Sample records for device performance degradation

  1. Cathode Degradation in Thallium Bromide Devices

    NASA Astrophysics Data System (ADS)

    Datta, Amlan; Motakef, Shariar

    2015-06-01

    Thallium bromide (TlBr) is a wide bandgap, compound semiconductor with high gamma-ray stopping power and promising physical properties. However, performance degradation and the eventual irreversible failure of TlBr devices can occur rapidly at room temperature, due to “polarization”, caused by the electromigration of Tl+ and Br- ions to the electrical contacts across the device. Using the Accelerated Device Degradation (ADD) experiment, the degradation phenomena in TlBr devices have been visualized and recorded. This paper focuses on “ageing” of the device cathode at various temperatures. ADD is a fast and reliable direct characterization technique that can be used to identify the effects of various growth and post-growth process modifications on device degradation. Using this technique we have identified cathode degradation with the migration of Br- ions and an associated generation and growth of Thallium-rich fractal “ferns” from the cathode. Its effect on the radiation response of the device has also been discussed in this paper. The chemical changes in the cathode were characterized using Energy-dispersive X-ray spectroscopy.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Pankaj, E-mail: pankaj@mail.nplindia.ernet.in; Centre for Organic Electronics, Physics, University of Newcastle, Callaghan NSW-2308; Bilen, Chhinder

    The degradation and thermal regeneration of poly(3-hexylethiophene) (P3HT):[6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM) and P3HT:indene-C{sub 60} bisadduct (ICBA) polymer solar cells, with Ca/Al and Ca/Ag cathodes and indium tin oxide/poly(ethylene-dioxythiophene):polystyrene sulfonate anode have been investigated. Degradation occurs via a combination of three primary pathways: (1) cathodic oxidation, (2) active layer phase segregation, and (3) anodic diffusion. Fully degraded devices were subjected to thermal annealing under inert atmosphere. Degraded solar cells possessing Ca/Ag electrodes were observed to regenerate their performance, whereas solar cells having Ca/Al electrodes exhibited no significant regeneration of device characteristics after thermal annealing. Moreover, the solar cells withmore » a P3HT:ICBA active layer exhibited enhanced regeneration compared to P3HT:PCBM active layer devices as a result of reduced changes to the active layer morphology. Devices combining a Ca/Ag cathode and P3HT:ICBA active layer demonstrated ∼50% performance restoration over several degradation/regeneration cycles.« less

  3. Prediction and measurement results of radiation damage to CMOS devices on board spacecraft

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.; Danchenko, V.; Cliff, R. A.; Sing, M.; Brucker, G. J.; Ohanian, R. S.

    1977-01-01

    Final results from the CMOS Radiation Effects Measurement (CREM) experiment flown on Explorer 55 are presented and discussed, based on about 15 months of observations and measurements. Conclusions are given relating to long-range annealing, effects of operating temperature on semiconductor performance in space, biased and unbiased P-MOS device degradation, unbiased n-channel device performance, changes in device transconductance, and the difference in ionization efficiency between Co-60 gamma rays and 1-Mev Van de Graaff electrons. The performance of devices in a heavily shielded electronic subsystem box within the spacecraft is evaluated and compared. Environment models and computational methods and their impact on device-degradation estimates are being reviewed to determine whether they permit cost-effective design of spacecraft.

  4. Impact of boron rich layer on performance degradation in boric acid diffused emitters for n-type crystalline Si solar cells

    NASA Astrophysics Data System (ADS)

    Singha, Bandana; Singh Solanki, Chetan

    2018-01-01

    Boron rich layer (BRL) formed beneath the borosilicate glass layer during p-type emitter formation is an undesirable phenomenon. It influences different cell parameters and can degrade the device performance. In this work, the device degradation study is done for different BRL thicknesses produced with different concentrations of the boric acid dopant source. The bulk carrier lifetime reduces to more than 75% and emitter saturation current density becomes more than 10-12 mA cm-2 for 60 nm of BRL thickness. The observed J sc and V oc values become zero for BRL thicknesses higher than 40 nm as seen in this work and the device properties could not be enhanced. So, higher thicknesses of BRL should be avoided.

  5. Degradation modeling of mid-power white-light LEDs by using Wiener process.

    PubMed

    Huang, Jianlin; Golubović, Dušan S; Koh, Sau; Yang, Daoguo; Li, Xiupeng; Fan, Xuejun; Zhang, G Q

    2015-07-27

    The IES standard TM-21-11 provides a guideline for lifetime prediction of LED devices. As it uses average normalized lumen maintenance data and performs non-linear regression for lifetime modeling, it cannot capture dynamic and random variation of the degradation process of LED devices. In addition, this method cannot capture the failure distribution, although it is much more relevant in reliability analysis. Furthermore, the TM-21-11 only considers lumen maintenance for lifetime prediction. Color shift, as another important performance characteristic of LED devices, may also render significant degradation during service life, even though the lumen maintenance has not reached the critical threshold. In this study, a modified Wiener process has been employed for the modeling of the degradation of LED devices. By using this method, dynamic and random variations, as well as the non-linear degradation behavior of LED devices, can be easily accounted for. With a mild assumption, the parameter estimation accuracy has been improved by including more information into the likelihood function while neglecting the dependency between the random variables. As a consequence, the mean time to failure (MTTF) has been obtained and shows comparable result with IES TM-21-11 predictions, indicating the feasibility of the proposed method. Finally, the cumulative failure distribution was presented corresponding to different combinations of lumen maintenance and color shift. The results demonstrate that a joint failure distribution of LED devices could be modeled by simply considering their lumen maintenance and color shift as two independent variables.

  6. Changes in the performance characteristics of a GaAs near infrared light emitting diode when exposed to various current and thermal stresses

    NASA Technical Reports Server (NTRS)

    Thomas, E. F., Jr.

    1974-01-01

    The changes that occurred in the optical and electrical characteristics of a near infrared, GaAs light emitting diode, when operated under various levels and combinations of current and thermal stresses are discussed. A total of forty parts were operated for two thousand hours under eight different sets of dc current and ambient temperature conditions. Degradation in the radiant optical power of these devices was thirty-four percent when operated at their rated current and an ambient temperature of 298K (25 C). Derating the current and/or the thermal stress reduced the degradation of this parameter in approximately a linear manner. All degraded devices behaved similarly, exhibiting rapid nonlinear degradation followed by a gradual linear degradation and finally a period of stable operation. An attempt was made to correlate initial device condition to degradation during stress testing, but met with little success.

  7. Determination of LEDs degradation with entropy generation rate

    NASA Astrophysics Data System (ADS)

    Cuadras, Angel; Yao, Jiaqiang; Quilez, Marcos

    2017-10-01

    We propose a method to assess the degradation and aging of light emitting diodes (LEDs) based on irreversible entropy generation rate. We degraded several LEDs and monitored their entropy generation rate ( S ˙ ) in accelerated tests. We compared the thermoelectrical results with the optical light emission evolution during degradation. We find a good relationship between aging and S ˙ (t), because S ˙ is both related to device parameters and optical performance. We propose a threshold of S ˙ (t) as a reliable damage indicator of LED end-of-life that can avoid the need to perform optical measurements to assess optical aging. The method lays beyond the typical statistical laws for lifetime prediction provided by manufacturers. We tested different LED colors and electrical stresses to validate the electrical LED model and we analyzed the degradation mechanisms of the devices.

  8. Investigation of the Degradation Mechanisms of a Variety of Organic Photovoltaic Devices by Combination of Imaging Techniques - The ISOS-3 Inter-Laboratory Collaboration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosch, R.; Tanenbaum, D. M.; Jrgensen, M.

    2012-04-01

    The investigation of degradation of seven distinct sets (with a number of individual cells of n {>=} 12) of state of the art organic photovoltaic devices prepared by leading research laboratories with a combination of imaging methods is reported. All devices have been shipped to and degraded at Riso DTU up to 1830 hours in accordance with established ISOS-3 protocols under defined illumination conditions. Imaging of device function at different stages of degradation was performed by laser-beam induced current (LBIC) scanning; luminescence imaging, specifically photoluminescence (PLI) and electroluminescence (ELI); as well as by lock-in thermography (LIT). Each of the imagingmore » techniques exhibits its specific advantages with respect to sensing certain degradation features, which will be compared and discussed here in detail. As a consequence, a combination of several imaging techniques yields very conclusive information about the degradation processes controlling device function. The large variety of device architectures in turn enables valuable progress in the proper interpretation of imaging results -- hence revealing the benefits of this large scale cooperation in making a step forward in the understanding of organic solar cell aging and its interpretation by state-of-the-art imaging methods.« less

  9. Investigation of the Degradation Mechanisms of a Variety of Organic Photovoltaic Devices by Combination of Imaging Techniques—the ISOS-3Inter-laboratory Collaboration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Germack D.; Rosch, R.; Tanenbaum, D.M.

    2012-04-01

    The investigation of degradation of seven distinct sets (with a number of individual cells of n {ge} 12) of state of the art organic photovoltaic devices prepared by leading research laboratories with a combination of imaging methods is reported. All devices have been shipped to and degraded at Risoe DTU up to 1830 hours in accordance with established ISOS-3 protocols under defined illumination conditions. Imaging of device function at different stages of degradation was performed by laser-beam induced current (LBIC) scanning; luminescence imaging, specifically photoluminescence (PLI) and electroluminescence (ELI); as well as by lock-in thermography (LIT). Each of the imagingmore » techniques exhibits its specific advantages with respect to sensing certain degradation features, which will be compared and discussed here in detail. As a consequence, a combination of several imaging techniques yields very conclusive information about the degradation processes controlling device function. The large variety of device architectures in turn enables valuable progress in the proper interpretation of imaging results - hence revealing the benefits of this large scale cooperation in making a step forward in the understanding of organic solar cell aging and its interpretation by state-of-the-art imaging methods.« less

  10. Transmissive liquid-crystal device for correcting primary coma aberration and astigmatism in biospecimen in two-photon excitation laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Tanabe, Ayano; Hibi, Terumasa; Ipponjima, Sari; Matsumoto, Kenji; Yokoyama, Masafumi; Kurihara, Makoto; Hashimoto, Nobuyuki; Nemoto, Tomomi

    2016-12-01

    All aberrations produced inside a biospecimen can degrade the quality of a three-dimensional image in two-photon excitation laser scanning microscopy. Previously, we developed a transmissive liquid-crystal device to correct spherical aberrations that improved the image quality of a fixed-mouse-brain slice treated with an optical clearing reagent. In this study, we developed a transmissive device that corrects primary coma aberration and astigmatism. The motivation for this study is that asymmetric aberration can be induced by the shape of a biospecimen and/or by a complicated refractive-index distribution in a sample; this can considerably degrade optical performance even near the sample surface. The device's performance was evaluated by observing fluorescence beads. The device was inserted between the objective lens and microscope revolver and succeeded in improving the spatial resolution and fluorescence signal of a bead image that was originally degraded by asymmetric aberration. Finally, we implemented the device for observing a fixed whole mouse brain with a sloping surface shape and complicated internal refractive-index distribution. The correction with the device improved the spatial resolution and increased the fluorescence signal by ˜2.4×. The device can provide a simple approach to acquiring higher-quality images of biospecimens.

  11. Influence of material quality and process-induced defects on semiconductor device performance and yield

    NASA Technical Reports Server (NTRS)

    Porter, W. A.; Mckee, W. R.

    1974-01-01

    An overview of major causes of device yield degradation is presented. The relationships of device types to critical processes and typical defects are discussed, and the influence of the defect on device yield and performance is demonstrated. Various defect characterization techniques are described and applied. A correlation of device failure, defect type, and cause of defect is presented in tabular form with accompanying illustrations.

  12. High Performance Graphene Nano-ribbon Thermoelectric Devices by Incorporation and Dimensional Tuning of Nanopores

    PubMed Central

    Sharafat Hossain, Md; Al-Dirini, Feras; Hossain, Faruque M.; Skafidas, Efstratios

    2015-01-01

    Thermoelectric properties of Graphene nano-ribbons (GNRs) with nanopores (NPs) are explored for a range of pore dimensions in order to achieve a high performance two-dimensional nano-scale thermoelectric device. We reduce thermal conductivity of GNRs by introducing pores in them in order to enhance their thermoelectric performance. The electrical properties (Seebeck coefficient and conductivity) of the device usually degrade with pore inclusion; however, we tune the pore to its optimal dimension in order to minimize this degradation, enhancing the overall thermoelectric performance (high ZT value) of our device. We observe that the side channel width plays an important role to achieve optimal performance while the effect of pore length is less pronounced. This result is consistent with the fact that electronic conduction in GNRs is dominated along its edges. Ballistic transport regime is assumed and a semi-empirical method using Huckel basis set is used to obtain the electrical properties, while the phononic system is characterized by Tersoff empirical potential model. The proposed device structure has potential applications as a nanoscale local cooler and as a thermoelectric power generator. PMID:26083450

  13. High Performance Graphene Nano-ribbon Thermoelectric Devices by Incorporation and Dimensional Tuning of Nanopores.

    PubMed

    Hossain, Md Sharafat; Al-Dirini, Feras; Hossain, Faruque M; Skafidas, Efstratios

    2015-06-17

    Thermoelectric properties of Graphene nano-ribbons (GNRs) with nanopores (NPs) are explored for a range of pore dimensions in order to achieve a high performance two-dimensional nano-scale thermoelectric device. We reduce thermal conductivity of GNRs by introducing pores in them in order to enhance their thermoelectric performance. The electrical properties (Seebeck coefficient and conductivity) of the device usually degrade with pore inclusion; however, we tune the pore to its optimal dimension in order to minimize this degradation, enhancing the overall thermoelectric performance (high ZT value) of our device. We observe that the side channel width plays an important role to achieve optimal performance while the effect of pore length is less pronounced. This result is consistent with the fact that electronic conduction in GNRs is dominated along its edges. Ballistic transport regime is assumed and a semi-empirical method using Huckel basis set is used to obtain the electrical properties, while the phononic system is characterized by Tersoff empirical potential model. The proposed device structure has potential applications as a nanoscale local cooler and as a thermoelectric power generator.

  14. Coordinated garbage collection for raid array of solid state disks

    DOEpatents

    Dillow, David A; Ki, Youngjae; Oral, Hakki S; Shipman, Galen M; Wang, Feiyi

    2014-04-29

    An optimized redundant array of solid state devices may include an array of one or more optimized solid-state devices and a controller coupled to the solid-state devices for managing the solid-state devices. The controller may be configured to globally coordinate the garbage collection activities of each of said optimized solid-state devices, for instance, to minimize the degraded performance time and increase the optimal performance time of the entire array of devices.

  15. Thermodynamic Analysis of TEG-TEC Device Including Influence of Thomson Effect

    NASA Astrophysics Data System (ADS)

    Feng, Yuanli; Chen, Lingen; Meng, Fankai; Sun, Fengrui

    2018-01-01

    A thermodynamic model of a thermoelectric cooler driven by thermoelectric generator (TEG-TEC) device is established considering Thomson effect. The performance is analyzed and optimized using numerical calculation based on non-equilibrium thermodynamic theory. The influence characteristics of Thomson effect on the optimal performance and variable selection are investigated by comparing the condition with and without Thomson effect. The results show that Thomson effect degrades the performance of TEG-TEC device, it decreases the cooling capacity by 27 %, decreases the coefficient of performance (COP) by 19 %, decreases the maximum cooling temperature difference by 11 % when the ratio of thermoelectric elements number is 0.6, the cold junction temperature of thermoelectric cooler (TEC) is 285 K and the hot junction temperature of thermoelectric generator (TEG) is 450 K. Thomson effect degrades the optimal performance of TEG-TEC device, it decreases the maximum cooling capacity by 28 % and decreases the maximum COP by 28 % under the same junction temperatures. Thomson effect narrows the optimal variable range and optimal working range. In the design of the devices, limited-number thermoelectric elements should be more allocated appropriately to TEG when consider Thomson effect. The results may provide some guidelines for the design of TEG-TEC devices.

  16. Gold and iodine diffusion in large area perovskite solar cells under illumination.

    PubMed

    Cacovich, S; Ciná, L; Matteocci, F; Divitini, G; Midgley, P A; Di Carlo, A; Ducati, C

    2017-04-06

    Operational stability is the main issue hindering the commercialisation of perovskite solar cells. Here, a long term light soaking test was performed on large area hybrid halide perovskite solar cells to investigate the morphological and chemical changes associated with the degradation of photovoltaic performance occurring within the devices. Using Scanning Transmission Electron Microscopy (STEM) in conjunction with EDX analysis on device cross sections, we observe the formation of gold clusters in the perovskite active layer as well as in the TiO 2 mesoporous layer, and a severe degradation of the perovskite due to iodine migration into the hole transporter. All these phenomena are associated with a drastic drop of all the photovoltaic parameters. The use of advanced electron microscopy techniques and data processing provides new insights on the degradation pathways, directly correlating the nanoscale structure and chemistry to the macroscopic properties of hybrid perovskite devices.

  17. Effect of dielectric layers on device stability of pentacene-based field-effect transistors.

    PubMed

    Di, Chong-an; Yu, Gui; Liu, Yunqi; Guo, Yunlong; Sun, Xiangnan; Zheng, Jian; Wen, Yugeng; Wang, Ying; Wu, Weiping; Zhu, Daoben

    2009-09-07

    We report stable organic field-effect transistors (OFETs) based on pentacene. It was found that device stability strongly depends on the dielectric layer. Pentacene thin-film transistors based on the bare or polystyrene-modified SiO(2) gate dielectrics exhibit excellent electrical stabilities. In contrast, the devices with the octadecyltrichlorosilane (OTS)-treated SiO(2) dielectric layer showed the worst stabilities. The effects of the different dielectrics on the device stabilities were investigated. We found that the surface energy of the gate dielectric plays a crucial role in determining the stability of the pentacene thin film, device performance and degradation of electrical properties. Pentacene aggregation, phase transfer and film morphology are also important factors that influence the device stability of pentacene devices. As a result of the surface energy mismatch between the dielectric layer and organic semiconductor, the electronic performance was degraded. Moreover, when pentacene was deposited on the OTS-treated SiO(2) dielectric layer with very low surface energy, pentacene aggregation occurred and resulted in a dramatic decrease of device performance. These results demonstrated that the stable OFETs could be obtained by using pentacene as a semiconductor layer.

  18. Origin of the performances degradation of two-dimensional-based metal-oxide-semiconductor field effect transistors in the sub-10 nm regime: A first-principles study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Anh Khoa Augustin; IMEC, 75 Kapeldreef, B-3001 Leuven; Pourtois, Geoffrey

    2016-01-25

    The impact of the scaling of the channel length on the performances of metal-oxide-semiconductor field effect transistors, based on two-dimensional (2D) channel materials, is theoretically investigated, using density functional theory combined with the non-equilibrium Green's function method. It is found that the scaling of the channel length below 10 nm leads to strong device performance degradations. Our simulations reveal that this degradation is essentially due to the tunneling current flowing between the source and the drain in these aggressively scaled devices. It is shown that this electron tunneling process is modulated by the effective mass of the 2D channel material, andmore » sets the limit of the scaling in future transistor designs.« less

  19. Characterization and reliability of aluminum gallium nitride/gallium nitride high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Douglas, Erica Ann

    Compound semiconductor devices, particularly those based on GaN, have found significant use in military and civilian systems for both microwave and optoelectronic applications. Future uses in ultra-high power radar systems will require the use of GaN transistors operated at very high voltages, currents and temperatures. GaN-based high electron mobility transistors (HEMTs) have proven power handling capability that overshadows all other wide band gap semiconductor devices for high frequency and high-power applications. Little conclusive research has been reported in order to determine the dominating degradation mechanisms of the devices that result in failure under standard operating conditions in the field. Therefore, it is imperative that further reliability testing be carried out to determine the failure mechanisms present in GaN HEMTs in order to improve device performance, and thus further the ability for future technologies to be developed. In order to obtain a better understanding of the true reliability of AlGaN/GaN HEMTs and determine the MTTF under standard operating conditions, it is crucial to investigate the interaction effects between thermal and electrical degradation. This research spans device characterization, device reliability, and device simulation in order to obtain an all-encompassing picture of the device physics. Initially, finite element thermal simulations were performed to investigate the effect of device design on self-heating under high power operation. This was then followed by a study of reliability of HEMTs and other tests structures during high power dc operation. Test structures without Schottky contacts showed high stability as compared to HEMTs, indicating that degradation of the gate is the reason for permanent device degradation. High reverse bias of the gate has been shown to induce the inverse piezoelectric effect, resulting in a sharp increase in gate leakage current due to crack formation. The introduction of elevated temperatures during high reverse gate bias indicated that device failure is due to the breakdown of an unintentional gate oxide. RF stress of AlGaN/GaN HEMTs showed comparable critical voltage breakdown regime as that of similar devices stressed under dc conditions. Though RF device characteristics showed stability up to a drain bias of 20 V, Schottky diode characteristics degraded substantially at all voltages investigated. Results from both dc and RF stress conditions, under several bias regimes, confirm that the primary root for stress induced degradation was due to the Schottky contact. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)

  20. On the stability of a variety of organic photovoltaic devices by IPCE and in situ IPCE analyses--the ISOS-3 inter-laboratory collaboration.

    PubMed

    Teran-Escobar, Gerardo; Tanenbaum, David M; Voroshazi, Eszter; Hermenau, Martin; Norrman, Kion; Lloyd, Matthew T; Galagan, Yulia; Zimmermann, Birger; Hösel, Markus; Dam, Henrik F; Jørgensen, Mikkel; Gevorgyan, Suren; Kudret, Suleyman; Maes, Wouter; Lutsen, Laurence; Vanderzande, Dirk; Würfel, Uli; Andriessen, Ronn; Rösch, Roland; Hoppe, Harald; Rivaton, Agnès; Uzunoğlu, Gülşah Y; Germack, David; Andreasen, Birgitta; Madsen, Morten V; Bundgaard, Eva; Krebs, Frederik C; Lira-Cantu, Monica

    2012-09-07

    This work is part of the inter-laboratory collaboration to study the stability of seven distinct sets of state-of-the-art organic photovoltaic (OPV) devices prepared by leading research laboratories. All devices have been shipped to and degraded at RISØ-DTU up to 1830 hours in accordance with established ISOS-3 protocols under defined illumination conditions. In this work, we apply the Incident Photon-to-Electron Conversion Efficiency (IPCE) and the in situ IPCE techniques to determine the relation between solar cell performance and solar cell stability. Different ageing conditions were considered: accelerated full sun simulation, low level indoor fluorescent lighting and dark storage. The devices were also monitored under conditions of ambient and inert (N(2)) atmospheres, which allows for the identification of the solar cell materials more susceptible to degradation by ambient air (oxygen and moisture). The different OPVs configurations permitted the study of the intrinsic stability of the devices depending on: two different ITO-replacement alternatives, two different hole extraction layers (PEDOT:PSS and MoO(3)), and two different P3HT-based polymers. The response of un-encapsulated devices to ambient atmosphere offered insight into the importance of moisture in solar cell performance. Our results demonstrate that the IPCE and the in situ IPCE techniques are valuable analytical methods to understand device degradation and solar cell lifetime.

  1. Silicon Carbide Power Device Performance Under Heavy-Ion Irradiation

    NASA Technical Reports Server (NTRS)

    Lauenstein, Jean-Marie; Casey, Megan; Topper, Alyson; Wilcox, Edward; Phan, Anthony; Ikpe, Stanley; LaBel, Ken

    2015-01-01

    Heavy-ion induced degradation and catastrophic failure data for SiC power MOSFETs and Schottky diodes are examined to provide insight into the challenge of single-event effect hardening of SiC power devices.

  2. Interfacial thermal degradation in inverted organic solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenbank, William; Hirsch, Lionel; Wantz, Guillaume

    2015-12-28

    The efficiency of organic photovoltaic (OPV) solar cells is constantly improving; however, the lifetime of the devices still requires significant improvement if the potential of OPV is to be realised. In this study, several series of inverted OPV were fabricated and thermally aged in the dark in an inert atmosphere. It was demonstrated that all of the devices undergo short circuit current-driven degradation, which is assigned to morphology changes in the active layer. In addition, a previously unreported, open circuit voltage-driven degradation mechanism was observed that is highly material specific and interfacial in origin. This mechanism was specifically observed inmore » devices containing MoO{sub 3} and silver as hole transporting layers and electrode materials, respectively. Devices with this combination were among the worst performing devices with respect to thermal ageing. The physical origins of this mechanism were explored by Rutherford backscattering spectrometry and atomic force microscopy and an increase in roughness with thermal ageing was observed that may be partially responsible for the ageing mechanism.« less

  3. Total Ionizing Dose Effects in Bipolar and BiCMOS Devices

    NASA Technical Reports Server (NTRS)

    Chavez, Rosa M.; Rax, Bernard G.; Scheick, Leif Z.; Johnston, Allan H.

    2005-01-01

    This paper describes total ionizing dose (TID) test results performed at JPL. Bipolar and BiCMOS device samples were tested exhibiting significant degradation and failures at different irradiation levels. Linear technology which is susceptible to low-dose dependency (ELDRS) exhibited greater damage for devices tested under zero bias condition.

  4. Hazard-Free Pyrotechnic Simulator

    NASA Technical Reports Server (NTRS)

    Mcalister, William B., Jr.

    1988-01-01

    Simulator evaluates performance of firing circuits for electroexplosive devices (EED's) safely and inexpensively. Tests circuits realistically when pyrotechnic squibs not connected and eliminates risks of explosions. Used to test such devices as batteries where test conditions might otherwise degrade them.

  5. Enhanced tolerance to stretch-induced performance degradation of stretchable MnO2-based supercapacitors.

    PubMed

    Huang, Yan; Huang, Yang; Meng, Wenjun; Zhu, Minshen; Xue, Hongtao; Lee, Chun-Sing; Zhi, Chunyi

    2015-02-04

    The performance of many stretchable electronics, such as energy storage devices and strain sensors, is highly limited by the structural breakdown arising from the stretch imposed. In this article, we focus on a detailed study on materials matching between functional materials and their conductive substrate, as well as enhancement of the tolerance to stretch-induced performance degradation of stretchable supercapacitors, which are essential for the design of a stretchable device. It is revealed that, being widely utilized as the electrode material of the stretchable supercapacitor, metal oxides such as MnO2 nanosheets have serious strain-induced performance degradation due to their rigid structure. In comparison, with conducting polymers like a polypyrrole (PPy) film as the electrochemically active material, the performance of stretchable supercapacitors can be well preserved under strain. Therefore, a smart design is to combine PPy with MnO2 nanosheets to achieve enhanced tolerance to strain-induced performance degradation of MnO2-based supercapacitors, which is realized by fabricating an electrode of PPy-penetrated MnO2 nanosheets. The composite electrodes exhibit a remarkable enhanced tolerance to strain-induced performance degradation with well-preserved performance over 93% under strain. The detailed morphology and electrochemical impedance variations are investigated for the mechanism analyses. Our work presents a systematic investigation on the selection and matching of electrode materials for stretchable supercapacitors to achieve high performance and great tolerance to strain, which may guide the selection of functional materials and their substrate materials for the next-generation of stretchable electronics.

  6. Outsourcing Security Services for Low Performance Portable Devices

    NASA Astrophysics Data System (ADS)

    Szentgyörgyi, Attila; Korn, András

    The number of portable devices using wireless network technologies is on the rise. Some of these devices are incapable of, or at a disadvantage at using secure Internet services, because secure communication often requires comparatively high computing capacity. In this paper, we propose a solution which can be used to offer secure network services for low performance portable devices without severely degrading data transmission rates. We also show that using our approach these devices can utilize some secure network services which were so far unavailable to them due to a lack of software support. In order to back up our claims, we present performance measurement results obtained in a test network.

  7. Organic solar cells: evaluation of the stability of P3HT using time-delayed degradation

    NASA Astrophysics Data System (ADS)

    Poh, Chung-How; Poh, Chung-Kiak; Bryant, Glenn; Belcher, Warwick; Dastoor, Paul

    2011-12-01

    Despite the fact that the performance of organic solar cells is generally susceptible to degradation by moisture exposure, there has been suggestion that the photoactive layer (P3HT) is surprisingly resilient. This work attempts to confirm the stability of P3HT as an organic solar cell material by deliberately introducing water into the photoactive layer. A dramatic step drop in device performance during cell characterization is observed approximately one day after the device has been fabricated. The time-delayed step drop in output efficiency strongly suggests that moisture has little effect on the P3HT conducting polymer.

  8. Investigating Degradation Mechanisms in 130 nm and 90 nm Commercial CMOS Technologies Under Extreme Radiation Conditions

    NASA Astrophysics Data System (ADS)

    Ratti, Lodovico; Gaioni, Luigi; Manghisoni, Massimo; Traversi, Gianluca; Pantano, Devis

    2008-08-01

    The purpose of this paper is to study the mechanisms underlying performance degradation in 130 nm and 90 nm commercial CMOS technologies exposed to high doses of ionizing radiation. The investigation has been mainly focused on their noise properties in view of applications to the design of low-noise, low-power analog circuits to be operated in harsh environment. Experimental data support the hypothesis that charge trapping in shallow trench isolation (STI), besides degrading the static characteristics of interdigitated NMOS transistors, also affects their noise performances in a substantial fashion. The model discussed in this paper, presented in a previous work focused on CMOS devices irradiated with a 10 Mrad(SiO2) gamma -ray dose, has been applied here also to transistors exposed to much higher (up to 100 Mrad(SiO2 )) doses of X-rays. Such a model is able to account for the extent of the observed noise degradation as a function of the device polarity, dimensions and operating point.

  9. Regenerable Photovoltaic Devices with a Hydrogel-Embedded Microvascular Network

    PubMed Central

    Koo, Hyung-Jun; Velev, Orlin D.

    2013-01-01

    Light-driven degradation of photoactive molecules could be one of the major obstacles to stable long term operation of organic dye-based solar light harvesting devices. One solution to this problem may be mimicking the regeneration functionality of a plant leaf. We report an organic dye photovoltaic system that has been endowed with such microfluidic regeneration functionality. A hydrogel medium with embedded channels allows rapid and uniform supply of photoactive reagents by a convection-diffusion mechanism. A washing-activation cycle enables reliable replacement of the organic component in a dye-sensitized photovoltaic system. Repetitive restoration of photovoltaic performance after intensive device degradation is demonstrated. PMID:23912814

  10. Advances in Degradable Embolic Microspheres: A State of the Art Review

    PubMed Central

    Doucet, Jensen; Kiri, Lauren; O’Connell, Kathleen; Kehoe, Sharon; Lewandowski, Robert J.; Liu, David M.; Abraham, Robert J.; Boyd, Daniel

    2018-01-01

    Considerable efforts have been placed on the development of degradable microspheres for use in transarterial embolization indications. Using the guidance of the U.S. Food and Drug Administration (FDA) special controls document for the preclinical evaluation of vascular embolization devices, this review consolidates all relevant data pertaining to novel degradable microsphere technologies for bland embolization into a single reference. This review emphasizes intended use, chemical composition, degradative mechanisms, and pre-clinical safety, efficacy, and performance, while summarizing the key advantages and disadvantages for each degradable technology that is currently under development for transarterial embolization. This review is intended to provide an inclusive reference for clinicians that may facilitate an understanding of clinical and technical concepts related to this field of interventional radiology. For materials scientists, this review highlights innovative devices and current evaluation methodologies (i.e., preclinical models), and is designed to be instructive in the development of innovative/new technologies and evaluation methodologies. PMID:29373510

  11. High Per formance and Flexible Supercapacitors based on Carbonized Bamboo Fibers for Wide Temperature Applications

    PubMed Central

    Zequine, Camila; Ranaweera, C. K.; Wang, Z.; Singh, Sweta; Tripathi, Prashant; Srivastava, O. N.; Gupta, Bipin Kumar; Ramasamy, K.; Kahol, P. K.; Dvornic, P. R.; Gupta, Ram K.

    2016-01-01

    High performance carbonized bamboo fibers were synthesized for a wide range of temperature dependent energy storage applications. The structural and electrochemical properties of the carbonized bamboo fibers were studied for flexible supercapacitor applications. The galvanostatic charge-discharge studies on carbonized fibers exhibited specific capacity of ~510F/g at 0.4 A/g with energy density of 54 Wh/kg. Interestingly, the carbonized bamboo fibers displayed excellent charge storage stability without any appreciable degradation in charge storage capacity over 5,000 charge-discharge cycles. The symmetrical supercapacitor device fabricated using these carbonized bamboo fibers exhibited an areal capacitance of ~1.55 F/cm2 at room temperature. In addition to high charge storage capacity and cyclic stability, the device showed excellent flexibility without any degradation to charge storage capacity on bending the electrode. The performance of the supercapacitor device exhibited ~65% improvement at 70 °C compare to that at 10 °C. Our studies suggest that carbonized bamboo fibers are promising candidates for stable, high performance and flexible supercapacitor devices. PMID:27546225

  12. High Per formance and Flexible Supercapacitors based on Carbonized Bamboo Fibers for Wide Temperature Applications.

    PubMed

    Zequine, Camila; Ranaweera, C K; Wang, Z; Singh, Sweta; Tripathi, Prashant; Srivastava, O N; Gupta, Bipin Kumar; Ramasamy, K; Kahol, P K; Dvornic, P R; Gupta, Ram K

    2016-08-22

    High performance carbonized bamboo fibers were synthesized for a wide range of temperature dependent energy storage applications. The structural and electrochemical properties of the carbonized bamboo fibers were studied for flexible supercapacitor applications. The galvanostatic charge-discharge studies on carbonized fibers exhibited specific capacity of ~510F/g at 0.4 A/g with energy density of 54 Wh/kg. Interestingly, the carbonized bamboo fibers displayed excellent charge storage stability without any appreciable degradation in charge storage capacity over 5,000 charge-discharge cycles. The symmetrical supercapacitor device fabricated using these carbonized bamboo fibers exhibited an areal capacitance of ~1.55 F/cm(2) at room temperature. In addition to high charge storage capacity and cyclic stability, the device showed excellent flexibility without any degradation to charge storage capacity on bending the electrode. The performance of the supercapacitor device exhibited ~65% improvement at 70 °C compare to that at 10 °C. Our studies suggest that carbonized bamboo fibers are promising candidates for stable, high performance and flexible supercapacitor devices.

  13. High Per formance and Flexible Supercapacitors based on Carbonized Bamboo Fibers for Wide Temperature Applications

    NASA Astrophysics Data System (ADS)

    Zequine, Camila; Ranaweera, C. K.; Wang, Z.; Singh, Sweta; Tripathi, Prashant; Srivastava, O. N.; Gupta, Bipin Kumar; Ramasamy, K.; Kahol, P. K.; Dvornic, P. R.; Gupta, Ram K.

    2016-08-01

    High performance carbonized bamboo fibers were synthesized for a wide range of temperature dependent energy storage applications. The structural and electrochemical properties of the carbonized bamboo fibers were studied for flexible supercapacitor applications. The galvanostatic charge-discharge studies on carbonized fibers exhibited specific capacity of ~510F/g at 0.4 A/g with energy density of 54 Wh/kg. Interestingly, the carbonized bamboo fibers displayed excellent charge storage stability without any appreciable degradation in charge storage capacity over 5,000 charge-discharge cycles. The symmetrical supercapacitor device fabricated using these carbonized bamboo fibers exhibited an areal capacitance of ~1.55 F/cm2 at room temperature. In addition to high charge storage capacity and cyclic stability, the device showed excellent flexibility without any degradation to charge storage capacity on bending the electrode. The performance of the supercapacitor device exhibited ~65% improvement at 70 °C compare to that at 10 °C. Our studies suggest that carbonized bamboo fibers are promising candidates for stable, high performance and flexible supercapacitor devices.

  14. Development and test of an active pixel sensor detector for heliospheric imager on solar orbiter and solar probe plus

    NASA Astrophysics Data System (ADS)

    Korendyke, Clarence M.; Vourlidas, Angelos; Plunkett, Simon P.; Howard, Russell A.; Wang, Dennis; Marshall, Cheryl J.; Waczynski, Augustyn; Janesick, James J.; Elliott, Thomas; Tun, Samuel; Tower, John; Grygon, Mark; Keller, David; Clifford, Gregory E.

    2013-10-01

    The Naval Research Laboratory is developing next generation CMOS imaging arrays for the Solar Orbiter and Solar Probe Plus missions. The device development is nearly complete with flight device delivery scheduled for summer of 2013. The 4Kx4K mosaic array with 10micron pixels is well suited to the panoramic imaging required for the Solar Orbiter mission. The devices are robust (<100krad) and exhibit minimal performance degradation with respect to radiation. The device design and performance are described.

  15. Short-Term Environmental Effects and Their Influence on Spatial Homogeneity of Organic Solar Cell Functionality.

    PubMed

    Chien, Huei-Ting; Zach, Peter W; Friedel, Bettina

    2017-08-23

    In this study, we focus on the induced degradation and spatial inhomogeneity of organic photovoltaic devices under different environmental conditions, uncoupled from the influence of any auxiliary hole-transport (HT) layer. During testing of the corresponding devices comprising the standard photoactive layer of poly(3-hexylthiophene) as donor, blended with phenyl-C 61 -butyric acid methyl ester as acceptor, a comparison was made between the nonencapsulated devices upon exposure to argon in the dark, dry air in the dark, dry air with illumination, and humid air in the dark. The impact on the active layer's photophysics is discussed, along with the device physics in terms of integral solar cell performance and spatially resolved photocurrent distribution with point-to-point analysis of the diode characteristics to determine the origin of the observed integrated organic photovoltaic device behavior. The results show that even without the widely used hygroscopic HT layer, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), humidity is still a major factor in the short-term environmental degradation of organic solar cells with this architecture, and not only oxygen or light, as is often reported. Different from previous reports where water-induced device degradation was spatially homogeneous and formation of Al 2 O 3 islands was only seen for oxygen permeation through pinholes in aluminum, we observed insulating islands merely after humidity exposure in the present study. Further, we demonstrated with laser beam induced current mapping and point-to-point diode analysis that the water-induced performance losses are a result of the exposed device area comprising regions with entirely unaltered high output and intact diode behavior and those with severe degradation showing detrimentally lowered output and voltage-independent charge blocking, which is essentially insulating behavior. It is suggested that this is caused by transport of water through pinholes to the organic/metal interface, where they form insulating oxide or hydroxide islands, while the organic active layer stays unharmed.

  16. Proton irradiation effects on gallium nitride-based devices

    NASA Astrophysics Data System (ADS)

    Karmarkar, Aditya P.

    Proton radiation effects on state-of-the-art gallium nitride-based devices were studied using Schottky diodes and high electron-mobility transistors. The device degradation was studied over a wide range of proton fluences. This study allowed for a correlation between proton irradiation effects between different types of devices and enhanced the understanding of the mechanisms responsible for radiation damage in GaN-based devices. Proton irradiation causes reduced carrier concentration and increased series resistance and ideality factor in Schottky diodes. 1.0-MeV protons cause greater degradation than 1.8-MeV protons because of their higher non-ionizing energy loss. The displacement damage in Schottky diodes recovers during annealing. High electron-mobility transistors exhibit extremely high radiation tolerance, continuing to perform up to a fluence of ˜1014 cm-2 of 1.8-MeV protons. Proton irradiation creates defect complexes in the thin-film structure. Decreased sheet carrier mobility due to increased carrier scattering and decreased sheet carrier density due to carrier removal by the defect centers are the primary damage mechanisms. Interface disorder at either the Schottky or the Ohmic contact plays a relatively unimportant part in overall device degradation in both Schottky diodes and high electron-mobility transistors.

  17. Physical mechanisms affecting hot carrier-induced degradation in gallium nitride HEMTs

    NASA Astrophysics Data System (ADS)

    Mukherjee, Shubhajit

    Gallium Nitride or GaN-based high electron mobility transistors (HEMTs) is currently the most promising device technology in several key military and civilian applications due to excellent high-power as well as high-frequency performance. Even though the performance figures are outstanding, GaN-based HEMTs are not as mature as some competing technologies, which means that establishing the reliability of the technology is important to enable use in critical applications. The objective of this research is to understand the physical mechanisms affecting the reliability of GaN HEMTs at moderate drain biases (typically VDS < 30 V in the devices considered here). The degradation in device performance is believed to be due to the formation or modification of charged defects near the interface by hydrogen depassivation processes (due to electron-activated hydrogen removal) from energetic carriers. A rate-equation describing the defect generation process is formulated based on this assumption. A combination of ensemble Monte-Carlo (EMC) simulation statistics, ab-initio density functional theory (DFT) calculations, and accelerated stress experiments is used to relate the candidate defects to the overall degradation behavior (VT and gm). The focus of this work is on the 'semi-ON' mode of transistor operation in which the degradation is usually observed to be at its highest. This semi-ON state is reasonably close to the biasing region of class-AB high power amplifiers, which are popular because of the combination of high efficiency and low distortion that is associated with this configuration. The carrier-energy distributions are obtained using an EMC simulator that was developed specifically for III-V HFETs. The rate equation is used to model the degradation at different operating conditions as well as longer stress times from the result of one short duration stress test, by utilizing the carrier-energy distribution obtained from EMC simulations for one baseline condition. This work also attempts to identify the spatial location of these defects, and how this impacts the V T shift and gm degradation of the devices.

  18. Shelf life and outdoor degradation studies of organic bulk heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Gergova, R.; Sendova-Vassileva, M.; Popkirov, G.; Gancheva, V.; Grancharov, G.

    2018-03-01

    We studied the degradation of different types of bulk heterojunction devices, in which the materials comprising the active layer and/or the materials used for the back electrode are varied. The devices are deposited on ITO covered glass and have the structure PEDOT:PSS/BHJ/Me, where PEDOT:PSS is the hole transport layer, BHJ (bulk heterojunction) is the active layer comprising a polymer donor (e.g. PTB7, PCDTBT) and a fullerene derivative acceptor (e.g. PC60BM, PC70BM) deposited by spin coating, Me is the metal back contact, which is either Ag or Al deposited by magnetron sputtering or thermal evaporation. The device performance was monitored after storage in the dark at ambient conditions by following the evolution of the J-V curve over time. Results of real conditions outdoor degradation studies are also presented. The stability of the different solar cell structures studied is compared.

  19. Increasing Stabilized Performance Of Amorphous Silicon Based Devices Produced By Highly Hydrogen Diluted Lower Temperature Plasma Deposition.

    DOEpatents

    Li, Yaun-Min; Bennett, Murray S.; Yang, Liyou

    1999-08-24

    High quality, stable photovoltaic and electronic amorphous silicon devices which effectively resist light-induced degradation and current-induced degradation, are produced by a special plasma deposition process. Powerful, efficient single and multi-junction solar cells with high open circuit voltages and fill factors and with wider bandgaps, can be economically fabricated by the special plasma deposition process. The preferred process includes relatively low temperature, high pressure, glow discharge of silane in the presence of a high concentration of hydrogen gas.

  20. Increased Stabilized Performance Of Amorphous Silicon Based Devices Produced By Highly Hydrogen Diluted Lower Temperature Plasma Deposition.

    DOEpatents

    Li, Yaun-Min; Bennett, Murray S.; Yang, Liyou

    1997-07-08

    High quality, stable photovoltaic and electronic amorphous silicon devices which effectively resist light-induced degradation and current-induced degradation, are produced by a special plasma deposition process. Powerful, efficient single and multi-junction solar cells with high open circuit voltages and fill factors and with wider bandgaps, can be economically fabricated by the special plasma deposition process. The preferred process includes relatively low temperature, high pressure, glow discharge of silane in the presence of a high concentration of hydrogen gas.

  1. Performance and breakdown characteristics of irradiated vertical power GaN P-i-N diodes

    DOE PAGES

    King, M. P.; Armstrong, A. M.; Dickerson, J. R.; ...

    2015-10-29

    Electrical performance and defect characterization of vertical GaN P-i-N diodes before and after irradiation with 2.5 MeV protons and neutrons is investigated. Devices exhibit increase in specific on-resistance following irradiation with protons and neutrons, indicating displacement damage introduces defects into the p-GaN and n- drift regions of the device that impact on-state device performance. The breakdown voltage of these devices, initially above 1700 V, is observed to decrease only slightly for particle fluence <; 10 13 cm -2. Furthermore, the unipolar figure of merit for power devices indicates that while the on-resistance and breakdown voltage degrade with irradiation, vertical GaNmore » P-i-Ns remain superior to the performance of the best available, unirradiated silicon devices and on-par with unirradiated modern SiC-based power devices.« less

  2. Recent progress on thin-film encapsulation technologies for organic electronic devices

    NASA Astrophysics Data System (ADS)

    Yu, Duan; Yang, Yong-Qiang; Chen, Zheng; Tao, Ye; Liu, Yun-Fei

    2016-03-01

    Among the advanced electronic devices, flexible organic electronic devices with rapid development are the most promising technologies to customers and industries. Organic thin films accommodate low-cost fabrication and can exploit diverse molecules in inexpensive plastic light emitting diodes, plastic solar cells, and even plastic lasers. These properties may ultimately enable organic materials for practical applications in industry. However, the stability of organic electronic devices still remains a big challenge, because of the difficulty in fabricating commercial products with flexibility. These organic materials can be protected using substrates and barriers such as glass and metal; however, this results in a rigid device and does not satisfy the applications demanding flexible devices. Plastic substrates and transparent flexible encapsulation barriers are other possible alternatives; however, these offer little protection to oxygen and water, thus rapidly degrading the devices. Thin-film encapsulation (TFE) technology is most effective in preventing water vapor and oxygen permeation into the flexible devices. Because of these (and other) reasons, there has been an intense interest in developing transparent barrier materials with much lower permeabilities, and their market is expected to reach over 550 million by 2025. In this study, the degradation mechanism of organic electronic devices is reviewed. To increase the stability of devices in air, several TFE technologies were applied to provide efficient barrier performance. In this review, the degradation mechanism of organic electronic devices, permeation rate measurement, traditional encapsulation technologies, and TFE technologies are presented.

  3. Scrolling and driving: how an MP3 player and its aftermarket controller affect driving performance and visual behavior.

    PubMed

    Lee, John D; Roberts, Shannon C; Hoffman, Joshua D; Angell, Linda S

    2012-04-01

    The aim of this study was to assess how scrolling through playlists on an MP3 player or its aftermarket controller affects driving performance and to examine how drivers adapt device use to driving demands. Drivers use increasingly complex infotainment devices that can undermine driving performance. The goal activation hypothesis suggests that drivers might fail to compensate for these demands, particularly with long tasks and large search set sizes. A total of 50 participants searched for songs in playlists of varying lengths using either an MP3 player or an aftermarket controller while negotiating road segments with traffic and construction in a medium-fidelity driving simulator. Searching through long playlists (580 songs) resulted in poor driving performance and required more long glances (longer than 2 s) to the device compared with other playlist lengths. The aftermarket controller also led to more long glances compared with the MP3 player. Drivers did not adequately adapt their behavior to roadway demand, as evident in their degraded driving performance. No significant performance differences were found between short playlists, the radio-tuning task, and the no-task condition. Selecting songs from long playlists undermined driving performance, and drivers did not sufficiently adapt their use of the device to the roadway demands, consistent with the goal activation hypothesis. The aftermarket controller degraded rather than enhanced performance. Infotainment systems should support drivers in managing distraction. Aftermarket controllers can have the unintended effect of making devices carried into the car less compatible with driving.These results can motivate development of new interfaces as alternatives to scrolling lists.

  4. Decoupling degradation in exciton formation and recombination during lifetime testing of organic light-emitting devices

    NASA Astrophysics Data System (ADS)

    Hershey, Kyle W.; Suddard-Bangsund, John; Qian, Gang; Holmes, Russell J.

    2017-09-01

    The analysis of organic light-emitting device degradation is typically restricted to fitting the overall luminance loss as a function of time or the characterization of fully degraded devices. To develop a more complete understanding of degradation, additional specific data are needed as a function of luminance loss. The overall degradation in luminance during testing can be decoupled into a loss in emitter photoluminescence efficiency and a reduction in the exciton formation efficiency. Here, we demonstrate a method that permits separation of these component efficiencies, yielding the time evolution of two additional specific device parameters that can be used in interpreting and modeling degradation without modification to the device architecture or introduction of any additional post-degradation characterization steps. Here, devices based on the phosphor tris[2-phenylpyridinato-C2,N]iridium(III) (Ir(ppy)3) are characterized as a function of initial luminance and emissive layer thickness. The overall loss in device luminance is found to originate primarily from a reduction in the exciton formation efficiency which is exacerbated in devices with thinner emissive layers. Interestingly, the contribution to overall degradation from a reduction in the efficiency of exciton recombination (i.e., photoluminescence) is unaffected by thickness, suggesting a fixed exciton recombination zone width and degradation at an interface.

  5. Direct evaluation of influence of electron damage on the subcell performance in triple-junction solar cells using photoluminescence decays.

    PubMed

    Tex, David M; Nakamura, Tetsuya; Imaizumi, Mitsuru; Ohshima, Takeshi; Kanemitsu, Yoshihiko

    2017-05-16

    Tandem solar cells are suited for space applications due to their high performance, but also have to be designed in such a way to minimize influence of degradation by the high energy particle flux in space. The analysis of the subcell performance is crucial to understand the device physics and achieve optimized designs of tandem solar cells. Here, the radiation-induced damage of inverted grown InGaP/GaAs/InGaAs triple-junction solar cells for various electron fluences are characterized using conventional current-voltage (I-V) measurements and time-resolved photoluminescence (PL). The conversion efficiencies of the entire device before and after damage are measured with I-V curves and compared with the efficiencies predicted from the time-resolved method. Using the time-resolved data the change in the carrier dynamics in the subcells can be discussed. Our optical method allows to predict the absolute electrical conversion efficiency of the device with an accuracy of better than 5%. While both InGaP and GaAs subcells suffered from significant material degradation, the performance loss of the total device can be completely ascribed to the damage in the GaAs subcell. This points out the importance of high internal electric fields at the operating point.

  6. Investigation of electrolyte leaching in the performance degradation of phosphoric acid-doped polybenzimidazole membrane-based high temperature fuel cells

    NASA Astrophysics Data System (ADS)

    Jeong, Yeon Hun; Oh, Kyeongmin; Ahn, Sungha; Kim, Na Young; Byeon, Ayeong; Park, Hee-Young; Lee, So Young; Park, Hyun S.; Yoo, Sung Jong; Jang, Jong Hyun; Kim, Hyoung-Juhn; Ju, Hyunchul; Kim, Jin Young

    2017-09-01

    Precise monitoring of electrolyte leaching in high-temperature polymer electrolyte membrane fuel cell (HT-PEMFC) devices during lifetime tests is helpful in making a diagnosis of their quality changes and analyzing their electrochemical performance degradation. Here, we investigate electrolyte leaching in the performance degradation of phosphoric acid (PA)-doped polybenzimidazole (PBI) membrane-based HT-PEMFCs. We first perform quantitative analyses to measure PA leakage during cell operation by spectrophotometric means, and a higher PA leakage rate is detected when the current density is elevated in the cell. Second, long-term degradation tests under various current densities of the cells and electrochemical impedance spectroscopy (EIS) analysis are performed to examine the influence of PA loss on the membrane and electrodes during cell performance degradation. The combined results indicate that PA leakage affect cell performance durability, mostly due to an increase in charge transfer resistance and a decrease in the electrochemical surface area (ECSA) of the electrodes. Additionally, a three-dimensional (3-D) HT-PEMFC model is applied to a real-scale experimental cell, and is successfully validated against the polarization curves measured during various long-term experiments. The simulation results highlight that the PA loss from the cathode catalyst layer (CL) is a significant contributor to overall performance degradation.

  7. XPS investigation of the photon degradation of Znq2 green organic phosphor

    NASA Astrophysics Data System (ADS)

    Duvenhage, Mart-Mari; Terblans, Jacobus J.; Ntwaeaborwa, Martin; Swart, Hendrik C.

    2016-01-01

    By substituting Al with Zn to form bis-(8-hydroxyquinoline) zinc (Znq2), the device performance of organic light emitting diodes (OLED) can be improved. Znq2 also has a more closed packed crystal structure that makes it less vulnerable to reactions with atmospheric oxygen and moisture leading to more stable and longer lasting devices. In this work the effect of photon degradation of Znq2 in air was investigated. Znq2 powder was synthesized using a co-precipitation method and recrystallized in acetone. The structure of the sample was confirmed to be Znq2·2H2O by X-ray diffraction. The photoluminescence (PL) emission data also confirmed that the Znq2·2H2O crystal form of Znq2 was present. To study the photon degradation, the sample was irradiated with a UV lamp for 400 h. The emission data was collected and the change in PL intensity with time was monitored. X-ray photoelectron spectroscopy was performed on the as prepared and photon-degraded samples. The Zn2p and N1s peaks showed no change after degradation. The O1s and C1s peaks confirmed that the phenoxide ring ruptured and that C=O and C-O species had formed.

  8. Image quality degradation by light-scattering processes in high-performance display devices for medical imaging

    NASA Astrophysics Data System (ADS)

    Badano, Aldo

    1999-11-01

    This thesis addresses the characterization of light scattering processes that degrade image quality in high performance electronic display devices for digital radiography. Using novel experimental and computational tools, we study the lateral diffusion of light in emissive display devices that causes extensive veiling glare and significant reduction of the physical contrast. In addition, we examine the deleterious effects of ambient light reflections that affect the contrast of low luminance regions, and superimpose unwanted structured signal. The analysis begins by introducing the performance limitations of the human visual system to define high fidelity requirements. It is noted that current devices severely suffer from image quality degradation due to optical transport processes. To model the veiling glare and reflectance characteristics of display devices, we introduce a Monte Carlo light transport simulation code, DETECT-II, that tracks individual photons through multiple scattering events. The simulation accounts for the photon polarization state at each scattering event, and provides descriptions for rough surfaces and thin film coatings. A new experimental method to measure veiling glare is described next, based on a conic collimated probe that minimizes contamination from bright areas. The measured veiling glare ratio is taken to be the luminance in the surrounding bright field divided by the luminance in the dark circle. We show that veiling glare ratios in the order of a few hundreds can be measured with an uncertainty of a few percent. The veiling glare response function is obtained by measuring the small spot contrast ratio of test patterns having varying dark spot radius. Using DETECT-II, we then estimate the ring response functions for a high performance medical imaging monitor of current design, and compare the predictions of the model with the experimentally measured response function. The data presented in this thesis demonstrate that although absorption in the faceplate of high performance monochrome cathode-ray tube monitors have reduced glare, a black matrix design is needed for high fidelity applications. For a high performance medical imaging monitor with anti-reflective coating, the glare ratio for a 1 cm diameter dark spot was measured to be 240. Finally, we introduce experimental techniques for measurements of specular and diffuse display reflectance, and we compare measured reflection coefficients with Monte Carlo estimates. A specular reflection coefficient of 0.0012, and a diffuse coefficient of 0.005 nits/lux are required to minimize degradation from ambient light in rooms with 100 lux illumination. In spite of having comparable reflection coefficients, the low maximum luminance of current devices worsens the effect of ambient light reflections when compared to radiographic film. Flat panel technologies with optimized designs can perform even better than film due to a thin faceplate, increased light absorption, and high brightness.

  9. Fracture healing using degradable magnesium fixation plates and screws.

    PubMed

    Chaya, Amy; Yoshizawa, Sayuri; Verdelis, Kostas; Noorani, Sabrina; Costello, Bernard J; Sfeir, Charles

    2015-02-01

    Internal bone fixation devices made with permanent metals are associated with numerous long-term complications and may require removal. We hypothesized that fixation devices made with degradable magnesium alloys could provide an ideal combination of strength and degradation, facilitating fracture fixation and healing while eliminating the need for implant removal surgery. Fixation plates and screws were machined from 99.9% pure magnesium and compared with titanium devices in a rabbit ulnar fracture model. Magnesium device degradation and the effect on fracture healing and bone formation were assessed after 4 weeks. Fracture healing with magnesium device fixation was compared with that of titanium devices using qualitative histologic analysis and quantitative histomorphometry. Micro-computed tomography showed device degradation after 4 weeks in vivo. In addition, 2-dimensional micro-computed tomography slices and histologic staining showed that magnesium degradation did not inhibit fracture healing or bone formation. Histomorphology showed no difference in bone-bridging fractures fixed with magnesium and titanium devices. Interestingly, abundant new bone was formed around magnesium devices, suggesting a connection between magnesium degradation and bone formation. Our results show potential for magnesium fixation devices in a loaded fracture environment. Furthermore, these results suggest that magnesium fixation devices may enhance fracture healing by encouraging localized new bone formation. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  10. Study the performance of star sensor influenced by space radiation damage of image sensor

    NASA Astrophysics Data System (ADS)

    Feng, Jie; Li, Yudong; Wen, Lin; Guo, Qi; Zhang, Xingyao

    2018-03-01

    Star sensor is an essential component of spacecraft attitude control system. Spatial radiation can cause star sensor performance degradation, abnormal work, attitude measurement accuracy and reliability reduction. Many studies have already been dedicated to the radiation effect on Charge-Coupled Device(CCD) image sensor, but fewer studies focus on the radiation effect of star sensor. The innovation of this paper is to study the radiation effects from the device level to the system level. The influence of the degradation of CCD image sensor radiation sensitive parameters on the performance parameters of star sensor is studied in this paper. The correlation among the radiation effect of proton, the non-uniformity noise of CCD image sensor and the performance parameter of star sensor is analyzed. This paper establishes a foundation for the study of error prediction and correction technology of star sensor on-orbit attitude measurement, and provides some theoretical basis for the design of high performance star sensor.

  11. Epitaxy of Ferroelectric P(VDF-TrFE) Films via Removable PTFE Templates and Its Application in Semiconducting/Ferroelectric Blend Resistive Memory.

    PubMed

    Xia, Wei; Peter, Christian; Weng, Junhui; Zhang, Jian; Kliem, Herbert; Jiang, Yulong; Zhu, Guodong

    2017-04-05

    Ferroelectric polymer based devices exhibit great potentials in low-cost and flexible electronics. To meet the requirements of both low voltage operation and low energy consumption, thickness of ferroelectric polymer films is usually required to be less than, for example, 100 nm. However, decrease of film thickness is also accompanied by the degradation of both crystallinity and ferroelectricity and also the increase of current leakage, which surely degrades device performance. Here we report one epitaxy method based on removable poly(tetrafluoroethylene) (PTFE) templates for high-quality fabrication of ordered ferroelectric polymer thin films. Experimental results indicate that such epitaxially grown ferroelectric polymer films exhibit well improved crystallinity, reduced current leakage and good resistance to electrical breakdown, implying their applications in high-performance and low voltage operated ferroelectric devices. On the basis of this removable PTFE template method, we fabricated organic semiconducting/ferroelectric blend resistive films which presented record electrical performance with operation voltage as low as 5 V and ON/OFF ratio up to 10 5 .

  12. Intrinsic radiation tolerance of ultra-thin GaAs solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirst, L. C.; Yakes, M. K.; Warner, J. H.

    2016-07-18

    Radiation tolerance is a critical performance criterion of photovoltaic devices for space power applications. In this paper we demonstrate the intrinsic radiation tolerance of an ultra-thin solar cell geometry. Device characteristics of GaAs solar cells with absorber layer thicknesses 80 nm and 800 nm were compared before and after 3 MeV proton irradiation. Both cells showed a similar degradation in V{sub oc} with increasing fluence; however, the 80 nm cell showed no degradation in I{sub sc} for fluences up to 10{sup 14 }p{sup +} cm{sup −2}. For the same exposure, the I{sub sc} of the 800 nm cell had severely degraded leaving a remaining factor ofmore » 0.26.« less

  13. Unveiling the irreversible performance degradation of organo-inorganic halide perovskite films and solar cells during heating and cooling processes.

    PubMed

    Mamun, Abdullah Al; Ava, Tanzila Tasnim; Byun, Hye Ryung; Jeong, Hyeon Jun; Jeong, Mun Seok; Nguyen, Loi; Gausin, Christine; Namkoong, Gon

    2017-07-26

    While organo-inorganic halide perovskite solar cells show great potential to meet future energy needs, their thermal instability raises serious questions about their commercialization viability. At present, the stability of perovskite solar cells has been studied under various environmental conditions including humidity and temperature. Nonetheless, understanding of the performance of CH 3 NH 3 PbI 3-x Cl x perovskite solar cells is limited. This study reports the irreversible performance degradation of CH 3 NH 3 PbI 3-x Cl x perovskite solar cells during the heating and cooling processes under AM 1.5 and unveils what triggers the irreversible performance degradation of solar cells. Particularly, the primary cause of the irreversible performance degradation of CH 3 NH 3 PbI 3-x Cl x is quantitatively analyzed by monitoring in real time the development of deteriorated crystallinity, charge trapping/detrapping, trap depth, and the PbI 2 phase, namely a critical signal of perovskite degradation while varying the temperature of the perovskite films and solar cells. Most surprisingly, it is revealed that the degradation of both perovskite films and solar cells was triggered at ∼70 °C. Remarkably, even after the device temperature cooled down to room temperature, the degraded performance of the solar cells persisted with increasing charge trapping and further development of the PbI 2 phase. Identification of the irreversible performance degradation of perovskite solar cells provides guidance for future development of more stable perovskite solar cells.

  14. Silk-polypyrrole biocompatible actuator performance under biologically relevant conditions

    NASA Astrophysics Data System (ADS)

    Hagler, Jo'elen; Peterson, Ben; Murphy, Amanda; Leger, Janelle

    Biocompatible actuators that are capable of controlled movement and can function under biologically relevant conditions are of significant interest in biomedical fields. Previously, we have demonstrated that a composite material of silk biopolymer and the conducting polymer polypyrrole (PPy) can be formed into a bilayer device that can bend under applied voltage. Further, these silk-PPy composites can generate forces comparable to human muscle (>0.1 MPa) making them ideal candidates for interfacing with biological tissues. Here silk-PPy composite films are tested for performance under biologically relevant conditions including exposure to a complex protein serum and biologically relevant temperatures. Free-end bending actuation performance, current response, force generation and, mass degradation were investigated . Preliminary results show that when exposed to proteins and biologically relevant temperatures, these silk-PPy composites show minimal degradation and are able to generate forces and conduct currents comparable to devices tested under standard conditions. NSF.

  15. Carrier Injection and Scattering in Atomically Thin Chalcogenides

    NASA Astrophysics Data System (ADS)

    Li, Song-Lin; Tsukagoshi, Kazuhito

    2015-12-01

    Atomically thin two-dimensional chalcogenides such as MoS2 monolayers are structurally ideal channel materials for the ultimate atomic electronics. However, a heavy thickness dependence of electrical performance is shown in these ultrathin materials, and the device performance normally degrades while exhibiting a low carrier mobility as compared with corresponding bulks, constituting a main hurdle for application in electronics. In this brief review, we summarize our recent work on electrode/channel contacts and carrier scattering mechanisms to address the origins of this adverse thickness dependence. Extrinsically, the Schottky barrier height increases at the electrode/channel contact area in thin channels owing to bandgap expansion caused by quantum confinement, which hinders carrier injection and degrades device performance. Intrinsically, thin channels tend to suffer from intensified Coulomb impurity scattering, resulting from the reduced interaction distance between interfacial impurities and channel carriers. Both factors are responsible for the adverse dependence of carrier mobility on channel thickness in two-dimensional semiconductors.

  16. Reversing an S-kink effect caused by interface degradation in organic solar cells through gold ion implantation in the PEDOT:PSS layer

    NASA Astrophysics Data System (ADS)

    Brenes-Badilla, D.; Coutinho, D. J.; Amorim, D. R. B.; Faria, R. M.; Salvadori, M. C.

    2018-04-01

    In this work, we performed a study on the recovery of the photovoltaic performance of an ITO/PEDOT:PSS/P3HT:PCBM/Ca/Al solar cell after the hole transport layer (PEDOT:PSS) had been degraded by contact with the environment. A device that was fully built in an inert environment exhibited a fill factor (FF) of 0.64, while the device whose hole transport layer was exposed to air presented a FF equal to 0.2. In addition, the J-V characteristic curve of the degraded device did not follow the photovoltaic pattern exhibiting the degenerate S shape. However, the elimination of the deleterious effect was achieved by bombarding gold ions on the contaminated surface of PEDOT:PSS by means of the Metal Plasma Immersion Ion Implantation technique. Due to the low energy of the ionic beam of gold, the implanted gold atoms were located at few nanometers off the surface, forming nanometric clusters, that is, gold nanoparticles. Most probably, the degradation of the J-V photovoltaic curve, represented by the S-kink effect, was caused by the appearance of a potential barrier at PEDOT:PSS/P3HT:PCBM interface, which was demolished by the gold nanoparticles that have work function close to HOMO of P3HT. This S-kink effect was also simulated by using an equivalent circuit model constituted by a two-diode circuit, one of which plays the role of the undesirable potential barrier formed at the PEDOT:PSS/P3HT:PCBM interface. Our analysis shows that deposition of gold nanoparticles next to the interface recovers the good hole injection condition from the PEDOT:PSS into the active layer, restoring the fill factor and the device efficiency.

  17. Hot-carrier degradation in deep-submicrometer nMOSFETs: lightly doped drain vs. large angle tilt implanted drain

    NASA Astrophysics Data System (ADS)

    Rafí, J. M.; Campabadal, F.

    2001-08-01

    The hot-carrier degradation of lightly doped drain (LDD) and large angle tilt implanted drain (LATID) nMOSFETs of a 0.35 μm CMOS technology is analysed and compared by means of I-V characterisation and charge pumping current measurements. LATID nMOSFETs are found to exhibit a significant improvement in terms of both, current drivability and hot-carrier immunity at maximum substrate current condition. The different factors which can be responsible for this improved hot-carrier resistance are investigated. It is shown that this must be attributed to a reduction of the maximum lateral electric field along the channel, but not to a minor generation of physical damage for a given electric field or to a reduced I-V susceptibility to a given amount of generated damage. Further to this analysis, the hot-carrier degradation comparison between LDD and LATID devices is extended to the whole range of gate-stress regimes and the effects of short electron injection (SEI) and short hole injection (SHI) phases on hot-carrier-stressed devices are analysed. Apart from a significant improved resistance to hot-carrier effects registered for LATID devices, a similar behaviour is observed for the two types of architectures. In this way, SEI phases are found to be an efficient tool for revealing part of the damage generated in stresses at low gate voltages, whereas the performance of a first SHI phase after stress at high gate bias is found to result in a significant additional degradation of the devices. This enhanced degradation is attributed to a sudden interface states build-up occurring in both, LDD and LATID devices, near the Si/spacer interface only under the first hot-hole injection condition.

  18. Auger compositional depth profiling of the metal contact-TlBr interface

    NASA Astrophysics Data System (ADS)

    Nelson, A. J.; Swanberg, E. L.; Voss, L. F.; Graff, R. T.; Conway, A. M.; Nikolic, R. J.; Payne, S. A.; Kim, H.; Cirignano, L.; Shah, K.

    2015-08-01

    Degradation of room temperature operation of TlBr radiation detectors with time is thought to be due to electromigration of Tl and Br vacancies within the crystal as well as the metal contacts migrating into the TlBr crystal itself due to electrochemical reactions at the metal/TlBr interface. Scanning Auger electron spectroscopy (AES) in combination with sputter depth profiling was used to investigate the metal contact surface/interfacial structure on TlBr devices. Device-grade TlBr was polished and subjected to a 32% HCl etch to remove surface damage and create a TlBr1-xClx surface layer prior to metal contact deposition. Auger compositional depth profiling results reveal non-equilibrium interfacial diffusion after device operation in both air and N2 at ambient temperature. These results improve our understanding of contact/device degradation versus operating environment for further enhancing radiation detector performance.

  19. In vivo study of magnesium plate and screw degradation and bone fracture healing.

    PubMed

    Chaya, Amy; Yoshizawa, Sayuri; Verdelis, Kostas; Myers, Nicole; Costello, Bernard J; Chou, Da-Tren; Pal, Siladitya; Maiti, Spandan; Kumta, Prashant N; Sfeir, Charles

    2015-05-01

    Each year, millions of Americans suffer bone fractures, often requiring internal fixation. Current devices, like plates and screws, are made with permanent metals or resorbable polymers. Permanent metals provide strength and biocompatibility, but cause long-term complications and may require removal. Resorbable polymers reduce long-term complications, but are unsuitable for many load-bearing applications. To mitigate complications, degradable magnesium (Mg) alloys are being developed for craniofacial and orthopedic applications. Their combination of strength and degradation make them ideal for bone fixation. Previously, we conducted a pilot study comparing Mg and titanium devices with a rabbit ulna fracture model. We observed Mg device degradation, with uninhibited healing. Interestingly, we observed bone formation around degrading Mg, but not titanium, devices. These results highlighted the potential for these fixation devices. To better assess their efficacy, we conducted a more thorough study assessing 99.9% Mg devices in a similar rabbit ulna fracture model. Device degradation, fracture healing, and bone formation were evaluated using microcomputed tomography, histology and biomechanical tests. We observed device degradation throughout, and calculated a corrosion rate of 0.40±0.04mm/year after 8 weeks. In addition, we observed fracture healing by 8 weeks, and maturation after 16 weeks. In accordance with our pilot study, we observed bone formation surrounding Mg devices, with complete overgrowth by 16 weeks. Bend tests revealed no difference in flexural load of healed ulnae with Mg devices compared to intact ulnae. These data suggest that Mg devices provide stabilization to facilitate healing, while degrading and stimulating new bone formation. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Test and evaluation of constant-flow devices for use in SSN AFFF proportioning systems. Interim report, January-May 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, F.W.; Back, G.G.; Burns, R.E.

    1986-11-04

    Constant flow devices, which deliver a constant flow of liquid over a range of upstream and downstream pressures, have been suggested as an alternative to orifice plates for proportioning AFFF in SSN 21 fire-suppression systems. Operational and performance characteristics of two lightweight, inexpensive, commercially available constant-flow devices have significant advantages over orifice plates. Both models tested, however, showed performance degradation when subjected to simulated service conditions. A constant flow device with improved resistance to wear and to AFFF exposure is desirable. Since the constant-flow control devices tested improves proportioning efficiency but do not have optimum characteristics, investigation of improved devicesmore » or methods is recommended.« less

  1. The effect of mechanical loads on the degradation of aliphatic biodegradable polyesters.

    PubMed

    Li, Ying; Chu, Zhaowei; Li, Xiaoming; Ding, Xili; Guo, Meng; Zhao, Haoran; Yao, Jie; Wang, Lizhen; Cai, Qiang; Fan, Yubo

    2017-06-01

    Aliphatic biodegradable polyesters have been the most widely used synthetic polymers for developing biodegradable devices as alternatives for the currently used permanent medical devices. The performances during biodegradation process play crucial roles for final realization of their functions. Because physiological and biochemical environment in vivo significantly affects biodegradation process, large numbers of studies on effects of mechanical loads on the degradation of aliphatic biodegradable polyesters have been launched during last decades. In this review article, we discussed the mechanism of biodegradation and several different mechanical loads that have been reported to affect the biodegradation process. Other physiological and biochemical factors related to mechanical loads were also discussed. The mechanical load could change the conformational strain energy and morphology to weaken the stability of the polymer. Besides, the load and pattern could accelerate the loss of intrinsic mechanical properties of polymers. This indicated that investigations into effects of mechanical loads on the degradation should be indispensable. More combination condition of mechanical loads and multiple factors should be considered in order to keep the degradation rate controllable and evaluate the degradation process in vivo accurately. Only then can the degradable devise achieve the desired effects and further expand the special applications of aliphatic biodegradable polyesters.

  2. Crystal growth for high-efficiency silicon solar cells workshop: Summary

    NASA Technical Reports Server (NTRS)

    Dumas, K. A.

    1985-01-01

    The state of the art in the growth of silicon crystals for high-efficiency solar cells are reviewed, sheet requirements are defined, and furture areas of research are identified. Silicon sheet material characteristics that limit cell efficiencies and yields were described as well as the criteria for the ideal sheet-growth method. The device engineers wish list to the material engineer included: silicon sheet with long minority carrier lifetime that is uniform throughout the sheet, and which doesn't change during processing; and sheet material that stays flat throughout device processing, has uniform good mechanical strength, and is low cost. Impurities in silicon solar cells depreciate cell performance by reducing diffusion length and degrading junctions. The impurity behavior, degradation mechanisms, and variations in degradation threshold with diffusion length for silicon solar cells were described.

  3. Enhancement of Performance and Mechanism Studies of All-Solution Processed Small-Molecule based Solar Cells with an Inverted Structure.

    PubMed

    Long, Guankui; Wu, Bo; Yang, Xuan; Kan, Bin; Zhou, Ye-Cheng; Chen, Li-Chuan; Wan, Xiangjian; Zhang, Hao-Li; Sum, Tze Chien; Chen, Yongsheng

    2015-09-30

    Both solution-processed polymers and small molecule based solar cells have achieved PCEs over 9% with the conventional device structure. However, for the practical applications of photovoltaic technology, further enhancement of both device performance and stability are urgently required, particularly for the inverted structure devices, since this architecture will probably be most promising for the possible coming commercialization. In this work, we have fabricated both conventional and inverted structure devices using the same small molecular donor/acceptor materials and compared the performance of both device structures, and found that the inverted structure based device gave significantly improved performance, the highest PCE so far for inverted structure based device using small molecules as the donor. Furthermore, the inverted device shows a remarkable stability with almost no obvious degradation after three months. Systematic device physics and charge generation dynamics studies, including optical simulation, light-intensity-dependent current-voltage experiments, photocurrent density-effective voltage analyses, transient absorption measurements, and electrical simulations, indicate that the significantly enhanced performance using inverted device is ascribed to the increasing of Jsc compared to the conventional device, which in turn is mainly attributed to the increased absorption of photons in the active layers, rather than the reduced nongeminate recombination.

  4. Effects of consecutive irradiation and bias temperature stress in p-channel power vertical double-diffused metal oxide semiconductor transistors

    NASA Astrophysics Data System (ADS)

    Davidović, Vojkan; Danković, Danijel; Ilić, Aleksandar; Manić, Ivica; Golubović, Snežana; Djorić-Veljković, Snežana; Prijić, Zoran; Prijić, Aneta; Stojadinović, Ninoslav

    2018-04-01

    The mechanisms responsible for the effects of consecutive irradiation and negative bias temperature (NBT) stress in p-channel power vertical double-diffused MOS (VDMOS) transistors are presented in this paper. The investigation was performed in order to clarify the mechanisms responsible for the effects of specific kind of stress in devices previously subjected to the other kind of stress. In addition, it may help in assessing the behaviour of devices subjected to simultaneous irradiation and NBT stressing. It is shown that irradiation of previously NBT stressed devices leads to additional build-up of oxide trapped charge and interface traps, while NBT stress effects in previously irradiated devices depend on gate bias applied during irradiation and on the total dose received. In the cases of low-dose irradiation or irradiation without gate bias, the subsequent NBT stress leads to slight further device degradation. On the other hand, in the cases of devices previously irradiated to high doses or with gate bias applied during irradiation, NBT stress may have a positive role, as it actually anneals a part of radiation-induced degradation.

  5. Investigation of impact of post-metallization annealing on reliability of 65 nm NOR floating-gate flash memories

    NASA Astrophysics Data System (ADS)

    Chiu, Shengfen; Xu, Yue; Ji, Xiaoli; Yan, Feng

    2016-12-01

    This paper investigates the impact of post-metallization annealing (PMA) in pure nitrogen ambient on the reliability of 65 nm NOR-type floating-gate flash memory devices. The experimental results show that, with PMA process, the cycling performance of flash cells, especially for the erasing speed is obviously degraded compared to that without PMA. It is found that the bulk oxide traps and tunnel oxide/Si interface traps are significantly increased with PMA treatment. The water/moisture residues left in the interlayer dielectric layers diffuse to tunnel oxide during PMA process is considered to be responsible for these traps generation, which further enhances the degradation of erase performance. Skipping PMA treatment is proposed to suppress the water diffusion effect on erase performance degradation of flash cells.

  6. NASA Flexible Screen Propellant Management Device (PMD) Demonstration With Cryogenic Liquid

    NASA Technical Reports Server (NTRS)

    Wollen, Mark; Bakke, Victor; Baker, James

    2012-01-01

    While evaluating various options for liquid methane and liquid oxygen propellant management for lunar missions, Innovative Engineering Solutions (IES) conceived the flexible screen device as a potential simple alternative to conventional propellant management devices (PMD). An apparatus was designed and fabricated to test flexible screen devices in liquid nitrogen. After resolution of a number of issues (discussed in detail in the paper), a fine mesh screen (325 by 2300 wires per inch) spring return assembly was successfully tested. No significant degradation in the screen bubble point was observed either due to the screen stretching process or due to cyclic fatigue during testing. An estimated 30 to 50 deflection cycles, and approximately 3 to 5 thermal cycles, were performed on the final screen specimen, prior to and between formally recorded testing. These cycles included some "abusive" pressure cycling, where gas or liquid was driven through the screen at rates that produced differential pressures across the screen of several times the bubble point pressure. No obvious performance degradation or other changes were observed over the duration of testing. In summary, it is felt by the author that these simple tests validated the feasibility of the flexible screen PMD concept for use with cryogenic propellants.

  7. Proton effects on low noise and high responsivity silicon-based photodiodes for space environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pedroza, Guillaume; Gilard, Olivier; Bourqui, Marie-Lise

    A series of proton irradiations has been carried out on p-n silicon photodiodes for the purpose of assessing the suitability of these devices for the European Galileo space mission. The irradiations were performed at energies of 60, 100, and 150 MeV with proton fluences ranging from 1.7x10{sup 10} to 1x10{sup 11} protons/cm{sup 2}. Dark current, spectral responsivity, and dark current noise were measured before and after each irradiation step. We observed an increase in both dark current, dark current noise, and noise equivalent power and a drop of the spectral responsivity with increasing displacement damage dose. An analytical model hasmore » been developed to investigate proton damage effects through the modeling of the electro-optical characteristics of the photodiode. Experimental degradations were successfully explained taking into account the degradation of the minority carrier diffusion length in the N-region of the photodiode. The degradation model was then applied to assess the end-of-life performance of these devices in the framework of the Galileo mission.« less

  8. Traffic Signs in Complex Visual Environments

    DOT National Transportation Integrated Search

    1982-11-01

    The effects of sign luminance on detection and recognition of traffic control devices is mediated through contrast with the immediate surround. Additionally, complex visual scenes are known to degrade visual performance with targets well above visual...

  9. Using quantum process tomography to characterize decoherence in an analog electronic device

    NASA Astrophysics Data System (ADS)

    Ostrove, Corey; La Cour, Brian; Lanham, Andrew; Ott, Granville

    The mathematical structure of a universal gate-based quantum computer can be emulated faithfully on a classical electronic device using analog signals to represent a multi-qubit state. We describe a prototype device capable of performing a programmable sequence of single-qubit and controlled two-qubit gate operations on a pair of voltage signals representing the real and imaginary parts of a two-qubit quantum state. Analog filters and true-RMS voltage measurements are used to perform unitary and measurement gate operations. We characterize the degradation of the represented quantum state with successive gate operations by formally performing quantum process tomography to estimate the equivalent decoherence channel. Experimental measurements indicate that the performance of the device may be accurately modeled as an equivalent quantum operation closely resembling a depolarizing channel with a fidelity of over 99%. This work was supported by the Office of Naval Research under Grant No. N00014-14-1-0323.

  10. Thin film module electrical configuration versus electrical performance

    NASA Technical Reports Server (NTRS)

    Morel, D. L.

    1985-01-01

    The as made and degraded states of thin film silicon (TFS) based modules have been modelled in terms of series resistance losses. The origins of these losses lie in interface and bulk regions of the devices. When modules degrade under light exposure, increases occur in both the interface and bulk components of the loss based on series resistance. Actual module performance can thus be simulated by use of only one unknown parameter, shunt losses. Use of the simulation to optimize module design indicates that the current design of 25 cells per linear foot is near optimum. Degradation performance suggests a shift to approx. 35 cells to effect maximum output for applications not constrained to 12 volts. Earlier studies of energy based performance and tandem structures should be updated to include stability factors, not only the initial loss factor tested here, but also appropriate annealing factors.

  11. Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin films

    PubMed Central

    Wen, Rui-Tao; Granqvist, Claes G.; Niklasson, Gunnar A.

    2015-01-01

    Amorphous WO3 thin films are of keen interest as cathodic electrodes in transmittance-modulating electrochromic devices. However, these films suffer from ion-trapping-induced degradation of optical modulation and reversibility upon extended Li+-ion exchange. Here, we demonstrate that ion-trapping-induced degradation, which is commonly believed to be irreversible, can be successfully eliminated by constant-current-driven de-trapping, i.e., WO3 films can be rejuvenated and regain their initial highly reversible electrochromic performance. Pronounced ion-trapping occurs when x exceeds ~0.65 in LixWO3 during ion insertion. We find two main kinds of Li+-ion trapping sites (intermediate and deep) in WO3, where the intermediate ones are most prevalent. Li+-ions can be completely removed from intermediate traps but are irreversibly bound in deep traps. Our results provide a general framework for developing and designing superior electrochromic materials and devices. PMID:26259104

  12. Atomic Scale Understanding of Poly-Si/SiO2/c-Si Passivated Contacts: Passivation Degradation Due to Metallization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguiar, Jeffery A.; Young, David; Lee, Benjamin

    2016-11-21

    The key attributes for achieving high efficiency crystalline silicon solar cells include class leading developments in the ability to approach the theoretical limits of silicon solar technology (29.4% efficiency). The push for high efficiency devices is further compounded with the clear need for passivation to reduce recombination at the metal contacts. At the same time there is stringent requirement to retain the same material device quality, surface passivation, and performance characteristics following subsequent processing. The development of passivated silicon cell structures that retain active front and rear surface passivation and overall material cell quality is therefore a relevant and activemore » area of development. To address the potential outcomes of metallization on passivated silicon stack, we report on some common microstructural features of degradation due to metallization for a series of silicon device stacks. A fundamental materials understanding of the metallization process on retaining high-efficiency passivated Si devices is therefore gained over these series of results.« less

  13. Plasma facing materials and components for future fusion devices—development, characterization and performance under fusion specific loading conditions

    NASA Astrophysics Data System (ADS)

    Linke, J.

    2006-04-01

    The plasma exposed components in existing and future fusion devices are strongly affected by the plasma material interaction processes. These mechanisms have a strong influence on the plasma performance; in addition they have major impact on the lifetime of the plasma facing armour and the joining interface between the plasma facing material (PFM) and the heat sink. Besides physical and chemical sputtering processes, high heat quasi-stationary fluxes during normal and intense thermal transients are of serious concern for the engineers who develop reliable wall components. In addition, the material and component degradation due to intense fluxes of energetic neutrons is another critical issue in D-T-burning fusion devices which requires extensive R&D. This paper presents an overview on the materials development and joining, the testing of PFMs and components, and the analysis of the neutron irradiation induced degradation.

  14. Degradation Mechanisms for GaN and GaAs High Speed Transistors

    PubMed Central

    Cheney, David J.; Douglas, Erica A.; Liu, Lu; Lo, Chien-Fong; Gila, Brent P.; Ren, Fan; Pearton, Stephen J.

    2012-01-01

    We present a review of reliability issues in AlGaN/GaN and AlGaAs/GaAs high electron mobility transistors (HEMTs) as well as Heterojunction Bipolar Transistors (HBTs) in the AlGaAs/GaAs materials systems. Because of the complex nature and multi-faceted operation modes of these devices, reliability studies must go beyond the typical Arrhenius accelerated life tests. We review the electric field driven degradation in devices with different gate metallization, device dimensions, electric field mitigation techniques (such as source field plate), and the effect of device fabrication processes for both DC and RF stress conditions. We summarize the degradation mechanisms that limit the lifetime of these devices. A variety of contact and surface degradation mechanisms have been reported, but differ in the two device technologies: For HEMTs, the layers are thin and relatively lightly doped compared to HBT structures and there is a metal Schottky gate that is directly on the semiconductor. By contrast, the HBT relies on pn junctions for current modulation and has only Ohmic contacts. This leads to different degradation mechanisms for the two types of devices.

  15. The role of PbI2 in CH3NH3PbI3 perovskite stability, solar cell parameters and device degradation.

    PubMed

    Gujar, Tanaji P; Unger, Thomas; Schönleber, Andreas; Fried, Martina; Panzer, Fabian; van Smaalen, Sander; Köhler, Anna; Thelakkat, Mukundan

    2017-12-20

    We report a systematic investigation on the role of excess PbI 2 content in CH 3 NH 3 PbI 3 perovskite film properties, solar cell parameters and device storage stability. We used the CH 3 NH 3 I vapor assisted method for the preparation of PbI 2 -free CH 3 NH 3 PbI 3 films under a N 2 atmosphere. These pristine CH 3 NH 3 PbI 3 films were annealed at 165 °C for different time intervals in a N 2 atmosphere to generate additional PbI 2 in these films. From XRD measurements, the excess of PbI 2 was quantified. Detailed characterization using scanning electron microscopy, X-ray diffraction, UV-Visible and photoluminescence for continuous aging of CH 3 NH 3 PbI 3 films under ambient condition (50% humidity) is carried out for understanding the influence of different PbI 2 contents on degradation of the CH 3 NH 3 PbI 3 films. We find that the rate of degradation of CH 3 NH 3 PbI 3 is accelerated due to the amount of PbI 2 present in the film. A comparison of solar cell parameters of devices prepared using CH 3 NH 3 PbI 3 samples having different PbI 2 contents reveals a strong influence on the current density-voltage hysteresis as well as storage stability. We demonstrate that CH 3 NH 3 PbI 3 devices do not require any residual PbI 2 for a high performance. Moreover, a small amount of excess PbI 2 , which improves the initial performance of the devices slightly, has undesirable effects on the CH 3 NH 3 PbI 3 film stability as well as on device hysteresis and stability.

  16. Radiation Characterization of Commercial GaN Devices

    NASA Technical Reports Server (NTRS)

    Harris, Richard D.; Scheick, Leif Z.; Hoffman, James P.; Thrivikraman, Tushar; Jenabi, Masud; Gim, Yonggyu; Miyahira, Tetsuo

    2011-01-01

    Radiative feedback from primordial protostars and final mass of the first star Commercially available devices fabricated from GaN are beginning to appear from a number of different suppliers. Based on previous materials and prototype device studies, it is expected that these commercial devices will be quite tolerant to the types of radiation encountered in space. This expectation needs to be verified and the study described herein was undertaken for that purpose. All of the parts discussed in this report are readily available commercially. The parts chosen for study are all targeted for RF applications. Three different studies were performed: 1) a preliminary DDD/TID test of a variety of part types was performed by irradiating with 50 MeV protons, 2) a detailed DDD/TID study of one particular part type was performed by irradiating with 50 MeV protons, and 3) a SEB/SEGR test was performed on a variety of part types by irradiating with heavy ions. No significant degradation was observed in the tests performed in this study.

  17. Development of a versatile high-temperature short-time (HTST) pasteurization device for small-scale processing of cell culture medium formulations.

    PubMed

    Floris, Patrick; Curtin, Sean; Kaisermayer, Christian; Lindeberg, Anna; Bones, Jonathan

    2018-07-01

    The compatibility of CHO cell culture medium formulations with all stages of the bioprocess must be evaluated through small-scale studies prior to scale-up for commercial manufacturing operations. Here, we describe the development of a bespoke small-scale device for assessing the compatibility of culture media with a widely implemented upstream viral clearance strategy, high-temperature short-time (HTST) treatment. The thermal stability of undefined medium formulations supplemented with soy hydrolysates was evaluated upon variations in critical HTST processing parameters, namely, holding times and temperatures. Prolonged holding times of 43 s at temperatures of 110 °C did not adversely impact medium quality while significant degradation was observed upon treatment at elevated temperatures (200 °C) for shorter time periods (11 s). The performance of the device was benchmarked against a commercially available mini-pilot HTST system upon treatment of identical formulations on both platforms. Processed medium samples were analyzed by untargeted LC-MS/MS for compositional profiling followed by chemometric evaluation, which confirmed the observed degradation effects caused by elevated holding temperatures but revealed comparable performance of our developed device with the commercial mini-pilot setup. The developed device can assist medium optimization activities by reducing volume requirements relative to commercially available mini-pilot instrumentation and by facilitating fast throughput evaluation of heat-induced effects on multiple medium lots.

  18. From dead leaves to sustainable organic resistive switching memory.

    PubMed

    Sun, Bai; Zhu, Shouhui; Mao, Shuangsuo; Zheng, Pingping; Xia, Yudong; Yang, Feng; Lei, Ming; Zhao, Yong

    2018-03-01

    An environmental-friendly, sustainable, pollution-free, biodegradable, flexible and wearable electronic device hold advanced potential applications. Here, an organic resistive switching memory device with Ag/Leaves/Ti/PET structure on a flexible polyethylene terephthalate (PET) substrate was fabricated for the first time. We observed an obvious resistive switching memory characteristic with large switching resistance ratio and stable cycle performance at room temperature. This work demonstrates that leaves, a useless waste, can be properly treated to make useful devices. Furthermore, the as-fabricated devices can be degraded naturally without damage to the environment. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Motor current signature analysis method for diagnosing motor operated devices

    DOEpatents

    Haynes, Howard D.; Eissenberg, David M.

    1990-01-01

    A motor current noise signature analysis method and apparatus for remotely monitoring the operating characteristics of an electric motor-operated device such as a motor-operated valve. Frequency domain signal analysis techniques are applied to a conditioned motor current signal to distinctly identify various operating parameters of the motor driven device from the motor current signature. The signature may be recorded and compared with subsequent signatures to detect operating abnormalities and degradation of the device. This diagnostic method does not require special equipment to be installed on the motor-operated device, and the current sensing may be performed at remote control locations, e.g., where the motor-operated devices are used in accessible or hostile environments.

  20. Temperature induced degradation mechanisms of AlInAs/InGaAs/InP quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Pierścińska, D.; Pierściński, K.; Płuska, M.; Sobczak, G.; Kuźmicz, A.; Gutowski, P.; Bugajski, M.

    2018-01-01

    In this paper, we report on the investigation of temperature induced degradation mode of quantum cascade lasers (QCLs) with an emphasis on the influence of different processing technology. We investigate and compare lattice matched AlInAs/InGaAs/InP QCLs of various constructions, i.e., double trench, buried heterostructure and ridge waveguide regarding thermal management, reliability and sources of degradation. The analysis was performed by CCD thermoreflectance spectroscopy, scanning electron microscope inspection and destructive analysis by focused ion beam etching, enabling determination of the source and mode of degradation for investigated lasers. Experimental temperature data relate temperature rise, arising from supply current, with device geometry. Results clearly indicate, that the buried heterostructure geometry, allows reaching the highest maximal operating current densities, before the degradation occurs. Microscopic images of degradation confirm that degradation includes the damage of the contact layer as well as damage of the active region layers.

  1. Thickness effect of ultra-thin Ta2O5 resistance switching layer in 28 nm-diameter memory cell

    NASA Astrophysics Data System (ADS)

    Park, Tae Hyung; Song, Seul Ji; Kim, Hae Jin; Kim, Soo Gil; Chung, Suock; Kim, Beom Yong; Lee, Kee Jeung; Kim, Kyung Min; Choi, Byung Joon; Hwang, Cheol Seong

    2015-11-01

    Resistance switching (RS) devices with ultra-thin Ta2O5 switching layer (0.5-2.0 nm) with a cell diameter of 28 nm were fabricated. The performance of the devices was tested by voltage-driven current—voltage (I-V) sweep and closed-loop pulse switching (CLPS) tests. A Ta layer was placed beneath the Ta2O5 switching layer to act as an oxygen vacancy reservoir. The device with the smallest Ta2O5 thickness (0.5 nm) showed normal switching properties with gradual change in resistance in I-V sweep or CLPS and high reliability. By contrast, other devices with higher Ta2O5 thickness (1.0-2.0 nm) showed abrupt switching with several abnormal behaviours, degraded resistance distribution, especially in high resistance state, and much lower reliability performance. A single conical or hour-glass shaped double conical conducting filament shape was conceived to explain these behavioural differences that depended on the Ta2O5 switching layer thickness. Loss of oxygen via lateral diffusion to the encapsulating Si3N4/SiO2 layer was suggested as the main degradation mechanism for reliability, and a method to improve reliability was also proposed.

  2. A Biopolymer Heparin Sodium Interlayer Anchoring TiO2 and MAPbI3 Enhances Trap Passivation and Device Stability in Perovskite Solar Cells.

    PubMed

    You, Shuai; Wang, Hui; Bi, Shiqing; Zhou, Jiyu; Qin, Liang; Qiu, Xiaohui; Zhao, Zhiqiang; Xu, Yun; Zhang, Yuan; Shi, Xinghua; Zhou, Huiqiong; Tang, Zhiyong

    2018-04-18

    Traps in the photoactive layer or interface can critically influence photovoltaic device characteristics and stabilities. Here, traps passivation and retardation on device degradation for methylammonium lead trihalide (MAPbI 3 ) perovskite solar cells enabled by a biopolymer heparin sodium (HS) interfacial layer is investigated. The incorporated HS boosts the power conversion efficiency from 17.2 to 20.1% with suppressed hysteresis and Shockley-Read-Hall recombination, which originates primarily from the passivation of traps near the interface between the perovskites and the TiO 2 cathode. The incorporation of an HS interfacial layer also leads to a considerable retardation of device degradation, by which 85% of the initial performance is maintained after 70 d storage in ambient environment. Aided by density functional theory calculations, it is found that the passivation of MAPbI 3 and TiO 2 surfaces by HS occurs through the interactions of the functional groups (COO - , SO 3 - , or Na + ) in HS with undersaturated Pb and I ions in MAPbI 3 and Ti 4+ in TiO 2 . This work demonstrates a highly viable and facile interface strategy using biomaterials to afford high-performance and stable perovskite solar cells. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Soft x ray window encapsulant for HgI2 detectors

    NASA Technical Reports Server (NTRS)

    Entine, G.; Shah, K.; Squillante, M.

    1987-01-01

    HgI2 is an excellent semiconductor material for a low energy, room temperature x-ray spectrometer. The high values of the atomic numbers for its constituent elements gives high x-ray and gamma ray stopping power. The band gap of HgI2 is significantly higher than other commonly used semiconductors. Owing to the large value band gap, the leakage current for HgI2 devices is smaller, thus allowing low noise performance. Devices fabricated from HgI2 crystals have demonstrated energy resolution sufficient to distinguish the x-ray emission from the neighboring elements on the periodic table. Also the power requirements of HgI2 are very low. These characteristics make a HgI2 spectrometer an ideal component in a satellite based detection system. Unfortunately, HgI2 crystals tend to deteriorate with time, even if protected by standard semiconductor encapsulants. This degradation ruins the performance of the device in terms of its energy resolution and pulse amplitude. The degrading mechanism is believed to be material loss occurring from below the electrodes, due to high vapor pressure of HgI2 at room temperature. To address this major obstacle to rapid expansion of HgI2 technology, a research program aimed at improving device stability by encapsulation with inert polymeric materials was carried out. The program focused specifically on optimizing the encapsulant materials and their deposition techniques. The principal objectives for this program were device encapsulation, device testing, and accelerated testing to ensure very long term stability of these high resolution sensors. A variety of encapsulants were investigated with the selection criteria based on their chemical diffusion barrier properties, mechanical stability, reactivity, and morphology of encapsulant films. The investigation covered different classes of encapsulants including solvent based encapsulants, vapor deposited encapsulants, and plasma polymerized encapsulants. A variety of characterization techniques were employed to examine their effectiveness in stabilizing HgI2 devices; these included permeability evaluation, vacuum and heat testing, scanning electron microscopy (SEM) as well as studying the detector performance of coated detectors. The plasma polymerized films appear to have entirely solved the HgI2 degradation problem. Another achievement of this program was the development of an accelerated testing technique which correlates extremely well with long term tesing.

  4. Low-temperature phase transitions in a soluble oligoacene and their effect on device performance and stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, J. W.; Goetz, K. P.; Obaid, A.

    The use of organic semiconductors in high-performance organic field-effect transistors requires a thorough understanding of the effects that processing conditions, thermal, and bias-stress history have on device operation. Here, we evaluate the temperature dependence of the electrical properties of transistors fabricated with 2,8-difluoro-5,11-bis(triethylsilylethynyl)anthradithiophene, a material that has attracted much attention recently due to its exceptional electrical properties. We have discovered a phase transition at T = 205 K and discuss its implications on device performance and stability. We examined the impact of this low-temperature phase transition on the thermodynamic, electrical, and structural properties of both single crystals and thin films of this material.more » Our results show that while the changes to the crystal structure are reversible, the induced thermal stress yields irreversible degradation of the devices.« less

  5. Prognostics of Power Mosfets Under Thermal Stress Accelerated Aging Using Data-Driven and Model-Based Methodologies

    NASA Technical Reports Server (NTRS)

    Celaya, Jose; Saxena, Abhinav; Saha, Sankalita; Goebel, Kai F.

    2011-01-01

    An approach for predicting remaining useful life of power MOSFETs (metal oxide field effect transistor) devices has been developed. Power MOSFETs are semiconductor switching devices that are instrumental in electronics equipment such as those used in operation and control of modern aircraft and spacecraft. The MOSFETs examined here were aged under thermal overstress in a controlled experiment and continuous performance degradation data were collected from the accelerated aging experiment. Dieattach degradation was determined to be the primary failure mode. The collected run-to-failure data were analyzed and it was revealed that ON-state resistance increased as die-attach degraded under high thermal stresses. Results from finite element simulation analysis support the observations from the experimental data. Data-driven and model based prognostics algorithms were investigated where ON-state resistance was used as the primary precursor of failure feature. A Gaussian process regression algorithm was explored as an example for a data-driven technique and an extended Kalman filter and a particle filter were used as examples for model-based techniques. Both methods were able to provide valid results. Prognostic performance metrics were employed to evaluate and compare the algorithms.

  6. An Acoustic Charge Transport Imager for High Definition Television Applications: Reliability Modeling and Parametric Yield Prediction of GaAs Multiple Quantum Well Avalanche Photodiodes. Degree awarded Oct. 1997

    NASA Technical Reports Server (NTRS)

    Hunt, W. D.; Brennan, K. F.; Summers, C. J.; Yun, Ilgu

    1994-01-01

    Reliability modeling and parametric yield prediction of GaAs/AlGaAs multiple quantum well (MQW) avalanche photodiodes (APDs), which are of interest as an ultra-low noise image capture mechanism for high definition systems, have been investigated. First, the effect of various doping methods on the reliability of GaAs/AlGaAs multiple quantum well (MQW) avalanche photodiode (APD) structures fabricated by molecular beam epitaxy is investigated. Reliability is examined by accelerated life tests by monitoring dark current and breakdown voltage. Median device lifetime and the activation energy of the degradation mechanism are computed for undoped, doped-barrier, and doped-well APD structures. Lifetimes for each device structure are examined via a statistically designed experiment. Analysis of variance shows that dark-current is affected primarily by device diameter, temperature and stressing time, and breakdown voltage depends on the diameter, stressing time and APD type. It is concluded that the undoped APD has the highest reliability, followed by the doped well and doped barrier devices, respectively. To determine the source of the degradation mechanism for each device structure, failure analysis using the electron-beam induced current method is performed. This analysis reveals some degree of device degradation caused by ionic impurities in the passivation layer, and energy-dispersive spectrometry subsequently verified the presence of ionic sodium as the primary contaminant. However, since all device structures are similarly passivated, sodium contamination alone does not account for the observed variation between the differently doped APDs. This effect is explained by the dopant migration during stressing, which is verified by free carrier concentration measurements using the capacitance-voltage technique.

  7. Proton Effects and Test Issues for Satellite Designers

    NASA Technical Reports Server (NTRS)

    Marshall, Cheryl J.; Marshall, Paul W.

    1999-01-01

    Microelectronic and photonic systems in the natural space environment are bombarded by a variety of charged particles including electrons, trapped protons, cosmic rays, and solar particles (protons and other heavy ions). These incident particles cause both ionizing and non-ionizing effects when traversing a device, and the effects can be either transient or permanent. The vast majority of the kinetic energy of an incident proton is lost to ionization, creating the single event effects (SEES) and total ionizing dose (TID) effects. However, the small portion of energy lost in non-ionizing processes causes atoms to be removed from their lattice sites and form permanent electrically active defects in semiconductor materials. These defects, i.e., "displacement damage," can significantly degrade device performance. In general, most of the displacement damage effects in the natural space environment can be attributed to protons since they are plentiful and extremely energetic (and therefore not readily shielded against). For this reason, we consider only proton induced displacement damage in this course. (Nevertheless, we identify solar cells as an important example of a case where both electron and proton damage can be important since only very light shielding is feasible.) The interested reader is encouraged to explore the three previous NSREC and RADECS short courses which also treat displacement damage issues for satellite applications. Part A of this segment of the short course introduces the space environment, proton shielding issues, and requirements specifications for proton-rich environments. In order to exercise the displacement damage analysis tools for on-orbit performance predictions, the requirements document must provide the relevant proton spectra in addition to the usual total ionizing dose-depth curves. Ion-solid interactions and the nature of the displacement damage they generate have been studied extensively for over half a century, yet they still remain a subject of investigation. In this section, a description of the mechanisms by which displacement damage is produced will be followed by a summary of the major consequences for device performance in a space environment. Often the degradation of a device parameter can be characterized by a damage factor (measured in a laboratory using monoenergetic protons) that is simply the change in a particular electrical or optical parameter per unit proton fluence. In addition, we will describe the concept of a non-ionizing energy loss rate (NIEL) which quantifies that portion of the energy lost by an incident ion that goes into displacements. It has been calculated as a function of proton energy, and is analogous to (and has the same units as) the linear energy transfer (LET) for ionizing energy. We will discover that, to first order, the calculated NIEL describes the energy dependence of the measured device damage factors. This observation provides the basis for predicting proton induced device degradation in a space environment based on both the calculated NIEL and relatively few laboratory test measurements. The methodology of such on-orbit device performance predictions will be described, as well as the limitations. Several classes of devices for which displacement damage is a significant (if not the dominant) mode of radiation induced degradation will be presented.

  8. Operation of a gated field emitter using an individual carbon nanofiber cathode

    NASA Astrophysics Data System (ADS)

    Guillorn, M. A.; Melechko, A. V.; Merkulov, V. I.; Ellis, E. D.; Britton, C. L.; Simpson, M. L.; Lowndes, D. H.; Baylor, L. R.

    2001-11-01

    We report on the operation of an integrated gated cathode device using a single vertically aligned carbon nanofiber as the field emission element. This device is capable of operation in a moderate vacuum for extended periods of time without experiencing a degradation of performance. Less than 1% of the total emitted current is collected by the gate electrode, indicating that the emitted electron beam is highly collimated. As a consequence, this device is ideal for applications that require well-focused electron emission from a microscale structure.

  9. Imaging visible light with Medipix2.

    PubMed

    Mac Raighne, Aaron; Brownlee, Colin; Gebert, Ulrike; Maneuski, Dzmitry; Milnes, James; O'Shea, Val; Rügheimer, Tilman K

    2010-11-01

    A need exists for high-speed single-photon counting optical imaging detectors. Single-photon counting high-speed detection of x rays is possible by using Medipix2 with pixelated silicon photodiodes. In this article, we report on a device that exploits the Medipix2 chip for optical imaging. The fabricated device is capable of imaging at >3000 frames/s over a 256×256 pixel matrix. The imaging performance of the detector device via the modulation transfer function is measured, and the presence of ion feedback and its degradation of the imaging properties are discussed.

  10. Studies of the degradation mechanism of organic light-emitting diodes based on tris(8-quinolinolate)aluminum Alq and 2-tert-butyl-9,10-di(2-naphthyl)anthracene TBADN

    NASA Astrophysics Data System (ADS)

    Jarikov, Viktor V.; Kondakov, Denis Y.

    2009-02-01

    Previously, radical cation of tris(8-quinolinolate)aluminum (Alq•+) has been associated with the instability of Alq films subjected to holes-only electrical current. Yet, the questions remain (i) whether Alq•+ is the primary source of the intrinsic degradation of bipolar organic light-emitting diodes (OLEDs) based on Alq, (ii) whether Alq•+ reactions result in deep charge traps in holes-only devices as found in bipolar counterparts, and (iii) whether radical cations can be a common source of degradation of OLEDs irrespective of materials. With regards to generality of hole-current-related degradation, it is interesting to examine the behavior of 9,10-diarylanthracenes (DAAs)—the practically important class of blue-fluorescing light-emitting-layer hosts. These questions prompted our comparative study of the effects of unipolar currents in Alq and 2-t-butyl-9,10-di(2-naphthyl)anthracene (TBADN), which was chosen as a representative material of the DAA class. First, we identified device structures allowing for rigorous and stable unipolar conduction. Interestingly, even in pristine holes-only devices, our voltammetric measurements indicated that Alq contains a substantial density of deep hole traps (far deeper than what can be explained by energetic disorder), which can be charged by passing holes-only current and seemingly discharged by exposure to white light. As for aged holes-only Alq devices, they exhibited symptoms qualitatively matching those of aged bipolar Alq devices, viz., photoluminescence (PL) loss, transition voltage (V0) rise, and drive voltage (Vd) rise. Notably, PL and V0 are linearly correlated in both holes-only and bipolar devices, which reinforces the supposed link between Alq•+ and the degradation in both types of devices. Yet, there are indications the Alq•+ instability may not be the only degradation pathway in bipolar devices. Even though our observations for holes-only Alq devices agree qualitatively with previously reported ones, we observe far slower degradation rates [Alq PL fades up to ˜500 times slower in holes-only devices, while Alq electroluminescence (EL) fades ˜50 times slower in bipolar control devices]. It is possible that impurities play a significant, perhaps crucial role in the degradation mechanism of both bipolar and holes-only devices, especially the relatively shorter-lived ones. In sharp contrast to Alq, all three observables (PL, V0, and Vd) indicate that holes-only current in TBADN (neat or doped with a perylene-based blue dopant) does not result in degradation in the time that is sufficient for the corresponding bipolar control devices to lose 60%-80% of EL and 20%-30% of PL. We find that the electrons-only current in Alq or TBADN does not result in degradation either. Thus, the degradation of Alq and DAA bipolar devices may be caused by fundamentally dissimilar mechanisms: while hole current may damage the former, it does not appear to affect the latter, suggesting that the initiation step is different.

  11. Photovoltaic Performance and Reliability Workshop summary

    NASA Astrophysics Data System (ADS)

    Kroposki, Benjamin

    1997-02-01

    The objective of the Photovoltaic Performance and Reliability Workshop was to provide a forum where the entire photovoltaic (PV) community (manufacturers, researchers, system designers, and customers) could get together and discuss technical issues relating to PV. The workshop included presentations from twenty-five speakers and had more than one hundred attendees. This workshop also included several open sessions in which the audience and speakers could discuss technical subjects in depth. Several major topics were discussed including: PV characterization and measurements, service lifetimes for PV devices, degradation and failure mechanisms for PV devices, standardization of testing procedures, AC module performance and reliability testing, inverter performance and reliability testing, standardization of utility interconnect requirements, experience from field deployed systems, and system certification.

  12. Performance evaluation of continuity of care records (CCRs): parsing models in a mobile health management system.

    PubMed

    Chen, Hung-Ming; Liou, Yong-Zan

    2014-10-01

    In a mobile health management system, mobile devices act as the application hosting devices for personal health records (PHRs) and the healthcare servers construct to exchange and analyze PHRs. One of the most popular PHR standards is continuity of care record (CCR). The CCR is expressed in XML formats. However, parsing is an expensive operation that can degrade XML processing performance. Hence, the objective of this study was to identify different operational and performance characteristics for those CCR parsing models including the XML DOM parser, the SAX parser, the PULL parser, and the JSON parser with regard to JSON data converted from XML-based CCR. Thus, developers can make sensible choices for their target PHR applications to parse CCRs when using mobile devices or servers with different system resources. Furthermore, the simulation experiments of four case studies are conducted to compare the parsing performance on Android mobile devices and the server with large quantities of CCR data.

  13. Biodegradable Polymeric Materials in Degradable Electronic Devices

    PubMed Central

    2018-01-01

    Biodegradable electronics have great potential to reduce the environmental footprint of devices and enable advanced health monitoring and therapeutic technologies. Complex biodegradable electronics require biodegradable substrates, insulators, conductors, and semiconductors, all of which comprise the fundamental building blocks of devices. This review will survey recent trends in the strategies used to fabricate biodegradable forms of each of these components. Polymers that can disintegrate without full chemical breakdown (type I), as well as those that can be recycled into monomeric and oligomeric building blocks (type II), will be discussed. Type I degradation is typically achieved with engineering and material science based strategies, whereas type II degradation often requires deliberate synthetic approaches. Notably, unconventional degradable linkages capable of maintaining long-range conjugation have been relatively unexplored, yet may enable fully biodegradable conductors and semiconductors with uncompromised electrical properties. While substantial progress has been made in developing degradable device components, the electrical and mechanical properties of these materials must be improved before fully degradable complex electronics can be realized. PMID:29632879

  14. Lateral Movement of Screw Dislocations During Homoepitaxial Growth and Devices Yielded Therefrom Free of the Detrimental Effects of Screw Dislocations

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G. (Inventor); Powell, J. Anthony (Inventor)

    2004-01-01

    The present invention is related to a method that enables and improves wide bandgap homoepitaxial layers to be grown on axis single crystal substrates, particularly SiC. The lateral positions of the screw dislocations in epitaxial layers are predetermined instead of random, which allows devices to be reproducibly patterned to avoid performance degrading crystal defects normally created by screw dislocations.

  15. Proton Irradiation as a Screen for Displacement-Damage Sensitivity in Bipolar Junction Transistors

    NASA Astrophysics Data System (ADS)

    Arutt, Charles N.; Warren, Kevin M.; Schrimpf, Ronald D.; Weller, Robert A.; Kauppila, Jeffrey S.; Rowe, Jason D.; Sternberg, Andrew L.; Reed, Robert A.; Ball, Dennis R.; Fleetwood, Daniel M.

    2015-12-01

    NPN and PNP bipolar junction transistors of varying sizes are irradiated with 4-MeV protons and 10-keV X-rays to determine the amount of ionization-related degradation caused by protons and calculate an improved estimate of displacement-related degradation due to protons. While different ratios of degradation produced by displacement damage and ionization effects will occur for different device technologies, this general approach, with suitable margin, can be used as a screen for sensitivity to neutron-induced displacement damage. Further calculations are performed to estimate the amount of degradation produced by 1-MeV equivalent neutron displacement damage compared to that produced by the displacement damage due to protons. The results are compared to previous work.

  16. Recent Progress on Stability and Passivation of Black Phosphorus.

    PubMed

    Abate, Yohannes; Akinwande, Deji; Gamage, Sampath; Wang, Han; Snure, Michael; Poudel, Nirakar; Cronin, Stephen B

    2018-05-11

    From a fundamental science perspective, black phosphorus (BP) is a canonical example of a material that possesses fascinating surface and electronic properties. It has extraordinary in-plane anisotropic electrical, optical, and vibrational states, as well as a tunable band gap. However, instability of the surface due to chemical degradation in ambient conditions remains a major impediment to its prospective applications. Early studies were limited by the degradation of black phosphorous surfaces in air. Recently, several robust strategies have been developed to mitigate these issues, and these novel developments can potentially allow researchers to exploit the extraordinary properties of this material and devices made out of it. Here, the fundamental chemistry of BP degradation and the tremendous progress made to address this issue are extensively reviewed. Device performances of encapsulated BP are also compared with nonencapsulated BP. In addition, BP possesses sensitive anisotropic photophysical surface properties such as excitons, surface plasmons/phonons, and topologically protected and Dirac semi-metallic surface states. Ambient degradation as well as any passivation method used to protect the surface could affect the intrinsic surface properties of BP. These properties and the extent of their modifications by both the degradation and passivation are reviewed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Analytical model of threshold voltage degradation due to localized charges in gate material engineered Schottky barrier cylindrical GAA MOSFETs

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Haldar, Subhasis; Gupta, Mridula; Gupta, R. S.

    2016-10-01

    The threshold voltage degradation due to the hot carrier induced localized charges (LC) is a major reliability concern for nanoscale Schottky barrier (SB) cylindrical gate all around (GAA) metal-oxide-semiconductor field-effect transistors (MOSFETs). The degradation physics of gate material engineered (GME)-SB-GAA MOSFETs due to LC is still unexplored. An explicit threshold voltage degradation model for GME-SB-GAA-MOSFETs with the incorporation of localized charges (N it) is developed. To accurately model the threshold voltage the minimum channel carrier density has been taken into account. The model renders how +/- LC affects the device subthreshold performance. One-dimensional (1D) Poisson’s and 2D Laplace equations have been solved for two different regions (fresh and damaged) with two different gate metal work-functions. LCs are considered at the drain side with low gate metal work-function as N it is more vulnerable towards the drain. For the reduction of carrier mobility degradation, a lightly doped channel has been considered. The proposed model also includes the effect of barrier height lowering at the metal-semiconductor interface. The developed model results have been verified using numerical simulation data obtained by the ATLAS-3D device simulator and excellent agreement is observed between analytical and simulation results.

  18. Microwave and millimeter-wave power generation in silicon carbide (SiC) IMPATT devices

    NASA Technical Reports Server (NTRS)

    Mehdi, I.; Haddad, George I.; Mains, R. K.

    1989-01-01

    There are two points that should be noted. First, in the thermal resistance calculations it is assumed that the device is operating at 773 K while the results of the room temperature simulations are used. This was done because there is not enough information to correctly predict the material parameters at 773 K. Since, in general, device performance degrades with increasing temperature, the cw results are perhaps a bit optimistic. Second, the electric field in these structures gets extremely high and there might be some possibility of tunneling. This was not incorporated into the simulation. Again, this could result in different device operating conditions.

  19. In vivo Characterization of Amorphous Silicon Carbide As a Biomaterial for Chronic Neural Interfaces

    PubMed Central

    Knaack, Gretchen L.; McHail, Daniel G.; Borda, German; Koo, Beomseo; Peixoto, Nathalia; Cogan, Stuart F.; Dumas, Theodore C.; Pancrazio, Joseph J.

    2016-01-01

    Implantable microelectrode arrays (MEAs) offer clinical promise for prosthetic devices by enabling restoration of communication and control of artificial limbs. While proof-of-concept recordings from MEAs have been promising, work in animal models demonstrates that the obtained signals degrade over time. Both material robustness and tissue response are acknowledged to have a role in device lifetime. Amorphous Silicon carbide (a-SiC), a robust material that is corrosion resistant, has emerged as an alternative encapsulation layer for implantable devices. We systematically examined the impact of a-SiC coating on Si probes by immunohistochemical characterization of key markers implicated in tissue-device response. After implantation, we performed device capture immunohistochemical labeling of neurons, astrocytes, and activated microglia/macrophages after 4 and 8 weeks of implantation. Neuron loss and microglia activation were similar between Si and a-SiC coated probes, while tissue implanted with a-SiC displayed a reduction in astrocytes adjacent to the probe. These results suggest that a-SiC has a similar biocompatibility profile as Si, and may be suitable for implantable MEA applications as a hermetic coating to prevent material degradation. PMID:27445672

  20. In vivo Characterization of Amorphous Silicon Carbide As a Biomaterial for Chronic Neural Interfaces.

    PubMed

    Knaack, Gretchen L; McHail, Daniel G; Borda, German; Koo, Beomseo; Peixoto, Nathalia; Cogan, Stuart F; Dumas, Theodore C; Pancrazio, Joseph J

    2016-01-01

    Implantable microelectrode arrays (MEAs) offer clinical promise for prosthetic devices by enabling restoration of communication and control of artificial limbs. While proof-of-concept recordings from MEAs have been promising, work in animal models demonstrates that the obtained signals degrade over time. Both material robustness and tissue response are acknowledged to have a role in device lifetime. Amorphous Silicon carbide (a-SiC), a robust material that is corrosion resistant, has emerged as an alternative encapsulation layer for implantable devices. We systematically examined the impact of a-SiC coating on Si probes by immunohistochemical characterization of key markers implicated in tissue-device response. After implantation, we performed device capture immunohistochemical labeling of neurons, astrocytes, and activated microglia/macrophages after 4 and 8 weeks of implantation. Neuron loss and microglia activation were similar between Si and a-SiC coated probes, while tissue implanted with a-SiC displayed a reduction in astrocytes adjacent to the probe. These results suggest that a-SiC has a similar biocompatibility profile as Si, and may be suitable for implantable MEA applications as a hermetic coating to prevent material degradation.

  1. Fabrication, testing and reliability modeling of copper/titanium-metallized GaAs MESFETs and HEMTs for low-noise applications

    NASA Astrophysics Data System (ADS)

    Feng, Ting

    Today, GaAs based field effect transistors (FETs) have been used in a broad range of high-speed electronic military and commercial applications. However, their reliability still needs to be improved. Particularly the hydrogen induced degradation is a large remaining issue in the reliability of GaAs FETs, because hydrogen can easily be incorporated into devices during the crystal growth and virtually every device processing step. The main objective of this research work is to develop a new gate metallization system in order to reduce the hydrogen induced degradation from the gate region for GaAs based MESFETs and HEMTs. Cu/Ti gate metallization has been introduced into the GaAs MESFETs and HEMTs in our work in order to solve the hydrogen problem. The purpose of the use of copper is to tie up the hydrogen atoms and prevent hydrogen penetration into the device active region as well as to keep a low gate resistance for low noise applications. In this work, the fabrication technology of GaAs MESFETs and AlGaAs/GaAs HEMTs with Cu/Ti metallized gates have been successfully developed and the fabricated Cu/Ti FETs have shown comparable DC performance with similar Au-based GaAs FETs. The Cu/Ti FETs were subjected to temperature accelerated testing at NOT under 5% hydrogen forming gas and the experimental results show the hydrogen induced degradation has been reduced for the Cu/Ti FETs compared to commonly used AuPtTi based GaAs FETs. A long-term reliability testing for Cu/Ti FETs has also been carried out at 200°C and up to 1000hours and testing results show Cu/Ti FETs performed with adequate reliability. The failure modes were found to consist of a decrease in drain saturation current and pinch-off voltage and an increase in source ohmic contact resistance. Material characterization tools including Rutherford backscattering spectroscopy and a back etching technique were used in Cu/Ti GaAs FETs, and pronounced gate metal copper in-diffusion and intermixing compounds at the interface between the gate and GaAs channel layer were found. A quantifying gate sinking degradation model was developed in order to extend device physics models to reliability testing results of Cu/Ti GaAs FETs. The gate sinking degradation model includes the gate metal and hydrogen in-diffusion effect, decrease of effective channel due to the formation of interfacial compounds, decrease of electron mobility due to the increase of in-diffused impurities, and donor compensation from in-diffused metal impurity acceptors or hydrogen passivation. A variational charge control model was applied to simulate and understand the degradation mechanisms of Cu/Ti HEMTs, including hydrogen induced degradation due to the neutralization of donors. The degradation model established in this study is also applicable to other Au or Al metallized GaAs FETs for understanding the failure mechanisms induced by gate sinking and hydrogen neutralization of donors and con-elating the device physics model with reliability testing results.

  2. Degradation of HTL layers during device operation in PhOLEDs

    NASA Astrophysics Data System (ADS)

    Sivasubramaniam, Varatharajan; Brodkorb, Florian; Hanning, Stephanie; Buttler, Oliver; Loebl, Hans Peter; van Elsbergen, Volker; Boerner, Herbert; Scherf, Ullrich; Kreyenschmidt, Martin

    2009-11-01

    Different analytical tools and methodologies are currently employed to determine degradation products of organic blue light emitting devices in order to identify the failure mechanisms which determine the lifetime of these devices. This article provides a deeper understanding of degradation mechanisms of organic light emitting diodes (OLEDs) during device operation. Degradation products of blue emitting devices containing 8% of the phosphorescent emitter iridium(III)bis(4,6-difluorophenyl)-pyridinato-N,C 2' picolinate (FIrpic) in a matrix containing bis(2-methyl-8-quinolinolato)(4-phenylphenolato)aluminium (BAlq) as electron transport layer (ETL), 4,4',4″-tri( N-carbazolyl)triphenylamine (TCTA) and N, N'-diphenyl- N, N'-bis(1-naphthyl)-1,1'-biphenyl-4,4″-diamine (α-NPD) were investigated using laser desorption ionization (LDI) coupled with a time of flight mass spectrometry (TOF/MS). Especially chemical degradation pathways of the hole transport materials TCTA and α-NPD were investigated. The comparison of experimental data of unstressed and stressed device revealed that new reaction products are formed during the device operation. The linkage of TCTA fragments to the α-NPD core in an interfacial reaction as well as a dimerization of TCTA itself was observed. Ten new reaction products could be characterized via LDI-TOF-MS. Some of these compounds might possess a negative influence on the drop of efficiency and lifetime of blue light emitting devices based on FIrpic.

  3. Degradation Mechanisms in Blue Phosphorescent Organic Light-Emitting Devices by Exciton-Polaron Interactions: Loss in Quantum Yield versus Loss in Charge Balance.

    PubMed

    Zhang, Yingjie; Aziz, Hany

    2017-01-11

    We study the relative importance of deterioration of material quantum yield and charge balance to the electroluminescence stability of PHOLEDs, with a special emphasis on blue devices. Investigations show that the quantum yields of both host and emitter in the emission layer degrade due to exciton-polaron interactions and that the deterioration in material quantum yield plays the primary role in device degradation under operation. On the other hand, the results show that the charge balance factor is also affected by exciton-polaron interactions but only plays a secondary role in determining device stability. Finally, we show that the degradation mechanisms in blue PHOLEDs are fundamentally the same as those in green PHOLEDs. The limited stability of the blue devices is a result of faster deterioration in the quantum yield of the emitter.

  4. A comparative study of n-channel low temperature poly-Si thin-film transistors with a body terminal or a lightly-doped-drain structure

    NASA Astrophysics Data System (ADS)

    Wu, Yanwen; Wang, Mingxiang; Wang, Huaisheng; Zhang, Dongli

    2018-02-01

    Hot-carrier (HC) induced degradation is a critical reliability issue of n-channel low temperature poly-Si thin-film transistors (TFTs) in TFT-based circuits. In this work, a kind of four-terminal TFT, which has an additional p+-doped lateral body terminal connecting to the floating channel, is systematically compared to conventional n-channel TFT and lightly-doped-drain (LDD) TFT. We demonstrate that the four-terminal TFT can provide similar advantages to that of the LDD TFT such as kink current suppression and DC HC degradation immunity, much superior immunity to the dynamic HC degradation, but without any tradeoffs in device performance and process complexity of the LDD TFT. It has high performance, as well as excellent reliability under both DC and AC conditions.

  5. An investigation of the DC and RF performance of InP DHBTs transferred to RF CMOS wafer substrate

    NASA Astrophysics Data System (ADS)

    Ren, Kun; Zheng, Jiachen; Lu, Haiyan; Liu, Jun; Wu, Lishu; Zhou, Wenyong; Cheng, Wei

    2018-05-01

    This paper investigated the DC and RF performance of the InP double heterojunction bipolar transistors (DHBTs) transferred to RF CMOS wafer substrate. The measurement results show that the maximum values of the DC current gain of a substrate transferred device had one emitter finger, of 0.8 μm in width and 5 μm in length, are changed unobviously, while the cut-off frequency and the maximum oscillation frequency are decreased from 220 to 171 GHz and from 204 to 154 GHz, respectively. In order to have a detailed insight on the degradation of the RF performance, small-signal models for the InP DHBT before and after substrate transferred are presented and comparably extracted. The extracted results show that the degradation of the RF performance of the device transferred to RF CMOS wafer substrate are mainly caused by the additional introduced substrate parasitics and the increase of the capacitive parasitics induced by the substrate transfer process itself. Project supported by the National Natural Science Foundation of China (No. 61331006) and the Natural Science Foundation of Zhejiang Province (No. Y14F010017).

  6. I2 basal stacking fault as a degradation mechanism in reverse gate-biased AlGaN/GaN HEMTs

    NASA Astrophysics Data System (ADS)

    Lang, A. C.; Hart, J. L.; Wen, J. G.; Miller, D. J.; Meyer, D. J.; Taheri, M. L.

    2016-09-01

    Here, we present the observation of a bias-induced, degradation-enhancing defect process in plasma-assisted molecular beam epitaxy grown reverse gate-biased AlGaN/GaN high electron mobility transistors (HEMTs), which is compatible with the current theoretical framework of HEMT degradation. Specifically, we utilize both conventional transmission electron microscopy and aberration-corrected transmission electron microscopy to analyze microstructural changes in not only high strained regions in degraded AlGaN/GaN HEMTs but also the extended gate-drain access region. We find a complex defect structure containing an I2 basal stacking fault and offer a potential mechanism for device degradation based on this defect structure. This work supports the reality of multiple failure mechanisms during device operation and identifies a defect potentially involved with device degradation.

  7. Permittivity and temperature effects on rectification performance of self-switching diodes with different geometrical structures using two-dimensional device simulator

    NASA Astrophysics Data System (ADS)

    Zakaria, N. F.; Kasjoo, S. R.; Zailan, Z.; Isa, M. M.; Taking, S.; Arshad, M. K. M.

    2017-12-01

    Characterization on an InGaAs-based self-switching diode (SSD) using technology computer aided design (TCAD) aimed for optimizing the electrical rectification performance of the device is reported. The rectifying performance is mainly contributed by a parameter known as the curvature coefficient which is derived from the current-voltage (I-V) behavior of the device. As such, the curvature coefficient of SSD was analyzed in this work, not only by varying the device's geometrical structure, but also by implementing different dielectric relative permittivity of the device's trenches, ranging from 1.0 to 10. Furthermore, the simulations were performed under temperature range of 300-600 K. The results showed that increased temperature degraded the SSD's rectifying performance due to increased reverse current which can deteriorate the nonlinearity of the device's I-V characteristic. Moreover, an improved curvature coefficient can be achieved using silicon dioxide (∼3.9) as the SSD trenches. The cut-off frequency of SSD with zero-bias curvature coefficient of ∼30 V-1 attained in this work was approximately 80 GHz, operating at unbiased condition. The results obtained can assist the design of SSD to efficiently operate as rectifiers at microwave and terahertz frequencies.

  8. Method and system for reducing device performance degradation of organic devices

    DOEpatents

    Teague, Lucile C.

    2014-09-02

    Methods and systems for reducing the deleterious effects of gate bias stress on the drain current of an organic device, such as an organic thin film transistor, are provided. In a particular aspect, the organic layer of an organic device is illuminated with light having characteristics selected to reduce the gate bias voltage effects on the drain current of the organic device. For instance, the wavelength and intensity of the light are selected to provide a desired recovery of drain current of the organic device. If the characteristics of the light are appropriately matched to the organic device, recovery of the deleterious effects caused by gate bias voltage stress effects on the drain current of the organic device can be achieved. In a particular aspect, the organic device is selectively illuminated with light to operate the organic device in multiple modes of operation.

  9. The design of cathode for organic photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Song, De; Shi, Feng; Xia, Xuan; Li, Ye; Duanmu, Qingduo

    2016-11-01

    We have discussed the effect of the residual gas in the Al metal cathode deposition process and consequently influence the performance of organic photovoltaic devices (such as organic photoelectron detector or solar cell). We believe that the origin of degradation in Jsc and FF from the Al cathode device should be the formation of AlOx in the C60-Al interface, which contaminate the interface and plays a role like an energy barrier that block the charge collect process. To solve this problem the Ag and Alq3 layer had been inserted before the Al. Owing to the advantageous of Alq3 and Ag layer, the device which Al cathode prepared at a lower vacuum condition exhibits a comparable performance to that device which Al cathode deposited in regular situation. As an additional benefit, since the introducing of Alq3/Ag layer in the VOPc/C60 organic photovoltaic device performs a better near-infrared response, this phenomenon has been confirmed by means of both simulation and experimental data. So the design of our new cathode structure provides a degree of freedom to modulate the light absorption for organic photovoltaic devices in short-wave and long-wave.

  10. A simple device for respiratory gating for the MRI of laboratory animals.

    PubMed

    Burdett, N G; Carpenter, T A; Hall, L D

    1993-01-01

    Respiratory motion must be overcome if MRI of the abdomen, even at the lowest resolution, is to be performed satisfactorily. A simple and reliable respiratory gating device, based on the interruption of an infrared (IR) optical beam is described. This device has the advantage that gating is based on the position of the chest as opposed to its velocity, and that it can be used without degrading the radiofrequency isolation of a Faraday cage. Its use in animal MRI is illustrated by high resolution (200 microns) images of in vivo rat liver and kidney.

  11. Degradation of GaAs/AlGaAs Quantized Hall Resistors With Alloyed AuGe/Ni Contacts.

    PubMed

    Lee, Kevin C

    1998-01-01

    Careful testing over a period of 6 years of a number of GaAs/AlGaAs quantized Hall resistors (QHR) made with alloyed AuGe/Ni contacts, both with and without passivating silicon nitride coatings, has resulted in the identification of important mechanisms responsible for degradation in the performance of the devices as resistance standards. Covering the contacts with a film, such as a low-temperature silicon nitride, that is impervious to humidity and other contaminants in the atmosphere prevents the contacts from degrading. The devices coated with silicon nitride used in this study, however, showed the effects of a conducting path in parallel with the 2-dimensional electron gas (2-DEG) at temperatures above 1.1 K which interferes with their use as resistance standards. Several possible causes of this parallel conduction are evaluated. On the basis of this work, two methods are proposed for protecting QHR devices with alloyed AuGe/Ni contacts from degradation: the heterostructure can be left unpassivated, but the alloyed contacts can be completely covered with a very thick (> 3 μm) coating of gold; or the GaAs cap layer can be carefully etched away after alloying the contacts and prior to depositing a passivating silicon nitride coating over the entire sample. Of the two, the latter is more challenging to effect, but preferable because both the contacts and the heterostructure are protected from corrosion and oxidation.

  12. Progress in GaN devices performances and reliability

    NASA Astrophysics Data System (ADS)

    Saunier, P.; Lee, C.; Jimenez, J.; Balistreri, A.; Dumka, D.; Tserng, H. Q.; Kao, M. Y.; Chowdhury, U.; Chao, P. C.; Chu, K.; Souzis, A.; Eliashevich, I.; Guo, S.; del Alamo, J.; Joh, J.; Shur, M.

    2008-02-01

    With the DARPA Wide Bandgap Semiconductor Technology RF Thrust Contract, TriQuint Semiconductor and its partners, BAE Systems, Lockheed Martin, IQE-RF, II-VI, Nitronex, M.I.T., and R.P.I. are achieving great progress towards the overall goal of making Gallium Nitride a revolutionary RF technology ready to be inserted in defense and commercial applications. Performance and reliability are two critical components of success (along with cost and manufacturability). In this paper we will discuss these two aspects. Our emphasis is now operation at 40 V bias voltage (we had been working at 28 V). 1250 µm devices have power densities in the 6 to 9 W/mm with associated efficiencies in the low- to mid 60 % and associated gain in the 12 to 12.5 dB at 10 GHz. We are using a dual field-plate structure to optimize these performances. Very good performances have also been achieved at 18 GHz with 400 µm devices. Excellent progress has been made in reliability. Our preliminary DC and RF reliability tests at 40 V indicate a MTTF of 1E6hrs with1.3 eV activation energy at 150 0C channel temperature. Jesus Del Alamo at MIT has greatly refined our initial findings leading to a strain related theory of degradation that is driven by electric fields. Degradation can occur on the drain edge of the gate due to excessive strain given by inverse piezoelectric effect.

  13. Dissolvable tattoo sensors: from science fiction to a viable technology

    NASA Astrophysics Data System (ADS)

    Cheng, Huanyu; Yi, Ning

    2017-01-01

    Early surrealistic painting and science fiction movies have envisioned dissolvable tattoo electronic devices. In this paper, we will review the recent advances that transform that vision into a viable technology, with extended capabilities even beyond the early vision. Specifically, we focus on the discussion of a stretchable design for tattoo sensors and degradable materials for dissolvable sensors, in the form of inorganic devices with a performance comparable to modern electronics. Integration of these two technologies as well as the future developments of bio-integrated devices is also discussed. Many of the appealing ideas behind developments of these devices are drawn from nature and especially biological systems. Thus, bio-inspiration is believed to continue playing a key role in future devices for bio-integration and beyond.

  14. Hot spot dynamics in carbon nanotube array devices.

    PubMed

    Engel, Michael; Steiner, Mathias; Seo, Jung-Woo T; Hersam, Mark C; Avouris, Phaedon

    2015-03-11

    We report on the dynamics of spatial temperature distributions in aligned semiconducting carbon nanotube array devices with submicrometer channel lengths. By using high-resolution optical microscopy in combination with electrical transport measurements, we observe under steady state bias conditions the emergence of time-variable, local temperature maxima with dimensions below 300 nm, and temperatures above 400 K. On the basis of time domain cross-correlation analysis, we investigate how the intensity fluctuations of the thermal radiation patterns are correlated with the overall device current. The analysis reveals the interdependence of electrical current fluctuations and time-variable hot spot formation that limits the overall device performance and, ultimately, may cause device degradation. The findings have implications for the future development of carbon nanotube-based technologies.

  15. High sensitivity measurement system for the direct-current, capacitance-voltage, and gate-drain low frequency noise characterization of field effect transistors.

    PubMed

    Giusi, G; Giordano, O; Scandurra, G; Rapisarda, M; Calvi, S; Ciofi, C

    2016-04-01

    Measurements of current fluctuations originating in electron devices have been largely used to understand the electrical properties of materials and ultimate device performances. In this work, we propose a high-sensitivity measurement setup topology suitable for the automatic and programmable Direct-Current (DC), Capacitance-Voltage (CV), and gate-drain low frequency noise characterization of field effect transistors at wafer level. Automatic and programmable operation is particularly useful when the device characteristics relax or degrade with time due to optical, bias, or temperature stress. The noise sensitivity of the proposed topology is in the order of fA/Hz(1/2), while DC performances are limited only by the source and measurement units used to bias the device under test. DC, CV, and NOISE measurements, down to 1 pA of DC gate and drain bias currents, in organic thin film transistors are reported to demonstrate system operation and performances.

  16. High sensitivity measurement system for the direct-current, capacitance-voltage, and gate-drain low frequency noise characterization of field effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giusi, G.; Giordano, O.; Scandurra, G.

    Measurements of current fluctuations originating in electron devices have been largely used to understand the electrical properties of materials and ultimate device performances. In this work, we propose a high-sensitivity measurement setup topology suitable for the automatic and programmable Direct-Current (DC), Capacitance-Voltage (CV), and gate-drain low frequency noise characterization of field effect transistors at wafer level. Automatic and programmable operation is particularly useful when the device characteristics relax or degrade with time due to optical, bias, or temperature stress. The noise sensitivity of the proposed topology is in the order of fA/Hz{sup 1/2}, while DC performances are limited only bymore » the source and measurement units used to bias the device under test. DC, CV, and NOISE measurements, down to 1 pA of DC gate and drain bias currents, in organic thin film transistors are reported to demonstrate system operation and performances.« less

  17. Local Imaging of Optoelectronic Properties and Film Degradation in Polymer/Fullerene Solar Cells with Electrostatic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Cox, Phillip Alexander

    With power conversion efficiencies on the rise, organic photovoltaics (OPVs) hold promise as a next-generation thin-film solar technology. However, both device performance and stability are inextricably linked to local film structure. Methods capable of probing nanoscale electronic properties as a function of film structure are thus a crucial component of the rational design of efficient and robust devices. This dissertation describes the use of three scanning probe methods for studying local charge generation and photodegradation in polymer/fullerene solar cells. First, we show that time-resolved electrostatic force microscopy (trEFM) is capable of resolving local photocurrent from sub-bandgap excitation down to attoampere level currents, a result unattainable by traditional contact-mode methods. We find that the local charging rates measured with trEFM are proportional to external quantum efficiency (EQE) measurements made on completed devices, making trEFM images equivalent to local EQE maps across the entire solar spectrum. For both phase-segregated and well-mixed MDMO-PPV:PCBM film morphologies, we show that the local distribution of photocurrent is invariant to excitation wavelength, providing local evidence for the controversial result that the probability of generating separated charge carriers does not depend on whether excitons are formed at the singlet state or charge transfer state. Next, we describe how local dissipation imaging can be performed with commercially-available frequency-modulated electrostatic force microscopy (FM-EFM) and show that dissipation maps are highly sensitive to photo-oxidative effects in organic semiconductors. We show that photo-oxidation induced changes in cantilever energy dissipation are proportional to device performance losses. We further develop dissipation imaging by implementing ringdown imaging, which directly measures the quality factor of the cantilever, enabling quantitative dissipation mapping. Using organic photovoltaic materials as a testbed, we study macroscopic device degradation as a function of photooxidation for three different film morphologies. According to EQE measurements, we find that the stability of the macroscopic devices is very sensitive to processing conditions, with films processed with the solvent additive 1,8-diiodooctane being the most stable. At the microscopic level, we compare the evolution of cantilever power dissipation as a function of photochemical degradation for three different polymer/fullerene blend morphologies, and show that the evolution of local power dissipation correlates with device stability. Lastly, we show that cantilever power dissipation increases more rapidly over large fullerene aggregates than in well-mixed polymer/fullerene regions, suggesting that local photochemistry on the fullerene contributes strongly to the dissipation signal.

  18. Effects of space-radiation damage and temperature on CCD noise for the Lyman FUSE mission

    NASA Astrophysics Data System (ADS)

    Murowinski, Richard G.; Gao, Linzhuang; Deen, Mohamed J.

    1993-09-01

    Charge coupled device (CCD) imaging arrays are becoming more frequently used in space vehicles and equipment, especially space-based astronomical telescopes. It is important to understand the effects of radiation on a CCD so that its performance degradation during mission lifetime can be predicted, and so that methods to prevent unacceptable performance degradation can be found. Much recent work by various groups has focused on the problems surrounding the loss of charge transfer efficiency and the increase in dark current and dark current spikes in CCDs. The use of a CCD as the fine error sensor in the Lyman Far Ultraviolet Spectroscopic Explorer (FUSE) is limited by its noise performance. In this work we attempt to understand some of the factors surrounding the noise degradation due to radiation in a space environment. Later, we demonstrate how low frequency noise can be used as a characterization tool for studying proton radiation damage in CCDs.

  19. Realization of Both High-Performance and Enhanced Durability of Fuel Cells: Pt-Exoskeleton Structure Electrocatalysts.

    PubMed

    Kim, Ok-Hee; Cho, Yoon-Hwan; Jeon, Tae-Yeol; Kim, Jung Won; Cho, Yong-Hun; Sung, Yung-Eun

    2015-07-01

    Core-shell structure nanoparticles have been the subject of many studies over the past few years and continue to be studied as electrocatalysts for fuel cells. Therefore, many excellent core-shell catalysts have been fabricated, but few studies have reported the real application of these catalysts in a practical device actual application. In this paper, we demonstrate the use of platinum (Pt)-exoskeleton structure nanoparticles as cathode catalysts with high stability and remarkable Pt mass activity and report the outstanding performance of these materials when used in membrane-electrode assemblies (MEAs) within a polymer electrolyte membrane fuel cell. The stability and degradation characteristics of these materials were also investigated in single cells in an accelerated degradation test using load cycling, which is similar to the drive cycle of a polymer electrolyte membrane fuel cell used in vehicles. The MEAs with Pt-exoskeleton structure catalysts showed enhanced performance throughout the single cell test and exhibited improved degradation ability that differed from that of a commercial Pt/C catalyst.

  20. Radiation Effects on Current Field Programmable Technologies

    NASA Technical Reports Server (NTRS)

    Katz, R.; LaBel, K.; Wang, J. J.; Cronquist, B.; Koga, R.; Penzin, S.; Swift, G.

    1997-01-01

    Manufacturers of field programmable gate arrays (FPGAS) take different technological and architectural approaches that directly affect radiation performance. Similar y technological and architectural features are used in related technologies such as programmable substrates and quick-turn application specific integrated circuits (ASICs). After analyzing current technologies and architectures and their radiation-effects implications, this paper includes extensive test data quantifying various devices total dose and single event susceptibilities, including performance degradation effects and temporary or permanent re-configuration faults. Test results will concentrate on recent technologies being used in space flight electronic systems and those being developed for use in the near term. This paper will provide the first extensive study of various configuration memories used in programmable devices. Radiation performance limits and their impacts will be discussed for each design. In addition, the interplay between device scaling, process, bias voltage, design, and architecture will be explored. Lastly, areas of ongoing research will be discussed.

  1. Analysis of 2D Transport and Performance Characteristics for Lateral Power Devices Based on AlGaN Alloys

    DOE PAGES

    Coltrin, Michael E.; Baca, Albert G.; Kaplar, Robert J.

    2017-10-26

    In this paper, predicted lateral power device performance as a function of alloy composition is characterized by a standard lateral device figure-of-merit (LFOM) that depends on mobility, critical electric field, and sheet carrier density. The paper presents calculations of AlGaN electron mobility in lateral devices such as HEMTs across the entire alloy composition range. Alloy scattering and optical polar phonon scattering are the dominant mechanisms limiting carrier mobility. Due to the significant degradation of mobility from alloy scattering, at room temperature Al fractions greater than about 85% are required for improved LFOM relative to GaN using a conservative sheet chargemore » density of 1 × 10 13 cm –2. However, at higher temperatures at which AlGaN power devices are anticipated to operate, this “breakeven” composition decreases to about 65% at 500 K, for example. For high-frequency applications, the Johnson figure-of-merit (JFOM) is the relevant metric to compare potential device performance across materials platforms. At room temperature, the JFOM for AlGaN alloys is predicted to surpass that of GaN for Al fractions greater than about 40%.« less

  2. Analysis of 2D Transport and Performance Characteristics for Lateral Power Devices Based on AlGaN Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coltrin, Michael E.; Baca, Albert G.; Kaplar, Robert J.

    In this paper, predicted lateral power device performance as a function of alloy composition is characterized by a standard lateral device figure-of-merit (LFOM) that depends on mobility, critical electric field, and sheet carrier density. The paper presents calculations of AlGaN electron mobility in lateral devices such as HEMTs across the entire alloy composition range. Alloy scattering and optical polar phonon scattering are the dominant mechanisms limiting carrier mobility. Due to the significant degradation of mobility from alloy scattering, at room temperature Al fractions greater than about 85% are required for improved LFOM relative to GaN using a conservative sheet chargemore » density of 1 × 10 13 cm –2. However, at higher temperatures at which AlGaN power devices are anticipated to operate, this “breakeven” composition decreases to about 65% at 500 K, for example. For high-frequency applications, the Johnson figure-of-merit (JFOM) is the relevant metric to compare potential device performance across materials platforms. At room temperature, the JFOM for AlGaN alloys is predicted to surpass that of GaN for Al fractions greater than about 40%.« less

  3. Performance regeneration of InGaZnO transistors with ultra-thin channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Binglei; Li, He; Zhang, Xijian, E-mail: zhangxijian@sdu.edu.cn, E-mail: songam@sdu.edu.cn

    2015-03-02

    Thin-film transistors (TFTs) based on ultra-thin amorphous indium gallium zinc oxide (a-IGZO) semiconductors down to 4 nm were studied motivated by the increasing cost of indium. At and below 5 nm, it was found that the field-effect mobility was severely degraded, the threshold voltage increased, and the output characteristics became abnormal showing no saturated current. By encapsulating a layer of polymethyl methacrylate on the IGZO TFTs, the performance of the 5-nm-thick device was effectively recovered. The devices also showed much higher on/off ratios, improved hysteresis, and normal output characteristic curves as compared with devices not encapsulated. The stability of the encapsulated devicesmore » was also studied over a four month period.« less

  4. Progress toward an advanced condition monitoring system for reusable rocket engines

    NASA Technical Reports Server (NTRS)

    Maram, J.; Barkhoudarian, S.

    1987-01-01

    A new generation of advanced sensor technologies will allow the direct measurement of critical/degradable rocket engine components' health and the detection of degraded conditions before component deterioration affects engine performance, leading to substantial improvements in reusable engines' operation and maintenance. When combined with a computer-based engine condition-monitoring system, these sensors can furnish a continuously updated data base for the prediction of engine availability and advanced warning of emergent maintenance requirements. Attention is given to the case of a practical turbopump and combustion device diagnostic/prognostic health-monitoring system.

  5. Imaging Atomic-Scale Clustering in III–V Semiconductor Alloys

    DOE PAGES

    Hirst, Louise C.; Kotulak, Nicole A.; Tomasulo, Stephanie; ...

    2017-03-13

    Quaternary alloys are essential for the development of high-performance optoelectronic devices. However, immiscibility of the constituent elements can make these materials vulnerable to phase segregation, which degrades the optical and electrical properties of the solid. High-efficiency III–V photovoltaic cells are particularly sensitive to this degradation. InAlAsSb lattice matched to InP is a promising candidate material for high-bandgap subcells of a multijunction photovoltaic device. However, previous studies of this material have identified characteristic signatures of compositional variation, including anomalous low-energy photoluminescence. In this paper, atomic-scale clustering is observed in InAlAsSb via quantitative scanning transmission electron microscopy. Finally, image quantification of atomicmore » column intensity ratios enables the comparison with simulated images, confirming the presence of nonrandom compositional variation in this multispecies alloy.« less

  6. Image degradation by glare in radiologic display devices

    NASA Astrophysics Data System (ADS)

    Badano, Aldo; Flynn, Michael J.

    1997-05-01

    No electronic devices are currently available that can display digital radiographs without loss of visual information compared to traditional transilluminated film. Light scattering within the glass faceplate of cathode-ray tube (CRT) devices causes excessive glare that reduces image contrast. This glare, along with ambient light reflection, has been recognized as a significant limitation for radiologic applications. Efforts to control the effect of glare and ambient light reflection in CRTs include the use of absorptive glass and thin film coatings. In the near future, flat panel displays (FPD) with thin emissive structures should provide very low glare, high performance devices. We have used an optical Monte Carlo simulation to evaluate the effect of glare on image quality for typical CRT and flat panel display devices. The trade-off between display brightness and image contrast is described. For CRT systems, achieving good glare ratio requires a reduction of brightness to 30-40 percent of the maximum potential brightness. For FPD systems, similar glare performance can be achieved while maintaining 80 percent of the maximum potential brightness.

  7. Role of Copper in the Performance of CdS/CdTe Solar Cells (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demtsu, S.; Albin, D.; Sites, J.

    2006-05-01

    The performance of CdS/CdTe solar cells made with evaporated Cu as a primary back contact was studied through current-voltage (JV) at different intensities, quantum efficiency (QE) under light and voltage bias, capacitance-voltage (CV), and drive-level capacitance profiling (DLCP) measurements. The results show that while modest amounts of Cu enhance cell performance, excessive amounts degrade device quality and reduce performance. The analysis is supported with numerical simulations to reproduce and explain some of the experimental results.

  8. Recent progress in degradation and stabilization of organic solar cells

    NASA Astrophysics Data System (ADS)

    Cao, Huanqi; He, Weidong; Mao, Yiwu; Lin, Xiao; Ishikawa, Ken; Dickerson, James H.; Hess, Wayne P.

    2014-10-01

    Stability is of paramount importance in organic semiconductor devices, especially in organic solar cells (OSCs). Serious degradation in air limits wide applications of these flexible, light-weight and low-cost power-generation devices. Studying the stability of organic solar cells will help us understand degradation mechanisms and further improve the stability of these devices. There are many investigations into the efficiency and stability of OSCs. The efficiency and stability of devices even of the same photoactive materials are scattered in different papers. In particular, the extrinsic degradation that mainly occurs near the interface between the organic layer and the cathode is a major stability concern. In the past few years, researchers have developed many new cathodes and cathode buffer layers, some of which have astonishingly improved the stability of OSCs. In this review article, we discuss the recent developments of these materials and summarize recent progresses in the study of the degradation/stability of OSCs, with emphasis on the extrinsic degradation/stability that is related to the intrusion of oxygen and water. The review provides detailed insight into the current status of research on the stability of OSCs and seeks to facilitate the development of highly-efficient OSCs with enhanced stability.

  9. Oxidation/reduction reactions at the metal contact-TlBr interface: an x-ray photoelectron spectroscopy study

    NASA Astrophysics Data System (ADS)

    Nelson, A. J.; Swanberg, E. L.; Voss, L. F.; Graff, R. T.; Conway, A. M.; Nikolic, R. J.; Payne, S. A.; Kim, H.; Cirignano, L.; Shah, K.

    2014-09-01

    TlBr radiation detector operation degrades with time at room temperature and is thought to be due to electromigration of Tl and Br vacancies within the crystal as well as the metal contacts migrating into the TlBr crystal itself due to electrochemical reactions at the metal/TlBr interface. X-ray photoemission spectroscopy (XPS) was used to investigate the metal contact surface/interfacial structure on TlBr devices. Device-grade TlBr was polished and subjected to a 32% HCl etch to remove surface damage prior to Mo or Pt contact deposition. High-resolution photoemission measurements on the Tl 4f, Br 3d, Cl 2p, Mo 3d and Pt 4f core lines were used to evaluate surface chemistry and non-equilibrium interfacial diffusion. Results indicate that anion substitution at the TlBr surface due to the HCl etch forms TlBr1-xClx with consequent formation of a shallow heterojunction. In addition, a reduction of Tl1+ to Tl0 is observed at the metal contacts after device operation in both air and N2 at ambient temperature. Understanding contact/device degradation versus operating environment is useful for improving radiation detector performance.

  10. Approaches to creating and controlling motion in MRI.

    PubMed

    Fischer, Gregory S; Cole, Gregory; Su, Hao

    2011-01-01

    Magnetic Resonance Imaging (MRI) can provide three dimensional (3D) imaging with excellent resolution and sensitivity making it ideal for guiding and monitoring interventions. The development of MRI-compatible interventional devices is complicated by factors including: the high magnetic field strength, the requirement that such devices should not degrade image quality, and the confined physical space of the scanner bore. Numerous MRI guided actuated devices have been developed or are currently being developed utilizing piezoelectric actuators as their primary means of mechanical energy generation to enable better interventional procedure performance. While piezoelectric actuators are highly desirable for MRI guided actuation for their precision, high holding force, and non-magnetic operation they are often found to cause image degradation on a large enough to scale to render live imaging unusable. This paper describes a newly developed piezoelectric actuator driver and control system designed to drive a variety of both harmonic and non-harmonic motors that has been demonstrated to be capable of operating both harmonic and non-harmonic piezoelectric actuators with less than 5% SNR loss under closed loop control. The proposed system device allows for a single controller to control any supported actuator and feedback sensor without any physical hardware changes.

  11. Role of Water in the Reversible Optoelectronic Degradation in Hybrid Perovskites at Low Pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, Genevieve N.; Stuckelberger, Michael; Nietzold, Tara

    There is no doubt about the potential offered by the low-cost fabrication and high efficiency of hybrid organic–inorganic perovskite solar cells. However, the service lifetimes of these devices must be increased from months to years to capitalize on their potential. The archetypal hybrid perovskite for solar cells, methylammonium lead iodide (CH 3NH 3PbI 3, abbreviated MAPI), readily degrades in ambient atmosphere under standard operating conditions. Understanding the origin and effects of this degradation can pave the way to better engineer photovoltaic devices and the perovskite material itself. Herein we present the effects of varying pressure on the electrical performance ofmore » MAPI solar cells. Solar cell parameters, especially open circuit voltage, are significantly affected by the total ambient pressure and present an unexpected reversible behavior upon pressure cycling. We complement photoluminescence studies as a function of ambient atmosphere and temperature with first-principles density functional theory (DFT) calculations. The results suggest that the reversible intercalation of water in MAPI is a necessary component underlying this behavior.« less

  12. Role of Water in the Reversible Optoelectronic Degradation in Hybrid Perovskites at Low Pressure

    DOE PAGES

    Hall, Genevieve N.; Stuckelberger, Michael; Nietzold, Tara; ...

    2017-10-10

    There is no doubt about the potential offered by the low-cost fabrication and high efficiency of hybrid organic–inorganic perovskite solar cells. However, the service lifetimes of these devices must be increased from months to years to capitalize on their potential. The archetypal hybrid perovskite for solar cells, methylammonium lead iodide (CH 3NH 3PbI 3, abbreviated MAPI), readily degrades in ambient atmosphere under standard operating conditions. Understanding the origin and effects of this degradation can pave the way to better engineer photovoltaic devices and the perovskite material itself. Herein we present the effects of varying pressure on the electrical performance ofmore » MAPI solar cells. Solar cell parameters, especially open circuit voltage, are significantly affected by the total ambient pressure and present an unexpected reversible behavior upon pressure cycling. We complement photoluminescence studies as a function of ambient atmosphere and temperature with first-principles density functional theory (DFT) calculations. The results suggest that the reversible intercalation of water in MAPI is a necessary component underlying this behavior.« less

  13. In situ analysis of capacity fade in thin-film anodes for high performance Li-ion all-solid-state batteries

    NASA Astrophysics Data System (ADS)

    Leite, Marina S.; Gong, Chen; Ruzmetov, Dmitry; Talin, A. Alec

    There is still a pressing need to understand how the solid-interfaces in Li-ion all-solid-batteries form, including their chemical composition and electrical characteristics. In order to resolve the origin of the degradation mechanism in Al anodes, we combine in situ scanning electron microscopy in ultra-high vacuum with electrochemical cycling, in addition to ex situ characterization of the morphological, chemical, and electrical changes of the Al anodes upon lithiation. An AlLi alloy capped by a stable Al-Li-O is formed on the top surface of the anode, trapping Li, which results in the capacity fade, from 48.0 to 41.5 μ.Ah/cm2 in two cycles. The addition of a Cu capping layer is insufficient to prevent the device degradation because of the fast Li diffusion within Al. Yet, Si present extremely stable cycling: >92% of capacity retention after 100 cycles, with average Coulombic efficiency of 98%. Our in situ measurements represent a new platform for probing the real-time degradation of electrodes in all-solid-state batteries for energy storage devices.

  14. Electrical Stress Influences the Efficiency of CH3 NH3 PbI3 Perovskite Light Emitting Devices.

    PubMed

    Zhao, Lianfeng; Gao, Jia; Lin, YunHui L; Yeh, Yao-Wen; Lee, Kyung Min; Yao, Nan; Loo, Yueh-Lin; Rand, Barry P

    2017-06-01

    Organic-inorganic hybrid perovskite materials are emerging as semiconductors with potential application in optoelectronic devices. In particular, perovskites are very promising for light-emitting devices (LEDs) due to their high color purity, low nonradiative recombination rates, and tunable bandgap. Here, using pure CH 3 NH 3 PbI 3 perovskite LEDs with an external quantum efficiency (EQE) of 5.9% as a platform, it is shown that electrical stress can influence device performance significantly, increasing the EQE from an initial 5.9% to as high as 7.4%. Consistent with the enhanced device performance, both the steady-state photoluminescence (PL) intensity and the time-resolved PL decay lifetime increase after electrical stress, indicating a reduction in nonradiative recombination in the perovskite film. By investigating the temperature-dependent characteristics of the perovskite LEDs and the cross-sectional elemental depth profile, it is proposed that trap reduction and resulting device-performance enhancement is due to local ionic motion of excess ions, likely excess mobile iodide, in the perovskite film that fills vacancies and reduces interstitial defects. On the other hand, it is found that overstressed LEDs show irreversibly degraded device performance, possibly because ions initially on the perovskite lattice are displaced during extended electrical stress and create defects such as vacancies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Method for nondestructive testing of the film coating behavior of surface acoustic wave (SAW) sensors

    NASA Astrophysics Data System (ADS)

    Taslakov, M. A.; Avramov, I. D.

    2010-04-01

    This paper presents a practical non-destructive method for studying the film coating behavior of SAW devices by using a water soluble dielectric film (manitol) deposited on the SAW device surface by resistive evaporation. After measuring the electrical parameters of the film coated SAW device, the film can easily be removed from its surface by water rinsing without causing any damage to it. The SAW device can then be used over and over again in a large number of film depositions. The method was tested on a 1 GHz surface transverse wave (STW) resonator coated with manitol of varying thickness. After each coating and evaluation, the STW device was successfully recovered without significant performance degradation. Data is presented on the electrical changes of the STW device as a result of depositing manitol coatings of various thicknesses.

  16. Single event upset sensitivity of low power Schottky devices

    NASA Technical Reports Server (NTRS)

    Price, W. E.; Nichols, D. K.; Measel, P. R.; Wahlin, K. L.

    1982-01-01

    Data taken from tests involving heavy ions in the Berkeley 88 in. cyclotron being directed at low power Schottky barrier devices are reported. The tests also included trials in the Harvard cyclotron with 130 MeV protons, and at the U.C. Davis cyclotron using 56 MeV protons. The experiments were performed to study the single event upsets in MSI logic devices containing flip-flops. Results are presented of single-event upsets (SEU) causing functional degradation observed in post-exposure tests of six different devices. The effectiveness of the particles in producing SEUs in logic device functioning was found to be directly proportional to the proton energy. Shielding was determined to offer negligible protection from the particle bombardment. The results are considered significant for the design and fabrication of LS devices for space applications.

  17. Ion-Transport Design for High-Performance Na+-Based Electrochromics.

    PubMed

    Li, Ran; Li, Kerui; Wang, Gang; Li, Lei; Zhang, Qiangqiang; Yan, Jinhui; Chen, Yao; Zhang, Qinghong; Hou, Chengyi; Li, Yaogang; Wang, Hongzhi

    2018-04-24

    Sodium ion (Na + )-based electrochemical systems have been extensively investigated in batteries and supercapacitors and also can be quality candidates for electrochromic (EC) devices. However, poor diffusion kinetics and severe EC performance degradation occur during the intercalation/deintercalation processes because the ionic radii of Na + are larger than those of conventional intercalation ions. Here, through intentional design of ion-transport channels in metal-organic frameworks (MOFs), Na + serves as an efficient intercalation ion for incorporation into a nanostructured electrode with a high diffusion coefficient of approximately 10 -8 cm 2 s -1 . As a result, the well-designed MOF-based EC device demonstrates desirable Na + EC performance, including fast switching speed, multicolor switching, and high stability. A smart "quick response code" display is fabricated using a mask-free laser writing method for application in the "Internet of Things". In addition, the concept of ion transport pathway design can be widely adopted for fabricating high-performance ion intercalation materials and devices for consumer electronics.

  18. Comparison of MWIR unipolar barrier structures based on strained layer superlattices (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ramirez, David A.; Myers, Stephen A.; Kuznetsova, Yuliya; Mathews, Sen; Schuler-Sandy, Theodore; Steenbergen, Elizabeth H.; Morath, Christian P.; Cowan, Vicent M.; Krishna, Sanjay

    2016-09-01

    In this work, we compare the performance of three MWIR unipolar barrier structures based on the InAs/GaSb Type-2 strained layer superlattice material system. We have designed, fabricated, and characterized pBiBn, pBn, and pBp detector structures. All the structures have been designed so that the cut off wavelength is around 5 microns at 100 K. We fabricated single-pixel devices and characterize their radiometric performance. In addition, we have characterized the degradation of the performance of the devices after exposing the devices to 63 MeV proton radiation to total ionizing dose of 100 kRad (Si). In this report, we compare the performance of the different structures with the objective of determining the advantages and disadvantages of the different designs. This work was supported by the Small Business Innovation Research (SBIR) program under the contract FA9453-14-C-0032, sponsored by the Air Force Research Laboratory (AFRL).

  19. Photocharge accumulation and recombination in perovskite solar cells regarding device performance and stability

    NASA Astrophysics Data System (ADS)

    Li, Yusheng; Li, Yiming; Shi, Jiangjian; Li, Hongshi; Zhang, Huiyin; Wu, Jionghua; Li, Dongmei; Luo, Yanhong; Wu, Huijue; Meng, Qingbo

    2018-01-01

    Photocharge accumulation and recombination in perovskite solar cells have been systematically investigated in this paper by electrochemical spectroscopy and transient photocurrent/photovoltage methods. It is found that the non-equilibrium photocharges stored in the selective charge transport layers follow a backward recombination mechanism. That is, the photocharges are first captured by the interface defects corresponding to the fast photovoltage decay, while the bulk charge recombination instead of the diffusion process dominates the slow photovoltage decay process. Further investigation reveals that the device degradation preferentially takes place at the interface under working conditions, which thus can confirm the importance of interface engineering to enhance the device stability.

  20. Large-area low-temperature ultrananocrystaline diamond (UNCD) films and integration with CMOS devices for monolithically integrated diamond MEMD/NEMS-CMOS systems.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sumant, A.V.; Auciello, O.; Yuan, H.-C

    2009-05-01

    Because of exceptional mechanical, chemical, and tribological properties, diamond has a great potential to be used as a material for the development of high-performance MEMS and NEMS such as resonators and switches compatible with harsh environments, which involve mechanical motion and intermittent contact. Integration of such MEMS/NEMS devices with complementary metal oxide semiconductor (CMOS) microelectronics will provide a unique platform for CMOS-driven commercial MEMS/NEMS. The main hurdle to achieve diamond-CMOS integration is the relatively high substrate temperatures (600-800 C) required for depositing conventional diamond thin films, which are well above the CMOS operating thermal budget (400 C). Additionally, a materialsmore » integration strategy has to be developed to enable diamond-CMOS integration. Ultrananocrystalline diamond (UNCD), a novel material developed in thin film form at Argonne, is currently the only microwave plasma chemical vapor deposition (MPCVD) grown diamond film that can be grown at 400 C, and still retain exceptional mechanical, chemical, and tribological properties comparable to that of single crystal diamond. We have developed a process based on MPCVD to synthesize UNCD films on up to 200 mm in diameter CMOS wafers, which will open new avenues for the fabrication of monolithically integrated CMOS-driven MEMS/NEMS based on UNCD. UNCD films were grown successfully on individual Si-based CMOS chips and on 200 mm CMOS wafers at 400 C in a MPCVD system, using Ar-rich/CH4 gas mixture. The CMOS devices on the wafers were characterized before and after UNCD deposition. All devices were performing to specifications with very small degradation after UNCD deposition and processing. A threshold voltage degradation in the range of 0.08-0.44V and transconductance degradation in the range of 1.5-9% were observed.« less

  1. Hardness Assurance Techniques for New Generation COTS Devices

    NASA Technical Reports Server (NTRS)

    Lee, C. I.; Rax, B. G.; Johnston, A. H.

    1996-01-01

    Hardness Assurance (HA) techniques and total dose radiation characterization data for new generation linear and COTS devices from various manufacturers are presented. A bipolar op amp showed significant degradation at HDR, not at low dose rate environment. New generation low-power op amps showed more degradation at low voltage applications. HA test techniques for COTS devices are presented in this paper.

  2. Comprehensive study of the influence of different environments on degradation processes in F8BT: Correlating optoelectronic properties with Raman measurements

    NASA Astrophysics Data System (ADS)

    Linde, Sivan; Shikler, Rafi

    2013-10-01

    There is a growing interest in conjugated polymers from both industrial and academic points of views. The reasons are their tunable optoelectronic properties, ease of production, and excellent mechanical properties. However, the ease with which their optoelectronic properties are tunable make devices based on them prone to fast degradation and therefore, short life time. The issue of degradation of organic based optoelectronic devices is the topic of many ongoing researches. However, much less attention is given to degradation processes of the individual components of the devices and their dependence on the environmental conditions. In this work, we report on the degradation of a film of a polyfluorene block copolymer F8BT that is used in a variety of optoelectronic devices under different environments: Sun exposure, heating, and UV exposure in inert and ambient conditions. Degradation was observed in most of the optoelectronic properties of the film. Topographic measurements did not show observable changes of the film morphology following degradation. However, Raman spectroscopy measurements show changes that indicate degradation in one of the building blocks of the copolymer that is associated with electron's conduction. The absolute value of the correlation coefficient between the decrease in the Raman signal and the decrease in the optoelectronic properties is larger than 0.95 under sun exposure it is larger than 0.8 under all other ambient exposures and smaller than 0.65 under inert conditions. These results support the assumption that Oxygen, not necessarily through photo-oxidation, and also water play an important role in the degradation process and indicate the part of the polymer that is most susceptible to degradation.

  3. Effect of direct current sputtering power on the behavior of amorphous indium-gallium-zinc-oxide thin-film transistors under negative bias illumination stress: A combination of experimental analyses and device simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Jun Tae; Kim, Dong Myong; Choi, Sung-Jin

    The effect of direct current sputtering power of indium-gallium-zinc-oxide (IGZO) on the performance and stability of the corresponding thin-film transistor devices was studied. The field effect mobility increases as the IGZO sputter power increases, at the expense of device reliability under negative bias illumination stress (NBIS). Device simulation based on the extracted sub-gap density of states indicates that the field effect mobility is improved as a result of the number of acceptor-like states decreasing. The degradation by NBIS is suggested to be induced by the formation of peroxides in IGZO rather than charge trapping.

  4. Accelerated Aging with Electrical Overstress and Prognostics for Power MOSFETs

    NASA Technical Reports Server (NTRS)

    Saha, Sankalita; Celaya, Jose Ramon; Vashchenko, Vladislav; Mahiuddin, Shompa; Goebel, Kai F.

    2011-01-01

    Power electronics play an increasingly important role in energy applications as part of their power converter circuits. Understanding the behavior of these devices, especially their failure modes as they age with nominal usage or sudden fault development is critical in ensuring efficiency. In this paper, a prognostics based health management of power MOSFETs undergoing accelerated aging through electrical overstress at the gate area is presented. Details of the accelerated aging methodology, modeling of the degradation process of the device and prognostics algorithm for prediction of the future state of health of the device are presented. Experiments with multiple devices demonstrate the performance of the model and the prognostics algorithm as well as the scope of application. Index Terms Power MOSFET, accelerated aging, prognostics

  5. Degradation of imidacloprid using combined advanced oxidation processes based on hydrodynamic cavitation.

    PubMed

    Patil, Pankaj N; Bote, Sayli D; Gogate, Parag R

    2014-09-01

    The harmful effects of wastewaters containing pesticides or insecticides on human and aquatic life impart the need of effectively treating the wastewater streams containing these contaminants. In the present work, hydrodynamic cavitation reactors have been applied for the degradation of imidacloprid with process intensification studies based on different additives and combination with other similar processes. Effect of different operating parameters viz. concentration (20-60 ppm), pressure (1-8 bar), temperature (34 °C, 39 °C and 42 °C) and initial pH (2.5-8.3) has been investigated initially using orifice plate as cavitating device. It has been observed that 23.85% degradation of imidacloprid is obtained at optimized set of operating parameters. The efficacy of different process intensifying approaches based on the use of hydrogen peroxide (20-80 ppm), Fenton's reagent (H2O2:FeSO4 ratio as 1:1, 1:2, 2:1, 2:2, 4:1 and 4:2), advanced Fenton process (H2O2:Iron Powder ratio as 1:1, 2:1 and 4:1) and combination of Na2S2O8 and FeSO4 (FeSO4:Na2S2O8 ratio as 1:1, 1:2, 1:3 and 1:4) on the extent of degradation has been investigated. It was observed that near complete degradation of imidacloprid was achieved in all the cases at optimized values of process intensifying parameters. The time required for complete degradation of imidacloprid for approach based on hydrogen peroxide was 120 min where as for the Fenton and advance Fenton process, the required time was only 60 min. To check the effectiveness of hydrodynamic cavitation with different cavitating devices, few experiments were also performed with the help of slit venturi as a cavitating device at already optimized values of parameters. The present work has conclusively established that combined processes based on hydrodynamic cavitation can be effectively used for complete degradation of imidacloprid. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Electrical degradation of triarylamine-based light-emitting polymer diodes monitored by micro-Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Kim, Ji-Seon; Ho, Peter K. H.; Murphy, Craig E.; Seeley, Alex J. A. B.; Grizzi, Ilaria; Burroughes, Jeremy H.; Friend, Richard H.

    2004-03-01

    Although much progress has been made in improving polymer light-emitting diode performance, there has been little work to address device intrinsic degradation mechanisms due to the challenge of tracking minute chemical reactions in the 100-nm-thick buried active layers during operation. Here we have elucidated a hole-mediated electrical degradation of triarylamine-based blue polymer diodes using in situ Raman microspectroscopy. A slow irreversible hole-doping of polymer adjacent to the hole-injecting conducting-polymer leads to formation of oxidised triarylamine species counterbalanced by anions from the conducting-polymer. These charged species act as luminescence quenchers and hinder further hole injection across the interface leading to significant decreases in current density at low voltages.

  7. MATERIALS DEGRADATION ANALYSIS AND DEVELOPMENT TO ENABLE ULTRA LOW COST, WEB-PROCESSED WHITE P-OLED FOR SSL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DR. DEVIN MACKENZIE

    2011-12-13

    Progress over Phase II of DE-FG02-07ER86293 'Materials Degradation Analysis and Development to Enable Ultra Low Cost, Web-Processed White P-OLED for SSL' was initially rapid in terms of device performance improvements. We exceeded our device luminance lifetime goals for printed flexible white OLEDs as laid out in our project proposal. Our Phase II performance target was to demonstrate >1500 hours luminance lifetime at 100 Cd/m2 from a printed flexible device. We now have R&D devices well in excess of 8000 hrs lifetime at 100 Cd/m2, tested in air. We also were able to produce devices which met the voltage target ofmore » >1500 hours below 15V operation. After completing the initial performance milestones, we went on to focus on color-related degradation issues which were cited as important to commercialization of the technology by our manufacturing partners. We also put additional focus on cathode work as the active material development that occurred over the STTR time period required an adaptation of the cathode from the original cathode formulations which were developed based on previous generation active layer materials. We were able to improve compatibility of the cathode with some of the newer generation active layer materials and improve device yield and voltage behavior. An additional objective of the initial Phase II was to further develop the underlying manufacturing technology and real-life product specifications. This is a key requirement that must be met to ensure eventual commercialization of this DOE-funded technology. The link between commercial investment for full commercialization and R&D efforts in OLED solid State Lighting is often a large one. Add-Vision's lower cost, printed OLED manufacturing approach is an attraction, but close engagement with manufacturing partners and addressing customer specifications is a very important link. Manufacturing technology encompasses development of moisture reduction encapsulation technology, improved cost performance, and reductions in operating voltage through thinner and higher uniformity active device layers. We have now installed a pilot encapsulation system at AVI for controlled, high throughput lamination encapsulation of flexible OLEDs in a novel process. Along with this, we have developed, with our materials supply partners, adhesives, barrier films and other encapsulation materials and we are showing total air product lifetimes in the 2-4 years range from a process consistent with our throughput goals of {approx}1M device per month ({approx}30,000 sq. ft. of processed OLEDs). Within the last year of the project, we have been working to introduce the manufacturing improvements made in our LEP deposition and annealing process to our commercial partners. Based on the success of this, a pilot scale-up program was begun. During this process, Add-Vision was acquired by a strategic partner, in no small part, because of the promise of future success of the technology as evidenced by our commercial partners pilot scale-up plans. Overall, the performance, manufacturing and product work in this project has been successful. Additional analysis and device work at LBL has also shown a unique adhesion change with device bias stressing which may result from active layer polymer cross-linking during bias stressing of device. It was shown that even small bias stresses, as a fraction of a full device lifetime stress period, result in measurable chemical change in the device. Further work needs to be conducted to fully understand the chemical nature of this interaction. Elucidation of this effect would enable doped OLED formulation to be engineered to suppress this effect and further extend lifetimes and reduce voltage climb.« less

  8. Effects of low speed wind on the recognition/identification and pass-through communication tasks of auditory situation awareness afforded by military hearing protection/enhancement devices and tactical communication and protective systems.

    PubMed

    Lee, Kichol; Casali, John G

    2016-01-01

    To investigate the effect of controlled low-speed wind-noise on the auditory situation awareness performance afforded by military hearing protection/enhancement devices (HPED) and tactical communication and protective systems (TCAPS). Recognition/identification and pass-through communications tasks were separately conducted under three wind conditions (0, 5, and 10 mph). Subjects wore two in-ear-type TCAPS, one earmuff-type TCAPS, a Combat Arms Earplug in its 'open' or pass-through setting, and an EB-15LE electronic earplug. Devices with electronic gain systems were tested under two gain settings: 'unity' and 'max'. Testing without any device (open ear) was conducted as a control. Ten subjects were recruited from the student population at Virginia Tech. Audiometric requirements were 25 dBHL or better at 500, 1000, 2000, 4000, and 8000 Hz in both ears. Performance on the interaction of communication task-by-device was significantly different only in 0 mph wind speed. The between-device performance differences varied with azimuthal speaker locations. It is evident from this study that stable (non-gusting) wind speeds up to 10 mph did not significantly degrade recognition/identification task performance and pass-through communication performance of the group of HPEDs and TCAPS tested. However, the various devices performed differently as the test sound signal speaker location was varied and it appears that physical as well as electronic features may have contributed to this directional result.

  9. Transmissive liquid-crystal device correcting primary coma aberration and astigmatism in laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Tanabe, Ayano; Hibi, Terumasa; Ipponjima, Sari; Matsumoto, Kenji; Yokoyama, Masafumi; Kurihara, Makoto; Hashimoto, Nobuyuki; Nemoto, Tomomi

    2016-03-01

    Laser scanning microscopy allows 3D cross-sectional imaging inside biospecimens. However, certain aberrations produced can degrade the quality of the resulting images. We previously reported a transmissive liquid-crystal device that could compensate for the predominant spherical aberrations during the observations, particularly in deep regions of the samples. The device, inserted between the objective lens and the microscope revolver, improved the image quality of fixed-mouse-brain slices that were observed using two-photon excitation laser scanning microscopy, which was originally degraded by spherical aberration. In this study, we developed a transmissive device that corrects primary coma aberration and astigmatism, motivated by the fact that these asymmetric aberrations can also often considerably deteriorate image quality, even near the sample surface. The device's performance was evaluated by observing fluorescent beads using single-photon excitation laser scanning microscopy. The fluorescence intensity in the image of the bead under a cover slip tilted in the y-direction was increased by 1.5 times after correction by the device. Furthermore, the y- and z-widths of the imaged bead were reduced to 66% and 65%, respectively. On the other hand, for the imaged bead sucked into a glass capillary in the longitudinal x-direction, correction with the device increased the fluorescence intensity by 2.2 times compared to that of the aberrated image. In addition, the x-, y-, and z-widths of the bead image were reduced to 75%, 53%, and 40%, respectively. Our device successfully corrected several asymmetric aberrations to improve the fluorescent signal and spatial resolution, and might be useful for observing various biospecimens.

  10. Degradation of optical components in space

    NASA Technical Reports Server (NTRS)

    Blue, M. D.

    1993-01-01

    This report concerns two types of optical components: multilayer filters and mirrors, and self-scanned imaging arrays using charge coupled device (CCD) readouts. For the filters and mirrors, contamination produces a strong reduction in transmittance in the ultraviolet spectral region, but has little or no effect in the visible and infrared spectral regions. Soft substrates containing halides are unsatisfactory as windows or substrates. Materials choice for dielectric layers should also reflect such considerations. Best performance is also found for the harder materials. Compaction of the layers and interlayer diffusion causes a blue shift in center wavelength and loss of throughput. For sensors using CCD's, shifts in gate voltage and reductions in transfer efficiency occur. Such effects in CCD's are in accord with expectations of the effects of the radiation dose on the device. Except for optical fiber, degradation of CCD's represents the only ionizing-radiation induced effect on the Long Duration Exposure Facility (LDEF) optical systems components that has been observed.

  11. Total Ionizing Dose Effects on Strained Ge pMOS FinFETs on Bulk Si

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, En Xia; Fleetwood, Daniel M.; Hachtel, Jordan A.

    2016-12-02

    In this paper, we have characterized the total ionizing dose response of strained Ge p MOS FinFETs built on bulk Si using a fin replacement process. Devices irradiated to 1.0 Mrad(SiO 2) show minimal transconductance degradation (less than 5%), very small V th shifts (less than 40 mV in magnitude) and very little ON/OFF current ratio degradation (<5%), and only modest variation in radiation response with transistor geometry (typically less than normal part-to-part variation). Both before and after irradiation, the performance of these strained Ge p MOS FinFETs is far superior to that of past generations of planar Ge pmore » MOS devices. Finally, these improved properties result from significant improvements in processing technology, as well as the enhanced gate control provided by the strained Ge FinFET technology.« less

  12. Probing Photocurrent Nonuniformities in the Subcells of Monolithic Perovskite/Silicon Tandem Solar Cells.

    PubMed

    Song, Zhaoning; Werner, Jérémie; Shrestha, Niraj; Sahli, Florent; De Wolf, Stefaan; Niesen, Björn; Watthage, Suneth C; Phillips, Adam B; Ballif, Christophe; Ellingson, Randy J; Heben, Michael J

    2016-12-15

    Perovskite/silicon tandem solar cells with high power conversion efficiencies have the potential to become a commercially viable photovoltaic option in the near future. However, device design and optimization is challenging because conventional characterization methods do not give clear feedback on the localized chemical and physical factors that limit performance within individual subcells, especially when stability and degradation is a concern. In this study, we use light beam induced current (LBIC) to probe photocurrent collection nonuniformities in the individual subcells of perovskite/silicon tandems. The choices of lasers and light biasing conditions allow efficiency-limiting effects relating to processing defects, optical interference within the individual cells, and the evolution of water-induced device degradation to be spatially resolved. The results reveal several types of microscopic defects and demonstrate that eliminating these and managing the optical properties within the multilayer structures will be important for future optimization of perovskite/silicon tandem solar cells.

  13. Mobile devices for community-based REDD+ monitoring: a case study for Central Vietnam.

    PubMed

    Pratihast, Arun Kumar; Herold, Martin; Avitabile, Valerio; de Bruin, Sytze; Bartholomeus, Harm; Souza, Carlos M; Ribbe, Lars

    2012-12-20

    Monitoring tropical deforestation and forest degradation is one of the central elements for the Reduced Emissions from Deforestation and Forest Degradation in developing countries (REDD+) scheme. Current arrangements for monitoring are based on remote sensing and field measurements. Since monitoring is the periodic process of assessing forest stands properties with respect to reference data, adopting the current REDD+ requirements for implementing monitoring at national levels is a challenging task. Recently, the advancement in Information and Communications Technologies (ICT) and mobile devices has enabled local communities to monitor their forest in a basic resource setting such as no or slow internet connection link, limited power supply, etc. Despite the potential, the use of mobile device system for community based monitoring (CBM) is still exceptional and faces implementation challenges. This paper presents an integrated data collection system based on mobile devices that streamlines the community-based forest monitoring data collection, transmission and visualization process. This paper also assesses the accuracy and reliability of CBM data and proposes a way to fit them into national REDD+ Monitoring, Reporting and Verification (MRV) scheme. The system performance is evaluated at Tra Bui commune, Quang Nam province, Central Vietnam, where forest carbon and change activities were tracked. The results show that the local community is able to provide data with accuracy comparable to expert measurements (index of agreement greater than 0.88), but against lower costs. Furthermore, the results confirm that communities are more effective to monitor small scale forest degradation due to subsistence fuel wood collection and selective logging, than high resolution remote sensing SPOT imagery.

  14. Mobile Devices for Community-Based REDD+ Monitoring: A Case Study for Central Vietnam

    PubMed Central

    Pratihast, Arun Kumar; Herold, Martin; Avitabile, Valerio; de Bruin, Sytze; Bartholomeus, Harm; Souza, Carlos M.; Ribbe, Lars

    2013-01-01

    Monitoring tropical deforestation and forest degradation is one of the central elements for the Reduced Emissions from Deforestation and Forest Degradation in developing countries (REDD+) scheme. Current arrangements for monitoring are based on remote sensing and field measurements. Since monitoring is the periodic process of assessing forest stands properties with respect to reference data, adopting the current REDD+ requirements for implementing monitoring at national levels is a challenging task. Recently, the advancement in Information and Communications Technologies (ICT) and mobile devices has enabled local communities to monitor their forest in a basic resource setting such as no or slow internet connection link, limited power supply, etc. Despite the potential, the use of mobile device system for community based monitoring (CBM) is still exceptional and faces implementation challenges. This paper presents an integrated data collection system based on mobile devices that streamlines the community-based forest monitoring data collection, transmission and visualization process. This paper also assesses the accuracy and reliability of CBM data and proposes a way to fit them into national REDD+ Monitoring, Reporting and Verification (MRV) scheme. The system performance is evaluated at Tra Bui commune, Quang Nam province, Central Vietnam, where forest carbon and change activities were tracked. The results show that the local community is able to provide data with accuracy comparable to expert measurements (index of agreement greater than 0.88), but against lower costs. Furthermore, the results confirm that communities are more effective to monitor small scale forest degradation due to subsistence fuel wood collection and selective logging, than high resolution remote sensing SPOT imagery. PMID:23344371

  15. Long-Term Reliability of SiGe/Si HBTs From Accelerated Lifetime Testing

    NASA Technical Reports Server (NTRS)

    Bhattacharya, Pallab

    2001-01-01

    Accelerated lifetime tests were performed on double-mesa structure Si(0.7)Ge(0.3)/Si npn heterojunction bipolar transistors, grown by molecular beam epitaxy, in the temperature range of 175 C-275 C. The transistors (with 5x20 sq micron emitter area) have DC current gains approx. 40-50 and f(sub T) and f(sub max) of up to 22 GHz and 25 GHz, respectively. It is found that a gradual degradation in these devices is caused by the recombination enhanced impurity diffusion (REID) of boron atoms from the p-type base region and the associated formation of parasitic energy barriers to electron transport from the emitter to collector layers. This REED has been quantitatively modeled and explained, to the first order of approximation, and the agreement with the measured data is good. The mean time to failure (MTTF) of these devices at room temperature under 1.35 x 10(exp 4) A/sq cm current density operation is estimated from the extrapolation of the Arrhenius plots of device lifetime versus reciprocal temperature. The results of the reliability tests offer valuable feedback for SiGe heterostructure design in order to improve the long-term reliability of the devices and circuits made with them. Hot electron induced degradation of the base-emitter junction was also observed during the accelerated lifetime testing. In order to improve the HBT reliability endangered by the hot electrons, deuterium sintered techniques have been proposed. The preliminary results from this study show that a deuterium-sintered HBT is, indeed, more resistant to hot-electron induced base-emitter junction degradation.

  16. Self-Consistent Monte Carlo Study of the Coulomb Interaction under Nano-Scale Device Structures

    NASA Astrophysics Data System (ADS)

    Sano, Nobuyuki

    2011-03-01

    It has been pointed that the Coulomb interaction between the electrons is expected to be of crucial importance to predict reliable device characteristics. In particular, the device performance is greatly degraded due to the plasmon excitation represented by dynamical potential fluctuations in high-doped source and drain regions by the channel electrons. We employ the self-consistent 3D Monte Carlo (MC) simulations, which could reproduce both the correct mobility under various electron concentrations and the collective plasma waves, to study the physical impact of dynamical potential fluctuations on device performance under the Double-gate MOSFETs. The average force experienced by an electron due to the Coulomb interaction inside the device is evaluated by performing the self-consistent MC simulations and the fixed-potential MC simulations without the Coulomb interaction. Also, the band-tailing associated with the local potential fluctuations in high-doped source region is quantitatively evaluated and it is found that the band-tailing becomes strongly dependent of position in real space even inside the uniform source region. This work was partially supported by Grants-in-Aid for Scientific Research B (No. 2160160) from the Ministry of Education, Culture, Sports, Science and Technology in Japan.

  17. Controllable Spatial Configuration on Cathode Interface for Enhanced Photovoltaic Performance and Device Stability.

    PubMed

    Li, Jiangsheng; Duan, Chenghao; Wang, Ning; Zhao, Chengjie; Han, Wei; Jiang, Li; Wang, Jizheng; Zhao, Yingjie; Huang, Changshui; Jiu, Tonggang

    2018-05-08

    The molecular structure of cathode interface modification materials can affect the surface morphology of the active layer and key electron transfer processes occurring at the interface of polymer solar cells in inverted structures mostly due to the change of molecular configuration. To investigate the effects of spatial configuration of the cathode interfacial modification layer on polymer solar cells device performances, we introduced two novel organic ionic salts (linear NS2 and three-dimensional (3D) NS4) combined with the ZnO film to fabricate highly efficient inverted solar cells. Both organic ionic salts successfully decreased the surface traps of the ZnO film and made its work function more compatible. Especially NS4 in three-dimensional configuration increased the electron mobility and extraction efficiency of the interfacial film, leading to a significant improvement of device performance. Power conversion efficiency (PCE) of 10.09% based on NS4 was achieved. Moreover, 3D interfacial modification could retain about 92% of its initial PCE over 160 days. It is proposed that 3D interfacial modification retards the element penetration-induced degradation without impeding the electron transfer from the active layer to the ZnO film, which significantly improves device stability. This indicates that inserting three-dimensional organic ionic salt is an efficient strategy to enhance device performance.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christians, Jeffrey A.; Schulz, Philip; Tinkham, Jonathan S.

    Long-term device stability is the most pressing issue that impedes perovskite solar cell commercialization, given the achieved 22.7% efficiency. The perovskite absorber material itself has been heavily scrutinized for being prone to degradation by water, oxygen and ultraviolet light. To date, most reports characterize device stability in the absence of these extrinsic factors. Here we show that, even under the combined stresses of light (including ultraviolet light), oxygen and moisture, perovskite solar cells can retain 94% of peak efficiency despite 1,000 hours of continuous unencapsulated operation in ambient air conditions (relative humidity of 10-20%). Each interface and contact layer throughoutmore » the device stack plays an important role in the overall stability which, when appropriately modified, yields devices in which both the initial rapid decay (often termed burn-in) and the gradual slower decay are suppressed. This extensively modified device architecture and the understanding developed will lead towards durable long-term device performance.« less

  19. Growth of carbon nanotubes on fully processed silicon-on-insulator CMOS substrates.

    PubMed

    Haque, M Samiul; Ali, S Zeeshan; Guha, P K; Oei, S P; Park, J; Maeng, S; Teo, K B K; Udrea, F; Milne, W I

    2008-11-01

    This paper describes the growth of Carbon Nanotubes (CNTs) both aligned and non-aligned on fully processed CMOS substrates containing high temperature tungsten metallization. While the growth method has been demonstrated in fabricating CNT gas sensitive layers for high temperatures SOI CMOS sensors, it can be employed in a variety of applications which require the use of CNTs or other nanomaterials with CMOS electronics. In our experiments we have grown CNTs both on SOI CMOS substrates and SOI CMOS microhotplates (suspended on membranes formed by post-CMOS deep RIE etching). The fully processed SOI substrates contain CMOS devices and circuits and additionally, some wafers contained high current LDMOSFETs and bipolar structures such as Lateral Insulated Gate Bipolar Transistors. All these devices were used as test structures to investigate the effect of additional post-CMOS processing such as CNT growth, membrane formation, high temperature annealing, etc. Electrical characterisation of the devices with CNTs were performed along with SEM and Raman spectroscopy. The CNTs were grown both at low and high temperatures, the former being compatible with Aluminium metallization while the latter being possible through the use of the high temperature CMOS metallization (Tungsten). In both cases we have found that there is no change in the electrical behaviour of the CMOS devices, circuits or the high current devices. A slight degradation of the thermal performance of the CMOS microhotplates was observed due to the extra heat dissipation path created by the CNT layers, but this is expected as CNTs exhibit a high thermal conductance. In addition we also observed that in the case of high temperature CNT growth a slight degradation in the manufacturing yield was observed. This is especially the case where large area membranes with a diameter in excess of 500 microns are used.

  20. Unified Numerical Solver for Device Metastabilities in CdTe Thin-Film PV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasileska, Dragica

    Thin-film modules of all technologies often suffer from performance degradation over time. Some of the performance changes are reversible and some are not, which makes deployment, testing, and energy-yield prediction more challenging. Manufacturers de-vote significant empirical efforts to study these phenomena and to improve semiconduc-tor device stability. Still, understanding the underlying reasons of these instabilities re-mains clouded due to the lack of ability to characterize materials at atomistic levels and the lack of interpretation from the most fundamental material science. The most com-monly alleged causes of metastability in CdTe device, such as “migration of Cu,” have been investigated rigorously overmore » the past fifteen years. Still, the discussion often ended prematurely with stating observed correlations between stress conditions and changes in atomic profiles of impurities or CV doping concentration. Multiple hypotheses sug-gesting degradation of CdTe solar cell devices due to interaction and evolution of point defects and complexes were proposed, and none of them received strong theoretical or experimental confirmation. It should be noted that atomic impurity profiles in CdTe pro-vide very little intelligence on active doping concentrations. The same elements could form different energy states, which could be either donors or acceptors, depending on their position in crystalline lattice. Defects interact with other extrinsic and intrinsic de-fects; for example, changing the state of an impurity from an interstitial donor to a sub-stitutional acceptor often is accompanied by generation of a compensating intrinsic in-terstitial donor defect. Moreover, all defects, intrinsic and extrinsic, interact with the elec-trical potential and free carriers so that charged defects may drift in the electric field and the local electrical potential affects the formation energy of the point defects. Such complexity of interactions in CdTe makes understanding of temporal changes in device performance even more challenging and a closed solution that can treat the entire sys-tem and its interactions is required.« less

  1. Soft-type trap-induced degradation of MoS2 field effect transistors.

    PubMed

    Cho, Young-Hoon; Ryu, Min-Yeul; Lee, Kook Jin; Park, So Jeong; Choi, Jun Hee; Lee, Byung-Chul; Kim, Wungyeon; Kim, Gyu-Tae

    2018-06-01

    The practical applicability of electronic devices is largely determined by the reliability of field effect transistors (FETs), necessitating constant searches for new and better-performing semiconductors. We investigated the stress-induced degradation of MoS 2 multilayer FETs, revealing a steady decrease of drain current by 56% from the initial value after 30 min. The drain current recovers to the initial state when the transistor is completely turned off, indicating the roles of soft-traps in the apparent degradation. The noise current power spectrum follows the model of carrier number fluctuation-correlated mobility fluctuation (CNF-CMF) regardless of stress time. However, the reduction of the drain current was well fitted to the increase of the trap density based on the CNF-CMF model, attributing the presence of the soft-type traps of dielectric oxides to the degradation of the MoS 2 FETs.

  2. Soft-type trap-induced degradation of MoS2 field effect transistors

    NASA Astrophysics Data System (ADS)

    Cho, Young-Hoon; Ryu, Min-Yeul; Lee, Kook Jin; Park, So Jeong; Choi, Jun Hee; Lee, Byung-Chul; Kim, Wungyeon; Kim, Gyu-Tae

    2018-06-01

    The practical applicability of electronic devices is largely determined by the reliability of field effect transistors (FETs), necessitating constant searches for new and better-performing semiconductors. We investigated the stress-induced degradation of MoS2 multilayer FETs, revealing a steady decrease of drain current by 56% from the initial value after 30 min. The drain current recovers to the initial state when the transistor is completely turned off, indicating the roles of soft-traps in the apparent degradation. The noise current power spectrum follows the model of carrier number fluctuation–correlated mobility fluctuation (CNF–CMF) regardless of stress time. However, the reduction of the drain current was well fitted to the increase of the trap density based on the CNF–CMF model, attributing the presence of the soft-type traps of dielectric oxides to the degradation of the MoS2 FETs.

  3. Metal-Phenolic Carbon Nanocomposites for Robust and Flexible Energy-Storage Devices.

    PubMed

    Oh, Jun Young; Jung, Yeonsu; Cho, Young Shik; Choi, Jaeyoo; Youk, Ji Ho; Fechler, Nina; Yang, Seung Jae; Park, Chong Rae

    2017-04-22

    Future electronics applications such as wearable electronics depend on the successful construction of energy-storage devices with superior flexibility and high electrochemical performance. However, these prerequisites are challenging to combine: External forces often cause performance degradation, whereas the trade-off between the required nanostructures for strength and electrochemical performance only results in diminished energy storage. Herein, a flexible supercapacitor based on tannic acid (TA) and carbon nanotubes (CNTs) with a unique nanostructure is presented. TA was self-assembled on the surface of the CNTs by metal-phenolic coordination bonds, which provides the hybrid film with both high strength and high pseudocapacitance. Besides 17-fold increased mechanical strength of the final composite, the hybrid film simultaneously exhibits excellent flexibility and volumetric capacitance. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Endurance degradation and lifetime model of p-channel floating gate flash memory device with 2T structure

    NASA Astrophysics Data System (ADS)

    Wei, Jiaxing; Liu, Siyang; Liu, Xiaoqiang; Sun, Weifeng; Liu, Yuwei; Liu, Xiaohong; Hou, Bo

    2017-08-01

    The endurance degradation mechanisms of p-channel floating gate flash memory device with two-transistor (2T) structure are investigated in detail in this work. With the help of charge pumping (CP) measurements and Sentaurus TCAD simulations, the damages in the drain overlap region along the tunnel oxide interface caused by band-to-band (BTB) tunneling programming and the damages in the channel region resulted from Fowler-Nordheim (FN) tunneling erasure are verified respectively. Furthermore, the lifetime model of endurance characteristic is extracted, which can extrapolate the endurance degradation tendency and predict the lifetime of the device.

  5. Cu(In,Ga)Se2 solar cells with In2S3 buffer layer deposited by thermal evaporation

    NASA Astrophysics Data System (ADS)

    Kim, SeongYeon; Rana, Tanka R.; Kim, JunHo; Yun, JaeHo

    2017-12-01

    We report on physical vapor deposition of indium sulfide (In2S3) buffer layers and its application to Cu(In,Ga)Se2 (CIGSe) thin film solar cell. The Indium sulfide buffer layers were evaporated onto CIGSe at various substrate temperatures from room temperature (RT) to 350 °C. The effect of deposition temperature of buffer layers on the solar cell device performance were investigated by analyzing temperature dependent current-voltage ( J- V- T), external quantum efficiency (EQE) and Raman spectroscopy. The fabricated device showed the highest power conversion efficiency of 6.56% at substrate temperature of 250 °C, which is due to the decreased interface recombination. However, the roll-over in J- V curves was observed for solar cell device having buffer deposited at substrate temperature larger than 250 °C. From the measurement results, the interface defect and roll-over related degradation were found to have limitation on the performance of solar cell device.

  6. A device for high-throughput monitoring of degradation in soft tissue samples.

    PubMed

    Tzeranis, D S; Panagiotopoulos, I; Gkouma, S; Kanakaris, G; Georgiou, N; Vaindirlis, N; Vasileiou, G; Neidlin, M; Gkousioudi, A; Spitas, V; Macheras, G A; Alexopoulos, L G

    2018-06-06

    This work describes the design and validation of a novel device, the High-Throughput Degradation Monitoring Device (HDD), for monitoring the degradation of 24 soft tissue samples over incubation periods of several days inside a cell culture incubator. The device quantifies sample degradation by monitoring its deformation induced by a static gravity load. Initial instrument design and experimental protocol development focused on quantifying cartilage degeneration. Characterization of measurement errors, caused mainly by thermal transients and by translating the instrument sensor, demonstrated that HDD can quantify sample degradation with <6 μm precision and <10 μm temperature-induced errors. HDD capabilities were evaluated in a pilot study that monitored the degradation of fresh ex vivo human cartilage samples by collagenase solutions over three days. HDD could robustly resolve the effects of collagenase concentration as small as 0.5 mg/ml. Careful sample preparation resulted in measurements that did not suffer from donor-to-donor variation (coefficient of variance <70%). Due to its unique combination of sample throughput, measurement precision, temporal sampling and experimental versality, HDD provides a novel biomechanics-based experimental platform for quantifying the effects of proteins (cytokines, growth factors, enzymes, antibodies) or small molecules on the degradation of soft tissues or tissue engineering constructs. Thereby, HDD can complement established tools and in vitro models in important applications including drug screening and biomaterial development. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Improved breakdown characteristics of monolithically integrated III-nitride HEMT-LED devices using carbon doping

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Liu, Zhaojun; Huang, Tongde; Ma, Jun; May Lau, Kei

    2015-03-01

    We report selective growth of AlGaN/GaN high electron mobility transistors (HEMTs) on InGaN/GaN light emitting diodes (LEDs) for monolithic integration of III-nitride HEMT and LED devices (HEMT-LED). To improve the breakdown characteristics of the integrated HEMT-LED devices, carbon doping was introduced in the HEMT buffer by controlling the growth pressure and V/III ratio. The breakdown voltage of the fabricated HEMTs grown on LEDs was enhanced, without degradation of the HEMT DC performance. The improved breakdown characteristics can be attributed to better isolation of the HEMT from the underlying conductive p-GaN layer of the LED structure.

  8. Metal-polymer nanocomposites for stretchable optics and plasmonics

    NASA Astrophysics Data System (ADS)

    Potenza, Marco A. C.; Minnai, Chloé; Milani, Paolo

    2016-12-01

    Stretchable and conformable optical devices open very exciting perspectives for the fabrication of systems incorporating diffracting and optical power in a single element and of tunable plasmonic filters and absorbers. The use of nanocomposites obtained by inserting metallic nanoparticles produced in the gas phase into polymeric matrices allows to effectively fabricate cheap and simple stretchable optical elements able to withstand thousands of deformations and stretching cycles without any degradation of their optical properties. The nanocomposite-based reflective optical devices show excellent performances and stability compared to similar devices fabricated with standard techniques. The nanocomposite-based devices can be therefore applied to arbitrary curved non-optical grade surfaces in order to achieve optical power and to minimize aberrations like astigmatism. Examples discussed here include stretchable reflecting gratings, plasmonic filters tunable by mechanical stretching and light absorbers.

  9. Nanoscale Protection Layers To Mitigate Degradation in High-Energy Electrochemical Energy Storage Systems.

    PubMed

    Lin, Chuan-Fu; Qi, Yue; Gregorczyk, Keith; Lee, Sang Bok; Rubloff, Gary W

    2018-01-16

    In the pursuit of energy storage devices with higher energy and power, new ion storage materials and high-voltage battery chemistries are of paramount importance. However, they invite-and often enhance-degradation mechanisms, which are reflected in capacity loss with charge/discharge cycling and sometimes in safety problems. Degradation mechanisms are often driven by fundamentals such as chemical and electrochemical reactions at electrode-electrolyte interfaces, volume expansion and stress associated with ion insertion and extraction, and profound inhomogeneity of electrochemical behavior. While it is important to identify and understand these mechanisms at some reasonable level, it is even more critical to design strategies to mitigate these degradation pathways and to develop means to implement and validate the strategies. A growing set of research highlights the mitigation benefits achievable by forming thin protection layers (PLs) intentionally created as artificial interphase regions at the electrode-electrolyte interface. These advances illustrate a promising-perhaps even generic-pathway for enabling higher-energy and higher-voltage battery configurations. In this Account, we summarize examples of such PLs that serve as mitigation strategies to avoid degradation in lithium metal anodes, conversion-type electrode materials, and alloy-type electrodes. Examples are chosen from a larger body of electrochemical degradation research carried out in Nanostructures for Electrical Energy Storage (NEES), our DOE Energy Frontier Research Center. Overall, we argue on the basis of experimental and theoretical evidence that PLs effectively stabilize the electrochemical interfaces to prevent parasitic chemical and electrochemical reactions and mitigate the structural, mechanical, and compositional degradation of the electrode materials at the electrode-electrolyte interfaces. The evidenced improvement in performance metrics is accomplished by (1) establishing a homogeneous interface for ion insertion and extraction, (2) providing mechanical constraints to maintain structural integrity and robust electronic and ionic conduction pathways, and (3) introducing spatial confinements on the electrode material matrix to alter the phase transformation (delaying the occurrence of the conversion reaction) upon Li insertion, which results in superior electrode performance, excellent capacity retention, and improved reversibility. Taken together, these examples portray a valuable role for thin protection layers synthesized over electrode surfaces, both for their benefit to cycle stability and for revealing insights into degradation and mitigation mechanisms. Furthermore, they underscore the impact of complex electrochemical behavior at nanoscale materials and nanostructure interfaces in modulating the behavior of energy storage devices at the mesoscale and macroscale.

  10. Optical and electrical properties of indium tin oxide films near their laser damage threshold [Electrical and optical properties of indium tin oxide films under multi-pulse laser irradiation at 1064 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Jae -Hyuck; Lange, Andrew; Bude, Jeff

    In this paper, we investigated whether the optical and electrical properties of indium tin oxide (ITO) films are degraded under laser irradiation below their laser ablation threshold. While performing multi-pulse laser damage experiments on a single ITO film (4.7 ns, 1064 nm, 10 Hz), we examined the optical and electrical properties in situ. A decrease in reflectance was observed prior to laser damage initiation. However, under sub-damage threshold irradiation, conductivity and reflectance of the film were maintained without measurable degradation. This indicates that ITO films in optoelectronic devices may be operated below their lifetime laser damage threshold without noticeable performancemore » degradation.« less

  11. Optical and electrical properties of indium tin oxide films near their laser damage threshold [Electrical and optical properties of indium tin oxide films under multi-pulse laser irradiation at 1064 nm

    DOE PAGES

    Yoo, Jae -Hyuck; Lange, Andrew; Bude, Jeff; ...

    2017-02-10

    In this paper, we investigated whether the optical and electrical properties of indium tin oxide (ITO) films are degraded under laser irradiation below their laser ablation threshold. While performing multi-pulse laser damage experiments on a single ITO film (4.7 ns, 1064 nm, 10 Hz), we examined the optical and electrical properties in situ. A decrease in reflectance was observed prior to laser damage initiation. However, under sub-damage threshold irradiation, conductivity and reflectance of the film were maintained without measurable degradation. This indicates that ITO films in optoelectronic devices may be operated below their lifetime laser damage threshold without noticeable performancemore » degradation.« less

  12. Hydroxide based Benzyltrimethylammonium degradation: Quantification of rates and degradation technique development

    DOE PAGES

    Sturgeon, Matthew R.; Macomber, Clay S.; Engtrakul, Chaiwat; ...

    2015-01-21

    Anion exchange membranes (AEMs) are of interest as hydroxide conducting polymer electrolytes in electrochemical devices like fuel cells and electrolyzers. AEMs require hydroxide stable covalently tetherable cations to ensure required conductivity. Benzyltrimethylammonium (BTMA) has been the covalently tetherable cation that has been most often employed in anion exchange membranes because it is reasonably basic, compact (limited number of atoms per charge), and easily/cheaply synthesized. Several reports exist that have investigated hydroxide stability of BTMA under specific conditions, but consistency within these reports and comparisons between them have not yet been made. While the hydroxide stability of BTMA has been believedmore » to be a limitation for AEMs, this stability has not been thoroughly reported. In this paper, we have found that several methods reported have inherent flaws in their findings due to the difficulty of performing degradation experiments at high temperature and high pH. In order to address these shortcomings, we have developed a reliable, standardized method of determining cation degradation under conditions similar/relevant to those expected in electrochemical devices. The experimental method has been employed to determine BTMA stabilities at varying cation concentrations and elevated temperatures, and has resulted in improved experimental accuracy and reproducibility. Finally and most notably, these results have shown that BTMA is quite stable at 80°C (half-life of ~4 years), a significant increase in stability over what had been reported previously.« less

  13. MODIS Solar Diffuser On-orbit Performance

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Chen, H.; Choi, T.; Sun, J.; Angal, A.

    2008-01-01

    MODIS is a key instrument for the NASA Earth Observing System (EOS), currently operated on both the Terra and Aqua missions. Each MODIS instrument has 20 reflective solar bands (RSBs) and 16 thermal emissive bands (TEBs). MODIS RSB on-orbit calibration is reflectance based using an on-board solar diffuser (SD). The SD bi-directional reflectance factors (BRFs) were characterized pre-launch using reference diffuser samples, which are traceable to NIST reflectance standards. The SD BRF on-orbit degradation (or change) is tracked by another onboard device, called the solar diffuser stability monitor (SDSM). The SDSM is operated during each scheduled SD calibration event, making alternate observations of direct sunlight and the diffusely reflected sunlight from the SD. The time series of the ratios of SDSM's SD view to its Sun view provide SD degradation information. This paper presents and compares the Terra and Aqua MODIS SD on-orbit performance. Results show that the SD on-orbit degradation depends on the amount of solar exposure of the SD plate. In addition, it is strongly wavelengthdependent, with a larger degradation rate at shorter wavelengths. For Terra MODIS, an SD door anomaly occurred in May 2003 that led to a decision to fix the door permanently at an "open" position. Since then, the SD degradation rate has significantly increased due to more frequent solar exposure. As expected, the SD on-orbit performance directly impacts the RSB calibration performance. The lessons learned from MODIS on-orbit calibration will provide useful insights into the development and operation of future SD calibration systems.

  14. Excitons and the lifetime of organic semiconductor devices.

    PubMed

    Forrest, Stephen R

    2015-06-28

    While excitons are responsible for the many beneficial optical properties of organic semiconductors, their non-radiative recombination within the material can result in material degradation due to the dumping of energy onto localized molecular bonds. This presents a challenge in developing strategies to exploit the benefits of excitons without negatively impacting the device operational stability. Here, we will briefly review the fundamental mechanisms leading to excitonic energy-driven device ageing in two example devices: blue emitting electrophosphorescent organic light emitting devices (PHOLEDs) and organic photovoltaic (OPV) cells. We describe strategies used to minimize or even eliminate this fundamental device degradation pathway. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  15. Inert gas annealing effect in solution-processed amorphous indium-gallium-zinc-oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Lee, Seungwoon; Jeong, Jaewook

    2017-08-01

    In this paper, the annealing effect of solution-processed amorphous indium-gallium-zinc-oxide thin-film transistors (a-IGZO TFTs), under ambient He (He-device), is systematically analyzed by comparison with those under ambient O2 (O2-device) and N2 (N2-device), respectively. The He-device shows high field-effect mobility and low subthreshold slope owing to the minimization of the ambient effect. The degradation of the O2- and N2-device performances originate from their respective deep acceptor-like and shallow donor-like characteristics, which can be verified by comparison with the He-device. However, the three devices show similar threshold voltage instability under prolonged positive bias stress due to the effect of excess oxygen. Therefore, annealing in ambient He is the most suitable method for the fabrication of reference TFTs to study the various effects of the ambient during the annealing process in solution-processed a-IGZO TFTs.

  16. Degradation mechanism of SESAMs under intense ultrashort pulses in modelocked VECSELs

    NASA Astrophysics Data System (ADS)

    Addamane, Sadhvikas; Shima, Darryl; Laurain, Alexandre; Chan, Hsiu-Ting; Balakrishnan, Ganesh; Moloney, Jerome V.

    2018-02-01

    Mode-locked VECSELs using SESAMs are a relatively less complex and cost-effective alternative to state-of-the-art ultrafast lasers based on solid-state or fiber lasers. VECSELs have seen considerable progress in device performance in terms of pulse width and peak power in the recent years. However, it appears that the combination of high power and short pulses can cause some irreversible damage to the SESAM. The degradation mechanism, which can lead to a reduction of the VECSEL output power over time, is not fully understood and deserves to be investigated and alleviated in order to achieve stable mode-locking over long periods of time. It is particularly important for VECSEL systems meant to be commercialized, needing long term operation with a long product lifetime. Here, we investigate the performance and robustness of a SESAM-modelocked VECSEL system under intense pulse intensity excitation. The effect of the degradation on the VECSEL performance is investigated using the SESAM in a VECSEL cavity supporting ultrashort pulses, while the degradation mechanism was investigated by exciting the SESAMs with an external femtosecond laser source. The decay of the photoluminescence (PL) and reflectivity under high excitation was monitored and the damaged samples were further analyzed using a thorough Transmission Electron Microscopy (TEM) analysis. It is found that the major contribution to the degradation is the field intensity and that the compositional damage is confined to the DBR region of the SESAM.

  17. Ferroelectric nanoparticle-embedded sponge structure triboelectric generators

    NASA Astrophysics Data System (ADS)

    Park, Daehoon; Shin, Sung-Ho; Yoon, Ick-Jae; Nah, Junghyo

    2018-05-01

    We report high-performance triboelectric nanogenerators (TENGs) employing ferroelectric nanoparticles (NPs) embedded in a sponge structure. The ferroelectric BaTiO3 NPs inside the sponge structure play an important role in increasing surface charge density by polarized spontaneous dipoles, enabling the packaging of TENGs even with a minimal separation gap. Since the friction surfaces are encapsulated in the packaged device structure, it suffers negligible performance degradation even at a high relative humidity of 80%. The TENGs also demonstrated excellent mechanical durability due to the elasticity and flexibility of the sponge structure. Consequently, the TENGs can reliably harvest energy even under harsh conditions. The approach introduced here is a simple, effective, and reliable way to fabricate compact and packaged TENGs for potential applications in wearable energy-harvesting devices.

  18. Ferroelectric nanoparticle-embedded sponge structure triboelectric generators.

    PubMed

    Park, Daehoon; Shin, Sung-Ho; Yoon, Ick-Jae; Nah, Junghyo

    2018-05-04

    We report high-performance triboelectric nanogenerators (TENGs) employing ferroelectric nanoparticles (NPs) embedded in a sponge structure. The ferroelectric BaTiO 3 NPs inside the sponge structure play an important role in increasing surface charge density by polarized spontaneous dipoles, enabling the packaging of TENGs even with a minimal separation gap. Since the friction surfaces are encapsulated in the packaged device structure, it suffers negligible performance degradation even at a high relative humidity of 80%. The TENGs also demonstrated excellent mechanical durability due to the elasticity and flexibility of the sponge structure. Consequently, the TENGs can reliably harvest energy even under harsh conditions. The approach introduced here is a simple, effective, and reliable way to fabricate compact and packaged TENGs for potential applications in wearable energy-harvesting devices.

  19. Hydrogel nanoparticle based immunoassay

    DOEpatents

    Liotta, Lance A; Luchini, Alessandra; Petricoin, Emanuel F; Espina, Virginia

    2015-04-21

    An immunoassay device incorporating porous polymeric capture nanoparticles within either the sample collection vessel or pre-impregnated into a porous substratum within fluid flow path of the analytical device is presented. This incorporation of capture particles within the immunoassay device improves sensitivity while removing the requirement for pre-processing of samples prior to loading the immunoassay device. A preferred embodiment is coreshell bait containing capture nanoparticles which perform three functions in one step, in solution: a) molecular size sieving, b) target analyte sequestration and concentration, and c) protection from degradation. The polymeric matrix of the capture particles may be made of co-polymeric materials having a structural monomer and an affinity monomer, the affinity monomer having properties that attract the analyte to the capture particle. This device is useful for point of care diagnostic assays for biomedical applications and as field deployable assays for environmental, pathogen and chemical or biological threat identification.

  20. Device performance of in situ steam generated gate dielectric nitrided by remote plasma nitridation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Shareef, H. N.; Karamcheti, A.; Luo, T. Y.

    2001-06-11

    In situ steam generated (ISSG) oxides have recently attracted interest for use as gate dielectrics because of their demonstrated reliability improvement over oxides formed by dry oxidation. [G. Minor, G. Xing, H. S. Joo, E. Sanchez, Y. Yokota, C. Chen, D. Lopes, and A. Balakrishna, Electrochem. Soc. Symp. Proc. 99-10, 3 (1999); T. Y. Luo, H. N. Al-Shareef, G. A. Brown, M. Laughery, V. Watt, A. Karamcheti, M. D. Jackson, and H. R. Huff, Proc. SPIE 4181, 220 (2000).] We show in this letter that nitridation of ISSG oxide using a remote plasma decreases the gate leakage current of ISSGmore » oxide by an order of magnitude without significantly degrading transistor performance. In particular, it is shown that the peak normalized transconductance of n-channel devices with an ISSG oxide gate dielectric decreases by only 4% and the normalized drive current by only 3% after remote plasma nitridation (RPN). In addition, it is shown that the reliability of the ISSG oxide exhibits only a small degradation after RPN. These observations suggest that the ISSG/RPN process holds promise for gate dielectric applications. {copyright} 2001 American Institute of Physics.« less

  1. Pushing the Performance Limit of Sub-100 nm Molybdenum Disulfide Transistors.

    PubMed

    Liu, Yuan; Guo, Jian; Wu, Yecun; Zhu, Enbo; Weiss, Nathan O; He, Qiyuan; Wu, Hao; Cheng, Hung-Chieh; Xu, Yang; Shakir, Imran; Huang, Yu; Duan, Xiangfeng

    2016-10-12

    Two-dimensional semiconductors (2DSCs) such as molybdenum disulfide (MoS 2 ) have attracted intense interest as an alternative electronic material in the postsilicon era. However, the ON-current density achieved in 2DSC transistors to date is considerably lower than that of silicon devices, and it remains an open question whether 2DSC transistors can offer competitive performance. A high current device requires simultaneous minimization of the contact resistance and channel length, which is a nontrivial challenge for atomically thin 2DSCs, since the typical low contact resistance approaches for 2DSCs either degrade the electronic properties of the channel or are incompatible with the fabrication process for short channel devices. Here, we report a new approach toward high-performance MoS 2 transistors by using a physically assembled nanowire as a lift-off mask to create ultrashort channel devices with pristine MoS 2 channel and self-aligned low resistance metal/graphene hybrid contact. With the optimized contact in short channel devices, we demonstrate sub-100 nm MoS 2 transistor delivering a record high ON-current of 0.83 mA/μm at 300 K and 1.48 mA/μm at 20 K, which compares well with that of silicon devices. Our study, for the first time, demonstrates that the 2DSC transistors can offer comparable performance to the 2017 target for silicon transistors in International Technology Roadmap for Semiconductors (ITRS), marking an important milestone in 2DSC electronics.

  2. In situ characterization of the oxidative degradation of a polymeric light emitting device

    NASA Astrophysics Data System (ADS)

    Cumpston, B. H.; Parker, I. D.; Jensen, K. F.

    1997-04-01

    Light-emitting devices with polymeric emissive layers have great promise for the production of large-area, lightweight, flexible color displays, but short lifetimes currently limit applications. We address mechanisms of bulk polymer degradation in these devices and show through in situ Fourier transform infrared characterization of working light-emitting devices with active layers of poly[2-methoxy,5-(2'-ethyl-hexoxy)-1,4-phenylene vinylene] that oxygen is responsible for the degradation of the polymer film. A mechanism is given based on the formation of singlet oxygen from oxygen impurities in the film via energy transfer from a nonradiative exciton. Fourier transform infrared and x-ray photoelectron spectroscopy results are consistent with the mechanism, involving singlet oxygen attack followed by free radical processes. We further show that oxygen readily diffuses into the active polymer layer, changing the electrical characteristics of the film even at low concentrations. Thus, polyphenylene-vinylene-based light-emitting devices will self-destruct during operation if fabricated without special attention to eliminating oxygen contamination during fabrication and device operation.

  3. Prognostics of Power MOSFET

    NASA Technical Reports Server (NTRS)

    Celaya, Jose Ramon; Saxena, Abhinav; Vashchenko, Vladislay; Saha, Sankalita; Goebel, Kai Frank

    2011-01-01

    This paper demonstrates how to apply prognostics to power MOSFETs (metal oxide field effect transistor). The methodology uses thermal cycling to age devices and Gaussian process regression to perform prognostics. The approach is validated with experiments on 100V power MOSFETs. The failure mechanism for the stress conditions is determined to be die-attachment degradation. Change in ON-state resistance is used as a precursor of failure due to its dependence on junction temperature. The experimental data is augmented with a finite element analysis simulation that is based on a two-transistor model. The simulation assists in the interpretation of the degradation phenomena and SOA (safe operation area) change.

  4. Pulsed Discharge in Aerosol for Waste Water Clean-up.

    NASA Astrophysics Data System (ADS)

    Bystritskii, V. M.; Gonzales, A.; Olson, T.; Puchkarev, V.; Rosocha, L.; Wessel, F.; Yankelevich, Y.

    1996-11-01

    Aerosol (drop diameter of 10-100 μm) is injected into a discharge reactor with a repetitively pulsed voltage of 40--60 kV, 50--150 ns, 10^2--10^3 Hz. The relatively large water dielectric constant and high degree of atomization result in efficient degradation of organic molecules. Results on the characterization of operational parameters of the device and on degradation performance for a variety of organic pollutants (paranitrophenol, di-Chlorophenol, per-chloro-ethylene) are discussed. Work was supported by the Los Alamos National Laboratories 96 LACOR Program. ^AUniversity of Southern California, Los Angeles, CA 94007 ^BLos Alamos National Laboratory, Los Alamos, NM 87545

  5. Hybrid photovoltaic and thermoelectric module for high concentration solar system

    NASA Astrophysics Data System (ADS)

    Tamaki, Ryo; Toyoda, Takeshi; Tamura, Yoichi; Matoba, Akinari; Minamikawa, Toshiharu; Tokuda, Masayuki; Masui, Megumi; Okada, Yoshitaka

    2017-09-01

    A photovoltaic (PV) and thermoelectric (TE) hybrid module was developed for application to high concentration solar systems. The waste heat from the solar cells under concentrated light illumination was utilized to generate additional electricity by assembling TE devices below the multi-junction solar cells (MJSCs). Considering the high operating temperature of the PV and TE hybrid module compared with conventional concentrator PV modules, the TE device could compensate a part of the MJSC efficiency degradation at high temperature. The performance investigation clarified the feasibility of the hybrid PV and TE module under highly concentrated sunlight illumination.

  6. Digital Mirror Device Application in Reduction of Wave-front Phase Errors

    PubMed Central

    Zhang, Yaping; Liu, Yan; Wang, Shuxue

    2009-01-01

    In order to correct the image distortion created by the mixing/shear layer, creative and effectual correction methods are necessary. First, a method combining adaptive optics (AO) correction with a digital micro-mirror device (DMD) is presented. Second, performance of an AO system using the Phase Diverse Speckle (PDS) principle is characterized in detail. Through combining the DMD method with PDS, a significant reduction in wavefront phase error is achieved in simulations and experiments. This kind of complex correction principle can be used to recovery the degraded images caused by unforeseen error sources. PMID:22574016

  7. Image deblurring in smartphone devices using built-in inertial measurement sensors

    NASA Astrophysics Data System (ADS)

    Šindelář, Ondřej; Šroubek, Filip

    2013-01-01

    Long-exposure handheld photography is degraded with blur, which is difficult to remove without prior information about the camera motion. In this work, we utilize inertial sensors (accelerometers and gyroscopes) in modern smartphones to detect exact motion trajectory of the smartphone camera during exposure and remove blur from the resulting photography based on the recorded motion data. The whole system is implemented on the Android platform and embedded in the smartphone device, resulting in a close-to-real-time deblurring algorithm. The performance of the proposed system is demonstrated in real-life scenarios.

  8. Controllable Growth of Perovskite Films by Room-Temperature Air Exposure for Efficient Planar Heterojunction Photovoltaic Cells

    DOE PAGES

    Yang, Bin; Dyck, Ondrej; Poplawsky, Jonathan; ...

    2015-12-01

    A two-step-solution-processing approach has been established to grow void-free perovskite films for low-cost and high-performance planar heterojunction photovoltaic devices. We generally applied a high-temperature thermal annealing treatment in order to drive the diffusion of CH 3NH 3I precursor molecules into the compact PbI 2 layer to form perovskite films. But, thermal annealing for extended periods would lead to degraded device performance due to the defects generated by decomposition of perovskite into PbI 2. In this work, we explored a controllable layer-by-layer spin-coating method to grow bilayer CH 3NH 3I/PbI 2 films, and then drive the interdiffusion between PbI 2 andmore » CH 3NH 3I layers by a simple room-temperature-air-exposure for making well-oriented, highly-crystalline perovskite films without thermal annealing. This high degree of crystallinity resulted in a carrier diffusion length of ~ 800 nm and high device efficiency of 15.6%, which is comparable to the reported values from thermally-annealed perovskite films based counterparts. Finally, the simplicity and high device performance of this processing approach is highly promising for direct integration into industrial-scale device manufacture.« less

  9. Excellent Resistive Switching Performance of Cu-Se-Based Atomic Switch Using Lanthanide Metal Nanolayer at the Cu-Se/Al2O3 Interface.

    PubMed

    Woo, Hyunsuk; Vishwanath, Sujaya Kumar; Jeon, Sanghun

    2018-03-07

    The next-generation electronic society is dependent on the performance of nonvolatile memory devices, which has been continuously improving. In the last few years, many memory devices have been introduced. However, atomic switches are considered to be a simple and reliable basis for next-generation nonvolatile devices. In general, atomic switch-based resistive switching is controlled by electrochemical metallization. However, excess ion injection from the entire area of the active electrode into the switching layer causes device nonuniformity and degradation of reliability. Here, we propose the fabrication of a high-performance atomic switch based on Cu x -Se 1- x by inserting lanthanide (Ln) metal buffer layers such as neodymium (Nd), samarium (Sm), dysprosium (Dy), or lutetium (Lu) between the active metal layer and the electrolyte. Current-atomic force microscopy results confirm that Cu ions penetrate through the Ln-buffer layer and form thin conductive filaments inside the switching layer. Compared with the Pt/Cu x -Se 1- x /Al 2 O 3 /Pt device, the optimized Pt/Cu x -Se 1- x /Ln/Al 2 O 3 /Pt devices show improvement in the on/off resistance ratio (10 2 -10 7 ), retention (10 years/85 °C), endurance (∼10 000 cycles), and uniform resistance state distribution.

  10. Photolithographic patterning of vacuum-deposited organic light emitting devices

    NASA Astrophysics Data System (ADS)

    Tian, P. F.; Burrows, P. E.; Forrest, S. R.

    1997-12-01

    We demonstrate a photolithographic technique to fabricate vacuum-deposited organic light emitting devices. Photoresist liftoff combined with vertical deposition of the emissive organic materials and the metal cathode, followed by oblique deposition of a metal cap, avoids the use of high processing temperatures and the exposure of the organic materials to chemical degradation. The unpackaged devices show no sign of deterioration in room ambient when compared with conventional devices fabricated using low-resolution, shadow mask patterning. Furthermore, the devices are resistant to rapid degradation when operated in air for extended periods. This work illustrates a potential foundation for the volume production of very high-resolution, full color, flat panel displays based on small molecular weight organic light emitting devices.

  11. Field assessment and enhancement of cognitive performance: development of an ambulatory vigilance monitor.

    PubMed

    Lieberman, Harris R; Kramer, F Matthew; Montain, Scott J; Niro, Philip

    2007-05-01

    Limited opportunities to study human cognitive performance in non-laboratory, ambulatory situations exist. However, advances in technology make it possible to extend behavioral assessments to the field. One of the first devices to measure human behavior in the field was the wrist-worn actigraph. This device acquires minute-by-minute information on an individual's physical activity and can distinguish sleep from waking, the most basic aspect of behavior. Our laboratory developed a series of wrist-worn devices, not much larger than a watch, which assess reaction time, vigilance and memory. The devices concurrently assess motor activity with greater temporal resolution than standard actigraphs. They also continuously monitor multiple environmental variables including temperature, humidity, sound, and light. These monitors have been employed during training and simulated military operations to collect behavioral and environmental information that would typically be unavailable under such circumstances. Development of the vigilance monitor, and how each successive version extended capabilities of the device are described. Data from several studies are presented, including studies conducted in harsh field environments during a simulated infantry assault, an officer training course. The monitors simultaneously documented environmental conditions, patterns of sleep and activity and effects of nutritional manipulations on cognitive performance. They provide a new method to relate cognitive performance to real world environmental conditions and assess effects of various interventions on human behavior in the field. They can also monitor cognitive performance in real time, and if it is degraded, attempt to intervene to maintain

  12. Long term performance of wearable transducer for motion energy harvesting

    NASA Astrophysics Data System (ADS)

    McGarry, Scott A.; Behrens, Sam

    2010-04-01

    Personal electronic devices such as cell phones, GPS and MP3 players have traditionally depended on battery energy storage technologies for operation. By harvesting energy from a person's motion, these devices may achieve greater run times without increasing the mass or volume of the electronic device. Through the use of a flexible piezoelectric transducer such as poly-vinylidene fluoride (PVDF), and integrating it into a person's clothing, it becomes a 'wearable transducer'. As the PVDF transducer is strained during the person's routine activities, it produces an electrical charge which can then be harvested to power personal electronic devices. Existing wearable transducers have shown great promise for personal motion energy harvesting applications. However, they are presently physically bulky and not ergonomic for the wearer. In addition, there is limited information on the energy harvesting performance for wearable transducers, especially under realistic conditions and for extended cyclic force operations - as would be experienced when worn. In this paper, we present experimental results for a wearable PVDF transducer using a person's measured walking force profile, which is then cycled for a prolonged period of time using an experimental apparatus. Experimental results indicate that after an initial drop in performance, the transducer energy harvesting performance does not substantially deteriorate over time, as less than 10% degradation was observed. Longevity testing is still continuing at CSIRO.

  13. The development of an intraruminal nylon bag technique using non-fistulated animals to assess the rumen degradability of dietary plant materials.

    PubMed

    Pagella, J H; Mayes, R W; Pérez-Barbería, F J; Ørskov, E R

    2018-01-01

    Although the conventional in situ ruminal degradability method is a relevant tool to describe the nutritional value of ruminant feeds, its need for rumen-fistulated animals may impose a restriction on its use when considering animal welfare issues and cost. The aim of the present work was to develop a ruminal degradability technique which avoids using surgically prepared animals. The concept was to orally dose a series of porous bags containing the test feeds at different times before slaughter, when the bags would be removed from the rumen for degradation measurement. Bags, smaller than those used in the conventional nylon bag technique, were made from woven nylon fabric, following two shape designs (rectangular flat shape, tetrahedral shape) and were fitted with one of three types of device for preventing their regurgitation. These bags were used in two experiments with individually housed non-pregnant, non-lactating sheep, as host animals for the in situ ruminal incubation of forage substrates. The bags were closed at the top edge by machine stitching and wrapped in tissue paper before oral dosing. Standard times for ruminal incubation of substrates in all of the tests were 4, 8, 16, 24, 48, 72 and 96 h before slaughter. The purpose of the first experiment was to compare the effectiveness of the three anti-regurgitation device designs, constructed from nylon cable ties ('Z-shaped', ARD1; 'double Z-shaped', ARD2; 'umbrella-shaped', ARD3), and to observe whether viable degradation curves could be generated using grass hay as the substrate. In the second experiment, three other substrates (perennial ryegrass, red clover and barley straw) were compared using flat and tetrahedral bags fitted with type ARD1 anti-regurgitation devices. Non-linear mixed-effect regression models were used to fit asymptotic exponential curves of the percentage dry matter loss of the four substrates against time of incubation in the reticulorumen, and the effect of type of anti-regurgitation device and the shape of nylon bag. All three devices were highly successful at preventing regurgitation with 93% to 100% of dosed bags being recovered in the reticulorumen at slaughter. Ruminal degradation data obtained for tested forages were in accordance with those expected from the conventional degradability technique using fistulated animals, with no significant differences in the asymptotic values of degradation curves between bag shape or anti-regurgitation device. The results of this research demonstrate the potential for using a small bag technique with intact sheep to characterise the in situ ruminal degradability of roughages.

  14. Environmental stability of high-mobility indium-oxide based transparent electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tohsophon, Thanaporn; Dabirian, Ali; De Wolf, Stefaan

    2015-11-01

    Large-scale deployment of a wide range of optoelectronic devices, including solar cells, critically depends on the long-term stability of their front electrodes. Here, we investigate the performance of Sn-doped In{sub 2}O{sub 3} (ITO), H-doped In{sub 2}O{sub 3} (IO:H), and Zn-doped In{sub 2}O{sub 3} (IZO) electrodes under damp heat (DH) conditions (85 °C, 85% relative humidity). ITO, IO:H capped with ITO, and IZO show high stability with only 3%, 9%, and 13% sheet resistance (R{sub s}) degradation after 1000 h of DH, respectively. For uncapped IO:H, we find a 75% R{sub s} degradation, due to losses in electron Hall mobility (μ{sub Hall}).more » We propose that this degradation results from chemisorbed OH- or H{sub 2}O-related species in the film, which is confirmed by thermal desorption spectroscopy and x-ray photoelectron spectroscopy. While μ{sub Hall} strongly degrades during DH, the optical mobility (μ{sub optical}) remains unchanged, indicating that the degradation mainly occurs at grain boundaries.« less

  15. Dose rate effects on array CCDs exposed by Co-60 γ rays induce saturation output degradation and annealing tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zujun, E-mail: wangzujun@nint.ac.cn; Chen, Wei; He, Baoping

    The experimental tests of dose rate and annealing effects on array charge-coupled devices (CCDs) are presented. The saturation output voltage (V{sub S}) versus the total dose at the dose rates of 0.01, 0.1, 1.0, 10.0 and 50 rad(Si)/s are compared. Annealing tests are performed to eliminate the time-dependent effects. The V{sub S} degradation levels depend on the dose rates. The V{sub S} degradation mechanism induced by dose rate and annealing effects is analyzed. The V{sub S} at 20 krad(Si) with the dose rate of 0.03 rad(Si)/s are supplemented to assure the degradation curves between the dose rates of 0.1 andmore » 0.01 rad(Si)/s. The CCDs are divided into two groups, with one group biased and the other unbiased during {sup 60}Co γ radiation. The V{sub S} degradation levels of the biased CCDs during radiation are more severe than that of the unbiased CCDs.« less

  16. Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability

    DOE PAGES

    Christians, Jeffrey A.; Schulz, Philip; Tinkham, Jonathan S.; ...

    2017-11-28

    Long-term device stability is the most pressing issue that impedes perovskite solar cell commercialization, given the achieved 22.7% efficiency. The perovskite absorber material itself has been heavily scrutinized for being prone to degradation by water, oxygen and ultraviolet light. To date, most reports characterize device stability in the absence of these extrinsic factors. Here we show that, even under the combined stresses of light (including ultraviolet light), oxygen and moisture, perovskite solar cells can retain 94% of peak efficiency despite 1,000 hours of continuous unencapsulated operation in ambient air conditions (relative humidity of 10-20%). Each interface and contact layer throughoutmore » the device stack plays an important role in the overall stability which, when appropriately modified, yields devices in which both the initial rapid decay (often termed burn-in) and the gradual slower decay are suppressed. This extensively modified device architecture and the understanding developed will lead towards durable long-term device performance.« less

  17. Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability

    NASA Astrophysics Data System (ADS)

    Christians, Jeffrey A.; Schulz, Philip; Tinkham, Jonathan S.; Schloemer, Tracy H.; Harvey, Steven P.; Tremolet de Villers, Bertrand J.; Sellinger, Alan; Berry, Joseph J.; Luther, Joseph M.

    2018-01-01

    Long-term device stability is the most pressing issue that impedes perovskite solar cell commercialization, given the achieved 22.7% efficiency. The perovskite absorber material itself has been heavily scrutinized for being prone to degradation by water, oxygen and ultraviolet light. To date, most reports characterize device stability in the absence of these extrinsic factors. Here we show that, even under the combined stresses of light (including ultraviolet light), oxygen and moisture, perovskite solar cells can retain 94% of peak efficiency despite 1,000 hours of continuous unencapsulated operation in ambient air conditions (relative humidity of 10-20%). Each interface and contact layer throughout the device stack plays an important role in the overall stability which, when appropriately modified, yields devices in which both the initial rapid decay (often termed burn-in) and the gradual slower decay are suppressed. This extensively modified device architecture and the understanding developed will lead towards durable long-term device performance.

  18. High-performance visible/UV CCD focal plane technology for spacebased applications

    NASA Technical Reports Server (NTRS)

    Burke, B. E.; Mountain, R. W.; Gregory, J. A.; Huang, J. C. M.; Cooper, M. J.; Savoye, E. D.; Kosicki, B. B.

    1993-01-01

    We describe recent technology developments aimed at large CCD imagers for space based applications in the visible and UV. Some of the principal areas of effort include work on reducing device degradation in the natural space-radiation environment, improvements in quantum efficiency in the visible and UV, and larger-device formats. One of the most serious hazards for space based CCD's operating at low signal levels is the displacement damage resulting from bombardment by energetic protons. Such damage degrades charge-transfer efficiency and increases dark current. We have achieved improved hardness to proton-induced displacement damage by selective ion implants into the CCD channel and by reduced temperature of operation. To attain high quantum efficiency across the visible and UV we have developed a technology for back-illuminated CCD's. With suitable antireflection (AR) coatings such devices have quantum efficiencies near 90 percent in the 500-700-nm band. In the UV band from 200 to 400 nm, where it is difficult to find coatings that are sufficiently transparent and can provide good matching to the high refractive index of silicon, we have been able to substantially increase the quantum efficiency using a thin film of HfO2 as an AR coating. These technology efforts were applied to a 420 x 420-pixel frame-transfer imager, and future work will be extended to a 1024 x 1024-pixel device now under development.

  19. Engineering of superconductors and superconducting devices using artificial pinning sites

    NASA Astrophysics Data System (ADS)

    Wördenweber, Roger

    2017-08-01

    Vortex matter in superconducting films and devices is not only an interesting topic for basic research but plays a substantial role in the applications of superconductivity in general. We demonstrate, that in most electronic applications, magnetic flux penetrates the superconductor and affects the performance of superconducting devices. Therefore, vortex manipulation turns out to be a useful tool to avoid degradation of superconducting device properties. Moreover, it can also be used to analyze and understand novel and interesting physical properties and develop new concepts for superconductor applications. In this review, various concepts for vortex manipulation are sketched. For example, the use of micro- and nanopatterns (especially, antidots) for guiding and trapping of vortices in superconducting films and thin film devices is discussed and experimental evidence of their vortex guidance and vortex trapping by various arrangements of antidots is given. We demonstrate, that the vortex state of matter is very important in applications of superconductivity. A better understanding does not only lead to an improvement of the performance of superconductor components, such as reduced noise, better power handling capability, or improved reliability, it also promises deeper insight into the basic physics of vortices and vortex matter.

  20. Performance of an extended dynamic range time delay integration charge coupled device (XDR TDI CCD) for high-intrascene dynamic range scanning

    NASA Astrophysics Data System (ADS)

    Levine, Peter A.; Dawson, Robin M.; Andrews, James T.; Bhaskaran, Mahalingham; Furst, David; Hsueh, Fu-Lung; Meray, Grazyna M.; Sudol, Thomas M.; Swain, Pradyumna K.; Tower, John R.

    2003-05-01

    Many applications, such as industrial inspection and overhead reconnaissance benefit from line scanning architectures where time delay integration (TDI) significantly improves sensitivity. CCDs are particularly well suited to the TDI architecture since charge is transferred virtually noiselessly down the column. Sarnoff's TDI CCDs have demonstrated extremely high speeds where a 7200 x 64, 8 um pixel device with 120 output ports demonstrated a vertical line transfer rate greater than 800 kHz. The most recent addition to Sarnoff's TDI technology is the implementation of extended dynamic range (XDR) in high speed, back illuminated TDI CCDs. The optical, intrascene dynamic range can be adjusted in the design of the imager with measured dynamic ranges exceeding 2,000,000:1 with no degradation in low light performance. The device provides a piecewise linear response to light where multiple slopes and break points can be set during the CCD design. A description of the device architecture and measured results from fabricated XDR TDI CCDs are presented.

  1. Defect-induced instability mechanisms of sputtered amorphous indium tin zinc oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Park, Jinhee; Rim, You Seung; Li, Chao; Wu, Jiechen; Goorsky, Mark; Streit, Dwight

    2018-04-01

    We report the device performance and stability of sputtered amorphous indium-tin-zinc-oxide (ITZO) thin-film transistors as a function of oxygen ratio [O2/(Ar + O2)] during growth. Increasing the oxygen ratio enhanced the incorporation of oxygen during ITZO film growth and reduced the concentration of deep-level defects associated with oxygen vacancies. Under illumination with no bias stress, device stability and persistent photocurrent were improved with increased oxygen ratio. Bias stress tests of the devices were also performed with and without illumination. While high oxygen ratio growth conditions resulted in decreased deep-level oxygen vacancies in the ITZO material, the same conditions resulted in degradation of the interfacial layer between the ITZO channel and dielectric due to the migration of energetic oxygen ions to the interface. Therefore, when bias stress was applied, increased carrier trap density at the interface led to a decrease in device stability that offsets any improvement in the material itself. In order to take advantage of the improved ITZO material growth at a high oxygen ratio, the interface-related problems must be solved.

  2. Metastability and reliability of CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Guo, Da; Brinkman, Daniel; Shaik, Abdul R.; Ringhofer, Christian; Vasileska, Dragica

    2018-04-01

    Thin-film modules of all technologies often suffer from performance degradation over time. Some of the performance changes are reversible and some are not, which makes deployment, testing, and energy-yield prediction more challenging. Manufacturers devote significant empirical efforts to study these phenomena and to improve semiconductor device stability. Still, understanding the underlying reasons of these instabilities remains clouded due to the lack of ability to characterize materials at atomistic levels and the lack of interpretation from the most fundamental material science. The most commonly alleged causes of metastability in CdTe devices, such as ‘migration of Cu’, have been investigated rigorously over the past fifteen years. Still, the discussion often ended prematurely with stating observed correlations between stress conditions and changes in atomic profiles of impurities or CV doping concentration. Multiple hypotheses suggesting degradation of CdTe solar cell devices due to interaction and evolution of point defects and complexes were proposed, and none of them received strong theoretical or experimental confirmation. It should be noted that atomic impurity profiles in CdTe provide very little intelligence on active doping concentrations. The same elements could form different energy states, which could be either donors or acceptors, depending on their position in crystalline lattice. Defects interact with other extrinsic and intrinsic defects; for example, changing the state of an impurity from an interstitial donor to a substitutional acceptor often is accompanied by generation of a compensating intrinsic interstitial donor defect. Moreover, all defects, intrinsic and extrinsic, interact with the electrical potential and free carriers so that charged defects may drift in the electric field and the local electrical potential affects the formation energy of the point defects. Such complexity of interactions in CdTe makes understanding of temporal changes in device performance even more challenging and a closed solution that can treat the entire system and its interactions is required.

  3. Low-background performance of a monolithic InSb CCD array

    NASA Technical Reports Server (NTRS)

    Bregman, J. D.; Goebel, J. H.; Mccreight, C. R.; Matsumoto, T.

    1982-01-01

    A 20 element monolithic InSb charge coupled device (CCD) detector array was measured under low background conditions to assess its potential for orbital astronomical applications. At a temperature of 64 K, previous results for charge transfer efficiency (CTE) were reproduced, and a sensitivity of about 2 x 10 to the minus 15th power joules was measured. At 27 and 6 K, extended integration times were achieved, but CTE was substantially degraded. The noise was approximately 6000 charges, which was in excess of the level where statistical fluctuations from the illumination could be detected. A telescope demonstration was performed showing that the array sensitivity and difficulty of operation were not substantially different from laboratory levels. Ways in which the device could be improved for astronomical applications were discussed.

  4. Recovery in dc and rf performance of off-state step-stressed AlGaN/GaN high electron mobility transistors with thermal annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Byung-Jae; Hwang, Ya-Hsi; Ahn, Shihyun

    The recovery effects of thermal annealing on dc and rf performance of off-state step-stressed AlGaN/GaN high electron mobility transistors were investigated. After stress, reverse gate leakage current and sub-threshold swing increased and drain current on-off ratio decreased. However, these degradations were completely recovered after thermal annealing at 450 °C for 10 mins for devices stressed either once or twice. The trap densities, which were estimated by temperature-dependent drain-current sub-threshold swing measurements, increased after off-state step-stress and were reduced after subsequent thermal annealing. In addition, the small signal rf characteristics of stressed devices were completely recovered after thermal annealing.

  5. High-Performance Lithium-Air Battery with a Coaxial-Fiber Architecture.

    PubMed

    Zhang, Ye; Wang, Lie; Guo, Ziyang; Xu, Yifan; Wang, Yonggang; Peng, Huisheng

    2016-03-24

    The lithium-air battery has been proposed as the next-generation energy-storage device with a much higher energy density compared with the conventional lithium-ion battery. However, lithium-air batteries currently suffer enormous problems including parasitic reactions, low recyclability in air, degradation, and leakage of liquid electrolyte. Besides, they are designed into a rigid bulk structure that cannot meet the flexible requirement in the modern electronics. Herein, for the first time, a new family of fiber-shaped lithium-air batteries with high electrochemical performances and flexibility has been developed. The battery exhibited a discharge capacity of 12,470 mAh g(-1) and could stably work for 100 cycles in air; its electrochemical performances were well maintained under bending and after bending. It was also wearable and formed flexible power textiles for various electronic devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Warm Pressurant Gas Effects on the Static Bubble Point Pressure for Cryogenic LADs

    NASA Technical Reports Server (NTRS)

    Hartwig, Jason W.; McQuillen, John; Chato, Daniel J.

    2014-01-01

    This paper presents experimental results for the liquid hydrogen and nitrogen bubble point tests using warm pressurant gases conducted at the NASA Glenn Research Center. The purpose of the test series was to determine the effect of elevating the temperature of the pressurant gas on the performance of a liquid acquisition device (LAD). Three fine mesh screen samples (325x2300, 450x2750, 510x3600) were tested in liquid hydrogen and liquid nitrogen using cold and warm non-condensable (gaseous helium) and condensable (gaseous hydrogen or nitrogen) pressurization schemes. Gases were conditioned from 0K - 90K above the liquid temperature. Results clearly indicate degradation in bubble point pressure using warm gas, with a greater reduction in performance using condensable over non-condensable pressurization. Degradation in the bubble point pressure is inversely proportional to screen porosity, as the coarsest mesh demonstrated the highest degradation. Results here have implication on both pressurization and LAD system design for all future cryogenic propulsion systems. A detailed review of historical heated gas tests is also presented for comparison to current results.

  7. Warm Pressurant Gas Effects on the Liquid Hydrogen Bubble Point

    NASA Technical Reports Server (NTRS)

    Hartwig, Jason W.; McQuillen, John B.; Chato, David J.

    2013-01-01

    This paper presents experimental results for the liquid hydrogen bubble point tests using warm pressurant gases conducted at the Cryogenic Components Cell 7 facility at the NASA Glenn Research Center in Cleveland, Ohio. The purpose of the test series was to determine the effect of elevating the temperature of the pressurant gas on the performance of a liquid acquisition device. Three fine mesh screen samples (325 x 2300, 450 x 2750, 510 x 3600) were tested in liquid hydrogen using cold and warm noncondensible (gaseous helium) and condensable (gaseous hydrogen) pressurization schemes. Gases were conditioned from 0 to 90 K above the liquid temperature. Results clearly indicate a degradation in bubble point pressure using warm gas, with a greater reduction in performance using condensable over noncondensible pressurization. Degradation in the bubble point pressure is inversely proportional to screen porosity, as the coarsest mesh demonstrated the highest degradation. Results here have implication on both pressurization and LAD system design for all future cryogenic propulsion systems. A detailed review of historical heated gas tests is also presented for comparison to current results.

  8. Experimental and computational studies of poly-L-lactic acid for cardiovascular applications: recent progress

    NASA Astrophysics Data System (ADS)

    Naseem, Raasti; Zhao, Liguo; Liu, Yang; Silberschmidt, Vadim V.

    2017-12-01

    Stents are commonly used in medical procedures to alleviate the symptoms of coronary heart disease, a prevalent modern society disease. These structures are employed to maintain vessel patency and restore blood flow. Traditionally stents are made of metals such as stainless steel or cobalt chromium; however, these scaffolds have known disadvantages. An emergence of transient scaffolds is gaining popularity, with the structure engaged for a required period whilst healing of the diseased arterial wall occurs. Polymers dominate a medical device sector, with incorporation in sutures, scaffolds and screws. Thanks to their good mechanical and biological properties and their ability to degrade naturally. Polylactic acid is an extremely versatile polymer, with its properties easily tailored to applications. Its dominance in the stenting field increases continually, with the first polymer scaffold gaining FDA approval in 2016. Still some challenges with PLLA bioresorbable materials remain, especially with regard to understanding their mechanical response, assessment of its changes with degradation and comparison of their performance with that of metallic drug-eluting stent. Currently, there is still a lack of works on evaluating both the pre-degradation properties and degradation performance of these scaffolds. Additionally, there are no established material models incorporating non-linear viscoelastic behaviour of PLLA and its evolution with in-service degradation. Assessing these features through experimental analysis accompanied by analytical and numerical studies will provide powerful tools for design and optimisation of these structures endorsing their broader use in stenting. This overview assesses the recent studies investigating mechanical and computational performance of poly(l-lactic) acid and its use in stenting applications.

  9. Performance and Characterization of Magnetic Penetration Thermometer Devices for X-Ray Spectroscopy

    NASA Technical Reports Server (NTRS)

    Porst, J. -P.; Adams, J. S.; Bandler, S. R.; Balvin, M.; Busch, S. E.; Denis, K. L.; Kelly, D.; Nagler, P.; Sadleir, J. E.; Seidel, G. M.; hide

    2012-01-01

    We are developing magnetic penetration thermometers (MPTs) for applications in X-ray astronomy. These non-dissipative devices consist of an X-ray absorber in good thermal contact to a superconducting thin film with a transition temperature around T=100mK. A microfabricated superconducting planar inductor underneath is used to store a persistent current and couple the superconductor's diamagnetic response to a readout SQUID. The strong temperature dependence of the diamagnetic response make these devices suitable for highly sensitive macroscopic thermometers that are capable of achieving very high energy resolution. We present results achieved with MPTs consisting of MoAu bilayer sensors attached to overhanging square 250 micron by 250 micron gold absorbers that have demonstrated an energy resolution of delta E_FWHM=2.3eV at an X-ray energy of 5.9keV. A similar device has shown delta E_FWHM=2.0eV at 1.5 keV. Under certain conditions and for specific device geometries, the temperature responsivity of the MPTs can vary on long timescales degrading the spectral performance. We present the characterization of different inductor geometries to optimize the design for the highest possible temperature sensitivity and compare different device designs with respect to responsivity stability.

  10. Radiation-hardened backside-illuminated 512 x 512 charge-coupled device

    NASA Astrophysics Data System (ADS)

    Bates, Philip A.; Levine, Peter A.; Sauer, Donald J.; Hsueh, Fu-Lung; Shallcross, Frank V.; Smeltzer, Ronald K.; Meray, Grazyna M.; Taylor, Gordon C.; Tower, John R.

    1995-04-01

    A four-port 512 X 512 charge coupled device (CCD) imager hardened against proton displacement damage and total dose degradation has been fabricated and tested. The device is based upon an established thinned, backside illuminated, triple polysilicon, buried channel CCD process technology. The technology includes buried blooming drains. A three step approach has been taken to hardening the device. The first phase addressed hardening against proton displacement damage. The second phase addressed hardening against both proton displacement damage and total dose degradation. The third phase addresses final optimization of the design. Test results from the first and second phase efforts are presented. Plans for the third phase are discussed.

  11. Thermal annealing response following irradiation of a CMOS imager for the JUICE JANUS instrument

    NASA Astrophysics Data System (ADS)

    Lofthouse-Smith, D.-D.; Soman, M. R.; Allanwood, E. A. H.; Stefanov, K. D.; Holland, A. D.; Leese, M.; Turne, P.

    2018-03-01

    ESA's JUICE (JUpiter ICy moon Explorer) spacecraft is an L-class mission destined for the Jovian system in 2030. Its primary goals are to investigate the conditions for planetary formation and the emergence of life, and how does the solar system work. The JANUS camera, an instrument on JUICE, uses a 4T back illuminated CMOS image sensor, the CIS115 designed by Teledyne e2v. JANUS imager test campaigns are studying the CIS115 following exposure to gammas, protons, electrons and heavy ions, simulating the harsh radiation environment present in the Jovian system. The degradation of 4T CMOS device performance following proton fluences is being studied, as well as the effectiveness of thermal annealing to reverse radiation damage. One key parameter for the JANUS mission is the Dark current of the CIS115, which has been shown to degrade in previous radiation campaigns. A thermal anneal of the CIS115 has been used to accelerate any annealing following the irradiation as well as to study the evolution of any performance characteristics. CIS115s have been irradiated to double the expected End of Life (EOL) levels for displacement damage radiation (2×1010 protons, 10 MeV equivalent). Following this, devices have undergone a thermal anneal cycle at 100oC for 168 hours to reveal the extent to which CIS115 recovers pre-irradiation performance. Dark current activation energy analysis following proton fluence gives information on trap species present in the device and how effective anneal is at removing these trap species. Thermal anneal shows no quantifiable change in the activation energy of the dark current following irradiation.

  12. Light-activated photocurrent degradation and self-healing in perovskite solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nie, Wanyi; Blancon, Jean-Christophe; Neukirch, Amanda J.

    Solution-processed organometallic perovskite solar cells have emerged as one of the most promising thin-film photovoltaic technology. But, a key challenge is their lack of stability over prolonged solar irradiation. Few studies have investigated the effect of light soaking on hybrid perovskites and have attributed the degradation in the optoelectronic properties to photochemical or field-assisted ion migration. We show that the slow photocurrent degradation in thin-film photovoltaic devices is due to the formation of light-activated meta-stable deep-level trap states. However, the devices can self-heal completely by resting them in the dark for <1 min or the degradation can be completely preventedmore » by operating the devices at 0 °C. Here, we investigate several physical mechanisms to explain the microscopic origin for the formation of these trap states, among which the creation of small polaronic states involving localized cooperative lattice strain and molecular orientations emerges as a credible microscopic mechanism requiring further detailed studies.« less

  13. Reliability of III-V electronic devices -- the defects that cause the trouble

    NASA Astrophysics Data System (ADS)

    Pantelides, Sokrates T.

    2012-02-01

    Degradation of electronic devices by hot electrons is universally attributed to the generation of defects, but the mechanisms for defect generation and the specific nature of the pertinent defects are not known for most systems. Here we describe three recent case studies [1] in III-V high-electron-mobility transistors that illustrate the power of combining density functional calculations and experimental data to identify the pertinent defects and associated degradation mechanisms. In all cases, benign pre-existing defects are either depassivated (irreversible degradation) or transformed to a metastable state (reversible degradation). This work was done in collaboration with R.D. Schrimpf, D.M. Fleetwood, Y. Puzyrev, X. Shen, T. Roy, S. DasGupta, and B.R. Tuttle. Devices were provided by D.F. Brown, J. Speck and U. Mishra, and by J. Bergman and B. Brar. [4pt] [1] Y. S. Puzyrev et al., Appl. Phys. Lett. 96, 053505 (2010); T. Roy et al., Appl. Phys. Lett. 96, 133503 (2010); X. Shen et al., J. Appl. Phys. 108, 114505 (2010).

  14. Light-activated photocurrent degradation and self-healing in perovskite solar cells

    DOE PAGES

    Nie, Wanyi; Blancon, Jean-Christophe; Neukirch, Amanda J.; ...

    2016-05-16

    Solution-processed organometallic perovskite solar cells have emerged as one of the most promising thin-film photovoltaic technology. But, a key challenge is their lack of stability over prolonged solar irradiation. Few studies have investigated the effect of light soaking on hybrid perovskites and have attributed the degradation in the optoelectronic properties to photochemical or field-assisted ion migration. We show that the slow photocurrent degradation in thin-film photovoltaic devices is due to the formation of light-activated meta-stable deep-level trap states. However, the devices can self-heal completely by resting them in the dark for <1 min or the degradation can be completely preventedmore » by operating the devices at 0 °C. Here, we investigate several physical mechanisms to explain the microscopic origin for the formation of these trap states, among which the creation of small polaronic states involving localized cooperative lattice strain and molecular orientations emerges as a credible microscopic mechanism requiring further detailed studies.« less

  15. Degradation of Bilayer Organic Light-Emitting Diodes Studied by Impedance Spectroscopy.

    PubMed

    Sato, Shuri; Takata, Masashi; Takada, Makoto; Naito, Hiroyoshi

    2016-04-01

    The degradation of bilayer organic light-emitting diodes (OLEDs) with a device structure of N,N'-di(1-naphthyl)-N,N'-diphenylbenzidine (α-NPD) (hole transport layer) and tris-(8-hydroxyquinolate)aluminum (Alq3) (emissive layer and electron transport layer) has been studied by impedance spectroscopy and device simulation. Two modulus peaks are found in the modulus spectra of the OLEDs below the electroluminescence threshold. After aging of the OLEDs, the intensity of electroluminescence is degraded and the modulus peak due to the Alq3 layer is shifted to lower frequency, indicating that the resistance of the Alq3 layer is increased. Device simulation reveals that the increase in the resistance of the Alq3 layer is due to the decrease in the electron mobility in the Alq3 layer.

  16. Effects of solar cell environment on contact integrity

    NASA Technical Reports Server (NTRS)

    Weizer, Victor G.; Fatemi, Navid S.

    1993-01-01

    The III-V semiconductors react extremely rapidly with most commonly used contact metallizations. This precludes the use of elevated temperatures in the contact formation process for solar cells and other shallow junction devices. These devices must rely upon contact metallizations that are sufficiently conductive in their 'as-fabricated' state. However, while there are a number of non-sintered metallizations that have acceptable characteristics, the lack of a sintering step makes them vulnerable to a variety of environmentally induced degradation processes. The degrading effects resulting from the exposure of unsintered devices to a humid environment and to a vacuum (space) environment are described. It is shown, further, that these effects are magnified by the presence of mechanical damage in the contact metallization. The means to avoid or prevent these degrading interactions are presented.

  17. Characteristics and reliability of metal-oxide-semiconductor transistors with various depths of plasma-induced Si recess structure

    NASA Astrophysics Data System (ADS)

    Chen, Jone F.; Tsai, Yen-Lin; Chen, Chun-Yen; Hsu, Hao-Tang; Kao, Chia-Yu; Hwang, Hann-Ping

    2018-04-01

    Device characteristics and hot-carrier-induced device degradation of n-channel MOS transistors with an off-state breakdown voltage of approximately 25 V and various Si recess depths introduced by sidewall spacer overetching are investigated. Experimental data show that the depth of the Si recess has small effects on device characteristics. A device with a deeper Si recess has lower substrate current and channel electric field, whereas a greater hot-carrier-induced device degradation and a shorter hot-carrier lifetime are observed. Results of technology computer-aided design simulations suggest that these unexpected observations are related to the severity of plasma damage caused by the sidewall spacer overetching and the difference in topology.

  18. Analysis of Al2O3—parylene C bilayer coatings and impact of microelectrode topography on long term stability of implantable neural arrays

    NASA Astrophysics Data System (ADS)

    Caldwell, Ryan; Mandal, Himadri; Sharma, Rohit; Solzbacher, Florian; Tathireddy, Prashant; Rieth, Loren

    2017-08-01

    Objective. Performance of many dielectric coatings for neural electrodes degrades over time, contributing to loss of neural signals and evoked percepts. Studies using planar test substrates have found that a novel bilayer coating of atomic-layer deposited (ALD) Al2O3 and parylene C is a promising candidate for neural electrode applications, exhibiting superior stability to parylene C alone. However, initial results from bilayer encapsulation testing on non-planar devices have been less positive. Our aim was to evaluate ALD Al2O3-parylene C coatings using novel test paradigms, to rigorously evaluate dielectric coatings for neural electrode applications by incorporating neural electrode topography into test structure design. Approach. Five test devices incorporated three distinct topographical features common to neural electrodes, derived from the utah electrode array (UEA). Devices with bilayer (52 nm Al2O3  +  6 µm parylene C) were evaluated against parylene C controls (N  ⩾  6 per device type). Devices were aged in phosphate buffered saline at 67 °C for up to 311 d, and monitored through: (1) leakage current to evaluate encapsulation lifetimes (>1 nA during 5VDC bias indicated failure), and (2) wideband (1-105 Hz) impedance. Main results. Mean-times-to-failure (MTTFs) ranged from 12 to 506 d for bilayer-coated devices, versus 10 to  >2310 d for controls. Statistical testing (log-rank test, α  =  0.05) of failure rates gave mixed results but favored the control condition. After failure, impedance loss for bilayer devices continued for months and manifested across the entire spectrum, whereas the effect was self-limiting after several days, and restricted to frequencies  <100 Hz for controls. These results correlated well with observations of UEAs encapsulated with bilayer and control films. Significance. We observed encapsulation failure modes and behaviors comparable to neural electrode performance which were undetected in studies with planar test devices. We found the impact of parylene C defects to be exacerbated by ALD Al2O3, and conclude that inferior bilayer performance arises from degradation of ALD Al2O3 when directly exposed to saline. This is an important consideration, given that neural electrodes with bilayer coatings are expected to have ALD Al2O3 exposed at dielectric boundaries that delineate electrode sites. Process improvements and use of different inorganic coatings to decrease dissolution in physiological fluids may improve performance. Testing frameworks which take neural electrode complexities into account will be well suited to reliably evaluate such encapsulation schemes.

  19. White LED performance

    NASA Astrophysics Data System (ADS)

    Gu, Yimin; Narendran, Nadarajah; Freyssinier, Jean Paul

    2004-10-01

    Two life tests were conducted to compare the effects of drive current and ambient temperature on the degradation rate of 5 mm and high-flux white LEDs. Tests of 5 mm white LED arrays showed that junction temperature increases produced by drive current had a greater effect on the rate of light output degradation than junction temperature increases from ambient heat. A preliminary test of high-flux white LEDs showed the opposite effect, with junction temperature increases from ambient heat leading to a faster depreciation. However, a second life test is necessary to verify this finding. The dissimilarity in temperature effect among 5 mm and high-flux LEDs is likely caused by packaging differences between the two device types.

  20. EU Development of High Heat Flux Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linke, J.; Lorenzetto, P.; Majerus, P.

    2005-04-15

    The development of plasma facing components for next step fusion devices in Europe is strongly focused to ITER. Here a wide spectrum of different design options for the divertor target and the first wall have been investigated with tungsten, CFC, and beryllium armor. Electron beam simulation experiments have been used to determine the performance of high heat flux components under ITER specific thermal loads. Beside thermal fatigue loads with power density levels up to 20 MWm{sup -2}, off-normal events are a serious concern for the lifetime of plasma facing components. These phenomena are expected to occur on a time scalemore » of a few milliseconds (plasma disruptions) or several hundred milliseconds (vertical displacement events) and have been identified as a major source for the production of neutron activated metallic or tritium enriched carbon dust which is of serious importance from a safety point of view.The irradiation induced material degradation is another critical concern for future D-T-burning fusion devices. In ITER the integrated neutron fluence to the first wall and the divertor armour will remain in the order of 1 dpa and 0.7 dpa, respectively. This value is low compared to future commercial fusion reactors; nevertheless, a nonnegligible degradation of the materials has been detected, both for mechanical and thermal properties, in particular for the thermal conductivity of carbon based materials. Beside the degradation of individual material properties, the high heat flux performance of actively cooled plasma facing components has been investigated under ITER specific thermal and neutron loads.« less

  1. Encapsulation for smart textile electronics - humidity and temperature sensor.

    PubMed

    Larsson, Andreas; Tran, Thanh-Nam; Aasmundtveit, Knut E; Seeberg, Trine M

    2015-01-01

    A combined humidity and temperature sensor was packaged by vacuum casting onto three different types of textiles; cotton, nylon and a waterproof fabric. This was done in order to integrate the sensor in a jacket in a soft and reliable way without changing the sensor performance. A membrane was custom made and integrated into the device to protect the sensor from the environment. The packaged sensors performance was characterized in a climate chamber were the relative humidity and temperature ranged from 25 % to 95 % and -10 °C to 75 °C respectively. The packaged sensors showed insignificant to limited performance degradation.

  2. A fast and low-power microelectromechanical system-based non-volatile memory device

    PubMed Central

    Lee, Sang Wook; Park, Seung Joo; Campbell, Eleanor E. B.; Park, Yung Woo

    2011-01-01

    Several new generation memory devices have been developed to overcome the low performance of conventional silicon-based flash memory. In this study, we demonstrate a novel non-volatile memory design based on the electromechanical motion of a cantilever to provide fast charging and discharging of a floating-gate electrode. The operation is demonstrated by using an electromechanical metal cantilever to charge a floating gate that controls the charge transport through a carbon nanotube field-effect transistor. The set and reset currents are unchanged after more than 11 h constant operation. Over 500 repeated programming and erasing cycles were demonstrated under atmospheric conditions at room temperature without degradation. Multinary bit programming can be achieved by varying the voltage on the cantilever. The operation speed of the device is faster than a conventional flash memory and the power consumption is lower than other memory devices. PMID:21364559

  3. Improving the radiation hardness of graphene field effect transistors

    DOE PAGES

    Alexandrou, Konstantinos; Masurkar, Amrita; Edrees, Hassan; ...

    2016-10-11

    Ionizing radiation poses a significant challenge to the operation and reliability of conventional silicon-based devices. In this paper, we report the effects of gamma radiation on graphene field-effect transistors (GFETs), along with a method to mitigate those effects by developing a radiation-hardened version of our back-gated GFETs. We demonstrate that activated atmospheric oxygen from the gamma ray interaction with air damages the semiconductor device, and damage to the substrate contributes additional threshold voltage instability. Our radiation-hardened devices, which have protection against these two effects, exhibit minimal performance degradation, improved stability, and significantly reduced hysteresis after prolonged gamma radiation exposure. Finally,more » we believe this work provides an insight into graphene's interactions with ionizing radiation that could enable future graphene-based electronic devices to be used for space, military, and other radiation-sensitive applications.« less

  4. Improving the radiation hardness of graphene field effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexandrou, Konstantinos; Masurkar, Amrita; Edrees, Hassan

    Ionizing radiation poses a significant challenge to the operation and reliability of conventional silicon-based devices. In this paper, we report the effects of gamma radiation on graphene field-effect transistors (GFETs), along with a method to mitigate those effects by developing a radiation-hardened version of our back-gated GFETs. We demonstrate that activated atmospheric oxygen from the gamma ray interaction with air damages the semiconductor device, and damage to the substrate contributes additional threshold voltage instability. Our radiation-hardened devices, which have protection against these two effects, exhibit minimal performance degradation, improved stability, and significantly reduced hysteresis after prolonged gamma radiation exposure. Finally,more » we believe this work provides an insight into graphene's interactions with ionizing radiation that could enable future graphene-based electronic devices to be used for space, military, and other radiation-sensitive applications.« less

  5. Evaluating the oxidative, photothermal and electrical stability of colloidal nanocrystal solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Law, Matt

    2016-02-16

    IV-VI quantum dot (QD) solids are a novel class of granular electronic materials with great technological potential (e.g., in photodetectors, field-effect transistors (FETs), and solar cells), but their oxidative and thermal instability present a barrier to practical applications [1]. Poor stability is a fundamental issue facing many nanoscale materials due to high surface area and surface energy. Basic studies are needed to elucidate the most important mechanisms of degradation and develop robust countermeasures if QD materials are to become technologically important. This project determined the degradation mechanisms of IV-VI QD solids (primarily PbSe and PbS) and introduced new chemical strategiesmore » to drastically improve their performance, stability, and operating lifetimes [2-5]. Our approach was based on (1) detailed testing of QD thin film materials (principally FETs and solar cells) as a function of oxidative and thermal stress, and (2) the use of organic and inorganic approaches to link the QDs into strongly electronically coupled, high-mobility films, prevent their oxidation, and eliminate internal degrees of freedom that lead to film instability and degradation in response to electrical and thermal stress. Stability against oxidation and thermal degradation was the major focus of this project. We have evaluated the stability of QD thin films and interfaces at temperatures less than 100°C (the regime most relevant to solar and transistor applications). Low-temperature oxidation and sintering of QD films have been investigated using optical absorption spectroscopy, Fourier transform infrared spectroscopy (FTIR), current-voltage scanning of transistors and solar cells, X-ray photoelectron spectroscopy, and scanning Kelvin probe microscopy (SKPM). SKPM was used to map the potential profiles of operating QD FETs and solar cells as a function of bias and illumination, which provides detailed information on how the work functions, potential drops and electric field within these devices determine device operation, and set the stage for future studies targeted at understanding and preventing device failure. We pursued two strategies to fabricate QD films with stable electrical characteristics: (1) the use of robust molecular surface ligands [2], and (2) “matrix engineering,” i.e., infilling the QD solid with metal oxide or metal sulfide matrices by low-temperature atomic layer deposition (ALD) to passivate surface states, prevent oxidation, lock the QDs into position, inhibit diffusion, and tune the height and width of the inter-QD potential barriers that govern charge transport [5,6]. Poor stability is a common feature of nanoscale electronic materials, yet stability is all too rarely the focus of basic research. Fundamental studies are therefore needed to elucidate the most important mechanisms of degradation and develop simple yet effective countermeasures. By revealing both how QD solids degrade in response to environmental stresses (oxidative, photothermal, and electric) and how to prevent this degradation, the project has greatly improved our ability to develop stable, high-performance QD materials for real-world applications.« less

  6. Gate engineered heterostructure junctionless TFET with Gaussian doping profile for ambipolar suppression and electrical performance improvement

    NASA Astrophysics Data System (ADS)

    Aghandeh, Hadi; Sedigh Ziabari, Seyed Ali

    2017-11-01

    This study investigates a junctionless tunnel field-effect transistor with a dual material gate and a heterostructure channel/source interface (DMG-H-JLTFET). We find that using the heterostructure interface improves device behavior by reducing the tunneling barrier width at the channel/source interface. Simultaneously, the dual material gate structure decreases ambipolar current by increasing the tunneling barrier width at the drain/channel interface. The performance of the device is analyzed based on the energy band diagram at on, off, and ambipolar states. Numerical simulations demonstrate improvements in ION, IOFF, ION/IOFF, subthreshold slope (SS), transconductance and cut-off frequency and suppressed ambipolar behavior. Next, the workfunction optimization of dual material gate is studied. It is found that if appropriate workfunctions are selected for tunnel and auxiliary gates, the JLTFET exhibits considerably improved performance. We then study the influence of Gaussian doping distribution at the drain and the channel on the ambipolar performance of the device and find that a Gaussian doping profile and a dual material gate structure remarkably reduce ambipolar current. Gaussian doped DMG-H-JLTFET, also exhibits enhanced IOFF, ION/IOFF, SS and a low threshold voltage without degrading IOFF.

  7. Plasmonic thermal IR emitters based on nanoamorphous carbon

    NASA Astrophysics Data System (ADS)

    Tay, Savaş; Kropachev, Aleksandr; Araci, Ismail Emre; Skotheim, Terje; Norwood, Robert A.; Peyghambarian, N.

    2009-02-01

    The development of plasmonic narrow-band thermal mid-IR emitters made from a conducting amorphous carbon composite is shown. These IR emitters have greatly improved thermal and mechanical stability compared to metallic emitters as they can be operated at 600 °C in air without any degradation in performance. The emitted thermal radiation has a bandwidth of 0.5 μm and can be set to the desired wavelength from 3 to 15 μm by changing the surface periodicity. The periodically patterned devices have in-band emissivities significantly exceeding that of the non-patterned devices, constituting simple yet efficient radiation sources at this important wavelength range.

  8. Self-assembled nanotextures impart broadband transparency to glass windows and solar cell encapsulants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liapis, Andreas C.; Rahman, Atikur; Black, Charles T.

    Most optoelectronic components and consumer display devices require glass or plastic covers for protection against the environment. Optical reflections from these encapsulation layers can degrade the device performance or lessen the user experience. In this paper, we use a highly scalable self-assembly based approach to texture glass surfaces at the nanoscale, reducing reflections by such an extent so as to make the glass essentially invisible. Our nanotextures provide broadband antireflection spanning visible and infrared wavelengths (450–2500 nm) that is effective even at large angles of incidence. This technology can be used to improve the performance of photovoltaic devices by eliminatingmore » reflection losses, which can be as much as 8% for glass encapsulated cells. In contrast, solar cells encapsulated with nanotextured glass generate the same photocurrent as when operated without a cover. Finally, ultra-transparent windows having surface nanotextures on both sides can withstand three times more optical fluence than commercial broadband antireflection coatings, making them useful for pulsed laser applications.« less

  9. Self-assembled nanotextures impart broadband transparency to glass windows and solar cell encapsulants

    DOE PAGES

    Liapis, Andreas C.; Rahman, Atikur; Black, Charles T.

    2017-10-30

    Most optoelectronic components and consumer display devices require glass or plastic covers for protection against the environment. Optical reflections from these encapsulation layers can degrade the device performance or lessen the user experience. In this paper, we use a highly scalable self-assembly based approach to texture glass surfaces at the nanoscale, reducing reflections by such an extent so as to make the glass essentially invisible. Our nanotextures provide broadband antireflection spanning visible and infrared wavelengths (450–2500 nm) that is effective even at large angles of incidence. This technology can be used to improve the performance of photovoltaic devices by eliminatingmore » reflection losses, which can be as much as 8% for glass encapsulated cells. In contrast, solar cells encapsulated with nanotextured glass generate the same photocurrent as when operated without a cover. Finally, ultra-transparent windows having surface nanotextures on both sides can withstand three times more optical fluence than commercial broadband antireflection coatings, making them useful for pulsed laser applications.« less

  10. Self-assembled nanotextures impart broadband transparency to glass windows and solar cell encapsulants

    NASA Astrophysics Data System (ADS)

    Liapis, Andreas C.; Rahman, Atikur; Black, Charles T.

    2017-10-01

    Most optoelectronic components and consumer display devices require glass or plastic covers for protection against the environment. Optical reflections from these encapsulation layers can degrade the device performance or lessen the user experience. Here, we use a highly scalable self-assembly based approach to texture glass surfaces at the nanoscale, reducing reflections by such an extent so as to make the glass essentially invisible. Our nanotextures provide broadband antireflection spanning visible and infrared wavelengths (450-2500 nm) that is effective even at large angles of incidence. This technology can be used to improve the performance of photovoltaic devices by eliminating reflection losses, which can be as much as 8% for glass encapsulated cells. In contrast, solar cells encapsulated with nanotextured glass generate the same photocurrent as when operated without a cover. Ultra-transparent windows having surface nanotextures on both sides can withstand three times more optical fluence than commercial broadband antireflection coatings, making them useful for pulsed laser applications.

  11. Power Conversion Efficiency and Device Stability Improvement of Inverted Perovskite Solar Cells by Using a ZnO:PFN Composite Cathode Buffer Layer.

    PubMed

    Jia, Xiaorui; Zhang, Lianping; Luo, Qun; Lu, Hui; Li, Xueyuan; Xie, Zhongzhi; Yang, Yongzhen; Li, Yan-Qing; Liu, Xuguang; Ma, Chang-Qi

    2016-07-20

    We have demonstrated in this article that both power conversion efficiency (PCE) and performance stability of inverted planar heterojunction perovskite solar cells can be improved by using a ZnO:PFN nanocomposite (PFN: poly[(9,9-bis(3'-(N,N-dimethylamion)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctyl)-fluorene]) as the cathode buffer layer (CBL). This nanocomposite could form a compact and defect-less CBL film on the perovskite/PC61BM surface (PC61BM: phenyl-C61-butyric acid methyl ester). In addition, the high conductivity of the nanocomposite layer makes it works well at a layer thickness of 150 nm. Both advantages of the composite layer are helpful in reducing interface charge recombination and improving device performance. The power conversion efficiency (PCE) of the best ZnO:PFN CBL based device was measured to be 12.76%, which is higher than that of device without CBL (9.00%), or device with ZnO (7.93%) or PFN (11.30%) as the cathode buffer layer. In addition, the long-term stability is improved by using ZnO:PFN composite cathode buffer layer when compare to that of the reference cells. Almost no degradation of open circuit voltage (VOC) and fill factor (FF) was found for the device having ZnO:PFN, suggesting that ZnO:PFN is able to stabilize the interface property and consequently improve the solar cell performance stability.

  12. Proactive Time-Rearrangement Scheme for Multi-Radio Collocated Platform

    NASA Astrophysics Data System (ADS)

    Kim, Chul; Shin, Sang-Heon; Park, Sang Kyu

    We present a simple proactive time rearrangement scheme (PATRA) that reduces the interferences from multi-radio devices equipped in one platform and guarantees user-conceived QoS. Simulation results show that the interference among multiple radios in one platform causes severe performance degradation and cannot guarantee the user requested QoS. However, the PATRA can dramatically improve not only the userconceived QoS but also the overall network throughput.

  13. Ultra-Smooth, Fully Solution-Processed Large-Area Transparent Conducting Electrodes for Organic Devices

    PubMed Central

    Jin, Won-Yong; Ginting, Riski Titian; Ko, Keum-Jin; Kang, Jae-Wook

    2016-01-01

    A novel approach for the fabrication of ultra-smooth and highly bendable substrates consisting of metal grid-conducting polymers that are fully embedded into transparent substrates (ME-TCEs) was successfully demonstrated. The fully printed ME-TCEs exhibited ultra-smooth surfaces (surface roughness ~1.0 nm), were highly transparent (~90% transmittance at a wavelength of 550 nm), highly conductive (sheet resistance ~4 Ω ◻−1), and relatively stable under ambient air (retaining ~96% initial resistance up to 30 days). The ME-TCE substrates were used to fabricate flexible organic solar cells and organic light-emitting diodes exhibiting devices efficiencies comparable to devices fabricated on ITO/glass substrates. Additionally, the flexibility of the organic devices did not degrade their performance even after being bent to a bending radius of ~1 mm. Our findings suggest that ME-TCEs are a promising alternative to indium tin oxide and show potential for application toward large-area optoelectronic devices via fully printing processes. PMID:27808221

  14. Ultra-Smooth, Fully Solution-Processed Large-Area Transparent Conducting Electrodes for Organic Devices

    NASA Astrophysics Data System (ADS)

    Jin, Won-Yong; Ginting, Riski Titian; Ko, Keum-Jin; Kang, Jae-Wook

    2016-11-01

    A novel approach for the fabrication of ultra-smooth and highly bendable substrates consisting of metal grid-conducting polymers that are fully embedded into transparent substrates (ME-TCEs) was successfully demonstrated. The fully printed ME-TCEs exhibited ultra-smooth surfaces (surface roughness ~1.0 nm), were highly transparent (~90% transmittance at a wavelength of 550 nm), highly conductive (sheet resistance ~4 Ω ◻-1), and relatively stable under ambient air (retaining ~96% initial resistance up to 30 days). The ME-TCE substrates were used to fabricate flexible organic solar cells and organic light-emitting diodes exhibiting devices efficiencies comparable to devices fabricated on ITO/glass substrates. Additionally, the flexibility of the organic devices did not degrade their performance even after being bent to a bending radius of ~1 mm. Our findings suggest that ME-TCEs are a promising alternative to indium tin oxide and show potential for application toward large-area optoelectronic devices via fully printing processes.

  15. Ultra-Smooth, Fully Solution-Processed Large-Area Transparent Conducting Electrodes for Organic Devices.

    PubMed

    Jin, Won-Yong; Ginting, Riski Titian; Ko, Keum-Jin; Kang, Jae-Wook

    2016-11-03

    A novel approach for the fabrication of ultra-smooth and highly bendable substrates consisting of metal grid-conducting polymers that are fully embedded into transparent substrates (ME-TCEs) was successfully demonstrated. The fully printed ME-TCEs exhibited ultra-smooth surfaces (surface roughness ~1.0 nm), were highly transparent (~90% transmittance at a wavelength of 550 nm), highly conductive (sheet resistance ~4 Ω ◻ -1 ), and relatively stable under ambient air (retaining ~96% initial resistance up to 30 days). The ME-TCE substrates were used to fabricate flexible organic solar cells and organic light-emitting diodes exhibiting devices efficiencies comparable to devices fabricated on ITO/glass substrates. Additionally, the flexibility of the organic devices did not degrade their performance even after being bent to a bending radius of ~1 mm. Our findings suggest that ME-TCEs are a promising alternative to indium tin oxide and show potential for application toward large-area optoelectronic devices via fully printing processes.

  16. Development of coring procedures applied to Si, CdTe, and CIGS solar panels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moutinho, H. R.; Johnston, S.; To, B.

    Most of the research on the performance and degradation of photovoltaic modules is based on macroscale measurements of device parameters such as efficiency, fill factor, open-circuit voltage, and short-circuit current. Our goal is to develop the capabilities to allow us to study the degradation of these parameters in the micro- and nanometer scale and to relate our results to performance parameters. To achieve this objective, the first step is to be able to access small samples from specific areas of the solar panels without changing the properties of the material. In this paper, we describe two coring procedures that wemore » developed and applied to Si, CIGS, and CdTe solar panels. In the first procedure, we cored full samples, whereas in the second we performed a partial coring that keeps the tempered glass intact. The cored samples were analyzed by different analytical techniques before and after coring, at the same locations, and no damage during the coring procedure was observed.« less

  17. Development of coring procedures applied to Si, CdTe, and CIGS solar panels

    DOE PAGES

    Moutinho, H. R.; Johnston, S.; To, B.; ...

    2018-01-04

    Most of the research on the performance and degradation of photovoltaic modules is based on macroscale measurements of device parameters such as efficiency, fill factor, open-circuit voltage, and short-circuit current. Our goal is to develop the capabilities to allow us to study the degradation of these parameters in the micro- and nanometer scale and to relate our results to performance parameters. To achieve this objective, the first step is to be able to access small samples from specific areas of the solar panels without changing the properties of the material. In this paper, we describe two coring procedures that wemore » developed and applied to Si, CIGS, and CdTe solar panels. In the first procedure, we cored full samples, whereas in the second we performed a partial coring that keeps the tempered glass intact. The cored samples were analyzed by different analytical techniques before and after coring, at the same locations, and no damage during the coring procedure was observed.« less

  18. State-of-the-art characterization techniques for advanced lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Lu, Jun; Wu, Tianpin; Amine, Khalil

    2017-03-01

    To meet future needs for industries from personal devices to automobiles, state-of-the-art rechargeable lithium-ion batteries will require both improved durability and lowered costs. To enhance battery performance and lifetime, understanding electrode degradation mechanisms is of critical importance. Various advanced in situ and operando characterization tools developed during the past few years have proven indispensable for optimizing battery materials, understanding cell degradation mechanisms, and ultimately improving the overall battery performance. Here we review recent progress in the development and application of advanced characterization techniques such as in situ transmission electron microscopy for high-performance lithium-ion batteries. Using three representative electrode systems—layered metal oxides, Li-rich layered oxides and Si-based or Sn-based alloys—we discuss how these tools help researchers understand the battery process and design better battery systems. We also summarize the application of the characterization techniques to lithium-sulfur and lithium-air batteries and highlight the importance of those techniques in the development of next-generation batteries.

  19. The role of oxygen in porous molybdenum electrodes for the alkali metal thermoelectric converter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, R.M.; Nagasubramanian, G.; Khanna, S.K.

    1986-08-01

    The alkali metal thermoelectric converter is a direct energy conversion device, utilizing a high alkali metal activity gradient to generate electrical power. Its operation is based on the unique ion conductive properties of beta''-alumina solid electrolyte. The major barrier to application of this device is identification of an electrode which can maintain optimum power densities for operation times of >10,000h. Thin, porous molybdenum electrodes have shown the best performance characteristics, but show a variety of time dependent phenomena, including eventual degradation to power densities 3-5 times lower than initial values. Several Na-Mo-O compounds, including Na/sub 2/MoO/sub 4/ and Na/sub 2/Mo/submore » 3/O/sub 6/, are formed during AMTEC operation. These compounds may be responsible for enhanced Na transport through Mo electrodes via sodium ion conduction, and eventual performance degradation due to their volatilization and decomposition. No decomposition of beta''-alumina has been observed under simulated AMTEC operating conditions up to 1373 K. In this paper, we present a model for chemical reactions occurring in porous molybdenum electrodes. The model is based on thermochemical and kinetic data, known sodium-molybdenum-oxygen chemistry, x-ray diffraction analysis of molybdenum and molybdenum oxide electrodes, and the electrochemical behavior of the cell.« less

  20. Optimizing the thermoelectric performance of graphene nano-ribbons without degrading the electronic properties.

    PubMed

    Tran, Van-Truong; Saint-Martin, Jérôme; Dollfus, Philippe; Volz, Sebastian

    2017-05-24

    The enhancement of thermoelectric figure of merit ZT requires to either increase the power factor or reduce the phonon conductance, or even both. In graphene, the high phonon thermal conductivity is the main factor limiting the thermoelectric conversion. The common strategy to enhance ZT is therefore to introduce phonon scatterers to suppress the phonon conductance while retaining high electrical conductance and Seebeck coefficient. Although thermoelectric performance is eventually enhanced, all studies based on this strategy show a significant reduction of the electrical conductance. In this study we demonstrate that appropriate sources of disorder, including isotopes and vacancies at lowest electron density positions, can be used as phonon scatterers to reduce the phonon conductance in graphene ribbons without degrading the electrical conductance, particularly in the low-energy region which is the most important range for device operation. By means of atomistic calculations we show that the natural electronic properties of graphene ribbons can be fully preserved while their thermoelectric efficiency is strongly enhanced. For ribbons of width M = 5 dimer lines, room-temperature ZT is enhanced from less than 0.26 to more than 2.5. This study is likely to set the milestones of a new generation of nano-devices with dual electronic/thermoelectric functionalities.

  1. An emerging network storage management standard: Media error monitoring and reporting information (MEMRI) - to determine optical tape data integrity

    NASA Technical Reports Server (NTRS)

    Podio, Fernando; Vollrath, William; Williams, Joel; Kobler, Ben; Crouse, Don

    1998-01-01

    Sophisticated network storage management applications are rapidly evolving to satisfy a market demand for highly reliable data storage systems with large data storage capacities and performance requirements. To preserve a high degree of data integrity, these applications must rely on intelligent data storage devices that can provide reliable indicators of data degradation. Error correction activity generally occurs within storage devices without notification to the host. Early indicators of degradation and media error monitoring 333 and reporting (MEMR) techniques implemented in data storage devices allow network storage management applications to notify system administrators of these events and to take appropriate corrective actions before catastrophic errors occur. Although MEMR techniques have been implemented in data storage devices for many years, until 1996 no MEMR standards existed. In 1996 the American National Standards Institute (ANSI) approved the only known (world-wide) industry standard specifying MEMR techniques to verify stored data on optical disks. This industry standard was developed under the auspices of the Association for Information and Image Management (AIIM). A recently formed AIIM Optical Tape Subcommittee initiated the development of another data integrity standard specifying a set of media error monitoring tools and media error monitoring information (MEMRI) to verify stored data on optical tape media. This paper discusses the need for intelligent storage devices that can provide data integrity metadata, the content of the existing data integrity standard for optical disks, and the content of the MEMRI standard being developed by the AIIM Optical Tape Subcommittee.

  2. Performance and Reliability of Bonded Interfaces for High-temperature Packaging: Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeVoto, Douglas J.

    2017-10-19

    As maximum device temperatures approach 200 °Celsius, continuous operation, sintered silver materials promise to maintain bonds at these high temperatures without excessive degradation rates. A detailed characterization of the thermal performance and reliability of sintered silver materials and processes has been initiated for the next year. Future steps in crack modeling include efforts to simulate crack propagation directly using the extended finite element method (X-FEM), a numerical technique that uses the partition of unity method for modeling discontinuities such as cracks in a system.

  3. Photonic Choke-Joints for Dual-Polarization Waveguides

    NASA Technical Reports Server (NTRS)

    Wollack, Edward J.; U-yen, Kongpop; Chuss, David T.

    2010-01-01

    Photonic choke joint (PCJ) structures for dual-polarization waveguides have been investigated for use in device and component packaging. This interface enables the realization of a high performance non-contacting waveguide joint without degrading the in-band signal propagation properties. The choke properties of two tiling approaches, symmetric square Cartesian and octagonal quasi-crystal lattices of metallic posts, are explored and optimal PCJ design parameters are presented. For each of these schemes, the experimental results for structures with finite tilings demonstrate near ideal transmission and reflection performance over a full waveguide band.

  4. General contamination criteria for optical surfaces. [instrument performance losses in spaceborne conditions

    NASA Technical Reports Server (NTRS)

    Bremer, J. C.

    1982-01-01

    Physical models are developed for establishing criteria to decide on the acceptable contamination level of optical devices in space-borne conditions. Optical systems can be degraded in terms of decreased throughput, i.e., transmissivity or reflectivity, or increases in the total integrated scatter (TIS). Performance losses can be caused by particulate accretion, molecular film accretion, and impact cratering. A quantitative relationship is defined for film thickness and loss of throughput. Formulas are also developed for cases where induced surface defects are larger than the desired viewing wavelengths, or smaller or of the same order of the observed wavelengths. The techniques are used to quantify the degradation of a VUV solar coronagraph, a VUV stellar telescope, and a solar cell due to TIS. Applications are projected for estimating the contamination sensitivity of specific instruments, assessing the contamination hazard from known particulates, or to define clean room standards.

  5. Wave-aberration control with a liquid crystal on silicon (LCOS) spatial phase modulator.

    PubMed

    Fernández, Enrique J; Prieto, Pedro M; Artal, Pablo

    2009-06-22

    Liquid crystal on Silicon (LCOS) spatial phase modulators offer enhanced possibilities for adaptive optics applications in terms of response velocity and fidelity. Unlike deformable mirrors, they present a capability for reproducing discontinuous phase profiles. This ability also allows an increase in the effective stroke of the device by means of phase wrapping. The latter is only limited by the diffraction related effects that become noticeable as the number of phase cycles increase. In this work we estimated the ranges of generation of the Zernike polynomials as a means for characterizing the performance of the device. Sets of images systematically degraded with the different Zernike polynomials generated using a LCOS phase modulator have been recorded and compared with their theoretical digital counterparts. For each Zernike mode, we have found that image degradation reaches a limit for a certain coefficient value; further increase in the aberration amount has no additional effect in image quality. This behavior is attributed to the intensification of the 0-order diffraction. These results have allowed determining the usable limits of the phase modulator virtually free from diffraction artifacts. The results are particularly important for visual simulation and ophthalmic testing applications, although they are equally interesting for any adaptive optics application with liquid crystal based devices.

  6. Ligand removal and photo-activation of CsPbBr3 quantum dots for enhanced optoelectronic devices.

    PubMed

    Moyen, Eric; Kanwat, Anil; Cho, Sinyoung; Jun, Haeyeon; Aad, Roy; Jang, Jin

    2018-05-10

    Perovskite quantum dots have recently emerged as a promising light source for optoelectronic applications. However, integrating them into devices while preserving their outstanding optical properties remains challenging. Due to their ionic nature, perovskite quantum dots are extremely sensitive and degrade on applying the simplest processes. To maintain their colloidal stability, they are surrounded by organic ligands; these prevent efficient charge carrier injection in devices and have to be removed. Here we report on a simple method, where a moderate thermal process followed by exposure to UV in air can efficiently remove ligands and increase the photo-luminescence of the room temperature synthesized perovskite quantum dot thin films. Annealing is accompanied by a red shift of the emission wavelength, usually attributed to the coalescence and irreversible degradation of the quantum dots. We show that it is actually related to the relaxation of the quantum dots upon the ligand removal, without the creation of non-radiative recombining defects. The quantum dot surface, as devoid of ligands, is subsequently photo-oxidized and smoothened upon exposure to UV in air, which drastically enhances their photo-luminescence. This adequate combination of treatments improves by more than an order of magnitude the performances of perovskite quantum dot light emitting diodes.

  7. Driving While Interacting With Google Glass: Investigating the Combined Effect of Head-Up Display and Hands-Free Input on Driving Safety and Multitask Performance.

    PubMed

    Tippey, Kathryn G; Sivaraj, Elayaraj; Ferris, Thomas K

    2017-06-01

    This study evaluated the individual and combined effects of voice (vs. manual) input and head-up (vs. head-down) display in a driving and device interaction task. Advances in wearable technology offer new possibilities for in-vehicle interaction but also present new challenges for managing driver attention and regulating device usage in vehicles. This research investigated how driving performance is affected by interface characteristics of devices used for concurrent secondary tasks. A positive impact on driving performance was expected when devices included voice-to-text functionality (reducing demand for visual and manual resources) and a head-up display (HUD) (supporting greater visibility of the driving environment). Driver behavior and performance was compared in a texting-while-driving task set during a driving simulation. The texting task was completed with and without voice-to-text using a smartphone and with voice-to-text using Google Glass's HUD. Driving task performance degraded with the addition of the secondary texting task. However, voice-to-text input supported relatively better performance in both driving and texting tasks compared to using manual entry. HUD functionality further improved driving performance compared to conditions using a smartphone and often was not significantly worse than performance without the texting task. This study suggests that despite the performance costs of texting-while-driving, voice input methods improve performance over manual entry, and head-up displays may further extend those performance benefits. This study can inform designers and potential users of wearable technologies as well as policymakers tasked with regulating the use of these technologies while driving.

  8. Ex post manipulation of barriers in InGaAs tunnel injection devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talalaev, Vadim G.; Fock Institute of Physics, St. Petersburg State University, St. Petersburg 198504; Cirlin, George E.

    Ex post manipulation of ∼1.1 μm emitting InGaAs/GaAs-based quantum dot–quantum well tunnel injection light emitting devices is demonstrated experimentally. The devices were operated at elevated forward currents until irreversible alterations were observed. As a result, changes in the steady-state optical spectra (electroluminescence, photoluminescence, and photocurrent), in carrier kinetics, in transport properties, and real structure are found. Except for degradation effects, e.g., of larger quantum dots, also restoration/annealing effects such as increased tunnel barriers are observed. The results furnish evidence for a generic degradation mode of nanostructures. We qualitatively interpret the mechanisms involved on both the nanoscopic and the device scales.

  9. Stability of CIGS Solar Cells and Component Materials Evaluated by a Step-Stress Accelerated Degradation Test Method: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pern, F. J.; Noufi, R.

    A step-stress accelerated degradation testing (SSADT) method was employed for the first time to evaluate the stability of CuInGaSe2 (CIGS) solar cells and device component materials in four Al-framed test structures encapsulated with an edge sealant and three kinds of backsheet or moisture barrier film for moisture ingress control. The SSADT exposure used a 15oC and then a 15% relative humidity (RH) increment step, beginning from 40oC/40%RH (T/RH = 40/40) to 85oC/70%RH (85/70) as of the moment. The voluminous data acquired and processed as of total DH = 3956 h with 85/70 = 704 h produced the following results. Themore » best CIGS solar cells in sample Set-1 with a moisture-permeable TPT backsheet showed essentially identical I-V degradation trend regardless of the Al-doped ZnO (AZO) layer thickness ranging from standard 0.12 μm to 0.50 μm on the cells. No clear 'stepwise' feature in the I-V parameter degradation curves corresponding to the SSADT T/RH/time profile was observed. Irregularity in I-V performance degradation pattern was observed with some cells showing early degradation at low T/RH < 55/55 and some showing large Voc, FF, and efficiency degradation due to increased series Rs (ohm-cm2) at T/RH ≥ 70/70. Results of (electrochemical) impedance spectroscopy (ECIS) analysis indicate degradation of the CIGS solar cells corresponded to increased series resistance Rs (ohm) and degraded parallel (minority carrier diffusion/recombination) resistance Rp, capacitance C, overall time constant Rp*C, and 'capacitor quality' factor (CPE-P), which were related to the cells? p-n junction properties. Heating at 85/70 appeared to benefit the CIGS solar cells as indicated by the largely recovered CPE-P factor. Device component materials, Mo on soda lime glass (Mo/SLG), bilayer ZnO (BZO), AlNi grid contact, and CdS/CIGS/Mo/SLG in test structures with TPT showed notable to significant degradation at T/RH ≥ 70/70. At T/RH = 85/70, substantial blistering of BZO layers on CIGS cell pieces was observed that was not seen on BZO/glass, and a CdS/CIGS sample displayed a small darkening and then flaking feature. Additionally, standard AlNi grid contact was less stable than thin Ni grid contact at T/RH ≥ 70/70. The edge sealant and moisture-blocking films were effective to block moisture ingress, as evidenced by the good stability of most CIGS solar cells and device components at T/RH = 85/70 for 704 h, and by preservation of the initial blue color on the RH indicator strips. The SSADT experiment is ongoing to be completed at T/RH = 85/85.« less

  10. Observation of Nanoscale Morphological and Structural Degradation in Perovskite Solar Cells by In-Situ TEM

    DOE PAGES

    Yang, Bin; Dyck, Ondrej K.; Univ. of Tennessee, Knoxville, TN; ...

    2016-11-04

    The chemical stability of organometallic halide perovskites is a major barrier facing their application in the fast rising field of next generation photovoltaics. These materials were shown to undergo degradation due to the influence of heat or moisture, significantly limiting the lifetime of associated devices. To overcome this stability issue, a fundamental understanding of degradation mechanisms is of foremost importance. Here, high resolution in situ transmission electron microscopy and electron energy loss spectroscopy elemental mapping were applied to probe morphological and structural changes in perovskite films during controlled environmental exposure treatments. Both moisture and oxygen in ambient air are revealedmore » to facilitate degradation in CH 3NH 3PbI 3 perovskites through decomposition and oxidation pathways, respectively. In addition, even in moisture- and oxygen-free environment evident degradation could be induced by heating at the solar cell s real-field operating temperature and the degradation was found to originate from defect sites. These findings provide fundamental insight to prevent degradation of perovskite materials and associated devices for realistic applications.« less

  11. Observation of Nanoscale Morphological and Structural Degradation in Perovskite Solar Cells by In-Situ TEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Bin; Dyck, Ondrej K.; Univ. of Tennessee, Knoxville, TN

    The chemical stability of organometallic halide perovskites is a major barrier facing their application in the fast rising field of next generation photovoltaics. These materials were shown to undergo degradation due to the influence of heat or moisture, significantly limiting the lifetime of associated devices. To overcome this stability issue, a fundamental understanding of degradation mechanisms is of foremost importance. Here, high resolution in situ transmission electron microscopy and electron energy loss spectroscopy elemental mapping were applied to probe morphological and structural changes in perovskite films during controlled environmental exposure treatments. Both moisture and oxygen in ambient air are revealedmore » to facilitate degradation in CH 3NH 3PbI 3 perovskites through decomposition and oxidation pathways, respectively. In addition, even in moisture- and oxygen-free environment evident degradation could be induced by heating at the solar cell s real-field operating temperature and the degradation was found to originate from defect sites. These findings provide fundamental insight to prevent degradation of perovskite materials and associated devices for realistic applications.« less

  12. Post-Flight Test Results of Acousto-Optic Modulator Devices Subjected to Space Exposure

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Trivedi, Sudhir; Rosemeier, Jolanta; Diestler, Mark

    2014-01-01

    The objective of the Materials International Space Station Experiment (MISSE) is to study the performance of novel materials when subjected to the synergistic effects of the harsh space environment for several months. MISSE missions provide an opportunity for developing space qualifiable materials. Several laser and lidar components were sent by NASA Langley Research Center (LaRC) as a part of the MISSE 7 mission. The MISSE 7 module was transported to the international space station (ISS) via STS 129 mission that was launched on Nov 16, 2009. Later, the MISSE 7 module was brought back to the earth via the STS 134 that landed on June 1, 2011. The MISSE 7 module that was subjected to exposure in a space environment for more than one and a half years included fiber laser, solid-state laser gain materials, detectors, and semiconductor laser diode. Performance testing of these components is now progressing. In this paper, the results of performance testing of a laser diode module sent by NASA Langley Research Center on MISSE 7 mission will be discussed. This paper will present the comparison of pre-flight and post-flight performance of two different COTS acousto-optic modulator (AOM) devices. Post-flight measurements indicate that these two devices did not undergo any significant performance degradation.

  13. Post-flight test results of acousto-optic modulator devices subjected to space exposure

    NASA Astrophysics Data System (ADS)

    Prasad, Narasimha S.; Trivedi, Sudhir; Rosemeier, Jolanta; Diestler, Mark

    2014-09-01

    The objective of the Materials International Space Station Experiment (MISSE) is to study the performance of novel materials when subjected to the synergistic effects of the harsh space environment for several months. MISSE missions provide an opportunity for developing space qualifiable materials. Several laser and lidar components were sent by NASA Langley Research Center (LaRC) as a part of the MISSE 7 mission. The MISSE 7 module was transported to the international space station (ISS) via STS 129 mission that was launched on Nov 16, 2009. Later, the MISSE 7 modulewas brought back to the earth via the STS 134 that landed on June 1, 2011. The MISSE 7 module that was subjected to exposure in space environment for more than one and a half year included fiber laser, solid-state laser gain materials, detectors, and semiconductor laser diode. Performance testing of these components is now progressing. In this paper, the results of performance testing of a laser diode module sent by NASA Langley Research Center on MISSE 7 mission will be discussed. This paper will present the comparison of pre-flight and post-flight performance of two different COTS acousto-optic modulator devices. Post-flight measurements indicate that these two devices did not undergo any significant performance degradation.

  14. Demonstration of hetero-gate-dielectric tunneling field-effect transistors (HG TFETs).

    PubMed

    Choi, Woo Young; Lee, Hyun Kook

    2016-01-01

    The steady scaling-down of semiconductor device for improving performance has been the most important issue among researchers. Recently, as low-power consumption becomes one of the most important requirements, there have been many researches about novel devices for low-power consumption. Though scaling supply voltage is the most effective way for low-power consumption, performance degradation is occurred for metal-oxide-semiconductor field-effect transistors (MOSFETs) when supply voltage is reduced because subthreshold swing (SS) of MOSFETs cannot be lower than 60 mV/dec. Thus, in this thesis, hetero-gate-dielectric tunneling field-effect transistors (HG TFETs) are investigated as one of the most promising alternatives to MOSFETs. By replacing source-side gate insulator with a high- k material, HG TFETs show higher on-current, suppressed ambipolar current and lower SS than conventional TFETs. Device design optimization through simulation was performed and fabrication based on simulation demonstrated that performance of HG TFETs were better than that of conventional TFETs. Especially, enlargement of gate insulator thickness while etching gate insulator at the source side was improved by introducing HF vapor etch process. In addition, the proposed HG TFETs showed higher performance than our previous results by changing structure of sidewall spacer by high- k etching process.

  15. Matching rendered and real world images by digital image processing

    NASA Astrophysics Data System (ADS)

    Mitjà, Carles; Bover, Toni; Bigas, Miquel; Escofet, Jaume

    2010-05-01

    Recent advances in computer-generated images (CGI) have been used in commercial and industrial photography providing a broad scope in product advertising. Mixing real world images with those rendered from virtual space software shows a more or less visible mismatching between corresponding image quality performance. Rendered images are produced by software which quality performance is only limited by the resolution output. Real world images are taken with cameras with some amount of image degradation factors as lens residual aberrations, diffraction, sensor low pass anti aliasing filters, color pattern demosaicing, etc. The effect of all those image quality degradation factors can be characterized by the system Point Spread Function (PSF). Because the image is the convolution of the object by the system PSF, its characterization shows the amount of image degradation added to any taken picture. This work explores the use of image processing to degrade the rendered images following the parameters indicated by the real system PSF, attempting to match both virtual and real world image qualities. The system MTF is determined by the slanted edge method both in laboratory conditions and in the real picture environment in order to compare the influence of the working conditions on the device performance; an approximation to the system PSF is derived from the two measurements. The rendered images are filtered through a Gaussian filter obtained from the taking system PSF. Results with and without filtering are shown and compared measuring the contrast achieved in different final image regions.

  16. Improving biocompatibility by surface modification techniques on implantable bioelectronics.

    PubMed

    Lin, Peter; Lin, Chii-Wann; Mansour, Raafat; Gu, Frank

    2013-09-15

    For implantable bioelectronic devices, the interface between the device and the biological environment requires significant attention as it dictates the device performance in vivo. Non-specific protein adsorption onto the device surface is the initial stage of many degradation mechanisms that will ultimately compromise the functionality of the device. In order to preserve the functionality of any implanted bioelectronics overtime, protein adsorption must be controlled. This review paper outlines two major approaches to minimize protein adsorption onto the surface of implantable electronics. The first approach is surface coating, which minimizes close proximity interactions between proteins and device surfaces by immobilizing electrically neutral hydrophilic polymers as surface coating. These coatings reduce protein fouling by steric repulsion and formation of a hydration layer which acts as both a physical and energetic barrier that minimize protein adsorption onto the device. Relevant performances of various conventional hydrophilic coatings are discussed. The second approach is surface patterning using arrays of hydrophobic nanostructures through photolithography techniques. By establishing a large slip length via super hydrophobic surfaces, the amount of proteins adsorbed to the surface of the device can be reduced. The last section discusses emerging surface coating techniques utilizing zwitterionic polymers where ultralow-biofouling surfaces have been demonstrated. These surface modification techniques may significantly improve the long-term functionality of implantable bioelectronics, thus allowing researchers to overcome challenges to diagnose and treat chronic neurological and cardiovascular diseases. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Direct evidence of void passivation in Cu(InGa)(SSe){sub 2} absorber layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Dongho; Kim, Young-Su; Mo, Chan B.

    We have investigated the charge collection condition around voids in copper indium gallium sulfur selenide (CIGSSe) solar cells fabricated by sputter and a sequential process of selenization/sulfurization. In this study, we found direct evidence of void passivation by using the junction electron beam induced current method, transmission electron microscopy, and energy dispersive X-ray spectroscopy. The high sulfur concentration at the void surface plays an important role in the performance enhancement of the device. The recombination around voids is effectively suppressed by field-assisted void passivation. Hence, the generated carriers are easily collected by the electrodes. Therefore, when the S/(S + Se)more » ratio at the void surface is over 8% at room temperature, the device performance degradation caused by the recombination at the voids is negligible at the CIGSSe layer.« less

  18. Making and Breaking of Lead Halide Perovskites.

    PubMed

    Manser, Joseph S; Saidaminov, Makhsud I; Christians, Jeffrey A; Bakr, Osman M; Kamat, Prashant V

    2016-02-16

    A new front-runner has emerged in the field of next-generation photovoltaics. A unique class of materials, known as organic metal halide perovskites, bridges the gap between low-cost fabrication and exceptional device performance. These compounds can be processed at low temperature (typically in the range 80-150 °C) and readily self-assemble from the solution phase into high-quality semiconductor thin films. The low energetic barrier for crystal formation has mixed consequences. On one hand, it enables inexpensive processing and both optical and electronic tunability. The caveat, however, is that many as-formed lead halide perovskite thin films lack chemical and structural stability, undergoing rapid degradation in the presence of moisture or heat. To date, improvements in perovskite solar cell efficiency have resulted primarily from better control over thin film morphology, manipulation of the stoichiometry and chemistry of lead halide and alkylammonium halide precursors, and the choice of solvent treatment. Proper characterization and tuning of processing parameters can aid in rational optimization of perovskite devices. Likewise, gaining a comprehensive understanding of the degradation mechanism and identifying components of the perovskite structure that may be particularly susceptible to attack by moisture are vital to mitigate device degradation under operating conditions. This Account provides insight into the lifecycle of organic-inorganic lead halide perovskites, including (i) the nature of the precursor solution, (ii) formation of solid-state perovskite thin films and single crystals, and (iii) transformation of perovskites into hydrated phases upon exposure to moisture. In particular, spectroscopic and structural characterization techniques shed light on the thermally driven evolution of the perovskite structure. By tuning precursor stoichiometry and chemistry, and thus the lead halide charge-transfer complexes present in solution, crystallization kinetics can be tailored to yield improved thin film homogeneity. Because degradation of the as-formed perovskite film is in many ways analogous to its initial formation, the same suite of monitoring techniques reveals the moisture-induced transformation of low band gap methylammonium lead iodide (CH3NH3PbI3) to wide band gap hydrate compounds. The rate of degradation is increased upon exposure to light. Interestingly, the hydration process is reversible under certain conditions. This facile formation and subsequent chemical lability raises the question of whether CH3NH3PbI3 and its analogues are thermodynamically stable phases, thus posing a significant challenge to the development of transformative perovskite photovoltaics. Adequately addressing issues of structural and chemical stability under real-world operating conditions is paramount if perovskite solar cells are to make an impact beyond the benchtop. Expanding our fundamental knowledge of lead halide perovskite formation and degradation pathways can facilitate fabrication of stable, high-quality perovskite thin films for the next generation of photovoltaic and light emitting devices.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manser, Joseph S.; Saidaminov, Makhsud I.; Christians, Jeffrey A.

    A new front-runner has emerged in the field of next-generation photovoltaics. A unique class of materials, known as organic metal halide perovskites, bridges the gap between low-cost fabrication and exceptional device performance. These compounds can be processed at low temperature (typically in the range 80-150 °C) and readily self-assemble from the solution phase into high-quality semiconductor thin films. The low energetic barrier for crystal formation has mixed consequences. On one hand, it enables inexpensive processing and both optical and electronic tunability. The caveat, however, is that many as-formed lead halide perovskite thin films lack chemical and structural stability, undergoing rapidmore » degradation in the presence of moisture or heat. To date, improvements in perovskite solar cell efficiency have resulted primarily from better control over thin film morphology, manipulation of the stoichiometry and chemistry of lead halide and alkylammonium halide precursors, and the choice of solvent treatment. Proper characterization and tuning of processing parameters can aid in rational optimization of perovskite devices. Likewise, gaining a comprehensive understanding of the degradation mechanism and identifying components of the perovskite structure that may be particularly susceptible to attack by moisture are vital to mitigate device degradation under operating conditions. This Account provides insight into the lifecycle of organic-inorganic lead halide perovskites, including (i) the nature of the precursor solution, (ii) formation of solid-state perovskite thin films and single crystals, and (iii) transformation of perovskites into hydrated phases upon exposure to moisture. In particular, spectroscopic and structural characterization techniques shed light on the thermally driven evolution of the perovskite structure. By tuning precursor stoichiometry and chemistry, and thus the lead halide charge-transfer complexes present in solution, crystallization kinetics can be tailored to yield improved thin film homogeneity. Because degradation of the as-formed perovskite film is in many ways analogous to its initial formation, the same suite of monitoring techniques reveals the moisture-induced transformation of low band gap methylammonium lead iodide (CH 3NH 3PbI 3) to wide band gap hydrate compounds. The rate of degradation is increased upon exposure to light. Interestingly, the hydration process is reversible under certain conditions. This facile formation and subsequent chemical lability raises the question of whether CH 3NH 3PbI 3 and its analogues are thermodynamically stable phases, thus posing a significant challenge to the development of transformative perovskite photovoltaics. Adequately addressing issues of structural and chemical stability under real-world operating conditions is paramount if perovskite solar cells are to make an impact beyond the benchtop. Expanding our fundamental knowledge of lead halide perovskite formation and degradation pathways can facilitate fabrication of stable, high-quality perovskite thin films for the next generation of photovoltaic and light emitting devices.« less

  20. Making and Breaking of Lead Halide Perovskites

    DOE PAGES

    Manser, Joseph S.; Saidaminov, Makhsud I.; Christians, Jeffrey A.; ...

    2016-01-20

    A new front-runner has emerged in the field of next-generation photovoltaics. A unique class of materials, known as organic metal halide perovskites, bridges the gap between low-cost fabrication and exceptional device performance. These compounds can be processed at low temperature (typically in the range 80-150 °C) and readily self-assemble from the solution phase into high-quality semiconductor thin films. The low energetic barrier for crystal formation has mixed consequences. On one hand, it enables inexpensive processing and both optical and electronic tunability. The caveat, however, is that many as-formed lead halide perovskite thin films lack chemical and structural stability, undergoing rapidmore » degradation in the presence of moisture or heat. To date, improvements in perovskite solar cell efficiency have resulted primarily from better control over thin film morphology, manipulation of the stoichiometry and chemistry of lead halide and alkylammonium halide precursors, and the choice of solvent treatment. Proper characterization and tuning of processing parameters can aid in rational optimization of perovskite devices. Likewise, gaining a comprehensive understanding of the degradation mechanism and identifying components of the perovskite structure that may be particularly susceptible to attack by moisture are vital to mitigate device degradation under operating conditions. This Account provides insight into the lifecycle of organic-inorganic lead halide perovskites, including (i) the nature of the precursor solution, (ii) formation of solid-state perovskite thin films and single crystals, and (iii) transformation of perovskites into hydrated phases upon exposure to moisture. In particular, spectroscopic and structural characterization techniques shed light on the thermally driven evolution of the perovskite structure. By tuning precursor stoichiometry and chemistry, and thus the lead halide charge-transfer complexes present in solution, crystallization kinetics can be tailored to yield improved thin film homogeneity. Because degradation of the as-formed perovskite film is in many ways analogous to its initial formation, the same suite of monitoring techniques reveals the moisture-induced transformation of low band gap methylammonium lead iodide (CH 3NH 3PbI 3) to wide band gap hydrate compounds. The rate of degradation is increased upon exposure to light. Interestingly, the hydration process is reversible under certain conditions. This facile formation and subsequent chemical lability raises the question of whether CH 3NH 3PbI 3 and its analogues are thermodynamically stable phases, thus posing a significant challenge to the development of transformative perovskite photovoltaics. Adequately addressing issues of structural and chemical stability under real-world operating conditions is paramount if perovskite solar cells are to make an impact beyond the benchtop. Expanding our fundamental knowledge of lead halide perovskite formation and degradation pathways can facilitate fabrication of stable, high-quality perovskite thin films for the next generation of photovoltaic and light emitting devices.« less

  1. 21 CFR 878.4480 - Absorbable powder for lubricating a surgeon's glove.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878... degradation. (b) Classification. Class III. (c) Date PMA or notice of completion of a PDP is required. As of...

  2. Implementation of light extraction improvements of GaN-based light-emitting diodes with specific textured sidewalls

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Yen; Chen, Wei-Cheng; Chang, Ching-Hong; Lee, Yu-Lin; Liu, Wen-Chau

    2018-05-01

    Textured-sidewall GaN-based light-emitting diodes (LEDs) with various sidewall angles (15-90°) and convex or concave sidewalls prepared using an inductively-coupled-plasma approach are comprehensively fabricated and studied. The device with 45° sidewalls (Device F) and that with convex sidewalls (Device B) show significant improvements in optical properties. Experiments show that, at an injection current of 350 mA, the light output power, external quantum efficiency, wall-plug efficiency, and luminous flux of Device F (Device B) are greatly improved by 18.3% (18.2%), 18.2% (18.2%), 17.3% (19.8%), and 16.6% (18.4%), respectively, compared to those of a conventional LED with flat sidewalls. In addition, negligible degradation in electrical properties is found. The enhanced optical performance is mainly attributed to increased light extraction in the horizontal direction due to a significant reduction in total internal reflection at the textured sidewalls. Therefore, the reported specific textured-sidewall structures (Devices B and F) are promising for high-power GaN-based LED applications.

  3. Modular initiator with integrated optical diagnostic

    DOEpatents

    Alam, M Kathleen [Cedar Crest, NM; Schmitt, Randal L [Tijeras, NM; Welle, Eric J [Niceville, FL; Madden, Sean P [Arlington, MA

    2011-05-17

    A slapper detonator which integrally incorporates an optical wavequide structure for determining whether there has been degradation of the explosive in the explosive device that is to be initiated by the detonator. Embodiments of this invention take advantage of the barrel-like character of a typical slapper detonator design. The barrel assembly, being in direct contact with the energetic material, incorporates an optical diagnostic device into the barrel assembly whereby one can monitor the state of the explosive material. Such monitoring can be beneficial because the chemical degradation of the explosive plays an important in achieving proper functioning of a detonator/initiator device.

  4. LABEL-FREE VIRUS CAPTURE AND RELEASE BY A MICROFLUIDIC DEVICE INTEGRATED WITH POROUS SILICON NANOWIRE FOREST

    PubMed Central

    Xia, Yiqiu; Tang, Yi; Yu, Xu; Wan, Yuan; Chen, Yizhu; Lu, Huaguang; Zheng, Si-Yang

    2016-01-01

    Viral diseases are perpetual threats to human and animal health. Detection and characterization of viral pathogens require accurate, sensitive and rapid diagnostic assays. For field and clinical samples, the sample preparation procedures limit the ultimate performance and utility of the overall virus diagnostic protocols. Here, we presented the development of a microfluidic device embedded with porous silicon nanowire (pSiNW) forest for label-free size-based point-of-care virus capture in a continuous curved flow design. The pSiNW forests with specific inter-wire spacing were synthesized in situ on both bottom and sidewalls of the microchannels in a batch process. With the enhancement effect of Dean flow, we demonstrated ~50% H5N2 avian influenza viruses were physically trapped without device clogging. A unique feature of the device is that captured viruses can be released by inducing self-degradation of the pSiNWs in physiological aqueous environment. About 60% of captured viruses can be released within 24 hours for virus culture, subsequent molecular diagnosis and other virus characterization and analyses. This device performs viable, unbiased and label-free virus isolation and release. It has great potentials for virus discovery, virus isolation and culture, functional studies of virus pathogenicity, transmission, drug screening, and vaccine development. PMID:27918640

  5. Degradation studies of transparent conductive electrodes on electroactive poly(vinylidene fluoride) for uric acid measurements

    NASA Astrophysics Data System (ADS)

    Cardoso, Vanessa F.; Martins, Pedro; Botelho, Gabriela; Rebouta, Luis; Lanceros-Méndez, Senentxu; Minas, Graca

    2010-08-01

    Biochemical analysis of physiological fluids using, for example, lab-on-a-chip devices requires accurate mixing of two or more fluids. This mixing can be assisted by acoustic microagitation using a piezoelectric material, such as the β-phase of poly(vinylidene fluoride) (β-PVDF). If the analysis is performed using optical absorption spectroscopy and β-PVDF is located in the optical path, the material and its conductive electrodes must be transparent. Moreover, if, to improve the transmission of the ultrasonic waves to the fluids, the piezoelectric transducer is placed inside the fluidic structures, its degradation must be assessed. In this paper, we report on the degradation properties of transparent conductive oxides, namely, indium tin oxide (ITO) and aluminum-doped zinc oxide, when they are used as electrodes for providing acoustic microagitation. The latter promotes mixing of chemicals involved in the measurement of uric acid concentration in physiological fluids. The results are compared with those for aluminum electrodes. We find that β-PVDF samples with ITO electrodes do not degrade either with or without acoustic microagitation.

  6. Stability and Performance of CsPbI2Br Thin Films and Solar Cell Devices.

    PubMed

    Mariotti, Silvia; Hutter, Oliver S; Phillips, Laurie J; Yates, Peter J; Kundu, Biswajit; Durose, Ken

    2018-01-31

    In this manuscript, the inorganic perovskite CsPbI 2 Br is investigated as a photovoltaic material that offers higher stability than the organic-inorganic hybrid perovskite materials. It is demonstrated that CsPbI 2 Br does not irreversibly degrade to its component salts as in the case of methylammonium lead iodide but instead is induced (by water vapor) to transform from its metastable brown cubic (1.92 eV band gap) phase to a yellow phase having a higher band gap (2.85 eV). This is easily reversed by heating to 350 °C in a dry environment. Similarly, exposure of unencapsulated photovoltaic devices to water vapor causes current (J SC ) loss as the absorber transforms to its more transparent (yellow) form, but this is also reversible by moderate heating, with over 100% recovery of the original device performance. NMR and thermal analysis show that the high band gap yellow phase does not contain detectable levels of water, implying that water induces the transformation but is not incorporated as a major component. Performances of devices with best efficiencies of 9.08% (V OC = 1.05 V, J SC = 12.7 mA cm -2 and FF = 68.4%) using a device structure comprising glass/ITO/c-TiO 2 /CsPbI 2 Br/Spiro-OMeTAD/Au are presented, and further results demonstrating the dependence of the performance on the preparation temperature of the solution processed CsPbI 2 Br films are shown. We conclude that encapsulation of CsPbI 2 Br to exclude water vapor should be sufficient to stabilize the cubic brown phase, making the material of interest for use in practical PV devices.

  7. Asymmetric underlap optimization of sub-10nm finfets for realizing energy-efficient logic and robust memories

    NASA Astrophysics Data System (ADS)

    Akkala, Arun Goud

    Leakage currents in CMOS transistors have risen dramatically with technology scaling leading to significant increase in standby power consumption. Among the various transistor candidates, the excellent short channel immunity of Silicon double gate FinFETs have made them the best contender for successful scaling to sub-10nm nodes. For sub-10nm FinFETs, new quantum mechanical leakage mechanisms such as direct source to drain tunneling (DSDT) of charge carriers through channel potential energy barrier arising due to proximity of source/drain regions coupled with the high transport direction electric field is expected to dominate overall leakage. To counter the effects of DSDT and worsening short channel effects and to maintain Ion/ Ioff, performance and power consumption at reasonable values, device optimization techniques are necessary for deeply scaled transistors. In this work, source/drain underlapping of FinFETs has been explored using quantum mechanical device simulations as a potentially promising method to lower DSDT while maintaining the Ion/ Ioff ratio at acceptable levels. By adopting a device/circuit/system level co-design approach, it is shown that asymmetric underlapping, where the drain side underlap is longer than the source side underlap, results in optimal energy efficiency for logic circuits in near-threshold as well as standard, super-threshold operating regimes. In addition, read/write conflict in 6T SRAMs and the degradation in cell noise margins due to the low supply voltage can be mitigated by using optimized asymmetric underlapped n-FinFETs for the access transistor, thereby leading to robust cache memories. When gate-workfunction tuning is possible, using asymmetric underlapped n-FinFETs for both access and pull-down devices in an SRAM bit cell can lead to high-speed and low-leakage caches. Further, it is shown that threshold voltage degradation in the presence of Hot Carrier Injection (HCI) is less severe in asymmetric underlap n-FinFETs. A lifetime projection is carried out assuming that HCI is the major degradation mechanism and it is shown that a 3.4x improvement in device lifetime is possible over symmetric underlapped n-FinFET.

  8. Cryogenic irradiation of an EMCCD for the WFIRST coronagraph: preliminary performance analysis

    NASA Astrophysics Data System (ADS)

    Bush, Nathan; Hall, David; Holland, Andrew; Burgon, Ross; Murray, Neil; Gow, Jason; Jordan, Douglas; Demers, Richard; Harding, Leon K.; Nemati, Bijan; Hoenk, Michael; Michaels, Darren; Peddada, Pavani

    2016-08-01

    The Wide Field Infra-Red Survey Telescope (WFIRST) is a NASA observatory scheduled to launch in the next decade that will settle essential questions in exoplanet science. The Wide Field Instrument (WFI) offers Hubble quality imaging over a 0.28 square degree field of view and will gather NIR statistical data on exoplanets through gravitational microlensing. An on-board coronagraph will for the first time perform direct imaging and spectroscopic analysis of exoplanets with properties analogous to those within our own solar system, including cold Jupiters, mini Neptunes and potentially super Earths. The Coronagraph Instrument (CGI) will be required to operate with low signal flux for long integration times, demanding all noise sources are kept to a minimum. The Electron Multiplication (EM)-CCD has been baselined for both the imaging and spectrograph cameras due its ability to operate with sub-electron effective read noise values with appropriate multiplication gain setting. The presence of other noise sources, however, such as thermal dark signal and Clock Induced Charge (CIC), need to be characterized and mitigated. In addition, operation within a space environment will subject the device to radiation damage that will degrade the Charge Transfer Effciency (CTE) of the device throughout the mission lifetime. Irradiation at the nominal instrument operating temperature has the potential to provide the best estimate of performance degradation that will be experienced in-flight, since the final population of silicon defects has been shown to be dependent upon the temperature at which the sensor is irradiated. Here we present initial findings from pre- and post- cryogenic irradiation testing of the e2v CCD201-20 BI EMCCD sensor, baselined for the WFIRST coronagraph instrument. The motivation for irradiation at cryogenic temperatures is discussed with reference to previous investigations of a similar nature. The results are presented in context with those from a previous room temperature irradiation investigation that was performed on a CCD201-20 operated under the same conditions. A key conclusion is that the measured performance degradation for a given proton fluence is seen to measurably differ for the cryogenic case compared to the room temperature equivalent for the conditions of this study.

  9. Solar Power Generation in Extreme Space Environments

    NASA Technical Reports Server (NTRS)

    Elliott, Frederick W.; Piszczor, Michael F.

    2016-01-01

    The exploration of space requires power for guidance, navigation, and control; instrumentation; thermal control; communications and data handling; and many subsystems and activities. Generating sufficient and reliable power in deep space through the use of solar arrays becomes even more challenging as solar intensity decreases and high radiation levels begin to degrade the performance of photovoltaic devices. The Extreme Environments Solar Power (EESP) project goal is to develop advanced photovoltaic technology to address these challenges.

  10. Enhanced stability of ZnO-based inverted organic photovoltaic devices by phosphonic acid modification

    NASA Astrophysics Data System (ADS)

    MacLeod, Bradley; Tremolet de Villers, Bertrand; Cowan, Sarah; Ratcliff, Erin; Olson, Dana

    2014-03-01

    Solution-processed ZnO thin films are now commonly used as n-type bottom contacts in inverted-geometry organic photovoltaics (OPVs). The use of ZnO eliminates the need for highly-reactive top-contact (air-interface) electrode material, such as calcium and aluminum which are commonly used in conventional geometries, which enables operational lifetimes of unencapsulated devices to shift from minutes or hours to days. Modification of the ZnO film by self-assembled monolayers (SAMs) has been shown to enhance performance as well as air-stability during storage. We modify ZnO with dipolar phosphonic acids and observe enhanced performance and stability. We show for the first time devices measured under continuous illumination at one-sun intensity which have significantly enhanced stability when utilizing SAM-modified ZnO. These continuous-illumination stability measurements allow us to investigate the degradation mechanisms of these more stable inverted OPV devices. This work was was supported by of the Center for Interface Science: Solar Electric Materials (CISSEM), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001084.

  11. Tunnel Junction Development Using Hydride Vapor Phase Epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ptak, Aaron J.; Simon, John D.; Schulte, Kevin L.

    We demonstrate for the first time III-V tunnel junctions grown using hydride vapor phase epitaxy (HVPE) with peak tunneling currents >8 A/cm 2, sufficient for operation of a multijunction device to several hundred suns of concentration. Multijunction solar cells rely on tunneling interconnects between subcells to enable series connection with minimal voltage loss, but tunnel junctions have never been shown using the HVPE growth method. HVPE has recently reemerged as a low-cost growth method for high-quality III-V materials and devices, including the growth of high-efficiency III-V solar cells. We previously showed single-junction GaAs solar cells with conversion efficiencies of ~24%more » with a path forward to equal or exceed the practical efficiency limits of crystalline Si. Moving to a multijunction device structure will allow for even higher efficiencies with minimal impact on cost, necessitating the development of tunnel interconnects. Here in this paper, we demonstrate the performance of both isolated HVPE-grown tunnel junctions, as well as single-junction GaAs solar cell structures with a tunnel junction incorporated into the contact region. We observe no degradation in device performance compared to a structure without the added junction.« less

  12. Heterojunction fully depleted SOI-TFET with oxide/source overlap

    NASA Astrophysics Data System (ADS)

    Chander, Sweta; Bhowmick, B.; Baishya, S.

    2015-10-01

    In this work, a hetero-junction fully depleted (FD) Silicon-on-Insulator (SOI) Tunnel Field Effect Transistor (TFET) nanostructure with oxide overlap on the Germanium-source region is proposed. Investigations using Synopsys Technology Computer Aided Design (TCAD) simulation tools reveal that the simple oxide overlap on the Germanium-source region increases the tunneling area as well as the tunneling current without degrading the band-to-band tunneling (BTBT) and improves the device performance. More importantly, the improvement is independent of gate overlap. Simulation study shows improvement in ON current, subthreshold swing (SS), OFF current, ION/IOFF ration, threshold voltage and transconductance. The proposed device with hafnium oxide (HfO2)/Aluminium Nitride (AlN) stack dielectric material offers an average subthreshold swing of 22 mV/decade and high ION/IOFF ratio (∼1010) at VDS = 0.4 V. Compared to conventional TFET, the Miller capacitance of the device shows the enhanced performance. The impact of the drain voltage variation on different parameters such as threshold voltage, subthreshold swing, transconductance, and ION/IOFF ration are also found to be satisfactory. From fabrication point of view also it is easy to utilize the existing CMOS process flows to fabricate the proposed device.

  13. Real-time detection of mercury ions in water using a reduced graphene oxide/DNA field-effect transistor with assistance of a passivation layer

    DOE PAGES

    Chang, Jingbo; Zhou, Guihua; Gao, Xianfeng; ...

    2015-08-01

    Field-effect transistor (FET) sensors based on reduced graphene oxide (rGO) for detecting chemical species provide a number of distinct advantages, such as ultrasensitivity, label-free, and real-time response. However, without a passivation layer, channel materials directly exposed to an ionic solution could generate multiple signals from ionic conduction through the solution droplet, doping effect, and gating effect. Therefore, a method that provides a passivation layer on the surface of rGO without degrading device performance will significantly improve device sensitivity, in which the conductivity changes solely with the gating effect. In this work, we report rGO FET sensor devices with Hg 2+-dependentmore » DNA as a probe and the use of an Al 2O 3 layer to separate analytes from conducting channel materials. The device shows good electronic stability, excellent lower detection limit (1 nM), and high sensitivity for real-time detection of Hg 2+ in an underwater environment. Our work shows that optimization of an rGO FET structure can provide significant performance enhancement and profound fundamental understanding for the sensor mechanism.« less

  14. Tunnel Junction Development Using Hydride Vapor Phase Epitaxy

    DOE PAGES

    Ptak, Aaron J.; Simon, John D.; Schulte, Kevin L.; ...

    2017-10-18

    We demonstrate for the first time III-V tunnel junctions grown using hydride vapor phase epitaxy (HVPE) with peak tunneling currents >8 A/cm 2, sufficient for operation of a multijunction device to several hundred suns of concentration. Multijunction solar cells rely on tunneling interconnects between subcells to enable series connection with minimal voltage loss, but tunnel junctions have never been shown using the HVPE growth method. HVPE has recently reemerged as a low-cost growth method for high-quality III-V materials and devices, including the growth of high-efficiency III-V solar cells. We previously showed single-junction GaAs solar cells with conversion efficiencies of ~24%more » with a path forward to equal or exceed the practical efficiency limits of crystalline Si. Moving to a multijunction device structure will allow for even higher efficiencies with minimal impact on cost, necessitating the development of tunnel interconnects. Here in this paper, we demonstrate the performance of both isolated HVPE-grown tunnel junctions, as well as single-junction GaAs solar cell structures with a tunnel junction incorporated into the contact region. We observe no degradation in device performance compared to a structure without the added junction.« less

  15. Efficient, flexible and mechanically robust perovskite solar cells on inverted nanocone plastic substrates.

    PubMed

    Tavakoli, Mohammad Mahdi; Lin, Qingfeng; Leung, Siu-Fung; Lui, Ga Ching; Lu, Hao; Li, Liang; Xiang, Bin; Fan, Zhiyong

    2016-02-21

    Utilization of nanostructures on photovoltaic devices can significantly improve the device energy conversion efficiency by enhancing the device light harvesting capability as well as carrier collection efficiency. However, improvements in device mechanical robustness and reliability, particularly for flexible devices, have rarely been reported with in-depth understanding. In this work, we fabricated efficient, flexible and mechanically robust organometallic perovskite solar cells on plastic substrates with inverted nanocone (i-cone) structures. Compared with the reference cell that was fabricated on a flat substrate, it was shown that the device power conversion efficiency could be improved by 37%, and reached up to 11.29% on i-cone substrates. More interestingly, it was discovered that the performance of an i-cone device remained more than 90% of the initial value even after 200 mechanical bending cycles, which is remarkably better than for the flat reference device, which degraded down to only 60% in the same test. Our experiments, coupled with mechanical simulation, demonstrated that a nanostructured template can greatly help in relaxing stress and strain upon device bending, which suppresses crack nucleation in different layers of a perovskite solar cell. This essentially leads to much improved device reliability and robustness and will have significant impact on practical applications.

  16. Reconfigurable and Reprocessable Thermoset Shape Memory Polymer with Synergetic Triple Dynamic Covalent Bonds.

    PubMed

    Wang, Yongwei; Pan, Yi; Zheng, Zhaohui; Ding, Xiaobin

    2018-04-20

    Degradable shape memory polymers (SMPs), especially for polyurethane-based SMPs, have shown great potential for biomedical applications. How to reasonably fabricate SMPs with the ideal combination of degradability, shape reconfigurability, and reprocessability is a critical issue and remains a challenge for medical disposable materials. Herein, a shape memory poly(urethane-urea) with synergetic triple dynamic covalent bonds is reported via embedding polycaprolactone unit into poly(urethane-urea) with the hindered urea dynamic bond. The single polymer network is biodegradable, thermadapt, and reprocessable, without sacrificing the outstanding shape memory performance. Such a shape memory network with plasticity and reprocessability is expected to have significant and positive impact on the medical device industry. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A novel thin-film transistor with step gate-overlapped lightly doped drain and raised source/drain design

    NASA Astrophysics Data System (ADS)

    Chien, Feng-Tso; Chen, Jian-Liang; Chen, Chien-Ming; Chen, Chii-Wen; Cheng, Ching-Hwa; Chiu, Hsien-Chin

    2017-11-01

    In this paper, a novel step gate-overlapped lightly doped drain (GOLDD) with raised source/drain (RSD) structure (SGORSD) is proposed for TFT electronic device application. The new SGORSD structure could obtain a low electric field at channel near the drain side owing to a step GOLDD design. Compared to the conventional device, the SGORSD TFT exhibits a better kink effect and higher breakdown performance due to the reduced drain electric field (D-EF). In addition, the leakage current also can be suppressed. Moreover, the device stability, such as the threshold voltage shift and drain current degradation under a high gate bias, is improved by the design of SGORSD structure. Therefore, this novel step GOLDD structure can be a promising design to be used in active-matrix flat panel electronics.

  18. Neutron radiation tolerance of Au-activated silicon

    NASA Technical Reports Server (NTRS)

    Joyner, W. T.

    1987-01-01

    Double injection devices prepared by the introduction of deep traps, using the Au activation method have been found to tolerate gamma irradiation into the Gigarad (Si) region without significant degradation of operating characteristics. Silicon double injection devices, using deep levels creacted by Au diffusion, can tolerate fast neutron irradiation up to 10 to the 15th n/sq cm. Significant parameter degradation occurs at 10 to the 16th n/sq cm. However, since the actual doping of the basic material begins to change as a result of the transmutation of silicon into phosphorus for neutron fluences greater than 10 to the 17th/sq cm, the radiation tolerance of these devices is approaching the limit possible for any device based on initially doped silicon.

  19. CCD radiation damage in ESA Cosmic Visions missions: assessment and mitigation

    NASA Astrophysics Data System (ADS)

    Lumb, David H.

    2009-08-01

    Charge Coupled Device (CCD) imagers have been widely used in space-borne astronomical instruments. A frequent concern has been the radiation damage effects on the CCD charge transfer properties. We review some methods for assessing the Charge Transfer Inefficiency (CTI) in CCDs. Techniques to minimise degradation using background charge injection and p-channel CCD architectures are discussed. A critical review of the claims for p-channel architectures is presented. The performance advantage for p-channel CCD performance is shown to be lower than claimed previously. Finally we present some projections for the performance in the context of some future ESA missions.

  20. Minimizing performance degradation induced by interfacial recombination in perovskite solar cells through tailoring of the transport layer electronic properties

    NASA Astrophysics Data System (ADS)

    Xu, Liang; Molaei Imenabadi, Rouzbeh; Vandenberghe, William G.; Hsu, Julia W. P.

    2018-03-01

    The performance of hybrid organic-inorganic metal halide perovskite solar cells is investigated using one-dimensional drift-diffusion device simulations. We study the effects of interfacial defect density, doping concentration, and electronic level positions of the charge transport layer (CTL). Choosing CTLs with a favorable band alignment, rather than passivating CTL-perovskite interfacial defects, is shown to be beneficial for maintaining high power-conversion efficiency, due to reduced minority carrier density arising from a favorable local electric field profile. Insights from this study provide theoretical guidance on practical selection of CTL materials for achieving high-performance perovskite solar cells.

  1. Surface/interface effects on high-performance thin-film all-solid-state Li-ion batteries

    DOE PAGES

    Gong, Chen; Ruzmetov, Dmitry; Pearse, Alexander; ...

    2015-10-05

    The further development of all-solid-state batteries is still limited by the understanding/engineering of the interfaces formed upon cycling. Here, we correlate the morphological, chemical, and electrical changes of the surface of thin-film devices with Al negative electrodes. The stable Al–Li–O alloy formed at the stress-free surface of the electrode causes rapid capacity fade, from 48.0 to 41.5 μAh/cm 2 in two cycles. Surprisingly, the addition of a Cu capping layer is insufficient to prevent the device degradation. Furthermore, Si electrodes present extremely stable cycling, maintaining >92% of its capacity after 100 cycles, with average Coulombic efficiency of 98%.

  2. A TiAlCu Metallization for ` n' Type CoSb_x Skutterudites with Improved Performance for High-Temperature Energy Harvesting Applications

    NASA Astrophysics Data System (ADS)

    Rao, Ashwin; Bosak, Gregg; Joshi, Binay; Keane, Jennifer; Nally, Luke; Peng, Adam; Perera, Susanthri; Waring, Alfred; Poudel, Bed

    2017-04-01

    The choice of the appropriate metallizing layer for high-temperature thermoelectric (TE) materials is a tricky task and poses varied challenges to researchers. In this work, a n type TiAl metallizing layer (90% Ti with 10% Al by weight with a copper foil) is proposed for a Yb_{0.2}Co4Sb_{12} skutterudite (SK) TE material coupled with a standard ` p type' SK base of Nd_{0.45}Ce_{0.45}Fe_{3.5}Co_{0.5}Sb_{12} with a 60:12:28% Fe:Ni:Cr metallizing layer. The n type and p type nanostructured SK powders are sintered at high temperatures and pressures in a DC hot press from which a TE device is assembled using diced, polished and property characterized TE legs (high figure of merit zT of 1.4 for n type and 1.2 for p type, respectively). The device is evaluated for functional degradation with repeated cycling to 500°C hot side (HS) and 50°C cold side (CS) temperatures in a specially designed high-vacuum test rig with key TE properties like peak power, open circuit voltage, and material internal resistance continuously recorded over each cycle. The device shows stable performance with <7% drop in TE harvested power over 2500 thermal cycles. With the industry benchmark for evaluating TE device performance being around 1000 thermal cycles (<10% drop in TE power over time), the study indicates stable performance of the n type TiAl metallizing layer over the device lifetime.

  3. A high performance pMOSFET with two-step recessed SiGe-S/D structure for 32 nm node and beyond

    NASA Astrophysics Data System (ADS)

    Yasutake, Nobuaki; Azuma, Atsushi; Ishida, Tatsuya; Ohuchi, Kazuya; Aoki, Nobutoshi; Kusunoki, Naoki; Mori, Shinji; Mizushima, Ichiro; Morooka, Tetsu; Kawanaka, Shigeru; Toyoshima, Yoshiaki

    2007-11-01

    A novel SiGe-S/D structure for high performance pMOSFET called two-step recessed SiGe-source/drain (S/D) is developed with careful optimization of recessed SiGe-S/D structure. With this method, hole mobility, short channel effect and S/D resistance in pMOSFET are improved compared with conventional recessed SiGe-S/D structure. To enhance device performance such as drain current drivability, SiGe region has to be closer to channel region. Then, conventional deep SiGe-S/D region with carefully optimized shallow SiGe SDE region showed additional device performance improvement without SCE degradation. As a result, high performance 24 nm gate length pMOSFET was demonstrated with drive current of 451 μA/μm at ∣ Vdd∣ of 0.9 V and Ioff of 100 nA/μm (552 μA/μm at ∣ Vdd∣ of 1.0 V). Furthermore, by combining with Vdd scaling, we indicate the extendability of two-step recessed SiGe-S/D structure down to 15 nm node generation.

  4. Transferred wrinkled Al2O3 for highly stretchable and transparent graphene-carbon nanotube transistors

    NASA Astrophysics Data System (ADS)

    Chae, Sang Hoon; Yu, Woo Jong; Bae, Jung Jun; Duong, Dinh Loc; Perello, David; Jeong, Hye Yun; Ta, Quang Huy; Ly, Thuc Hue; Vu, Quoc An; Yun, Minhee; Duan, Xiangfeng; Lee, Young Hee

    2013-05-01

    Despite recent progress in producing transparent and bendable thin-film transistors using graphene and carbon nanotubes, the development of stretchable devices remains limited either by fragile inorganic oxides or polymer dielectrics with high leakage current. Here we report the fabrication of highly stretchable and transparent field-effect transistors combining graphene/single-walled carbon nanotube (SWCNT) electrodes and a SWCNT-network channel with a geometrically wrinkled inorganic dielectric layer. The wrinkled Al2O3 layer contained effective built-in air gaps with a small gate leakage current of 10-13 A. The resulting devices exhibited an excellent on/off ratio of ~105, a high mobility of ~40 cm2 V-1 s-1 and a low operating voltage of less than 1 V. Importantly, because of the wrinkled dielectric layer, the transistors retained performance under strains as high as 20% without appreciable leakage current increases or physical degradation. No significant performance loss was observed after stretching and releasing the devices for over 1,000 times. The sustainability and performance advances demonstrated here are promising for the adoption of stretchable electronics in a wide variety of future applications.

  5. Asymmetric band offsets in silicon heterojunction solar cells: Impact on device performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seif, Johannes Peter; Menda, Deneb; Descoeudres, Antoine

    Here, amorphous/crystalline silicon interfaces feature considerably larger valence than conduction band offsets. In this article, we analyze the impact of such band offset asymmetry on the performance of silicon heterojunction solar cells. To this end, we use silicon suboxides as passivation layers -- inserted between substrate and (front or rear) contacts -- since such layers enable intentionally exacerbated band-offset asymmetry. Investigating all topologically possible passivation layer permutations and focussing on light and dark current-voltage characteristics, we confirm that to avoid fill factor losses, wider-bandgap silicon oxide films (of at least several nanometer thin) should be avoided in hole-collecting contacts. Asmore » a consequence, device implementation of such films as window layers -- without degraded carrier collection -- demands electron collection at the front and hole collection at the rear. Furthermore, at elevated operating temperatures, once possible carrier transport barriers are overcome by thermionic (field) emission, the device performance is mainly dictated by the passivation of its surfaces. In this context, compared to the standard amorphous silicon layers, the wide-bandgap oxide layers applied here passivate remarkably better at these temperatures, which may represent an additional benefit under practical operation conditions.« less

  6. Asymmetric band offsets in silicon heterojunction solar cells: Impact on device performance

    DOE PAGES

    Seif, Johannes Peter; Menda, Deneb; Descoeudres, Antoine; ...

    2016-08-01

    Here, amorphous/crystalline silicon interfaces feature considerably larger valence than conduction band offsets. In this article, we analyze the impact of such band offset asymmetry on the performance of silicon heterojunction solar cells. To this end, we use silicon suboxides as passivation layers -- inserted between substrate and (front or rear) contacts -- since such layers enable intentionally exacerbated band-offset asymmetry. Investigating all topologically possible passivation layer permutations and focussing on light and dark current-voltage characteristics, we confirm that to avoid fill factor losses, wider-bandgap silicon oxide films (of at least several nanometer thin) should be avoided in hole-collecting contacts. Asmore » a consequence, device implementation of such films as window layers -- without degraded carrier collection -- demands electron collection at the front and hole collection at the rear. Furthermore, at elevated operating temperatures, once possible carrier transport barriers are overcome by thermionic (field) emission, the device performance is mainly dictated by the passivation of its surfaces. In this context, compared to the standard amorphous silicon layers, the wide-bandgap oxide layers applied here passivate remarkably better at these temperatures, which may represent an additional benefit under practical operation conditions.« less

  7. Asymmetric band offsets in silicon heterojunction solar cells: Impact on device performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seif, Johannes Peter, E-mail: johannes.seif@alumni.epfl.ch; Ballif, Christophe; De Wolf, Stefaan

    Amorphous/crystalline silicon interfaces feature considerably larger valence than conduction band offsets. In this article, we analyze the impact of such band offset asymmetry on the performance of silicon heterojunction solar cells. To this end, we use silicon suboxides as passivation layers—inserted between substrate and (front or rear) contacts—since such layers enable intentionally exacerbated band-offset asymmetry. Investigating all topologically possible passivation layer permutations and focussing on light and dark current-voltage characteristics, we confirm that to avoid fill factor losses, wider-bandgap silicon oxide films (of at least several nanometer thin) should be avoided in hole-collecting contacts. As a consequence, device implementation ofmore » such films as window layers—without degraded carrier collection—demands electron collection at the front and hole collection at the rear. Furthermore, at elevated operating temperatures, once possible carrier transport barriers are overcome by thermionic (field) emission, the device performance is mainly dictated by the passivation of its surfaces. In this context, compared to the standard amorphous silicon layers, the wide-bandgap oxide layers applied here passivate remarkably better at these temperatures, which may represent an additional benefit under practical operation conditions.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Leon E.; Conrad, Ryan C.; Keller, Daniel T.

    The International Atomic Energy Agency (IAEA) deploys unattended monitoring systems to provide continuous monitoring of nuclear material within safeguarded facilities around the world. As the number of unattended monitoring instruments increases, the IAEA is challenged to become more efficient in the implementation of those systems. In 2010, the IAEA initiated the Front-End Electronics for Unattended Measurement (FEUM) project with the goals of greater flexibility in the interfaces to various sensors and data acquisition systems, and improved capabilities for remotely located sensors (e.g., where sensor and front-end electronics might be separated by tens of meters). In consultation with the IAEA, amore » technical evaluation of a candidate FEUM device produced by a commercial vendor is being performed. This evaluation is assessing the device against the IAEA’s original technical specifications and a broad range of important parameters that included sensor types, cable types, and industrial electromagnetic noise that can degrade signals from remotely located detectors. Testing has been performed in a laboratory and also in environments representative of IAEA deployments. The results are expected to inform the IAEA about where and how FEUM devices might be implemented in the field. Data and preliminary findings from the testing performed to date are presented.« less

  9. Technology-derived storage solutions for stabilizing insulin in extreme weather conditions I: the ViViCap-1 device.

    PubMed

    Pfützner, Andreas; Pesach, Gidi; Nagar, Ron

    2017-06-01

    Injectable life-saving drugs should not be exposed to temperatures <4°C/39°F or >30°C/86°F. Frequently, weather conditions exceed these temperature thresholds in many countries. Insulin is to be kept at 4-8°C/~ 39-47°F until use and once opened, is supposed to be stable for up to 31 days at room temperature (exception: 42 days for insulin levemir). Extremely hot or cold external temperature can lead to insulin degradation in a very short time with loss of its glucose-lowering efficacy. Combined chemical and engineering solutions for heat protection are employed in ViViCap-1 for disposable insulin pens. The device works based on vacuum insulation and heat consumption by phase-change material. Laboratory studies with exposure of ViViCap-1 to hot outside conditions were performed to evaluate the device performance. ViViCap-1 keeps insulin at an internal temperature < 29°C/84.2°F for a minimum of 12 h without external power requirement, even when constantly exposed to an outside temperature of 37.8°C/100°F. Bringing the device into an ambient temperature < 26°C/78.8°F reverses the phase-change process and 'recharges' the device for further use. ViViCap-1 performed within its specifications. The small and convenient device maintains the efficacy and safety of using insulin even when carried under hot weather conditions.

  10. Visualization of TlBr ionic transport mechanism by the Accelerated Device Degradation technique

    NASA Astrophysics Data System (ADS)

    Datta, Amlan; Becla, Piotr; Motakef, Shariar

    2015-06-01

    Thallium Bromide (TlBr) is a promising gamma radiation semiconductor detector material. However, it is an ionic semiconductor and suffers from polarization. As a result, TlBr devices degrade rapidly at room temperature. Polarization is associated with the flow of ionic current in the crystal under electrical bias, leading to the accumulation of charged ions at the device's electrical contacts. We report a fast and reliable direct characterization technique to identify the effects of various growth and post-growth process modifications on the polarization process. The Accelerated Device Degradation (ADD) characterization technique allows direct observation of nucleation and propagation of ionic transport channels within the TlBr crystals under applied bias. These channels are observed to be initiated both directly under the electrode as well as away from it. The propagation direction is always towards the anode indicating that Br- is the mobile diffusing species within the defect channels. The effective migration energy of the Br- ions was calculated to be 0.33±0.03 eV, which is consistent with other theoretical and experimental results.

  11. Single, simultaneous and sequential applications of ultrasonic frequencies for the elimination of ibuprofen in water.

    PubMed

    Ziylan-Yavas, Asu; Ince, Nilsun H

    2018-01-01

    The study is about the assessment of single and multi-frequency operations for the overall degradation of a widely consumed analgesic pharmaceutical-ibuprofen (IBP). The selected frequencies were in the range of 20-1130kHz emissions coming from probes, baths and piezo-electric transducers attached to plate-type devices. Multi-frequency operations were applied either simultaneously as "duals", or sequentially at fixed time intervals; and the total reaction time in all operations was 30-min. The work also covers evaluation of the effect of zero-valent iron (ZVI) on the efficiency of the degradation process and the performance of the reaction systems. It was found that low-frequency probe type devices especially at 20kHz were ineffective when applied singly and without ZVI, and relatively more effective in combined-frequency operations in the presence of ZVI. The power efficiencies of the reactors and/or reaction systems showed that 20-kHz probe was considerably more energy intensive than all others, and was therefore not used in multi-frequency operations. The most efficient reactor in terms of power consumption was the bath (200kHz), which however provided insufficient mineralization of the test chemical. The highest percentage of TOC decay (37%) was obtained in a dual-frequency operation (40/572kHz) with ZVI, in which the energy consumption was neither low nor exceptionally too high. A sequential operation (40+200kHz) in that respect was more efficient, because it required much less energy for a similar TOC decay performance (30%). In general, the degradation of IBP increased with increased power consumption, which in turn reduced the sonochemical yield. The study also showed that advanced Fenton reactions with ZVI were faster in the presence of ultrasound, and the metal was very effective in improving the performance of low-frequency operations. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Performance of a New Speech Translation Device in Translating Verbal Recommendations of Medication Action Plans for Patients with Diabetes

    PubMed Central

    Soller, R. William; Chan, Philip; Higa, Amy

    2012-01-01

    Background Language barriers are significant hurdles for chronic disease patients in achieving self-management goals of therapy, particularly in settings where practitioners have limited nonprimary language skills, and in-person translators may not always be available. S-MINDS© (Speaking Multilingual Interactive Natural Dialog System), a concept-based speech translation approach developed by Fluential Inc., can be applied to bridge the technologic gaps that limit the complexity and length of utterances that can be recognized and translated by devices and has the potential to broaden access to translation services in the clinical settings. Methods The prototype translation system was evaluated prospectively for accuracy and patient satisfaction in underserved Spanish-speaking patients with diabetes and limited English proficiency and was compared with other commercial systems for robustness against degradation of translation due to ambient noise and speech patterns. Results Accuracy related to translating the English–Spanish–English communication string from practitioner to device to patient to device to practitioner was high (97–100%). Patient satisfaction was high (means of 4.7–4.9 over four domains on a 5-point Likert scale). The device outperformed three other commercial speech translation systems in terms of accuracy during fast speech utterances, under quiet and noisy fluent speech conditions, and when challenged with various speech disfluencies (i.e., fillers, false starts, stutters, repairs, and long pauses). Conclusions A concept-based English–Spanish speech translation system has been successfully developed in prototype form that can accept long utterances (up to 20 words) with limited to no degradation in accuracy. The functionality of the system is superior to leading commercial speech translation systems. PMID:22920821

  13. Application of hybrid supercapacitor using granule Li4Ti5O12/activated carbon with variation of current density

    NASA Astrophysics Data System (ADS)

    Lee, Byung-Gwan; Lee, Seung-Hwan

    2017-03-01

    We report the electrochemical performance of asymmetric hybrid supercapacitors composed of granule Li4Ti5O12 as an anode and activated carbon as a cathode with different current densities. It is demonstrated that the hybrid supercapacitors show good initial discharge capacities were ranged from 39.8 to 46.4 F g-1 in the current densities range of 0.3-1 A g-1. The performance degradation is proportional to the current density due to quick gassing, resulting from H2O and HF formation. In particular, the hybrid supercapacitors show the pretty good cycling stability of 97.4%, even at the high current density of 0.8 A g-1, which are among most important performance in the real application for energy storage devices. Therefore, we believe that hybrid supercapacitors using granule Li4Ti5O12/activated carbon are eligible for the promising next generation energy devices.

  14. Impact of Air Filter Material on Metal Oxide Semiconductor (MOS) Device Characteristics in HF Vapor Environment

    NASA Astrophysics Data System (ADS)

    Hsiao, Chih-Wen; Lou, Jen-Chung; Yeh, Ching-Fa; Hsieh, Chih-Ming; Lin, Shiuan-Jeng; Kusumi, Toshio

    2004-05-01

    Airborne molecular contamination (AMC) is becoming increasingly important as devices are scaled down to the nanometer generation. Optimum ultra low penetration air (ULPA) filter technology can eliminate AMC. In a cleanroom, however, the acid vapor generated from the cleaning process may degrade the ULPA filter, releasing AMC to the air and the surface of wafers, degrading the electrical characteristics of devices. This work proposes the new PTFE ULPA filter, which is resistant to acid vapor corrosion, to solve this problem. Experimental results demonstrate that the PTFE ULPA filter can effectively eliminate the AMC and provide a very clean cleanroom environment.

  15. Non-thermal plasma for exhaust gases treatment

    NASA Astrophysics Data System (ADS)

    Alva R., Elvia; Pacheco P., Marquidia; Gómez B., Fernando; Pacheco P., Joel; Colín C., Arturo; Sánchez-Mendieta, Víctor; Valdivia B., Ricardo; Santana D., Alfredo; Huertas C., José; Frías P., Hilda

    2015-09-01

    This article describes a study on a non-thermal plasma device to treat exhaust gases in an internal combustion engine. Several tests using a plasma device to treat exhaust gases are conducted on a Honda GX200-196 cm3 engine at different rotational speeds. A plasma reactor could be efficient in degrading nitrogen oxides and particulate matter. Monoxide and carbon dioxide treatment is minimal. However, achieving 1%-3% degradation may be interesting to reduce the emission of greenhouse gases.

  16. Stability and degradation of organic photovoltaics fabricated, aged, and characterized by the ISOS 3 inter-laboratory collaboration

    NASA Astrophysics Data System (ADS)

    Tanenbaum, David M.; Hermenau, Martin; Voroshazi, Eszter; Lloyd, Matthew T.; Galagan, Yulia; Zimmermann, Birger; Hösel, Markus; Dam, Henrik F.; Jørgensen, Mikkel; Gevorgyan, Suren; Kudret, Suleyman; Maes, Wouter; Lutsen, Laurence; Vanderzande, Dirk; Würfel, Uli; Andriessen, Ronn; Rösch, Roland; Hoppe, Harald; Lira-Cantu, Monica; Teran-Escobar, Gerardo; Dupuis, Aurélie; Bussière, Pierre-Olivier; Rivaton, Agnès.; Uzunoglu, Gülsah Y.; Germack, David; Andreasen, Birgitta; Madsen, Morten V.; Norrman, Kion; Bundgaard, Eva; Krebs, Frederik C.

    2012-09-01

    Seven distinct sets (n >= 12) of state of the art organic photovoltaic devices were prepared by leading research laboratories in a collaboration planned at the Third International Summit on Organic Photovoltaic Stability (ISOS-3). All devices were shipped to DTU and characterized simultaneously up to 1830 h in accordance with established ISOS-3 protocols under three distinct illumination conditions: accelerated full sun simulation; low level indoor fluorescent lighting; and dark storage with daily measurement under full sun simulation. Three nominally identical devices were used in each experiment both to provide an assessment of the homogeneity of the samples and to distribute samples for a variety of post soaking analytical measurements at six distinct laboratories enabling comparison at various stages in the degradation of the devices. Characterization includes current-voltage curves, light beam induced current (LBIC) imaging, dark lock-in thermography (DLIT), photoluminescence (PL), electroluminescence (EL), in situ incident photon-to-electron conversion efficiency (IPCE), time of flight secondary ion mass spectrometry (TOF-SIMS), cross sectional electron microscopy (SEM), UV visible spectroscopy, fluorescence microscopy, and atomic force microscopy (AFM). Over 100 devices with more than 300 cells were used in the study. We present here design of the device sets, results both on individual devices and uniformity of device sets from the wide range of characterization methods applied at different stages of aging under the three illumination conditions. We will discuss how these data can help elucidate the degradation mechanisms as well as the benefits and challenges associated with the unprecedented size of the collaboration.

  17. Heterojunction Solar Cells Based on Silicon and Composite Films of Graphene Oxide and Carbon Nanotubes.

    PubMed

    Yu, LePing; Tune, Daniel; Shearer, Cameron; Shapter, Joseph

    2015-09-07

    Graphene oxide (GO) sheets have been used as the surfactant to disperse single-walled carbon nanotubes (CNT) in water to prepare GO/CNT electrodes that are applied to silicon to form a heterojunction that can be used in solar cells. GO/CNT films with different ratios of the two components and with various thicknesses have been used as semitransparent electrodes, and the influence of both factors on the performance of the solar cell has been studied. The degradation rate of the GO/CNT-silicon devices under ambient conditions has also been explored. The influence of the film thickness on the device performance is related to the interplay of two competing factors, namely, sheet resistance and transmittance. CNTs help to improve the conductivity of the GO/CNT film, and GO is able to protect the silicon from oxidation in the atmosphere. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Defect generation in electronic devices under plasma exposure: Plasma-induced damage

    NASA Astrophysics Data System (ADS)

    Eriguchi, Koji

    2017-06-01

    The increasing demand for higher performance of ULSI circuits requires aggressive shrinkage of device feature sizes in accordance with Moore’s law. Plasma processing plays an important role in achieving fine patterns with anisotropic features in metal-oxide-semiconductor field-effect transistors (MOSFETs). This article comprehensively addresses the negative aspect of plasma processing — plasma-induced damage (PID). PID naturally not only modifies the surface morphology of materials but also degrades the performance and reliability of MOSFETs as a result of defect generation in the materials. Three key mechanisms of PID, i.e., physical, electrical, and photon-irradiation interactions, are overviewed in terms of modeling, characterization techniques, and experimental evidence reported so far. In addition, some of the emerging topics — control of parameter variability in ULSI circuits caused by PID and recovery of PID — are discussed as future perspectives.

  19. Microfabrication, characterization and in vivo MRI compatibility of diamond microelectrodes array for neural interfacing.

    PubMed

    Hébert, Clément; Warnking, Jan; Depaulis, Antoine; Garçon, Laurie Amandine; Mermoux, Michel; Eon, David; Mailley, Pascal; Omnès, Franck

    2015-01-01

    Neural interfacing still requires highly stable and biocompatible materials, in particular for in vivo applications. Indeed, most of the currently used materials are degraded and/or encapsulated by the proximal tissue leading to a loss of efficiency. Here, we considered boron doped diamond microelectrodes to address this issue and we evaluated the performances of a diamond microelectrode array. We described the microfabrication process of the device and discuss its functionalities. We characterized its electrochemical performances by cyclic voltammetry and impedance spectroscopy in saline buffer and observed the typical diamond electrode electrochemical properties, wide potential window and low background current, allowing efficient electrochemical detection. The charge storage capacitance and the modulus of the electrochemical impedance were found to remain in the same range as platinum electrodes used for standard commercial devices. Finally we observed a reduced Magnetic Resonance Imaging artifact when the device was implanted on a rat cortex, suggesting that boron doped-diamond is a very promising electrode material allowing functional imaging. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Controllable Growth of Perovskite Films by Room-Temperature Air Exposure for Efficient Planar Heterojunction Photovoltaic Cells.

    PubMed

    Yang, Bin; Dyck, Ondrej; Poplawsky, Jonathan; Keum, Jong; Das, Sanjib; Puretzky, Alexander; Aytug, Tolga; Joshi, Pooran C; Rouleau, Christopher M; Duscher, Gerd; Geohegan, David B; Xiao, Kai

    2015-12-01

    A two-step solution processing approach has been established to grow void-free perovskite films for low-cost high-performance planar heterojunction photovoltaic devices. A high-temperature thermal annealing treatment was applied to drive the diffusion of CH3NH3I precursor molecules into a compact PbI2 layer to form perovskite films. However, thermal annealing for extended periods led to degraded device performance owing to the defects generated by decomposition of perovskite into PbI2. A controllable layer-by-layer spin-coating method was used to grow "bilayer" CH3NH3I/PbI2 films, and then drive the interdiffusion between PbI2 and CH3NH3I layers by a simple air exposure at room temperature for making well-oriented, highly crystalline perovskite films without thermal annealing. This high degree of crystallinity resulted in a carrier diffusion length of ca. 800 nm and a high device efficiency of 15.6%, which is comparable to values reported for thermally annealed perovskite films. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A novel hetero-material gate-underlap electrically doped TFET for improving DC/RF and ambipolar behaviour

    NASA Astrophysics Data System (ADS)

    Yadav, Shivendra; Sharma, Dheeraj; Chandan, Bandi Venkata; Aslam, Mohd; Soni, Deepak; Sharma, Neeraj

    2018-05-01

    In this article, the impact of gate-underlap with hetero material (low band gap) has been investigated in terms of DC and Analog/RF parameters by proposed device named as hetero material gate-underlap electrically doped TFET (HM-GUL-ED-TFET). Gate-underlap resolves the problem of ambipolarity, gate leakage current (Ig) and slightly improves the gate to drain capacitance, but DC performance is almost unaffected. Further, the use of low band gap material (Si0.5 Ge) in proposed device causes a drastic improvement in the DC as well as RF figures of merit. We have investigated the Si0.5 Ge as a suitable candidate among different low band gap materials. In addition, the sensitivity of gate-underlap in terms of gate to drain inversion and parasitic capacitances has been studied for HM-GUL-ED-TFET. Further, relatively it is observed that gate-underlap is a better way than drain-underlap in the proposed structure to improve Analog/RF performances without degrading the DC parameters of device. Additionally, hetero-junction alignment analysis has been done for fabrication feasibility.

  2. Alkali-Resistant Quasi-Solid-State Electrolyte for Stretchable Supercapacitors.

    PubMed

    Tang, Qianqiu; Wang, Wenqiang; Wang, Gengchao

    2016-10-05

    Research on stretchable energy-storage devices has been motivated by elastic electronics, and considerable research efforts have been devoted to the development of stretchable electrodes. However, stretchable electrolytes, another critical component in stretchable devices, have earned quite little attention, especially the alkali-resistant ones. Here, we reported a novel stretchable alkali-resistant electrolyte made of a polyolefin elastomer porous membrane supported potassium hydroxide-potassium polyacrylate (POE@KOH-PAAK). The as-prepared electrolyte shows a negligible plastic deformation even after 1000 stretching cycles at a strain of 150% as well as a high conductivity of 0.14 S cm -1 . It also exhibits excellent alkali resistance, which shows no obvious degradation of the mechanical performance after immersion in 2 M KOH for up to 2 weeks. To demonstrate its good properties, a high-performance stretchable supercapacitor is assembled using a carbon-nanotube-film-supported NiCo 2 O 4 (CNT@NiCo 2 O 4 ) as the cathode and Fe 2 O 3 (CNT@Fe 2 O 3 ) as the anode, proving great application promise of the stretchable alkali-resistant electrolyte in stretchable energy-storage devices.

  3. Interfacial Modifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Ina; French, Roger H.

    Our project objective in the first and only Budget Period was to demonstrate the potential of nm-scale organofunctional silane coatings as a method of extending the lifetime of PV materials and devices. Specifically, the target was to double the lifetime performance of a laminated Cu(In,Ga)Se2 (CIGS) cell under real-world and accelerated aging exposure conditions. Key findings are that modification of aluminum-doped zinc oxide (AZO) films (materials used as transparent conductive oxide (TCO) top contacts) resulted in decreased degradation of optical and electrical properties under damp heat (DH) exposure compared to un-modified AZO. The most significant finding is that modification ofmore » the AZO top contact of full CIGS devices resulted in significantly improved properties under DH exposure compared to un-modified devices, by a factor of 4 after 1000 h. Results of this one-year project have demonstrated that surface functionalization is a viable pathway for extending the lifetime of state-of-the-art CIGS devices.« less

  4. Shape‐Controlled, Self‐Wrapped Carbon Nanotube 3D Electronics

    PubMed Central

    Wang, Huiliang; Wang, Yanming; Tee, Benjamin C.‐K.; Kim, Kwanpyo; Lopez, Jeffrey; Cai, Wei

    2015-01-01

    The mechanical flexibility and structural softness of ultrathin devices based on organic thin films and low‐dimensional nanomaterials have enabled a wide range of applications including flexible display, artificial skin, and health monitoring devices. However, both living systems and inanimate systems that are encountered in daily lives are all 3D. It is therefore desirable to either create freestanding electronics in a 3D form or to incorporate electronics onto 3D objects. Here, a technique is reported to utilize shape‐memory polymers together with carbon nanotube flexible electronics to achieve this goal. Temperature‐assisted shape control of these freestanding electronics in a programmable manner is demonstrated, with theoretical analysis for understanding the shape evolution. The shape control process can be executed with prepatterned heaters, desirable for 3D shape formation in an enclosed environment. The incorporation of carbon nanotube transistors, gas sensors, temperature sensors, and memory devices that are capable of self‐wrapping onto any irregular shaped‐objects without degradations in device performance is demonstrated. PMID:27980972

  5. High power beta electron device - Beyond betavoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayers, William M.; Gentile, Charles A.

    Developing watt level power sources with beta emitting radioisotopes has been limited by the inability to utilize high energy (> 100 KeV) beta emitters at high radioisotope loadings without damaging the energy conversion materials. A new type of beta electron power source is described that removes those restrictions. This approach contains the radioisotope in a beta transparent titanium tube and confines beta electrons emitted through the tube wall to spiral trajectories around the tube with an axial magnetic field. The confined beta electrons dissipate energy though multiple interactions with surrounding excimer precursor gas atoms to efficiently generate photons. Photovoltaic cellsmore » convert the photons to electrical power. Since the beta electrons dissipate energy in the excimer precursor gas, the device can be loaded with more than 10 13 Bq of radioisotope to generate 100 milliwatt to watt levels of electrical power without damaging the device materials or degrading its performance. Furthermore, the power source can use a variety of beta radioisotopes and scales by stacking the devices.« less

  6. High power beta electron device - Beyond betavoltaics

    DOE PAGES

    Ayers, William M.; Gentile, Charles A.

    2017-11-10

    Developing watt level power sources with beta emitting radioisotopes has been limited by the inability to utilize high energy (> 100 KeV) beta emitters at high radioisotope loadings without damaging the energy conversion materials. A new type of beta electron power source is described that removes those restrictions. This approach contains the radioisotope in a beta transparent titanium tube and confines beta electrons emitted through the tube wall to spiral trajectories around the tube with an axial magnetic field. The confined beta electrons dissipate energy though multiple interactions with surrounding excimer precursor gas atoms to efficiently generate photons. Photovoltaic cellsmore » convert the photons to electrical power. Since the beta electrons dissipate energy in the excimer precursor gas, the device can be loaded with more than 10 13 Bq of radioisotope to generate 100 milliwatt to watt levels of electrical power without damaging the device materials or degrading its performance. Furthermore, the power source can use a variety of beta radioisotopes and scales by stacking the devices.« less

  7. High power beta electron device - Beyond betavoltaics.

    PubMed

    Ayers, William M; Gentile, Charles A

    2018-01-01

    Developing watt level power sources with beta emitting radioisotopes has been limited by the inability to utilize high energy (> 100KeV) beta emitters at high radioisotope loadings without damaging the energy conversion materials. A new type of beta electron power source is described that removes those restrictions. The approach contains the radioisotope in a beta transparent titanium tube and confines beta electrons emitted through the tube wall to spiral trajectories around the tube with an axial magnetic field. The confined beta electrons dissipate energy though multiple interactions with surrounding excimer precursor gas atoms to efficiently generate photons. Photovoltaic cells convert the photons to electrical power. Since the beta electrons dissipate energy in the excimer precursor gas, the device can be loaded with more than 10 13 Bq of radioisotope to generate 100 milliwatt to watt levels of electrical power without damaging the device materials or degrading its performance. The power source can use a variety of beta radioisotopes and scales by stacking the devices. Copyright © 2017. Published by Elsevier Ltd.

  8. Long-Term Stability Assessment of Sonoran Desert for Vicarious Calibration of GOES-R

    NASA Astrophysics Data System (ADS)

    Kim, W.; Liang, S.; Cao, C.

    2012-12-01

    Vicarious calibration refers to calibration techniques that do not depend on onboard calibration devices. Although sensors and onboard calibration devices undergo rigorous validation processes before launch, performance of sensors often degrades after the launch due to exposure to the harsh space environment and the aging of devices. Such in-flight changes of devices can be identified and adjusted through vicarious calibration activities where the sensor degradation is measured in reference to exterior calibration sources such as the Sun, the Moon, and the Earth surface. Sonoran desert is one of the best calibration sites located in the North America that are available for vicarious calibration of GOES-R satellite. To accurately calibrate sensors onboard GOES-R satellite (e.g. advanced baseline imager (ABI)), the temporal stability of Sonoran desert needs to be assessed precisely. However, short-/mid-term variations in top-of-atmosphere (TOA) reflectance caused by meteorological variables such as water vapor amount and aerosol loading are often difficult to retrieve, making the use of TOA reflectance time series for the stability assessment of the site. In this paper, we address this issue of normalization of TOA reflectance time series using a time series analysis algorithm - seasonal trend decomposition procedure based on LOESS (STL) (Cleveland et al, 1990). The algorithm is basically a collection of smoothing filters which leads to decomposition of a time series into three additive components; seasonal, trend, and remainder. Since this non-linear technique is capable of extracting seasonal patterns in the presence of trend changes, the seasonal variation can be effectively identified in the time series of remote sensing data subject to various environmental changes. The experiment results performed with Landsat 5 TM data show that the decomposition results acquired for the Sonoran Desert area produce normalized series that have much less uncertainty than those of traditional BRDF models, which leads to more accurate stability assessment.

  9. Energetic mapping of oxide traps in MoS2 field-effect transistors

    NASA Astrophysics Data System (ADS)

    Illarionov, Yury Yu; Knobloch, Theresia; Waltl, Michael; Rzepa, Gerhard; Pospischil, Andreas; Polyushkin, Dmitry K.; Furchi, Marco M.; Mueller, Thomas; Grasser, Tibor

    2017-06-01

    The performance of MoS2 transistors is strongly affected by charge trapping in oxide traps with very broad distributions of time constants. These defects degrade the mobility and additionally lead to the hysteresis of the gate transfer characteristics, which presents a crucial performance and reliability issue for these new technologies. Here we perform a detailed study of the hysteresis in double-gated MoS2 FETs and show that this issue is nothing else than a combination of threshold voltage shifts resulting from positive and negative bias-temperature instabilities. While these instabilities are well known from silicon devices, they are even more important in 2D devices given the considerably larger defect densities. Most importantly, the magnitudes of these threshold voltage shifts depend strongly on the density and energetic alignment of the active oxide traps. Based on this, we introduce the incremental hysteresis sweep method which allows for an accurate mapping of these defects and extract their energy distributions from simulations. By applying our method to analyze the impact of oxide traps situated in the Al2O3 top gate of several devices, we confirm its versatility. Since all 2D devices investigated so far suffer from a similar hysteresis behavior, the incremental hysteresis sweep method provides a unique and powerful way for the detailed characterization of their defect bands.

  10. Stochastic Gain Degradation in III-V Heterojunction Bipolar Transistors due to Single Particle Displacement Damage

    DOE PAGES

    Vizkelethy, Gyorgy; Bielejec, Edward S.; Aguirre, Brandon A.

    2017-11-13

    As device dimensions decrease single displacement effects are becoming more important. We measured the gain degradation in III-V Heterojunction Bipolar Transistors due to single particles using a heavy ion microbeam. Two devices with different sizes were irradiated with various ion species ranging from oxygen to gold to study the effect of the irradiation ion mass on the gain change. From the single steps in the inverse gain (which is proportional to the number of defects) we calculated Cumulative Distribution Functions to help determine design margins. The displacement process was modeled using the Marlowe Binary Collision Approximation (BCA) code. The entiremore » structure of the device was modeled and the defects in the base-emitter junction were counted to be compared to the experimental results. While we found good agreement for the large device, we had to modify our model to reach reasonable agreement for the small device.« less

  11. Stochastic Gain Degradation in III-V Heterojunction Bipolar Transistors due to Single Particle Displacement Damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vizkelethy, Gyorgy; Bielejec, Edward S.; Aguirre, Brandon A.

    As device dimensions decrease single displacement effects are becoming more important. We measured the gain degradation in III-V Heterojunction Bipolar Transistors due to single particles using a heavy ion microbeam. Two devices with different sizes were irradiated with various ion species ranging from oxygen to gold to study the effect of the irradiation ion mass on the gain change. From the single steps in the inverse gain (which is proportional to the number of defects) we calculated Cumulative Distribution Functions to help determine design margins. The displacement process was modeled using the Marlowe Binary Collision Approximation (BCA) code. The entiremore » structure of the device was modeled and the defects in the base-emitter junction were counted to be compared to the experimental results. While we found good agreement for the large device, we had to modify our model to reach reasonable agreement for the small device.« less

  12. The influence of interfacial defects on fast charge trapping in nanocrystalline oxide-semiconductor thin film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Taeho; Hur, Jihyun; Jeon, Sanghun

    2016-05-01

    Defects in oxide semiconductors not only influence the initial device performance but also affect device reliability. The front channel is the major carrier transport region during the transistor turn-on stage, therefore an understanding of defects located in the vicinity of the interface is very important. In this study, we investigated the dynamics of charge transport in a nanocrystalline hafnium-indium-zinc-oxide thin-film transistor (TFT) by short pulse I-V, transient current and 1/f noise measurement methods. We found that the fast charging behavior of the tested device stems from defects located in both the front channel and the interface, following a multi-trapping mechanism. We found that a silicon-nitride stacked hafnium-indium-zinc-oxide TFT is vulnerable to interfacial charge trapping compared with silicon-oxide counterpart, causing significant mobility degradation and threshold voltage instability. The 1/f noise measurement data indicate that the carrier transport in a silicon-nitride stacked TFT device is governed by trapping/de-trapping processes via defects in the interface, while the silicon-oxide device follows the mobility fluctuation model.

  13. Atomic and electronic structure of exfoliated black phosphorus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Ryan J.; Topsakal, Mehmet; Jeong, Jong Seok

    2015-11-15

    Black phosphorus, a layered two-dimensional crystal with tunable electronic properties and high hole mobility, is quickly emerging as a promising candidate for future electronic and photonic devices. Although theoretical studies using ab initio calculations have tried to predict its atomic and electronic structure, uncertainty in its fundamental properties due to a lack of clear experimental evidence continues to stymie our full understanding and application of this novel material. In this work, aberration-corrected scanning transmission electron microscopy and ab initio calculations are used to study the crystal structure of few-layer black phosphorus. Directly interpretable annular dark-field images provide a three-dimensional atomic-resolutionmore » view of this layered material in which its stacking order and all three lattice parameters can be unambiguously identified. In addition, electron energy-loss spectroscopy (EELS) is used to measure the conduction band density of states of black phosphorus, which agrees well with the results of density functional theory calculations performed for the experimentally determined crystal. Furthermore, experimental EELS measurements of interband transitions and surface plasmon excitations are also consistent with simulated results. Finally, the effects of oxidation on both the atomic and electronic structure of black phosphorus are analyzed to explain observed device degradation. The transformation of black phosphorus into amorphous PO{sub 3} or H{sub 3}PO{sub 3} during oxidation may ultimately be responsible for the degradation of devices exposed to atmosphere over time.« less

  14. Degradation of Au-Ti contacts of SiGe HBTs during electromagnetic field stress

    NASA Astrophysics Data System (ADS)

    Alaeddine, A.; Genevois, C.; Kadi, M.; Cuvilly, F.; Daoud, K.

    2011-02-01

    This paper addresses electromagnetic field stress effects on SiGe heterojunction bipolar transistors (HBTs)' reliability issues, focusing on the relationship between the stress-induced current and device structure degradations. The origin of leakage currents and electrical parameter shifts in failed transistors has been studied by complementary failure analysis techniques. Characterization of the structure before and after ageing was performed by transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS). For the stressed samples, interface deformations of the titanium (Ti) thin film around all gold (Au) contacts have been clearly detected. These degradations include localized interface reaction between Au and Ti layers as well as their lateral atomic migration causing a significant reduction of Ti thickness. EDS analysis of the disordered region which is near the Si3N4 interface has shown significant signals from Au. These observations could be attributed to the coupling between high current densities induced by stress and thermal effects due to local heating effects.

  15. Degradation mechanisms of gamma irradiated LWIR HgCdTe photovoltaic detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarusi, G.; Eger, D.; Zemel, A.

    1990-12-01

    Planar n{sup +}p Hg{sub 1{minus}x}Cd{sub x}Te (x = 0.23) photodiodes passivated with ZnS were irradiated by Co{sup 60} gamma source. A strong increase in the reverse dark current was observed for doses above 0.3 Mrad(air). A similar effect was found by exposing the photodiodes to U.V illumination from a high pressure mercury lamp. By filtering the U.V light it is shown that the degradation in the performance of the photodiodes is caused by the light or radiation absorbed in the ZnS layer above the implanted n-type region. C-V measurements of irradiated MIS devices showed a significant increase in the fastmore » surface state density. Galvanomagnetic and lifetime measurements made on irradiated p-type HgCdTe layer showed no significant changes in the bulk transport parameters. Based on these findings, a model for the degradation mechanism is proposed.« less

  16. Electrical efficiency and droop in MQW LEDs

    NASA Astrophysics Data System (ADS)

    Malyutenko, V. K.

    2014-02-01

    It is believed that low power conversion efficiency in commercial MQW LEDs occurs as a result of efficiency droop, current-induced dynamic degradation of the internal quantum efficiency, injection efficiency, and extraction efficiency. Broadly speaking, all these "quenching" mechanisms could be referred to as the optical losses. The vast advances of high-power InGaN and AlGaInP MQW LEDs have been achieved by addressing these losses. In contrast to these studies, in this paper we consider an alternative approach to make high-power LEDs more efficient. We identify current-induced electrical efficiency degradation (EED) as a strong limiting factor of power conversion efficiency. We found that EED is caused by current crowding followed by an increase in current-induced series resistance of a device. By decreasing the current spreading length, EED also causes the optical efficiency to degrade and stands for an important aspect of LED performance. This paper gives scientists the opportunity to look for different attributes of EED.

  17. Novel oxygen atom source for material degradation studies

    NASA Technical Reports Server (NTRS)

    Krech, R. H.; Caledonia, G. E.

    1988-01-01

    Physical Sciences Inc. (PSI) has developed a high flux pulsed source of energetic (8 km/s) atomic oxygen to bombard specimens in experiments on the aging and degradation of materials in a low earth orbit environment. The proof-of-concept of the PSI approach was demonstrated in a Phase 1 effort. In Phase 2 a large O-atom testing device (FAST-2) has been developed and characterized. Quantitative erosion testing of materials, components, and even small assemblies (such as solar cell arrays) can be performed with this source to determine which materials and/or components are most vulnerable to atomic oxygen degradation. The source is conservatively rated to irradiate a 100 sq cm area sample at greater than 10(exp 17) atoms/s, at a 10 Hz pulse rate. Samples can be exposed to an atomic oxygen fluence equivalent to the on-orbit ram direction exposure levels incident on Shuttle surfaces at 250 km during a week-long mission in a few hours.

  18. Degradability of Polymers for Implantable Biomedical Devices

    PubMed Central

    Lyu, SuPing; Untereker, Darrel

    2009-01-01

    Many key components of implantable medical devices are made from polymeric materials. The functions of these materials include structural support, electrical insulation, protection of other materials from the environment of the body, and biocompatibility, as well as other things such as delivery of a therapeutic drug. In such roles, the stability and integrity of the polymer, over what can be a very long period of time, is very important. For most of these functions, stability over time is desired, but in other cases, the opposite–the degradation and disappearance of the polymer over time is required. In either case, it is important to understand both the chemistry that can lead to the degradation of polymers as well as the kinetics that controls these reactions. Hydrolysis and oxidation are the two classes of reactions that lead to the breaking down of polymers. Both are discussed in detail in the context of the environmental factors that impact the utility of various polymers for medical device applications. Understanding the chemistry and kinetics allows prediction of stability as well as explanations for observations such as porosity and the unexpected behavior of polymeric composite materials in some situations. In the last part, physical degradation such interfacial delamination in composites is discussed. PMID:19865531

  19. Electrical instability of InGaZnO thin-film transistors with and without titanium sub-oxide layer under light illumination

    NASA Astrophysics Data System (ADS)

    Chiu, Y. C.; Zheng, Z. W.; Cheng, C. H.; Chen, P. C.; Yen, S. S.; Fan, C. C.; Hsu, H. H.; Kao, H. L.; Chang, C. Y.

    2017-03-01

    The electrical instability behaviors of amorphous indium-gallium-zinc oxide thin-film transistors with and without titanium sub-oxide passivation layer were investigated under light illumination in this study. For the unpassivated IGZO TFT device, in contrast with the dark case, a noticeable increase of the sub-threshold swing was observed when under the illumination environment, which can be attributed to the generation of ionized oxygen vacancies within the α-IGZO active layer by high energy photons. For the passivated TFT device, the much smaller SS of 70 mV/dec and high device mobility of >100 cm2/Vs at a drive voltage of 3 V with negligible degradation under light illumination are achieved due to the passivation effect of n-type titanium sub-oxide semiconductor, which may create potential application for high-performance display.

  20. Electrical properties of MOS devices fabricated on the 4H-SiC C-face.

    NASA Astrophysics Data System (ADS)

    Chen, Zengjun; Ahyi, A. C.; Williams, J. R.

    2007-11-01

    The electrical characteristics of MOS devices fabricated on the carbon face of 4H-SiC will be described. The C-face has a higher oxidation rate and a higher interface trap density compared to the Si-face. The thermal oxidation rate and the distribution of interface traps under different oxidation conditions will be discussed in this presentation. Sequential post-oxidation anneals in nitric oxide and hydrogen effectively reduces the interface density (Dit) near the conduction band edge. However, deeper in the band gap, the trap density remains higher compared to the Si-face. Time-dependent dielectric breakdown (TDDB) studies have also been performed to investigate oxide reliability on the C-face, and current-voltage measurements show that a low barrier height against carrier injection likely contributes to oxide degradation. Nevertheless, the effective channel mobility and threshold voltage for n-channel C-face lateral MOSFETs compare favorably with similar Si-face devices.

  1. Control of Ga-oxide interlayer growth and Ga diffusion in SiO2/GaN stacks for high-quality GaN-based metal-oxide-semiconductor devices with improved gate dielectric reliability

    NASA Astrophysics Data System (ADS)

    Yamada, Takahiro; Watanabe, Kenta; Nozaki, Mikito; Yamada, Hisashi; Takahashi, Tokio; Shimizu, Mitsuaki; Yoshigoe, Akitaka; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji

    2018-01-01

    A simple and feasible method for fabricating high-quality and highly reliable GaN-based metal-oxide-semiconductor (MOS) devices was developed. The direct chemical vapor deposition of SiO2 films on GaN substrates forming Ga-oxide interlayers was carried out to fabricate SiO2/GaO x /GaN stacked structures. Although well-behaved hysteresis-free GaN-MOS capacitors with extremely low interface state densities below 1010 cm-2 eV-1 were obtained by postdeposition annealing, Ga diffusion into overlying SiO2 layers severely degraded the dielectric breakdown characteristics. However, this problem was found to be solved by rapid thermal processing, leading to the superior performance of the GaN-MOS devices in terms of interface quality, insulating property, and gate dielectric reliability.

  2. Electrical characteristics of proton-irradiated Sc2O3 passivated AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Luo, B.; Kim, Jihyun; Ren, F.; Gillespie, J. K.; Fitch, R. C.; Sewell, J.; Dettmer, R.; Via, G. D.; Crespo, A.; Jenkins, T. J.; Gila, B. P.; Onstine, A. H.; Allums, K. K.; Abernathy, C. R.; Pearton, S. J.; Dwivedi, R.; Fogarty, T. N.; Wilkins, R.

    2003-03-01

    Sc2O3-passivated AlGaN/GaN high electron mobility transistors (HEMTs) were irradiated with 40 MeV protons to a fluence corresponding to approximately 10 years in low-earth orbit (5×109 cm-2). Devices with an AlGaN cap layer showed less degradation in dc characteristics than comparable GaN-cap devices, consistent with differences in average band energy. The changes in device performance could be attributed completely to bulk trapping effects, demonstrating that the effectiveness of the Sc2O3 layers in passivating surface states in the drain-source region was undiminished by the proton irradiation. Sc2O3-passivated AlGaN/HEMTs appear to be attractive candidates for space and terrestrial applications where resistance to high fluxes of ionizing radiation is a criteria.

  3. Ultrastable Photoelectrodes for Solar Water Splitting Based on Organic Metal Halide Perovskite Fabricated by Lift-Off Process.

    PubMed

    Nam, SeongSik; Mai, Cuc Thi Kim; Oh, Ilwhan

    2018-05-02

    Herein, we report an integrated photoelectrolysis of water employing organic metal halide (OMH) perovskite material. As generic OMH perovskite material and device architecture are highly susceptible to degradation by aqueous electrolytes, we have developed a versatile mold-cast and lift-off process to fabricate and assemble multipurpose metal encapsulation onto perovskite devices. With the metal encapsulation effectively protecting the perovskite cell and also functioning as electrocatalyst, the high-performance perovskite photoelectrodes exhibit high photovoltage and photocurrent that are effectively inherited from the original solid-state solar cell. More importantly, thus-fabricated perovskite photoelectrode demonstrates record-long unprecedented stability even at highly oxidizing potential in strong alkaline electrolyte. We expect that this versatile lift-off process can be adapted in a wide variety of photoelectrochemical devices to protect the material surfaces from corroding electrolyte and facilitate various electrochemical reactions.

  4. Growth of heterostructures on InAs for high mobility device applications

    NASA Astrophysics Data System (ADS)

    Contreras-Guerrero, R.; Wang, S.; Edirisooriya, M.; Priyantha, W.; Rojas-Ramirez, J. S.; Bhuwalka, K.; Doornbos, G.; Holland, M.; Oxland, R.; Vellianitis, G.; Van Dal, M.; Duriez, B.; Passlack, M.; Diaz, C. H.; Droopad, R.

    2013-09-01

    The growth of heterostructures lattice matched to InAs(100) substrates for high mobility electronic devices has been investigated. The oxide removal process and homoepitaxial nucleation depends on the deposition parameters to avoid the formation of surface defects that can propagate through the structure during growth which can result in degraded device performance. The growth parameters for InAs homoepitaxy were found to be within an extremely narrow range when using As4 with a slight increase using As2. High structural quality lattice matched AlAsxSb1-x buffer layer was grown on InAs(100) substrates using a digital growth technique with the AlAs mole fraction adjusted by varying the incident As flux. Using the AlAsxSb1-x buffer layer, the transport properties of thin InAs channel layers were determined on conducting native substrates.

  5. Reliability assessment of multiple quantum well avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Yun, Ilgu; Menkara, Hicham M.; Wang, Yang; Oguzman, Isamil H.; Kolnik, Jan; Brennan, Kevin F.; May, Gray S.; Wagner, Brent K.; Summers, Christopher J.

    1995-01-01

    The reliability of doped-barrier AlGaAs/GsAs multi-quantum well avalanche photodiodes fabricated by molecular beam epitaxy is investigated via accelerated life tests. Dark current and breakdown voltage were the parameters monitored. The activation energy of the degradation mechanism and median device lifetime were determined. Device failure probability as a function of time was computed using the lognormal model. Analysis using the electron beam induced current method revealed the degradation to be caused by ionic impurities or contamination in the passivation layer.

  6. Dark Current Degradation of Near Infrared Avalanche Photodiodes from Proton Irradiation

    NASA Technical Reports Server (NTRS)

    Becker, Heidi N.; Johnston, Allan H.

    2004-01-01

    InGaAs and Ge avalanche photodiodes (APDs) are examined for the effects of 63-MeV protons on dark current. Dark current increases were large and similar to prior results for silicon APDs, despite the smaller size of InGaAs and Ge devices. Bulk dark current increases from displacement damage in the depletion regions appeared to be the dominant contributor to overall dark current degradation. Differences in displacement damage factors are discussed as they relate to structural and material differences between devices.

  7. Electric terminal performance and characterization of solid oxide fuel cells and systems

    NASA Astrophysics Data System (ADS)

    Lindahl, Peter Allan

    Solid Oxide Fuel Cells (SOFCs) are electrochemical devices which can effect efficient, clean, and quiet conversion of chemical to electrical energy. In contrast to conventional electricity generation systems which feature multiple discrete energy conversion processes, SOFCs are direct energy conversion devices. That is, they feature a fully integrated chemical to electrical energy conversion process where the electric load demanded of the cell intrinsically drives the electrochemical reactions and associated processes internal to the cell. As a result, the cell's electric terminals provide a path for interaction between load side electric demand and the conversion side processes. The implication of this is twofold. First, the magnitude and dynamic characteristics of the electric load demanded of the cell can directly impact the long-term efficacy of the cell's chemical to electrical energy conversion. Second, the electric terminal response to dynamic loads can be exploited for monitoring the cell's conversion side processes and used in diagnostic analysis and degradation-mitigating control schemes. This dissertation presents a multi-tier investigation into this electric terminal based performance characterization of SOFCs through the development of novel test systems, analysis techniques and control schemes. First, a reference-based simulation system is introduced. This system scales up the electric terminal performance of a prototype SOFC system, e.g. a single fuel cell, to that of a full power-level stack. This allows realistic stack/load interaction studies while maintaining explicit ability for post-test analysis of the prototype system. Next, a time-domain least squares fitting method for electrochemical impedance spectroscopy (EIS) is developed for reduced-time monitoring of the electrochemical and physicochemical mechanics of the fuel cell through its electric terminals. The utility of the reference-based simulator and the EIS technique are demonstrated through their combined use in the performance testing of a hybrid-source power management (HSPM) system designed to allow in-situ EIS monitoring of a stack under dynamic loading conditions. The results from the latter study suggest that an HSPM controller allows an opportunity for in-situ electric terminal monitoring and control-based mitigation of SOFC degradation. As such, an exploration of control-based SOFC degradation mitigation is presented and ideas for further work are suggested.

  8. CdZnTe substrate impurities and their effects on liquid phase epitaxy HgCdTe

    NASA Astrophysics Data System (ADS)

    Tower, J. P.; Tobin, S. P.; Kestigian, M.; Norton, P. W.; Bollong, A. B.; Schaake, H. F.; Ard, C. K.

    1995-05-01

    Impurity levels were tracked through the stages of substrate and liquid phase epitaxy (LPE) layer processing to identify sources of elements which degrade infrared photodetector performance. Chemical analysis by glow discharge mass spectrometry and Zeeman corrected graphite furnace atomic absorption effectively showed the levels of impurities introduced into CdZnTe substrate material from the raw materials and the crystal growth processes. A new purification process (in situ distillation zone refining) for raw materials was developed, resulting in improved CdZnTe substrate purity. Substrate copper contamination was found to degrade the LPE layer and device electrical properties, in the case of lightly doped HgCdTe. Anomalous HgCdTe carrier type conversion was correlated to certain CdZnTe and CdTe substrate ingots.

  9. Photo-degradation of high efficiency fullerene-free polymer solar cells.

    PubMed

    Upama, Mushfika Baishakhi; Wright, Matthew; Mahmud, Md Arafat; Elumalai, Naveen Kumar; Mahboubi Soufiani, Arman; Wang, Dian; Xu, Cheng; Uddin, Ashraf

    2017-12-07

    Polymer solar cells are a promising technology for the commercialization of low cost, large scale organic solar cells. With the evolution of high efficiency (>13%) non-fullerene polymer solar cells, the stability of the cells has become a crucial parameter to be considered. Among the several degradation mechanisms of polymer solar cells, burn-in photo-degradation is relatively less studied. Herein, we present the first systematic study of photo-degradation of novel PBDB-T:ITIC fullerene-free polymer solar cells. The thermally treated and as-prepared PBDB-T:ITIC solar cells were exposed to continuous 1 sun illumination for 5 hours. The aged devices exhibited rapid losses in the short-circuit current density and fill factor. The severe short-circuit current and fill factor burn in losses were attributed to trap mediated charge recombination, as evidenced by an increase in Urbach energy for aged devices.

  10. Enabling reliability assessments of pre-commercial perovskite photovoltaics with lessons learned from industrial standards

    NASA Astrophysics Data System (ADS)

    Snaith, Henry J.; Hacke, Peter

    2018-06-01

    Photovoltaic modules are expected to operate in the field for more than 25 years, so reliability assessment is critical for the commercialization of new photovoltaic technologies. In early development stages, understanding and addressing the device degradation mechanisms are the priorities. However, any technology targeting large-scale deployment must eventually pass industry-standard qualification tests and undergo reliability testing to validate the module lifetime. In this Perspective, we review the methodologies used to assess the reliability of established photovoltaics technologies and to develop standardized qualification tests. We present the stress factors and stress levels for degradation mechanisms currently identified in pre-commercial perovskite devices, along with engineering concepts for mitigation of those degradation modes. Recommendations for complete and transparent reporting of stability tests are given, to facilitate future inter-laboratory comparisons and to further the understanding of field-relevant degradation mechanisms, which will benefit the development of accelerated stress tests.

  11. Fabricating with crystalline Si to improve superconducting detector performance

    NASA Astrophysics Data System (ADS)

    Beyer, A. D.; Hollister, M. I.; Sayers, J.; Frez, C. F.; Day, P. K.; Golwala, S. R.

    2017-05-01

    We built and measured radio-frequency (RF) loss tangent, tan δ, evaluation structures using float-zone quality silicon-on-insulator (SOI) wafers with 5 μm thick device layers. Superconducting Nb components were fabricated on both sides of the SOI Si device layer. Our main goals were to develop a robust fabrication for using crystalline Si (c-Si) dielectric layers with superconducting Nb components in a wafer bonding process and to confirm that tan δ with c-Si dielectric layers was reduced at RF frequencies compared to devices fabricated with amorphous dielectrics, such as SiO2 and SixNy, where tan δ ∼ 10-3. Our primary test structure used a Nb coplanar waveguide (CPW) readout structure capacitively coupled to LC resonators, where the capacitors were defined as parallel-plate capacitors on both sides of a c-Si device layer using a wafer bonding process with benzocyclobutene (BCB) wafer bonding adhesive. Our control experiment, to determine the intrinsic tan δ in the SOI device layer without wafer bonding, also used Nb CPW readout coupled to LC resonators; however, the parallel-plate capacitors were fabricated on both sides of the Si device layer using a deep reactive ion etch (DRIE) to access the c-Si underside through the buried oxide and handle Si layers in the SOI wafers. We found that our wafer bonded devices demonstrated F· δ = (8 ± 2) × 10-5, where F is the filling fraction of two-level states (TLS). For the control experiment, F· δ = (2.0 ± 0.6) × 10-5, and we discuss what may be degrading the performance in the wafer bonded devices as compared to the control devices.

  12. Label-Free Virus Capture and Release by a Microfluidic Device Integrated with Porous Silicon Nanowire Forest.

    PubMed

    Xia, Yiqiu; Tang, Yi; Yu, Xu; Wan, Yuan; Chen, Yizhu; Lu, Huaguang; Zheng, Si-Yang

    2017-02-01

    Viral diseases are perpetual threats to human and animal health. Detection and characterization of viral pathogens require accurate, sensitive, and rapid diagnostic assays. For field and clinical samples, the sample preparation procedures limit the ultimate performance and utility of the overall virus diagnostic protocols. This study presents the development of a microfluidic device embedded with porous silicon nanowire (pSiNW) forest for label-free size-based point-of-care virus capture in a continuous curved flow design. The pSiNW forests with specific interwire spacing are synthesized in situ on both bottom and sidewalls of the microchannels in a batch process. With the enhancement effect of Dean flow, this study demonstrates that about 50% H5N2 avian influenza viruses are physically trapped without device clogging. A unique feature of the device is that captured viruses can be released by inducing self-degradation of the pSiNWs in physiological aqueous environment. About 60% of captured viruses can be released within 24 h for virus culture, subsequent molecular diagnosis, and other virus characterization and analyses. This device performs viable, unbiased, and label-free virus isolation and release. It has great potentials for virus discovery, virus isolation and culture, functional studies of virus pathogenicity, transmission, drug screening, and vaccine development. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Low-Temperature Solution-Processed ZnSe Electron Transport Layer for Efficient Planar Perovskite Solar Cells with Negligible Hysteresis and Improved Photostability.

    PubMed

    Li, Xin; Yang, Junyou; Jiang, Qinghui; Lai, Hui; Li, Shuiping; Xin, Jiwu; Chu, Weijing; Hou, Jingdi

    2018-05-15

    For a typical perovskite solar cell (PKSC), the electron transport layer (ETL) has a great effect on device performance and stability. Herein, we manifest that low-temperature solution-processed ZnSe can be used as a potential ETL for PKSCs. Our optimized device with ZnSe ETL has achieved a high power conversion efficiency (PCE) of 17.78% with negligible hysteresis, compared with the TiO 2 based cell (13.76%). This enhanced photovoltaic performance is attributed to the suitable band alignment, high electron mobility, and reduced charge accumulation at the interface of ETL/perovskite. Encouraging results were obtained when the thin layer of ZnSe cooperated with TiO 2 . It shows that the device based on the TiO 2 /ZnSe ETL with cascade conduction band level can effectively reduce the interfacial charge recombination and promote carrier transfer with the champion PCE of 18.57%. In addition, the ZnSe-based device exhibits a better photostability than the control device due to the greater ultraviolet (UV) light harvesting of the ZnSe layer, which can efficiently prevent the perovskite film from intense UV-light exposure to avoid associated degradation. Consequently, our results present that a promising ETL can be a potential candidate of the n-type ETL for commercialization of efficient and photostable PKSCs.

  14. Ultrafast detection in particle physics and positron emission tomography using SiPMs

    NASA Astrophysics Data System (ADS)

    Dolenec, R.; Korpar, S.; Križan, P.; Pestotnik, R.

    2017-12-01

    Silicon photomultiplier (SiPM) photodetectors perform well in many particle and medical physics applications, especially where good efficiency, insensitivity to magnetic field and precise timing are required. In Cherenkov time-of-flight positron emission tomography the requirements for photodetector performance are especially high. On average only a couple of photons are available for detection and the best possible timing resolution is needed. Using SiPMs as photodetectors enables good detection efficiency, but the large sensitive area devices needed have somewhat limited time resolution for single photons. We have observed an additional degradation of the timing at very low light intensities due to delayed events in distribution of signals resulting from multiple fired micro cells. In this work we present the timing properties of AdvanSiD ASD-NUV3S-P-40 SiPM at single photon level picosecond laser illumination and a simple modification of the time-walk correction algorithm, that resulted in reduced degradation of timing resolution due to the delayed events.

  15. Operational stability of electrophosphorescent devices containing p and n doped transport layers

    NASA Astrophysics Data System (ADS)

    D'Andrade, Brian W.; Forrest, Stephen R.; Chwang, Anna B.

    2003-11-01

    The operational stability of low-operating voltage p-i-n electrophosphorescent devices containing fac-tris(2-phenylpyridine) iridium as the emissive dopant is investigated. In these devices, Li-doped 4,7-diphenyl-1,10-phenanthroline (BPhen) served as an n-type electron transport layer, or as an undoped hole blocking layer (HBL), and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane doped 4,4',4″-tris(3-methylphenylphenylamino) triphenylamine served as a p-type hole transport layer. The glass transition temperature of BPhen can be increased by the addition of aluminum(III)bis(2-methyl-8-quinolinato)4-phenylphenolate (BAlq), resulting in improved morphological stability, thereby reducing device degradation. When thermally stable BAlq was used as a HBL in both p-i-n and undoped devices, the extrapolated operational lifetime (normalized to an initial luminance of 100 cd/m2) of the p-i-n and undoped devices are 18 000 and 60 000 h, respectively, indicating that the presence of p and n dopants can accelerate device degradation.

  16. Integrating Nanostructured Artificial Receptors with Whispering Gallery Mode Optical Microresonators via Inorganic Molecular Imprinting Techniques

    PubMed Central

    Hammond, G. Denise; Vojta, Adam L.; Grant, Sheila A.; Hunt, Heather K.

    2016-01-01

    The creation of label-free biosensors capable of accurately detecting trace contaminants, particularly small organic molecules, is of significant interest for applications in environmental monitoring. This is achieved by pairing a high-sensitivity signal transducer with a biorecognition element that imparts selectivity towards the compound of interest. However, many environmental pollutants do not have corresponding biorecognition elements. Fortunately, biomimetic chemistries, such as molecular imprinting, allow for the design of artificial receptors with very high selectivity for the target. Here, we perform a proof-of-concept study to show how artificial receptors may be created from inorganic silanes using the molecular imprinting technique and paired with high-sensitivity transducers without loss of device performance. Silica microsphere Whispering Gallery Mode optical microresonators are coated with a silica thin film templated by a small fluorescent dye, fluorescein isothiocyanate, which serves as our model target. Oxygen plasma degradation and solvent extraction of the template are compared. Extracted optical devices are interacted with the template molecule to confirm successful sorption of the template. Surface characterization is accomplished via fluorescence and optical microscopy, ellipsometry, optical profilometry, and contact angle measurements. The quality factors of the devices are measured to evaluate the impact of the coating on device sensitivity. The resulting devices show uniform surface coating with no microstructural damage with Q factors above 106. This is the first report demonstrating the integration of these devices with molecular imprinting techniques, and could lead to new routes to biosensor creation for environmental monitoring. PMID:27314397

  17. 276 nm Substrate-Free Flip-Chip AlGaN Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Hwang, Seongmo; Morgan, Daniel; Kesler, Amanda; Lachab, Mohamed; Zhang, Bin; Heidari, Ahmad; Nazir, Haseeb; Ahmad, Iftikhar; Dion, Joe; Fareed, Qhalid; Adivarahan, Vinod; Islam, Monirul; Khan, Asif

    2011-03-01

    Lateral-conduction, substrate-free flip-chip (SFFC) light-emitting diodes (LEDs) with peak emission at 276 nm are demonstrated for the first time. The AlGaN multiple quantum well LED structures were grown by metal-organic chemical vapor deposition (MOCVD) on thick-AlN laterally overgrown on sapphire substrates. To fabricate the SFFC LEDs, a newly-developed laser-assisted ablation process was employed to separate the substrate from the LED chips. The chips had physical dimensions of 1100×900 µm2, and were comprised of four devices each with a 100×100 µm2 junction area. Electrical and optical characterization of the devices revealed no noticeable degradation to their performance due to the laser-lift-off process.

  18. Temperature coefficients and radiation induced DLTS spectra of MOCVD grown n(+)p InP solar cells

    NASA Technical Reports Server (NTRS)

    Walters, Robert J.; Statler, Richard L.; Summers, Geoffrey P.

    1991-01-01

    The effects of temperature and radiation on n(+)p InP solar cells and mesa diodes grown by metallorganic chemical vapor deposition (MOCVD) were studied. It was shown that MOCVD is capable of consistently producing good quality InP solar cells with Eff greater than 19 percent which display excellent radiation resistance due to minority carrier injection and thermal annealing. It was also shown that universal predictions of InP device performance based on measurements of a small group of test samples can be expected to be quite accurate, and that the degradation of an InP device due to any incident particle spectrum should be predictable from a measurement following a single low energy proton irradiation.

  19. Chip design for thin-film deep ultraviolet LEDs fabricated by laser lift-off of the sapphire substrate

    NASA Astrophysics Data System (ADS)

    Cho, H. K.; Krüger, O.; Külberg, A.; Rass, J.; Zeimer, U.; Kolbe, T.; Knauer, A.; Einfeldt, S.; Weyers, M.; Kneissl, M.

    2017-12-01

    We report on a chip design which allows the laser lift-off (LLO) of the sapphire substrate sustaining the epitaxial film of flip-chip mounted deep ultraviolet light emitting diodes. A nanosecond pulsed excimer laser with a wavelength of 248 nm was used for the LLO. A mechanically stable chip design was found to be the key to prevent crack formation in the epitaxial layers and material chipping during the LLO process. Stabilization was achieved by introducing a Ti/Au leveling layer that mechanically supports the fragile epitaxial film. The electrical and optical characterization of devices before and after the LLO process shows that the device performance did not degrade by the LLO.

  20. Effect of p-GaN layer doping on the photoresponse of GaN-based p-i-n ultraviolet photodetectors

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Guo, Jin; Xie, Feng; Wang, Wanjun; Wang, Guosheng; Wu, Haoran; Wang, Tanglin; Song, Man

    2015-08-01

    We report on two-dimensional (2D) numerical simulations of photoresponse characteristics for GaN based p-i-n ultraviolet (UV) photodetectors. Effects of doping density of p-GaN layer on the photoresponse have been investigated. In order to accurately simulate the device performance, the theoretical calculation includes doping-dependent mobility degradation by Arora model and high field saturation model. Theoretical modeling shows that the doping density of p- GaN layer can significantly affect the photoresponse of GaN based p-i-n UV photodetectors, especially at schottky contact. We have to make a suitable choice of the doping in the device design according to the simulation results.

  1. Listening Effort: How the Cognitive Consequences of Acoustic Challenge Are Reflected in Brain and Behavior

    PubMed Central

    2018-01-01

    Everyday conversation frequently includes challenges to the clarity of the acoustic speech signal, including hearing impairment, background noise, and foreign accents. Although an obvious problem is the increased risk of making word identification errors, extracting meaning from a degraded acoustic signal is also cognitively demanding, which contributes to increased listening effort. The concepts of cognitive demand and listening effort are critical in understanding the challenges listeners face in comprehension, which are not fully predicted by audiometric measures. In this article, the authors review converging behavioral, pupillometric, and neuroimaging evidence that understanding acoustically degraded speech requires additional cognitive support and that this cognitive load can interfere with other operations such as language processing and memory for what has been heard. Behaviorally, acoustic challenge is associated with increased errors in speech understanding, poorer performance on concurrent secondary tasks, more difficulty processing linguistically complex sentences, and reduced memory for verbal material. Measures of pupil dilation support the challenge associated with processing a degraded acoustic signal, indirectly reflecting an increase in neural activity. Finally, functional brain imaging reveals that the neural resources required to understand degraded speech extend beyond traditional perisylvian language networks, most commonly including regions of prefrontal cortex, premotor cortex, and the cingulo-opercular network. Far from being exclusively an auditory problem, acoustic degradation presents listeners with a systems-level challenge that requires the allocation of executive cognitive resources. An important point is that a number of dissociable processes can be engaged to understand degraded speech, including verbal working memory and attention-based performance monitoring. The specific resources required likely differ as a function of the acoustic, linguistic, and cognitive demands of the task, as well as individual differences in listeners’ abilities. A greater appreciation of cognitive contributions to processing degraded speech is critical in understanding individual differences in comprehension ability, variability in the efficacy of assistive devices, and guiding rehabilitation approaches to reducing listening effort and facilitating communication. PMID:28938250

  2. Listening Effort: How the Cognitive Consequences of Acoustic Challenge Are Reflected in Brain and Behavior.

    PubMed

    Peelle, Jonathan E

    Everyday conversation frequently includes challenges to the clarity of the acoustic speech signal, including hearing impairment, background noise, and foreign accents. Although an obvious problem is the increased risk of making word identification errors, extracting meaning from a degraded acoustic signal is also cognitively demanding, which contributes to increased listening effort. The concepts of cognitive demand and listening effort are critical in understanding the challenges listeners face in comprehension, which are not fully predicted by audiometric measures. In this article, the authors review converging behavioral, pupillometric, and neuroimaging evidence that understanding acoustically degraded speech requires additional cognitive support and that this cognitive load can interfere with other operations such as language processing and memory for what has been heard. Behaviorally, acoustic challenge is associated with increased errors in speech understanding, poorer performance on concurrent secondary tasks, more difficulty processing linguistically complex sentences, and reduced memory for verbal material. Measures of pupil dilation support the challenge associated with processing a degraded acoustic signal, indirectly reflecting an increase in neural activity. Finally, functional brain imaging reveals that the neural resources required to understand degraded speech extend beyond traditional perisylvian language networks, most commonly including regions of prefrontal cortex, premotor cortex, and the cingulo-opercular network. Far from being exclusively an auditory problem, acoustic degradation presents listeners with a systems-level challenge that requires the allocation of executive cognitive resources. An important point is that a number of dissociable processes can be engaged to understand degraded speech, including verbal working memory and attention-based performance monitoring. The specific resources required likely differ as a function of the acoustic, linguistic, and cognitive demands of the task, as well as individual differences in listeners' abilities. A greater appreciation of cognitive contributions to processing degraded speech is critical in understanding individual differences in comprehension ability, variability in the efficacy of assistive devices, and guiding rehabilitation approaches to reducing listening effort and facilitating communication.

  3. Compatibility study of a parenteral microdose polyethylene glycol formulation in medical devices and identification of degradation impurity by 2D-LC/MS.

    PubMed

    Dai, Lulu; Yeh, Geoffrey K; Ran, Yingqing; Yehl, Peter; Zhang, Kelly

    2017-04-15

    Polyethylene glycol (PEG) based formulation and polyvinylchloride (PVC) tubing are frequently used for drug delivery and administration. The compatibility of a parenteral drug microdose formulation in intravenous infusion (IV) devices was studied to support the clinical determination of absolute bioavailability by the microdosing method. The investigational microdose formulation containing PEG was found prone to significant loss of potency within hours of storage in the PVC IV tubing due to degradation. Degradation occurred only when both PEG and PVC tubing were present. The degradation product could not be detected by LC/MS due to the significant interference from the high concentration of PEG (4%) matrix and the extremely low level of drug (0.6ppm). To obtain structural information of the degradation impurity and understand the cause of the degradation, a simple heart-cutting 2D-LC/MS approach was utilized to effectively separate the impurity from the complex PEG oligomers and overcome the matrix interference, enabling mass spectrometric analysis of the impurity. An oxidation- dominated mechanism was proposed in which the combination of PEG auto-oxidation and dehydrochlorination of the PVC tubing yielded an oxidative environment that enhanced radical propagation and accelerated degradation of the investigational parent drug. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. 50 CFR 648.125 - Possession limit.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... retention device designed to prevent loss of the ghost panel after the degradable materials have failed is permitted provided the device does not impair the egress design function of the ghost panel by obstructing...

  5. 50 CFR 648.125 - Scup gear restrictions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... retention device designed to prevent loss of the ghost panel after the degradable materials have failed is permitted provided the device does not impair the egress design function of the ghost panel by obstructing...

  6. 50 CFR 648.125 - Scup gear restrictions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... retention device designed to prevent loss of the ghost panel after the degradable materials have failed is permitted provided the device does not impair the egress design function of the ghost panel by obstructing...

  7. Electrical Characterization of Irradiated Semiconducting Amorphous Hydrogenated Boron Carbide

    NASA Astrophysics Data System (ADS)

    Peterson, George Glenn

    Semiconducting amorphous partially dehydrogenated boron carbide has been explored as a neutron voltaic for operation in radiation harsh environments, such as on deep space satellites/probes. A neutron voltaic device could also be used as a solid state neutron radiation detector to provide immediate alerts for radiation workers/students, as opposed to the passive dosimetry badges utilized today. Understanding how the irradiation environment effects the electrical properties of semiconducting amorphous partially dehydrogenated boron carbide is important to predicting the stability of these devices in operation. p-n heterojunction diodes were formed from the synthesis of semiconducting amorphous partially dehydrogenated boron carbide on silicon substrates through the use of plasma enhanced chemical vapor deposition (PECVD). Many forms of structural and electrical measurements and analysis have been performed on the p-n heterojunction devices as a function of both He+ ion and neutron irradiation including: transmission electron microscopy (TEM), selected area electron diffraction (SAED), current versus voltage I(V), capacitance versus voltage C(V), conductance versus frequency G(f), and charge carrier lifetime (tau). In stark contrast to nearly all other electronic devices, the electrical performance of these p-n heterojunction diodes improved with irradiation. This is most likely the result of bond defect passivation and resolution of degraded icosahedral based carborane structures (icosahedral molecules missing a B, C, or H atom(s)).

  8. Degradable Magnetic Composites for Minimally Invasive Interventions: Device Fabrication, Targeted Drug Delivery, and Cytotoxicity Tests.

    PubMed

    Peters, Christian; Hoop, Marcus; Pané, Salvador; Nelson, Bradley J; Hierold, Christofer

    2016-01-20

    Superparamagnetic nanoparticles and a functional, degradable polymer matrix based on poly(ethylene glycol) are combined to enable fully degradable magnetic microdevices for minimally invasive biomedical applications. A bioinspired helical microrobot platform mimicking Escherichia coli bacteria is fabricated and actuated using weak rotating magnetic fields. Locomotion based on corkscrew propulsion, targeted drug delivery, and low-degradation-product cytotoxicity are demonstrated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Mechanical failure modes of chronically implanted planar silicon-based neural probes for laminar recording

    PubMed Central

    Kozai, Takashi D. Y.; Catt, Kasey; Li, Xia; Gugel, Zhannetta V.; Olafsson, Valur T.; Vazquez, Alberto L.; Cui, X. Tracy

    2014-01-01

    Penetrating intracortical electrode arrays that record brain activity longitudinally are powerful tools for basic neuroscience research and emerging clinical applications. However, regardless of the technology used, signals recorded by these electrodes degrade over time. The failure mechanisms of these electrodes are understood to be a complex combination of the biological reactive tissue response and material failure of the device over time. While mechanical mismatch between the brain tissue and implanted neural electrodes have been studied as a source of chronic inflammation and performance degradation, the electrode failure caused by mechanical mismatch between different material properties and different structural components within a device have remained poorly characterized. Using Finite Element Model (FEM) we simulate the mechanical strain on a planar silicon electrode. The results presented here demonstrate that mechanical mismatch between iridium and silicon leads to concentrated strain along the border of the two materials. This strain is further focused on small protrusions such as the electrical traces in planar silicon electrodes. These findings are confirmed with chronic in vivo data (133–189 days) in mice by correlating a combination of single-unit electrophysiology, evoked multi-unit recordings, electrochemical impedance spectroscopy, and scanning electron microscopy from traces and electrode sites with our modeling data. Several modes of mechanical failure of chronically implanted planar silicon electrodes are found that result in degradation and/or loss of recording. These findings highlight the importance of strains and material properties of various subcomponents within an electrode array. PMID:25453935

  10. Influence of Two-Phase Thermocapillary Flow on Cryogenic Liquid Retention in Microscopic Pores

    NASA Technical Reports Server (NTRS)

    Schmidt, G. R.; Nadarajah, A.; Chung, T. J.; Karr, G. R.

    1994-01-01

    Previous experiments indicate that the bubble point pressure of spacecraft liquid hydrogen acquisition devices is reduced substantially when the ullage is pressurized with heated hydrogen vapor. The objective is to determine whether the two-phase thermocapillary convection arising from thermodynamic non-equilibrium along the porous surfaces of such devices could lead to this observed degradation in retention performance. We also examine why retention capability appears to be unaffected by pressurization with heated helium or direct heating through the porous structure. Computational assessments based on coupled solution of the flowfield and liquid free surface indicate that for highly wetting fluids in small pores, dynamic pressure and vapor recoil dictate surface morphology and drive meniscus deformation. With superheating, the two terms exert the same influence on curvature and promote mechanical equilibrium, but with subcooling, the pressure distribution produces a suction about the pore center-line that degrades retention. This result points to thermocapillary-induced deformation arising from condensation as the cause for retention loss. It also indicates that increasing the level of non-equilibrium by reducing accommodation coefficient restricts deformation and explains why retention failure does not occur with direct screen heating or helium pressurization.

  11. Effects of various gate materials on electrical degradation of a-Si:H TFT in industrial display application

    NASA Astrophysics Data System (ADS)

    Ho, Ching-Yuan; Chang, Yaw-Jen

    2016-02-01

    Both aluminum (Al) and copper (Cu), acting as transmission lines in the hydrogenated amorphous silicon of a thin film transistor (a-Si:H TFT), were studied to investigate electrical degradation including electron-migration (EM) and threshold voltage (Vt) stability and recovery performance. Under long-term current stress, the Cu material exhibited excellent resistance to EM properties, but a passivated SiNx crack was observed due to fast heat conductivity. By applying electrical stress on the gate and drain for 5 × 104 s, the power-law time dependency of the threshold voltage shift (ΔVt) indicated that the defective state creation dominated the TFT device's instability. The presence of drain stress increased the overall ΔVt because the high longitudinal field induced impact ionization and then, enhanced hot-carrier-induced electron trapping within the gate SiNx dielectric. An annealing effect prompted a stressed a-Si:H TFT back to virgin status. This study proposes better ΔVt stability and excellent resistance against electron-migration in a Cu gate device which can be considered as a candidate for a transmission line on prolonged TFT applications.

  12. Characterization and recovery of Deep Sub Micron (DSM) technologies behavior under radiation

    NASA Technical Reports Server (NTRS)

    Stoica, Adrian; Wang, Xiao

    2005-01-01

    This paper serves a twofold purpose: characterize the behavior of a reconfigurable chip exposed to radiation; and demonstrate a method for functionality recovery due to Total Ionizing Dose (TID) effects. The experiments are performed using a PL developed reconfigurable device, a Field Programmable Transistor Array (FPTA). The paper initially describes experiments on the characterization of the NMOS transistor behavior for TID values up to 300krad. The behavior of analog and digital circuits downloaded onto the FPTA chip is also assessed for TID effects. This paper also presents a novel approach for circuit functionality recovery due to radiation effects based on Evolvable Hardware. The key idea is to reconfigure a programmable device, in-situ, to compensate, or bypass its degraded or damaged components. Experiments with total radiation dose up to 300kRad show that while the functionality of a variety of circuits, including digital gates, a rectifier and a Digital to Analog Converter implemented on a FPTA-2 chip is degraded/lost at levels before 200kRad, the correct functionality can be recovered through the proposed evolutionary approach and the chips are able to survive higher radiation, for several functions in excess of total radiation dose of 250kRad.

  13. Enhancement of Light Absorption in Silicon Nanowire Photovoltaic Devices with Dielectric and Metallic Grating Structures.

    PubMed

    Park, Jin-Sung; Kim, Kyoung-Ho; Hwang, Min-Soo; Zhang, Xing; Lee, Jung Min; Kim, Jungkil; Song, Kyung-Deok; No, You-Shin; Jeong, Kwang-Yong; Cahoon, James F; Kim, Sun-Kyung; Park, Hong-Gyu

    2017-12-13

    We report the enhancement of light absorption in Si nanowire photovoltaic devices with one-dimensional dielectric or metallic gratings that are fabricated by a damage-free, precisely aligning, polymer-assisted transfer method. Incorporation of a Si 3 N 4 grating with a Si nanowire effectively enhances the photocurrents for transverse-electric polarized light. The wavelength at which a maximum photocurrent is generated is readily tuned by adjusting the grating pitch. Moreover, the electrical properties of the nanowire devices are preserved before and after transferring the Si 3 N 4 gratings onto Si nanowires, ensuring that the quality of pristine nanowires is not degraded during the transfer. Furthermore, we demonstrate Si nanowire photovoltaic devices with Ag gratings using the same transfer method. Measurements on the fabricated devices reveal approximately 27.1% enhancement in light absorption compared to that of the same devices without the Ag gratings without any degradation of electrical properties. We believe that our polymer-assisted transfer method is not limited to the fabrication of grating-incorporated nanowire photovoltaic devices but can also be generically applied for the implementation of complex nanoscale structures toward the development of multifunctional optoelectronic devices.

  14. P3HT:PCBM-based organic solar cells : Optimisation of active layer nanostructure and interface properties

    NASA Astrophysics Data System (ADS)

    Kadem, Burak Yahya

    Organic solar cells (OSCs) have attracted a significant attention during the last decade due to their simple processability on a flexible substrate as well as scope for large-scale production using role to role technique. Improving the performance of the organic solar cells and their lifetime stability are one of the main challenges faced by researchers in this field. In this thesis, work has been carried out using a blend of Poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-Phenyl C[61] butyric acid methyl ester (PCBM) as an active layer in the ratio of (1:1) (P3HT:PCBM). The efficiency and stability of P3HT:PCBM-based solar cells have been examined using different methods and employing novel materials such as1-[N-(2-ethoxyethyl) pent-4-ynamide] -8 (11), 15 (18), 22 (25) -tris-{2-[2-(2-ethoxyethoxy) ethoxy]-1-[2-((2- ethoxyethoxy) - ethoxy) methyl] ethyloxy} phthalocyaninato zinc (II) (ZnPc) to construct a ternary hybrid as the active layer. Controlling the morphology and crystallinity of P3HT:PCBM active layer was carried out using different solvents including chloroform (CF), chlorobenzene (CB) and dichlorobenzene (DCB) and their co-solvents in the ratio of (1:1) to dissolve the P3HT:PCBM blend. Optimum morphology and crystallinity were achieved using a co-solvent made of CB:CF with the obtained solar cell exhibiting the highest performance with PCE reaching 2.73% among other devices prepared using different solvents. Further device performance improvement was observed through optimization of active layer thickness with studied thickness falling in range 65-266 nm. Measurements of the PV characteristics of the investigated OSC devices have revealed optimum performance when active layer thickness was 95 nm with PCE=3.846%. The stability of the P3HT:PCBM-based devices on optimisation of the active layer thickness has shown a decrease in PCE of about 71% over a period of 41 days. Furthermore, P3HT has been blended with different fullerene derivatives (PC[60]BM, PC[61]BM, PC[70]BM and PC[71]BM) and the active layers were processed using the optimum solvent as well as optimum film's thickness.These PCBM derivatives have different lower unoccupied molecular level (LUMO) and different higher occupied molecular level (HOMO) positions, which subsequently influence the PV parameters of the OSCs such as the device open circuit voltage (V[oc]) and its built-in potential (V[bi]). P3HT:PC61BM-based blend has exhibited the highest device performance with PCE reaching 4.2%. Using the above mentioned optimum parameters, the P3HT:PCBM-based devices have been subjected to post-deposition annealing at different temperatures in the range 100-180°C. Efficient device performance was ascribed to P3HT:PCBM layers being subjected to post-deposition heat treatment at 140°C with PCE=5.5%. Device stability as a result of post-deposition heat treatment has also been shown to improve with PCE degrading by about 38% after 55 days.The use of interfacial layer is found to play a key part in modifying the solar cell performance; using electron transport layer (ETL) such as aluminium tris(8-hydroxyquinoline) (Alq3) as a solution processable layer has contributed in increasing PCE to 4.25%, while, using PEDOT:PSS as a hole transport layer (HTL) doped with metal salts has significantly contributed in increasing PCE to reach 6.82% in device when PEDOT:PSS was doped with LiCl aqueous solution. Stability study for the device based on HTL has shown degradation in the PCE from 6.82% to around 1% over 96 days. Using ETL and HTL simultaneously in a complete device has shown a further enhanced PCE reaching 7%. In a further study, doping the P3HT:PCBM with the novel ZnPc hybrids (SWCNTs and reduced graphene oxide (rGO) are covalently and non-covalently functionalised to ZnPc) with the weight ratio of (1:0.01) has significantly altered the solar cell device properties. The best performance is based on P3HT:PCBM blended with ZnPc-SWCNTs-co bonded as a ternary active layer demonstrating device PCE of 5.3% compared to a reference device based on bare P3HT:PCBM blend with PCE of 3.46%.

  15. An experimental investigation of two large annular diffusers with swirling and distorted inflow

    NASA Technical Reports Server (NTRS)

    Eckert, W. T.; Johnston, J. P.; Simons, T. D.; Mort, K. W.; Page, V. R.

    1980-01-01

    Two annular diffusers downstream of a nacelle-mounted fan were tested for aerodynamic performance, measured in terms of two static pressure recovery parameters (one near the diffuser exit plane and one about three diameters downstream in the settling duct) in the presence of several inflow conditions. The two diffusers each had an inlet diameter of 1.84 m, an area ratio of 2.3, and an equivalent cone angle of 11.5, but were distinguished by centerbodies of different lengths. The dependence of diffuser performance on various combinations of swirling, radially distorted, and/or azimuthally distorted inflow was examined. Swirling flow and distortions in the axial velocity profile in the annulus upstream of the diffuser inlet were caused by the intrinsic flow patterns downstream of a fan in a duct and by artificial intensification of the distortions. Azimuthal distortions or defects were generated by the addition of four artificial devices (screens and fences). Pressure recovery data indicated beneficial effects of both radial distortion (for a limited range of distortion levels) and inflow swirl. Small amounts of azimuthal distortion created by the artificial devices produced only small effects on diffuser performance. A large artificial distortion device was required to produce enough azimuthal flow distortion to significantly degrade the diffuser static pressure recovery.

  16. Solvent-Assisted Surface Engineering for High-Performance All-Inorganic Perovskite Nanocrystal Light-Emitting Diodes.

    PubMed

    Wang, Lin; Liu, Baiquan; Zhao, Xin; Demir, Hilmi Volkan; Gu, Haoshuang; Sun, Handong

    2018-06-13

    All-inorganic cesium halide perovskite nanocrystals have attracted much interest in optoelectronic applications for the sake of the readily adjustable band gaps, high photoluminescence quantum yield, pure color emission, and affordable cost. However, because of the ineluctable utilization of organic surfactants during the synthesis, the structural and optical properties of CsPbBr 3 nanocrystals degrade upon transforming from colloidal solutions to solid thin films, which plagues the device operation. Here, we develop a novel solvent-assisted surface engineering strategy, producing high-quality CsPbBr 3 thin films for device applications. A good solvent is first introduced as an assembly trigger to conduct assembly in a one-dimensional direction, which is then interrupted by adding a nonsolvent. The nonsolvent drives the adjacent nanoparticles connecting in a two-dimensional direction. Assembled CsPbBr 3 nanocrystal thin films are densely packed and very smooth with a surface roughness of ∼4.8 nm, which is highly desirable for carrier transport in a light-emitting diode (LED) device. Meanwhile, the film stability is apparently improved. Benefiting from this facile and reliable strategy, we have achieved remarkably improved performance of CsPbBr 3 nanocrystal-based LEDs. Our results not only enrich the methods of nanocrystal surface engineering but also shed light on developing high-performance LEDs.

  17. A fast and automatic fusion algorithm for unregistered multi-exposure image sequence

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Yu, Feihong

    2014-09-01

    Human visual system (HVS) can visualize all the brightness levels of the scene through visual adaptation. However, the dynamic range of most commercial digital cameras and display devices are smaller than the dynamic range of human eye. This implies low dynamic range (LDR) images captured by normal digital camera may lose image details. We propose an efficient approach to high dynamic (HDR) image fusion that copes with image displacement and image blur degradation in a computationally efficient manner, which is suitable for implementation on mobile devices. The various image registration algorithms proposed in the previous literatures are unable to meet the efficiency and performance requirements in the application of mobile devices. In this paper, we selected Oriented Brief (ORB) detector to extract local image structures. The descriptor selected in multi-exposure image fusion algorithm has to be fast and robust to illumination variations and geometric deformations. ORB descriptor is the best candidate in our algorithm. Further, we perform an improved RANdom Sample Consensus (RANSAC) algorithm to reject incorrect matches. For the fusion of images, a new approach based on Stationary Wavelet Transform (SWT) is used. The experimental results demonstrate that the proposed algorithm generates high quality images at low computational cost. Comparisons with a number of other feature matching methods show that our method gets better performance.

  18. Characterization and modeling of cadmium chloride treated cadmium telluride/cadmium sulfide thin-film solar cells

    NASA Astrophysics Data System (ADS)

    Maxwell, Graham Lane

    CdTe photovoltaic technology has the potential to become a leading energy producer in the coming decades. Its physical properties are well suited for photovoltaic energy conversion. A key processing step in the production of high efficiency CdTe/CdS solar cells is a post-CdTe deposition heat treatment with CdCl2, which can improve performance by promoting CdTe rectrystallization, QE response, defect passivation and others. Understanding the effects of the CdCl2 treatment is crucial in order to optimize processing conditions and improve performance. This study investigates the effects of variations of CdCl2 treatment duration on CdTe/CdS solar cells manufactured at Colorado State University. In order to investigate the optimal time of CdCl 2 treatment, sample solar cells were tested for microstructural and performance properties. Device microstructure was analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Device performance was analyzed using current density-voltage (J-V) measurements, time-resolved photoluminescence (TRPL), quantum efficiency (QE), and laser beam induced current (LBIC) measurements. Little change in microstructure was observed with extended CdCl 2 treatment and is attributed to the high CdTe deposition temperatures used by heat pocket deposition (HPD). This deposition technique allows for large initial grains to be formed with low lattice strain energy which prevents recrystallization and grain growth that is often seen with other deposition techniques. The CdCl2 treatment initially improves performance significantly, but it was shown to that extending the CdCl2 treatment can reduce performance. Overall performance was reduced despite an increase in minority carrier lifetime values. The mechanism of reduced performance is suggested to be the formation of a low bandgap CdTe layer resulting from sulfur diffusion from the CdS layer. Sulfur diffusion primarily occurs during the CdCl 2 treatment and also leads to thinning of the CdS layer. Solar cell modeling was employed to investigate possible mechanisms for performance degradation. Modeling was done with AMPS and SCAPS modeling software. Models were created to investigate the effects of minority carrier lifetime, CdS thickness, and a low bandgap CdTe layer. Modeling results showed that the formation of a low bandgap CdTe layer combined with CdS thinning reduces device performance. Further research is needed using a statistically significant number of samples to investigate other possible degradation mechanisms associated with extended CdCl2 treatment.

  19. AMOLED (active matrix OLED) functionality and usable lifetime at temperature

    NASA Astrophysics Data System (ADS)

    Fellowes, David A.; Wood, Michael V.; Prache, Olivier; Jones, Susan

    2005-05-01

    Active Matrix Organic Light Emitting Diode (AMOLED) displays are known to exhibit high levels of performance, and these levels of performance have continually been improved over time with new materials and electronics design. eMagin Corporation developed a manually adjustable temperature compensation circuit with brightness control to allow for excellent performance over a wide temperature range. Night Vision and Electronic Sensors Directorate (US Army) tested the performance and survivability of a number of AMOLED displays in a temperature chamber over a range from -55°C to +85°C. Although device performance of AMOLEDs has always been its strong suit, the issue of usable display lifetimes for military applications continues to be an area of discussion and research. eMagin has made improvements in OLED materials and worked towards the development of a better understanding of usable lifetime for operation in a military system. NVESD ran luminance degradation tests of AMOLED panels at 50°C and at ambient to characterize the lifetime of AMOLED devices. The result is a better understanding of the applicability of AMOLEDs in military systems: where good fits are made, and where further development is needed.

  20. Coupled optical and electrical study of thin-film InGaAs photodetector integrated with surface InP Mie resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Dong; Song, Jiakun; Yu, Hailong

    2016-03-14

    High-index dielectric and semiconductor nanostructures with characteristics of low absorption loss and artificially controlled scattering properties have grasped an increasing attention for improving the performance of thin-film photovoltaic devices. In this work, combined optical and electrical simulations were performed for thin-film InP/In{sub 0.53}Ga{sub 0.47}As/InP hetero-junction photodetector with periodically arranged InP nano-cylinders in the in-coupling configuration. It is found that the carefully designed InP nano-cylinders possess strongly substrate-coupled Mie resonances and can effectively couple incident light into the guided mode, both of which significantly increase optical absorption. Further study from the electrical aspects shows that enhancement of external quantum efficiency ismore » as high as 82% and 83% in the configurations with the optimized nano-cylinders and the optimized period, respectively. Moreover, we demonstrate that the integration of InP nano-cylinders does not degrade the electrical performance, since the surface recombination is effectively suppressed by separating the absorber layer where carriers generate and the air/semiconductor interface. The comprehensive modeling including optical and electrical perspectives provides a more practical description for device performance than the optical-only simulation and is expected to advance the design of thin-film absorber layer based optoelectronic devices for fast response and high efficiency.« less

  1. Four Types of Pulse Oximeters Accurately Detect Hypoxia during Low Perfusion and Motion.

    PubMed

    Louie, Aaron; Feiner, John R; Bickler, Philip E; Rhodes, Laura; Bernstein, Michael; Lucero, Jennifer

    2018-03-01

    Pulse oximeter performance is degraded by motion artifacts and low perfusion. Manufacturers developed algorithms to improve instrument performance during these challenges. There have been no independent comparisons of these devices. We evaluated the performance of four pulse oximeters (Masimo Radical-7, USA; Nihon Kohden OxyPal Neo, Japan; Nellcor N-600, USA; and Philips Intellivue MP5, USA) in 10 healthy adult volunteers. Three motions were evaluated: tapping, pseudorandom, and volunteer-generated rubbing, adjusted to produce photoplethsmogram disturbance similar to arterial pulsation amplitude. During motion, inspired gases were adjusted to achieve stable target plateaus of arterial oxygen saturation (SaO2) at 75%, 88%, and 100%. Pulse oximeter readings were compared with simultaneous arterial blood samples to calculate bias (oxygen saturation measured by pulse oximetry [SpO2] - SaO2), mean, SD, 95% limits of agreement, and root mean square error. Receiver operating characteristic curves were determined to detect mild (SaO2 < 90%) and severe (SaO2 < 80%) hypoxemia. Pulse oximeter readings corresponding to 190 blood samples were analyzed. All oximeters detected hypoxia but motion and low perfusion degraded performance. Three of four oximeters (Masimo, Nellcor, and Philips) had root mean square error greater than 3% for SaO2 70 to 100% during any motion, compared to a root mean square error of 1.8% for the stationary control. A low perfusion index increased error. All oximeters detected hypoxemia during motion and low-perfusion conditions, but motion impaired performance at all ranges, with less accuracy at lower SaO2. Lower perfusion degraded performance in all but the Nihon Kohden instrument. We conclude that different types of pulse oximeters can be similarly effective in preserving sensitivity to clinically relevant hypoxia.

  2. Long-Term Reliability of High Speed SiGe/Si Heterojunction Bipolar Transistors

    NASA Technical Reports Server (NTRS)

    Ponchak, George E. (Technical Monitor); Bhattacharya, Pallab

    2003-01-01

    Accelerated lifetime tests were performed on double-mesa structure Si/Si0.7Ge0.3/Si npn heterojunction bipolar transistors, grown by molecular beam epitaxy, in the temperature range of 175C-275C. Both single- and multiple finger transistors were tested. The single-finger transistors (with 5x20 micron sq m emitter area) have DC current gains approximately 40-50 and f(sub T) and f(sub MAX) of up to 22 GHz and 25 GHz, respectively. The multiple finger transistors (1.4 micron finger width, 9 emitter fingers with total emitter area of 403 micron sq m) have similar DC current gain but f(sub T) of 50 GHz. It is found that a gradual degradation in these devices is caused by the recombination enhanced impurity diffusion (REID) of boron atoms from the p-type base region and the associated formation of parasitic energy barriers to electron transport from the emitter to collector layers. This REID has been quantitatively modeled and explained, to the first order of approximation, and the agreement with the measured data is good. The mean time to failure (MTTF) of the devices at room temperature is estimated from the extrapolation of the Arrhenius plots of device lifetime versus reciprocal temperature. The results of the reliability tests offer valuable feedback for SiGe heterostructure design in order to improve the long-term reliability of the devices and circuits made with them. Hot electron induced degradation of the base-emitter junction was also observed during the accelerated lifetime testing. In order to improve the HBT reliability endangered by the hot electrons, deuterium sintered techniques have been proposed. The preliminary results from this study show that a deuterium-sintered HBT is, indeed, more resistant to hot-electron induced base-emitter junction degradation. SiGe/Si based amplifier circuits were also subjected to lifetime testing and we extrapolate MTTF is approximately 1.1_10(exp 6) hours at 125iC junction temperature from the circuit lifetime data.

  3. Multilayer-Grown Ultrathin Nanostructured GaAs Solar Cells as a Cost-Competitive Materials Platform for III-V Photovoltaics.

    PubMed

    Gai, Boju; Sun, Yukun; Lim, Haneol; Chen, Huandong; Faucher, Joseph; Lee, Minjoo L; Yoon, Jongseung

    2017-01-24

    Large-scale deployment of GaAs solar cells in terrestrial photovoltaics demands significant cost reduction for preparing device-quality epitaxial materials. Although multilayer epitaxial growth in conjunction with printing-based materials assemblies has been proposed as a promising route to achieve this goal, their practical implementation remains challenging owing to the degradation of materials properties and resulting nonuniform device performance between solar cells grown in different sequences. Here we report an alternative approach to circumvent these limitations and enable multilayer-grown GaAs solar cells with uniform photovoltaic performance. Ultrathin single-junction GaAs solar cells having a 300-nm-thick absorber (i.e., emitter and base) are epitaxially grown in triple-stack releasable multilayer assemblies by molecular beam epitaxy using beryllium as a p-type impurity. Microscale (∼500 × 500 μm 2 ) GaAs solar cells fabricated from respective device layers exhibit excellent uniformity (<3% relative) of photovoltaic performance and contact properties owing to the suppressed diffusion of p-type dopant as well as substantially reduced time of epitaxial growth associated with ultrathin device configuration. Bifacial photon management employing hexagonally periodic TiO 2 nanoposts and a vertical p-type metal contact serving as a metallic back-surface reflector together with specialized epitaxial design to minimize parasitic optical losses for efficient light trapping synergistically enable significantly enhanced photovoltaic performance of such ultrathin absorbers, where ∼17.2% solar-to-electric power conversion efficiency under simulated AM1.5G illumination is demonstrated from 420-nm-thick single-junction GaAs solar cells grown in triple-stack epitaxial assemblies.

  4. Degree of bioresorbable vascular scaffold expansion modulates loss of essential function.

    PubMed

    Ferdous, Jahid; Kolachalama, Vijaya B; Kolandaivelu, Kumaran; Shazly, Tarek

    2015-10-01

    Drug-eluting bioresorbable vascular scaffolds (BVSs) have the potential to restore lumen patency, enable recovery of the native vascular environment, and circumvent late complications associated with permanent endovascular devices. To ensure therapeutic effects persist for sufficient times prior to scaffold resorption and resultant functional loss, many factors dictating BVS performance must be identified, characterized and optimized. While some factors relate to BVS design and manufacturing, others depend on device deployment and intrinsic vascular properties. Importantly, these factors interact and cannot be considered in isolation. The objective of this study is to quantify the extent to which degree of radial expansion modulates BVS performance, specifically in the context of modifying device erosion kinetics and evolution of structural mechanics and local drug elution. We systematically varied degree of radial expansion in model BVS constructs composed of poly dl-lactide-glycolide and generated in vitro metrics of device microstructure, degradation, erosion, mechanics and drug release. Experimental data permitted development of computational models that predicted transient concentrations of scaffold-derived soluble species and drug in the arterial wall, thus enabling speculation on the short- and long-term effects of differential expansion. We demonstrate that degree of expansion significantly affects scaffold properties critical to functionality, underscoring its relevance in BVS design and optimization. Bioresorbable vascular scaffold (BVS) therapy is beginning to transform the treatment of obstructive artery disease, owing to effective treatment of short term vessel closure while avoiding long term consequences such as in situ, late stent thrombosis - a fatal event associated with permanent implants such as drug-eluting stents. As device scaffolding and drug elution are temporary for BVS, the notion of using this therapy in lieu of existing, clinically approved devices seems attractive. However, there is still a limited understanding regarding the optimal lifetime and performance characteristics of erodible endovascular implants. Several engineering criteria must be met and clinical endpoints confirmed to ensure these devices are both safe and effective. In this manuscript, we sought to establish general principles for the design and deployment of erodible, drug-eluting endovascular scaffolds, with focus on how differential expansion can modulate device performance. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Reliability of Cascaded THz Frequency Chains with Planar GaAs Circuits

    NASA Technical Reports Server (NTRS)

    Maiwald, Frank; Schlecht, Erich; Lin, Robert; Ward, John; Pearson, John; Siegel, Peter; Mehdi, Imran

    2004-01-01

    Planar GaAs Schottky diodes will be utilized for all of the LO chains on the HIPI instrument for the Herschel Space Observatory. A better understanding of device degradation mechanisms is desirable in order to specify environmental and operational conditions that do not reduce device life times. Failures and degradation associated with ESD (Electrostatic Discharge), high temperatures, DC currents and RF induced current and heating have been investigated. The goal is to establish a procedure to obtain the safe operating range for a given frequency multiplier.

  6. Overlay degradation induced by film stress

    NASA Astrophysics Data System (ADS)

    Huang, Chi-hao; Liu, Yu-Lin; Luo, Shing-Ann; Yang, Mars; Yang, Elvis; Hung, Yung-Tai; Luoh, Tuung; Yang, T. H.; Chen, K. C.

    2017-03-01

    The semiconductor industry has continually sought the approaches to produce memory devices with increased memory cells per memory die. One way to meet the increasing storage capacity demand and reduce bit cost of NAND flash memories is 3D stacked flash cell array. In constructing 3D NAND flash memories, increasing the number of stacked layers to build more memory cell number per unit area necessitates many high-aspect-ratio etching processes accordingly the incorporation of thick and unique etching hard-mask scheme has been indispensable. However, the ever increasingly thick requirement on etching hard-mask has made the hard-mask film stress control extremely important for maintaining good process qualities. The residual film stress alters the wafer shape consequently several process impacts have been readily observed across wafer, such as wafer chucking error on scanner, film peeling, materials coating and baking defects, critical dimension (CD) non-uniformity and overlay degradation. This work investigates the overlay and residual order performance indicator (ROPI) degradation coupling with increasingly thick advanced patterning film (APF) etching hard-mask. Various APF films deposited by plasma enhanced chemical vapor deposition (PECVD) method under different deposition temperatures, chemicals combinations, radio frequency powers and chamber pressures were carried out. And -342MPa to +80MPa film stress with different film thicknesses were generated for the overlay performance study. The results revealed the overlay degradation doesn't directly correlate with convex or concave wafer shapes but the magnitude of residual APF film stress, while increasing the APF thickness will worsen the overlay performance and ROPI strongly. High-stress APF film was also observed to enhance the scanner chucking difference and lead to more serious wafer to wafer overlay variation. To reduce the overlay degradation from ever increasingly thick APF etching hard-mask, optimizing the film stress of APF is the most effective way and high order overlay compensation is also helpful.

  7. Spray-painted binder-free SnSe electrodes for high-performance energy-storage devices.

    PubMed

    Wang, Xianfu; Liu, Bin; Xiang, Qingyi; Wang, Qiufan; Hou, Xiaojuan; Chen, Di; Shen, Guozhen

    2014-01-01

    SnSe nanocrystal electrodes on three-dimensional (3D) carbon fabric and Au-coated polyethylene terephthalate (PET) wafer have been prepared by a simple spray-painting process and were further investigated as binder-free active-electrodes for Lithium-ion batteries (LIBs) and flexible stacked all-solid-state supercapacitors. The as-painted SnSe nanocrystals/carbon fabric electrodes exhibit an outstanding capacity of 676 mAh g(-1) after 80 cycles at a current density of 200 mA g(-1) and a considerable high-rate capability in lithium storage because of the excellent ion transport from the electrolyte to the active materials and the efficient charge transport between current collector and electrode materials. The binder-free electrodes also provide a larger electrochemical active surface compared with electrodes containing binders, which leads to the enhanced capacities of energy-storage devices. A flexible stacked all-solid-state supercapacitor based on the SnSe nanocrystals on Au-coated PET wafers shows high capacitance reversibility with little performance degradation at different current densities after 2200 charge-discharge cycles and even when bent. This allows for many potential applications in facile, cost-effective, spray-paintable, and flexible energy-storage devices. The results indicate that the fabrication of binder-free electrodes by a spray painting process is an interesting direction for the preparation of high-performance energy-storage devices. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Long-life mission reliability for outer planet atmospheric entry probes

    NASA Technical Reports Server (NTRS)

    Mccall, M. T.; Rouch, L.; Maycock, J. N.

    1976-01-01

    The results of a literature analysis on the effects of prolonged exposure to deep space environment on the properties of outer planet atmospheric entry probe components are presented. Materials considered included elastomers and plastics, pyrotechnic devices, thermal control components, metal springs and electronic components. The rates of degradation of each component were determined and extrapolation techniques were used to predict the effects of exposure for up to eight years to deep space. Pyrotechnic devices were aged under accelerated conditions to an equivalent of eight years in space and functionally tested. Results of the literature analysis of the selected components and testing of the devices indicated that no severe degradation should be expected during an eight year space mission.

  9. High-density carrier-accumulated and electrically stable oxide thin-film transistors from ion-gel gate dielectric

    PubMed Central

    Fujii, Mami N.; Ishikawa, Yasuaki; Miwa, Kazumoto; Okada, Hiromi; Uraoka, Yukiharu; Ono, Shimpei

    2015-01-01

    The use of indium–gallium–zinc oxide (IGZO) has paved the way for high-resolution uniform displays or integrated circuits with transparent and flexible devices. However, achieving highly reliable devices that use IGZO for low-temperature processes remains a technological challenge. We propose the use of IGZO thin-film transistors (TFTs) with an ionic-liquid gate dielectric in order to achieve high-density carrier-accumulated IGZO TFTs with high reliability, and we discuss a distinctive mechanism for the degradation of this organic–inorganic hybrid device under long-term electrical stress. Our results demonstrated that an ionic liquid or gel gate dielectric provides highly reliable and low-voltage operation with IGZO TFTs. Furthermore, high-density carrier accumulation helps improve the TFT characteristics and reliability, and it is highly relevant to the electronic phase control of oxide materials and the degradation mechanism for organic–inorganic hybrid devices. PMID:26677773

  10. High-density carrier-accumulated and electrically stable oxide thin-film transistors from ion-gel gate dielectric.

    PubMed

    Fujii, Mami N; Ishikawa, Yasuaki; Miwa, Kazumoto; Okada, Hiromi; Uraoka, Yukiharu; Ono, Shimpei

    2015-12-18

    The use of indium-gallium-zinc oxide (IGZO) has paved the way for high-resolution uniform displays or integrated circuits with transparent and flexible devices. However, achieving highly reliable devices that use IGZO for low-temperature processes remains a technological challenge. We propose the use of IGZO thin-film transistors (TFTs) with an ionic-liquid gate dielectric in order to achieve high-density carrier-accumulated IGZO TFTs with high reliability, and we discuss a distinctive mechanism for the degradation of this organic-inorganic hybrid device under long-term electrical stress. Our results demonstrated that an ionic liquid or gel gate dielectric provides highly reliable and low-voltage operation with IGZO TFTs. Furthermore, high-density carrier accumulation helps improve the TFT characteristics and reliability, and it is highly relevant to the electronic phase control of oxide materials and the degradation mechanism for organic-inorganic hybrid devices.

  11. Evaluating polymeric biomaterial–environment interfaces by Langmuir monolayer techniques

    PubMed Central

    Schöne, Anne-Christin; Roch, Toralf; Schulz, Burkhard

    2017-01-01

    Polymeric biomaterials are of specific relevance in medical and pharmaceutical applications due to their wide range of tailorable properties and functionalities. The knowledge about interactions of biomaterials with their biological environment is of crucial importance for developing highly sophisticated medical devices. To achieve optimal in vivo performance, a description at the molecular level is required to gain better understanding about the surface of synthetic materials for tailoring their properties. This is still challenging and requires the comprehensive characterization of morphological structures, polymer chain arrangements and degradation behaviour. The review discusses selected aspects for evaluating polymeric biomaterial–environment interfaces by Langmuir monolayer methods as powerful techniques for studying interfacial properties, such as morphological and degradation processes. The combination of spectroscopic, microscopic and scattering methods with the Langmuir techniques adapted to polymers can substantially improve the understanding of their in vivo behaviour. PMID:28468918

  12. Growth of Fe2O3/SnO2 nanobelt arrays on iron foil for efficient photocatalytic degradation of methylene blue

    NASA Astrophysics Data System (ADS)

    Lei, Rui; Ni, Hongwei; Chen, Rongsheng; Zhang, Bowei; Zhan, Weiting; Li, Yang

    2017-04-01

    Tin(IV) oxide has been intensively employed in optoelectronic devices due to its excellent electrical and optical properties. But the high recombination rates of the photogenerated electron-hole pairs of SnO2 nanomaterials often results in low photocatalytic efficiency. Herein, we proposed a facile route to prepare a novel Fe2O3/SnO2 heterojunction structure. The nanobelt arrays grown on iron foil naturally form a Schottky-type contact and provide a direct pathway for the photogenerated excitons. Hence, the Fe2O3/SnO2 nanobelt arrays exhibit much improved photocatalytic performance with the degradation rate constant on the Fe2O3/SnO2 film of approximately 12 times to that of α-Fe2O3 nanobelt arrays.

  13. A Semi-Preemptive Garbage Collector for Solid State Drives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Junghee; Kim, Youngjae; Shipman, Galen M

    2011-01-01

    NAND flash memory is a preferred storage media for various platforms ranging from embedded systems to enterprise-scale systems. Flash devices do not have any mechanical moving parts and provide low-latency access. They also require less power compared to rotating media. Unlike hard disks, flash devices use out-of-update operations and they require a garbage collection (GC) process to reclaim invalid pages to create free blocks. This GC process is a major cause of performance degradation when running concurrently with other I/O operations as internal bandwidth is consumed to reclaim these invalid pages. The invocation of the GC process is generally governedmore » by a low watermark on free blocks and other internal device metrics that different workloads meet at different intervals. This results in I/O performance that is highly dependent on workload characteristics. In this paper, we examine the GC process and propose a semi-preemptive GC scheme that can preempt on-going GC processing and service pending I/O requests in the queue. Moreover, we further enhance flash performance by pipelining internal GC operations and merge them with pending I/O requests whenever possible. Our experimental evaluation of this semi-preemptive GC sheme with realistic workloads demonstrate both improved performance and reduced performance variability. Write-dominant workloads show up to a 66.56% improvement in average response time with a 83.30% reduced variance in response time compared to the non-preemptive GC scheme.« less

  14. Double polymer sheathed carbon nanotube supercapacitors show enhanced cycling stability

    NASA Astrophysics Data System (ADS)

    Zhao, Wenqi; Wang, Shanshan; Wang, Chunhui; Wu, Shiting; Xu, Wenjing; Zou, Mingchu; Ouyang, An; Cao, Anyuan; Li, Yibin

    2015-12-01

    Pseudo-materials are effective in boosting the specific capacitance of supercapacitors, but during service their degradation may also be very strong, causing reduced cycling stability. Here, we show that a carbon nanotube sponge grafted by two conventional pseudo-polymer layers in sequence can serve as a porous supercapacitor electrode with significantly enhanced cycling stability compared with single polymer grafting. Creating conformal polymer coatings on the nanotube surface and the resulting double-sheath configuration are important structural factors leading to the enhanced performance. Combining different polymers as double sheaths as reported here might be a potential route to circumvent the dilemma of pseudo-materials, and to simultaneously improve the capacitance and stability for various energy storage devices.Pseudo-materials are effective in boosting the specific capacitance of supercapacitors, but during service their degradation may also be very strong, causing reduced cycling stability. Here, we show that a carbon nanotube sponge grafted by two conventional pseudo-polymer layers in sequence can serve as a porous supercapacitor electrode with significantly enhanced cycling stability compared with single polymer grafting. Creating conformal polymer coatings on the nanotube surface and the resulting double-sheath configuration are important structural factors leading to the enhanced performance. Combining different polymers as double sheaths as reported here might be a potential route to circumvent the dilemma of pseudo-materials, and to simultaneously improve the capacitance and stability for various energy storage devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05978j

  15. Organic field-effect transistors: a combined study on short-channel effects and the influence of substrate pre-treatment on ambient stability

    NASA Astrophysics Data System (ADS)

    Klug, A.; Meingast, A.; Wurzinger, G.; Blümel, A.; Schmoltner, K.; Scherf, U.; List, E. J. W.

    2011-10-01

    For high-performance low-cost applications based on organic field-effect transistors (OFETs) and corresponding sensors essential properties of the applied semiconducting materials include solution-processability, high field-effect mobility, compatibility with adjacent layers and stability with respect to ambient conditions. In this combined study regioregular poly(3-hexylthiophene)- and pentacene-based bottom-gate bottom-contact OFETs with various channel lengths are thoroughly investigated with respect to short-channel effects and the implications of dielectric surface modification with hexamethyldisilazane (HMDS) on device performance. In addition, the influences of oxygen, moisture and HMDStreatment on the ambient stability of the devices are evaluated in detail. While OFETs without surface modification exhibited the expected degradation behavior upon air exposure mainly due to oxygen/moisture-induced doping or charge-carrier trapping, the stability of the investigated semiconductors was found to be distinctly increased when the substrate surface was hydrophobized. The presented results thoroughly summarize important issues which have to be considered when selecting semiconducting materials for high-performance OFETs and OFET-based sensors.

  16. Electronic and Morphological Inhomogeneities in Pristine and Deteriorated Perovskite Photovoltaic Films

    DOE PAGES

    Berweger, Samuel; MacDonald, Gordon A.; Yang, Mengjin; ...

    2017-02-02

    We perform scanning microwave microscopy (SMM) to study the spatially varying electronic properties and related morphology of pristine and degraded methylammonium lead-halide (MAPI) perovskite films fabricated under different ambient humidity. Here, we find that higher processing humidity leads to the emergence of increased conductivity at the grain boundaries but also correlates with the appearance of resistive grains that contain PbI 2. Deteriorated films show larger and increasingly insulating grain boundaries as well as spatially localized regions of reduced conductivity within grains. These results suggest that while humidity during film fabrication primarily benefits device properties due to the passivation of trapsmore » at the grain boundaries and self-doping, it also results in the emergence of PbI 2-containing grains. We further establish that MAPI film deterioration under ambient conditions proceeds via the spatially localized breakdown of film conductivity, both at grain boundaries and within grains, due to local variations in susceptibility to deterioration. These results confirm that PbI 2 has both beneficial and adverse effects on device performance and provide new means for device optimization by revealing spatial variations in sample conductivity as well as morphological differences in resistance to sample deterioration.« less

  17. RIR-MAPLE deposition of conjugated polymers and hybrid nanocomposites for application to optoelectronic devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stiff-Roberts, Adrienne D.; Pate, Ryan; McCormick, Ryan

    2012-07-30

    Resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) is a variation of pulsed laser deposition that is useful for organic-based thin films because it reduces material degradation by selective absorption of infrared radiation in the host matrix. A unique emulsion-based RIR-MAPLE approach has been developed that reduces substrate exposure to solvents and provides controlled and repeatable organic thin film deposition. In order to establish emulsion-based RIR-MAPLE as a preferred deposition technique for conjugated polymer or hybrid nanocomposite optoelectronic devices, studies have been conducted to demonstrate the value added by the approach in comparison to traditional solution-based deposition techniques, and this workmore » will be reviewed. The control of hybrid nanocomposite thin film deposition, and the photoconductivity in such materials deposited using emulsion-based RIR-MAPLE, will also be reviewed. The overall result of these studies is the demonstration of emulsion-based RIR-MAPLE as a viable option for the fabrication of conjugated polymer and hybrid nanocomposite optoelectronic devices that could yield improved device performance.« less

  18. Cobalt stabilization of silver extraordinary optical transmission sensing platforms

    DOE PAGES

    Farah, Annette E.; Davidson, Roderick B.; Pooser, Raphael C.; ...

    2016-01-25

    In this study, plasmon-mediated extraordinary optical transmission (EOT) is finding increased interest for biosensing applications. While Ag nanostructures are capable of the highest plasmonic quality factor of all metals, the performance reliability of pure Ag EOT devices is limited by degradation through environmental interactions. Here we show that EOT devices consisting of nanostructured hole arrays in Ag/Co bilayers show comparable transmission with that of identical hole arrays in Agthin films as well as enhanced reliability measured by the rate of resonance peak redshift and broadening with time. The Ag/Co EOT devices showed 2.6× and 1.9× smaller red shift in shortmore » timescales (20 days) and after 100 days, respectively, while they showed a 1.7× steady-state decrease in rate of bandwidth broadening. This improvement is likely due to the Co metal stabilizing the Agfilm from morphological changes by reducing its propensity to diffuse or dewet on the underlying substrate. The improved reliability of Ag/Co bilayer EOT devices could enable the use of their superior plasmonic properties for optical detection of trace chemicals.« less

  19. GaAs VLSI for aerospace electronics

    NASA Technical Reports Server (NTRS)

    Larue, G.; Chan, P.

    1990-01-01

    Advanced aerospace electronics systems require high-speed, low-power, radiation-hard, digital components for signal processing, control, and communication applications. GaAs VLSI devices provide a number of advantages over silicon devices including higher carrier velocities, ability to integrate with high performance optical devices, and high-resistivity substrates that provide very short gate delays, good isolation, and tolerance to many forms of radiation. However, III-V technologies also have disadvantages, such as lower yield compared to silicon MOS technology. Achieving very large scale integration (VLSI) is particularly important for fast complex systems. At very short gate delays (less than 100 ps), chip-to-chip interconnects severely degrade circuit clock rates. Complex systems, therefore, benefit greatly when as many gates as possible are placed on a single chip. To fully exploit the advantages of GaAs circuits, attention must be focused on achieving high integration levels by reducing power dissipation, reducing the number of devices per logic function, and providing circuit designs that are more tolerant to process and environmental variations. In addition, adequate noise margin must be maintained to ensure a practical yield.

  20. High-Power Piezoelectric Acoustic-Electric Power Feedthru for Metal Walls

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Biederman, Will; Sherrit, Stewart; Badescu, Mircea; Bar-Cohen, Yoseph; Jones, Christopher; Aldrich, Jack; Chang, Zensheu

    2008-01-01

    Piezoelectric acoustic-electric power feed-through devices transfer electric power wirelessly through a solid wall by using acoustic waves. This approach allows for the removal of holes through structures. The technology is applicable to power supply for electric equipment inside sealed containers, vacuum or pressure vessels, etc where the holes on the wall are prohibitive or result in significant performance degrade or complex designs. In the author's previous work, 100-W electric power was transferred through a metal wall by a small, simple-structure piezoelectric device. To meet requirements of higher power applications, the feasibility to transfer kilowatts level power was investigated. Pre-stressed longitudinal piezoelectric feedthru devices were analyzed by finite element model. An equivalent circuit model was developed to predict the power transfer characteristics to different electric loads. Based on the analysis results, a prototype device was designed, fabricated and a demonstration of the transmission of electric power up to 1-kW was successfully conducted. The methods to minimize the plate wave excitation on the wall were also analyzed. Both model analysis and experimental results are presented in detail in this presentation.

  1. Electron density window for best frequency performance, lowest phase noise and slowest degradation of GaN heterostructure field-effect transistors

    NASA Astrophysics Data System (ADS)

    Matulionis, Arvydas

    2013-07-01

    The problems in the realm of nitride heterostructure field-effect transistors (HFETs) are discussed in terms of a novel fluctuation-dissipation-based approach impelled by a recent demonstration of strong correlation of hot-electron fluctuations with frequency performance and degradation of the devices. The correlation has its genesis in the dissipation of the LO-mode heat accumulated by the non-equilibrium longitudinal optical phonons (hot phonons) confined in the channel that hosts the high-density hot-electron gas subjected to a high electric field. The LO-mode heat causes additional scattering of hot electrons and facilitates defect formation in a different manner than the conventional heat contained mainly in the acoustic phonon mode. We treat the heat dissipation problem in terms of the hot-phonon lifetime responsible for the conversion of the non-migrant hot phonons into migrant acoustic modes and other vibrations. The lifetime is measured over a wide range of electron density and supplied electric power. The optimal conditions for the dissipation of the LO-mode heat are associated with the plasmon-assisted disintegration of hot phonons. Signatures of plasmons are experimentally resolved in fluctuations, dissipation, hot-electron transport, transistor frequency performance, transistor phase noise and transistor reliability. In particular, a slower degradation and a faster operation of GaN-based HFETs take place inside the electron density window where the resonant plasmon-assisted ultrafast dissipation of the LO-mode heat comes into play. A novel heterostructure design for the possible improvement of HFET performance is proposed, implemented and tested.

  2. An Effective Cache Algorithm for Heterogeneous Storage Systems

    PubMed Central

    Li, Yong; Feng, Dan

    2013-01-01

    Modern storage environment is commonly composed of heterogeneous storage devices. However, traditional cache algorithms exhibit performance degradation in heterogeneous storage systems because they were not designed to work with the diverse performance characteristics. In this paper, we present a new cache algorithm called HCM for heterogeneous storage systems. The HCM algorithm partitions the cache among the disks and adopts an effective scheme to balance the work across the disks. Furthermore, it applies benefit-cost analysis to choose the best allocation of cache block to improve the performance. Conducting simulations with a variety of traces and a wide range of cache size, our experiments show that HCM significantly outperforms the existing state-of-the-art storage-aware cache algorithms. PMID:24453890

  3. Advances in Single and Multijunction III-V Photovoltaics on Silicon for Space Power

    NASA Technical Reports Server (NTRS)

    Wilt, David M.; Fitzgerald, Eugene A.; Ringel, Steven A.

    2005-01-01

    A collaborative research effort at MIT, Ohio State University and NASA has resulted in the demonstration of record quality gallium arsenide (GaAs) based single junction photovoltaic devices on silicon (Si) substrates. The ability to integrate highly efficient, radiation hard III-V based devices on silicon offers the potential for dramatic reductions in cell mass (approx.2x) and increases in cell area. Both of these improvements offer the potential for dramatic reductions in the cost of on-orbit electrical power. Recently, lattice matched InGaP/GaAs and metamorphic InGaP/InGaAs dual junction solar cells were demonstrated by MBE and OMVPE, respectively. Single junction GaAs on Si devices have been integrated into a space flight experiment (MISSES), scheduled to be launched to the International Space Station in March of 2005. I-V performance data from the GaAs/Si will be collected on-orbit and telemetered to ground stations daily. Microcracks in the GaAs epitaxial material, generated because of differences in the thermal expansion coefficient between GaAs and Si, are of concern in the widely varying thermal environment encountered in low Earth orbit. Ground based thermal life cycling (-80 C to + 80 C) equivalent to 1 year in LEO has been conducted on GaAs/Si devices with no discernable degradation in device performance, suggesting that microcracks may not limit the ability to field GaAs/Si in harsh thermal environments. Recent advances in the development and testing of III-V photovoltaic devices on Si will be presented.

  4. Lightweight carbon nanotube-based structural-energy storage devices for micro unmanned systems

    NASA Astrophysics Data System (ADS)

    Rivera, Monica; Cole, Daniel P.; Hahm, Myung Gwan; Reddy, Arava L. M.; Vajtai, Robert; Ajayan, Pulickel M.; Karna, Shashi P.; Bundy, Mark L.

    2012-06-01

    There is a strong need for small, lightweight energy storage devices that can satisfy the ever increasing power and energy demands of micro unmanned systems. Currently, most commercial and developmental micro unmanned systems utilize commercial-off-the-shelf (COTS) lithium polymer batteries for their energy storage needs. While COTS lithium polymer batteries are the industry norm, the weight of these batteries can account for up to 60% of the overall system mass and the capacity of these batteries can limit mission durations to the order of only a few minutes. One method to increase vehicle endurance without adding mass or sacrificing payload capabilities is to incorporate multiple system functions into a single material or structure. For example, the body or chassis of a micro vehicle could be replaced with a multifunctional material that would serve as both the vehicle structure and the on-board energy storage device. In this paper we present recent progress towards the development of carbon nanotube (CNT)-based structural-energy storage devices for micro unmanned systems. Randomly oriented and vertically aligned CNT-polymer composite electrodes with varying degrees of flexibility are used as the primary building blocks for lightweight structural-supercapacitors. For the purpose of this study, the mechanical properties of the CNT-based electrodes and the charge-discharge behavior of the supercapacitor devices are examined. Because incorporating multifunctionality into a single component often degrades the properties or performance of individual structures, the performance and property tradeoffs of the CNT-based structural-energy storage devices will also be discussed.

  5. Prognostics Approach for Power MOSFET Under Thermal-Stress

    NASA Technical Reports Server (NTRS)

    Galvan, Jose Ramon Celaya; Saxena, Abhinav; Kulkarni, Chetan S.; Saha, Sankalita; Goebel, Kai

    2012-01-01

    The prognostic technique for a power MOSFET presented in this paper is based on accelerated aging of MOSFET IRF520Npbf in a TO-220 package. The methodology utilizes thermal and power cycling to accelerate the life of the devices. The major failure mechanism for the stress conditions is dieattachment degradation, typical for discrete devices with leadfree solder die attachment. It has been determined that dieattach degradation results in an increase in ON-state resistance due to its dependence on junction temperature. Increasing resistance, thus, can be used as a precursor of failure for the die-attach failure mechanism under thermal stress. A feature based on normalized ON-resistance is computed from in-situ measurements of the electro-thermal response. An Extended Kalman filter is used as a model-based prognostics techniques based on the Bayesian tracking framework. The proposed prognostics technique reports on preliminary work that serves as a case study on the prediction of remaining life of power MOSFETs and builds upon the work presented in [1]. The algorithm considered in this study had been used as prognostics algorithm in different applications and is regarded as suitable candidate for component level prognostics. This work attempts to further the validation of such algorithm by presenting it with real degradation data including measurements from real sensors, which include all the complications (noise, bias, etc.) that are regularly not captured on simulated degradation data. The algorithm is developed and tested on the accelerated aging test timescale. In real world operation, the timescale of the degradation process and therefore the RUL predictions will be considerable larger. It is hypothesized that even though the timescale will be larger, it remains constant through the degradation process and the algorithm and model would still apply under the slower degradation process. By using accelerated aging data with actual device measurements and real sensors (no simulated behavior), we are attempting to assess how such algorithm behaves under realistic conditions.

  6. Discrete random distribution of source dopants in nanowire tunnel transistors (TFETs)

    NASA Astrophysics Data System (ADS)

    Sylvia, Somaia; Abul Khayer, M.; Alam, Khairul; Park, Hong-Hyun; Klimeck, Gerhard; Lake, Roger

    2013-03-01

    InAs and InSb nanowire (NW) tunnel field effect transistors (TFETs) require highly degenerate source doping to support the high electric fields in the tunnel region. For a target on-current of 1 μA , the doping requirement may be as high as 1 . 5 ×1020cm-3 in a NW with diameter as low as 4 nm. The small size of these devices demand that the dopants near tunneling region be treated discretely. Therefore, the effects resulting from the random distribution of dopant atoms in the source of a TFET are studied for 30 test devices. Comparing with the transfer characteristics of the same device simulated with a continuum doping model, our results show (1) a spread of I - V toward the positive gate voltage axis, (2) the same average threshold voltage, (3) an average 62% reduction in the on current, and (4) a slight degradation of the subthreshold slope. Random fluctuations in both the number and placement of dopants will be discussed. Also, as the channel length is scaled down, direct tunneling through the channel starts limiting the device performance. Therefore, a comparison of materials is also performed, showing their ability to block direct tunneling for sub-10 nm channel FETs and TFETs. This work was supported in part by the Center on Functional Engineered Nano Architectonics and the Materials, Structures and Devices Focus Center, under the Focus Center Research Program, and by the National Science Foundation under Grant OCI-0749140

  7. Face identification with frequency domain matched filtering in mobile environments

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Su; Woo, Yong-Hyun; Yeom, Seokwon; Kim, Shin-Hwan

    2012-06-01

    Face identification at a distance is very challenging since captured images are often degraded by blur and noise. Furthermore, the computational resources and memory are often limited in the mobile environments. Thus, it is very challenging to develop a real-time face identification system on the mobile device. This paper discusses face identification based on frequency domain matched filtering in the mobile environments. Face identification is performed by the linear or phase-only matched filter and sequential verification stages. The candidate window regions are decided by the major peaks of the linear or phase-only matched filtering outputs. The sequential stages comprise a skin-color test and an edge mask filtering test, which verify color and shape information of the candidate regions in order to remove false alarms. All algorithms are built on the mobile device using Android platform. The preliminary results show that face identification of East Asian people can be performed successfully in the mobile environments.

  8. Enhanced performance of amorphous In-Ga-Zn-O thin-film transistors using different metals for source/drain electrodes

    NASA Astrophysics Data System (ADS)

    Pyo, Ju-Young; Cho, Won-Ju

    2017-09-01

    In this paper, we propose an amorphous indium gallium zinc oxide (a-IGZO) thin-film transistor (TFT) with off-planed source/drain electrodes. We applied different metals for the source/drain electrodes with Ni and Ti to control the work function as high and low. When we measured the configuration of Ni to drain and source to Ti, the a-IGZO TFT showed increased driving current, decreased leakage current, a high on/off current ratio, low subthreshold swing, and high mobility. In addition, we conducted a reliability test with a gate bias stress test at various temperatures. The results of the reliability test showed the Ni drain and Ti drain had an equivalent effective energy barrier height. Thus, we confirmed that the proposed off-planed structure improved the electrical characteristics of the fabricated devices without any degradation of characteristics. Through the a-IGZO TFT with different source/drain electrode metal engineering, we realized high-performance TFTs for next-generation display devices.

  9. Informatic analysis for hidden pulse attack exploiting spectral characteristics of optics in plug-and-play quantum key distribution system

    NASA Astrophysics Data System (ADS)

    Ko, Heasin; Lim, Kyongchun; Oh, Junsang; Rhee, June-Koo Kevin

    2016-10-01

    Quantum channel loopholes due to imperfect implementations of practical devices expose quantum key distribution (QKD) systems to potential eavesdropping attacks. Even though QKD systems are implemented with optical devices that are highly selective on spectral characteristics, information theory-based analysis about a pertinent attack strategy built with a reasonable framework exploiting it has never been clarified. This paper proposes a new type of trojan horse attack called hidden pulse attack that can be applied in a plug-and-play QKD system, using general and optimal attack strategies that can extract quantum information from phase-disturbed quantum states of eavesdropper's hidden pulses. It exploits spectral characteristics of a photodiode used in a plug-and-play QKD system in order to probe modulation states of photon qubits. We analyze the security performance of the decoy-state BB84 QKD system under the optimal hidden pulse attack model that shows enormous performance degradation in terms of both secret key rate and transmission distance.

  10. Controlling surface property of K2SiF6:Mn4+ for improvement of lighting-emitting diode reliability

    NASA Astrophysics Data System (ADS)

    Kim, Juseong; Jang, Inseok; Song, Gwang Yeom; Kim, Wan-Ho; Jeon, Sie-Wook; Kim, Jae-Pil

    2018-05-01

    The surface property of moisture-sensitive K2SiF6:Mn4+ (KSF) as a red-emitting phosphor was controlled through dry-type surface modification in order to improve the photo-performance and reliability of lighting-emitting diode (LED). The phosphor surface was modified with silane coupling agents having different carbon chain length by plasma-assisted method. Comparing between as-prepared and modified KSF, water-resistance and photo-emission efficiency were enhanced due to the formation of hydrophobic shell and the elimination of surface quenching sites. Moreover, the dispersibility of phosphor was increased as increasing the carbon chain length of silane because the interfacial affinity between phosphor and encapsulant was improved. After fabricating LED device, the enhancement of photo-performance and long-term reliability could be successfully achieved in LED device with modified phosphor. It is attributed to that the degradation of phosphor efficiency by moisture was suppressed and heat dissipation in LED PKG was improved through the surface modification.

  11. Hardware Acceleration of Adaptive Neural Algorithms.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, Conrad D.

    As tradit ional numerical computing has faced challenges, researchers have turned towards alternative computing approaches to reduce power - per - computation metrics and improve algorithm performance. Here, we describe an approach towards non - conventional computing that strengthens the connection between machine learning and neuroscience concepts. The Hardware Acceleration of Adaptive Neural Algorithms (HAANA) project ha s develop ed neural machine learning algorithms and hardware for applications in image processing and cybersecurity. While machine learning methods are effective at extracting relevant features from many types of data, the effectiveness of these algorithms degrades when subjected to real - worldmore » conditions. Our team has generated novel neural - inspired approa ches to improve the resiliency and adaptability of machine learning algorithms. In addition, we have also designed and fabricated hardware architectures and microelectronic devices specifically tuned towards the training and inference operations of neural - inspired algorithms. Finally, our multi - scale simulation framework allows us to assess the impact of microelectronic device properties on algorithm performance.« less

  12. Optical determination of Shockley-Read-Hall and interface recombination currents in hybrid perovskites

    PubMed Central

    Sarritzu, Valerio; Sestu, Nicola; Marongiu, Daniela; Chang, Xueqing; Masi, Sofia; Rizzo, Aurora; Colella, Silvia; Quochi, Francesco; Saba, Michele; Mura, Andrea; Bongiovanni, Giovanni

    2017-01-01

    Metal-halide perovskite solar cells rival the best inorganic solar cells in power conversion efficiency, providing the outlook for efficient, cheap devices. In order for the technology to mature and approach the ideal Shockley-Queissier efficiency, experimental tools are needed to diagnose what processes limit performances, beyond simply measuring electrical characteristics often affected by parasitic effects and difficult to interpret. Here we study the microscopic origin of recombination currents causing photoconversion losses with an all-optical technique, measuring the electron-hole free energy as a function of the exciting light intensity. Our method allows assessing the ideality factor and breaks down the electron-hole recombination current into bulk defect and interface contributions, providing an estimate of the limit photoconversion efficiency, without any real charge current flowing through the device. We identify Shockley-Read-Hall recombination as the main decay process in insulated perovskite layers and quantify the additional performance degradation due to interface recombination in heterojunctions. PMID:28317883

  13. Self-Powered, Flexible, and Solution-Processable Perovskite Photodetector Based on Low-Cost Carbon Cloth.

    PubMed

    Sun, Haoxuan; Lei, Tianyu; Tian, Wei; Cao, Fengren; Xiong, Jie; Li, Liang

    2017-07-01

    Flexible perovskite photodetectors are usually constructed on indium-tin-oxide-coated polymer substrates, which are expensive, fragile, and not resistant to high temperature. Herein, for the first time, a high-performance flexible perovskite photodetector is fabricated based on low-cost carbon cloth via a facile solution processable strategy. In this device, perovskite microcrystal and Spiro-OMeTAD (hole transporting material) blended film act as active materials for light detection, and carbon cloth serves as both a flexible substrate and a conductive electrode. The as-fabricated photodetector shows a broad spectrum response from ultraviolet to near-infrared light, high responsivity, fast response speed, long-term stability, and self-powered capability. Flexible devices show negligible degradation after several tens of bending cycles and at the extremely bending angle of 180°. This work promises a new technique to construct flexible, high-performance photodetectors with low cost and self-powered capability. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. In situ regeneration of bioactive coatings enabled by an evolved Staphylococcus aureus sortase A

    NASA Astrophysics Data System (ADS)

    Ham, Hyun Ok; Qu, Zheng; Haller, Carolyn A.; Dorr, Brent M.; Dai, Erbin; Kim, Wookhyun; Liu, David R.; Chaikof, Elliot L.

    2016-04-01

    Surface immobilization of bioactive molecules is a central paradigm in the design of implantable devices and biosensors with improved clinical performance capabilities. However, in vivo degradation or denaturation of surface constituents often limits the long-term performance of bioactive films. Here we demonstrate the capacity to repeatedly regenerate a covalently immobilized monomolecular thin film of bioactive molecules through a two-step stripping and recharging cycle. Reversible transpeptidation by a laboratory evolved Staphylococcus aureus sortase A (eSrtA) enabled the rapid immobilization of an anti-thrombogenic film in the presence of whole blood and permitted multiple cycles of film regeneration in vitro that preserved its biological activity. Moreover, eSrtA transpeptidation facilitated surface re-engineering of medical devices in situ after in vivo implantation through removal and restoration film constituents. These studies establish a rapid, orthogonal and reversible biochemical scheme to regenerate selective molecular constituents with the potential to extend the lifetime of bioactive films.

  15. 14 MeV Neutron Irradiation Effect on Superconducting Magnet Materials for Fusion Device

    NASA Astrophysics Data System (ADS)

    Nishimura, A.; Hishinuma, Y.; Seo, K.; Tanaka, T.; Muroga, T.; Nishijima, S.; Katagiri, K.; Takeuchi, T.; Shindo, Y.; Ochiai, K.; Nishitani, T.; Okuno, K.

    2006-03-01

    As a large-scale plasma experimental device is planned and designed, the importance of investigations on irradiation effect of 14 MeV neutron increases and an experimental database is desired to be piled up. Recently, intense streaming of fast neutron from ports are reported and degradation of superconducting magnet performance is anticipated. To investigate the pure neutron effect on superconducting magnet materials, a cryogenic target system was newly developed and installed at Fusion Neutronics Source in Japan Atomic Energy Research Institute. Although production rate of 14 MeV neutron is not large, only 14 MeV neutron can be supplied to irradiation test without gamma ray. Copper wires, superconducting wires, glass fiber reinforced composites are irradiated and the irradiation effects are characterized. At the same time, sensors for measuring temperature and magnetic field are irradiated and their performance was investigated after irradiation. This paper presents outline of the cryogenic target system and some irradiation test results.

  16. Effects of ethylene oxide sterilization on 82: 18 PLLA/PGA copolymer craniofacial fixation plates.

    PubMed

    Pietrzak, William S

    2010-01-01

    Bioabsorbable devices are generally susceptible to some form of degradation or alteration of material properties in response to exposure to the terminal sterilization cycle. In addition to affecting the material strength, sterilization can also increase the rate of hydrolysis, both of which can impact clinical performance. The impact of sterilization on the material/device is unpredictable and must be empirically determined. This study examined the effects of ethylene oxide treatment on the material properties of LactoSorb 82:18 poly(L-lactic acid)-poly(glycolic acid) craniofacial plates. Compared with untreated control plates, there was no effect on the initial inherent viscosity (1.3 dL/g), the glass transition temperature (58 degrees C), or on the flexural mechanical properties. Furthermore, there was no effect on the in vitro rate of hydrolysis and mechanical strength loss profile. This provides evidence that the ethylene oxide sterilization cycle is compatible with these copolymer plates and that such treatment should not affect the clinical performance.

  17. [Biodegradable catheters and urinary stents. When?

    PubMed

    Soria, F; Morcillo, E; López de Alda, A; Pastor, T; Sánchez-Margallo, F M

    2016-10-01

    One of the main wishes in the field of urinary catheters and stents is to arm them with biodegradable characteristics because we consider a failure of these devices the need for retrieval, the forgotten catheter syndrome as well as the adverse effects permanent devices cause after fulfilling their aim. The efforts focused in new designs, coatings and biomaterials aim to increase the biocompatibility of theses internal devices. Lately, there have been correct advances to answer the main challenges regarding biodegradable ureteral devices. Thus, modulation of the rate of degradation has been achieved thanks to new biomaterials and the use of copolymers that enable to choose the time of permanence as it is programmed with conventional double J catheters. Biocompatibility has improved with the use of new polymers that adapt better to the urine. Finally, one of the main problems is elimination of degraded fragments and experimentally it has be demonstrated that new designs elicit controlled degradation, from distal to proximal; using stranding and combination of copolymers degradation may be caused by dilution, reducing fragmentation to the last stages of life of the prosthesis. Moreover, it has been demonstrated that biodegradable catheters potentially may cause less urinary tract infection, less encrustation and predictably they will diminish catheter morbidity, since their degradation process reduces adverse effects. Regarding the development of biodegradable urethral stents, it is necessary to find biomaterials that enable maintaining their biomechanical properties in the long term, keeping open the urethral lumen both in patients with BPH and urethral stenosis. Modulation of the time of degradation of the prosthesis has been achieved, but the appearance of urothelial hyperplasia is still a constant in the initial phases after implantation. The development of drug eluting stents, anti-proliferative or anti-inflammatory, as well as biodegradable stents biocoated is a field from which it is expected the arrival of the solution of theses adverse effects. Therefore, many features need to be improved to obtain biodegradable stents, but over the last years some turning points have been accomplished thanks to the advances in Bioengineering, allowing to foresee safe and effective solutions in the nearest future.

  18. Silk protein nanowires patterned using electron beam lithography.

    PubMed

    Pal, Ramendra K; Yadavalli, Vamsi K

    2018-08-17

    Nanofabrication approaches to pattern proteins at the nanoscale are useful in applications ranging from organic bioelectronics to cellular engineering. Specifically, functional materials based on natural polymers offer sustainable and environment-friendly substitutes to synthetic polymers. Silk proteins (fibroin and sericin) have emerged as an important class of biomaterials for next generation applications owing to excellent optical and mechanical properties, inherent biocompatibility, and biodegradability. However, the ability to precisely control their spatial positioning at the nanoscale via high throughput tools continues to remain a challenge. In this study electron beam lithography (EBL) is used to provide nanoscale patterning using methacrylate conjugated silk proteins that are photoreactive 'photoresists' materials. Very low energy electron beam radiation can be used to pattern silk proteins at the nanoscale and over large areas, whereby such nanostructure fabrication can be performed without specialized EBL tools. Significantly, using conducting polymers in conjunction with these silk proteins, the formation of protein nanowires down to 100 nm is shown. These wires can be easily degraded using enzymatic degradation. Thus, proteins can be precisely and scalably patterned and doped with conducting polymers and enzymes to form degradable, organic bioelectronic devices.

  19. Performance of Ga(0.47)In(0.53)As cells over a range of proton energies

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Jain, R. K.; Vargasaburto, C.; Wilt, D. M.; Scheiman, D. A.

    1995-01-01

    Ga(0.47)In(0.53)As solar cells were processed by OMVPE and their characteristics determined at proton energies of 0.2, 0.5, and 3 MeV. Emphasis was on characteristics applicable to use of this cell as the low bandgap member of a monolithic, two terminal high efficiency InP/GaInAs cell. It was found that the radiation induced degradation in efficiency, I(sub SC), V(sub OC) and diffusion length increased with decreasing proton energy. When efficiency degradations were compared with InP it was observed that the present cells showed considerably more degradation over the entire energy range. Similar to InP, R(sub C), the carrier removal rate, decreased with increasing proton energy. However, numerical values for R(sub C) differed from those observed with InP. The difference is attributed to differing defect behavior between the two cell types. It was concluded that particular attention should be paid to the effects of low energy protons especially when the particle's track ends in one cell of the multibandgap device.

  20. Blood compatibility of magnesium and its alloys.

    PubMed

    Feyerabend, Frank; Wendel, Hans-Peter; Mihailova, Boriana; Heidrich, Stefanie; Agha, Nezha Ahmad; Bismayer, Ulrich; Willumeit-Römer, Regine

    2015-10-01

    Blood compatibility analysis in the field of biomaterials is a highly controversial topic. Especially for degradable materials like magnesium and its alloys no established test methods are available. The purpose of this study was to apply advanced test methodology for the analysis of degrading materials to get a mechanistic insight into the corrosion process in contact with human blood and plasma. Pure magnesium and two magnesium alloys were analysed in a modified Chandler-Loop setup. Standard clinical parameters were determined, and a thorough analysis of the resulting implant surface chemistry was performed. The contact of the materials to blood evoked an accelerated inflammatory and cell-induced osteoconductive reaction. Corrosion products formed indicate a more realistic, in vivo like situation. The active regulation of corrosion mechanisms of magnesium alloys by different cell types should be more in the focus of research to bridge the gap between in vitro and in vivo observations and to understand the mechanism of action. This in turn could lead to a better acceptance of these materials for implant applications. The presented study deals with the first mechanistic insights during whole human blood contact and its influence on a degrading magnesium-based biomaterial. The combination of clinical parameters and corrosion layer analysis has been performed for the first time. It could be of interest due to the intended use of magnesium-based stents and for orthopaedic applications for clinical applications. An interest for the readers of Acta Biomaterialia may be given, as one of the first clinically approved magnesium-based devices is a wound-closure device, which is in direct contact with blood. Moreover, for orthopaedic applications also blood contact is of high interest. Although this is not the focus of the manuscript, it could help to rise awareness for potential future applications. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Silicon Germanium Strained Layers and Heterostructures

    NASA Astrophysics Data System (ADS)

    Willander, M.; Nur, O.; Jain, S. C.

    2004-01-01

    The integration of strained-Si1 xGex into Si technology has enhanced the performance and extended the functionality of Si based circuits. The improvement of device performance is observed in both AC as well as DC characteristics of these devices. The category of such devices includes field effect as well as bipolar families. Speed performance in some based circuits has reached limits previously dominated by III-V heterostructures based devices. In addition, for some optoelectronics applications including photodetectors it is now possible to easily integrate strained-Si1 xGex based optical devices into standard Silicon technology. The impact of integrating strained and relaxed Si1 xGex alloys into Si technology is important. It has lead to stimulate Si research as well as offers easy options for performances that requires very complicated and costly process if pure Si has to be used. In this paper we start by discussing the strain and stability of Si1 xGex alloys. The origin and the process responsible for transient enhanced diffusion (TED) in highly doped Si containing layers will be mentioned. Due to the importance of TED for thin highly doped Boron strained-Si1 xGex layers and its degrading consequences, possible suppression design methods will be presented. Quantum well pchannel MOSFETs (QW-PMOSFETs) based on thin buried QW are solution to the low speed and weak current derivability. Different aspects of designing these devices for a better performance are briefly reviewed. Other FETs based on tensile strained Si on relaxed Si1 xGex for n-channel and modulation doped field effect transistors (MODFETs) showed excellent performance. Record AC performance well above 200GHz for fmax is already observed and this record is expected to increase in the coming years. Heterojunction bipolar transistors (HPTs) with thin strained-Si1 xGex highly doped base have lead to optimize the performance of the bipolar technology for many applications easily. The strategies of design and the most important designs of HBTs for optimum AC as well as DC are discussed in details. This technology is now mature enough and that is manifested in the appearance in the market nowadays. Si1 xGex based FETs circuits compatible with standard Si CMOS processes are soon expected to appear in the market. Finally, we briefly discuss the recent advances in Si1 xGex based infrared photodetectors.

  2. Design of flexible polyphenylene proton-conducting membrane for next-generation fuel cells.

    PubMed

    Miyake, Junpei; Taki, Ryunosuke; Mochizuki, Takashi; Shimizu, Ryo; Akiyama, Ryo; Uchida, Makoto; Miyatake, Kenji

    2017-10-01

    Proton exchange membrane fuel cells (PEMFCs) are promising devices for clean power generation in automotive, stationary, and portable applications. Perfluorosulfonic acid (PFSA) ionomers (for example, Nafion) have been the benchmark PEMs; however, several problems, including high gas permeability, low thermal stability, high production cost, and environmental incompatibility, limit the widespread dissemination of PEMFCs. It is believed that fluorine-free PEMs can potentially address all of these issues; however, none of these membranes have simultaneously met the criteria for both high performance (for example, proton conductivity) and durability (for example, mechanical and chemical stability). We present a polyphenylene-based PEM (SPP-QP) that fulfills the required properties for fuel cell applications. The newly designed PEM exhibits very high proton conductivity, excellent membrane flexibility, low gas permeability, and extremely high stability, with negligible degradation even under accelerated degradation conditions, which has never been achieved with existing fluorine-free PEMs. The polyphenylene PEM also exhibits reasonably high fuel cell performance, with excellent durability under practical conditions. This new PEM extends the limits of existing fluorine-free proton-conductive materials and will help to realize the next generation of PEMFCs via cost reduction as well as the performance improvement compared to the present PFSA-based PEMFC systems.

  3. Analysis of PCR Thermocycling by Rayleigh-Bénard Convection

    NASA Astrophysics Data System (ADS)

    Sharma, Ruchi; Ugaz, Victor

    2004-03-01

    In previous studies, we demonstrated a novel device employing the circulatory flow field established by Rayleigh-Bénard convection to perform amplification of a 295 base target region from a human genomic DNA template inside a 35 uL cylindrical cavity using the polymerase chain reaction (PCR) [Krishnan, Ugaz & Burns, Science, Vol. 298, 2002, p. 793]. This design eliminates the need for dynamic external temperature control required in conventional thermocyclers that repeatedly heat and cool static sample volumes to denaturation, annealing, and extension temperatures. In this paper, we extend these studies by demonstrating the design and operation of a multiwell convective flow device capable of achieving amplification of a 191 base pair fragment associated with membrane channel proteins M1 and M2 of the influenza-A virus in as little as 15 minutes with performance comparable to a conventional thermocycler. We also study the effect of initial template concentration and observe no degradation in performance over four orders of magnitude of initial template loading dilution, consistent with conventional thermocycler results. These results illustrate the ability of convective flow PCR systems to achieve performance equal to or exceeding conventional thermocycling hardware, and demonstrate their suitability for use in rapid biodetection assays.

  4. High-density plasma etching of III-nitrides: Process development, device applications and damage remediation

    NASA Astrophysics Data System (ADS)

    Singh, Rajwinder

    Plasma-assisted etching is a key technology for III-nitride device fabrication. The inevitable etch damage resulting from energetic pattern transfer is a challenge that needs to be addressed in order to optimize device performance and reliability. This dissertation focuses on the development of a high-density inductively-coupled plasma (ICP) etch process for III-nitrides, the demonstration of its applicability to practical device fabrication using a custom built ICP reactor, and development of techniques for remediation of etch damage. A chlorine-based standard dry etch process has been developed and utilized in fabrication of a number of electronic and optoelectronic III-nitride devices. Annealing studies carried out at 700°C have yielded the important insight that the annealing time necessary for making good-quality metal contacts to etch processed n-GaN is very short (<30 sec), comparable with the annealing times necessary for dopant activation of p-GaN films and provides an opportunity for streamlining process flow. Plasma etching degrades contact quality on n-GaN films and this degradation has been found to increase with the rf bias levels (ion energies) used, most notably in films with higher doping levels. Immersion in 1:1 mixture of hydrochloric acid and de-ionized water, prior to metallization, removes some of the etch damage and is helpful in recovering contact quality. In-situ treatment consisting of a slow ramp-down of rf bias at the end of the etch is found to achieve the same effect as the ex-situ treatment. This insitu technique is significantly advantageous in a large-scale production environment because it eliminates a process step, particularly one involving treatment in hydrochloric acid. ICP equipment customization for scaling up the process to full 2-inch wafer size is described. Results on etching of state of the art 256 x 256 AlGaN focal plane arrays of ultraviolet photodetectors are reported, with excellent etch uniformity over the wafer area.

  5. Highly stable organic field-effect transistors with engineered gate dielectrics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kippelen, Bernard; Wang, Cheng-Yin; Fuentes-Hernandez, Canek; Yun, Minseong; Singh, Ankit K.; Dindar, Amir; Choi, Sangmoo; Graham, Samuel

    2016-11-01

    Organic field-effect transistors (OFETs) have the potential to lead to low-cost flexible displays, wearable electronics, and sensors. While recent efforts have focused greatly on improving the maximum charge mobility that can be achieved in such devices, studies about the stability and reliability of such high performance devices are relatively scarce. In this talk, we will discuss the results of recent studies aimed at improving the stability of OFETs under operation and their shelf lifetime. In particular, we will focus on device architectures where the gate dielectric is engineered to act simultaneously as an environmental barrier layer. In the past, our group had demonstrated solution-processed top-gate OFETs using TIPS-pentacene and PTAA blends as a semiconductor layer with a bilayer gate dielectric layer of CYTOP/Al2O3, where the oxide layer was fabricated by atomic layer deposition, ALD. Such devices displayed high operational stability with little degradation after 20,000 on/off scan cycles or continuous operation (24 h), and high environmental stability when kept in air for more than 2 years, with unchanged carrier mobility. Using this stable device geometry, simple circuits and sensors operating in aqueous conditions were demonstrated. However, the Al2O3 layer was found to degrade due to corrosion under prolonged exposure in aqueous solutions. In this talk, we will report on the use of a nanolaminate (NL) composed of Al2O3 and HfO2 by ALD to replace the Al2O3 single layer in the bilayer gate dielectric use in top-gate OFETs. Such OFETs were found to operate under harsh condition such as immersion in water at 95 °C. This work was funded by the Department of Energy (DOE) through the Bay Area Photovoltaics Consortium (BAPVC) under Award Number DE-EE0004946.

  6. Microfluidic Assessment of Frying Oil Degradation

    PubMed Central

    Liu, Mei; Xie, Shaorong; Ge, Ji; Xu, Zhensong; Wu, Zhizheng; Ru, Changhai; Luo, Jun; Sun, Yu

    2016-01-01

    Monitoring the quality of frying oil is important for the health of consumers. This paper reports a microfluidic technique for rapidly quantifying the degradation of frying oil. The microfluidic device generates monodispersed water-in-oil droplets and exploits viscosity and interfacial tension changes of frying oil samples over their frying/degradation process. The measured parameters were correlated to the total polar material percentage that is widely used in the food industry. The results reveal that the steady-state length of droplets can be used for unambiguously assessing frying oil quality degradation. PMID:27312884

  7. FY12 End of Year Report for NEPP DDR2 Reliability

    NASA Technical Reports Server (NTRS)

    Guertin, Steven M.

    2013-01-01

    This document reports the status of the NASA Electronic Parts and Packaging (NEPP) Double Data Rate 2 (DDR2) Reliability effort for FY2012. The task expanded the focus of evaluating reliability effects targeted for device examination. FY11 work highlighted the need to test many more parts and to examine more operating conditions, in order to provide useful recommendations for NASA users of these devices. This year's efforts focused on development of test capabilities, particularly focusing on those that can be used to determine overall lot quality and identify outlier devices, and test methods that can be employed on components for flight use. Flight acceptance of components potentially includes considerable time for up-screening (though this time may not currently be used for much reliability testing). Manufacturers are much more knowledgeable about the relevant reliability mechanisms for each of their devices. We are not in a position to know what the appropriate reliability tests are for any given device, so although reliability testing could be focused for a given device, we are forced to perform a large campaign of reliability tests to identify devices with degraded reliability. With the available up-screening time for NASA parts, it is possible to run many device performance studies. This includes verification of basic datasheet characteristics. Furthermore, it is possible to perform significant pattern sensitivity studies. By doing these studies we can establish higher reliability of flight components. In order to develop these approaches, it is necessary to develop test capability that can identify reliability outliers. To do this we must test many devices to ensure outliers are in the sample, and we must develop characterization capability to measure many different parameters. For FY12 we increased capability for reliability characterization and sample size. We increased sample size this year by moving from loose devices to dual inline memory modules (DIMMs) with an approximate reduction of 20 to 50 times in terms of per device under test (DUT) cost. By increasing sample size we have improved our ability to characterize devices that may be considered reliability outliers. This report provides an update on the effort to improve DDR2 testing capability. Although focused on DDR2, the methods being used can be extended to DDR and DDR3 with relative ease.

  8. Towards Prognostics of Power MOSFETs: Accelerated Aging and Precursors of Failure

    NASA Technical Reports Server (NTRS)

    Celaya, Jose R.; Saxena, Abhinav; Wysocki, Philip; Saha, Sankalita; Goebel, Kai

    2010-01-01

    This paper presents research results dealing with power MOSFETs (metal oxide semiconductor field effect transistor) within the prognostics and health management of electronics. Experimental results are presented for the identification of the on-resistance as a precursor to failure of devices with die-attach degradation as a failure mechanism. Devices are aged under power cycling in order to trigger die-attach damage. In situ measurements of key electrical and thermal parameters are collected throughout the aging process and further used for analysis and computation of the on-resistance parameter. Experimental results show that the devices experience die-attach damage and that the on-resistance captures the degradation process in such a way that it could be used for the development of prognostics algorithms (data-driven or physics-based).

  9. An Ru(II)-Fe(III) bimetallic complex as a multifunctional device for detecting, signal amplifying, and degrading oxalate.

    PubMed

    Chow, Cheuk-Fai; Ho, Pui-Yu; Gong, Cheng-Bin

    2014-09-07

    A tetranuclear bimetallic complex, [Ru(II)((t)Bubpy)(CN)4]2-[Fe(III)(H2O)3Cl]2·8H2O (1) has been synthesized and characterized. It was found to be a multifunctional device that can detect, signal amplify, and degrade an organic pollutant, oxalate. Results of the chemosensing studies of 1 toward common anions show that only oxalate selectively induces naked-eye colorimetric and luminometric responses with method detection limits down to 78.7 and 5.5 ppm, respectively from 1. Meanwhile, results of the photo-degradation studies of 1 toward oxalate show that the dissolved organic carbon content of oxalate decreased and reached complete mineralization into CO2 within 6 hours. Complex 1 was also found as the catalyst that amplified the detection signal toward oxalate. Through the photoassisted Fenton reaction by 1, methyl orange, an additional coloring agent, could be degraded so that the visual detection limit of 1 toward oxalate was magnified 50 times from 100 to 2 ppm. The detection, degradation, mineralization and signal amplification were found applicable in real water bodies such as river, pond and underground water with excellent recoveries and relative standard deviation.

  10. High single-spatial-mode pulsed power from 980 nm emitting diode lasers

    NASA Astrophysics Data System (ADS)

    Hempel, Martin; Tomm, Jens W.; Elsaesser, Thomas; Bettiati, Mauro

    2012-11-01

    Single-spatial-mode pulsed powers as high as 13 W and 20 W in 150 and 50 ns pulses, respectively, are reported for 980 nm emitting lasers. In terms of energy, single-spatial-mode values of up to 2 μJ within 150 ns pulses are shown. In this high-power pulsed operation, the devices shield themselves from facet degradation, being the main degradation source in continuous wave (cw) operation. Our results pave the way towards additional applications while employing available standard devices, which have originally been designed as very reliable cw fiber pumps.

  11. Sub-0.5 V Highly Stable Aqueous Salt Gated Metal Oxide Electronics

    PubMed Central

    Park, Sungjun; Lee, SeYeong; Kim, Chang-Hyun; Lee, Ilseop; Lee, Won-June; Kim, Sohee; Lee, Byung-Geun; Jang, Jae-Hyung; Yoon, Myung-Han

    2015-01-01

    Recently, growing interest in implantable bionics and biochemical sensors spurred the research for developing non-conventional electronics with excellent device characteristics at low operation voltages and prolonged device stability under physiological conditions. Herein, we report high-performance aqueous electrolyte-gated thin-film transistors using a sol-gel amorphous metal oxide semiconductor and aqueous electrolyte dielectrics based on small ionic salts. The proper selection of channel material (i.e., indium-gallium-zinc-oxide) and precautious passivation of non-channel areas enabled the development of simple but highly stable metal oxide transistors manifested by low operation voltages within 0.5 V, high transconductance of ~1.0 mS, large current on-off ratios over 107, and fast inverter responses up to several hundred hertz without device degradation even in physiologically-relevant ionic solutions. In conjunction with excellent transistor characteristics, investigation of the electrochemical nature of the metal oxide-electrolyte interface may contribute to the development of a viable bio-electronic platform directly interfacing with biological entities in vivo. PMID:26271456

  12. Study on the photocatalytic reaction kinetics in a TiO2 nanoparticles coated microreactor integrated microfluidics device.

    PubMed

    Liu, Ai-Lin; Li, Zhong-Qiu; Wu, Zeng-Qiang; Xia, Xing-Hua

    2018-05-15

    For study of the photocatalytic reaction kinetics in a confined microsystem, a photocatalysis microreactor integrated on a microfluidic device has been fabricated using an on-line UV/vis detector. The performance of the photocatalysis microreactor is evaluated by the photocatalytic degradation of Rhodamine B chosen as model target by using commercial titanium dioxide (Degussa P25, TiO 2 ) nanoparticles as a photocatalyst. Results show that the photocatalytic reaction occurs via the Langmuir-Hinshelwood mechanism and the photocatalysis kinetics in the confined microsystem (r = 0.359 min -1 ) is about 10 times larger than that in macrosystem (r = 0.033 min -1 ). In addition, the photocatalysis activity of the immobilized TiO 2 nanoparticles in the microreactor exhibits good stability under flowing conditions. The present microchip device offers an interesting platform for screening of photocatalysts and exploration of photocatalysis mechanisms and kinetics. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Robust, functional nanocrystal solids by infilling with atomic layer deposition.

    PubMed

    Liu, Yao; Gibbs, Markelle; Perkins, Craig L; Tolentino, Jason; Zarghami, Mohammad H; Bustamante, Jorge; Law, Matt

    2011-12-14

    Thin films of colloidal semiconductor nanocrystals (NCs) are inherently metatstable materials prone to oxidative and photothermal degradation driven by their large surface-to-volume ratios and high surface energies. (1) The fabrication of practical electronic devices based on NC solids hinges on preventing oxidation, surface diffusion, ripening, sintering, and other unwanted physicochemical changes that can plague these materials. Here we use low-temperature atomic layer deposition (ALD) to infill conductive PbSe NC solids with metal oxides to produce inorganic nanocomposites in which the NCs are locked in place and protected against oxidative and photothermal damage. Infilling NC field-effect transistors and solar cells with amorphous alumina yields devices that operate with enhanced and stable performance for at least months in air. Furthermore, ALD infilling with ZnO lowers the height of the inter-NC tunnel barrier for electron transport, yielding PbSe NC films with electron mobilities of 1 cm2 V(-1) s(-1). Our ALD technique is a versatile means to fabricate robust NC solids for optoelectronic devices.

  14. Editable Supercapacitors with Customizable Stretchability Based on Mechanically Strengthened Ultralong MnO2 Nanowire Composite.

    PubMed

    Lv, Zhisheng; Luo, Yifei; Tang, Yuxin; Wei, Jiaqi; Zhu, Zhiqiang; Zhou, Xinran; Li, Wenlong; Zeng, Yi; Zhang, Wei; Zhang, Yanyan; Qi, Dianpeng; Pan, Shaowu; Loh, Xian Jun; Chen, Xiaodong

    2018-01-01

    Although some progress has been made on stretchable supercapacitors, traditional stretchable supercapacitors fabricated by predesigning structured electrodes for device assembling still lack the device-level editability and programmability. To adapt to wearable electronics with arbitrary configurations, it is highly desirable to develop editable supercapacitors that can be directly transferred into desirable shapes and stretchability. In this work, editable supercapacitors for customizable shapes and stretchability using electrodes based on mechanically strengthened ultralong MnO 2 nanowire composites are developed. A supercapacitor edited with honeycomb-like structure shows a specific capacitance of 227.2 mF cm -2 and can be stretched up to 500% without degradation of electrochemical performance, which is superior to most of the state-of-the-art stretchable supercapacitors. In addition, it maintains nearly 98% of the initial capacitance after 10 000 stretch-and-release cycles under 400% tensile strain. As a representative of concept for system integration, the editable supercapacitors are integrated with a strain sensor, and the system exhibits a stable sensing performance even under arm swing. Being highly stretchable, easily programmable, as well as connectable in series and parallel, an editable supercapacitor with customizable stretchability is promising to produce stylish energy storage devices to power various portable, stretchable, and wearable devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Sequential growth for lifetime extension in biomimetic polypyrrole actuator systems

    NASA Astrophysics Data System (ADS)

    Sarrazin, J. C.; Mascaro, Stephen A.

    2015-04-01

    Electroactive polymers (EAPs) present prospective use in actuation and manipulation devices due to their low electrical activation requirements, biocompatibility, and mechanical performance. One of the main drawbacks with EAP actuators is a decrease in performance over extended periods of operation caused by over-oxidation of the polymer and general polymer degradation. Synthesis of the EAP material, polypyrrole with an embedded metal helix allows for sequential growth of the polymer during operation. The helical metal electrode acts as a scaffolding to support the polymer, and direct the 3-dimensional change in volume of the polymer along the axis of the helix during oxidative and reductive cycling. The metal helix also provides a working metal electrode through the entire length of the polymer actuator to distribute charge for actuation, as well as for sequential growth steps during the lifetime of operation of the polymer. This work demonstrates the method of sequential growth can be utilized after extended periods of use to partially restore electrical and mechanical performance of polypyrrole actuators. Since the actuation must be temporarily stopped to allow for a sequential growth cycle to be performed and reverse some of the polymer degradation, these actuator systems more closely mimic natural muscle in their analogous maintenance and repair.

  16. System and process for aluminization of metal-containing substrates

    DOEpatents

    Chou, Yeong-Shyung; Stevenson, Jeffry W.

    2017-12-12

    A system and method are detailed for aluminizing surfaces of metallic substrates, parts, and components with a protective alumina layer in-situ. Aluminum (Al) foil sandwiched between the metallic components and a refractory material when heated in an oxidizing gas under a compression load at a selected temperature forms the protective alumina coating on the surface of the metallic components. The alumina coating minimizes evaporation of volatile metals from the metallic substrates, parts, and components in assembled devices that can degrade performance during operation at high temperature.

  17. System and process for aluminization of metal-containing substrates

    DOEpatents

    Chou, Yeong-Shyung; Stevenson, Jeffry W

    2015-11-03

    A system and method are detailed for aluminizing surfaces of metallic substrates, parts, and components with a protective alumina layer in-situ. Aluminum (Al) foil sandwiched between the metallic components and a refractory material when heated in an oxidizing gas under a compression load at a selected temperature forms the protective alumina coating on the surface of the metallic components. The alumina coating minimizes evaporation of volatile metals from the metallic substrates, parts, and components in assembled devices during operation at high temperature that can degrade performance.

  18. Met-myoglobin formation, accumulation, degradation, and myoglobin oxygenation monitoring based on multiwavelength attenuance measurement in porcine meat

    NASA Astrophysics Data System (ADS)

    Nguyen, Thien; Phan, Kien Nguyen; Lee, Jee-Bum; Kim, Jae Gwan

    2016-05-01

    We propose a simple, rapid, and nondestructive method to investigate formation, accumulation, and degradation of met-myoglobin (met-Mb) and myoglobin oxygenation from the interior of porcine meat. For the experiment, color photos and attenuance spectra of porcine meat (well-bled muscle, fat, and mixed) were collected daily to perform colorimetric analysis and to obtain the differences of attenuance between 578 and 567 nm (A578-A567) and between 615 and 630 nm (A630-A615), respectively. Oxy-, deoxy-, and met-myoglobin concentration changes over storage time were also calculated using Beer-Lamberts' law with reflectance intensities at 557, 582, and 630 nm. The change of A578-A567 was well matched with the change of myoglobin oxygenation, and the change of A630-A615 corresponded well with the formation and degradation of met-Mb. In addition, attenuation differences, A578-A567 and A630-A615, were able to show the formation of met-Mb earlier than colorimetric analysis. Therefore, the attenuance differences between wavelengths can be indicators for estimating myoglobin oxygenation and met-Mb formation, accumulation, and degradation, which enable us to design a simple device to monitor myoglobin activities in porcine meat.

  19. Comparison of efficiency degradation in polycrystalline-Si and CdTe thin-film PV modules via accelerated lifecycle testing

    NASA Astrophysics Data System (ADS)

    Lai, T.; Potter, B. G.; Simmons-Potter, K.

    2017-08-01

    Thin-film solar cells normally have the shortest energy payback time due to their simpler mass-production process compared to polycrystalline-Si photovoltaic (PV) modules, despite the fact that crystalline-Si-based technology typically has a longer total lifetime and a higher initial power conversion efficiency. For both types of modules, significant aging occurs during the first two years of usage with slower long-term aging over the module lifetime. The PV lifetime and the return-on-investment for local PV system installations rely on long-term device performance. Understanding the efficiency degradation behavior under a given set of environmental conditions is, therefore, a primary goal for experimental research and economic analysis. In the present work, in-situ measurements of key electrical characteristics (J, V, Pmax, etc.) in polycrystalline-Si and CdTe thin-film PV modules have been analyzed. The modules were subjected to identical environmental conditions, representative of southern Arizona, in a full-scale, industrial-standard, environmental degradation chamber, equipped with a single-sun irradiance source, temperature, and humidity controls, and operating an accelerated lifecycle test (ALT) sequence. Initial results highlight differences in module performance with environmental conditions, including temperature de-rating effects, for the two technologies. Notably, the thin-film CdTe PV module was shown to be approximately 15% less sensitive to ambient temperature variation. After exposure to a seven-month equivalent compressed night-day weather cycling regimen the efficiency degradation rates of both PV technology types were obtained and will be discussed.

  20. A novel device for hazardous substances degradation based on double-cavitating-jets impingement: Parameters optimization and efficiency assessment.

    PubMed

    Tao, Yuequn; Cai, Jun; Huai, Xiulan; Liu, Bin

    2017-08-05

    Hydrodynamic cavitation is an effective advanced oxidation process. But sometimes it cannot obtain satisfactory treatment efficiency by using hydrodynamic cavitation individually, so it is necessary to introduce intensive methods. Based on double-cavitating-jets impingement, this paper presents a novel device that has advantages of strong heat and mass transfer and efficient chemical reactions. Based on the device, a series of experimental investigations on degradation of a basic dye, i.e. Rhodamine B were carried out. Significant Rhodamine B removal from aqueous solution was observed during 2h treatment and the degradation reaction conformed to pseudo-first-order kinetics. The synergetic effects between double-cavitating-jets impingement and Fenton chemistry on simultaneous degradation of Rhodamine B were confirmed. Both single-variable experiments and orthogonal experiments were carried out to study the effects of initial hydrogen peroxide, ferrous sulfate and Rhodamine B concentrations and the optimum conditions were found out. Effects of jet inlet pressure in the range of 6-12MPa and solution pH value in the range of 2-8 were also investigated. The cavitation yield was evaluated to assess the energy efficiency. The present treatment scheme showed advantages in terms of reducing the demand of hydrogen peroxide concentration and enhancing the treatment efficiency in large scale operation. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Charge collection efficiency degradation induced by MeV ions in semiconductor devices: Model and experiment

    DOE PAGES

    Vittone, Ettore; Pastuovic, Zeljko; Breese, Mark B. H.; ...

    2016-02-08

    This study investigates both theoretically and experimentally the charge collection efficiency (CCE) degradation in silicon diodes induced by energetic ions. Ion Beam Induced Charge (IBIC) measurements carried out on n- and p-type silicon diodes which were previously irradiated with MeV He ions show evidence that the CCE degradation does not only depend on the mass, energy and fluence of the damaging ion, but also depends on the ion probe species and on the polarization state of the device. A general one-dimensional model is derived, which accounts for the ion-induced defect distribution, the ionization profile of the probing ion and themore » charge induction mechanism. Using the ionizing and non-ionizing energy loss profiles resulting from simulations based on the binary collision approximation and on the electrostatic/transport parameters of the diode under study as input, the model is able to accurately reproduce the experimental CCE degradation curves without introducing any phenomenological additional term or formula. Although limited to low level of damage, the model is quite general, including the displacement damage approach as a special case and can be applied to any semiconductor device. It provides a method to measure the capture coefficients of the radiation induced recombination centres. They can be considered indexes, which can contribute to assessing the relative radiation hardness of semiconductor materials.« less

  2. A 21st Century Approach to Electronic Device Reliability

    DTIC Science & Technology

    2013-10-25

    roughness due to growth of Au-rich grains that ultimately led to cracks in passivation . The two primary degradation mechanisms were Au inter-diffusion...pumping occurred when the devices were illuminated with blue, violet, and UV light. In these cases, the drain current response to green and red...of the AFRL devices as shown in Figure 45. Both devices responded nearly identically in that the only change occurred during UV illumination. This

  3. Double-layer interlaced nested multi-ring array metallic mesh for high-performance transparent electromagnetic interference shielding.

    PubMed

    Wang, Heyan; Lu, Zhengang; Liu, Yeshu; Tan, Jiubin; Ma, Limin; Lin, Shen

    2017-04-15

    We report a nested multi-ring array metallic mesh (NMA-MM) that shows a highly uniform diffraction pattern theoretically and experimentally. Then a high-performance transparent electromagnetic interference (EMI) shielding structure is constituted by the double-layer interlaced NMA-MMs separated by transparent quartz-glass substrate. Experimental results show that double-layer interlaced NMA-MM structure exhibits a shielding effectiveness (SE) of over 27 dB in the Ku-band, with a maximal SE of 37 dB at 12 GHz, normalized optical transmittance of 90%, and minimal image quality degradation due to the interlaced arrangement. It thus shows great potential for practical applications in transparent EMI shielding devices.

  4. Low noise buffer amplifiers and buffered phase comparators for precise time and frequency measurement and distribution

    NASA Technical Reports Server (NTRS)

    Eichinger, R. A.; Dachel, P.; Miller, W. H.; Ingold, J. S.

    1982-01-01

    Extremely low noise, high performance, wideband buffer amplifiers and buffered phase comparators were developed. These buffer amplifiers are designed to distribute reference frequencies from 30 KHz to 45 MHz from a hydrogen maser without degrading the hydrogen maser's performance. The buffered phase comparators are designed to intercompare the phase of state of the art hydrogen masers without adding any significant measurement system noise. These devices have a 27 femtosecond phase stability floor and are stable to better than one picosecond for long periods of time. Their temperature coefficient is less than one picosecond per degree C, and they have shown virtually no voltage coefficients.

  5. Computational insights into charge transfer across functionalized semiconductor surfaces

    NASA Astrophysics Data System (ADS)

    Kearney, Kara; Rockett, Angus; Ertekin, Elif

    2017-12-01

    Photoelectrochemical water-splitting is a promising carbon-free fuel production method for producing H2 and O2 gas from liquid water. These cells are typically composed of at least one semiconductor photoelectrode which is prone to degradation and/or oxidation. Various surface modifications are known for stabilizing semiconductor photoelectrodes, yet stabilization techniques are often accompanied by a decrease in photoelectrode performance. However, the impact of surface modification on charge transport and its consequence on performance is still lacking, creating a roadblock for further improvements. In this review, we discuss how density functional theory and finite-element device simulations are reliable tools for providing insight into charge transport across modified photoelectrodes.

  6. Delivery Device and Method for Forming the Same

    NASA Technical Reports Server (NTRS)

    Liu, Xiaohua (Inventor); Ma, Peter X. (Inventor); McCauley, Laurie (Inventor)

    2014-01-01

    A delivery device includes a hollow container, and a plurality of biodegradable and/or erodible polymeric layers established in the container. A layer including a predetermined substance is established between each of the plurality of polymeric layers, whereby degradation of the polymeric layer and release of the predetermined substance occur intermittently. Methods for forming the device are also disclosed herein.

  7. Organic thin film devices with stabilized threshold voltage and mobility, and method for preparing the devices

    DOEpatents

    Nastasi, Michael Anthony; Wang, Yongqiang; Fraboni, Beatrice; Cosseddu, Piero; Bonfiglio, Annalisa

    2013-06-11

    Organic thin film devices that included an organic thin film subjected to a selected dose of a selected energy of ions exhibited a stabilized mobility (.mu.) and threshold voltage (VT), a decrease in contact resistance R.sub.C, and an extended operational lifetime that did not degrade after 2000 hours of operation in the air.

  8. Effect of silicide/silicon hetero-junction structure on thermal conductivity and Seebeck coefficient.

    PubMed

    Choi, Wonchul; Park, Young-Sam; Hyun, Younghoon; Zyung, Taehyoung; Kim, Jaehyeon; Kim, Soojung; Jeon, Hyojin; Shin, Mincheol; Jang, Moongyu

    2013-12-01

    We fabricated a thermoelectric device with a silicide/silicon laminated hetero-structure by using RF sputtering and rapid thermal annealing. The device was observed to have Ohmic characteristics by I-V measurement. The temperature differences and Seebeck coefficients of the proposed silicide/silicon laminated and bulk structure were measured. The laminated thermoelectric device shows suppression of heat flow from the hot to cold side. This is supported by the theory that the atomic mass difference between silicide and silicon creates a scattering center for phonons. The major impact of our work is that phonon transmission is suppressed at the interface between silicide and silicon without degrading electrical conductivity. The estimated thermal conductivity of the 3-layer laminated device is 126.2 +/- 3.7 W/m. K. Thus, by using the 3-layer laminated structure, thermal conductivity is reduced by around 16% compared to bulk silicon. However, the Seebeck coefficient of the thermoelectric device is degraded compared to that of bulk silicon. It is understood that electrical conductivity is improved by using silicide as a scattering center.

  9. In-Vivo Characterization of Glassy Carbon Micro-Electrode Arrays for Neural Applications and Histological Analysis of the Brain Tissue

    NASA Astrophysics Data System (ADS)

    Vomero, Maria

    The aim of this work is to fabricate and characterize glassy carbon Microelectrode Arrays (MEAs) for sensing and stimulating neural activity, and conduct histological analysis of the brain tissue after the implant to determine long-term performance. Neural applications often require robust electrical and electrochemical response over a long period of time, and for those applications we propose to replace the commonly used noble metals like platinum, gold and iridium with glassy carbon. We submit that such material has the potential to improve the performances of traditional neural prostheses, thanks to better charge transfer capabilities and higher electrochemical stability. Great interest and attention is given in this work, in particular, to the investigation of tissue response after several weeks of implants in rodents' brain motor cortex and the associated materials degradation. As part of this work, a new set of devices for Electrocorticography (ECoG) has been designed and fabricated to improve durability and quality of the previous generation of devices, designed and manufactured by the same research group in 2014. In-vivo long-term impedance measurements and brain activity recordings were performed to test the functionality of the neural devices. In-vitro electrical characterization of the carbon electrodes, as well as the study of the adhesion mechanisms between glassy carbon and different substrates is also part of the research described in this book.

  10. Hand-held analyser based on microchip electrophoresis with contactless conductivity detection for measurement of chemical warfare agent degradation products

    NASA Astrophysics Data System (ADS)

    Duran, Karolina-Petkovic; Zhu, Yonggang; Chen, Chuanpin; Swallow, Anthony; Stewart, Robert; Hoobin, Pam; Leech, Patrick; Ovenden, Simon

    2008-12-01

    This paper reports on the development of a hand-held device for on-site detection of organophosphonate nerve agent degradation products. This field-deployable analyzer relies on efficient microchip electrophoresis separation of alkyl methylphosphonic acids and their sensitive contactless conductivity detection. Miniaturized, low-powered design is coupled with promising analytical performance for separating the breakdown products of chemical warfare agents such as Soman, Sarin and VX . The detector has a detection limit of about 10 μg/mL and has a good linear response in the range 10-300 μg/mL concentration range. Applicability to environmental samples is demonstrated .The new hand-held analyzer offers great promise for converting conventional ion chromatography or capillary electrophoresis sophisticated systems into a portable forensic laboratory for faster, simpler and more reliable on-site screening.

  11. Accelerated reliability testing of highly aligned single-walled carbon nanotube networks subjected to DC electrical stressing.

    PubMed

    Strus, Mark C; Chiaramonti, Ann N; Kim, Young Lae; Jung, Yung Joon; Keller, Robert R

    2011-07-01

    We investigate the electrical reliability of nanoscale lines of highly aligned, networked, metallic/semiconducting single-walled carbon nanotubes (SWCNTs) fabricated through a template-based fluidic assembly process. We find that these SWCNT networks can withstand DC current densities larger than 10 MA cm(-2) for several hours and, in some cases, several days. We develop test methods that show that the degradation rate, failure predictability and total device lifetime can be linked to the initial resistance. Scanning electron and transmission electron microscopy suggest that fabrication variability plays a critical role in the rate of degradation, and we offer an empirical method of quickly determining the long-term performance of a network. We find that well-fabricated lines subject to constant electrical stress show a linear accumulation of damage reminiscent of electromigration in metallic interconnects, and we explore the underlying physical mechanisms that could cause such behavior.

  12. Depositing aluminum as sacrificial metal to reduce metal-graphene contact resistance

    NASA Astrophysics Data System (ADS)

    Da-cheng, Mao; Zhi, Jin; Shao-qing, Wang; Da-yong, Zhang; Jing-yuan, Shi; Song-ang, Peng; Xuan-yun, Wang

    2016-07-01

    Reducing the contact resistance without degrading the mobility property is crucial to achieve high-performance graphene field effect transistors. Also, the idea of modifying the graphene surface by etching away the deposited metal provides a new angle to achieve this goal. We exploit this idea by providing a new process method which reduces the contact resistance from 597 Ω·μm to sub 200 Ω·μm while no degradation of mobility is observed in the devices. This simple process method avoids the drawbacks of uncontrollability, ineffectiveness, and trade-off with mobility which often exist in the previously proposed methods. Project by the National Science and Technology Major Project, China (Grant No. 2011ZX02707.3), the National Natural Science Foundation of China (Grant No. 61136005), the Chinese Academy of Sciences (Grant No. KGZD-EW-303), and the Project of Beijing Municipal Science and Technology Commission, China (Grant No. Z151100003515003).

  13. Silkworm silk-based materials and devices generated using bio-nanotechnology.

    PubMed

    Huang, Wenwen; Ling, Shengjie; Li, Chunmei; Omenetto, Fiorenzo G; Kaplan, David L

    2018-06-25

    Silks are natural fibrous protein polymers that are spun by silkworms and spiders. Among silk variants, there has been increasing interest devoted to the silkworm silk of B. mori, due to its availability in large quantities along with its unique material properties. Silk fibroin can be extracted from the cocoons of the B. mori silkworm and combined synergistically with other biomaterials to form biopolymer composites. With the development of recombinant DNA technology, silks can also be rationally designed and synthesized via genetic control. Silk proteins can be processed in aqueous environments into various material formats including films, sponges, electrospun mats and hydrogels. The versatility and sustainability of silk-based materials provides an impressive toolbox for tailoring materials to meet specific applications via eco-friendly approaches. Historically, silkworm silk has been used by the textile industry for thousands of years due to its excellent physical properties, such as lightweight, high mechanical strength, flexibility, and luster. Recently, due to these properties, along with its biocompatibility, biodegradability and non-immunogenicity, silkworm silk has become a candidate for biomedical utility. Further, the FDA has approved silk medical devices for sutures and as a support structure during reconstructive surgery. With increasing needs for implantable and degradable devices, silkworm silk has attracted interest for electronics, photonics for implantable yet degradable medical devices, along with a broader range of utility in different device applications. This Tutorial review summarizes and highlights recent advances in the use of silk-based materials in bio-nanotechnology, with a focus on the fabrication and functionalization methods for in vitro and in vivo applications in the field of tissue engineering, degradable devices and controlled release systems.

  14. Study on invadopodia formation for lung carcinoma invasion with a microfluidic 3D culture device.

    PubMed

    Wang, Shanshan; Li, Encheng; Gao, Yanghui; Wang, Yan; Guo, Zhe; He, Jiarui; Zhang, Jianing; Gao, Zhancheng; Wang, Qi

    2013-01-01

    Invadopodia or invasive feet, which are actin-rich membrane protrusions with matrix degradation activity formed by invasive cancer cells, are a key determinant in the malignant invasive progression of tumors and represent an important target for cancer therapies. In this work, we presented a microfluidic 3D culture device with continuous supplement of fresh media via a syringe pump. The device mimicked tumor microenvironment in vivo and could be used to assay invadopodia formation and to study the mechanism of human lung cancer invasion. With this device, we investigated the effects of epidermal growth factor (EGF) and matrix metalloproteinase (MMP) inhibitor, GM6001 on invadopodia formation by human non-small cell lung cancer cell line A549 in 3D matrix model. This device was composed of three units that were capable of achieving the assays on one control group and two experimental groups' cells, which were simultaneously pretreated with EGF or GM6001 in parallel. Immunofluorescence analysis of invadopodia formation and extracellular matrix degradation was conducted using confocal imaging system. We observed that EGF promoted invadopodia formation by A549 cells in 3D matrix and that GM6001 inhibited the process. These results demonstrated that epidermal growth factor receptor (EGFR) signaling played a significant role in invadopodia formation and related ECM degradation activity. Meanwhile, it was suggested that MMP inhibitor (GM6001) might be a powerful therapeutic agent targeting invadopodia formation in tumor invasion. This work clearly demonstrated that the microfluidic-based 3D culture device provided an applicable platform for elucidating the mechanism of cancer invasion and could be used in testing other anti-invasion agents.

  15. Diagnostics and Degradation Investigations of Li-Ion Battery Electrodes using Single Nanowire Electrochemical Cells

    NASA Astrophysics Data System (ADS)

    Palapati, Naveen Kumar Reddy

    Portable energy storage devices, which drive advanced technological devices, are improving the productivity and quality of our everyday lives. In order to meet the growing needs for energy storage in transportation applications, the current lithium-ion (Li-ion) battery technology requires new electrode materials with performance improvements in multiple aspects: (1) energy and power densities, (2) safety, and (3) performance lifetime. While a number of interesting nanomaterials have been synthesized in recent years with promising performance, accurate capabilities to probe the intrinsic performance of these high-performance materials within a battery environment are lacking. Most studies on electrode nanomaterials have so far used traditional, bulk-scale techniques such as cyclic voltammetry, electrochemical impedance spectroscopy, and Raman spectroscopy. These approaches give an ensemble-average estimation of the electrochemical properties of a battery electrode and does not provide a true indication of the performance that is intrinsic to its material system. Thus, new techniques are essential to understand the changes happening at a single particle level during the operation of a battery. The results from this thesis solve this need and study the electrical, mechanical and size changes that take place in a battery electrode at a single particle level. Single nanowire lithium cells are built by depositing nanowires in carefully designed device regions of a silicon chip using Dielectrophoresis (DEP). This work has demonstrated the assembly of several NW cathode materials like LiFePO 4, pristine and acid-leached alpha-MnO2, todorokite - MnO2, acid and nonacid-leached Na0.44MnO2. Within these materials, alpha-MnO2 was chosen as the model material system for electrochemical experiments. Electrochemical lithiation of pristine alpha-MnO 2 was performed inside a glove box. The volume, elasticity and conductivity changes were measured at each state-of-charge (SOC) to understand the performance of the material system. The NW size changes due to lithiation were measured using an Atomic Force Microscope (AFM) in the tapping mode. Electronic conductivity changes as a function of lithiation was also studied in the model alpha-MnO 2 NWs and was found to decrease substantially with lithium loading. In other measurements involving a comparison between the alpha and todorokite phases of this material system, it was observed that the rate capability of these materials is limited not by the electronic but, by the ionic conductivity. Mechanical degradation of a battery cathode represents an important failure mode, which results in an irreversible loss of capacity with cycling. To analyze and understand these degradation mechanisms, this thesis has tested the evolution of nanomechanical properties of a battery cathode. Specifically, contact-mode AFM measurements have focused on the SOC-dependent changes in the Young's modulus and fracture strength of an alpha-MnO2 NW electrode, which are critical parameters that determine its mechanical stability. These changes have been studied at the end of the first discharge step, 1 full electrochemical cycle, and 20 cycles. The observations show an increase in Young's modulus at low concentrations of lithium loading and this is attributed to the formation of new Li-O bonds within the tunnel-structured cathode. As the lithium loading increases further, the Young's modulus was observed to reduce and this is hypothesized to occur due to the distortions of the crystal at high lithium concentrations. The experimental-to-theoretical fracture strength ratio, which points to the defect density in the crystal at a given stoichiometry, was observed to reduce with electrochemical lithium insertion / cycling. This capability has demonstrated lithiation-dependent mechanical property measurements for the first time and represents an important contribution since degradation models, which are currently in use for materials at any size scale, always assume constant values regardless of the change in stoichiometry.

  16. Degradation process by effect of water molecules during negative bias temperature stress in amorphous-InGaZnO thin-film transistor

    NASA Astrophysics Data System (ADS)

    Lee, Yeol-Hyeong; Cho, Yong-Jung; Kim, Woo-Sic; Park, Jeong Ki; Kim, Geon Tae; Kim, Ohyun

    2017-10-01

    We explained how H2O degrades amorphous-InGaZnO thin-film transistors. H2O caused serious degradation only during negative bias temperature stress (NBTS). Degradation was caused by molecules that were absorbed or diffused from the outside. We suggest that degradation under NBTS is caused by the migration of hydrogen ions among oxygen vacancies. Under illumination, the soaking time t S did not affect the threshold voltage shift ΔV th. We consider that this independence occurred because illumination caused ionization from the oxygen vacancy VO state to VO 2+, which impeded hydrogen migration induced by electric field and thereby protected the device from degradation after exposure to water.

  17. Silica nanoparticle based techniques for extraction, detection, and degradation of pesticides.

    PubMed

    Bapat, Gandhali; Labade, Chaitali; Chaudhari, Amol; Zinjarde, Smita

    2016-11-01

    Silica nanoparticles (SiNPs) find applications in the fields of drug delivery, catalysis, immobilization and sensing. Their synthesis can be mediated in a facile manner and they display broad range compatibility and stability. Their existence in the form of spheres, wires and sheets renders them suitable for varied purposes. This review summarizes the use of silica nanostructures in developing techniques for extraction, detection and degradation of pesticides. Silica nanostructures on account of their sorbent properties, porous nature and increased surface area allow effective extraction of pesticides. They can be modified (with ionic liquids, silanes or amines), coated with molecularly imprinted polymers or magnetized to improve the extraction of pesticides. Moreover, they can be altered to increase their sensitivity and stability. In addition to the analysis of pesticides by sophisticated techniques such as High Performance Liquid Chromatography or Gas chromatography, silica nanoparticles related simple detection methods are also proving to be effective. Electrochemical and optical detection based on enzymes (acetylcholinesterase and organophosphate hydrolase) or antibodies have been developed. Pesticide sensors dependent on fluorescence, chemiluminescence or Surface Enhanced Raman Spectroscopic responses are also SiNP based. Moreover, degradative enzymes (organophosphate hydrolases, carboxyesterases and laccases) and bacterial cells that produce recombinant enzymes have been immobilized on SiNPs for mediating pesticide degradation. After immobilization, these systems show increased stability and improved degradation. SiNP are significant in developing systems for effective extraction, detection and degradation of pesticides. SiNPs on account of their chemically inert nature and amenability to surface modifications makes them popular tools for fabricating devices for 'on-site' applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Enhancing Critical Infrastructure and Key Resources (CIKR) Level-0 Physical Process Security Using Field Device Distinct Native Attribute Features

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Juan; Liefer, Nathan C.; Busho, Colin R.

    Here, the need for improved Critical Infrastructure and Key Resource (CIKR) security is unquestioned and there has been minimal emphasis on Level-0 (PHY Process) improvements. Wired Signal Distinct Native Attribute (WS-DNA) Fingerprinting is investigated here as a non-intrusive PHY-based security augmentation to support an envisioned layered security strategy. Results are based on experimental response collections from Highway Addressable Remote Transducer (HART) Differential Pressure Transmitter (DPT) devices from three manufacturers (Yokogawa, Honeywell, Endress+Hauer) installed in an automated process control system. Device discrimination is assessed using Time Domain (TD) and Slope-Based FSK (SB-FSK) fingerprints input to Multiple Discriminant Analysis, Maximum Likelihood (MDA/ML)more » and Random Forest (RndF) classifiers. For 12 different classes (two devices per manufacturer at two distinct set points), both classifiers performed reliably and achieved an arbitrary performance benchmark of average cross-class percent correct of %C > 90%. The least challenging cross-manufacturer results included near-perfect %C ≈ 100%, while the more challenging like-model (serial number) discrimination results included 90%< %C < 100%, with TD Fingerprinting marginally outperforming SB-FSK Fingerprinting; SB-FSK benefits from having less stringent response alignment and registration requirements. The RndF classifier was most beneficial and enabled reliable selection of dimensionally reduced fingerprint subsets that minimize data storage and computational requirements. The RndF selected feature sets contained 15% of the full-dimensional feature sets and only suffered a worst case %CΔ = 3% to 4% performance degradation.« less

  19. The influence of isomer purity on trap states and performance of organic thin-film transistors.

    PubMed

    Diemer, Peter J; Hayes, Jacori; Welchman, Evan; Hallani, Rawad; Pookpanratana, Sujitra J; Hacker, Christina A; Richter, Curt A; Anthony, John E; Thonhauser, Timo; Jurchescu, Oana D

    2017-01-01

    Organic field-effect transistor (OFET) performance is dictated by its composition and geometry, as well as the quality of the organic semiconductor (OSC) film, which strongly depends on purity and microstructure. When present, impurities and defects give rise to trap states in the bandgap of the OSC, lowering device performance. Here, 2,8-difluoro-5,11-bis(triethylsilylethynyl)-anthradithiophene is used as a model system to study the mechanism responsible for performance degradation in OFETs due to isomer coexistence. The density of trapping states is evaluated through temperature dependent current-voltage measurements, and it is discovered that OFETs containing a mixture of syn - and anti -isomers exhibit a discrete trapping state detected as a peak located at ~ 0.4 eV above the valence-band edge, which is absent in the samples fabricated on single-isomer films. Ultraviolet photoelectron spectroscopy measurements and density functional theory calculations do not point to a significant difference in electronic band structure between individual isomers. Instead, it is proposed that the dipole moment of the syn -isomer present in the host crystal of the anti -isomer locally polarizes the neighboring molecules, inducing energetic disorder. The isomers can be separated by applying gentle mechanical vibrations during film crystallization, as confirmed by the suppression of the peak and improvement in device performance.

  20. Study of G-S/D underlap for enhanced analog performance and RF/circuit analysis of UTB InAs-OI-Si MOSFET using NQS small signal model

    NASA Astrophysics Data System (ADS)

    Maity, Subir Kumar; Pandit, Soumya

    2017-01-01

    InGaAs (and its variant) appears to be a promising channel material for high-performance, low-power scaled CMOS applications due to its excellent carrier transport properties. However, MOS transistors made of this suffer from poor electrostatic integrity. In this work, we consider an underlap ultra thin body (UTB) InAs-on-Insulator n-channel MOS transistor, and study the effect of varying the gate-source/drain (G-S/D) underlap length on the analog performance of the device with the help of technology computer-aided design (TCAD) simulation, calibrated with Schrodinger-Poisson solver and experimental results. The underlap technique improves the gate electrostatic integrity which in turn improves the analog performance. We develop a non-quasi-static (NQS) small signal equivalent circuit model of the device which is used for study of the RF performance. With increase of the underlap length, the unity gain cut-off frequency degrades and the maximum oscillation frequency improves beyond a certain value of the underlap length. We further study the gain-frequency response of a common source amplifier using the NQS model, through SPICE simulation and observe that the voltage gain and the gain bandwidth improves.

  1. Wear and Tear - Mechanical

    NASA Technical Reports Server (NTRS)

    Swanson, Theodore

    2008-01-01

    The focus of this chapter is on the long term wear and tear, or aging, of the mechanical subsystem of a spacecraft. The mechanical subsystem is herein considered to be the primary support structure (as in a skeleton or exoskeleton) upon which all other spacecraft systems rest, and the associated mechanisms. Mechanisms are devices which have some component that moves at least once, in response to some type of passive or active control system. For the structure, aging may proceed as a gradual degradation of mechanical properties and/or function, possibly leading to complete structural failure over an extended period of time. However, over the 50 years of the Space Age such failures appear to be unusual. In contrast, failures for mechanisms are much more frequent and may have a very serious effect on mission performance. Just as on Earth, all moving devices are subject to normal (and possibly accelerated) degradation from mechanical wear due to loss or breakdown of lubricant, misalignment, temperature cycling effects, improper design/selection of materials, fatigue, and a variety of other effects. In space, such environmental factors as severe temperature swings (possibly 100's of degrees C while going in and out of direct solar exposure), hard vacuum, micrometeoroids, wear from operation in a dusty or contaminated environment, and materials degradation from radiation can be much worse. In addition, there are some ground handling issues such as humidity, long term storage, and ground transport which may be of concern. This chapter addresses the elements of the mechanical subsystem subject to wear, and identifies possible causes. The potential impact of such degradation is addressed, albeit with the recognition that the impact of such wear often depends on when it occurs and on what specific components. Most structural elements of the mechanical system typically are conservatively designed (often to a safety factor of greater than approximately 1.25 on yield for unmanned spacecraft) but do not have backup structure due to the added mass this would impose, and also due to the fact that structural elements can be accurately modeled mathematically and in test. Critical mechanisms or devices may have backups, or alternate work-arounds, since characterization of these systems in a 1g environment is less accurate than structure, and repair in-space is often impossible.

  2. Testing methodologies and systems for semiconductor optical amplifiers

    NASA Astrophysics Data System (ADS)

    Wieckowski, Michael

    Semiconductor optical amplifiers (SOA's) are gaining increased prominence in both optical communication systems and high-speed optical processing systems, due primarily to their unique nonlinear characteristics. This in turn, has raised questions regarding their lifetime performance reliability and has generated a demand for effective testing techniques. This is especially critical for industries utilizing SOA's as components for system-in-package products. It is important to note that very little research to date has been conducted in this area, even though production volume and market demand has continued to increase. In this thesis, the reliability of dilute-mode InP semiconductor optical amplifiers is studied experimentally and theoretically. The aging characteristics of the production level devices are demonstrated and the necessary techniques to accurately characterize them are presented. In addition, this work proposes a new methodology for characterizing the optical performance of these devices using measurements in the electrical domain. It is shown that optical performance degradation, specifically with respect to gain, can be directly qualified through measurements of electrical subthreshold differential resistance. This metric exhibits a linear proportionality to the defect concentration in the active region, and as such, can be used for prescreening devices before employing traditional optical testing methods. A complete theoretical analysis is developed in this work to explain this relationship based upon the device's current-voltage curve and its associated leakage and recombination currents. These results are then extended to realize new techniques for testing semiconductor optical amplifiers and other similarly structured devices. These techniques can be employed after fabrication and during packaged operation through the use of a proposed stand-alone testing system, or using a proposed integrated CMOS self-testing circuit. Both methods are capable of ascertaining SOA performance based solely on the subthreshold differential resistance signature, and are a first step toward the inevitable integration of self-testing circuits into complex optoelectronic systems.

  3. Nanoscale chemical state analysis of resistance random access memory device reacting with Ti

    NASA Astrophysics Data System (ADS)

    Shima, Hisashi; Nakano, Takashi; Akinaga, Hiro

    2010-05-01

    The thermal stability of the resistance random access memory material in the reducing atmosphere at the elevated temperature was improved by the addition of Ti. The unipolar resistance switching before and after the postdeposition annealing (PDA) process at 400 °C was confirmed in Pt/CoO/Ti(5 nm)/Pt device, while the severe degradation of the initial resistance occurs in the Pt/CoO/Pt and Pt/CoO/Ti(50 nm)/Pt devices. By investigating the chemical bonding states of Co, O, and Ti using electron energy loss spectroscopy combined with transmission electron microscopy, it was revealed that excess Ti induces the formation of metallic Co, while the thermal stability was improved by trace Ti. Moreover, it was indicated that the filamentary conduction path can be thermally induced after PDA in the oxide layer by analyzing electrical properties of the degraded devices. The adjustment of the reducing elements is quite essential in order to participate in their profits.

  4. Solar Variability and the Near-Earth Environment: Mining Enhanced Low Dose Rate Sensitivity Data From the Microelectronics and Photonics Test Bed Space Experiment

    NASA Technical Reports Server (NTRS)

    Turflinger, T.; Schmeichel, W.; Krieg, J.; Titus, J.; Campbell, A.; Reeves, M.; Marshall (P.); Hardage, Donna (Technical Monitor)

    2004-01-01

    This effort is a detailed analysis of existing microelectronics and photonics test bed satellite data from one experiment, the bipolar test board, looking to improve our understanding of the enhanced low dose rate sensitivity (ELDRS) phenomenon. Over the past several years, extensive total dose irradiations of bipolar devices have demonstrated that many of these devices exhibited ELDRS. In sensitive bipolar transistors, ELDRS produced enhanced degradation of base current, resulting in enhanced gain degradation at dose rates <0.1 rd(Si)/s compared to similar transistors irradiated at dose rates >1 rd(Si)/s. This Technical Publication provides updated information about the test devices, the in-flight experiment, and both flight-and ground-based observations. Flight data are presented for the past 5 yr of the mission. These data are compared to ground-based data taken on devices from the same date code lots. Information about temperature fluctuations, power shutdowns, and other variables encountered during the space flight are documented.

  5. Task 90-17: Decontaminability study on the U. S. Army Resuscitation Device, Individual, Chemical (RDIC). Final report, 1 Oct 90-24 Jan 91

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dill, G.S.; Leonard, R.D.

    1991-04-01

    A study was performed to determine the effect of three commonly used field decontaminants, DS2, super tropical bleach (STB), and the M270 Decontaminating Kit, Individual (DKIE), on the Resuscitation Device, Chemical, Individual (RDIC). The RDIC system was analyzed to determine which components were accessible to chemical agents and could be degraded by them. The chemical agent susceptibility of the silicone rubber components is the weakest point in the RDIC system. The lack of accessibility of key components to the wetted DKIE wipes and the deterioration of key components by DS2 eliminates these two methods as possible decontaminant methods. STB hadmore » no noticeable effects on the RDIC and is recommended as the best field decontamination method.« less

  6. A haptic device for guide wire in interventional radiology procedures.

    PubMed

    Moix, Thomas; Ilic, Dejan; Bleuler, Hannes; Zoethout, Jurjen

    2006-01-01

    Interventional Radiology (IR) is a minimally invasive procedure where thin tubular instruments, guide wires and catheters, are steered through the patient's vascular system under X-ray imaging. In order to perform these procedures, a radiologist has to be trained to master hand-eye coordination, instrument manipulation and procedure protocols. The existing simulation systems all have major drawbacks: the use of modified instruments, unrealistic insertion lengths, high inertia of the haptic device that creates a noticeably degraded dynamic behavior or excessive friction that is not properly compensated for. In this paper we propose a quality training environment dedicated to IR. The system is composed of a virtual reality (VR) simulation of the patient's anatomy linked to a robotic interface providing haptic force feedback. This paper focuses on the requirements, design and prototyping of a specific haptic interface for guide wires.

  7. Preclinical Performance Evaluation of Percutaneous Glucose Biosensors: Experimental Considerations and Recommendations.

    PubMed

    Soto, Robert J; Schoenfisch, Mark H

    2015-06-17

    The utility of continuous glucose monitoring devices remains limited by an obstinate foreign body response (FBR) that degrades the analytical performance of the in vivo sensor. A number of novel materials that resist or delay the FBR have been proposed as outer, tissue-contacting glucose sensor membranes as a strategy to improve sensor accuracy. Traditionally, researchers have examined the ability of a material to minimize the host response by assessing adsorbed cell morphology and tissue histology. However, these techniques do not adequately predict in vivo glucose sensor function, necessitating sensor performance evaluation in a relevant animal model prior to human testing. Herein, the effects of critical experimental parameters, including the animal model and data processing methods, on the reliability and usefulness of preclinical sensor performance data are considered. © 2015 Diabetes Technology Society.

  8. Loose and Tight GNSS/INS Integrations: Comparison of Performance Assessed in Real Urban Scenarios.

    PubMed

    Falco, Gianluca; Pini, Marco; Marucco, Gianluca

    2017-01-29

    Global Navigation Satellite Systems (GNSSs) remain the principal mean of positioning in many applications and systems, but in several types of environment, the performance of standalone receivers is degraded. Although many works show the benefits of the integration between GNSS and Inertial Navigation Systems (INSs), tightly-coupled architectures are mainly implemented in professional devices and are based on high-grade Inertial Measurement Units (IMUs). This paper investigates the performance improvements enabled by the tight integration, using low-cost sensors and a mass-market GNSS receiver. Performance is assessed through a series of tests carried out in real urban scenarios and is compared against commercial modules, operating in standalone mode or featuring loosely-coupled integrations. The paper describes the developed tight-integration algorithms with a terse mathematical model and assesses their efficacy from a practical perspective.

  9. Evaluating the in vivo glial response to miniaturized parylene cortical probes coated with an ultra-fast degrading polymer to aid insertion.

    PubMed

    Lo, Meng-Chen; Wang, Shuwu; Singh, Sagar; Damodaran, Vinod B; Ahmed, Ijaz; Coffey, Kevin; Barker, David; Saste, Kshitij; Kals, Karanvir; Kaplan, Hilton M; Kohn, Joachim; Shreiber, David I; Zahn, Jeffrey D

    2018-06-01

    Despite the feasibility of short-term neural recordings using implantable microelectrodes, attaining reliable, chronic recordings remains a challenge. Most neural recording devices suffer from a long-term tissue response, including gliosis, at the device-tissue interface. It was hypothesized that smaller, more flexible intracortical probes would limit gliosis by providing a better mechanical match with surrounding tissue. This paper describes the in vivo evaluation of flexible parylene microprobes designed to improve the interface with the adjacent neural tissue to limit gliosis and thereby allow for improved recording longevity. The probes were coated with an ultrafast degrading tyrosine-derived polycarbonate (E5005(2K)) polymer that provides temporary mechanical support for device implantation, yet degrades within 2 h post-implantation. A parametric study of probes of varying dimensions and polymer coating thicknesses were implanted in rat brains. The glial tissue response and neuronal loss were assessed from 72 h to 24 weeks post-implantation via immunohistochemistry. Experimental results suggest that both probe and polymer coating sizes affect the extent of gliosis. When an appropriate sized coating dimension (100 µm  ×  100 µm) and small probe (30 µm  ×  5 µm) was implanted, a minimal post-implantation glial response was observed. No discernible gliosis was detected when compared to tissue where a sham control consisting of a solid degradable polymer shuttle of the same dimensions was inserted. A larger polymer coating (200 µm  ×  200 µm) device induced a more severe glial response at later time points, suggesting that the initial insertion trauma can affect gliosis even when the polymer shuttle degrades rapidly. A larger degree of gliosis was also observed when comparing a larger sized probe (80 µm  ×  5 µm) to a smaller probe (30 µm  ×  5 µm) using the same polymer coating size (100 µm  ×  100 µm). There was no significant neuronal loss around the implantation sites for most device candidates except the group with largest polymer coating and probe sizes. These results suggest that: (1) the degree of mechanical trauma at device implantation and mechanical mismatches at the probe-tissue interface affect long term gliosis; (2) smaller, more flexible probes may minimize the glial response to provide improved tissue biocompatibility when used for chronic neural signal recording; and (3) some degree of glial scarring did not significantly affect neuronal distribution around the probe.

  10. Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement

    PubMed Central

    Tao, Hu; Hwang, Suk-Won; Marelli, Benedetto; An, Bo; Moreau, Jodie E.; Yang, Miaomiao; Brenckle, Mark A.; Kim, Stanley; Kaplan, David L.; Rogers, John A.; Omenetto, Fiorenzo G.

    2014-01-01

    A paradigm shift for implantable medical devices lies at the confluence between regenerative medicine, where materials remodel and integrate in the biological milieu, and technology, through the use of recently developed material platforms based on biomaterials and bioresorbable technologies such as optics and electronics. The union of materials and technology in this context enables a class of biomedical devices that can be optically or electronically functional and yet harmlessly degrade once their use is complete. We present here a fully degradable, remotely controlled, implantable therapeutic device operating in vivo to counter a Staphylococcus aureus infection that disappears once its function is complete. This class of device provides fully resorbable packaging and electronics that can be turned on remotely, after implantation, to provide the necessary thermal therapy or trigger drug delivery. Such externally controllable, resorbable devices not only obviate the need for secondary surgeries and retrieval, but also have extended utility as therapeutic devices that can be left behind at a surgical or suturing site, following intervention, and can be externally controlled to allow for infection management by either thermal treatment or by remote triggering of drug release when there is retardation of antibiotic diffusion, deep infections are present, or when systemic antibiotic treatment alone is insufficient due to the emergence of antibiotic-resistant strains. After completion of function, the device is safely resorbed into the body, within a programmable period. PMID:25422476

  11. Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement.

    PubMed

    Tao, Hu; Hwang, Suk-Won; Marelli, Benedetto; An, Bo; Moreau, Jodie E; Yang, Miaomiao; Brenckle, Mark A; Kim, Stanley; Kaplan, David L; Rogers, John A; Omenetto, Fiorenzo G

    2014-12-09

    A paradigm shift for implantable medical devices lies at the confluence between regenerative medicine, where materials remodel and integrate in the biological milieu, and technology, through the use of recently developed material platforms based on biomaterials and bioresorbable technologies such as optics and electronics. The union of materials and technology in this context enables a class of biomedical devices that can be optically or electronically functional and yet harmlessly degrade once their use is complete. We present here a fully degradable, remotely controlled, implantable therapeutic device operating in vivo to counter a Staphylococcus aureus infection that disappears once its function is complete. This class of device provides fully resorbable packaging and electronics that can be turned on remotely, after implantation, to provide the necessary thermal therapy or trigger drug delivery. Such externally controllable, resorbable devices not only obviate the need for secondary surgeries and retrieval, but also have extended utility as therapeutic devices that can be left behind at a surgical or suturing site, following intervention, and can be externally controlled to allow for infection management by either thermal treatment or by remote triggering of drug release when there is retardation of antibiotic diffusion, deep infections are present, or when systemic antibiotic treatment alone is insufficient due to the emergence of antibiotic-resistant strains. After completion of function, the device is safely resorbed into the body, within a programmable period.

  12. Impact of Linearity and Write Noise of Analog Resistive Memory Devices in a Neural Algorithm Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs-Gedrim, Robin B.; Agarwal, Sapan; Knisely, Kathrine E.

    Resistive memory (ReRAM) shows promise for use as an analog synapse element in energy-efficient neural network algorithm accelerators. A particularly important application is the training of neural networks, as this is the most computationally-intensive procedure in using a neural algorithm. However, training a network with analog ReRAM synapses can significantly reduce the accuracy at the algorithm level. In order to assess this degradation, analog properties of ReRAM devices were measured and hand-written digit recognition accuracy was modeled for the training using backpropagation. Bipolar filamentary devices utilizing three material systems were measured and compared: one oxygen vacancy system, Ta-TaO x, andmore » two conducting metallization systems, Cu-SiO 2, and Ag/chalcogenide. Analog properties and conductance ranges of the devices are optimized by measuring the response to varying voltage pulse characteristics. Key analog device properties which degrade the accuracy are update linearity and write noise. Write noise may improve as a function of device manufacturing maturity, but write nonlinearity appears relatively consistent among the different device material systems and is found to be the most significant factor affecting accuracy. As a result, this suggests that new materials and/or fundamentally different resistive switching mechanisms may be required to improve device linearity and achieve higher algorithm training accuracy.« less

  13. Impact of Linearity and Write Noise of Analog Resistive Memory Devices in a Neural Algorithm Accelerator

    DOE PAGES

    Jacobs-Gedrim, Robin B.; Agarwal, Sapan; Knisely, Kathrine E.; ...

    2017-12-01

    Resistive memory (ReRAM) shows promise for use as an analog synapse element in energy-efficient neural network algorithm accelerators. A particularly important application is the training of neural networks, as this is the most computationally-intensive procedure in using a neural algorithm. However, training a network with analog ReRAM synapses can significantly reduce the accuracy at the algorithm level. In order to assess this degradation, analog properties of ReRAM devices were measured and hand-written digit recognition accuracy was modeled for the training using backpropagation. Bipolar filamentary devices utilizing three material systems were measured and compared: one oxygen vacancy system, Ta-TaO x, andmore » two conducting metallization systems, Cu-SiO 2, and Ag/chalcogenide. Analog properties and conductance ranges of the devices are optimized by measuring the response to varying voltage pulse characteristics. Key analog device properties which degrade the accuracy are update linearity and write noise. Write noise may improve as a function of device manufacturing maturity, but write nonlinearity appears relatively consistent among the different device material systems and is found to be the most significant factor affecting accuracy. As a result, this suggests that new materials and/or fundamentally different resistive switching mechanisms may be required to improve device linearity and achieve higher algorithm training accuracy.« less

  14. To Cross-Link or Not to Cross-Link? Cross-Linking Associated Foreign Body Response of Collagen-Based Devices

    PubMed Central

    Delgado, Luis M.; Bayon, Yves; Pandit, Abhay

    2015-01-01

    Collagen-based devices, in various physical conformations, are extensively used for tissue engineering and regenerative medicine applications. Given that the natural cross-linking pathway of collagen does not occur in vitro, chemical, physical, and biological cross-linking methods have been assessed over the years to control mechanical stability, degradation rate, and immunogenicity of the device upon implantation. Although in vitro data demonstrate that mechanical properties and degradation rate can be accurately controlled as a function of the cross-linking method utilized, preclinical and clinical data indicate that cross-linking methods employed may have adverse effects on host response, especially when potent cross-linking methods are employed. Experimental data suggest that more suitable cross-linking methods should be developed to achieve a balance between stability and functional remodeling. PMID:25517923

  15. Degradable phosphate glass fiber reinforced polymer matrices: mechanical properties and cell response.

    PubMed

    Brauer, Delia S; Rüssel, Christian; Vogt, Sebastian; Weisser, Jürgen; Schnabelrauch, Matthias

    2008-01-01

    The development of biodegradable materials for internal fracture fixation is of great interest, as they would both eliminate the problem of stress shielding and obviate the need for a second operation to remove fixation devices. Preliminary investigations for the production of degradable fiber reinforced polymer composite materials are detailed. Composites were produced of phosphate invert glass fibers of the glass system P(2)O(5)-CaO-MgO-Na(2)O-TiO(2), which showed a low solubility in previous work. The fibers were embedded into a matrix of a degradable organic polymer network based on methacrylate-modified oligolactide. Fracture behavior, bending strength and elastic modulus were evaluated during 3-point bending tests and the fracture surface of the composites was investigated using a scanning electron microscope. Short-term biocompatibility was tested in an FDA/EtBr viability assay using MC3T3-E1 murine pre-osteoblast cells and showed a good cell compatibility of the composite materials. Results suggested that these composite materials are biocompatible and show mechanical properties which are of interest for the production of degradable bone fixation devices.

  16. The effect of asymmetrical electrode form after negative bias illuminated stress in amorphous IGZO thin film transistors

    NASA Astrophysics Data System (ADS)

    Su, Wan-Ching; Chang, Ting-Chang; Liao, Po-Yung; Chen, Yu-Jia; Chen, Bo-Wei; Hsieh, Tien-Yu; Yang, Chung-I.; Huang, Yen-Yu; Chang, Hsi-Ming; Chiang, Shin-Chuan; Chang, Kuan-Chang; Tsai, Tsung-Ming

    2017-03-01

    This paper investigates the degradation behavior of InGaZnO thin film transistors (TFTs) under negative bias illumination stress (NBIS). TFT devices with two different source and drain layouts were exanimated: one having a parallel format electrode and the other with UI format electrode. UI means that source/drain electrodes shapes is defined as a forked-shaped structure. The I-V curve of the parallel electrode exhibited a symmetric degradation under forward and reverse sweeping in the saturation region after 1000 s NBIS. In contrast, the I-V curve of the UI electrode structure under similar conditions was asymmetric. The UI electrode structure also shows a stretch-out phenomenon in its C-V measurement. Finally, this work utilizes the ISE-Technology Computer Aided Design (ISE-TCAD) system simulations, which simulate the electron field and IV curves, to analyze the mechanisms dominating the parallel and UI device degradation behaviors.

  17. Thermal degradation products from PVC film in food-wrapping operations.

    PubMed

    Boettner, E A; Ball, G L

    1980-07-01

    Thermal degradation products of polyvinyl chloride (PVC) food-wrap films were studied under simulated supermarket conditons using a commercial wrapping machine with either a hot wire or a cool rod cutting device. A sampling hood was constructed around the wire/rod to confine and allow collection of thermal degradation products produced. Compounds analyzed and normal concentration ranges found included hydrogen chloride (1-10 micrograms per cut), plasticizer (1-50 micrograms per cut), benzene and toluene (each < 5-20 ng per cut), acrolein (25-150 ng per cut), and carbon monoxide (2-4 micrograms per cut) using the hot wire. Room air samples, collected during hot-wire cutting without the sampling hood, had < 0.25 ppm hydrogen chloride. Using the cool-rod cutting device hydrogen chloride, benzene, and toluene were not detected. Plasticizer was detected (25-86 micrograms per cut) using the cool rod.

  18. Prediction and Monitoring Systems of Creep-Fracture Behavior of 9Cr-1Mo Steels for Teactor Pressure Vessels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potirniche, Gabriel; Barlow, Fred D.; Charit, Indrajit

    2013-11-26

    A recent workshop on next-generation nuclear plant (NGNP) topics underscored the need for research studies on the creep fracture behavior of two materials under consideration for reactor pressure vessel (RPV) applications: 9Cr-1Mo and SA-5XX steels. This research project will provide a fundamental understanding of creep fracture behavior of modified 9Cr-1Mo steel welds for through modeling and experimentation and will recommend a design for an RPV structural health monitoring system. Following are the specific objectives of this research project: Characterize metallurgical degradation in welded modified 9Cr-1Mo steel resulting from aging processes and creep service conditions; Perform creep tests and characterize themore » mechanisms of creep fracture process; Quantify how the microstructure degradation controls the creep strength of welded steel specimens; Perform finite element (FE) simulations using polycrystal plasticity to understand how grain texture affects the creep fracture properties of welds; Develop a microstructure-based creep fracture model to estimate RPVs service life; Manufacture small, prototypic, cylindrical pressure vessels, subject them to degradation by aging, and measure their leak rates; Simulate damage evolution in creep specimens by FE analyses; Develop a model that correlates gas leak rates from welded pressure vessels with the amount of microstructural damage; Perform large-scale FE simulations with a realistic microstructure to evaluate RPV performance at elevated temperatures and creep strength; Develop a fracture model for the structural integrity of RPVs subjected to creep loads; and Develop a plan for a non-destructive structural health monitoring technique and damage detection device for RPVs.« less

  19. Multimodal person authentication on a smartphone under realistic conditions

    NASA Astrophysics Data System (ADS)

    Morris, Andrew C.; Jassim, Sabah; Sellahewa, Harin; Allano, Lorene; Ehlers, Johan; Wu, Dalei; Koreman, Jacques; Garcia-Salicetti, Sonia; Ly-Van, Bao; Dorizzi, Bernadette

    2006-05-01

    Verification of a person's identity by the combination of more than one biometric trait strongly increases the robustness of person authentication in real applications. This is particularly the case in applications involving signals of degraded quality, as for person authentication on mobile platforms. The context of mobility generates degradations of input signals due to the variety of environments encountered (ambient noise, lighting variations, etc.), while the sensors' lower quality further contributes to decrease in system performance. Our aim in this work is to combine traits from the three biometric modalities of speech, face and handwritten signature in a concrete application, performing non intrusive biometric verification on a personal mobile device (smartphone/PDA). Most available biometric databases have been acquired in more or less controlled environments, which makes it difficult to predict performance in a real application. Our experiments are performed on a database acquired on a PDA as part of the SecurePhone project (IST-2002-506883 project "Secure Contracts Signed by Mobile Phone"). This database contains 60 virtual subjects balanced in gender and age. Virtual subjects are obtained by coupling audio-visual signals from real English speaking subjects with signatures from other subjects captured on the touch screen of the PDA. Video data for the PDA database was recorded in 2 recording sessions separated by at least one week. Each session comprises 4 acquisition conditions: 2 indoor and 2 outdoor recordings (with in each case, a good and a degraded quality recording). Handwritten signatures were captured in one session in realistic conditions. Different scenarios of matching between training and test conditions are tested to measure the resistance of various fusion systems to different types of variability and different amounts of enrolment data.

  20. Electronic properties of light-induced recombination centers in boron-doped Czochralski silicon

    NASA Astrophysics Data System (ADS)

    Schmidt, Jan; Cuevas, Andrés

    1999-09-01

    In order to study the electronic properties of the recombination centers responsible for the light-induced carrier lifetime degradation commonly observed in high-purity boron-doped Czochralski (Cz) silicon, injection-level dependent carrier lifetime measurements are performed on a large number of boron-doped p-type Cz silicon wafers of various resistivities (1-31 Ω cm) prior to and after light degradation. The measurement technique used is the contactless quasi-steady-state photoconductance method, allowing carrier lifetime measurements over a very broad injection range between 1012 and 1017cm-3. To eliminate all recombination channels not related to the degradation effect, the difference of the inverse lifetimes measured after and before light degradation is evaluated. A detailed analysis of the injection level dependence of the carrier lifetime change using the Shockley-Read-Hall theory shows that the fundamental recombination center created during illumination has an energy level between Ev+0.35 and Ec-0.45 eV and an electron/hole capture time constant ratio between 0.1 and 0.2. This deep-level center is observed in all samples and is attributed to a new type of boron-oxygen complex. Besides this fundamental defect, in some samples an additional shallow-level recombination center at 0.15 eV below Ec or above Ev is found to be activated during light exposure. This second center dominates the light-degraded carrier lifetime only under high-injection conditions and is hence only of minor importance for low-injection operated devices.

  1. Color Vision Changes and Effects of High Contrast Visor Use at Simulated Cabin Altitudes

    DTIC Science & Technology

    2016-06-08

    under these conditions. Following Institutional Review Board approval, a reduced oxygen breathing device was used to expose subjects with normal...vision, high contrast visor, reduced oxygen breathing device 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF...in further degradation of color vision under these conditions. Following Institutional Review Board approval, a reduced oxygen breathing device was

  2. A Study of Oxides for Solid Oxide Cells

    NASA Astrophysics Data System (ADS)

    Comets, Olivier

    As the world energy consumption increases, it is a question of global health to increase energy production efficiency and to reduce CO2 emissions. In that respect, solid oxide cells are solid state devices that convert directly fuel into electricity, or vice versa. In fact, when run in fuel cell mode, such devices produce electricity with efficiency up to twice that of current natural gas power plants. However, systems equipped with them have only seen limited commercialization owing to issues of cost, durability, and performance. In this thesis, three different aspects of solid oxide cells are studied. First, the effects of stress on the properties of mixed ionic electronic conducting oxides are considered. Such oxides can be used as electrode materials, where they are often subject to large stresses, which can, in turn, affect their performance. Hence, understanding the relationship between stress and properties in such materials is crucial. Non-stoichiometry in strontium substituted lanthanum cobaltite is found to increase under tension and to decrease under compression. Then, degradation taking place when the cell is run in electrolysis mode is discussed. A high current allows for a high production rate of hydrogen gas. However, this can also lead to oxygen bubble nucleating in the electrolyte and subsequent degradation of the cell. The analysis conducted here shows that such nucleation phenomenon can be avoided by keeping the overpotential at the oxygen electrode below a critical value. Finally, the growth and coarsening of catalyst nanoparticles at the surface of an oxide is studied. Scientists have developed new oxides for anodes in which a catalyst material is dissolved and exsolves under operating conditions. As the performance of the cell is controlled by the surface area of the catalyst phase, understanding the kinetics of the growth is critical to predict the performance of the cell. An approach is developed to study the growth of one particle, in the limiting case where only bulk transport is allowed.

  3. Device Engineering and Degradation Mechanism Study of All-Phosphorescent White Organic Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Xu, Lisong

    As a possible next-generation solid-state lighting source, white organic light-emitting diodes (WOLEDs) have the advantages in high power efficiency, large area and flat panel form factor applications. Phosphorescent emitters and multiple emitting layer structures are typically used in high efficiency WOLEDs. However due to the complexity of the device structure comprising a stack of multiple layers of organic thin films, ten or more organic materials are usually required, and each of the layers in the stack has to be optimized to produce the desired electrical and optical functions such that collectively a WOLED of the highest possible efficiency can be achieved. Moreover, device degradation mechanisms are still unclear for most OLED systems, especially blue phosphorescent OLEDs. Such challenges require a deep understanding of the device operating principles and materials/device degradation mechanisms. This thesis will focus on achieving high-efficiency and color-stable all-phosphorescent WOLEDs through optimization of the device structures and material compositions. The operating principles and the degradation mechanisms specific to all-phosphorescent WOLED will be studied. First, we investigated a WOLED where a blue emitter was based on a doped mix-host system with the archetypal bis(4,6-difluorophenyl-pyridinato-N,C2) picolinate iridium(III), FIrpic, as the blue dopant. In forming the WOLED, the red and green components were incorporated in a single layer adjacent to the blue layer. The WOLED efficiency and color were optimized through variations of the mixed-host compositions to control the electron-hole recombination zone and the dopant concentrations of the green-red layers to achieve a balanced white emission. Second, a WOLED structure with two separate blue layers and an ultra-thin red and green co-doped layer was studied. Through a systematic investigation of the placement of the co-doped red and green layer between the blue layers and the material compositions of these layers, we were able to achieve high-efficiency WOLEDs with controllable white emission characteristics. We showed that we can use the ultra-thin co-doped layer and two blue emitting layers to manipulate exciton confinement to certain zones and energy transfer pathways between the various hosts and dopants. Third, a blue phosphorescent dopant tris[1-(2,6-diisopropylphenyl)-2-phenyl-1H-imidazole]iridium(III) (Ir(iprpmi)3) with a low ionization potential (HOMO 4.8 eV) and propensity for hole-trapping was studied in WOLEDs. In a bipolar host, 2,6-bis(3-(carbazol-9-yl)phenyl)-pyridine (DCzPPy), Ir(iprpmi)3 was found to trap holes at low concentrations but transport holes at higher concentrations. By adjusting the dopant concentration and thereby the location of the recombination zone, we were able to demonstrate blue and white OLEDs with external quantum efficiencies over 20%. The fabricated WOLEDs shows high color stability over a wide range of luminance. Moreover, the device lifetime has also been improved with Ir(iprpmi)3 as the emitter compared to FIrpic. Last, we analyzed OLED degradation using Laser Desorption Time-Of-Flight Mass Spectrometry (LDI-TOF-MS) technique. By carefully and systematically comparing the LDI-TOF patterns of electrically/optically stressed and controlled (unstressed) OLED devices, we were able to identify some prominent degradation byproducts and trace possible chemical pathways involving specific host and dopant materials.

  4. Review of recent progresses on flexible oxide semiconductor thin film transistors based on atomic layer deposition processes

    NASA Astrophysics Data System (ADS)

    Sheng, Jiazhen; Han, Ki-Lim; Hong, TaeHyun; Choi, Wan-Ho; Park, Jin-Seong

    2018-01-01

    The current article is a review of recent progress and major trends in the field of flexible oxide thin film transistors (TFTs), fabricating with atomic layer deposition (ALD) processes. The ALD process offers accurate controlling of film thickness and composition as well as ability of achieving excellent uniformity over large areas at relatively low temperatures. First, an introduction is provided on what is the definition of ALD, the difference among other vacuum deposition techniques, and the brief key factors of ALD on flexible devices. Second, considering functional layers in flexible oxide TFT, the ALD process on polymer substrates may improve device performances such as mobility and stability, adopting as buffer layers over the polymer substrate, gate insulators, and active layers. Third, this review consists of the evaluation methods of flexible oxide TFTs under various mechanical stress conditions. The bending radius and repetition cycles are mostly considering for conventional flexible devices. It summarizes how the device has been degraded/changed under various stress types (directions). The last part of this review suggests a potential of each ALD film, including the releasing stress, the optimization of TFT structure, and the enhancement of device performance. Thus, the functional ALD layers in flexible oxide TFTs offer great possibilities regarding anti-mechanical stress films, along with flexible display and information storage application fields. Project supported by the National Research Foundation of Korea (NRF) (No. NRF-2017R1D1A1B03034035), the Ministry of Trade, Industry & Energy (No. #10051403), and the Korea Semiconductor Research Consortium.

  5. Investigations on the effects of electrode materials on the device characteristics of ferroelectric memory thin film transistors fabricated on flexible substrates

    NASA Astrophysics Data System (ADS)

    Yang, Ji-Hee; Yun, Da-Jeong; Seo, Gi-Ho; Kim, Seong-Min; Yoon, Myung-Han; Yoon, Sung-Min

    2018-03-01

    For flexible memory device applications, we propose memory thin-film transistors using an organic ferroelectric poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] gate insulator and an amorphous In-Ga-Zn-O (a-IGZO) active channel. The effects of electrode materials and their deposition methods on the characteristics of memory devices exploiting the ferroelectric field effect were investigated for the proposed ferroelectric memory thin-film transistors (Fe-MTFTs) at flat and bending states. It was found that the plasma-induced sputtering deposition and mechanical brittleness of the indium-tin oxide (ITO) markedly degraded the ferroelectric-field-effect-driven memory window and bending characteristics of the Fe-MTFTs. The replacement of ITO electrodes with metal aluminum (Al) electrodes prepared by plasma-free thermal evaporation greatly enhanced the memory device characteristics even under bending conditions owing to their mechanical ductility. Furthermore, poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS) was introduced to achieve robust bending performance under extreme mechanical stress. The Fe-MTFTs using PEDOT:PSS source/drain electrodes were successfully fabricated and showed the potential for use as flexible memory devices. The suitable choice of electrode materials employed for the Fe-MTFTs is concluded to be one of the most important control parameters for highly functional flexible Fe-MTFTs.

  6. Terrestrial Sources of X-Ray Radiation and Their Effects on NASA Flight Hardware

    NASA Technical Reports Server (NTRS)

    Kniffin, Scott

    2016-01-01

    X-rays are an energetic and penetrating form of ionizing electromagnetic radiation, which can degrade NASA flight hardware. The main concern posed by such radiation is degradation of active electronic devices and, in some cases, diodes. Non-electronic components are only damaged at doses that far exceed the point where any electronic device would be destroyed. For the purposes of this document, flight hardware can be taken to mean an entire instrument, the flight electronics within the instrument or the individual microelectronic devices in the flight electronics. This document will discuss and describe the ways in which NASA flight hardware might be exposed to x-rays, what is and isn't a concern, and how to tell the difference. First, we must understand what components in flight hardware may be vulnerable to degradation or failure as a result of being exposed to ionizing radiation, such as x-rays. As stated above, bulk materials (structural metals, plastics, etc.) are generally only affected by ionizing radiation at very high dose levels. Likewise, passive electronic components (e.g. resistors, capacitors, most diodes) are strongly resistant to exposure to x-rays, except at very high doses. The main concerns arise when active components, that is, components like discrete transistors and microelectronic devices, are exposed to ionizing radiation. Active components are designed to respond to minute changes in currents and voltages in the circuit. As such, it is not surprising that exposure to ionizing radiation, which creates ionized and therefore electrically active particles, may degrade the way the hardware performs. For the most part, the mechanism for this degradation is trapping of the charges generated by ionizing radiation by defects in dielectric materials in the hardware. As such, the degree of damage is a function of both the quantity of ionizing radiation exposure and the physical characteristics of the hardware itself. The metric that describes the level of exposure to ionizing radiation is total ionizing dose (TID). The unit of TID is the rad, which is defined as 100 ergs absorbed per gram of material. Dose can be expressed in other units, for example grays (gy), where 1 gy = 100 rads. The actual fluence of radiation needed to deliver a rad depends on the absorbing material, so units of dose are usually stated in reference to the material of interest. That is, for microelectronic devices, the unit of dose is generally rad (Si) or rad (SiO2). However, the definition of absorbed dose in this fashion has the advantage that the type of radiation causing the ionization can be normalized so that a realistic and adequate comparison can be made. The sensitivity of microelectronic parts to TID varies over many orders of magnitude. (Note: Doses to humans are typically expressed in rems-or roentgen-equivalent-man-which measures tissue damage, and depends on the type of radiation, as well as the dose in rads.) Thus far, the "softest" parts tested at NASA showed damage at 500 rads (Si), while parts that are radiation-hardened by design can remain functional to doses on the order of 107 rads (Si). This broad range of sensitivity highlights one of the most important considerations when considering the effects of radiation on electronic parts: In order to determine whether a radiation exposure is a concern for a particular part, one must understand the technologies used in the part and their vulnerabilities to TID damage. A NASA radiation expert should be consulted to obtain such information.

  7. A comparative study on top-gated and bottom-gated multilayer MoS2 transistors with gate stacked dielectric of Al2O3/HfO2.

    PubMed

    Zou, Xiao; Xu, Jingping; Huang, Hao; Zhu, Ziqang; Wang, Hongjiu; Li, Borui; Liao, Lei; Fang, Guojia

    2018-06-15

    Top-gated and bottom-gated transistors with multilayer MoS 2 channel fully encapsulated by stacked Al 2 O 3 /HfO 2 (9 nm/6 nm) were fabricated and comparatively studied. Excellent electrical properties are demonstrated for the TG transistors with high on-off current ratio of 10 8 , high field-effect mobility of 10 2 cm 2 V -1 s -1 , and low subthreshold swing of 93 mV dec -1 . Also, enhanced reliability has been achieved for the TG transistors with threshold voltage shift of 10 -3 -10 -2 V MV -1 cm -1 after 6 MV cm -1 gate-biased stressing. All improvement for the TG device can be ascribed to the formed device structure and dielectric environment. Degradation of the performance for the BG transistors should be attributed to reduced gate capacitance density and deteriorated interface properties related to vdW gap with a thickness about 0.4 nm. So, the TG transistor with MoS 2 channel fully encapsulated by stacked Al 2 O 3 /HfO 2 is a promising way to fabricate high-performance ML MoS 2 field-effect transistors for practical electron device applications.

  8. A comparative study on top-gated and bottom-gated multilayer MoS2 transistors with gate stacked dielectric of Al2O3/HfO2

    NASA Astrophysics Data System (ADS)

    Zou, Xiao; Xu, Jingping; Huang, Hao; Zhu, Ziqang; Wang, Hongjiu; Li, Borui; Liao, Lei; Fang, Guojia

    2018-06-01

    Top-gated and bottom-gated transistors with multilayer MoS2 channel fully encapsulated by stacked Al2O3/HfO2 (9 nm/6 nm) were fabricated and comparatively studied. Excellent electrical properties are demonstrated for the TG transistors with high on–off current ratio of 108, high field-effect mobility of 102 cm2 V‑1 s‑1, and low subthreshold swing of 93 mV dec–1. Also, enhanced reliability has been achieved for the TG transistors with threshold voltage shift of 10‑3–10‑2 V MV–1 cm–1 after 6 MV cm‑1 gate-biased stressing. All improvement for the TG device can be ascribed to the formed device structure and dielectric environment. Degradation of the performance for the BG transistors should be attributed to reduced gate capacitance density and deteriorated interface properties related to vdW gap with a thickness about 0.4 nm. So, the TG transistor with MoS2 channel fully encapsulated by stacked Al2O3/HfO2 is a promising way to fabricate high-performance ML MoS2 field-effect transistors for practical electron device applications.

  9. Improved stability and efficiency of perovskite solar cells with submicron flexible barrier films deposited in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rolston, Nicholas; Printz, Adam D.; Hilt, Florian

    Here in this paper, we report on submicron organosilicate barrier films produced rapidly in air by a scalable spray plasma process that improves both the stability and efficiency of perovskite solar cells. The plasma is at sufficiently low temperature to prevent damage to the underlying layers. Oxidizing species and heat from the plasma improve device performance by enhancing both interfacial contact and the conductivity of the hole transporting layer. The thickness of the barrier films is tunable and transparent over the entire visible spectrum. The morphology and density of the barrier are shown to improve with the addition of amore » fluorine-based precursor. Devices with submicron coatings exhibited significant improvements in stability, maintaining 92% of their initial power conversion efficiencies after more than 3000 h in dry heat (85 °C, 25% RH) while also being resistant to degradation under simulated operational conditions of continuous exposure to light, heat, and moisture. X-ray diffraction measurements performed while heating showed the barrier film dramatically slows the formation of PbI 2. The barrier films also are compatible with flexible devices, exhibiting no signs of cracking or delamination after 10000 bending cycles on a 127 μm substrate with a bending radius of 1 cm.« less

  10. Electron-beam lithography with character projection technique for high-throughput exposure with line-edge quality control

    NASA Astrophysics Data System (ADS)

    Ikeno, Rimon; Maruyama, Satoshi; Mita, Yoshio; Ikeda, Makoto; Asada, Kunihiro

    2016-07-01

    The high throughput of character projection (CP) electron-beam (EB) lithography makes it a promising technique for low-to-medium volume device fabrication with regularly arranged layouts, such as for standard-cell logics and memory arrays. However, non-VLSI applications such as MEMS and MOEMS may not be able to fully utilize the benefits of the CP method due to the wide variety of layout figures including curved and oblique edges. In addition, the stepwise shapes that appear because of the EB exposure process often result in intolerable edge roughness, which degrades device performances. In this study, we propose a general EB lithography methodology for such applications utilizing a combination of the CP and variable-shaped beam methods. In the process of layout data conversion with CP character instantiation, several control parameters were optimized to minimize the shot count, improve the edge quality, and enhance the overall device performance. We have demonstrated EB shot reduction and edge-quality improvement with our methodology by using a leading-edge EB exposure tool, ADVANTEST F7000S-VD02, and a high-resolution hydrogen silsesquioxane resist. Atomic force microscope observations were used to analyze the resist edge profiles' quality to determine the influence of the control parameters used in the data conversion process.

  11. Improved stability and efficiency of perovskite solar cells with submicron flexible barrier films deposited in air

    DOE PAGES

    Rolston, Nicholas; Printz, Adam D.; Hilt, Florian; ...

    2017-10-27

    Here in this paper, we report on submicron organosilicate barrier films produced rapidly in air by a scalable spray plasma process that improves both the stability and efficiency of perovskite solar cells. The plasma is at sufficiently low temperature to prevent damage to the underlying layers. Oxidizing species and heat from the plasma improve device performance by enhancing both interfacial contact and the conductivity of the hole transporting layer. The thickness of the barrier films is tunable and transparent over the entire visible spectrum. The morphology and density of the barrier are shown to improve with the addition of amore » fluorine-based precursor. Devices with submicron coatings exhibited significant improvements in stability, maintaining 92% of their initial power conversion efficiencies after more than 3000 h in dry heat (85 °C, 25% RH) while also being resistant to degradation under simulated operational conditions of continuous exposure to light, heat, and moisture. X-ray diffraction measurements performed while heating showed the barrier film dramatically slows the formation of PbI 2. The barrier films also are compatible with flexible devices, exhibiting no signs of cracking or delamination after 10000 bending cycles on a 127 μm substrate with a bending radius of 1 cm.« less

  12. Recoil distance method lifetime measurements at TRIUMF-ISAC using the TIGRESS Integrated Plunger

    NASA Astrophysics Data System (ADS)

    Chester, A.; Ball, G. C.; Bernier, N.; Cross, D. S.; Domingo, T.; Drake, T. E.; Evitts, L. J.; Garcia, F. H.; Garnsworthy, A. B.; Hackman, G.; Hallam, S.; Henderson, J.; Henderson, R.; Krücken, R.; MacConnachie, E.; Moukaddam, M.; Padilla-Rodal, E.; Paetkau, O.; Pore, J. L.; Rizwan, U.; Ruotsalainen, P.; Shoults, J.; Smallcombe, J.; Smith, J. K.; Starosta, K.; Svensson, C. E.; Van Wieren, K.; Williams, J.; Williams, M.

    2018-02-01

    The TIGRESS Integrated Plunger device (TIP) has been developed for recoil distance method (RDM) lifetime measurements using the TIGRESS array of HPGe γ-ray detectors at TRIUMF's ISAC-II facility. A commissioning experiment was conducted utilizing a 250 MeV 84Kr beam at ≈ 2 × 108 particles per second. The 84Kr beam was Coulomb excited to the 21+ state on a movable 27Al target. A thin Cu foil fixed downstream from the target was used as a degrader. Excited nuclei emerged from the target and decayed by γ-ray emission at a distance determined by their velocity and the lifetime of the 21+ state. The ratio of decays which occur between the target and degrader to those occurring after traversing the degrader changes as a function of the target-degrader separation distance. Gamma-ray spectra at 13 target-degrader separation distances were measured and compared to simulated lineshapes to extract the lifetime. The result of τ = 5 . 541 ± 0 . 013(stat.) ± 0 . 063(sys.) ps is shorter than the literature value of 5 . 84 ± 0 . 18 ps with a reduction in uncertainty by a factor of approximately two. The TIP plunger device, experimental technique, analysis tools, and result are discussed.

  13. Influence of white light illumination on the performance of a-IGZO thin film transistor under positive gate-bias stress

    NASA Astrophysics Data System (ADS)

    Tang, Lan-Feng; Yu, Guang; Lu, Hai; Wu, Chen-Fei; Qian, Hui-Min; Zhou, Dong; Zhang, Rong; Zheng, You-Dou; Huang, Xiao-Ming

    2015-08-01

    The influence of white light illumination on the stability of an amorphous InGaZnO thin film transistor is investigated in this work. Under prolonged positive gate bias stress, the device illuminated by white light exhibits smaller positive threshold voltage shift than the device stressed under dark. There are simultaneous degradations of field-effect mobility for both stressed devices, which follows a similar trend to that of the threshold voltage shift. The reduced threshold voltage shift under illumination is explained by a competition between bias-induced interface carrier trapping effect and photon-induced carrier detrapping effect. It is further found that white light illumination could even excite and release trapped carriers originally exiting at the device interface before positive gate bias stress, so that the threshold voltage could recover to an even lower value than that in an equilibrium state. The effect of photo-excitation of oxygen vacancies within the a-IGZO film is also discussed. Project supported by the State Key Program for Basic Research of China (Grant Nos. 2011CB301900 and 2011CB922100) and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.

  14. Multi-Dimensional Quantum Tunneling and Transport Using the Density-Gradient Model

    NASA Technical Reports Server (NTRS)

    Biegel, Bryan A.; Yu, Zhi-Ping; Ancona, Mario; Rafferty, Conor; Saini, Subhash (Technical Monitor)

    1999-01-01

    We show that quantum effects are likely to significantly degrade the performance of MOSFETs (metal oxide semiconductor field effect transistor) as these devices are scaled below 100 nm channel length and 2 nm oxide thickness over the next decade. A general and computationally efficient electronic device model including quantum effects would allow us to monitor and mitigate these effects. Full quantum models are too expensive in multi-dimensions. Using a general but efficient PDE solver called PROPHET, we implemented the density-gradient (DG) quantum correction to the industry-dominant classical drift-diffusion (DD) model. The DG model efficiently includes quantum carrier profile smoothing and tunneling in multi-dimensions and for any electronic device structure. We show that the DG model reduces DD model error from as much as 50% down to a few percent in comparison to thin oxide MOS capacitance measurements. We also show the first DG simulations of gate oxide tunneling and transverse current flow in ultra-scaled MOSFETs. The advantages of rapid model implementation using the PDE solver approach will be demonstrated, as well as the applicability of the DG model to any electronic device structure.

  15. Ultrathin solution-processed single crystals of thiophene-phenylene co-oligomers for organic field-effect devices

    NASA Astrophysics Data System (ADS)

    Glushkova, Anastasia V.; Poimanova, Elena Yu.; Bruevich, Vladimir V.; Luponosov, Yuriy N.; Ponomarenko, Sergei A.; Paraschuk, Dmitry Yu.

    2017-08-01

    Thiophene-phenylene co-oligomers (TPCO) single crystals are promising materials for organic light-emitting devices, e.g., light-emitting transistors (OLETs), due to their ability to combine high luminescence and efficient charge transport. However, optical confinement in platy single crystals strongly decreases light emission from their top surface degrading the device performance. To avoid optical waveguiding, single crystals thinner than 100 nm would be beneficial. Herein, we report on solution-processed ultrathin single crystals of TPCO and study their charge transport properties. As materials we used 1,4-bis(5'-hexyl-2,2'-bithiophene-5-yl)benzene (DH-TTPTT) and 1,4-bis(5'-decyl-2,2'-bithiophene-5-yl)benzene (DD-TTPTT). The ultrathin single crystals were studied by optical polarization, atomic-force, and transmission electron microscopies, and as active layers in organic field effect transistors (OFET). The OFET hole mobility was increased tenfold for the oligomer with longer alkyl substituents (DD-TTPTT) reaching 0.2 cm2/Vs. Our studies of crystal growth indicate that if the substrate is wetted, it has no significant effect on the crystal growth. We conclude that solution-processed ultrathin TPCO single crystals are a promising platform for organic optoelectronic field-effect devices.

  16. Research Update: Behind the high efficiency of hybrid perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Fakharuddin, Azhar; De Rossi, Francesca; Watson, Trystan M.; Schmidt-Mende, Lukas; Jose, Rajan

    2016-09-01

    Perovskite solar cells (PSCs) marked tremendous progress in a short period of time and offer bright hopes for cheap solar electricity. Despite high power conversion efficiency >20%, its poor operational stability as well as involvement of toxic, volatile, and less-abundant materials hinders its practical deployment. The fact that degradation and toxicity are typically observed in the most successful perovskite involving organic cation and toxic lead, i.e., CH3NH3PbX3, requires a deep understanding of their role in photovoltaic performance in order to envisage if a non-toxic, stable yet highly efficient device is feasible. Towards this, we first provide an overview of the basic chemistry and physics of halide perovskites and its correlation with its extraordinary properties such as crystal structure, bandgap, ferroelectricity, and electronic transport. We then discuss device related aspects such as the various device designs in PSCs and role of interfaces in origin of PV parameters particularly open circuit voltage, various film processing methods and their effect on morphology and characteristics of perovskite films, and the origin and elimination of hysteresis and operational stability in these devices. We then identify future perspectives for stable and efficient PSCs for practical deployment.

  17. High-power piezoelectric acoustic-electric power feedthru for metal walls

    NASA Astrophysics Data System (ADS)

    Bao, Xiaoqi; Biederman, Will; Sherrit, Stewart; Badescu, Mircea; Bar-Cohen, Yoseph; Jones, Christopher; Aldrich, Jack; Chang, Zensheu

    2008-03-01

    Piezoelectric acoustic-electric power feed-through devices transfer electric power wirelessly through a solid wall using elastic waves. This approach allows for the elimination of the need for holes through structures for cabling or electrical feed-thrus . The technology supplies power to electric equipment inside sealed containers, vacuum or pressure vessels, etc where holes in the wall are prohibitive or may result in significant performance degradation or requires complex designs. In the our previous work, 100-W of electric power was transferred through a metal wall by a small, piezoelectric device with a simple-structure. To meet requirements of higher power applications, the feasibility to transfer kilowatts level power was investigated. Pre-stressed longitudinal piezoelectric feed-thru devices were analyzed by finite element modeling. An equivalent circuit model was developed to predict the characteristics of power transfer to different electric loads. Based on the analytical results, a prototype device was designed, fabricated and successfully demonstrated to transfer electric power at a level of 1-kW. Methods of minimizing plate wave excitation on the wall were also analyzed. Both model analysis and experimental results are presented in detail in this paper.

  18. Modeling of defect tolerance of IMM multijunction photovoltaics for space application

    NASA Astrophysics Data System (ADS)

    Mehrotra, Akhil; Freundlich, Alex

    2013-03-01

    Reduction of defects by use of thick sophisticated graded metamorphic buffers in inverted metamorphic solar cells has been a requirement to obtain high efficiency devices. With increase in number of metamorphic junctions to obtain higher efficiencies, these graded buffers constitute a significant part of growth time and cost for manufacturer of the solar cells. It's been shown that ultrathin 3 and 4 junction IMM devices perform better in presence of dislocations or/and radiation harsh environment compared to conventional thick IMM devices. Thickness optimization of the device would result in better defect and radiation tolerant behavior of 0.7ev and 1.0ev InGaAs sub-cells which would in turn require thinner buffers with higher efficiencies, hence reducing the total device thickness. It is also shown that for 3 and 4 junc. IMM, with an equivalent 1015 cm-2 1 MeV electron fluence radiation, very high EOL efficiencies can be afforded with substantially higher dislocation densities (<2×107 cm-2) than those commonly perceived as acceptable for IMM devices with remaining power factor as high as 0.85. The irregular radiation degradation behavior in 4-junc IMM is also explained by back photon reflection from gold contacts and reduced by using thickness optimization of 0.7ev and 1.0ev InGaAs sub-cells.

  19. Gas sensors boosted by two-dimensional h-BN enabled transfer on thin substrate foils: towards wearable and portable applications.

    PubMed

    Ayari, Taha; Bishop, Chris; Jordan, Matthew B; Sundaram, Suresh; Li, Xin; Alam, Saiful; ElGmili, Youssef; Patriarche, Gilles; Voss, Paul L; Salvestrini, Jean Paul; Ougazzaden, Abdallah

    2017-11-09

    The transfer of GaN based gas sensors to foreign substrates provides a pathway to enhance sensor performance, lower the cost and extend the applications to wearable, mobile or disposable systems. The main keys to unlocking this pathway is to grow and fabricate the sensors on large h-BN surface and to transfer them to the flexible substrate without any degradation of the performances. In this work, we develop a new generation of AlGaN/GaN gas sensors with boosted performances on a low cost flexible substrate. We fabricate 2-inch wafer scale AlGaN/GaN gas sensors on sacrificial two-dimensional (2D) nano-layered h-BN without any delamination or cracks and subsequently transfer sensors to an acrylic surface on metallic foil. This technique results in a modification of relevant device properties, leading to a doubling of the sensitivity to NO 2 gas and a response time that is more than 6 times faster than before transfer. This new approach for GaN-based sensor design opens new avenues for sensor improvement via transfer to more suitable substrates, and is promising for next-generation wearable and portable opto-electronic devices.

  20. Application of Au-Sn eutectic bonding in hermetic radio-frequency microelectromechanical system wafer level packaging

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Choa, Sung-Hoon; Kim, Woonbae; Hwang, Junsik; Ham, Sukjin; Moon, Changyoul

    2006-03-01

    Development of packaging is one of the critical issues toward realizing commercialization of radio-frequency-microelectromechanical system (RF-MEMS) devices. The RF-MEMS package should be designed to have small size, hermetic protection, good RF performance, and high reliability. In addition, packaging should be conducted at sufficiently low temperature. In this paper, a low-temperature hermetic wafer level packaging scheme for the RF-MEMS devices is presented. For hermetic sealing, Au-Sn eutectic bonding technology at temperatures below 300°C is used. Au-Sn multilayer metallization with a square loop of 70 µm in width is performed. The electrical feed-through is achieved by the vertical through-hole via filling with electroplated Cu. The size of the MEMS package is 1 mm × 1 mm × 700 µm. The shear strength and hermeticity of the package satisfies the requirements of MIL-STD-883F. Any organic gases or contamination are not observed inside the package. The total insertion loss for the packaging is 0.075 dB at 2 GHz. Furthermore, the robustness of the package is demonstrated by observing no performance degradation and physical damage of the package after several reliability tests.

  1. NASA Electronic Parts and Packaging (NEPP): Space Qualification Guidelines of Optoelectronic and Photonic Devices for Optical Communication Systems

    NASA Technical Reports Server (NTRS)

    Kim, Quiesup

    2001-01-01

    Key elements of space qualification of opto-electric and photonic optical devices were overviewed. Efforts were concentrated on the reliability concerns of the devices needed for potential applications in space environments. The ultimate goal for this effort is to gradually establish enough data to develop a space qualification plan of newly developed specific photonic parts using empirical and numerical models to assess the life-time and degradation of the devices for potential long term space missions.

  2. Design of a vascularized synthetic poly(ethylene glycol) macroencapsulation device for islet transplantation.

    PubMed

    Weaver, Jessica D; Headen, Devon M; Hunckler, Michael D; Coronel, Maria M; Stabler, Cherie L; García, Andrés J

    2018-07-01

    The use of immunoisolating macrodevices in islet transplantation confers the benefit of safety and translatability by containing transplanted cells within a single retrievable device. To date, there has been limited development and characterization of synthetic poly(ethylene glycol) (PEG)-based hydrogel macrodevices for islet encapsulation and transplantation. Herein, we describe a two-component synthetic PEG hydrogel macrodevice system, designed for islet delivery to an extrahepatic islet transplant site, consisting of a hydrogel core cross-linked with a non-degradable PEG dithiol and a vasculogenic outer layer cross-linked with a proteolytically sensitive peptide to promote degradation and enhance localized vascularization. Synthetic PEG macrodevices exhibited equivalent passive molecular transport to traditional microencapsulation materials (e.g., alginate) and long-term stability in the presence of proteases in vitro and in vivo, out to 14 weeks in rats. Encapsulated islets demonstrated high viability within the device in vitro and the incorporation of RGD adhesive peptides within the islet encapsulating PEG hydrogel improved insulin responsiveness to a glucose challenge. In vivo, the implementation of a vasculogenic, degradable hydrogel layer at the outer interface of the macrodevice enhanced vascular density within the rat omentum transplant site, resulting in improved encapsulated islet viability in a syngeneic diabetic rat model. These results highlight the benefits of the facile PEG platform to provide controlled presentation of islet-supportive ligands, as well as degradable interfaces for the promotion of engraftment and overall graft efficacy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Radiation Effects on Optoelectronic Devices in Space Missions

    NASA Technical Reports Server (NTRS)

    Johnston, Allan H.

    2006-01-01

    Radiation degradation of optoelectronic devices is discussed, including effects on optical emitters, detectors and optocouplers. The importance of displacement damage is emphasized, including the limitations of non-ionizing energy loss (NIEL) in normalizing damage. Failures of optoelectronics in fielded space systems are discussed, along with testing and qualification methods.

  4. Inhibition of ADAMTS-13 by Doxycycline Reduces von Willebrand Factor Degradation During Supraphysiological Shear Stress: Therapeutic Implications for Left Ventricular Assist Device-Associated Bleeding.

    PubMed

    Bartoli, Carlo R; Kang, Jooeun; Restle, David J; Zhang, David M; Shabahang, Cameron; Acker, Michael A; Atluri, Pavan

    2015-11-01

    The aim of this study was to investigate a potential therapy for left ventricular assist device (LVAD)-associated bleeding. Nonsurgical bleeding is the most frequent complication of LVAD support. Recent evidence has demonstrated that supraphysiological shear stress from continuous-flow LVADs accelerates von Willebrand factor (vWF) metabolism by the action of a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS-13) (the vWF protease). An acquired vWF deficiency causes bleeding. This suggests that ADAMTS-13 is a clinical target to reduce vWF degradation. We tested the hypothesis that inhibition of ADAMTS-13 with doxycycline, an inexpensive, clinically approved drug, reduces vWF degradation during shear stress. Whole blood was collected from human donors (n = 15), and purified, recombinant ADAMTS-13 protein was obtained. An enzyme-linked immunosorbent assay (ELISA) was used to quantify the dose relationship between doxycycline and ADAMTS-13 activity prior to shear stress (n = 10). To determine the effect of shear stress, plasma and recombinant ADAMTS-13 were exposed to LVAD-like supraphysiological shear stress (approximately 175 dyne/cm(2)). vWF multimers and degradation fragments were characterized with electrophoresis and immunoblotting (n = 10). Förster resonance energy transfer was used to quantify plasma ADAMTS-13 activity (n = 10). An ELISA was used to quantify vWF:collagen binding activity. Platelet aggregometry was performed with adenosine 5'-diphosphate, collagen, and ristocetin (vWF-platelet pathway) agonism (n = 10). Doxycycline significantly decreased plasma ADAMTS-13 activity (p = 0.01) and the activity of recombinant human ADAMTS-13 protein by 21%. After plasma was exposed to shear stress, the same pattern of vWF degradation was observed as previously reported for LVAD patients, and vWF:collagen binding activity decreased significantly (p = 0.002). Doxycycline significantly decreased ADAMTS-13 activity (p = 0.04) and the activity of recombinant ADAMTS-13 by 18%, protected large vWF multimers from degradation, and significantly decreased the levels of the 5 smallest vWF fragments by 12 ± 2% (p < 0.05). As a result, vWF:collagen binding activity was significantly restored (p = 0.004). ADAMTS-13 inhibition with doxycycline did not hyperactivate platelets. Inhibition of ADAMTS-13 by doxycycline decreased vWF degradation and improved vWF function during supraphysiological shear stress without hyperactivating platelets. ADAMTS-13 is a clinical target to reduce vWF degradation, improve vWF function, and potentially reduce bleeding during LVAD support. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  5. Performance Characterization of Digital Optical Data Transfer Systems for Use in the Space Radiation Environment

    NASA Technical Reports Server (NTRS)

    Reed, Robert A.; Ladbury, Ray L.; Day, John H. (Technical Monitor)

    2000-01-01

    Radiation effects in photonic and microelectronic components can impact the performance of high-speed digital optical data link in a variety of ways. This segment of the short course focuses on radiation effects in digital optical data links operating in the MHz to GHz regime. (Some of the information is applicable to frequencies above and below this regime) The three basic component level effects that should be considered are Total Ionizing Dose (TID), Displacement Damage Dose (DDD) and Single Event Effects (SEE). In some cases the system performance degradation can be quantified from component level tests, while in others a more holistic characterization approach must be taken. In Section 2.0 of this segment of the Short Course we will give a brief overview of the space radiation environment follow by a summary of the basic space radiation effects important for microelectronics and photonics listed above. The last part of this section will give an example of a typical mission radiation environment requirements. Section 3.0 gives an overview of intra-satellite digital optical data link systems. It contains a discussion of the digital optical data link and it's components. Also, we discuss some of the important system performance metrics that are impacted by radiation effects degradation of optical and optoelectronic component performance. Section 4.0 discusses radiation effects in optical and optoelectronic components. While each component effect will be discussed, the focus of this section is on degradation of passive optical components and SEE in photodiodes (other mechanisms are covered in segment II of this short course entitled "Photonic Devices with Complex and Multiple Failure Modes"). Section 5.0 will focus on optical data link system response to the space radiation environment. System level SEE ground testing will be discussed. Then we give a discussion of system level assessment of data link performance when operating in the space radiation environment.

  6. Influence of copper composition on mechanical properties of biodegradable material Mg-Zn-Cu for orthopedic application

    NASA Astrophysics Data System (ADS)

    Purniawan, A.; Maulidiah, H. M.; Purwaningsih, H.

    2018-04-01

    Implant is usually used as a treatment of bone fracture. At the moment, non-biodegradable implants is still widely employed in this application. Non-biodegradable implant requires re-surgery to retrieve implants that are installed in the body. It increase the cost and it is painful for the patient itself. In order to solve the problem, Mg-based biodegradable metals is developing so that the material will be compatible with body and gradually degrade in patient's body. However, magnesium has several disadvantages such as high degradation rates and low mechanical properties when compared to the mechanical properties of natural bone. Therefore, it is necessary to add elements into the magnesium alloy. In this research, copper (Cu) was alloyed in Mg alloy based biodegradable material. In addition, Cu is not only strengthening the structure but also for supporting element for the immune system, antibacterial and antifungal. The purpose of this research is to improve mechanical properties of Mg-based biodegradable material using Cu alloying. Powder metallurgy method was used to fabricate the device. The variation used in this research is the composition of Cu (0.5, 1, and 1.5% Cu). The porosity test was performed using apparent porosity test, compressive test and hardness test to know the mechanical properties of the alloy, and the weightless test to find out the material degradation rate. Based on the results can be conclude that Mg-Zn-Cu alloy material with 1% Cu composition is the most suitable specimen to be applied as a candidate for orthopedic devices material with hardness value is 393.6 MPa. Also obtained the value of the compressive test is 153 MPa.

  7. Acid-resistant calcium silicate-based composite implants with high-strength as load-bearing bone graft substitutes and fracture fixation devices.

    PubMed

    Wei, Chung-Kai; Ding, Shinn-Jyh

    2016-09-01

    To achieve the excellent mechanical properties of biodegradable materials used for cortical bone graft substitutes and fracture fixation devices remains a challenge. To this end, the biomimetic calcium silicate/gelatin/chitosan oligosaccharide composite implants were developed, with an aim of achieving high strength, controlled degradation, and superior osteogenic activity. The work focused on the effect of gelatin on mechanical properties of the composites under four different kinds of mechanical stresses including compression, tensile, bending, and impact. The evaluation of in vitro degradability and fatigue at two simulated body fluid (SBF) of pH 7.4 and 5.0 was also performed, in which the pH 5.0 condition simulated clinical conditions caused by bacterial induced local metabolic acidosis or tissue inflammation. In addition, human mesenchymal stem cells (hMSCs) were sued to examine osteogenic activity. Experimental results showed that the appropriate amount of gelatin positively contributed to failure enhancement in compressive and impact modes. The 10wt% gelatin-containing composite exhibits the maximum value of the compressive strength (166.1MPa), which is within the reported compressive strength for cortical bone. The stability of the bone implants was apparently affected by the in vitro fatigue, but not by the initial pH environments (7.4 or 5.0). The gelatin not only greatly enhanced the degradation of the composite when soaked in the dynamic SBF solution, but effectively promoted attachment, proliferation, differentiation, and formation of mineralization of hMSCs. The 10wt%-gelatin composite with high initial strength may be a potential implant candidate for cortical bone repair and fracture fixation applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Internal stress and degradation in short-wavelength AlGaAs double-heterojunction devices

    NASA Technical Reports Server (NTRS)

    Ladany, I.; Furman, T. R.; Marinelli, D. P.

    1979-01-01

    Aging tests of incoherently operated zinc-doped double-heterojunction (DH) lasers designed for short-wavelength (0.71-0.72 micron) operation show that the introduction of buffer layers between the substrate and the DH structure leads to a drastic reduction in gradual degradation. This is attributed to a decrease in lattice mismatch stress.

  9. Ultrasensitive label-free detection of DNA hybridization by sapphire-based graphene field-effect transistor biosensor

    NASA Astrophysics Data System (ADS)

    Xu, Shicai; Jiang, Shouzhen; Zhang, Chao; Yue, Weiwei; Zou, Yan; Wang, Guiying; Liu, Huilan; Zhang, Xiumei; Li, Mingzhen; Zhu, Zhanshou; Wang, Jihua

    2018-01-01

    Graphene has attracted much attention in biosensing applications for its unique properties. Because of one-atom layer structure, every atom of graphene is exposed to the environment, making the electronic properties of graphene are very sensitive to charged analytes. Therefore, graphene is an ideal material for transistors in high-performance sensors. Chemical vapor deposition (CVD) method has been demonstrated the most successful method for fabricating large area graphene. However, the conventional CVD methods can only grow graphene on metallic substrate and the graphene has to be transferred to the insulating substrate for further device fabrication. The transfer process creates wrinkles, cracks, or tears on the graphene, which severely degrade electrical properties of graphene. These factors severely degrade the sensing performance of graphene. Here, we directly fabricated graphene on sapphire substrate by high temperature CVD without the use of metal catalysts. The sapphire-based graphene was patterned and make into a DNA biosensor in the configuration of field-effect transistor. The sensors show high performance and achieve the DNA detection sensitivity as low as 100 fM (10-13 M), which is at least 10 times lower than prior transferred CVD G-FET DNA sensors. The use of the sapphire-based G-FETs suggests a promising future for biosensing applications.

  10. Design of flexible polyphenylene proton-conducting membrane for next-generation fuel cells

    PubMed Central

    Miyake, Junpei; Taki, Ryunosuke; Mochizuki, Takashi; Shimizu, Ryo; Akiyama, Ryo; Uchida, Makoto; Miyatake, Kenji

    2017-01-01

    Proton exchange membrane fuel cells (PEMFCs) are promising devices for clean power generation in automotive, stationary, and portable applications. Perfluorosulfonic acid (PFSA) ionomers (for example, Nafion) have been the benchmark PEMs; however, several problems, including high gas permeability, low thermal stability, high production cost, and environmental incompatibility, limit the widespread dissemination of PEMFCs. It is believed that fluorine-free PEMs can potentially address all of these issues; however, none of these membranes have simultaneously met the criteria for both high performance (for example, proton conductivity) and durability (for example, mechanical and chemical stability). We present a polyphenylene-based PEM (SPP-QP) that fulfills the required properties for fuel cell applications. The newly designed PEM exhibits very high proton conductivity, excellent membrane flexibility, low gas permeability, and extremely high stability, with negligible degradation even under accelerated degradation conditions, which has never been achieved with existing fluorine-free PEMs. The polyphenylene PEM also exhibits reasonably high fuel cell performance, with excellent durability under practical conditions. This new PEM extends the limits of existing fluorine-free proton-conductive materials and will help to realize the next generation of PEMFCs via cost reduction as well as the performance improvement compared to the present PFSA-based PEMFC systems. PMID:29075671

  11. In Vitro, In Vivo and Post Explantation Testing of Glucose-Detecting Biosensors: Current Methods and Recommendations

    PubMed Central

    Koschwanez, Heidi E.; Reichert, W. Monty

    2007-01-01

    To date, there have been a number of cases where glucose sensors have performed well over long periods of implantation; however, it remains difficult to predict whether a given sensor will perform reliably, will exhibit gradual degradation of performance, or will fail outright soon after implantation. Typically, the literature emphasizes the sensor that performed well, while only briefly (if at all) mentioning the failed devices. This leaves open the question of whether current sensor designs are adequate for the hostile in vivo environment, and whether these sensors have been assessed by the proper regimen of testing protocols. This paper reviews the current in vitro and in vivo testing procedures used to evaluate the functionality and biocompatibility of implantable glucose sensors. An overview of the standards and regulatory bodies that govern biomaterials and end-product device testing precedes a discussion of up-to-date invasive and non-invasive technologies for diabetes management. Analysis of current in vitro, in vivo, and then post implantation testing is presented. Given the underlying assumption that the success of the sensor in vivo foreshadows the long-term reliability of the sensor in the human body, the relative merits of these testing methods are evaluated with respect to how representative they are of human models. PMID:17524479

  12. Electro-optical 1 x 2, 1 x N and N x N fiber-optic and free-space switching over 1.55 to 3.0 μm using a Ge-Ge(2)Sb(2)Te(5)-Ge prism structure.

    PubMed

    Hendrickson, Joshua; Soref, Richard; Sweet, Julian; Majumdar, Arka

    2015-01-12

    New device designs are proposed and theoretical simulations are performed on electro-optical routing switches in which light beams enter and exit the device either from free space or from lensed fibers. The active medium is a ~100 nm layer of phase change material (Ge(2)Sb(2)Te(5) or GeTe) that is electrically "triggered" to change its phase, giving "self-holding" behavior in each of two phases. Electrical current is supplied to that film by a pair of transparent highly doped conducting Ge prisms on both sides of the layer. For S-polarized light incident at ~80° on the film, a three-layer Fabry-Perot analysis, including dielectric loss, predicts good 1 x 2 and 2 x 2 switch performance at infrared wavelengths of 1.55, 2.1 and 3.0 μm, although the performance at 1.55 μm is degraded by material loss and prism mismatch. Proposals for in-plane and volumetric 1 x 4 and 4 x 4 switches are also presented. An unpolarized 1 x 2 switch projects good performance at mid infrared.

  13. Degradation of 2,4-dinitrophenol using a combination of hydrodynamic cavitation, chemical and advanced oxidation processes.

    PubMed

    Bagal, Manisha V; Gogate, Parag R

    2013-09-01

    In the present work, degradation of 2,4-dinitrophenol (DNP), a persistent organic contaminant with high toxicity and very low biodegradability has been investigated using combination of hydrodynamic cavitation (HC) and chemical/advanced oxidation. The cavitating conditions have been generated using orifice plate as a cavitating device. Initially, the optimization of basic operating parameters have been done by performing experiments over varying inlet pressure (over the range of 3-6 bar), temperature (30 °C, 35 °C and 40 °C) and solution pH (over the range of 3-11). Subsequently, combined treatment strategies have been investigated for process intensification of the degradation process. The effect of HC combined with chemical oxidation processes such as hydrogen peroxide (HC/H2O2), ferrous activated persulfate (HC/Na2S2O8/FeSO4) and HC coupled with advanced oxidation processes such as conventional Fenton (HC/FeSO4/H2O2), advanced Fenton (HC/Fe/H2O2) and Fenton-like process (HC/CuO/H2O2) on the extent of degradation of DNP have also been investigated at optimized conditions of pH 4, temperature of 35 °C and inlet pressure of 4 bar. Kinetic study revealed that degradation of DNP fitted first order kinetics for all the approaches under investigation. Complete degradation with maximum rate of DNP degradation has been observed for the combined HC/Fenton process. The energy consumption analysis for hydrodynamic cavitation based process has been done on the basis of cavitational yield. Degradation intermediates have also been identified and quantified in the current work. The synergistic index calculated for all the combined processes indicates HC/Fenton process is more feasible than the combination of HC with other Fenton like processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Comparative study on degradation and trap density-of-states of p type and n type organic semiconductors

    NASA Astrophysics Data System (ADS)

    Shijeesh, M. R.; Vikas, L. S.; Jayaraj, M. K.; Puigdollers, J.

    2014-10-01

    The OTFTs with both p type and n type channel layers were fabricated using the inverted-staggered (top contact) structure by thermal vapour deposition on Si/SiO2 substrate. Pentacene and N,N'-Dioctyl- 3,4,9,10- perylenedicarboximide (PTCDI-C8) were used as channel layer for the fabrications of p type and n type OTFTs respectively. A comparative study on the degradation and density of states (DOS) of p type and n type organic semiconductors have been carried out. In order to compare the stability and degradation of pentacene and PTCDI-C8 OTFTs, the devices were exposed to air for 2 h before performing electrical measurements in air. The DOS measurements revealed that a level with defect density of 1020 cm-3 was formed only in PTCDI C8 layer on exposure to air. The oxygen adsorption into the PTCDI-C8 active layer can be attributed to the formation of this level at 0.15 eV above the LUMO level. The electrical charge transport is strongly affected by the oxygen traps and hence n type organic materials are less stable than p type organic materials.

  15. Supercapacitor Operating At 200 Degrees Celsius

    PubMed Central

    Borges, Raquel S.; Reddy, Arava Leela Mohana; Rodrigues, Marco-Tulio F.; Gullapalli, Hemtej; Balakrishnan, Kaushik; Silva, Glaura G.; Ajayan, Pulickel M.

    2013-01-01

    The operating temperatures of current electrochemical energy storage devices are limited due to electrolyte degradation and separator instability at higher temperatures. Here we demonstrate that a tailored mixture of materials can facilitate operation of supercapacitors at record temperatures, as high as 200°C. Composite electrolyte/separator structures made from naturally occurring clay and room temperature ionic liquids, with graphitic carbon electrodes, show stable supercapacitor performance at 200°C with good cyclic stability. Free standing films of such high temperature composite electrolyte systems can become versatile functional membranes in several high temperature energy conversion and storage applications. PMID:23999206

  16. Investigation on a radiation tolerant betavoltaic battery based on Schottky barrier diode.

    PubMed

    Liu, Yebing; Hu, Rui; Yang, Yuqing; Wang, Guanquan; Luo, Shunzhong; Liu, Ning

    2012-03-01

    An Au-Si Schottky barrier diode was studied as the energy conversion device of betavoltaic batteries. Its electrical performance under radiation of Ni-63 and H-3 sources and radiation degradation under Am-241 were investigated and compared with those of the p-n junction. The results show that the Schottky diode had a higher I(sc) and harder radiation tolerance but lower V(oc) than the p-n junction. The results indicated that the Schottky diode can be a promising candidate for energy conversion of betavoltaic batteries. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Reflective diffractive beam splitter for laser interferometers.

    PubMed

    Fahr, Stephan; Clausnitzer, Tina; Kley, Ernst-Bernhard; Tünnermann, Andreas

    2007-08-20

    The first realization of a reflective 50/50 beam splitter based on a dielectric diffraction grating suitable for high-power laser interferometers is reported. The beam splitter is designed to operate at a wavelength of 1064 nm and in s polarization. To minimize the performance degradation of the device that is due to fabrication fluctuations, during the design process special attention was paid to achieve high fabrication tolerances especially of groove width and depth. Applying this beam splitter to high-power laser interferometers, such as future gravitational wave detectors, will avoid critical thermal lensing effects and allow for the free choice of substrate materials.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stuckelberger, Michael; West, Bradley; Nietzold, Tara

    In situ and operando measurement techniques combined with nanoscale resolution have proven invaluable in multiple fields of study. We argue that evaluating device performance as well as material behavior by correlative X-ray microscopy with <100 nm resolution can radically change the approach for optimizing absorbers, interfaces and full devices in solar cell research. Here, we thoroughly discuss the measurement technique of X-ray beam induced current and point out fundamental differences between measurements of wafer-based silicon and thin-film solar cells. Based on reports of the last years, we showcase the potential that X-ray microscopy measurements have in combination with in situmore » and operando approaches throughout the solar cell lifecycle: from the growth of individual layers to the performance under operating conditions and degradation mechanisms. Enabled by new developments in synchrotron beamlines, the combination of high spatial resolution with high brilliance and a safe working distance allows for the insertion of measurement equipment that can pave the way for a new class of experiments. When applied to photovoltaics research, we highlight today’s opportunities and challenges in the field of nanoscale X-ray microscopy, and give an outlook on future developments.« less

  19. Ultrashort Channel Length Black Phosphorus Field-Effect Transistors.

    PubMed

    Miao, Jinshui; Zhang, Suoming; Cai, Le; Scherr, Martin; Wang, Chuan

    2015-09-22

    This paper reports high-performance top-gated black phosphorus (BP) field-effect transistors with channel lengths down to 20 nm fabricated using a facile angle evaporation process. By controlling the evaporation angle, the channel length of the transistors can be reproducibly controlled to be anywhere between 20 and 70 nm. The as-fabricated 20 nm top-gated BP transistors exhibit respectable on-state current (174 μA/μm) and transconductance (70 μS/μm) at a VDS of 0.1 V. Due to the use of two-dimensional BP as the channel material, the transistors exhibit relatively small short channel effects, preserving a decent on-off current ratio of 10(2) even at an extremely small channel length of 20 nm. Additionally, unlike the unencapsulated BP devices, which are known to be chemically unstable in ambient conditions, the top-gated BP transistors passivated by the Al2O3 gate dielectric layer remain stable without noticeable degradation in device performance after being stored in ambient conditions for more than 1 week. This work demonstrates the great promise of atomically thin BP for applications in ultimately scaled transistors.

  20. Lamp pumped Nd:YAG laser. Space-qualifiable Nd:YAG laser for optical communications

    NASA Technical Reports Server (NTRS)

    Ward, K. B.

    1973-01-01

    Results are given of a program concerned with the design, fabrication, and evaluation of alkali pump lamps for eventual use in a space qualified Nd:YAG laser system. The study included evaluation of 2mm through 6mm bore devices. Primary emphasis was placed upon the optimization of the 4mm bore lamp and later on the 6mm bore lamp. As part of this effort, reference was made to the Sylvania work concerned with the theoretical modeling of the Nd:YAG laser. With the knowledge gained, a projection of laser performance was made based upon realistic lamp parameters which should easily be achieved during following developmental efforts. Measurements were made on the lamp performance both in and out of the cavity configuration. One significant observation was that for a constant vapor pressure device, the spectral and fluorescent output did not vary for vacuum or argon environment. Therefore, the laser can be operated in an inert environment (eg. argon) with no degradation in output. Laser output of 3.26 watts at 430 watts input was obtained for an optimized 4mm bore lamp.

Top