developed to quantify the projected workload in conjunction with typical devices which would adequately handle the subsystem tasks. All of the study efforts were then directed toward preparing performance and cost curves for each architecture subsystem.
A Study about the 3S-based Great Ruins Monitoring and Early-warning System
NASA Astrophysics Data System (ADS)
Xuefeng, W.; Zhongyuan, H.; Gongli, L.; Li, Z.
2015-08-01
Large-scale urbanization construction and new countryside construction, frequent natural disasters, and natural corrosion pose severe threat to the great ruins. It is not uncommon that the cultural relics are damaged and great ruins are occupied. Now the ruins monitoring mainly adopt general monitoring data processing system which can not effectively exert management, display, excavation analysis and data sharing of the relics monitoring data. Meanwhile those general software systems require layout of large number of devices or apparatuses, but they are applied to small-scope relics monitoring only. Therefore, this paper proposes a method to make use of the stereoscopic cartographic satellite technology to improve and supplement the great ruins monitoring index system and combine GIS and GPS to establish a highly automatic, real-time and intelligent great ruins monitoring and early-warning system in order to realize collection, processing, updating, spatial visualization, analysis, distribution and sharing of the monitoring data, and provide scientific and effective data for the relics protection, scientific planning, reasonable development and sustainable utilization.
Surveillance for unattended gas compressor stations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stastny, F.J.
1974-06-01
Surveillance devices in unattended compressor stations include those which detect trespassing by unauthorized personnel and those which protect the major operating equipment from damage and/or self-destruction. The latter monitor the critical operating parameters of major equipment and shut down the equipment when these parameters are exceeded; a table presents a function monitor and control list for such devices. Detection and apprehension of unauthorized personnel is a subject of increasing importance to guarantee station operability for reliable service and yet minimize staff personnel. An effective intrusion-detection system must (1) pinpoint the location and indicate the nature of the intrusion and (2)more » detect and respond rapidly to give security personnel a reasonable probability of apprehending or deterring the intruder before damage is done. The 2nd requirement is most difficult to satisfy when the facility is in a remote location, as is usually the case. Some of the parameters to consider in selecting an intrusion-detection system include concealment, legality, active vs. passive detector, back-up power, weather conditions, reliability, maintenance, discrimination, and compromising by intruders. Types of detectors include photo cell, infrared and radio frequency, audio,vibration, taut wire, circuit continuity, radar, and closed-circuit TV. The numerous types of devices and systems available provide sufficient diversity to enable a company to select a single device or a hybrid system which would incorporate several different devices for protecting unattended facilities.« less
Architecture of a wireless Personal Assistant for telemedical diabetes care.
García-Sáez, Gema; Hernando, M Elena; Martínez-Sarriegui, Iñaki; Rigla, Mercedes; Torralba, Verónica; Brugués, Eulalia; de Leiva, Alberto; Gómez, Enrique J
2009-06-01
Advanced information technologies joined to the increasing use of continuous medical devices for monitoring and treatment, have made possible the definition of a new telemedical diabetes care scenario based on a hand-held Personal Assistant (PA). This paper describes the architecture, functionality and implementation of the PA, which communicates different medical devices in a personal wireless network. The PA is a mobile system for patients with diabetes connected to a telemedical center. The software design follows a modular approach to make the integration of medical devices or new functionalities independent from the rest of its components. Physicians can remotely control medical devices from the telemedicine server through the integration of the Common Object Request Broker Architecture (CORBA) and mobile GPRS communications. Data about PA modules' usage and patients' behavior evaluation come from a pervasive tracing system implemented into the PA. The PA architecture has been technically validated with commercially available medical devices during a clinical experiment for ambulatory monitoring and expert feedback through telemedicine. The clinical experiment has allowed defining patients' patterns of usage and preferred scenarios and it has proved the Personal Assistant's feasibility. The patients showed high acceptability and interest in the system as recorded in the usability and utility questionnaires. Future work will be devoted to the validation of the system with automatic control strategies from the telemedical center as well as with closed-loop control algorithms.
MovAid- a novel device for advanced rehabilitation monitoring.
Gupta, Prashant; Verma, Piyush; Gupta, Rakesh; Verma, Bhawna
2015-08-01
The present article introduces a new device "MovAid" which helps to measure and monitor rehabilitation. It has two main components- "MovAid device" and the "MovAid Smart Phone Application". The device connects wirelessly to the MovAid smart phone application via Bluetooth. It has electronic sensors to measure three important parameters of the patient- Angle of Joint Bent, Lift from the ground and Orientation of the limb. A mono-axis flex sensor to measure the degree of joint bent and a 3-axis accelerometer and gyroscope to measure the orientation of the limb and lift from the ground have been used. MovAid system bridges the gap between caretakers and patients, empowering both in ways never thought of before, by providing detailed and accurate data on every move.
Heinemann, Lutz; Freckmann, Guido; Koschinsky, Theodor
2013-03-01
All medical devices used for self-monitoring of blood glucose (BG), insulin injection, continuous subcutaneous insulin infusion, and continuous glucose monitoring in the European Union (EU) must have a Communauté Européenne (CE) mark. However, the approval process for obtaining this mark is different from that used by the European Medicines Agency in the EU for drugs or by the Food and Drug Administration in the United States for such medical and in vitro diagnostic devices. The notified bodies involved in the CE mark process perform this evaluation in cooperation with the manufacturers. They have only limited diabetes know-how; they have to handle all kinds of medical devices. There are devices for therapy on the market in the EU (i.e., they have market approval) that do not fulfill quality requirements, as indicated, for example, in the international norm ISO 15197 for BG test systems. Evaluation of the performance of such systems is usually provided by the manufacturers. What is missing in the EU is an independent institution that performs regular and critical evaluation of the quality of devices used for diabetes therapy before and also after their market approval. The work of such an institution would focus on BG test systems (these represent two-thirds of the market of medical devices for diabetes treatment) but would also evaluate the performance of other devices. It has to be clarified what legal framework is required for such an institution and how it can be financed; probably this can be done in a shared manner by the manufacturers of such devices and the health insurance companies. Positive evaluation results should be a prerequisite prior to any reimbursement for such devices. © 2013 Diabetes Technology Society.
Improvement of the AeroClipper system for cyclones monitoring
NASA Astrophysics Data System (ADS)
Vargas, André; Philippe, Duvel Jean
2016-07-01
The AeroClipper developed by the French space agency (Centre National d'Études Spatiales, CNES) is a quasi-lagrangian device drifting with surface wind at about 20-30m above the ocean surface. It is a new and original device for real-time and continuous observation of air-sea surface parameters in open ocean remote regions. This device enables the sampling of the variability of surface parameters in particular under convective systems toward which it is attracted. The AeroClipper is therefore an ideal instrument to monitor Tropical Cyclones (TCs) in which they are likely to converge and provide original observations to evaluate and improve our current understanding and diagnostics of TCs as well as their representation in numerical models. In 2008, the AeroClipper demonstrates its capability to be captured by an Ocean Indian cyclone, as two models have converged, without damages, in the eye of Dora cyclone during the 2008 VASCO campaign. This paper will present the improvements of this balloon system for the international project 'the Year of Maritime Continent'.
Influence of Insulation Monitoring Devices on the Operation of DC Control Circuits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olszowiec, Piotr, E-mail: olpio@o2.pl
The insulation level of DC control circuits is an important safety-critical factor and, thus, should be subject to continuous and periodic monitoring. The methods used for monitoring the insulation in live circuits may, however, disturb the reliable operation of control relays. The risks of misoperation and failure to reset of relays posed by the operation of various insulation monitoring and fault location systems are evaluated.
Takase, Mai; Murata, Masataka; Hibi, Kyoko; Huifeng, Ren; Endo, Hideaki
2014-04-01
We developed a wireless monitoring system to monitor fish condition by tracking the change in whole cholesterol concentration. The whole cholesterol concentration of fish is a source of steroid hormones or indicator of immunity level, which makes its detection important for tracking physiological condition of fish. Wireless monitoring system comprises of mediator-type biosensor and wireless transmission device. Biosensor is implantable to fish body, and transmission device is so light, in that fish is allowed to swim freely during monitoring. Cholesterol esterase and oxidase were fixated on to the detection site of biosensor and used to detect the whole cholesterol concentration. However, cholesterol oxidase incorporates oxidation-reduction reaction of oxygen for detection, which concentration fluctuates easily due to change in environmental condition. Meanwhile, mediator-type biosensor enables monitoring of whole cholesterol concentration by using mediator to substitute that oxidation-reduction reaction of oxygen. Characteristic of fabricated mediator-type biosensor was tested. The sensor output current of mediator-type biosensor remained stable compared to output current of non-mediator-type biosensor under fluctuating oxygen concentration of 0-8 ppm, which implied that this sensor is less affected by change in dissolved oxygen concentration. That biosensor was then implanted into fish for wireless monitoring. As a result, approximately 48 h of real-time monitoring was successful.
Control system for thermoelectric refrigerator
NASA Technical Reports Server (NTRS)
Nelson, John L. (Inventor); Criscuolo, Lance (Inventor); Gilley, Michael D. (Inventor); Park, Brian V. (Inventor)
1996-01-01
Apparatus including a power supply (202) and control system is provided for maintaining the temperature within an enclosed structure (40) using thermoelectric devices (92). The apparatus may be particularly beneficial for use with a refrigerator (20) having superinsulation materials (46) and phase change materials (112) which cooperate with the thermoelectric device (92) to substantially enhance the overall operating efficiency of the refrigerator (20). The electrical power supply (202) and control system allows increasing the maximum power capability of the thermoelectric device (92) in response to increased heat loads within the refrigerator (20). The electrical power supply (202) and control system may also be used to monitor the performance of the cooling system (70) associated with the refrigerator (20).
A passive discrete-level multilayer ground-water sampler was evaluated to determine its capability to obtain representative discrete-interval samples within the screen intervals of traditional monitoring wells without purging. Results indicate that the device is able to provide ...
NASA Astrophysics Data System (ADS)
Chow, Eric Y.
Glaucoma affects about 65 million people and is the second leading cause of blindness in the world. Although the condition is irreversible and incurable, early detection is vital to slowing and even stopping the progression of the disease. Our work focuses on the design, fabrication, and assembly of a continuous active glaucoma intraocular pressure (IOP) monitor that provides clinicians with the necessary data to more accurately diagnose and treat patients. Major benefits of an active monitoring device include the potential to develop a closed-loop treatment system and to operate independently for extended periods of time. The fully wireless operation uses gigahertzfrequency electromagnetic wave propagation, which allows for an orientation independent transfer of power and data over reasonable distances. Our system is comprised of a MEMS capacitive sensor, capacitive power storage array, ASIC, and monopole antenna assembled into a biocompatible liquid crystal polymer (LCP) package. We have performed in vivo trials on rabbits, both chronic and acute, to validate system functionality, fully wireless feasibility, and biocompatibility. Heart failure (HF) affects approximately 2% of the adult population in developed countries and 6-10% of people over the age of 65. Continuous monitoring of blood pressure, flow, and chemistry from a minimally invasive device can serve as a diagnostic and early-warning system for cardiac health. We developed a miniaturized system attached to the outer surface of an FDA approved stent, used as both the antenna for wireless telemetry/powering and structural support. The system comprises of a MEMS pressure sensor, ASIC for the sensor interface and wireless capabilities, LCP substrate, and FDA approved stent. In vivo studies on pigs validated functionality and fully wireless operation and demonstrate the feasibility of a stent-based wireless implant for continuous monitoring of blood pressure as well as other parameters including oxygen, flow and turbulence, chemistry, and glucose.
Lightweight monitoring and control system for coal mine safety using REST style.
Cheng, Bo; Cheng, Xin; Chen, Junliang
2015-01-01
The complex environment of a coal mine requires the underground environment, devices and miners to be constantly monitored to ensure safe coal production. However, existing coal mines do not meet these coverage requirements because blind spots occur when using a wired network. In this paper, we develop a Web-based, lightweight remote monitoring and control platform using a wireless sensor network (WSN) with the REST style to collect temperature, humidity and methane concentration data in a coal mine using sensor nodes. This platform also collects information on personnel positions inside the mine. We implement a RESTful application programming interface (API) that provides access to underground sensors and instruments through the Web such that underground coal mine physical devices can be easily interfaced to remote monitoring and control applications. We also implement three different scenarios for Web-based, lightweight remote monitoring and control of coal mine safety and measure and analyze the system performance. Finally, we present the conclusions from this study and discuss future work. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Space-Proven Medical Monitor: The Total Patient-Care Package
NASA Technical Reports Server (NTRS)
2006-01-01
The primary objective of the Gemini Program was to develop techniques that would allow for advanced, long-duration space travel, a prerequisite of the ensuing Apollo Program that would put man safely on the Moon before the end of the decade. In order to carry out this objective, NASA worked with a variety of innovative companies to develop propulsion systems, onboard computers, and docking capabilities that were critical to the health of Gemini spacecraft, as well as life-support systems and physiological-monitoring devices that were critical to the health of Gemini astronauts. One of these companies was Spacelabs Medical, Inc., the pioneer of what is commonly known today as medical telemetry. Spacelabs Medical helped NASA better understand man s reaction to space through a series of bioinstrumentation devices that, for the first time ever, were capable of monitoring orbiting astronauts physical conditions in real time, from Earth. The company went on to further expand its knowledge of monitoring and maintaining health in space, and then brought it down to Earth, to dramatically change the course of patient monitoring in the field of health care.
Recent advancement in biosensors technology for animal and livestock health management.
Neethirajan, Suresh; Tuteja, Satish K; Huang, Sheng-Tung; Kelton, David
2017-12-15
The term biosensors encompasses devices that have the potential to quantify physiological, immunological and behavioural responses of livestock and multiple animal species. Novel biosensing methodologies offer highly specialised monitoring devices for the specific measurement of individual and multiple parameters covering an animal's physiology as well as monitoring of an animal's environment. These devices are not only highly specific and sensitive for the parameters being analysed, but they are also reliable and easy to use, and can accelerate the monitoring process. Novel biosensors in livestock management provide significant benefits and applications in disease detection and isolation, health monitoring and detection of reproductive cycles, as well as monitoring physiological wellbeing of the animal via analysis of the animal's environment. With the development of integrated systems and the Internet of Things, the continuously monitoring devices are expected to become affordable. The data generated from integrated livestock monitoring is anticipated to assist farmers and the agricultural industry to improve animal productivity in the future. The data is expected to reduce the impact of the livestock industry on the environment, while at the same time driving the new wave towards the improvements of viable farming techniques. This review focusses on the emerging technological advancements in monitoring of livestock health for detailed, precise information on productivity, as well as physiology and well-being. Biosensors will contribute to the 4th revolution in agriculture by incorporating innovative technologies into cost-effective diagnostic methods that can mitigate the potentially catastrophic effects of infectious outbreaks in farmed animals. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Duan, Yixiang; Su, Yongxuan; Jin, Zhe; Abeln, Stephen P.
2000-03-01
The development of a highly sensitive, field portable, low-powered instrument for on-site, real-time liquid waste stream monitoring is described in this article. A series of factors such as system sensitivity and portability, plasma source, sample introduction, desolvation system, power supply, and the instrument configuration, were carefully considered in the design of the portable instrument. A newly designed, miniature, modified microwave plasma source was selected as the emission source for spectroscopy measurement, and an integrated small spectrometer with a charge-coupled device detector was installed for signal processing and detection. An innovative beam collection system with optical fibers was designed and used for emission signal collection. Microwave plasma can be sustained with various gases at relatively low power, and it possesses high detection capabilities for both metal and nonmetal pollutants, making it desirable to use for on-site, real-time, liquid waste stream monitoring. An effective in situ sampling system was coupled with a high efficiency desolvation device for direct-sampling liquid samples into the plasma. A portable computer control system is used for data processing. The new, integrated instrument can be easily used for on-site, real-time monitoring in the field. The system possesses a series of advantages, including high sensitivity for metal and nonmetal elements; in situ sampling; compact structure; low cost; and ease of operation and handling. These advantages will significantly overcome the limitations of previous monitoring techniques and make great contributions to environmental restoration and monitoring.
Optical Structural Health Monitoring Device
NASA Technical Reports Server (NTRS)
Buckner, Benjamin D.; Markov, Vladimir; Earthman, James C.
2010-01-01
This non-destructive, optical fatigue detection and monitoring system relies on a small and unobtrusive light-scattering sensor that is installed on a component at the beginning of its life in order to periodically scan the component in situ. The method involves using a laser beam to scan the surface of the monitored component. The device scans a laser spot over a metal surface to which it is attached. As the laser beam scans the surface, disruptions in the surface cause increases in scattered light intensity. As the disruptions in the surface grow, they will cause the light to scatter more. Over time, the scattering intensities over the scanned line can be compared to detect changes in the metal surface to find cracks, crack precursors, or corrosion. This periodic monitoring of the surface can be used to indicate the degree of fatigue damage on a component and allow one to predict the remaining life and/or incipient mechanical failure of the monitored component. This wireless, compact device can operate for long periods under its own battery power and could one day use harvested power. The prototype device uses the popular open-source TinyOS operating system on an off-the-shelf Mica2 sensor mote, which allows wireless command and control through dynamically reconfigurable multi-node sensor networks. The small size and long life of this device could make it possible for the nodes to be installed and left in place over the course of years, and with wireless communication, data can be extracted from the nodes by operators without physical access to the devices. While a prototype has been demonstrated at the time of this reporting, further work is required in the system s development to take this technology into the field, especially to improve its power management and ruggedness. It should be possible to reduce the size and sensitivity as well. Establishment of better prognostic methods based on these data is also needed. The increase of surface roughness with fatigue is closely connected to the microstructure of the metal, and ongoing research is seeking to connect this observed evidence of the fatigue state with microstructural theories of fatigue evolution to allow more accurate prognosis of remaining component life. Plans are also being discussed for flight testing, perhaps on NASA s SOFIA platform.
Battery system with temperature sensors
Wood, Steven J.; Trester, Dale B.
2012-11-13
A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.
Phase III Autotrack : integrated CCTV.
DOT National Transportation Integrated Search
2005-01-01
The Virginia Department of Transportation (VDOT) has invested in extensive closed circuit television (CCTV) systems to monitor freeways in urban areas. Generally, these devices are installed as part of freeway management systems (Smart Traffic Center...
[Anesthesia simulators and training devices].
Hartmannsgruber, M; Good, M; Carovano, R; Lampotang, S; Gravenstein, J S
1993-07-01
Simulators and training devices are used extensively by educators in 'high-tech' occupations, especially those requiring an understanding of complex systems and co-ordinated psychomotor skills. Because of advances in computer technology, anaesthetised patients can now be realistically simulated. This paper describes several training devices and a simulator currently being employed in the training of anaesthesia personnel at the University of Florida. This Gainesville Anesthesia Simulator (GAS) comprises a patient mannequin, anaesthesia gas machine, and a full set of normally operating monitoring instruments. The patient can spontaneously breathe, has audible heart and breath sounds, and palpable pulses. The mannequin contains a sophisticated lung model that consumes and eliminates gas according to physiological principles. Interconnected computers controlling the physical signs of the mannequin enable the presentation of a multitude of clinical signs. In addition, the anaesthesia machine, which is functionally intact, has hidden fault activators to challenge the user to correct equipment malfunctions. Concealed sensors monitor the users' actions and responses. A robust data acquisition and control system and a user-friendly scripting language for programming simulation scenarios are key features of GAS and make this system applicable for the training of both the beginning resident and the experienced practitioner. GAS enhances clinical education in anaesthesia by providing a non-threatening environment that fosters learning by doing. Exercises with the simulator are supported by sessions on a number of training devices. These present theoretical and practical interactive courses on the anaesthesia machine and on monitors. An extensive system, for example, introduces the student to the physics and clinical application of transoesophageal echocardiography.(ABSTRACT TRUNCATED AT 250 WORDS)
Monitoring and Detection Platform to Prevent Anomalous Situations in Home Care
Villarrubia, Gabriel; Bajo, Javier; De Paz, Juan F.; Corchado, Juan M.
2014-01-01
Monitoring and tracking people at home usually requires high cost hardware installations, which implies they are not affordable in many situations. This study/paper proposes a monitoring and tracking system for people with medical problems. A virtual organization of agents based on the PANGEA platform, which allows the easy integration of different devices, was created for this study. In this case, a virtual organization was implemented to track and monitor patients carrying a Holter monitor. The system includes the hardware and software required to perform: ECG measurements, monitoring through accelerometers and WiFi networks. Furthermore, the use of interactive television can moderate interactivity with the user. The system makes it possible to merge the information and facilitates patient tracking efficiently with low cost. PMID:24905853
21 CFR 886.1510 - Eye movement monitor.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Eye movement monitor. 886.1510 Section 886.1510...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1510 Eye movement monitor. (a) Identification. An eye movement monitor is an AC-powered device with an electrode intended to measure and record...
21 CFR 886.1510 - Eye movement monitor.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Eye movement monitor. 886.1510 Section 886.1510...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1510 Eye movement monitor. (a) Identification. An eye movement monitor is an AC-powered device with an electrode intended to measure and record...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Continuous methane monitoring device... Installations § 77.211-1 Continuous methane monitoring device; installation and operation; automatic deenergization of electric equipment. Continuous methane monitoring devices shall be set to deenergize...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Continuous methane monitoring device... Installations § 77.211-1 Continuous methane monitoring device; installation and operation; automatic deenergization of electric equipment. Continuous methane monitoring devices shall be set to deenergize...
A Mobile Multi-Agent Information System for Ubiquitous Fetal Monitoring
Su, Chuan-Jun; Chu, Ta-Wei
2014-01-01
Electronic fetal monitoring (EFM) systems integrate many previously separate clinical activities related to fetal monitoring. Promoting the use of ubiquitous fetal monitoring services with real time status assessments requires a robust information platform equipped with an automatic diagnosis engine. This paper presents the design and development of a mobile multi-agent platform-based open information systems (IMAIS) with an automated diagnosis engine to support intensive and distributed ubiquitous fetal monitoring. The automatic diagnosis engine that we developed is capable of analyzing data in both traditional paper-based and digital formats. Issues related to interoperability, scalability, and openness in heterogeneous e-health environments are addressed through the adoption of a FIPA2000 standard compliant agent development platform—the Java Agent Development Environment (JADE). Integrating the IMAIS with light-weight, portable fetal monitor devices allows for continuous long-term monitoring without interfering with a patient’s everyday activities and without restricting her mobility. The system architecture can be also applied to vast monitoring scenarios such as elder care and vital sign monitoring. PMID:24452256
Sakai, Yoko; Yasuo M, Tsutsumi; Oyama, Takuro; Murakami, Chiaki; Kakuta, Nami; Tanaka, Katsuya
2018-01-01
Robot-assisted laparoscopic radical prostatectomy (RALRP) is commonly performed in the surgical treatment of prostate cancer. However, the steep Trendelenburg position (25) and pneumoperitoneum required for this procedure can sometimes cause hemodynamic changes. Although blood pressure is traditionally monitored invasively during RALRP, the ClearSight system (BMEYE, Amsterdam, The Netherlands) enables a totally noninvasive and simple continuous blood pressure and cardiac output monitoring based on finger arterial pressure pulse contour analysis. We therefore investigated whether noninvasive continuous arterial blood pressure measurements using the ClearSight system were comparable to those obtained invasively in patients undergoing RALRP. Ten patients scheduled for RALRP with American Society of Anesthesiologists physical status I-II were included in this study. At each of the seven defined time points, noninvasive and invasive blood pressure measurements were documented and compared in each patient using Bland-Altman analysis. Although the blood pressure measured with the ClearSight system correlated with that measured invasively, a large difference between the values obtained by the two devices was noted. The ClearSight system was unable to detect blood pressure accurately during RALRP, suggesting that blood pressure monitoring using this device alone is not feasible in this small patient population. J. Med. Invest. 65:69-73, February, 2018.
Alibrandi, Giuseppe; Fabbrizzi, Luigi; Licchelli, Maurizio; Puglisi, Antonio
2015-01-12
This paper proposes a new type of molecular device that is able to act as an inverse proton sponge to slowly decrease the pH inside a reaction vessel. This makes the automatic monitoring of the concentration of pH-sensitive systems possible. The device is a composite formed of an alkyl chloride, which kinetically produces acidity, and a buffer that thermodynamically modulates the variation in pH value. Profiles of pH versus time (pH-t plots) have been generated under various experimental conditions by computer simulation, and the device has been tested by carrying out automatic spectrophotometric titrations, without using an autoburette. To underline the wide variety of possible applications, this new system has been used to realize and monitor HCl uptake by a di-copper(II) bistren complex in a single run, in a completely automatic experiment. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Patashnick, H.; Rupprecht, G.
1977-01-01
The tapered element oscillating microbalance (TEOM), an ultrasensitive mass measurement device which is suitable for both particulate and vapor deposition measurements is described. The device can be used in contamination measurements, surface reaction studies, particulate monitoring systems or any microweighing activity where either laboratory or field monitoring capability is desired. The active element of the TEOM consists of a tube or reed constructed of a material with high mechanical quality factor and having a special taper. The element is firmly mounted at the wide end while the other end supports a substrate surface which can be composed of virtually any material. The tapered element with the substrate at the free (narrow) end is set into oscillation in a clamped free mode. A feedback system maintains the oscillation whose natural frequency will change in relation to the mass deposited on the substrate.
Embedded wireless sensors for turbomachine component defect monitoring
Tralshawala, Nilesh; Sexton, Daniel White
2015-11-24
Various embodiments include detection systems adapted to monitor at least one physical property of a component in a turbomachine. In some embodiments a detection system includes at least one sensor configured to be affixed to a component of a turbomachine, the at least one sensor for sensing information regarding at least one physical property of the turbomachine component during operation of the turbomachine, a signal converter communicatively coupled to the at least one sensor and at least one RF communication device configured to be affixed to a stationary component of the turbomachine, the radio frequency communication device configured to communicate with the at least one signal converter via an RF antenna coupled to the signal converter.
30 CFR 27.23 - Automatic warning device.
Code of Federal Regulations, 2010 CFR
2010-07-01
... APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Construction and Design Requirements § 27.23... function automatically at a methane content of the mine atmosphere between 1.0 to 1.5 volume percent and at all higher concentrations of methane. (c) It is recommended that the automatic warning device be...
Proceedings of the Conference on High-temperature Electronics
NASA Technical Reports Server (NTRS)
1981-01-01
The development of electronic devices for use in high temperature environments is addressed. The instrumentational needs of planetary exploration, fossil and nuclear power reactors, turbine engine monitoring, and well logging are defined. Emphasis is place on the fabrication and performance of materials and semiconductor devices, circuits and systems and packaging.
Curcumin-Combretastatin Nanocells as Breast Cancer Cytotoxic and Antiangiogenic Agent
2008-09-01
network of polyionic (e.g. polyethylenimine , polyacrylic acid, poly-L-lysine etc.) and neutral polymer chains (e.g. PEG, Pluronic/Poloxamer...devices were then mounted back to device stations placed inside a CO2 incubator. The CI was automatically monitored by the RT-CES system. The results
Intensive care window: real-time monitoring and analysis in the intensive care environment.
Stylianides, Nikolas; Dikaiakos, Marios D; Gjermundrød, Harald; Panayi, George; Kyprianou, Theodoros
2011-01-01
This paper introduces a novel, open-source middleware framework for communication with medical devices and an application using the middleware named intensive care window (ICW). The middleware enables communication with intensive care unit bedside-installed medical devices over standard and proprietary communication protocol stacks. The ICW application facilitates the acquisition of vital signs and physiological parameters exported from patient-attached medical devices and sensors. Moreover, ICW provides runtime and post-analysis procedures for data annotation, data visualization, data query, and analysis. The ICW application can be deployed as a stand-alone solution or in conjunction with existing clinical information systems providing a holistic solution to inpatient medical condition monitoring, early diagnosis, and prognosis.
Code of Federal Regulations, 2013 CFR
2013-07-01
... install, operate, and maintain each CEMS to monitor carbon monoxide (CO) or total hydrocarbons (THC) and... emission control device. (b) To comply with the CO or THC percent reduction emission limitation, you may install, operate, and maintain a CEMS to monitor CO or THC and O2 at both the inlet and the outlet of the...
Code of Federal Regulations, 2014 CFR
2014-07-01
... install, operate, and maintain each CEMS to monitor carbon monoxide (CO) or total hydrocarbons (THC) and... emission control device. (b) To comply with the CO or THC percent reduction emission limitation, you may install, operate, and maintain a CEMS to monitor CO or THC and O2 at both the inlet and the outlet of the...
Code of Federal Regulations, 2012 CFR
2012-07-01
... install, operate, and maintain each CEMS to monitor carbon monoxide (CO) or total hydrocarbons (THC) and... emission control device. (b) To comply with the CO or THC percent reduction emission limitation, you may install, operate, and maintain a CEMS to monitor CO or THC and O2 at both the inlet and the outlet of the...
Code of Federal Regulations, 2010 CFR
2010-07-01
... install, operate, and maintain each CEMS to monitor carbon monoxide (CO) or total hydrocarbons (THC) and... emission control device. (b) To comply with the CO or THC percent reduction emission limitation, you may install, operate, and maintain a CEMS to monitor CO or THC and O2 at both the inlet and the outlet of the...
Code of Federal Regulations, 2011 CFR
2011-07-01
... install, operate, and maintain each CEMS to monitor carbon monoxide (CO) or total hydrocarbons (THC) and... emission control device. (b) To comply with the CO or THC percent reduction emission limitation, you may install, operate, and maintain a CEMS to monitor CO or THC and O2 at both the inlet and the outlet of the...
NASA Astrophysics Data System (ADS)
Kassim, Muhammad Fuad bin; Norzali Haji Mohd, Mohd
2017-08-01
Technology is all about helping people, which created a new opportunity to take serious action in managing their health care. Moreover, Obesity continues to be a serious public health concern in the Malaysia and continuing to rise. Obesity has been a serious health concern among people. Nearly half of Malaysian people overweight. Most of dietary approach is not tracking and detecting the right calorie intake for weight loss, but currently used tools such as food diaries require users to manually record and track the food calories, making them difficult for daily use. We will be developing a new tool that counts the food intake bite by monitoring hand gesture and face jaw motion movement of caloric intake. The Bite count method showed a good significant that can lead to a successful weight loss by simply monitoring the bite taken during eating. The device used was Kinect Xbox One which used a depth camera to detect the motion on person hand and face during food intake. Previous studies showed that most of the method used to count bite device is worn type. The recent trend is now going towards non-wearable devices due to the difficulty when wearing devices and it has high false alarm ratio. The proposed system gets data from the Kinect that will be monitoring the hand and face gesture of the user while eating. Then, the gesture of hand and face data is sent to the microcontroller board to recognize and start counting bite taken by the user. The system recognizes the patterns of bite taken from user by following the algorithm of basic eating type either using hand or chopstick. This system can help people who are trying to follow a proper way to reduce overweight or eating disorders by monitoring their meal intake and controlling eating rate.
Caduff, Andreas; Zanon, Mattia; Mueller, Martin; Zakharov, Pavel; Feldman, Yuri; De Feo, Oscar; Donath, Marc; Stahel, Werner A; Talary, Mark S
2015-07-01
We study here the influence of different patients and the influence of different devices with the same patients on the signals and modeling of data from measurements from a noninvasive Multisensor glucose monitoring system in patients with type 1 diabetes. The Multisensor includes several sensors for biophysical monitoring of skin and underlying tissue integrated on a single substrate. Two Multisensors were worn simultaneously, 1 on the upper left and 1 on the upper right arm by 4 patients during 16 study visits. Glucose was administered orally to induce 2 consecutive hyperglycemic excursions. For the analysis, global (valid for a population of patients), personal (tailored to a specific patient), and device-specific multiple linear regression models were derived. We find that adjustments of the model to the patients improves the performance of the glucose estimation with an MARD of 17.8% for personalized model versus a MARD of 21.1% for the global model. At the same time the effect of the measurement side is negligible. The device can equally well measure on the left or right arm. We also see that devices are equal in the linear modeling. Thus hardware calibration of the sensors is seen to be sufficient to eliminate interdevice differences in the measured signals. We demonstrate that the hardware of the 2 devices worn on the left and right arms are consistent yielding similar measured signals and thus glucose estimation results with a global model. The 2 devices also return similar values of glucose errors. These errors are mainly due to nonstationarities in the measured signals that are not solved by the linear model, thus suggesting for more sophisticated modeling approaches. © 2015 Diabetes Technology Society.
Chemical Sensor Platform for Non-Invasive Monitoring of Activity and Dehydration
Solovei, Dmitry; Žák, Jaromír; Majzlíková, Petra; Sedláček, Jiří; Hubálek, Jaromír
2015-01-01
A non-invasive solution for monitoring of the activity and dehydration of organisms is proposed in the work. For this purpose, a wireless standalone chemical sensor platform using two separate measurement techniques has been developed. The first approach for activity monitoring is based on humidity measurement. Our solution uses new humidity sensor based on a nanostructured TiO2 surface for sweat rate monitoring. The second technique is based on monitoring of potassium concentration in urine. High level of potassium concentration denotes clear occurrence of dehydration. Furthermore, a Wireless Body Area Network (WBAN) was developed for this sensor platform to manage data transfer among devices and the internet. The WBAN coordinator controls the sensor devices and collects and stores the measured data. The collected data is particular to individuals and can be shared with physicians, emergency systems or athletes' coaches. Long-time monitoring of activity and potassium concentration in urine can help maintain the appropriate water intake of elderly people or athletes and to send warning signals in the case of near dehydration. The created sensor system was calibrated and tested in laboratory and real conditions as well. The measurement results are discussed. PMID:25594591
Air-Flow-Driven Triboelectric Nanogenerators for Self-Powered Real-Time Respiratory Monitoring.
Wang, Meng; Zhang, Jiahao; Tang, Yingjie; Li, Jun; Zhang, Baosen; Liang, Erjun; Mao, Yanchao; Wang, Xudong
2018-06-04
Respiration is one of the most important vital signs of humans, and respiratory monitoring plays an important role in physical health management. A low-cost and convenient real-time respiratory monitoring system is extremely desirable. In this work, we demonstrated an air-flow-driven triboelectric nanogenerator (TENG) for self-powered real-time respiratory monitoring by converting mechanical energy of human respiration into electric output signals. The operation of the TENG was based on the air-flow-driven vibration of a flexible nanostructured polytetrafluoroethylene (n-PTFE) thin film in an acrylic tube. This TENG can generate distinct real-time electric signals when exposed to the air flow from different breath behaviors. It was also found that the accumulative charge transferred in breath sensing corresponds well to the total volume of air exchanged during the respiration process. Based on this TENG device, an intelligent wireless respiratory monitoring and alert system was further developed, which used the TENG signal to directly trigger a wireless alarm or dial a cell phone to provide timely alerts in response to breath behavior changes. This research offers a promising solution for developing self-powered real-time respiratory monitoring devices.
Web Information Systems for Monitoring and Control of Indoor Air Quality at Subway Stations
NASA Astrophysics Data System (ADS)
Choi, Gi Heung; Choi, Gi Sang; Jang, Joo Hyoung
In crowded subway stations indoor air quality (IAQ) is a key factor for ensuring the safety, health and comfort of passengers. In this study, a framework for web-based information system in VDN environment for monitoring and control of IAQ in subway stations is suggested. Since physical variables that describing IAQ need to be closely monitored and controlled in multiple locations in subway stations, concept of distributed monitoring and control network using wireless media needs to be implemented. Connecting remote wireless sensor network and device (LonWorks) networks to the IP network based on the concept of VDN can provide a powerful, integrated, distributed monitoring and control performance, making a web-based information system possible.
Laser micromachining of biofactory-on-a-chip devices
NASA Astrophysics Data System (ADS)
Burt, Julian P.; Goater, Andrew D.; Hayden, Christopher J.; Tame, John A.
2002-06-01
Excimer laser micromachining provides a flexible means for the manufacture and rapid prototyping of miniaturized systems such as Biofactory-on-a-Chip devices. Biofactories are miniaturized diagnostic devices capable of characterizing, manipulating, separating and sorting suspension of particles such as biological cells. Such systems operate by exploiting the electrical properties of microparticles and controlling particle movement in AC non- uniform stationary and moving electric fields. Applications of Biofactory devices are diverse and include, among others, the healthcare, pharmaceutical, chemical processing, environmental monitoring and food diagnostic markets. To achieve such characterization and separation, Biofactory devices employ laboratory-on-a-chip type components such as complex multilayer microelectrode arrays, microfluidic channels, manifold systems and on-chip detection systems. Here we discuss the manufacturing requirements of Biofactory devices and describe the use of different excimer laser micromachined methods both in stand-alone processes and also in conjunction with conventional fabrication processes such as photolithography and thermal molding. Particular attention is given to the production of large area multilayer microelectrode arrays and the manufacture of complex cross-section microfluidic channel systems for use in simple distribution and device interfacing.
Device and method for measuring the energy content of hot and humid air streams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosen, H. N.; Girod, G. F.; Kent, A. C.
1985-12-24
a portable device and method for measuring enthalpy and humidity of humid air from a space or flow channel at temperatures from 80/sup 0/ to 400/sup 0/ F. is described. the device consists of a psychrometer for measuring wet-bulb temperature, a vacuum pump for inducing sample air flow through the unit, a water-heating system for accurate psychrometer readings, an electronic computer system for evaluation of enthalpy and humidity from corrected and averaged values of wet- and dry- bulb temperatures, and a monitor for displaying the values. The device is programmable by the user to modify evaluation methods as necessary.
Cañete, Eduardo; Chen, Jaime; Rubio, Bartolomé
2018-01-01
The rapid development in low-cost sensor and wireless communication technology has made it possible for a large number of devices to coexist and exchange information autonomously. It has been predicted that a substantial number of devices will be able to exchange and provide information about an environment with the goal of improving our lives, under the well-known paradigm of the Internet of Things (IoT). One of the main applications of these kinds of devices is the monitoring of scenarios. In order to improve the current wine elaboration process, this paper presents a real-time monitoring system to supervise the status of wine casks. We have focused on a special kind of white wine, called Fino, principally produced in Andalusia (Southern Spain). The process by which this kind of wind is monitored is completely different from that of red wine, as the casks are not completely full and, due to the fact that they are not renewed very often, are more prone to breakage. A smart cork prototype monitors the structural health, the ullage, and the level of light inside the cask and the room temperature. The advantage of this smart cork is that it allows winemakers to monitor, in real time, the status of each wine cask so that, if an issue is detected (e.g., a crack appears in the cask), they can act immediately to resolve it. Moreover, abnormal parameters or incorrect environmental conditions can be detected in time before the wine loses its desired qualities. The system has been tested in “Bodegas San Acacio,” a winery based in Montemayor, a town in the north of Andalusia. Results show that the use of such a system can provide a solution that tracks the evolution and assesses the suitability of the delicate wine elaboration process in real time, which is especially important for the kind of wine considered in this paper. PMID:29518928
Cañete, Eduardo; Chen, Jaime; Martín, Cristian; Rubio, Bartolomé
2018-03-07
The rapid development in low-cost sensor and wireless communication technology has made it possible for a large number of devices to coexist and exchange information autonomously. It has been predicted that a substantial number of devices will be able to exchange and provide information about an environment with the goal of improving our lives, under the well-known paradigm of the Internet of Things (IoT). One of the main applications of these kinds of devices is the monitoring of scenarios. In order to improve the current wine elaboration process, this paper presents a real-time monitoring system to supervise the status of wine casks. We have focused on a special kind of white wine, called Fino, principally produced in Andalusia (Southern Spain). The process by which this kind of wind is monitored is completely different from that of red wine, as the casks are not completely full and, due to the fact that they are not renewed very often, are more prone to breakage. A smart cork prototype monitors the structural health, the ullage, and the level of light inside the cask and the room temperature. The advantage of this smart cork is that it allows winemakers to monitor, in real time, the status of each wine cask so that, if an issue is detected (e.g., a crack appears in the cask), they can act immediately to resolve it. Moreover, abnormal parameters or incorrect environmental conditions can be detected in time before the wine loses its desired qualities. The system has been tested in "Bodegas San Acacio," a winery based in Montemayor, a town in the north of Andalusia. Results show that the use of such a system can provide a solution that tracks the evolution and assesses the suitability of the delicate wine elaboration process in real time, which is especially important for the kind of wine considered in this paper.
Menychtas, Andreas; Tsanakas, Panayiotis
2016-01-01
The proper acquisition of biosignals data from various biosensor devices and their remote accessibility are still issues that prevent the wide adoption of point-of-care systems in the routine of monitoring chronic patients. This Letter presents an advanced framework for enabling patient monitoring that utilises a cloud computing infrastructure for data management and analysis. The framework introduces also a local mechanism for uniform biosignals collection from wearables and biosignal sensors, and decision support modules, in order to enable prompt and essential decisions. A prototype smartphone application and the related cloud modules have been implemented for demonstrating the value of the proposed framework. Initial results regarding the performance of the system and the effectiveness in data management and decision-making have been quite encouraging. PMID:27222731
Menychtas, Andreas; Tsanakas, Panayiotis; Maglogiannis, Ilias
2016-03-01
The proper acquisition of biosignals data from various biosensor devices and their remote accessibility are still issues that prevent the wide adoption of point-of-care systems in the routine of monitoring chronic patients. This Letter presents an advanced framework for enabling patient monitoring that utilises a cloud computing infrastructure for data management and analysis. The framework introduces also a local mechanism for uniform biosignals collection from wearables and biosignal sensors, and decision support modules, in order to enable prompt and essential decisions. A prototype smartphone application and the related cloud modules have been implemented for demonstrating the value of the proposed framework. Initial results regarding the performance of the system and the effectiveness in data management and decision-making have been quite encouraging.
Automated Cryocooler Monitor and Control System Software
NASA Technical Reports Server (NTRS)
Britchcliffe, Michael J.; Conroy, Bruce L.; Anderson, Paul E.; Wilson, Ahmad
2011-01-01
This software is used in an automated cryogenic control system developed to monitor and control the operation of small-scale cryocoolers. The system was designed to automate the cryogenically cooled low-noise amplifier system described in "Automated Cryocooler Monitor and Control System" (NPO-47246), NASA Tech Briefs, Vol. 35, No. 5 (May 2011), page 7a. The software contains algorithms necessary to convert non-linear output voltages from the cryogenic diode-type thermometers and vacuum pressure and helium pressure sensors, to temperature and pressure units. The control function algorithms use the monitor data to control the cooler power, vacuum solenoid, vacuum pump, and electrical warm-up heaters. The control algorithms are based on a rule-based system that activates the required device based on the operating mode. The external interface is Web-based. It acts as a Web server, providing pages for monitor, control, and configuration. No client software from the external user is required.
GROUND WATER MONITORING AND SAMPLING: MULTI-LEVEL VERSUS TRADITIONAL METHODS WHATS WHAT?
After years of research and many publications, the question still remains: What is the best method to collect representative ground water samples from monitoring wells? Numerous systems and devices are currently available for obtaining both multi-level samples as well as traditi...
Reconfigurable wearable to monitor physiological variables and movement
NASA Astrophysics Data System (ADS)
Romero, Francisco J.; Morales, Diego P.; Castillo, Encarnación; García, Antonio; Tahmassebi, Amirhessam; Meyer-Baese, Anke
2017-05-01
This article presents a preliminary prototype of a wearable instrument for oxygen saturation and ECG monitoring. The proposed measuring system is based on the light reflection variability of a LED emission on the subject temple. Besides, the system has the capacity to incorporate electrodes to obtain ECG measurements. All measurements are stored and transmitted to a mobile device (tablet or smartphone) through a Bluetooth link.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Inorganic HAP Emissions From Catalytic Reforming Units As stated in § 63.1567(b)(1), you shall meet each requirement in the following table that applies to you. If you use this type of control device for your vent . . . You shall install and operate this type of continuous monitoring system . . . 1. Wet scrubber...
Ošmera, Ondřej; Bulava, Alan
2014-01-01
The increasing number of patients with implantable cardiac devices raises the need for more efficient outpatient follow-up care. Due to technological progress in communication and transmission systems and in the implantable devices themselves, telemonitoring can be widely used as an important part of care for patients and devices. Our objective was to evaluate the benefits of continuous remote monitoring using the BIOTRONIK Home Monitoring® (HM) system compared to standard outpatient follow-ups. 198 patients with single- or dual-chamber implantable cardioverter-defibrillator (ICD) implanted for primary or secondary prevention of sudden cardiac death were randomized into a group of patients followed through standard outpatient visits ( HM-) and a group telemonitored by the HM system (HM+). Planned and emergency visits, ICD-related hospitalizations, and delivered shocks and their appropriateness were evaluated in the respective groups. A significant reduction was achieved in the number of planned (by 48%, p<0.001) and total visits (by 45%, p<0.001) during a three-year evaluation. A comparable number of patients experienced one or more shocks. Mortality rates were equivalent, as was the number of patients hospitalized in relation to their ICD. However, there was a significant reduction in the number and proportion of inappropriate shocks delivered in the HM+ patient group: by 80% (p=0.002) in outpatient follow-up care and by 90% (p<0.001) when multiple shocks requiring hospitalization were included. The HM system was an effective and safe method of follow-up in patients with an implanted ICD. Remote monitoring reduces the number of outpatient visits and inappropriate shocks.
Multielement surface plasmon resonance immunosensor for monitoring of blood circulation system
NASA Astrophysics Data System (ADS)
Kostyukevych, Sergey A.; Kostyukevych, Kateryna V.; Khristosenko, Roman V.; Lysiuk, Viktor O.; Koptyukh, Anastasiya A.; Moscalenko, Nadiya L.
2017-12-01
The problems related to the development of a multielement immunosensor device with the prism type of excitation of a surface plasmon resonance in the Kretschmann configuration and with the scanning of the incidence angle of monochromatic light aimed at the reliable determination of the levels of three molecular markers of the system of hemostasis (fibrinogen, soluble fibrin, and D-dimer) are considered. We have analyzed the influence of a technology for the production of a gold coating, modification of its surface, and noise effects on the enhancement of sensitivity and stability of the operation of devices. A means of oriented immobilization of monoclonal antibodies on the surface of gold using a multilayer film of copper aminopentacyanoferrate is developed. For the model proteins of studied markers, the calibrating curves (maximum sensitivity of 0.5 μg/ml) are obtained, and the level of fibrinogen in blood plasma of donors is determined. A four-channel modification of the device with an application of a reference channel for comparing the elimination of the noise of temperature fluctuations has been constructed. This device allows one to execute the express-diagnostics of prethrombotic states and the monitoring of the therapy of diseases of the blood circulation system.
A Wave Power Device with Pendulum Based on Ocean Monitoring Buoy
NASA Astrophysics Data System (ADS)
Chai, Hui; Guan, Wanchun; Wan, Xiaozheng; Li, Xuanqun; Zhao, Qiang; Liu, Shixuan
2018-01-01
The ocean monitoring buoy usually exploits solar energy for power supply. In order to improve power supply capacity, this paper proposes a wave power device according to the structure and moving character of buoy. The wave power device composes of pendulum mechanism that converts wave energy into mechanical energy and energy storage mechanism where the mechanical energy is transferred quantitatively to generator. The hydrodynamic equation for the motion of buoy system with generator devise is established based on the potential flow theory, and then the characteristics of pendulum motion and energy conversion properties are analysed. The results of this research show that the proposed wave power devise is able to efficiently and periodically convert wave energy into power, and increasing the stiffness of energy storage spring is benefit for enhancing the power supply capacity of the buoy. This study provides a theory reference for the development of technology on wave power generator for ocean monitoring buoy.
Non-Intrusive Load Monitoring Approaches for Disaggregated Energy Sensing: A Survey
Zoha, Ahmed; Gluhak, Alexander; Imran, Muhammad Ali; Rajasegarar, Sutharshan
2012-01-01
Appliance Load Monitoring (ALM) is essential for energy management solutions, allowing them to obtain appliance-specific energy consumption statistics that can further be used to devise load scheduling strategies for optimal energy utilization. Fine-grained energy monitoring can be achieved by deploying smart power outlets on every device of interest; however it incurs extra hardware cost and installation complexity. Non-Intrusive Load Monitoring (NILM) is an attractive method for energy disaggregation, as it can discern devices from the aggregated data acquired from a single point of measurement. This paper provides a comprehensive overview of NILM system and its associated methods and techniques used for disaggregated energy sensing. We review the state-of-the art load signatures and disaggregation algorithms used for appliance recognition and highlight challenges and future research directions. PMID:23223081
Extremely Elastic Wearable Carbon Nanotube Fiber Strain Sensor for Monitoring of Human Motion.
Ryu, Seongwoo; Lee, Phillip; Chou, Jeffrey B; Xu, Ruize; Zhao, Rong; Hart, Anastasios John; Kim, Sang-Gook
2015-06-23
The increasing demand for wearable electronic devices has made the development of highly elastic strain sensors that can monitor various physical parameters an essential factor for realizing next generation electronics. Here, we report an ultrahigh stretchable and wearable device fabricated from dry-spun carbon nanotube (CNT) fibers. Stretching the highly oriented CNT fibers grown on a flexible substrate (Ecoflex) induces a constant decrease in the conductive pathways and contact areas between nanotubes depending on the stretching distance; this enables CNT fibers to behave as highly sensitive strain sensors. Owing to its unique structure and mechanism, this device can be stretched by over 900% while retaining high sensitivity, responsiveness, and durability. Furthermore, the device with biaxially oriented CNT fiber arrays shows independent cross-sensitivity, which facilitates simultaneous measurement of strains along multiple axes. We demonstrated potential applications of the proposed device, such as strain gauge, single and multiaxial detecting motion sensors. These devices can be incorporated into various motion detecting systems where their applications are limited to their strain.