Code of Federal Regulations, 2013 CFR
2013-07-01
... system and add-on control device operating limits during the performance test? 63.3546 Section 63.3546... of key parameters of the valve operating system (e.g., solenoid valve operation, air pressure... minimum operating limit for that specific capture device or system of multiple capture devices. The...
Code of Federal Regulations, 2014 CFR
2014-07-01
... capture system and add-on control device operating limits during the performance test? 63.3546 Section 63... of key parameters of the valve operating system (e.g., solenoid valve operation, air pressure... minimum operating limit for that specific capture device or system of multiple capture devices. The...
Code of Federal Regulations, 2012 CFR
2012-07-01
... capture system and add-on control device operating limits during the performance test? 63.3546 Section 63... of key parameters of the valve operating system (e.g., solenoid valve operation, air pressure... minimum operating limit for that specific capture device or system of multiple capture devices. The...
Code of Federal Regulations, 2010 CFR
2010-07-01
... device operating limits during the performance test? 63.3167 Section 63.3167 Protection of Environment... Limitations § 63.3167 How do I establish the add-on control device operating limits during the performance.... (a) Thermal oxidizers. If your add-on control device is a thermal oxidizer, establish the operating...
Code of Federal Regulations, 2014 CFR
2014-07-01
... capture system and add-on control device operating limits during the performance test? 63.4966 Section 63... system and add-on control device operating limits during the performance test? During the performance... outlet gas temperature is the maximum operating limit for your condenser. (e) Emission capture system...
Code of Federal Regulations, 2012 CFR
2012-07-01
... capture system and add-on control device operating limits during the performance test? 63.4966 Section 63... system and add-on control device operating limits during the performance test? During the performance... outlet gas temperature is the maximum operating limit for your condenser. (e) Emission capture system...
Code of Federal Regulations, 2014 CFR
2014-07-01
... capture system and add-on control device operating limits during the performance test? 63.3556 Section 63... system and add-on control device operating limits during the performance test? During the performance... of key parameters of the valve operating system (e.g., solenoid valve operation, air pressure...
Code of Federal Regulations, 2012 CFR
2012-07-01
... capture system and add-on control device operating limits during the performance test? 63.3556 Section 63... system and add-on control device operating limits during the performance test? During the performance... of key parameters of the valve operating system (e.g., solenoid valve operation, air pressure...
Code of Federal Regulations, 2013 CFR
2013-07-01
... system and add-on control device operating limits during the performance test? 63.4767 Section 63.4767... system and add-on control device operating limits during the performance test? During the performance... operating limits required by § 63.4692 according to this section, unless you have received approval for...
Code of Federal Regulations, 2010 CFR
2010-07-01
... system and add-on control device operating limits during the performance test? 63.3967 Section 63.3967... capture system and add-on control device operating limits during the performance test? During the... the operating limits required by § 63.3892 according to this section, unless you have received...
Code of Federal Regulations, 2011 CFR
2011-07-01
... system and add-on control device operating limits during the performance test? 63.3967 Section 63.3967... capture system and add-on control device operating limits during the performance test? During the... the operating limits required by § 63.3892 according to this section, unless you have received...
Code of Federal Regulations, 2013 CFR
2013-07-01
... system and add-on control device operating limits during the performance test? 63.3967 Section 63.3967... emission capture system and add-on control device operating limits during the performance test? During the... the operating limits required by § 63.3892 according to this section, unless you have received...
Code of Federal Regulations, 2012 CFR
2012-07-01
... capture system and add-on control device operating limits during the performance test? 63.4167 Section 63... capture system and add-on control device operating limits during the performance test? During the... the operating limits required by § 63.4092 according to this section unless you have received approval...
Code of Federal Regulations, 2014 CFR
2014-07-01
... capture system and add-on control device operating limits during the performance test? 63.4567 Section 63... emission capture system and add-on control device operating limits during the performance test? During the... the operating limits required by § 63.4492 according to this section, unless you have received...
Code of Federal Regulations, 2014 CFR
2014-07-01
... capture system and add-on control device operating limits during the performance test? 63.3967 Section 63... establish the emission capture system and add-on control device operating limits during the performance test... must establish the operating limits required by § 63.3892 according to this section, unless you have...
Code of Federal Regulations, 2014 CFR
2014-07-01
... capture system and add-on control device operating limits during the performance test? 63.4167 Section 63... capture system and add-on control device operating limits during the performance test? During the... the operating limits required by § 63.4092 according to this section unless you have received approval...
Code of Federal Regulations, 2014 CFR
2014-07-01
... capture system and add-on control device operating limits during the performance test? 63.4767 Section 63... capture system and add-on control device operating limits during the performance test? During the... the operating limits required by § 63.4692 according to this section, unless you have received...
Code of Federal Regulations, 2012 CFR
2012-07-01
... capture system and add-on control device operating limits during the performance test? 63.4767 Section 63... capture system and add-on control device operating limits during the performance test? During the... the operating limits required by § 63.4692 according to this section, unless you have received...
Code of Federal Regulations, 2012 CFR
2012-07-01
... capture system and add-on control device operating limits during the performance test? 63.3967 Section 63... establish the emission capture system and add-on control device operating limits during the performance test... must establish the operating limits required by § 63.3892 according to this section, unless you have...
Code of Federal Regulations, 2012 CFR
2012-07-01
... capture system and add-on control device operating limits during the performance test? 63.4567 Section 63... emission capture system and add-on control device operating limits during the performance test? During the... the operating limits required by § 63.4492 according to this section, unless you have received...
Code of Federal Regulations, 2013 CFR
2013-07-01
... system and add-on control device operating limits during the performance test? 63.4567 Section 63.4567... capture system and add-on control device operating limits during the performance test? During the... the operating limits required by § 63.4492 according to this section, unless you have received...
Code of Federal Regulations, 2010 CFR
2010-07-01
... capture system and add-on control device operating limits during the performance test? 63.9324 Section 63... Requirements § 63.9324 How do I establish the emission capture system and add-on control device operating... the operating limits required by § 63.9302 according to this section, unless you have received...
Code of Federal Regulations, 2012 CFR
2012-07-01
... capture system and add-on control device operating limits during the performance test? 63.9324 Section 63... Requirements § 63.9324 How do I establish the emission capture system and add-on control device operating... the operating limits required by § 63.9302 according to this section, unless you have received...
Code of Federal Regulations, 2013 CFR
2013-07-01
... capture system and add-on control device operating limits during the performance test? 63.9324 Section 63... Requirements § 63.9324 How do I establish the emission capture system and add-on control device operating... the operating limits required by § 63.9302 according to this section, unless you have received...
Code of Federal Regulations, 2014 CFR
2014-07-01
... capture system and add-on control device operating limits during the performance test? 63.9324 Section 63... Requirements § 63.9324 How do I establish the emission capture system and add-on control device operating... the operating limits required by § 63.9302 according to this section, unless you have received...
Code of Federal Regulations, 2011 CFR
2011-07-01
... capture system and add-on control device operating limits during the performance test? 63.9324 Section 63... Requirements § 63.9324 How do I establish the emission capture system and add-on control device operating... the operating limits required by § 63.9302 according to this section, unless you have received...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Operating Limits for Capture Systems... 63—Operating Limits for Capture Systems and Add-On Control Devices If you are required to comply with operating limits by § 63.3093, you must comply with the applicable operating limits in the following table...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Operating Limits for Capture Systems... 63—Operating Limits for Capture Systems and Add-On Control Devices If you are required to comply with operating limits by § 63.3093, you must comply with the applicable operating limits in the following table...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Operating Limits for Capture Systems... Subpart IIII of Part 63—Operating Limits for Capture Systems and Add-On Control Devices If you are required to comply with operating limits by § 63.3093, you must comply with the applicable operating limits...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Operating Limits for Capture Systems... Subpart IIII of Part 63—Operating Limits for Capture Systems and Add-On Control Devices If you are required to comply with operating limits by § 63.3093, you must comply with the applicable operating limits...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Operating Limits for Capture Systems... Subpart IIII of Part 63—Operating Limits for Capture Systems and Add-On Control Devices If you are required to comply with operating limits by § 63.3093, you must comply with the applicable operating limits...
Code of Federal Regulations, 2013 CFR
2013-07-01
... system and add-on control device operating limits during the performance test? 63.4167 Section 63.4167... Emission Rate with Add-on Controls Option § 63.4167 How do I establish the emission capture system and add-on control device operating limits during the performance test? During the performance test required...
Code of Federal Regulations, 2011 CFR
2011-07-01
... system and add-on control device operating limits during the performance test? 63.4767 Section 63.4767... Rate with Add-on Controls Option § 63.4767 How do I establish the emission capture system and add-on control device operating limits during the performance test? During the performance test required by § 63...
Code of Federal Regulations, 2014 CFR
2014-07-01
... to Subpart OOOO of Part 63—Operating Limits if Using Add-On Control Devices and Capture System If you... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Operating Limits if Using Add-On Control Devices and Capture System 2 Table 2 to Subpart OOOO of Part 63 Protection of Environment...
Code of Federal Regulations, 2014 CFR
2014-07-01
...—Operating Limits if Using Add-On Control Devices and Capture System If you are required to comply with... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Operating Limits if Using Add-On Control Devices and Capture System 1 Table 1 to Subpart JJJJ of Part 63 Protection of Environment...
Code of Federal Regulations, 2014 CFR
2014-07-01
...—Operating Limits if Using Add-on Control Devices and Capture System If you are required to comply with... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Operating Limits if Using Add-on Control Devices and Capture System 1 Table 1 to Subpart SSSS of Part 63 Protection of Environment...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Limits if Using Add-On Control Devices and Capture System If you are required to comply with operating... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Operating Limits if Using Add-On Control Devices and Capture System 1 Table 1 to Subpart JJJJ of Part 63 Protection of Environment...
Code of Federal Regulations, 2012 CFR
2012-07-01
...—Operating Limits if Using Add-On Control Devices and Capture System If you are required to comply with... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Operating Limits if Using Add-On Control Devices and Capture System 1 Table 1 to Subpart JJJJ of Part 63 Protection of Environment...
Code of Federal Regulations, 2013 CFR
2013-07-01
... to Subpart OOOO of Part 63—Operating Limits if Using Add-On Control Devices and Capture System If you... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Operating Limits if Using Add-On Control Devices and Capture System 2 Table 2 to Subpart OOOO of Part 63 Protection of Environment...
Code of Federal Regulations, 2013 CFR
2013-07-01
...—Operating Limits if Using Add-on Control Devices and Capture System If you are required to comply with... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Operating Limits if Using Add-on Control Devices and Capture System 1 Table 1 to Subpart SSSS of Part 63 Protection of Environment...
Code of Federal Regulations, 2012 CFR
2012-07-01
... to Subpart OOOO of Part 63—Operating Limits if Using Add-On Control Devices and Capture System If you... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Operating Limits if Using Add-On Control Devices and Capture System 2 Table 2 to Subpart OOOO of Part 63 Protection of Environment...
Code of Federal Regulations, 2010 CFR
2010-07-01
... OOOO of Part 63—Operating Limits if Using Add-On Control Devices and Capture System If you are required... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Operating Limits if Using Add-On Control Devices and Capture System 2 Table 2 to Subpart OOOO of Part 63 Protection of Environment...
Code of Federal Regulations, 2012 CFR
2012-07-01
...—Operating Limits if Using Add-on Control Devices and Capture System If you are required to comply with... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Operating Limits if Using Add-on Control Devices and Capture System 1 Table 1 to Subpart SSSS of Part 63 Protection of Environment...
Code of Federal Regulations, 2010 CFR
2010-07-01
... system and add-on control device operating limits during the performance test? 63.4767 Section 63.4767... Rate with Add-on Controls Option § 63.4767 How do I establish the emission capture system and add-on control device operating limits during the performance test? During the performance test required by § 63...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Using Add-on Control Devices and Capture System If you are required to comply with operating limits by... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Operating Limits if Using Add-on Control Devices and Capture System 1 Table 1 to Subpart SSSS of Part 63 Protection of Environment...
Code of Federal Regulations, 2011 CFR
2011-07-01
... OOOO of Part 63—Operating Limits if Using Add-On Control Devices and Capture System If you are required... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Operating Limits if Using Add-On Control Devices and Capture System 2 Table 2 to Subpart OOOO of Part 63 Protection of Environment...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Using Add-on Control Devices and Capture System If you are required to comply with operating limits by... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Operating Limits if Using Add-on Control Devices and Capture System 1 Table 1 to Subpart SSSS of Part 63 Protection of Environment...
Code of Federal Regulations, 2013 CFR
2013-07-01
...—Operating Limits if Using Add-On Control Devices and Capture System If you are required to comply with... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Operating Limits if Using Add-On Control Devices and Capture System 1 Table 1 to Subpart JJJJ of Part 63 Protection of Environment...
Code of Federal Regulations, 2010 CFR
2010-07-01
... system and add-on control device operating limits during the performance test? 63.4167 Section 63.4167... with Add-on Controls Option § 63.4167 How do I establish the emission capture system and add-on control device operating limits during the performance test? During the performance test required by § 63.4160...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Limits if Using Add-On Control Devices and Capture System If you are required to comply with operating... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Operating Limits if Using Add-On Control Devices and Capture System 1 Table 1 to Subpart JJJJ of Part 63 Protection of Environment...
Code of Federal Regulations, 2011 CFR
2011-07-01
... system and add-on control device operating limits during the performance test? 63.4167 Section 63.4167... with Add-on Controls Option § 63.4167 How do I establish the emission capture system and add-on control device operating limits during the performance test? During the performance test required by § 63.4160...
Code of Federal Regulations, 2010 CFR
2010-07-01
... system and add-on control device operating limits during the performance test? 63.3546 Section 63.3546... device or system of multiple capture devices. The average duct static pressure is the maximum operating... Add-on Controls Option § 63.3546 How do I establish the emission capture system and add-on control...
Code of Federal Regulations, 2011 CFR
2011-07-01
... system and add-on control device operating limits during the performance test? 63.3546 Section 63.3546... device or system of multiple capture devices. The average duct static pressure is the maximum operating... Add-on Controls Option § 63.3546 How do I establish the emission capture system and add-on control...
40 CFR 63.4291 - What are my options for meeting the emission limits?
Code of Federal Regulations, 2010 CFR
2010-07-01
... emission capture systems and add-on controls, the organic HAP emission rate for the web coating/printing... demonstrate that all capture systems and control devices for the web coating/printing operation(s) meet the... capture systems and control devices for the web coating/printing operation(s) meet the operating limits...
Temperature Effects in Varactors and Multipliers
NASA Technical Reports Server (NTRS)
East, J.; Mehdi, Imran
2001-01-01
Varactor diode multipliers are a critical part of many THz measurement systems. The power and efficiencies of these devices limit the available power for THz sources. Varactor operation is determined by the physics of the varactor device and a careful doping profile design is needed to optimize the performance. Higher doped devices are limited by junction breakdown and lower doped structures are limited by current saturation. Higher doped structures typically have higher efficiencies and lower doped structures typically have higher powers at the same operating frequency and impedance level. However, the device material properties are also a function of the operating temperature. Recent experimental evidence has shown that the power output of a multiplier can be improved by cooling the device. We have used a particle Monte Carlo simulation to investigate the temperature dependent velocity vs. electric field in GaAs. This information was then included in a nonlinear device circuit simulator to predict multiplier performance for various temperatures and device designs. This paper will describe the results of this analysis of temperature dependent multiplier operation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Operating Limits for Puncture Sealant Application Control Devices 4 Table 4 to Subpart XXXX of Part 63 Protection of Environment ENVIRONMENTAL... Manufacturing Pt. 63, Subpt. XXXX, Table 4 Table 4 to Subpart XXXX of Part 63—Operating Limits for Puncture...
Code of Federal Regulations, 2013 CFR
2013-07-01
... system and add-on control device operating limits during the performance test? 63.4966 Section 63.4966... outlet gas temperature is the maximum operating limit for your condenser. (e) Emission capture system... Emission Rate with Add-on Controls Option § 63.4966 How do I establish the emission capture system and add...
Code of Federal Regulations, 2011 CFR
2011-07-01
... system and add-on control device operating limits during the performance test? 63.4966 Section 63.4966... outlet gas temperature is the maximum operating limit for your condenser. (e) Emission capture system... with Add-on Controls Option § 63.4966 How do I establish the emission capture system and add-on control...
Code of Federal Regulations, 2010 CFR
2010-07-01
... system and add-on control device operating limits during the performance test? 63.4966 Section 63.4966... outlet gas temperature is the maximum operating limit for your condenser. (e) Emission capture system... with Add-on Controls Option § 63.4966 How do I establish the emission capture system and add-on control...
Code of Federal Regulations, 2010 CFR
2010-07-01
... system and add-on control device operating limits during the performance test? 63.3556 Section 63.3556... of key parameters of the valve operating system (e.g., solenoid valve operation, air pressure.../outlet Concentration Option § 63.3556 How do I establish the emission capture system and add-on control...
Code of Federal Regulations, 2011 CFR
2011-07-01
... system and add-on control device operating limits during the performance test? 63.3556 Section 63.3556... of key parameters of the valve operating system (e.g., solenoid valve operation, air pressure.../outlet Concentration Option § 63.3556 How do I establish the emission capture system and add-on control...
Code of Federal Regulations, 2013 CFR
2013-07-01
... system and add-on control device operating limits during the performance test? 63.3556 Section 63.3556... of key parameters of the valve operating system (e.g., solenoid valve operation, air pressure... Control Efficiency/outlet Concentration Option § 63.3556 How do I establish the emission capture system...
DeShong, J.A.
1960-03-01
A control-limiting device for monltoring a control system is described. The system comprises a conditionsensing device, a condition-varying device exerting a control over the condition, and a control means to actuate the condition-varying device. A control-limiting device integrates the total movement or other change of the condition-varying device over any interval of time during a continuum of overlapping periods of time, and if the tothl movement or change of the condition-varying device exceeds a preset value, the control- limiting device will switch the control of the operated apparatus from automatic to manual control.
40 CFR 60.107a - Monitoring of emissions and operations for fuel gas combustion devices.
Code of Federal Regulations, 2011 CFR
2011-07-01
... for fuel gas combustion devices. 60.107a Section 60.107a Protection of Environment ENVIRONMENTAL... Commenced After May 14, 2007 § 60.107a Monitoring of emissions and operations for fuel gas combustion devices. (a) Fuel gas combustion devices subject to SO 2 or H 2 S limit. The owner or operator of a fuel...
40 CFR 60.107a - Monitoring of emissions and operations for fuel gas combustion devices.
Code of Federal Regulations, 2012 CFR
2012-07-01
... for fuel gas combustion devices. 60.107a Section 60.107a Protection of Environment ENVIRONMENTAL... Commenced After May 14, 2007 § 60.107a Monitoring of emissions and operations for fuel gas combustion devices. (a) Fuel gas combustion devices subject to SO 2 or H 2 S limit. The owner or operator of a fuel...
40 CFR 60.107a - Monitoring of emissions and operations for fuel gas combustion devices.
Code of Federal Regulations, 2010 CFR
2010-07-01
... for fuel gas combustion devices. 60.107a Section 60.107a Protection of Environment ENVIRONMENTAL... Commenced After May 14, 2007 § 60.107a Monitoring of emissions and operations for fuel gas combustion devices. (a) Fuel gas combustion devices subject to SO 2 or H 2 S limit. The owner or operator of a fuel...
40 CFR 60.107a - Monitoring of emissions and operations for fuel gas combustion devices and flares.
Code of Federal Regulations, 2013 CFR
2013-07-01
... for fuel gas combustion devices and flares. 60.107a Section 60.107a Protection of Environment... combustion devices and flares. (a) Fuel gas combustion devices subject to SO2 or H2S limit and flares subject to H2S concentration requirements. The owner or operator of a fuel gas combustion device that is...
40 CFR 60.107a - Monitoring of emissions and operations for fuel gas combustion devices and flares.
Code of Federal Regulations, 2014 CFR
2014-07-01
... for fuel gas combustion devices and flares. 60.107a Section 60.107a Protection of Environment... combustion devices and flares. (a) Fuel gas combustion devices subject to SO2 or H2S limit and flares subject to H2S concentration requirements. The owner or operator of a fuel gas combustion device that is...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Control Device for Open Molding Operations 4 Table 4 to Subpart VVVV of Part 63 Protection of Environment...-on Control Device for Open Molding Operations As specified in §§ 63.5715(a) and 63.5725(f)(5), you... data according to § 63.5725(d); b. reducing the data to 3-hour block averages; and c. maintaining the 3...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Control Device for Open Molding Operations 4 Table 4 to Subpart VVVV of Part 63 Protection of Environment...-on Control Device for Open Molding Operations As specified in §§ 63.5715(a) and 63.5725(f)(5), you... data according to § 63.5725(d); b. reducing the data to 3-hour block averages; and c. maintaining the 3...
47 CFR 90.103 - Radiolocation Service.
Code of Federal Regulations, 2012 CFR
2012-10-01
... basis to the Government Radiolocation Service. (13) Operations in this band are limited to survey....403(f), and 90.429 of this part. (23) Devices designed to operate as field disturbance sensors on... part 15 of this chapter. (24) Devices designed to operate as field disturbance sensors on frequencies...
47 CFR 90.103 - Radiolocation Service.
Code of Federal Regulations, 2010 CFR
2010-10-01
... basis to the Government Radiolocation Service. (13) Operations in this band are limited to survey....403(f), and 90.429 of this part. (23) Devices designed to operate as field disturbance sensors on... part 15 of this chapter. (24) Devices designed to operate as field disturbance sensors on frequencies...
Code of Federal Regulations, 2014 CFR
2014-07-01
.... Halogenated Group 1 transfer operation vent stream for which you use a combustion device to control organic... your transfer operations. For each . . . You must. . . . 1. Group 1 transfer operation vent stream a... system to any combination of control devices (except a flare); or b. Reduce emissions of total organic...
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Halogenated Group 1 transfer operation vent stream for which you use a combustion device to control organic... your transfer operations. For each . . . You must. . . . 1. Group 1 transfer operation vent stream a... system to any combination of control devices (except a flare); or b. Reduce emissions of total organic...
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Halogenated Group 1 transfer operation vent stream for which you use a combustion device to control organic... your transfer operations. For each . . . You must. . . . 1. Group 1 transfer operation vent stream a... system to any combination of control devices (except a flare); or b. Reduce emissions of total organic...
NASA Astrophysics Data System (ADS)
Shurupov, A. V.; Shurupov, M. A.; Kozlov, A. A.; Kotov, A. V.
2016-11-01
This paper considers the possibility of creating on new physical principles a highspeed current-limiting device (CLD) for the networks with voltage of 110 kV, namely, on the basis of the explosive switching elements. The device is designed to limit the steady short-circuit current to acceptable values for the time does not exceed 3 ms at electric power facilities. The paper presents an analysis of the electrical circuit of CLD. The main features of the scheme are: a new high-speed switching element with high regenerating voltage; fusible switching element that enables to limit the overvoltage after sudden breakage of network of the explosive switch; non-inductive resistor with a high heat capacity and a special reactor with operating time less than 1 s. We analyzed the work of the CLD with help of special software PSPICE, which is based on the equivalent circuit of single-phase short circuit to ground in 110 kV network. Analysis of the equivalent circuit operation CLD shows its efficiency and determines the CLD as a perspective direction of the current-limiting devices of new generation.
NASA Technical Reports Server (NTRS)
Smith, R. A.
1979-01-01
Operational and physical requirements were investigated for a low-light-level viewing device to be used as a window-mounted optical sight for crew use in the pointing, navigating, stationkeeping, and docking of space vehicles to support space station operations and the assembly of large structures in space. A suitable prototype, obtained from a commercial vendor, was subjected to limited tests to determine the potential effectiveness of a proximity optical device in spacecraft operations. The constructional features of the device are discussed as well as concepts for its use. Tests results show that a proximity optical device is capable of performing low-light-level viewing services and will enhance manned spacecraft operations.
NASA Astrophysics Data System (ADS)
Muthukumaran, Packirisamy; Stiharu, Ion G.; Bhat, Rama B.
2003-10-01
This paper presents and applies the concept of micro-boundary conditioning to the design synthesis of microsystems in order to quantify the influence of inherent limitations of the fabrication process and the operating conditions on both static and dynamic behavior of microsystems. The predicted results on the static and dynamic behavior of a capacitive MEMS device, fabricated through MUMPs process, under the influence of the fabrication limitation and operating environment are presented along with the test results. The comparison between the predicted and experimental results shows a good agreement.
A 0.2 V Micro-Electromechanical Switch Enabled by a Phase Transition.
Dong, Kaichen; Choe, Hwan Sung; Wang, Xi; Liu, Huili; Saha, Bivas; Ko, Changhyun; Deng, Yang; Tom, Kyle B; Lou, Shuai; Wang, Letian; Grigoropoulos, Costas P; You, Zheng; Yao, Jie; Wu, Junqiao
2018-04-01
Micro-electromechanical (MEM) switches, with advantages such as quasi-zero leakage current, emerge as attractive candidates for overcoming the physical limits of complementary metal-oxide semiconductor (CMOS) devices. To practically integrate MEM switches into CMOS circuits, two major challenges must be addressed: sub 1 V operating voltage to match the voltage levels in current circuit systems and being able to deliver at least millions of operating cycles. However, existing sub 1 V mechanical switches are mostly subject to significant body bias and/or limited lifetimes, thus failing to meet both limitations simultaneously. Here 0.2 V MEM switching devices with ≳10 6 safe operating cycles in ambient air are reported, which achieve the lowest operating voltage in mechanical switches without body bias reported to date. The ultralow operating voltage is mainly enabled by the abrupt phase transition of nanolayered vanadium dioxide (VO 2 ) slightly above room temperature. The phase-transition MEM switches open possibilities for sub 1 V hybrid integrated devices/circuits/systems, as well as ultralow power consumption sensors for Internet of Things applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2D Crystal Semiconductors New Materials for GHz-THz Devices
2015-10-02
semiconductors are most promising for GHz-THz electronics. 3) Identify the major scattering mechanisms limiting mobility in 2D crystals towards high...Devices that do not operate on the traditional transistor mechanism exist today and operate below the SS limit. An example is a nanoelectromechanical...system (NEMS), which is the analog of a mechanical relay. Sub- stantial progress has been made in this area [14]. Due to mechanical moving parts, these
47 CFR 90.103 - Radiolocation Service.
Code of Federal Regulations, 2013 CFR
2013-10-01
... limited to survey operations using transmitters with a peak power not to exceed 5 watts into the antenna... requirements of §§ 90.403(c), 90.403(f), and 90.429 of this part. (23) Devices designed to operate as field... sensors as set forth in part 15 of this chapter. (24) Devices designed to operate as field disturbance...
47 CFR 90.103 - Radiolocation Service.
Code of Federal Regulations, 2014 CFR
2014-10-01
... limited to survey operations using transmitters with a peak power not to exceed 5 watts into the antenna... requirements of §§ 90.403(c), 90.403(f), and 90.429 of this part. (23) Devices designed to operate as field... sensors as set forth in part 15 of this chapter. (24) Devices designed to operate as field disturbance...
40 CFR 63.5715 - What operating limits must I meet?
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants for Boat Manufacturing Demonstrating Compliance for Open Molding Operations Controlled by Add-on Control Devices § 63.5715 What operating limits must I meet? (a) For open...
Nanoelectronics: Opportunities for future space applications
NASA Technical Reports Server (NTRS)
Frazier, Gary
1995-01-01
Further improvements in the performance of integrated electronics will eventually halt due to practical fundamental limits on our ability to downsize transistors and interconnect wiring. Avoiding these limits requires a revolutionary approach to switching device technology and computing architecture. Nanoelectronics, the technology of exploiting physics on the nanometer scale for computation and communication, attempts to avoid conventional limits by developing new approaches to switching, circuitry, and system integration. This presentation overviews the basic principles that operate on the nanometer scale that can be assembled into practical devices and circuits. Quantum resonant tunneling (RT) is used as the center-piece of the overview since RT devices already operate at high temperature (120 degrees C) and can be scaled, in principle, to a few nanometers in semiconductors. Near- and long-term applications of GaAs and silicon quantum devices are suggested for signal and information processing, memory, optoelectronics, and radio frequency (RF) communication.
Operations manual for the patient assist device. [to handle electrical appliances
NASA Technical Reports Server (NTRS)
Schrader, M. A.
1973-01-01
Quadriplegic patients and multiple amputee patients are almost totally dependent on nursing personnel for any activities or interests in which they participate. A patient assist device is reported which provides patient control over electrical devices in his environment. The patient operates three switches to acquire control over a desired electrical appliance. The type switches employed are chosen to conform to patient capabilities, even when such capabilities are as limited as eye or head movements. The switch operations are sensed and converted into command signals by the patient assist device to control ten electrical appliances simulataneously and independently.
Optical projectors simulate human eyes to establish operator's field of view
NASA Technical Reports Server (NTRS)
Beam, R. A.
1966-01-01
Device projects visual pattern limits of the field of view of an operator as his eyes are directed at a given point on a control panel. The device, which consists of two projectors, provides instant evaluation of visual ability at a point on a panel.
Code of Federal Regulations, 2014 CFR
2014-07-01
... operating limit by— 1. Thermal oxidizer The average combustion temperature in any 3-hour period must not fall below the combustion temperature limit established according to § 63.5725(d) a. Collecting the combustion temperature data according to § 63.5725(d); b. reducing the data to 3-hour block averages; and c...
Code of Federal Regulations, 2013 CFR
2013-07-01
... operating limit by— 1. Thermal oxidizer The average combustion temperature in any 3-hour period must not fall below the combustion temperature limit established according to § 63.5725(d) a. Collecting the combustion temperature data according to § 63.5725(d); b. reducing the data to 3-hour block averages; and c...
Code of Federal Regulations, 2012 CFR
2012-07-01
... operating limit by— 1. Thermal oxidizer The average combustion temperature in any 3-hour period must not fall below the combustion temperature limit established according to § 63.5725(d) a. Collecting the combustion temperature data according to § 63.5725(d); b. reducing the data to 3-hour block averages; and c...
Semiconductor diode laser material and devices with emission in visible region of the spectrum
NASA Technical Reports Server (NTRS)
Ladany, I.; Kressel, H.
1975-01-01
Two alloy systems, (AlGa)As and (InGa)P, were studied for their properties relevant to obtaining laser diode operation in the visible region of the spectrum. (AlGa)As was prepared by liquid-phase epitaxy (LPE) and (InGa)P was prepared both by vapor-phase epitaxy and by liquid-phase epitaxy. Various schemes for LPE growth were applied to (InGa)P, one of which was found to be capable of producing device material. All the InGaP device work was done using vapor-phase epitaxy. The most successful devices were fabricated in (AlGa)As using heterojunction structures. At room temperature, the large optical cavity design yielded devices lasing in the red (7000 A). Because of the relatively high threshold due to the basic band structure limitation in this alloy, practical laser diode operation is presently limited to about 7300 A. At liquid-nitrogen temperature, practical continuous-wave operation was obtained at a wavelength of 6500 to 6600 A, with power emission in excess of 50 mW. The lowest pulsed lasing wavelength is 6280 A. At 223 K, lasing was obtained at 6770 A, but with high threshold currents. The work dealing with CW operation at room temperature was successful with practical operation having been achieved to about 7800 A.
40 CFR 60.2706 - By what date must I conduct the initial air pollution control device inspection?
Code of Federal Regulations, 2012 CFR
2012-07-01
... air pollution control device inspection? 60.2706 Section 60.2706 Protection of Environment... pollution control device inspection? (a) The initial air pollution control device inspection must be... meeting the amended emission limitations. (b) Within 10 operating days following an air pollution control...
40 CFR 60.2706 - By what date must I conduct the initial air pollution control device inspection?
Code of Federal Regulations, 2014 CFR
2014-07-01
... air pollution control device inspection? 60.2706 Section 60.2706 Protection of Environment... pollution control device inspection? (a) The initial air pollution control device inspection must be... meeting the amended emission limitations. (b) Within 10 operating days following an air pollution control...
40 CFR 60.2706 - By what date must I conduct the initial air pollution control device inspection?
Code of Federal Regulations, 2013 CFR
2013-07-01
... air pollution control device inspection? 60.2706 Section 60.2706 Protection of Environment... pollution control device inspection? (a) The initial air pollution control device inspection must be... meeting the amended emission limitations. (b) Within 10 operating days following an air pollution control...
49 CFR 195.428 - Overpressure safety devices and overfill protection systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... months, but at least twice each calendar year, inspect and test each pressure limiting device, relief... reliability of operation for the service in which it is used. (b) In the case of relief valves on pressure breakout tanks containing highly volatile liquids, each operator shall test each valve at intervals not...
47 CFR 15.507 - Marketing of UWB equipment.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 1 2014-10-01 2014-10-01 false Marketing of UWB equipment. 15.507 Section 15... Operation § 15.507 Marketing of UWB equipment. In some cases, the operation of UWB devices is limited to... state or local government. The marketing of UWB devices must be directed solely to parties eligible to...
47 CFR 15.507 - Marketing of UWB equipment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 1 2011-10-01 2011-10-01 false Marketing of UWB equipment. 15.507 Section 15... Operation § 15.507 Marketing of UWB equipment. In some cases, the operation of UWB devices is limited to... state or local government. The marketing of UWB devices must be directed solely to parties eligible to...
47 CFR 15.507 - Marketing of UWB equipment.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 1 2013-10-01 2013-10-01 false Marketing of UWB equipment. 15.507 Section 15... Operation § 15.507 Marketing of UWB equipment. In some cases, the operation of UWB devices is limited to... state or local government. The marketing of UWB devices must be directed solely to parties eligible to...
47 CFR 15.507 - Marketing of UWB equipment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Marketing of UWB equipment. 15.507 Section 15... Operation § 15.507 Marketing of UWB equipment. In some cases, the operation of UWB devices is limited to... state or local government. The marketing of UWB devices must be directed solely to parties eligible to...
47 CFR 15.507 - Marketing of UWB equipment.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 1 2012-10-01 2012-10-01 false Marketing of UWB equipment. 15.507 Section 15... Operation § 15.507 Marketing of UWB equipment. In some cases, the operation of UWB devices is limited to... state or local government. The marketing of UWB devices must be directed solely to parties eligible to...
NASA Astrophysics Data System (ADS)
Ohdachi, S.; Watanabe, K. Y.; Tanaka, K.; Suzuki, Y.; Takemura, Y.; Sakakibara, S.; Du, X. D.; Bando, T.; Narushima, Y.; Sakamoto, R.; Miyazawa, J.; Motojima, G.; Morisaki, T.; LHD Experiment Group
2017-06-01
The central beta of the super-dense-core (SDC) plasma in the large helical device (LHD) is limited by a large scale MHD event called ‘core density collapse’ (CDC). The detailed measurement reveals that a new type of ballooning mode, quite localized in space and destabilized from the 3D nature of Heliotron devices, is the cause of the CDC. It is the first observation of an unstable mode in a region with global negative magnetic shear. Avoidance of the excitation of this mode is a key to expand the operational limit of the LHD.
Code of Federal Regulations, 2011 CFR
2011-07-01
... I do not use a wet scrubber, fabric filter, electrostatic precipitator, or activated carbon... I establish operating limits if I do not use a wet scrubber, fabric filter, electrostatic... emission limits? If you use an air pollution control device other than a wet scrubber, fabric filter...
Code of Federal Regulations, 2012 CFR
2012-07-01
... I do not use a wet scrubber, fabric filter, electrostatic precipitator, or activated carbon... I establish operating limits if I do not use a wet scrubber, fabric filter, electrostatic... emission limits? If you use an air pollution control device other than a wet scrubber, fabric filter...
Code of Federal Regulations, 2014 CFR
2014-07-01
... I do not use a wet scrubber, fabric filter, electrostatic precipitator, or activated carbon... I establish operating limits if I do not use a wet scrubber, fabric filter, electrostatic... emission limits? If you use an air pollution control device other than a wet scrubber, fabric filter...
Code of Federal Regulations, 2013 CFR
2013-07-01
... I do not use a wet scrubber, fabric filter, electrostatic precipitator, or activated carbon... I establish operating limits if I do not use a wet scrubber, fabric filter, electrostatic... emission limits? If you use an air pollution control device other than a wet scrubber, fabric filter...
Integrating medical devices in the operating room using service-oriented architectures.
Ibach, Bastian; Benzko, Julia; Schlichting, Stefan; Zimolong, Andreas; Radermacher, Klaus
2012-08-01
Abstract With the increasing documentation requirements and communication capabilities of medical devices in the operating room, the integration and modular networking of these devices have become more and more important. Commercial integrated operating room systems are mainly proprietary developments using usually proprietary communication standards and interfaces, which reduce the possibility of integrating devices from different vendors. To overcome these limitations, there is a need for an open standardized architecture that is based on standard protocols and interfaces enabling the integration of devices from different vendors based on heterogeneous software and hardware components. Starting with an analysis of the requirements for device integration in the operating room and the techniques used for integrating devices in other industrial domains, a new concept for an integration architecture for the operating room based on the paradigm of a service-oriented architecture is developed. Standardized communication protocols and interface descriptions are used. As risk management is an important factor in the field of medical engineering, a risk analysis of the developed concept has been carried out and the first prototypes have been implemented.
Josephson junction microwave amplifier in self-organized noise compression mode
Lähteenmäki, Pasi; Vesterinen, Visa; Hassel, Juha; Seppä, Heikki; Hakonen, Pertti
2012-01-01
The fundamental noise limit of a phase-preserving amplifier at frequency is the standard quantum limit . In the microwave range, the best candidates have been amplifiers based on superconducting quantum interference devices (reaching the noise temperature at 700 MHz), and non-degenerate parametric amplifiers (reaching noise levels close to the quantum limit at 8 GHz). We introduce a new type of an amplifier based on the negative resistance of a selectively damped Josephson junction. Noise performance of our amplifier is limited by mixing of quantum noise from Josephson oscillation regime down to the signal frequency. Measurements yield nearly quantum-limited operation, at 2.8 GHz, owing to self-organization of the working point. Simulations describe the characteristics of our device well and indicate potential for wide bandwidth operation. PMID:22355788
40 CFR 63.3100 - What are my general requirements for complying with this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... compliance with the operating limits for emission capture systems and add-on control devices required by § 63... maintain a log detailing the operation and maintenance of the emission capture systems, add-on control... add-on control device performance tests have been completed, as specified in § 63.3160. (f) If your...
40 CFR 63.3100 - What are my general requirements for complying with this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... be in compliance with the operating limits for emission capture systems and add-on control devices...) You must maintain a log detailing the operation and maintenance of the emission capture systems, add... capture system and add-on control device performance tests have been completed, as specified in § 63.3160...
40 CFR 63.3100 - What are my general requirements for complying with this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... compliance with the operating limits for emission capture systems and add-on control devices required by § 63... maintain a log detailing the operation and maintenance of the emission capture systems, add-on control... add-on control device performance tests have been completed, as specified in § 63.3160. (f) If your...
40 CFR 63.3100 - What are my general requirements for complying with this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... be in compliance with the operating limits for emission capture systems and add-on control devices...) You must maintain a log detailing the operation and maintenance of the emission capture systems, add... capture system and add-on control device performance tests have been completed, as specified in § 63.3160...
40 CFR 63.3100 - What are my general requirements for complying with this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... be in compliance with the operating limits for emission capture systems and add-on control devices...) You must maintain a log detailing the operation and maintenance of the emission capture systems, add... capture system and add-on control device performance tests have been completed, as specified in § 63.3160...
NASA Astrophysics Data System (ADS)
Lee, C. H.; Cho, J. H.; Park, S. J.; Kim, J. S.; On, Y. K.; Huh, J.
2015-10-01
The purpose of this study was to measure the radiation exposure to operator and patient during cardiac electrophysiology study, radiofrequency catheter ablation and cardiac device implantation procedures and to calculate the allowable number of cases per year. We carried out 9 electrophysiology studies, 40 radiofrequency catheter ablation and 11 cardiac device implantation procedures. To measure occupational radiation dose and dose-area product (DAP), 13 photoluminescence glass dosimeters were placed at eyes (inside and outside lead glass), thyroids (inside and outside thyroid collar), chest (inside and outside lead apron), wrists, genital of the operator (inside lead apron), and 6 of photoluminescence glass dosimeters were placed at eyes, thyroids, chest and genital of the patient. Exposure time and DAP values were 11.7 ± 11.8 min and 23.2 ± 26.2 Gy cm2 for electrophysiology study; 36.5 ± 42.1 min and 822.4 ± 125.5 Gy cm2 for radiofrequency catheter ablation; 16.2 ± 9.3 min and 27.8 ± 16.5 Gy cm2 for cardiac device implantation procedure, prospectively. 4591 electrophysiology studies can be conducted within the occupational exposure limit for the eyes (150 mSv), and 658-electrophysiology studies with radiofrequency catheter ablation can be carried out within the occupational exposure limit for the hands (500 mSv). 1654 cardiac device implantation procedure can be conducted within the occupational exposure limit for the eyes (150 mSv). The amounts of the operator and patient's radiation exposure were comparatively small. So, electrophysiology study, radio frequency catheter ablation and cardiac device implantation procedures are safe when performed with modern equipment and optimized protective radiation protect equipment.
Advanced development of double-injection, deep-impurity semiconductor switches
NASA Technical Reports Server (NTRS)
Hanes, M. H.
1987-01-01
Deep-impurity, double-injection devices, commonly refered to as (DI) squared devices, represent a class of semiconductor switches possessing a very high degree of tolerance to electron and neutron irradiation and to elevated temperature operation. These properties have caused them to be considered as attractive candidates for space power applications. The design, fabrication, and testing of several varieties of (DI) squared devices intended for power switching are described. All of these designs were based upon gold-doped silicon material. Test results, along with results of computer simulations of device operation, other calculations based upon the assumed mode of operation of (DI) squared devices, and empirical information regarding power semiconductor device operation and limitations, have led to the conculsion that these devices are not well suited to high-power applications. When operated in power circuitry configurations, they exhibit high-power losses in both the off-state and on-state modes. These losses are caused by phenomena inherent to the physics and material of the devices and cannot be much reduced by device design optimizations. The (DI) squared technology may, however, find application in low-power functions such as sensing, logic, and memory, when tolerance to radiation and temperature are desirable (especially is device performance is improved by incorporation of deep-level impurities other than gold.
Articulating feedstock delivery device
Jordan, Kevin
2013-11-05
A fully articulable feedstock delivery device that is designed to operate at pressure and temperature extremes. The device incorporates an articulating ball assembly which allows for more accurate delivery of the feedstock to a target location. The device is suitable for a variety of applications including, but not limited to, delivery of feedstock to a high-pressure reaction chamber or process zone.
40 CFR Table 2 to Subpart Nnnnn of... - Operating Limits
Code of Federal Regulations, 2011 CFR
2011-07-01
... vented to a control device. For each . . . You must . . . 1. Caustic scrubber or water scrubber/absorber a. Maintain the daily average scrubber inlet liquid or recirculating liquid flow rate, as appropriate, above the operating limit; andb. Maintain the daily average scrubber effluent pH within the...
40 CFR Table 2 to Subpart Nnnnn of... - Operating Limits
Code of Federal Regulations, 2010 CFR
2010-07-01
... vented to a control device. For each . . . You must . . . 1. Caustic scrubber or water scrubber/absorber a. Maintain the daily average scrubber inlet liquid or recirculating liquid flow rate, as appropriate, above the operating limit; andb. Maintain the daily average scrubber effluent pH within the...
Graham, R.H.
1962-09-01
A wholly mechanical compact control device is designed for automatically rendering the core of a fission reactor subcritical in response to core temperatures in excess of the design operating temperature limit. The control device comprises an expansible bellows interposed between the base of a channel in a reactor core and the inner end of a fuel cylinder therein which is normally resiliently urged inwardly. The bellows contains a working fluid which undergoes a liquid to vapor phase change at a temperature substantially equal to the design temperature limit. Hence, the bellows abruptiy expands at this limiting temperature to force the fuel cylinder outward and render the core subcritical. The control device is particularly applicable to aircraft propulsion reactor service. (AEC)
40 CFR 63.127 - Transfer operations provisions-monitoring requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... device (including but not limited to a thermocouple, infrared sensor, or an ultra-violet beam sensor... temperature monitoring device equipped with a continuous recorder is required. (i) Where an incinerator other than a catalytic incinerator is used, a temperature monitoring device shall be installed in the firebox...
40 CFR 63.127 - Transfer operations provisions-monitoring requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... device (including but not limited to a thermocouple, infrared sensor, or an ultra-violet beam sensor... temperature monitoring device equipped with a continuous recorder is required. (i) Where an incinerator other than a catalytic incinerator is used, a temperature monitoring device shall be installed in the firebox...
40 CFR 63.127 - Transfer operations provisions-monitoring requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... device (including but not limited to a thermocouple, infrared sensor, or an ultra-violet beam sensor... temperature monitoring device equipped with a continuous recorder is required. (i) Where an incinerator other than a catalytic incinerator is used, a temperature monitoring device shall be installed in the firebox...
Doocy, K R; Nelson, D A; Saunders, A B
2017-06-01
Advanced imaging modalities are becoming more widely available in veterinary cardiology, including the use of transesophageal echocardiography (TEE) during occlusion of patent ductus arteriosus (PDA) in dogs. The dog in this report had a complex history of attempted ligation and a large PDA that initially precluded device placement thereby limiting the options for PDA closure. Following a second thoracotomy and partial ligation, the morphology of the PDA was altered and device occlusion was an option. Angiographic assessment of the PDA was limited by the presence of hemoclips, and the direction of ductal flow related to the change in anatomy following ligature placement. Intra-operative TEE, in particular real-time three-dimensional imaging, was pivotal for assessing the PDA morphology, monitoring during the procedure, selecting the device size, and confirming device placement. The TEE images increased operator confidence that the size and location of the device were appropriate before release despite the unusual position. This report highlights the benefit of intra-operative TEE, in particular real-time three-dimensional imaging, for successful PDA occlusion in a complicated case. Copyright © 2017 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2013 CFR
2013-07-01
... CEMS must be installed at both the inlet and outlet of the control device. If you are meeting a requirement to limit the concentration of CO, the CEMS must be installed at the outlet of the control device... appropriate for the applicable limitation) at 15 percent oxygen or the equivalent CO2 concentration. (b) If...
Design and Simulation of an Electrothermal Actuator Based Rotational Drive
NASA Astrophysics Data System (ADS)
Beeson, Sterling; Dallas, Tim
2008-10-01
As a participant in the Micro and Nano Device Engineering (MANDE) Research Experience for Undergraduates program at Texas Tech University, I learned how MEMS devices operate and the limits of their operation. Using specialized AutoCAD-based design software and the ANSYS simulation program, I learned the MEMS fabrication process used at Sandia National Labs, the design limitations of this process, the abilities and drawbacks of micro devices, and finally, I redesigned a MEMS device called the Chevron Torsional Ratcheting Actuator (CTRA). Motion is achieved through electrothermal actuation. The chevron (bent-beam) actuators cause a ratcheting motion on top of a hub-less gear so that as voltage is applied the CTRA spins. The voltage applied needs to be pulsed and the frequency of the pulses determine the angular frequency of the device. The main objective was to design electromechanical structures capable of transforming the electrical signals into mechanical motion without overheating. The design was optimized using finite element analysis in ANSYS allowing multi-physics simulations of our model system.
Dual Transition Edge Sensor Bolometer for Enhanced Dynamic Range
NASA Technical Reports Server (NTRS)
Chervenak, J. A.; Benford, D. J.; Moseley, S. H.; Irwin, K. D.
2004-01-01
Broadband surveys at the millimeter and submillimeter wavelengths will require bolometers that can reach new limits of sensitivity and also operate under high background conditions. To address this need, we present results on a dual transition edge sensor (TES) device with two operating modes: one for low background, ultrasensitive detection and one for high background, enhanced dynamic range detection. The device consists of a detector element with two transition temperatures (T(sub c)) of 0.25 and 0.51 K located on the same micromachined, thermally isolated membrane structure. It can be biased on either transition, and features phonon-limited noise performance at the lower T(sub c). We measure noise performance on the lower transition 7 x 10(exp -18) W/rt(Hz) and the bias power on the upper transition of 12.5 pW, giving a factor of 10 enhancement of the dynamic range for the device. We discuss the biasable range of this type of device and present a design concept to optimize utility of the device.
Hydrogen peroxide concentration by pervaporation of a ternary liquid solution in microfluidics.
Ziemecka, Iwona; Haut, Benoît; Scheid, Benoit
2015-01-21
Pervaporation in a microfluidic device is performed on liquid ternary solutions of hydrogen peroxide-water-methanol in order to concentrate hydrogen peroxide (H2O2) by removing methanol. The quantitative analysis of the pervaporation of solutions with different initial compositions is performed, varying the operating temperature of the microfluidic device. Experimental results together with a mathematical model of the separation process are used to understand the effect of the operating conditions on the microfluidic device efficiency. The parameters influencing significantly the performance of pervaporation in the microfluidic device are determined and the limitations of the process are discussed. For the analysed system, the operating temperature of the chip has to be below the temperature at which H2O2 decomposes. Therefore, the choice of an adequate reduced operating pressure is required, depending on the expected separation efficiency.
40 CFR 63.3321 - What operating limits must I meet?
Code of Federal Regulations, 2012 CFR
2012-07-01
...) National Emission Standards for Hazardous Air Pollutants: Paper and Other Web Coating Emission Standards and Compliance Dates § 63.3321 What operating limits must I meet? (a) For any web coating line or group of web coating lines for which you use add-on control devices, unless you use a solvent recovery...
40 CFR 63.3321 - What operating limits must I meet?
Code of Federal Regulations, 2013 CFR
2013-07-01
...) National Emission Standards for Hazardous Air Pollutants: Paper and Other Web Coating Emission Standards and Compliance Dates § 63.3321 What operating limits must I meet? (a) For any web coating line or group of web coating lines for which you use add-on control devices, unless you use a solvent recovery...
40 CFR 63.3321 - What operating limits must I meet?
Code of Federal Regulations, 2014 CFR
2014-07-01
...) National Emission Standards for Hazardous Air Pollutants: Paper and Other Web Coating Emission Standards and Compliance Dates § 63.3321 What operating limits must I meet? (a) For any web coating line or group of web coating lines for which you use add-on control devices, unless you use a solvent recovery...
Thermodynamic limits to the efficiency of solar energy conversion by quantum devices
NASA Technical Reports Server (NTRS)
Buoncristiani, A. M.; Byvik, C. E.; Smith, B. T.
1981-01-01
The second law of thermodynamics imposes a strict limitation to the energy converted from direct solar radiation to useful work by a quantum device. This limitation requires that the amount of energy converted to useful work (energy in any form other than heat) can be no greater than the change in free energy of the radiation fields. Futhermore, in any real energy conversion device, not all of this available free energy in the radiation field can be converted to work because of basic limitations inherent in the device itself. A thermodynamic analysis of solar energy conversion by a completely general prototypical quantum device is presented. This device is completely described by two parameters, its operating temperature T sub R and the energy threshold of its absorption spectrum. An expression for the maximum thermodynamic efficiency of a quantum solar converter was derived in terms of these two parameters and the incident radiation spectrum. Efficiency curves for assumed solar spectral irradiance corresponding to air mass zero and air mass 1.5 are presented.
Operation bandwidth optimization of photonic differentiators.
Yan, Siqi; Zhang, Yong; Dong, Jianji; Zheng, Aoling; Liao, Shasha; Zhou, Hailong; Wu, Zhao; Xia, Jinsong; Zhang, Xinliang
2015-07-27
We theoretically investigate the operation bandwidth limitation of the photonic differentiator including the upper limitation, which is restrained by the device operation bandwidth and the lower limitation, which is restrained by the energy efficiency (EE) and detecting noise level. Taking the silicon photonic crystal L3 nano-cavity (PCN) as an example, for the first time, we experimentally demonstrate that the lower limitation of the operation bandwidth does exist and differentiators with different bandwidths have significantly different acceptable pulse width range of input signals, which are consistent to the theoretical prediction. Furthermore, we put forward a novel photonic differentiator scheme employing cascaded PCNs with different Q factors, which is likely to expand the operation bandwidth range of photonic differentiator dramatically.
Applications catalog of pyrotechnically actuated devices/systems
NASA Technical Reports Server (NTRS)
Seeholzer, Thomas L.; Smith, Floyd Z.; Eastwood, Charles W.; Steffes, Paul R.
1995-01-01
A compilation of basic information on pyrotechnically actuated devices/systems used in NASA aerospace and aeronautic applications was formatted into a catalog. The intent is to provide (1) a quick reference digest of the types of operational pyro mechanisms and (2) a source of contacts for further details. Data on these items was furnished by the NASA Centers that developed and/or utilized such devices to perform specific functions on spacecraft, launch vehicles, aircraft, and ground support equipment. Information entries include an item title, user center name, commercial contractor/vendor, identifying part number(s), a basic figure, briefly described purpose and operation, previous usage, and operational limits/requirements.
NASA Technical Reports Server (NTRS)
Doggett, William R.; Roithmayr, Carlos M.; Dorsey, John T.; Jones, Thomas C.; Shen, Haijun; Seywald, Hans; King, Bruce D.; Mikulas, Martin M., Jr.
2009-01-01
Devices for lifting, translating and precisely placing payloads are critical for efficient Earth-based construction operations. Both recent and past studies have demonstrated that devices with similar functionality will be needed to support lunar outpost operations. Although several designs have been developed for Earth based applications, these devices lack unique design characteristics necessary for transport to and use on the harsh lunar surface. These design characteristics include: a) lightweight components, b) compact packaging for launch, c) automated deployment, d) simple in-field reconfiguration and repair, and e) support for tele-operated or automated operations. Also, because the cost to transport mass to the lunar surface is very high, the number of devices that can be dedicated to surface operations will be limited. Thus, in contrast to Earth-based construction, where many single-purpose devices dominate a construction site, a lunar outpost will require a limited number of versatile devices that provide operational benefit from initial construction through sustained operations. The first generation test-bed of a new high performance device, the Lunar Surface Manipulation System (LSMS) has been designed, built and field tested. The LSMS has many unique features resulting in a mass efficient solution to payload handling on the lunar surface. Typically, the LSMS device mass is estimated at approximately 3% of the mass of the heaviest payload lifted at the tip, or 1.8 % of the mass of the heaviest mass lifted at the elbow or mid-span of the boom for a high performance variant incorporating advanced structural components. Initial operational capabilities of the LSMS were successfully demonstrated during field tests at Moses Lake, Washington using a tele-operated approach. Joint angle sensors have been developed for the LSMS to improve operator situational awareness. These same sensors provide the necessary information to support fully automated operations, greatly expanding the operational versatility of the LSMS. This paper develops the equations describing the forward and inverse relation between LSMS joint angles and Cartesian coordinates of the LSMS tip. These equations allow a variety of schemes to be used to maneuver the LSMS to optimize the maneuver. One such scheme will be described in detail that eliminates undesirable swinging of the payload at the conclusion of a maneuver, even when the payload is suspended from a passive rigid link. The swinging is undesirable when performing precision maneuvers, such as aligning an object for mating or positioning a camera. Use of the equations described here enables automated control of the LSMS greatly improving its operational versatility.
Analysis of Time Dependent Electric Field Degradation in AlGaN/GaN HEMTs (POSTPRINT)
2014-10-01
identifying and understanding the failure mechanisms that limit the safe operating area of GaN HEMTs. 15. SUBJECT TERMS aluminum gallium nitride... gallium nitride, HEMTs, semiconductor device reliability, transistors 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER...area of GaN HEMTs. Index Terms— Aluminum gallium nitride, gallium nitride, HEMTs, semiconductor device reliability, transistors. I. INTRODUCTION A
Inter-operator and inter-device agreement and reliability of the SEM Scanner.
Clendenin, Marta; Jaradeh, Kindah; Shamirian, Anasheh; Rhodes, Shannon L
2015-02-01
The SEM Scanner is a medical device designed for use by healthcare providers as part of pressure ulcer prevention programs. The objective of this study was to evaluate the inter-rater and inter-device agreement and reliability of the SEM Scanner. Thirty-one (31) volunteers free of pressure ulcers or broken skin at the sternum, sacrum, and heels were assessed with the SEM Scanner. Each of three operators utilized each of three devices to collect readings from four anatomical sites (sternum, sacrum, left and right heels) on each subject for a total of 108 readings per subject collected over approximately 30 min. For each combination of operator-device-anatomical site, three SEM readings were collected. Inter-operator and inter-device agreement and reliability were estimated. Over the course of this study, more than 3000 SEM Scanner readings were collected. Agreement between operators was good with mean differences ranging from -0.01 to 0.11. Inter-operator and inter-device reliability exceeded 0.80 at all anatomical sites assessed. The results of this study demonstrate the high reliability and good agreement of the SEM Scanner across different operators and different devices. Given the limitations of current methods to prevent and detect pressure ulcers, the SEM Scanner shows promise as an objective, reliable tool for assessing the presence or absence of pressure-induced tissue damage such as pressure ulcers. Copyright © 2015 Bruin Biometrics, LLC. Published by Elsevier Ltd.. All rights reserved.
Review on open source operating systems for internet of things
NASA Astrophysics Data System (ADS)
Wang, Zhengmin; Li, Wei; Dong, Huiliang
2017-08-01
Internet of Things (IoT) is an environment in which everywhere and every device became smart in a smart world. Internet of Things is growing vastly; it is an integrated system of uniquely identifiable communicating devices which exchange information in a connected network to provide extensive services. IoT devices have very limited memory, computational power, and power supply. Traditional operating systems (OS) have no way to meet the needs of IoT systems. In this paper, we thus analyze the challenges of IoT OS and survey applicable open source OSs.
40 CFR 63.3321 - What operating limits must I meet?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Standards for Hazardous Air Pollutants: Paper and Other Web Coating Emission Standards and Compliance Dates § 63.3321 What operating limits must I meet? (a) For any web coating line or group of web coating lines for which you use add-on control devices, unless you use a solvent recovery system and conduct a...
Code of Federal Regulations, 2013 CFR
2013-07-01
... record the desorption gas inlet temperature at least once every 15 minutes during each of the three runs... and record the average desorption gas inlet temperature. The minimum operating limit for the concentrator is 8 degrees Celsius (15 degrees Fahrenheit) below the average desorption gas inlet temperature...
Code of Federal Regulations, 2012 CFR
2012-07-01
... record the desorption gas inlet temperature at least once every 15 minutes during each of the three runs... and record the average desorption gas inlet temperature. The minimum operating limit for the concentrator is 8 degrees Celsius (15 degrees Fahrenheit) below the average desorption gas inlet temperature...
Code of Federal Regulations, 2014 CFR
2014-07-01
... record the desorption gas inlet temperature at least once every 15 minutes during each of the three runs... and record the average desorption gas inlet temperature. The minimum operating limit for the concentrator is 8 degrees Celsius (15 degrees Fahrenheit) below the average desorption gas inlet temperature...
Code of Federal Regulations, 2011 CFR
2011-07-01
... record the desorption gas inlet temperature at least once every 15 minutes during each of the three runs... and record the average desorption gas inlet temperature. The minimum operating limit for the concentrator is 8 degrees Celsius (15 degrees Fahrenheit) below the average desorption gas inlet temperature...
Toroidal band limiter for a plasma containment device
Kelley, George G.
1978-01-01
This invention relates to a toroidal plasma confinement device having poloidal and toroidal magnetic fields for confining a toroidal plasma column with a plasma current induced therein along an endless, circular equilibrium axis in a torus vacuum cavity wherein the improvement comprises the use of a toroidal plasma band limiter mounted within the vacuum cavity in such a manner as to ensure that the plasma energy is distributed more uniformly over the limiter surface thereby avoiding intense local heating of the limiter while at the same time substantially preventing damage to the plasma containment wall of the cavity by the energetic particles diffusing out from the confined plasma. A plurality of poloidal plasma ring limiters are also utilized for containment wall protection during any disruptive instability that might occur during operation of the device.
NASA Astrophysics Data System (ADS)
Liu, Yu-Hsin; Yan, Lujiang; Zhang, Alex Ce; Hall, David; Niaz, Iftikhar Ahmad; Zhou, Yuchun; Sham, L. J.; Lo, Yu-Hwa
2015-08-01
Signal amplification, performed by transistor amplifiers with its merit rated by the efficiency and noise characteristics, is ubiquitous in all electronic systems. Because of transistor thermal noise, an intrinsic signal amplification mechanism, impact ionization was sought after to complement the limits of transistor amplifiers. However, due to the high operation voltage (30-200 V typically), low power efficiency, limited scalability, and, above all, rapidly increasing excess noise with amplification factor, impact ionization has been out of favor for most electronic systems except for a few applications such as avalanche photodetectors and single-photon Geiger detectors. Here, we report an internal signal amplification mechanism based on the principle of the phonon-assisted cycling excitation process (CEP). Si devices using this concept show ultrahigh gain, low operation voltage, CMOS compatibility, and, above all, quantum limit noise performance that is 30 times lower than devices using impact ionization. Established on a unique physical effect of attractive properties, CEP-based devices can potentially revolutionize the fields of semiconductor electronics.
On-demand acoustic droplet splitting and steering in a disposable microfluidic chip.
Park, Jinsoo; Jung, Jin Ho; Park, Kwangseok; Destgeer, Ghulam; Ahmed, Husnain; Ahmad, Raheel; Sung, Hyung Jin
2018-01-30
On-chip droplet splitting is one of the fundamental droplet-based microfluidic unit operations to control droplet volume after production and increase operational capability, flexibility, and throughput. Various droplet splitting methods have been proposed, and among them the acoustic droplet splitting method is promising because of its label-free operation without any physical or thermal damage to droplets. Previous acoustic droplet splitting methods faced several limitations: first, they employed a cross-type acoustofluidic device that precluded multichannel droplet splitting; second, they required irreversible bonding between a piezoelectric substrate and a microfluidic chip, such that the fluidic chip was not replaceable. Here, we present a parallel-type acoustofluidic device with a disposable microfluidic chip to address the limitations of previous acoustic droplet splitting devices. In the proposed device, an acoustic field is applied in the direction opposite to the flow direction to achieve multichannel droplet splitting and steering. A disposable polydimethylsiloxane microfluidic chip is employed in the developed device, thereby removing the need for permanent bonding and improving the flexibility of the droplet microfluidic device. We experimentally demonstrated on-demand acoustic droplet bi-splitting and steering with precise control over the droplet splitting ratio, and we investigated the underlying physical mechanisms of droplet splitting and steering based on Laplace pressure and ray acoustics analyses, respectively. We also demonstrated droplet tri-splitting to prove the feasibility of multichannel droplet splitting. The proposed on-demand acoustic droplet splitting device enables on-chip droplet volume control in various droplet-based microfluidic applications.
Battery operated preconcentration-assisted lateral flow assay.
Kim, Cheonjung; Yoo, Yong Kyoung; Han, Sung Il; Lee, Junwoo; Lee, Dohwan; Lee, Kyungjae; Hwang, Kyo Seon; Lee, Kyu Hyoung; Chung, Seok; Lee, Jeong Hoon
2017-07-11
Paper-based analytical devices (e.g. lateral flow assays) are highly advantageous as portable diagnostic systems owing to their low costs and ease of use. Because of their low sensitivity and detection limits for biomolecules, these devices have several limitations in applications for real-field diagnosis. Here, we demonstrate a paper-based preconcentration enhanced lateral flow assay using a commercial β-hCG-based test. Utilizing a simple 9 V battery operation with a low power consumption of approximately 81 μW, we acquire a 25-fold preconcentration factor, demonstrating a clear sensitivity enhancement in the colorimetric lateral flow assay; consequently, clear colors are observed in a rapid kit test line, which cannot be monitored without preconcentration. This device can also facilitate a semi-quantitative platform using the saturation value and/or color intensity in both paper-based colorimetric assays and smartphone-based diagnostics.
40 CFR 60.5170 - What operating limits and requirements must I meet and by when?
Code of Federal Regulations, 2011 CFR
2011-07-01
... wet scrubber, fabric filter, electrostatic precipitator, or activated carbon injection are listed in... pollution control device. (c) If you use a fabric filter to comply with the emission limits, you must install the bag leak detection system specified in §§ 60.5200(b) and 60.5225(b)(3)(i) and operate the bag...
Code of Federal Regulations, 2010 CFR
2010-07-01
... using a wet scrubber to comply with the emission limitations under § 60.2915, you must install... must include the date, time, and duration of the use of the bypass stack. (c) If you are using a method or air pollution control device other than a wet scrubber to comply with the emission limitations...
Code of Federal Regulations, 2010 CFR
2010-04-01
... device operates using a different fundamental scientific technology than a legally marketed device in... cardiovascular diseases; (5) For use in diabetes management; (6) For identifying or inferring the identity of a...
Code of Federal Regulations, 2010 CFR
2010-04-01
... device operates using a different fundamental scientific technology than a legally marketed device in... cardiovascular diseases; (5) For use in diabetes management; (6) For identifying or inferring the identity of a...
Code of Federal Regulations, 2010 CFR
2010-04-01
... device operates using a different fundamental scientific technology than a legally marketed device in... cardiovascular diseases; (5) For use in diabetes management; (6) For identifying or inferring the identity of a...
Code of Federal Regulations, 2010 CFR
2010-04-01
... device operates using a different fundamental scientific technology than a legally marketed device in... cardiovascular diseases; (5) For use in diabetes management; (6) For identifying or inferring the identity of a...
Code of Federal Regulations, 2010 CFR
2010-04-01
... device operates using a different fundamental scientific technology than a legally marketed device in... cardiovascular diseases; (5) For use in diabetes management; (6) For identifying or inferring the identity of a...
Code of Federal Regulations, 2010 CFR
2010-04-01
... device operates using a different fundamental scientific technology than a legally marketed device in... cardiovascular diseases; (5) For use in diabetes management; (6) For identifying or inferring the identity of a...
Code of Federal Regulations, 2010 CFR
2010-04-01
... device operates using a different fundamental scientific technology than a legally marketed device in... cardiovascular diseases; (5) For use in diabetes management; (6) For identifying or inferring the identity of a...
Code of Federal Regulations, 2010 CFR
2010-04-01
... device operates using a different fundamental scientific technology than a legally marketed device in... cardiovascular diseases; (5) For use in diabetes management; (6) For identifying or inferring the identity of a...
Code of Federal Regulations, 2010 CFR
2010-04-01
... device operates using a different fundamental scientific technology than a legally marketed device in... cardiovascular diseases; (5) For use in diabetes management; (6) For identifying or inferring the identity of a...
Power Electronics Thermal Management Research: Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreno, Gilberto
The objective for this project is to develop thermal management strategies to enable efficient and high-temperature wide-bandgap (WBG)-based power electronic systems (e.g., emerging inverter and DC-DC converter). Reliable WBG devices are capable of operating at elevated temperatures (≥ 175 °Celsius). However, packaging WBG devices within an automotive inverter and operating them at higher junction temperatures will expose other system components (e.g., capacitors and electrical boards) to temperatures that may exceed their safe operating limits. This creates challenges for thermal management and reliability. In this project, system-level thermal analyses are conducted to determine the effect of elevated device temperatures on invertermore » components. Thermal modeling work is then conducted to evaluate various thermal management strategies that will enable the use of highly efficient WBG devices with automotive power electronic systems.« less
47 CFR 15.243 - Operation in the band 890-940 MHz.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Operation in the band 890-940 MHz. 15.243 Section 15.243 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Intentional Radiators Radiated Emission Limits, Additional Provisions § 15.243 Operation in the band 890-940...
47 CFR 15.241 - Operation in the band 174-216 MHz.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Operation in the band 174-216 MHz. 15.241 Section 15.241 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Intentional Radiators Radiated Emission Limits, Additional Provisions § 15.241 Operation in the band 174-216...
47 CFR 15.209 - Radiated emission limits; general requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
...), fundamental emissions from intentional radiators operating under this section shall not be located in the... fundamental emission. For intentional radiators which operate under the provisions of other sections within... incorporated digital device. (g) Perimeter protection systems may operate in the 54-72 MHz and 76-88 MHz bands...
Doering, Stefan; Wachowiak, Andre; Roetz, Hagen; Eckl, Stefan; Mikolajick, Thomas
2018-06-01
Scanning spreading resistance microscopy (SSRM) with its high spatial resolution and high dynamic signal range is a powerful tool for two-dimensional characterization of semiconductor dopant areas. However, the application of the method is limited to devices in equilibrium condition, as the investigation of actively operated devices would imply potential differences within the device, whereas SSRM relies on a constant voltage difference between sample surface and probe tip. Furthermore, the standard preparation includes short circuiting of all device components, limiting applications to devices in equilibrium condition. In this work scanning dynamic voltage spreading resistance microscopy (SDVSRM), a new SSRM based two pass atomic force microscopy (AFM) technique is introduced, overcoming these limitations. Instead of short circuiting the samples during preparation, wire bond devices are used allowing for active control of the individual device components. SDVSRM consists of two passes. In the first pass the local sample surface voltage dependent on the dc biases applied to the components of the actively driven device is measured as in scanning voltage microscopy (SVM). The local spreading resistance is measured within the second pass, in which the afore obtained local surface voltage is used to dynamically adjust the terminal voltages of the device under test. This is done in a way that the local potential difference across the nano-electrical contact matches the software set SSRM measurement voltage, and at the same time, the internal voltage differences within the device under test are maintained. In this work the proof of the concept could be demonstrated by obtaining spreading resistance data of an actively driven photodiode test device. SDVSRM adds a higher level of flexibility in general to SSRM, as occurring differences in cross section surface voltage are taken into account. These differences are immanent for actively driven devices, but can also be present at standard, short circuited samples. Therefore, SDVSRM could improve the characterization under equilibrium conditions as well. Copyright © 2018. Published by Elsevier B.V.
40 CFR Table 2 to Subpart Fffff of... - Initial Compliance With Emission and Opacity Limits
Code of Federal Regulations, 2010 CFR
2010-07-01
... metallurgy operation at a new or existing BOPF shop The average concentration of particulate matter from a control device applied to emissions from a ladle metallurgy operation, measured according to the...
Innovative phase shifter for pulse tube operating below 10 K
NASA Astrophysics Data System (ADS)
Duval, Jean-Marc; Charles, Ivan; Daniel, Christophe; André, Jérôme
2016-09-01
Stirling type pulse tubes are classically based on the use of an inertance phase shifter to optimize their cooling power. The limitations of the phase shifting capabilities of these inertances have been pointed out in various studies. These limitations are particularly critical for low temperature operation, typically below about 50 K. An innovative phase shifter using an inertance tube filled with liquid, or fluid with high density or low viscosity, and separated by a sealed metallic diaphragm has been conceived and tested. This device has been characterized and validated on a dedicated test bench. Operation on a 50-80 K pulse tube cooler and on a low temperature (below 8 K) pulse tube cooler have been demonstrated and have validated the device in operation. These developments open the door for efficient and compact low temperature Stirling type pulse tube coolers. The possibility of long life operation has been experimentally verified and a design for space applications is proposed.
Increasing throughput of multiplexed electrical bus in pipe-lined architecture
Asaad, Sameh; Brezzo, Bernard V; Kapur, Mohit
2014-05-27
Techniques are disclosed for increasing the throughput of a multiplexed electrical bus by exploiting available pipeline stages of a computer or other system. For example, a method for increasing a throughput of an electrical bus that connects at least two devices in a system comprises introducing at least one signal hold stage in a signal-receiving one of the two devices, such that a maximum frequency at which the two devices are operated is not limited by a number of cycles of an operating frequency of the electrical bus needed for a signal to propagate from a signal-transmitting one of the two devices to the signal-receiving one of the two devices. Preferably, the signal hold stage introduced in the signal-receiving one of the two devices is a pipeline stage re-allocated from the signal-transmitting one of the two devices.
Modeling of planar varactor frequency multiplier devices with blocking barriers
NASA Technical Reports Server (NTRS)
Lieneweg, Udo; Tolmunen, T. J.; Frerking, Margaret A.; Maserjian, Joseph
1992-01-01
Models for optimization of planar frequency triplers with symmetrical C-V curves are presented. Role and limitation of various blocking barriers (oxide, Mott, heterojunction) are discussed. Devices with undoped drift regions (BIN) have moderate efficiency but a broad range of power operation, whereas devices with doped drift regions (BNN) have high efficiency in a narrow power window. In particular, an upper power limit of the BNN is caused by electron velocity saturation. Implementations in SiO2/Si and AlAs/GaAs and means for increasing the power of BNN structures are considered.
Modeling of planar varactor frequency multiplier devices with blocking barriers
NASA Astrophysics Data System (ADS)
Lieneweg, Udo; Tolmunen, T. J.; Frerking, Margaret A.; Maserjian, Joseph
1992-05-01
Models for optimization of planar frequency triplers with symmetrical C-V curves are presented. Role and limitation of various blocking barriers (oxide, Mott, heterojunction) are discussed. Devices with undoped drift regions (BIN) have moderate efficiency but a broad range of power operation, whereas devices with doped drift regions (BNN) have high efficiency in a narrow power window. In particular, an upper power limit of the BNN is caused by electron velocity saturation. Implementations in SiO2/Si and AlAs/GaAs and means for increasing the power of BNN structures are considered.
Selected Issues in DoD’s Radio Frequency Identification (RFID) Implementation
2006-04-01
Evaluation of human exposure to electromagnetic fields from devices operating in the frequency range 0 Hz to 10 GHz, used in Electronic...standard for human exposure to RF Signal, 3 kHz-300 GHz BS EN 50364 Limitation of human exposure to electromagnetic fields from devices operating in the...Management and DoD Explosives Safety Board, and DoDD 6055.9-STD, DoD Ammunition and Explosives Safety Standards. Exposure of people to electromagnetic
Code of Federal Regulations, 2010 CFR
2010-04-01
... or Width of a Commercial Motor Vehicle D Appendix D to Part 658 Highways FEDERAL HIGHWAY... DESIGNATIONS-LENGTH, WIDTH AND WEIGHT LIMITATIONS Pt. 658, App. D Appendix D to Part 658—Devices That Are... operations; (c) Aerodynamic devices, air deflector; (d) Air compressor; (e) Certificate holder (manifest box...
Code of Federal Regulations, 2013 CFR
2013-10-01
... control operator. On-track roadway maintenance machine means a self-propelled, rail-mounted, non-highway... the workplace and who is authorized to take prompt corrective measures to eliminate them. Control... a control operator. Deceleration device means any mechanism, including, but not limited to, rope...
NASA Astrophysics Data System (ADS)
Münzenrieder, Niko; Salvatore, Giovanni A.; Petti, Luisa; Zysset, Christoph; Büthe, Lars; Vogt, Christian; Cantarella, Giuseppe; Tröster, Gerhard
2014-12-01
In recent years new forms of electronic devices such as electronic papers, flexible displays, epidermal sensors, and smart textiles have become reality. Thin-film transistors (TFTs) are the basic blocks of the circuits used in such devices and need to operate above 100 MHz to efficiently treat signals in RF systems and address pixels in high resolution displays. Beyond the choice of the semiconductor, i.e., silicon, graphene, organics, or amorphous oxides, the junctionless nature of TFTs and its geometry imply some limitations which become evident and important in devices with scaled channel length. Furthermore, the mechanical instability of flexible substrates limits the feature size of flexible TFTs. Contact resistance and overlapping capacitance are two parasitic effects which limit the transit frequency of transistors. They are often considered independent, while a deeper analysis of TFTs geometry imposes to handle them together; in fact, they both depend on the overlapping length (LOV) between source/drain and the gate contacts. Here, we conduct a quantitative analysis based on a large number of flexible ultra-scaled IGZO TFTs. Devices with three different values of overlap length and channel length down to 0.5 μm are fabricated to experimentally investigate the scaling behavior of the transit frequency. Contact resistance and overlapping capacitance depend in opposite ways on LOV. These findings establish routes for the optimization of the dimension of source/drain contact pads and suggest design guidelines to achieve megahertz operation in flexible IGZO TFTs and circuits.
Wavelet library for constrained devices
NASA Astrophysics Data System (ADS)
Ehlers, Johan Hendrik; Jassim, Sabah A.
2007-04-01
The wavelet transform is a powerful tool for image and video processing, useful in a range of applications. This paper is concerned with the efficiency of a certain fast-wavelet-transform (FWT) implementation and several wavelet filters, more suitable for constrained devices. Such constraints are typically found on mobile (cell) phones or personal digital assistants (PDA). These constraints can be a combination of; limited memory, slow floating point operations (compared to integer operations, most often as a result of no hardware support) and limited local storage. Yet these devices are burdened with demanding tasks such as processing a live video or audio signal through on-board capturing sensors. In this paper we present a new wavelet software library, HeatWave, that can be used efficiently for image/video processing/analysis tasks on mobile phones and PDA's. We will demonstrate that HeatWave is suitable for realtime applications with fine control and range to suit transform demands. We shall present experimental results to substantiate these claims. Finally this library is intended to be of real use and applied, hence we considered several well known and common embedded operating system platform differences; such as a lack of common routines or functions, stack limitations, etc. This makes HeatWave suitable for a range of applications and research projects.
Multistate Memristive Tantalum Oxide Devices for Ternary Arithmetic
Kim, Wonjoo; Chattopadhyay, Anupam; Siemon, Anne; Linn, Eike; Waser, Rainer; Rana, Vikas
2016-01-01
Redox-based resistive switching random access memory (ReRAM) offers excellent properties to implement future non-volatile memory arrays. Recently, the capability of two-state ReRAMs to implement Boolean logic functionality gained wide interest. Here, we report on seven-states Tantalum Oxide Devices, which enable the realization of an intrinsic modular arithmetic using a ternary number system. Modular arithmetic, a fundamental system for operating on numbers within the limit of a modulus, is known to mathematicians since the days of Euclid and finds applications in diverse areas ranging from e-commerce to musical notations. We demonstrate that multistate devices not only reduce the storage area consumption drastically, but also enable novel in-memory operations, such as computing using high-radix number systems, which could not be implemented using two-state devices. The use of high radix number system reduces the computational complexity by reducing the number of needed digits. Thus the number of calculation operations in an addition and the number of logic devices can be reduced. PMID:27834352
Multistate Memristive Tantalum Oxide Devices for Ternary Arithmetic.
Kim, Wonjoo; Chattopadhyay, Anupam; Siemon, Anne; Linn, Eike; Waser, Rainer; Rana, Vikas
2016-11-11
Redox-based resistive switching random access memory (ReRAM) offers excellent properties to implement future non-volatile memory arrays. Recently, the capability of two-state ReRAMs to implement Boolean logic functionality gained wide interest. Here, we report on seven-states Tantalum Oxide Devices, which enable the realization of an intrinsic modular arithmetic using a ternary number system. Modular arithmetic, a fundamental system for operating on numbers within the limit of a modulus, is known to mathematicians since the days of Euclid and finds applications in diverse areas ranging from e-commerce to musical notations. We demonstrate that multistate devices not only reduce the storage area consumption drastically, but also enable novel in-memory operations, such as computing using high-radix number systems, which could not be implemented using two-state devices. The use of high radix number system reduces the computational complexity by reducing the number of needed digits. Thus the number of calculation operations in an addition and the number of logic devices can be reduced.
Multistate Memristive Tantalum Oxide Devices for Ternary Arithmetic
NASA Astrophysics Data System (ADS)
Kim, Wonjoo; Chattopadhyay, Anupam; Siemon, Anne; Linn, Eike; Waser, Rainer; Rana, Vikas
2016-11-01
Redox-based resistive switching random access memory (ReRAM) offers excellent properties to implement future non-volatile memory arrays. Recently, the capability of two-state ReRAMs to implement Boolean logic functionality gained wide interest. Here, we report on seven-states Tantalum Oxide Devices, which enable the realization of an intrinsic modular arithmetic using a ternary number system. Modular arithmetic, a fundamental system for operating on numbers within the limit of a modulus, is known to mathematicians since the days of Euclid and finds applications in diverse areas ranging from e-commerce to musical notations. We demonstrate that multistate devices not only reduce the storage area consumption drastically, but also enable novel in-memory operations, such as computing using high-radix number systems, which could not be implemented using two-state devices. The use of high radix number system reduces the computational complexity by reducing the number of needed digits. Thus the number of calculation operations in an addition and the number of logic devices can be reduced.
Welch, James D.
2003-09-23
Disclosed are semiconductor devices including at least one junction which is rectifying whether the semiconductor is caused to be N or P-type, by the presence of applied gate voltage field induced carriers in essentially intrinsic, essentially homogeneously simultaneously containing both N and P-type metallurgical dopants at substantially equal doping levels, essentially homogeneously simultaneously containing both N and P-type metallurgical dopants at different doping levels, and containing a single metallurgical doping type, and functional combinations thereof. In particular, inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to conventional multiple device CMOS systems, which can be operated as modulators, are disclosed as are a non-latching SCR and an approach to blocking parasitic currents utilizing material(s) which form rectifying junctions with both N and P-type semiconductor whether metallurigically or field induced.
47 CFR 15.229 - Operation within the band 40.66-40.70 MHz.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Operation within the band 40.66-40.70 MHz. 15.229 Section 15.229 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Intentional Radiators Radiated Emission Limits, Additional Provisions § 15.229 Operation within the band 40.66...
47 CFR 15.227 - Operation within the band 26.96-27.28 MHz.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Operation within the band 26.96-27.28 MHz. 15.227 Section 15.227 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Intentional Radiators Radiated Emission Limits, Additional Provisions § 15.227 Operation within the band 26.96...
47 CFR 15.225 - Operation within the band 13.110-14.010 MHz.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Operation within the band 13.110-14.010 MHz. 15.225 Section 15.225 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Intentional Radiators Radiated Emission Limits, Additional Provisions § 15.225 Operation within the band 13...
47 CFR 15.223 - Operation in the band 1.705-10 MHz.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Operation in the band 1.705-10 MHz. 15.223 Section 15.223 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Intentional Radiators Radiated Emission Limits, Additional Provisions § 15.223 Operation in the band 1.705-10...
Detection of Special Operations Forces Using Night Vision Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, C.M.
2001-10-22
Night vision devices, such image intensifiers and infrared imagers, are readily available to a host of nations, organizations, and individuals through international commerce. Once the trademark of special operations units, these devices are widely advertised to ''turn night into day''. In truth, they cannot accomplish this formidable task, but they do offer impressive enhancement of vision in limited light scenarios through electronically generated images. Image intensifiers and infrared imagers are both electronic devices for enhancing vision in the dark. However, each is based upon a totally different physical phenomenon. Image intensifiers amplify the available light energy whereas infrared imagers detectmore » the thermal energy radiated from all objects. Because of this, each device operates from energy which is present in a different portion of the electromagnetic spectrum. This leads to differences in the ability of each device to detect and/or identify objects. This report is a compilation of the available information on both state-of-the-art image intensifiers and infrared imagers. Image intensifiers developed in the United States, as well as some foreign made image intensifiers, are discussed. Image intensifiers are categorized according to their spectral response and sensitivity using the nomenclature of GEN I, GEN II, and GEN III. As the first generation of image intensifiers, GEN I, were large and of limited performance, this report will deal with only GEN II and GEN III equipment. Infrared imagers are generally categorized according to their spectral response, sensor materials, and related sensor operating temperature using the nomenclature Medium Wavelength Infrared (MWIR) Cooled and Long Wavelength Infrared (LWIR) Uncooled. MWIR Cooled refers to infrared imagers which operate in the 3 to 5 {micro}m wavelength electromagnetic spectral region and require either mechanical or thermoelectric coolers to keep the sensors operating at 77 K. LWIR Uncooled refers to infrared imagers which operate in the 8 to 12 {micro}m wavelength electromagnetic spectral region and do not require cooling below room temperature. Both commercial and military infrared sensors of these two types are discussed.« less
NASA Astrophysics Data System (ADS)
Hermoso, J. L. Navarro; Espinosa-Rueda, Guillermo; Martinez, Noelia; Heras, Carlos; Osta, Marta
2016-05-01
The performance of parabolic trough (PT) receiver tubes (RT) has a direct impact on Solar Thermal Energy (STE) plant production. As a result, one major need of operation and maintenance (O&M) in STE plants is to monitor the state of the receiver tube as a key element in the solar field. However the lack of specific devices so far has limited the proper evaluation of operating receiver tubés thermal performance. As a consequence non-accurate approximations have been accepted until now using infrared thermal images of the glass outer tube. In order to fulfill this need, Abengoa has developed a unique portable device for evaluating the thermal performance and vacuum state of parabolic trough receiver tubes placed in the field. The novel device described in this paper, simultaneously provides the temperature of both the inner steel tube and the outer glass tube enabling a check on manufacturers specifications. The on-field evaluation of any receiver tube at any operating temperature has become possible thanks to this new measuring device. The features and usability of this new measurement system as a workable portable device in operating solar fields provide a very useful tool for all companies in the sector contributing to technology progress. The originality of the device, patent pending P201431969, is not limited to the CSP sector, also having scientific significance in the general measuring instruments field. This paper presents the work carried out to develop and validate the device, also detailing its functioning properties and including the excellent results obtained in the laboratory to determine its accuracy and standard deviation. This information was validated with data collected by O&M teams using this instrument in a commercial CSP plant. The relevance of the device has been evidenced by evaluating a wide sample of RT and the results are discussed in this paper. Finally, all the on field collected data is used to demonstrate the high impact that using this unique portable device will have on a parabolic trough solar power plant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yu-Hsin; Yan, Lujiang; Zhang, Alex Ce
2015-08-03
Signal amplification, performed by transistor amplifiers with its merit rated by the efficiency and noise characteristics, is ubiquitous in all electronic systems. Because of transistor thermal noise, an intrinsic signal amplification mechanism, impact ionization was sought after to complement the limits of transistor amplifiers. However, due to the high operation voltage (30-200 V typically), low power efficiency, limited scalability, and, above all, rapidly increasing excess noise with amplification factor, impact ionization has been out of favor for most electronic systems except for a few applications such as avalanche photodetectors and single-photon Geiger detectors. Here, we report an internal signal amplification mechanismmore » based on the principle of the phonon-assisted cycling excitation process (CEP). Si devices using this concept show ultrahigh gain, low operation voltage, CMOS compatibility, and, above all, quantum limit noise performance that is 30 times lower than devices using impact ionization. Established on a unique physical effect of attractive properties, CEP-based devices can potentially revolutionize the fields of semiconductor electronics.« less
40 CFR 63.8445 - How do I conduct performance tests and establish operating limits?
Code of Federal Regulations, 2012 CFR
2012-07-01
... startup, shutdown, or malfunction, as specified in § 63.7(e)(1). (f) You must conduct at least three... changes. (ii) The type of monitoring device or procedure that will be used. (iii) The operating parameters...
Haptic control with environment force estimation for telesurgery.
Bhattacharjee, Tapomayukh; Son, Hyoung Il; Lee, Doo Yong
2008-01-01
Success of telesurgical operations depends on better position tracking ability of the slave device. Improved position tracking of the slave device can lead to safer and less strenuous telesurgical operations. The two-channel force-position control architecture is widely used for better position tracking ability. This architecture requires force sensors for direct force feedback. Force sensors may not be a good choice in the telesurgical environment because of the inherent noise, and limitation in the deployable place and space. Hence, environment force estimation is developed using the concept of the robot function parameter matrix and a recursive least squares method. Simulation results show efficacy of the proposed method. The slave device successfully tracks the position of the master device, and the estimation error quickly becomes negligible.
Exposed Subcutaneous Implantable Devices: An Operative Protocol for Management and Salvage
D’Arpa, Salvatore; Cordova, Adriana; Moschella, Francesco
2015-01-01
Background: Implantable venous and electrical devices are prone to exposure and infection. Indications for management are controversial, but—especially if infected—exposed devices are often removed and an additional operation is needed to replace the device, causing a delay in chemotherapy and prolonging healing time. We present our protocol for device salvage, on which limited literature is available. Methods: Between 2007 and 2013, 17 patients were treated (12 venous access ports, 3 cardiac pacemakers, and 2 subcutaneous neural stimulators). Most patients were operated within 7 days from exposure. All patients received only a single perioperative dose of prophylactic antibiotic. In cases of gross infection (n = 1), the device was immediately replaced. In the absence of clinical signs of infection: Complete capsulectomy and aggressive cleaning with an n-acetylcysteine solution and saline solution. Primary exposure of venous ports with sufficient skin coverage (n = 10): the device was covered with local skin flaps. Recurrent cases, cases with insufficient skin coverage or big devices (n = 7): the device was moved to a subpectoral pocket. Mean follow-up was 19 months. Results: Sixteen devices were saved. Only one grossly infected pacemaker was removed and replaced immediately. Only in 1 case, exposure of a venous port recurred after 18 months and was successfully moved to a subpectoral pocket. Chemotherapy was always restarted as scheduled and electrical devices remained functional. Conclusions: This protocol allows—with a straightforward operation and simple measures—to save exposed devices even several days after exposure. Submuscular placement or immediate replacement is indicated only in selected cases. PMID:26034650
NASA Technical Reports Server (NTRS)
Patterson, Richard; Hammoud, Ahmad
2009-01-01
Electronic systems designed for use in deep space and planetary exploration missions are expected to encounter extreme temperatures and wide thermal swings. Silicon-based devices are limited in their wide-temperature capability and usually require extra measures, such as cooling or heating mechanisms, to provide adequate ambient temperature for proper operation. Silicon-On-Insulator (SOI) technology, on the other hand, lately has been gaining wide spread use in applications where high temperatures are encountered. Due to their inherent design, SOI-based integrated circuit chips are able to operate at temperatures higher than those of the silicon devices by virtue of reducing leakage currents, eliminating parasitic junctions, and limiting internal heating. In addition, SOI devices provide faster switching, consume less power, and offer improved radiation-tolerance. Very little data, however, exist on the performance of such devices and circuits under cryogenic temperatures. In this work, the performance of an SOI bootstrapped, full-bridge driver integrated circuit was evaluated under extreme temperatures and thermal cycling. The investigations were carried out to establish a baseline on the functionality and to determine suitability of this device for use in space exploration missions under extreme temperature conditions.
GaN-on-Silicon - Present capabilities and future directions
NASA Astrophysics Data System (ADS)
Boles, Timothy
2018-02-01
Gallium Nitride, in the form of epitaxial HEMT transistors on various substrate materials, is the newest and most promising semiconductor technology for high performance devices in the RF, microwave, and mmW arenas. This is particularly true for GaN-on-Silicon based devices and MMIC's which enable both state-of-the-art high frequency functionality and the ability to scale production into large wafer diameter CMOS foundries. The design and development of GaN-on-Silicon structures and devices will be presented beginning with the basic material parameters, growth of the required epitaxial construction, and leading to the fundamental operational theory of high frequency, high power HEMTs. In this discussion comparisons will be made with alternative substrate materials with emphasis on contrasting the inherent advantages of a silicon based system. Theory of operation of microwave and mmW high power HEMT devices will be presented with special emphasis on fundamental limitations of device performance including inherent frequency limiting transit time analysis, required impedance transformations, internal and external parasitic reactance, thermal impedance optimization, and challenges improved by full integration into monolithic MMICs. Lastly, future directions for implementing GaN-on-Silicon into mainstream CMOS silicon semiconductor technologies will be discussed.
Current limiting cathodes for non transit-time limited operation of InP TED's in the 100 GHz window
NASA Astrophysics Data System (ADS)
Friscouri, Marie-Renée; Rolland, Paul-Alain
1985-03-01
Reverse-biased low-barrier Schottky contact and reverse-biased isotype GaInAsP/InP heterojunction, used as current limiting cathodes for InP TED's, are investigated on the basis of output power and efficiency improvement as compared to N +NN + devices.
An assessment of memristor intrinsic fluctuations: a measurement of single atomic motion
NASA Astrophysics Data System (ADS)
Borghetti, Julien; Yang, J. Joshua; Medeiros-Ribeiro, Gilberto; Williams, R. Stanley
2010-03-01
Memristors provides electrically tunable resistance for upcoming non-volatile memory and future neuromorphic computing. One of the key benefits of such a device is its scalability, which can be demonstrated from an architectural perspective as well as from a fundamental physics limit. 4D addressing schemes utilizing cross bar structures that can be stacked several layers high above the chip embodies unlimited addressing space. On the other limit, the basic operating principles of memristive devices allow one to reach storage of information in a single atom. In this report of nanoscale (sub 50nm) devices, we detect single atom fluctuations, which would then represent the ultimate limit for noise sources thus delineating the boundary conditions for circuit design. We show that electrically induced individual atom migrations do not affect the overall device atomic configuration until a critical bias where a single local fluctuation triggers a general atomic reconfiguration. This instability illustrates the robustness of the device non-volatility upon small electrical stress.
Hu, Jia-Mian; Li, Zheng; Chen, Long-Qing; Nan, Ce-Wen
2011-11-22
The main bottlenecks limiting the practical applications of current magnetoresistive random access memory (MRAM) technology are its low storage density and high writing energy consumption. Although a number of proposals have been reported for voltage-controlled memory device in recent years, none of them simultaneously satisfy the important device attributes: high storage capacity, low power consumption and room temperature operation. Here we present, using phase-field simulations, a simple and new pathway towards high-performance MRAMs that display significant improvements over existing MRAM technologies or proposed concepts. The proposed nanoscale MRAM device simultaneously exhibits ultrahigh storage capacity of up to 88 Gb inch(-2), ultralow power dissipation as low as 0.16 fJ per bit and room temperature high-speed operation below 10 ns.
High-density magnetoresistive random access memory operating at ultralow voltage at room temperature
Hu, Jia-Mian; Li, Zheng; Chen, Long-Qing; Nan, Ce-Wen
2011-01-01
The main bottlenecks limiting the practical applications of current magnetoresistive random access memory (MRAM) technology are its low storage density and high writing energy consumption. Although a number of proposals have been reported for voltage-controlled memory device in recent years, none of them simultaneously satisfy the important device attributes: high storage capacity, low power consumption and room temperature operation. Here we present, using phase-field simulations, a simple and new pathway towards high-performance MRAMs that display significant improvements over existing MRAM technologies or proposed concepts. The proposed nanoscale MRAM device simultaneously exhibits ultrahigh storage capacity of up to 88 Gb inch−2, ultralow power dissipation as low as 0.16 fJ per bit and room temperature high-speed operation below 10 ns. PMID:22109527
Death by a Thousand Cuts: Micro-Air Vehicles (MAV) in the Service of Air Force Missions
2001-04-01
25 Microjets ...based designs need to overcome high operating temperature limitations.67 Microjets A promising, but technically difficult, propulsion and/or power...source is the microjet , a micro-electromechanical system based device about the size of a dime. These devices are based on micro-turbines that are
Code of Federal Regulations, 2014 CFR
2014-07-01
... limitation (including any operating limit) or work practice standard in this subpart during startup, shutdown... date means the date of promulgation in the Federal Register notice. Initial startup date means the date... types for the purpose of controlling these emissions with a single control device. Maximum ethylene...
Code of Federal Regulations, 2012 CFR
2012-07-01
... limitation (including any operating limit) or work practice standard in this subpart during startup, shutdown... date means the date of promulgation in the Federal Register notice. Initial startup date means the date... types for the purpose of controlling these emissions with a single control device. Maximum ethylene...
Micro-mechanical resonators for dynamically reconfigurable reduced voltage logic gates
NASA Astrophysics Data System (ADS)
Chappanda, K. N.; Ilyas, S.; Younis, M. I.
2018-05-01
Due to the limitations of transistor-based logic devices such as their poor performance at elevated temperature, alternative computing methods are being actively investigated. In this work, we present electromechanical logic gates using electrostatically coupled in-plane micro-cantilever resonators operated at modest vacuum conditions of 5 Torr. Operating in the first resonant mode, we demonstrate 2-bit XOR, 2- and 3-bit AND, 2- and 3-bit NOR, and 1-bit NOT gates; all condensed in the same device. Through the designed electrostatic coupling, the required voltage for the logic gates is reduced by 80%, along with the reduction in the number of electrical interconnects and devices per logic operation (contrary to transistors). The device is dynamically reconfigurable between any logic gates in real time without the need for any change in the electrical interconnects and the drive circuit. By operating in the first two resonant vibration modes, we demonstrate mechanical logic gates consisting of two 2-bit AND and two 2-bit XOR gates. The device is tested at elevated temperatures and is shown to be functional as a logic gate up to 150 °C. Also, the device has high reliability with demonstrated lifetime greater than 5 × 1012 oscillations.
Field evaluation of a prototype paper-based point-of-care fingerstick transaminase test.
Pollock, Nira R; McGray, Sarah; Colby, Donn J; Noubary, Farzad; Nguyen, Huyen; Nguyen, The Anh; Khormaee, Sariah; Jain, Sidhartha; Hawkins, Kenneth; Kumar, Shailendra; Rolland, Jason P; Beattie, Patrick D; Chau, Nguyen V; Quang, Vo M; Barfield, Cori; Tietje, Kathy; Steele, Matt; Weigl, Bernhard H
2013-01-01
Monitoring for drug-induced liver injury (DILI) via serial transaminase measurements in patients on potentially hepatotoxic medications (e.g., for HIV and tuberculosis) is routine in resource-rich nations, but often unavailable in resource-limited settings. Towards enabling universal access to affordable point-of-care (POC) screening for DILI, we have performed the first field evaluation of a paper-based, microfluidic fingerstick test for rapid, semi-quantitative, visual measurement of blood alanine aminotransferase (ALT). Our objectives were to assess operational feasibility, inter-operator variability, lot variability, device failure rate, and accuracy, to inform device modification for further field testing. The paper-based ALT test was performed at POC on fingerstick samples from 600 outpatients receiving HIV treatment in Vietnam. Results, read independently by two clinic nurses, were compared with gold-standard automated (Roche Cobas) results from venipuncture samples obtained in parallel. Two device lots were used sequentially. We demonstrated high inter-operator agreement, with 96.3% (95% C.I., 94.3-97.7%) agreement in placing visual results into clinically-defined "bins" (<3x, 3-5x, and >5x upper limit of normal), >90% agreement in validity determination, and intraclass correlation coefficient of 0.89 (95% C.I., 0.87-0.91). Lot variability was observed in % invalids due to hemolysis (21.1% for Lot 1, 1.6% for Lot 2) and correlated with lots of incorporated plasma separation membranes. Invalid rates <1% were observed for all other device controls. Overall bin placement accuracy for the two readers was 84% (84.3%/83.6%). Our findings of extremely high inter-operator agreement for visual reading-obtained in a target clinical environment, as performed by local practitioners-indicate that the device operation and reading process is feasible and reproducible. Bin placement accuracy and lot-to-lot variability data identified specific targets for device optimization and material quality control. This is the first field study performed with a patterned paper-based microfluidic device and opens the door to development of similar assays for other important analytes.
Removing the current-limit of vertical organic field effect transistors
NASA Astrophysics Data System (ADS)
Sheleg, Gil; Greenman, Michael; Lussem, Bjorn; Tessler, Nir
2017-11-01
The reported Vertical Organic Field Effect Transistors (VOFETs) show either superior current and switching speeds or well-behaved transistor performance, especially saturation in the output characteristics. Through the study of the relationship between the device architecture or dimensions and the device performance, we find that achieving a saturation regime in the output characteristics requires that the device operates in the injection limited regime. In current structures, the existence of the injection limited regime depends on the source's injection barrier as well as on the buried semiconductor layer thickness. To overcome the injection limit imposed by the necessity of injection barrier, we suggest a new architecture to realize VOFETs. This architecture shows better gate control and is independent of the injection barrier at the source, thus allowing for several A cm-2 for a semiconductor having a mobility value of 0.1 cm2 V-1 s-1.
NASA Technical Reports Server (NTRS)
Rogallo, Vernon L.; Yaggy, Paul F.; McCloud, John L., III
1954-01-01
An investigation of a decoupler and a controlled-feathering device incorporated with the YT-56A turboprop engine has been made to determine the effectiveness of these devices in reducing the high negative thrust (drag) which accompanies power failure of this type of engine. Power failures were simulated by fuel cut-off, both without either device free to operate, and with each device free to operate singly. The investigation was made through an airspeed range from 50 to 230 mph. It was found that with neither device free to operate, the drag levels realized after power failures at airspeeds above 170 mph would impose vertical tail loads higher than those allowable for the YC-130, the airplane for which the test power package was designed. These levels were reached in approximately one second. The maximum drag realized after power failure was not appreciably altered by the use of the decoupler although the decoupler did put a limit on the duration of the peak drag. The controlled-feathering device maintained a level of essentially zero drag after power failure. The use of the decoupler in the YT-56A engine complicates windmilling air-starting procedures and makes it necessary to place operating restrictions on the engine to assure safe flight at low-power conditions,
Embedded Volttron specification - benchmarking small footprint compute device for Volttron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanyal, Jibonananda; Fugate, David L.; Woodworth, Ken
An embedded system is a small footprint computing unit that typically serves a specific purpose closely associated with measurements and control of hardware devices. These units are designed for reasonable durability and operations in a wide range of operating conditions. Some embedded systems support real-time operations and can demonstrate high levels of reliability. Many have failsafe mechanisms built to handle graceful shutdown of the device in exception conditions. The available memory, processing power, and network connectivity of these devices are limited due to the nature of their specific-purpose design and intended application. Industry practice is to carefully design the softwaremore » for the available hardware capability to suit desired deployment needs. Volttron is an open source agent development and deployment platform designed to enable researchers to interact with devices and appliances without having to write drivers themselves. Hosting Volttron on small footprint embeddable devices enables its demonstration for embedded use. This report details the steps required and the experience in setting up and running Volttron applications on three small footprint devices: the Intel Next Unit of Computing (NUC), the Raspberry Pi 2, and the BeagleBone Black. In addition, the report also details preliminary investigation of the execution performance of Volttron on these devices.« less
40 CFR 63.4900 - What are my general requirements for complying with this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... and add-on control device to comply with the emission limitations in § 63.4890, you must develop a... SSMP must address the startup, shutdown, and corrective actions in the event of a malfunction of the emission capture system or the add-on control device. The SSMP must also address any coating operation...
40 CFR 63.4900 - What are my general requirements for complying with this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... and add-on control device to comply with the emission limitations in § 63.4890, you must develop a... SSMP must address the startup, shutdown, and corrective actions in the event of a malfunction of the emission capture system or the add-on control device. The SSMP must also address any coating operation...
40 CFR 63.4900 - What are my general requirements for complying with this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... and add-on control device to comply with the emission limitations in § 63.4890, you must develop a... SSMP must address the startup, shutdown, and corrective actions in the event of a malfunction of the emission capture system or the add-on control device. The SSMP must also address any coating operation...
40 CFR 63.497 - Back-end process provisions-monitoring provisions for control and recovery devices.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Back-end process provisions-monitoring... Polymers and Resins § 63.497 Back-end process provisions—monitoring provisions for control and recovery devices. (a) An owner or operator complying with the residual organic HAP limitations in § 63.494(a) using...
40 CFR 264.1087 - Standards: Closed-vent systems and control devices.
Code of Federal Regulations, 2011 CFR
2011-07-01
... of such devices include, but are not limited to, a car-seal or a lock-and-key configuration valve...) A boiler or industrial furnace burning hazardous waste for which the owner or operator has been... requirements of 40 CFR part 266, subpart H; or (E) A boiler or industrial furnace burning hazardous waste for...
An overview of silicon carbide device technology
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.; Matus, Lawrence G.
1992-01-01
Recent progress in the development of silicon carbide (SiC) as a semiconductor is briefly reviewed. This material shows great promise towards providing electronic devices that can operate under the high-temperature, high-radiation, and/or high-power conditions where current semiconductor technologies fail. High quality single crystal wafers have become available, and techniques for growing high quality epilayers have been refined to the point where experimental SiC devices and circuits can be developed. The prototype diodes and transistors that have been produced to date show encouraging characteristics, but by the same token they also exhibit some device-related problems that are not unlike those faced in the early days of silicon technology development. Although these problems will not prevent the implementation of some useful circuits, the performance and operating regime of SiC electronics will be limited until these device-related issues are solved.
Power and stability limitations of resonant tunneling diodes
NASA Technical Reports Server (NTRS)
Kidner, C.; Mehdi, I.; East, J. R.; Haddad, G. I.
1990-01-01
Stability criteria for resonant tunneling diodes are investigated. Details of how extrinsic elements, such as series inductance and parallel capacitance, affect the stability are presented. A GaAs/AlAs/InGaAs/AlAs/GaAs double-barrier diode is investigated, showing the effect of different modes of low-frequency oscillation and the extrinsic circuit required for stabilization. The effect of device stabilization on high-frequency power generation is described. The main conclusions of the paper are: (1) stable resonant tunneling diode operation is difficult to obtain, and (2) the circuit and device conditions required for stable operation greatly reduce the amount of power that can be produced by these devices.
Controlling Laboratory Processes From A Personal Computer
NASA Technical Reports Server (NTRS)
Will, H.; Mackin, M. A.
1991-01-01
Computer program provides natural-language process control from IBM PC or compatible computer. Sets up process-control system that either runs without operator or run by workers who have limited programming skills. Includes three smaller programs. Two of them, written in FORTRAN 77, record data and control research processes. Third program, written in Pascal, generates FORTRAN subroutines used by other two programs to identify user commands with device-driving routines written by user. Also includes set of input data allowing user to define user commands to be executed by computer. Requires personal computer operating under MS-DOS with suitable hardware interfaces to all controlled devices. Also requires FORTRAN 77 compiler and device drivers written by user.
Code of Federal Regulations, 2011 CFR
2011-07-01
... performance test. 2. Carbon adsorber (regenerative) to which puncture sealant application spray booth emissions are ducted a. Maintain the total regeneration mass, volumetric flow, and carbon bed temperature at the operating range established during the performance test.b. Reestablish the carbon bed temperature...
Myoelectric control of prosthetic hands: state-of-the-art review
Geethanjali, Purushothaman
2016-01-01
Myoelectric signals (MES) have been used in various applications, in particular, for identification of user intention to potentially control assistive devices for amputees, orthotic devices, and exoskeleton in order to augment capability of the user. MES are also used to estimate force and, hence, torque to actuate the assistive device. The application of MES is not limited to assistive devices, and they also find potential applications in teleoperation of robots, haptic devices, virtual reality, and so on. The myoelectric control-based prosthetic hand aids to restore activities of daily living of amputees in order to improve the self-esteem of the user. All myoelectric control-based prosthetic hands may not have similar operations and exhibit variation in sensing input, deciphering the signals, and actuating prosthetic hand. Researchers are focusing on improving the functionality of prosthetic hand in order to suit the user requirement with the different operating features. The myoelectric control differs in operation to accommodate various external factors. This article reviews the state of the art of myoelectric prosthetic hand, giving description of each control strategy. PMID:27555799
Thermo-Electron Ballistic Coolers or Heaters
NASA Technical Reports Server (NTRS)
Choi, Sang H.
2003-01-01
Electronic heat-transfer devices of a proposed type would exploit some of the quantum-wire-like, pseudo-superconducting properties of single-wall carbon nanotubes or, optionally, room-temperature-superconducting polymers (RTSPs). The devices are denoted thermo-electron ballistic (TEB) coolers or heaters because one of the properties that they exploit is the totally or nearly ballistic (dissipation or scattering free) transport of electrons. This property is observed in RTSPs and carbon nanotubes that are free of material and geometric defects, except under conditions in which oscillatory electron motions become coupled with vibrations of the nanotubes. Another relevant property is the high number density of electrons passing through carbon nanotubes -- sufficient to sustain electron current densities as large as 100 MA/square cm. The combination of ballistic motion and large current density should make it possible for TEB devices to operate at low applied potentials while pumping heat at rates several orders of magnitude greater than those of thermoelectric devices. It may also enable them to operate with efficiency close to the Carnot limit. In addition, the proposed TEB devices are expected to operate over a wider temperature range
Code of Federal Regulations, 2013 CFR
2013-07-01
... install, operate, and maintain each CEMS to monitor carbon monoxide (CO) or total hydrocarbons (THC) and... emission control device. (b) To comply with the CO or THC percent reduction emission limitation, you may install, operate, and maintain a CEMS to monitor CO or THC and O2 at both the inlet and the outlet of the...
Code of Federal Regulations, 2014 CFR
2014-07-01
... install, operate, and maintain each CEMS to monitor carbon monoxide (CO) or total hydrocarbons (THC) and... emission control device. (b) To comply with the CO or THC percent reduction emission limitation, you may install, operate, and maintain a CEMS to monitor CO or THC and O2 at both the inlet and the outlet of the...
Code of Federal Regulations, 2012 CFR
2012-07-01
... install, operate, and maintain each CEMS to monitor carbon monoxide (CO) or total hydrocarbons (THC) and... emission control device. (b) To comply with the CO or THC percent reduction emission limitation, you may install, operate, and maintain a CEMS to monitor CO or THC and O2 at both the inlet and the outlet of the...
Code of Federal Regulations, 2010 CFR
2010-07-01
... install, operate, and maintain each CEMS to monitor carbon monoxide (CO) or total hydrocarbons (THC) and... emission control device. (b) To comply with the CO or THC percent reduction emission limitation, you may install, operate, and maintain a CEMS to monitor CO or THC and O2 at both the inlet and the outlet of the...
Code of Federal Regulations, 2011 CFR
2011-07-01
... install, operate, and maintain each CEMS to monitor carbon monoxide (CO) or total hydrocarbons (THC) and... emission control device. (b) To comply with the CO or THC percent reduction emission limitation, you may install, operate, and maintain a CEMS to monitor CO or THC and O2 at both the inlet and the outlet of the...
Passive fault current limiting device
Evans, Daniel J.; Cha, Yung S.
1999-01-01
A passive current limiting device and isolator is particularly adapted for use at high power levels for limiting excessive currents in a circuit in a fault condition such as an electrical short. The current limiting device comprises a magnetic core wound with two magnetically opposed, parallel connected coils of copper, a high temperature superconductor or other electrically conducting material, and a fault element connected in series with one of the coils. Under normal operating conditions, the magnetic flux density produced by the two coils cancel each other. Under a fault condition, the fault element is triggered to cause an imbalance in the magnetic flux density between the two coils which results in an increase in the impedance in the coils. While the fault element may be a separate current limiter, switch, fuse, bimetal strip or the like, it preferably is a superconductor current limiter conducting one-half of the current load compared to the same limiter wired to carry the total current of the circuit. The major voltage during a fault condition is in the coils wound on the common core in a preferred embodiment.
Passive fault current limiting device
Evans, D.J.; Cha, Y.S.
1999-04-06
A passive current limiting device and isolator is particularly adapted for use at high power levels for limiting excessive currents in a circuit in a fault condition such as an electrical short. The current limiting device comprises a magnetic core wound with two magnetically opposed, parallel connected coils of copper, a high temperature superconductor or other electrically conducting material, and a fault element connected in series with one of the coils. Under normal operating conditions, the magnetic flux density produced by the two coils cancel each other. Under a fault condition, the fault element is triggered to cause an imbalance in the magnetic flux density between the two coils which results in an increase in the impedance in the coils. While the fault element may be a separate current limiter, switch, fuse, bimetal strip or the like, it preferably is a superconductor current limiter conducting one-half of the current load compared to the same limiter wired to carry the total current of the circuit. The major voltage during a fault condition is in the coils wound on the common core in a preferred embodiment. 6 figs.
Low-power resistive random access memory by confining the formation of conducting filaments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Yi-Jen; Lee, Si-Chen, E-mail: sclee@ntu.edu.tw; Shen, Tzu-Hsien
2016-06-15
Owing to their small physical size and low power consumption, resistive random access memory (RRAM) devices are potential for future memory and logic applications in microelectronics. In this study, a new resistive switching material structure, TiO{sub x}/silver nanoparticles/TiO{sub x}/AlTiO{sub x}, fabricated between the fluorine-doped tin oxide bottom electrode and the indium tin oxide top electrode is demonstrated. The device exhibits excellent memory performances, such as low operation voltage (<±1 V), low operation power, small variation in resistance, reliable data retention, and a large memory window. The current-voltage measurement shows that the conducting mechanism in the device at the high resistancemore » state is via electron hopping between oxygen vacancies in the resistive switching material. When the device is switched to the low resistance state, conducting filaments are formed in the resistive switching material as a result of accumulation of oxygen vacancies. The bottom AlTiO{sub x} layer in the device structure limits the formation of conducting filaments; therefore, the current and power consumption of device operation are significantly reduced.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavlov, S V; Trofimov, N S; Chekhlova, T K
2014-07-31
A possibility of designing optical waveguide devices based on sol – gel SiO{sub 2} – TiO{sub 2} films using the temperature dependence of the effective refractive index is shown. The dependences of the device characteristics on the parameters of the film and opticalsystem elements are analysed. The operation of a temperature recorder and a temperature limiter with a resolution of 0.6 K mm{sup -1} is demonstrated. The film and output-prism parameters are optimised. (fibreoptic and nonlinear-optic devices)
Nanophotonic implementation of optoelectrowetting for microdroplet actuation
NASA Astrophysics Data System (ADS)
Collier, Christopher M.; Hill, Kyle A.; DeWachter, Mark A.; Huizing, Alexander M.; Holzman, Jonathan F.
2015-02-01
The development and ultimate operation of a nanocomposite high-aspect-ratio photoinjection (HARP) device is presented in this work. The device makes use of a nanocomposite material as the optically active layer and the device achieves a large optical penetration depth with a high aspect ratio which provides a strong actuation force far away from the point of photoinjection. The nanocomposite material can be continuously illuminated and the position of the microdroplets can, therefore, be controlled to diffraction limited resolution. The nanocomposite HARP device shows great potential for future on-chip applications.
Pseudo 1-D Micro/Nanofluidic Device for Exact Electrokinetic Responses.
Kim, Junsuk; Kim, Ho-Young; Lee, Hyomin; Kim, Sung Jae
2016-06-28
Conventionally, a 1-D micro/nanofluidic device, whose nanochannel bridged two microchannels, was widely chosen in the fundamental electrokinetic studies; however, the configuration had intrinsic limitations of the time-consuming and labor intensive tasks of filling and flushing the microchannel due to the high fluidic resistance of the nanochannel bridge. In this work, a pseudo 1-D micro/nanofluidic device incorporating air valves at each microchannel was proposed for mitigating these limitations. High Laplace pressure formed at liquid/air interface inside the microchannels played as a virtual valve only when the electrokinetic operations were conducted. The identical electrokinetic behaviors of the propagation of ion concentration polarization layer and current-voltage responses were obtained in comparison with the conventional 1-D micro/nanofluidic device by both experiments and numerical simulations. Therefore, the suggested pseudo 1-D micro/nanofluidic device owned not only experimental conveniences but also exact electrokinetic responses.
47 CFR 14.21 - Performance Objectives.
Code of Federal Regulations, 2013 CFR
2013-10-01
... operate and use the product, including but not limited to, text, static or dynamic images, icons, labels.... (2) Connection point for external audio processing devices. Products providing auditory output shall...
47 CFR 14.21 - Performance Objectives.
Code of Federal Regulations, 2014 CFR
2014-10-01
... operate and use the product, including but not limited to, text, static or dynamic images, icons, labels.... (2) Connection point for external audio processing devices. Products providing auditory output shall...
Code of Federal Regulations, 2013 CFR
2013-10-01
... CABLE TELEVISION SERVICE Competitive Availability of Navigation Devices § 76.1200 Definitions. As used... open video system as defined by § 76.1500(a). Such systems include, but are not limited to, cable...) Multichannel video programming distributor. A person such as, but not limited to, a cable operator, a BRS/EBS...
Code of Federal Regulations, 2014 CFR
2014-10-01
... CABLE TELEVISION SERVICE Competitive Availability of Navigation Devices § 76.1200 Definitions. As used... open video system as defined by § 76.1500(a). Such systems include, but are not limited to, cable...) Multichannel video programming distributor. A person such as, but not limited to, a cable operator, a BRS/EBS...
Code of Federal Regulations, 2012 CFR
2012-10-01
... CABLE TELEVISION SERVICE Competitive Availability of Navigation Devices § 76.1200 Definitions. As used... open video system as defined by § 76.1500(a). Such systems include, but are not limited to, cable...) Multichannel video programming distributor. A person such as, but not limited to, a cable operator, a BRS/EBS...
DOT National Transportation Integrated Search
2012-03-01
The purpose of this project was to identify the impacts of implementing speed limiters (SL) in commercial vehicle fleet operations. These impacts may be related to safety through a reduction in the number and/or severity of crashes, and/or address op...
47 CFR 15.215 - Additional provisions to the general radiated emission limitations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... hopping and other modulation techniques that may be employed as well as the frequency stability of the... RADIO FREQUENCY DEVICES Intentional Radiators Radiated Emission Limits, Additional Provisions § 15.215... operating in specified frequency bands. Unless otherwise stated, there are no restrictions as to the types...
Commercialization of microfluidic devices.
Volpatti, Lisa R; Yetisen, Ali K
2014-07-01
Microfluidic devices offer automation and high-throughput screening, and operate at low volumes of consumables. Although microfluidics has the potential to reduce turnaround times and costs for analytical devices, particularly in medical, veterinary, and environmental sciences, this enabling technology has had limited diffusion into consumer products. This article analyzes the microfluidics market, identifies issues, and highlights successful commercialization strategies. Addressing niche markets and establishing compatibility with existing workflows will accelerate market penetration. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zhou, Liang; Abraham, Adam C; Tang, Simon Y; Chakrabartty, Shantanu
2016-12-01
Piezoelectricity-driven hot-electron injectors (p-HEI) are used for self-powered monitoring of mechanical activity in biomechanical implants and structures. Previously reported p-HEI devices operate by harvesting energy from a piezoelectric transducer to generate current and voltage references which are then used for initiating and controlling the process of hot-electron injection. As a result, the minimum energy required to activate the device is limited by the power requirements of the reference circuits. In this paper we present a p-HEI device that operates by directly exploiting the self-limiting capability of an energy transducer when driving the process of hot-electron injection in a pMOS floating-gate transistor. As a result, the p-HEI device can activate itself at input power levels less than 5 nW. Using a prototype fabricated in a 0.5- [Formula: see text] bulk CMOS process we validate the functionality of the proposed injector and show that for a fixed input power, its dynamics is quasi-linear with respect to time. The paper also presents measurement results using a cadaver phantom where the fabricated p-HEI device has been integrated with a piezoelectric transducer and is used for self-powered monitoring of mechanical activity.
40 CFR 265.1088 - Standards: Closed-vent systems and control devices.
Code of Federal Regulations, 2011 CFR
2011-07-01
... removing the lock. Examples of such devices include, but are not limited to, a car-seal or a lock-and-key... furnace burning hazardous waste for which the owner or operator has been issued a final permit under 40... 266, subpart H; or (E) A boiler or industrial furnace burning hazardous waste for which the owner or...
Simple and Versatile 3D Printed Microfluidics Using Fused Filament Fabrication.
Morgan, Alex J L; Hidalgo San Jose, Lorena; Jamieson, William D; Wymant, Jennifer M; Song, Bing; Stephens, Phil; Barrow, David A; Castell, Oliver K
2016-01-01
The uptake of microfluidics by the wider scientific community has been limited by the fabrication barrier created by the skills and equipment required for the production of traditional microfluidic devices. Here we present simple 3D printed microfluidic devices using an inexpensive and readily accessible printer with commercially available printer materials. We demonstrate that previously reported limitations of transparency and fidelity have been overcome, whilst devices capable of operating at pressures in excess of 2000 kPa illustrate that leakage issues have also been resolved. The utility of the 3D printed microfluidic devices is illustrated by encapsulating dental pulp stem cells within alginate droplets; cell viability assays show the vast majority of cells remain live, and device transparency is sufficient for single cell imaging. The accessibility of these devices is further enhanced through fabrication of integrated ports and by the introduction of a Lego®-like modular system facilitating rapid prototyping whilst offering the potential for novices to build microfluidic systems from a database of microfluidic components.
Simple and Versatile 3D Printed Microfluidics Using Fused Filament Fabrication
Morgan, Alex J. L.; Hidalgo San Jose, Lorena; Jamieson, William D.; Wymant, Jennifer M.; Song, Bing; Stephens, Phil
2016-01-01
The uptake of microfluidics by the wider scientific community has been limited by the fabrication barrier created by the skills and equipment required for the production of traditional microfluidic devices. Here we present simple 3D printed microfluidic devices using an inexpensive and readily accessible printer with commercially available printer materials. We demonstrate that previously reported limitations of transparency and fidelity have been overcome, whilst devices capable of operating at pressures in excess of 2000 kPa illustrate that leakage issues have also been resolved. The utility of the 3D printed microfluidic devices is illustrated by encapsulating dental pulp stem cells within alginate droplets; cell viability assays show the vast majority of cells remain live, and device transparency is sufficient for single cell imaging. The accessibility of these devices is further enhanced through fabrication of integrated ports and by the introduction of a Lego®-like modular system facilitating rapid prototyping whilst offering the potential for novices to build microfluidic systems from a database of microfluidic components. PMID:27050661
Some Improvements in Utilization of Flash Memory Devices
NASA Technical Reports Server (NTRS)
Gender, Thomas K.; Chow, James; Ott, William E.
2009-01-01
Two developments improve the utilization of flash memory devices in the face of the following limitations: (1) a flash write element (page) differs in size from a flash erase element (block), (2) a block must be erased before its is rewritten, (3) lifetime of a flash memory is typically limited to about 1,000,000 erases, (4) as many as 2 percent of the blocks of a given device may fail before the expected end of its life, and (5) to ensure reliability of reading and writing, power must not be interrupted during minimum specified reading and writing times. The first development comprises interrelated software components that regulate reading, writing, and erasure operations to minimize migration of data and unevenness in wear; perform erasures during idle times; quickly make erased blocks available for writing; detect and report failed blocks; maintain the overall state of a flash memory to satisfy real-time performance requirements; and detect and initialize a new flash memory device. The second development is a combination of hardware and software that senses the failure of a main power supply and draws power from a capacitive storage circuit designed to hold enough energy to sustain operation until reading or writing is completed.
Electrostatic artificial eyelid actuator as an analog micromirror device
NASA Astrophysics Data System (ADS)
Goodwin, Scott H.; Dausch, David E.; Solomon, Steven L.; Lamvik, Michael K.
2005-05-01
An electrostatic MEMS actuator is described for use as an analog micromirror device (AMD) for high performance, broadband, hardware-in-the-loop (HWIL) scene generation. Current state-of-the-art technology is based on resistively heated pixel arrays. As these arrays drive to the higher scene temperatures required by missile defense scenarios, the power required to drive the large format resistive arrays will ultimately become prohibitive. Existing digital micromirrors (DMD) are, in principle, capable of generating the required scene irradiances, but suffer from limited dynamic range, resolution and flicker effects. An AMD would be free of these limitations, and so represents a viable alternative for high performance UV/VIS/IR scene generation. An electrostatic flexible film actuator technology, developed for use as "artificial eyelid" shutters for focal plane sensors to protect against damaging radiation, is suitable as an AMD for analog control of projection irradiance. In shutter applications, the artificial eyelid actuator contained radius of curvature as low as 25um and operated at high voltage (>200V). Recent testing suggests that these devices are capable of analog operation as reflective microcantilever mirrors appropriate for scene projector systems. In this case, the device would possess larger radius and operate at lower voltages (20-50V). Additionally, frame rates have been measured at greater than 5kHz for continuous operation. The paper will describe the artificial eyelid technology, preliminary measurements of analog test pixels, and design aspects related to application for scene projection systems. We believe this technology will enable AMD projectors with at least 5122 spatial resolution, non-temporally-modulated output, and pixel response times of <1.25ms.
40 CFR 63.4100 - What are my general requirements for complying with this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... compliant material option or the emission rate without add-on controls option, as specified in § 63.4091(a... coating operation(s) for which you use the emission rate with add-on controls option, as specified in § 63... operating limits for emission capture systems and add-on control devices required by § 63.4092 at all times...
40 CFR 63.4100 - What are my general requirements for complying with this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... compliant material option or the emission rate without add-on controls option, as specified in § 63.4091(a... coating operation(s) for which you use the emission rate with add-on controls option, as specified in § 63... operating limits for emission capture systems and add-on control devices required by § 63.4092 at all times...
40 CFR 63.4100 - What are my general requirements for complying with this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... compliant material option or the emission rate without add-on controls option, as specified in § 63.4091(a... coating operation(s) for which you use the emission rate with add-on controls option, as specified in § 63... operating limits for emission capture systems and add-on control devices required by § 63.4092 at all times...
DOT National Transportation Integrated Search
2018-03-01
Connected and automated vehicles (CAVs) and connected travelers will be providing substantially increased levels of data which will be available for agencies to consider using to improve the management and operation of the surface transportation syst...
Quantum state transfer in double-quantum-well devices
NASA Technical Reports Server (NTRS)
Jakumeit, Jurgen; Tutt, Marcel; Pavlidis, Dimitris
1994-01-01
A Monte Carlo simulation of double-quantum-well (DQW) devices is presented in view of analyzing the quantum state transfer (QST) effect. Different structures, based on the AlGaAs/GaAs system, were simulated at 77 and 300 K and optimized in terms of electron transfer and device speed. The analysis revealed the dominant role of the impurity scattering for the QST. Different approaches were used for the optimization of QST devices and basic physical limitations were found in the electron transfer between the QWs. The maximum transfer of electrons from a high to a low mobility well was at best 20%. Negative differential resistance is hampered by the almost linear rather than threshold dependent relation of electron transfer on electric field. By optimizing the doping profile the operation frequency limit could be extended to 260 GHz.
Microelectromechanical reprogrammable logic device.
Hafiz, M A A; Kosuru, L; Younis, M I
2016-03-29
In modern computing, the Boolean logic operations are set by interconnect schemes between the transistors. As the miniaturization in the component level to enhance the computational power is rapidly approaching physical limits, alternative computing methods are vigorously pursued. One of the desired aspects in the future computing approaches is the provision for hardware reconfigurability at run time to allow enhanced functionality. Here we demonstrate a reprogrammable logic device based on the electrothermal frequency modulation scheme of a single microelectromechanical resonator, capable of performing all the fundamental 2-bit logic functions as well as n-bit logic operations. Logic functions are performed by actively tuning the linear resonance frequency of the resonator operated at room temperature and under modest vacuum conditions, reprogrammable by the a.c.-driving frequency. The device is fabricated using complementary metal oxide semiconductor compatible mass fabrication process, suitable for on-chip integration, and promises an alternative electromechanical computing scheme.
Microelectromechanical reprogrammable logic device
Hafiz, M. A. A.; Kosuru, L.; Younis, M. I.
2016-01-01
In modern computing, the Boolean logic operations are set by interconnect schemes between the transistors. As the miniaturization in the component level to enhance the computational power is rapidly approaching physical limits, alternative computing methods are vigorously pursued. One of the desired aspects in the future computing approaches is the provision for hardware reconfigurability at run time to allow enhanced functionality. Here we demonstrate a reprogrammable logic device based on the electrothermal frequency modulation scheme of a single microelectromechanical resonator, capable of performing all the fundamental 2-bit logic functions as well as n-bit logic operations. Logic functions are performed by actively tuning the linear resonance frequency of the resonator operated at room temperature and under modest vacuum conditions, reprogrammable by the a.c.-driving frequency. The device is fabricated using complementary metal oxide semiconductor compatible mass fabrication process, suitable for on-chip integration, and promises an alternative electromechanical computing scheme. PMID:27021295
Development and study of charge sensors for fast charge detection in quantum dots
NASA Astrophysics Data System (ADS)
Thalakulam, Madhu
Charge detection at microsecond time-scales has far reaching consequences in both technology and in our understanding of electron dynamics in nanoscale devices such as quantum dots. Radio-frequency superconducting single electron transistors (RF-SET) and quantum point contacts (QPC) are ultra sensitive charge sensors operating near the quantum limit. The operation of RF-SETs outside the superconducting gap has been a topic of study; the sub-gap operation, especially in the presence of large quantum fluctuations of quasiparticles remains largely unexplored, both theoretically and experimentally. We have investigated the effects of quantum fluctuations of quasiparticles on the operation of RF-SETs for large values of the quasiparticle cotunneling parameter alpha = 8EJ/Ec, where EJ and Ec are the Josephson and charging energies. We find that, for alpha > 1, sub-gap RF-SET operation is still feasible despite quantum fluctuations that wash out quasiparticle tunneling thresholds. Such RF-SETs show linearity and signal-to-noise ratio superior to those obtained when quantum fluctuations are weak, while still demonstrating excellent charge sensitivity. We have operated a QPC charge detector in a radio frequency mode that allows fast charge detection in a bandwidth of several megahertz. The noise limiting the sensitivity of the charge detector is not the noise of a secondary amplifier, but the non-equilibrium device noise of the QPC itself. The noise power averaged over a measurement bandwidth of about 10MHz around the carrier frequency is in agreement with the theory of photon-assisted shot noise. Frequency-resolved measurements, however show several significant discrepancies with the theoretical predictions. The measurement techniques developed can also be used to investigate the noise of other semiconductor nanostructures such as quantum dots in the Kondo regime. A study of the noise characteristics alone can not determine whether the device is operating at the quantum limit; a characterization of back action is also necessary. The inelastic current through a double quantum dot system (DQD) is sensitive to the spectral density of voltage fluctuations in its electromagnetic environment. Electrical transport studies on a DQD system electrostatically coupled to an SET shows qualitative evidence of back-action of SET. The design and fabrication of a few electron DQD device with integrated RF-SET and QPC charge sensors for the study of back action of the sensors and real-time electron dynamics in the DQD are also discussed.
An automated method for the evaluation of the pointing accuracy of sun-tracking devices
NASA Astrophysics Data System (ADS)
Baumgartner, Dietmar J.; Rieder, Harald E.; Pötzi, Werner; Freislich, Heinrich; Strutzmann, Heinz
2016-04-01
The accuracy of measurements of solar radiation (direct and diffuse radiation) depends significantly on the accuracy of the operational sun-tracking device. Thus rigid targets for instrument performance and operation are specified for international monitoring networks, such as e.g., the Baseline Surface Radiation Network (BSRN) operating under the auspices of the World Climate Research Program (WCRP). Sun-tracking devices fulfilling these accuracy targets are available from various instrument manufacturers, however none of the commercially available systems comprises a secondary accuracy control system, allowing platform operators to independently validate the pointing accuracy of sun-tracking sensors during operation. Here we present KSO-STREAMS (KSO-SunTRackEr Accuracy Monitoring System), a fully automated, system independent and cost-effective method for evaluating the pointing accuracy of sun-tracking devices. We detail the monitoring system setup, its design and specifications and results from its application to the sun-tracking system operated at the Austrian RADiation network (ARAD) site Kanzelhöhe Observatory (KSO). Results from KSO-STREAMS (for mid-March to mid-June 2015) show that the tracking accuracy of the device operated at KSO lies well within BSRN specifications (i.e. 0.1 degree accuracy). We contrast results during clear-sky and partly cloudy conditions documenting sun-tracking performance at manufacturer specified accuracies for active tracking (0.02 degrees) and highlight accuracies achieved during passive tracking i.e. periods with less than 300 W m-2 direct radiation. Furthermore we detail limitations to tracking surveillance during overcast conditions and periods of partial solar limb coverage by clouds.
Code of Federal Regulations, 2012 CFR
2012-07-01
... I do not use a wet scrubber, fabric filter, electrostatic precipitator, activated carbon injection..., fabric filter, electrostatic precipitator, activated carbon injection, or afterburner, or if I limit... device other than a wet scrubber, fabric filter, electrostatic precipitator, activated carbon injection...
Code of Federal Regulations, 2014 CFR
2014-07-01
... I do not use a wet scrubber, fabric filter, electrostatic precipitator, activated carbon injection..., fabric filter, electrostatic precipitator, activated carbon injection, or afterburner, or if I limit... device other than a wet scrubber, fabric filter, electrostatic precipitator, activated carbon injection...
Code of Federal Regulations, 2013 CFR
2013-07-01
... I do not use a wet scrubber, fabric filter, electrostatic precipitator, activated carbon injection..., fabric filter, electrostatic precipitator, activated carbon injection, or afterburner, or if I limit... device other than a wet scrubber, fabric filter, electrostatic precipitator, activated carbon injection...
Code of Federal Regulations, 2011 CFR
2011-07-01
... I do not use a wet scrubber, fabric filter, electrostatic precipitator, activated carbon injection..., fabric filter, electrostatic precipitator, activated carbon injection, or afterburner, or if I limit... device other than a wet scrubber, fabric filter, electrostatic precipitator, activated carbon injection...
Predictive monitoring research: Summary of the PREMON system
NASA Technical Reports Server (NTRS)
Doyle, Richard J.; Sellers, Suzanne M.; Atkinson, David J.
1987-01-01
Traditional approaches to monitoring are proving inadequate in the face of two important issues: the dynamic adjustment of expectations about sensor values when the behavior of the device is too complex to enumerate beforehand, and the selective but effective interpretation of sensor readings when the number of sensors becomes overwhelming. This system addresses these issues by building an explicit model of a device and applying common-sense theories of physics to model causality in the device. The resulting causal simulation of the device supports planning decisions about how to efficiently yet reliably utilize a limited number of sensors to verify correct operation of the device.
40 CFR 62.14640 - What if I do not use a wet scrubber to comply with the emission limitations?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 8 2010-07-01 2010-07-01 false What if I do not use a wet scrubber to... Operating Limits § 62.14640 What if I do not use a wet scrubber to comply with the emission limitations? If you use an air pollution control device other than a wet scrubber, or limit emissions in some other...
40 CFR 62.14640 - What if I do not use a wet scrubber to comply with the emission limitations?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 8 2011-07-01 2011-07-01 false What if I do not use a wet scrubber to... Operating Limits § 62.14640 What if I do not use a wet scrubber to comply with the emission limitations? If you use an air pollution control device other than a wet scrubber, or limit emissions in some other...
Electrical Impact of SiC Structural Crystal Defects on High Electric Field Devices
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.
1999-01-01
Commercial epilayers are known to contain a variety of crystallographic imperfections. including micropipes, closed core screw dislocations. low-angle boundaries, basal plane dislocations, heteropolytypic inclusions, and non-ideal surface features like step bunching and pits. This paper reviews the limited present understanding of the operational impact of various crystal defects on SiC electrical devices. Aside from micropipes and triangular inclusions whose densities have been shrinking towards manageably small values in recent years, many of these defects appear to have little adverse operational and/or yield impact on SiC-based sensors, high-frequency RF, and signal conditioning electronics. However high-power switching devices used in power management and distribution circuits have historically (in silicon experience) demanded the highest material quality for prolonged safe operation, and are thus more susceptible to operational reliability problems that arise from electrical property nonuniformities likely to occur at extended crystal defects. A particular emphasis is placed on the impact of closed-core screw dislocations on high-power switching devices, because these difficult to observe defects are present in densities of thousands per cm,in commercial SiC epilayers. and their reduction to acceptable levels seems the most problematic at the present time.
Bradetich, Ryan; Dearien, Jason A; Grussling, Barry Jakob; Remaley, Gavin
2013-11-05
The present disclosure provides systems and methods for remote device management. According to various embodiments, a local intelligent electronic device (IED) may be in communication with a remote IED via a limited bandwidth communication link, such as a serial link. The limited bandwidth communication link may not support traditional remote management interfaces. According to one embodiment, a local IED may present an operator with a management interface for a remote IED by rendering locally stored templates. The local IED may render the locally stored templates using sparse data obtained from the remote IED. According to various embodiments, the management interface may be a web client interface and/or an HTML interface. The bandwidth required to present a remote management interface may be significantly reduced by rendering locally stored templates rather than requesting an entire management interface from the remote IED. According to various embodiments, an IED may comprise an encryption transceiver.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Air Pollutants Emissions or a Limit of 20 Parts Per Million by Volume 3 Table 3 to Subpart G of Part... Process Vents, Storage Vessels, Transfer Operations, and Wastewater Pt. 63, Subpt. G, Table 3 Table 3 to.... Recapture devices The appropriate monitoring device identified in table 4 when, in the table, the term...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Air Pollutants Emissions or a Limit of 20 Parts Per Million by Volume 3 Table 3 to Subpart G of Part... Process Vents, Storage Vessels, Transfer Operations, and Wastewater Pt. 63, Subpt. G, Table 3 Table 3 to.... Recapture devices The appropriate monitoring device identified in table 4 when, in the table, the term...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Hazardous Air Pollutants Emissions or a Limit of 20 Parts Per Million by Volume 3 Table 3 to Subpart G of... Process Vents, Storage Vessels, Transfer Operations, and Wastewater Pt. 63, Subpt. G, Table 3 Table 3 to.... Recapture devices The appropriate monitoring device identified in table 4 when, in the table, the term...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Hazardous Air Pollutants Emissions or a Limit of 20 Parts Per Million by Volume 3 Table 3 to Subpart G of... Process Vents, Storage Vessels, Transfer Operations, and Wastewater Pt. 63, Subpt. G, Table 3 Table 3 to.... Recapture devices The appropriate monitoring device identified in table 4 when, in the table, the term...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Hazardous Air Pollutants Emissions or a Limit of 20 Parts Per Million by Volume 3 Table 3 to Subpart G of... Process Vents, Storage Vessels, Transfer Operations, and Wastewater Pt. 63, Subpt. G, Table 3 Table 3 to.... Recapture devices The appropriate monitoring device identified in table 4 when, in the table, the term...
Mobility for GCSS-MC through virtual PCs
2017-06-01
their productivity. Mobile device access to GCSS-MC would allow Marines to access a required program for their mission using a form of computing ...network throughput applications with a device running on various operating systems with limited computational ability. The use of VPCs leads to a...reduced need for network throughput and faster overall execution. 14. SUBJECT TERMS GCSS-MC, enterprise resource planning, virtual personal computer
40 CFR 63.9350 - What reports must I submit and when?
Code of Federal Regulations, 2010 CFR
2010-07-01
... the dates in paragraphs (a)(1) through (4) of this section. (6) If you had an SSM of a control device... the latest CEMS or CPMS certification or audit. (7) The date and time period of each deviation from an operating limit in Table 2 to this subpart; date and time period of any bypass of the add-on control device...
Atomically Thin Femtojoule Memristive Device
Zhao, Huan; Dong, Zhipeng; Tian, He; ...
2017-10-25
The morphology and dimension of the conductive filament formed in a memristive device are strongly influenced by the thickness of its switching medium layer. Aggressive scaling of this active layer thickness is critical toward reducing the operating current, voltage, and energy consumption in filamentary-type memristors. Previously, the thickness of this filament layer has been limited to above a few nanometers due to processing constraints, making it challenging to further suppress the on-state current and the switching voltage. In this paper, the formation of conductive filaments in a material medium with sub-nanometer thickness formed through the oxidation of atomically thin two-dimensionalmore » boron nitride is studied. The resulting memristive device exhibits sub-nanometer filamentary switching with sub-pA operation current and femtojoule per bit energy consumption. Furthermore, by confining the filament to the atomic scale, current switching characteristics are observed that are distinct from that in thicker medium due to the profoundly different atomic kinetics. The filament morphology in such an aggressively scaled memristive device is also theoretically explored. Finally, these ultralow energy devices are promising for realizing femtojoule and sub-femtojoule electronic computation, which can be attractive for applications in a wide range of electronics systems that desire ultralow power operation.« less
Self-learning control system for plug-in hybrid vehicles
DeVault, Robert C [Knoxville, TN
2010-12-14
A system is provided to instruct a plug-in hybrid electric vehicle how optimally to use electric propulsion from a rechargeable energy storage device to reach an electric recharging station, while maintaining as high a state of charge (SOC) as desired along the route prior to arriving at the recharging station at a minimum SOC. The system can include the step of calculating a straight-line distance and/or actual distance between an orientation point and the determined instant present location to determine when to initiate optimally a charge depleting phase. The system can limit extended driving on a deeply discharged rechargeable energy storage device and reduce the number of deep discharge cycles for the rechargeable energy storage device, thereby improving the effective lifetime of the rechargeable energy storage device. This "Just-in-Time strategy can be initiated automatically without operator input to accommodate the unsophisticated operator and without needing a navigation system/GPS input.
Thermally responsive polymer electrolytes for inherently safe electrochemical energy storage
NASA Astrophysics Data System (ADS)
Kelly, Jesse C.
Electrochemical double layer capacitors (EDLCs), supercapacitors and Li-ion batteries have emerged as premier candidates to meet the rising demands in energy storage; however, such systems are limited by thermal hazards, thermal runaway, fires and explosions, all of which become increasingly more dangerous in large-format devices. To prevent such scenarios, thermally-responsive polymer electrolytes (RPEs) that alter properties in electrochemical energy storage devices were designed and tested. These RPEs will be used to limit or halt device operation when temperatures increase beyond a predetermined threshold, therefore limiting further heating. The development of these responsive systems will offer an inherent safety mechanism in electrochemical energy storage devices, while preserving the performance, lifetimes, and versatility that large-format systems require. Initial work focused on the development of a model system that demonstrated the concept of RPEs in an electrochemical device. Aqueous electrolyte solutions of polymers exhibiting properties that change in response to temperature were developed for applications in EDLCs and supercapacitors. These "smart materials" provide a means to control electrochemical systems where polymer phase separation at high temperatures affects electrolyte properties and inhibits device performance. Aqueous RPEs were synthesized using N-isopropylacrylamide, which governs the thermal properties, and fractions of acrylic acid or vinyl sulfonic acids, which provide ions to the solution. The molecular properties of these aqueous RPEs, specifically the ionic composition, were shown to influence the temperature-dependent electrolyte properties and the extent to which these electrolytes control the energy storage characteristics of a supercapacitor device. Materials with high ionic content provided the highest room temperature conductivity and electrochemical activity; however, RPEs with low ionic content provided the highest "on-off" ratio in electrochemical activity at elevated temperatures. Overall, solution pH and conductivity were altered by an order of magnitude and device performance (ability to store charge) decreased by over 70%. After demonstration of a model responsive electrolyte in an aqueous system, ionic liquid (IL) based electrolytes were developed as a means of controlling the electrochemical performance in the non-aqueous environments that batteries, specifically Li-ion, require. Here, two systems were developed: (1) an electrolyte comprising poly(ethylene oxide) (PEO), the IL, [EMIM][BF4], and a lithium salt and (2) an electrolyte comprising poly(benzyl methacrylate) (PBzMA), the IL, [EMIM][TFSI], and a lithium salt. In each system, the polymer-IL phase separation inhibited device operation at elevated temperatures. For the PEO/IL electrolyte, the thermally induced liquid-liquid phase separation was shown to decrease the ionic conductivity, thereby affecting the concentration of ions at the electrode. Additionally, an increasing charge transfer resistance associated with the phase separated polymer coating the porous electrode was shown to limit electrochemical activity significantly. For the PBzMA/IL electrolyte, the solid-liquid phase separation did not show a change in conductivity, but did cause a drastic increase in charge transfer resistance, effectively shutting off Li-ion battery operation at high temperatures. Such responsive mixtures provide a transformative approach to regulating electrochemical processes, which is necessary to achieve inherently safe operation in large format energy storage with EDLCs, supercapacitors and Li-ion batteries.
NASA Technical Reports Server (NTRS)
Patterson, Richard; Hammoud, Ahmad
2011-01-01
A new commercial-off-the-shelf (COTS) gate driver designed to drive both the high-side and the low-side enhancement-mode GaN FETs, National Semiconductor's type LM5113, was evaluated for operation at temperatures beyond its recommended specified limits of -40 C to +125 C. The effects of limited thermal cycling under the extended test temperature, which ranged from -194 C to +150 C, on the operation of this chip as well as restart capability at the extreme cryogenic and hot temperatures were also investigated. The driver circuit was able to maintain good operation throughout the entire test regime between -194 C and +150 C without undergoing any major changes in its outputs signals and characteristics. The limited thermal cycling performed on the device also had no effect on its performance, and the driver chip was able to successfully restart at each of the extreme temperatures of -194 C and +150 C. The plastic packaging of this device was also not affected by either the short extreme temperature exposure or the limited thermal cycling. These preliminary results indicate that this new commercial-off-the-shelf (COTS) halfbridge eGaN FET driver integrated circuit has the potential for use in space exploration missions under extreme temperature environments. Further testing is planned under long-term cycling to assess the reliability of these parts and to determine their suitability for extended use in the harsh environments of space.
Aluminum nitride insulating films for MOSFET devices
NASA Technical Reports Server (NTRS)
Lewicki, G. W.; Maserjian, J.
1972-01-01
Application of aluminum nitrides as electrical insulator for electric capacitors is discussed. Electrical properties of aluminum nitrides are analyzed and specific use with field effect transistors is defined. Operational limits of field effect transistors are developed.
Predicting scattering scanning near-field optical microscopy of mass-produced plasmonic devices
NASA Astrophysics Data System (ADS)
Otto, Lauren M.; Burgos, Stanley P.; Staffaroni, Matteo; Ren, Shen; Süzer, Özgün; Stipe, Barry C.; Ashby, Paul D.; Hammack, Aeron T.
2018-05-01
Scattering scanning near-field optical microscopy enables optical imaging and characterization of plasmonic devices with nanometer-scale resolution well below the diffraction limit. This technique enables developers to probe and understand the waveguide-coupled plasmonic antenna in as-fabricated heat-assisted magnetic recording heads. In order to validate and predict results and to extract information from experimental measurements that is physically comparable to simulations, a model was developed to translate the simulated electric field into expected near-field measurements using physical parameters specific to scattering scanning near-field optical microscopy physics. The methods used in this paper prove that scattering scanning near-field optical microscopy can be used to determine critical sub-diffraction-limited dimensions of optical field confinement, which is a crucial metrology requirement for the future of nano-optics, semiconductor photonic devices, and biological sensing where the near-field character of light is fundamental to device operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goulding, R. H.; Chen, G.; Meitner, S.
2009-11-26
Existing linear plasma materials interaction (PMI) facilities all use plasma sources with internal electrodes. An rf-based helicon source is of interest because high plasma densities can be generated with no internal electrodes, allowing true steady state operation with minimal impurity generation. Work has begun at Oak Ridge National Laboratory (ORNL) to develop a large (15 cm) diameter helicon source producing hydrogen plasmas with parameters suitable for use in a linear PMI device: n{sub e}{>=}10{sup 19} m{sup -3}, T{sub e} = 4-10 eV, particle flux {gamma}{sub p}>10{sup 23}m{sup -3} s{sup -1}, and magnetic field strength |B| up to 1 T inmore » the source region. The device, whose design is based on a previous hydrogen helicon source operated at ORNL[1], will operate at rf frequencies in the range 10-26 MHz, and power levels up to {approx}100 kW. Limitations in cooling will prevent operation for pulses longer than several seconds, but a major goal will be the measurement of power deposition on device structures so that a later steady state version can be designed. The device design, the diagnostics to be used, and results of rf modeling of the device will be discussed. These include calculations of plasma loading, resulting currents and voltages in antenna structures and the matching network, power deposition profiles, and the effect of high |B| operation on power absorption.« less
LABORATORY PROCESS CONTROLLER USING NATURAL LANGUAGE COMMANDS FROM A PERSONAL COMPUTER
NASA Technical Reports Server (NTRS)
Will, H.
1994-01-01
The complex environment of the typical research laboratory requires flexible process control. This program provides natural language process control from an IBM PC or compatible machine. Sometimes process control schedules require changes frequently, even several times per day. These changes may include adding, deleting, and rearranging steps in a process. This program sets up a process control system that can either run without an operator, or be run by workers with limited programming skills. The software system includes three programs. Two of the programs, written in FORTRAN77, record data and control research processes. The third program, written in Pascal, generates the FORTRAN subroutines used by the other two programs to identify the user commands with the user-written device drivers. The software system also includes an input data set which allows the user to define the user commands which are to be executed by the computer. To set the system up the operator writes device driver routines for all of the controlled devices. Once set up, this system requires only an input file containing natural language command lines which tell the system what to do and when to do it. The operator can make up custom commands for operating and taking data from external research equipment at any time of the day or night without the operator in attendance. This process control system requires a personal computer operating under MS-DOS with suitable hardware interfaces to all controlled devices. The program requires a FORTRAN77 compiler and user-written device drivers. This program was developed in 1989 and has a memory requirement of about 62 Kbytes.
Electrorheological Fluid Based Force Feedback Device
NASA Technical Reports Server (NTRS)
Pfeiffer, Charles; Bar-Cohen, Yoseph; Mavroidis, Constantinos; Dolgin, Benjamin
1999-01-01
Parallel to the efforts to develop fully autonomous robots, it is increasingly being realized that there are applications where it is essential to have a fully controlled robot and "feel" its operating conditions, i.e. telepresence. This trend is a result of the increasing efforts to address tasks where humans can perform significantly better but, due to associated hazards, distance, physical limitations and other causes, only robots can be employed to perform these tasks. Such robots need to be assisted by a human that remotely controls the operation. To address the goal of operating robots as human surrogates, the authors launched a study of mechanisms that provide mechanical feedback. For this purpose, electrorheological fluids (ERF) are being investigated for the potential application as miniature haptic devices. This family of electroactive fluids has the property of changing the viscosity during electrical stimulation. Consequently, ERF can be used to produce force feedback haptic devices for tele-operated control of medical and space robotic systems. Forces applied at the robot end-effector due to a compliant environment are reflected to the user using an ERF device where a change in the system viscosity will occur proportionally to the transmitted force. Analytical model and control algorithms are being developed taking into account the non-linearities of these type of devices. This paper will describe the concept and the developed mechanism of ERF based force feedback. The test process and the physical properties of this device will be described and the results of preliminary tests will be presented.
Novel use of an ultrasonic bone-cutting device for endoscopic-assisted craniosynostosis surgery.
Chaichana, Kaisorn L; Jallo, George I; Dorafshar, Amir H; Ahn, Edward S
2013-07-01
Endoscopic-assisted craniosynostosis surgery is associated with less blood loss and shorter operative times as compared to open surgery. However, in infants who have low circulating blood volumes, the endoscopic approach is still associated with significant blood loss. A major source of blood loss is the bone that is cut during surgery. We discuss the novel use of an ultrasonic bone-cutting device for craniosynostosis surgery, which decreases bone bleeding. This device, which has primarily only been used for spine and skull base surgery, may help reduce blood loss in these infants. All patients with single suture craniosynostosis who were operated on with the use of an ultrasonic bone-cutting device were identified. The information retrospectively recorded from patient charts included patient age, suture involved, blood loss, operative times, complications, preoperative hemoglobin, postoperative hemoglobin, length of hospital stay, and follow-up times. Thirteen patients (12 males, 1 female) underwent surgery with an ultrasonic bone-cutting device during the reviewed period. The average age (±standard deviation) of the patients was 11.8 (±1.6) weeks. Four patients had metopic synostosis and nine patients had sagittal synostosis. The average surgery time was 84 (±13) min. The median (interquartile range) blood loss was 20 (10-70) cc. No patients required blood transfusions. Three patients had dural tears. We demonstrate the novel use of an ultrasonic bone-cutting device for endoscopic-assisted craniosynostosis surgery. This device limited blood loss while maintaining short operative times for infants with low circulating blood volumes.
In situ characterization of the oxidative degradation of a polymeric light emitting device
NASA Astrophysics Data System (ADS)
Cumpston, B. H.; Parker, I. D.; Jensen, K. F.
1997-04-01
Light-emitting devices with polymeric emissive layers have great promise for the production of large-area, lightweight, flexible color displays, but short lifetimes currently limit applications. We address mechanisms of bulk polymer degradation in these devices and show through in situ Fourier transform infrared characterization of working light-emitting devices with active layers of poly[2-methoxy,5-(2'-ethyl-hexoxy)-1,4-phenylene vinylene] that oxygen is responsible for the degradation of the polymer film. A mechanism is given based on the formation of singlet oxygen from oxygen impurities in the film via energy transfer from a nonradiative exciton. Fourier transform infrared and x-ray photoelectron spectroscopy results are consistent with the mechanism, involving singlet oxygen attack followed by free radical processes. We further show that oxygen readily diffuses into the active polymer layer, changing the electrical characteristics of the film even at low concentrations. Thus, polyphenylene-vinylene-based light-emitting devices will self-destruct during operation if fabricated without special attention to eliminating oxygen contamination during fabrication and device operation.
BioCapacitor: A novel principle for biosensors.
Sode, Koji; Yamazaki, Tomohiko; Lee, Inyoung; Hanashi, Takuya; Tsugawa, Wakako
2016-02-15
Studies regarding biofuel cells utilizing biocatalysts such as enzymes and microorganisms as electrocatalysts have been vigorously conducted over the last two decades. Because of their environmental safety and sustainability, biofuel cells are expected to be used as clean power generators. Among several principles of biofuel cells, enzyme fuel cells have attracted significant attention for their use as alternative energy sources for future implantable devices, such as implantable insulin pumps and glucose sensors in artificial pancreas and pacemakers. However, the inherent issue of the biofuel cell principle is the low power of a single biofuel cell. The theoretical voltage of biofuel cells is limited by the redox potential of cofactors and/or mediators employed in the anode and cathode, which are inadequate for operating any devices used for biomedical application. These limitations inspired us to develop a novel biodevice based on an enzyme fuel cell that generates sufficient stable power to operate electric devices, designated "BioCapacitor." To increase voltage, the enzyme fuel cell is connected to a charge pump. To obtain a sufficient power and voltage to operate an electric device, a capacitor is used to store the potential generated by the charge pump. Using the combination of a charge pump and capacitor with an enzyme fuel cell, high voltages with sufficient temporary currents to operate an electric device were generated without changing the design and construction of the enzyme fuel cell. In this review, the BioCapacitor principle is described. The three different representative categories of biodevices employing the BioCapacitor principle are introduced. Further, the recent challenges in the developments of self-powered stand-alone biodevices employing enzyme fuel cells combined with charge pumps and capacitors are introduced. Finally, the future prospects of biodevices employing the BioCapacitor principle are addressed. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
1-D ELECTRO-OPTIC BEAM STEERING DEVICE
Wang, Wei-Chih; Tsui, Chi Leung
2011-01-01
In this paper, we present the design and fabrication of a 1D beam steering device based on planar electro-optic thermal-plastic prisms and a collimator lens array. With the elimination of moving parts, the proposed device is able to overcome the mechanical limitations of present scanning devices, such as fatigue and low operating frequency, while maintaining a small system footprint (~0.5mm×0.5mm). From experimental data, our prototype device is able to achieve a maximum deflection angle of 5.6° for a single stage prism design and 29.2° for a cascaded three prisms stage design. The lens array shows a 4µm collimated beam diameter. PMID:22199458
Low power signal processing electronics for wearable medical devices.
Casson, Alexander J; Rodriguez-Villegas, Esther
2010-01-01
Custom designed microchips, known as Application Specific Integrated Circuits (ASICs), offer the lowest possible power consumption electronics. However, this comes at the cost of a longer, more complex and more costly design process compared to one using generic, off-the-shelf components. Nevertheless, their use is essential in future truly wearable medical devices that must operate for long periods of time from physically small, energy limited batteries. This presentation will demonstrate the state-of-the-art in ASIC technology for providing online signal processing for use in these wearable medical devices.
Communication target object recognition for D2D connection with feature size limit
NASA Astrophysics Data System (ADS)
Ok, Jiheon; Kim, Soochang; Kim, Young-hoon; Lee, Chulhee
2015-03-01
Recently, a new concept of device-to-device (D2D) communication, which is called "point-and-link communication" has attracted great attentions due to its intuitive and simple operation. This approach enables user to communicate with target devices without any pre-identification information such as SSIDs, MAC addresses by selecting the target image displayed on the user's own device. In this paper, we present an efficient object matching algorithm that can be applied to look(point)-and-link communications for mobile services. Due to the limited channel bandwidth and low computational power of mobile terminals, the matching algorithm should satisfy low-complexity, low-memory and realtime requirements. To meet these requirements, we propose fast and robust feature extraction by considering the descriptor size and processing time. The proposed algorithm utilizes a HSV color histogram, SIFT (Scale Invariant Feature Transform) features and object aspect ratios. To reduce the descriptor size under 300 bytes, a limited number of SIFT key points were chosen as feature points and histograms were binarized while maintaining required performance. Experimental results show the robustness and the efficiency of the proposed algorithm.
An investigation of potential applications of OP-SAPS: Operational sampled analog processors
NASA Technical Reports Server (NTRS)
Parrish, E. A.; Mcvey, E. S.
1976-01-01
The impact of charge-coupled device (CCD) processors on future instrumentation was investigated. The CCD devices studied process sampled analog data and are referred to as OP-SAPS - operational sampled analog processors. Preliminary studies into various architectural configurations for systems composed of OP-SAPS show that they have potential in such diverse applications as pattern recognition and automatic control. It appears probable that OP-SAPS may be used to construct computing structures which can serve as special peripherals to large-scale computer complexes used in real time flight simulation. The research was limited to the following benchmark programs: (1) face recognition, (2) voice command and control, (3) terrain classification, and (4) terrain identification. A small amount of effort was spent on examining a method by which OP-SAPS may be used to decrease the limiting ground sampling distance encountered in remote sensing from satellites.
1.54 micron Emission from Erbium implanted GaN for Photonic Applications
NASA Technical Reports Server (NTRS)
Thaik, Myo; Hommerich, U.; Schwartz, R. N.; Wilson, R. G.; Zavada, J. M.
1998-01-01
The development of efficient and compact light sources operating at 1.54 micron is of enormous importance for the advancement of new optical communication systems. Erbium (1%) doped fiber amplifiers (EDFA's) or semiconductor lasers are currently being employed as near infrared light sources. Both devices, however, have inherent limitations due to their mode of operation. EDFA's employ an elaborate optical pumping scheme, whereas diode lasers have a strongly temperature dependent lasing wavelength. Novel light emitters based on erbium doped III-V semiconductors could overcome these limitations. Er doped semiconductors combine the convenience of electrical excitation with the excellent luminescence properties of Er(3+) ions. Electrically pumped, compact, and temperature stable optoelectronic devices are envisioned from this new class of luminescent materials. In this paper we discuss the potential of Er doped GaN for optoelectronic applications based on temperature dependent photoluminescence excitation studies.
High heat flux loop heat pipes
NASA Astrophysics Data System (ADS)
North, Mark T.; Sarraf, David B.; Rosenfeld, John H.; Maidanik, Yuri F.; Vershinin, Sergey
1997-01-01
Loop Heat Pipes (LHPs) can transport very large thermal power loads, over long distances, through flexible, small diameter tubes and against high gravitational heads. While recent LHPs have transported as much as 1500 W, the peak heat flux through a LHP's evaporator has been limited to about 0.07 MW/m2. This limitation is due to the arrangement of vapor passages next to the heat load which is one of the conditions necessary to ensure self priming of the device. This paper describes work aimed at raising this limit by threefold to tenfold. Two approaches were pursued. One optimized the vapor passage geometry for the high heat flux conditions. The geometry improved the heat flow into the wick and working fluid. This approach also employed a finer pored wick to support higher vapor flow losses. The second approach used a bidisperse wick material within the circumferential vapor passages. The bidisperse material increased the thermal conductivity and the evaporative surface area in the region of highest heat flux, while providing a flow path for the vapor. Proof-of-concept devices were fabricated and tested for each approach. Both devices operated as designed and both demonstrated operation at a heat flux of 0.70 MW/m2. This performance exceeded the known state of the art by a factor of more than six for both conventional heat pipes and for loop heat pipes using ammonia. In addition, the bidisperse-wick device demonstrated boiling heat transfer coefficients up to 100,000 W/m2.K, and the fine pored device demonstrated an orientation independence with its performance essentially unaffected by whether its evaporator was positioned above, below or level with the condenser.
Fundamental Scaling Laws in Nanophotonics
Liu, Ke; Sun, Shuai; Majumdar, Arka; Sorger, Volker J.
2016-01-01
The success of information technology has clearly demonstrated that miniaturization often leads to unprecedented performance, and unanticipated applications. This hypothesis of “smaller-is-better” has motivated optical engineers to build various nanophotonic devices, although an understanding leading to fundamental scaling behavior for this new class of devices is missing. Here we analyze scaling laws for optoelectronic devices operating at micro and nanometer length-scale. We show that optoelectronic device performance scales non-monotonically with device length due to the various device tradeoffs, and analyze how both optical and electrical constrains influence device power consumption and operating speed. Specifically, we investigate the direct influence of scaling on the performance of four classes of photonic devices, namely laser sources, electro-optic modulators, photodetectors, and all-optical switches based on three types of optical resonators; microring, Fabry-Perot cavity, and plasmonic metal nanoparticle. Results show that while microrings and Fabry-Perot cavities can outperform plasmonic cavities at larger length-scales, they stop working when the device length drops below 100 nanometers, due to insufficient functionality such as feedback (laser), index-modulation (modulator), absorption (detector) or field density (optical switch). Our results provide a detailed understanding of the limits of nanophotonics, towards establishing an opto-electronics roadmap, akin to the International Technology Roadmap for Semiconductors. PMID:27869159
Fundamental Scaling Laws in Nanophotonics.
Liu, Ke; Sun, Shuai; Majumdar, Arka; Sorger, Volker J
2016-11-21
The success of information technology has clearly demonstrated that miniaturization often leads to unprecedented performance, and unanticipated applications. This hypothesis of "smaller-is-better" has motivated optical engineers to build various nanophotonic devices, although an understanding leading to fundamental scaling behavior for this new class of devices is missing. Here we analyze scaling laws for optoelectronic devices operating at micro and nanometer length-scale. We show that optoelectronic device performance scales non-monotonically with device length due to the various device tradeoffs, and analyze how both optical and electrical constrains influence device power consumption and operating speed. Specifically, we investigate the direct influence of scaling on the performance of four classes of photonic devices, namely laser sources, electro-optic modulators, photodetectors, and all-optical switches based on three types of optical resonators; microring, Fabry-Perot cavity, and plasmonic metal nanoparticle. Results show that while microrings and Fabry-Perot cavities can outperform plasmonic cavities at larger length-scales, they stop working when the device length drops below 100 nanometers, due to insufficient functionality such as feedback (laser), index-modulation (modulator), absorption (detector) or field density (optical switch). Our results provide a detailed understanding of the limits of nanophotonics, towards establishing an opto-electronics roadmap, akin to the International Technology Roadmap for Semiconductors.
Fundamental Scaling Laws in Nanophotonics
NASA Astrophysics Data System (ADS)
Liu, Ke; Sun, Shuai; Majumdar, Arka; Sorger, Volker J.
2016-11-01
The success of information technology has clearly demonstrated that miniaturization often leads to unprecedented performance, and unanticipated applications. This hypothesis of “smaller-is-better” has motivated optical engineers to build various nanophotonic devices, although an understanding leading to fundamental scaling behavior for this new class of devices is missing. Here we analyze scaling laws for optoelectronic devices operating at micro and nanometer length-scale. We show that optoelectronic device performance scales non-monotonically with device length due to the various device tradeoffs, and analyze how both optical and electrical constrains influence device power consumption and operating speed. Specifically, we investigate the direct influence of scaling on the performance of four classes of photonic devices, namely laser sources, electro-optic modulators, photodetectors, and all-optical switches based on three types of optical resonators; microring, Fabry-Perot cavity, and plasmonic metal nanoparticle. Results show that while microrings and Fabry-Perot cavities can outperform plasmonic cavities at larger length-scales, they stop working when the device length drops below 100 nanometers, due to insufficient functionality such as feedback (laser), index-modulation (modulator), absorption (detector) or field density (optical switch). Our results provide a detailed understanding of the limits of nanophotonics, towards establishing an opto-electronics roadmap, akin to the International Technology Roadmap for Semiconductors.
Inhalation device options for the management of chronic obstructive pulmonary disease.
DePietro, Michael; Gilbert, Ileen; Millette, Lauren A; Riebe, Michael
2018-01-01
Chronic obstructive pulmonary disease (COPD) is characterized by chronic respiratory symptoms and airflow limitation, resulting from abnormalities in the airway and/or damage to the alveoli. Primary care physicians manage the healthcare of a large proportion of patients with COPD. In addition to determining the most appropriate medication regimen, which usually includes inhaled bronchodilators with or without inhaled corticosteroids, physicians are charged with optimizing inhalation device selection to facilitate effective drug delivery and patient adherence. The large variety of inhalation devices currently available present numerous challenges for physicians that include: (1) gaining knowledge of and proficiency with operating different device classes; (2) identifying the most appropriate inhalation device for the patient; and (3) providing the necessary education and training for patients on device use. This review provides an overview of the inhalation device types currently available in the United States for delivery of COPD medications, including information on their successful operation and respective advantages and disadvantages, factors to consider in matching a device to an individual patient, the need for device training for patients and physicians, and guidance for improving treatment adherence. Finally, the review will discuss established and novel tools and technology that may aid physicians in improving education and promoting better adherence to therapy.
All-printed diode operating at 1.6 GHz
Sani, Negar; Robertsson, Mats; Cooper, Philip; Wang, Xin; Svensson, Magnus; Andersson Ersman, Peter; Norberg, Petronella; Nilsson, Marie; Nilsson, David; Liu, Xianjie; Hesselbom, Hjalmar; Akesso, Laurent; Fahlman, Mats; Crispin, Xavier; Engquist, Isak; Berggren, Magnus; Gustafsson, Göran
2014-01-01
Printed electronics are considered for wireless electronic tags and sensors within the future Internet-of-things (IoT) concept. As a consequence of the low charge carrier mobility of present printable organic and inorganic semiconductors, the operational frequency of printed rectifiers is not high enough to enable direct communication and powering between mobile phones and printed e-tags. Here, we report an all-printed diode operating up to 1.6 GHz. The device, based on two stacked layers of Si and NbSi2 particles, is manufactured on a flexible substrate at low temperature and in ambient atmosphere. The high charge carrier mobility of the Si microparticles allows device operation to occur in the charge injection-limited regime. The asymmetry of the oxide layers in the resulting device stack leads to rectification of tunneling current. Printed diodes were combined with antennas and electrochromic displays to form an all-printed e-tag. The harvested signal from a Global System for Mobile Communications mobile phone was used to update the display. Our findings demonstrate a new communication pathway for printed electronics within IoT applications. PMID:25002504
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aldridge, Chris D.
Mobile biometric devices (MBDs) capable of both enrolling individuals in databases and performing identification checks of subjects in the field are seen as an important capability for military, law enforcement, and homeland security operations. The technology is advancing rapidly. The Department of Homeland Security Science and Technology Directorate through an Interagency Agreement with Sandia sponsored a series of pilot projects to obtain information for the first responder law enforcement community on further identification of requirements for mobile biometric device technology. Working with 62 different jurisdictions, including components of the Department of Homeland Security, Sandia delivered a series of reports onmore » user operation of state-of-the-art mobile biometric devices. These reports included feedback information on MBD usage in both operational and exercise scenarios. The findings and conclusions of the project address both the limitations and possibilities of MBD technology to improve operations. Evidence of these possibilities can be found in the adoption of this technology by many agencies today and the cooperation of several law enforcement agencies in both participating in the pilot efforts and sharing of information about their own experiences in efforts undertaken separately.« less
Fundamental device design considerations in the development of disruptive nanoelectronics.
Singh, R; Poole, J O; Poole, K F; Vaidya, S D
2002-01-01
In the last quarter of a century silicon-based integrated circuits (ICs) have played a major role in the growth of the economy throughout the world. A number of new technologies, such as quantum computing, molecular computing, DNA molecules for computing, etc., are currently being explored to create a product to replace semiconductor transistor technology. We have examined all of the currently explored options and found that none of these options are suitable as silicon IC's replacements. In this paper we provide fundamental device criteria that must be satisfied for the successful operation of a manufacturable, not yet invented, device. The two fundamental limits are the removal of heat and reliability. The switching speed of any practical man-made computing device will be in the range of 10(-15) to 10(-3) s. Heisenberg's uncertainty principle and the computer architecture set the heat generation limit. The thermal conductivity of the materials used in the fabrication of a nanodimensional device sets the heat removal limit. In current electronic products, redundancy plays a significant part in improving the reliability of parts with macroscopic defects. In the future, microscopic and even nanoscopic defects will play a critical role in the reliability of disruptive nanoelectronics. The lattice vibrations will set the intrinsic reliability of future computing systems. The two critical limits discussed in this paper provide criteria for the selection of materials used in the fabrication of future devices. Our work shows that diamond contains the clue to providing computing devices that will surpass the performance of silicon-based nanoelectronics.
Harper, Jason C.; Carson, Bryan D.; Bachand, George D.; ...
2015-07-14
Despite significant progress in development of bioanalytical devices cost, complexity, access to reagents and lack of infrastructure have prevented use of these technologies in resource-limited regions. To provide a sustainable tool in the global effort to combat infectious diseases the diagnostic device must be low cost, simple to operate and read, robust, and have sensitivity and specificity comparable to laboratory analysis. Thus, in this mini-review we describe recent work using laser machined plastic laminates to produce diagnostic devices that are capable of a wide variety of bioanalytical measurements and show great promise towards future use in low-resource environments.
Using a Commercial Ethernet PHY Device in a Radiation Environment
NASA Technical Reports Server (NTRS)
Parks, Jeremy; Arani, Michael; Arroyo, Roberto
2014-01-01
This work involved placing a commercial Ethernet PHY on its own power boundary, with limited current supply, and providing detection methods to determine when the device is not operating and when it needs either a reset or power-cycle. The device must be radiation-tested and free of destructive latchup errors. The commercial Ethernet PHY's own power boundary must be supplied by a current-limited power regulator that must have an enable (for power cycling), and its maximum power output must not exceed the PHY's input requirements, thus preventing damage to the device. A regulator with configurable output limits and short-circuit protection (such as the RHFL4913, rad hard positive voltage regulator family) is ideal. This will prevent a catastrophic failure due to radiation (such as a short between the commercial device's power and ground) from taking down the board's main power. Logic provided on the board will detect errors in the PHY. An FPGA (field-programmable gate array) with embedded Ethernet MAC (Media Access Control) will work well. The error detection includes monitoring the PHY's interrupt line, and the status of the Ethernet's switched power. When the PHY is determined to be non-functional, the logic device resets the PHY, which will often clear radiation induced errors. If this doesn't work, the logic device power-cycles the FPGA by toggling the regulator's enable input. This should clear almost all radiation induced errors provided the device is not latched up.
A Solid-State Fault Current Limiting Device for VSC-HVDC Systems
NASA Astrophysics Data System (ADS)
Larruskain, D. Marene; Zamora, Inmaculada; Abarrategui, , Oihane; Iturregi, Araitz
2013-08-01
Faults in the DC circuit constitute one of the main limitations of voltage source converter VSC-HVDC systems, as the high fault currents can damage seriously the converters. In this article, a new design for a fault current limiter (FCL) is proposed, which is capable of limiting the fault current as well as interrupting it, isolating the DC grid. The operation of the proposed FCL is analysed and verified with the most usual faults that can occur in overhead lines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Physical device safety is typically implemented locally using embedded controllers, while operations safety is primarily performed in control centers. Safe operations can be enhanced by correct design of device-level control algorithms, and protocols, procedures and operator training at the control-room level, but all can fail. Moreover, these elements exchange data and issue commands via vulnerable communication layers. In order to secure these gaps and enhance operational safety, we believe monitoring of command sequences must be combined with an awareness of physical device limitations and automata models that capture safety mechanisms. One way of doing this is by leveraging specification-based intrusionmore » detection to monitor for physical constraint violations. The method can also verify that physical infrastructure state is consistent with monitoring information and control commands exchanged between field devices and control centers. This additional security layer enhances protection from both outsider attacks and insider mistakes. We implemented specification-based SCADA command analyzers using physical constraint algorithms directly in the Bro framework and Broccoli APIs for three separate scenarios: a water heater, an automated distribution system, and an over-current protection scheme. To accomplish this, we added low-level analyzers capable of examining control system-specific protocol packets for both Modbus TCP and DNP3, and also higher-level analyzers able to interpret device command and data streams within the context of each device's physical capabilities and present operational state. Thus the software that we are making available includes the Bro/Broccoli scripts for these three scenarios, as well as simulators, written in C, of those scenarios that generate sample traffic that is monitored by the Bro/Broccoli scripts. In addition, we have also implemented systems to directly pull cyber-physical information from the OSIsoft PI historian system. We have included the Python scripts used to perform that monitoring.« less
Design of a novel telerehabilitation system with a force-sensing mechanism.
Zhang, Songyuan; Guo, Shuxiang; Gao, Baofeng; Hirata, Hideyuki; Ishihara, Hidenori
2015-05-19
Many stroke patients are expected to rehabilitate at home, which limits their access to proper rehabilitation equipment, treatment, or assessment by therapists. We have developed a novel telerehabilitation system that incorporates a human-upper-limb-like device and an exoskeleton device. The system is designed to provide the feeling of real therapist-patient contact via telerehabilitation. We applied the principle of a series elastic actuator to both the master and slave devices. On the master side, the therapist can operate the device in a rehabilitation center. When performing passive training, the master device can detect the therapist's motion while controlling the deflection of elastic elements to near-zero, and the patient can receive the motion via the exoskeleton device. When performing active training, the design of the force-sensing mechanism in the master device can detect the assisting force added by the therapist. The force-sensing mechanism also allows force detection with an angle sensor. Patients' safety is guaranteed by monitoring the motor's current from the exoskeleton device. To compensate for any possible time delay or data loss, a torque-limiter mechanism was also designed in the exoskeleton device for patients' safety. Finally, we successfully performed a system performance test for passive training with transmission control protocol/internet protocol communication.
Design of a Novel Telerehabilitation System with a Force-Sensing Mechanism
Zhang, Songyuan; Guo, Shuxiang; Gao, Baofeng; Hirata, Hideyuki; Ishihara, Hidenori
2015-01-01
Many stroke patients are expected to rehabilitate at home, which limits their access to proper rehabilitation equipment, treatment, or assessment by therapists. We have developed a novel telerehabilitation system that incorporates a human-upper-limb-like device and an exoskeleton device. The system is designed to provide the feeling of real therapist–patient contact via telerehabilitation. We applied the principle of a series elastic actuator to both the master and slave devices. On the master side, the therapist can operate the device in a rehabilitation center. When performing passive training, the master device can detect the therapist’s motion while controlling the deflection of elastic elements to near-zero, and the patient can receive the motion via the exoskeleton device. When performing active training, the design of the force-sensing mechanism in the master device can detect the assisting force added by the therapist. The force-sensing mechanism also allows force detection with an angle sensor. Patients’ safety is guaranteed by monitoring the motor’s current from the exoskeleton device. To compensate for any possible time delay or data loss, a torque-limiter mechanism was also designed in the exoskeleton device for patients’ safety. Finally, we successfully performed a system performance test for passive training with transmission control protocol/internet protocol communication. PMID:25996511
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Back-end process provisions-monitoring... Standards for Hazardous Air Pollutant Emissions: Group I Polymers and Resins § 63.497 Back-end process... limitations. (a) An owner or operator complying with the residual organic HAP limitations in § 63.494(a)(1...
Systems and methods for controlling energy use during a demand limiting period
Wenzel, Michael J.; Drees, Kirk H.
2016-04-26
Systems and methods for limiting power consumption by a heating, ventilation, and air conditioning (HVAC) subsystem of a building are shown and described. A feedback controller is used to generate a manipulated variable based on an energy use setpoint and a measured energy use. The manipulated variable may be used for adjusting the operation of an HVAC device.
NASA Technical Reports Server (NTRS)
Pawlik, Ralph; Krause, David; Bremenour, Frank
2011-01-01
The Force Limit System (FLS) was developed to protect test specimens from inadvertent overload. The load limit value is fully adjustable by the operator and works independently of the test system control as a mechanical (non-electrical) device. When a test specimen is loaded via an electromechanical or hydraulic test system, a chance of an overload condition exists. An overload applied to a specimen could result in irreparable damage to the specimen and/or fixturing. The FLS restricts the maximum load that an actuator can apply to a test specimen. When testing limited-run test articles or using very expensive fixtures, the use of such a device is highly recommended. Test setups typically use electronic peak protection, which can be the source of overload due to malfunctioning components or the inability to react quickly enough to load spikes. The FLS works independently of the electronic overload protection.
Design and Testing of a Small Inductive Pulsed Plasma Thruster
NASA Technical Reports Server (NTRS)
Martin, Adam K.; Dominguez, Alexandra; Eskridge, Richard H.; Polzin, Kurt A.; Riley, Daniel P.; Perdue, Kevin A.
2015-01-01
The design and testing of a small inductive pulsed plasma thruster (IPPT) is described. The device was built as a test-bed for the pulsed gas-valves and solid-state switches required for a thruster of this kind, and was designed to be modular to facilitate modification. The thruster in its present configuration consists of a multi-turn, spiral-wound acceleration coil (270 millimeters outer diameter, 100 millimeters inner diameter) driven by a 10 microfarad capacitor and switched with a high-voltage thyristor, a propellant delivery system including a fast pulsed gas-valve, and a glow-discharge pre-ionizer circuit. The acceleration coil circuit may be operated at voltages up to 4 kilovolts (the thyristor limit is 4.5 kilovolts) and the thruster operated at cyclic-rates up to 30 Herz. Initial testing of the thruster, both bench-top and in-vacuum, has been performed. Cyclic operation of the complete device was demonstrated (at 2 Herz), and a number of valuable insights pertaining to the design of these devices have been gained.
Micro-Columnated Loop Heat Pipe: The Future of Electronic Substrates
NASA Astrophysics Data System (ADS)
Dhillon, Navdeep Singh
The modern world is run by semiconductor-based electronic systems. Due to continuous improvements in semiconductor device fabrication, there is a clear trend in the market towards the development of electronic devices and components that not only deliver enhanced computing power, but are also more compact. Thermal management has emerged as the primary challenge in this scenario where heat flux dissipation of electronic chips is increasing exponentially, but conventional cooling solutions such as conduction and convection are no longer feasible. To keep device junction temperatures within the safe operating limit, there is an urgent requirement for ultra-high-conductivity thermal substrates that not only absorb and transport large heat fluxes, but can also provide localized cooling to thermal hotspots. This dissertation describes the design, modeling, and fabrication of a phase change-based, planar, ultra-thin, passive thermal transport system that is inspired by the concept of loop heat pipes and capillary pumped loops. Fabricated on silicon and Pyrex wafers using microfabrication techniques, the micro-columnated loop heat pipe (muCLHP) can be integrated directly with densely packed or multiply-stacked electronic substrates, to provide localized high-heat-flux thermal management. The muCLHP employs a dual-scale coherent porous silicon(CPS)-based micro-columnated wicking structure, where the primary CPS wick provides large capillary forces for fluid transport, while a secondary surface-wick maximizes the rate of thin-film evaporation. To overcome the wick thickness limitation encountered in conventional loop heat pipes, strategies based on MEMS surface micromachining techniques were developed to reduce parasitic heat flow from the evaporator to the compensation chamber of the device. Finite element analysis was used to confirm this reduction in a planar evaporator design, thus enabling the generation of a large motive temperature head for continuous device operation. To predict the overall heat carrying capacity of the muCLHP in the capillary pumping limit, an analytical model was developed to account for a steady state pressure balance in the device flow loop. Based on this model, a design optimization study, employing monotonicity analysis and numerical optimization techniques, was undertaken. It was found that an optimized muCLHP device can absorb heat fluxes as large as 1293 W/cm2 when water is used as a working fluid. A finite volume method-based numerical model was also developed to compute the rates of thin-film evaporation from the patterned surface of the secondary wick. The numerical results indicated that, by properly optimizing the dual-scale wick topology, allowable evaporative heat fluxes can be made commensurate with the heat flux performance predicted by the capillary pumping limit. The latter part of the dissertation deals with the fabrication, packaging, and experimental testing of several in-plane-wicking micro loop heat pipe (muLHP) prototypes. These devices were fabricated on silicon and Pyrex substrates and closely resemble the muCLHP design philosophy, with the exception that the CPS wick is substituted with an easier to fabricate in-plane wick. A novel thermal-flux method was developed for the degassing and fluid charging of the muLHP prototypes. Experiments were conducted to study the process of evaporation and dynamics of the liquid and vapor phases in the device flow loop. Using these results, the overall device and individual component topologies critical to the operation of the two-phase flow loop were identified. A continuous two-phase device flow loop was demonstrated for applied evaporator heat fluxes as high as 41 W/cm2. The performance of these devices, currently found to be limited by the motive temperature head requirement, can be significantly improved by implementing the parasitic heat flow-reduction strategies developed in this work. The 3-D thin-film evaporation model, when integrated into the overall device modeling framework, will enable a design optimization of the micro-columnated wick for further device performance enhancements.
Practical Issues of Wireless Mobile Devices Usage with Downlink Optimization
NASA Astrophysics Data System (ADS)
Krejcar, Ondrej; Janckulik, Dalibor; Motalova, Leona
Mobile device makers produce tens of new complex mobile devices per year to put users a special mobile device with a possibility to do anything, anywhere, anytime. These devices can operate full scale applications with nearly the same comfort as their desktop equivalents only with several limitations. One of such limitation is insufficient download on wireless connectivity in case of the large multimedia files. Main area of paper is in a possibilities description of solving this problem as well as the test of several new mobile devices along with server interface tests and common software descriptions. New devices have a full scale of wireless connectivity which can be used not only to communication with outer land. Several such possibilities of use are described. Mobile users will have also an online connection to internet all time powered on. Internet is mainly the web pages but the web services use is still accelerate up. The paper deal also with a possibility of maximum user amounts to have a connection at same time to current server type. At last the new kind of database access - Linq technology is compare to ADO.NET in response time meaning.
Review of solar fuel-producing quantum conversion processes
NASA Technical Reports Server (NTRS)
Peterson, D. B.; Biddle, J. R.; Fujita, T.
1984-01-01
The status and potential of fuel-producing solar photochemical processes are discussed. Research focused on splitting water to produce dihydrogen and is at a relatively early stage of development. Current emphasis is primarily directed toward understanding the basic chemistry underlying such quantum conversion processes. Theoretical analyses by various investigators predict a limiting thermodynamic efficiency of 31% for devices with a single photosystem operating with unfocused sunlight at 300 K. When non-idealities are included, it appears unlikely that actual devices will have efficiencies greater than 12 to 15%. Observed efficiencies are well below theoretical limits. Cyclic homogeneous photochemical processes for splitting water have efficiencies considerably less than 1%. Efficiency can be significantly increased by addition of a sacrificial reagent; however, such systems are no longer cyclic and it is doubtful that they would be economical on a commercial scale. The observed efficiencies for photoelectrochemical processes are also low but such systems appear more promising than homogeneous photochemical systems. Operating and systems options, including operation at elevated temperature and hybrid and coupled quantum-thermal conversion processes, are also considered.
Tang, Ruihua; Yang, Hui; Gong, Yan; You, MinLi; Liu, Zhi; Choi, Jane Ru; Wen, Ting; Qu, Zhiguo; Mei, Qibing; Xu, Feng
2017-03-29
Nucleic acid testing (NAT) has been widely used for disease diagnosis, food safety control and environmental monitoring. At present, NAT mainly involves nucleic acid extraction, amplification and detection steps that heavily rely on large equipment and skilled workers, making the test expensive, time-consuming, and thus less suitable for point-of-care (POC) applications. With advances in paper-based microfluidic technologies, various integrated paper-based devices have recently been developed for NAT, which however require off-chip reagent storage, complex operation steps and equipment-dependent nucleic acid amplification, restricting their use for POC testing. To overcome these challenges, we demonstrate a fully disposable and integrated paper-based sample-in-answer-out device for NAT by integrating nucleic acid extraction, helicase-dependent isothermal amplification and lateral flow assay detection into one paper device. This simple device allows on-chip dried reagent storage and equipment-free nucleic acid amplification with simple operation steps, which could be performed by untrained users in remote settings. The proposed device consists of a sponge-based reservoir and a paper-based valve for nucleic acid extraction, an integrated battery, a PTC ultrathin heater, temperature control switch and on-chip dried enzyme mix storage for isothermal amplification, and a lateral flow test strip for naked-eye detection. It can sensitively detect Salmonella typhimurium, as a model target, with a detection limit of as low as 10 2 CFU ml -1 in wastewater and egg, and 10 3 CFU ml -1 in milk and juice in about an hour. This fully disposable and integrated paper-based device has great potential for future POC applications in resource-limited settings.
2007-09-01
devices such as klystrons , magnetrons, and traveling wave tubes. These microwave devices produce high power levels but may have limited bandwidths [20...diagram. The specific arrangement of components within a RADAR transmitter varies with operational specifications. Two options exist to produce high power ...cascading to generate sufficient power [20]. The second option to generate high power levels is to replace RF oscillators and amplifiers with microwave
A microfluidic device for dry sample preservation in remote settings.
Begolo, Stefano; Shen, Feng; Ismagilov, Rustem F
2013-11-21
This paper describes a microfluidic device for dry preservation of biological specimens at room temperature that incorporates chemical stabilization matrices. Long-term stabilization of samples is crucial for remote medical analysis, biosurveillance, and archiving, but the current paradigm for transporting remotely obtained samples relies on the costly "cold chain" to preserve analytes within biospecimens. We propose an alternative approach that involves the use of microfluidics to preserve samples in the dry state with stabilization matrices, developed by others, that are based on self-preservation chemistries found in nature. We describe a SlipChip-based device that allows minimally trained users to preserve samples with the three simple steps of placing a sample at an inlet, closing a lid, and slipping one layer of the device. The device fills automatically, and a pre-loaded desiccant dries the samples. Later, specimens can be rehydrated and recovered for analysis in a laboratory. This device is portable, compact, and self-contained, so it can be transported and operated by untrained users even in limited-resource settings. Features such as dead-end and sequential filling, combined with a "pumping lid" mechanism, enable precise quantification of the original sample's volume while avoiding overfilling. In addition, we demonstrated that the device can be integrated with a plasma filtration module, and we validated device operations and capabilities by testing the stability of purified RNA solutions. These features and the modularity of this platform (which facilitates integration and simplifies operation) would be applicable to other microfluidic devices beyond this application. We envision that as the field of stabilization matrices develops, microfluidic devices will be useful for cost-effectively facilitating remote analysis and biosurveillance while also opening new opportunities for diagnostics, drug development, and other medical fields.
NASA Astrophysics Data System (ADS)
Ankudinov, A.; Titkov, A. N.; Evtikhiev, Vadim P.; Kotelnikov, Eugeny Y.; Bazhenov, N.; Zegrya, Georgy G.; Huhtinen, H.; Laiho, R.
2003-06-01
One of the important factors that restricts the power limit of semiconductor lasers is a catastrophic optical mirror damage. This process is significantly suppressed through decreasing the optical power density due to its redistribution over the broad transverse waveguide (BW). Recently it was shown that record-breaking values of the quasicontinuous and continuous-wave (QWC and CW) output power for 100-μm-wide-aperture devices can be achieved by incorporating a broad transverse waveguide into 0.97 μm emitting Al-free InGaAs(P)/InGaP/GaAs and Al-containing InGaAs/AlGaAs/GaAs separate confinement heterostructure quantum-well lasers (SCH-QWL). Another important factor limiting the CW output power is the Joule overheating of a laser diode due to an extra serial resistance. Traditionally, a decrease in the resistance is achieved by development of the contacts, whereas a voltage distribution across the device structure is not analyzed properly. At high operating currents the applied voltage can drop not only across the n-p-junction, but also at certain additional regions of the laser structure depending on a particular design of the device. Electrostatic force microscopy (EFM) provides a very promising method to study the voltage distribution across an operating device with a nanometer space resolution. An application of EFM for diagnostics of III-V laser diodes without and under applied biases have been recently demonstrated. However, the most interesting range of the biases, the lazing regime, has not been studied yet.
Microfluidics with fluid walls.
Walsh, Edmond J; Feuerborn, Alexander; Wheeler, James H R; Tan, Ann Na; Durham, William M; Foster, Kevin R; Cook, Peter R
2017-10-10
Microfluidics has great potential, but the complexity of fabricating and operating devices has limited its use. Here we describe a method - Freestyle Fluidics - that overcomes many key limitations. In this method, liquids are confined by fluid (not solid) walls. Aqueous circuits with any 2D shape are printed in seconds on plastic or glass Petri dishes; then, interfacial forces pin liquids to substrates, and overlaying an immiscible liquid prevents evaporation. Confining fluid walls are pliant and resilient; they self-heal when liquids are pipetted through them. We drive flow through a wide range of circuits passively by manipulating surface tension and hydrostatic pressure, and actively using external pumps. Finally, we validate the technology with two challenging applications - triggering an inflammatory response in human cells and chemotaxis in bacterial biofilms. This approach provides a powerful and versatile alternative to traditional microfluidics.The complexity of fabricating and operating microfluidic devices limits their use. Walsh et al. describe a method in which circuits are printed as quickly and simply as writing with a pen, and liquids in them are confined by fluid instead of solid walls.
Polymeric composite devices for localized treatment of early-stage breast cancer
Kan-Dapaah, Kwabena; Soboyejo, Wole
2017-01-01
For early-stage breast cancers mastectomy is an aggressive form of treatment. Therefore, there is a need for new treatment strategies that can enhance the use of lumpectomy by eliminating residual cancer cells with limited side effects to reduce local recurrence. Although, various radiotherapy-based methods have been developed, residual cells are found in 20–55% of the time at the first operation. Furthermore, some current treatment methods result in poor cosmesis. For the last decade, the authors have been exploring the use of polymeric composite materials in single and multi-modal implantable biomedical devices for post-operative treatment of breast cancer. In this paper, the concept and working principles of the devices, as well as selected results from experimental and numerical investigations, are presented. The results show the potential of the biomedical implants for cancer treatment. PMID:28245288
Quantitative experimental assessment of hot carrier-enhanced solar cells at room temperature
NASA Astrophysics Data System (ADS)
Nguyen, Dac-Trung; Lombez, Laurent; Gibelli, François; Boyer-Richard, Soline; Le Corre, Alain; Durand, Olivier; Guillemoles, Jean-François
2018-03-01
In common photovoltaic devices, the part of the incident energy above the absorption threshold quickly ends up as heat, which limits their maximum achievable efficiency to far below the thermodynamic limit for solar energy conversion. Conversely, the conversion of the excess kinetic energy of the photogenerated carriers into additional free energy would be sufficient to approach the thermodynamic limit. This is the principle of hot carrier devices. Unfortunately, such device operation in conditions relevant for utilization has never been evidenced. Here, we show that the quantitative thermodynamic study of the hot carrier population, with luminance measurements, allows us to discuss the hot carrier contribution to the solar cell performance. We demonstrate that the voltage and current can be enhanced in a semiconductor heterostructure due to the presence of the hot carrier population in a single InGaAsP quantum well at room temperature. These experimental results substantiate the potential of increasing photovoltaic performances in the hot carrier regime.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) The modified device operates using a different fundamental scientific technology than a legally...) For assessing the risk of cardiovascular diseases; (5) For use in diabetes management; (6) For...
Code of Federal Regulations, 2010 CFR
2010-04-01
...) The modified device operates using a different fundamental scientific technology than a legally...) For assessing the risk of cardiovascular diseases; (5) For use in diabetes management; (6) For...
Code of Federal Regulations, 2010 CFR
2010-04-01
...) The modified device operates using a different fundamental scientific technology than a legally...) For assessing the risk of cardiovascular diseases; (5) For use in diabetes management; (6) For...
Code of Federal Regulations, 2010 CFR
2010-04-01
...) The modified device operates using a different fundamental scientific technology than a legally...) For assessing the risk of cardiovascular diseases; (5) For use in diabetes management; (6) For...
Code of Federal Regulations, 2010 CFR
2010-04-01
...) The modified device operates using a different fundamental scientific technology than a legally...) For assessing the risk of cardiovascular diseases; (5) For use in diabetes management; (6) For...
Code of Federal Regulations, 2010 CFR
2010-04-01
...) The modified device operates using a different fundamental scientific technology than a legally...) For assessing the risk of cardiovascular diseases; (5) For use in diabetes management; (6) For...
33 CFR 104.210 - Company Security Officer (CSO).
Code of Federal Regulations, 2014 CFR
2014-07-01
... operational limitations; (vi) Methods of conducting audits, inspection and control and monitoring techniques... threats and patterns; (ix) Recognition and detection of dangerous substances and devices; (x) Recognition...) Techniques used to circumvent security measures; (xii) Methods of physical screening and non-intrusive...
33 CFR 104.210 - Company Security Officer (CSO).
Code of Federal Regulations, 2013 CFR
2013-07-01
... operational limitations; (vi) Methods of conducting audits, inspection and control and monitoring techniques... threats and patterns; (ix) Recognition and detection of dangerous substances and devices; (x) Recognition...) Techniques used to circumvent security measures; (xii) Methods of physical screening and non-intrusive...
33 CFR 104.210 - Company Security Officer (CSO).
Code of Federal Regulations, 2012 CFR
2012-07-01
... operational limitations; (vi) Methods of conducting audits, inspection and control and monitoring techniques... threats and patterns; (ix) Recognition and detection of dangerous substances and devices; (x) Recognition...) Techniques used to circumvent security measures; (xii) Methods of physical screening and non-intrusive...
Electrical safety Q&A. A reference guide for the clinical engineer.
2005-02-01
This guide, which ECRI developed to answer the electrical safety questions most frequently asked by member hospitals, features practical advice for addressing electrical safety concerns in the healthcare environment. Questions addressed include: STANDARDS AND APPROVALS: What electrical safety standards apply? How do NFPA 99 and IEC 60601-1 differ? What organizations approve medical devices? LEAKAGE CURRENT LIMITS AND TESTING: How are leakage current limits established? What limits apply to equipment used in the hospital? And how should the limits be applied in special cases, such as the use of PCs in the patient care area or equipment used in the clinical laboratory? ISOLATED POWER: What are its advantages and disadvantages, and is isolated power needed in the operating room? Other topics addressed include double insulation, ground-fault circuit interrupters (GFCIs), and requirements for medical devices used in the home. Supplementary articles discuss acceptable alternatives to UL listing, the use of Hospital Grade plugs, the limitations of leakage current testing of devices connected to isolated power systems, and the debate about whether to designate ORs as wet locations. Experienced clinical engineers should find this guide to be a handy reference, while those new to the field should find it to be a helpful educational resource.
Bi-directional magnetic domain wall shift register
NASA Astrophysics Data System (ADS)
Read, D. E.; O'Brien, L.; Zeng, H. T.; Lewis, E. R.; Petit, D.; Cowburn, R. P.
2010-03-01
Data storage devices based on magnetic domain walls (DWs) propagating through ferromagnetic nanowires have attracted a great deal of attention in recent years [1,2]. Here we experimentally demonstrate a shift register based on an open-ended chain of ferromagnetic NOT gates. When used in combination with a globally applied magnetic field such devices can support bi-directional data flow [3]. We have demonstrated data writing, propagation, and readout in individually addressable NiFe nanowires 90 nm wide and 10 nm thick. Up to eight data bits are electrically input to the device, stored for extended periods without power supplied to the device, and then output using either a first in first out or a last in first out mode of operation. Compared to traditional electronic transistor-based circuits, the inherent bi-directionality afforded by these DW logic gates offers a range of devices that are reversible and not limited to only one mode of operation. [1] S. S. Parkin, US Patent 6,834,005 (2004) [2] D. A. Allwod, et al., Science 309 (5741), 1688 (2005) [3] L. O'Brien, et al. accepted for publication in APL (2009)
NASA Astrophysics Data System (ADS)
Melnikov, A. A.; Kostishin, V. G.; Alenkov, V. V.
2017-05-01
Real operating conditions of a thermoelectric cooling device are in the presence of thermal resistances between thermoelectric material and a heat medium or cooling object. They limit performance of a device and should be considered when modeling. Here we propose a dimensionless mathematical steady state model, which takes them into account. Analytical equations for dimensionless cooling capacity, voltage, and coefficient of performance (COP) depending on dimensionless current are given. For improved accuracy a device can be modeled with use of numerical or combined analytical-numerical methods. The results of modeling are in acceptable accordance with experimental results. The case of zero temperature difference between hot and cold heat mediums at which the maximum cooling capacity mode appears is considered in detail. Optimal device parameters for maximal cooling capacity, such as fraction of thermal conductance on the cold side y, fraction of current relative to maximal j' are estimated in range of 0.38-0.44 and 0.48-0.95, respectively, for dimensionless conductance K' = 5-100. Also, a method for determination of thermal resistances of a thermoelectric cooling system is proposed.
Kim, Tae-Wook; Choi, Hyejung; Oh, Seung-Hwan; Jo, Minseok; Wang, Gunuk; Cho, Byungjin; Kim, Dong-Yu; Hwang, Hyunsang; Lee, Takhee
2009-01-14
The resistive switching characteristics of polyfluorene-derivative polymer material in a sub-micron scale via-hole device structure were investigated. The scalable via-hole sub-microstructure was fabricated using an e-beam lithographic technique. The polymer non-volatile memory devices varied in size from 40 x 40 microm(2) to 200 x 200 nm(2). From the scaling of junction size, the memory mechanism can be attributed to the space-charge-limited current with filamentary conduction. Sub-micron scale polymer memory devices showed excellent resistive switching behaviours such as a large ON/OFF ratio (I(ON)/I(OFF) approximately 10(4)), excellent device-to-device switching uniformity, good sweep endurance, and good retention times (more than 10,000 s). The successful operation of sub-micron scale memory devices of our polyfluorene-derivative polymer shows promise to fabricate high-density polymer memory devices.
DNA Assembly in 3D Printed Fluidics
Patrick, William G.; Nielsen, Alec A. K.; Keating, Steven J.; Levy, Taylor J.; Wang, Che-Wei; Rivera, Jaime J.; Mondragón-Palomino, Octavio; Carr, Peter A.; Voigt, Christopher A.; Oxman, Neri; Kong, David S.
2015-01-01
The process of connecting genetic parts—DNA assembly—is a foundational technology for synthetic biology. Microfluidics present an attractive solution for minimizing use of costly reagents, enabling multiplexed reactions, and automating protocols by integrating multiple protocol steps. However, microfluidics fabrication and operation can be expensive and requires expertise, limiting access to the technology. With advances in commodity digital fabrication tools, it is now possible to directly print fluidic devices and supporting hardware. 3D printed micro- and millifluidic devices are inexpensive, easy to make and quick to produce. We demonstrate Golden Gate DNA assembly in 3D-printed fluidics with reaction volumes as small as 490 nL, channel widths as fine as 220 microns, and per unit part costs ranging from $0.61 to $5.71. A 3D-printed syringe pump with an accompanying programmable software interface was designed and fabricated to operate the devices. Quick turnaround and inexpensive materials allowed for rapid exploration of device parameters, demonstrating a manufacturing paradigm for designing and fabricating hardware for synthetic biology. PMID:26716448
Point-of-View Recording Devices for Intraoperative Neurosurgical Video Capture.
Porras, Jose L; Khalid, Syed; Root, Brandon K; Khan, Imad S; Singer, Robert J
2016-01-01
The ability to record and stream neurosurgery is an unprecedented opportunity to further research, medical education, and quality improvement. Here, we appraise the ease of implementation of existing point-of-view devices when capturing and sharing procedures from the neurosurgical operating room and detail their potential utility in this context. Our neurosurgical team tested and critically evaluated features of the Google Glass and Panasonic HX-A500 cameras, including ergonomics, media quality, and media sharing in both the operating theater and the angiography suite. Existing devices boast several features that facilitate live recording and streaming of neurosurgical procedures. Given that their primary application is not intended for the surgical environment, we identified a number of concrete, yet improvable, limitations. The present study suggests that neurosurgical video capture and live streaming represents an opportunity to contribute to research, education, and quality improvement. Despite this promise, shortcomings render existing devices impractical for serious consideration. We describe the features that future recording platforms should possess to improve upon existing technology.
Giusi, G; Giordano, O; Scandurra, G; Rapisarda, M; Calvi, S; Ciofi, C
2016-04-01
Measurements of current fluctuations originating in electron devices have been largely used to understand the electrical properties of materials and ultimate device performances. In this work, we propose a high-sensitivity measurement setup topology suitable for the automatic and programmable Direct-Current (DC), Capacitance-Voltage (CV), and gate-drain low frequency noise characterization of field effect transistors at wafer level. Automatic and programmable operation is particularly useful when the device characteristics relax or degrade with time due to optical, bias, or temperature stress. The noise sensitivity of the proposed topology is in the order of fA/Hz(1/2), while DC performances are limited only by the source and measurement units used to bias the device under test. DC, CV, and NOISE measurements, down to 1 pA of DC gate and drain bias currents, in organic thin film transistors are reported to demonstrate system operation and performances.
Freire, Sergio L. S.; Thorne, Nathaniel; Wutkowski, Michael; Dao, Selina
2014-01-01
Digital microfluidics (DMF), a technique for manipulation of droplets, is a promising alternative for the development of “lab-on-a-chip” platforms. Often, droplet motion relies on the wetting of a surface, directly associated with the application of an electric field; surface interactions, however, make motion dependent on droplet contents, limiting the breadth of applications of the technique. Some alternatives have been presented to minimize this dependence. However, they rely on the addition of extra chemical species to the droplet or its surroundings, which could potentially interact with droplet moieties. Addressing this challenge, our group recently developed Field-DW devices to allow the transport of cells and proteins in DMF, without extra additives. Here, the protocol for device fabrication and operation is provided, including the electronic interface for motion control. We also continue the studies with the devices, showing that multicellular, relatively large, model organisms can also be transported, arguably unaffected by the electric fields required for device operation. PMID:25407533
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giusi, G.; Giordano, O.; Scandurra, G.
Measurements of current fluctuations originating in electron devices have been largely used to understand the electrical properties of materials and ultimate device performances. In this work, we propose a high-sensitivity measurement setup topology suitable for the automatic and programmable Direct-Current (DC), Capacitance-Voltage (CV), and gate-drain low frequency noise characterization of field effect transistors at wafer level. Automatic and programmable operation is particularly useful when the device characteristics relax or degrade with time due to optical, bias, or temperature stress. The noise sensitivity of the proposed topology is in the order of fA/Hz{sup 1/2}, while DC performances are limited only bymore » the source and measurement units used to bias the device under test. DC, CV, and NOISE measurements, down to 1 pA of DC gate and drain bias currents, in organic thin film transistors are reported to demonstrate system operation and performances.« less
Extending SIESTA capabilities: removing field-periodic and stellarator symmetric limitations
NASA Astrophysics Data System (ADS)
Cook, C. R.; Hirshman, S. P.; Sanchez, R.; Anderson, D. T.
2011-10-01
SIESTA is a three-dimensional magnetohydrodynamics equilibrium code capable of resolving magnetic islands in toroidal plasma confinement devices. Currently SIESTA assumes that plasma perturbations, and thus also magnetic islands, are field-periodic. This limitation is being removed from the code by allowing the displacement toroidal mode number to not be restricted to multiples of the number of field periods. Extending SIESTA in this manner will allow larger, lower-order resonant islands to form in devices such as CTH. An example of a non-field-periodic perturbation in CTH will be demonstrated. Currently the code also operates in a stellarator-symmetric fashion in which an ``up-down'' symmetry is present at some toroidal angle. Nearly all of the current tokamaks (and ITER in the future) operate with a divertor and as such do not possess stellarator symmetry. Removal of this symmetry restriction requires including both sine and cosine terms in the Fourier expansion for the geometry of the device and the fields contained within. The current status of this extension of the code will be discussed, along with the method of implementation. U.S. DOE Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.
Noise in Charge Amplifiers— A gm/ID Approach
NASA Astrophysics Data System (ADS)
Alvarez, Enrique; Avila, Diego; Campillo, Hernan; Dragone, Angelo; Abusleme, Angel
2012-10-01
Charge amplifiers represent the standard solution to amplify signals from capacitive detectors in high energy physics experiments. In a typical front-end, the noise due to the charge amplifier, and particularly from its input transistor, limits the achievable resolution. The classic approach to attenuate noise effects in MOSFET charge amplifiers is to use the maximum power available, to use a minimum-length input device, and to establish the input transistor width in order to achieve the optimal capacitive matching at the input node. These conclusions, reached by analysis based on simple noise models, lead to sub-optimal results. In this work, a new approach on noise analysis for charge amplifiers based on an extension of the gm/ID methodology is presented. This method combines circuit equations and results from SPICE simulations, both valid for all operation regions and including all noise sources. The method, which allows to find the optimal operation point of the charge amplifier input device for maximum resolution, shows that the minimum device length is not necessarily the optimal, that flicker noise is responsible for the non-monotonic noise versus current function, and provides a deeper insight on the noise limits mechanism from an alternative and more design-oriented point of view.
PCDTBT based solar cells: one year of operation under real-world conditions
Zhang, Yiwei; Bovill, Edward; Kingsley, James; Buckley, Alastair R.; Yi, Hunan; Iraqi, Ahmed; Wang, Tao; Lidzey, David G.
2016-01-01
We present measurements of the outdoor stability of PCDTBT:PC71BM based bulk heterojunction organic solar cells for over the course of a year. We find that the devices undergo a burn-in process lasting 450 hours followed by a TS80 lifetime of up to 6200 hours. We conclude that in the most stable devices, the observed TS80 lifetime is limited by thermally-induced stress between the device layers, as well as materials degradation as a result of edge-ingress of water or moisture through the encapsulation. PMID:26857950
Environmental effects of information and communications technologies.
Williams, Eric
2011-11-16
The digital revolution affects the environment on several levels. Most directly, information and communications technology (ICT) has environmental impacts through the manufacturing, operation and disposal of devices and network equipment, but it also provides ways to mitigate energy use, for example through smart buildings and teleworking. At a broader system level, ICTs influence economic growth and bring about technological and societal change. Managing the direct impacts of ICTs is more complex than just producing efficient devices, owing to the energetically expensive manufacturing process, and the increasing proliferation of devices needs to be taken into account. © 2011 Macmillan Publishers Limited. All rights reserved
Code of Federal Regulations, 2012 CFR
2012-07-01
... cargo tanks and 49 CFR 173.31 for tank cars. (iii) Organic liquids must only be unloaded from cargo... system. (iv) No pressure relief device on the storage tank, or on the cargo tank or tank car, shall open... shall comply with the recordkeeping requirements of § 63.181(d)(1) through (4). (vi) Cargo tanks and...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Department of Transportation (U.S. DOT) pressure test requirements of 49 CFR part 180 for cargo tanks and 49 CFR 173.31 for tank cars. (iii) Organic liquids must only be unloaded from cargo tanks or tank cars... pressure relief device on the storage tank, or on the cargo tank or tank car, shall open during loading or...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Department of Transportation (U.S. DOT) pressure test requirements of 49 CFR part 180 for cargo tanks and 49 CFR 173.31 for tank cars. (iii) Organic liquids must only be unloaded from cargo tanks or tank cars... pressure relief device on the storage tank, or on the cargo tank or tank car, shall open during loading or...
Code of Federal Regulations, 2014 CFR
2014-07-01
... cargo tanks and 49 CFR 173.31 for tank cars. (iii) Organic liquids must only be unloaded from cargo... system. (iv) No pressure relief device on the storage tank, or on the cargo tank or tank car, shall open... shall comply with the recordkeeping requirements of § 63.181(d)(1) through (4). (vi) Cargo tanks and...
Code of Federal Regulations, 2013 CFR
2013-07-01
... cargo tanks and 49 CFR 173.31 for tank cars. (iii) Organic liquids must only be unloaded from cargo... system. (iv) No pressure relief device on the storage tank, or on the cargo tank or tank car, shall open... shall comply with the recordkeeping requirements of § 63.181(d)(1) through (4). (vi) Cargo tanks and...
Safe operating conditions for NSLS-II Storage Ring Frontends commissioning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seletskiy, S.; Amundsen, C.; Ha, K.
2015-04-02
The NSLS-II Storage Ring Frontends are designed to safely accept the synchrotron radiation fan produced by respective insertion device when the electron beam orbit through the ID is locked inside the predefined Active Interlock Envelope. The Active Interlock is getting enabled at a particular beam current known as AI safe current limit. Below such current the beam orbit can be anywhere within the limits of the SR beam acceptance. During the FE commissioning the beam orbit is getting intentionally disturbed in the particular ID. In this paper we explore safe operating conditions for the Frontends commissioning.
NASA Technical Reports Server (NTRS)
Patterson, Richard; Hammoud, Ahmad; Elbuluk, Malik
2008-01-01
A new operational amplifier chip based on silicon-on-insulator technology was evaluated for potential use in extreme temperature environments. The CHT-OPA device is a low power, precision operational amplifier with rail-to-rail output swing capability, and it is rated for operation between -55 C and +225 C. A unity gain inverting circuit was constructed utilizing the CHT-OPA chip and a few passive components. The circuit was evaluated in the temperature range from -190 C to +200 C in terms of signal gain and phase shift, and supply current. The investigations were carried out to determine suitability of this device for use in space exploration missions and aeronautic applications under wide temperature incursion. Re-restart capability at extreme temperatures, i.e. power switched on while the device was soaked at extreme temperatures, was also investigated. In addition, the effects of thermal cycling under a wide temperature range on the operation of this high performance amplifier were determined. The results from this work indicate that this silicon-on-insulator amplifier chip maintained very good operation between +200 C and -190 C. The limited thermal cycling had no effect on the performance of the amplifier, and it was able to re-start at both -190 C and +200 C. In addition, no physical degradation or packaging damage was introduced due to either extreme temperature exposure or thermal cycling. The good performance demonstrated by this silicon-on-insulator operational amplifier renders it a potential candidate for use in space exploration missions or other environments under extreme temperatures. Additional and more comprehensive characterization is, however, required to establish the reliability and suitability of such devices for long term use in extreme temperature applications.
Mobile devices and their prospective future role in emergency radiology.
O'Connell, Timothy W; Patlas, Michael N
2016-01-01
Mobile devices, wireless networks and software have significantly evolved since the late 1990s and are now available with sufficient computing power, speed and complexity to allow real-time interpretation of radiology studies. Emergency radiology (ER)'s time-sensitive nature would seem to be an excellent match for study interpretation using mobile devices, allowing the radiologist to read studies anywhere, at any time. While suitable for use by the radiologist outside of the hospital, or clinicians and surgeons at the bedside or in the operating room, these devices do have limitations, and regulatory approval for in-hospital diagnostic use is limited. In the ER setting, we suggest that the best use of mobile devices is to be available to consult directly with patients about their imaging findings and to the clinical team during rounds and at handover. This will bring the radiologist to the clinician and patient, helping us to better understand the patient's presentation, educate both the physician and patient and increase the visibility and value of the radiologist as a member of the clinical care team.
Carbon nanotube and graphene device modeling and simulation
NASA Astrophysics Data System (ADS)
Yoon, Young Ki
The performance of the semiconductors has been improved and the price has gone down for decades. It has been continuously scaled down in size year by year, and now it encounters the fundamental scaling limit. We, therefore, should prepare a new era beyond the conventional semiconductor technologies. One of the most promising devices is possible by carbon nanotube (CNT) or graphene nanoribbon (GNR) in terms of its excellent charge transport properties. Their fundamental material properties and device physics are totally different to those of the conventional devices. In this nano-regime, more sophisticated device modeling and simulation are really needed to elucidate nano-device operation and to save our resources from errors. The numerical simulation works in this dissertation will provide novel view points on the emerging devices. In this dissertation, CNT and GNR devices are numerically studied. The first part of this work is on CNT devices, and a common structure of CNT device has CNT channel, metal source and drain contacts, and gate electrode. We investigate the strain, geometry, and scattering effects on the device performance of CNT field-effect transistors (FETs). It is shown that even a small amount of strain can result in a large effect on the performance of CNTFETs due to the variation of the bandgap and band-structure-limited velocity. A type of strain which produces a larger bandgap results in increased Schottky barrier (SB) height and decreased band-structure-limited velocity, and hence a smaller minimum leakage current, smaller on current, larger maximum achievable Ion/Ioff, and larger intrinsic delay. We also examine geometry effect of partial gate CNTFETs. In the growth process of vertical CNT, underlap between the gate and the bottom electrode is advantageous for transistor operation because it suppresses ambipolar conduction of SBFETs. Both n-type and p-type transistor operations with balanced performance metrics can be achieved on a single partial gate FET by using proper bias schemes. The effect of phonon scattering on the intrinsic delay and cut-off frequency of Schottky barrier CNTFETs is also examined. Carriers are mostly scattered by optical and zone boundary phonons beyond the beginning of the channel. The scattering has a small direct effect on the DC on current of the CNTFET, but it results in significant decrease of intrinsic cut-off frequency and increase of intrinsic delay. Semiconducting CNT is useful for the channel in CNTFETs, whereas metallic CNT can be used as an electrode. If a porous CNT film is used as a source electrode, vertical thin-film transistors (TFTs) can be constructed. Vertical organic FET (OFET) shows clear transistor switching behavior allowing orders of magnitude modulation of the source-drain current even in the presence of electrostatic screening by the source electrode. The channel length should be carefully engineered due to the trade-off between device characteristics in the subthreshold and above-threshold regions. The second subject is device simulations of GNRFETs. Even though GNR is also graphene-based quasi-1D nanostructure like CNT, the differences in shape, boundary condition, and existence of edges and dangling bonds make it operate in a different way. Atomistic 3D simulation study of the performance of GNR SBFETs is presented. The impacts of non-idealities on device performance have been investigated. The edges of GNR, which do not exist in CNT, can be advantages or disadvantages. If an appropriate control by different edge atoms is possible, it would be definitely positive. Totally new electronic band structure is obtained by different edge-termination atoms. In addition, only a fraction of impurity atom can also much affect on the material properties of GNR. In order to perform device simulations of non-uniform GNR devices, multiscale simulation scheme can be used in non-equilibrium Green's function (NEGF) formalism and density-functional method.
Self-heating and scaling of thin body transistors
NASA Astrophysics Data System (ADS)
Pop, Eric
The most often cited technological roadblock of nanoscale electronics is the "power problem," i.e. power densities and device temperatures reaching levels that will prevent their reliable operation. Technology roadmap (ITRS) requirements are expected to lead to more heat dissipation problems, especially with the transition towards geometrically confined device geometries (SOI, FinFET, nanowires), and new materials with poor thermal properties. This work examines the physics of heat generation in silicon, and in the context of nanoscale CMOS transistors. A new Monte Carlo code (MONET) is introduced which uses analytic descriptions of both the electron bands and the phonon dispersion. Detailed heat generation statistics are computed in bulk and strained silicon, and within simple device geometries. It is shown that non-stationary transport affects heat generation near strongly peaked electric fields, and that self-heating occurs almost entirely in the drain end of short, quasi-ballistic devices. The dissipated power is spectrally distributed between the (slow) optical and (fast) acoustic phonon modes approximately by a ratio of two to one. In addition, this work explores the limits of device design and scaling from an electrical and thermal point of view. A self-consistent electro-thermal compact model for thin-body (SOI, GOI) devices is introduced for calculating operating temperature, saturation current and intrinsic gate delay. Self-heating is sensitive to several device parameters, such as raised source/drain height and material boundary thermal resistance. An experimental method is developed for extracting via/contact thermal resistance from electrical measurements. The analysis suggests it is possible to optimize device geometry in order to simultaneously minimize operating temperature and intrinsic gate delay. Electro-thermal contact and device design are expected to become more important with continued scaling.
NASA Astrophysics Data System (ADS)
Shatravin, V.; Shashev, D. V.
2018-05-01
Currently, robots are increasingly being used in every industry. One of the most high-tech areas is creation of completely autonomous robotic devices including vehicles. The results of various global research prove the efficiency of vision systems in autonomous robotic devices. However, the use of these systems is limited because of the computational and energy resources available in the robot device. The paper describes the results of applying the original approach for image processing on reconfigurable computing environments by the example of morphological operations over grayscale images. This approach is prospective for realizing complex image processing algorithms and real-time image analysis in autonomous robotic devices.
Intraosseous access in the military operational setting.
Vassallo, J; Horne, S; Smith, J E
2014-01-01
In an operational military environment, circulatory access can prove difficult for a variety of reasons including profound hypovolaemia, and limited first responder experience. With many injuries that cause catastrophic haemorrhage, such as traumatic limb amputations, circulatory access is needed as quickly as possible. Since 2006, the Defence Medical Services have been using the EZ-IO and FAST1 devices as a means of obtaining circulatory access. A prospective observational study was conducted between March and July 2011 at the Emergency Department, Camp Bastion, Afghanistan. All patients with an intraosseous device had data recorded that included if the device successfully flushed (functionality) and if any problems were encountered. 117 patients presented with a total of 195 devices: 149 were EZ-IO (76%) and 46 were FAST1 (24%). Functionality was recorded for 111 (57%), with 17 failing to function, yielding an overall success rate of 84.7%. Device failure was observed to be more prevalent in the humerus; inability to flush the device was the leading cause, followed by mechanical failure. There were 2 complications, device breaking on removal being the reason for both. The devices in the study were tested for a period of time following insertion (median 32 minutes), and still the success rates mirror those found in the literature. Observed differences between sites were not found to be significant with confidence intervals overlapping. Further work is proposed to investigate the long-term complications of intraosseous devices.
Mechanical Computing Redux: Limitations at the Nanoscale
NASA Astrophysics Data System (ADS)
Liu, Tsu-Jae King
2014-03-01
Technology solutions for overcoming the energy efficiency limits of nanoscale complementary metal oxide semiconductor (CMOS) technology ultimately will be needed in order to address the growing issue of integrated-circuit chip power density. Off-state leakage current sets a fundamental lower limit in energy per operation for any voltage-level-based digital logic implemented with transistors (CMOS and beyond), which leads to practical limits for device density (i.e. cost) and operating frequency (i.e. system performance). Mechanical switches have zero off-state leakag and hence can overcome this fundamental limit. Contact adhesive force sets a lower limit for the switching energy of a mechanical switch, however, and also directly impacts its performance. This paper will review recent progress toward the development of nano-electro-mechanical relay technology and discuss remaining challenges for realizing the promise of mechanical computing for ultra-low-power computing. Supported by the Center for Energy Efficient Electronics Science (NSF Award 0939514).
40 CFR 63.7733 - What procedures must I use to establish operating limits?
Code of Federal Regulations, 2010 CFR
2010-07-01
... combustion device applied to emissions from a scrap preheater or TEA cold box mold or core making line... and record the scrubbing liquid flow rate during each TEA sampling run in intervals of no more than 15...
40 CFR 35.1650-2 - Limitations on awards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... costs for harvesting aquatic vegetation, or for chemical treatment to alleviate temporarily the symptoms of eutrophication, or for operating and maintaining lake aeration devices, or for providing similar palliative methods and procedures, unless these procedures are the most energy efficient or cost effective...
40 CFR 35.1650-2 - Limitations on awards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... costs for harvesting aquatic vegetation, or for chemical treatment to alleviate temporarily the symptoms of eutrophication, or for operating and maintaining lake aeration devices, or for providing similar palliative methods and procedures, unless these procedures are the most energy efficient or cost effective...
40 CFR 35.1650-2 - Limitations on awards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... costs for harvesting aquatic vegetation, or for chemical treatment to alleviate temporarily the symptoms of eutrophication, or for operating and maintaining lake aeration devices, or for providing similar palliative methods and procedures, unless these procedures are the most energy efficient or cost effective...
40 CFR 35.1650-2 - Limitations on awards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... costs for harvesting aquatic vegetation, or for chemical treatment to alleviate temporarily the symptoms of eutrophication, or for operating and maintaining lake aeration devices, or for providing similar palliative methods and procedures, unless these procedures are the most energy efficient or cost effective...
Silicon, germanium, and III-V-based tunneling devices for low-power applications
NASA Astrophysics Data System (ADS)
Smith, Joshua T.
While the scaling of transistor dimensions has kept pace with Moore's Law, the voltages applied to these devices have not scaled in tandem, giving rise to ever-increasing power/heating challenges in state-of-the-art integrated circuits. A primary reason for this scaling mismatch is due to the thermal limit---the 60 mV minimum required at room temperature to change the current through the device by one order of magnitude. This voltage scaling limitation is inherent in devices that rely on the mechanism of thermal emission of charge carriers over a gate-controlled barrier to transition between the ON- and OFF-states, such as in the case of conventional CMOS-based technologies. To overcome this voltage scaling barrier, several steep-slope device concepts have been pursued that have experimentally demonstrated sub-60-mV/decade operation since 2004, including the tunneling-field effect transistor (TFET), impact ionization metal-oxide-semiconductor (IMOS), suspended-gate FET (SG-FET), and ferroelectric FET (Fe-FET). These reports have excited strong efforts within the semiconductor research community toward the realization of a low-power device that will support continued scaling efforts, while alleviating the heating issues prevalent in modern computer chips. Literature is replete with claims of sub-60-mV/decade operation, but often with neglect to other voltage scaling factors that offset this result. Ideally, a low-power device should be able to attain sub-60-mV/decade inverse subthreshold slopes (S) employing low supply and gate voltages with a foreseeable path toward integration. This dissertation describes the experimental development and realization of CMOS-compatible processes to enhance tunneling efficiency in Si and Si/Ge nanowire (NW) TFETs for improved average S (S avg) and ON-currents (ION), and a novel, III-V-based tunneling device alternative is also proposed. After reviewing reported efforts on the TFET, IMOS, and SG-FET, the TFET is highlighted as the most promising low-power device candidate, owing to its potential to operate within small supply and gate voltage windows. In a critical analysis of the TFET, the advantages of 1-D systems, such as NWs, that can potentially access the so-called quantum capacitance limit (QCL) are discussed, and the remaining challenges for TFETs, such as source/channel doping abruptness, and material tradeoffs are considered. To this end, substantial performance improvements, as measured by Savg and ION, are experimentally realized in top-down fabricated Si NW-TFET arrays by systematically varying the annealing process used to enhance doping abruptness at the source/channel junction---a critical feature for maximizing tunneling efficiency. A combination of excimer laser annealing (ELA) and a low-temperature rapid thermal anneal (LT-RTA) are identified as an optimum choice, resulting in a 36% decrease in Savg as well as ˜500% improvement in ION over the conventional RTA approach. Extrapolation of these results with simulation shows that sub-60-mV/decade operation is possible on a Si-based platform for aggressively scaled, yet realistic, NW-TFET devices. Back-gated NW-FET measurements are also presented to assess the material quality of Ge/Si core/shell NW heterostructures with an n+-doped shell, and these NWs are found to be suitable building blocks for the fabrication of more efficient TFET systems, owing to the very abrupt doping profile at the shell/core (source/channel) interface and smaller bandgap/effective mass of the Ge channel. Finally, low current levels in conventional TFETs have recently led researchers to re-examine III-V heterostructures, particularly those with a broken-gap band alignment to allow a tunneling probability near unity. Along these lines, a novel tunnel-based alternative is presented---the broken-gap tunnel MOS---that enables a constant S < 60 mV/decade. The proposed device permits the use of 2-D device architectures without degradation of S given the source-controlled operation mechanism, while simultaneously avoiding undesirable nonlinearities in the output characteristics.
GraphReduce: Processing Large-Scale Graphs on Accelerator-Based Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengupta, Dipanjan; Song, Shuaiwen; Agarwal, Kapil
2015-11-15
Recent work on real-world graph analytics has sought to leverage the massive amount of parallelism offered by GPU devices, but challenges remain due to the inherent irregularity of graph algorithms and limitations in GPU-resident memory for storing large graphs. We present GraphReduce, a highly efficient and scalable GPU-based framework that operates on graphs that exceed the device’s internal memory capacity. GraphReduce adopts a combination of edge- and vertex-centric implementations of the Gather-Apply-Scatter programming model and operates on multiple asynchronous GPU streams to fully exploit the high degrees of parallelism in GPUs with efficient graph data movement between the host andmore » device.« less
Hand controllers for teleoperation. A state-of-the-art technology survey and evaluation
NASA Technical Reports Server (NTRS)
Brooks, T. L.; Bejczy, A. K.
1985-01-01
Hand controller technology for teleoperation is surveyed in three major catagories: (1) hand grip design, (2) control input devices, and (3) control strategies. In the first category, 14 hand grip designs are reviewed and evaluated in light of human factor considerations. In the second, 12 hand controller input devices are evaluated in terms of task performance, configuration and force feedback, controller/slave correspondence, operating volume, operator workload, human limitations, cross coupling, singularities, anthropomorphic characteristics, physical complexity, control/display interference, accuracy, technological base, cost, and reliability. In the third catagory, control strategies, commonly called control modes, are surveyed and evaluated. The report contains a bibliography with 189 select references on hand controller technology.
A 200 MHz surface acoustic wave mass microbalance
NASA Technical Reports Server (NTRS)
Bowers, William D.; Chuan, Raymond L.
1990-01-01
The principle of operation of the surface acoustic wave (SAW) piezoelectric crystals used as microgravimetric sensors in mass microbalances is discussed. Special attention is given to a SAW 200-MHz crystal developed for measuring molecular deposition on spacecrafts, whose operating frequency does not depend on the thickness of the crystal. The frequency stability of the 200 MHz SAW device is better than 5 x 10 exp -9, which corresponds to a lower limit-of-detection of 3 x 10 exp -12 g for a signal-to-noise ratio of 3. A block diagram of the 200 MHz SAW mass microbalance and a schematic diagram of SAW resonator are presented together with performance data of this device.
Room-temperature ballistic transport in III-nitride heterostructures.
Matioli, Elison; Palacios, Tomás
2015-02-11
Room-temperature (RT) ballistic transport of electrons is experimentally observed and theoretically investigated in III-nitrides. This has been largely investigated at low temperatures in low band gap III-V materials due to their high electron mobilities. However, their application to RT ballistic devices is limited by their low optical phonon energies, close to KT at 300 K. In addition, the short electron mean-free-path at RT requires nanoscale devices for which surface effects are a limitation in these materials. We explore the unique properties of wide band-gap III-nitride semiconductors to demonstrate RT ballistic devices. A theoretical model is proposed to corroborate experimentally their optical phonon energy of 92 meV, which is ∼4× larger than in other III-V semiconductors. This allows RT ballistic devices operating at larger voltages and currents. An additional model is described to determine experimentally a characteristic dimension for ballistic transport of 188 nm. Another remarkable property is their short carrier depletion at device sidewalls, down to 13 nm, which allows top-down nanofabrication of very narrow ballistic devices. These results open a wealth of new systems and basic transport studies possible at RT.
Fogel, Ronen; Limson, Janice; Seshia, Ashwin A
2016-06-30
Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
VCSELs for exascale computing, computer farms, and green photonics
NASA Astrophysics Data System (ADS)
Hofmann, Werner; Moser, Philip; Wolf, Philip; Larisch, Gunter; Li, Hui; Li, Wei; Lott, James; Bimberg, Dieter
2012-11-01
The bandwidth-induced communication bottleneck due to the intrinsic limitations of metal interconnects is inhibiting the performance and environmental friendliness of todaýs supercomputers, data centers, and in fact all other modern electrically interconnected and interoperable networks such as data farms and "cloud" fabrics. The same is true for systems of optical interconnects (OIs), where even when the metal interconnects are replaced with OIs the systems remain limited by bandwidth, physical size, and most critically the power consumption and lifecycle operating costs. Vertical-cavity surface-emitting lasers (VCSELs) are ideally suited to solve this dilemma. Global communication providers like Google Inc., Intel Inc., HP Inc., and IBM Inc. are now producing optical interconnects based on VCSELs. The optimal bandwidth per link may be analyzed by by using Amdahĺs Law and depends on the architecture of the data center and the performance of the servers within the data center. According to Google Inc., a bandwidth of 40 Gb/s has to be accommodated in the future. IBM Inc. demands 80 Tbps interconnects between solitary server chips in 2020. We recently realized ultrahigh bit rate VCSELs up to 49 Gb/s suited for such optical interconnects emitting at 980 nm. These devices show error-free transmission at temperatures up to 155°C and operate beyond 200°C. Single channel data-rates of 40 Gb/s were achieved up to 75°C. Record high energy efficiencies close to 50 fJ/bit were demonstrated for VCSELs emitting at 850 nm. Our devices are fabricated using a full three-inch wafer process, and the apertures were formed by in-situ controlled selective wet oxidation using stainless steel-based vacuum equipment of our own design. assembly, and operation. All device data are measured, recorded, and evaluated by our proprietary fully automated wafer mapping probe station. The bandwidth density of our present devices is expected to be scalable from about 100 Gbps/mm² to a physical limit of roughly 15 Tbps/mm² based on the current 12.5 Gb/s VCSEL technology. Still more energy-efficient and smaller volume laser diode devices dissipating less heat are mandatory for further up scaling of the bandwidth. Novel metal-clad VCSELs enable a reduction of the device's footprint for potentially ultrashort range interconnects by 1 to 2 orders of magnitude compared to conventional VCSELs thus enabling a similar increase of device density and bandwidth.
Bright color optical switching device by polymer network liquid crystal with a specular reflector.
Lee, Gae Hwang; Hwang, Kyu Young; Jang, Jae Eun; Jin, Yong Wan; Lee, Sang Yoon; Jung, Jae Eun
2011-07-04
The color optical switching device by polymer network liquid crystal (PNLC) with color filter on a specular reflector shows excellent performance; white reflectance of 22%, color gamut of 32%, and contrast ratio up to 50:1 in reflective mode measurement. The view-angle dependence of the reflectance can be adjusted by changing the PNLC thickness. The color chromaticity shown by the device is close to the limit value of color filters, and its value nearly remains with respect to the operating voltage. These optical properties of the device can be explained from the prediction based on multiple interactions between the light and the droplets of liquid crystal. The high reflectance, vivid color image, and moderate responds time allow the PNLC device to drive good color moving image. It can widely extend the applications of the reflective device.
Performance of Continuous Quantum Thermal Devices Indirectly Connected to Environments
NASA Astrophysics Data System (ADS)
González, J.; Alonso, Daniel; Palao, José
2016-04-01
A general quantum thermodynamics network is composed of thermal devices connected to the environments through quantum wires. The coupling between the devices and the wires may introduce additional decay channels which modify the system performance with respect to the directly-coupled device. We analyze this effect in a quantum three-level device connected to a heat bath or to a work source through a two-level wire. The steady state heat currents are decomposed into the contributions of the set of simple circuits in the graph representing the master equation. Each circuit is associated with a mechanism in the device operation and the system performance can be described by a small number of circuit representatives of those mechanisms. Although in the limit of weak coupling between the device and the wire the new irreversible contributions can become small, they prevent the system from reaching the Carnot efficiency.
NASA Astrophysics Data System (ADS)
La Cour, Brian R.; Ostrove, Corey I.
2017-01-01
This paper describes a novel approach to solving unstructured search problems using a classical, signal-based emulation of a quantum computer. The classical nature of the representation allows one to perform subspace projections in addition to the usual unitary gate operations. Although bandwidth requirements will limit the scale of problems that can be solved by this method, it can nevertheless provide a significant computational advantage for problems of limited size. In particular, we find that, for the same number of noisy oracle calls, the proposed subspace projection method provides a higher probability of success for finding a solution than does an single application of Grover's algorithm on the same device.
Thermoelectric microdevice fabricated by a MEMS-like electrochemical process
NASA Technical Reports Server (NTRS)
Snyder, G. Jeffrey; Lim, James R.; Huang, Chen-Kuo; Fleurial, Jean-Pierre
2003-01-01
Microelectromechanical systems (MEMS) are the basis of many rapidly growing technologies, because they combine miniature sensors and actuators with communications and electronics at low cost. Commercial MEMS fabrication processes are limited to silicon-based materials or two-dimensional structures. Here we show an inexpensive, electrochemical technique to build MEMS-like structures that contain several different metals and semiconductors with three-dimensional bridging structures. We demonstrate this technique by building a working microthermoelectric device. Using repeated exposure and development of multiple photoresist layers, several different metals and thermoelectric materials are fabricated in a three-dimensional structure. A device containing 126 n-type and p-type (Bi, Sb)2Te3 thermoelectric elements, 20 microm tall and 60 microm in diameter with bridging metal interconnects, was fabricated and cooling demonstrated. Such a device should be of technological importance for precise thermal control when operating as a cooler, and for portable power when operating as a micro power generator.
Explosives Detection: Exploitation of the Physical Signatures
NASA Astrophysics Data System (ADS)
Atkinson, David
2010-10-01
Explosives based terrorism is an ongoing threat that is evolving with respect to implementation, configuration and materials used. There are a variety of devices designed to detect explosive devices, however, each technology has limitations and operational constraints. A full understanding of the signatures available for detection coupled with the array of detection choices can be used to develop a conceptual model of an explosives screening operation. Physics based sensors provide a robust approach to explosives detection, typically through the identification of anomalies, and are currently used for screening in airports around the world. The next generation of detectors for explosives detection will need to be more sensitive and selective, as well as integrate seamlessly with devices focused on chemical signatures. An appreciation for the details of the physical signature exploitation in cluttered environments with time, space, and privacy constraints is necessary for effective explosives screening of people, luggage, cargo, and vehicles.
Forming-free resistive switching characteristics of Ag/CeO2/Pt devices with a large memory window
NASA Astrophysics Data System (ADS)
Zheng, Hong; Kim, Hyung Jun; Yang, Paul; Park, Jong-Sung; Kim, Dong Wook; Lee, Hyun Ho; Kang, Chi Jung; Yoon, Tae-Sik
2017-05-01
Ag/CeO2(∼45 nm)/Pt devices exhibited forming-free bipolar resistive switching with a large memory window (low-resistance-state (LRS)/high-resistance-state (HRS) ratio >106) at a low switching voltage (<±1 ∼ 2 V) in voltage sweep condition. Also, they retained a large memory window (>104) at a pulse operation (±5 V, 50 μs). The high oxygen ionic conductivity of the CeO2 layer as well as the migration of silver facilitated the formation of filament for the transition to LRS at a low voltage without a high voltage forming operation. Also, a certain amount of defects in the CeO2 layer was required for stable HRS with space-charge-limited-conduction, which was confirmed comparing the devices with non-annealed and annealed CeO2 layers.
Xu, Zihao; Yang, Ming; Wang, Xianghui; Wang, Zhong
2015-01-01
Because of pulsatile blood flow's benefit for myocardial recovery, perfusion of coronary arteries and end organs, pulsatile ventricular assist devices (VADs) are still widely used as paracorporeal mechanical circulatory support devices in clinical applications, especially in pediatric heart failure patients. However, severe blood damage limits the VAD's service period. Besides optimizing the VAD geometry to reduce blood damage, the blood damage may also be decreased by changing the operating conditions. In this article, a pulsatile VAD was used to investigate the influence of operating conditions on its blood damage, including hemolysis, platelet activation, and platelet deposition. Three motion profiles of pusher plate (sine, cosine, and polynomial), three stroke volumes (ejection fractions) (56 ml [70%], 42 ml [52.5%], and 28 ml [35%]), three pulsatile rates (75, 100, and 150 bpm), and two assist modes (copulsation and counterpulsation) were implemented respectively in VAD fluid-structure interaction simulations to calculate blood damage. The blood damage indices indicate that cosine motion profile, higher ejection fraction, higher pulsatile rate, and counterpulsation can decrease platelet deposition whereas increase hemolysis and platelet activation, and vice versa. The results suggest that different operating conditions have different effects on pulsatile VAD's blood damage and may be beneficial to choose suitable operating condition to reduce blood damage in clinical applications.
Passive thermal management using phase change materials
NASA Astrophysics Data System (ADS)
Ganatra, Yash Yogesh
The trend of enhanced functionality and reducing thickness of mobile devices has. led to a rapid increase in power density and a potential thermal bottleneck since. thermal limits of components remain unchanged. Active cooling mechanisms are not. feasible due to size, weight and cost constraints. This work explores the feasibility. of a passive cooling system based on Phase Change Materials (PCMs) for thermal. management of mobile devices. PCMs stabilize temperatures due to the latent heat. of phase change thus increasing the operating time of the device before threshold. temperatures are exceeded. The primary contribution of this work is the identification. of key parameters which influence the design of a PCM based thermal management. system from both the experiments and the numerical models. This work first identifies strategies for integrating PCMs in an electronic device. A. detailed review of past research, including experimental techniques and computational. models, yields key material properties and metrics to evaluate the performance of. PCMs. Subsequently, a miniaturized version of a conventional thermal conductivity. measurement technique is developed to characterize thermal resistance of PCMs. Further, latent heat and transition temperatures are also characterized for a wide. range of PCMs. In-situ measurements with PCMs placed on the processor indicate that some. PCMs can extend the operating time of the device by as much as a factor of 2.48. relative to baseline tests (with no PCMs). This increase in operating time is investigated. by computational thermal models that explore various integration locations, both at the package and device level.
Efficiency of bulk-heterojunction organic solar cells
Scharber, M.C.; Sariciftci, N.S.
2013-01-01
During the last years the performance of bulk heterojunction solar cells has been improved significantly. For a large-scale application of this technology further improvements are required. This article reviews the basic working principles and the state of the art device design of bulk heterojunction solar cells. The importance of high power conversion efficiencies for the commercial exploitation is outlined and different efficiency models for bulk heterojunction solar cells are discussed. Assuming state of the art materials and device architectures several models predict power conversion efficiencies in the range of 10–15%. A more general approach assuming device operation close to the Shockley–Queisser-limit leads to even higher efficiencies. Bulk heterojunction devices exhibiting only radiative recombination of charge carriers could be as efficient as ideal inorganic photovoltaic devices. PMID:24302787
Non-contact optical Liquid Level Sensors
NASA Astrophysics Data System (ADS)
Kiseleva, L. L.; Tevelev, L. V.; Shaimukhametov, R. R.
2016-06-01
Information about characteristics of the optical liquid level sensor are present. Sensors are used to control of the light level limit fluid - water, kerosene, alcohol, solutions, etc. Intrinsically safe, reliable and easy to use. The operating principle of the level sensor is an optoelectronic infrared device.
Code of Federal Regulations, 2010 CFR
2010-04-01
... professionals only; (b) The modified device operates using a different fundamental scientific technology than a... therapy; (4) For assessing the risk of cardiovascular diseases; (5) For use in diabetes management; (6...
30 CFR 7.503 - Application requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... following: (1) The operating range, type of sensor, gas or gases measured, and environmental limitations, including the cross-sensitivity to other gases, of each detector or device in the air-monitoring component... gas concentrations over a 96-hour period. (3) The procedures for monitoring and maintaining breathable...
30 CFR 7.503 - Application requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... following: (1) The operating range, type of sensor, gas or gases measured, and environmental limitations, including the cross-sensitivity to other gases, of each detector or device in the air-monitoring component... gas concentrations over a 96-hour period. (3) The procedures for monitoring and maintaining breathable...
40 CFR 64.3 - Monitoring design criteria.
Code of Federal Regulations, 2013 CFR
2013-07-01
... indicators of emission control performance for the control device, any associated capture system and, if.... Indicators of performance may include, but are not limited to, direct or predicted emissions (including...(s) or designated condition(s) for the selected indicator(s) such that operation within the ranges...
The Cybernetics of Bibliographic Control: Toward a Theory of Document Retrieval Systems.
ERIC Educational Resources Information Center
Wellisch, Hans H.
1980-01-01
Explores the concept of cataloging, analyzes its functions and operations, and holds that as a control system bibliographic organization is subject to the laws of cybernetics. The role of relevance and the limitations of some regulatory devices are examined. (FM)
14 CFR 417.417 - Propellants and explosives.
Code of Federal Regulations, 2012 CFR
2012-01-01
... radio frequency radiation sources in a radio frequency radiation exclusion area. A launch operator must determine the vulnerability of its electro-explosive devices and systems to radio frequency radiation and establish radio frequency radiation power limits or radio frequency radiation exclusion areas as required by...
14 CFR 417.417 - Propellants and explosives.
Code of Federal Regulations, 2013 CFR
2013-01-01
... radio frequency radiation sources in a radio frequency radiation exclusion area. A launch operator must determine the vulnerability of its electro-explosive devices and systems to radio frequency radiation and establish radio frequency radiation power limits or radio frequency radiation exclusion areas as required by...
14 CFR 417.417 - Propellants and explosives.
Code of Federal Regulations, 2011 CFR
2011-01-01
... radio frequency radiation sources in a radio frequency radiation exclusion area. A launch operator must determine the vulnerability of its electro-explosive devices and systems to radio frequency radiation and establish radio frequency radiation power limits or radio frequency radiation exclusion areas as required by...
14 CFR 417.417 - Propellants and explosives.
Code of Federal Regulations, 2014 CFR
2014-01-01
... radio frequency radiation sources in a radio frequency radiation exclusion area. A launch operator must determine the vulnerability of its electro-explosive devices and systems to radio frequency radiation and establish radio frequency radiation power limits or radio frequency radiation exclusion areas as required by...
DMDs for multi-object near-infrared spectrographs in astronomy
NASA Astrophysics Data System (ADS)
Smee, Stephen A.; Barkhouser, Robert; Hope, Stephen; Conley, Devin; Gray, Aidan; Hope, Gavin; Robberto, Massimo
2018-02-01
The Digital Micromirror Device (DMD), typically used in projection screen technology, has utility in instrumentation for astronomy as a digitally programmable slit in a spectrograph. When placed at an imaging focal plane the device can be used to selectively direct light from astronomical targets into the optical path of a spectrograph, while at the same time directing the remaining light into an imaging camera, which can be used for slit alignment, science imaging, or both. To date the use of DMDs in astronomy has been limited, especially for instruments that operate in the near infrared (1 - 2.5 μm). This limitation is due in part to a host of technical challenges with respect to DMDs that, to date, have not been thoroughly explored. Those challenges include operation at cryogenic temperature, control electronics that facilitate DMD use at these temperatures, window coatings properly coated for the near infrared bandpass, and scattered light. This paper discusses these technical challenges and presents progress towards understanding and mitigating them.
40-Gb/s directly-modulated photonic crystal lasers under optical injection-locking
NASA Astrophysics Data System (ADS)
Chen, Chin-Hui; Takeda, Koji; Shinya, Akihiko; Nozaki, Kengo; Sato, Tomonari; Kawaguchi, Yoshihiro; Notomi, Masaya; Matsuo, Shinji
2011-08-01
CMOS integrated circuits (IC) usually requires high data bandwidth for off-chip input/output (I/O) data transport with sufficiently low power consumption in order to overcome pin-count limitation. In order to meet future requirements of photonic network interconnect, we propose an optical output device based on an optical injection-locked photonic crystal (PhC) laser to realize low-power and high-speed off-chip interconnects. This device enables ultralow-power operation and is suitable for highly integrated photonic circuits because of its strong light-matter interaction in the PhC nanocavity and ultra-compact size. High-speed operation is achieved by using the optical injection-locking (OIL) technique, which has been shown as an effective means to enhance modulation bandwidth beyond the relaxation resonance frequency limit. In this paper, we report experimental results of the OIL-PhC laser under various injection conditions and also demonstrate 40-Gb/s large-signal direct modulation with an ultralow energy consumption of 6.6 fJ/bit.
The Amplatzer Vascular Plug: Review of Evolution and Current Applications
Lopera, Jorge E.
2015-01-01
The Amplatzer Vascular Plug (AVP) was created for peripheral embolization as a modification of the family of Amplatz septal occluders used in the treatment of congenital heart malformations. The device has evolved over the years and multiple versions have been launched into the market. Each of the versions of the device has some important modifications in terms of the size of the introducer's system, number of layers, and resultant thrombogenicity. It is very important for the operator to become familiar with the unique features of the AVP, and to understand the advantages and limitations of each model in the AVP family to achieve an optimal embolic result. The purpose of this article is to review the evolution and current clinical applications of the AVP in the field of interventional radiology, with emphasis on the advantages and limitations of this device in comparison with other embolization agents. PMID:26622098
Lüssem, Björn; Günther, Alrun; Fischer, Axel; Kasemann, Daniel; Leo, Karl
2015-11-11
Organic switching devices such as field effect transistors (OFETs) are a key element of future flexible electronic devices. So far, however, a commercial breakthrough has not been achieved because these devices usually lack in switching speed (e.g. for logic applications) and current density (e.g. for display pixel driving). The limited performance is caused by a combination of comparatively low charge carrier mobilities and the large channel length caused by the need for low-cost structuring. Vertical Organic Transistors are a novel technology that has the potential to overcome these limitations of OFETs. Vertical Organic Transistors allow to scale the channel length of organic transistors into the 100 nm regime without cost intensive structuring techniques. Several different approaches have been proposed in literature, which show high output currents, low operation voltages, and comparatively high speed even without sub-μm structuring technologies. In this review, these different approaches are compared and recent progress is highlighted.
Quantum Landauer erasure with a molecular nanomagnet
NASA Astrophysics Data System (ADS)
Gaudenzi, R.; Burzurí, E.; Maegawa, S.; van der Zant, H. S. J.; Luis, F.
2018-06-01
The erasure of a bit of information is an irreversible operation whose minimal entropy production of kB ln 2 is set by the Landauer limit1. This limit has been verified in a variety of classical systems, including particles in traps2,3 and nanomagnets4. Here, we extend it to the quantum realm by using a crystal of molecular nanomagnets as a quantum spin memory and showing that its erasure is still governed by the Landauer principle. In contrast to classical systems, maximal energy efficiency is achieved while preserving fast operation owing to its high-speed spin dynamics. The performance of our spin register in terms of energy-time cost is orders of magnitude better than existing memory devices to date. The result shows that thermodynamics sets a limit on the energy cost of certain quantum operations and illustrates a way to enhance classical computations by using a quantum system.
Comparison of microtweezers based on three lateral thermal actuator configurations
NASA Astrophysics Data System (ADS)
Luo, J. K.; Flewitt, A. J.; Spearing, S. M.; Fleck, N. A.; Milne, W. I.
2005-06-01
Thermal actuator-based microtweezers with three different driving configurations have been designed, fabricated and characterized. Finite element analysis has been used to model the device performance. It was found that one configuration of microtweezer, based on two lateral bimorph thermal actuators, has a small displacement (tip opening of the tweezers) and a very limited operating power range. An alternative configuration consisting of two horizontal hot bars with separated beams as the arms can deliver a larger displacement with a much-extended operating power range. This structure can withstand a higher temperature due to the wider beams used, and has flexible arms for increased displacement. Microtweezers driven by a number of chevron structures in parallel have similar maximum displacements but at a cost of higher power consumption. The measured temperature of the devices confirms that the device with the chevron structure can deliver the largest displacement for a given working temperature, while the bimorph thermal actuator design has the highest operating temperature at the same power due to its thin hot arm, and is prone to structural failure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rothberg, O.
1988-06-01
NRC regulatory positions, as stated in Regulatory Guide 1.106, Revision 1, have been identified by the Office for Analysis and Evaluation of Operational Data (AEOD) as potential contributors to valve motor burnout. AEOD is particularly concerned about the allowed policy of bypassing thermal overload devices during normal or accident conditions. Regulatory Guide 1.106 favors compromising the function of thermal overload devices in favor of completing the safety-related action of valves. The purpose of this study was to determine if the guidance contained in Regulatory Guide 1.106 is appropriate and, if not, to recommend the necessary changes. This report describes thermalmore » overload devices commonly used to protect safety-related valve operator motors. The regulatory guidelines stated in Regulatory Guide 1.106 along with the limitations of thermal overload protection are discussed. Supplements and alternatives to thermal overload protection are also described. Findings and conclusions of several AEOD reports are discussed. Information obtained from the standard review plan, standard technical specifications, technical specifications from representative plants, and several papers are cited.« less
Westerwalbesloh, Christoph; Grünberger, Alexander; Stute, Birgit; Weber, Sophie; Wiechert, Wolfgang; Kohlheyer, Dietrich; von Lieres, Eric
2015-11-07
A microfluidic device for microbial single-cell cultivation of bacteria was modeled and simulated using COMSOL Multiphysics. The liquid velocity field and the mass transfer within the supply channels and cultivation chambers were calculated to gain insight in the distribution of supplied nutrients and metabolic products secreted by the cultivated bacteria. The goal was to identify potential substrate limitations or product accumulations within the cultivation device. The metabolic uptake and production rates, colony size, and growth medium composition were varied covering a wide range of operating conditions. Simulations with glucose as substrate did not show limitations within the typically used concentration range, but for alternative substrates limitations could not be ruled out. This lays the foundation for further studies and the optimization of existing picoliter bioreactor systems.
Flow-Boiling Critical Heat Flux Experiments Performed in Reduced Gravity
NASA Technical Reports Server (NTRS)
Hasan, Mohammad M.; Mudawar, Issam
2005-01-01
Poor understanding of flow boiling in microgravity has recently emerged as a key obstacle to the development of many types of power generation and advanced life support systems intended for space exploration. The critical heat flux (CHF) is perhaps the most important thermal design parameter for boiling systems involving both heatflux-controlled devices and intense heat removal. Exceeding the CHF limit can lead to permanent damage, including physical burnout of the heat-dissipating device. The importance of the CHF limit creates an urgent need to develop predictive design tools to ensure both the safe and reliable operation of a two-phase thermal management system under the reduced-gravity (like that on the Moon and Mars) and microgravity environments of space. At present, very limited information is available on flow-boiling heat transfer and the CHF under these conditions.
49 CFR 214.327 - Inaccessible track.
Code of Federal Regulations, 2010 CFR
2010-10-01
... the control of the switch, and (ii) The control operator has notified the roadway worker who has..., DEPARTMENT OF TRANSPORTATION RAILROAD WORKPLACE SAFETY Roadway Worker Protection § 214.327 Inaccessible track... effective securing device by the roadway worker in charge of the working limits; (3) A discontinuity in the...
Noise limitations in optical linear algebra processors.
Batsell, S G; Jong, T L; Walkup, J F; Krile, T F
1990-05-10
A general statistical noise model is presented for optical linear algebra processors. A statistical analysis which includes device noise, the multiplication process, and the addition operation is undertaken. We focus on those processes which are architecturally independent. Finally, experimental results which verify the analytical predictions are also presented.
Neutron radiation tolerance of Au-activated silicon
NASA Technical Reports Server (NTRS)
Joyner, W. T.
1987-01-01
Double injection devices prepared by the introduction of deep traps, using the Au activation method have been found to tolerate gamma irradiation into the Gigarad (Si) region without significant degradation of operating characteristics. Silicon double injection devices, using deep levels creacted by Au diffusion, can tolerate fast neutron irradiation up to 10 to the 15th n/sq cm. Significant parameter degradation occurs at 10 to the 16th n/sq cm. However, since the actual doping of the basic material begins to change as a result of the transmutation of silicon into phosphorus for neutron fluences greater than 10 to the 17th/sq cm, the radiation tolerance of these devices is approaching the limit possible for any device based on initially doped silicon.
Study of limitations and attributes of microprocessor testing techniques
NASA Technical Reports Server (NTRS)
Mccaskill, R.; Sohl, W. E.
1977-01-01
All microprocessor units have a similar architecture from which a basic test philosophy can be adopted and used to develop an approach to test each module separately in order to verify the functionality of each module within the device using the input/output pins of the device and its instruction set; test for destructive interaction between functional modules; and verify all timing, status information, and interrupt operations of the device. Block and test flow diagrams are given for the 8080, 8008, 2901, 6800, and 1802 microprocessors. Manufacturers are listed and problems encountered in testing the modules are discussed. Test equipment and methods are described.
Thermodynamic limits for solar energy conversion by a quantum-thermal hybrid system
NASA Technical Reports Server (NTRS)
Byvik, C. E.; Buoncristiani, A. M.; Smith, B. T.
1981-01-01
The limits are presented fo air mass 1.5 conditions. A maximum conversion efficiency of 74 percent is thermodynamically achievable for the quantum device operating at 3500 K and the heat engine in contact with a reservoir at 0 K. The efficiency drops to 56 percent for a cold reservoir at approximately room temperature conditions. Hybrid system efficiencies exceed 50 percent over receiver temperatures ranging from 1400 K to 4000 K, suggesting little benefit is gained in operating the system above 1400 K. The results are applied to a system consisting of a photovoltaic solar cell in series with a heat engine.
Kim, Sung-Jin; Yokokawa, Ryuji; Takayama, Shuichi
2012-12-03
This paper reveals a critical limitation in the electro-hydraulic analogy between a microfluidic membrane-valve (μMV) and an electronic transistor. Unlike typical transistors that have similar on and off threshold voltages, in hydraulic μMVs, the threshold pressures for opening and closing are significantly different and can change, even for the same μMVs depending on overall circuit design and operation conditions. We explain, in particular, how the negative values of the closing threshold pressures significantly constrain operation of even simple hydraulic μMV circuits such as autonomously switching two-valve microfluidic oscillators. These understandings have significant implications in designing self-regulated microfluidic devices.
Code of Federal Regulations, 2014 CFR
2014-10-01
... than 8 degrees. (j) Antenna side lobe gain. LPR devices operating under the provisions of this section must limit the side lobe antenna gain relative to the main beam gain for off-axis angles from the main beam of greater than 60 degrees to the levels provided in Table 2. Table 2—Antenna Side Lobe Gain...
Cikirikcioglu, Mustafa; Cikirikcioglu, Y Banu; Khabiri, Ebrahim; Djebaili, M Karim; Kalangos, Afksendiyos; Walpoth, Beat H
2006-01-01
Intra-operative flow measurement during coronary or peripheral bypass operations is helpful for ruling out technical failures and for prediction of complication and patency rates. Preclinical validation of the flowmeters is required in order to rely on the intra-operatively measured results. The aim of this study is to evaluate a new "dual beam Doppler" blood flowmeter before clinical application and to compare it with the established "transit time flow measure-ment" technique in an artificial circuit. Measurements were performed in an experimental flow model using pig blood and pig arteries. Three different flowmeters were used: Quantix OR (dual beam doppler flowmeter), CardioMed (transit time flowmeter), and Transonic (transit time flowmeter). Three validation tests were performed to assess correlation, precision, and repeatability of devices. (1) Correlation and agreement analysis was performed with various flow amounts (10-350 mL/min) (n = 160). (2) Device reproducibility and measurement stability were tested with a constant flow (flow amount = 300 mL/min) (n = 30). (3) A user accuracy test (intra- and inter-observer variability) was performed by 5 different observers with a constant flow (flow amount = 205 mL/min) (n = 75). Time collected true flow was used as a reference method in all steps and all tests were performed in a blind manner. Results are shown as mean values +/- standard deviations. Pear-son's correlation and Bland-Altman plot analyses were used to compare measurements. The mean flow was 167 +/- 98 mL/min for true flow and 162 +/- 94 mL/min, 165 +/- 94 mL/min, and 166 +/- 100 mL/min for Quantix OR, CardioMed, and Transonic, respectively. Correlation coefficients between Quantix OR, Medi-Stim, Transonic, and time collected true flow were over 0.98 (P = .01). Most of the measured results ( > 90%) were between +/- 1.96 SD agreement limits in Bland and Altman plot analysis. All devices showed good results in the reproducibility test. During the user accuracy test, larger variance changes were observed between intra- and inter-observer results with the dual beam Doppler flowmeter compared to the 2 used transit time flowmeters when used for single sided vessel access without stabilization device (available from the manufacturer). All 3 tested flowmeters showed an excellent correlation to the true flow in an artificial circuit and the accuracy of the tested devices was within agreement limits. Reproducibility of all devices was good and linear. The new dual beam Doppler flow measurement technique compares favorably to the classic transit time method. Clinical use may depend on operator, location, and condition, thus more studies may be required to ensure uniform results using the currently available blood flow measurement devices.
Open-source, community-driven microfluidics with Metafluidics.
Kong, David S; Thorsen, Todd A; Babb, Jonathan; Wick, Scott T; Gam, Jeremy J; Weiss, Ron; Carr, Peter A
2017-06-07
Microfluidic devices have the potential to automate and miniaturize biological experiments, but open-source sharing of device designs has lagged behind sharing of other resources such as software. Synthetic biologists have used microfluidics for DNA assembly, cell-free expression, and cell culture, but a combination of expense, device complexity, and reliance on custom set-ups hampers their widespread adoption. We present Metafluidics, an open-source, community-driven repository that hosts digital design files, assembly specifications, and open-source software to enable users to build, configure, and operate a microfluidic device. We use Metafluidics to share designs and fabrication instructions for both a microfluidic ring-mixer device and a 32-channel tabletop microfluidic controller. This device and controller are applied to build genetic circuits using standard DNA assembly methods including ligation, Gateway, Gibson, and Golden Gate. Metafluidics is intended to enable a broad community of engineers, DIY enthusiasts, and other nontraditional participants with limited fabrication skills to contribute to microfluidic research.
GraphReduce: Large-Scale Graph Analytics on Accelerator-Based HPC Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengupta, Dipanjan; Agarwal, Kapil; Song, Shuaiwen
2015-09-30
Recent work on real-world graph analytics has sought to leverage the massive amount of parallelism offered by GPU devices, but challenges remain due to the inherent irregularity of graph algorithms and limitations in GPU-resident memory for storing large graphs. We present GraphReduce, a highly efficient and scalable GPU-based framework that operates on graphs that exceed the device’s internal memory capacity. GraphReduce adopts a combination of both edge- and vertex-centric implementations of the Gather-Apply-Scatter programming model and operates on multiple asynchronous GPU streams to fully exploit the high degrees of parallelism in GPUs with efficient graph data movement between the hostmore » and the device.« less
Linewidth measurements of tunable diode lasers using heterodyne and etalon techniques
NASA Technical Reports Server (NTRS)
Reid, J.; Cassidy, D. T.; Menzies, R. T.
1982-01-01
Measurements of the linewidths of Pb-salt diode lasers operating in the 8- and 9-micron region are reported. The linewidths of the 9-micron lasers were determined by conventional heterodyne techniques, while for the 8-micron lasers a new technique based on a Fabry-Perot etalon was used. The new technique avoids the complexity and limited wavelength range of the heterodyne measurements and can be used for any tunable laser. The linewidths observed varied from 0.6 to more than 500-MHz FWHM. The linewidth was found to vary dramatically from device to device, to depend strongly on junction temperature and injection current, and to be correlated with vibrations caused by operation of a closed-cycle refrigerator.
A secure operational model for mobile payments.
Chang, Tao-Ku
2014-01-01
Instead of paying by cash, check, or credit cards, customers can now also use their mobile devices to pay for a wide range of services and both digital and physical goods. However, customers' security concerns are a major barrier to the broad adoption and use of mobile payments. In this paper we present the design of a secure operational model for mobile payments in which access control is based on a service-oriented architecture. A customer uses his/her mobile device to get authorization from a remote server and generate a two-dimensional barcode as the payment certificate. This payment certificate has a time limit and can be used once only. The system also provides the ability to remotely lock and disable the mobile payment service.
A Secure Operational Model for Mobile Payments
2014-01-01
Instead of paying by cash, check, or credit cards, customers can now also use their mobile devices to pay for a wide range of services and both digital and physical goods. However, customers' security concerns are a major barrier to the broad adoption and use of mobile payments. In this paper we present the design of a secure operational model for mobile payments in which access control is based on a service-oriented architecture. A customer uses his/her mobile device to get authorization from a remote server and generate a two-dimensional barcode as the payment certificate. This payment certificate has a time limit and can be used once only. The system also provides the ability to remotely lock and disable the mobile payment service. PMID:25386607
Short wavelength HgCdTe staring focal plane for low background astronomy applications
NASA Technical Reports Server (NTRS)
Hall, D.; Stobie, J.; Hartle, N.; Lacroix, D.; Maschhoff, K.
1989-01-01
The design of a 128x128 staring short wave infrared (SWIR) HgCdTe focal plane incorporating charge integrating transimpedance input preamplifiers is presented. The preamplifiers improve device linearity and uniformity, and provide signal gain ahead of the miltiplexer and readout circuitry. Detector's with cutoff wavelength of 2.5 microns and operated at 80 K have demonstrated impedances in excess of 10(exp 16) ohms with 60 percent quantum efficiency. Focal plane performance using a smaller format device is presented which demonstrates the potential of this approach. Although the design is capable of achieving less than 30 rms electrons with todays technology, initial small format devices demonstrated a read noise of 100 rms electrons and were limited by the atypical high noise performance of the silicon process run. Luminescence from the active silicon circuitry in the multiplexer limits the minimum detector current to a few hundred electrons per second. Approaches to eliminate this excessive source of current is presented which should allow the focal plane to achieve detector background limited performance.
Psikuta, Agnes; Koelblen, Barbara; Mert, Emel; Fontana, Piero; Annaheim, Simon
2017-12-07
Following the growing interest in the further development of manikins to simulate human thermal behaviour more adequately, thermo-physiological human simulators have been developed by coupling a thermal sweating manikin with a thermo-physiology model. Despite their availability and obvious advantages, the number of studies involving these devices is only marginal, which plausibly results from the high complexity of the development and evaluation process and need of multi-disciplinary expertise. The aim of this paper is to present an integrated approach to develop, validate and operate such devices including technical challenges and limitations of thermo-physiological human simulators, their application and measurement protocol, strategy for setting test scenarios, and the comparison to standard methods and human studies including details which have not been published so far. A physical manikin controlled by a human thermoregulation model overcame the limitations of mathematical clothing models and provided a complementary method to investigate thermal interactions between the human body, protective clothing, and its environment. The opportunities of these devices include not only realistic assessment of protective clothing assemblies and equipment but also potential application in many research fields ranging from biometeorology, automotive industry, environmental engineering, and urban climate to clinical and safety applications.
PSIKUTA, Agnes; KOELBLEN, Barbara; MERT, Emel; FONTANA, Piero; ANNAHEIM, Simon
2017-01-01
Following the growing interest in the further development of manikins to simulate human thermal behaviour more adequately, thermo-physiological human simulators have been developed by coupling a thermal sweating manikin with a thermo-physiology model. Despite their availability and obvious advantages, the number of studies involving these devices is only marginal, which plausibly results from the high complexity of the development and evaluation process and need of multi-disciplinary expertise. The aim of this paper is to present an integrated approach to develop, validate and operate such devices including technical challenges and limitations of thermo-physiological human simulators, their application and measurement protocol, strategy for setting test scenarios, and the comparison to standard methods and human studies including details which have not been published so far. A physical manikin controlled by a human thermoregulation model overcame the limitations of mathematical clothing models and provided a complementary method to investigate thermal interactions between the human body, protective clothing, and its environment. The opportunities of these devices include not only realistic assessment of protective clothing assemblies and equipment but also potential application in many research fields ranging from biometeorology, automotive industry, environmental engineering, and urban climate to clinical and safety applications. PMID:28966294
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Kwan -Soo; Spendelow, Jacob Schatz; Choe, Yoong -Kee
Here, fuel cells are promising devices for clean power generation in a variety of economically and environmentally significant applications. Low-temperature proton exchange membrane (PEM) fuel cells utilizing Nafion require a high level of hydration, which limits the operating temperature to less than 100°C. In contrast, high-temperature PEM fuel cells utilizing phosphoric acid-doped polybenzimidazole can operate effectively up to 180°C; however, these devices degrade when exposed to water below 140°C. Here we present a different class of PEM fuel cells based on quaternary ammonium-biphosphate ion pairs that can operate under conditions unattainable with existing fuel cell technologies. These fuel cells exhibitmore » stable performance at 80–160°C with a conductivity decay rate more than three orders of magnitude lower than that of a commercial high-temperature PEM fuel cell. By increasing the operational flexibility, this class of fuel cell can simplify the requirements for heat and water management, and potentially reduce the costs associated with the existing fully functional fuel cell systems.« less
High-operating temperature MWIR photon detectors based on type II InAs/GaSb superlattice
NASA Astrophysics Data System (ADS)
Razeghi, Manijeh; Nguyen, Binh-Minh; Delaunay, Pierre-Yves; Abdollahi Pour, Siamak; Huang, Edward Kwei-wei; Manukar, Paritosh; Bogdanov, Simeon; Chen, Guanxi
2010-01-01
Recent efforts have been paid to elevate the operating temperature of Type II InAs/GaSb superlattice Mid Infrared photon detectors. Optimized growth parameters and interface engineering technique enable high quality material with a quantum efficiency above 50%. Intensive study on device architecture and doping profile has resulted in almost one order of magnitude of improvement to the electrical performance and lifted up the 300K-background BLIP operation temperature to 166K. At 77K, the ~4.2 μm cut-off devices exhibit a differential resistance area product in excess of the measurement system limit (106 Ohm.cm2) and a detectivity of 3x1013cm.Hz1/2/W. High quality focal plane arrays were demonstrated with a noise equivalent temperature of 10mK at 77K. Uncooled camera is capable to capture hot objects such as soldering iron.
High Sensitivity Terahertz Detection through Large-Area Plasmonic Nano-Antenna Arrays.
Yardimci, Nezih Tolga; Jarrahi, Mona
2017-02-16
Plasmonic photoconductive antennas have great promise for increasing responsivity and detection sensitivity of conventional photoconductive detectors in time-domain terahertz imaging and spectroscopy systems. However, operation bandwidth of previously demonstrated plasmonic photoconductive antennas has been limited by bandwidth constraints of their antennas and photoconductor parasitics. Here, we present a powerful technique for realizing broadband terahertz detectors through large-area plasmonic photoconductive nano-antenna arrays. A key novelty that makes the presented terahertz detector superior to the state-of-the art is a specific large-area device geometry that offers a strong interaction between the incident terahertz beam and optical pump at the nanoscale, while maintaining a broad operation bandwidth. The large device active area allows robust operation against optical and terahertz beam misalignments. We demonstrate broadband terahertz detection with signal-to-noise ratio levels as high as 107 dB.
High Sensitivity Terahertz Detection through Large-Area Plasmonic Nano-Antenna Arrays
Yardimci, Nezih Tolga; Jarrahi, Mona
2017-01-01
Plasmonic photoconductive antennas have great promise for increasing responsivity and detection sensitivity of conventional photoconductive detectors in time-domain terahertz imaging and spectroscopy systems. However, operation bandwidth of previously demonstrated plasmonic photoconductive antennas has been limited by bandwidth constraints of their antennas and photoconductor parasitics. Here, we present a powerful technique for realizing broadband terahertz detectors through large-area plasmonic photoconductive nano-antenna arrays. A key novelty that makes the presented terahertz detector superior to the state-of-the art is a specific large-area device geometry that offers a strong interaction between the incident terahertz beam and optical pump at the nanoscale, while maintaining a broad operation bandwidth. The large device active area allows robust operation against optical and terahertz beam misalignments. We demonstrate broadband terahertz detection with signal-to-noise ratio levels as high as 107 dB. PMID:28205615
Nonlinear-optical Christiansen filter as an optical power limiter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, G.L.; Boyd, R.W.; Moore, T.R.
We have constructed an optical power limiter based on nonlinear induced scattering in a cell containing crushed glass and a mixture of acetone and carbon disulfide. For 30-ps-long laser pulses the transmitted energy saturates at a value of 6{mu}J. We also present the results of a theoretical modeling study that shows how the operating characteristics of such a device can be optimized. {copyright} {ital 1996 Optical Society of America.}
VCSEL technologies and applications
NASA Astrophysics Data System (ADS)
Steinle, Gunther; Ramakrishnan, A.; Supper, D.; Kristen, Guenter; Pfeiffer, J.; Degen, Ch.; Riechert, Henning; Ebbinghaus, G.; Wolf, H. D.
2002-07-01
VCSEL devices for 850nm and 1300nm emission wavelength are presented, suitable for operation in single-channel interconnects as well as parallel optical links. Necessary properties for applications such as 10 Gigabit Ethernet and actual limits for the use of VCSELs are discussed in some detail. Recent progress is demonstrated in developing devices with production-friendly diameters larger than 5´m for 10Gbit/s operation. Also devices with a temperature insensitive monolithically integrated monitordiode are presented and discussed. In order to reach the emission wavelength of 1300nm with a GaAs-based monolithic VCSEL-structure, we use GaInNxAs1-x quantum-wells with a small nitrogen concentration x between one and two percent. We have two different growth approaches, such as solid source MBE with a rf-plasma source to produce reactive nitrogen from nitrogen gas N2 and MOCVD with unsymmetrical di-methylhydrazine as a precursor for nitrogen. The long-wavelength devices comprise intracavity contacts in order to reduce absorption losses due to doped layers. Bitrates up to 10Gbit/s per channel can be achieved within both wavelength regimes.
Low-Noise Wide Bandwith, Hot Electron Bolometer Mixers for Submillimeter Wavelengths
NASA Technical Reports Server (NTRS)
McGrath, W. R.
1995-01-01
Recently a novel superconductive hot-electron micro-bolometer has been proposed which is both fast and sensitive (D. E. Prober, Appl. Phys. Lett. 62, 2119, 1993). This device has several important properties which make it useful as a heterodyne sensor for radioastronomy applications at frequencies above 1 THz. The thermal response time of the device is fast enough, several 10's of picoseconds, to allow for IF's of several GHz. This bolometer mixer should operate well up to at least 10 THz. There is no energy gap limitation as in an SIS mixer, since the mixing process relies on heating of the electron gas. In fact, rf power is absorbed more uniformly above the gap frequency. The mixer noise should be near quantum-limited, and the local oscillator (LO) power requirement is very low: / 10 nW for a Nb device. One of the unique features of this device is that it employs rapid electron diffusion into a normal metal, rather than phonon emission, as the thermal conductance that cools the heated electrons. In order for diffusion to dominate over phonon emission, the device must be short, less than 0.5.
Energy harvesting for self-powered aerostructure actuation
NASA Astrophysics Data System (ADS)
Bryant, Matthew; Pizzonia, Matthew; Mehallow, Michael; Garcia, Ephrahim
2014-04-01
This paper proposes and experimentally investigates applying piezoelectric energy harvesting devices driven by flow induced vibrations to create self-powered actuation of aerostructure surfaces such as tabs, flaps, spoilers, or morphing devices. Recently, we have investigated flow-induced vibrations and limit cycle oscillations due to aeroelastic flutter phenomena in piezoelectric structures as a mechanism to harvest energy from an ambient fluid flow. We will describe how our experimental investigations in a wind tunnel have demonstrated that this harvested energy can be stored and used on-demand to actuate a control surface such as a trailing edge flap in the airflow. This actuated control surface could take the form of a separate and discrete actuated flap, or could constitute rotating or deflecting the oscillating energy harvester itself to produce a non-zero mean angle of attack. Such a rotation of the energy harvester and the associated change in aerodynamic force is shown to influence the operating wind speed range of the device, its limit cycle oscillation (LCO) amplitude, and its harvested power output; hence creating a coupling between the device's performance as an energy harvester and as a control surface. Finally, the induced changes in the lift, pitching moment, and drag acting on a wing model are quantified and compared for a control surface equipped with an oscillating energy harvester and a traditional, static control surface of the same geometry. The results show that when operated in small amplitude LCO the energy harvester adds negligible aerodynamic drag.
15 CFR 0.735-17 - Gambling, betting, and lotteries.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 15 Commerce and Foreign Trade 1 2011-01-01 2011-01-01 false Gambling, betting, and lotteries. 0... RESPONSIBILITIES AND CONDUCT Regulatory Limitations Upon Employee Conduct § 0.735-17 Gambling, betting, and... for the Government, in any gambling activity including the operation of a gambling device, in...
36 CFR 1192.85 - Between-car barriers.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false Between-car barriers. 1192.85... Rail Vehicles and Systems § 1192.85 Between-car barriers. Where vehicles operate in a high-platform... inadvertently stepping off the platform between cars. Appropriate devices include, but are not limited to...
36 CFR 1192.85 - Between-car barriers.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Between-car barriers. 1192.85... Rail Vehicles and Systems § 1192.85 Between-car barriers. Where vehicles operate in a high-platform... inadvertently stepping off the platform between cars. Appropriate devices include, but are not limited to...
36 CFR 1192.85 - Between-car barriers.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Between-car barriers. 1192.85... Rail Vehicles and Systems § 1192.85 Between-car barriers. Where vehicles operate in a high-platform... inadvertently stepping off the platform between cars. Appropriate devices include, but are not limited to...
36 CFR 1192.85 - Between-car barriers.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false Between-car barriers. 1192.85... Rail Vehicles and Systems § 1192.85 Between-car barriers. Where vehicles operate in a high-platform... inadvertently stepping off the platform between cars. Appropriate devices include, but are not limited to...
15 CFR 0.735-17 - Gambling, betting, and lotteries.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 15 Commerce and Foreign Trade 1 2013-01-01 2013-01-01 false Gambling, betting, and lotteries. 0... RESPONSIBILITIES AND CONDUCT Regulatory Limitations Upon Employee Conduct § 0.735-17 Gambling, betting, and... for the Government, in any gambling activity including the operation of a gambling device, in...
15 CFR 0.735-17 - Gambling, betting, and lotteries.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 15 Commerce and Foreign Trade 1 2012-01-01 2012-01-01 false Gambling, betting, and lotteries. 0... RESPONSIBILITIES AND CONDUCT Regulatory Limitations Upon Employee Conduct § 0.735-17 Gambling, betting, and... for the Government, in any gambling activity including the operation of a gambling device, in...
15 CFR 0.735-17 - Gambling, betting, and lotteries.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 15 Commerce and Foreign Trade 1 2014-01-01 2014-01-01 false Gambling, betting, and lotteries. 0... RESPONSIBILITIES AND CONDUCT Regulatory Limitations Upon Employee Conduct § 0.735-17 Gambling, betting, and... for the Government, in any gambling activity including the operation of a gambling device, in...
10 CFR 35.642 - Periodic spot-checks for teletherapy units.
Code of Federal Regulations, 2010 CFR
2010-01-01
... coincidence of the radiation field and the field indicated by the light beam localizing device; (4) The... to assure proper operation of— (1) Electrical interlocks at each teletherapy room entrance; (2) Electrical or mechanical stops installed for the purpose of limiting use of the primary beam of radiation...
NASA Astrophysics Data System (ADS)
Fleurial, J.-P.; Ryan, M. A.; Snyder, G. J.; Huang, C.-K.; Whitacre, J. F.; Patel, J.; Lim, J.; Borshchevsky, A.
2002-01-01
Deep space missions have a strong need for compact, high power density, reliable and long life electrical power generation and storage under extreme temperature conditions. Except for electrochemical batteries and solar cells, there are currently no available miniaturized power sources. Conventional power generators devices become inefficient in extreme environments (such as encountered in Mars, Venus or outer planet missions) and rechargeable energy storage devices can only be operated in a narrow temperature range thereby limiting mission duration. The planned development of much smaller spacecrafts incorporating a variety of micro/nanodevices and miniature vehicles will require novel, reliable power technologies. It is also expected that such micro power sources could have a wide range of terrestrial applications, in particular when the limited lifetime and environmental limitations of batteries are key factors. Advanced solid-state thermoelectric combined with radioisotope or waste heat sources and low profile energy storage devices are ideally suited for these applications. The Jet Propulsion Laboratory has been actively pursuing the development of thermoelectric micro/nanodevices that can be fabricated using a combination of electrochemical deposition and integrated circuit processing techniques. Some of the technical challenges associated with these micro/nanodevice concepts, their expected level of performance and experimental fabrication and testing results to date are presented and discussed.
Using Quantum Confinement to Uniquely Identify Devices
Roberts, J.; Bagci, I. E.; Zawawi, M. A. M.; Sexton, J.; Hulbert, N.; Noori, Y. J.; Young, M. P.; Woodhead, C. S.; Missous, M.; Migliorato, M. A.; Roedig, U.; Young, R. J.
2015-01-01
Modern technology unintentionally provides resources that enable the trust of everyday interactions to be undermined. Some authentication schemes address this issue using devices that give a unique output in response to a challenge. These signatures are generated by hard-to-predict physical responses derived from structural characteristics, which lend themselves to two different architectures, known as unique objects (UNOs) and physically unclonable functions (PUFs). The classical design of UNOs and PUFs limits their size and, in some cases, their security. Here we show that quantum confinement lends itself to the provision of unique identities at the nanoscale, by using fluctuations in tunnelling measurements through quantum wells in resonant tunnelling diodes (RTDs). This provides an uncomplicated measurement of identity without conventional resource limitations whilst providing robust security. The confined energy levels are highly sensitive to the specific nanostructure within each RTD, resulting in a distinct tunnelling spectrum for every device, as they contain a unique and unpredictable structure that is presently impossible to clone. This new class of authentication device operates with minimal resources in simple electronic structures above room temperature. PMID:26553435
Numerical Device Modeling, Analysis, and Optimization of Extended-SWIR HgCdTe Infrared Detectors
NASA Astrophysics Data System (ADS)
Schuster, J.; DeWames, R. E.; DeCuir, E. A.; Bellotti, E.; Dhar, N.; Wijewarnasuriya, P. S.
2016-09-01
Imaging in the extended short-wavelength infrared (eSWIR) spectral band (1.7-3.0 μm) for astronomy applications is an area of significant interest. However, these applications require infrared detectors with extremely low dark current (less than 0.01 electrons per pixel per second for certain applications). In these detectors, sources of dark current that may limit the overall system performance are fundamental and/or defect-related mechanisms. Non-optimized growth/device processing may present material point defects within the HgCdTe bandgap leading to Shockley-Read-Hall dominated dark current. While realizing contributions to the dark current from only fundamental mechanisms should be the goal for attaining optimal device performance, it may not be readily feasible with current technology and/or resources. In this regard, the U.S. Army Research Laboratory performed physics-based, two- and three-dimensional numerical modeling of HgCdTe photovoltaic infrared detectors designed for operation in the eSWIR spectral band. The underlying impetus for this capability and study originates with a desire to reach fundamental performance limits via intelligent device design.
NASA Technical Reports Server (NTRS)
Bentley, Nicole L.; Brower, David V.; Le, Suy Q.; Seaman, Calvin H.; Tang, Henry H.
2017-01-01
This paper presents the design and development of a friction-based coupling device for a fiber-optic monitoring system that can be deployed on existing subsea structures. This paper provides a summary of the design concept, prototype development, prototype performance testing, and design refinements of the device. The results of the laboratory testing of the first prototype performed at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) are included in this paper. Limitations of the initial design were identified and future design improvements were proposed. These new features will enhance the coupling of the device and improve the monitoring system measurement capabilities. A major challenge of a post-installed instrumentation monitoring system is to ensure adequate coupling between the instruments and the structure of interest for reliable measurements. Friction-based coupling devices have the potential to overcome coupling limitations caused by marine growth and soil contamination on subsea structures, flowlines or risers. The work described in this paper investigates the design of a friction-based coupling device (friction clamp), which is applicable for pipelines and structures that are suspended in the water column and those that are resting on the seabed. The monitoring elements consist of fiber-optic sensors that are bonded to a metal clamshell with a high-friction coating. The friction clamp has a single hinge design to facilitate the operation of the clamp and dual rows of opposing fasteners to distribute the clamping force on the structure. The friction clamp can be installed by divers in shallow depths or by remotely operated vehicles in deep-water applications. NASA-JSC was involved in the selection and testing of the friction coating, and in the design and testing of the prototype clamp device. Four-inch diameter and eight-inch diameter sub-scale friction clamp prototypes were built and tested to evaluate the strain measuring capabilities of the design under different loading scenarios. The testing revealed some limitations of the initial design concept, and subsequent refinements were explored to improve the measurement performance of the system. This study was part of a collaboration between NASA-JSC and Astro Technology, Inc. within a study called Clear Gulf. The primary objective of the Clear Gulf study is to develop advanced instrumentation technologies that will improve operational safety and reduce the risk of hydrocarbon spillage. NASA provided unique insights, expansive test facilities, and technical expertise to advance these technologies that would benefit the environment, the public, and commercial industries.
NASA Technical Reports Server (NTRS)
Bentley, Nicole; Brower, David; Le, Suy Q.; Seaman, Calvin; Tang, Henry
2017-01-01
This paper presents the design and development of a friction-based coupling device for a fiber-optic monitoring system that can be deployed on existing subsea structures. This paper provides a summary of the design concept, prototype development, prototype performance testing, and design refinements of the device. The results of the laboratory testing of the first prototype performed at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) are included in this paper. Limitations of the initial design were identified and future design improvements were proposed. These new features will enhance the coupling of the device and improve the monitoring system measurement capabilities. A major challenge of a post-installed instrumentation monitoring system is to ensure adequate coupling between the instruments and the structure of interest for reliable measurements. Friction-based coupling devices have the potential to overcome coupling limitations caused by marine growth and soil contamination on subsea structures, flowlines or risers. The work described in this paper investigates the design of a friction-based coupling device (friction clamp), which is applicable for pipelines and structures that are suspended in the water column and those that are resting on the seabed. The monitoring elements consist of fiber-optic sensors that are bonded to a metal clamshell with a high-friction coating. The friction clamp has a single hinge design to facilitate the operation of the clamp and dual rows of opposing fasteners to distribute the clamping force on the structure. The friction clamp can be installed by divers in shallow depths or by remotely operated vehicles in deep-water applications. NASA-JSC was involved in the selection and testing of the friction coating, and in the design and testing of the prototype clamp device. Four-inch diameter and eight-inch diameter sub-scale friction clamp prototypes were built and tested to evaluate the strain measuring capabilities of the design under different loading scenarios. The testing revealed some limitations of the initial design concept, and subsequent refinements were explored to improve the measurement performance of the system. This study was part of a collaboration between NASA-JSC and Astro Technology, Inc. within a study called Clear Gulf. The primary objective of the Clear Gulf study is to develop advanced instrumentation technologies that will improve operational safety and reduce the risk of hydrocarbon spillage. NASA provided unique insights, expansive test facilities, and technical expertise to advance these technologies that would benefit the environment, the public, and commercial industries.
An operationally flexible fuel cell based on quaternary ammonium-biphosphate ion pairs
Lee, Kwan -Soo; Spendelow, Jacob Schatz; Choe, Yoong -Kee; ...
2016-08-22
Here, fuel cells are promising devices for clean power generation in a variety of economically and environmentally significant applications. Low-temperature proton exchange membrane (PEM) fuel cells utilizing Nafion require a high level of hydration, which limits the operating temperature to less than 100°C. In contrast, high-temperature PEM fuel cells utilizing phosphoric acid-doped polybenzimidazole can operate effectively up to 180°C; however, these devices degrade when exposed to water below 140°C. Here we present a different class of PEM fuel cells based on quaternary ammonium-biphosphate ion pairs that can operate under conditions unattainable with existing fuel cell technologies. These fuel cells exhibitmore » stable performance at 80–160°C with a conductivity decay rate more than three orders of magnitude lower than that of a commercial high-temperature PEM fuel cell. By increasing the operational flexibility, this class of fuel cell can simplify the requirements for heat and water management, and potentially reduce the costs associated with the existing fully functional fuel cell systems.« less
An operationally flexible fuel cell based on quaternary ammonium-biphosphate ion pairs
NASA Astrophysics Data System (ADS)
Lee, Kwan-Soo; Spendelow, Jacob S.; Choe, Yoong-Kee; Fujimoto, Cy; Kim, Yu Seung
2016-09-01
Fuel cells are promising devices for clean power generation in a variety of economically and environmentally significant applications. Low-temperature proton exchange membrane (PEM) fuel cells utilizing Nafion require a high level of hydration, which limits the operating temperature to less than 100 ∘C. In contrast, high-temperature PEM fuel cells utilizing phosphoric acid-doped polybenzimidazole can operate effectively up to 180 ∘C however, these devices degrade when exposed to water below 140 ∘C. Here we present a different class of PEM fuel cells based on quaternary ammonium-biphosphate ion pairs that can operate under conditions unattainable with existing fuel cell technologies. These fuel cells exhibit stable performance at 80-160 ∘C with a conductivity decay rate more than three orders of magnitude lower than that of a commercial high-temperature PEM fuel cell. By increasing the operational flexibility, this class of fuel cell can simplify the requirements for heat and water management, and potentially reduce the costs associated with the existing fully functional fuel cell systems.
High Temperature Near-Field NanoThermoMechanical Rectification
Elzouka, Mahmoud; Ndao, Sidy
2017-01-01
Limited performance and reliability of electronic devices at extreme temperatures, intensive electromagnetic fields, and radiation found in space exploration missions (i.e., Venus & Jupiter planetary exploration, and heliophysics missions) and earth-based applications requires the development of alternative computing technologies. In the pursuit of alternative technologies, research efforts have looked into developing thermal memory and logic devices that use heat instead of electricity to perform computations. However, most of the proposed technologies operate at room or cryogenic temperatures, due to their dependence on material’s temperature-dependent properties. Here in this research, we show experimentally—for the first time—the use of near-field thermal radiation (NFTR) to achieve thermal rectification at high temperatures, which can be used to build high-temperature thermal diodes for performing logic operations in harsh environments. We achieved rectification through the coupling between NFTR and the size of a micro/nano gap separating two terminals, engineered to be a function of heat flow direction. We fabricated and tested a proof-of-concept NanoThermoMechanical device that has shown a maximum rectification of 10.9% at terminals’ temperatures of 375 and 530 K. Experimentally, we operated the microdevice in temperatures as high as about 600 K, demonstrating this technology’s suitability to operate at high temperatures. PMID:28322324
High Temperature Near-Field NanoThermoMechanical Rectification
NASA Astrophysics Data System (ADS)
Elzouka, Mahmoud; Ndao, Sidy
2017-03-01
Limited performance and reliability of electronic devices at extreme temperatures, intensive electromagnetic fields, and radiation found in space exploration missions (i.e., Venus & Jupiter planetary exploration, and heliophysics missions) and earth-based applications requires the development of alternative computing technologies. In the pursuit of alternative technologies, research efforts have looked into developing thermal memory and logic devices that use heat instead of electricity to perform computations. However, most of the proposed technologies operate at room or cryogenic temperatures, due to their dependence on material’s temperature-dependent properties. Here in this research, we show experimentally—for the first time—the use of near-field thermal radiation (NFTR) to achieve thermal rectification at high temperatures, which can be used to build high-temperature thermal diodes for performing logic operations in harsh environments. We achieved rectification through the coupling between NFTR and the size of a micro/nano gap separating two terminals, engineered to be a function of heat flow direction. We fabricated and tested a proof-of-concept NanoThermoMechanical device that has shown a maximum rectification of 10.9% at terminals’ temperatures of 375 and 530 K. Experimentally, we operated the microdevice in temperatures as high as about 600 K, demonstrating this technology’s suitability to operate at high temperatures.
NASA Astrophysics Data System (ADS)
Pramodini, S.; Sudhakar, Y. N.; SelvaKumar, M.; Poornesh, P.
2014-04-01
We present the synthesis and characterization of third-order optical nonlinearity and optical limiting of the conducting polymers poly (aniline-co-o-anisidine) and poly (aniline-co-pyrrole). Nonlinear optical studies were carried out by employing the z-scan technique using a He-Ne laser operating in continuous wave mode at 633 nm. The copolymers exhibited a reverse saturable absorption process and self-defocusing properties under the experimental conditions. The estimated values of βeff, n2 and χ(3) were found to be of the order of 10-2 cm W-1, 10-5 esu and 10-7 esu respectively. Self-diffraction rings were observed due to refractive index change when exposed to the laser beam. The copolymers possess a lower limiting threshold and clamping level, which is essential to a great extent for power limiting devices. Therefore, copolymers of aniline emerge as a potential candidate for nonlinear optical device applications.
Cryogenic Behavior of the High Temperature Crystal Oscillator PX-570
NASA Technical Reports Server (NTRS)
Patterson, Richard; Hammoud, Ahmad; Scherer, Steven
2011-01-01
Microprocessors, data-acquisition systems, and electronic controllers usually require timing signals for proper and accurate operation. These signals are, in most cases, provided by circuits that utilize crystal oscillators due to availability, cost, ease of operation, and accuracy. Stability of these oscillators, i.e. crystal characteristics, is usually governed, amongst other things, by the ambient temperature. Operation of these devices under extreme temperatures requires, therefore, the implementation of some temperature-compensation mechanism either through the manufacturing process of the oscillator part or in the design of the circuit to maintain stability as well as accuracy. NASA future missions into deep space and planetary exploration necessitate operation of electronic instruments and systems in environments where extreme temperatures along with wide-range thermal swings are countered. Most of the commercial devices are very limited in terms of their specified operational temperature while very few custom-made and military-grade parts have the ability to operate in a slightly wider range of temperature. Thus, it is becomes mandatory to design and develop circuits that are capable of operation efficiently and reliably under the space harsh conditions. This report presents the results obtained on the evaluation of a new (COTS) commercial-off-the-shelf crystal oscillator under extreme temperatures. The device selected for evaluation comprised of a 10 MHz, PX-570-series crystal oscillator. This type of device was recently introduced by Vectron International and is designed as high temperature oscillator [1]. These parts are fabricated using proprietary manufacturing processes designed specifically for high temperature and harsh environment applications [1]. The oscillators have a wide continuous operating temperature range; making them ideal for use in military and aerospace industry, industrial process control, geophysical fields, avionics, and engine control. They exhibit low jitter and phase noise, consume little power, and are suited for high shock and vibration applications. The unique package design of these crystal oscillators offers a small ceramic package footprint, as well as providing both through-hole mounting and surface mount options.
Intelligent Gate Drive for Fast Switching and Crosstalk Suppression of SiC Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zheyu; Dix, Jeffery; Wang, Fei Fred
This study presents an intelligent gate drive for silicon carbide (SiC) devices to fully utilize their potential of high switching-speed capability in a phase-leg configuration. Based on the SiC device's intrinsic properties, a gate assist circuit consisting of two auxiliary transistors with two diodes is introduced to actively control gate voltages and gate loop impedances of both devices in a phase-leg configuration during different switching transients. Compared to conventional gate drives, the proposed circuit has the capability of accelerating the switching speed of the phase-leg power devices and suppressing the crosstalk to below device limits. Based on Wolfspeed 1200-V SiCmore » MOSFETs, the test results demonstrate the effectiveness of this intelligent gate drive under varying operating conditions. More importantly, the proposed intelligent gate assist circuitry is embedded into a gate drive integrated circuit, offering a simple, compact, and reliable solution for end-users to maximize benefits of SiC devices in actual power electronics applications.« less
Intelligent Gate Drive for Fast Switching and Crosstalk Suppression of SiC Devices
Zhang, Zheyu; Dix, Jeffery; Wang, Fei Fred; ...
2017-01-19
This study presents an intelligent gate drive for silicon carbide (SiC) devices to fully utilize their potential of high switching-speed capability in a phase-leg configuration. Based on the SiC device's intrinsic properties, a gate assist circuit consisting of two auxiliary transistors with two diodes is introduced to actively control gate voltages and gate loop impedances of both devices in a phase-leg configuration during different switching transients. Compared to conventional gate drives, the proposed circuit has the capability of accelerating the switching speed of the phase-leg power devices and suppressing the crosstalk to below device limits. Based on Wolfspeed 1200-V SiCmore » MOSFETs, the test results demonstrate the effectiveness of this intelligent gate drive under varying operating conditions. More importantly, the proposed intelligent gate assist circuitry is embedded into a gate drive integrated circuit, offering a simple, compact, and reliable solution for end-users to maximize benefits of SiC devices in actual power electronics applications.« less
Silicon Carbide Solar Cells Investigated
NASA Technical Reports Server (NTRS)
Bailey, Sheila G.; Raffaelle, Ryne P.
2001-01-01
The semiconductor silicon carbide (SiC) has long been known for its outstanding resistance to harsh environments (e.g., thermal stability, radiation resistance, and dielectric strength). However, the ability to produce device-quality material is severely limited by the inherent crystalline defects associated with this material and their associated electronic effects. Much progress has been made recently in the understanding and control of these defects and in the improved processing of this material. Because of this work, it may be possible to produce SiC-based solar cells for environments with high temperatures, light intensities, and radiation, such as those experienced by solar probes. Electronics and sensors based on SiC can operate in hostile environments where conventional silicon-based electronics (limited to 350 C) cannot function. Development of this material will enable large performance enhancements and size reductions for a wide variety of systems--such as high-frequency devices, high-power devices, microwave switching devices, and high-temperature electronics. These applications would supply more energy-efficient public electric power distribution and electric vehicles, more powerful microwave electronics for radar and communications, and better sensors and controls for cleaner-burning, more fuel-efficient jet aircraft and automobile engines. The 6H-SiC polytype is a promising wide-bandgap (Eg = 3.0 eV) semiconductor for photovoltaic applications in harsh solar environments that involve high-temperature and high-radiation conditions. The advantages of this material for this application lie in its extremely large breakdown field strength, high thermal conductivity, good electron saturation drift velocity, and stable electrical performance at temperatures as high as 600 C. This behavior makes it an attractive photovoltaic solar cell material for devices that can operate within three solar radii of the Sun.
Ray, Biswajit; Baradwaj, Aditya G.; Khan, Mohammad Ryyan; Boudouris, Bryan W.; Alam, Muhammad Ashraful
2015-01-01
The bulk heterojunction (BHJ) organic photovoltaic (OPV) architecture has dominated the literature due to its ability to be implemented in devices with relatively high efficiency values. However, a simpler device architecture based on a single organic semiconductor (SS-OPV) offers several advantages: it obviates the need to control the highly system-dependent nanoscale BHJ morphology, and therefore, would allow the use of broader range of organic semiconductors. Unfortunately, the photocurrent in standard SS-OPV devices is typically very low, which generally is attributed to inefficient charge separation of the photogenerated excitons. Here we show that the short-circuit current density from SS-OPV devices can be enhanced significantly (∼100-fold) through the use of inverted device configurations, relative to a standard OPV device architecture. This result suggests that charge generation may not be the performance bottleneck in OPV device operation. Instead, poor charge collection, caused by defect-induced electric field screening, is most likely the primary performance bottleneck in regular-geometry SS-OPV cells. We justify this hypothesis by: (i) detailed numerical simulations, (ii) electrical characterization experiments of functional SS-OPV devices using multiple polymers as active layer materials, and (iii) impedance spectroscopy measurements. Furthermore, we show that the collection-limited photocurrent theory consistently interprets typical characteristics of regular SS-OPV devices. These insights should encourage the design and OPV implementation of high-purity, high-mobility polymers, and other soft materials that have shown promise in organic field-effect transistor applications, but have not performed well in BHJ OPV devices, wherein they adopt less-than-ideal nanostructures when blended with electron-accepting materials. PMID:26290582
Ray, Biswajit; Baradwaj, Aditya G; Khan, Mohammad Ryyan; Boudouris, Bryan W; Alam, Muhammad Ashraful
2015-09-08
The bulk heterojunction (BHJ) organic photovoltaic (OPV) architecture has dominated the literature due to its ability to be implemented in devices with relatively high efficiency values. However, a simpler device architecture based on a single organic semiconductor (SS-OPV) offers several advantages: it obviates the need to control the highly system-dependent nanoscale BHJ morphology, and therefore, would allow the use of broader range of organic semiconductors. Unfortunately, the photocurrent in standard SS-OPV devices is typically very low, which generally is attributed to inefficient charge separation of the photogenerated excitons. Here we show that the short-circuit current density from SS-OPV devices can be enhanced significantly (∼100-fold) through the use of inverted device configurations, relative to a standard OPV device architecture. This result suggests that charge generation may not be the performance bottleneck in OPV device operation. Instead, poor charge collection, caused by defect-induced electric field screening, is most likely the primary performance bottleneck in regular-geometry SS-OPV cells. We justify this hypothesis by: (i) detailed numerical simulations, (ii) electrical characterization experiments of functional SS-OPV devices using multiple polymers as active layer materials, and (iii) impedance spectroscopy measurements. Furthermore, we show that the collection-limited photocurrent theory consistently interprets typical characteristics of regular SS-OPV devices. These insights should encourage the design and OPV implementation of high-purity, high-mobility polymers, and other soft materials that have shown promise in organic field-effect transistor applications, but have not performed well in BHJ OPV devices, wherein they adopt less-than-ideal nanostructures when blended with electron-accepting materials.
Review on microfluidic paper-based analytical devices towards commercialisation.
Akyazi, Tugce; Basabe-Desmonts, Lourdes; Benito-Lopez, Fernando
2018-02-25
Paper-based analytical devices introduce an innovative platform technology for fluid handling and analysis, with wide range of applications, promoting low cost, ease of fabrication/operation and equipment independence. This review gives a general overview on the fabrication techniques reported to date, revealing and discussing their weak points as well as the newest approaches in order to overtake current mass production limitations and therefore commercialisation. Moreover, this review aims especially to highlight novel technologies appearing in literature for the effective handling and controlling of fluids. The lack of flow control is the main problem of paper-based analytical devices, which generates obstacles for marketing and slows down the transition of paper devices from the laboratory into the consumers' hands. Copyright © 2017 Elsevier B.V. All rights reserved.
Materials Advances for Next-Generation Ingestible Electronic Medical Devices.
Bettinger, Christopher J
2015-10-01
Electronic medical implants have collectively transformed the diagnosis and treatment of many diseases, but have many inherent limitations. Electronic implants require invasive surgeries, operate in challenging microenvironments, and are susceptible to bacterial infection and persistent inflammation. Novel materials and nonconventional device fabrication strategies may revolutionize the way electronic devices are integrated with the body. Ingestible electronic devices offer many advantages compared with implantable counterparts that may improve the diagnosis and treatment of pathologies ranging from gastrointestinal infections to diabetes. This review summarizes current technologies and highlights recent materials advances. Specific focus is dedicated to next-generation materials for packaging, circuit design, and on-board power supplies that are benign, nontoxic, and even biodegradable. Future challenges and opportunities are also highlighted. Copyright © 2015 Elsevier Ltd. All rights reserved.
Synthesis of a hybrid model of the VSC FACTS devices and HVDC technologies
NASA Astrophysics Data System (ADS)
Borovikov, Yu S.; Gusev, A. S.; Sulaymanov, A. O.; Ufa, R. A.
2014-10-01
The motivation of the presented research is based on the need for development of new methods and tools for adequate simulation of FACTS devices and HVDC systems as part of real electric power systems (EPS). The Research object: An alternative hybrid approach for synthesizing VSC-FACTS and -HVDC hybrid model is proposed. The results: the VSC- FACTS and -HVDC hybrid model is designed in accordance with the presented concepts of hybrid simulation. The developed model allows us to carry out adequate simulation in real time of all the processes in HVDC, FACTS devices and EPS as a whole without any decomposition and limitation on their duration, and also use the developed tool for effective solution of a design, operational and research tasks of EPS containing such devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corey Thuen
The On-Device Dynamic Analysis of Mobile Applications (ODAMA) project was started in an effort to protect mobile devices used in Industrial Control Systems (ICS) from cyber attack. Because mobile devices hide as much of the “computer” as possible, the user’s ability to assess the software running on their system is limited. The research team chose Google’s Android platform for this initial research because it is open source and it would give us freedom in our approach, including the ability to modify the mobile device’s operating system itself. The research team concluded that a Privileged Application was the right approach, andmore » the result was ODAMA. This project is an important piece of the work to secure the expanding use of mobile devices with our nation’s critical infrastructure.« less
Complex cellular logic computation using ribocomputing devices.
Green, Alexander A; Kim, Jongmin; Ma, Duo; Silver, Pamela A; Collins, James J; Yin, Peng
2017-08-03
Synthetic biology aims to develop engineering-driven approaches to the programming of cellular functions that could yield transformative technologies. Synthetic gene circuits that combine DNA, protein, and RNA components have demonstrated a range of functions such as bistability, oscillation, feedback, and logic capabilities. However, it remains challenging to scale up these circuits owing to the limited number of designable, orthogonal, high-performance parts, the empirical and often tedious composition rules, and the requirements for substantial resources for encoding and operation. Here, we report a strategy for constructing RNA-only nanodevices to evaluate complex logic in living cells. Our 'ribocomputing' systems are composed of de-novo-designed parts and operate through predictable and designable base-pairing rules, allowing the effective in silico design of computing devices with prescribed configurations and functions in complex cellular environments. These devices operate at the post-transcriptional level and use an extended RNA transcript to co-localize all circuit sensing, computation, signal transduction, and output elements in the same self-assembled molecular complex, which reduces diffusion-mediated signal losses, lowers metabolic cost, and improves circuit reliability. We demonstrate that ribocomputing devices in Escherichia coli can evaluate two-input logic with a dynamic range up to 900-fold and scale them to four-input AND, six-input OR, and a complex 12-input expression (A1 AND A2 AND NOT A1*) OR (B1 AND B2 AND NOT B2*) OR (C1 AND C2) OR (D1 AND D2) OR (E1 AND E2). Successful operation of ribocomputing devices based on programmable RNA interactions suggests that systems employing the same design principles could be implemented in other host organisms or in extracellular settings.
An extremely lightweight fingernail worn prosthetic interface device
NASA Astrophysics Data System (ADS)
Yetkin, Oguz; Ahluwalia, Simranjit; Silva, Dinithi; Kasi-Okonye, Isioma; Volker, Rachael; Baptist, Joshua R.; Popa, Dan O.
2016-05-01
Upper limb prosthetics are currently operated using several electromyography sensors mounted on an amputee's residual limb. In order for any prosthetic driving interface to be widely adopted, it needs to be responsive, lightweight, and out of the way when not being used. In this paper we discuss the possibility of replacing such electrodes with fingernail optical sensor systems mounted on the sound limb. We present a prototype device that can detect pinch gestures and communicate with the prosthetic system. The device detects the relative position of fingers to each other by measuring light transmitted via tissue. Applications are not limited to prosthetic control, but can be extended to other human-machine interfaces.
Addressing surface-induced loss and decoherence in superconducting quantum circuits
NASA Astrophysics Data System (ADS)
Fuhrer, Andreas; Mueller, Peter; Kuhlmann, Andreas; Filipp, Stefan; Deshpande, Veeresh; Drechsler, Ute
Many of the advances in coherence and fidelity of superconducting qubits have been made possible by clever engineering of the coupling to the environment and operation at noise-insensitive sweet spots. However, this leads to a compromise in experimental flexibility and device tunability, which can become inhibitive as the system size is scaled up. Material and interface related degrees of freedoms are harder to mitigate and are expected to become increasingly important in more complex systems. They impose limits both on coherence (flux-noise) and lifetimes (surface loss) of superconducting qubits. To study and eliminate these effects we have constructed a reusable UHV-compatible sample enclosure that enables us to perform various surface passivation steps before cooling superconducting devices to cryogenic temperatures. The enclosure can accommodate large chips with up to 18 microwave ports and can be vacuum sealed at pressures below 8e-10 mbar. We discuss its operation principle and present first measurement results of superconducting CPW resonators and qubit devices with and without prior surface treatments.
The impact of defect scattering on the quasi-ballistic transport of nanoscale conductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esqueda, I. S., E-mail: isanchez@isi.edu; Fritze, M.; Cress, C. D.
2015-02-28
Using the Landauer approach for carrier transport, we analyze the impact of defects induced by ion irradiation on the transport properties of nanoscale conductors that operate in the quasi-ballistic regime. Degradation of conductance results from a reduction of carrier mean free path due to the introduction of defects in the conducting channel. We incorporate scattering mechanisms from radiation-induced defects into calculations of the transmission coefficient and present a technique for extracting modeling parameters from near-equilibrium transport measurements. These parameters are used to describe degradation in the transport properties of nanoscale devices using a formalism that is valid under quasi-ballistic operation.more » The analysis includes the effects of bandstructure and dimensionality on the impact of defect scattering and discusses transport properties of nanoscale devices from the diffusive to the ballistic limit. We compare calculations with recently published measurements of irradiated nanoscale devices such as single-walled carbon nanotubes, graphene, and deep-submicron Si metal-oxide-semiconductor field-effect transistors.« less
An ultra-broadband perovskite-PbS quantum dot sensitized carbon nanotube photodetector.
Ka, Ibrahima; Gerlein, Luis F; Asuo, Ivy M; Nechache, Riad; Cloutier, Sylvain G
2018-05-17
Organic-inorganic perovskites have been hailed as promising candidates for optoelectronic and photovoltaic devices, but their operation remains limited to the visible spectrum. Here, we combine single-wall carbon nanotubes, PbS quantum dots and a perovskite to synthesize hybrid devices suitable for operation in both the visible and near-infrared. The photodetectors thus fabricated show responsivities as high as 0.5 A W-1 and 0.35 A W-1 at 500 nm and at 1300 nm, respectively, with an applied bias of 1 V. Moreover, the incorporation of nanotubes within the perovskite matrix facilitates the carrier extraction, resulting in response time under 250 μs, a gain-bandwidth product of 0.1 MHz and detectivities of 1.4 × 1011 Jones and 0.9 × 1011 Jones at 500 nm and at 1300 nm, respectively. This unique approach opens new pathways for the development of low-cost, high-speed and broadband perovskite-based optoelectronic devices for large-scale manufacturing.
Kim, Sung-Jin; Yokokawa, Ryuji; Takayama, Shuichi
2012-01-01
This paper reveals a critical limitation in the electro-hydraulic analogy between a microfluidic membrane-valve (μMV) and an electronic transistor. Unlike typical transistors that have similar on and off threshold voltages, in hydraulic μMVs, the threshold pressures for opening and closing are significantly different and can change, even for the same μMVs depending on overall circuit design and operation conditions. We explain, in particular, how the negative values of the closing threshold pressures significantly constrain operation of even simple hydraulic μMV circuits such as autonomously switching two-valve microfluidic oscillators. These understandings have significant implications in designing self-regulated microfluidic devices. PMID:23284181
Twenty barrel in situ pipe gun type solid hydrogen pellet injector for the Large Helical Device.
Sakamoto, Ryuichi; Motojima, Gen; Hayashi, Hiromi; Inoue, Tomoyuki; Ito, Yasuhiko; Ogawa, Hideki; Takami, Shigeyuki; Yokota, Mitsuhiro; Yamada, Hiroshi
2013-08-01
A 20 barrel solid hydrogen pellet injector, which is able to inject 20 cylindrical pellets with a diameter and length of between 3.0 and 3.8 mm at the velocity of 1200 m/s, has been developed for the purpose of direct core fueling in LHD (Large Helical Device). The in situ pipe gun concept with the use of compact cryo-coolers enables stable operation as a fundamental facility in plasma experiments. The combination of the two types of pellet injection timing control modes, i.e., pre-programing mode and real-time control mode, allows the build-up and sustainment of high density plasma around the density limit. The pellet injector has demonstrated stable operation characteristics during the past three years of LHD experiments.
Advanced underwater lift device
NASA Technical Reports Server (NTRS)
Flanagan, David T.; Hopkins, Robert C.
1993-01-01
Flexible underwater lift devices ('lift bags') are used in underwater operations to provide buoyancy to submerged objects. Commercially available designs are heavy, bulky, and awkward to handle, and thus are limited in size and useful lifting capacity. An underwater lift device having less than 20 percent of the bulk and less than 10 percent of the weight of commercially available models was developed. The design features a dual membrane envelope, a nearly homogeneous envelope membrane stress distribution, and a minimum surface-to-volume ratio. A proof-of-concept model of 50 kg capacity was built and tested. Originally designed to provide buoyancy to mock-ups submerged in NASA's weightlessness simulators, the device may have application to water-landed spacecraft which must deploy flotation upon impact, and where launch weight and volume penalties are significant. The device may also be useful for the automated recovery of ocean floor probes or in marine salvage applications.
Space electric field concentrated effect for Zr:SiO2 RRAM devices using porous SiO2 buffer layer
2013-01-01
To improve the operation current lowing of the Zr:SiO2 RRAM devices, a space electric field concentrated effect established by the porous SiO2 buffer layer was investigated and found in this study. The resistive switching properties of the low-resistance state (LRS) and high-resistance state (HRS) in resistive random access memory (RRAM) devices for the single-layer Zr:SiO2 and bilayer Zr:SiO2/porous SiO2 thin films were analyzed and discussed. In addition, the original space charge limited current (SCLC) conduction mechanism in LRS and HRS of the RRAM devices using bilayer Zr:SiO2/porous SiO2 thin films was found. Finally, a space electric field concentrated effect in the bilayer Zr:SiO2/porous SiO2 RRAM devices was also explained and verified by the COMSOL Multiphysics simulation model. PMID:24330524
Zhang, Yingjie; Aziz, Hany
2017-01-11
We study the relative importance of deterioration of material quantum yield and charge balance to the electroluminescence stability of PHOLEDs, with a special emphasis on blue devices. Investigations show that the quantum yields of both host and emitter in the emission layer degrade due to exciton-polaron interactions and that the deterioration in material quantum yield plays the primary role in device degradation under operation. On the other hand, the results show that the charge balance factor is also affected by exciton-polaron interactions but only plays a secondary role in determining device stability. Finally, we show that the degradation mechanisms in blue PHOLEDs are fundamentally the same as those in green PHOLEDs. The limited stability of the blue devices is a result of faster deterioration in the quantum yield of the emitter.
Lai, WeiJen; Midorikawa, Yoshiyuki; Kanno, Zuisei; Takemura, Hiroshi; Suga, Kazuhiro; Soga, Kohei; Ono, Takashi; Uo, Motohiro
2016-12-01
We developed a device to evaluate the orthodontic force applied by systems requiring high operability. A life-sized, two-tooth model was designed, and the measurements were performed using a custom-made jointed attachment, referred to as an "action stick", to allow clearance for the oversized six-axis sensors. This tooth-sensor apparatus was accurately calibrated, and the error was limited. Vector analysis and rotating coordinate transformation were required to derive the force and moment at the tooth from the sensor readings. The device was then used to obtain measurements of the force and moment generated by the V-bend system. Our device was effective, providing results that were consistent with those of previous studies. This measurement device can be manufactured with force sensors of any size, and it can also be expanded to models with any number of teeth.
Code of Federal Regulations, 2010 CFR
2010-07-01
... technology currently available. 424.22 Section 424.22 Protection of Environment ENVIRONMENTAL PROTECTION... Covered Electric Furnaces and Other Smelting Operations With Wet Air Pollution Control Devices Subcategory... application of the best practicable control technology currently available. Except as provided in §§ 125.30...
40 CFR 63.127 - Transfer operations provisions-monitoring requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... installed in the gas stream immediately before and after the catalyst bed. (2) Where a flare is used, a device (including but not limited to a thermocouple, infrared sensor, or an ultra-violet beam sensor... scrubber influent for liquid flow. Gas stream flow shall be determined using one of the procedures...
40 CFR 63.127 - Transfer operations provisions-monitoring requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... installed in the gas stream immediately before and after the catalyst bed. (2) Where a flare is used, a device (including but not limited to a thermocouple, infrared sensor, or an ultra-violet beam sensor... scrubber influent for liquid flow. Gas stream flow shall be determined using one of the procedures...
Local Area Networks in Education: Overview, Applications, and Current Limitations.
ERIC Educational Resources Information Center
Piele, Philip K.
Local area networks (LAN) are privately owned communication systems that connect multivendor devices at high speed. As microcomputers become more common in schools, user interest in sharing information, software, and peripherals will increase. A basic understanding of the operation of all LAN's can be gained by knowing four elements: media,…
40 CFR Table 4 of Subpart Aaaaaaa... - Operating Limits
Code of Federal Regulations, 2010 CFR
2010-07-01
... Roofing Manufacturing Other Requirements and Information Who implements and enforces this subpart? Pt. 63... filter or fiber bed filter a. Inlet gas temperature b, andb. Pressure drop across device b The 3-hour... temperature and pressure drop, you can use a leak detection system that identifies when the filter media has...
40 CFR Table 4 of Subpart Aaaaaaa... - Operating Limits
Code of Federal Regulations, 2011 CFR
2011-07-01
... Roofing Manufacturing Other Requirements and Information Who implements and enforces this subpart? Pt. 63... filter or fiber bed filter a. Inlet gas temperature b, andb. Pressure drop across device b The 3-hour... temperature and pressure drop, you can use a leak detection system that identifies when the filter media has...
Towards Energy-Performance Trade-off Analysis of Parallel Applications
ERIC Educational Resources Information Center
Korthikanti, Vijay Anand Reddy
2011-01-01
Energy consumption by computer systems has emerged as an important concern, both at the level of individual devices (limited battery capacity in mobile systems) and at the societal level (the production of Green House Gases). In parallel architectures, applications may be executed on a variable number of cores and these cores may operate at…
Code of Federal Regulations, 2014 CFR
2014-07-01
... technology currently available. 424.22 Section 424.22 Protection of Environment ENVIRONMENTAL PROTECTION... Covered Electric Furnaces and Other Smelting Operations With Wet Air Pollution Control Devices Subcategory... application of the best practicable control technology currently available. Except as provided in §§ 125.30...
Code of Federal Regulations, 2011 CFR
2011-07-01
... technology currently available. 424.22 Section 424.22 Protection of Environment ENVIRONMENTAL PROTECTION... Covered Electric Furnaces and Other Smelting Operations With Wet Air Pollution Control Devices Subcategory... application of the best practicable control technology currently available. Except as provided in §§ 125.30...
Code of Federal Regulations, 2012 CFR
2012-07-01
... technology currently available. 424.22 Section 424.22 Protection of Environment ENVIRONMENTAL PROTECTION... Covered Electric Furnaces and Other Smelting Operations With Wet Air Pollution Control Devices Subcategory... application of the best practicable control technology currently available. Except as provided in §§ 125.30...
Code of Federal Regulations, 2013 CFR
2013-07-01
... technology currently available. 424.22 Section 424.22 Protection of Environment ENVIRONMENTAL PROTECTION... Covered Electric Furnaces and Other Smelting Operations With Wet Air Pollution Control Devices Subcategory... application of the best practicable control technology currently available. Except as provided in §§ 125.30...
Computers, Remote Teleprocessing and Mass Communication.
ERIC Educational Resources Information Center
Cropley, A. J.
Recent developments in computer technology are reducing the limitations of computers as mass communication devices. The growth of remote teleprocessing is one important step. Computers can now interact with users via terminals which may be hundreds of miles from the actual mainframe machine. Many terminals can be in operation at once, so that many…
Phase-sensitive, through-amplification with a double-pumped JPC
NASA Astrophysics Data System (ADS)
Sliwa, K. M.; Hatridge, M.; Frattini, N. E.; Narla, A.; Shankar, S.; Devoret, M. H.
The Josephson Parametric Converter (JPC) is now routinely used as a quantum-limited signal processing device for superconducting qubit experiments. The JPC consists of two modes, the signal and the idler, that are coupled by a ring of Josephson junctions that implements a non-degenerate, three-wave mixing process. This device is conventionally operated as either a phase-preserving parametric amplifier, or a coherent frequency converter, by pumping it at the sum or difference of the signal and idler frequencies, respectively. Here we present a novel double-pumping scheme based on theory by Metelmann and Clerk where a coherent conversion process and a gain process are simultaneously imposed between the signal and idler modes. The interference of these two processes results in a phase-sensitive amplifier with only forward gain, and which breaks the traditional gain-bandwidth limit of parametric amplification. We present results on phase-sensitive amplification with increased bandwidth, and on noise performance and dynamic range that are comparable to the traditional mode of operation. Work supported by ARO, AFOSR, NSF and YINQE.
An easy-to-build, low-budget point-of-care ultrasound simulator: from Linux to a web-based solution.
Damjanovic, Domagoj; Goebel, Ulrich; Fischer, Benedikt; Huth, Martin; Breger, Hartmut; Buerkle, Hartmut; Schmutz, Axel
2017-12-01
Hands-on training in point-of-care ultrasound (POC-US) should ideally comprise bedside teaching, as well as simulated clinical scenarios. High-fidelity phantoms and portable ultrasound simulation systems are commercially available, however, at considerable costs. This limits their suitability for medical schools. A Linux-based software for Emergency Department Ultrasound Simulation (edus2TM) was developed by Kulyk and Olszynski in 2011. Its feasibility for POC-US education has been well-documented, and shows good acceptance. An important limitation to an even more widespread use of edus2, however, may be due to the need for a virtual machine for WINDOWS ® systems. Our aim was to adapt the original software toward an HTML-based solution, thus making it affordable and applicable in any simulation setting. We created an HTML browser-based ultrasound simulation application, which reads the input of different sensors, triggering an ultrasound video to be displayed on a respective device. RFID tags, NFC tags, and QR Codes™ have been integrated into training phantoms or were attached to standardized patients. The RFID antenna was hidden in a mock ultrasound probe. The application is independent from the respective device. Our application was used successfully with different trigger/scanner combinations and mounted readily into simulated training scenarios. The application runs independently from operating systems or electronic devices. This low-cost, browser-based ultrasound simulator is easy-to-build, very adaptive, and independent from operating systems. It has the potential to facilitate POC-US training throughout the world, especially in resource-limited areas.
An automated method for the evaluation of the pointing accuracy of Sun-tracking devices
NASA Astrophysics Data System (ADS)
Baumgartner, Dietmar J.; Pötzi, Werner; Freislich, Heinrich; Strutzmann, Heinz; Veronig, Astrid M.; Rieder, Harald E.
2017-03-01
The accuracy of solar radiation measurements, for direct (DIR) and diffuse (DIF) radiation, depends significantly on the precision of the operational Sun-tracking device. Thus, rigid targets for instrument performance and operation have been specified for international monitoring networks, e.g., the Baseline Surface Radiation Network (BSRN) operating under the auspices of the World Climate Research Program (WCRP). Sun-tracking devices that fulfill these accuracy requirements are available from various instrument manufacturers; however, none of the commercially available systems comprise an automatic accuracy control system allowing platform operators to independently validate the pointing accuracy of Sun-tracking sensors during operation. Here we present KSO-STREAMS (KSO-SunTRackEr Accuracy Monitoring System), a fully automated, system-independent, and cost-effective system for evaluating the pointing accuracy of Sun-tracking devices. We detail the monitoring system setup, its design and specifications, and the results from its application to the Sun-tracking system operated at the Kanzelhöhe Observatory (KSO) Austrian radiation monitoring network (ARAD) site. The results from an evaluation campaign from March to June 2015 show that the tracking accuracy of the device operated at KSO lies within BSRN specifications (i.e., 0.1° tracking accuracy) for the vast majority of observations (99.8 %). The evaluation of manufacturer-specified active-tracking accuracies (0.02°), during periods with direct solar radiation exceeding 300 W m-2, shows that these are satisfied in 72.9 % of observations. Tracking accuracies are highest during clear-sky conditions and on days where prevailing clear-sky conditions are interrupted by frontal movement; in these cases, we obtain the complete fulfillment of BSRN requirements and 76.4 % of observations within manufacturer-specified active-tracking accuracies. Limitations to tracking surveillance arise during overcast conditions and periods of partial solar-limb coverage by clouds. On days with variable cloud cover, 78.1 % (99.9 %) of observations meet active-tracking (BSRN) accuracy requirements while for days with prevailing overcast conditions these numbers reduce to 64.3 % (99.5 %).
Kinetic and energetic paradigms for dye-sensitized solar cells: moving from the ideal to the real.
O'Regan, Brian C; Durrant, James R
2009-11-17
Dye-sensitized solar cells (DSSCs) are photoelectrochemical solar cells. Their function is based on photoinduced charge separation at a dye-sensitized interface between a nanocrystalline, mesoporous metal oxide electrode and a redox electrolyte. They have been the subject of substantial academic and commercial research over the last 20 years, motivated by their potential as a low-cost solar energy conversion technology. Substantial progress has been made in enhancing the efficiency, stability, and processability of this technology and, in particular, the interplay between these technology drivers. However, despite intense research efforts, our ability to identify predictive materials and structure/device function relationships and, thus, achieve the rational optimization of materials and device design, remains relatively limited. A key challenge in developing such predictive design tools is the chemical complexity of the device. DSSCs comprise distinct materials components, including metal oxide nanoparticles, a molecular sensitizer dye, and a redox electrolyte, all of which exhibit complex interactions with each other. In particular, the electrolyte alone is chemically complex, including not only a redox couple (almost always iodide/iodine) but also a range of additional additives found empirically to enhance device performance. These molecular solutes make up typically 20% of the electrolyte by volume. As with most molecular systems, they exhibit complex interactions with both themselves and the other device components (e.g., the sensitizer dye and the metal oxide). Moreover, these interactions can be modulated by solar irradiation and device operation. As such, understanding the function of these photoelectrochemical solar cells requires careful consideration of the chemical complexity and its impact upon device operation. In this Account, we focus on the process by which electrons injected into the nanocrystalline electrode are collected by the external electrical circuit in real devices under operating conditions. We first of all summarize device function, including the energetics and kinetics of the key processes, using an "idealized" description, which does not fully account for much of the chemical complexity of the system. We then go on to consider recent advances in our understanding of the impact of these complexities upon the efficiency of electron collection. These include "catalysis" of interfacial recombination losses by surface adsorption processes and the influence of device operating conditions upon the recombination rate constant and conduction band energy, both attributed to changes in the chemical composition of the interface. We go on to discuss appropriate methodologies for quantifying the efficiency of electron collection in devices under operation. Finally, we show that, by taking into account these advances in our understanding of the DSSC function, we are able to recreate the current/voltage curves of both efficient and degraded devices without any fitting parameters and, thus, gain significant insight into the determinants of DSSC performance.
NASA Astrophysics Data System (ADS)
Daniel, Erik Stephen
In this thesis we present the results of experimental and theoretical studies of two quantum effect devices--the Tunnel Switch Diode (TSD) and the Velocity Modulation Transistor (VMT). We show that TSD devices can be fabricated such that they behave (semi-quantitatively) as predicted by simple analytical models and more advanced drift-diffusion simulations. These devices possess characteristics, such as on-state currents which range over nearly five orders of magnitude, and on/off current ratios which are even larger, which may allow for a practical implementation of a very dense transistorless SRAM architecture and possibly other novel circuit designs. We demonstrate that many TSD properties can be explained by analogy to a thyristor. In particular, we show that the thin oxide layer in the TSD plays a critical role, and that this can be understood in terms of current injection through the oxide, analogous to transport through the "current limiting" layer in a thyristor. As this oxide layer can be subjected to extreme stress during device operation, we have studied the effect of this stress on device behavior. We demonstrate many significant stress-dependent effects, and identify structures and operation modes which minimize these effects. We propose an InAs/GaSb/AlSb VMT which may allow for larger conductance modulation and higher temperature operation than has been demonstrated in similar GaAs/AlAs structures. Fundamental differences in device operation in the two materials systems and unusual transport mechanisms in the InAs/GaSb/AlSb system are identified as a result of the band lineups in the two systems. Boltzmann transport simulations are developed and presented, allowing a qualitative description of the transport in the InAs/GaSb/AlSb structure. Band structure calculations are carried out, allowing for device design. While no working VMT devices were produced, this is believed to be due to processing and crystal growth problems. We present methods used to overcome or circumvent a number of processing problems which resulted in shorting of the gate to the source/drain contacts. The results of electrical measurements are given, which may allow for identification of further obstacles to the production of working devices.
21 CFR 892.1610 - Diagnostic x-ray beam-limiting device.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Diagnostic x-ray beam-limiting device. 892.1610... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1610 Diagnostic x-ray beam-limiting device. (a) Identification. A diagnostic x-ray beam-limiting device is a device such as a collimator, a...
21 CFR 892.1610 - Diagnostic x-ray beam-limiting device.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Diagnostic x-ray beam-limiting device. 892.1610... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1610 Diagnostic x-ray beam-limiting device. (a) Identification. A diagnostic x-ray beam-limiting device is a device such as a collimator, a...
21 CFR 892.1610 - Diagnostic x-ray beam-limiting device.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Diagnostic x-ray beam-limiting device. 892.1610... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1610 Diagnostic x-ray beam-limiting device. (a) Identification. A diagnostic x-ray beam-limiting device is a device such as a collimator, a...
21 CFR 892.1610 - Diagnostic x-ray beam-limiting device.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Diagnostic x-ray beam-limiting device. 892.1610... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1610 Diagnostic x-ray beam-limiting device. (a) Identification. A diagnostic x-ray beam-limiting device is a device such as a collimator, a...
21 CFR 892.1610 - Diagnostic x-ray beam-limiting device.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Diagnostic x-ray beam-limiting device. 892.1610... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1610 Diagnostic x-ray beam-limiting device. (a) Identification. A diagnostic x-ray beam-limiting device is a device such as a collimator, a...
2D negative capacitance field-effect transistor with organic ferroelectrics.
Zhang, Heng; Chen, Yan; Ding, Shijin; Wang, Jianlu; Bao, Wenzhong; Zhang, David Wei; Zhou, Peng
2018-06-15
In the past fifty years, complementary metal-oxide-semiconductor integrated circuits have undergone significant development, but Moore's law will soon come to an end. In order to break through the physical limit of Moore's law, 2D materials have been widely used in many electronic devices because of their high mobility and excellent mechanical flexibility. And the emergence of a negative capacitance field-effect transistor (NCFET) could not only break the thermal limit of conventional devices, but reduce the operating voltage and power consumption. This paper demonstrates a 2D NCFET that treats molybdenum disulfide as a channel material and organic P(VDF-TrFE) as a gate dielectric directly. This represents a new attempt to prepare NCFETs and produce flexible electronic devices. It exhibits a 10^6 on-/off-current ratio. And the minimum subthreshold swing (SS) of the 21 mV/decade and average SS of the 44 mV/decade in four orders of magnitude of drain current can also be observed at room temperature of 300 K.
Evidence of thermal transport anisotropy in stable glasses of vapor deposited organic molecules
NASA Astrophysics Data System (ADS)
Ràfols-Ribé, Joan; Dettori, Riccardo; Ferrando-Villalba, Pablo; Gonzalez-Silveira, Marta; Abad, Llibertat; Lopeandía, Aitor F.; Colombo, Luciano; Rodríguez-Viejo, Javier
2018-03-01
Vapor deposited organic glasses are currently in use in many optoelectronic devices. Their operation temperature is limited by the glass transition temperature of the organic layers and thermal management strategies become increasingly important to improve the lifetime of the device. Here we report the unusual finding that molecular orientation heavily influences heat flow propagation in glassy films of small molecule organic semiconductors. The thermal conductivity of vapor deposited thin-film semiconductor glasses is anisotropic and controlled by the deposition temperature. We compare our data with extensive molecular dynamics simulations to disentangle the role of density and molecular orientation on heat propagation. Simulations do support the view that thermal transport along the backbone of the organic molecule is strongly preferred with respect to the perpendicular direction. This is due to the anisotropy of the molecular interaction strength that limits the transport of atomic vibrations. This approach could be used in future developments to implement small molecule glassy films in thermoelectric or other organic electronic devices.
2D negative capacitance field-effect transistor with organic ferroelectrics
NASA Astrophysics Data System (ADS)
Zhang, Heng; Chen, Yan; Ding, Shijin; Wang, Jianlu; Bao, Wenzhong; Zhang, David Wei; Zhou, Peng
2018-06-01
In the past fifty years, complementary metal-oxide-semiconductor integrated circuits have undergone significant development, but Moore’s law will soon come to an end. In order to break through the physical limit of Moore’s law, 2D materials have been widely used in many electronic devices because of their high mobility and excellent mechanical flexibility. And the emergence of a negative capacitance field-effect transistor (NCFET) could not only break the thermal limit of conventional devices, but reduce the operating voltage and power consumption. This paper demonstrates a 2D NCFET that treats molybdenum disulfide as a channel material and organic P(VDF-TrFE) as a gate dielectric directly. This represents a new attempt to prepare NCFETs and produce flexible electronic devices. It exhibits a 106 on-/off-current ratio. And the minimum subthreshold swing (SS) of the 21 mV/decade and average SS of the 44 mV/decade in four orders of magnitude of drain current can also be observed at room temperature of 300 K.
Failure Detecting Method of Fault Current Limiter System with Rectifier
NASA Astrophysics Data System (ADS)
Tokuda, Noriaki; Matsubara, Yoshio; Asano, Masakuni; Ohkuma, Takeshi; Sato, Yoshibumi; Takahashi, Yoshihisa
A fault current limiter (FCL) is extensively needed to suppress fault current, particularly required for trunk power systems connecting high-voltage transmission lines, such as 500kV class power system which constitutes the nucleus of the electric power system. We proposed a new type FCL system (rectifier type FCL), consisting of solid-state diodes, DC reactor and bypass AC reactor, and demonstrated the excellent performances of this FCL by developing the small 6.6kV and 66kV model. It is important to detect the failure of power devices used in the rectifier under the normal operating condition, for keeping the excellent reliability of the power system. In this paper, we have proposed a new failure detecting method of power devices most suitable for the rectifier type FCL. This failure detecting system is simple and compact. We have adapted the proposed system to the 66kV prototype single-phase model and successfully demonstrated to detect the failure of power devices.
High Efficiency Quantum Well Waveguide Solar Cells and Methods for Constructing the Same
NASA Technical Reports Server (NTRS)
Sood, Ashok K. (Inventor); Welser, Roger E. (Inventor)
2014-01-01
Photon absorption, and thus current generation, is hindered in conventional thin-film solar cell designs, including quantum well structures, by the limited path length of incident light passing vertically through the device. Optical scattering into lateral waveguide structures provides a physical mechanism to increase photocurrent generation through in-plane light trapping. However, the insertion of wells of high refractive index material with lower energy gap into the device structure often results in lower voltage operation, and hence lower photovoltaic power conversion efficiency. The voltage output of an InGaAs quantum well waveguide photovoltaic device can be increased by employing a III-V material structure with an extended wide band gap emitter heterojunction. Analysis of the light IV characteristics reveals that non-radiative recombination components of the underlying dark diode current have been reduced, exposing the limiting radiative recombination component and providing a pathway for realizing solar-electric conversion efficiency of 30% or more in single junction cells.
Robotically assisted ureteroscopy for kidney exploration
NASA Astrophysics Data System (ADS)
Talari, Hadi F.; Monfaredi, Reza; Wilson, Emmanuel; Blum, Emily; Bayne, Christopher; Peters, Craig; Zhang, Anlin; Cleary, Kevin
2017-03-01
Ureteroscopy is a minimally invasive procedure for diagnosis and treatment of urinary tract pathology. Ergonomic and visualization challenges as well as radiation exposure are limitations to conventional ureteroscopy. Therefore, we have developed a robotic system to "power drive" a flexible ureteroscope with 3D tip tracking and pre-operative image overlay. The proposed system was evaluated using a kidney phantom registered to pre-operative MR images. Initial experiments show the potential of the device to provide additional assistance, precision, and guidance during urology procedures.
NASA Technical Reports Server (NTRS)
Ellis, R. C.; Fink, R. A.; Rich, R. W.
1989-01-01
A high torque capacity eddy current damper used as a rate limiting device for a large solar array deployment mechanism is discussed. The eddy current damper eliminates the problems associated with the outgassing or leaking of damping fluids. It also provides performance advantages such as damping torque rates, which are truly linear with respect to input speed, continuous 360 degree operation in both directions of rotation, wide operating temperature range, and the capability of convenient adjustment of damping rates by the user without disassembly or special tools.
High Quantum Efficiency Nanopillar Photodiodes Overcoming the Diffraction Limit of Light.
Lee, Wook-Jae; Senanayake, Pradeep; Farrell, Alan C; Lin, Andrew; Hung, Chung-Hong; Huffaker, Diana L
2016-01-13
InAs1-xSbx nanowires have recently attracted interest for infrared sensing applications due to the small bandgap and high thermal conductivity. However, previous reports on nanowire-based infrared sensors required low operating temperatures in order to mitigate the high dark current and have shown poor sensitivities resulting from reduced light coupling efficiency beyond the diffraction limit. Here, InAsSb nanopillar photodiodes with high quantum efficiency are achieved by partially coating the nanopillar with metal that excites localized surface plasmon resonances, leading to quantum efficiencies of ∼29% at 2390 nm. These high quantum efficiency nanopillar photodiodes, with 180 nm diameters and 1000 nm heights, allow operation at temperatures as high as 220 K and exhibit a detection wavelength up to 3000 nm, well beyond the diffraction limit. The InAsSb nanopillars are grown on low cost GaAs (111)B substrates using an InAs buffer layer, making our device architecture a promising path toward low-cost infrared focal plane arrays with high operating temperature.
A review of acoustic power transfer for bio-medical implants
NASA Astrophysics Data System (ADS)
Basaeri, Hamid; Christensen, David B.; Roundy, Shad
2016-12-01
Bio-implantable devices have been used to perform therapeutic functions such as drug delivery or diagnostic monitoring of physiological parameters. Proper operation of these devices depends on the continuous reliable supply of power. A battery, which is the conventional method to supply energy, is problematic in many of these devices as it limits the lifetime of the implant or dominates the size. In order to power implantable devices, power transfer techniques have been implemented as an attractive alternative to batteries and have received significant research interest in recent years. Acoustic waves are increasingly being investigated as a method for delivering power through human skin and the human body. Acoustic power transfer (APT) has some advantages over other powering techniques such as inductive power transfer and mid range RF power transmission. These advantages include lower absorption in tissue, shorter wavelength enabling smaller transducers, and higher power intensity threshold for safe operation. This paper will cover the basic physics and modeling of APT and will review the current state of acoustic (or ultrasonic) power transfer for biomedical implants. As the sensing and computational elements for biomedical implants are becoming very small, we devote particular attention to the scaling of acoustic and alternative power transfer techniques. Finally, we present current issues and challenges related to the implementation of this technique for powering implantable devices.
Performance evaluation of electro-optic effect based graphene transistors
NASA Astrophysics Data System (ADS)
Gupta, Gaurav; Abdul Jalil, Mansoor Bin; Yu, Bin; Liang, Gengchiau
2012-09-01
Despite the advantages afforded by the unique electronic properties of graphene, the absence of a bandgap has limited its applicability in logic devices. This has led to a study on electro-optic behavior in graphene for novel device operations, beyond the conventional field effect, to meet the requirements of ultra-low power and high-speed logic transistors. Recently, two potential designs have been proposed to leverage on this effect and open a virtual bandgap for ballistic transport in the graphene channel. The first one implements a barrier in the centre of the channel, whereas the second incorporates a tilted gate junction. In this paper, we computationally evaluate the relative device performance of these two designs, in terms of subthreshold slope (SS) and ION/IOFF ratio under different temperature and voltage bias, for a defect-free graphene channel. Our calculations employ pure optical modeling for low field electron transport under the constraints of device anatomy. The calculated results show that the two designs are functionally similar and are able to provide SS smaller than 60 mV per decade. Both designs show similar device performance but marginally top one another under different operating constraints. Our results could serve as a guide to circuit designers in selecting an appropriate design as per their system specifications and requirements.
Performance evaluation of electro-optic effect based graphene transistors.
Gupta, Gaurav; Jalil, Mansoor Bin Abdul; Yu, Bin; Liang, Gengchiau
2012-10-21
Despite the advantages afforded by the unique electronic properties of graphene, the absence of a bandgap has limited its applicability in logic devices. This has led to a study on electro-optic behavior in graphene for novel device operations, beyond the conventional field effect, to meet the requirements of ultra-low power and high-speed logic transistors. Recently, two potential designs have been proposed to leverage on this effect and open a virtual bandgap for ballistic transport in the graphene channel. The first one implements a barrier in the centre of the channel, whereas the second incorporates a tilted gate junction. In this paper, we computationally evaluate the relative device performance of these two designs, in terms of subthreshold slope (SS) and I(ON)/I(OFF) ratio under different temperature and voltage bias, for a defect-free graphene channel. Our calculations employ pure optical modeling for low field electron transport under the constraints of device anatomy. The calculated results show that the two designs are functionally similar and are able to provide SS smaller than 60 mV per decade. Both designs show similar device performance but marginally top one another under different operating constraints. Our results could serve as a guide to circuit designers in selecting an appropriate design as per their system specifications and requirements.
Supercapacitor Operating At 200 Degrees Celsius
Borges, Raquel S.; Reddy, Arava Leela Mohana; Rodrigues, Marco-Tulio F.; Gullapalli, Hemtej; Balakrishnan, Kaushik; Silva, Glaura G.; Ajayan, Pulickel M.
2013-01-01
The operating temperatures of current electrochemical energy storage devices are limited due to electrolyte degradation and separator instability at higher temperatures. Here we demonstrate that a tailored mixture of materials can facilitate operation of supercapacitors at record temperatures, as high as 200°C. Composite electrolyte/separator structures made from naturally occurring clay and room temperature ionic liquids, with graphitic carbon electrodes, show stable supercapacitor performance at 200°C with good cyclic stability. Free standing films of such high temperature composite electrolyte systems can become versatile functional membranes in several high temperature energy conversion and storage applications. PMID:23999206
Experimental Durability Testing of 4H SiC JFET Integrated Circuit Technology at 727 C
NASA Technical Reports Server (NTRS)
Spry, David; Neudeck, Phil; Chen, Liangyu; Chang, Carl; Lukco, Dorothy; Beheim, Glenn M
2016-01-01
We have reported SiC integrated circuits (IC's) with two levels of metal interconnect that have demonstrated prolonged operation for thousands of hours at their intended peak ambient operational temperature of 500 C [1, 2]. However, it is recognized that testing of semiconductor microelectronics at temperatures above their designed operating envelope is vital to qualification. Towards this end, we previously reported operation of a 4H-SiC JFET IC ring oscillator on an initial fast thermal ramp test through 727 C [3]. However, this thermal ramp was not ended until a peak temperature of 880 C (well beyond failure) was attained. Further experiments are necessary to better understand failure mechanisms and upper temperature limit of this extreme-temperature capable 4H-SiC IC technology. Here we report on additional experimental testing of custom-packaged 4H-SiC JFET IC devices at temperatures above 500 C. In one test, the temperature was ramped and then held at 727 C, and the devices were periodically measured until electrical failure was observed. A 4H-SiC JFET on this chip electrically functioned with little change for around 25 hours at 727 C before rapid increases in device resistance caused failure. In a second test, devices from our next generation 4H-SiC JFET ICs were ramped up and then held at 700 C (which is below the maximum deposition temperature of the dielectrics). Three ring oscillators functioned for 8 hours at this temperature before degradation. In a third experiment, an alternative die attach of gold paste and package lid was used, and logic circuit operation was demonstrated for 143.5 hours at 700 C.
NASA Technical Reports Server (NTRS)
Spry, David J.; Neudeck, Philip G.; Chen, Liangyu; Chang, Carl W.; Lukco, Dorothy; Beheim, Glenn M.
2016-01-01
We have reported SiC integrated circuits (ICs) with two levels of metal interconnect that have demonstrated prolonged operation for thousands of hours at their intended peak ambient operational temperature of 500 degrees Centigrade. However, it is recognized that testing of semiconductor microelectronics at temperatures above their designed operating envelope is vital to qualification. Towards this end, we previously reported operation of a 4H-SiC JFET IC ring oscillator on an initial fast thermal ramp test through 727 degrees Centigrade. However, this thermal ramp was not ended until a peak temperature of 880 degrees Centigrade (well beyond failure) was attained. Further experiments are necessary to better understand failure mechanisms and upper temperature limit of this extreme-temperature capable 4H-SiC IC technology.Here we report on additional experimental testing of custom-packaged 4H-SiC JFET IC devices at temperatures above 500 degrees Centigrade. In one test, the temperature was ramped and then held at 727 degrees Centigrade, and the devices were periodically measured until electrical failure was observed. A 4H-SiC JFET on this chip electrically functioned with little change for around 25 hours at 727 degrees Centigrade before rapid increases in device resistance caused failure. In a second test, devices from our next generation 4H-SiC JFET ICs were ramped up and then held at 700 degrees Centigrade (which is below the maximum deposition temperature of the dielectrics). Three ring oscillators functioned for 8 hours at this temperature before degradation. In a third experiment, an alternative die attach of gold paste and package lid was used, and logic circuit operation was demonstrated for 143.5 hours at 700 degrees Centigrade.
Motor current signature analysis method for diagnosing motor operated devices
Haynes, Howard D.; Eissenberg, David M.
1990-01-01
A motor current noise signature analysis method and apparatus for remotely monitoring the operating characteristics of an electric motor-operated device such as a motor-operated valve. Frequency domain signal analysis techniques are applied to a conditioned motor current signal to distinctly identify various operating parameters of the motor driven device from the motor current signature. The signature may be recorded and compared with subsequent signatures to detect operating abnormalities and degradation of the device. This diagnostic method does not require special equipment to be installed on the motor-operated device, and the current sensing may be performed at remote control locations, e.g., where the motor-operated devices are used in accessible or hostile environments.
NASA Astrophysics Data System (ADS)
Katz, Itai; Fehr, Matthias; Schnegg, Alexander; Lips, Klaus; Blank, Aharon
2015-02-01
The in-operando detection and high resolution spatial imaging of paramagnetic defects, impurities, and states becomes increasingly important for understanding loss mechanisms in solid-state electronic devices. Electron spin resonance (ESR), commonly employed for observing these species, cannot meet this challenge since it suffers from limited sensitivity and spatial resolution. An alternative and much more sensitive method, called electrically-detected magnetic resonance (EDMR), detects the species through their magnetic fingerprint, which can be traced in the device's electrical current. However, until now it could not obtain high resolution images in operating electronic devices. In this work, the first spatially-resolved electrically-detected magnetic resonance images (EDMRI) of paramagnetic states in an operating real-world electronic device are provided. The presented method is based on a novel microwave pulse sequence allowing for the coherent electrical detection of spin echoes in combination with powerful pulsed magnetic-field gradients. The applicability of the method is demonstrated on a device-grade 1-μm-thick amorphous silicon (a-Si:H) solar cell and an identical device that was degraded locally by an electron beam. The degraded areas with increased concentrations of paramagnetic defects lead to a local increase in recombination that is mapped by EDMRI with ∼20-μm-scale pixel resolution. The novel approach presented here can be widely used in the nondestructive in-operando three-dimensional characterization of solid-state electronic devices with a resolution potential of less than 100 nm.
Unexpected Nonlinear Effects in Superconducting Transition-Edge Sensors
NASA Technical Reports Server (NTRS)
Sadleir, John
2016-01-01
When a normal metal transitions into the superconducting state the DC resistance drops from a finite value to zero over some finite transition width in temperature, current, and magnetic field. Superconducting transition-edge sensors (TESs) operate within this transition region and uses resistive changes to measure deposited thermal energy. This resistive transition is not perfectly smooth and a wide range of TES designs and materials show sub-structure in the resistive transition (as seen in smooth nonmonotonic behavior, jump discontinuities, and hysteresis in the devices current-voltage relation and derivatives of the resistance with respect to temperature, bias current, and magnetic field). TES technology has advanced to the point where for many applications this structure is the limiting factor in performance and optimization consists of finding operating points away from these structures. For example, operating at or near this structure can lead to nonlinearity in the detectors response and gain scale, limit the spectral range of the detector by limiting the usable resistive range, and degrade energy resolution. The origin of much of this substructure is unknown. This presentation investigates a number of possible sources in turn. First we model the TES as a superconducting weak-link and solve for the characteristic differential equations current and voltage time dependence. We find:(1) measured DC biased current-voltage relationship is the time-average of a much higher frequency limit cycle solution.(2) We calculate the fundamental frequency and estimate the power radiated from the TES treating the bias leads as an antennae.(3) The solution for a set of circuit parameters becomes multivalued leading to current transitions between levels.(4)The circuit parameters can change the measure resistance and mask the true critical current. As a consequence the TES resistance surface is not just a function of temperature, current, and magnetic field but is also a function of the circuit elements (such as shunt resistor, SQUID inductance, and capacitor values). In other words, same device measured in different electrical circuits will have a different resistive surface in temperature, current, and magnetic field. Next we consider that at the transition temperature of a superconductor both the magnetic penetration depth and coherence length are divergent. As a consequence these important characteristic length scales are changing with operating point. We present measurements on devices showing commensurate behavior between these characteristic lengths and the length scale of added normal metal structures. Reordering of proximity vortices leads to discontinuities and irreversibility of the current-voltage curves. Last we consider a weak-link TES including both thermal activated resistance effects and the effect of the magnetic penetration depth being a function of temperature and magnetic field. We derive its impact on the resistive transition surface and the important device parameters a and b.
Torque limited drive for manual valves
Elliott, Philip G.; Underwood, Daniel E.
1989-01-01
The present invention is directed to a torque-limiting handwheel device for preventing manual valves from being damaged due to the application of excessive torque during the opening or closing operation of the valves. Torque can only be applied when ridges in the handwheel assembly engage in channels machined in the face of the baseplate. The amount of torque required for disengagement of the ridges from the channels is determined by the force exerted by various Bellville springs and the inclination of the side faces of the channels.
Torque limited drive for manual valves
Elliott, Philip G.; Underwood, Daniel E.
1989-06-06
The present invention is directed to a torque-limiting handwheel device for preventing manual valves from being damaged due to the application of excessive torque during the opening or closing operation of the valves. Torque can only be applied when ridges in the handwheel assembly engage in channels machined in the face of the baseplate. The amount of torque required for disengagement of the ridges from the channels is determined by the force exerted by various Bellville springs and the inclination of the side faces of the channels.
NASA Technical Reports Server (NTRS)
Mavroidis, Constantinos; Pfeiffer, Charles; Paljic, Alex; Celestino, James; Lennon, Jamie; Bar-Cohen, Yoseph
2000-01-01
For many years, the robotic community sought to develop robots that can eventually operate autonomously and eliminate the need for human operators. However, there is an increasing realization that there are some tasks that human can perform significantly better but, due to associated hazards, distance, physical limitations and other causes, only robot can be employed to perform these tasks. Remotely performing these types of tasks requires operating robots as human surrogates. While current "hand master" haptic systems are able to reproduce the feeling of rigid objects, they present great difficulties in emulating the feeling of remote/virtual stiffness. In addition, they tend to be heavy, cumbersome and usually they only allow limited operator workspace. In this paper a novel haptic interface is presented to enable human-operators to "feel" and intuitively mirror the stiffness/forces at remote/virtual sites enabling control of robots as human-surrogates. This haptic interface is intended to provide human operators intuitive feeling of the stiffness and forces at remote or virtual sites in support of space robots performing dexterous manipulation tasks (such as operating a wrench or a drill). Remote applications are referred to the control of actual robots whereas virtual applications are referred to simulated operations. The developed haptic interface will be applicable to IVA operated robotic EVA tasks to enhance human performance, extend crew capability and assure crew safety. The electrically controlled stiffness is obtained using constrained ElectroRheological Fluids (ERF), which changes its viscosity under electrical stimulation. Forces applied at the robot end-effector due to a compliant environment will be reflected to the user using this ERF device where a change in the system viscosity will occur proportionally to the force to be transmitted. In this paper, we will present the results of our modeling, simulation, and initial testing of such an electrorheological fluid (ERF) based haptic device.
Biomedical digital assistant for ubiquitous healthcare.
Lee, Tae-Soo; Hong, Joo-Hyun; Cho, Myeong-Chan
2007-01-01
The concept of ubiquitous healthcare service, which emerged as one of measures to solve healthcare problems in aged society, means that patients can receive services such as prevention, diagnosis, therapy and prognosis management at any time and in any place with the help of advanced information and communication technology. This service requires not only biomedical digital assistant that can monitor continuously the patients' health condition regardless of time and place, but also wired and wireless communication devices and telemedicine servers that provide doctors with data on patients' present health condition. In order to implement a biomedical digital assistant that is portable and wearable to patients, the present study developed a device that minimizes size, weight and power consumption, measures ECG and PPG signals, and even monitors moving patients' state. The biomedical sensor with the function of wireless communication was designed to be highly portable and wearable, to be operable 24 hours with small-size batteries, and to monitor the subject's heart rate, step count and respiratory rate in his daily life. The biomedical signal receiving device was implemented in two forms, PDA and cellular phone. The movement monitoring device embedded in the battery pack of a cellular phone does not have any problem in operating 24 hours, but the real-time biomedical signal receiving device implemented with PDA operated up to 6 hours due to the limited battery capacity of PDA. This problem is expected to be solved by reducing wireless communication load through improving the processing and storage functions of the sensor. The developed device can transmit a message on the patient's emergency to the remote server through the cellular phone network, and is expected to play crucial roles in the health management of chronic-aged patients in their daily life.
Technologies for autonomous integrated lab-on-chip systems for space missions
NASA Astrophysics Data System (ADS)
Nascetti, A.; Caputo, D.; Scipinotti, R.; de Cesare, G.
2016-11-01
Lab-on-chip devices are ideal candidates for use in space missions where experiment automation, system compactness, limited weight and low sample and reagent consumption are required. Currently, however, most microfluidic systems require external desktop instrumentation to operate and interrogate the chip, thus strongly limiting their use as stand-alone systems. In order to overcome the above-mentioned limitations our research group is currently working on the design and fabrication of "true" lab-on-chip systems that integrate in a single device all the analytical steps from the sample preparation to the detection without the need for bulky external components such as pumps, syringes, radiation sources or optical detection systems. Three critical points can be identified to achieve 'true' lab-on-chip devices: sample handling, analytical detection and signal transduction. For each critical point, feasible solutions are presented and evaluated. Proposed microfluidic actuation and control is based on electrowetting on dielectrics, autonomous capillary networks and active valves. Analytical detection based on highly specific chemiluminescent reactions is used to avoid external radiation sources. Finally, the integration on the same chip of thin film sensors based on hydrogenated amorphous silicon is discussed showing practical results achieved in different sensing tasks.
Microwave amplification with nanomechanical resonators.
Massel, F; Heikkilä, T T; Pirkkalainen, J-M; Cho, S U; Saloniemi, H; Hakonen, P J; Sillanpää, M A
2011-12-14
The sensitive measurement of electrical signals is at the heart of modern technology. According to the principles of quantum mechanics, any detector or amplifier necessarily adds a certain amount of noise to the signal, equal to at least the noise added by quantum fluctuations. This quantum limit of added noise has nearly been reached in superconducting devices that take advantage of nonlinearities in Josephson junctions. Here we introduce the concept of the amplification of microwave signals using mechanical oscillation, which seems likely to enable quantum-limited operation. We drive a nanomechanical resonator with a radiation pressure force, and provide an experimental demonstration and an analytical description of how a signal input to a microwave cavity induces coherent stimulated emission and, consequently, signal amplification. This generic scheme, which is based on two linear oscillators, has the advantage of being conceptually and practically simpler than the Josephson junction devices. In our device, we achieve signal amplification of 25 decibels with the addition of 20 quanta of noise, which is consistent with the expected amount of added noise. The generality of the model allows for realization in other physical systems as well, and we anticipate that near-quantum-limited mechanical microwave amplification will soon be feasible in various applications involving integrated electrical circuits.
Overview of KSTAR initial operation
NASA Astrophysics Data System (ADS)
Kwon, M.; Oh, Y. K.; Yang, H. L.; Na, H. K.; Kim, Y. S.; Kwak, J. G.; Kim, W. C.; Kim, J. Y.; Ahn, J. W.; Bae, Y. S.; Baek, S. H.; Bak, J. G.; Bang, E. N.; Chang, C. S.; Chang, D. H.; Chavdarovski, I.; Chen, Z. Y.; Cho, K. W.; Cho, M. H.; Choe, W.; Choi, J. H.; Chu, Y.; Chung, K. S.; Diamond, P.; Do, H. J.; Eidietis, N.; England, A. C.; Grisham, L.; Hahm, T. S.; Hahn, S. H.; Han, W. S.; Hatae, T.; Hillis, D.; Hong, J. S.; Hong, S. H.; Hong, S. R.; Humphrey, D.; Hwang, Y. S.; Hyatt, A.; In, Y. K.; Jackson, G. L.; Jang, Y. B.; Jeon, Y. M.; Jeong, J. I.; Jeong, N. Y.; Jeong, S. H.; Jhang, H. G.; Jin, J. K.; Joung, M.; Ju, J.; Kawahata, K.; Kim, C. H.; Kim, D. H.; Kim, Hee-Su; Kim, H. S.; Kim, H. K.; Kim, H. T.; Kim, J. H.; Kim, J. C.; Kim, Jong-Su; Kim, Jung-Su; Kim, Kyung-Min; Kim, K. M.; Kim, K. P.; Kim, M. K.; Kim, S. H.; Kim, S. S.; Kim, S. T.; Kim, S. W.; Kim, Y. J.; Kim, Y. K.; Kim, Y. O.; Ko, W. H.; Kogi, Y.; Kong, J. D.; Kubo, S.; Kumazawa, R.; Kwak, S. W.; Kwon, J. M.; Kwon, O. J.; LeConte, M.; Lee, D. G.; Lee, D. K.; Lee, D. R.; Lee, D. S.; Lee, H. J.; Lee, J. H.; Lee, K. D.; Lee, K. S.; Lee, S. G.; Lee, S. H.; Lee, S. I.; Lee, S. M.; Lee, T. G.; Lee, W. C.; Lee, W. L.; Leur, J.; Lim, D. S.; Lohr, J.; Mase, A.; Mueller, D.; Moon, K. M.; Mutoh, T.; Na, Y. S.; Nagayama, Y.; Nam, Y. U.; Namkung, W.; Oh, B. H.; Oh, S. G.; Oh, S. T.; Park, B. H.; Park, D. S.; Park, H.; Park, H. T.; Park, J. K.; Park, J. S.; Park, K. R.; Park, M. K.; Park, S. H.; Park, S. I.; Park, Y. M.; Park, Y. S.; Patterson, B.; Sabbagh, S.; Saito, K.; Sajjad, S.; Sakamoto, K.; Seo, D. C.; Seo, S. H.; Seol, J. C.; Shi, Y.; Song, N. H.; Sun, H. J.; Terzolo, L.; Walker, M.; Wang, S. J.; Watanabe, K.; Welander, A. S.; Woo, H. J.; Woo, I. S.; Yagi, M.; Yaowei, Y.; Yonekawa, Y.; Yoo, K. I.; Yoo, J. W.; Yoon, G. S.; Yoon, S. W.; KSTAR Team
2011-09-01
Since the successful first plasma generation in the middle of 2008, three experimental campaigns were successfully made for the KSTAR device, accompanied with a necessary upgrade in the power supply, heating, wall-conditioning and diagnostic systems. KSTAR was operated with the toroidal magnetic field up to 3.6 T and the circular and shaped plasmas with current up to 700 kA and pulse length of 7 s, have been achieved with limited capacity of PF magnet power supplies. The mission of the KSTAR experimental program is to achieve steady-state operations with high performance plasmas relevant to ITER and future reactors. The first phase (2008-2012) of operation of KSTAR is dedicated to the development of operational capabilities for a super-conducting device with relatively short pulse. Development of start-up scenario for a super-conducting tokamak and the understanding of magnetic field errors on start-up are one of the important issues to be resolved. Some specific operation techniques for a super-conducting device are also developed and tested. The second harmonic pre-ionization with 84 and 110 GHz gyrotrons is an example. Various parameters have been scanned to optimize the pre-ionization. Another example is the ICRF wall conditioning (ICWC), which was routinely applied during the shot to shot interval. The plasma operation window has been extended in terms of plasma beta and stability boundary. The achievement of high confinement mode was made in the last campaign with the first neutral beam injector and good wall conditioning. Plasma control has been applied in shape and position control and now a preliminary kinetic control scheme is being applied including plasma current and density. Advanced control schemes will be developed and tested in future operations including active profiles, heating and current drives and control coil-driven magnetic perturbation.
Inducer Hydrodynamic Load Measurement Devices
NASA Technical Reports Server (NTRS)
Skelley, Stephen E.; Zoladz, Thomas F.
2002-01-01
Marshall Space Flight Center (MSFC) has demonstrated two measurement devices for sensing and resolving the hydrodynamic loads on fluid machinery. The first - a derivative of the six component wind tunnel balance - senses the forces and moments on the rotating device through a weakened shaft section instrumented with a series of strain gauges. This "rotating balance" was designed to directly measure the steady and unsteady hydrodynamic loads on an inducer, thereby defining both the amplitude and frequency content associated with operating in various cavitation modes. The second device - a high frequency response pressure transducer surface mounted on a rotating component - was merely an extension of existing technology for application in water. MSFC has recently completed experimental evaluations of both the rotating balance and surface-mount transducers in a water test loop. The measurement bandwidth of the rotating balance was severely limited by the relative flexibility of the device itself, resulting in an unexpectedly low structural bending mode and invalidating the higher frequency response data. Despite these limitations, measurements confirmed that the integrated loads on the four-bladed inducer respond to both cavitation intensity and cavitation phenomena. Likewise, the surface-mount pressure transducers were subjected to a range of temperatures and flow conditions in a non-rotating environment to record bias shifts and transfer functions between the transducers and a reference device. The pressure transducer static performance was within manufacturer's specifications and dynamic response accurately followed that of the reference.
Inducer Hydrodynamic Load Measurement Devices
NASA Technical Reports Server (NTRS)
Skelley, Stephen E.; Zoladz, Thomas F.; Turner, Jim (Technical Monitor)
2002-01-01
Marshall Space Flight Center (MSFC) has demonstrated two measurement devices for sensing and resolving the hydrodynamic loads on fluid machinery. The first - a derivative of the six-component wind tunnel balance - senses the forces and moments on the rotating device through a weakened shaft section instrumented with a series of strain gauges. This rotating balance was designed to directly measure the steady and unsteady hydrodynamic loads on an inducer, thereby defining both the amplitude and frequency content associated with operating in various cavitation modes. The second device - a high frequency response pressure transducer surface mounted on a rotating component - was merely an extension of existing technology for application in water. MSFC has recently completed experimental evaluations of both the rotating balance and surface-mount transducers in a water test loop. The measurement bandwidth of the rotating balance was severely limited by the relative flexibility of the device itself, resulting in an unexpectedly low structural bending mode and invalidating the higher-frequency response data. Despite these limitations, measurements confirmed that the integrated loads on the four-bladed inducer respond to both cavitation intensity and cavitation phenomena. Likewise, the surface-mount pressure transducers were subjected to a range of temperatures and flow conditions in a non-rotating environment to record bias shifts and transfer functions between the transducers and a reference device. The pressure transducer static performance was within manufacturer's specifications and dynamic response accurately followed that of the reference.
NASA Astrophysics Data System (ADS)
Frolov, Vladimir; Backhaus, Scott; Chertkov, Misha
2014-10-01
We explore optimization methods for planning the placement, sizing and operations of flexible alternating current transmission system (FACTS) devices installed to relieve transmission grid congestion. We limit our selection of FACTS devices to series compensation (SC) devices that can be represented by modification of the inductance of transmission lines. Our master optimization problem minimizes the l1 norm of the inductance modification subject to the usual line thermal-limit constraints. We develop heuristics that reduce this non-convex optimization to a succession of linear programs (LP) that are accelerated further using cutting plane methods. The algorithm solves an instance of the MatPower Polish Grid model (3299 lines and 2746 nodes) in 40 seconds per iteration on a standard laptop—a speed that allows the sizing and placement of a family of SC devices to correct a large set of anticipated congestions. We observe that our algorithm finds feasible solutions that are always sparse, i.e., SC devices are placed on only a few lines. In a companion manuscript, we demonstrate our approach on realistically sized networks that suffer congestion from a range of causes, including generator retirement. In this manuscript, we focus on the development of our approach, investigate its structure on a small test system subject to congestion from uniform load growth, and demonstrate computational efficiency on a realistically sized network.
Frolov, Vladimir; Backhaus, Scott; Chertkov, Misha
2014-10-24
We explore optimization methods for planning the placement, sizing and operations of Flexible Alternating Current Transmission System (FACTS) devices installed to relieve transmission grid congestion. We limit our selection of FACTS devices to Series Compensation (SC) devices that can be represented by modification of the inductance of transmission lines. Our master optimization problem minimizes the l 1 norm of the inductance modification subject to the usual line thermal-limit constraints. We develop heuristics that reduce this non-convex optimization to a succession of Linear Programs (LP) which are accelerated further using cutting plane methods. The algorithm solves an instance of the MatPowermore » Polish Grid model (3299 lines and 2746 nodes) in 40 seconds per iteration on a standard laptop—a speed up that allows the sizing and placement of a family of SC devices to correct a large set of anticipated congestions. We observe that our algorithm finds feasible solutions that are always sparse, i.e., SC devices are placed on only a few lines. In a companion manuscript, we demonstrate our approach on realistically-sized networks that suffer congestion from a range of causes including generator retirement. In this manuscript, we focus on the development of our approach, investigate its structure on a small test system subject to congestion from uniform load growth, and demonstrate computational efficiency on a realistically-sized network.« less
NASA Astrophysics Data System (ADS)
Nguyet, Quan Thi Minh; Van Duy, Nguyen; Manh Hung, Chu; Hoa, Nguyen Duc; Van Hieu, Nguyen
2018-04-01
Hybrid heterojunction devices are designed for ultrahigh response to NO2 toxic gas. The devices were constructed by assembling multi-walled carbon nanotubes (MWCNTs) on a microelectrode chip bridged bare Pt-electrode and a Pt-electrode with pre-grown SnO2 nanowires (NWs). All heterojunction devices were realized using different types of MWCNTs, which exhibit ultrahigh response to sub-ppm NO2 gas at 50 °C operated in the reverse bias mode. The response to 1 ppm NO2 gas reaches 11300, which is about 100 times higher than that of a back-to-back heterojunction device fabricated from SnO2 NWs and MWCNTs. In addition, the present device exhibits an ultralow detection limit of about 0.68 ppt. The modulation of trap-assisted tunneling current under reverse bias is the main gas-sensing mechanism. This principle device presents a concept for developing gas sensors made of a hybrid between semiconductor metal oxide NWs and CNTs.
Kinetic energy recovery systems in motor vehicles
NASA Astrophysics Data System (ADS)
Śliwiński, C.
2016-09-01
The article draws attention to the increasing environmental pollution caused by the development of vehicle transport and motorization. Different types of design solutions used in vehicles for the reduction of fuel consumption, and thereby emission of toxic gasses into the atmosphere, were specified. Historical design solutions concerning energy recovery devices in mechanical vehicles which used flywheels to accumulate kinetic energy were shown. Developmental tendencies in the area of vehicle manufacturing in the form of hybrid electric and electric devices were discussed. Furthermore, designs of energy recovery devices with electrical energy storage from the vehicle braking and shock absorbing systems were presented. A mechanical energy storing device using a flywheel operating under vacuum was presented, as were advantages and disadvantages of both systems, the limitations they impose on individual constructions and safety issues. The paper also discusses a design concept of an energy recovery device in mechanical vehicles which uses torsion springs as the main components of energy accumulation during braking. The desirability of a cooperation of both the mechanical- and electrical energy recovery devices was indicated.
NASA Astrophysics Data System (ADS)
Shichkina, Y. A.; Kupriyanov, M. S.; Moldachev, S. O.
2018-05-01
Today, a description of various Internet devices very often appears on the Internet. For the efficient operation of the Industrial Internet of things, it is necessary to provide a modern level of data processing starting from getting them from devices ending with returning them to devices in a processed form. Current solutions of the Internet of Things are mainly focused on the development of centralized decisions, projecting the Internet of Things on the set of cloud-based platforms that are open, but limit the ability of participants of the Internet of Things to adapt these systems to their own problems. Therefore, it is often necessary to create specialized software for specific areas of the Internet of Things. This article describes the solution of the problem of virtualization of the system of devices based on the Docker system. This solution allows developers to test any software on any number of devices forming a mesh.
Development of a Nonlinear Acoustic Phased Array and its Interaction with Thin Plates
NASA Astrophysics Data System (ADS)
Anzel, Paul; Donahue, Carly; Daraio, Chiara
2015-03-01
Numerous technologies are based on the principle of focusing acoustic energy. We propose a new device to focus sound waves which exploits highly nonlinear dynamics. The advantages of this device are the capability of generating very highly powerful acoustic pulses and potential operation in high-temperature environments where traditional piezoelectrics may fail. This device is composed of rows of ball bearings placed in contact with a medium of interest and with an actuator on the top. Elastic spherical particles have a contact force that grows with their relative displacement to the three-halves power (Hertzian contact). When several spheres are placed in a row, the particles support the propagation of ``solitary waves''--strong, compact stress-wave pulses whose tendency to disperse is counteracted by the nonlinearity of the sphere's contact force. We present results regarding the experimental operation of the device and its comparison to theory and numerical simulations. We will show how well this system is capable of focusing energy at various locations in the medium, and the limits imposed by pre-compression. Finally, the effects of timing error on energy focusing will be demonstrated. This research has been supported by a NASA Space Technology Research Fellowship.
The technological obsolescence of the Brazilian eletronic ballot box.
Camargo, Carlos Rogério; Faust, Richard; Merino, Eugênio; Stefani, Clarissa
2012-01-01
The electronic ballot box has played a significant role in the consolidation of Brazilian political process. It has enabled paper ballots extinction as a support for the elector's vote as well as for voting counting processes. It is also widely known that election automation has decisively collaborated to the legitimization of Brazilian democracy, getting rid of doubts about the winning candidates. In 1995, when the project was conceived, it represented a compromise solution, balancing technical efficiency and costs trade-offs. However, this architecture currently limits the ergonomic enhancements to the device operation, transportation, maintenance and storage. Nowadays are available in the market devices of reduced dimensions, based on novel computational architecture, namely tablet computers, which emphasizes usability, autonomy, portability, security and low power consumption. Therefore, the proposal under discussion is the replacement of the current electronic ballot boxes for tablet-based devices to improve the ergonomics aspects of the Brazilian voting process. These devices offer a plethora of integrated features (e.g., capacitive touchscreen, speakers, microphone) that enable highly usable and simple user interfaces, in addition to enhancing the voting process security mechanisms. Finally, their operational systems features allow for the development of highly secure applications, suitable to the requirements of a voting process.
NASA Astrophysics Data System (ADS)
McGuire, Felicia Ann
Essential to metal-oxide-semiconductor field-effect transistor (MOSFET) scaling is the reduction of the supply voltage to mitigate the power consumption and corresponding heat dissipation. Conventional dielectric materials are subject to the thermal limit imposed by the Boltzmann factor in the subthreshold swing, which places an absolute minimum on the supply voltage required to modulate the current. Furthermore, as technology approaches the 5 nm node, electrostatic control of a silicon channel becomes exceedingly difficult, regardless of the gating technique. This notion of "the end of silicon scaling" has rapidly increased research into more scalable channel materials as well as new methods of transistor operation. Among the many promising options are two-dimensional (2D) FETs and negative capacitance (NC) FETs. 2D-FETs make use of atomically thin semiconducting channels that have enabled demonstrated scalability beyond what silicon can offer. NC-FETs demonstrate an effective negative capacitance arising from the integration of a ferroelectric into the transistor gate stack, allowing sub-60 mV/dec switching. While both of these devices provide significant advantages, neither can accomplish the ultimate goal of a FET that is both low-voltage and scalable. However, an appropriate fusion of the 2D-FET and NC-FET into a 2D NC-FET has the potential of enabling a steep-switching device that is dimensionally scalable beyond the 5 nm technology node. In this work, the motivation for and operation of 2D NC-FETs is presented. Experimental realization of 2D NC-FETs using 2D transition metal dichalcogenide molybdenum disulfide (MoS2) as the channel is shown with two different ferroelectric materials: 1) a solution-processed, polymeric poly(vinylidene difluoride trifluoroethylene) ferroelectric and 2) an atomic layer deposition (ALD) grown hafnium zirconium oxide (HfZrO2) ferroelectric. Each ferroelectric was integrated into the gate stack of a 2D-FET having either a top-gate (polymeric ferroelectric) or bottom-gate (HfZrO2 ferroelectric) configuration. HfZrO 2 devices with metallic interfacial layers (between ferroelectric and dielectric) and thinner ferroelectric layers were found to reduce both the hysteresis and the threshold voltage. Detailed characterization of the devices was performed and, most significantly, the 2D NC-FETs with HfZrO2 reproducibly yielded subthreshold swings well below the thermal limit with over more than four orders of magnitude in drain current modulation. HfZrO 2 devices without metallic interfacial layers were utilized to explore the impact of ferroelectric thickness, dielectric thickness, and dielectric composition on device performance. The impact of an interfacial metallic layer on the device operation was investigated in devices with HfZrO2 and shown to be crucial at enabling sub-60 mV/dec switching and large internal voltage gains. The significance of dielectric material choice on device performance was explored and found to be a critical factor in 2D NC-FET transistor operation. These successful results pave the way for future integration of this new device structure into existing technology markets.
Murakami, Maki; McDill, Tandace L; Cindrick-Pounds, Lori; Loran, David B; Woodside, Kenneth J; Mileski, William J; Hunter, Glenn C; Killewich, Lois A
2003-11-01
Intermittent pneumatic compression (IPC) devices prevent lower-extremity deep venous thrombosis (LEDVT) when used properly, but compliance remains an issue. Devices are frequently discontinued when patients are out of bed, and they are rarely used in emergency departments. Trauma patients are at high risk for LEDVT; however, IPCs are underused in this population because of compliance limitations. The hypothesis of this study was that a new miniaturized, portable, battery-powered pneumatic compression device improves compliance in trauma patients over that provided by a standard device. This was a prospective trial in which trauma patients (mean age, 46 years; revised trauma score, 11.7) were randomized to DVT prophylaxis with a standard calf-length sequential IPC device (SCD group) or a miniaturized sequential device (continuous enhanced-circulation therapy [CECT] group). The CECT device can be battery-operated for up to 6 hours and worn during ambulation. Timers attached to the devices, which recorded the time each device was applied to the legs and functioning, were used to quantify compliance. For each subject in each location during hospitalization, compliance rates were determined by dividing the number of minutes the device was functioning by the total minutes in that location. Compliance rates for all subjects were averaged in each location: emergency department, operating room, intensive care unit, and nursing ward. Total compliance rate in the CECT group was significantly higher than in the SCD group (77.7% vs. 58.9%, P =.004). Compliance in the emergency department and nursing ward were also significantly greater with the CECT device (P =.002 and P =.008 respectively). Previous studies have demonstrated that reduced compliance with IPC devices results in a higher incidence of LEDVT. Given its ability to improve compliance, the CECT may provide superior DVT prevention compared with that provided by standard devices.