Subranging scheme for SQUID sensors
NASA Technical Reports Server (NTRS)
Penanen, Konstantin I. (Inventor)
2008-01-01
A readout scheme for measuring the output from a SQUID-based sensor-array using an improved subranging architecture that includes multiple resolution channels (such as a coarse resolution channel and a fine resolution channel). The scheme employs a flux sensing circuit with a sensing coil connected in series to multiple input coils, each input coil being coupled to a corresponding SQUID detection circuit having a high-resolution SQUID device with independent linearizing feedback. A two-resolution configuration (course and fine) is illustrated with a primary SQUID detection circuit for generating a fine readout, and a secondary SQUID detection circuit for generating a course readout, both having feedback current coupled to the respective SQUID devices via feedback/modulation coils. The primary and secondary SQUID detection circuits function and derive independent feedback. Thus, the SQUID devices may be monitored independently of each other (and read simultaneously) to dramatically increase slew rates and dynamic range.
NanoSQUIDs: Basics & recent advances
NASA Astrophysics Data System (ADS)
José Martínez-Pérez, Maria; Koelle, Dieter
2017-08-01
Superconducting Quantum Interference Devices (SQUIDs) are one of the most popular devices in superconducting electronics. They combine the Josephson effect with the quantization of magnetic flux in superconductors. This gives rise to one of the most beautiful manifestations of macroscopic quantum coherence in the solid state. In addition, SQUIDs are extremely sensitive sensors allowing us to transduce magnetic flux into measurable electric signals. As a consequence, any physical observable that can be converted into magnetic flux, e.g., current, magnetization, magnetic field or position, becomes easily accessible to SQUID sensors. In the late 1980s it became clear that downsizing the dimensions of SQUIDs to the nanometric scale would encompass an enormous increase of their sensitivity to localized tiny magnetic signals. Indeed, nanoSQUIDs opened the way to the investigation of, e.g., individual magnetic nanoparticles or surface magnetic states with unprecedented sensitivities. The purpose of this chapter is to present a detailed survey of microscopic and nanoscopic SQUID sensors. We will start by discussing the principle of operation of SQUIDs, placing the emphasis on their application as ultrasensitive detectors for small localized magnetic signals. We will continue by reviewing a number of existing devices based on different kinds of Josephson junctions and materials, focusing on their advantages and drawbacks. The last sections are left for applications of nanoSQUIDs in the fields of scanning SQUID microscopy and magnetic particle characterization, placing special stress on the investigation of individual magnetic nanoparticles.
Non-destructive Testing (NDT) of metal cracks using a high Tc rf-SQUID and eddy current method
NASA Technical Reports Server (NTRS)
Lu, D. F.; Fan, Chang-Xin; Ruan, J. Z.; Han, S. G.; Wong, K. W.; Sun, G. F.
1995-01-01
A SQUID is the most sensitive device to detect change in magnetic field. A nondestructive testing (NDT) device using high temperature SQUID's and eddy current method will be much more sensitive than those currently used eddy current systems, yet much cheaper than one with low temperature SQUID's. In this paper, we present our study of such a NDT device using a high temperature superconducting rf-SQUID as a gradiometer sensor. The result clearly demonstrates the expected sensitivity of the system, and indicates the feasibility of building a portable HTS SQUID NDT device with the help from cryocooler industry. Such a NDT device will have a significant impact on metal corrosion or crack detection technology.
Non-destructive testing (NDT) of metal cracks using a high Tc rf-SQUID and eddy current method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, D.F.; Fan, C.; Ruan, J.Z.
1994-12-31
A SQUID is the most sensitive device to detect change in magnetic field. A non-destructive testing (NDT) device using high temperature SQUIDs and eddy current method will be much more sensitive than those currently used eddy current systems, yet much cheaper than one with low temperature SQUIDs. In this paper, we present our study of such a NDT device using a high temperature superconducting rf-SQUID as a gradiometer sensor. The result clearly demonstrates the expected sensitivity of the system, and indicates the feasibility of building a portable HTS SQUID NDT device with the help from cryocooler industry. Such a NDTmore » device will have a significant impact on metal corrosion or crack detection technology.« less
2008-08-01
Figure 17: USGS Helmholtz coils with SQUID and fluxgate magnetometers installed. 22 Figure 18: Plot of SQUID and fluxgate data from a rotating... fluxgate magnetometer , each sensor measures flux in only one direction. Combinations of SQUID sensor elements are arranged in various configurations...than the absolute field value the way that a fluxgate magnetometer would do. If the SQUID is shut down or loses lock, it has no way to relate the new
NASA Astrophysics Data System (ADS)
Fong de Los Santos, Luis E.
Development of a scanning superconducting quantum interference device (SQUID) microscope system with interchangeable sensor configurations for imaging magnetic fields of room-temperature (RT) samples with sub-millimeter resolution. The low-critical-temperature (Tc) niobium-based monolithic SQUID sensor is mounted in the tip of a sapphire rod and thermally anchored to the cryostat helium reservoir. A 25 mum sapphire window separates the vacuum space from the RT sample. A positioning mechanism allows adjusting the sample-to-sensor spacing from the top of the Dewar. I have achieved a sensor-to-sample spacing of 100 mum, which could be maintained for periods of up to 4 weeks. Different SQUID sensor configurations are necessary to achieve the best combination of spatial resolution and field sensitivity for a given magnetic source. For imaging thin sections of geological samples, I used a custom-designed monolithic low-Tc niobium bare SQUID sensor, with an effective diameter of 80 mum, and achieved a field sensitivity of 1.5 pT/Hz1/2 and a magnetic moment sensitivity of 5.4 x 10-18 Am2/Hz1/2 at a sensor-to-sample spacing of 100 mum in the white noise region for frequencies above 100 Hz. Imaging action currents in cardiac tissue requires higher field sensitivity, which can only be achieved by compromising spatial resolution. I developed a monolithic low-Tc niobium multiloop SQUID sensor, with sensor sizes ranging from 250 mum to 1 mm, and achieved sensitivities of 480 - 180 fT/Hz1/2 in the white noise region for frequencies above 100 Hz, respectively. For all sensor configurations, the spatial resolution was comparable to the effective diameter and limited by the sensor-to-sample spacing. Spatial registration allowed us to compare high-resolution images of magnetic fields associated with action currents and optical recordings of transmembrane potentials to study the bidomain nature of cardiac tissue or to match petrography to magnetic field maps in thin sections of geological samples.
NASA Astrophysics Data System (ADS)
Mates, J. A. B.; Becker, D. T.; Bennett, D. A.; Dober, B. J.; Gard, J. D.; Hays-Wehle, J. P.; Fowler, J. W.; Hilton, G. C.; Reintsema, C. D.; Schmidt, D. R.; Swetz, D. S.; Vale, L. R.; Ullom, J. N.
2017-08-01
The number of elements in most cryogenic sensor arrays is limited by the technology available to multiplex signals from the arrays into a smaller number of wires and readout amplifiers. The largest demonstrated arrays of transition-edge sensor (TES) microcalorimeters contain roughly 250 detectors and use time-division multiplexing with Superconducting Quantum Interference Devices (SQUIDs). The bandwidth limits of this technology constrain the number of sensors per amplifier chain, a quantity known as the multiplexing factor, to several 10s. With microwave SQUID multiplexing, we can expand the readout bandwidth and enable much larger multiplexing factors. While microwave SQUID multiplexing of TES microcalorimeters has been previously demonstrated with small numbers of detectors, we now present a fully scalable demonstration in which 128 TES detectors are read out on a single pair of coaxial cables.
Failure Analysis of CCD Image Sensors Using SQUID and GMR Magnetic Current Imaging
NASA Technical Reports Server (NTRS)
Felt, Frederick S.
2005-01-01
During electrical testing of a Full Field CCD Image Senor, electrical shorts were detected on three of six devices. These failures occurred after the parts were soldered to the PCB. Failure analysis was performed to determine the cause and locations of these failures on the devices. After removing the fiber optic faceplate, optical inspection was performed on the CCDs to understand the design and package layout. Optical inspection revealed that the device had a light shield ringing the CCD array. This structure complicated the failure analysis. Alternate methods of analysis were considered, including liquid crystal, light and thermal emission, LT/A, TT/A SQUID, and MP. Of these, SQUID and MP techniques were pursued for further analysis. Also magnetoresistive current imaging technology is discussed and compared to SQUID.
High-Resolution Displacement Sensor Using a SQUID Array Amplifier
NASA Technical Reports Server (NTRS)
Chui, Talso; Penanen, Konstantin; Barmatz, M.; Paik, Ho Jung
2004-01-01
Improvement in the measurement of displacement has profound implications for both exploration technologies and fundamental physics. For planetary exploration, the new SQUID-based capacitive displacement sensor will enable a more sensitive gravity gradiometer for mapping the interior of planets and moons. A new concept of a superfluid clock to be reported by Penanen and Chui at this workshop is also based on a high-resolution displacement sensor. Examples of high-impact physics projects that can benefit from a better displacement sensor are: detection of gravitational waves, test of the equivalence principle, search for the postulated "axion" particle, and test of the inverse square law of gravity. We describe the concept of a new displacement sensor that makes use of a recent development in the Superconducting Quantum Interference Device (SQUID) technology. The SQUID array amplifier, invented by Welty and Martinis (IEEE Trans. Appl. Superconductivity 3, 2605, 1993), has about the same noise as a conventional SQUID; however, it can work at a much higher frequency of up to 5 MHz. We explain how the higher bandwidth can be translated into higher resolution using a bridge-balancing scheme that can simultaneously balance out both the carrier signal at the bridge output and the electrostatic force acting on the test mass.
NASA Astrophysics Data System (ADS)
Fong, L. E.; Holzer, J. R.; McBride, K. K.; Lima, E. A.; Baudenbacher, F.; Radparvar, M.
2005-05-01
We have developed a scanning superconducting quantum interference device (SQUID) microscope system with interchangeable sensor configurations for imaging magnetic fields of room-temperature (RT) samples with submillimeter resolution. The low-critical-temperature (Tc) niobium-based monolithic SQUID sensors are mounted on the tip of a sapphire and thermally anchored to the helium reservoir. A 25μm sapphire window separates the vacuum space from the RT sample. A positioning mechanism allows us to adjust the sample-to-sensor spacing from the top of the Dewar. We achieved a sensor-to-sample spacing of 100μm, which could be maintained for periods of up to four weeks. Different SQUID sensor designs are necessary to achieve the best combination of spatial resolution and field sensitivity for a given source configuration. For imaging thin sections of geological samples, we used a custom-designed monolithic low-Tc niobium bare SQUID sensor, with an effective diameter of 80μm, and achieved a field sensitivity of 1.5pT/Hz1/2 and a magnetic moment sensitivity of 5.4×10-18Am2/Hz1/2 at a sensor-to-sample spacing of 100μm in the white noise region for frequencies above 100Hz. Imaging action currents in cardiac tissue requires a higher field sensitivity, which can only be achieved by compromising spatial resolution. We developed a monolithic low-Tc niobium multiloop SQUID sensor, with sensor sizes ranging from 250μm to 1mm, and achieved sensitivities of 480-180fT /Hz1/2 in the white noise region for frequencies above 100Hz, respectively. For all sensor configurations, the spatial resolution was comparable to the effective diameter and limited by the sensor-to-sample spacing. Spatial registration allowed us to compare high-resolution images of magnetic fields associated with action currents and optical recordings of transmembrane potentials to study the bidomain nature of cardiac tissue or to match petrography to magnetic field maps in thin sections of geological samples.
Magnetocardiography with sensors based on giant magnetoresistance
NASA Astrophysics Data System (ADS)
Pannetier-Lecoeur, M.; Parkkonen, L.; Sergeeva-Chollet, N.; Polovy, H.; Fermon, C.; Fowley, C.
2011-04-01
Biomagnetic signals, mostly due to the electrical activity in the body, are very weak and they can only be detected by the most sensitive magnetometers, such as Superconducting Quantum Interference Devices (SQUIDs). We report here biomagnetic recordings with hybrid sensors based on Giant MagnetoResistance (GMR). We recorded magnetic signatures of the electric activity of the human heart (magnetocardiography) in healthy volunteers. The P-wave and QRS complex, known from the corresponding electric recordings, are clearly visible in the recordings after an averaging time of about 1 min. Multiple recordings at different locations over the chest yielded a dipolar magnetic field map and allowed localizing the underlying current sources. The sensitivity of the GMR-based sensors is now approaching that of SQUIDs and paves way for spin electronics devices for functional imaging of the body.
JPRS Report Science & Technology Japan
1989-06-02
Electronics •Superconducting Wiring in LSI •One Wafer Computer •Josephson Devices •SQUID Devices Infrared Sensor Magnetic Sensor •Superconducting...Guinier- de Wolff monochromatic focusing camera (CoK* radiation) and with Philips APD-10 auto-powder diffractometer (CuKÄ radiation). Pure Si was used as...crystallized and smooth surface. The values indicated in Fig. 2 were the thickness monitored by a quartz oscillating sensor located near the
The Microwave SQUID Multiplexer
NASA Astrophysics Data System (ADS)
Mates, John Arthur Benson
2011-12-01
This thesis describes a multiplexer of Superconducting Quantum Interference Devices (SQUIDs) with low-noise, ultra-low power dissipation, and great scalability. The multiplexer circuit measures the magnetic flux in a large number of unshunted rf SQUIDs by coupling each SQUID to a superconducting microwave resonator tuned to a unique resonance frequency and driving the resonators from a common feedline. A superposition of microwave tones measures each SQUID simultaneously using only two coaxial cables between the cryogenic device and room temperature. This multiplexer will enable the instrumentation of arrays with hundreds of thousands of low-temperature detectors for new applications in cosmology, materials analysis, and nuclear non-proliferation. The driving application of the Microwave SQUID Multiplexer is the readout of large arrays of superconducting transition-edge sensors, by some figures of merit the most sensitive detectors of electromagnetic signals over a span of more than nine orders of magnitude in energy, from 40 GHz microwaves to 200 keV gamma rays. Modern transition-edge sensors have noise-equivalent power as low as 10-20 W / Hz1/2 and energy resolution as good as 2 eV at 6 keV. These per-pixel sensitivities approach theoretical limits set by the underlying signals, motivating a rapid increase in pixel count to access new science. Compelling applications, like the non-destructive assay of nuclear material for treaty verification or the search for primordial gravity waves from inflation use arrays of these detectors to increase collection area or tile a focal plane. We developed three generations of SQUID multiplexers, optimizing the first for flux noise 0.17 muPhi0 / Hz1/2, the second for input current noise 19 pA / Hz1/2, and the last for practical multiplexing of large arrays of cosmic microwave background polarimeters based on transition-edge sensors. Using the last design we demonstrated multiplexed readout of prototype polarimeters with the performance required for the future development of a large-scale astronomical instrument.
Developments in Time-Division Multiplexing of X-ray Transition-Edge Sensors
NASA Astrophysics Data System (ADS)
Doriese, W. B.; Morgan, K. M.; Bennett, D. A.; Denison, E. V.; Fitzgerald, C. P.; Fowler, J. W.; Gard, J. D.; Hays-Wehle, J. P.; Hilton, G. C.; Irwin, K. D.; Joe, Y. I.; Mates, J. A. B.; O'Neil, G. C.; Reintsema, C. D.; Robbins, N. O.; Schmidt, D. R.; Swetz, D. S.; Tatsuno, H.; Vale, L. R.; Ullom, J. N.
2016-07-01
Time-division multiplexing (TDM) is a mature scheme for the readout of arrays of transition-edge sensors (TESs). TDM is based on superconducting-quantum-interference-device (SQUID) current amplifiers. Multiple spectrometers based on gamma-ray and X-ray microcalorimeters have been operated with TDM readout, each at the scale of 200 sensors per spectrometer, as have several astronomical cameras with thousands of sub-mm or microwave bolometers. Here we present the details of two different versions of our TDM system designed to read out X-ray TESs. The first has been field-deployed in two 160-sensor (8 columns × 20 rows) spectrometers and four 240-sensor (8 columns × 30 rows) spectrometers. It has a three-SQUID-stage architecture, switches rows every 320 ns, and has total readout noise of 0.41 μ Φ 0 / surd Hz. The second, which is presently under development, has a two-SQUID-stage architecture, switches rows every 160 ns, and has total readout noise of 0.19 μ Φ 0 / surd Hz. Both quoted noise values are non-multiplexed and referred to the first-stage SQUID. In a demonstration of this new architecture, a multiplexed 1-column × 32-row array of NIST TESs achieved average energy resolution of 2.55± 0.01 eV at 6 keV.
Analytical approximations to the dynamics of an array of coupled DC SQUIDs
NASA Astrophysics Data System (ADS)
Berggren, Susan; Palacios, Antonio
2014-04-01
Coupled dynamical systems that operate near the onset of a bifurcation can lead, under certain conditions, to strong signal amplification effects. Over the past years we have studied this generic feature on a wide range of systems, including: magnetic and electric fields sensors, gyroscopic devices, and arrays of loops of superconducting quantum interference devices, also known as SQUIDs. In this work, we consider an array of SQUID loops connected in series as a case study to derive asymptotic analytical approximations to the exact solutions through perturbation analysis. Two approaches are considered. First, a straightforward expansion in which the non-linear parameter related to the inductance of the DC SQUID is treated as the small perturbation parameter. Second, a more accurate procedure that considers the SQUID phase dynamics as non-uniform motion on a circle. This second procedure is readily extended to the series array and it could serve as a mathematical framework to find approximate solutions to related complex systems with high-dimensionality. To the best of our knowledge, an approximate analytical solutions to an array of SQUIDs has not been reported yet in the literature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirtley, John R., E-mail: jkirtley@stanford.edu; Rosenberg, Aaron J.; Palmstrom, Johanna C.
Superconducting QUantum Interference Device (SQUID) microscopy has excellent magnetic field sensitivity, but suffers from modest spatial resolution when compared with other scanning probes. This spatial resolution is determined by both the size of the field sensitive area and the spacing between this area and the sample surface. In this paper we describe scanning SQUID susceptometers that achieve sub-micron spatial resolution while retaining a white noise floor flux sensitivity of ≈2μΦ{sub 0}/Hz{sup 1/2}. This high spatial resolution is accomplished by deep sub-micron feature sizes, well shielded pickup loops fabricated using a planarized process, and a deep etch step that minimizes themore » spacing between the sample surface and the SQUID pickup loop. We describe the design, modeling, fabrication, and testing of these sensors. Although sub-micron spatial resolution has been achieved previously in scanning SQUID sensors, our sensors not only achieve high spatial resolution but also have integrated modulation coils for flux feedback, integrated field coils for susceptibility measurements, and batch processing. They are therefore a generally applicable tool for imaging sample magnetization, currents, and susceptibilities with higher spatial resolution than previous susceptometers.« less
High temperature superconductor dc-SQUID microscope with a soft magnetic flux guide
NASA Astrophysics Data System (ADS)
Poppe, U.; Faley, M. I.; Zimmermann, E.; Glaas, W.; Breunig, I.; Speen, R.; Jungbluth, B.; Soltner, H.; Halling, H.; Urban, K.
2004-05-01
A scanning SQUID microscope based on high-temperature superconductor (HTS) dc-SQUIDs was developed. An extremely soft magnetic amorphous foil was used to guide the flux from room temperature samples to the liquid-nitrogen-cooled SQUID sensor and back. The flux guide passes through the pick-up loop of the HTS SQUID, providing an improved coupling of magnetic flux of the object to the SQUID. The device measures the z component (direction perpendicular to the sample surface) of the stray field of the sample, which is rastered with submicron precision in the x-y direction by a motorized computer-controlled scanning stage. A lateral resolution better than 10 µm, with a field resolution of about 0.6 nT Hz-1/2 was achieved for the determination of the position of the current carrying thin wires. The presence of the soft magnetic foil did not significantly increase the flux noise of the SQUID.
Nano Superconducting Quantum Interference device: A powerful tool for nanoscale investigations
NASA Astrophysics Data System (ADS)
Granata, Carmine; Vettoliere, Antonio
2016-02-01
The magnetic sensing at nanoscale level is a promising and interesting research topic of nanoscience. Indeed, magnetic imaging is a powerful tool for probing biological, chemical and physical systems. The study of small spin cluster, like magnetic molecules and nanoparticles, single electron, cold atom clouds, is one of the most stimulating challenges of applied and basic research of the next years. In particular, the magnetic nanoparticle investigation plays a fundamental role for the modern material science and its relative technological applications like ferrofluids, magnetic refrigeration and biomedical applications, including drug delivery, hyper-thermia cancer treatment and magnetic resonance imaging contrast-agent. Actually, one of the most ambitious goals of the high sensitivity magnetometry is the detection of elementary magnetic moment or spin. In this framework, several efforts have been devoted to the development of a high sensitivity magnetic nanosensor pushing sensing capability to the individual spin level. Among the different magnetic sensors, Superconducting QUantum Interference Devices (SQUIDs) exhibit an ultra high sensitivity and are widely employed in numerous applications. Basically, a SQUID consists of a superconducting ring (sensitive area) interrupted by two Josephson junctions. In the recent years, it has been proved that the magnetic response of nano-objects can be effectively measured by using a SQUID with a very small sensitive area (nanoSQUID). In fact, the sensor noise, expressed in terms of the elementary magnetic moment (spin or Bohr magneton), is linearly dependent on the SQUID loop side length. For this reason, SQUIDs have been progressively miniaturized in order to improve the sensitivity up to few spin per unit of bandwidth. With respect to other techniques, nanoSQUIDs offer the advantage of direct measurement of magnetization changes in small spin systems. In this review, we focus on nanoSQUIDs and its applications. In particular, we will discuss the motivations, the theoretical aspects, the fabrication techniques, the different nanoSQUIDs and the relative nanoscale applications.
NASA Astrophysics Data System (ADS)
Kaufman, Lloyd; Williamson, Samuel J.; Costaribeiro, P.
1988-02-01
Recently developed small arrays of SQUID-based magnetic sensors can, if appropriately placed, locate the position of a confined biomagnetic source without moving the array. The authors present a technique with a relative accuracy of about 2 percent for calibrating such sensors having detection coils with the geometry of a second-order gradiometer. The effects of calibration error and magnetic noise on the accuracy of locating an equivalent current dipole source in the human brain are investigated for 5- and 7-sensor probes and for a pair of 7-sensor probes. With a noise level of 5 percent of peak signal, uncertainties of about 20 percent in source strength and depth for a 5-sensor probe are reduced to 8 percent for a pair of 7-sensor probes, and uncertainties of about 15 mm in lateral position are reduced to 1 mm, for the configuration considered.
NASA Astrophysics Data System (ADS)
Jiang, Feng-Ying; Wang, Ning; Jin, Yi-Rong; Deng, Hui; Tian, Ye; Lang, Pei-Lin; Li, Jie; Chen, Ying-Fei; Zheng, Dong-Ning
2013-04-01
We carry out an ultra-low-field nuclear magnetic resonance (NMR) experiment based on high-Tc superconducting quantum interference devices (SQUIDs). The measurement field is in a micro-tesla range (~10 μT-100 μT) and the experiment is conducted in a home-made magnetically-shielded-room (MSR). The measurements are performed by the indirect coupling method in which the signal of nuclei precession is indirectly coupled to the SQUID through a tuned copper coil transformer. In such an arrangement, the interferences of applied measurement and polarization field to the SQUID sensor are avoided and the performance of the SQUID is not destroyed. In order to compare the detection sensitivity obtained by using the SQUID with that achieved using a conventional low-noise-amplifier, we perform the measurements using a commercial room temperature amplifier. The results show that in a wide frequency range (~1 kHz-10 kHz) the measurements with the SQUID sensor exhibit a higher signal-to-noise ratio. Further, we discuss the dependence of NMR peak magnitude on measurement frequency. We attribute the reduction of the peak magnitude at high frequency to the increased field inhomogeneity as the measurement field increases. This is verified by compensating the field gradient using three sets of gradient coils.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1993-10-01
The bibliography contains citations concerning gradiometers, magnetometers, and infrared detectors which use superconductors to improve sensitivity. Applications include biomagnetic measurements for medical studies, gravity wave experiments, geomagnetism, galvanometers, voltmeters, bolometers and radiometers. Some articles refer to design considerations for cooling systems for the sensors and detectors, and fabrication techniques for SQUIDS (superconducting quantum interference devices). (Contains 250 citations and includes a subject term index and title list.)
Multichannel System Based on a High Sensitivity Superconductive Sensor for Magnetoencephalography
Rombetto, Sara; Granata, Carmine; Vettoliere, Antonio; Russo, Maurizio
2014-01-01
We developed a multichannel system based on superconducting quantum interference devices (SQUIDs) for magnetoencephalography measurements. Our system consists of 163 fully-integrated SQUID magnetometers, 154 channels and 9 references, and all of the operations are performed inside a magnetically-shielded room. The system exhibits a magnetic field noise spectral density of approximatively 5 fT/Hz1/2. The presented magnetoencephalography is the first system working in a clinical environment in Italy. PMID:25006995
Performance of Large Format Transition Edge Sensor Microcalorimeter Arrays
NASA Technical Reports Server (NTRS)
Chervenak, J. A.; Adams, J. A.; Bandler, S. B.; Busch, S. E.; Eckart, M. E.; Ewin, A. E.; Finkbeiner, F. M.; Kilbourne, C. A.; Kelley, R. L.; Porst, J. P.;
2012-01-01
We have produced a variety of superconducting transition edge sensor array designs for microcalorimetric detection of x-rays. Arrays are characterized with a time division SQUID multiplexer such that greater than 10 devices from an array can be measured in the same cooldown. Designs include kilo pixel scale arrays of relatively small sensors (-75 micron pitch) atop a thick metal heatsinking layer as well as arrays of membrane-isolated devices on 250 micron and up to 600 micron pitch. We discuss fabrication and performance of microstripline wiring at the small scales achieved to date. We also address fabrication issues with reduction of absorber contact area in small devices.
NASA Astrophysics Data System (ADS)
Kang, Chan Seok; Kim, Kiwoong; Lee, Seong-Joo; Hwang, Seong-min; Kim, Jin-Mok; Yu, Kwon Kyu; Kwon, Hyukchan; Lee, Sang Kil; Lee, Yong-Ho
2011-09-01
We developed an ultra-low field (ULF)-nuclear magnetic resonance (NMR) measurement system capable of working with a measurement field (Bm) of several micro-tesla and performed basic NMR studies with a double relaxation oscillation superconducting quantum interference device (DROS) instead of conventional dc-SQUIDs. DROS is a SQUID sensor utilizing a relaxation oscillation between a dc-SQUID and a relaxation circuit; the new unit consists of an inductor and a resistor, and is connected in parallel with the SQUID. DROS has a 10 times larger flux-to-voltage transfer coefficient (˜mV/ϕ0) than that of the dc-SQUID, and this large transfer coefficient enables the acquisition of the SQUID signal with a simple flux-locked-loop (FLL) circuit using room temperature pre-amplifiers. The DROS second-order gradiometer showed average field noise of 9.2 μϕ0/√Hz in a magnetically shielded room (MSR). In addition, a current limiter formed of a Josephson junction array was put in a flux-transformer of DROS to prevent excessive currents that can be generated from the high pre-polarization field (Bp). Using this system, we measured an 1H NMR signal in water under 2.8 μT Bm field and reconstructed a one-dimensional MR image from the 1H NMR signal under a gradient field BG of 4.09 nT/mm. In addition, we confirmed that the ULF-NMR system can measure the NMR signal in the presence of metal without any distortion by measuring the NMR signal of a sample wrapped with metal. Lastly, we have measured the scalar J-coupling of trimethylphosphate and were able to confirm a clear doublet NMR signal with the coupling strength J3[P,H] = 10.4 ± 0.8 Hz. Finally, because the existing ULF-NMR/MRI studies were almost all performed with dc-SQUID based systems, we constructed a dc-SQUID-based ULF-NMR system in addition to the DROS based system and compared the characteristics of the two different systems by operating the two systems under identical experimental conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-02-01
The bibliography contains citations concerning gradiometers, magnetometers, and infrared detectors which use superconductors to improve sensitivity. Applications include biomagnetic measurements for medical studies, gravity wave experiments, geomagnetism and ocean bottom magnetic exploration, galvanometers and voltmeters, and bolometers and radiometers. Some articles refer to design considerations for cooling systems for the sensors and detectors, and fabrication techniques for SQUIDS (superconducting quantum interference devices.) (Contains 250 citations and includes a subject term index and title list.)
Improved Sensing Coils for SQUIDs
NASA Technical Reports Server (NTRS)
Penanen, Konstantin; Hahn, Inseob; Eom, Byeong Ho
2007-01-01
An improvement in the design and fabrication of sensing coils of superconducting quantum interference device (SQUID) magnetometers has been proposed to increase sensitivity. It has been estimated that, in some cases, it would be possible to increase sensitivity by about half or to reduce measurement time correspondingly. The pertinent aspects of the problems of design and fabrication can be summarized as follows: In general, to increase the sensitivity of a SQUID magnetometer, it is necessary to maximize the magnetic flux enclosed by the sensing coil while minimizing the self-inductance of this coil. It is often beneficial to fabricate the coil from a thicker wire to reduce its self-inductance. Moreover, to optimize the design of the coil with respect to sensitivity, it may be necessary to shape the wire to other than a commonly available circular or square cross-section. On the other hand, it is not practical to use thicker superconducting wire for the entire superconducting circuit, especially if the design of a specific device requires a persistent-current loop enclosing a remotely placed SQUID sensor. It may be possible to bond a thicker sensing-coil wire to thinner superconducting wires leading to a SQUID sensor, but it could be difficult to ensure reliable superconducting connections, especially if the bonded wires are made of different materials. The main idea is to mold the sensing coil in place, to more nearly optimum cross sectional shape, instead of making the coil by winding standard pre-fabricated wire. For this purpose, a thin superconducting wire loop that is an essential part of the SQUID magnetometer would be encapsulated in a form that would serve as a mold. A low-melting-temperature superconducting metal (e.g., indium, tin, or a lead/tin alloy) would be melted into the form, which would be sized and shaped to impart the required cross section to the coil thus formed.
Kuchnir, M.; Mills, F.E.
1984-09-28
A current sensor for measuring the dc component of a beam of charged particles employs a superconducting pick-up loop probe, with twisted superconducting leads in combination with a Superconducting Quantum Interference Device (SQUID) detector. The pick-up probe is in the form of a single-turn loop, or a cylindrical toroid, through which the beam is directed and within which a first magnetic flux is excluded by the Meisner effect. The SQUID detector acts as a flux-to-voltage converter in providing a current to the pick-up loop so as to establish a second magnetic flux within the electrode which nulls out the first magnetic flux. A feedback voltage within the SQUID detector represents the beam current of the particles which transit the pick-up loop. Meisner effect currents prevent changes in the magnetic field within the toroidal pick-up loop and produce a current signal independent of the beam's cross-section and its position within the toroid, while the combination of superconducting elements provides current measurement sensitivities in the nano-ampere range.
Kuchnir, Moyses; Mills, Frederick E.
1987-01-01
A current sensor for measuring the DC component of a beam of charged particles employs a superconducting pick-up loop probe, with twisted superconducting leads in combination with a Superconducting Quantum Interference Device (SQUID) detector. The pick-up probe is in the form of a single-turn loop, or a cylindrical toroid, through which the beam is directed and within which a first magnetic flux is excluded by the Meisner effect. The SQUID detector acts as a flux-to-voltage converter in providing a current to the pick-up loop so as to establish a second magnetic flux within the electrode which nulls out the first magnetic flux. A feedback voltage within the SQUID detector represents the beam current of the particles which transit the pick-up loop. Meisner effect currents prevent changes in the magnetic field within the toroidal pick-up loop and produce a current signal independent of the beam's cross-section and its position within the toroid, while the combination of superconducting elements provides current measurement sensitivites in the nano-ampere range.
SQUID sensor application for small metallic particle detection
NASA Astrophysics Data System (ADS)
Tanaka, Saburo; Hatsukade, Yoshimi; Ohtani, Takeyoshi; Suzuki, Shuichi
2009-04-01
High-Tc superconducting quantum interference device (SQUID) is an ultra-sensitive magnetic sensor. Since the performance of the SQUID is improved and stabilized, now it is ready for application. One strong candidate for application is a detection system of magnetic foreign matters in industrial products or beverages. There is a possibility that ultra-small metallic foreign matter has been accidentally mixed with industrial products such as lithium ion batteries. If this happens, the manufacturer of the product suffers a great loss recalling products. The outer dimension of metallic particles less than 100 μm cannot be detected by an X-ray imaging, which is commonly used for the inspection. Ionization of the material is also a big issue for beverages in the case of the X-ray imaging. Therefore a highly sensitive and safety detection system for small foreign matters is required. We developed detection systems based on high-Tc SQUID with a high-performance magnetic shield. We could successfully measure small iron particles of 100 μm on a belt conveyer and stainless steel balls of 300 μm in water. These detection levels were hard to be achieved by a conventional X-ray detection or other methods.
Biomagnetic instrumentation and measurement
NASA Technical Reports Server (NTRS)
Iufer, E. J.
1978-01-01
The instruments and techniques of biomagnetic measurement have progressed greatly in the past 15 years and are now of a quality appropriate to clinical applications. The paper reports on recent developments in the design and application of SQUID (Superconducting Quantum Interference Device) magnetometers to biomagnetic measurement. The discussion covers biomagnetic field levels, magnetocardiography, magnetic susceptibility plethysmography, ambient noise and sensor types, principles of operation of a SQUID magnetometer, and laboratory techniques. Of the many promising applications of noninvasive biomagnetic measurement, magnetocardiography is the most advanced and the most likely to find clinical application in the near future.
NASA Astrophysics Data System (ADS)
Kohjiro, Satoshi; Hirayama, Fuminori; Yamamori, Hirotake; Nagasawa, Shuichi; Fukuda, Daiji; Hidaka, Mutsuo
2014-06-01
White noise of dissipationless microwave radio frequency superconducting quantum interference device (RF-SQUID) multiplexers has been experimentally studied to evaluate their readout performance for transition edge sensor (TES) photon counters ranging from near infrared to gamma ray. The characterization has been carried out at 4 K, first to avoid the low-frequency fluctuations present at around 0.1 K, and second, for a feasibility study of readout operation at 4 K for extended applications. To increase the resonant Q at 4 K and maintain low noise SQUID operation, multiplexer chips consisting of niobium nitride (NbN)-based coplanar-waveguide resonators and niobium (Nb)-based RF-SQUIDs have been developed. This hybrid multiplexer exhibited 1 × 104 ≤ Q ≤ 2 × 104 and the square root of spectral density of current noise referred to the SQUID input √SI = 31 pA/√Hz. The former and the latter are factor-of-five and seven improvements from our previous results on Nb-based resonators, respectively. Two-directional readout on the complex plane of the transmission component of scattering matrix S21 enables us to distinguish the flux noise from noise originating from other sources, such as the cryogenic high electron mobility transistor (HEMT) amplifier. Systematic noise measurements with various microwave readout powers PMR make it possible to distinguish the contribution of noise sources within the system as follows: (1) The achieved √SI is dominated by the Nyquist noise from a resistor at 4 K in parallel to the SQUID input coil which is present to prevent microwave leakage to the TES. (2) The next dominant source is either the HEMT-amplifier noise (for small values of PMR) or the quantization noise due to the resolution of 300-K electronics (for large values of PMR). By a decrease of these noise levels to a degree that is achievable by current technology, we predict that the microwave RF-SQUID multiplexer can exhibit √SI ≤ 5 pA/√Hz, i.e., close to √SI of state-of-the-art DC-SQUID-based multiplexers.
TEM measurement in a low resistivity overburden performed by using low temperature SQUID
NASA Astrophysics Data System (ADS)
Ji, Yanju; Du, Shangyu; Xie, Lijun; Chang, Kai; Liu, Yang; Zhang, Yi; Xie, Xiaoming; Wang, Yuan; Lin, Jun; Rong, Liangliang
2016-12-01
Exploration of areas with thick low resistivity overburden is still a challenge for time domain transient electromagnetic method (TEM). We report modeling of a sandwich-layered earth by simulating the B field response with different conductive target layer thicknesses, thus obtaining a relationship between the resolution of the B field and the exploration depth. A low temperature Superconducting Quantum Interference Device (SQUID) is an ideal sensor for measuring the secondary magnetic field B in TEM measurements, because its sensitivity of several fT/√Hz is independent of frequency. In our TEM experiments, we utilized two different coils as receivers, a simple SQUID system, and a large transmitter loop of 200 × 200 m2 to compare the detected decay curves. At some measurement points, a decay signal of more than 300 ms duration was obtained by using the SQUID. Apparent resistivity profiles of about 9 km length are presented.
Source localization of brain activity using helium-free interferometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dammers, Jürgen, E-mail: J.Dammers@fz-juelich.de; Chocholacs, Harald; Eich, Eberhard
2014-05-26
To detect extremely small magnetic fields generated by the human brain, currently all commercial magnetoencephalography (MEG) systems are equipped with low-temperature (low-T{sub c}) superconducting quantum interference device (SQUID) sensors that use liquid helium for cooling. The limited and increasingly expensive supply of helium, which has seen dramatic price increases recently, has become a real problem for such systems and the situation shows no signs of abating. MEG research in the long run is now endangered. In this study, we report a MEG source localization utilizing a single, highly sensitive SQUID cooled with liquid nitrogen only. Our findings confirm that localizationmore » of neuromagnetic activity is indeed possible using high-T{sub c} SQUIDs. We believe that our findings secure the future of this exquisitely sensitive technique and have major implications for brain research and the developments of cost-effective multi-channel, high-T{sub c} SQUID-based MEG systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-07-01
This bibliography contains citations concerning gradiometers, magnetometers, and infrared detectors which use superconductors to improve sensitivity. Applications include biomagnetic measurements for medical studies, gravity-wave experiments, geomagnetism and ocean-bottom magnetic exploration, galvanometers and voltmeters, and bolometers and radiometers. Some articles refer to design considerations for cooling systems for the sensors and detectors, and fabrication techniques for SQUIDs (superconducting quantum interference devices.) (This updated bibliography contains 74 citations, all of which are new entries to the previous edition.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-07-01
This bibliography contains citations concerning gradiometers, magnetometers, and infrared detectors which use superconductors to improve sensitivity. Applications include biomagnetic measurements for medical studies, gravity-wave experiments, geomagnetism and ocean-bottom magnetic exploration, galvanometers and voltmeters, and bolometers and radiometers. Some articles refer to design considerations for cooling systems for the sensors and detectors, and fabrication techniques for SQUIDs (superconducting quantum interference devices.) (This updated bibliography contains 394 citations, none of which are new entries to the previous edition.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-04-01
This bibliography contains citations from conference proceedings concerning gradiometers, magnetometers, and infrared detectors which use superconductors to improve sensitivity. Applications include biomagnetic measurements for medical studies, gravity-wave experiments, geomagnetism and ocean bottom magnetic exploration, galvanometers and voltmeters, and bolometers and radiometers. Some articles refer to design considerations for cooling systems for the sensors and detectors, and fabrication techniques for SQUIDS (superconducting quantum interference devices.) (Contains 115 citations fully indexed and including a title list.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-07-01
This bibliography contains citations concerning gradiometers, magnetometers, and infrared detectors which use superconductors to improve sensitivity. Applications include biomagnetic measurements for medical studies, gravity-wave experiments, geomagnetism, and ocean-bottom magnetic exploration, galvanometers and voltmeters, and bolometers, and radiometers. Some articles refer to design considerations for cooling systems for the sensors and detectors, and fabrication techniques for squids (superconducting quantum interference devices.) (This updated bibliography contains 394 citations, 71 of which are new entries to the previous edition.)
SQUIDs: microscopes and nondestructive evaluation
NASA Astrophysics Data System (ADS)
Mück, Michael
2005-03-01
SQUIDs (Superconducting Quantum Interference Devices) are magnetic field sensores with unsurpassed sensitivity. They are amazingly versatile, being able to measure all physical quantities which can be converted to magnetic flux. They are routinely fabricated in thin film technology from two classes of superconducting materials: high-temperature superconductors (HTS) which are usually cooled to 77 K, and low-temperature superconductors (LTS), which have to be cooled to 4.2 K. SQUIDs have many applications, two of which shall be discussed in this paper. In SQUID microscopy, a SQUID scans a sample, which preferrably is at room temperature, and measures the two-dimensional magnetic field distribution at the surface of the sample. In order to achieve a relatively high spatial resolution, the stand-off distance between the sample and the SQUID is made as small as possible. SQUIDs show also promising results in the field of nondestructive testing of various materials. For example, ferromagnetic impurities in stainless steel formed by aging processes in the material can be detected with high probability, and cracks in conducting materials, for example aircraft parts, can be located using eddy current methods. Especially for the case of thick, highly conductive, or ferromagnetic materials, as well as sintered materials, it can be shown that a SQUID-based NDE system exhibits a much higher sensitivity compared to conventional eddy current NDE and ultrasonic testing.
Front-end multiplexing—applied to SQUID multiplexing: Athena X-IFU and QUBIC experiments
NASA Astrophysics Data System (ADS)
Prele, D.
2015-08-01
As we have seen for digital camera market and a sensor resolution increasing to "megapixels", all the scientific and high-tech imagers (whatever the wave length - from radio to X-ray range) tends also to always increases the pixels number. So the constraints on front-end signals transmission increase too. An almost unavoidable solution to simplify integration of large arrays of pixels is front-end multiplexing. Moreover, "simple" and "efficient" techniques allow integration of read-out multiplexers in the focal plane itself. For instance, CCD (Charge Coupled Device) technology has boost number of pixels in digital camera. Indeed, this is exactly a planar technology which integrates both the sensors and a front-end multiplexed readout. In this context, front-end multiplexing techniques will be discussed for a better understanding of their advantages and their limits. Finally, the cases of astronomical instruments in the millimeter and in the X-ray ranges using SQUID (Superconducting QUantum Interference Device) will be described.
Atomic magnetometer for human magnetoencephalograpy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwindt, Peter; Johnson, Cort N.
2010-12-01
We have developed a high sensitivity (<5 fTesla/{radical}Hz), fiber-optically coupled magnetometer to detect magnetic fields produced by the human brain. This is the first demonstration of a noncryogenic sensor that could replace cryogenic superconducting quantum interference device (SQUID) magnetometers in magnetoencephalography (MEG) and is an important advance in realizing cost-effective MEG. Within the sensor, a rubidium vapor is optically pumped with 795 laser light while field-induced optical rotations are measured with 780 nm laser light. Both beams share a single optical axis to maximize simplicity and compactness. In collaboration with neuroscientists at The Mind Research Network in Albuquerque, NM, themore » evoked responses resulting from median nerve and auditory stimulation were recorded with the atomic magnetometer and a commercial SQUID-based MEG system with signals comparing favorably. Multi-sensor operation has been demonstrated with two AMs placed on opposite sides of the head. Straightforward miniaturization would enable high-density sensor arrays for whole-head magnetoencephalography.« less
Magnetic Sensitivity of AlMn TESes and Shielding Considerations for Next-Generation CMB Surveys
NASA Astrophysics Data System (ADS)
Vavagiakis, E. M.; Henderson, S. W.; Zheng, K.; Cho, H.-M.; Cothard, N. F.; Dober, B.; Duff, S. M.; Gallardo, P. A.; Hilton, G.; Hubmayr, J.; Irwin, K. D.; Koopman, B. J.; Li, D.; Nati, F.; Niemack, M. D.; Reintsema, C. D.; Simon, S.; Stevens, J. R.; Suzuki, A.; Westbrook, B.
2018-05-01
In the next decade, new ground-based cosmic microwave background (CMB) experiments such as Simons Observatory, CCAT-prime, and CMB-S4 will increase the number of detectors observing the CMB by an order of magnitude or more, dramatically improving our understanding of cosmology and astrophysics. These projects will deploy receivers with as many as hundreds of thousands of transition edge sensor (TES) bolometers coupled to superconducting quantum interference device (SQUID)-based readout systems. It is well known that superconducting devices such as TESes and SQUIDs are sensitive to magnetic fields. However, the effects of magnetic fields on TESes are not easily predicted due to the complex behavior of the superconducting transition, which motivates direct measurements of the magnetic sensitivity of these devices. We present comparative four-lead measurements of the critical temperature versus applied magnetic field of AlMn TESes varying in geometry, doping, and leg length, including Advanced ACT and POLARBEAR-2/Simons Array bolometers. MoCu ACTPol TESes are also tested and are found to be more sensitive to magnetic fields than the AlMn devices. We present an observation of weak-link-like behavior in AlMn TESes at low critical currents. We also compare measurements of magnetic sensitivity for time division multiplexing SQUIDs and frequency division multiplexing microwave (μ MUX) rf-SQUIDs. We discuss the implications of our measurements on the magnetic shielding required for future experiments that aim to map the CMB to near-fundamental limits.
Benchmarking for On-Scalp MEG Sensors.
Xie, Minshu; Schneiderman, Justin F; Chukharkin, Maxim L; Kalabukhov, Alexei; Riaz, Bushra; Lundqvist, Daniel; Whitmarsh, Stephen; Hamalainen, Matti; Jousmaki, Veikko; Oostenveld, Robert; Winkler, Dag
2017-06-01
We present a benchmarking protocol for quantitatively comparing emerging on-scalp magnetoencephalography (MEG) sensor technologies to their counterparts in state-of-the-art MEG systems. As a means of validation, we compare a high-critical-temperature superconducting quantum interference device (high T c SQUID) with the low- T c SQUIDs of an Elekta Neuromag TRIUX system in MEG recordings of auditory and somatosensory evoked fields (SEFs) on one human subject. We measure the expected signal gain for the auditory-evoked fields (deeper sources) and notice some unfamiliar features in the on-scalp sensor-based recordings of SEFs (shallower sources). The experimental results serve as a proof of principle for the benchmarking protocol. This approach is straightforward, general to various on-scalp MEG sensors, and convenient to use on human subjects. The unexpected features in the SEFs suggest on-scalp MEG sensors may reveal information about neuromagnetic sources that is otherwise difficult to extract from state-of-the-art MEG recordings. As the first systematically established on-scalp MEG benchmarking protocol, magnetic sensor developers can employ this method to prove the utility of their technology in MEG recordings. Further exploration of the SEFs with on-scalp MEG sensors may reveal unique information about their sources.
Code-division-multiplexed readout of large arrays of TES microcalorimeters
NASA Astrophysics Data System (ADS)
Morgan, K. M.; Alpert, B. K.; Bennett, D. A.; Denison, E. V.; Doriese, W. B.; Fowler, J. W.; Gard, J. D.; Hilton, G. C.; Irwin, K. D.; Joe, Y. I.; O'Neil, G. C.; Reintsema, C. D.; Schmidt, D. R.; Ullom, J. N.; Swetz, D. S.
2016-09-01
Code-division multiplexing (CDM) offers a path to reading out large arrays of transition edge sensor (TES) X-ray microcalorimeters with excellent energy and timing resolution. We demonstrate the readout of X-ray TESs with a 32-channel flux-summed code-division multiplexing circuit based on superconducting quantum interference device (SQUID) amplifiers. The best detector has energy resolution of 2.28 ± 0.12 eV FWHM at 5.9 keV and the array has mean energy resolution of 2.77 ± 0.02 eV over 30 working sensors. The readout channels are sampled sequentially at 160 ns/row, for an effective sampling rate of 5.12 μs/channel. The SQUID amplifiers have a measured flux noise of 0.17 μΦ0/√Hz (non-multiplexed, referred to the first stage SQUID). The multiplexed noise level and signal slew rate are sufficient to allow readout of more than 40 pixels per column, making CDM compatible with requirements outlined for future space missions. Additionally, because the modulated data from the 32 SQUID readout channels provide information on each X-ray event at the row rate, our CDM architecture allows determination of the arrival time of an X-ray event to within 275 ns FWHM with potential benefits in experiments that require detection of near-coincident events.
NASA Technical Reports Server (NTRS)
Uemaatsu, Hirohiko; Parkinson, Bradford W.; Lockhart, James M.; Muhlfelder, Barry
1993-01-01
Gravity Probe B (GP-B) is a relatively gyroscope experiment begun at Stanford University in 1960 and supported by NASA since 1963. This experiment will check, for the first time, the relativistic precession of an Earth-orbiting gyroscope that was predicted by Einstein's General Theory of Relativity, to an accuracy of 1 milliarcsecond per year or better. A drag-free satellite will carry four gyroscopes in a polar orbit to observe their relativistic precession. The primary sensor for measuring the direction of gyroscope spin axis is the SQUID (superconducting quantum interference device) magnetometer. The data reduction scheme designed for the GP-B program processes the signal from the SQUID magnetometer and estimates the relativistic precession rates. We formulated the data reduction scheme and designed the Niobium bird experiment to verify the performance of the data reduction scheme experimentally with an actual SQUID magnetometer within the test loop. This paper reports the results from the first phase of the Niobium bird experiment, which used a commercially available SQUID magnetometer as its primary sensor, and adresses the issues they raised. The first phase resulted in a large, temperature-dependent bias drift in the insensitive design and a temperature regulation scheme.
Superconducting Quantum Interferometers for Nondestructive Evaluation
Kostyurina, E. A.; Kalashnikov, K. V.; Maslennikov, Yu. V.; Koshelets, V. P.
2017-01-01
We review stationary and mobile systems that are used for the nondestructive evaluation of room temperature objects and are based on superconducting quantum interference devices (SQUIDs). The systems are optimized for samples whose dimensions are between 10 micrometers and several meters. Stray magnetic fields from small samples (10 µm–10 cm) are studied using a SQUID microscope equipped with a magnetic flux antenna, which is fed through the walls of liquid nitrogen cryostat and a hole in the SQUID’s pick-up loop and returned sidewards from the SQUID back to the sample. The SQUID microscope does not disturb the magnetization of the sample during image recording due to the decoupling of the magnetic flux antenna from the modulation and feedback coil. For larger samples, we use a hand-held mobile liquid nitrogen minicryostat with a first order planar gradiometric SQUID sensor. Low-Tc DC SQUID systems that are designed for NDE measurements of bio-objects are able to operate with sufficient resolution in a magnetically unshielded environment. High-Tc DC SQUID magnetometers that are operated in a magnetic shield demonstrate a magnetic field resolution of ~4 fT/√Hz at 77 K. This sensitivity is improved to ~2 fT/√Hz at 77 K by using a soft magnetic flux antenna. PMID:29210980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-06-01
This bibliography contains citations from conference proceedings concerning gradiometers, magnetometers, and infrared detectors which use superconductors to improve sensitivity. Applications include biomagnetic measurements for medical studies, gravity wave experiments, geomagnetism and ocean bottom magnetic exploration, galvanometers and voltmeters, and bolometers and radiometers. Some articles refer to design considerations for cooling systems for the sensors and detectors, and fabrication techniques for squids (superconducting quantum interference devices.) (This updated bibliography contains 189 citations, 74 of which are new entries to the previous edition.)
NASA Astrophysics Data System (ADS)
Guss, Paul; Rabin, Michael; Croce, Mark; Hoteling, Nathan; Schwellenbach, David; Kruschwitz, Craig; Mocko, Veronika; Mukhopadhyay, Sanjoy
2017-09-01
We demonstrate very high-resolution photon spectroscopy with a microwave-multiplexed 4-pixel transition edge sensor (TES) array. The readout circuit consists of superconducting microwave resonators coupled to radio frequency superconducting-quantum-interference devices (RF-SQUIDs) and transduces changes in input current to changes in phase of a microwave signal. We used a flux-ramp modulation to linearize the response and avoid low-frequency noise. The result is a very high-resolution photon spectroscopy with a microwave-multiplexed 4-pixel transition edge sensor array. We performed and validated a small-scale demonstration and test of all the components of our concept system, which encompassed microcalorimetry, microwave multiplexing, RF-SQUIDs, and software-defined radio (SDR). We shall display data we acquired in the first simultaneous combination of all key innovations in a 4-pixel demonstration, including microcalorimetry, microwave multiplexing, RF-SQUIDs, and SDR. We present the energy spectrum of a gadolinium-153 (153Gd) source we measured using our 4-pixel TES array and the RF-SQUID multiplexer. For each pixel, one can observe the two 97.4 and 103.2 keV photopeaks. We measured the 153Gd photon source with an achieved energy resolution of 70 eV, full width half maximum (FWHM) at 100 keV, and an equivalent readout system noise of 90 pA/pHz at the TES. This demonstration establishes a path for the readout of cryogenic x-ray and gamma ray sensor arrays with more elements and spectral resolving powers. We believe this project has improved capabilities and substantively advanced the science useful for missions such as nuclear forensics, emergency response, and treaty verification through the explored TES developments.
NASA Astrophysics Data System (ADS)
Puiu, A.; Becker, D.; Bennett, D.; Faverzani, M.; Ferri, E.; Fowler, J.; Gard, J.; Hays-Wehle, J.; Hilton, G.; Giachero, A.; Maino, M.; Mates, J.; Nucciotti, A.; Schmidt, D.; Swetz, D.; Ullom, J.; Vale, L.
2017-09-01
Measuring the neutrino mass is one the most compelling issue in particle physics. HOLMES is an experiment funded by the European Research Council for a direct measurement of neutrino mass. HOLMES will perform a precise measurement of the end point of the Electron Capture decay spectrum of 163Ho in order to extract information on neutrino mass with a sensitivity as low as 1 eV. HOLMES, in its final configuration will deploy a 1000 pixel array of low temperature microcalorimeters: each calorimeter consists of an absorber, where the Ho atoms will be implanted, coupled to a Transition Edge Sensor thermometer. The detectors will be kept at the working temperature of ˜70 mK using a dilution refrigerator. In order to gather the required 3 × 1013 events in a three year long data taking with a pile up fraction as low as 10-4, detectors must fulfill rather high speed and resolution requirements, i.e. 10 µs rise time and 4 eV resolution. To ensure such performances with an efficient read out technique for very large detectors array kept at low temperature inside a cryostat is no trivial matter: at the moment, the most appealing read out technique applicable to large arrays of Transition Edge Sensors is rf-SQUID multiplexing. It is based on the use of rf-SQUIDs as input devices with flux ramp modulation for linearisation purposes; the rf-SQUID is then coupled to a super-conductive λ/4-wave resonator in the GHz range, and the modulated signal is finally read out using the homodyne technique.
Superconducting Detector Arrays for Astrophysics
NASA Technical Reports Server (NTRS)
Chervenak, James
2008-01-01
The next generation of astrophysics instruments will feature an order of magnitude more photon sensors or sensors that have an order of magnitude greater sensitivity. Since detector noise scales with temperature, a number of candidate technologies have been developed that use the intrinsic advantages of detector systems that operate below 1 Kelvin. Many of these systems employ of the superconducting phenomena that occur in metals at these temperatures to build ultrasensitive detectors and low-noise, low-power readout architectures. I will present one such system in use today to meet the needs of the astrophysics community at millimeter and x-ray wavelengths. Our group at NASA in collaboration with Princeton, NIST, Boulder and a number of other groups is building large format arrays of superconducting transition edge sensors (TES) read out with multiplexed superconducting quantum interference devices (SQUID). I will present the high sensitivity we have achieved in multiplexed x-ray sensors with the TES technology and describe the construction of a 1000-sensor TES/SQUID array for microwave measurements. With our collaboration's deployment of a kilopixel TES array for 2 mm radiation at the Atacarna Cosmology Telescope in November 2007, we have first images of the lensed Cosmic Microwave Background at fine angular scales.
Read-out electronics for DC squid magnetic measurements
Ganther, Jr., Kenneth R.; Snapp, Lowell D.
2002-01-01
Read-out electronics for DC SQUID sensor systems, the read-out electronics incorporating low Johnson noise radio-frequency flux-locked loop circuitry and digital signal processing algorithms in order to improve upon the prior art by a factor of at least ten, thereby alleviating problems caused by magnetic interference when operating DC SQUID sensor systems in magnetically unshielded environments.
is performed using the MUSIC algorithm on the signals received on the non-uniform phased array, and the ESPRIT algorithm is used on the signals...received on the non-colocated vector sensor. The simulation results show that the MUSIC algorithm using 2D Bi-SQUIDs is able to differentiate two signals
Scanning-SQUID investigation of spin-orbit torque acting on yttrium iron garnet devices
NASA Astrophysics Data System (ADS)
Rosenberg, Aaron J.; Jermain, Colin L.; Aradhya, Sriharsha V.; Brangham, Jack T.; Nowack, Katja C.; Kirtley, John R.; Yang, Fengyuan; Ralph, Daniel C.; Moler, Kathryn A.
Successful manipulation of electrically insulating magnets, such as yttrium iron garnet, by by current-driven spin-orbit torques could provide a highly efficient platform for spintronic memory. Compared to devices fabricated using magnetic metals, magnetic insulators have the advantage of the ultra-low magnetic damping and the elimination of shunting currents in the magnet that reduce the torque efficiency. Here, we apply current in the spin Hall metal β-Ta to manipulate the magnetic orientation of micron-sized, electrically-insulating yttrium iron garnet devices. We do not observe spin-torque switching even for applied currents well above the critical current expected in a macrospin switching model. This suggests either inefficient transfer of spin torque at our Ta/YIG interface or a breakdown of the macrospin approximation. This work is supported by FAME, one of six centers of STARnet sponsored by MARCO and DARPA. The SQUID microscope and sensors were developed with support from the NSF-sponsored Center NSF-NSEC 0830228, and from NSF IMR-MIP 0957616.
Low Field Squid MRI Devices, Components and Methods
NASA Technical Reports Server (NTRS)
Hahn, Inseob (Inventor); Penanen, Konstantin I. (Inventor); Eom, Byeong H. (Inventor)
2013-01-01
Low field SQUID MRI devices, components and methods are disclosed. They include a portable low field (SQUID)-based MRI instrument and a portable low field SQUID-based MRI system to be operated under a bed where a subject is adapted to be located. Also disclosed is a method of distributing wires on an image encoding coil system adapted to be used with an NMR or MRI device for analyzing a sample or subject and a second order superconducting gradiometer adapted to be used with a low field SQUID-based MRI device as a sensing component for an MRI signal related to a subject or sample.
Low Field Squid MRI Devices, Components and Methods
NASA Technical Reports Server (NTRS)
Penanen, Konstantin I. (Inventor); Eom, Byeong H. (Inventor); Hahn, Inseob (Inventor)
2014-01-01
Low field SQUID MRI devices, components and methods are disclosed. They include a portable low field (SQUID)-based MRI instrument and a portable low field SQUID-based MRI system to be operated under a bed where a subject is adapted to be located. Also disclosed is a method of distributing wires on an image encoding coil system adapted to be used with an NMR or MRI device for analyzing a sample or subject and a second order superconducting gradiometer adapted to be used with a low field SQUID-based MRI device as a sensing component for an MRI signal related to a subject or sample.
Low field SQUID MRI devices, components and methods
NASA Technical Reports Server (NTRS)
Penanen, Konstantin I. (Inventor); Eom, Byeong H. (Inventor); Hahn, Inseob (Inventor)
2011-01-01
Low field SQUID MRI devices, components and methods are disclosed. They include a portable low field (SQUID)-based MRI instrument and a portable low field SQUID-based MRI system to be operated under a bed where a subject is adapted to be located. Also disclosed is a method of distributing wires on an image encoding coil system adapted to be used with an NMR or MRI device for analyzing a sample or subject and a second order superconducting gradiometer adapted to be used with a low field SQUID-based MRI device as a sensing component for an MRI signal related to a subject or sample.
Low field SQUID MRI devices, components and methods
NASA Technical Reports Server (NTRS)
Penanen, Konstantin I. (Inventor); Eom, Byeong H (Inventor); Hahn, Inseob (Inventor)
2010-01-01
Low field SQUID MRI devices, components and methods are disclosed. They include a portable low field (SQUID)-based MRI instrument and a portable low field SQUID-based MRI system to be operated under a bed where a subject is adapted to be located. Also disclosed is a method of distributing wires on an image encoding coil system adapted to be used with an NMR or MRI device for analyzing a sample or subject and a second order superconducting gradiometer adapted to be used with a low field SQUID-based MRI device as a sensing component for an MRI signal related to a subject or sample.
Vector sensor for scanning SQUID microscopy
NASA Astrophysics Data System (ADS)
Dang, Vu The; Toji, Masaki; Thanh Huy, Ho; Miyajima, Shigeyuki; Shishido, Hiroaki; Hidaka, Mutsuo; Hayashi, Masahiko; Ishida, Takekazu
2017-07-01
We plan to build a novel 3-dimensional (3D) scanning SQUID microscope with high sensitivity and high spatial resolution. In the system, a vector sensor consists of three SQUID sensors and three pick-up coils realized on a single chip. Three pick-up coils are configured in orthogonal with each other to measure the magnetic field vector of X, Y, Z components. We fabricated some SQUID chips with one uniaxial pick-up coil or three vector pick-up coils and carried out fundamental measurements to reveal the basic characteristics. Josephson junctions (JJs) of sensors are designed to have the critical current density J c of 320 A/cm2, and the critical current I c becomes 12.5 μA for the 2.2μm × 2.2μm JJ. We carefully positioned the three pickup coils so as to keep them at the same height at the centers of all three X, Y and Z coils. This can be done by arranging them along single line parallel to a sample surface. With the aid of multilayer technology of Nb-based fabrication, we attempted to reduce an inner diameter of the pickup coils to enhance both sensitivity and spatial resolution. The method for improving a spatial resolution of a local magnetic field image is to employ an XYZ piezo-driven scanner for controlling the positions of the pick-up coils. The fundamental characteristics of our SQUID sensors confirmed the proper operation of our SQUID sensors and found a good agreement with our design parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohjiro, Satoshi; Hirayama, Fuminori; Yamamori, Hirotake
2014-06-14
White noise of dissipationless microwave radio frequency superconducting quantum interference device (RF-SQUID) multiplexers has been experimentally studied to evaluate their readout performance for transition edge sensor (TES) photon counters ranging from near infrared to gamma ray. The characterization has been carried out at 4 K, first to avoid the low-frequency fluctuations present at around 0.1 K, and second, for a feasibility study of readout operation at 4 K for extended applications. To increase the resonant Q at 4 K and maintain low noise SQUID operation, multiplexer chips consisting of niobium nitride (NbN)-based coplanar-waveguide resonators and niobium (Nb)-based RF-SQUIDs have been developed. This hybrid multiplexermore » exhibited 1 × 10{sup 4} ≤ Q ≤ 2 × 10{sup 4} and the square root of spectral density of current noise referred to the SQUID input √S{sub I} = 31 pA/√Hz. The former and the latter are factor-of-five and seven improvements from our previous results on Nb-based resonators, respectively. Two-directional readout on the complex plane of the transmission component of scattering matrix S{sub 21} enables us to distinguish the flux noise from noise originating from other sources, such as the cryogenic high electron mobility transistor (HEMT) amplifier. Systematic noise measurements with various microwave readout powers P{sub MR} make it possible to distinguish the contribution of noise sources within the system as follows: (1) The achieved √S{sub I} is dominated by the Nyquist noise from a resistor at 4 K in parallel to the SQUID input coil which is present to prevent microwave leakage to the TES. (2) The next dominant source is either the HEMT-amplifier noise (for small values of P{sub MR}) or the quantization noise due to the resolution of 300-K electronics (for large values of P{sub MR}). By a decrease of these noise levels to a degree that is achievable by current technology, we predict that the microwave RF-SQUID multiplexer can exhibit √S{sub I} ≤ 5 pA/√Hz, i.e., close to √S{sub I} of state-of-the-art DC-SQUID-based multiplexers.« less
Long baseline planar superconducting gradiometer for biomagnetic imaging
NASA Astrophysics Data System (ADS)
Granata, C.; Vettoliere, A.; Nappi, C.; Lisitskiy, M.; Russo, M.
2009-07-01
A niobium based dc-superconducting quantum interference device (SQUID) planar gradiometer with a long baseline (50 mm) for biomagnetic applications has been developed. The pickup antenna consists of two integrated rectangular coils connected in series and magnetically coupled to a dc-SQUID in a double parallel washer configuration by two series multiturn input coils. Due to a high intrinsic responsivity, the sensors have shown at T =4.2 K a white magnetic flux noise spectral density as low as 3 μΦ0/Hz1/2. The spectral density of the magnetic field noise referred to one sensing coil, is 3.0 fT/Hz1/2 resulting in a gradient spectral noise of 0.6 fT/(cm Hz1/2). In order to verify the effectiveness of such sensors for biomagnetic applications, the magnetic response to a current dipole has been calculated and the results have been compared with those of an analogous axial gradiometer. The results show that there is no significant difference. Due to their high intrinsic balance and good performances, planar gradiometers may be the elective sensors for biomagnetic application in a soft shielded environment.
Whole-head SQUID system in a superconducting magnetic shield.
Ohta, H; Matsui, T; Uchikawa, Y
2004-11-30
We have constructed a mobile whole-head SQUID system in a superconducting magnetic shield - a cylinder of high Tc superconductor BSCCO of 65 cm in diameter and 160 cm in length. We compared the noise spectra of several SQUID sensors of SNS Josephson junctions in the superconducting magnetic shield with those of the same SQUID sensors in a magnetically shielded room of Permalloy. The SQUID sensors in the superconducting magnetic shield are more than 100 times more sensitive than those in a magnetically shielded room of Permalloy below 1 Hz. We tested the whole-head SQUID system in the superconducting magnetic shield observing somatosensory signals evoked by stimulating the median nerve in the right wrist of patients by current pulses. We present data of 64 and 128 traces versus the common time axis for comparison. Most sensory responses of human brains phase out near 250 ms. However monotonic rhythms still remain even at longer latencies than 250 ms. The nodes of these rhythm are very narrow even at these longer latencies just indicating low noise characteristics of the SQUID system at low-frequencies. The current dipoles at the secondary somatosensory area SII are evoked at longer latencies than 250 ms contributing to a higher-level brain function. The SQUID system in a superconducting magnetic shield will also have advantages when it is used as a DC MEG to study very slow activities and function of the brain.
Optimized Geometry for Superconducting Sensing Coils
NASA Technical Reports Server (NTRS)
Eom, Byeong Ho; Pananen, Konstantin; Hahn, Inseob
2008-01-01
An optimized geometry has been proposed for superconducting sensing coils that are used in conjunction with superconducting quantum interference devices (SQUIDs) in magnetic resonance imaging (MRI), magnetoencephalography (MEG), and related applications in which magnetic fields of small dipoles are detected. In designing a coil of this type, as in designing other sensing coils, one seeks to maximize the sensitivity of the detector of which the coil is a part, subject to geometric constraints arising from the proximity of other required equipment. In MRI or MEG, the main benefit of maximizing the sensitivity would be to enable minimization of measurement time. In general, to maximize the sensitivity of a detector based on a sensing coil coupled with a SQUID sensor, it is necessary to maximize the magnetic flux enclosed by the sensing coil while minimizing the self-inductance of this coil. Simply making the coil larger may increase its self-inductance and does not necessarily increase sensitivity because it also effectively increases the distance from the sample that contains the source of the signal that one seeks to detect. Additional constraints on the size and shape of the coil and on the distance from the sample arise from the fact that the sample is at room temperature but the coil and the SQUID sensor must be enclosed within a cryogenic shield to maintain superconductivity.
SiGe Integrated Circuit Developments for SQUID/TES Readout
NASA Astrophysics Data System (ADS)
Prêle, D.; Voisin, F.; Beillimaz, C.; Chen, S.; Piat, M.; Goldwurm, A.; Laurent, P.
2018-03-01
SiGe integrated circuits dedicated to the readout of superconducting bolometer arrays for astrophysics have been developed since more than 10 years at APC. Whether for Cosmic Microwave Background (CMB) observations with the QUBIC ground-based experiment (Aumont et al. in astro-ph.IM, 2016. arXiv:1609.04372) or for the Hot and Energetic Universe science theme with the X-IFU instrument on-board of the ATHENA space mission (Barret et al. in SPIE 9905, space telescopes & instrumentation 2016: UV to γ Ray, 2016. https://doi.org/10.1117/12.2232432), several kinds of Transition Edge Sensor (TES) (Irwin and Hilton, in ENSS (ed) Cryogenic particle detection, Springer, Berlin, 2005) arrays have been investigated. To readout such superconducting detector arrays, we use time or frequency domain multiplexers (TDM, FDM) (Prêle in JINST 10:C08015, 2016. https://doi.org/10.1088/1748-0221/10/08/C08015) with Superconducting QUantum Interference Devices (SQUID). In addition to the SQUID devices, low-noise biasing and amplification are needed. These last functions can be obtained by using BiCMOS SiGe technology in an Application Specific Integrated Circuit (ASIC). ASIC technology allows integration of highly optimised circuits specifically designed for a unique application. Moreover, we could reach very low-noise and wide band amplification using SiGe bipolar transistor either at room or cryogenic temperatures (Cressler in J Phys IV 04(C6):C6-101, 1994. https://doi.org/10.1051/jp4:1994616). This paper discusses the use of SiGe integrated circuits for SQUID/TES readout and gives an update of the last developments dedicated to the QUBIC telescope and to the X-IFU instrument. Both ASIC called SQmux128 and AwaXe are described showing the interest of such SiGe technology for SQUID multiplexer controls.
Multiplexing of Hot-Electron Nanobolometers Using Microwave SQUIDs
NASA Technical Reports Server (NTRS)
Karasik, Boris S.; Day, Peter K.; Kawamura, Jonathan H.; Bumble, Bruce; LeDuc, Henry G.
2009-01-01
We have obtained the first data on the multiplexed operation of titanium hot-electron bolometers (HEB). Because of their low thermal conductance and small electron heat capacity nanobolometers are particularly interesting as sensors for far-infrared spectroscopy and mid- and near-IR calorimetry. However, the short time constant of these devices (approximately microseconds at 300-400 mK) makes time domain or audio-frequency domain multiplexing impractical. The Microwave SQUID (MSQUID) approach pursued in this work uses dc SQUIDs coupled to X-band microresonators which are, in turn, coupled to a transmission line. We used a 4-element array of Ti HEBs operated at 415 mK in a He3 dewar with an optical fiber access. The microwave signal exhibited 10-MHz wide resonances at individual MSQUD frequencies between 9 GHz and 10 GHz. The resonance depth is modulated by the current through the bolometer via a change of the SQUID flux state. The transmitted signal was amplified by a cryogenic amplifier and downconverted to baseband using an IQ mixer. A 1-dB per ??/2 responsivity was sufficient for keeping the system noise at the level of 2 pA/Hz1/2. This is more than an order of magnitude smaller than phonon noise in the HEB. The devices were able to detect single near- IR photons (1550 nm) with a time constant of 3.5 ?s. Follow-on work will scale the array to larger size and will address the microwave frequency signal generation and processing using a digital transceiver.
Fabrication and Performance of Large Format Transition Edge Sensor Microcalorimeter Arrays
NASA Technical Reports Server (NTRS)
Chervenak, James A.; Adams, James S.; Bandler, Simon R.; Busch, Sara E.; Eckart, M. E.; Ewin, A. E.; Finkbeiner, F. M.; Kilbourne, C. A.; Kelley, R. L.; Porst, Jan-Patrick;
2012-01-01
We have produced a variety of superconducting transition edge sensor array designs for microcalorimetric detection of x-rays. Designs include kilopixel scale arrays of relatively small sensors (75 micron pitch) atop a thick metal heatsinking layer as well as arrays of membrane-isolated devices on 250 micron pitch and smaller arrays of devices up to 600 micron pitch. We discuss the fabrication techniques used for each type of array focusing on unique aspects where processes vary to achieve the particular designs and required device parameters. For example, we evaluate various material combinations in the production of the thick metal heatsinking, including superconducting and normal metal adhesion layers. We also evaluate the impact of added heatsinking on the membrane isolated devices as it relates to basic device parameters. Arrays can be characterized with a time division SQUID multiplexer such that greater than 10 devices from an array can be measured in the same cooldown. Device parameters can be measured simultaneously so that environmental events such as thermal drifts or changes in magnetic fields can be controlled. For some designs, we will evaluate the uniformity of parameters impacting the intrinsic performance of the microcalorimeters under bias in these arrays and assess the level of thermal crosstalk.
Ganther, Jr., Kenneth R.; Snapp, Lowell D.
2002-01-01
Architecture for frequency multiplexing multiple flux locked loops in a system comprising an array of DC SQUID sensors. The architecture involves dividing the traditional flux locked loop into multiple unshared components and a single shared component which, in operation, form a complete flux locked loop relative to each DC SQUID sensor. Each unshared flux locked loop component operates on a different flux modulation frequency. The architecture of the present invention allows a reduction from 2N to N+1 in the number of connections between the cryogenic DC SQUID sensors and their associated room temperature flux locked loops. Furthermore, the 1.times.N architecture of the present invention can be paralleled to form an M.times.N array architecture without increasing the required number of flux modulation frequencies.
The front-end electronics of the LSPE-SWIPE experiment
NASA Astrophysics Data System (ADS)
Fontanelli, F.; Biasotti, M.; Bevilacqua, A.; Siccardi, F.
2016-07-01
The SWIPE detector of the Ballon Borne Mission LSPE (see e.g. the contribution of P. de Bernardis et al. in this conference) intends to measure the primordial 'B-mode' polarization of the Cosmic Microwave Background (CMB). For this scope microwave telescopes need sensitive cryogenic bolometers with an overall equivalent noise temperature in the nK range. The detector is a spiderweb bolometer based on transition edge sensor and followed by a SQUID to perform the signal readout. This contribution will concentrate on the design, description and first tests on the front-end electronics which processes the squid output (and controls it). The squid output is first amplified by a very low noise preamplifier based on a discrete JFET input differential architecture followed by a low noise CMOS operational amplifier. Equivalent input noise density is 0.6 nV/Hz and bandwidth extends up to at least 2 MHz. Both devices (JFET and CMOS amplifier) have been tested at liquid nitrogen. The second part of the contribution will discuss design and results of the control electronics, both the flux locked loop for the squid and the slow control chain to monitor and set up the system will be reviewed.
Cross-correlation limit of a SQUID-based noise thermometer of the pMFFT type
NASA Astrophysics Data System (ADS)
Kirste, A.; Engert, J.
2018-03-01
The primary magnetic field fluctuation thermometer (pMFFT) is a SQUID-based noise thermometer for temperatures below 1 K, which complies with metrological requirements. It combines two signal channels in order to apply the cross-correlation technique, but it requires statistically independent noise signals for proper operation. In order to check the limit of the cross-correlation readout, we have performed zero measurements in the millikelvin range in a setup that is identical to the pMFFT, except for the removed temperature sensor. We examined the influence of different parameters such as SQUID working point or flux-lock loop parameters on the minimum cross-correlation signal down to 24 mK and below 100 kHz. Depending on the configuration, typical minimum SQUID-referred cross-power spectral densities of 1.5 × 10‑15 Φ _0^2/Hz or even smaller values were observed. For the pMFFT, considering its thermal noise spectrum, these flux densities correspond to a device noise temperature of ≤2.5 µK, thereby ensuring a negligible uncertainty contribution at the lower end of the PLTS-2000 (0.9 mK).
NASA Astrophysics Data System (ADS)
Li, Hao; Liu, Jianshe; Zhang, Yingshan; Cai, Han; Li, Gang; Liu, Qichun; Han, Siyuan; Chen, Wei
2017-03-01
A negative-inductance superconducting quantum interference device (nSQUID) is an adiabatic superconducting logic device with high energy efficiency, and therefore a promising building block for large-scale low-power superconducting computing. However, the principle of the nSQUID is not that straightforward and an nSQUID driven by voltage is vulnerable to common mode noise. We investigate a single nSQUID driven by current instead of voltage, and clarify the principle of the adiabatic transition of the current-driven nSQUID between different states. The basic logic operations of the current-driven nSQUID with proper parameters are simulated by WRspice. The corresponding circuit is fabricated with a 100 A cm-2 Nb-based lift-off process, and the experimental results at low temperature confirm the basic logic operations as a gated buffer.
NASA Astrophysics Data System (ADS)
Bechstein, S.; Petsche, F.; Scheiner, M.; Drung, D.; Thiel, F.; Schnabel, A.; Schurig, Th
2006-06-01
Recently, we have developed a family of dc superconducting quantum interference device (SQUID) readout electronics for several applications. These electronics comprise a low-noise preamplifier followed by an integrator, and an analog SQUID bias circuit. A highly-compact low-power version with a flux-locked loop bandwidth of 0.3 MHz and a white noise level of 1 nV/√Hz was specially designed for a 304-channel low-Tc dc SQUID vector magnetometer, intended to operate in the new Berlin Magnetically Shielded Room (BMSR-2). In order to minimize the space needed to mount the electronics on top of the dewar and to minimize the power consumption, we have integrated four electronics channels on one 3 cm × 10 cm sized board. Furthermore we embedded the analog components of these four channels into a digitally controlled system including an in-system programmable microcontroller. Four of these integrated boards were combined to one module with a size of 4 cm × 4 cm × 16 cm. 19 of these modules were implemented, resulting in a total power consumption of about 61 W. To initialize the 304 channels and to service the system we have developed software tools running on a laptop computer. By means of these software tools the microcontrollers are fed with all required data such as the working points, the characteristic parameters of the sensors (noise, voltage swing), or the sensor position inside of the vector magnetometer system. In this paper, the developed electronics including the software tools are described, and first results are presented.
NASA Astrophysics Data System (ADS)
Wu, Long; Chen, Lei; Wang, Hao; Liu, Xiaoyu; Wang, Zhen
2017-04-01
As many emergent phenomena of superconductivity appear on a smaller scale and at lower dimension, commercial magnetic property measurement systems (MPMSs) no longer provide the sensitivity necessary to study the Meissner effect of small superconductors. The nano-scale superconducting quantum interference device (nano-SQUID) is considered one of the most sensitive magnetic sensors for the magnetic characterization of mesoscopic or microscopic samples. Here, we develop a customized on-chip nano-SQUID measurement system based on a pulsed current biasing method. The noise performance of our system is approximately 4.6 × 10-17 emu/Hz1/2, representing an improvement of 9 orders of magnitude compared with that of a commercial MPMS (~10-8 emu/Hz1/2). Furthermore, we demonstrate the measurement of the Meissner effect of a single indium (In) particle (of 47 μm in diameter) using our on-chip nano-SQUID system. The system enables the observation of the prompt superconducting transition of the Meissner effect of a single In particle, thereby providing more accurate characterization of the critical field Hc and temperature Tc. In addition, the retrapping field Hre as a function of temperature T of single In particle shows disparate behavior from that of a large ensemble.
Optical multichannel room temperature magnetic field imaging system for clinical application
Lembke, G.; Erné, S. N.; Nowak, H.; Menhorn, B.; Pasquarelli, A.
2014-01-01
Optically pumped magnetometers (OPM) are a very promising alternative to the superconducting quantum interference devices (SQUIDs) used nowadays for Magnetic Field Imaging (MFI), a new method of diagnosis based on the measurement of the magnetic field of the human heart. We present a first measurement combining a multichannel OPM-sensor with an existing MFI-system resulting in a fully functional room temperature MFI-system. PMID:24688820
An ultra-sensitive and wideband magnetometer based on a superconducting quantum interference device
NASA Astrophysics Data System (ADS)
Storm, Jan-Hendrik; Hömmen, Peter; Drung, Dietmar; Körber, Rainer
2017-02-01
The magnetic field noise in superconducting quantum interference devices (SQUIDs) used for biomagnetic research such as magnetoencephalography or ultra-low-field nuclear magnetic resonance is usually limited by instrumental dewar noise. We constructed a wideband, ultra-low noise system with a 45 mm diameter superconducting pick-up coil inductively coupled to a current sensor SQUID. Thermal noise in the liquid helium dewar is minimized by using aluminized polyester fabric as superinsulation and aluminum oxide strips as heat shields. With a magnetometer pick-up coil in the center of the Berlin magnetically shielded room 2 (BMSR2), a noise level of around 150 aT Hz-1/2 is achieved in the white noise regime between about 20 kHz and the system bandwidth of about 2.5 MHz. At lower frequencies, the resolution is limited by magnetic field noise arising from the walls of the shielded room. Modeling the BMSR2 as a closed cube with continuous μ-metal walls, we can quantitatively reproduce its measured field noise.
Measuring MEG closer to the brain: Performance of on-scalp sensor arrays
Iivanainen, Joonas; Stenroos, Matti; Parkkonen, Lauri
2017-01-01
Optically-pumped magnetometers (OPMs) have recently reached sensitivity levels required for magnetoencephalography (MEG). OPMs do not need cryogenics and can thus be placed within millimetres from the scalp into an array that adapts to the invidual head size and shape, thereby reducing the distance from cortical sources to the sensors. Here, we quantified the improvement in recording MEG with hypothetical on-scalp OPM arrays compared to a 306-channel state-of-the-art SQUID array (102 magnetometers and 204 planar gradiometers). We simulated OPM arrays that measured either normal (nOPM; 102 sensors), tangential (tOPM; 204 sensors), or all components (aOPM; 306 sensors) of the magnetic field. We built forward models based on magnetic resonance images of 10 adult heads; we employed a three-compartment boundary element model and distributed current dipoles evenly across the cortical mantle. Compared to the SQUID magnetometers, nOPM and tOPM yielded 7.5 and 5.3 times higher signal power, while the correlations between the field patterns of source dipoles were reduced by factors of 2.8 and 3.6, respectively. Values of the field-pattern correlations were similar across nOPM, tOPM and SQUID gradiometers. Volume currents reduced the signals of primary currents on average by 10%, 72% and 15% in nOPM, tOPM and SQUID magnetometers, respectively. The information capacities of the OPM arrays were clearly higher than that of the SQUID array. The dipole-localization accuracies of the arrays were similar while the minimum-norm-based point-spread functions were on average 2.4 and 2.5 times more spread for the SQUID array compared to nOPM and tOPM arrays, respectively. PMID:28007515
Improved Readout Scheme for SQUID-Based Thermometry
NASA Technical Reports Server (NTRS)
Penanen, Konstantin
2007-01-01
An improved readout scheme has been proposed for high-resolution thermometers, (HRTs) based on the use of superconducting quantum interference devices (SQUIDs) to measure temperature- dependent magnetic susceptibilities. The proposed scheme would eliminate counting ambiguities that arise in the conventional scheme, while maintaining the superior magnetic-flux sensitivity of the conventional scheme. The proposed scheme is expected to be especially beneficial for HRT-based temperature control of multiplexed SQUIDbased bolometer sensor arrays. SQUID-based HRTs have become standard for measuring and controlling temperatures in the sub-nano-Kelvin temperature range in a broad range of low-temperature scientific and engineering applications. A typical SQUIDbased HRT that utilizes the conventional scheme includes a coil wound on a core made of a material that has temperature- dependent magnetic susceptibility in the temperature range of interest. The core and the coil are placed in a DC magnetic field provided either by a permanent magnet or as magnetic flux inside a superconducting outer wall. The aforementioned coil is connected to an input coil of a SQUID. Changes in temperature lead to changes in the susceptibility of the core and to changes in the magnetic flux detected by the SQUID. The SQUID readout instrumentation is capable of measuring magnetic-flux changes that correspond to temperature changes down to a noise limit .0.1 nK/Hz1/2. When the flux exceeds a few fundamental flux units, which typically corresponds to a temperature of .100 nK, the SQUID is reset. The temperature range can be greatly expanded if the reset events are carefully tracked and counted, either by a computer running appropriate software or by a dedicated piece of hardware.
Yang, Chui-Ping; Chu, Shih-I; Han, Siyuan
2004-03-19
We investigate the experimental feasibility of realizing quantum information transfer (QIT) and entanglement with SQUID qubits in a microwave cavity via dark states. Realistic system parameters are presented. Our results show that QIT and entanglement with two-SQUID qubits can be achieved with a high fidelity. The present scheme is tolerant to device parameter nonuniformity. We also show that the strong coupling limit can be achieved with SQUID qubits in a microwave cavity. Thus, cavity-SQUID systems provide a new way for production of nonclassical microwave source and quantum communication.
Scanning SQUID sampler with 40-ps time resolution
NASA Astrophysics Data System (ADS)
Cui, Zheng; Kirtley, John R.; Wang, Yihua; Kratz, Philip A.; Rosenberg, Aaron J.; Watson, Christopher A.; Gibson, Gerald W.; Ketchen, Mark B.; Moler, Kathryn. A.
2017-08-01
Scanning Superconducting QUantum Interference Device (SQUID) microscopy provides valuable information about magnetic properties of materials and devices. The magnetic flux response of the SQUID is often linearized with a flux-locked feedback loop, which limits the response time to microseconds or longer. In this work, we present the design, fabrication, and characterization of a novel scanning SQUID sampler with a 40-ps time resolution and linearized response to periodically triggered signals. Other design features include a micron-scale pickup loop for the detection of local magnetic flux, a field coil to apply a local magnetic field to the sample, and a modulation coil to operate the SQUID sampler in a flux-locked loop to linearize the flux response. The entire sampler device is fabricated on a 2 mm × 2 mm chip and can be scanned over macroscopic planar samples. The flux noise at 4.2 K with 100 kHz repetition rate and 1 s of averaging is of order 1 mΦ0. This SQUID sampler will be useful for imaging dynamics in magnetic and superconducting materials and devices.
Scanning SQUID sampler with 40-ps time resolution.
Cui, Zheng; Kirtley, John R; Wang, Yihua; Kratz, Philip A; Rosenberg, Aaron J; Watson, Christopher A; Gibson, Gerald W; Ketchen, Mark B; Moler, Kathryn A
2017-08-01
Scanning Superconducting QUantum Interference Device (SQUID) microscopy provides valuable information about magnetic properties of materials and devices. The magnetic flux response of the SQUID is often linearized with a flux-locked feedback loop, which limits the response time to microseconds or longer. In this work, we present the design, fabrication, and characterization of a novel scanning SQUID sampler with a 40-ps time resolution and linearized response to periodically triggered signals. Other design features include a micron-scale pickup loop for the detection of local magnetic flux, a field coil to apply a local magnetic field to the sample, and a modulation coil to operate the SQUID sampler in a flux-locked loop to linearize the flux response. The entire sampler device is fabricated on a 2 mm × 2 mm chip and can be scanned over macroscopic planar samples. The flux noise at 4.2 K with 100 kHz repetition rate and 1 s of averaging is of order 1 mΦ 0 . This SQUID sampler will be useful for imaging dynamics in magnetic and superconducting materials and devices.
Inductance analysis of superconducting quantum interference devices with 3D nano-bridge junctions
NASA Astrophysics Data System (ADS)
Wang, Hao; Yang, Ruoting; Li, Guanqun; Wu, Long; Liu, Xiaoyu; Chen, Lei; Ren, Jie; Wang, Zhen
2018-05-01
Superconducting quantum interference devices (SQUIDs) with 3D nano-bridge junctions can be miniaturized into nano-SQUIDs that are able to sense a few spins in a large magnetic field. Among all device parameters, the inductance is key to the performance of SQUIDs with 3D nano-bridge junctions. Here, we measured the critical-current magnetic flux modulation curves of 12 devices with three design types using a current strip-line directly coupled to the SQUID loop. A best flux modulation depth of 71% was achieved for our 3D Nb SQUID. From the modulation curves, we extracted the inductance values of the current stripe-line in each design and compared them with the corresponding simulation results of InductEX. In this way, London penetration depths of 110 and 420 nm were determined for our Nb (niobium) and NbN (niobium nitride) films, respectively. Furthermore, we showed that inductances of 11 and 119 pH for Nb and NbN 3D nano-bridge junctions, respectively, dominated the total inductance of our SQUID loops which are 23 pH for Nb and 255 pH for NbN. A screening parameter being equal to one suggests optimal critical currents of 89.6 and 8.1 μA for Nb and NbN SQUIDs, respectively. Additionally, intrinsic flux noise of 110 ± 40 nΦ0/(Hz)1/2 is calculated for the Nb SQUIDs with 3D nano-bridge junctions by Langevin simulation.
Noninvasive liver iron measurements with a room-temperature susceptometer
Avrin, W F; Kumar, S
2011-01-01
Magnetic susceptibility measurements on the liver can quantify iron overload accurately and noninvasively. However, established susceptometer designs, using Superconducting QUantum Interference Devices (SQUIDs) that work in liquid helium, have been too expensive for widespread use. This paper presents a less expensive liver susceptometer that works at room temperature. This system uses oscillating magnetic fields, which are produced and detected by copper coils. The coil design cancels the signal from the applied field, eliminating noise from fluctuations of the source-coil current and sensor gain. The coil unit moves toward and away from the patient at 1 Hz, cancelling drifts due to thermal expansion of the coils. Measurements on a water phantom indicated instrumental errors less than 30 μg of iron per gram of wet liver tissue, which is small compared with other errors due to the response of the patient’s body. Liver iron measurements on eight thalassemia patients yielded a correlation coefficient r=0.98 between the room-temperature susceptometer and an existing SQUID. These results indicate that the fundamental accuracy limits of the room-temperature susceptometer are similar to those of the SQUID. PMID:17395991
A YBCO RF-squid variable temperature susceptometer and its applications
NASA Technical Reports Server (NTRS)
Zhou, Luwei; Qiu, Jinwu; Zhang, Xianfeng; Tang, Zhimin; Cai, Yimin; Qian, Yongjia
1991-01-01
The Superconducting QUantum Interference Device (SQUID) susceptibility using a high-temperature radio-frequency (rf) SQUID and a normal metal pick-up coil is employed in testing weak magnetization of the sample. The magnetic moment resolution of the device is 1 x 10(exp -6) emu, and that of the susceptibility is 5 x 10(exp -6) emu/cu cm.
SQUID magnetometers for low-frequency applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryhaenen, T.; Seppae, H.; Ilmoniemi, R.
1989-09-01
The authors present a novel formulation for SQUID operation, which enables them to evaluate and compare the sensitivity and applicability of different devices. SQUID magnetometers for low-frequency applications are analyzed, taking into account the coupling circuits and electronics. They discuss nonhysteretic and hysteretic single-junction rf SQUIDs, but the main emphasis is on the dynamics, sensitivity, and coupling considerations of dc-SQUID magnetometers. A short review of current ideas on thin-film, dc-SQUID design presents the problems in coupling and the basic limits of sensitivity. The fabrication technology of tunnel-junction devices is discussed with emphasis on how it limits critical current densities, specificmore » capacitances of junctions, minimum linewidths, conductor separations, etc. Properties of high-temperature superconductors are evaluated on the basis of recently published results on increased flux creep, low density of current carriers, and problems in fabricating reliable junctions. The optimization of electronics for different types of SQUIDs is presented. Finally, the most important low-frequency applications of SQUIDs in biomagnetism, metrology, geomagnetism, and some physics experiments demonstrate the various possibilities that state-of-the-art SQUIDs can provide.« less
Variable temperature superconducting microscope
NASA Astrophysics Data System (ADS)
Cheng, Bo; Yeh, W. J.
2000-03-01
We have developed and tested a promising type of superconducting quantum interference device (SQUID) microscope, which can be used to detect vortex motion and can operate in magnetic fields over a large temperature range. The system utilizes a single-loop coupling transformer, consisting of a patterned high Tc superconducting thin film. At one end of the transformer, a 20 μm diam detecting loop is placed close to the sample. At the other end, a large loop is coupled to a NbTi coil, which is connected to a low Tc SQUID sensor. Transformers in a variety of sizes have been tested and calibrated. The results show that the system is capable of detecting the motion of a single vortex. We have used the microscope to study the behavior of moving vortices at various positions in a YBa2Cu3O7 thin film bridge.
SQUIDs in biomagnetism: a roadmap towards improved healthcare
NASA Astrophysics Data System (ADS)
Körber, Rainer; Storm, Jan-Hendrik; Seton, Hugh; Mäkelä, Jyrki P.; Paetau, Ritva; Parkkonen, Lauri; Pfeiffer, Christoph; Riaz, Bushra; Schneiderman, Justin F.; Dong, Hui; Hwang, Seong-min; You, Lixing; Inglis, Ben; Clarke, John; Espy, Michelle A.; Ilmoniemi, Risto J.; Magnelind, Per E.; Matlashov, Andrei N.; Nieminen, Jaakko O.; Volegov, Petr L.; Zevenhoven, Koos C. J.; Höfner, Nora; Burghoff, Martin; Enpuku, Keiji; Yang, S. Y.; Chieh, Jen-Jei; Knuutila, Jukka; Laine, Petteri; Nenonen, Jukka
2016-11-01
Globally, the demand for improved health care delivery while managing escalating costs is a major challenge. Measuring the biomagnetic fields that emanate from the human brain already impacts the treatment of epilepsy, brain tumours and other brain disorders. This roadmap explores how superconducting technologies are poised to impact health care. Biomagnetism is the study of magnetic fields of biological origin. Biomagnetic fields are typically very weak, often in the femtotesla range, making their measurement challenging. The earliest in vivo human measurements were made with room-temperature coils. In 1963, Baule and McFee (1963 Am. Heart J. 55 95-6) reported the magnetic field produced by electric currents in the heart (‘magnetocardiography’), and in 1968, Cohen (1968 Science 161 784-6) described the magnetic field generated by alpha-rhythm currents in the brain (‘magnetoencephalography’). Subsequently, in 1970, Cohen et al (1970 Appl. Phys. Lett. 16 278-80) reported the recording of a magnetocardiogram using a Superconducting QUantum Interference Device (SQUID). Just two years later, in 1972, Cohen (1972 Science 175 664-6) described the use of a SQUID in magnetoencephalography. These last two papers set the scene for applications of SQUIDs in biomagnetism, the subject of this roadmap. The SQUID is a combination of two fundamental properties of superconductors. The first is flux quantization—the fact that the magnetic flux Φ in a closed superconducting loop is quantized in units of the magnetic flux quantum, Φ0 ≡ h/2e, ≈ 2.07 × 10-15 Tm2 (Deaver and Fairbank 1961 Phys. Rev. Lett. 7 43-6, Doll R and Näbauer M 1961 Phys. Rev. Lett. 7 51-2). Here, h is the Planck constant and e the elementary charge. The second property is the Josephson effect, predicted in 1962 by Josephson (1962 Phys. Lett. 1 251-3) and observed by Anderson and Rowell (1963 Phys. Rev. Lett. 10 230-2) in 1963. The Josephson junction consists of two weakly coupled superconductors separated by a tunnel barrier or other weak link. A tiny electric current is able to flow between the superconductors as a supercurrent, without developing a voltage across them. At currents above the ‘critical current’ (maximum supercurrent), however, a voltage is developed. In 1964, Jaklevic et al (1964 Phys. Rev. Lett. 12 159-60) observed quantum interference between two Josephson junctions connected in series on a superconducting loop, giving birth to the dc SQUID. The essential property of the SQUID is that a steady increase in the magnetic flux threading the loop causes the critical current to oscillate with a period of one flux quantum. In today’s SQUIDs, using conventional semiconductor readout electronics, one can typically detect a change in Φ corresponding to 10-6 Φ0 in one second. Although early practical SQUIDs were usually made from bulk superconductors, for example, niobium or Pb-Sn solder blobs, today’s devices are invariably made from thin superconducting films patterned with photolithography or even electron lithography. An extensive description of SQUIDs and their applications can be found in the SQUID Handbooks (Clarke and Braginski 2004 Fundamentals and Technology of SQUIDs and SQUID Systems vol I (Weinheim, Germany: Wiley-VCH), Clarke and Braginski 2006 Applications of SQUIDs and SQUID Systems vol II (Weinheim, Germany: Wiley-VCH)). The roadmap begins (chapter 1) with a brief review of the state-of-the-art of SQUID-based magnetometers and gradiometers for biomagnetic measurements. The magnetic field noise referred to the pick-up loop is typically a few fT Hz-1/2, often limited by noise in the metallized thermal insulation of the dewar rather than by intrinsic SQUID noise. The authors describe a pathway to achieve an intrinsic magnetic field noise as low as 0.1 fT Hz-1/2, approximately the Nyquist noise of the human body. They also descibe a technology to defeat dewar noise. Chapter 2 reviews the neuroscientific and clinical use of magnetoencephalography (MEG), by far the most widespread application of biomagnetism with systems containing typically 300 sensors cooled to liquid-helium temperature, 4.2 K. Two important clinical applications are presurgical mapping of focal epilepsy and of eloquent cortex in brain-tumor patients. Reducing the sensor-to-brain separation and the system noise level would both improve spatial resolution. The very recent commercial innovation that replaces the need for frequent manual transfer of liquid helium with an automated system that collects and liquefies the gas and transfers the liquid to the dewar will make MEG systems more accessible. A highly promising means of placing the sensors substantially closer to the scalp for MEG is to use high-transition-temperature (high-T c) SQUID sensors and flux transformers (chapter 3). Operation of these devices at liquid-nitrogen temperature, 77 K, enables one to minimize or even omit metallic thermal insulation between the sensors and the dewar. Noise levels of a few fT Hz-1/2 have already been achieved, and lower values are likely. The dewars can be made relatively flexible, and thus able to be placed close to the skull irrespective of the size of the head, potentially providing higher spatial resolution than liquid-helium based systems. The successful realization of a commercial high-T c MEG system would have a major commercial impact. Chapter 4 introduces the concept of SQUID-based ultra-low-field magnetic resonance imaging (ULF MRI) operating at typically several kHz, some four orders of magnitude lower than conventional, clinical MRI machines. Potential advantages of ULF MRI include higher image contrast than for conventional MRI, enabling methodologies not currently available. Examples include screening for cancer without a contrast agent, imaging traumatic brain injury (TBI) and degenerative diseases such as Alzheimer’s, and determining the elapsed time since a stroke. The major current problem with ULF MRI is that its signal-to-noise ratio (SNR) is low compared with high-field MRI. Realistic solutions to this problem are proposed, including implementing sensors with a noise level of 0.1 fT Hz-1/2. A logical and exciting prospect (chapter 5) is to combine MEG and ULF MRI into a single system in which both signal sources are detected with the same array of SQUIDs. A prototype system is described. The combination of MEG and ULF MRI allows one to obtain structural images of the head concurrently with the recording of brain activity. Since all MEG images require an MRI to determine source locations underlying the MEG signal, the combined modality would give a precise registration of the two images; the combination of MEG with high-field MRI can produce registration errors as large as 5 mm. The use of multiple sensors for ULF MRI increases both the SNR and the field of view. Chapter 6 describes another potentially far-reaching application of ULF MRI, namely neuronal current imaging (NCI) of the brain. Currently available neuronal imaging techniques include MEG, which is fast but has relatively poor spatial resolution, perhaps 10 mm, and functional MRI (fMRI) which has a millimeter resolution but is slow, on the order of seconds, and furthermore does not directly measure neuronal signals. NCI combines the ability of direct measurement of MEG with the spatial precision of MRI. In essence, the magnetic fields generated by neural currents shift the frequency of the magnetic resonance signal at a location that is imaged by the three-dimensional magnetic field gradients that form the basis of MRI. The currently achieved sensitivity of NCI is not quite sufficient to realize its goal, but it is close. The realization of NCI would represent a revolution in functional brain imaging. Improved techniques for immunoassay are always being sought, and chapter 7 introduces an entirely new topic, magnetic nanoparticles for immunoassay. These particles are bio-funtionalized, for example with a specific antibody which binds to its corresponding antigen, if it is present. Any resulting changes in the properties of the nanoparticles are detected with a SQUID. For liquid-phase detection, there are three basic methods: AC susceptibility, magnetic relaxation and remanence measurement. These methods, which have been successfully implemented for both in vivo and ex vivo applications, are highly sensitive and, although further development is required, it appears highly likely that at least some of them will be commercialized. Chapter 8 concludes the roadmap with an assessment of the commercial market for MEG systems. Despite the huge advances that have been realized since MEG was first introduced, the number of commercial systems deployed around the world remains small, around 250 units employing about 50 000 SQUIDs. The slow adoption of this technology is undoubtedly in part due to the high cost, not least because of the need to surround the entire system in an expensive magnetically shielded room. Nonetheless, the recent introduction of automatically refilling liquid-helium systems, the ongoing reduction in sensor noise, the potential availability of high-T c SQUID systems, the availability of new and better software and the combination of MEG with ULF MRI all have the potential to increase the market size in the not-so-distant future. In particular, there is a great and growing need for better noninvasive technologies to measure brain function. There are hundreds of millions of people in the world who suffer from brain disorders such as epilepsy, stroke, dementia or depression. The enormous cost to society of these diseases can be reduced by earlier and more accurate detection and diagnosis. Once the challenges outlined in this roadmap have been met and the outstanding problems have been solved, the potential demand for SQUID-based health technology can be expected to increase by ten- if not hundred-fold.
Development of Position-Sensitive Magnetic Calorimeters for X-Ray Astronomy
NASA Technical Reports Server (NTRS)
Bandler, SImon; Stevenson, Thomas; Hsieh, Wen-Ting
2011-01-01
Metallic magnetic calorimeters (MMC) are one of the most promising devices to provide very high energy resolution needed for future astronomical x-ray spectroscopy. MMC detectors can be built to large detector arrays having thousands of pixels. Position-sensitive magnetic (PoSM) microcalorimeters consist of multiple absorbers thermally coupled to one magnetic micro calorimeter. Each absorber element has a different thermal coupling to the MMC, resulting in a distribution of different pulse shapes and enabling position discrimination between the absorber elements. PoSMs therefore achieve the large focal plane area with fewer number of readout channels without compromising spatial sampling. Excellent performance of PoSMs was achieved by optimizing the designs of key parameters such as the thermal conductance among the absorbers, magnetic sensor, and heat sink, as well as the absorber heat capacities. Micro fab ri - cation techniques were developed to construct four-absorber PoSMs, in which each absorber consists of a two-layer composite of bismuth and gold. The energy resolution (FWHM full width at half maximum) was measured to be better than 5 eV at 6 keV x-rays for all four absorbers. Position determination was demonstrated with pulse-shape discrimination, as well as with pulse rise time. X-ray microcalorimeters are usually designed to thermalize as quickly as possible to avoid degradation in energy resolution from position dependence to the pulse shapes. Each pixel consists of an absorber and a temperature sensor, both decoupled from the cold bath through a weak thermal link. Each pixel requires a separate readout channel; for instance, with a SQUID (superconducting quantum interference device). For future astronomy missions where thousands to millions of resolution elements are required, having an individual SQUID readout channel for each pixel becomes difficult. One route to attaining these goals is a position-sensitive detector in which a large continuous or pixilated array of x-ray absorbers shares fewer numbers of temperature sensors. A means of discriminating the signals from different absorber positions, however, needs to be built into the device for each sensor. The design concept for the device is such that the shape of the temperature pulse with time depends on the location of the absorber. This inherent position sensitivity of the signal is then analyzed to determine the location of the event precisely, effectively yielding one device with many sub-pixels. With such devices, the total number of electronic channels required to read out a given number of pixels is significantly reduced. PoSMs were developed that consist of four discrete absorbers connected to a single magnetic sensor. The design concept can be extended to more than four absorbers per sensor. The thermal conductance between the sensor and each absorber is different by design and consequently, the pulse shapes are different depending upon which absorber the xrays are received, allowing position discrimination. A magnetic sensor was used in which a paramagnetic Au:Er temperature-sensitive material is located in a weak magnetic field. Deposition of energy from an x-ray photon causes an increase in temperature, which leads to a change of magnetization of the paramagnetic sensor, which is subsequently read out using a low noise dc-SQUID. The PoSM microcalorimeters are fully microfabricated: the Au:Er sensor is located above the meander, with a thin insulation gap in between. For this position-sensitive device, four electroplated absorbers are thermally linked to the sensor via heat links of different thermal conductance. One pixel is identical to that of a single-pixel design, consisting of an overhanging absorber fabricated directly on top of the sensor. It is therefore very strongly thermally coupled to it. The three other absorbers are supported directly on a silicon-nitride membrane. These absorbers are thermally coupled to the sensor via Ti (5 nm)/Au250 nm) metal links. The strength of the links is parameterized by the number of gold squares making up the link. For detector performance, experimentally different pulse-shapes were demonstrated with 6 keV x-rays, which clearly show different rise times for different absorber positions. For energy resolution measurement, the PoSM was operated at 32 mK with an applied field that was generated using a persistent current of 50 mA. Over the four pixels, energy resolution ranges from 4.4 to 4.7 eV were demonstrated.
Recent advancements in the SQUID magnetospinogram system
NASA Astrophysics Data System (ADS)
Adachi, Yoshiaki; Kawai, Jun; Haruta, Yasuhiro; Miyamoto, Masakazu; Kawabata, Shigenori; Sekihara, Kensuke; Uehara, Gen
2017-06-01
In this study, a new superconducting quantum interference device (SQUID) biomagnetic measurement system known as magnetospinogram (MSG) is developed. The MSG system is used for observation of a weak magnetic field distribution induced by the neural activity of the spinal cord over the body surface. The current source reconstruction for the observed magnetic field distribution provides noninvasive functional imaging of the spinal cord, which enables medical personnel to diagnose spinal cord diseases more accurately. The MSG system is equipped with a uniquely shaped cryostat and a sensor array of vector-type SQUID gradiometers that are designed to detect the magnetic field from deep sources across a narrow observation area over the body surface of supine subjects. The latest prototype of the MSG system is already applied in clinical studies to develop a diagnosis protocol for spinal cord diseases. Advancements in hardware and software for MSG signal processing and cryogenic components aid in effectively suppressing external magnetic field noise and reducing the cost of liquid helium that act as barriers with respect to the introduction of the MSG system to hospitals. The application of the MSG system is extended to various biomagnetic applications in addition to spinal cord functional imaging given the advantages of the MSG system for investigating deep sources. The study also includes a report on the recent advancements of the SQUID MSG system including its peripheral technologies and wide-spread applications.
Determining the vibrations between sensor and sample in SQUID microscopy
NASA Astrophysics Data System (ADS)
Schiessl, Daniel; Kirtley, John R.; Paulius, Lisa; Rosenberg, Aaron J.; Palmstrom, Johanna C.; Ullah, Rahim R.; Holland, Connor M.; Fung, Y.-K.-K.; Ketchen, Mark B.; Gibson, Gerald W.; Moler, Kathryn A.
2016-12-01
Vibrations can cause noise in scanning probe microscopies. Relative vibrations between the scanning sensor and the sample are important but can be more difficult to determine than absolute vibrations or vibrations relative to the laboratory. We measure the noise spectral density in a scanning SQUID microscope as a function of position near a localized source of magnetic field and show that we can determine the spectra of all three components of the relative sensor-sample vibrations. This method is a powerful tool for diagnosing vibrational noise in scanning microscopies.
Dantsker, Eugene; Clarke, John
2000-01-01
The present invention comprises a high-transition-temperature superconducting device having low-magnitude low-frequency noise-characteristics in magnetic fields comprising superconducting films wherein the films have a width that is less than or equal to a critical width, w.sub.C, which depends on an ambient magnetic field. For operation in the Earth's magnetic field, the critical width is about 6 micrometers (.mu.m). When made with film widths of about 4 .mu.m an inventive high transition-temperature, superconducting quantum interference device (SQUID) excluded magnetic flux vortices up to a threshold ambient magnetic field of about 100 microTesla (.mu.T). SQUIDs were fabricated having several different film strip patterns. When the film strip width was kept at about 4 .mu.m, the SQUIDs exhibited essentially no increase in low-frequency noise, even when cooled in static magnetic fields of magnitude up to 100 .mu.T. Furthermore, the mutual inductance between the inventive devices and a seven-turn spiral coil was at least 85% of that for inductive coupling to a conventional SQUID.
Charge dissipative dielectric for cryogenic devices
NASA Technical Reports Server (NTRS)
Cantor, Robin Harold (Inventor); Hall, John Addison (Inventor)
2007-01-01
A Superconducting Quantum Interference Device (SQUID) is disclosed comprising a pair of resistively shunted Josephson junctions connected in parallel within a superconducting loop and biased by an external direct current (dc) source. The SQUID comprises a semiconductor substrate and at least one superconducting layer. The metal layer(s) are separated by or covered with a semiconductor material layer having the properties of a conductor at room temperature and the properties of an insulator at operating temperatures (generally less than 100 Kelvins). The properties of the semiconductor material layer greatly reduces the risk of electrostatic discharge that can damage the device during normal handling of the device at room temperature, while still providing the insulating properties desired to allow normal functioning of the device at its operating temperature. A method of manufacturing the SQUID device is also disclosed.
Evaluation of realistic layouts for next generation on-scalp MEG: spatial information density maps.
Riaz, Bushra; Pfeiffer, Christoph; Schneiderman, Justin F
2017-08-01
While commercial magnetoencephalography (MEG) systems are the functional neuroimaging state-of-the-art in terms of spatio-temporal resolution, MEG sensors have not changed significantly since the 1990s. Interest in newer sensors that operate at less extreme temperatures, e.g., high critical temperature (high-T c ) SQUIDs, optically-pumped magnetometers, etc., is growing because they enable significant reductions in head-to-sensor standoff (on-scalp MEG). Various metrics quantify the advantages of on-scalp MEG, but a single straightforward one is lacking. Previous works have furthermore been limited to arbitrary and/or unrealistic sensor layouts. We introduce spatial information density (SID) maps for quantitative and qualitative evaluations of sensor arrays. SID-maps present the spatial distribution of information a sensor array extracts from a source space while accounting for relevant source and sensor parameters. We use it in a systematic comparison of three practical on-scalp MEG sensor array layouts (based on high-T c SQUIDs) and the standard Elekta Neuromag TRIUX magnetometer array. Results strengthen the case for on-scalp and specifically high-T c SQUID-based MEG while providing a path for the practical design of future MEG systems. SID-maps are furthermore general to arbitrary magnetic sensor technologies and source spaces and can thus be used for design and evaluation of sensor arrays for magnetocardiography, magnetic particle imaging, etc.
Transport characteristics of μ-SQUIDs for probing magnetism
NASA Astrophysics Data System (ADS)
Biswas, Sourav; Paul, Sagar; Parashari, Harsh; Winkelmann, Clemens B.; Courtois, Hervé; Gupta, Anjan K.
2018-04-01
We study the transport properties of niobium (Nb) based micron sized superconducting quantum interference devices (μ-SQUID), which are designed to eliminate thermal hysteresis down to 1.3 K. Current-voltage characteristics are non-hysterestic at the lowest temperature. Large voltage oscillations with magnetic field are observed for a wide range of bias currents with good flux sensitivity and reduced flux noise. However, devices with fins and devices on sapphire substrate show hysteresis for wide range of bath temperature. We have also been able to see the sign of magnetic response from a single micron size ferromagnetic permalloy ellipse using the μ-SQUID.
NASA Astrophysics Data System (ADS)
Kawai, Jun; Kawabata, Miki; Oyama, Daisuke; Uehara, Gen
We have developed fabrication technique of superconducting quantum interference device (SQUID) magnetometers based on Nb/AlAlOx/Nb junctions directly on a glass epoxy polyimide resin substrate, which has copper terminals embedded in advance. The advantage of this method is that no additional substrate and wirebonds are needed for assembly. Compared to conventional SQUID magnetometers, which are assembled with a SQUID chip fabricated on a Si substrate and wirebonding technique, low risk of disconnection can be expected. A directly-coupled multi-loop SQUID magnetometer fabricated with this method has as good noise performance as a SQUID magnetometer with the same design fabricated on a Si wafer. The magnetometer sustained its performance through thermal cycle test 13 times so far.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Falferi, P.; Mezzena, R.; Vitale, S.
1997-08-01
The coupling effects of a commercial dc superconducting quantum interference device (SQUID) to an electrical LC resonator which operates at audio frequencies ({approx}1kHz) with quality factors Q{approx}10{sup 6} are presented. The variations of the resonance frequency of the resonator as functions of the flux applied to the SQUID are due to the SQUID dynamic inductance in good agreement with the predictions of a model. The variations of the quality factor point to a feedback mechanism between the output of the SQUID and the input circuit. {copyright} {ital 1997 American Institute of Physics.}
Radiofrequency amplifier based on a dc superconducting quantum interference device
Hilbert, C.; Martinis, J.M.; Clarke, J.
1984-04-27
A low noise radiofrequency amplifer, using a dc SQUID (superconducting quantum interference device) as the input amplifying element. The dc SQUID and an input coil are maintained at superconductivity temperatures in a superconducting shield, with the input coil inductively coupled to the superconducting ring of the dc SQUID. A radiofrequency signal from outside the shield is applied to the input coil, and an amplified radiofrequency signal is developed across the dc SQUID ring and transmitted to exteriorly of the shield. A power gain of 19.5 +- 0.5 dB has been achieved with a noise temperature of 1.0 +- 0.4 K at a frequency of 100 MHz.
Far infrared through millimeter backshort-under-grid arrays
NASA Astrophysics Data System (ADS)
Allen, Christine A.; Abrahams, John; Benford, Dominic J.; Chervenak, James A.; Chuss, David T.; Staguhn, Johannes G.; Miller, Timothy M.; Moseley, S. Harvey; Wollack, Edward J.
2006-06-01
We are developing a large-format, versatile, bolometer array for a wide range of infrared through millimeter astronomical applications. The array design consists of three key components - superconducting transition edge sensor bolometer arrays, quarter-wave reflective backshort grids, and Superconducting Quantum Interference Device (SQUID) multiplexer readouts. The detector array is a filled, square grid of bolometers with superconducting sensors. The backshort arrays are fabricated separately and are positioned in the etch cavities behind the detector grid. The grids have unique three-dimensional interlocking features micromachined into the walls for positioning and mechanical stability. The ultimate goal of the program is to produce large-format arrays with background-limited sensitivity, suitable for a wide range of wavelengths and applications. Large-format (kilopixel) arrays will be directly indium bump bonded to a SQUID multiplexer circuit. We have produced and tested 8×8 arrays of 1 mm detectors to demonstrate proof of concept. 8×16 arrays of 2 mm detectors are being produced for a new Goddard Space Flight Center instrument. We have also produced models of a kilopixel detector grid and dummy multiplexer chip for bump bonding development. We present detector design overview, several unique fabrication highlights, and assembly technologies.
NASA Astrophysics Data System (ADS)
de Waal, V. J.
1983-02-01
The present investigation deals with the design, fabrication, and limitations of very sensitive SQUID (Superconducting Quantum Interference Device) magnetometers. The SQUID magnetometer is based on a utilization of the Josephson effect. A description of the theoretical background is provided, and high performance DC SQUIDs with submicron niobium Josephson junctions are discussed, taking into account design considerations, fabrication, junction characterization, the performance of the SQUID and input coil, and the gradiometer performance. The simulation and optimization of a DC SQUID with finite capacitance is considered, giving attention to the implementation of a simulation procedure on a hybrid computer.
Ultrasensitive Superconducting Transition Edge Sensors Based On Electron-Phonon Decoupling
NASA Technical Reports Server (NTRS)
Jethava, Nikhil; Chervenak, James; Brown, Ari-David; Benford, Dominic; Kletetschka, Gunther; Mikula, Vilem; U-yen, Kongpop
2011-01-01
We have successfully fabricated the superconducting transition edge sensor (TES), bolometer technology that centers on the use of electron-phonon decoupling (EPD) to thermally isolate the bolometer. Along with material characterization for large format antenna coupled bolometer arrays, we present the initial test results of bolometer based on EPD designed for THz detection. We have selected a design approach that separates the two functions of photon absorption and temperature measurement, allowing separate optimization of the performance of each element. We have integrated Molybdenum/Gold (Mo/Au) bilayer TES and ion assisted thermally evaporated (IAE) Bismuth (Bi) films as radiation absorber coupled to a low-loss microstripline from Niobium (Nb) ground plane to a twin-slot antenna structure. The thermal conductance and the time constant of these devices have been measured, and are consistent with our calculations. The device exhibits a single time constant at 0.1 K of approx.160 IlS, which is compatible with readout by a high-bandwidth single SQUID or a time domain SQUID multiplexer. The effects of thermal conductance and electrothermal feedback are major determinants of the time constant, but the electronic heat capacity also plays a major role. The NEP achieved in the device described above is 2.5x10(exp -17)W(gamma)Hz. Our plan is to demonstrate a reduction of the volume in the superconducting element to 5 microns x 5 microns in films of half the thickness at Tc = 60mK. By calculation, this new geometry corresponds to an NEP reduction of two orders of magnitude to 2.5x10(exp -19)W/(gamma)Hz, with a time constant of 130/ls.
High temperature superconductor dc SQUID micro-susceptometer for room temperature objects
NASA Astrophysics Data System (ADS)
Faley, M. I.; Pratt, K.; Reineman, R.; Schurig, D.; Gott, S.; Atwood, C. G.; Sarwinski, R. E.; Paulson, D. N.; Starr, T. N.; Fagaly, R. L.
2004-05-01
We have developed a scanning magnetic microscope (SMM) with 25 µm resolution in spatial position for the magnetic features of room temperature objects. The microscope consists of a high-temperature superconductor (HTS) dc SQUID sensor, suspended in vacuum with a self-adjusting standoff, close spaced liquid nitrogen Dewar, X-Y scanning stage and a computer control system. The HTS SQUIDs were optimized for better spatial and field resolutions for operation at liquid nitrogen temperature. Measured inside a magnetic shield, the 10 pT Hz-1/2 typical noise of the SQUIDs is white down to frequencies of about 10 Hz, increasing up to about 20 pT Hz-1/2 at 1 Hz. The microscope is mounted on actively damped platforms, which negate vibrations from the environment as well as damping internal stepper motor noises. A high-resolution video telescope and a 1 µm precision z-axis positioning system allow a close positioning of the sample under the sensor. The ability of the sensors to operate in unshielded environmental conditions with magnetic fields up to about 15 G allowed us to perform 2D mapping of the local ac and dc susceptibility of the objects.
Low noise niobium dc SQUID with a planar input coil
NASA Astrophysics Data System (ADS)
de Waal, V. J.; van den Hamer, P.; Klapwijk, T. M.
1983-02-01
A practical all-niobium dc superconducting quantum interference device (SQUID) with a niobium spiral input coil has been developed. The SQUID utilizes submicron Josephson junctions. The best intrinsic energy resolution obtained with a 1-nH SQUID is 4×10-32 J/Hz. A 20-turn 1.2-μH input coil is coupled to a 2.3-nH SQUID with an efficiency of 0.5. The energy resolution with respect to the coil is 1×10-30 J/Hz.
Requirements for Coregistration Accuracy in On-Scalp MEG.
Zetter, Rasmus; Iivanainen, Joonas; Stenroos, Matti; Parkkonen, Lauri
2018-06-22
Recent advances in magnetic sensing has made on-scalp magnetoencephalography (MEG) possible. In particular, optically-pumped magnetometers (OPMs) have reached sensitivity levels that enable their use in MEG. In contrast to the SQUID sensors used in current MEG systems, OPMs do not require cryogenic cooling and can thus be placed within millimetres from the head, enabling the construction of sensor arrays that conform to the shape of an individual's head. To properly estimate the location of neural sources within the brain, one must accurately know the position and orientation of sensors in relation to the head. With the adaptable on-scalp MEG sensor arrays, this coregistration becomes more challenging than in current SQUID-based MEG systems that use rigid sensor arrays. Here, we used simulations to quantify how accurately one needs to know the position and orientation of sensors in an on-scalp MEG system. The effects that different types of localisation errors have on forward modelling and source estimates obtained by minimum-norm estimation, dipole fitting, and beamforming are detailed. We found that sensor position errors generally have a larger effect than orientation errors and that these errors affect the localisation accuracy of superficial sources the most. To obtain similar or higher accuracy than with current SQUID-based MEG systems, RMS sensor position and orientation errors should be [Formula: see text] and [Formula: see text], respectively.
Flux Noise due to Spins in SQUIDs
NASA Astrophysics Data System (ADS)
LaForest, Stephanie
Superconducting Quantum Interference Devices (SQUIDs) are currently being used as flux qubits and read-out detectors in a variety of solid-state quantum computer architectures. The main limitation of SQUID qubits is that they have a coherence time of the order of 10 micros, due to the presence of intrinsic flux noise that is not yet fully understood. The origin of flux noise is currently believed to be related to spin impurities present in the materials and interfaces that form the device. Here we present a novel numerical method that enables calculations of the flux produced by spin impurities even when they are located quite close to the SQUID wire. We show that the SQUID will be particularly sensitive to spins located at its wire edges, generating flux shifts of up to 4 nano flux quanta, much higher than previous calculations based on the software package FastHenry. This shows that spin impurities in a particular region along the wire's surface play a much more important role in producing flux noise than other spin impurities located elsewhere in the device.
Biosensing Using Magnetic Particle Detection Techniques
Chen, Yi-Ting; Kolhatkar, Arati G.; Zenasni, Oussama; Xu, Shoujun
2017-01-01
Magnetic particles are widely used as signal labels in a variety of biological sensing applications, such as molecular detection and related strategies that rely on ligand-receptor binding. In this review, we explore the fundamental concepts involved in designing magnetic particles for biosensing applications and the techniques used to detect them. First, we briefly describe the magnetic properties that are important for bio-sensing applications and highlight the associated key parameters (such as the starting materials, size, functionalization methods, and bio-conjugation strategies). Subsequently, we focus on magnetic sensing applications that utilize several types of magnetic detection techniques: spintronic sensors, nuclear magnetic resonance (NMR) sensors, superconducting quantum interference devices (SQUIDs), sensors based on the atomic magnetometer (AM), and others. From the studies reported, we note that the size of the MPs is one of the most important factors in choosing a sensing technique. PMID:28994727
Parametric Phase-Sensitive Detector Using Two-cell SQUID
2010-08-01
an attenuator of -20 dB. The microwave was fed into the coplanar resonator by a coplanar capacitance of 9 fF, and corresponding response was coupled...transmission line between the two coupled coplanar capacitances . With a network analyzer, the resonant frequency was confirmed to be 8.985 GHz and the...microwave directional sensors based on two-cell SQUIDs. Two SQUID circuits with different values of McCumber parameter βc have been tested. Observed
NASA Astrophysics Data System (ADS)
Ming, Bin
Josephson junctions are at the heart of any superconductor device applications. A SQUID (Superconducting Quantum Interference Device), which consists of two Josephson junctions, is by far the most important example. Unfortunately, in the case of high-Tc superconductors (HTS), the quest for a robust, flexible, and high performance junction technology is yet far from the end. Currently, the only proven method to make HTS junctions is the SrTiO3(STO)-based bicrystal technology. In this thesis we concentrate on the fabrication of YBCO step-edge junctions and SQUIDs on sapphire. The step-edge method provides complete control of device locations and facilitates sophisticated, high-density layout. We select CeO2 as the buffer layer, as the key step to make device quality YBCO thin films on sapphire. With an "overhang" shadow mask produced by a novel photolithography technique, a steep step edge was fabricated on the CeO2 buffer layer by Ar+ ion milling with optimized parameters for minimum ion beam divergence. The step angle was determined to be in excess of 80° by atomic force microscopy (AFM). Josephson junctions patterned from those step edges exhibited resistively shunted junction (RSJ) like current-voltage characteristics. IcR n values in the 200--500 mV range were measured at 77K. Shapiro steps were observed under microwave irradiation, reflecting the true Josephson nature of those junctions. The magnetic field dependence of the junction Ic indicates a uniform current distribution. These results suggest that all fabrication processes are well controlled and the step edge is relatively straight and free of microstructural defects. The SQUIDs made from the same process exhibit large voltage modulation in a varying magnetic field. At 77K, our sapphire-based step-edge SQUID has a low white noise level at 3muphi0/ Hz , as compared to typically >10muphi0/ Hz from the best bicrystal STO SQUIDS. Our effort at device fabrication is chiefly motivated by the scanning SQUID microscopy (SSM) application. A scanning SQUID microscope is a non-contact, non-destructive imaging tool that can resolve weak currents beneath the sample surface by detecting their magnetic fields. Our low-noise sapphire-based step-edge SQUIDs should be particularly suitable for such an application. An earlier effort to make SNS trench junctions using focused ion beam (FIB) is reviewed in a separate chapter. (Abstract shortened by UMI.)
The DCU: the detector control unit of the SAFARI instrument onboard SPICA
NASA Astrophysics Data System (ADS)
Clénet, A.; Ravera, L.; Bertrand, B.; Cros, A.; Hou, R.; Jackson, B. D.; van Leeuwen, B. J.; Van Loon, D.; Parot, Y.; Pointecouteau, E.; Sournac, A.; Ta, N.
2012-09-01
The SpicA FAR infrared Instrument (SAFARI) is a European instrument for the infrared domain telescope SPICA, a JAXA space mission. The SAFARI detectors are Transistor Edge Sensors (TES) arranged in 3 matrixes. The TES front end electronic is based on Superconducting Quantum Interference Devices (SQUIDs) and it does the readout of the 3500 detectors with Frequency Division Multiplexing (FDM) type architecture. The Detector Control Unit (DCU), contributed by IRAP, manages the readout of the TES by computing and providing the AC-bias signals (1 - 3 MHz) to the TES and by computing the demodulation of the returning signals. The SQUID being highly non-linear, the DCU has also to provide a feedback signal to increase the SQUID dynamic. Because of the propagation delay in the cables and the processing time, a classic feedback will not be stable for AC-bias frequencies up to 3 MHz. The DCU uses a specific technique to compensate for those delays: the BaseBand FeedBack (BBFB). This digital data processing is done for the 3500 pixels in parallel. Thus, to keep the DCU power budget within its allocation we have to specifically optimize the architecture of the digital circuit with respect to the power consumption. In this paper we will mainly present the DCU architecture. We will particularly focus on the BBFB technique used to linearize the SQUID and on the optimization done to reduce the power consumption of the digital processing circuit.
Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob
2014-09-01
Magnetic resonance imaging (MRI) at microtesla fields using superconducting quantum interference device (SQUID) detection has previously been demonstrated, and advantages have been noted. Although the ultralow-field SQUID MRI technique would not need the heavy superconducting magnet of conventional MRI systems, liquid helium required to cool the low-temperature detector still places a significant burden on its operation. We have built a prototype cryocooler-based SQUID MRI system that does not require a cryogen. The SQUID detector and the superconducting gradiometer were cooled down to 3.7 K and 4.3 K, respectively. We describe the prototype design, characterization, a phantom image, and areas of further improvements needed to bring the imaging performance to parity with conventional MRI systems.
Radiofrequency amplifier based on a dc superconducting quantum interference device
Hilbert, Claude; Martinis, John M.; Clarke, John
1986-01-01
A low noise radiofrequency amplifier (10), using a dc SQUID (superconducting quantum interference device) as the input amplifying element. The dc SQUID (11) and an input coil (12) are maintained at superconductivity temperatures in a superconducting shield (13), with the input coil (12) inductively coupled to the superconducting ring (17) of the dc SQUID (11). A radiofrequency signal from outside the shield (13) is applied to the input coil (12), and an amplified radiofrequency signal is developed across the dc SQUID ring (17) and transmitted to exteriorly of the shield (13). A power gain of 19.5.+-.0.5 dB has been achieved with a noise temperature of 1.0.+-.0.4 K. at a frequency of 100 MHz.
Cosmological flux noise and measured noise power spectra in SQUIDs
Beck, Christian
2016-01-01
The understanding of the origin of 1/f magnetic flux noise commonly observed in superconducting devices such as SQUIDs and qubits is still a major unsolved puzzle. Here we discuss the possibility that a significant part of the observed low-frequency flux noise measured in these devices is ultimately seeded by cosmological fluctuations. We consider a theory where a primordial flux noise field left over in unchanged form from an early inflationary or quantum gravity epoch of the universe intrinsically influences the phase difference in SQUIDs and qubits. The perturbation seeds generated by this field can explain in a quantitatively correct way the form and amplitude of measured low-frequency flux noise spectra in SQUID devices if one takes as a source of fluctuations the primordial power spectrum of curvature fluctuations as measured by the Planck collaboration. Our theoretical predictions are in excellent agreement with recent low-frequency flux noise measurements of various experimental groups. Magnetic flux noise, so far mainly considered as a nuisance for electronic devices, may thus contain valuable information about fluctuation spectra in the very early universe. PMID:27320418
Cosmological flux noise and measured noise power spectra in SQUIDs.
Beck, Christian
2016-06-20
The understanding of the origin of 1/f magnetic flux noise commonly observed in superconducting devices such as SQUIDs and qubits is still a major unsolved puzzle. Here we discuss the possibility that a significant part of the observed low-frequency flux noise measured in these devices is ultimately seeded by cosmological fluctuations. We consider a theory where a primordial flux noise field left over in unchanged form from an early inflationary or quantum gravity epoch of the universe intrinsically influences the phase difference in SQUIDs and qubits. The perturbation seeds generated by this field can explain in a quantitatively correct way the form and amplitude of measured low-frequency flux noise spectra in SQUID devices if one takes as a source of fluctuations the primordial power spectrum of curvature fluctuations as measured by the Planck collaboration. Our theoretical predictions are in excellent agreement with recent low-frequency flux noise measurements of various experimental groups. Magnetic flux noise, so far mainly considered as a nuisance for electronic devices, may thus contain valuable information about fluctuation spectra in the very early universe.
MCG measurement in the environment of active magnetic shield.
Yamazaki, K; Kato, K; Kobayashi, K; Igarashi, A; Sato, T; Haga, A; Kasai, N
2004-11-30
MCG (Magnetocardiography) measurement by a SQUID gradiometer was attempted with only active magnetic shielding (active shielding). A three-axis-canceling-coil active shielding system, where three 16-10-16 turns-coil sets were put in the orthogonal directions, produces a homogeneous magnetic field in a considerable volume surrounding the center. Fluxgate sensors were used as the reference sensors of the system. The system can reduce environmental magnetic noise at low frequencies of less than a few Hz, at 50 Hz and at 150 Hz. Reducing such disturbances stabilizes biomagnetic measurement conditions for SQUIDs in the absence of magnetically shielded rooms (MSR). After filtering and averaging the measured MCG data by a first-order SQUID gradiometer with only the active shielding during the daytime, the QRS complex and T wave was clearly presented.
Computational and Mathematical Modeling of Coupled Superconducting Quantum Interference Devices
NASA Astrophysics Data System (ADS)
Berggren, Susan Anne Elizabeth
This research focuses on conducting an extensive computational investigation and mathematical analysis into the average voltage response of arrays of Superconducting Quantum Interference Devices (SQUIDs). These arrays will serve as the basis for the development of a sensitive, low noise, significantly lower Size, Weight and Power (SWaP) antenna integrated with Low-Noise Amplifier (LNA) using the SQUID technology. The goal for this antenna is to be capable of meeting all requirements for Guided Missile Destroyers (DDG) 1000 class ships for Information Operations/Signals Intelligence (IO/SIGINT) applications in Very High Frequency/Ultra High Frequency (V/UHF) bands. The device will increase the listening capability of receivers by moving technology into a new regime of energy detection allowing wider band, smaller size, more sensitive, stealthier systems. The smaller size and greater sensitivity will allow for ships to be “de-cluttered” of their current large dishes and devices, replacing everything with fewer and smaller SQUID antenna devices. The fewer devices present on the deck of a ship, the more invisible the ship will be to enemy forces. We invent new arrays of SQUIDs, optimized for signal detection with very high dynamic range and excellent spur-free dynamic range, while maintaining extreme small size (and low radar cross section), wide bandwidth, and environmentally noise limited sensitivity, effectively shifting the bottle neck of receiver systems forever away from the antenna itself deeper into the receiver chain. To accomplish these goals we develop and validate mathematical models for different designs of SQUID arrays and use them to invent a new device and systems design. This design is capable of significantly exceeding, per size weight and power, state-of-the-art receiver system measures of performance, such as bandwidth, sensitivity, dynamic range, and spurious-free dynamic range.
Development of a Cryostat to Characterize Nano-scale Superconducting Quantum Interference Devices
NASA Astrophysics Data System (ADS)
Longo, Mathew; Matheny, Matthew; Knudsen, Jasmine
2016-03-01
We have designed and constructed a low-noise vacuum cryostat to be used for the characterization of nano-scale superconducting quantum interference devices (SQUIDs). Such devices are very sensitive to magnetic fields and can measure changes in flux on the order of a single electron magnetic moment. As a part of the design process, we calculated the separation required between the cryogenic preamplifier and superconducting magnet, including a high-permeability magnetic shield, using a finite-element model of the apparatus. The cryostat comprises a vacuum cross at room temperature for filtered DC and shielded RF electrical connections, a thin-wall stainless steel support tube, a taper-sealed cryogenic vacuum can, and internal mechanical support and wiring for the nanoSQUID. The Dewar is modified with a room-temperature flange with a sliding seal for the cryostat. The flange supports the superconducting 3 Tesla magnet and thermometry wiring. Upon completion of the cryostat fabrication and Dewar modifications, operation of the nanoSQUIDs as transported from our collaborator's laboratory in Israel will be confirmed, as the lead forming the SQUID is sensitive to oxidation and the SQUIDs must be shipped in a vacuum container. After operation of the nanoSQUIDs is confirmed, the primary work of characterizing their high-speed properties will begin. This will include looking at the measurement of relaxation oscillations at high bandwidth in comparison to the theoretical predictions of the current model.
Microwave SQUID multiplexer demonstration for cosmic microwave background imagers
NASA Astrophysics Data System (ADS)
Dober, B.; Becker, D. T.; Bennett, D. A.; Bryan, S. A.; Duff, S. M.; Gard, J. D.; Hays-Wehle, J. P.; Hilton, G. C.; Hubmayr, J.; Mates, J. A. B.; Reintsema, C. D.; Vale, L. R.; Ullom, J. N.
2017-12-01
Key performance characteristics are demonstrated for the microwave superconducting quantum interference device (SQUID) multiplexer (μmux) coupled to transition edge sensor (TES) bolometers that have been optimized for cosmic microwave background (CMB) observations. In a 64-channel demonstration, we show that the μmux produces a white, input referred current noise level of 29 pA/ √{H z } at a microwave probe tone power of -77 dB, which is well below the expected fundamental detector and photon noise sources for a ground-based CMB-optimized bolometer. Operated with negligible photon loading, we measure 98 pA/ √{H z } in the TES-coupled channels biased at 65% of the sensor normal resistance. This noise level is consistent with that predicted from bolometer thermal fluctuation (i.e., phonon) noise. Furthermore, the power spectral density is white over a range of frequencies down to ˜100 mHz, which enables CMB mapping on large angular scales that constrain the physics of inflation. Additionally, we report cross-talk measurements that indicate a level below 0.3%, which is less than the level of cross-talk from multiplexed readout systems in deployed CMB imagers. These measurements demonstrate the μmux as a viable readout technique for future CMB imaging instruments.
Overton, Jr., William C.; Steyert, Jr., William A.
1984-01-01
A superconducting quantum interference device (SQUID) magnetic detection apparatus detects magnetic fields, signals, and anomalies at remote locations. Two remotely rotatable SQUID gradiometers may be housed in a cryogenic environment to search for and locate unambiguously magnetic anomalies. The SQUID magnetic detection apparatus can be used to determine the azimuth of a hydrofracture by first flooding the hydrofracture with a ferrofluid to create an artificial magnetic anomaly therein.
Overton, W.C. Jr.; Steyert, W.A. Jr.
1981-05-22
A superconducting quantum interference device (SQUID) magnetic detection apparatus detects magnetic fields, signals, and anomalies at remote locations. Two remotely rotatable SQUID gradiometers may be housed in a cryogenic environment to search for and locate unambiguously magnetic anomalies. The SQUID magnetic detection apparatus can be used to determine the azimuth of a hydrofracture by first flooding the hydrofracture with a ferrofluid to create an artificial magnetic anomaly therein.
Development of RF Sensor Based on Two-Cell Squid
2011-07-15
to (8) is proportional to the reduced drive detuning, ωp0 is the resonant frequency for small oscillations, i.e. the plasma frequency of the combined...2 Φ= cnc IRπω (16) where Rn is the normal resistance of the Josephson junction in the SQUID, and L the inductance of the...were about 9 fF. The critical current I0 of each junction in the SQUID was 17.7 μA, normal resistance 110.9 Ω, plasma frequency ωp 124 GHz and
Development of RF Sensor Based on Two-cell SQUID
2012-07-01
according to (8) is proportional to the reduced drive detuning, ωp0 is the resonant frequency for small oscillations, i.e. the plasma frequency of the...0/2 Φ= cnc IRπω (16) where Rn is the normal resistance of the Josephson junction in the SQUID, and L the inductance of the...17.7 μA, normal resistance 110.9 Ω, plasma frequency ωp 124 GHz and characteristic frequency 948 GHz. While the loop inductance of SQUID was 60 pH
Initial Results from SQUID Sensor: Analysis and Modeling for the ELF/VLF Atmospheric Noise.
Hao, Huan; Wang, Huali; Chen, Liang; Wu, Jun; Qiu, Longqing; Rong, Liangliang
2017-02-14
In this paper, the amplitude probability density (APD) of the wideband extremely low frequency (ELF) and very low frequency (VLF) atmospheric noise is studied. The electromagnetic signals from the atmosphere, referred to herein as atmospheric noise, was recorded by a mobile low-temperature superconducting quantum interference device (SQUID) receiver under magnetically unshielded conditions. In order to eliminate the adverse effect brought by the geomagnetic activities and powerline, the measured field data was preprocessed to suppress the baseline wandering and harmonics by symmetric wavelet transform and least square methods firstly. Then statistical analysis was performed for the atmospheric noise on different time and frequency scales. Finally, the wideband ELF/VLF atmospheric noise was analyzed and modeled separately. Experimental results show that, Gaussian model is appropriate to depict preprocessed ELF atmospheric noise by a hole puncher operator. While for VLF atmospheric noise, symmetric α -stable (S α S) distribution is more accurate to fit the heavy-tail of the envelope probability density function (pdf).
Initial Results from SQUID Sensor: Analysis and Modeling for the ELF/VLF Atmospheric Noise
Hao, Huan; Wang, Huali; Chen, Liang; Wu, Jun; Qiu, Longqing; Rong, Liangliang
2017-01-01
In this paper, the amplitude probability density (APD) of the wideband extremely low frequency (ELF) and very low frequency (VLF) atmospheric noise is studied. The electromagnetic signals from the atmosphere, referred to herein as atmospheric noise, was recorded by a mobile low-temperature superconducting quantum interference device (SQUID) receiver under magnetically unshielded conditions. In order to eliminate the adverse effect brought by the geomagnetic activities and powerline, the measured field data was preprocessed to suppress the baseline wandering and harmonics by symmetric wavelet transform and least square methods firstly. Then statistical analysis was performed for the atmospheric noise on different time and frequency scales. Finally, the wideband ELF/VLF atmospheric noise was analyzed and modeled separately. Experimental results show that, Gaussian model is appropriate to depict preprocessed ELF atmospheric noise by a hole puncher operator. While for VLF atmospheric noise, symmetric α-stable (SαS) distribution is more accurate to fit the heavy-tail of the envelope probability density function (pdf). PMID:28216590
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakanishi, Masakazu, E-mail: m.nakanishi@aist.go.jp
Responses of a superconducting quantum interference device (SQUID) are periodically dependent on magnetic flux coupling to its superconducting ring and the period is a flux quantum (Φ{sub o} = h/2e, where h and e, respectively, express Planck's constant and elementary charge). Using this periodicity, we had proposed a digital to analog converter using a SQUID (SQUID DAC) of first generation with linear current output, interval of which corresponded to Φ{sub o}. Modification for increasing dynamic range by interpolating within each interval is reported. Linearity of the interpolation was also based on the quantum periodicity. A SQUID DAC with dynamic rangemore » of about 1.4 × 10{sup 7} was created as a demonstration.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob, E-mail: ihahn@caltech.edu
2014-09-15
Magnetic resonance imaging (MRI) at microtesla fields using superconducting quantum interference device (SQUID) detection has previously been demonstrated, and advantages have been noted. Although the ultralow-field SQUID MRI technique would not need the heavy superconducting magnet of conventional MRI systems, liquid helium required to cool the low-temperature detector still places a significant burden on its operation. We have built a prototype cryocooler-based SQUID MRI system that does not require a cryogen. The SQUID detector and the superconducting gradiometer were cooled down to 3.7 K and 4.3 K, respectively. We describe the prototype design, characterization, a phantom image, and areas ofmore » further improvements needed to bring the imaging performance to parity with conventional MRI systems.« less
NIS tunnel junction as an x-ray photon sensor
NASA Astrophysics Data System (ADS)
Azgui, Fatma; Mears, Carl A.; Labov, Simon E.; Frank, Matthias A.; Sadoulet, Bernard; Brunet, E.; Hiller, Lawrence J.; Lindeman, Mark A.; Netel, Harrie
1995-09-01
This work presents the first results of our development of normal-insulating-superconducting tunnel junctions used as energy dispersive detectors for low energy particles. The device described here is a Ag/Al(subscript 2)O(subscript 3)/Al tunnel junction of area 1.5 multiplied by 10(superscript 4) micrometer squared with thicknesses of 200 nm for the normal Ag strip and 100 nm for the superconducting Al film. Two different high-speed SQUID systems manufactured by quantum magnetics and HYPRES, respectively, were used for the readout of this device. At 80 mK bath temperature we obtained an energy resolution DeltaE(subscript FWHM) equals 250 eV for 5.89 keV x rays absorbed directly in the normal metal. This energy resolution appears to be limited in large part by the observed strong position dependence of the device response.
Superconducting quantum interference device with frequency-dependent damping: Readout of flux qubits
NASA Astrophysics Data System (ADS)
Robertson, T. L.; Plourde, B. L. T.; Hime, T.; Linzen, S.; Reichardt, P. A.; Wilhelm, F. K.; Clarke, John
2005-07-01
Recent experiments on superconducting flux qubits, consisting of a superconducting loop interrupted by Josephson junctions, have demonstrated quantum coherence between two different quantum states. The state of the qubit is measured with a superconducting quantum interference device (SQUID). Such measurements require the SQUID to have high resolution while exerting minimal backaction on the qubit. By designing shunts across the SQUID junctions appropriately, one can improve the measurement resolution without increasing the backaction significantly. Using a path-integral approach to analyze the Caldeira-Leggett model, we calculate the narrowing of the distribution of the switching events from the zero-voltage state of the SQUID for arbitrary shunt admittances, focusing on shunts consisting of a capacitance Cs and resistance Rs in series. To test this model, we fabricated a dc SQUID in which each junction is shunted with a thin-film interdigitated capacitor in series with a resistor, and measured the switching distribution as a function of temperature and applied magnetic flux. After accounting for the damping due to the SQUID leads, we found good agreement between the measured escape rates and the predictions of our model. We analyze the backaction of a shunted symmetric SQUID on a flux qubit. For the given parameters of our SQUID and realistic parameters for a flux qubit, at the degeneracy point we find a relaxation time of 113μs , which limits the decoherence time to 226μs . Based on our analysis of the escape process, we determine that a SQUID with purely capacitive shunts should have narrow switching distributions and no dissipation.
A Spread-Spectrum SQUID Multiplexer
NASA Astrophysics Data System (ADS)
Irwin, K. D.; Chaudhuri, S.; Cho, H.-M.; Dawson, C.; Kuenstner, S.; Li, D.; Titus, C. J.; Young, B. A.
2018-06-01
The transition-edge sensor (TES) is a mature, high-resolution x-ray spectrometer technology that provides a much higher efficiency than dispersive spectrometers such as gratings and crystal spectrometers. As larger arrays are developed, time-division multiplexing schemes operating at MHz frequencies are being replaced by microwave SQUID multiplexers using frequency-division multiplexing at GHz frequencies. However, the multiplexing factor achievable with microwave SQUIDs is limited by the high slew rate on the leading edge of x-ray pulses. In this paper, we propose a new multiplexing scheme for high-slew-rate TES x-ray calorimeters: the spread-spectrum SQUID multiplexer, which has the potential to enable higher multiplexing factors, especially in applications with lower photon-arrival rates.
Superconducting magnetic sensors for mine detection and classification
NASA Astrophysics Data System (ADS)
Clem, Ted R.; Koch, Roger H.; Keefe, George A.
1995-06-01
Sensors incorporating Superconducting Quantum Interference Devices (SQUIDs) provide the greatest sensitivity for magnetic anomaly detection available with current technology. During the 1980's, the Naval Surface Warfare Center Coastal Systems Station (CSS) developed a superconducting magnetic sensor capable of operation outside of the laboratory environment. This sensor demonstrated rugged, reliable performance even onboard undersea towed platforms. With this sensor, the CSS was able to demonstrate buried mine detection for the US Navy. Subsequently the sensor was incorporated into a multisensor suite onboard an underwater towed vehicle to provide a robust mine hunting capability for the Magnetic and Acoustic Detection of Mines (MADOM) project. This sensor technology utilized niobium superconducting componentry cooled by liquid helium to temperatures on the order of 4 degrees Kelvin (K). In the late 1980's a new class of superconductors was discovered with critical temperatures above the boiling point of liquid nitrogen (77K). This advance has opened up new opportunities, especially for mine reconnaissance and hunting from small unmanned underwater vehicles (UUVs). This paper describes the magnetic sensor detection and classification concept developed for MADOM. In addition, opportunities for UUV operations made possible with high Tc technology and the Navy's current efforts in this area will be addressed.
Technical and commerical challenges in high Tc SQUIDs and their industrial applications
NASA Technical Reports Server (NTRS)
Lu, D. F.
1995-01-01
A SQUID is the most sensitive device for measuring changes in magnetic flux. Since its discovery in the sixties, scientists have made consistent efforts to apply SQUID's to various applications. Instruments that are the most sensitive in their respective categories have been built, such as SQUID DC susceptometer that is now manufactured by Quantum Design, pico-voltmeter which could measure 10(exp -14) volts, and gravitational wave detectors. One of the most successful applications of SQUID's is in magnetoencephalography, a non-invasive technique for investigating neuronal activity in the living human brain. This technique employs a multi-channel SQUID magnetometer that maps the weak magnetic field generated by small current when information is processed in brain, and its performance is marvelous.
A method for simulating a flux-locked DC SQUID
NASA Technical Reports Server (NTRS)
Gutt, G. M.; Kasdin, N. J.; Condron, M. R., II; Muhlfelder, B.; Lockhart, J. M.; Cromar, M. W.
1993-01-01
The authors describe a computationally efficient and accurate method for simulating a dc SQUID's V-Phi (voltage-flux) and I-V characteristics which has proven valuable in evaluating and improving various SQUID readout methods. The simulation of the SQUID is based on fitting of previously acquired data from either a real or a modeled device using the Fourier transform of the V-Phi curve. This method does not predict SQUID behavior, but rather is a way of replicating a known behavior efficiently with portability into various simulation programs such as SPICE. The authors discuss the methods used to simulate the SQUID and the flux-locking control electronics, and present specific examples of this approach. Results include an estimate of the slew rate and linearity of a simple flux-locked loop using a characterized dc SQUID.
Subranging technique using superconducting technology
Gupta, Deepnarayan
2003-01-01
Subranging techniques using "digital SQUIDs" are used to design systems with large dynamic range, high resolution and large bandwidth. Analog-to-digital converters (ADCs) embodying the invention include a first SQUID based "coarse" resolution circuit and a second SQUID based "fine" resolution circuit to convert an analog input signal into "coarse" and "fine" digital signals for subsequent processing. In one embodiment, an ADC includes circuitry for supplying an analog input signal to an input coil having at least a first inductive section and a second inductive section. A first superconducting quantum interference device (SQUID) is coupled to the first inductive section and a second SQUID is coupled to the second inductive section. The first SQUID is designed to produce "coarse" (large amplitude, low resolution) output signals and the second SQUID is designed to produce "fine" (low amplitude, high resolution) output signals in response to the analog input signals.
Microwave SQUID Multiplexer for the Readout of Metallic Magnetic Calorimeters
NASA Astrophysics Data System (ADS)
Kempf, S.; Gastaldo, L.; Fleischmann, A.; Enss, C.
2014-06-01
We have realized a frequency-domain multiplexing technique for the readout of large metallic magnetic calorimeter detector arrays. It is based on non-hysteretic single-junction SQUIDs and allows for a simultaneous readout of hundreds or thousands of detectors by using a single cryogenic high electron mobility transistor amplifier and two coaxial cables that are routed from room-temperature to the detector array. We discuss the working principle of the multiplexer and present details about our prototype multiplexer design. We show that fabricated devices are fully operational and that characteristic SQUID parameters such as the input sensitivity of the SQUID or the resonance frequency of the readout circuit can be predicted with confidence. Our best device so far has shown a magnetic flux white noise level of 1.4 m which can in future be reduced by an optimization of the fabrication processes as well as an improved microwave readout system.
Tracking Electromagnetic Energy With SQUIDs
NASA Technical Reports Server (NTRS)
2005-01-01
A superconducting quantum interference device (SQUID) is a gadget used to measure extremely weak signals, specifically magnetic flux. It can detect subtle changes in energy, up to 100 billion times weaker than the electromagnetic energy required to move a compass needle. SQUIDs are used for a variety of testing procedures where extreme sensitivity is required and where the test instrument need not come into direct contact with the test subject. NASA uses SQUIDs for remote, noncontact sensing in a variety of venues, including monitoring the Earth s magnetic field and tracking brain activity of pilots. Scientists at NASA s Goddard Space Flight Center have been making extensive use of this technology, from astrophysical research, to tracking the navigational paths of bees in flight to determine if they are using internal compasses. These very sensitive measurement devices have a wide variety of uses within NASA and even more uses within the commercial realm.
Optical transmission modules for multi-channel superconducting quantum interference device readouts.
Kim, Jin-Mok; Kwon, Hyukchan; Yu, Kwon-kyu; Lee, Yong-Ho; Kim, Kiwoong
2013-12-01
We developed an optical transmission module consisting of 16-channel analog-to-digital converter (ADC), digital-noise filter, and one-line serial transmitter, which transferred Superconducting Quantum Interference Device (SQUID) readout data to a computer by a single optical cable. A 16-channel ADC sent out SQUID readouts data with 32-bit serial data of 8-bit channel and 24-bit voltage data at a sample rate of 1.5 kSample/s. A digital-noise filter suppressed digital noises generated by digital clocks to obtain SQUID modulation as large as possible. One-line serial transmitter reformed 32-bit serial data to the modulated data that contained data and clock, and sent them through a single optical cable. When the optical transmission modules were applied to 152-channel SQUID magnetoencephalography system, this system maintained a field noise level of 3 fT/√Hz @ 100 Hz.
Temperature-dependent performance of all-NbN DC-SQUID magnetometers
NASA Astrophysics Data System (ADS)
Liu, Quansheng; Wang, Huiwu; Zhang, Qiyu; Wang, Hai; Peng, Wei; Wang, Zhen
2017-05-01
Integrated NbN direct current superconducting quantum interference device (DC-SQUID) magnetometers were developed based on high-quality epitaxial NbN/AlN/NbN Josephson junctions for SQUID applications operating at high temperatures. We report the current-voltage and voltage-flux characteristics and the noise performance of the NbN DC-SQUIDs for temperatures ranging from 4.2 to 9 K. The critical current and voltage swing of the DC-SQUIDs decreased by 15% and 25%, respectively, as the temperature was increased from 4.2 to 9 K. The white flux noise of the DC-SQUID magnetometer at 1 kHz increased from 3.9 μΦ0/Hz1/2 at 4.2 K to 4.8 μΦ0/Hz1/2 at 9 K with 23% increase, corresponding to the magnetic field noise of 6.6 and 8.1 fT/Hz1/2, respectively. The results show that NbN DC-SQUIDs improve the tolerance of the operating temperatures and temperature fluctuations in SQUID applications.
Y1Ba2Cu3O(7-delta) thin film dc SQUIDs (superconducting quantum interference device)
NASA Astrophysics Data System (ADS)
Racah, Daniel
1991-03-01
Direct current superconducting quantum interferometers (SQUIDs) based on HTSC thin films have been measured and characterized. The thin films used were of different quality: (1) Granular films on Sapphire substrates, prepared either by e-gun evaporation, by laser ablation or by MOCVD (metal oxide chemical vapor deposition), (2) Epitaxial films on MgO substrates. Modulations of the voltage on the SQUIDs as a function of the applied flux have been observed in a wide range of temperatures. The nature of the modulation was found to be strongly dependent on the morphology of the film and on its critical current. The SQUIDs based on granular films were relatively noisy, hysteretic and with a complicated V-phi shape. Those devices based on low quality (lowIc) granular films could be measured only at low temperatures (much lower than 77 K). While those of higher quality (granular films with high Ic) could be measured near to the superconductive transition. The SQUID based on high quality epitaxial film was measured near Tc and showed an anomalous, time dependent behavior.
Performance of a novel SQUID-based superconducting imaging-surface magnetoencephalography system
NASA Astrophysics Data System (ADS)
Kraus, R. H.; Volegov, P.; Maharajh, K.; Espy, M. A.; Matlashov, A. N.; Flynn, E. R.
2002-03-01
Performance for a recently completed whole-head magnetoencephalography system using a superconducting imaging surface (SIS) surrounding an array of 150 SQUID magnetometers is reported. The helmet-like SIS is hemispherical in shape with a brim. Conceptually, the SIS images nearby sources onto the SQUIDs while shielding sensors from distant “noise” sources. A finite element method (FEM) description using the as-built geometry was developed to describe the SIS effect on source fields by imposing B⊥( surface)=0 . Sensors consist of 8×8 mm 2 SQUID magnetometers with 0.84 nT/ Φ0 sensitivity and <3 fT/ Hz noise. A series of phantom experiments to verify system efficacy have been completed. Simple dry-wire phantoms were used to eliminate model dependence from our results. Phantom coils were distributed throughout the volume encompassed by the array with a variety of orientations. Each phantom coil was precisely machined and located to better than 25 μm and 10 mRad accuracy. Excellent agreement between model-calculated and measured magnetic field distributions of all phantom coil positions and orientations was found. Good agreement was found between modeled and measured shielding of the SQUIDs from sources external to the array showing significant frequency-independent shielding. Phantom localization precision was better than 0.5 mm at all locations with a mean of better than 0.3 mm.
Localizing on-scalp MEG sensors using an array of magnetic dipole coils.
Pfeiffer, Christoph; Andersen, Lau M; Lundqvist, Daniel; Hämäläinen, Matti; Schneiderman, Justin F; Oostenveld, Robert
2018-01-01
Accurate estimation of the neural activity underlying magnetoencephalography (MEG) signals requires co-registration i.e., determination of the position and orientation of the sensors with respect to the head. In modern MEG systems, an array of hundreds of low-Tc SQUID sensors is used to localize a set of small, magnetic dipole-like (head-position indicator, HPI) coils that are attached to the subject's head. With accurate prior knowledge of the positions and orientations of the sensors with respect to one another, the HPI coils can be localized with high precision, and thereby the positions of the sensors in relation to the head. With advances in magnetic field sensing technologies, e.g., high-Tc SQUIDs and optically pumped magnetometers (OPM), that require less extreme operating temperatures than low-Tc SQUID sensors, on-scalp MEG is on the horizon. To utilize the full potential of on-scalp MEG, flexible sensor arrays are preferable. Conventional co-registration is impractical for such systems as the relative positions and orientations of the sensors to each other are subject-specific and hence not known a priori. Herein, we present a method for co-registration of on-scalp MEG sensors. We propose to invert the conventional co-registration approach and localize the sensors relative to an array of HPI coils on the subject's head. We show that given accurate prior knowledge of the positions of the HPI coils with respect to one another, the sensors can be localized with high precision. We simulated our method with realistic parameters and layouts for sensor and coil arrays. Results indicate co-registration is possible with sub-millimeter accuracy, but the performance strongly depends upon a number of factors. Accurate calibration of the coils and precise determination of the positions and orientations of the coils with respect to one another are crucial. Finally, we propose methods to tackle practical challenges to further improve the method.
Localizing on-scalp MEG sensors using an array of magnetic dipole coils
Andersen, Lau M.; Lundqvist, Daniel; Hämäläinen, Matti; Schneiderman, Justin F.; Oostenveld, Robert
2018-01-01
Accurate estimation of the neural activity underlying magnetoencephalography (MEG) signals requires co-registration i.e., determination of the position and orientation of the sensors with respect to the head. In modern MEG systems, an array of hundreds of low-Tc SQUID sensors is used to localize a set of small, magnetic dipole-like (head-position indicator, HPI) coils that are attached to the subject’s head. With accurate prior knowledge of the positions and orientations of the sensors with respect to one another, the HPI coils can be localized with high precision, and thereby the positions of the sensors in relation to the head. With advances in magnetic field sensing technologies, e.g., high-Tc SQUIDs and optically pumped magnetometers (OPM), that require less extreme operating temperatures than low-Tc SQUID sensors, on-scalp MEG is on the horizon. To utilize the full potential of on-scalp MEG, flexible sensor arrays are preferable. Conventional co-registration is impractical for such systems as the relative positions and orientations of the sensors to each other are subject-specific and hence not known a priori. Herein, we present a method for co-registration of on-scalp MEG sensors. We propose to invert the conventional co-registration approach and localize the sensors relative to an array of HPI coils on the subject’s head. We show that given accurate prior knowledge of the positions of the HPI coils with respect to one another, the sensors can be localized with high precision. We simulated our method with realistic parameters and layouts for sensor and coil arrays. Results indicate co-registration is possible with sub-millimeter accuracy, but the performance strongly depends upon a number of factors. Accurate calibration of the coils and precise determination of the positions and orientations of the coils with respect to one another are crucial. Finally, we propose methods to tackle practical challenges to further improve the method. PMID:29746486
NASA Astrophysics Data System (ADS)
Yu, Long-Bao; Zhang, Wen-Hai; Ye, Liu
2007-09-01
We propose a simple scheme to realize 1→M economical phase-covariant quantum cloning machine (EPQCM) with superconducting quantum interference device (SQUID) qubits. In our scheme, multi-SQUIDs are fixed into a microwave cavity by adiabatic passage for their manipulation. Based on this model, we can realize the EPQCM with high fidelity via adiabatic quantum computation.
Adachi, Yoshiaki; Oyama, Daisuke; Kawai, Jun; Kawabata, Shigenori; Uehara, Gen
2013-01-01
We have developed a magnetospinography (MSG) system that detects weak magnetic fields associated with spinal cord neural activity using an array of low-temperature superconducting quantum interference device (SQUID)-based magnetic flux sensors. A functional image of the spinal cord can be obtained noninvasively by using this system, and it is effective for precise lesion localization in the diagnosis of spinal cord diseases. The running cost of the developed MSG system mainly depends on liquid helium (LHe) consumption, which is required to maintain the superconducting state of the SQUID sensors. To reduce the LHe consumption, we incorporate a pulse-tube-refrigerator-based cryocooler into the MSG system. Cold gaseous helium is circulated between the cryocooler and the MSG system for cooling the thermal radiation shield of the dewar vessel. Consequently, we achieved a 46% decrease in the LHe consumption rate. Conventional biomagnetic field detection such as magnetoencephalography is often hindered by severe low-frequency band noise from the cryocooler. However, in the case of MSG measurements, such noise can be filtered out because the band of the signal is much higher than that of the cryocooler noise. We demonstrated that the signal-to-noise ratio of the cervical spinal cord evoked magnetic field measurement performed with a working cryocooler is comparable to that of the measurement without a cryocooler.
Development of microwave-multiplexed superconductive detectors for the HOLMES experiment
NASA Astrophysics Data System (ADS)
Giachero, A.; Becker, D.; Bennett, D. A.; Faverzani, M.; Ferri, E.; Fowler, J. W.; Gard, J. D.; Hays-Wehle, J. P.; Hilton, G. C.; Maino, M.; Mates, J. A. B.; Puiu, A.; Nucciotti, A.; Reintsema, C. D.; Swetz, D. S.; Ullom, J. N.; Vale, L. R.
2016-05-01
In recent years, the progress on low temperature detector technologies has allowed design of large scale experiments aiming at pushing down the sensitivity on the neutrino mass below 1 eV. Even with outstanding performances in both energy (~eV on keV) and time resolution (~ 1 μs) on the single channel, a large number of detectors working in parallel is required to reach a sub-eV sensitivity. HOLMES is a new experiment to directly measure the neutrino mass with a sensitivity as low as 2eV. HOLMES will perform a calorimetric measurement of the energy released in the electron capture (EC) decay of 163 Ho. In its final configuration, HOLMES will deploy 1000 detectors of low temperature microcalorimeters with implanted 163 Ho nuclei. The baseline sensors for HOLMES are Mo/Cu TESs (Transition Edge Sensors) on SiNx membrane with gold absorbers. The readout is based on the use of rf-SQUIDs as input devices with flux ramp modulation for linearization purposes; the rf-SQUID is then coupled to a superconducting lambda/4-wave resonator in the GHz range, and the modulated signal is finally read out using the homodyne technique. The TES detectors have been designed with the aim of achieving an energy resolution of a few eV at the spectrum endpoint and a time resolution of a few micro-seconds, in order to minimize pile-up artifacts.
BabyMEG: A whole-head pediatric magnetoencephalography system for human brain development research
NASA Astrophysics Data System (ADS)
Okada, Yoshio; Hämäläinen, Matti; Pratt, Kevin; Mascarenas, Anthony; Miller, Paul; Han, Menglai; Robles, Jose; Cavallini, Anders; Power, Bill; Sieng, Kosal; Sun, Limin; Lew, Seok; Doshi, Chiran; Ahtam, Banu; Dinh, Christoph; Esch, Lorenz; Grant, Ellen; Nummenmaa, Aapo; Paulson, Douglas
2016-09-01
We developed a 375-channel, whole-head magnetoencephalography (MEG) system ("BabyMEG") for studying the electrophysiological development of human brain during the first years of life. The helmet accommodates heads up to 95% of 36-month old boys in the USA. The unique two-layer sensor array consists of: (1) 270 magnetometers (10 mm diameter, ˜15 mm coil-to-coil spacing) in the inner layer, (2) thirty-five three-axis magnetometers (20 mm × 20 mm) in the outer layer 4 cm away from the inner layer. Additionally, there are three three-axis reference magnetometers. With the help of a remotely operated position adjustment mechanism, the sensor array can be positioned to provide a uniform short spacing (mean 8.5 mm) between the sensor array and room temperature surface of the dewar. The sensors are connected to superconducting quantum interference devices (SQUIDs) operating at 4.2 K with median sensitivity levels of 7.5 fT/√Hz for the inner and 4 fT/√Hz for the outer layer sensors. SQUID outputs are digitized by a 24-bit acquisition system. A closed-cycle helium recycler provides maintenance-free continuous operation, eliminating the need for helium, with no interruption needed during MEG measurements. BabyMEG with the recycler has been fully operational from March, 2015. Ongoing spontaneous brain activity can be monitored in real time without interference from external magnetic noise sources including the recycler, using a combination of a lightly shielded two-layer magnetically shielded room, an external active shielding, a signal-space projection method, and a synthetic gradiometer approach. Evoked responses in the cortex can be clearly detected without averaging. These new design features and capabilities represent several advances in MEG, increasing the utility of this technique in basic neuroscience as well as in clinical research and patient studies.
BabyMEG: A whole-head pediatric magnetoencephalography system for human brain development research.
Okada, Yoshio; Hämäläinen, Matti; Pratt, Kevin; Mascarenas, Anthony; Miller, Paul; Han, Menglai; Robles, Jose; Cavallini, Anders; Power, Bill; Sieng, Kosal; Sun, Limin; Lew, Seok; Doshi, Chiran; Ahtam, Banu; Dinh, Christoph; Esch, Lorenz; Grant, Ellen; Nummenmaa, Aapo; Paulson, Douglas
2016-09-01
We developed a 375-channel, whole-head magnetoencephalography (MEG) system ("BabyMEG") for studying the electrophysiological development of human brain during the first years of life. The helmet accommodates heads up to 95% of 36-month old boys in the USA. The unique two-layer sensor array consists of: (1) 270 magnetometers (10 mm diameter, ∼15 mm coil-to-coil spacing) in the inner layer, (2) thirty-five three-axis magnetometers (20 mm × 20 mm) in the outer layer 4 cm away from the inner layer. Additionally, there are three three-axis reference magnetometers. With the help of a remotely operated position adjustment mechanism, the sensor array can be positioned to provide a uniform short spacing (mean 8.5 mm) between the sensor array and room temperature surface of the dewar. The sensors are connected to superconducting quantum interference devices (SQUIDs) operating at 4.2 K with median sensitivity levels of 7.5 fT/√Hz for the inner and 4 fT/√Hz for the outer layer sensors. SQUID outputs are digitized by a 24-bit acquisition system. A closed-cycle helium recycler provides maintenance-free continuous operation, eliminating the need for helium, with no interruption needed during MEG measurements. BabyMEG with the recycler has been fully operational from March, 2015. Ongoing spontaneous brain activity can be monitored in real time without interference from external magnetic noise sources including the recycler, using a combination of a lightly shielded two-layer magnetically shielded room, an external active shielding, a signal-space projection method, and a synthetic gradiometer approach. Evoked responses in the cortex can be clearly detected without averaging. These new design features and capabilities represent several advances in MEG, increasing the utility of this technique in basic neuroscience as well as in clinical research and patient studies.
NASA Astrophysics Data System (ADS)
Battistelli, E. S.; Amiri, M.; Burger, B.; Halpern, M.; Knotek, S.; Ellis, M.; Gao, X.; Kelly, D.; Macintosh, M.; Irwin, K.; Reintsema, C.
2008-05-01
We have developed multi-channel electronics (MCE) which work in concert with time-domain multiplexors developed at NIST, to control and read signals from large format bolometer arrays of superconducting transition edge sensors (TESs). These electronics were developed as part of the Submillimeter Common-User Bolometer Array-2 (SCUBA2 ) camera, but are now used in several other instruments. The main advantages of these electronics compared to earlier versions is that they are multi-channel, fully programmable, suited for remote operations and provide a clean geometry, with no electrical cabling outside of the Faraday cage formed by the cryostat and the electronics chassis. The MCE is used to determine the optimal operating points for the TES and the superconducting quantum interference device (SQUID) amplifiers autonomously. During observation, the MCE execute a running PID-servo and apply to each first stage SQUID a feedback signal necessary to keep the system in a linear regime at optimal gain. The feedback and error signals from a ˜1000-pixel array can be written to hard drive at up to 2 kHz.
Gradiometer Using Middle Loops as Sensing Elements in a Low-Field SQUID MRI System
NASA Technical Reports Server (NTRS)
Penanen, Konstantin; Hahn, Inseob; Ho Eom, Byeong
2009-01-01
A new gradiometer scheme uses middle loops as sensing elements in lowfield superconducting quantum interference device (SQUID) magnetic resonance imaging (MRI). This design of a second order gradiometer increases its sensitivity and makes it more uniform, compared to the conventional side loop sensing scheme with a comparable matching SQUID. The space between the two middle loops becomes the imaging volume with the enclosing cryostat built accordingly.
Negative inductance SQUID qubit operating in a quantum regime
NASA Astrophysics Data System (ADS)
Liu, W. Y.; Su, F. F.; Xu, H. K.; Li, Z. Y.; Tian, Ye; Zhu, X. B.; Lu, Li; Han, Siyuan; Zhao, S. P.
2018-04-01
Two-junction SQUIDs with negative mutual inductance between their two arms, called nSQUIDs, have been proposed for significantly improving quantum information transfer but their quantum nature has not been experimentally demonstrated. We have designed, fabricated, and characterized superconducting nSQUID qubits. Our results provide clear evidence of the quantum coherence of the device, whose properties are well described by theoretical calculations using parameters determined from spectroscopic measurement. In addition to their future application for fast quantum information transfer, the nSQUID qubits exhibit rich characteristics in their tunable two-dimensional (2D) potentials, energy levels, wave function symmetries, and dipole matrix elements, which are essential to the study of a wide variety of macroscopic quantum phenomena such as tunneling in 2D potential landscapes.
NASA Astrophysics Data System (ADS)
Guarcello, Claudio; Solinas, Paolo; Braggio, Alessandro; Di Ventra, Massimiliano; Giazotto, Francesco
2018-01-01
We propose a superconducting thermal memory device that exploits the thermal hysteresis in a flux-controlled temperature-biased superconducting quantum-interference device (SQUID). This system reveals a flux-controllable temperature bistability, which can be used to define two well-distinguishable thermal logic states. We discuss a suitable writing-reading procedure for these memory states. The time of the memory writing operation is expected to be on the order of approximately 0.2 ns for a Nb-based SQUID in thermal contact with a phonon bath at 4.2 K. We suggest a noninvasive readout scheme for the memory states based on the measurement of the effective resonance frequency of a tank circuit inductively coupled to the SQUID. The proposed device paves the way for a practical implementation of thermal logic and computation. The advantage of this proposal is that it represents also an example of harvesting thermal energy in superconducting circuits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, T.S.C.
1997-05-01
Low transition temperature (low-{Tc}) and high-{Tc} Superconducting QUantum Interference Devices (SQUIDs) have been used to perform high-resolution magnetic measurements on samples whose temperatures are much higher than the operating temperatures of the devices. Part 1 of this work focuses on measurements of the rigidity of flux vortices in high-{Tc} superconductors using two low-{Tc} SQUIDs, one on either side of a thermally-insulated sample. The correlation between the signals of the SQUIDs is a direct measure of the extent of correlation between the movements of opposite ends of vortices. These measurements were conducted under the previously-unexplored experimental conditions of nominally-zero applied magneticmore » field, such that vortex-vortex interactions were unimportant, and with zero external current. At specific temperatures, the authors observed highly-correlated noise sources, suggesting that the vortices moved as rigid rods. At other temperatures, the noise was mostly uncorrelated, suggesting that the relevant vortices were pinned at more than one point along their length. Part 2 describes the design, construction, performance, and applications of a scanning high-{Tc} SQUID microscope optimized for imaging room-temperature objects with very high spatial resolution and magnetic source sensitivity.« less
Non-resonant interactions between superconducting circuits coupled through a dc-SQUID
NASA Astrophysics Data System (ADS)
Jin, X. Y.; Lecocq, F.; Cicak, K.; Kotler, S. S.; Peterson, G. A.; Teufel, J. D.; Aumentado, J.; Simmonds, R. W.
We use a flux-biased direct current superconducting quantum interference device (dc-SQUID) to generate non-resonant tunable interactions between transmon qubits and resonators modes. By modulating the flux to the dc-SQUID, we can create an interaction with variable coupling rates from zero to greater than 100 MHz. We explore this system experimentally and describe its operation. Parametric coupling is important for constructing larger coupled systems, useful for both quantum information architectures and quantum simulators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Jing; Peter Grünberg Institute; Zhang, Yi
2014-05-15
We investigated and optimized the low-frequency noise characteristics of a preamplifier used for readout of direct current superconducting quantum interference devices (SQUIDs). When the SQUID output was detected directly using a room-temperature low-voltage-noise preamplifier, the low-frequency noise of a SQUID system was found to be dominated by the input current noise of the preamplifiers in case of a large dynamic resistance of the SQUID. To reduce the current noise of the preamplifier in the low-frequency range, we investigated the dependence of total preamplifier noise on the collector current and source resistance. When the collector current was decreased from 8.4 mAmore » to 3 mA in the preamplifier made of 3 parallel SSM2220 transistor pairs, the low-frequency total voltage noise of the preamplifier (at 0.1 Hz) decreased by about 3 times for a source resistance of 30 Ω whereas the white noise level remained nearly unchanged. Since the relative contribution of preamplifier's input voltage and current noise is different depending on the dynamic resistance or flux-to-voltage transfer of the SQUID, the results showed that the total noise of a SQUID system at low-frequency range can be improved significantly by optimizing the preamplifier circuit parameters, mainly the collector current in case of low-noise bipolar transistor pairs.« less
NASA Astrophysics Data System (ADS)
Zhao, Jing; Zhang, Yi; Lee, Yong-Ho; Krause, Hans-Joachim
2014-05-01
We investigated and optimized the low-frequency noise characteristics of a preamplifier used for readout of direct current superconducting quantum interference devices (SQUIDs). When the SQUID output was detected directly using a room-temperature low-voltage-noise preamplifier, the low-frequency noise of a SQUID system was found to be dominated by the input current noise of the preamplifiers in case of a large dynamic resistance of the SQUID. To reduce the current noise of the preamplifier in the low-frequency range, we investigated the dependence of total preamplifier noise on the collector current and source resistance. When the collector current was decreased from 8.4 mA to 3 mA in the preamplifier made of 3 parallel SSM2220 transistor pairs, the low-frequency total voltage noise of the preamplifier (at 0.1 Hz) decreased by about 3 times for a source resistance of 30 Ω whereas the white noise level remained nearly unchanged. Since the relative contribution of preamplifier's input voltage and current noise is different depending on the dynamic resistance or flux-to-voltage transfer of the SQUID, the results showed that the total noise of a SQUID system at low-frequency range can be improved significantly by optimizing the preamplifier circuit parameters, mainly the collector current in case of low-noise bipolar transistor pairs.
NASA Astrophysics Data System (ADS)
Hatsukade, Yoshimi; Kosugi, Akifumi; Mori, Kazuaki; Tanaka, Saburo
2004-11-01
An eddy-current-based nondestructive inspection (NDI) system using superconducting quantum interference device (SQUID) cooled using a coaxial pulse tube cryocooler was constructed for the inspection of microflaws on copper tubes employing a high-Tc SQUID gradiometer and a Helmholtz-like coil inducer. The detection of artificial flaws several tens of μm in depth on copper tubes 6.35 mm in outer diameter and 0.825 mm in thickness was demonstrated using the SQUID-NDI system. With an excitation field of 1.6 μT at 5 kHz, a 30-μm-depth flaw was successfully detected by the system at an SN ratio of at least 20. The magnetic signal amplitude due to the flaw was proportional to both excitation frequency and the square of flaw depth. With consideration of the system’s sensitivity, the results indicate that sub-10-μm-depth flaws are detectable by the SQUID-NDI system.
Research on Intelligent Control System of DC SQUID Magnetometer Parameters for Multi-channel System
NASA Astrophysics Data System (ADS)
Chen, Hua; Yang, Kang; Lu, Li; Kong, Xiangyan; Wang, Hai; Wu, Jun; Wang, Yongliang
2018-07-01
In a multi-channel SQUID measurement system, adjusting device parameters to optimal condition for all channels is time-consuming. In this paper, an intelligent control system is presented to determine the optimal working point of devices which is automatic and more efficient comparing to the manual one. An optimal working point searching algorithm is introduced as the core component of the control system. In this algorithm, the bias voltage V_bias is step scanned to obtain the maximal value of the peak-to-peak current value I_pp of the SQUID magnetometer modulation curve. We choose this point as the optimal one. Using the above control system, more than 30 weakly damped SQUID magnetometers with area of 5 × 5 mm^2 or 10 × 10 mm^2 are adjusted and a 36-channel magnetocardiography system perfectly worked in a magnetically shielded room. The average white flux noise is 15 {μ Φ }_0/Hz^{1/2}.
DOE Office of Scientific and Technical Information (OSTI.GOV)
TonThat, D.M.; Clarke, J.
1996-08-01
A spectrometer based on a dc superconducting quantum interference device (SQUID) has been developed for the direct detection of nuclear magnetic resonance (NMR) or nuclear quadrupole resonance (NQR) at frequencies up to 5 MHz. The sample is coupled to the input coil of the niobium-based SQUID via a nonresonant superconducting circuit. The flux locked loop involves the direct offset integration technique with additional positive feedback in which the output of the SQUID is coupled directly to a low-noise preamplifier. Precession of the nuclear quadrupole spins is induced by a magnetic field pulse with the feedback circuit disabled; subsequently, flux lockedmore » operation is restored and the SQUID amplifies the signal produced by the nuclear free induction signal. The spectrometer has been used to detect {sup 27}Al NQR signals in ruby (Al{sub 2}O{sub 3}[Cr{sup 3+}]) at 359 and 714 kHz. {copyright} {ital 1996 American Institute of Physics.}« less
Research on Intelligent Control System of DC SQUID Magnetometer Parameters for Multi-channel System
NASA Astrophysics Data System (ADS)
Chen, Hua; Yang, Kang; Lu, Li; Kong, Xiangyan; Wang, Hai; Wu, Jun; Wang, Yongliang
2018-03-01
In a multi-channel SQUID measurement system, adjusting device parameters to optimal condition for all channels is time-consuming. In this paper, an intelligent control system is presented to determine the optimal working point of devices which is automatic and more efficient comparing to the manual one. An optimal working point searching algorithm is introduced as the core component of the control system. In this algorithm, the bias voltage V_bias is step scanned to obtain the maximal value of the peak-to-peak current value I_pp of the SQUID magnetometer modulation curve. We choose this point as the optimal one. Using the above control system, more than 30 weakly damped SQUID magnetometers with area of 5 × 5 mm^2 or 10 × 10 mm^2 are adjusted and a 36-channel magnetocardiography system perfectly worked in a magnetically shielded room. The average white flux noise is 15 μΦ_0/Hz^{1/2}.
Compact integrated dc SQUID gradiometer
NASA Astrophysics Data System (ADS)
de Waal, V. J.; Klapwijk, T. M.
1982-10-01
An all-niobium integrated system of first-order gradiometer and dc suprconducting quantum interference device (SQUID) has been developed. It is relatively simple to fabricate, has an overall size of 17×12 mm and a sensitivity of 3.5×10-12 T m-1 Hz-1/2.
Chip-Scale Atomic Magnetometers
NASA Astrophysics Data System (ADS)
Knappe, Svenja
2010-03-01
Atomic magnetometers have reached sensitivities rivaling those of superconducting quantum interference devices (SQUIDs) in some frequency ranges [1]. A major advancement in atomic magnetometry was made possible by implementing interrogation schemes that suppress spin-exchange collisions between the alkali atoms [2]. Good signal-to-noise can be achieved by operation at very high alkali densities. At the same time, it introduces the challenge to create uniform spin-polarization and monitor the atomic precession about the magnetic field in atomic vapors with large optical densities. Off-resonant detection of the polarization rotation rather than the absorption is essential to operate in this regime. By use of microfabrication methods, we are miniaturizing such atomic magnetometers. They consist of miniature vapor cells with volumes of a few cubic millimeters integrated with micro-optical components. We present the advancement in sensitivities of such devices over nearly four orders of magnitude [3]. This allows for small low-power room-temperature devices with sensitivities that get close to those of SQUIDs in the frequency range around 100 Hz. We outline the current performance of chip-scale atomic magnetometers and the major challenges. Apart from efficient pumping and probing at high optical densities, these include magnetic noise caused by several sensor components and environmental factors, noise on the light fields, as well as magnetic fields from current-carrying parts, such as heaters, lasers, and photodetectors.[4pt] [1] Allred et al., Phys. Rev. Lett. 89, 130801 (2002) [0pt] [2] Happer and Tam, Phys. Rev. A 16, 1877 (1977) [0pt] [3] Griffith et al., Appl. Phys. Lett 94, 023502 (2009)
Parasitic effects in superconducting quantum interference device-based radiation comb generators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bosisio, R., E-mail: riccardo.bosisio@nano.cnr.it; NEST, Instituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127 Pisa; Giazotto, F., E-mail: giazotto@sns.it
2015-12-07
We study several parasitic effects on the implementation of a Josephson radiation comb generator based on a dc superconducting quantum interference device (SQUID) driven by an external magnetic field. This system can be used as a radiation generator similarly to what is done in optics and metrology, and allows one to generate up to several hundreds of harmonics of the driving frequency. First we take into account how the assumption of a finite loop geometrical inductance and junction capacitance in each SQUID may alter the operation of the devices. Then, we estimate the effect of imperfections in the fabrication ofmore » an array of SQUIDs, which is an unavoidable source of errors in practical situations. We show that the role of the junction capacitance is, in general, negligible, whereas the geometrical inductance has a beneficial effect on the performance of the device. The errors on the areas and junction resistance asymmetries may deteriorate the performance, but their effect can be limited to a large extent by a suitable choice of fabrication parameters.« less
Squids in the Study of Cerebral Magnetic Field
NASA Astrophysics Data System (ADS)
Romani, G. L.; Narici, L.
The following sections are included: * INTRODUCTION * HISTORICAL OVERVIEW * NEUROMAGNETIC FIELDS AND AMBIENT NOISE * DETECTORS * Room temperature sensors * SQUIDs * DETECTION COILS * Magnetometers * Gradiometers * Balancing * Planar gradiometers * Choice of the gradiometer parameters * MODELING * Current pattern due to neural excitations * Action potentials and postsynaptic currents * The current dipole model * Neural population and detected fields * Spherically bounded medium * SPATIAL CONFIGURATION OF THE SENSORS * SOURCE LOCALIZATION * Localization procedure * Experimental accuracy and reproducibility * SIGNAL PROCESSING * Analog Filtering * Bandpass filters * Line rejection filters * DATA ANALYSIS * Analysis of evoked/event-related responses * Simple average * Selected average * Recursive techniques * Similarity analysis * Analysis of spontaneous activity * Mapping and localization * EXAMPLES OF NEUROMAGNETIC STUDIES * Neuromagnetic measurements * Studies on the normal brain * Clinical applications * Epilepsy * Tinnitus * CONCLUSIONS * ACKNOWLEDGEMENTS * REFERENCES
NASA Astrophysics Data System (ADS)
Ye, Liu; Hu, GuiYu; Li, AiXia
2011-01-01
We propose a unified scheme to implement the optimal 1 → 3 economical phase-covariant quantum cloning and optimal 1 → 3 economical real state cloning with superconducting quantum interference devices (SQUIDs) in a cavity. During this process, no transfer of quantum information between the SQUIDs and cavity is required. The cavity field is only virtually excited. The scheme is insensitive to cavity decay. Therefore, the scheme can be experimentally realized in the range of current cavity QED techniques.
Novel Approaches to Quantum Computation Using Solid State Qubits
2007-12-31
hysteretic DC-SQUIDs, Phys. Rev. B 71, 220509(R) (2005). 18. C.-P. Yang and S. Han, Generation of Greenberger-Horne- Zeilinger entangled states with three SQUID...Horne- Zeilinger entangled states with multiple superconducting quantum interference device qubits/atoms in cavity QED, Phys. Rev. A 70, 062323 (2004
Development of a superconducting position sensor for the Satellite Test of the Equivalence Principle
NASA Astrophysics Data System (ADS)
Clavier, Odile Helene
The Satellite Test of the Equivalence Principle (STEP) is a joint NASA/ESA mission that proposes to measure the differential acceleration of two cylindrical test masses orbiting the earth in a drag-free satellite to a precision of 10-18 g. Such an experiment would conceptually reproduce Galileo's tower of Pisa experiment with a much longer time of fall and greatly reduced disturbances. The superconducting test masses are constrained in all degrees of freedom except their axial direction (the sensitive axis) using superconducting bearings. The STEP accelerometer measures the differential position of the masses in their sensitive direction using superconducting inductive pickup coils coupled to an extremely sensitive magnetometer called a DC-SQUID (Superconducting Quantum Interference Device). Position sensor development involves the design, manufacture and calibration of pickup coils that will meet the acceleration sensitivity requirement. Acceleration sensitivity depends on both the displacement sensitivity and stiffness of the position sensor. The stiffness must kept small while maintaining stability of the accelerometer. Using a model for the inductance of the pickup coils versus displacement of the test masses, a computer simulation calculates the sensitivity and stiffness of the accelerometer in its axial direction. This simulation produced a design of pickup coils for the four STEP accelerometers. Manufacture of the pickup coils involves standard photolithography techniques modified for superconducting thin-films. A single-turn pickup coil was manufactured and produced a successful superconducting coil using thin-film Niobium. A low-temperature apparatus was developed with a precision position sensor to measure the displacement of a superconducting plate (acting as a mock test mass) facing the coil. The position sensor was designed to detect five degrees of freedom so that coupling could be taken into account when measuring the translation of the plate relative to the coil. The inductance was measured using a DC-SQUID coupled to the pickup coil. The experimental results agree with the model used in the simulation thereby validating the concept used for the design. The STEP program now has the confidence necessary to design and manufacture a position sensor for the flight accelerometer.
SQUIDs De-fluxing Using a Decaying AC Magnetic Field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matlashov, Andrei Nikolaevich; Semenov, Vasili Kirilovich; Anderson, Bill
Flux trapping is the Achilles’ heel of all superconductor electronics. The most direct way to avoid flux trapping is a prevention of superconductor circuits from exposure to magnetic fields. Unfortunately this is not feasible if the circuits must be exposed to a strong DC magnetic field even for a short period of time. For example, such unavoidable exposures take place in superparamagnetic relaxation measurements (SPMR) and ultra-low field magnetic resonance imaging (ULF MRI) using unshielded thin-film SQUID-based gradiometers. Unshielded SQUIDs stop working after being exposed to DC magnetic fields of only a few Gauss in strength. In this paper wemore » present experimental results with de-fluxing of planar thin-film LTS SQUID-based gradiometers using a strong decaying AC magnetic field. We used four commercial G136 gradiometers for SPMR measurements with up to a 10 mT magnetizing field. Strong 12.9 kHz decaying magnetic field pulses reliably return SQUIDs to normal operation 50 ms after zeroing the DC magnetizing field. This new AC de-fluxing method was also successfully tested with seven other different types of LTS SQUID sensors and has been shown to dissipate extremely low energy.« less
Magnetoencephalography with a Cs-based high-sensitivity compact atomic magnetometer
NASA Astrophysics Data System (ADS)
Sheng, Jingwei; Wan, Shuangai; Sun, Yifan; Dou, Rongshe; Guo, Yuhao; Wei, Kequan; He, Kaiyan; Qin, Jie; Gao, Jia-Hong
2017-09-01
In recent years, substantial progress has been made in developing a new generation of magnetoencephalography (MEG) with a spin-exchange relaxation free (SERF)-based atomic magnetometer (AM). An AM employs alkali atoms to detect weak magnetic fields. A compact AM array with high sensitivity is crucial to the design; however, most proposed compact AMs are potassium (K)- or rubidium (Rb)-based with single beam configurations. In the present study, a pump-probe two beam configuration with a Cesium (Cs)-based AM (Cs-AM) is introduced to detect human neuronal magnetic fields. The length of the vapor cell is 4 mm, which can fully satisfy the need of designing a compact sensor array. Compared with state-of-the-art compact AMs, our new Cs-AM has two advantages. First, it can be operated in a SERF regime, requiring much lower heating temperature, which benefits the sensor with a closer distance to scalp due to ease of thermal insulation and less electric heating noise interference. Second, the two-beam configuration in the design can achieve higher sensitivity. It is free of magnetic modulation, which is necessary in one-beam AMs; however, such modulation may cause other interference in multi-channel circumstances. In the frequency band between 10 Hz and 30 Hz, the noise level of the proposed Cs-AM is approximately 10 f T/Hz1/2, which is comparable with state-of-the-art K- or Rb-based compact AMs. The performance of the Cs-AM was verified by measuring human auditory evoked fields (AEFs) in reference to commercial superconducting quantum interference device (SQUID) channels. By using a Cs-AM, we observed a clear peak in AEFs around 100 ms (M100) with a much larger amplitude compared with that of a SQUID, and the temporal profiles of the two devices were in good agreement. The results indicate the possibility of using the compact Cs-AM for MEG recordings, and the current Cs-AM has the potential to be designed for multi-sensor arrays and gradiometers for future neuroscience studies.
Imaging of current density distributions with a Nb weak-link scanning nano-SQUID microscope
Shibata, Yusuke; Nomura, Shintaro; Kashiwaya, Hiromi; Kashiwaya, Satoshi; Ishiguro, Ryosuke; Takayanagi, Hideaki
2015-01-01
Superconducting quantum interference devices (SQUIDs) are accepted as one of the highest magnetic field sensitive probes. There are increasing demands to image local magnetic fields to explore spin properties and current density distributions in a two-dimensional layer of semiconductors or superconductors. Nano-SQUIDs have recently attracting much interest for high spatial resolution measurements in nanometer-scale samples. Whereas weak-link Dayem Josephson junction nano-SQUIDs are suitable to miniaturization, hysteresis in current-voltage (I-V) characteristics that is often observed in Dayem Josephson junction is not desirable for a scanning microscope. Here we report on our development of a weak-link nano-SQUIDs scanning microscope with small hysteresis in I-V curve and on reconstructions of two-dimensional current density vector in two-dimensional electron gas from measured magnetic field. PMID:26459874
Imaging of current density distributions with a Nb weak-link scanning nano-SQUID microscope
NASA Astrophysics Data System (ADS)
Shibata, Yusuke; Nomura, Shintaro; Kashiwaya, Hiromi; Kashiwaya, Satoshi; Ishiguro, Ryosuke; Takayanagi, Hideaki
2015-10-01
Superconducting quantum interference devices (SQUIDs) are accepted as one of the highest magnetic field sensitive probes. There are increasing demands to image local magnetic fields to explore spin properties and current density distributions in a two-dimensional layer of semiconductors or superconductors. Nano-SQUIDs have recently attracting much interest for high spatial resolution measurements in nanometer-scale samples. Whereas weak-link Dayem Josephson junction nano-SQUIDs are suitable to miniaturization, hysteresis in current-voltage (I-V) characteristics that is often observed in Dayem Josephson junction is not desirable for a scanning microscope. Here we report on our development of a weak-link nano-SQUIDs scanning microscope with small hysteresis in I-V curve and on reconstructions of two-dimensional current density vector in two-dimensional electron gas from measured magnetic field.
Second order gradiometer and dc SQUID integrated on a planar substrate
NASA Astrophysics Data System (ADS)
van Nieuwenhuyzen, G. J.; de Waal, V. J.
1985-02-01
An integrated system of a thin-film niobium dc superconducting quantum interference device (SQUID) and a second order gradiometer on a planar substrate is described. The system consists of a dc SQUID with eight loops in parallel, each sensitive to the second derivative ∂2Bz/∂x2 of the magnetic field. The calculated SQUID inductance is 1.3 nH. With an overall size of 16×16.5 mm2 a sensitivity of 1.5×10-9 Tm-2 Hz-1/2 is obtained. The measured transfer function for uniform fields perpendicular to the plane of the gradiometer is 2.1×10-7 T Φ-10.
Microfluidic systems for investigating host-microbe relationship
NASA Astrophysics Data System (ADS)
Bhattacharjee, Arunima; Vincent, Lionel; Nawroth, Janna; Ruby, Ned; McFall-Ngai, Margaret; Kanso, Eva; Biodynamics Laboratory Collaboration; Pacific Biosciences Research Center Collaboration
2017-11-01
The symbiosis between the bioluminescent bacterium, Vibrio fisheri, and the Hawaiian bobtail squid, Euprymna scolopes, has been widely studied, and this association is used as a model system for studying bacterial colonization of ciliated host tissues. The recruitment of Vibrio fisheri to a specialized light organ in the nascent squid is facilitated by various chemosensing and mechanosensing events. To decipher the effects of such environmental and host-derived sensors on bacterial physiology, we use specifically designed microfluidic channels to engineer chemical and mechanical fields similar to those observed in the light organ of the squid. These in vitrostudies are aimed at complementing ongoing in vivo studies in the system squid-vibrio system. This approach enables us, for the first time, to isolate the effect of mechanical and chemical cues on bacterial motility in this symbiosis and to quantify the bacterial response to these cues. NSF Inspire.
A high- Tc SQUID-based sensor head cooled by a Joule-Thomson cryocooler
NASA Astrophysics Data System (ADS)
Rijpma, A. P.; ter Brake, H. J. M.; de Vries, E.; Nijhof, N.; Holland, H. J.; Rogalla, H.
2002-08-01
The goal of the so-called FHARMON project is to develop a high- Tc SQUID-based magnetometer system for the measurement of fetal heart activity in standard clinical environments. To lower the threshold for the application of this fetal heart monitor, it should be simple to operate. It is, therefore, advantageous to replace the liquid cryogen bath by a closed-cycle refrigerator. For this purpose, we selected a mixed-gas Joule-Thomson cooler; the APD Cryotiger ©. Because of its magnetic interference, the compressor of this closed-cycle cooler will be placed at a distance of ≈2 m from the actual sensor, which is an axial second order gradiometer. The gradiometer is formed by three magnetometers placed on an alumina cylinder, which is connected to the cold head of the cooler. This paper describes the sensor head in detail and reports on test experiments.
Noise Modeling From Conductive Shields Using Kirchhoff Equations.
Sandin, Henrik J; Volegov, Petr L; Espy, Michelle A; Matlashov, Andrei N; Savukov, Igor M; Schultz, Larry J
2010-10-09
Progress in the development of high-sensitivity magnetic-field measurements has stimulated interest in understanding the magnetic noise of conductive materials, especially of magnetic shields based on high-permeability materials and/or high-conductivity materials. For example, SQUIDs and atomic magnetometers have been used in many experiments with mu-metal shields, and additionally SQUID systems frequently have radio frequency shielding based on thin conductive materials. Typical existing approaches to modeling noise only work with simple shield and sensor geometries while common experimental setups today consist of multiple sensor systems with complex shield geometries. With complex sensor arrays used in, for example, MEG and Ultra Low Field MRI studies, knowledge of the noise correlation between sensors is as important as knowledge of the noise itself. This is crucial for incorporating efficient noise cancelation schemes for the system. We developed an approach that allows us to calculate the Johnson noise for arbitrary shaped shields and multiple sensor systems. The approach is efficient enough to be able to run on a single PC system and return results on a minute scale. With a multiple sensor system our approach calculates not only the noise for each sensor but also the noise correlation matrix between sensors. Here we will show how the algorithm can be implemented.
NASA Astrophysics Data System (ADS)
Katase, Takayoshi; Ishimaru, Yoshihiro; Tsukamoto, Akira; Hiramatsu, Hidenori; Kamiya, Toshio; Tanabe, Keiichi; Hosono, Hideo
2010-08-01
DC superconducting quantum interference devices (dc-SQUIDs) were fabricated in Co-doped BaFe2As2 epitaxial films on (La, Sr)(Al, Ta)O3 bicrystal substrates with 30° misorientation angles. The 18 × 8 µm2 SQUID loop with an estimated inductance of 13 pH contained two 3 µm wide grain boundary junctions. The voltage-flux characteristics clearly exhibited periodic modulations with ΔV = 1.4 µV at 14 K, while the intrinsic flux noise of dc-SQUIDs was 7.8 × 10 - 5 Φ0 Hz - 1/2 above 20 Hz. The rather high flux noise is mainly attributed to the small voltage modulation depth which results from the superconductor-normal-metal-superconductor junction nature of the bicrystal grain boundary.
Superconducting Digital Multiplexers for Sensor Arrays
NASA Technical Reports Server (NTRS)
Kadin, Alan M.; Brock, Darren K.; Gupta, Deepnarayan
2004-01-01
Arrays of cryogenic microbolometers and other cryogenic detectors are being developed for infrared imaging. If the signal from each sensor is amplified, multiplexed, and digitized using superconducting electronics, then this data can be efficiently read out to ambient temperature with a minimum of noise and thermal load. HYPRES is developing an integrated system based on SQUID amplifiers, a high-resolution analog-to-digital converter (ADC) based on RSFQ (rapid single flux quantum) logic, and a clocked RSFQ multiplexer. The ADC and SQUIDs have already been demonstrated for other projects, so this paper will focus on new results of a digital multiplexer. Several test circuits have been fabricated using Nb Josephson technology and are about to be tested at T = 4.2 K, with a more complete prototype in preparation.
NASA Astrophysics Data System (ADS)
Adachi, Yoshiaki; Oyama, Daisuke; Kawai, Jun; Ogata, Hisanao; Uehara, Gen
We are currently developing a magnetospinography (MSG) system for noninvasive functional imaging of the spinal cord. The MSG system is a device for observing a weak magnetic field accompanied by the neural activity of the spinal cord by using an array of low-temperature superconducting quantum interference device (SQUID) magnetic flux sensors. As in the case of other biomagnetic measurement systems such as the magnetoencephalography (MEG) system, the running cost of the MSG system is mainly dependent on the liquid helium (LHe) consumption of a dewar vessel. We integrated a cryocooler into the MSG system to reduce LHe consumption. A pulse tube cryocooler with a cooling power of 0.5Wat 4 K was placed adjacent to a magnetically shielded room and was directly connected to the thermal radiation shield of the dewar by an electrically isolated transfer tube. Cold helium gas was circulated between the cryocooler and the radiation shield. Consequently, the temperature of the radiation shield decreased below 40 K. Previous studies have shown that the detection of a weak magnetic field is often hindered by severe low-frequency band noise from the cryocooler. However, the band of the MSG signals is much higher than that of the cryocooler noise. Therefore, the noise can be filtered out and has a less detrimental effect on MSG measurement than on other biomagnetic field measurements such as MEG measurement. As a result, LHe consumption was reduced by 46%, with no increase in the noise floor.
Sensitive Spin Detection Using An On-Chip Squid-Waveguide Resonator
NASA Astrophysics Data System (ADS)
Yue, Guang
Quantum computing gives novel way of computing using quantum mechanics, which furthers human knowledge and has exciting applications. Quantum systems with diluted spins such as rare earth ions hosted in single crystal, molecule-based magnets etc. are promising qubits candidates to form the basis of a quantum computer. High sensitivity measurement and coherent control of these spin systems are crucial for their practical usage as qubits. The micro-SQUID (direct-current micrometer-sized Superconducting QUantum Interference Device) is capable to measure magnetization of spin system with high sensitivity. For example, the micro-SQUID technique can measure magnetic moments as small as several thousand muB as shown by the study of [W. Wernsdorfer, Supercond. Sci. Technol. 22, 064013 (2009)]. Here we develop a novel on-chip setup that combines the micro-SQUID sensitivity with microwave excitation. Such setup can be used for electron spin resonance measurements or coherent control of spins utilizing the high sensitivity of micro-SQUID for signal detection. To build the setup, we studied the fabrication process of the micro-SQUID, which is made of weak-linked Josephson junctions. The SQUID as a detector is integrated on the same chip with a shorted coplanar waveguide, so that the microwave pulses can be applied through the waveguide to excite the sample for resonance measurements. The whole device is plasma etched from a thin (˜ 20nm) niobium film, so that the SQUID can work at in large in-plane magnetic fields of several tesla. In addition, computer simulations are done to find the best design of the waveguide such that the microwave excitation field is sufficiently strong and uniformly applied to the sample. The magnetization curve of Mn12 molecule-based magnet sample is measured to prove the proper working of the micro-SQUID. Electron spin resonance measurement is done on the setup for gadolinium ions diluted in a CaWO4 single crystal. The measurement shows clear evidence of the resonance signal from the 1st transition of the gadolinium ions' energy levels, which shows the setup is successfully built. Due to the high sensitivity of micro-SQUID and the ability to concentrate microwave energy in small areas of the chip, this setup can detect signals from a small number of spins (107) in a small volume (several mum 3).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arpaia, R.; CNR-SPIN, Dipartimento di Scienze Fisiche, Università degli Studi di Napoli “Federico II,” I-80125 Napoli; Arzeo, M.
2014-02-17
We present results on ultra low noise YBa{sub 2}Cu{sub 3}O{sub 7–δ} (YBCO) nano Superconducting QUantum Interference Devices (nanoSQUIDs). To realize such devices, we implemented high quality YBCO nanowires, working as weak links between two electrodes. We observe critical current modulation as a function of an externally applied magnetic field in the full temperature range below the transition temperature T{sub C}. The white flux noise below 1μΦ{sub 0}/√(Hz) at T=8 K makes our nanoSQUIDs very attractive for the detection of small spin systems.
Paleomagnetic Analysis Using SQUID Microscopy
NASA Technical Reports Server (NTRS)
Weiss, Benjamin P.; Lima, Eduardo A.; Fong, Luis E.; Baudenbacher, Franz J.
2007-01-01
Superconducting quantum interference device (SQUID) microscopes are a new generation of instruments that map magnetic fields with unprecedented spatial resolution and moment sensitivity. Unlike standard rock magnetometers, SQUID microscopes map magnetic fields rather than measuring magnetic moments such that the sample magnetization pattern must be retrieved from source model fits to the measured field data. In this paper, we presented the first direct comparison between paleomagnetic analyses on natural samples using joint measurements from SQUID microscopy and moment magnetometry. We demonstrated that in combination with apriori geologic and petrographic data, SQUID microscopy can accurately characterize the magnetization of lunar glass spherules and Hawaiian basalt. The bulk moment magnitude and direction of these samples inferred from inversions of SQUID microscopy data match direct measurements on the same samples using moment magnetometry. In addition, these inversions provide unique constraints on the magnetization distribution within the sample. These measurements are among the most sensitive and highest resolution quantitative paleomagnetic studies of natural remanent magnetization to date. We expect that this technique will be able to extend many other standard paleomagnetic techniques to previously inaccessible microscale samples.
Squid detected NMR and MRI at ultralow fields
Clarke, John [Berkeley, CA; McDermott, Robert [Louisville, CO; Pines, Alexander [Berkeley, CA; Trabesinger, Andreas Heinz [CH-8006 Zurich, CH
2007-05-15
Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.
Squid detected NMR and MRI at ultralow fields
Clarke, John; McDermott, Robert; Pines, Alexander; Trabesinger, Andreas Heinz
2006-05-30
Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.
Squid detected NMR and MRI at ultralow fields
Clarke, John [Berkeley, CA; Pines, Alexander [Berkeley, CA; McDermott, Robert F [Monona, WI; Trabesinger, Andreas H [London, GB
2008-12-16
Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.
SQUID detected NMR and MRI at ultralow fields
Clarke, John; McDermott, Robert; Pines, Alexander; Trabesinger, Andreas Heinz
2006-10-03
Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.
Magnetoelectric(ME) Composites and Functional Devices Based on ME Effect
NASA Astrophysics Data System (ADS)
Gao, Junqi
Magnetoelectric (ME) effect, a cross-coupling effect between magnetic and electric orders, has stimulated lots of investigations due to the potential for applications as multifunctional devices. In this thesis, I have investigated and optimized the ME effect in Metglas/piezo-fibers ME composites with a multi-push pull configuration. Moreover, I have also proposed several devices based on such composites. In this thesis, several methods for ME composites optimization have been investigated. (i) the ME coefficients can be enhanced greatly by using single crystal fibers with high piezoelectric properties; (ii) the influence of volume ratio between Metglas and piezo-fibers on ME coefficients has been studied both experimentally and theoretically. Modulating the volume ratio can increase the ME coefficient greatly; and (iii) the annealing process can change the properties of Metglas, which can enhance the ME response as well. Moreover, one differential structure for ME composites has been proposed, which can reject the external vibration noise by a factor of 10 to 20 dB. This differential structure may allow for practical applications of such sensors in real-world environments. Based on optimized ME composites, two types of AC magnetic sensor have been developed. The objective is to develop one alternative type of magnetic sensor with low noise, low cost and room-temperature operation; that makes the sensor competitive with the commercially available magnetic sensor, such as Fluxgate, GMR, SQUID, etc. Conventional passive sensors have been fully investigated, including the design of sensor working at specific frequency range, sensitivity, noise density characterization, etc. Furthermore, the extremely low frequency (< 10-3 Hz) magnetic sensor has undergone a redesign of the charge amplifier circuit. Additionally, the noise model has been established to simulate the noise density for this device which can predict the noise floor precisely. Based on theoretical noise analysis, the noise floor can be eliminated greatly. Moreover, another active magnetic senor based on nonlinear ME voltage coefficient is also developed. Such sensor is not required for external DC bias that can help the sensor for sensor arrays application. Inspired by the bio-behaviors in nature, the geomagnetic sensor is designed for sensing geomagnetic fields; it is also potentially used for positioning systems based on the geomagnetic field. In this section, some works for DC sensor optimization have been performed, including the different piezo-fibers, driving frequency and magnetic flux concentration. Meanwhile, the lock-in circuit is designed for the magnetic sensor to replace of the commercial instruments. Finally, the man-portable multi-axial geomagnetic sensor has been developed which has the highest resolution of 10 nT for DC magnetic field. Based on the geomagnetic sensor, some demonstrations have been finished, such as orientation monitor, magnetic field mapping, and geomagnetic sensing. Other devices have been also developed besides the magnetic sensor: (i) magnetic energy harvesters are developed under the resonant frequency condition. Especially, one 60 Hz magnetic harvester is designed which can harvester the magnetic energy source generated by instruments; and (ii) frequency multiplication tuned by geomagnetic field is investigated which potentially can be used for frequency multiplier or geomagnetic guidance devices.
NMR/MRI with hyperpolarized gas and high Tc SQUID
Schlenga, Klaus; de Souza, Ricardo E.; Wong-Foy, Annjoe; Clarke, John; Pines, Alexander
2000-01-01
A method and apparatus for the detection of nuclear magnetic resonance (NMR) signals and production of magnetic resonance imaging (MRI) from samples combines the use of hyperpolarized inert gases to enhance the NMR signals from target nuclei in a sample and a high critical temperature (Tc) superconducting quantum interference device (SQUID) to detect the NMR signals. The system operates in static magnetic fields of 3 mT or less (down to 0.1 mT), and at temperatures from liquid nitrogen (77K) to room temperature. Sample size is limited only by the size of the magnetic field coils and not by the detector. The detector is a high Tc SQUID magnetometer designed so that the SQUID detector can be very close to the sample, which can be at room temperature.
Fabrication and characterization of hybrid Nb-YBCO dc SQUIDs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frack, E.K.; Drake, R.E.; Patt, R.
This paper reports on the fabrication of hybrid low T{sub c}/high T{sub c} dc SQUIDs of two flavors. The first kind utilizes niobium tunnel junctions and a YBCO film strip as the most inductive portion of the SQUID loop. This configuration allows a direct measurement of the inductance of the YBCO microstrip from which the effective penetration depth can be calculated. The successful fabrication of these SQUIDs has required 1. superconducting Nb-to-YBCO contacts, 2. deposition and patterning of an SiO{sub 2} insulation layer over YBCO, and 3. selective patterning of niobium and SiO{sub 2} relative to YBCO. All these processmore » steps are pertinent to the eventual use of YBCO thin films in electronic devices.« less
NASA Astrophysics Data System (ADS)
Chesca, Boris; John, Daniel; Mellor, Christopher J.
2015-10-01
A very promising direction to improve the sensitivity of magnetometers based on superconducting quantum interference devices (SQUIDs) is to build a series-array of N non-interacting SQUIDs operating flux-coherently, because in this case their voltage modulation depth, ΔV, linearly scales with N whereas the white flux noise SΦ1/2 decreases as 1/N1/2. Here, we report the realization of both these improvements in an advanced layout of very large SQUID arrays made of YBa2Cu3O7. Specially designed with large area narrow flux focusers for increased field sensitivity and improved flux-coherency, our arrays have extremely low values for SΦ1/2 between (0.25 and 0.44) μΦ0/Hz1/2 for temperatures in the range (77-83) K. In this respect, they outperform niobium/aluminium trilayer technology-based single-SQUIDs operating at 4.2 K. Moreover, with values for ΔV and transimpedance in the range of (10-17) mV and (0.3-2.5) kΩ, respectively, a direct connection to a low-noise room temperature amplifier is allowed, while matching for such readout is simplified and the available bandwidth is greatly increased. These landmark performances suggest such series SQUID arrays are ideal candidates to replace single-SQUIDs operating at 4.2 K in many applications.
Detection of buried magnetic objects by a SQUID gradiometer system
NASA Astrophysics Data System (ADS)
Meyer, Hans-Georg; Hartung, Konrad; Linzen, Sven; Schneider, Michael; Stolz, Ronny; Fried, Wolfgang; Hauspurg, Sebastian
2009-05-01
We present a magnetic detection system based on superconducting gradiometric sensors (SQUID gradiometers). The system provides a unique fast mapping of large areas with a high resolution of the magnetic field gradient as well as the local position. A main part of this work is the localization and classification of magnetic objects in the ground by automatic interpretation of geomagnetic field gradients, measured by the SQUID system. In accordance with specific features the field is decomposed into segments, which allow inferences to possible objects in the ground. The global consideration of object describing properties and their optimization using error minimization methods allows the reconstruction of superimposed features and detection of buried objects. The analysis system of measured geomagnetic fields works fully automatically. By a given surface of area-measured gradients the algorithm determines within numerical limits the absolute position of objects including depth with sub-pixel accuracy and allows an arbitrary position and attitude of sources. Several SQUID gradiometer data sets were used to show the applicability of the analysis algorithm.
Magnetic Sensors with Picotesla Magnetic Field Sensitivity at Room Temperature
2008-06-01
such small fields require cryogenic cooling such as SQUID sensors, require sophisticated detection systems such as atomic magnetometers and fluxgate ... magnetometers , or have large size and poor low frequency performance such as coil systems. [3-7] The minimum detectable field (the field noise times...Kingdon, "Development of a Combined EMI/ Magnetometer Sensor for UXO Detection," Proc. Symposium on the Applications of Geophysics to Environmental and
Magnetization reversal of an individual exchange-biased permalloy nanotube
NASA Astrophysics Data System (ADS)
Buchter, A.; Wölbing, R.; Wyss, M.; Kieler, O. F.; Weimann, T.; Kohlmann, J.; Zorin, A. B.; Rüffer, D.; Matteini, F.; Tütüncüoglu, G.; Heimbach, F.; Kleibert, A.; Fontcuberta i Morral, A.; Grundler, D.; Kleiner, R.; Koelle, D.; Poggio, M.
2015-12-01
We investigate the magnetization reversal mechanism in an individual permalloy (Py) nanotube (NT) using a hybrid magnetometer consisting of a nanometer-scale SQUID (nanoSQUID) and a cantilever torque sensor. The Py NT is affixed to the tip of a Si cantilever and positioned in order to optimally couple its stray flux into a Nb nanoSQUID. We are thus able to measure both the NT's volume magnetization by dynamic cantilever magnetometry and its stray flux using the nanoSQUID. We observe a training effect and a temperature dependence in the magnetic hysteresis, suggesting an exchange bias. We find a low blocking temperature TB=18 ±2 K, indicating the presence of a thin antiferromagnetic native oxide, as confirmed by x-ray absorption spectroscopy on similar samples. Furthermore, we measure changes in the shape of the magnetic hysteresis as a function of temperature and increased training. These observations show that the presence of a thin exchange-coupled native oxide modifies the magnetization reversal process at low temperatures. Complementary information obtained via cantilever and nanoSQUID magnetometry allows us to conclude that, in the absence of exchange coupling, this reversal process is nucleated at the NT's ends and propagates along its length as predicted by theory.
Current-induced SQUID behavior of superconducting Nb nano-rings
NASA Astrophysics Data System (ADS)
Sharon, Omri J.; Shaulov, Avner; Berger, Jorge; Sharoni, Amos; Yeshurun, Yosef
2016-06-01
The critical temperature in a superconducting ring changes periodically with the magnetic flux threading it, giving rise to the well-known Little-Parks magnetoresistance oscillations. Periodic changes of the critical current in a superconducting quantum interference device (SQUID), consisting of two Josephson junctions in a ring, lead to a different type of magnetoresistance oscillations utilized in detecting extremely small changes in magnetic fields. Here we demonstrate current-induced switching between Little-Parks and SQUID magnetoresistance oscillations in a superconducting nano-ring without Josephson junctions. Our measurements in Nb nano-rings show that as the bias current increases, the parabolic Little-Parks magnetoresistance oscillations become sinusoidal and eventually transform into oscillations typical of a SQUID. We associate this phenomenon with the flux-induced non-uniformity of the order parameter along a superconducting nano-ring, arising from the superconducting leads (‘arms’) attached to it. Current enhanced phase slip rates at the points with minimal order parameter create effective Josephson junctions in the ring, switching it into a SQUID.
NASA Astrophysics Data System (ADS)
Lee, Y. H.; Yu, K. K.; Kim, J. M.; Kwon, H.; Kim, K.
2009-11-01
We fabricated a low-noise 64-channel first-order axial gradiometer system for measuring magnetocardiography (MCG) signals. The key technical features of the system are the compact structure of the gradiometer, division of the sensor array plate, direct mounting of the sensor plates into the Dewar bottom, reduced neck diameter of the liquid He Dewar, and compact readout electronics. To make the refill interval of liquid He longer, the distance between the compensation coil of the gradiometer and the input coil pads of the superconducting quantum interference device (SQUID) was reduced to 20 mm. By using direct ultrasonic bonding of Nb wires between the pickup coil wires and input coil pads, the superconductive connection structure became simple. The baseline of the first-order gradiometer is 70 mm, a little longer than for typical conventional axial gradiometers, to provide a larger signal amplitude for deep sources. The 64-channel gradiometer array consists of four blocks, and each block is fixed separately onto the bottom of the Dewar. The neck diameter of the He Dewar (192 mm) is smaller than the bottom diameter (280 mm) in which the gradiometers are distributed. The average boil-off rate of the Dewar is 3 l per day when the 64-channel system is in operation every day. Double relaxation oscillation SQUIDs (DROSs) having large flux-to-voltage transfer coefficients were used to operate SQUIDs via compact electronics. The magnetically shielded room (MSR) has a wall thickness of 80 mm, and consists of two layers of permalloy and one layer of aluminum. When the 64-channel system was installed inside the MSR, the field noise level of the system was about 3.5 fTrms Hz-1/2 at 100 Hz. MCG measurements with high signal quality were done successfully using the developed system. In addition to the parameter analysis method, we developed software for the three-dimensional imaging of the myocardial current on a realistic image of the heart based on the anatomical image of the torso.
Single Pixel Characterization of X-Ray TES Microcalorimeter Under AC Bias at MHz Frequencies
NASA Technical Reports Server (NTRS)
Gottardi, L.; Blandler, S. R.; Porter, F. S.; Sadleir, J. E.; Kilbourne, C. A.; Bailey, C. N.; Finkbeiner, F. M.; Chervenak, J. A.; Adams, J. S.; Eckart, M. E.;
2012-01-01
In this paper we present the progress made at SRON in the read-out of GSFC x-ray transition-edge sensor (TES) micro-calorimeters in the frequency domain. The experiments reported so far, whose aim was to demonstrate an energy resolution of 2eV at 6 keV with a TES acting as a modulator, were carried out at frequencies below 700 kHz using a standard flux locked loop (FLL) SQUID read-out scheme. The TES read-out suffered from the use of sub-optimal circuit components, large parasitic inductances, low quality factor resonators and poor magnetic field shielding. We have developed a novel experimental set-up, which allows us to test several read-out schemes in a single cryogenic run. In this set-up, the TES pixels are coupled via superconducting transformers to 18 high-Q lithographic LC filters with resonant frequencies ranging between 2 and 5 MHz. The signal is amplified by a two-stage SQUID current sensor and baseband feedback is used to overcome the limited SQUID dynamic range. We study the single pixel performance as a function of TES bias frequency, voltage and perpendicular magnetic field.
Conductivity tomography based on pulsed eddy current with SQUID magnetometer
NASA Astrophysics Data System (ADS)
Panaitov, G. I.; Krause, H.-J.; Zhang, Y.
2002-05-01
Pulsed eddy current (EC) techniques have the advantage of potentially covering a broader depth range than standard single frequency EC testing. We developed a novel pulsed EC technique using a liquid-nitrogen cooled SQUID magnetometer. For two reasons, SQUID magnetometers are particularly well suited as sensors: first they constitute an extremely sensitive magnetic field sensor, second they measure the field directly which decays more slowly than its time derivative picked up by induction coils. A square waveform transmitter signal was used, with alternating slopes in order to eliminate drift effect, and stacking synchronous to the power line frequency in order to improve signal-to-noise. The early time (high frequency) data of the recorded transient correspond to the upper layers of the conducting medium, while late time data or low frequencies deliver information on deep layers. Measurements of cracks at different depths in a stacked aluminum sample are presented. From the measured data, the apparent conductivity of the sample was calculated for each position and depth by applying a technique known from geophysical data interpretation. Thus, the position and depth of the crack was determined from the tomographic conductivity image of the sample.
NASA Astrophysics Data System (ADS)
Okada, Yoshio; Pratt, Kevin; Atwood, Christopher; Mascarenas, Anthony; Reineman, Richard; Nurminen, Jussi; Paulson, Douglas
2006-02-01
We developed a prototype of a mobile, high-resolution, multichannel magnetoencephalography (MEG) system, called babySQUID, for assessing brain functions in newborns and infants. Unlike electroencephalography, MEG signals are not distorted by the scalp or the fontanels and sutures in the skull. Thus, brain activity can be measured and localized with MEG as if the sensors were above an exposed brain. The babySQUID is housed in a moveable cart small enough to be transported from one room to another. To assess brain functions, one places the baby on the bed of the cart and the head on its headrest with MEG sensors just below. The sensor array consists of 76 first-order axial gradiometers, each with a pickup coil diameter of 6mm and a baseline of 30mm, in a high-density array with a spacing of 12-14mm center-to-center. The pickup coils are 6±1mm below the outer surface of the headrest. The short gap provides unprecedented sensitivity since the scalp and skull are thin (as little as 3-4mm altogether) in babies. In an electromagnetically unshielded room in a hospital, the field sensitivity at 1kHz was ˜17fT/√Hz. The noise was reduced from ˜400to200fT/√Hz at 1Hz using a reference cancellation technique and further to ˜40fT/√Hz using a gradient common mode rejection technique. Although the residual environmental magnetic noise interfered with the operation of the babySQUID, the instrument functioned sufficiently well to detect spontaneous brain signals from babies with a signal to noise ratio (SNR) of as much as 7.6:1. In a magnetically shielded room, the field sensitivity was 17fT/√Hz at 20Hz and 30fT/√Hz at 1Hz without implementation of reference or gradient cancellation. The sensitivity was sufficiently high to detect spontaneous brain activity from a 7month old baby with a SNR as much as 40:1 and evoked somatosensory responses with a 50Hz bandwidth after as little as four averages. We expect that both the noise and the sensor gap can be reduced further by approximately half with a gain in SNR of about four. Thus, we conclude from the performance of the prototype that it should be feasible to improve the babySQUID to detect cortical activity in infants in real time with high spatial resolution.
Performance and Characterization of Magnetic Penetration Thermometer Devices for X-Ray Spectroscopy
NASA Technical Reports Server (NTRS)
Porst, J. -P.; Adams, J. S.; Bandler, S. R.; Balvin, M.; Busch, S. E.; Denis, K. L.; Kelly, D.; Nagler, P.; Sadleir, J. E.; Seidel, G. M.;
2012-01-01
We are developing magnetic penetration thermometers (MPTs) for applications in X-ray astronomy. These non-dissipative devices consist of an X-ray absorber in good thermal contact to a superconducting thin film with a transition temperature around T=100mK. A microfabricated superconducting planar inductor underneath is used to store a persistent current and couple the superconductor's diamagnetic response to a readout SQUID. The strong temperature dependence of the diamagnetic response make these devices suitable for highly sensitive macroscopic thermometers that are capable of achieving very high energy resolution. We present results achieved with MPTs consisting of MoAu bilayer sensors attached to overhanging square 250 micron by 250 micron gold absorbers that have demonstrated an energy resolution of delta E_FWHM=2.3eV at an X-ray energy of 5.9keV. A similar device has shown delta E_FWHM=2.0eV at 1.5 keV. Under certain conditions and for specific device geometries, the temperature responsivity of the MPTs can vary on long timescales degrading the spectral performance. We present the characterization of different inductor geometries to optimize the design for the highest possible temperature sensitivity and compare different device designs with respect to responsivity stability.
NASA Astrophysics Data System (ADS)
Lam, Simon K. H.
2017-09-01
A promising direction to improve the sensitivity of a SQUID is to increase its junction's normal resistance value, Rn, as the SQUID modulation voltage scales linearly with Rn. As a first step to develop highly sensitive single layer SQUID, submicron scale YBCO grain boundary step edge junctions and SQUIDs with large Rn were fabricated and studied. The step-edge junctions were reduced to submicron scale to increase their Rn values using focus ion beam, FIB and the measurement of transport properties were performed from 4.3 to 77 K. The FIB induced deposition layer proves to be effective to minimize the Ga ion contamination during the FIB milling process. The critical current-normal resistance value of submicron junction at 4.3 K was found to be 1-3 mV, comparable to the value of the same type of junction in micron scale. The submicron junction Rn value is in the range of 35-100 Ω, resulting a large SQUID modulation voltage in a wide temperature range. This performance promotes further investigation of cryogen-free, high field sensitivity SQUID applications at medium low temperature, e.g. at 40-60 K.
SQUID: sensorized shirt with smartphone interface for exercise monitoring and home rehabilitation.
Farjadian, Amir B; Sivak, Mark L; Mavroidis, Constantinos
2013-06-01
Stroke is a leading cause of serious long-term disability in the United States. There is a need for new technological adjuncts to expedite patients' scheduled discharge from hospital and pursue rehabilitation procedure at home. SQUID is a low-cost, smart shirt that incorporates a six-channel electromyography (EMG) and heart rate data acquisition module to deliver objective audiovisual and haptic biofeedback to the patient. The sensorized shirt is interfaced with a smartphone application, for the subject's usage at home, as well as the online database, for the therapist's remote supervision from hospital. A single healthy subject was recruited to investigate the system functionality during improperly performed exercise. The system can potentially be used in automated, remote monitoring of variety of physical therapy exercises, rooted in strength or coordination training of specific muscle groups.
Huang, Ming-Xiong; Anderson, Bill; Huang, Charles W.; Kunde, Gerd J.; Vreeland, Erika C.; Huang, Jeffrey W.; Matlashov, Andrei N.; Karaulanov, Todor; Nettles, Christopher P.; Gomez, Andrew; Minser, Kayla; Weldon, Caroline; Paciotti, Giulio; Harsh, Michael; Lee, Roland R.; Flynn, Edward R.
2017-01-01
Superparamagnetic Relaxometry (SPMR) is a highly sensitive technique for the in vivo detection of tumor cells and may improve early stage detection of cancers. SPMR employs superparamagnetic iron oxide nanoparticles (SPION). After a brief magnetizing pulse is used to align the SPION, SPMR measures the time decay of SPION using Super-conducting Quantum Interference Device (SQUID) sensors. Substantial research has been carried out in developing the SQUID hardware and in improving the properties of the SPION. However, little research has been done in the pre-processing of sensor signals and post-processing source modeling in SPMR. In the present study, we illustrate new pre-processing tools that were developed to: 1) remove trials contaminated with artifacts, 2) evaluate and ensure that a single decay process associated with bounded SPION exists in the data, 3) automatically detect and correct flux jumps, and 4) accurately fit the sensor signals with different decay models. Furthermore, we developed an automated approach based on multi-start dipole imaging technique to obtain the locations and magnitudes of multiple magnetic sources, without initial guesses from the users. A regularization process was implemented to solve the ambiguity issue related to the SPMR source variables. A procedure based on reduced chi-square cost-function was introduced to objectively obtain the adequate number of dipoles that describe the data. The new pre-processing tools and multi-start source imaging approach have been successfully evaluated using phantom data. In conclusion, these tools and multi-start source modeling approach substantially enhance the accuracy and sensitivity in detecting and localizing sources from the SPMR signals. Furthermore, multi-start approach with regularization provided robust and accurate solutions for a poor SNR condition similar to the SPMR detection sensitivity in the order of 1000 cells. We believe such algorithms will help establishing the industrial standards for SPMR when applying the technique in pre-clinical and clinical settings. PMID:28072579
European roadmap on superconductive electronics - status and perspectives
NASA Astrophysics Data System (ADS)
Anders, S.; Blamire, M. G.; Buchholz, F.-Im.; Crété, D.-G.; Cristiano, R.; Febvre, P.; Fritzsch, L.; Herr, A.; Il'ichev, E.; Kohlmann, J.; Kunert, J.; Meyer, H.-G.; Niemeyer, J.; Ortlepp, T.; Rogalla, H.; Schurig, T.; Siegel, M.; Stolz, R.; Tarte, E.; ter Brake, H. J. M.; Toepfer, H.; Villegier, J.-C.; Zagoskin, A. M.; Zorin, A. B.
2010-12-01
Executive SummaryFor four decades semiconductor electronics has followed Moore’s law: with each generation of integration the circuit features became smaller, more complex and faster. This development is now reaching a wall so that smaller is no longer any faster. The clock rate has saturated at about 3-5 GHz and the parallel processor approach will soon reach its limit. The prime reason for the limitation the semiconductor electronics experiences is not the switching speed of the individual transistor, but its power dissipation and thus heat. Digital superconductive electronics is a circuit- and device-technology that is inherently faster at much less power dissipation than semiconductor electronics. It makes use of superconductors and Josephson junctions as circuit elements, which can provide extremely fast digital devices in a frequency range - dependent on the material - of hundreds of GHz: for example a flip-flop has been demonstrated that operated at 750 GHz. This digital technique is scalable and follows similar design rules as semiconductor devices. Its very low power dissipation of only 0.1 μW per gate at 100 GHz opens the possibility of three-dimensional integration. Circuits like microprocessors and analogue-to-digital converters for commercial and military applications have been demonstrated. In contrast to semiconductor circuits, the operation of superconducting circuits is based on naturally standardized digital pulses the area of which is exactly the flux quantum Φ0. The flux quantum is also the natural quantization unit for digital-to-analogue and analogue-to-digital converters. The latter application is so precise, that it is being used as voltage standard and that the physical unit ‘Volt’ is defined by means of this standard. Apart from its outstanding features for digital electronics, superconductive electronics provides also the most sensitive sensor for magnetic fields: the Superconducting Quantum Interference Device (SQUID). Amongst many other applications SQUIDs are used as sensors for magnetic heart and brain signals in medical applications, as sensor for geological surveying and food-processing and for non-destructive testing. As amplifiers of electrical signals, SQUIDs can nearly reach the theoretical limit given by Quantum Mechanics. A further important field of application is the detection of very weak signals by ‘transition-edge’ bolometers, superconducting nanowire single-photon detectors, and superconductive tunnel junctions. Their application as radiation detectors in a wide frequency range, from microwaves to X-rays is now standard. The very low losses of superconductors have led to commercial microwave filter designs that are now widely used in the USA in base stations for cellular phones and in military communication applications. The number of demonstrated applications is continuously increasing and there is no area in professional electronics, in which superconductive electronics cannot be applied and surpasses the performance of classical devices. Superconductive electronics has to be cooled to very low temperatures. Whereas this was a bottleneck in the past, cooling techniques have made a huge step forward in recent years: very compact systems with high reliability and a wide range of cooling power are available commercially, from microcoolers of match-box size with milli-Watt cooling power to high-reliability coolers of many Watts of cooling power for satellite applications. Superconductive electronics will not replace semiconductor electronics and similar room-temperature techniques in standard applications, but for those applications which require very high speed, low-power consumption, extreme sensitivity or extremely high precision, superconductive electronics is superior to all other available techniques. To strengthen the European competitiveness in superconductor electronics research projects have to be set-up in the following field: Ultra-sensitive sensing and imaging. Quantum measurement instrumentation. Advanced analogue-to-digital converters. Superconductive electronics technology.
A Josephson radiation comb generator.
Solinas, P; Gasparinetti, S; Golubev, D; Giazotto, F
2015-07-20
We propose the implementation of a Josephson Radiation Comb Generator (JRCG) based on a dc superconducting quantum interference device (SQUID) driven by an external magnetic field. When the magnetic flux crosses a diffraction node of the critical current interference pattern, the superconducting phase undergoes a jump of π and a voltage pulse is generated at the extremes of the SQUID. Under periodic drive this allows one to generate a sequence of sharp, evenly spaced voltage pulses. In the frequency domain, this corresponds to a comb-like structure similar to the one exploited in optics and metrology. With this device it is possible to generate up to several hundreds of harmonics of the driving frequency. For example, a chain of 50 identical high-critical-temperature SQUIDs driven at 1 GHz can deliver up to a 0.5 nW at 200 GHz. The availability of a fully solid-state radiation comb generator such as the JRCG, easily integrable on chip, may pave the way to a number of technological applications, from metrology to sub-millimeter wave generation.
Scanning SQUID microscope with an in-situ magnetization/demagnetization field for geological samples
NASA Astrophysics Data System (ADS)
Du, Junwei; Liu, Xiaohong; Qin, Huafeng; Wei, Zhao; Kong, Xiangyang; Liu, Qingsong; Song, Tao
2018-04-01
Magnetic properties of rocks are crucial for paleo-, rock-, environmental-magnetism, and magnetic material sciences. Conventional rock magnetometers deal with bulk properties of samples, whereas scanning microscope can map the distribution of remanent magnetization. In this study, a new scanning microscope based on a low-temperature DC superconducting quantum interference device (SQUID) equipped with an in-situ magnetization/demagnetization device was developed. To realize the combination of sensitive instrument as SQUID with high magnetizing/demagnetizing fields, the pick-up coil, the magnetization/demagnetization coils and the measurement mode of the system were optimized. The new microscope has a field sensitivity of 250 pT/√Hz at a coil-to-sample spacing of ∼350 μm, and high magnetization (0-1 T)/ demagnetization (0-300 mT, 400 Hz) functions. With this microscope, isothermal remanent magnetization (IRM) acquisition and the according alternating field (AF) demagnetization curves can be obtained for each point without transferring samples between different procedures, which could result in position deviation, waste of time, and other interferences. The newly-designed SQUID microscope, thus, can be used to investigate the rock magnetic properties of samples at a micro-area scale, and has a great potential to be an efficient tool in paleomagnetism, rock magnetism, and magnetic material studies.
Biomagnetism using SQUIDs: status and perspectives
NASA Astrophysics Data System (ADS)
Sternickel, Karsten; Braginski, Alex I.
2006-03-01
Biomagnetism involves the measurement and analysis of very weak local magnetic fields of living organisms and various organs in humans. Such fields can be of physiological origin or due to magnetic impurities or markers. This paper reviews existing and prospective applications of biomagnetism in clinical research and medical diagnostics. Currently, such applications require sensitive magnetic SQUID sensors and amplifiers. The practicality of biomagnetic methods depends especially on techniques for suppressing the dominant environmental electromagnetic noise, and on suitable nearly real-time data processing and interpretation methods. Of the many biomagnetic methods and applications, only the functional studies of the human brain (magnetoencephalography) and liver susceptometry are in clinical use, while functional diagnostics of the human heart (magnetocardiography) approaches the threshold of clinical acceptance. Particularly promising for the future is the ongoing research into low-field magnetic resonance anatomical imaging using SQUIDs.
Intermodulation in nonlinear SQUID metamaterials: Experiment and theory
NASA Astrophysics Data System (ADS)
Zhang, Daimeng; Trepanier, Melissa; Antonsen, Thomas; Ott, Edward; Anlage, Steven M.
2016-11-01
The response of nonlinear metamaterials and superconducting electronics to two-tone excitation is critical for understanding their use as low-noise amplifiers and tunable filters. A new setting for such studies is that of metamaterials made of radio frequency superconducting quantum interference devices (rf-SQUIDs). The two-tone response of self-resonant rf-SQUID meta-atoms and metamaterials is studied here via intermodulation (IM) measurement over a broad range of tone frequencies and tone powers. A sharp onset followed by a surprising strongly suppressed IM region near the resonance is observed. Using a two time scale analysis technique, we present an analytical theory that successfully explains our experimental observations. The theory predicts that the IM can be manipulated with tone power, center frequency, frequency difference between the two tones, and temperature. This quantitative understanding potentially allows for the design of rf-SQUID metamaterials with either very low or very high IM response.
SQUID amplifiers for axion search experiments
NASA Astrophysics Data System (ADS)
Matlashov, Andrei; Schmelz, Matthias; Zakosarenko, Vyacheslav; Stolz, Ronny; Semertzidis, Yannis K.
2018-04-01
In the experiments for dark-matter QCD-axion searches, very weak microwave signals from a low-temperature High-Q resonant cavity should be detected using the highest sensitivity. The best commercial low-noise cryogenic semiconductor amplifiers based on high electron mobility transistors have a lowest noise temperature above 1.0 K, even if they are cooled well below 1 K. Superconducting quantum interference devices can work as microwave amplifiers with temperature noise close to the standard quantum limit. Previous SQUID-based RF amplifiers designed for axion search experiments have a microstrip resonant input coil and are thus called micro-strip SQUID amplifiers or MSAs. Due to the resonant input coupling they usually have narrow bandwidth. In this paper we report on a SQUID-based wideband microwave amplifier fabricated using sub-micron size Josephson junctions with very low capacitance. A single amplifier can be used in a frequency range of approximately 1-5 GHz.
NASA Astrophysics Data System (ADS)
Fang, Zhao
This dissertation investigates approaches to enhance the performance, especially the sensitivity and signal to noise ratio of magnetoelectric sensors, which exploits the magnetoelectric coupling in magnetostrictive and piezoelectric laminate composites. A magnetic sensor is a system or device that can measure the magnitude of a magnetic field or each of its vector components. Usually the techniques encompass many aspects of physics and electronics. The common technologies used for magnetic field sensing include induction coil sensors, fluxgate, SQUID (superconducting quantum interference device), Hall effect, giant magnetoresistance, magnetostrictive/piezoelectric composites, and MEMS (microelectromechanical systems)-based magnetic sensors. Magnetic sensors have found a broad range of applications for many decades. For example, ultra sensitive magnetic sensors are able to detect tiny magnetic fields produced outside the brain by the neuronal currents which can be used for diagnostic application. Measuring the brain's magnetic field is extremely challenging because they are so weak, have strengths of 0.1--1 pT and thus requiring magnetic sensors with sub-picotesla sensitivity. In fact, to date, these measurements can only performed with the most sensitive magnetic sensors, i.e., SQUID. However, such detectors need expensive and cumbersome cryogenics to operate. Additionally, the thermal insulation of the sensors prevents them from being placed very closed to the tissues under study, thereby preventing high-resolution measurement capability. All of these severely limit their broad usage and proliferation for biomedical imaging, diagnosis, and research. A novel ultra-sensitive magnetic sensor capable of operating at room temperature is investigated in this thesis. Magnetoelectric effect is a material phenomenon featuring the interchange between the magnetic and electric energies or signals. The large ME effect observed in ME composites, especially the ME laminates consisting of magnetostrictive and piezoelectric components shows a promise to make novel ultra-sensitive magnetic sensors capable of operating at room temperature. To achieve such a high sensitivity (˜pT level), piezoelectric sensors are materialized through ME composite laminates, provided piezo-sensors are among the most sensitive while being passive devices at the same time. To further improve the sensitivity and reduce the 1f noise level, several approaches are used such as magnetic flux concentration effect, which is a function of the Metglas sheet aspect ratio, and resonance enhancement. Taking advantage of this effect, the ME voltage coefficient alpha ME=21.46 V/cm·Oe for Metglas 2605SA1/PVDF laminates and alphaME=46.7 V/cm·Oe for Metglas 2605CO/PVDF laminates. The resonance response of Metglas/PZT laminates in FF (Free-Free), FC (Free-Clamped), and CC (Clamped-Clamped) modes are also investigated. alphaME=301.6 V/cm·Oe and the corresponding SNR=4x107 Hz /Oe are achieved for FC mode at resonance frequencies. In addition to this, testing setups were built to characterize the magnetic sensors. LABVIEW codes were also developed to automatize the measurements and consequently get accurate results. Then two commonly used integration methods, i.e., hybrid method and system in package (SIP), are discussed. Then the intrinsic noise analysis including dielectric loss noise, which dominates the intrinsic noise sources, and magnetostrictive noise is introduced. A charge mode readout circuit is made for hybrid method and a voltage mode readout circuit is made for SIP method. For sensors, since SNR is very important since it determines the minimum signal it can detect, the SNR of each configuration is discussed in detail. For charge mode circuit, by taking advantage of the multilayer PVDF configuration, SNR=7.2x10 5 Hz /Oe is achieved at non-resonance frequencies and SNR=2x10 7 Hz /Oe is achieved at resonance frequencies. For voltage mode circuit, a constant SNR=3x103 Hz /Oe is achieved at non-resonance frequencies. Both of the advantages and disadvantages of each method are also discussed. Piezoelectric single crystal PMN-PT with optimum orientation and cut direction is developed to increase the ME coefficient alpha ME and reduce the intrinsic dielectric loss noise, consequently to improve the SNR of the ME sensors. For Metlgas/PMN-PT laminates, SNR=3.9x10 6 Hz /Oe is achieved at non-resonance frequencies and SNR=7.3x10 8 Hz /Oe is achieved at resonance frequencies.
High-performance dc SQUIDs with submicrometer niobium Josephson junctions
NASA Astrophysics Data System (ADS)
de Waal, V. J.; Klapwijk, T. M.; van den Hamer, P.
1983-11-01
We report on the fabrication and performance of low-noise, all-niobium, thin-film planar dc SQUIDs with submicrometer Josephson junctions. The junctions are evaporated obliquely through a metal shadow evaporation mask, which is made using optical lithography with 0.5 µm tolerance. The Josephson junction barrier is formed by evaporating a thin silicon film and with a subsequent oxidation in a glow discharge. The junction parameters can be reproduced within a factor of two. Typical critical currents of the SQUIDs are about 3 µA and the resistances are about 100 Ω. With SQUIDs having an inductance of 1 nH the voltage modulation is at least 60 µV. An intrinsic energy resolution of 4×10-32 J/Hz has been reached. The SQUIDs are coupled to wire-wound input coils or with thin-film input coils. The thin-film input coil consists of a niobium spiral of 20 turns on a separate substrate. In both cases the coil is glued onto a 2-nH SQUID with a coupling efficiency of at least 0.5. Referred to the thin-film input coil, the best coupled energy resolution achieved is 1.2×10-30 J/Hz measured in a flux-locked loop at frequencies above 10 Hz. As far as we know, this is the best figure achieved with an all-refractory-metal thin-film SQUID. The fabrication technique used is suited for making circuits with SQUID and pickup coil on the same substrate. We describe a compact, planar, first-order gradiometer integrated with a SQUID on a single substrate. The gradient noise of this device is 3×10-12 T m-1. The gradiometer has a size of 12 mm×17 mm, is simple to fabricate, and is suitable for biomedical applications.
Small, Fast TES Microcalorimeters with Unprecedented X-ray Spectral Performance
NASA Technical Reports Server (NTRS)
Eckart, M. E.; Adams, J. S.; Bailey, C. N.; Bandler, S. R.; Chervenak, J. A.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.; Sadleir, J. E.;
2011-01-01
Driven initially by the desire for X-ray microcalorimeter arrays suitable for imaging the dynamic solar corona, we have developed a transition-edge-sensor (TES) microcalorimeter optimization that exhibits a unique combination of high spectral resolving power and a wide X-ray bandpass. These devices have achieved spectral performance of dE approximately 1.3 eV FWHM at 1.5 keV, 1.6 eV at 6 keV, and 2.0 eV at 8 keV, using small TESs (e.g., approximately 35 micron x 35 micron) that operate in a regime in which the superconducting transition is highly current dependent. In order to accommodate high X-ray count rates, the devices sit directly on a solid substrate instead of on membranes, and we use an embedded heatsinking layer to reduce pixel-to-pixel crosstalk. We will present results from devices with a range of TES and absorber sizes, and from device wafers with varied embedded heatsink materials. This contribution will focus on count-rate capabilities, including a discussion of the trade-off between count rate and energy resolution, and the heatsinking design. We will also present preliminary tests of array readout using a code-division multiplexed SQUID readout scheme, which may be necessary to enable large arrays of these fast devices.
SQUID use for Geophysics: finding billions of dollars
NASA Astrophysics Data System (ADS)
Foley, Catherine
2014-03-01
Soon after their discovery, Jim Zimmerman saw the potential of using Superconducting Quantum Interference Devices, SQUIDs, for the study of Geophysics and undertook experiments to understand the magnetic phenomena of the Earth. However his early experiments were not successful. Nevertheless up to the early 1980's, some research effort in the use of SQUIDs for geophysics continued and many ideas of how you could use SQUIDs evolved. Their use was not adopted by the mining industry at that time for a range of reasons. The discovery of high temperature superconductors started a reinvigoration in the interest to use SQUIDs for mineral exploration. Several groups around the world worked with mining companies to develop both liquid helium and nitrogen cooled systems. The realisation of the achievable sensitivity that contributed to successful mineral discoveries and delineation led to real financial returns for miners. By the mid 2000's, SQUID systems for geophysics were finally being offered for sale by several start-up companies. This talk will tell the story of SQUID use in geophysics. It will start with the early work of the SQUID pioneers including that of Jim Zimmerman and John Clarke and will also cover the development since the early 1990's up to today of a number of magnetometers and gradiometers that have been successfully commercialised and used to create significant impact in the global resources industry. The talk will also cover some of the critical technical challenges that had to be overcome to succeed. It will focus mostly on magnetically unshielded systems used in the field although some laboratory-based systems will be discussed.
NASA Tech Briefs, October 2007
NASA Technical Reports Server (NTRS)
2007-01-01
Topics covered include; Wirelessly Interrogated Position or Displacement Sensors; Ka-Band Radar Terminal Descent Sensor; Metal/Metal Oxide Differential Electrode pH Sensors; Improved Sensing Coils for SQUIDs; Inductive Linear-Position Sensor/Limit-Sensor Units; Hilbert-Curve Fractal Antenna With Radiation- Pattern Diversity; Single-Camera Panoramic-Imaging Systems; Interface Electronic Circuitry for an Electronic Tongue; Inexpensive Clock for Displaying Planetary or Sidereal Time; Efficient Switching Arrangement for (N + 1)/N Redundancy; Lightweight Reflectarray Antenna for 7.115 and 32 GHz; Opto-Electronic Oscillator Using Suppressed Phase Modulation; Alternative Controller for a Fiber-Optic Switch; Strong, Lightweight, Porous Materials; Nanowicks; Lightweight Thermal Protection System for Atmospheric Entry; Rapid and Quiet Drill; Hydrogen Peroxide Concentrator; MMIC Amplifiers for 90 to 130 GHz; Robot Would Climb Steep Terrain; Measuring Dynamic Transfer Functions of Cavitating Pumps; Advanced Resistive Exercise Device; Rapid Engineering of Three-Dimensional, Multicellular Tissues With Polymeric Scaffolds; Resonant Tunneling Spin Pump; Enhancing Spin Filters by Use of Bulk Inversion Asymmetry; Optical Magnetometer Incorporating Photonic Crystals; WGM-Resonator/Tapered-Waveguide White-Light Sensor Optics; Raman-Suppressing Coupling for Optical Parametric Oscillator; CO2-Reduction Primary Cell for Use on Venus; Cold Atom Source Containing Multiple Magneto- Optical Traps; POD Model Reconstruction for Gray-Box Fault Detection; System for Estimating Horizontal Velocity During Descent; Software Framework for Peer Data-Management Services; Autogen Version 2.0; Tracking-Data-Conversion Tool; NASA Enterprise Visual Analysis; Advanced Reference Counting Pointers for Better Performance; C Namelist Facility; and Efficient Mosaicking of Spitzer Space Telescope Images.
Klett, Robin; Schönle, Joachim; Becker, Andreas; Dyck, Denis; Borisov, Kiril; Rott, Karsten; Ramermann, Daniela; Büker, Björn; Haskenhoff, Jan; Krieft, Jan; Hübner, Torsten; Reimer, Oliver; Shekhar, Chandra; Schmalhorst, Jan-Michael; Hütten, Andreas; Felser, Claudia; Wernsdorfer, Wolfgang; Reiss, Günter
2018-02-14
Topological crystalline insulators represent a new state of matter, in which the electronic transport is governed by mirror-symmetry protected Dirac surface states. Due to the helical spin-polarization of these surface states, the proximity of topological crystalline matter to a nearby superconductor is predicted to induce unconventional superconductivity and, thus, to host Majorana physics. We report on the preparation and characterization of Nb-based superconducting quantum interference devices patterned on top of topological crystalline insulator SnTe thin films. The SnTe films show weak anti-localization, and the weak links of the superconducting quantum interference devices (SQUID) exhibit fully gapped proximity-induced superconductivity. Both properties give a coinciding coherence length of 120 nm. The SQUID oscillations induced by a magnetic field show 2π periodicity, possibly dominated by the bulk conductivity.
TES Detector Noise Limited Readout Using SQUID Multiplexers
NASA Technical Reports Server (NTRS)
Staguhn, J. G.; Benford, D. J.; Chervenak, J. A.; Khan, S. A.; Moseley, S. H.; Shafer, R. A.; Deiker, S.; Grossman, E. N.; Hilton, G. C.; Irwin, K. D.
2004-01-01
The availability of superconducting Transition Edge Sensors (TES) with large numbers of individual detector pixels requires multiplexers for efficient readout. The use of multiplexers reduces the number of wires needed between the cryogenic electronics and the room temperature electronics and cuts the number of required cryogenic amplifiers. We are using an 8 channel SQUID multiplexer to read out one-dimensional TES arrays which are used for submillimeter astronomical observations. We present results from test measurements which show that the low noise level of the SQUID multiplexers allows accurate measurements of the TES Johnson noise, and that in operation, the readout noise is dominated by the detector noise. Multiplexers for large number of channels require a large bandwidth for the multiplexed readout signal. We discuss the resulting implications for the noise performance of these multiplexers which will be used for the readout of two dimensional TES arrays in next generation instruments.
Active cooling of an audio-frequency electrical resonator to microkelvin temperatures
NASA Astrophysics Data System (ADS)
Vinante, A.; Bonaldi, M.; Mezzena, R.; Falferi, P.
2010-11-01
We have cooled a macroscopic LC electrical resonator using feedback-cooling combined with an ultrasensitive dc Superconducting Quantum Interference Device (SQUID) current amplifier. The resonator, with resonance frequency of 11.5 kHz and bath temperature of 135 mK, is operated in the high coupling limit so that the SQUID back-action noise overcomes the intrinsic resonator thermal noise. The effect of correlations between the amplifier noise sources clearly show up in the experimental data, as well as the interplay of the amplifier noise with the resonator thermal noise. The lowest temperature achieved by feedback is 14 μK, corresponding to 26 resonator photons, and approaches the limit imposed by the noise energy of the SQUID amplifier.
Practical SQUID Instrument for Nondestructive Testing
NASA Technical Reports Server (NTRS)
Tralshawala, N.; Claycomb, J. R.; Miller, John H., Jr.
1997-01-01
We report on the development of a scanning eddy-current imaging system designed to detect deep subsurface flaws in conducting materials. A high transition temperature (high-T c) superconducting quantum interference device (SQUID) magnetometer is employed to provide the required sensitivity at low frequencies, while a combination of small cylindrical high-Tc superconducting and A-metal shields enable the instrument to be scanned in a magnetically noisy environment, rather than the object under test. The shields are arranged to prevent unwanted excitation and ambient noise fields from reaching the SQUID, and to enhance spatial resolution and minimize undesirable edge effects. Thus far, the instrument has successfully detected cracks and pits through 10 layers of aluminum, with a combined thickness of 5 cm at room temperature.
Evaluation of a Three-Channel High-Temperature Superconducting Magnetometer System
1997-06-01
achieved by the best commercially available fluxgate magnetometers demonstrated to date and is only surpassed by low temperature superconducting...wire lines carry the analog SQUID magnetometer signal as well as dc power and ground, and the fiberoptic lines carry digital clock and data signals...with the magnetometers mounted on the three-sensor probe used in the sensor evaluated here. This probe is not highly stabilized with respect to the
Matlashov, Andrei N.; Schultz, Larry J.; Espy, Michelle A.; Kraus, Robert H.; Savukov, Igor M.; Volegov, Petr L.; Wurden, Caroline J.
2011-01-01
Nuclear magnetic resonance (NMR) is widely used in medicine, chemistry and industry. One application area is magnetic resonance imaging (MRI). Recently it has become possible to perform NMR and MRI in the ultra-low field (ULF) regime requiring measurement field strengths of the order of only 1 Gauss. This technique exploits the advantages offered by superconducting quantum interference devices or SQUIDs. Our group has built SQUID based MRI systems for brain imaging and for liquid explosives detection at airport security checkpoints. The requirement for liquid helium cooling limits potential applications of ULF MRI for liquid identification and security purposes. Our experimental comparative investigation shows that room temperature inductive magnetometers may provide enough sensitivity in the 3–10 kHz range and can be used for fast liquid explosives detection based on ULF NMR technique. We describe experimental and computer-simulation results comparing multichannel SQUID based and induction coils based instruments that are capable of performing ULF MRI for liquid identification. PMID:21747638
NASA Astrophysics Data System (ADS)
Kempf, S.; Wegner, M.; Deeg, L.; Fleischmann, A.; Gastaldo, L.; Herrmann, F.; Richter, D.; Enss, C.
2017-06-01
We report on the design, fabrication and characterization of a 64 pixel metallic magnetic calorimeter array that is read out by an integrated, on-chip microwave SQUID multiplexer. Based on the results of our comprehensive device characterization we refined the state-of-the-art multiplexer model which assumes each associated non-hysteretic rf-SQUID to purely behave as a flux-dependent inductor. In particular, we include the capacitance and the subgap resistance of the Josephson junction as well as screening effects and parasitic mutual couplings between different coils that show up only when a superconducting flux transformer is attached to the SQUID input. Thanks to these modifications, we are able to explain the occurrence of a magnetic flux dependence of the internal quality factor of the microwave resonators as well as to accurately calculate the characteristic multiplexer parameters. When combining the refined multiplexer model with the thermodynamical description of a metallic magnetic calorimeter, we find a reasonable agreement between our measurements and predictions.
Microwave photon generation in a doubly tunable superconducting resonator
NASA Astrophysics Data System (ADS)
Svensson, I.-M.; Pierre, M.; Simoen, M.; Wustmann, W.; Krantz, P.; Bengtsson, A.; Johansson, G.; Bylander, J.; Shumeiko, V.; Delsing, P.
2018-03-01
We have created a doubly tunable resonator, with the intention to simulate relativistic motion of the resonator boundaries in real space. Our device is a superconducting coplanar-waveguide microwave resonator, with fundamental resonant frequency ω 1 /(2π) ~ 5 GHz. Both of its ends are terminated to ground via dc-SQUIDs, which serve as magnetic-flux-controlled inductances. Applying a flux to either SQUID allows the tuning of ω 1 /(2π) by approximately 700 MHz. Using two separate on-chip magnetic-flux lines, we modulate the SQUIDs with two tones of equal frequency, close to 2ω 1. We observe photon generation, at ω 1, above a certain pump amplitude threshold. By varying the relative phase of the two pumps we are able to control this threshold, in good agreement with a theoretical model. At the same time, some of our observations deviate from the theoretical predictions, which we attribute to parasitic couplings resulting in current driving of the SQUIDs.
Reducing Field Distortion in Magnetic Resonance Imaging
NASA Technical Reports Server (NTRS)
Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob
2010-01-01
A concept for a magnetic resonance imaging (MRI) system that would utilize a relatively weak magnetic field provides for several design features that differ significantly from the corresponding features of conventional MRI systems. Notable among these features are a magnetic-field configuration that reduces (relative to the conventional configuration) distortion and blurring of the image, the use of a superconducting quantum interference device (SQUID) magnetometer as the detector, and an imaging procedure suited for the unconventional field configuration and sensor. In a typical application of MRI, a radio-frequency pulse is used to excite precession of the magnetic moments of protons in an applied magnetic field, and the decaying precession is detected for a short time following the pulse. The precession occurs at a resonance frequency proportional to the strengths of the magnetic field and the proton magnetic moment. The magnetic field is configured to vary with position in a known way; hence, by virtue of the aforesaid proportionality, the resonance frequency varies with position in a known way. In other words, position is encoded as resonance frequency. MRI using magnetic fields weaker than those of conventional MRI offers several advantages, including cheaper and smaller equipment, greater compatibility with metallic objects, and higher image quality because of low susceptibility distortion and enhanced spin-lattice-relaxation- time contrast. SQUID MRI is being developed into a practical MRI method for applied magnetic flux densities of the order of only 100 T
Tunable resonant and non-resonant interactions between a phase qubit and LC resonator
NASA Astrophysics Data System (ADS)
Allman, Michael Shane; Whittaker, Jed D.; Castellanos-Beltran, Manuel; Cicak, Katarina; da Silva, Fabio; Defeo, Michael; Lecocq, Florent; Sirois, Adam; Teufel, John; Aumentado, Jose; Simmonds, Raymond W.
2014-03-01
We use a flux-biased radio frequency superconducting quantum interference device (rf SQUID) with an embedded flux-biased direct current (dc) SQUID to generate strong resonant and non-resonant tunable interactions between a phase qubit and a lumped-element resonator. The rf-SQUID creates a tunable magnetic susceptibility between the qubit and resonator providing resonant coupling rates from zero to near the ultra-strong coupling regime. By modulating the magnetic susceptibility, non-resonant parametric coupling achieves rates > 100 MHz . Nonlinearity of the magnetic susceptibility also leads to parametric coupling at subharmonics of the qubit-resonator detuning. Controllable coupling is generically important for constructing coupled-mode systems ubiquitous in physics, useful for both, quantum information architectures and quantum simulators. This work supported by NIST and NSA grant EAO140639.
NASA Astrophysics Data System (ADS)
Zhang, Xu; Chen, Ye-Hong; Shi, Zhi-Cheng; Shan, Wu-Jiang; Song, Jie; Xia, Yan
2017-12-01
Combining the advantages of the dressed states and superconducting quantum interference device (SQUID) qubits, we propose an efficient scheme to generate Greenberger-Horne-Zeilinger (GHZ) states for three SQUID qubits. Firstly, we elaborate how to generate GHZ states of three SQUID qubits by choosing a set of dressed states suitably. Then, we compare the scheme by using dressed states with that via the adiabatic passage. Lastly, the influence of various decoherence factors, such as cavity decay, spontaneous emission and dephasing, is analyzed numerically. All of the results show that the GHZ state can be obtained fast and with high fidelity and that the present scheme is robust against the cavity decay and spontaneous emission. In addition, our scheme is more stable against the dephasing than the adiabatic scheme.
Development of a TES-Based Anti-Coincidence Detector for Future X-Ray Observations
NASA Technical Reports Server (NTRS)
Bailey, Catherine N.; Adams, J. S.; Bandler, S. R.; Eckart, M. E.; Ewin, A. J.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.; Sadleir, J. E.;
2012-01-01
Microcalorimeters onboard future x-ray observatories require an anticoincidence detector to remove environmental backgrounds. In order to most effectively integrate this anti-coincidence detector with the main microcalorimeter array, both instruments should use similar read-out technology. The detectors used in the Cryogenic Dark Matter Search (CDMS) use a phonon measurement technique that is well suited for an anti-coincidence detector with a microcalorimeter array using SQUID readout. This technique works by using a transition-edge sensor (TES) connected to superconducting collection fins to measure the athermal phonon signal produced when an event occurs in the substrate crystal. Energy from the event propagates through the crystal to the superconducting collection fins, creating quasiparticles, which are then trapped as they enter the TES where they produce a signal. We are currently developing a prototype anti-coincidence detector for future x-ray missions and have recently fabricated test devices with Mo/Au TESs and Al collection fins. We present results from the first tests of these devices which indicate a proof of concept that quasiparticle trapping is occurring in these materials.
Development of a TES-Based Anti-Coincidence Detector for Future X-ray Observatories
NASA Technical Reports Server (NTRS)
Bailey, Catherine
2011-01-01
Microcalorimeters onboard future x-ray observatories require an anti-coincidence detector to remove environmental backgrounds. In order to most effectively integrate this anticoincidence detector with the main microcalorimeter array, both instruments should use similar read-out technology. The detectors used in the Cryogenic Dark Matter Search (CDMS) use a phonon measurement technique that is well suited for an anti-coincidence detector with a microcalorimeter array using SQUID readout. This technique works by using a transition-edge sensor (TES) connected to superconducting collection fins to measure the athermal phonon signal produced when an event occurs in the substrate crystal. Energy from the event propagates through the crystal to the superconducting collection fins, creating quasiparticles, which are then trapped as they enter the TES where they produce a signal. We are currently developing a prototype anti-coincidence detector for future x-ray missions and have recently fabricated test devices with Mo/Au TESs and Al collection fins. We will present results from the first tests of these devices which indicate a proof of concept that quasiparticle trapping is occurring in these materials.
Fabrication of high T(sub c) superconductor thin film devices: Center director's discretionary fund
NASA Technical Reports Server (NTRS)
Sisk, R. C.
1992-01-01
This report describes a technique for fabricating superconducting weak link devices with micron-sized geometries etched in laser ablated Y1Ba2Cu3O(x) (YBCO) thin films. Careful placement of the weak link over naturally occurring grain boundaries exhibited in some YBCO thin films produces Superconducting Quantum Interference Devices (SQUID's) operating at 77 K.
NASA Astrophysics Data System (ADS)
Kawai, J.; Miyamoto, M.; Kawabata, M.; Nosé, M.; Haruta, Y.; Uehara, G.
2017-08-01
We characterized a low temperature superconducting quantum interference device (SQUID) magnetometer system developed for high-sensitivity geomagnetic field measurement, and demonstrated the detection of weak geomagnetic signals. The SQUID magnetometer system is comprised of three-axis SQUID magnetometers housed in a glass fiber reinforced plastic cryostat, readout electronics with flux locked loop (FLL), a 24-bit data logger with a global positioning system and batteries. The system noise was approximately 0.2 pT √Hz- 1/2 in the 1-50 Hz frequency range. This performance was determined by including the thermal noise and the shielding effect of the copper shield, which covered the SQUID magnetometers to eliminate high-frequency interference. The temperature drift of the system was ˜0.8 pT °C- 1 in an FLL operation. The system operated for a month using 33 l liquid helium. Using this system, we performed the measurements of geomagnetic field in the open-air, far away from the city. The system could detect weak geomagnetic signals such as the Schumann resonance with sixth harmonics, and the ionospheric Alfvén resonance appearing at night, for the north-south and east-west components of the geomagnetic field. We confirm that the system was capable of high-sensitivity measurement of the weak geomagnetic activities.
NASA Astrophysics Data System (ADS)
Qiu, Yang; Li, Hua; Zhang, Shu-Lin; Wang, Yong-Liang; Kong, Xiang-Yan; Zhang, Chao-Xiang; Zhang, Yong-Sheng; Xu, Xiao-Feng; Yang, Kang; Xie, Xiao-Ming
2015-07-01
We constructed a 36-channel magnetocardiography (MCG) system based on low-Tc direct current (DC) superconducting quantum interference device (SQUID) magnetometers operated inside a magnetically shielded room (MSR). Weakly damped SQUID magnetometers with large Steward-McCumber parameter βc (βc ≈ 5), which could directly connect to the operational amplifier without any additional feedback circuit, were used to simplify the readout electronics. With a flux-to-voltage transfer coefficient ∂ V/∂ Φ larger than 420 μV/Φ 0, the SQUID magnetometers had a white noise level of about 5.5 fT·Hz-1/2 when operated in MSR. 36 sensing magnetometers and 15 reference magnetometers were employed to realize software gradiometer configurations. The coverage area of the 36 sensing magnetometers is 210×210 mm2. MCG measurements with a high signal-to-noise ratio of 40 dB were done successfully using the developed system. Project supported by “One Hundred Persons Project” of the Chinese Academy of Sciences and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB04020200).
Microtesla MRI with dynamic nuclear polarization
NASA Astrophysics Data System (ADS)
Zotev, Vadim S.; Owens, Tuba; Matlashov, Andrei N.; Savukov, Igor M.; Gomez, John J.; Espy, Michelle A.
2010-11-01
Magnetic resonance imaging at microtesla fields is a promising imaging method that combines the pre-polarization technique and broadband signal reception by superconducting quantum interference device (SQUID) sensors to enable in vivo MRI at microtesla-range magnetic fields similar in strength to the Earth magnetic field. Despite significant advances in recent years, the potential of microtesla MRI for biomedical imaging is limited by its insufficient signal-to-noise ratio due to a relatively low sample polarization. Dynamic nuclear polarization (DNP) is a widely used approach that allows polarization enhancement by 2-4 orders of magnitude without an increase in the polarizing field strength. In this work, the first implementation of microtesla MRI with Overhauser DNP and SQUID signal detection is described. The first measurements of carbon-13 NMR spectra at microtesla fields are also reported. The experiments were performed at the measurement field of 96 μT, corresponding to Larmor frequency of 4 kHz for protons and 1 kHz for carbon-13. The Overhauser DNP was carried out at 3.5-5.7 mT fields using rf irradiation at 120 MHz. Objects for imaging included water phantoms and a cactus plant. Aqueous solutions of metabolically relevant sodium bicarbonate, pyruvate, alanine, and lactate, labeled with carbon-13, were used for NMR studies. All the samples were doped with TEMPO free radicals. The Overhauser DNP enabled nuclear polarization enhancement by factor as large as -95 for protons and as large as -200 for carbon-13, corresponding to thermal polarizations at 0.33 T and 1.1 T fields, respectively. These results demonstrate that SQUID-based microtesla MRI can be naturally combined with Overhauser DNP in one system, and that its signal-to-noise performance is greatly improved in this case. They also suggest that microtesla MRI can become an efficient tool for in vivo imaging of hyperpolarized carbon-13, produced by low-temperature dissolution DNP.
High-performance passive microwave survey on Josephson junctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denisov, A.G.; Radzikhovsky, V.N.; Kudeliya, A.M.
1994-12-31
The quasi-optical generations of image of objects with their internal structure in millimeter (MM) and submillimeter (SMM) bands is one of the prime problems of modern radioelectronics. The main advantage of passive MM imaging systems in comparison with visible and infrared (IR) systems is small attenuation of signals in fog, cloud, smoke, dust and other obscurants. However at a panoramic scanning of space the observation time lengthens and thereby the information processing rate becomes restricted. So that single-channel system cannot image in real time. Therefore we must use many radiometers in parallel to reduce the observation time. Such system mustmore » contain receiving sensors as pixels in multibeam antenna. The use of Josephson Junctions (JJ) for this purpose together with the cryoelectronic devices like GaAs FET or SQUIDS for signal amplifications after JJ is of particular interest in this case.« less
High-performance passive microwave survey on Josephson Junctions
NASA Technical Reports Server (NTRS)
Denisov, A. G.; Radzikhovsky, V. N.; Kudeliya, A. M.
1995-01-01
The quasi-optical generations of images of objects with their internal structure in millimeter (MM) and submillimeter (SMM) bands is one of prime problems of modern radioelectronics. The main advantage of passive MM imaging systems in comparison with visible and infrared (IR) systems is small attenuation of signals in fog, cloud, smoke, dust and other obscurants. However, at a panoramic scanning of space the observation time lengthens and thereby the information processing rate becomes restricted so that single-channel system cannot image in real time. Therefore we must use many radiometers in parallel to reduce the observation time. Such system must contain receiving sensors as pixels in multibeam antenna. The use of Josephson Junctions (JJ) for this purpose together with the cryoelectronic devices like GaAs FET (field effect transistors) or SQUIDS for signal amplifications after JJ is of particular interest in this case.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matlashov, Andrei N; Espy, Michelle A; Kraus, Robert H
2010-01-01
Nuclear magnetic resonance (NMR) methods are widely used in medicine, chemistry and industry. One application area is magnetic resonance imaging or MRI. Recently it has become possible to perform NMR and MRI in ultra-low field (ULF) regime that requires measurement field strengths only of the order of 1 Gauss. These techniques exploit the advantages offered by superconducting quantum interference devices or SQUIDs. Our group at LANL has built SQUID based MRI systems for brain imaging and for liquid explosives detection at airports security checkpoints. The requirement for liquid helium cooling limits potential applications of ULF MRI for liquid identification andmore » security purposes. Our experimental comparative investigation shows that room temperature inductive magnetometers provide enough sensitivity in the 3-10 kHz range and can be used for fast liquid explosives detection based on ULF NMR/MRI technique. We describe an experimental and computer simulation comparison of the world's first multichannel SQUID based and Faraday coils based instruments that are capable of performing ULF MRI for liquids identification.« less
NASA Astrophysics Data System (ADS)
Kleinbaum, Ethan; Shingla, Vidhi; Csáthy, G. A.
2017-03-01
We present a dc Superconducting QUantum Interference Device (SQUID)-based current amplifier with an estimated input referred noise of only 2.3 fA/√{Hz}. Because of such a low amplifier noise, the circuit is useful for Johnson noise thermometry of quantum resistors in the kΩ range down to mK temperatures. In particular, we demonstrate that our circuit does not contribute appreciable noise to the Johnson noise of a 3.25 kΩ resistor down to 16 mK. Our circuit is a useful alternative to the commonly used High Electron Mobility Transistor-based amplifiers, but in contrast to the latter, it offers a much reduced 1/f noise. In comparison to SQUIDs interfaced with cryogenic current comparators, our circuit has similar low noise levels, but it is easier to build and to shield from magnetic pickup.
NASA Astrophysics Data System (ADS)
Li, B.; Godfrey, T.; Cox, D.; Li, T.; Gallop, J.; Galer, S.; Nisbet, A.; Romans, Ed; Hao, L.
2018-02-01
An important requirement across a range of sensitive detectors is to determine accurately the energy deposited by the impact of a particle in a small volume. The particle may be anything from a visible photon through to an X-ray or massive charged particle. We have been developing nanobridge Josephson junctions based SQUIDs and nanoSQUID devices covering the entire range of particle detection energies from 1eV to MeV. In this paper we discuss some developments in nanobridge Josephson junctions fabrication using focussed ion beam (FIB) and how these developments impact future applications. We focus on tuning of the transition temperature of a superconducting thin-film absorber, with the aim to match the absorber Tc to the working temperature range of the SQUID and also on using a new Xe FIB to improve Josephson junction and superconducting film quality.
A 20-channel magnetoencephalography system based on optically pumped magnetometers
NASA Astrophysics Data System (ADS)
Borna, Amir; Carter, Tony R.; Goldberg, Josh D.; Colombo, Anthony P.; Jau, Yuan-Yu; Berry, Christopher; McKay, Jim; Stephen, Julia; Weisend, Michael; Schwindt, Peter D. D.
2017-12-01
We describe a multichannel magnetoencephalography (MEG) system that uses optically pumped magnetometers (OPMs) to sense the magnetic fields of the human brain. The system consists of an array of 20 OPM channels conforming to the human subject’s head, a person-sized magnetic shield containing the array and the human subject, a laser system to drive the OPM array, and various control and data acquisition systems. We conducted two MEG experiments: auditory evoked magnetic field and somatosensory evoked magnetic field, on three healthy male subjects, using both our OPM array and a 306-channel Elekta-Neuromag superconducting quantum interference device (SQUID) MEG system. The described OPM array measures the tangential components of the magnetic field as opposed to the radial component measured by most SQUID-based MEG systems. Herein, we compare the results of the OPM- and SQUID-based MEG systems on the auditory and somatosensory data recorded in the same individuals on both systems.
Superconducting resonators as beam splitters for linear-optics quantum computation.
Chirolli, Luca; Burkard, Guido; Kumar, Shwetank; Divincenzo, David P
2010-06-11
We propose and analyze a technique for producing a beam-splitting quantum gate between two modes of a ring-resonator superconducting cavity. The cavity has two integrated superconducting quantum interference devices (SQUIDs) that are modulated by applying an external magnetic field. The gate is accomplished by applying a radio frequency pulse to one of the SQUIDs at the difference of the two mode frequencies. Departures from perfect beam splitting only arise from corrections to the rotating wave approximation; an exact calculation gives a fidelity of >0.9992. Our construction completes the toolkit for linear-optics quantum computing in circuit quantum electrodynamics.
Applications of Josephson Junction SQUIDs (Superconducting Quantum Interference Device) and Arrays.
1982-11-01
Research, Cntract 7he transient respose is doinated by o NO. 00014-61-C-0615. and Wj. Figure 2 shows the time evolution of e a:d e M for owI, 0-1 and 5...connect a dc S 0UID "Shunted Josephson Tunel Junctions- if gh transmitter with another dc SQU D receiver by a Frequency, Self -Pvmd L Nise lifiers...resistive SQUID WVO incidentally to their self -puVzed Josepson perametric2 mplifier. Using a SQJID with 6 -2. ZmpHi, r-3xlO . and a in matching
Quantum interference in an interfacial superconductor.
Goswami, Srijit; Mulazimoglu, Emre; Monteiro, Ana M R V L; Wölbing, Roman; Koelle, Dieter; Kleiner, Reinhold; Blanter, Ya M; Vandersypen, Lieven M K; Caviglia, Andrea D
2016-10-01
The two-dimensional superconductor that forms at the interface between the complex oxides lanthanum aluminate (LAO) and strontium titanate (STO) has several intriguing properties that set it apart from conventional superconductors. Most notably, an electric field can be used to tune its critical temperature (T c ; ref. 7), revealing a dome-shaped phase diagram reminiscent of high-T c superconductors. So far, experiments with oxide interfaces have measured quantities that probe only the magnitude of the superconducting order parameter and are not sensitive to its phase. Here, we perform phase-sensitive measurements by realizing the first superconducting quantum interference devices (SQUIDs) at the LAO/STO interface. Furthermore, we develop a new paradigm for the creation of superconducting circuit elements, where local gates enable the in situ creation and control of Josephson junctions. These gate-defined SQUIDs are unique in that the entire device is made from a single superconductor with purely electrostatic interfaces between the superconducting reservoir and the weak link. We complement our experiments with numerical simulations and show that the low superfluid density of this interfacial superconductor results in a large, gate-controllable kinetic inductance of the SQUID. Our observation of robust quantum interference opens up a new pathway to understanding the nature of superconductivity at oxide interfaces.
Sabrina Pankey, M; Foxall, Randi L; Ster, Ian M; Perry, Lauren A; Schuster, Brian M; Donner, Rachel A; Coyle, Matthew; Cooper, Vaughn S; Whistler, Cheryl A
2017-01-01
Host immune and physical barriers protect against pathogens but also impede the establishment of essential symbiotic partnerships. To reveal mechanisms by which beneficial organisms adapt to circumvent host defenses, we experimentally evolved ecologically distinct bioluminescent Vibrio fischeri by colonization and growth within the light organs of the squid Euprymna scolopes. Serial squid passaging of bacteria produced eight distinct mutations in the binK sensor kinase gene, which conferred an exceptional selective advantage that could be demonstrated through both empirical and theoretical analysis. Squid-adaptive binK alleles promoted colonization and immune evasion that were mediated by cell-associated matrices including symbiotic polysaccharide (Syp) and cellulose. binK variation also altered quorum sensing, raising the threshold for luminescence induction. Preexisting coordinated regulation of symbiosis traits by BinK presented an efficient solution where altered BinK function was the key to unlock multiple colonization barriers. These results identify a genetic basis for microbial adaptability and underscore the importance of hosts as selective agents that shape emergent symbiont populations. DOI: http://dx.doi.org/10.7554/eLife.24414.001 PMID:28447935
NASA Astrophysics Data System (ADS)
Myers, Whittier Ryan
This dissertation describes magnetic resonance imaging (MRI) of protons performed in a precession field of 132 muT. In order to increase the signal-to-noise ratio (SNR), a pulsed 40-300 mT magnetic field prepolarizes the sample spins and an untuned second-order superconducting gradiometer coupled to a low transition temperature superconducting quantum interference device (SQUID) detects the subsequent 5.6-kHz spin precession. Imaging sequences including multiple echoes and partial Fourier reconstruction are developed. Calculating the SNR of prepolarized SQUID-detected MRI shows that three-dimensional Fourier imaging yields higher SNR than slice-selection imaging. An experimentally demonstrated field-cycling pulse sequence and post-processing algorithm mitigate image artifacts caused by concomitant gradients in low-field MRI. The magnetic field noise of SQUID untuned detection is compared to the noise of SQUID tuned detection, conventional Faraday detection, and the Nyquist noise generated by conducting biological samples. A second-generation microtesla MRI system employing a low-noise SQUID is constructed to increase SNR. A 2.4-m cubic, eddy-current shield with 6-mm thick aluminum walls encloses the experiment to attenuate external noise. The measured noise is 0.75 fT Hz 1/2 referred to the bottom gradiometer loop. Solenoids wound from 30-strand braided wire to decrease Nyquist noise and cooled by either liquid nitrogen or water polarize the spins. Copper wire coils wound on wooden supports produce the imaging magnetic fields and field gradients. Water phantom images with 0.8 x 0.8 x 10 mm3 resolution have a SNR of 6. Three-dimensional 1.6 x 1.9 x 14 mm3 images of bell peppers and 3 x 3 x 26 mm3 in vivo images of the human arm are presented. Since contrast based on the transverse spin relaxation rate (T1 ) is enhanced at low magnetic fields, microtesla MRI could potentially be used for tumor imaging. The measured T1 of ex vivo normal and cancerous prostate tissue differ significantly at 132 muT. A single-sided MRI system designed for prostate imaging could achieve 3 x 3 x 5 mm3 resolution in 8 minutes. Existing SQUID-based magnetoencephalography (MEG) systems could be used as microtesla MRI detectors. A commercial 275-channel MEG system could acquire 6-minute brain images with (4 mm)3 resolution and SNR 16.
Compatibility of photomultiplier tube operation with SQUIDs for a neutron EDM experiment
NASA Astrophysics Data System (ADS)
Libersky, Matthew; nEDM Collaboration
2013-10-01
An experiment at the Spallation Neutron Source at Oak Ridge National Laboratory with the goal of reducing the experimental limit on the electric dipole moment (EDM) of the neutron will measure the precession frequencies of neutrons when a strong electric field is applied parallel and anti-parallel to a weak magnetic field. A difference in these frequencies would indicate a nonzero neutron EDM. To correct for drifts of the magnetic field in the measurement volume, polarized 3He will be used as a co-magnetometer. In one of the two methods built into the apparatus, superconducting quantum interference devices (SQUIDs) will be used to read out the 3He magnetization. Photomultiplier tubes will be used concurrently to measure scintillation light from neutron capture by 3He. However, the simultaneous noise-sensitive magnetic field measurement by the SQUIDs makes conventional PMT operation problematic due to the alternating current involved in generating the high voltages needed. Tests were carried out at Los Alamos National Laboratory to study the compatibility of simultaneous SQUID and PMT operation, using a custom battery-powered high-voltage power supply developed by Meyer and Smith (NIM A 647.1) to operate the PMT. The results of these tests will be presented.
Weak-Link Phenomena in AC-Biased Transition Edge Sensors
NASA Astrophysics Data System (ADS)
Gottardi, L.; Akamatsu, H.; Bruijn, M.; Gao, J.-R.; den Hartog, R.; Hijmering, R.; Hoevers, H.; Khosropanah, P.; Kozorezov, A.; van der Kuur, J.; van der Linden, A.; Ridder, M.
2014-08-01
It has been recently demonstrated that superconducting transition edge-sensors behave as weak-links due to longitudinally induced superconductivity from the leads with higher . In this work we study the implication of this behaviour for transition-edge sensors (TES)-based bolometers and microcalorimeter under ac bias. The TESs are read-out at frequencies between 1 and by a frequency domain multiplexer based on a linearised two-stage SQUID amplifier and high- lithographically made superconducting resonators. In particular, we focus on SRON TiAu TES bolometers with a measured dark noise equivalent power of developed for the short wavelength band for the instrument SAFARI on the SPICA telescope.
Chieh, J J; Hong, C Y
2011-08-01
Although magnetic nanoparticles (MNPs) have been widely applied to animals in biomedicine, MNPs within animals should be examined in real time, in vivo, and without bio-damaged possibility to evaluate whether the bio-function of MNPs is valid or to further controls the biomedicinal process because of accompanying complex problems such as MNPs distribution and MNPs biodegradation. The non-invasive and high-sensitivity scanning detection of MNPs in animals using ac susceptometry based on a high-T(c) superconducting quantum interference device (SQUID) is presented. The non-invasive results and biopsy results show good agreement, and two gold-standard biomedicine methods, Prussian blue stain and inductively coupled plasma, prove the magnetic results. This confirms that the future clinical diagnosis of bio-functional MNPs could be operated by using scanning SQUID biosusceptometry as conveniently as an ultrasonic probe.
Magnetic biosensor using a high transition temperature SQUID
NASA Astrophysics Data System (ADS)
Grossman, Helene Lila
A high transition temperature (Tc) Superconducting QUantum Interference Device (SQUID) is used to detect magnetically-labeled microorganisms. The targets are identified and quantified by means of magnetic relaxation measurements, with no need for unbound magnetic labels to be washed away. The binding rate between antibody-linked magnetic particles and targets can be measured with this technique. Installed in a "SQUID microscope," a YBa2Cu 3O7-delta SQUID is mounted on a sapphire rod thermally linked to a liquid nitrogen can; these components are enclosed in a fiberglass vacuum chamber. A thin window separates the vacuum chamber from the sample, which is at room temperature and atmospheric pressure. In one mode of the experiment, targets are immobilized on a substrate and immersed a suspension of ˜50 nm diameter superparamagnetic particles, coated with antibodies. A pulsed magnetic field aligns the magnetic dipole moments, and the SQUID measures the magnetic relaxation signal each time the field is turned off. Unbound particles relax within ˜50 mus by Brownian rotation, too fast for the SQUID system to measure. In contrast, particles bound to targets have their Brownian motion inhibited. These particles relax in ˜1 s by rotation of the internal dipole moment, and this Neel relaxation process is detected by the SQUID. This assay is demonstrated with a model system of liposomes carrying the FLAG epitope; the detection limit is (2.7 +/- 0.2) x 105 particles. The replacement of the SQUID with a gradiometer improves the detection limit to (7.0 +/- 0.7) x 103 particles. In an alternate mode of the experiment, freely suspended targets (larger than ˜1 mum diameter) are detected. Since the Brownian relaxation time of the targets is longer than the measurement time, particles bound to targets are effectively immobilized and exhibit Neel relaxation. Listeria monocytogenes are detected using this method; the sensitivity is (1.1 +/- 0.2) x 105 bacteria in 20 muL. For a 1 nL sample volume, the detection limit is expected to be 230 +/- 40 bacteria. Time-resolved measurements, which yield the binding rate between particles and bacteria, are reported. Also, potential improvements to the system and possible applications are discussed.
On the relevance of using open wireless sensor networks in environment monitoring.
Bagula, Antoine B; Inggs, Gordon; Scott, Simon; Zennaro, Marco
2009-01-01
This paper revisits the problem of the readiness for field deployments of wireless sensor networks by assessing the relevance of using Open Hardware and Software motes for environment monitoring. We propose a new prototype wireless sensor network that fine-tunes SquidBee motes to improve the life-time and sensing performance of an environment monitoring system that measures temperature, humidity and luminosity. Building upon two outdoor sensing scenarios, we evaluate the performance of the newly proposed energy-aware prototype solution in terms of link quality when expressed by the Received Signal Strength, Packet Loss and the battery lifetime. The experimental results reveal the relevance of using the Open Hardware and Software motes when setting up outdoor wireless sensor networks.
1987-07-01
that any array detector have very broad dynamic range. iv.) Analytical methods used in extracting structural data from experimental observations from...important influence on magnet design and on specialized magnetic devices ( SQUID devices) and forms the basis for promising electronic devices ’Josephson...printable inks using 123 powders. (2) Control of interfacial reactions between the superconductors and the dielectric. (3) Development of suitable
Superconducting inductive displacement detection of a microcantilever
NASA Astrophysics Data System (ADS)
Vinante, A.
2014-07-01
We demonstrate a superconducting inductive technique to measure the displacement of a micromechanical resonator. In our scheme, a type I superconducting microsphere is attached to the free end of a microcantilever and approached to the loop of a dc Superconducting Quantum Interference Device (SQUID) microsusceptometer. A local magnetic field as low as 100 μT, generated by a field coil concentric to the SQUID, enables detection of the cantilever thermomechanical noise at 4.2 K. The magnetomechanical coupling and the magnetic spring are in good agreement with image method calculations assuming pure Meissner effect. These measurements are relevant to recent proposals of quantum magnetomechanics experiments based on levitating superconducting microparticles.
Spin-1 models in the ultrastrong-coupling regime of circuit QED
NASA Astrophysics Data System (ADS)
Albarrán-Arriagada, F.; Lamata, L.; Solano, E.; Romero, G.; Retamal, J. C.
2018-02-01
We propose a superconducting circuit platform for simulating spin-1 models. To this purpose we consider a chain of N ultrastrongly coupled qubit-resonator systems interacting through a grounded superconducting quantum interference device (SQUID). The anharmonic spectrum of the qubit-resonator system and the selection rules imposed by the global parity symmetry allow us to activate well controlled two-body quantum gates via ac pulses applied to the SQUID. We show that our proposal has the same simulation time for any number of spin-1 interacting particles. This scheme may be implemented within the state-of-the-art circuit QED in the ultrastrong coupling regime.
Extended focal-plane array development for the International X-ray Observatory
NASA Astrophysics Data System (ADS)
Smith, Stephen J.; Bandler, Simon R.; Beyer, Joern; Chervenak, James A.; Drung, Dietmar; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Richard L.; Kilbourne, Caroline A.; Scott Porter, F.; Sadleir, John E.
2009-12-01
We are developing arrays of transition-edge sensors (TES's) for the International X-ray observatory (IXO). The IXO microcalorimeter array will consist of a central 40×40 core of 300 μm pitch pixels with a resolution of 2.5 eV from 0.3-10 keV. To maximize the science return from the mission, an outer extended array is also required. This 52×52 array (2304 elements surrounding the core) of 600 μm pitch pixels increases the field-of-view from 2' to 5.4' with a resolution of 10 eV. However, significantly increasing the number of readout channels is unfavorable due to the increase in mass and power of the readout chain as well as adding complexity at the focal plane. Consequently, we are developing position-sensitive devices which maintain the same plate scale but at a reduced number of readout channels. One option is to use multiple absorber elements with different thermal conductances to a single TES. Position discrimination is achieved from differences in the pulse rise-time. Another new option is to inductively couple several TES's to a single SQUID. Position discrimination can be achieved by using different combinations of coupling polarity, inductive couplings and heat sink conductances. We present first results demonstrating <9 eV across four 500 μm pixels coupled to a single SQUID. A further possibility is to increase the number of channels to be time-division multiplexed in a single column at some expense in resolution. In this paper we discuss experimental results and trade-offs for these extended array options.
A 20-channel magnetoencephalography system based on optically pumped magnetometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borna, Amir; Carter, Tony R.; Goldberg, Josh D.
In this paper, we describe a multichannel magnetoencephalography (MEG) system that uses optically pumped magnetometers (OPMs) to sense the magnetic fields of the human brain. The system consists of an array of 20 OPM channels conforming to the human subject's head, a person-sized magnetic shield containing the array and the human subject, a laser system to drive the OPM array, and various control and data acquisition systems. We conducted two MEG experiments: auditory evoked magnetic field and somatosensory evoked magnetic field, on three healthy male subjects, using both our OPM array and a 306-channel Elekta-Neuromag superconducting quantum interference device (SQUID)more » MEG system. The described OPM array measures the tangential components of the magnetic field as opposed to the radial component measured by most SQUID-based MEG systems. Finally, herein, we compare the results of the OPM- and SQUID-based MEG systems on the auditory and somatosensory data recorded in the same individuals on both systems.« less
A 20-channel magnetoencephalography system based on optically pumped magnetometers
Borna, Amir; Carter, Tony R.; Goldberg, Josh D.; ...
2017-10-16
In this paper, we describe a multichannel magnetoencephalography (MEG) system that uses optically pumped magnetometers (OPMs) to sense the magnetic fields of the human brain. The system consists of an array of 20 OPM channels conforming to the human subject's head, a person-sized magnetic shield containing the array and the human subject, a laser system to drive the OPM array, and various control and data acquisition systems. We conducted two MEG experiments: auditory evoked magnetic field and somatosensory evoked magnetic field, on three healthy male subjects, using both our OPM array and a 306-channel Elekta-Neuromag superconducting quantum interference device (SQUID)more » MEG system. The described OPM array measures the tangential components of the magnetic field as opposed to the radial component measured by most SQUID-based MEG systems. Finally, herein, we compare the results of the OPM- and SQUID-based MEG systems on the auditory and somatosensory data recorded in the same individuals on both systems.« less
NASA Technical Reports Server (NTRS)
Forgione, J.; Benford, D. J.; Buchanan, E. D.; Moseley, S. H.; Rebar, J.; Shafer, R. A.
2004-01-01
Far-infrared detector arrays such as the 16x32 superconducting bolometer array for the SAFIRE instrument (flying on the SOFIA airborne observatory) require systems of readout and control electronics to provide translation between a user-driven, digital PC and the cold, analog world of the cryogenic detector. In 2001, the National Institute of Standards and Technology (NIST) developed their Mark III electronics for purposes of control and readout of their 1x32 SQUID Multiplexer chips. We at NASA s Goddard Space Flight Center acquired a Mark 111 system and subsequently designed upgrades to suit our and our collaborators purposes. We developed an arbitrary, programmable multiplexing system that allows the user to cycle through rows in a SQUID array in an infinite number of combinations. We provided hooks in the Mark III system to allow readout of signals from outside the Mark 111 system, such as telescope status information. Finally, we augmented the heart of the system with a new feedback algorithm implementation, flexible diagnostic tools, and informative telemetry.
NASA Astrophysics Data System (ADS)
Forgione, Joshua B.; Benford, Dominic J.; Buchanan, Ernest D.; Moseley, S. H., Jr.; Rebar, Joyce; Shafer, Richard A.
2004-10-01
Far-infrared detector arrays such as the 16x32 superconducting bolometer array for the SAFIRE instrument (flying on the SOFIA airborne observatory) require systems of readout and control electronics to provide translation between a user-driven, digital PC and the cold, analog world of the cryogenic detector. In 2001, the National Institute of Standards and Technology (NIST) developed their Mark III electronics for purposes of control and readout of their 1x32 SQUID Multiplexer chips. We at NASA's Goddard Space Flight Center acquired a Mark III system and subsequently designed upgrades to suit our and our collaborators' purposes. We developed an arbitrary, programmable multiplexing system that allows the user to cycle through rows in a SQUID array in an infinite number of combinations. We provided 'hooks' in the Mark III system to allow readout of signals from outside the Mark III system, such as telescope status information. Finally, we augmented the heart of the system with a new feedback algorithm implementation, flexible diagnostic tools, and informative telemetry.
Characterization System of Multi-pixel Array TES Microcalorimeter
NASA Astrophysics Data System (ADS)
Yoshimoto, Shota; Maehata, Keisuke; Mitsuda, Kazuhisa; Yamanaka, Yoshihiro; Sakai, Kazuhiro; Nagayoshi, Kenichiro; Yamamoto, Ryo; Hayashi, Tasuku; Muramatsu, Haruka
We have constructed characterization system for 64-pixel array transition-edge sensor (TES) microcalorimeter using a 3He-4He dilution refrigerator (DR) with the cooling power of 60 µW at a temperature of 100 mK. A stick equipped with 384 of Manganin wires was inserted into the refrigerator to perform characteristic measurements of 64-pixel array TES microcalorimeter and superconducting quantum interference device (SQUID) array amplifiers. The stick and Manganin wires were thermally anchored at temperatures of 4 and 1 K with sufficient thermal contact. The cold end of the Manganin wires were thermally anchored and connected to CuNi clad NbTi wires at 0.7 K anchor. Then CuNi clad NbTi wires were wired to connectors placed on the holder mounted on the cold stage attached to the base plate of the mixing chamber. The heat flow to the cold stage through the installed wires was estimated to be 0.15 µW. In the operation test the characterization system maintained temperature below 100 mK.
Lin, Jun; Du, Guanfeng; Zhang, Jian; Yi, Xiaofeng; Jiang, Chuandong; Lin, Tingting
2017-06-12
Magnetic resonance sounding (MRS) using the Earth's magnetic field is a noninvasive and on-site geophysical technique providing quantitative characteristics of aquifers in the subsurface. When the MRS technology is applied in a mine or tunnel for advance detecting the source of water that may cause disastrous accident, spatial constraints limit the size of coil sensor and thus lower the detection capability. In this paper, a coil sensor for detecting the weak MRS signal is designed and the signal to noise (SNR) for the coil sensor is analyzed and optimized. The coil sensor has a rigid structure and square size of 1 m for deploying in a narrow underground space and is cooled at a low temperature of 77 K for improving the SNR. A theoretical calculation and an experimental test in an electromagnetically shielded room (EMSR) show that the optimal design of coil sensor consists of an 80-turn coil and a low-current-noise preamplifier AD745. It has a field sensitivity of 0.17 fT / Hz in the EMSR at 77 K, which is superior to the low temperature Superconducting Quantum Interference Device (LT SQUID) that is the latest application in MRS and the cooled coil with a diameter of 9 cm when detecting the laboratory NMR signal in kHz range. In the field experiment above the Taipingchi Reservoir near Changchun in China, the cooled coil sensor (CCS) developed in this paper has successfully obtained a valid weak MRS signal in high noise environment. The field results showed that the quality of measured MRS signal at 77 K is significantly superior to that at 298 K and the SNR is improved up to three times. This property of CCS makes the MRS instrument more convenient and reliable in a constricted space underground engineering environment (e.g., a mine or a tunnel).
Lin, Jun; Du, Guanfeng; Zhang, Jian; Yi, Xiaofeng; Jiang, Chuandong; Lin, Tingting
2017-01-01
Magnetic resonance sounding (MRS) using the Earth’s magnetic field is a noninvasive and on-site geophysical technique providing quantitative characteristics of aquifers in the subsurface. When the MRS technology is applied in a mine or tunnel for advance detecting the source of water that may cause disastrous accident, spatial constraints limit the size of coil sensor and thus lower the detection capability. In this paper, a coil sensor for detecting the weak MRS signal is designed and the signal to noise (SNR) for the coil sensor is analyzed and optimized. The coil sensor has a rigid structure and square size of 1 m for deploying in a narrow underground space and is cooled at a low temperature of 77 K for improving the SNR. A theoretical calculation and an experimental test in an electromagnetically shielded room (EMSR) show that the optimal design of coil sensor consists of an 80-turn coil and a low-current-noise preamplifier AD745. It has a field sensitivity of 0.17 fT/Hz in the EMSR at 77 K, which is superior to the low temperature Superconducting Quantum Interference Device (LT SQUID) that is the latest application in MRS and the cooled coil with a diameter of 9 cm when detecting the laboratory NMR signal in kHz range. In the field experiment above the Taipingchi Reservoir near Changchun in China, the cooled coil sensor (CCS) developed in this paper has successfully obtained a valid weak MRS signal in high noise environment. The field results showed that the quality of measured MRS signal at 77 K is significantly superior to that at 298 K and the SNR is improved up to three times. This property of CCS makes the MRS instrument more convenient and reliable in a constricted space underground engineering environment (e.g., a mine or a tunnel). PMID:28604621
Microwave SQUID Multiplexer Demonstration for Cosmic Microwave Background Imagers.
Dober, B; Becker, D T; Bennett, D A; Bryan, S A; Duff, S M; Gard, J D; Hays-Wehle, J P; Hilton, G C; Hubmayr, J; Mates, J A B; Reintsema, C D; Vale, L R; Ullom, J N
2017-12-01
Key performance characteristics are demonstrated for the microwave SQUID multiplexer (µmux) coupled to transition edge sensor (TES) bolometers that have been optimized for cosmic microwave background (CMB) observations. In a 64-channel demonstration, we show that the µmux produces a white, input referred current noise level of [Formula: see text] at -77 dB microwave probe tone power, which is well below expected fundamental detector and photon noise sources for a ground-based CMB-optimized bolometer. Operated with negligible photon loading, we measure [Formula: see text] in the TES-coupled channels biased at 65% of the sensor normal resistance. This noise level is consistent with that predicted from bolometer thermal fluctuation (i.e. phonon) noise. Furthermore, the power spectral density is white over a range of frequencies down to ~ 100 mHz, which enables CMB mapping on large angular scales that constrain the physics of inflation. Additionally, we report cross-talk measurements that indicate a level below 0.3%, which is less than the level of cross-talk from multiplexed readout systems in deployed CMB imagers. These measurements demonstrate the µmux as a viable readout technique for future CMB imaging instruments.
AC Read-Out Circuits for Single Pixel Characterization of TES Microcalorimeters and Bolometers
NASA Technical Reports Server (NTRS)
Gottardi, L.; van de Kuur, J.; Bandler, S.; Bruijn, M.; de Korte, P.; Gao, J. R.; den Hartog, R.; Hijmering, R. A.; Hoevers, H.; Koshropanah, P.;
2011-01-01
SRON is developing Frequency Domain Multiplexing (FDM) for the read-out of transition edge sensor (TES) soft x-ray microcalorimeters for the XMS instrument of the International X-ray Observatory and far-infrared bolometers for the SAFARI instrument on the Japanese mission SPICA. In FDM the TESs are AC voltage biased at frequencies from 0.5 to 6 MHz in a superconducting LC resonant circuit and the signal is read-out by low noise and high dynamic range SQUIDs amplifiers. The TES works as an amplitude modulator. We report on several AC bias experiments performed on different detectors. In particular, we discuss the results on the characterization of Goddard Space Flight Center x-ray pixels and SRON bolometers. The paper focuses on the analysis of different read-out configurations developed to optimize the noise and the impedance matching between the detectors and the SQUID amplifier. A novel feedback network electronics has been developed to keep the SQUID in flux locked loop, when coupled to superconducting high Q circuits, and to optimally tune the resonant bias circuit. The achieved detector performances are discussed in view of the instrument requirement for the two space missions.
First Tests of Prototype SCUBA-2 Superconducting Bolometer Array
NASA Astrophysics Data System (ADS)
Woodcraft, Adam L.; Ade, Peter A. R.; Bintley, Dan; Hunt, Cynthia L.; Sudiwala, Rashmi V.; Hilton, Gene C.; Irwin, Kent D.; Reintsema, Carl D.; Audley, Michael D.; Holland, Wayne S.; MacIntosh, Mike
2006-09-01
We present results of the first tests on a 1280 pixel superconducting bolometer array, a prototype for SCUBA-2, a sub-mm camera being built for the James Clerk Maxwell Telescope in Hawaii. The bolometers are TES (transition edge sensor) detectors; these take advantage of the large variation of resistance with temperature through the superconducting transition. To keep the number of wires reasonable, a multiplexed read-out is used. Each pixel is read out through an individual DC SQUID; room temperature electronics switch between rows in the array by biasing the appropriate SQUIDs in turn. Arrays of 100 SQUIDs in series for each column then amplify the output. Unlike previous TES arrays, the multiplexing elements are located beneath each pixel, making large arrays possible, but construction more challenging. The detectors are constructed from Mo/Cu bi-layers; this technique enables the transition temperature to be tuned using the proximity effect by choosing the thickness of the normal and superconducting materials. To achieve the required performance, the detectors are operated at a temperature of approximately 120 mK. We describe the results of a basic characterisation of the array, demonstrating that it is fully operational, and give the results of signal to noise measurements.
Noise thermometry at ultra-low temperatures.
Rothfuss, D; Reiser, A; Fleischmann, A; Enss, C
2016-03-28
The options for primary thermometry at ultra-low temperatures are rather limited. In practice, most laboratories are using (195)Pt NMR thermometers in the microkelvin range. In recent years, current sensing direct current superconducting quantum interference devices (DC-SQUIDs) have enabled the use of noise thermometry in this temperature range. Such devices have also demonstrated the potential for primary thermometry. One major advantage of noise thermometry is the fact that no driving current is needed to operate the device and thus the heat dissipation within the thermometer can be reduced to a minimum. Ultimately, the intrinsic power dissipation is given by the negligible back action of the readout SQUID. For thermometry in low-temperature experiments, current noise thermometers and magnetic flux fluctuation thermometers have proved to be most suitable. To make use of such thermometers at ultra-low temperatures, we have developed a cross-correlation technique that reduces the amplifier noise contribution to a negligible value. For this, the magnetic flux fluctuations caused by the Brownian motion of the electrons in our noise source are measured inductively by two DC-SQUID magnetometers simultaneously and the signals from these two channels are cross-correlated. Experimentally, we have characterized a thermometer made of a cold-worked high-purity copper cylinder with a diameter of 5 mm and a length of 20 mm for temperatures between 42 μK and 0.8 K. For a given temperature, a measuring time below 1 min is sufficient to reach a precision of better than 1%. The extremely low power dissipation in the thermometer allows continuous operation without heating effects. © 2016 The Author(s).
Ultra-Low Field SQUID-NMR using LN2 Cooled Cu Polarizing Field coil
NASA Astrophysics Data System (ADS)
Demachi, K.; Kawagoe, S.; Ariyoshi, S.; Tanaka, S.
2017-07-01
We are developing an Ultra-Low Field (ULF) Magnetic Resonance Imaging (MRI) system using a High-Temperature Superconductor superconducting quantum interference device (HTS rf-SQUID) for food inspection. The advantages of the ULF-NMR (Nuclear Magnetic Resonance) / MRI as compared with a conventional high field MRI are that they are compact and of low cost. In this study, we developed a ULF SQUID-NMR system using a polarizing coil to measure fat of which relaxation time T1 is shorter. The handmade polarizing coil was cooled by liquid nitrogen to reduce the resistance and accordingly increase the allowable current. The measured decay time of the polarizing field was 40 ms. The measurement system consisted of the liquid nitrogen cooled polarizing coil, a SQUID, a Cu wound flux transformer, a measurement field coil for the field of 47 μT, and an AC pulse coil for a 90°pulse field. The NMR measurements were performed in a magnetically shielded room to reduce the environmental magnetic field. The size of the sample was ϕ35 mm × L80 mm. After applying a polarizing field and a 90°pulse, an NMR signal was detected by the SQUID through the flux transformer. As a result, the NMR spectra of fat samples were obtained at 2.0 kHz corresponding to the measurement field Bm of 47 μT. The T1 relaxation time of the mineral oil measured in Bm was 45 ms. These results suggested that the ULF-NMR/MRI system has potential for food inspection.
Design and Performance of the Multiplexed SQUID/TES Array at Ninety Gigahertz
NASA Astrophysics Data System (ADS)
Stanchfield, Sara; Ade, Peter; Aguirre, James; Brevik, Justus A.; Cho, Hsiao-Mei; Datta, Rahul; Devlin, Mark; Dicker, Simon R.; Dober, Bradley; Duff, Shannon M.; Egan, Dennis; Ford, Pam; Hilton, Gene; Hubmayr, Johannes; Irwin, Kent; Knowles, Kenda; Marganian, Paul; Mason, Brian Scott; Mates, John A. B.; McMahon, Jeff; Mello, Melinda; Mroczkowski, Tony; Romero, Charles; Sievers, Jonathon; Tucker, Carole; Vale, Leila R.; Vissers, Michael; White, Steven; Whitehead, Mark; Ullom, Joel; Young, Alexander
2018-01-01
We present the array performance and astronomical images from early science results from MUSTANG-2, a 90 GHz feedhorn-coupled, microwave SQUID-multiplexed TES bolometer array operating on the Robert C. Byrd Green Bank Telescope (GBT). MUSTANG-2 was installed on the GBT on December 2, 2016 and immediately began commissioning efforts, followed by science observations, which are expected to conclude June 2017. The feedhorn and waveguide-probe-coupled detector technology is a mature technology, which has been used on instrument including the South Pole Telescope, the Atacama Cosmology Telescope, and the Atacama B-mode Search telescope. The microwave SQUID readout system developed for MUSTANG-2 currently reads out 66 detectors with a single coaxial cable and will eventually allow thousands of detectors to be multiplexed. This microwave SQUID multiplexer combines the proven abilities of millimeterwave TES detectors with the multiplexing capabilities of KIDs with no degradation in noise performance of the detectors. Each multiplexing device is read out using warm electronics consisting of a commercially available ROACH board, a DAC/ADC card, and an Intermediate Frequency mixer circuit. The hardware was originally developed by the UC Berkeley Collaboration for Astronomy Signal Processing and Electronic Research (CASPER) group, whose primary goal is to develop scalable FPGA-based hardware with the flexibility to be used in a wide range of radio signal processing applications. MUSTANG-2 is the first on-sky instrument to use microwave SQUID multiplexing and is available as a shared-risk/PI instrument on the GBT. In MUSTANG-2's first season 7 separate proposals were awarded a total of 230 hours of telescope time.
Novel Multiplexing Technique for Detector and Mixer Arrays
NASA Technical Reports Server (NTRS)
Karasik, Boris S.; McGrath, William R.
2001-01-01
Future submillimeter and far-infrared space telescopes will require large-format (many 1000's of elements) imaging detector arrays to perform state-of-the-art astronomical observations. A crucial issue related to a focal plane array is a readout scheme which is compatible with large numbers of cryogenically-cooled (typically < 1 K) detectors elements. When the number of elements becomes of the order of thousands, the physical layout for individual readout amplifiers becomes nearly impossible to realize for practical systems. Another important concern is the large number of wires leading to a 0.1-0.3 K platform. In the case of superconducting transition edge sensors (TES), a scheme for time-division multiplexing of SQUID read-out amplifiers has been recently demonstrated. In this scheme the number of SQUIDs is equal to the number (N) of the detectors, but only one SQUID is turned on at a time. The SQUIDs are connected in series in each column of the array, so the number of wires leading to the amplifiers can be reduced, but it is still of the order of N. Another approach uses a frequency domain multiplexing scheme of the bolometer array. The bolometers are biased with ac currents whose frequencies are individual for each element and are much higher than the bolometer bandwidth. The output signals are connected in series in a summing loop which is coupled to a single SQUID amplifier. The total number of channels depends on the ratio between the SQUID bandwidth and the bolometer bandwidth and can be at least 100 according to the authors. An important concern about this technique is a contribution of the out-of-band Johnson noise which multiplies by factor N(exp 1/2) for each frequency channel. We propose a novel solution for large format arrays based on the Hadamard transform coding technique which requires only one amplifier to read out the entire array of potentially many 1000's of elements and uses approximately 10 wires between the cold stage and room temperature electronics. This can significantly reduce the complexity of the readout circuits.
NASA Astrophysics Data System (ADS)
Flynn, Edward R.; Bryant, H. C.; Bergemann, Christian; Larson, Richard S.; Lovato, Debbie; Sergatskov, Dmitri A.
2007-04-01
Acute rejection in organ transplant is signaled by the proliferation of T-cells that target and kill the donor cells requiring painful biopsies to detect rejection onset. An alternative non-invasive technique is proposed using a multi-channel superconducting quantum interference device (SQUID) magnetometer to detect T-cell lymphocytes in the transplanted organ labeled with magnetic nanoparticles conjugated to antibodies specifically attached to lymphocytic ligand receptors. After a magnetic field pulse, the T-cells produce a decaying magnetic signal with a characteristic time of the order of a second. The extreme sensitivity of this technique, 10 5 cells, can provide early warning of impending transplant rejection and monitor immune-suppressive chemotherapy.
NMR and MRI apparatus and method
Clarke, John; Kelso, Nathan; Lee, SeungKyun; Moessle, Michael; Myers, Whittier; McDermott, Robert; ten Haken, Bernard; Pines, Alexander; Trabesinger, Andreas
2007-03-06
Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. Additional signal to noise benefits are obtained by use of a low noise polarization coil, comprising litz wire or superconducting materials. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.
ERIC Educational Resources Information Center
Swithenby, S. J.
1996-01-01
Very sensitive SQUID (superconducting quantum interference device) detectors are used in the technique known as magnetoencephalography to provide dynamic images of the brain. This can help our fundamental understanding of the way the brain works and may be of particular use in treating disorders such as epilepsy. (Author/MKR)
Quasi-molecular bosonic complexes-a pathway to SQUID with controlled sensitivity
NASA Astrophysics Data System (ADS)
Safavi-Naini, Arghavan; Capogrosso-Sansone, Barbara; Kuklov, Anatoly; Penna, Vittorio
2016-02-01
Recent experimental advances in realizing degenerate quantum dipolar gases in optical lattices and the flexibility of experimental setups in attaining various geometries offer the opportunity to explore exotic quantum many-body phases stabilized by anisotropic, long-range dipolar interaction. Moreover, the unprecedented control over the various physical properties of these systems, ranging from the quantum statistics of the particles, to the inter-particle interactions, allow one to engineer novel devices. In this paper, we consider dipolar bosons trapped in a stack of one-dimensional optical lattice layers, previously studied in (Safavi-Naini et al 2014 Phys. Rev. A 90 043604). Building on our prior results, we provide a description of the quantum phases stabilized in this system which include composite superfluids (CSFs), solids, and supercounterfluids, most of which are found to be threshold-less with respect to the dipolar interaction strength. We also demonstrate the effect of enhanced sensitivity to rotations of a SQUID-type device made of two CSF trapped in a ring-shaped optical lattice layer with weak links.
Biological Response to the Dynamic Spectral-Polarized Underwater Light Field
2009-01-01
Station phone: (831) 655-6219 fax: (831) 375 -0793 email: lignje@stanford.edu George W. Kattawar Department of Physics Texas A & M...temperature sensors plus 3-dimensional accelerometers (all sampled at 1 Hz , Figure 8). Videos revealed squid fickering display that is visually similar to...include anti- submarine warfare, special operations, clandestine reconnaissance, and harbor security operations. RELATED PROJECTS The CCNY group
NASA Tech Briefs, January 2010
NASA Technical Reports Server (NTRS)
2010-01-01
Topics covered include: Cryogenic Flow Sensor; Multi-Sensor Mud Detection; Gas Flow Detection System; Mapping Capacitive Coupling Among Pixels in a Sensor Array; Fiber-Based Laser Transmitter for Oxygen A-Band Spectroscopy and Remote Sensing; Low-Profile, Dual-Wavelength, Dual-Polarized Antenna; Time-Separating Heating and Sensor Functions of Thermistors in Precision Thermal Control Applications; Cellular Reflectarray Antenna; A One-Dimensional Synthetic-Aperture Microwave Radiometer; Electrical Switching of Perovskite Thin-Film Resistors; Two-Dimensional Synthetic-Aperture Radiometer; Ethernet-Enabled Power and Communication Module for Embedded Processors; Electrically Variable Resistive Memory Devices; Improved Attachment in a Hybrid Inflatable Pressure Vessel; Electrostatic Separator for Beneficiation of Lunar Soil; Amorphous Rover; Space-Frame Antenna; Gear-Driven Turnbuckle Actuator; In-Situ Focusing Inside a Thermal Vacuum Chamber; Space-Frame Lunar Lander; Wider-Opening Dewar Flasks for Cryogenic Storage; Silicon Oxycarbide Aerogels for High-Temperature Thermal Insulation; Supercapacitor Electrolyte Solvents with Liquid Range Below -80 C; Designs and Materials for Better Coronagraph Occulting Masks; Fuel-Cell-Powered Vehicle with Hybrid Power Management; Fine-Water-Mist Multiple-Orientation-Discharge Fire Extinguisher; Fuel-Cell Water Separator; Turbulence and the Stabilization Principle; Improved Cloud Condensation Nucleus Spectrometer; Better Modeling of Electrostatic Discharge in an Insulator; Sub-Aperture Interferometers; Terahertz Mapping of Microstructure and Thickness Variations; Multiparallel Three-Dimensional Optical Microscopy; Stabilization of Phase of a Sinusoidal Signal Transmitted Over Optical Fiber; Vacuum-Compatible Wideband White Light and Laser Combiner Source System; Optical Tapers as White-Light WGM Resonators; EPR Imaging at a Few Megahertz Using SQUID Detectors; Reducing Field Distortion in Magnetic Resonance Imaging; Fluorogenic Cell-Based Biosensors for Monitoring Microbes; A Constant-Force Resistive Exercise Unit; GUI to Facilitate Research on Biological Damage from Radiation; On-Demand Urine Analyzer; More-Realistic Digital Modeling of a Human Body; and Advanced Liquid-Cooling Garment Using Highly Thermally Conductive Sheets.
High Resolution Imaging with MUSTANG-2 on the GBT
NASA Astrophysics Data System (ADS)
Stanchfield, Sara; Ade, Peter; Aguirre, James; Brevik, Justus A.; Cho, Hsiao-Mei; Datta, Rahul; Devlin, Mark; Dicker, Simon R.; Dober, Bradley; Duff, Shannon M.; Egan, Dennis; Ford, Pam; Hilton, Gene; Hubmayr, Johannes; Irwin, Kent; Knowles, Kenda; Marganian, Paul; Mason, Brian Scott; Mates, John A. B.; McMahon, Jeff; Mello, Melinda; Mroczkowski, Tony; Romero, Charles; Sievers, Jonathon; Tucker, Carole; Vale, Leila R.; Vissers, Michael; White, Steven; Whitehead, Mark; Ullom, Joel; Young, Alexander
2018-01-01
We present early science results from MUSTANG-2, a 90 GHz feedhorn-coupled, microwave SQUID-multiplexed TES bolometer array operating on the Robert C. Byrd Green Bank Telescope (GBT). The feedhorn and waveguide-probe-coupled detector technology is a mature technology, which has been used on instruments such as the South Pole Telescope, the Atacama Cosmology Telescope, and the Atacama B-mode Search telescope. The microwave SQUID multiplexer-based readout system developed for MUSTANG-2 currently reads out 66 detectors with a single coaxial cable and will eventually allow thousands of detectors to be multiplexed. This microwave SQUID multiplexer combines the proven abilities of millimeter wave TES detectors with the multiplexing capabilities of KIDs with no degradation in noise performance of the detectors. Each multiplexing device is read out using warm electronics consisting of a commercially available ROACH board, a DAC/ADC card, and an Intermediate Frequency mixer circuit. The hardware was originally developed by the Collaboration for Astronomy Signal Processing and Electronic Research (CASPER) group, whose primary goal is to develop scalable FPGA-based hardware with the flexibility to be used in a wide range of radio signal processing applications. MUSTANG-2 is the first on-sky instrument to use microwave SQUID multiplexing and is available as a shared-risk/PI instrument on the GBT. In MUSTANG-2’s first season 7 separate proposals were awarded a total of 230 hours of telescope time.
Material Structure of a Graded Refractive Index Lens in Decapod Squid
NASA Astrophysics Data System (ADS)
Cai, Jing; Heiney, Paul; Sweeney, Alison
2013-03-01
Underwater vision with a camera-type eye that is simultaneously acute and sensitive requires a spherical lens with a graded distribution of refractive index. Squids have this type of lens, and our previous work has shown that its optical properties are likely achieved with radially variable densities of a single protein with multiple isoforms. Here we measure the spatial organization of this novel protein material in concentric layers of the lens and use these data to suggest possible mechanisms of self-assembly of the proteins into a graded refractive index structure. First, we performed small angle x-ray scattering (SAXS) to study how the protein is spatially organized. Then, molecular dynamic simulation allowed us to correlate structure to the possible dynamics of the system in different regions of the lens. The combination of simulation and SAXS data in this system revealed the likely protein-protein interactions, resulting material structure and its relationship to the observed and variable optical properties of this graded index system. We believe insights into the material properties of the squid lens system will inform the invention of self-assembling graded index devices.
High Tc SQUIDs and eddy-current NDE: a comprehensive investigation from real data to modelling
NASA Astrophysics Data System (ADS)
Ruosi, A.; Valentino, M.; Pepe, G.; Monebhurrun, V.; Lesselier, D.; Duchêne, B.
2000-11-01
The interest in magnetometry for eddy-current non-destructive testing, e.g. of planar conductive structures encountered in the aircraft industry, using high-temperature superconducting quantum interference devices (SQUIDs) is primarily due to their high sensitivity to magnetic flux even at very low frequencies. Here it is shown how theoretical, numerical and measurement machineries are combined to get reasonable synthetic and experimental data and to reach a good understanding of the interaction of diffusive wavefields with a damaged non-magnetic metal plate (as a first step towards the retrieval of pertinent features of the defects). The measurement modalities are considered first. It is illustrated in some detail how laboratory-controlled experiments are performed by a SQUID-based probe displaced above artificially damaged plates. Experimental data are then confronted with simulation results in order to evaluate the accuracy and reliability of this measurement system. Simulations are carried out by a computationally fast vector volume integral method dedicated to a planar layering affected by a volumetric defect, which involves the construction of the dyadic Green system of the layering.
The LiteBIRD Satellite Mission: Sub-Kelvin Instrument
NASA Astrophysics Data System (ADS)
Suzuki, A.; Ade, P. A. R.; Akiba, Y.; Alonso, D.; Arnold, K.; Aumont, J.; Baccigalupi, C.; Barron, D.; Basak, S.; Beckman, S.; Borrill, J.; Boulanger, F.; Bucher, M.; Calabrese, E.; Chinone, Y.; Cho, S.; Crill, B.; Cukierman, A.; Curtis, D. W.; de Haan, T.; Dobbs, M.; Dominjon, A.; Dotani, T.; Duband, L.; Ducout, A.; Dunkley, J.; Duval, J. M.; Elleflot, T.; Eriksen, H. K.; Errard, J.; Fischer, J.; Fujino, T.; Funaki, T.; Fuskeland, U.; Ganga, K.; Goeckner-Wald, N.; Grain, J.; Halverson, N. W.; Hamada, T.; Hasebe, T.; Hasegawa, M.; Hattori, K.; Hattori, M.; Hayes, L.; Hazumi, M.; Hidehira, N.; Hill, C. A.; Hilton, G.; Hubmayr, J.; Ichiki, K.; Iida, T.; Imada, H.; Inoue, M.; Inoue, Y.; Irwin, K. D.; Ishino, H.; Jeong, O.; Kanai, H.; Kaneko, D.; Kashima, S.; Katayama, N.; Kawasaki, T.; Kernasovskiy, S. A.; Keskitalo, R.; Kibayashi, A.; Kida, Y.; Kimura, K.; Kisner, T.; Kohri, K.; Komatsu, E.; Komatsu, K.; Kuo, C. L.; Kurinsky, N. A.; Kusaka, A.; Lazarian, A.; Lee, A. T.; Li, D.; Linder, E.; Maffei, B.; Mangilli, A.; Maki, M.; Matsumura, T.; Matsuura, S.; Meilhan, D.; Mima, S.; Minami, Y.; Mitsuda, K.; Montier, L.; Nagai, M.; Nagasaki, T.; Nagata, R.; Nakajima, M.; Nakamura, S.; Namikawa, T.; Naruse, M.; Nishino, H.; Nitta, T.; Noguchi, T.; Ogawa, H.; Oguri, S.; Okada, N.; Okamoto, A.; Okamura, T.; Otani, C.; Patanchon, G.; Pisano, G.; Rebeiz, G.; Remazeilles, M.; Richards, P. L.; Sakai, S.; Sakurai, Y.; Sato, Y.; Sato, N.; Sawada, M.; Segawa, Y.; Sekimoto, Y.; Seljak, U.; Sherwin, B. D.; Shimizu, T.; Shinozaki, K.; Stompor, R.; Sugai, H.; Sugita, H.; Suzuki, J.; Tajima, O.; Takada, S.; Takaku, R.; Takakura, S.; Takatori, S.; Tanabe, D.; Taylor, E.; Thompson, K. L.; Thorne, B.; Tomaru, T.; Tomida, T.; Tomita, N.; Tristram, M.; Tucker, C.; Turin, P.; Tsujimoto, M.; Uozumi, S.; Utsunomiya, S.; Uzawa, Y.; Vansyngel, F.; Wehus, I. K.; Westbrook, B.; Willer, M.; Whitehorn, N.; Yamada, Y.; Yamamoto, R.; Yamasaki, N.; Yamashita, T.; Yoshida, M.
2018-05-01
Inflation is the leading theory of the first instant of the universe. Inflation, which postulates that the universe underwent a period of rapid expansion an instant after its birth, provides convincing explanation for cosmological observations. Recent advancements in detector technology have opened opportunities to explore primordial gravitational waves generated by the inflation through "B-mode" (divergent-free) polarization pattern embedded in the cosmic microwave background anisotropies. If detected, these signals would provide strong evidence for inflation, point to the correct model for inflation, and open a window to physics at ultra-high energies. LiteBIRD is a satellite mission with a goal of detecting degree-and-larger-angular-scale B-mode polarization. LiteBIRD will observe at the second Lagrange point with a 400 mm diameter telescope and 2622 detectors. It will survey the entire sky with 15 frequency bands from 40 to 400 GHz to measure and subtract foregrounds. The US LiteBIRD team is proposing to deliver sub-Kelvin instruments that include detectors and readout electronics. A lenslet-coupled sinuous antenna array will cover low-frequency bands (40-235 GHz) with four frequency arrangements of trichroic pixels. An orthomode-transducer-coupled corrugated horn array will cover high-frequency bands (280-402 GHz) with three types of single frequency detectors. The detectors will be made with transition edge sensor (TES) bolometers cooled to a 100 milli-Kelvin base temperature by an adiabatic demagnetization refrigerator. The TES bolometers will be read out using digital frequency multiplexing with Superconducting QUantum Interference Device (SQUID) amplifiers. Up to 78 bolometers will be multiplexed with a single SQUID amplifier. We report on the sub-Kelvin instrument design and ongoing developments for the LiteBIRD mission.
A Focus on Cryogenic Engineering for the Primordial Inflation Polarization Explorer (PIPER) Mission
NASA Technical Reports Server (NTRS)
Rosas, Rogelio; Weston, Amy
2011-01-01
Cryogenic engineering involves design and modification of equipment that is used under boiling point of nitrogen which is 77 K. The focus of this paper will be on the design of hardware for cryogenic use and a retrofit that was done to the main laboratory cryostat used to test flight components for the Primordial Inflation Polarization Explorer balloon-borne mission. Data from prior tests showed that there was a superfluid helium leak and a total disassemble of the cryostat was conducted in order to localize and fix the leak. To improve efficiency new fill tubes and clamps with modifications were added to the helium tank. Upon removal of the tank, corrosion was found on the flange face that connects to the helium cold plate and therefore had to be fully replaced and copper plated to prevent future corrosion. Indium seals were also replaced for the four fill tubes, a helium level sensor, and the nitrogen and helium tanks. Four additional shielded twisted pairs of cryogenic wire and a wire harness for the Superconducting Quantum Interference Devices (SQUIDs) were added. Finally, there was also design work done for multiple pieces that went inside the cryostat and a separate probe used to test the SQUIDs. Upon successful completion of the cryostat upgrade, tests were run to check the effectiveness and stability of the upgrades. The post-retrofit tests showed minor leaks were still present and due to this, superfluidity has still not been attained. As such there could still be a possibility of a superfluid leak appearing in the future. Regardless, the copper plating on the helium tank has elongated the need to service it by three to five years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao Xiaoqiang; Wang Hongfu; Zhang Shou
We present an approach for implementation of a 1->3 orbital state quantum cloning machine based on the quantum Zeno dynamics via manipulating three rf superconducting quantum interference device (SQUID) qubits to resonantly interact with a superconducting cavity assisted by classical fields. Through appropriate modulation of the coupling constants between rf SQUIDs and classical fields, the quantum cloning machine can be realized within one step. We also discuss the effects of decoherence such as spontaneous emission and the loss of cavity in virtue of master equation. The numerical simulation result reveals that the quantum cloning machine is especially robust against themore » cavity decay, since all qubits evolve in the decoherence-free subspace with respect to cavity decay due to the quantum Zeno dynamics.« less
NASA Astrophysics Data System (ADS)
Nam, Sae Woo
1999-10-01
Observations have shown that galaxies, including our own, are surrounded by halos of ``dark matter''. One possibility is that this may be an undiscovered form of matter, weakly interacting massive particles (WIMPs). This thesis describes the development of silicon based cryogenic particle detectors designed to directly detect interactions with these WIMPs. These detectors are part of a new class of detectors which are able to reject background events by simultaneously measuring energy deposited into phonons versus electron hole pairs. By using the phonon sensors with the ionization sensors to compare the partitioning of energy between phonons and ionizations we can discriminate between electron recoil events (background radiation) and nuclear recoil events (dark matter events). These detectors with built-in background rejection are a major advance in background rejection over previous searches. Much of this thesis will describe work in scaling the detectors from / g prototype devices to a fully functional prototype 100g dark matter detector. In particular, many sensors were fabricated and tested to understand the behavior of our phonon sensors, Quasipartice trapping assisted Electrothermal feedback Transition edge sensors (QETs). The QET sensors utilize aluminum quasiparticle traps attached to tungsten superconducting transition edge sensors patterned on a silicon substrate. The tungsten lines are voltage biased and self-regulate in the transition region. Phonons from particle interactions within the silicon propogate to the surface where they are absorbed by the aluminum generating quasiparticles in the aluminum. The quasiparticles diffuse into the tungsten and couple energy into the tungsten electron system. Consequently, the tungsten increases in resistance and causes a current pulse which is measured with a high bandwidth SQUID system. With this advanced sensor technology, we were able to demonstrate detectors with xy position sensitivity with electron and nuclear recoil discrimination. Furthermore, early results from running the 100g detector in the Stanford Underground Facility (SUF) indicate that competitive dark matter results are achievable with the current detector design. Much of the design and testing of the experimental apparatus and instrumentation is described as well.
Demonstration of Time Domain Multiplexed Readout for Magnetically Coupled Calorimeters
NASA Technical Reports Server (NTRS)
Porst, J.-P.; Adams, J. S.; Balvin, M.; Bandler, S.; Beyer, J.; Busch, S. E.; Drung, D.; Seidel, G. M.; Smith, S. J.; Stevenson, T. R.
2012-01-01
Magnetically coupled calorimeters (MCC) have extremely high potential for x-ray applications due to the inherent high energy resolution capability and being non-dissipative. Although very high energy-resolution has been demonstrated, until now there has been no demonstration of multiplexed read-out. We report on the first realization of a time domain multiplexed (TDM) read-out. While this has many similarities with TDM of transition-edge-sensors (TES), for MGGs the energy resolution is limited by the SQUID read-out noise and requires the well established scheme to be altered in order to minimize degradation due to noise aliasing effects. In cur approach, each pixel is read out by a single first stage SQUID (SQ1) that is operated in open loop. The outputs of the SQ1 s are low-pass filtered with an array of low cross-talk inductors, then fed into a single-stage SQUID TD multiplexer. The multiplexer is addressed from room temperature and read out through a single amplifier channel. We present results achieved with a new detector platform. Noise performance is presented and compared to expectations. We have demonstrated multiplexed X-ray spectroscopy at 5.9keV with delta_FWHM=10eV. In an optimized setup, we show it is possible to multiplex 32 detectors without significantly degrading the Intrinsic detector resolution.
NASA Astrophysics Data System (ADS)
Rutherford, John; Micro-X Collaboration
2011-09-01
The first operating set of transition edge sensors (TES) microcalorimeters in space will launch on a sounding rocket carrying the Micro-X imaging X-ray telescope in 2012. We present the final instrument flight design, as well as the results from initial performance tests. A spectral resolution of 2 eV is targeted across the science band of 0.3-2.5 keV. The 12x12 spectrometer array contains 128 active pixels on a 600 micron pitch, consisting of Au/Bi absorbers and Mo/Au bilayer TESs with a transition temperature of 100 mK. A SQUID time-division multiplexer will read out the array at 30 kHz, which is limited by the rocket telemetry. The TESs have been engineered with a 2 ms time constant to match the multiplexer. The detector array and two SQUID stages of the TDM readout system are accommodated in a lightweight Mg enclosure, which is mounted to the 50 mK stage of an adiabatic demagnetization refrigerator. A third SQUID amplification stage is located on the 1.6 K liquid He stage of the cryostat. An on-board 55-Fe source will fluoresce a Ca target, providing 3.7 and 4.0 keV calibration lines that will not interfere with the scientifically interesting energy band.
Analogue Hawking radiation in a dc-SQUID array transmission line.
Nation, P D; Blencowe, M P; Rimberg, A J; Buks, E
2009-08-21
We propose the use of a superconducting transmission line formed from an array of direct-current superconducting quantum interference devices for investigating analogue Hawking radiation. Biasing the array with a space-time varying flux modifies the propagation velocity of the transmission line, leading to an effective metric with a horizon. Being a fundamentally quantum mechanical device, this setup allows for investigations of quantum effects such as backreaction and analogue space-time fluctuations on the Hawking process.
Transition-Edge Hot-Electron Microbolometers for Millimeter and Submillimeter Astrophysics
NASA Technical Reports Server (NTRS)
Hsieh, Wen-Ting; Stevenson, Thomas; U-yen, Kongpop; Wollack, Edward; Barrentine, Emily
2014-01-01
The millimeter and the submillimeter wavelengths of the electromagnetic spectrum hold a wealth of information about the evolution of the universe. In particular, cosmic microwave background (CMB) radiation and its polarization carry the oldest information in the universe, and provide the best test of the inflationary paradigm available to astronomy today. Detecting gravity waves through their imprint on the CMB polarization would have extraordinary repercussions for cosmology and physics. A transition-edge hot-electron micro - bolometer (THM) consists of a superconducting bilayer transition-edge sensor (TES) with a thin-film absorber. Unlike traditional monolithic bolometers that make use of micromachined structures, the THM em ploys the decoupling between electrons and phonons at millikelvin temperatures to provide thermal isolation. The devices are fabricated photolithographically and are easily integrated with antennas via microstrip transmission lines, and with SQUID (superconducting quantum interference device) readouts. The small volume of the absorber and TES produces a short thermal time constant that facilitates rapid sky scanning. The THM consists of a thin-film metal absorber overlapping a superconducting TES. The absorber forms the termination of a superconducting microstripline that carries RF power from an antenna. The purpose of forming a separate absorber and TES is to allow flexibility in the optimization of the two components. In particular, the absorbing film's impedance can be chosen to match the antenna, while the TES impedance can be chosen to match to the readout SQUID amplifier. This scheme combines the advantages of the TES with the advantages of planar millimeter-wave transmission line circuits. Antenna-coupling to the detectors via planar transmission lines allows the detector dimensions to be much smaller than a wavelength, so the technique can be extended across the entire microwave, millimeter, and submillimeter wavelength ranges. The circuits are fabricated using standard microlithographic techniques and are compatible with uniform, large array formats. Unlike traditional monolithic bolometers that make use of micromachined structures, the THM employs the decoupling between electrons and phonons at millikelvin temperatures to provide thermal isolation. There is no fragile membrane in the structure for thermal isolation, which improves the fabrication yield.
The Impact of Crosstalk in the X-IFU Instrument on Athena Science Cases
NASA Technical Reports Server (NTRS)
Hartog, R. Den; Peille, P.; Dauser, T.; Jackson, B.; Bandler, S.; Barret, D.; Brand, T.; Herder, J-W Den; Kiviranta, M.; Kuur, J. Van Der;
2016-01-01
In this paper we present a first assessment of the impact of various forms of instrumental crosstalk on the science performance of the X-ray Integral Field Unit (X-IFU) on the Athena X-ray mission. This assessment is made using the SIXTE end-to-end simulator in the context of one of the more technically challenging science cases for the XIFU instrument. Crosstalk considerations may influence or drive various aspects of the design of the array of high-count-rate Transition Edge Sensor (TES) detectors and its Frequency Domain Multiplexed (FDM) readout architecture. The Athena X-ray mission was selected as the second L-class mission in ESA's Cosmic Vision 2015–25 plan, with alaunch foreseen in 2028, to address the theme ''Hot and Energetic Universe"1. One of the two instruments on boardAthena is the X-ray Integral Field Unit2 (X-IFU) which is based on an array of 3800 Transition Edge Sensors (TES's)operated at a temperature of 90 mK. The science cases pose an interesting challenge for this instrument, as they requirea combination of high energy resolution (2.5 eV FWHM or better), high spatial resolution (5 arcsec or better) and highcount rate capability (several tens of counts per second per detector for point sources as bright as 10 mCrab).The performance at the single sensor level has been demonstrated3, but the operation of such detectors in an array, usingmultiplexed readout, brings additional challenges, both for the design of the array in which the sensors are placed and forthe readout of the sensors. The readout of the detector array will be based on Frequency Domain Multiplexing (FDM)4.In this system of detectors and readout, crosstalk can arise through various mechanisms: on the TES array, neighboringsensors can couple through thermal crosstalk. Detectors adjacent in carrier frequency may suffer from electrical crosstalkdue to the finite width of the bandpass filters, and shared sources of impedance in their signal lines. The signals from theindividual detectors are summed and then amplified by a pair of SQUID amplifiers before being sent to warm front-endelectronics. The transfer function of the SQUID amplifiers is non-linear, which will give rise to higher harmonics ofcarriers and intermodulation products when multiple signal pulses are simultaneously present in the SQUID. Under highcount rate conditions this is another source of crosstalk. The effect of all these crosstalk sources is that parasitic pulseswill appear in the record of a signal pulse which will create a stochastic offset of the measured energy and thus adegradation of the energy resolution.
Prototyping a new, high-temperature SQUID magnetometer system
NASA Astrophysics Data System (ADS)
Grappone, J. Michael; Shaw, John; Biggin, Andrew J.
2017-04-01
High-sensitivity Superconducting Quantum Inference Devices (SQUIDs) and μ-metal shielding have largely solved paleomagnetic noise problems. Combing the two allows successful measurements of previously unusable samples, generally sediments with very weak (<10 pAm2) magnetizations. The improved sensitivity increases the fidelity of magnetic field variation surveys, but surveys continue to be somewhat slow. SQUIDs have historically been expensive to buy and operate, but technological advances now allow them to operate at liquid nitrogen temperatures (77 K), drastically reducing their costs. Step-wise thermal paleomagnetics studies cause large lag times during later steps as a result of heating from and cooling to room temperature for measurements. If the cooling step is removed entirely, however, the lag time drops by at least half. Available magnetometers currently provide either SQUID-level (0.1 - 1 pAm2) sensitivity or continuous heating. Combining a SQUID magnetometer with a high temperature oven is the logical next step to uncover the mysteries of the paleofield. However, the few that currently offer high temperature capabilities with noise levels approaching 10 pAm2 require either spinning or vibrating the sample, necessitating additional handling and potentially causing damage to the sample. Two primary factors have plagued previous developments: noise levels and temperature gradients. Our entire system is shielded from the environment using 4 layers of μ-metal. Our sample oven (designed for 7 mm diameter samples) sits inside a copper pipe and operates at high-frequency AC voltages. High frequency (10 kHz) AC current reduces the skin depth of radio frequency (RF) electromagnetic noise, which allows the 2 mm-thick copper shielding to reduce RF noise by ˜94%, leaving a residual field of ˜1.5 nT at the SQUID's location, 14.9 mm from the oven. A computer-controlled Eurotherm 3216 thermal controller regulates the temperature within ± 0.5 ˚ C. To reach 700 ˚ C, just above the Curie temperature of Hematite, a temperature difference of nearly 900 ˚ C between the sample and the SQUID is required. Since dipole fields decay rapidly with distance (∝ r -3 ), the equipment is designed to handle temperature gradients above 500 ˚ C cm-1 for maximum sensitivity using a passive double-vacuum separation system. All the parts used are commercially available to help reduce the operating costs and increase versatility.
Takeda, Keiji; Mori, Hatsumi; Yamaguchi, Akira; Ishimoto, Hidehiko; Nakamura, Takayoshi; Kuriki, Shinya; Hozumi, Toshiya; Ohkoshi, Shin-ichi
2008-03-01
We have developed a high temperature superconductor (HTS) micrometer-sized dc superconducting quantum interference device (SQUID) magnetometer for high field and high temperature operation. It was fabricated from YBa2Cu3O7-delta of 92 nm in thickness with photolithography techniques to have a hole of 4x9 microm2 and 2 microm wide grain boundary Josephson junctions. Combined with a three dimensional magnetic field coil system, the modulation patterns of critical current Ic were observed for three different field directions. They were successfully used to measure the magnetic properties of a molecular ferrimagnetic microcrystal (23x17x13 microm3), [Mn2(H2O)2(CH3COO)][W(CN)8]2H2O. The magnetization curve was obtained in magnetic field up to 0.12 T between 30 and 70 K. This is the first to measure the anisotropy of hysteresis curve in the field above 0.1 T with an accuracy of 10(-12) J T(-1) (10(-9) emu) with a HTS micro-SQUID magnetometer.
Performance of an on-chip superconducting circulator for quantum microwave systems
NASA Astrophysics Data System (ADS)
Chapman, Benjamin; Rosenthal, Eric; Moores, Bradley; Kerckhoff, Joseph; Mates, J. A. B.; Hilton, G. C.; Vale, L. R.; Ullom, J. N.; LalumíEre, Kevin; Blais, Alexandre; Lehnert, K. W.
Microwave circulators enforce a single propagation direction for signals in an electrical network. Unfortunately, commercial circulators are bulky, lossy, and cannot be integrated close to superconducting circuits because they require strong ( kOe) magnetic fields produced by permanent magnets. Here we report on the performance of an on-chip, active circulator for superconducting microwave circuits, which uses no permanent magnets. Non-reciprocity is achieved by actively modulating reactive elements around 100 MHz, giving roughly a factor of 50 in the separation between signal and control frequencies, which facilitates filtering. The circulator's active components are dynamically tunable inductors constructed with arrays of dc-SQUIDs in series. Array inductance is tuned by varying the magnetic flux through the SQUIDs with fields weaker than 1 Oe. Although the instantaneous bandwidth of the device is narrow, the operation frequency is tunable between 4 and 8 GHz. This presentation will describe the device's theory of operation and compare its measured performance to design goals. This work is supported by the ARO under contract W911NF-14-1-0079 and the National Science Foundation under Grant Number 1125844.
NASA Astrophysics Data System (ADS)
Saburo, Tanaka; Tomohiro, Akai; Makoto, Takemoto; Yoshimi, Hatsukade; Takeyoshi, Ohtani; Yoshio, Ikeda; Shuichi, Suzuki
2010-08-01
We develop magnetic metallic contaminant detectors using high-temperature superconducting quantum interference devices (HTS-SQUIDs) for industrial products. Finding ultra-small metallic contaminants is an important issue for manufacturers producing commercial products such as lithium ion batteries. If such contaminants cause damages, the manufacturer of the product suffers a big financial loss due to having to recall the faulty products. Previously, we described a system for finding such ultra-small particles in food. In this study, we describe further developments of the system, for the reduction of the effect of the remnant field of the products, and we test the parallel magnetization of the products to generate the remnant field only at both ends of the products. In addition, we use an SQUID gradiometer in place of the magnetometer to reduce the edge effect by measuring the magnetic field gradient. We test the performances of the system and find that tiny iron particles as small as 50 × 50 μm2 on the electrode of a lithium ion battery could be clearly detected. This detection level is difficult to achieve when using other methods.
ITAG: A fine-scale measurement platform to inform organismal response to a changing ocean
NASA Astrophysics Data System (ADS)
Katija, K.; Shorter, K. A.; Mooney, T. A.; Mann, D.; Wang, A. Z.; Sonnichsen, F. N.
2016-02-01
Soft-bodied marine invertebrates comprise a keystone component of ocean ecosystems, however we know little of their behaviors and physiological responses within their natural habitat. Quantifying ocean conditions and measuring an organisms' response to the physical environment is vital to understanding organismal responses to a changing ocean. However, we face technological limitations when attempting to quantify the physical and environmental conditions that organisms encounter at spatial and temporal scales of an individual organism. Here we describe a novel, eco-sensor tag (the ITAG) that has 3-axis accelerometer, 3-axis magnetometer, pressure, temperature, and light sensors. Current and future efforts involve miniaturizing and integrating O2 and salinity sensors to the ITAG. The tagging package is designed to be neutrally buoyant, and after a prescribed time, the electronics separate from a weighted base and floats to the surface. Tags were deployed on five jellyfish (Aurelia aurita) and eight squid (Loligo forbesi) in laboratory conditions for up to 24 hr. Using concurrent video and tag data, movement signatures for specific behaviors were identified. Based on these laboratory trials, we found that squid activity level changed in response to ambient light conditions, which can inform trade-offs between behavior and energy expenditure in captive and wild animals. The ITAG opens the door for lab and field-based measurements of behavior, physiology, and concurrent environmental parameters that not only inform interactions in a changing ocean, but also provides a novel platform by which characterization of the environment can be conducted at fine spatial and temporal scales.
1994-05-15
Nogues superconducting quantum interference device magnetometry and small-angle neutron-scattering techniques 5829 Thermodynamical properties of a...sa’nple magnetometer (VSM) and superconducting Coey et al.1 have been extensively studied during the past quantum interference device (SQUID) were used to...were measured in a superconducting quantum- interference 30 device magnetometer at 273 K. 20 e 10 U1 Y3 U RESULTS - C0 20 40 60 80 100 Phase relations
5,120 Superconducting Bolometers for the PIPER Balloon-Borne CMB Polarization Experiment
NASA Technical Reports Server (NTRS)
Benford, Dominic J.; Chuss, David T.; Hilton, Gene C.; Irwin, Kent D.; Jethava, Nikhil S.; Jhabvala, Christine A.; Kogut, Alan J.; Miller, Timothy M.; Mirel, Paul; Moseley, S. Harvey;
2010-01-01
We are constructing the Primordial Inflation Polarization Explorer (PIPER) to measure the polarization o[ the cosmic microwave background (CMB) and search for the imprint of gravity waves produced during an inflationary epoch in the early universe. The signal is faint and lies behind confusing foregrounds, both astrophysical and cosmological, and so many detectors are required to complete the measurement in a limited time. We will use four of our matured 1,280 pixel, high-filling-factor backshort-under-grid bolometer arrays for efficient operation at the PIPER CMB wavelengths. All four arrays observe at a common wavelength set by passband filters in the optical path. PIPER will fly four times to observe at wavelengths of 1500, 1100, 850, and 500 microns in order to separate CMB from foreground emission. The arrays employ leg-isolated superconducting transition edge sensor bolometers operated at 128mK; tuned resonant backshorts for efficient optical coupling; and a second-generation superconducting quantum interference device (SQUID) multiplexer readout. We describe the design, development, and performance of PIPER bo|ometer array technology to achieve background-limited sensitivity for a cryogenic balloon-borne telescope.
NASA Astrophysics Data System (ADS)
Nanto, Hidehito; Kobayashi, Toshiki; Dougami, Naganori; Habara, Masaaki; Yamamoto, Hajime; Kusano, Eiji; Kinbara, Akira; Douguchi, Yoshiteru
1998-07-01
The sensitivity of the chemical sensor, based on the resistance change of Al2O3-doped and SnO2-doped ZnO (ZnO:Al and ZnO:SnO2) thin film, is studied for exposure to various gases. It is found that the ZnO:Al and ZnO:Sn thin film chemical sensor has a high sensitivity and excellent selectivity for amine (TMA and DMA) gas and ethanol gas, respectively. The ZnO:Al (5.0 wt%) thin film chemical sensor which exhibit a high sensitivity for exposure to odors from rotten sea foods, such as salmon, sea bream, oyster, squid and sardine, responds to the freshness change of these sea foods. The ZnO:SnO2 (78 wt%) thin film chemical sensor which exhibit a high sensitivity for exposure to aroma from alcohols, such as wine, Japanese sake, and whisky, responds to the freshness change of these alcohols.
SQUID readout and ultra-low magnetic fields for Gravity Probe-B (GP-B)
NASA Technical Reports Server (NTRS)
Lockhart, James M.
1986-01-01
The superconducting readout system to be used for resolving 0.001 arcsec changes in the gyroscope spin direction in the Relativity Gyroscope (GP-B) experiment is described. This system couples the London magnetic moment flux of the spinning gyro to a low noise superconducting quantum interference device (SQUID) detector. Resolution limits and noise performance of the detection system are discussed, and improvements obtained and expected with advanced SQUIDs are presented. Also described is the novel use of superconducting magnetic shielding techniques to obtain a 250 dB attenuation of the earth's magnetic field at the location of the gyroscopes. In this approach, expanded superconducting foil shields are coupled with fixed cylindrical superconducting shields and special geometric considerations to obtain the extremely high attenuation factor required. With these shielding techniques, it appears that the 0.5-Gauss earth field (which appears to the gyroscopes as an ac field at the satellite roll rate) can be reduced to the 10 to the -13th G level required by the experiment. Recent results concerning improvements in the performance of the superconducting foil techniques obtained with the use of a new computer-controlled cooling system are presented.
High-sensitivity cooled coil system for nuclear magnetic resonance in kHz range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Tingting; Zhao, Jing, E-mail: zhaojing-8239@jlu.edu.cn; Peter Grünberg Institute
2014-11-15
In several low-field Nuclear Magnetic Resonance (LF-NMR) and surface nuclear magnetic resonance applications, i.e., in the frequency range of kHz, high sensitivity magnetic field detectors are needed. Usually, low-T{sub c} superconducting quantum interference devices (SQUIDs) with a high field sensitivity of about 1 fT/Hz{sup 1/2} are employed as detectors. Considering the flux trapping and operational difficulties associated with low-T{sub c} SQUIDs, we designed and fabricated liquid-nitrogen-cooled Cu coils for NMR detection in the kHz range. A cooled coil system consisting of a 9-cm diameter Cu coil and a low noise preamplifier was systematically investigated and reached a sensitivity of 2more » fT/Hz{sup 1/2} at 77 K, which is 3 times better compared to the sensitivity at 300 K. A Q-switch circuit as an essential element for damping the ringing effects of the pickup coil was developed to acquire free induction decay signals of a water sample with minimum loss of signal. Our studies demonstrate that cooled Cu coils, if designed properly, can provide a comparable sensitivity to low-T{sub c} SQUIDs.« less
Fabrication of Gamma Detectors Based on Magnetic Ag:Er Microcalorimeters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedrich, Stephan; Boyd, Stephen; Cantor, Robin
2016-05-06
This report discusses the photolithographic fabrication of ultra-high resolution gamma-ray detectors based on magnetic microcalorimeters (MMCs). The MMC uses a novel Er-doped silver sensor (Ag:Er) that is expected to have higher sensitivity than the Er-doped gold (Au:Er) sensors currently in use. The MMC also integrates the first-stage SQUID preamplifier on the same chip as the MMC gamma detector to increase its signal-to-noise ratio. In addition, the MMC uses a passive Ta-Nb heat switch to replace one of the common long-term failure points in earlier detectors. This report discusses the fabrication process we have developed to implement the proposed improvements.
Fabrication of Gamma Detectors Based on Magnetic Ag:Er Microcalorimeters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedrich, Stephan; Boyd, Stephen; Cantor, Robin
2015-11-25
This report discusses the photolithographic fabrication of ultra-high resolution gamma-ray detectors based on magnetic microcalorimeters (MMCs). The MMC uses a novel Er-doped silver sensor (Ag:Er) that is expected to have higher sensitivity than the Er-doped gold (Au:Er) sensors currently in use. The MMC also integrates the first-stage SQUID preamplifier on the same chip as the MMC gamma detector to increase its signal-to-noise ratio. In addition, the MMC uses a passive Ta-Nb heat switch to replace one of the common long-term failure points in earlier detectors. This report discusses the fabrication process we have developed to implement the proposed improvements.
Fabrication and Evaluation of Superconducting and Semiconducting Materials
1993-09-01
Laboratory Material Physics Branch by conducting investigations into the properties of superconducting , magnetic , and other solid state materials. Studies...Physics Branch in conducting research into applied problems such as the design of magnetic shielding and superconducting quantum interference device...SQUID) magnetometry detection of magnetic anomalies. SFA provided research assistance in the areas of bulk ceramic sample preparation. conversion
A 90GHz Bolometer Camera Detector System for the Green Bank Telescope
NASA Technical Reports Server (NTRS)
Benford, Dominic J.; Allen, Christine A.; Buchanan, Ernest D.; Chen, Tina C.; Chervenak, James A.; Devlin, Mark J.; Dicker, Simon R.; Forgione, Joshua B.
2004-01-01
We describe a close-packed, two-dimensional imaging detector system for operation at 90GHz (3.3mm) for the 100 m Green Bank Telescope (GBT) This system will provide high sensitivity (<1mjy in 1s rapid imaging (15'x15' to 250 microJy in 1 hr) at the world's largest steerable aperture. The heart of this camera is an 8x8 close packed, Nyquist-sampled array of superconducting transition edge sensor bolometers. We have designed and are producing a functional superconducting bolometer array system using a monolithic planar architecture and high-speed multiplexed readout electronics. With an NEP of approx. 2.10(exp 17) W/square root Hz, the TES bolometers will provide fast linear sensitive response for high performance imaging. The detectors are read out by and 8x8 time domain SQUID multiplexer. A digital/analog electronics system has been designed to enable read out by SQUID multiplexers. First light for this instrument on the GBT is expected within a year.
A 90GHz Bolometer Camera Detector System for the Green
NASA Technical Reports Server (NTRS)
Benford, Dominic J.; Allen, Christine A.; Buchanan, Ernest; Chen, Tina C.; Chervenak, James A.; Devlin, Mark J.; Dicker, Simon R.; Forgione, Joshua B.
2004-01-01
We describe a close-packed, two-dimensional imaging detector system for operation at 90GHz (3.3 mm) for the 100m Green Bank Telescope (GBT). This system will provide high sensitivity (less than 1mJy in 1s) rapid imaging (15'x15' to 150 micron Jy in 1 hr) at the world's largest steerable aperture. The heart of this camera is an 8x8 close-packed, Nyquist-sampled array of superconducting transition edge sensor (TES) bolometers. We have designed and are producing a functional superconducting bolometer array system using a monolithic planar architecture and high-speed multiplexed readout electronics. With an NEP of approximately 2 x 10(exp -17) W/square root of Hz, the TES bolometers will provide fast, linear, sensitive response for high performance imaging. The detectors are read out by an 8x8 time domain SQUID multiplexer. A digital/analog electronics system has been designed to enable read out by SQUID multiplexers. First light for this instrument on the GBT is expected within a year.
NASA Astrophysics Data System (ADS)
Coll, Marta; Navarro, Joan; Olson, Robert J.; Christensen, Villy
2013-10-01
We synthesized available information from ecological models at local and regional scales to obtain a global picture of the trophic position and ecological role of squids in marine ecosystems. First, static food-web models were used to analyze basic ecological parameters and indicators of squids: biomass, production, consumption, trophic level, omnivory index, predation mortality diet, and the ecological role. In addition, we developed various dynamic temporal simulations using two food-web models that included squids in their parameterization, and we investigated potential impacts of fishing pressure and environmental conditions for squid populations and, consequently, for marine food webs. Our results showed that squids occupy a large range of trophic levels in marine food webs and show a large trophic width, reflecting the versatility in their feeding behaviors and dietary habits. Models illustrated that squids are abundant organisms in marine ecosystems, and have high growth and consumption rates, but these parameters are highly variable because squids are adapted to a large variety of environmental conditions. Results also show that squids can have a large trophic impact on other elements of the food web, and top-down control from squids to their prey can be high. In addition, some squid species are important prey of apical predators and may be keystone species in marine food webs. In fact, we found strong interrelationships between neritic squids and the populations of their prey and predators in coastal and shelf areas, while the role of squids in open ocean and upwelling ecosystems appeared more constrained to a bottom-up impact on their predators. Therefore, large removals of squids will likely have large-scale effects on marine ecosystems. In addition, simulations confirm that squids are able to benefit from a general increase in fishing pressure, mainly due to predation release, and quickly respond to changes triggered by the environment. Squids may thus be very sensitive to the effects of fishing and climate change.
Low field electron paramagnetic resonance imaging with SQUID detection
NASA Technical Reports Server (NTRS)
Hahn, Inseob (Inventor); Day, Peter K. (Inventor); Penanen, Konstantin I. (Inventor); Eom, Byeong H. (Inventor); Cohen, Mark S. (Inventor)
2012-01-01
In one embodiment, a flux transformer with a gradiometer pickup coil is magnetically coupled to a SQUID, and a SQUID array amplifier comprising a plurality of SQUIDs, connected in series, is magnetically coupled to the output of the SQUID. Other embodiments are described and claimed.
Magnetic susceptibility characterisation of superparamagnetic microspheres
NASA Astrophysics Data System (ADS)
Grob, David Tim; Wise, Naomi; Oduwole, Olayinka; Sheard, Steve
2018-04-01
The separation of magnetic materials in microsystems using magnetophoresis has increased in popularity. The wide variety and availability of magnetic beads has fuelled this drive. It is important to know the magnetic characteristics of the microspheres in order to accurately use them in separation processes integrated on a lab-on-a-chip device. To investigate the magnetic susceptibility of magnetic microspheres, the magnetic responsiveness of three types of Dynabeads microspheres were tested using two different approaches. The magnetophoretic mobility of individual microspheres is studied using a particle tracking system and the magnetization of each type of Dynabeads microsphere is measured using SQUID relaxometry. The magnetic beads' susceptibility is obtained at four different applied magnetic fields in the range of 38-70 mT for both the mobility and SQUID measurements. The susceptibility values in both approaches show a consistent magnetic field dependence.
DC current distribution mapping system of the solar panels using a HTS-SQUID gradiometer
NASA Astrophysics Data System (ADS)
Miyazaki, Shingo; Kasuya, Syohei; Mawardi Saari, Mohd; Sakai, Kenji; Kiwa, Toshihiko; Tsukamoto, Akira; Adachi, Seiji; Tanabe, Keiichi; Tsukada, Keiji
2014-05-01
Solar panels are expected to play a major role as a source of sustainable energy. In order to evaluate solar panels, non-destructive tests, such as defect inspections and response property evaluations, are necessary. We developed a DC current distribution mapping system of the solar panels using a High Critical Temperature Superconductor Superconducting Quantum Interference Device (HTS-SQUID) gradiometer with ramp edge type Josephson junctions. Two independent components of the magnetic fields perpendicular to the panel surface (∂Bz/∂x, ∂Bz/∂y) were detected. The direct current of the solar panel is visualized by calculating the composition of the two signal components, the phase angle, and mapping the DC current vector. The developed system can evaluate the uniformity of DC current distributions precisely and may be applicable for defect detection of solar panels.
Structure and magnetic properties of SiO{sub 2}/PCL novel sol–gel organic–inorganic hybrid materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Catauro, Michelina, E-mail: michelina.catauro@unina2.it; Bollino, Flavia; Cristina Mozzati, Maria
2013-07-15
Organic–inorganic nanocomposite materials have been synthesized via sol–gel. They consist of an inorganic SiO{sub 2} matrix, in which different percentages of poly(ε-caprolactone) (PCL) have been incorporated. The formation of H-bonds among the carbonyl groups of the polymer chains and Si–OH group of the inorganic matrix has been proved by means of Fourier transform infrared spectroscopy (FT-IR) analysis and has been confirmed by solid-state nuclear magnetic resonance (NMR). X-Ray diffraction (XRD) analysis highlighted the amorphous nature of the synthesized materials. Scanning electron microscope (SEM) micrograph and atomic force microscope (AFM) topography showed their homogeneous morphology and nanostructure nature. Considering the opportunitymore » to synthesize these hybrid materials under microgravity conditions by means of magnetic levitation, superconducting quantum interference device (SQUID) magnetometry has been used to quantify their magnetic susceptibility. This measure has shown that the SiO{sub 2}/PCL hybrid materials are diamagnetic and that their diamagnetic susceptibility is independent of temperature and increases with the PCL amount. - Graphical abstract: Characterization and magnetic properties of SiO{sub 2}/PCL organic–inorganic hybrid materials synthesized via sol–gel. FT-IR, Fourier transform infrared spectroscopy; solid-state NMR: solid-state nuclear magnetic resonance; SQUID: superconducting quantum interference device. - Highlights: • Sol–gel synthesis of SiO{sub 2}/PCL amorphous class I organic–inorganic hybrid materials. • FT-IR and NMR analyses show the hydrogen bonds formation between SiO{sub 2} and PCL. • AFM and SEM analyses confirm that the SiO{sub 2}/PCL are homogenous hybrid materials. • The SQUID measures show that the simples are diamagnetic. • Diamagnetic susceptibility of SiO{sub 2}/PCL materials increases with the PCL amount.« less
Nanocrystalline Pd:NiFe2O4 thin films: A selective ethanol gas sensor
NASA Astrophysics Data System (ADS)
Rao, Pratibha; Godbole, R. V.; Bhagwat, Sunita
2016-10-01
In this work, Pd:NiFe2O4 thin films were investigated for the detection of reducing gases. These films were fabricated using spray pyrolysis technique and characterized using X-ray diffraction (XRD) to confirm the crystal structure. The surface morphology was studied using scanning electron microscopy (SEM). Magnetization measurements were carried out using SQUID VSM, which shows ferrimagnetic behavior of the samples. These thin film sensors were tested against methanol, ethanol, hydrogen sulfide and liquid petroleum gas, where they were found to be more selective to ethanol. The fabricated thin film sensors exhibited linear response signal for all the gases with concentrations up to 5 w/o Pd. Reduction in optimum operating temperature and enhancement in response was also observed. Pd:NiFe2O4 thin films exhibited faster response and recovery characteristic. These sensors have potential for industrial applications because of their long-term stability, low power requirement and low production cost.
Microfabricated spin exchange relaxation free atomic magnetometer
NASA Astrophysics Data System (ADS)
Griffith, W. Clark; Jimenez-Martinez, Ricardo; Preusser, Jan; Knappe, Svenja; Kitching, John
2009-05-01
Methods first developed at NIST for MEMS-based atomic clocks have been applied to magnetic field sensors. The sensors are built around microfabricated alkali-atom vapor cells integrated with micro-optics and a VCSEL light source. Exceptional magnetic field sensitivities can be achieved in a small volume vapor cell, especially when operated in the spin-exchange relaxation free (SERF) regime. In this technique, magnetic resonance broadening due to spin-exchange collisions is suppressed under conditions of high alkali density and low magnetic fields. We have demonstrated sensitivities better than 100 fT/Hz^1/2 with a millimeter scale SERF sensor.ootnotetextV. Shah, S. Knappe, P.D.D. Schwindt, and J. Kitching, Nature Photonics, 1, 649 (2007). Adding flux concentratorsootnotetextW.C. Griffith, R. Jimenez-Martinez, V. Shah, S. Knappe, and J. Kitching, Appl. Phys. Lett., 94, 023502 (2009). around the vapor cell further improves the sensitivity to 10 fT/Hz^1/2, potentially providing a low power, noncryogenic alternative to SQUID sensors.
THz Hot-Electron Photon Counter
NASA Technical Reports Server (NTRS)
Karasik, Boris S.; Sergeev, Andrei V.
2004-01-01
We present a concept for the hot-electron transition-edge sensor capable of counting THz photons. The main need for such a sensor is a spectroscopy on future space telescopes where a background limited NEP approx. 10(exp -20) W/H(exp 1/2) is expected at around 1 THz. Under these conditions, the rate of photon arrival is very low and any currently imaginable detector with sufficient sensitivity will operate in the photon counting mode. The Hot-Electron Photon Counter based on a submicron-size Ti bridge has a very low heat capacity which provides a high enough energy resolution (approx.140 GHz) at 0.3 K. With the sensor time constant of a few microseconds, the dynamic range would be approx. 30 dB. The sensor couples to radiation via a planar antenna and is read by a SQUID amplifier or by a 1-bit RSFQ ADC. A compact array of the antenna-coupled counters can be fabricated on a silicon wafer without membranes.
NASA Astrophysics Data System (ADS)
Nawroth, Janna; Guo, Hanliang; Ruby, Edward; Dabiri, John; McFall-Ngai, Margaret; Kanso, Eva
2016-11-01
Motile cilia are microscopic, hair-like structures on the cell surface that can sense and propel the extracellular fluid environment. Cilia are often thought to be limited to stereotypic morphologies, beat kinematics and non-discriminatory clearance functions, but we find that the spatiotemporal organization of different cilia types and beat behaviors can generate complex flow patterns and transport functions. Here, we present a case study in the Hawaiian bobtail squid where collective ciliary activity and resulting flow fields help recruit symbiont bacteria to the animal host. In particular, we demonstrate empirically and computationally how the squid's internal cilia act like a microfluidic device that actively filters the water for potential bacterial candidates and also provides a sheltered zone allowing for accumulation of mucus and bacteria into a biofilm. Moreover, in this sheltered zone, different cilia-driven flows enhance diffusion of biochemical signals, which could accelerate specific bacteria-host recognition. These results suggest that studying cilia activity on the population level might reveal a diverse range of biological transport and sensing functions. Moreover, understanding cilia as functional building blocks could inspire the design of ciliated robots and devices.
Drugs of abuse detection in saliva based on actuated optical method
NASA Astrophysics Data System (ADS)
Shao, Jie; Li, Zhenyu; Jiang, Hong; Wang, Wenlong; Wu, Yixuan
2014-12-01
There has been a considerable increase in the abuse of drugs during the past decade. Combing drug use with driving is very dangerous. More than 11% of drivers in a roadside survey tested positive for drugs, while 18% of drivers killed in accidents tested positive for drugs as reported in USA, 2007. Toward developing a rapid drug screening device, we use saliva as the sample, and combining the traditional immunoassays method with optical magnetic technology. There were several methods for magnetic nanoparticles detection, such as magnetic coils, SQUID, microscopic imaging, and Hall sensors. All of these methods were not suitable for our demands. By developing a novel optical scheme, we demonstrate high-sensitivity detection in saliva. Drugs of abuse are detected at sub-nano gram per milliliter levels in less than 120 seconds. Evanescent wave principle has been applied to sensitively monitor the presence of magnetic nanoparticles on the binding surface. Like the total internal reflection fluorescence microscope (TIRFM), evanescent optical field is generated at the plastic/fluid interface, which decays exponentially and penetrates into the fluid by only a sub-wavelength distance. By disturbance total internal reflection with magnetic nanoparticles, the optical intensity would be influenced. We then detected optical output by imaging the sensor surface onto a CCD camera. We tested four drugs tetrahydrocannabinol (THC), methamphetamine (MAMP), ketamine (KET), morphine (OPI), using this technology. 100 ng mL-1 sensitivity was achieved, and obvious evidence showed that this results could be improved in further researches.
Deep Mapping of Teuthivorous Whales and Their Prey Fields
2016-01-01
0.05 m), heading (±0.1⁰), pitch (±0.3⁰) and roll (±0.3⁰). Level flight is especially important for these acoustic sensors making measurements 600 m...5d. PROJECT NUMBER RC-2112 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Oregon...active acoustic measurements now allow us to use this powerful remote sensing tool to assess squid behavior and distribution in water depths up to
Extraction of breathing pattern using temperature sensor based on Arduino board
NASA Astrophysics Data System (ADS)
Patel, Rajesh; Sengottuvel, S.; Gireesan, K.; Janawadkar, M. P.; Radhakrishnan, T. S.
2015-06-01
Most of the basic functions of human body are assessed by measuring the different parameters from the body such as temperature, pulse activity and blood pressure etc. Respiration rate is the number of inhalations a person takes per minute and needs to be quantitatively assessed as it modulates other measurements such as SQUID based magnetocardiography (MCG) by bringing the chest closer to or away from the sensor array located inside a stationary liquid helium cryostat. The respiration rate is usually measured when a person is at rest and simply involves counting the number of inhalations for one minute. This paper aims at the development of a suitable methodology for the measurement of respiration rate with the help of a temperature sensor which monitors the very slight change in temperature near the nostril during inhalation & exhalation. The design and development of the proposed system is presented, along with typical experiment results.
Nanobridge SQUIDs as calorimetric inductive particle detectors
NASA Astrophysics Data System (ADS)
Gallop, John; Cox, David; Hao, Ling
2015-08-01
Superconducting transition edge sensors (TESs) have made dramatic progress since their invention some 65 years ago (Andrews et al 1949 Phys. Rev. 76 154-155 Irwin and Hilton 2005 Topics Appl. Phys. 99 63-149) until now there are major imaging arrays of TESs with as many as 7588 separate sensors. These are extensively used by astronomers for some ground-breaking observations (Hattori et al 2013 Nucl. Instrum. Methods Phys. Res. A 732 299-302). The great success of TES systems has tended to overshadow other superconducting sensor developments. However there are other types (Sobolewski et al 2003 IEEE Trans. Appl. Supercond. 13 1151-7 Hadfield 2009 Nat. Photonics 3 696-705) which are discussed in papers within this special edition of the journal. Here we describe a quite different type of detector, also applicable to single photon detection but possessing possible advantages (higher sensitivity, higher operating temperature) over the conventional TES, at least for single detectors.
Feasibility study on measurement of magnetocardiography (MCG) using fluxgate magnetometer
NASA Astrophysics Data System (ADS)
Sengottuvel, S.; Sharma, Akash; Biswal, Deepak; Khan, Pathan Fayaz; Swain, Pragyna Parimita; Patel, Rajesh; Gireesan, K.
2018-04-01
This paper reports the feasibility of measuring weak magnetic fields generated by the electrical activity of the heart using a portable tri-axial fluxgate magnetometer inside a magnetically shielded room. Measurement of Magnetocardiogram (MCG) signals could be successfully demonstrated from a healthy subject using a novel set-up involving a reference fluxgate sensor which simultaneously measures the magnetic fields associated with the ECG waveform measured on the same subject. The timing information provided by R wave peaks of ECG recorded by the reference sensor is utilized to generate trigger locked average of the sensor output of the measurement fluxgate, and extract MCG signals in all the three orthogonal directions (X, Y and Z) on the anterior thorax. It is expected that such portable room temperature measurements using fluxgate sensor could assist in validating the direction of the equivalent current dipole associated with the electrical activity of the human heart. This is somewhat difficult in conventional MCG measurements using SQUID sensors, which usually furnish only the z component of the magnetic field and its spatial derivatives.
Takeuchi, Hiroyuki; Morita, Ritsuko; Shirai, Yoko; Nakagawa, Yoshihisa; Terashima, Teruya; Ushikubo, Shun; Matsuo, Tatsuhiro
2014-01-01
Effects of dietary firefly squid on serum and liver lipid levels were investigated. Male Wistar rats were fed a diet containing 5% freeze-dried firefly squid or Japanese flying squid for 2 weeks. There was no significant difference in the liver triacylglycerol level between the control and Japanese flying squid groups, but the rats fed the firefly squid diet had a significantly lower liver triacylglycerol content than those fed the control diet. No significant difference was observed in serum triacylglycerol levels between the control and firefly squid groups. The rats fed the firefly squid had a significantly lower activity of liver glucose-6-phosphate dehydrogenase compared to the rats fed the control diet. There was no significant difference in liver fatty acid synthetase activity among the three groups. Hepatic gene expression and lipogenic enzyme activity were investigated; a DNA microarray showed that the significantly enriched gene ontology category of down-regulated genes in the firefly squid group was "lipid metabolic process". The firefly squid group had lower mRNA level of glucose-6-phosphate dehydrogenase compared to the controls. These results suggest that an intake of firefly squid decreases hepatic triacylglycerol in rats, and the reduction of mRNA level and enzyme activity of glucose-6-phosphate dehydrogenase might be related to the mechanisms.
NASA Astrophysics Data System (ADS)
McClatchie, Sam; Cowen, Robert; Nieto, Karen; Greer, Adam; Luo, Jessica Y.; Guigand, Cedric; Demer, David; Griffith, David; Rudnick, Daniel
2012-04-01
We sampled a front detected by SST gradient, ocean color imagery, and a Spray glider south of San Nicolas Island in the Southern California Bight between 14 and 18 October 2010. We sampled the front with an unusually extensive array of instrumentation, including the Continuous Underway Fish Egg Sampler (CUFES), the undulating In Situ Ichthyoplankton Imaging System (ISIIS) (fitted with temperature, salinity, oxygen, and fluorescence sensors), multifrequency acoustics, a surface pelagic trawl, a bongo net, and a neuston net. We found higher fluorescence and greater cladoceran, decapod, and euphausiid densities in the front, indicating increased primary and secondary production. Mesopelagic fish were most abundant in oceanic waters to the west of the front, market squid were abundant in the front associated with higher krill and decapod densities, and jack mackerel were most common in the front and on the shoreward side of the front. Egg densities peaked to either side of the front, consistent with both offshore (for oceanic squid and mesopelagic fish) and shelf origins (for white croaker and California halibut). We discovered unusually high concentrations of predatory narcomedusae in the surface layer of the frontal zone. Potential ichthyoplankton predators were more abundant either in the front (decapods, euphausiids, and squid) or shoreward of the front (medusae, chaetognaths, and jack mackerel). For pelagic fish like sardine, which can thrive in less productive waters, the safest place to spawn would be offshore because there are fewer potential predators.
Effects of the dipolar form of phloretin on potassium conductance in squid giant axons.
Strichartz, G R; Oxford, G S; Ramon, F
1980-01-01
The effects of phloretin on membrane ionic conductances have been studied in the giant axon of the squid, Loligo pealei. Phloretin reversibly suppresses the potassium and sodium conductances and modifies their dependence on membrane potential (Em). Its effects on the potassium conductance (GK) are much greater than on the sodium conductance; no effects on sodium inactivation are observed. Internal perfusion of phloretin produces both greater shifts in GK(Em) and greater reductions maximum GK than does external perfusion; the effect of simultaneous internal and external perfusion is little greater than that of internal perfusion alone. Lowering the internal pH, which favors the presence of the neutral species of weakly acidic phloretin (pKa 7.4), potentiates the actions of internally perfused phloretin. Other organic cations with dipole moments similar to phloretin's have little effect on either potassium or sodium conductances in squid axons. These results can be explained by either of two mechanisms; on postulates a phloretin "receptor" near the voltage sensor component of the potassium channel which is accessible to drug molecules applied at either the outer or inner membrane surface and is much more sensitive to the neutral than the negatively charged form of the drug. The other mechanism proposes that neutral phloretin molecules are dispersed in an ordered array in the membrane interior, producing a diffuse dipole field which modifies potassium channel gating. Different experimental results support these two mechanisms, and neither hypothesis can be disproven. PMID:6266534
Analysing magnetism using scanning SQUID microscopy.
Reith, P; Renshaw Wang, X; Hilgenkamp, H
2017-12-01
Scanning superconducting quantum interference device microscopy (SSM) is a scanning probe technique that images local magnetic flux, which allows for mapping of magnetic fields with high field and spatial accuracy. Many studies involving SSM have been published in the last few decades, using SSM to make qualitative statements about magnetism. However, quantitative analysis using SSM has received less attention. In this work, we discuss several aspects of interpreting SSM images and methods to improve quantitative analysis. First, we analyse the spatial resolution and how it depends on several factors. Second, we discuss the analysis of SSM scans and the information obtained from the SSM data. Using simulations, we show how signals evolve as a function of changing scan height, SQUID loop size, magnetization strength, and orientation. We also investigated 2-dimensional autocorrelation analysis to extract information about the size, shape, and symmetry of magnetic features. Finally, we provide an outlook on possible future applications and improvements.
Analysing magnetism using scanning SQUID microscopy
NASA Astrophysics Data System (ADS)
Reith, P.; Renshaw Wang, X.; Hilgenkamp, H.
2017-12-01
Scanning superconducting quantum interference device microscopy (SSM) is a scanning probe technique that images local magnetic flux, which allows for mapping of magnetic fields with high field and spatial accuracy. Many studies involving SSM have been published in the last few decades, using SSM to make qualitative statements about magnetism. However, quantitative analysis using SSM has received less attention. In this work, we discuss several aspects of interpreting SSM images and methods to improve quantitative analysis. First, we analyse the spatial resolution and how it depends on several factors. Second, we discuss the analysis of SSM scans and the information obtained from the SSM data. Using simulations, we show how signals evolve as a function of changing scan height, SQUID loop size, magnetization strength, and orientation. We also investigated 2-dimensional autocorrelation analysis to extract information about the size, shape, and symmetry of magnetic features. Finally, we provide an outlook on possible future applications and improvements.
Voigt, J; Knappe-Grüneberg, S; Gutkelch, D; Haueisen, J; Neuber, S; Schnabel, A; Burghoff, M
2015-05-01
Several experiments in fundamental physics demand an environment of very low, homogeneous, and stable magnetic fields. For the magnetic characterization of such environments, we present a portable SQUID system that measures the absolute magnetic flux density vector and the gradient tensor. This vector-tensor system contains 13 integrated low-critical temperature (LTc) superconducting quantum interference devices (SQUIDs) inside a small cylindrical liquid helium Dewar with a height of 31 cm and 37 cm in diameter. The achievable resolution depends on the flux density of the field under investigation and its temporal drift. Inside a seven-layer mu-metal shield, an accuracy better than ±23 pT for the components of the static magnetic field vector and ±2 pT/cm for each of the nine components of the gradient tensor is reached by using the shifting method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voigt, J.; Knappe-Grüneberg, S.; Gutkelch, D.
2015-05-15
Several experiments in fundamental physics demand an environment of very low, homogeneous, and stable magnetic fields. For the magnetic characterization of such environments, we present a portable SQUID system that measures the absolute magnetic flux density vector and the gradient tensor. This vector-tensor system contains 13 integrated low-critical temperature (LTc) superconducting quantum interference devices (SQUIDs) inside a small cylindrical liquid helium Dewar with a height of 31 cm and 37 cm in diameter. The achievable resolution depends on the flux density of the field under investigation and its temporal drift. Inside a seven-layer mu-metal shield, an accuracy better than ±23more » pT for the components of the static magnetic field vector and ±2 pT/cm for each of the nine components of the gradient tensor is reached by using the shifting method.« less
XANES study of Fe-implanted strontium titanate
NASA Astrophysics Data System (ADS)
Lobacheva, O.; Goncharova, L. V.; Chavarha, M.; Sham, T. K.
2014-03-01
Properties of strontium titanate SrTiO3 (STO) depend to a great extent on the substitutional dopants and defects of crystal structure. The ion beam implantation method was used for doping STO (001) crystals with Fe at different doses. Implanted samples were then annealed at 350°C in oxygen to induce recrystallization and remove oxygen vacancies produced during ion implantation process. The effect of Fe doping and post-implantation annealing was studied by X-ray Absorption Near Edge Spectroscopy (XANES) method and Superconducting Quantum Interference Device (SQUID). XANES allowed to monitor the change in structure of STO crystals and in the local environment of Fe following the implantation and annealing steps. SQUID measurements revealed correlation between magnetic moment and Fe implantation dose. Ferromagnetic hysteresis was observed on selected Fe-implanted STO at 5 K. The observed magnetic properties can be correlated with the several Fe oxide phases in addition to the presence of O/Ti vacancies.
Magnetic resonance force microscopy of paramagnetic electron spins at millikelvin temperatures.
Vinante, A; Wijts, G; Usenko, O; Schinkelshoek, L; Oosterkamp, T H
2011-12-06
Magnetic resonance force microscopy (MRFM) is a powerful technique to detect a small number of spins that relies on force detection by an ultrasoft magnetically tipped cantilever and selective magnetic resonance manipulation of the spins. MRFM would greatly benefit from ultralow temperature operation, because of lower thermomechanical noise and increased thermal spin polarization. Here we demonstrate MRFM operation at temperatures as low as 30 mK, thanks to a recently developed superconducting quantum interference device (SQUID)-based cantilever detection technique, which avoids cantilever overheating. In our experiment, we detect dangling bond paramagnetic centres on a silicon surface down to millikelvin temperatures. Fluctuations of such defects are supposedly linked to 1/f magnetic noise and decoherence in SQUIDs, as well as in several superconducting and single spin qubits. We find evidence that spin diffusion has a key role in the low-temperature spin dynamics.
Hua, Ming; Tao, Ming-Jie; Deng, Fu-Guo
2016-02-24
We propose a quantum processor for the scalable quantum computation on microwave photons in distant one-dimensional superconducting resonators. It is composed of a common resonator R acting as a quantum bus and some distant resonators rj coupled to the bus in different positions assisted by superconducting quantum interferometer devices (SQUID), different from previous processors. R is coupled to one transmon qutrit, and the coupling strengths between rj and R can be fully tuned by the external flux through the SQUID. To show the processor can be used to achieve universal quantum computation effectively, we present a scheme to complete the high-fidelity quantum state transfer between two distant microwave-photon resonators and another one for the high-fidelity controlled-phase gate on them. By using the technique for catching and releasing the microwave photons from resonators, our processor may play an important role in quantum communication as well.
Local tuning of the order parameter in superconducting weak links: A zero-inductance nanodevice
NASA Astrophysics Data System (ADS)
Winik, Roni; Holzman, Itamar; Dalla Torre, Emanuele G.; Buks, Eyal; Ivry, Yachin
2018-03-01
Controlling both the amplitude and the phase of the superconducting quantum order parameter (" separators="|ψ ) in nanostructures is important for next-generation information and communication technologies. The lack of electric resistance in superconductors, which may be advantageous for some technologies, hinders convenient voltage-bias tuning and hence limits the tunability of ψ at the microscopic scale. Here, we demonstrate the local tunability of the phase and amplitude of ψ, obtained by patterning with a single lithography step a Nb nano-superconducting quantum interference device (nano-SQUID) that is biased at its nanobridges. We accompany our experimental results by a semi-classical linearized model that is valid for generic nano-SQUIDs with multiple ports and helps simplify the modelling of non-linear couplings among the Josephson junctions. Our design helped us reveal unusual electric characteristics with effective zero inductance, which is promising for nanoscale magnetic sensing and quantum technologies.
NASA Astrophysics Data System (ADS)
Adamo, M.; Nappi, C.; Sarnelli, E.
2010-09-01
The use of a scanning magnetic microscope (SMM) with a high temperature superconducting quantum interference device (SQUID) for quantitative measurements in eddy current nondestructive analysis (NDA) is presented. The SQUID has been used to detect the weak magnetic field variations around a small defect, close to a structural part generating an intensive magnetic field. The experimental data for a deep crack close to a rivet in a multilayer conducting plate have been taken in a RF-shielded environment and discussed in the light of the theoretical predictions. The results show that eddy current NDA can distinguish subsurface crack signals from wider structural signals, with defects located 10 mm below the surface. Moreover, in order to visualize the structure of the probing current when a circular induction coil is used, the simulation of eddy currents in a thick unflawed conducting plate has been carried out.
NASA Astrophysics Data System (ADS)
Minotani, Tadashi; Kawakami, Satoru; Kuroki, Yukinori; Enpuku, Keiji
1998-06-01
In order to develop YBa2Cu3O7-δ bicrystal junctions suitable for high-performance superconducting quantum interference device (SQUID), the relationship between the junction properties and the misorientation angle of the bicrystal substrate is studied experimentally. Misorientation angles of 24°, 27°, 30°, 33° and 36.8° are used, and the angular dependencies of junction resistance Rs and critical current Io are investigated. It is shown that values of Rs and Io approximately follow the relation IoRs1.5=const. in these junctions. The obtained results are analyzed in terms of the direct and resonant tunneling mechanisms. It is also shown that values of Rs≈10 Ω and Io≈20 µA can be obtained rather reproducibly when we use the 30° junctions. The properties of this junction are very promising for the development of high-performance SQUID.
NASA Astrophysics Data System (ADS)
Lazear, Justin Scott
The Inflationary Big Bang model of cosmology generically predicts the existence of a background of gravitational waves due to Inflation, which coupled into the B-mode power spectrum during the epochs of Recombination and Reionization. A measurement of the primordial B-mode spectrum would verify the reality of the Inflationary model and constrain the allowed models of Inflation. In Chapter 1 we describe the background physics of cosmology and Inflation, and the challenges involved with measuring the primordial B-mode spectrum. In Chapter 2 we describe the Primordial Inflation Polarization Explorer (PIPER), a high-altitude balloon-borne microwave polarimeter optimized to measure the B-mode spectrum on large angular scales. We examine the high level design of PIPER and how it addresses the challenges presented in Chapter 1. Following the high level design, we examine in detail the electronics developed for PIPER, both for in-flight operations and for laboratory development. In Chapter 3 we describe the Transition Edge Sensor (TES) bolometers that serve as PIPER's detectors, analyze the Superconducting Quantum Interference Device (SQUID) amplifiers and Mutli-channel Electronics (MCE) detector readout chain, and finally present the characterization of both detector parameters and noise of a single pixel device with a PIPER-like (Backshort Under Grid, BUG) architecture to validate the detector design. In Chapter 4 we present a description of the HKE electronics, used to measure all non-detector science timestreams in PIPER, as well as flight housekeeping and laboratory development. In addition to the operation of the HKE electronics, we develop a model to quantify the performance of the HKE thermometry reader (TRead). A simple simulation pipeline is developed and used to explore the consequences of imperfect foreground removal in Chapter 5. The details of estimating the instrument noise as projected onto a sky map is developed also developed. In particular, we address whether PIPER may be able to get significant science return with only a fraction of its planned flights by optimizing the order that the frequency bands are flown. Additionally, we look at how a spatially varying calibration gain error would affect measurements of the B-mode spectrum. Finally, a series of appendices presents the physics of SQUIDs, develops techniques for estimating noise of circuits and amplifiers, and introduces techniques from control systems. In addition, a few miscellaneous results used throughout the work are derived.
The Focal Plane Assembly for the Athena X-Ray Integral Field Unit Instrument
NASA Technical Reports Server (NTRS)
Jackson, B. D.; Van Weers, H.; van der Kuur, J.; den Hartog, R.; Akamatsu, H.; Argan, A.; Bandler, S. R.; Barbera, M.; Barret, D.; Bruijn, M. P.;
2016-01-01
This paper summarizes a preliminary design concept for the focal plane assembly of the X-ray Integral Field Unit on the Athena spacecraft, an imaging microcalorimeter that will enable high spectral resolution imaging and point-source spectroscopy. The instrument's sensor array will be a 3840-pixel transition edge sensor (TES) microcalorimeter array, with a frequency domain multiplexed SQUID readout system allowing this large-format sensor array to be operated within the thermal constraints of the instrument's cryogenic system. A second TES detector will be operated in close proximity to the sensor array to detect cosmic rays and secondary particles passing through the sensor array for off-line coincidence detection to identify and reject events caused by the in-orbit high-energy particle background. The detectors, operating at 55 mK, or less, will be thermally isolated from the instrument cryostat's 2 K stage, while shielding and filtering within the FPA will allow the instrument's sensitive sensor array to be operated in the expected environment during both on-ground testing and in-flight operation, including stray light from the cryostat environment, low-energy photons entering through the X-ray aperture, low-frequency magnetic fields, and high-frequency electric fields.
Jonction Josephson en couche épaisse d'oxydes supraconducteurs
NASA Astrophysics Data System (ADS)
Gunther, C.; Monfort, Y.; Sing, M. Lam Chok; Bloyet, D.; Brousse, T.; Provost, J.; Raveau, B.
1992-02-01
Constrictions engraved in YBaCuO thick films fabricated by screen printing on YSZ substrate (J_c>3 000 A/cm^2 at 77 K) have been studied. Microwave irradiation of the devices at LN2 showed distinct Shapiro steps demonstrating the presence intrinsic Josephson junctions. The latter have an I_c(T) dependence fitting (1-T/T_c)^2 characteristic of SNS junctions. Furthermore, dc SQUID effects have also been observed with a peak-to-peak response simeq 0.2 μV and with a magnetic field periodicity extending through several hundred of φ_0. An energy resolution close to 3× 10^{-29} J/Hz is estimated for our constriction operating in the white noise frequency range (f>50 Hz) at 77 K. This sensitivity is adequate to use this flux sensor in many applications : geomagnetism, magnetocardiology, ... Nous avons étudié des constrictions gravées dans des couches épaisses d'YBaCuO déposées sur substrat de YSZ (J_c>3 000 A/cm^2 à 77 K). L'observation de marches de Shapiro lors d'irradiations des échantillons à 77 K par un champ HF met clairement en évidence la présence de jonctions Josephson intrinsèques de type SNS, leur dépendance en température du courant critique étant en (1-T/T_c)^2. De plus, nous avons obtenu des réponses en champ magnétique, caractéristiques des SQUIDs dc, d'amplitude 0,2 μVcc et dont la périodicité s'étend sur plusieurs centaines de φ_0. La résolution en énergie est de l'ordre de 3× 10^{-29} J/Hz en zone de bruit blanc (f>50 Hz) à 77 K. Cette sensibilité est suffisante pour envisager son utilisation dans des applications telles que : géomagnétisme, magnétocardiologie, ...
Airborne full tensor magnetic gradiometry surveys in the Thuringian basin, Germany
NASA Astrophysics Data System (ADS)
Queitsch, M.; Schiffler, M.; Goepel, A.; Stolz, R.; Meyer, M.; Meyer, H.; Kukowski, N.
2013-12-01
In this contribution we introduce a newly developed fully operational full tensor magnetic gradiometer (FTMG) instrument based on Superconducting Quantum Interference Devices (SQUIDs) and show example data acquired in 2012 within the framework of the INFLUINS (Integrated Fluid Dynamics in Sedimentary basins) project. This multidisciplinary project aims for a better understanding of movements and interaction between shallow and deep fluids in the Thuringian Basin in the center of Germany. In contrast to mapping total magnetic field intensity (TMI) in conventional airborne magnetic surveys for industrial exploration of mineral deposits and sedimentary basins, our instrument measures all components of the magnetic field gradient tensor using highly sensitive SQUID gradiometers. This significantly constrains the solutions of the inverse problem. Furthermore, information on the ratio between induced and remanent magnetization is obtained. Special care has been taken to reduce motion noise while acquiring data in airborne operation. Therefore, the sensors are mounted in a nonmagnetic and aerodynamically shaped bird made of fiberglas with a high drag tail which stabilizes the bird even at low velocities. The system is towed by a helicopter and kept at 30m above ground during data acquisition. Additionally, the system in the bird incorporates an inertial unit for geo-referencing and enhanced motion noise compensation, a radar altimeter for topographic correction and a GPS system for high precision positioning. Advanced data processing techniques using reference magnetometer and inertial unit data result in a very low system noise of less than 60 pT/m peak to peak in airborne operation. To show the performance of the system we present example results from survey areas within the Thuringian basin and along its bordering highlands. The mapped gradient tensor components show a high correlation to existing geologic maps. Furthermore, the measured gradient components indicate that some of the observed magnetic anomalies have a strong remanent magnetization. One example of interpretation of the acquired data of a magnetic anomaly related to a larger gabbro formation is presented.
Busca, Alessandro; Falda, Michele; Manzini, Paola; D'Antico, Sergio; Valfrè, Adriano; Locatelli, Franco; Calabrese, Roberto; Chiappella, Annalisa; D'Ardia, Stefano; Longo, Filomena; Piga, Antonio
2010-01-01
Iron overload (IO) is a known adverse prognostic factor in patients who undergo allogeneic hematopoietic stem cell transplantation (HSCT) for thalassemia and appears to play a similar role in patients with other hematologic disorders. The estimation of IO is based primarily on serum ferritin level; however, many confounding factors can result in ferritin overestimation, especially in HSCT recipients. The aim of the present study was to quantify IO after HSCT using a superconducting quantum interference device (SQUID), and to evaluate the impact of IO on hepatic function and infections. In addition, the feasibility of iron depletion was investigated. A total of 102 consecutive allogeneic HSCT recipients admitted to our outpatient department between December 2005, and December 2007, were analyzed. Primary diagnosis included acute leukemia/myelodysplastic syndrome in 61% of cases. Assessment of IO after HSCT included serum ferritin; in those with hyperferritinemia (ferritin>1000 ng/mL), liver iron concentration (LIC) was evaluated by SQUID magnetic susceptometry. Iron removal therapy was offered to patients with moderate IO (LIC 1000-2000 microg Fe/g wet weight [ww]) or severe IO (LIC >2,000 microg Fe/g ww). Fifty-seven patients had a ferritin level <1000 ng/mL: the median time between HSCT and assessment of ferritin level was 1006 days (range, 93-5239 days), significantly different from the median time of 183 days (range, 78-2957 days) in the 45 patients with a ferritin level >1000 ng/mL. Out of 42 patients evaluated by SQUID, 29 had moderate to severe IO (median LIC value, 1493 microg Fe/g ww [range, 1030-3253]). In a multivariate analysis, a significant correlation was found between a ferritin level >1000 ng/mL and the presence of at least one abnormal liver function test (LFT) ORo=6.8; 95% CI=2.2-20.6). In addition, the rate of proven/probable invasive fungal disease was significantly higher in the patients with hyperferritinemia (13% vs 0%; P=.006). Nineteen of the 24 patients considered eligible for iron-depletion therapy underwent regular phlebotomy; 13 completed the program in a median of 287 days (range, 92-779 days), reaching the target of a ferritin level<500 ng/mL; LIC was significantly reduced (median, 1419 microg Fe/g ww to 625 microg Fe/g ww; P < .001) in 8 of the 9 patients who were revaluated by SQUID at the end of the iron-depletion program. In conclusion, the measurement of LIC obtained by SQUID documented the presence of moderate/severe IO in 69% of the patients with a high ferritin level. Our data showed that in HSCT recipients, high ferritin level is an independent risk factor for abnormal LFTs, and IO may be considered a potential risk factor for fungal infections. A phlebotomy program may be feasible in two-thirds of the patients who might benefit from iron depletion. Copyright (c) 2010 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
Flux trapping in multi-loop SQUIDs and its impact on SQUID-based absolute magnetometry
NASA Astrophysics Data System (ADS)
Schönau, T.; Zakosarenko, V.; Schmelz, M.; Anders, S.; Meyer, H.-G.; Stolz, R.
2018-07-01
The effect of flux trapping on the flux-voltage characteristics of multi-loop SQUID magnetometers was investigated by means of repeated cool-down cycles in a stepwise increased magnetic background field. For a SQUID with N parallel loops, N different flux offsets, each separated by {{{Φ }}}0/N, were observed even in zero magnetic field. These flux offsets further split into a so called fine structure, which can be explained by minor asymmetries in the SQUID design. The observed results are discussed with particular regard to their impact on the previously presented absolute SQUID cascade vector magnetometer.
Benoit-Bird, Kelly J; Gilly, William F; Au, Whitlow W L; Mate, Bruce
2008-03-01
This study presents the first target strength measurements of Dosidicus gigas, a large squid that is a key predator, a significant prey, and the target of an important fishery. Target strength of live, tethered squid was related to mantle length with values standardized to the length squared of -62.0, -67.4, -67.9, and -67.6 dB at 38, 70, 120, and 200 kHz, respectively. There were relatively small differences in target strength between dorsal and anterior aspects and none between live and freshly dead squid. Potential scattering mechanisms in squid have been long debated. Here, the reproductive organs had little effect on squid target strength. These data support the hypothesis that the pen may be an important source of squid acoustic scattering. The beak, eyes, and arms, probably via the sucker rings, also play a role in acoustic scattering though their effects were small and frequency specific. An unexpected source of scattering was the cranium of the squid which provided a target strength nearly as high as that of the entire squid though the mechanism remains unclear. Our in situ measurements of the target strength of free-swimming squid support the use of the values presented here in D. gigas assessment studies.
Zhu, Junli; Li, Jianrong; Jia, Jia
2012-09-01
Trimethylamine oxide (TMAO) in squid is demethylated to dimethylamine (DMA) and formaldehyde (FA) during storage and processing. This study examined the effects of thermal processing and various chemical substances on FA and DMA formation in squid. The thermal conversion of TMAO was assessed by analysing four squid and four gadoid fish species, which revealed that FA, DMA and trimethylamine (TMA) were gradually produced in squid, whereas TMA increased and FA decreased in gadoid fish. A significant increase in both FA and DMA levels was observed in the supernatant of jumbo squid with increased heating temperature and extended heating time at pH 6-7. Ferrous chloride combined with cysteine and/or ascorbate had a significantly positive effect on FA formation in the heated supernatant of jumbo squid. No significant difference was observed in the levels of Cu and Fe in squid and gadoid fish. The capability of Fe(2+) to promote the formation of FA and DMA was not completely attributable to its reducing power in squid. Non-enzymatic decomposition of TMAO was a key pathway during the thermal processing of jumbo squid, and Fe(2+) was a crucial activator in the formation of FA and DMA. Copyright © 2012 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Ladner, D. R.; Martinez-Galarce, D. S.; McCammon, D.
2006-04-01
An X-ray detection instrument to be flown on a sounding rocket experiment (the Advanced Technology Solar Spectroscopic Imager - ATSSI) for solar physics observations is being developed by the Lockheed Martin Solar and Astrophysics Laboratory (LMSAL). The detector is a novel class of microcalorimeter, a superconducting Transition-Edge Sensor (TES), that coupled with associated SQUID and feedback electronics requires high temperature stability at ~70 mK to resolve the energy of absorbed X-ray photons emitted from the solar corona. The cooling system incorporates an existing Adiabatic Demagnetization Refrigerator (ADR) developed at the University of Wisconsin (UW), which was previously flown to study the diffuse cosmic X-ray background. The Si thermistor detectors for that project required 130 K shielded JFET electronic components that are much less sensitive to the external field of the ADR solenoid than are the 1st (~70 mK) and 2nd (~2 K) SQUID stages used with TESs for solar observations. Modification of the Wisconsin ADR design, including TES focal plane and electronics re-positioning, therefore requires a tradeoff between the existing ADR solenoid nulling coil geometry and a low mass passive solenoid shield, while preserving the vibration isolation features of the existing design. We have developed models to accurately compute the magnetic field with and without shielding or nulling coils at critical locations to guide the re-design of the detector subsystem. The models and their application are described.
Individually Identifiable Surface Acoustic Wave Sensors, Tags and Systems
NASA Technical Reports Server (NTRS)
Hines, Jacqueline H. (Inventor); Solie, Leland P. (Inventor); Tucker, Dana Y. G. (Inventor); Hines, Andrew T. (Inventor)
2017-01-01
A surface-launched acoustic wave sensor tag system for remotely sensing and/or providing identification information using sets of surface acoustic wave (SAW) sensor tag devices is characterized by acoustic wave device embodiments that include coding and other diversity techniques to produce groups of sensors that interact minimally, reducing or alleviating code collision problems typical of prior art coded SAW sensors and tags, and specific device embodiments of said coded SAW sensor tags and systems. These sensor/tag devices operate in a system which consists of one or more uniquely identifiable sensor/tag devices and a wireless interrogator. The sensor device incorporates an antenna for receiving incident RF energy and re-radiating the tag identification information and the sensor measured parameter(s). Since there is no power source in or connected to the sensor, it is a passive sensor. The device is wirelessly interrogated by the interrogator.
Scanning SQUID Microscope and its Application in Detecting Weak Currents
NASA Astrophysics Data System (ADS)
Zhong, Chaorong; Li, Fei; Zhang, Fenghui; Ding, Hongsheng; Luo, Sheng; Lin, Dehua; He, Yusheng
A scanning SQUID microscope based on HTS dc SQUID has been developed. One of the applications of this microscope is to detect weak currents inside the sample. Considering that what being detected by the SQUID is the vertical component of the magnetic field on a plan where the SQUID lies, whereas the current which produces the magnetic field is actually located in a plan below the SQUID, a TWO PLAN model has been established. In this model Biot-Savart force laws and Fourier transformation were used to inverse the detected magnetic field into the underneath weak current. It has been shown that the distance between the current and the SQUID and the noise ratio of the experimental data have significant effects on the quality of the inverse process.
Alabia, Irene D; Saitoh, Sei-Ichi; Mugo, Robinson; Igarashi, Hiromichi; Ishikawa, Yoichi; Usui, Norihisa; Kamachi, Masafumi; Awaji, Toshiyuki; Seito, Masaki
2015-01-01
We identified the pelagic habitat hotspots of the neon flying squid (Ommastrephes bartramii) in the central North Pacific from May to July and characterized the spatial patterns of squid aggregations in relation to oceanographic features such as mesoscale oceanic eddies and the Transition Zone Chlorophyll-a Front (TZCF). The data used for the habitat model construction and analyses were squid fishery information, remotely-sensed and numerical model-derived environmental data from May to July 1999-2010. Squid habitat hotspots were deduced from the monthly Maximum Entropy (MaxEnt) models and were identified as regions of persistent high suitable habitat across the 12-year period. The distribution of predicted squid habitat hotspots in central North Pacific revealed interesting spatial and temporal patterns likely linked with the presence and dynamics of oceanographic features in squid's putative foraging grounds from late spring to summer. From May to June, the inferred patches of squid habitat hotspots developed within the Kuroshio-Oyashio transition zone (KOTZ; 37-40°N) and further expanded north towards the subarctic frontal zone (SAFZ; 40-44°N) in July. The squid habitat hotspots within the KOTZ and areas west of the dateline (160°W-180°) were likely influenced and associated with the highly dynamic and transient oceanic eddies and could possibly account for lower squid suitable habitat persistence obtained from these regions. However, predicted squid habitat hotspots located in regions east of the dateline (180°-160°W) from June to July, showed predominantly higher squid habitat persistence presumably due to their proximity to the mean position of the seasonally-shifting TZCF and consequent utilization of the highly productive waters of the SAFZ.
Design of Cryocoolers for Microwatt Superconducting Devices
NASA Technical Reports Server (NTRS)
Zimmerman, J. E.
1985-01-01
The primary applications of the cryocoolers are for cooling various Josephson devices such as SQUID magnetometers and amplifiers, voltage standards, and microwave mixers and detectors. The common feature of these devices is their extremely low inherent bias power requirement, of the order of 10/1 W per junction. This provides the possibility of designing compact, low-power cryocoolers for these applications. Several concepts were explored and a number of laboratory model cryocoolers were built. These include low-power nonmagnetic regenerative machines of the Stirling or Gifford-McMahon type, three or four-stage Joule-Thomson machines, liquid-helium dewars with integral small cryocoolers to reduce the evaporation rate, and liquid-helium dewars with integral continuously or intermittently operated small helium liquefiers to permit operation of cryogenic devices for indefinite time periods.
Allometry indicates giant eyes of giant squid are not exceptional.
Schmitz, Lars; Motani, Ryosuke; Oufiero, Christopher E; Martin, Christopher H; McGee, Matthew D; Gamarra, Ashlee R; Lee, Johanna J; Wainwright, Peter C
2013-02-18
The eyes of giant and colossal squid are among the largest eyes in the history of life. It was recently proposed that sperm whale predation is the main driver of eye size evolution in giant squid, on the basis of an optical model that suggested optimal performance in detecting large luminous visual targets such as whales in the deep sea. However, it is poorly understood how the eye size of giant and colossal squid compares to that of other aquatic organisms when scaling effects are considered. We performed a large-scale comparative study that included 87 squid species and 237 species of acanthomorph fish. While squid have larger eyes than most acanthomorphs, a comparison of relative eye size among squid suggests that giant and colossal squid do not have unusually large eyes. After revising constants used in a previous model we found that large eyes perform equally well in detecting point targets and large luminous targets in the deep sea. The eyes of giant and colossal squid do not appear exceptionally large when allometric effects are considered. It is probable that the giant eyes of giant squid result from a phylogenetically conserved developmental pattern manifested in very large animals. Whatever the cause of large eyes, they appear to have several advantages for vision in the reduced light of the deep mesopelagic zone.
NASA Astrophysics Data System (ADS)
Barrentine, Emily Margaret
In this thesis the development of a Transition-Edge Hot-Electron Microbolometer (THM) is presented. This detector will have the capacity to make sensitive and broadband astrophysical observations when deployed in large detector arrays in future ground- or space-based instruments, over frequencies ranging from 30-300 GHz (10-1 mm). This thesis focuses on the development of the THM for observations of the Cosmic Microwave Background (CMB), and specifically for observations of the CMB polarization signal. The THM is a micron-sized bolometer that is fabricated photolithographically. It consists of a superconducting Molybdenum/Gold Transition-Edge Sensor (TES) and a thin-film semi-metal Bismuth microwave absorber, both of which are deposited directly on the substrate. The THM employs the decoupling between electrons and phonons at low temperatures (˜100-300 mK) to provide thermal isolation for the bolometer. The devices are read out with Superconducting Quantum Interference Devices (SQUIDs). In this thesis a summary of the thermal and electrical models for the THM detector is presented. The physical processes within the detector, with particular attention to electron-phonon decoupling, and the lateral proximity effect between the superconducting leads and the TES, are also discussed. This understanding of the detector and these models are used to interpret measurements of thermal conductance, noise, responsivity and the transition behaviour of a variety of THM test devices. The optimization of the THM design, based on these models and measurements, is also discussed, and the thesis concludes with a presentation of the recommended THM design for CMB applications. In addition, a planar-microwave circuit design and a quasi-optical scheme for coupling microwave radiation to the THM detector are presented.
NASA Astrophysics Data System (ADS)
Claycomb, James Ronald
1998-10-01
Several High-T c Superconducting (HTS) eddy current probes have been developed for applications in electromagnetic nondestructive evaluation (NDE) of conducting materials. The probes utilize high-T c SUperconducting Quantum Interference Device (SQUID) magnetometers to detect the fields produced by the perturbation of induced eddy currents resulting from subsurface flaws. Localized HTS shields are incorporated to selectively screen out environmental electromagnetic interference and enable movement of the instrument in the Earth's magnetic field. High permeability magnetic shields are employed to focus flux into, and thereby increase the eddy current density in the metallic test samples. NDE test results are presented, in which machined flaws in aluminum alloy are detected by probes of different design. A novel current injection technique performing NDE of wires using SQUIDs is also discussed. The HTS and high permeability shields are designed based on analytical and numerical finite element method (FEM) calculations presented here. Superconducting and high permeability magnetic shields are modeled in uniform noise fields and in the presence of dipole fields characteristic of flaw signals. Several shield designs are characterized in terms of (1) their ability to screen out uniform background noise fields; (2) the resultant improvement in signal-to-noise ratio and (3) the extent to which dipole source fields are distorted. An analysis of eddy current induction is then presented for low frequency SQUID NDE. Analytical expressions are developed for the induced eddy currents and resulting magnetic fields produced by excitation sources above conducting plates of varying thickness. The expressions derived here are used to model the SQUID's response to material thinning. An analytical defect model is also developed, taking into account the attenuation of the defect field through the conducting material, as well as the current flow around the edges of the flaw. Time harmonic FEM calculations are then used to model the electromagnetic response of eight probe designs, consisting of an eddy current drive coil coupled to a SQUID surrounded by superconducting and/or high permeability magnetic shielding. Simulations are carried out with the eddy current probes located a finite distance above a conducting surface. Results are quantified in terms of shielding and focus factors for each probe design.
Sperm from sneaker male squids exhibit chemotactic swarming to CO₂.
Hirohashi, Noritaka; Alvarez, Luis; Shiba, Kogiku; Fujiwara, Eiji; Iwata, Yoko; Mohri, Tatsuma; Inaba, Kazuo; Chiba, Kazuyoshi; Ochi, Hiroe; Supuran, Claudiu T; Kotzur, Nico; Kakiuchi, Yasutaka; Kaupp, U Benjamin; Baba, Shoji A
2013-05-06
Behavioral traits of sperm are adapted to the reproductive strategy that each species employs. In polyandrous species, spermatozoa often form motile clusters, which might be advantageous for competing with sperm from other males. Despite this presumed advantage for reproductive success, little is known about how sperm form such functional assemblies. Previously, we reported that males of the coastal squid Loligo bleekeri produce two morphologically different euspermatozoa that are linked to distinctly different mating behaviors. Consort and sneaker males use two distinct insemination sites, one inside and one outside the female's body, respectively. Here, we show that sperm release a self-attracting molecule that causes only sneaker sperm to swarm. We identified CO2 as the sperm chemoattractant and membrane-bound flagellar carbonic anhydrase as its sensor. Downstream signaling results from the generation of extracellular H(+), intracellular acidosis, and recovery from acidosis. These signaling events elicit Ca(2+)-dependent turning behavior, resulting in chemotactic swarming. These results illuminate the bifurcating evolution of sperm underlying the distinct fertilization strategies of this species. Copyright © 2013 Elsevier Ltd. All rights reserved.
Development of Kilo-Pixel Arrays of Transition-Edge Sensors for X-Ray Spectroscopy
NASA Technical Reports Server (NTRS)
Adams, J. S.; Bandler, S. R.; Busch, S. E.; Chervenak, J. A.; Chiao, M. P.; Eckart, M. E.; Ewin, A. J.; Finkbeiner, F. M.; Kelley, R. L.; Kelly, D. P.;
2012-01-01
We are developing kilo-pixel arrays of transition-edge sensor (TES) microcalorimeters for future X-ray astronomy observatories or for use in laboratory astrophysics applications. For example, Athena/XMS (currently under study by the european space agency) would require a close-packed 32x32 pixel array on a 250-micron pitch with < 3.0 eV full-width-half-maximum energy resolution at 6 keV and at count-rates of up to 50 counts/pixel/second. We present characterization of 32x32 arrays. These detectors will be readout using state of the art SQUID based time-domain multiplexing (TDM). We will also present the latest results in integrating these detectors and the TDM readout technology into a 16 row x N column field-able instrument.
Magnetic relaxometry as applied to sensitive cancer detection and localization
De Haro, Leyma P.; Karaulanov, Todor; Vreeland, Erika C.; ...
2015-06-02
Abstract Here we describe superparamagnetic relaxometry (SPMR), a technology that utilizes highly sensitive magnetic sensors and superparamagnetic nanoparticles for cancer detection. Using SPMR, we sensitively and specifically detect nanoparticles conjugated to biomarkers for various types of cancer. SPMR offers high contrast In SPMR measurements, a brief magnetizing pulse is used to align superparamagnetic nanoparticles of a discrete size. Following the pulse, an array of superconducting quantum interference detectors (SQUID) sensors detect the decaying magnetization field. NP size is chosen so that, when bound, the induced field decays in seconds. They are functionalized with specific biomarkers and incubated with cancer cellsmore » As a result, superparamagnetic NPs developed here have small size dispersion. Cell incubation studies measure specificity for different cell lines and antibodies with very high contrast.« less
Portable data collection device with self identifying probe
French, P.D.
1998-11-17
The present invention provides a portable data collection device that has a variety of sensors that are interchangeable with a variety of input ports in the device. The various sensors include a data identification feature that provides information to the device regarding the type of physical data produced by each sensor and therefore the type of sensor itself. The data identification feature enables the device to locate the input port where the sensor is connected and self adjust when a sensor is removed or replaced. The device is able to collect physical data, whether or not a function of time. The sensor may also store a unique sensor identifier. 13 figs.
Portable data collection device with self identifying probe
French, Patrick D.
1998-01-01
The present invention provides a portable data collection device that has a variety of sensors that are interchangeable with a variety of input ports in the device. The various sensors include a data identification feature that provides information to the device regarding the type of physical data produced by each sensor and therefore the type of sensor itself. The data identification feature enables the device to locate the input port where the sensor is connected and self adjust when a sensor is removed or replaced. The device is able to collect physical data, whether or not a function of time. The sensor may also store a unique sensor identifier.
Germanium Resistance Thermometer For Subkelvin Temperatures
NASA Technical Reports Server (NTRS)
Castles, Stephen H.
1993-01-01
Improved germanium resistance thermometer measures temperatures as small as 0.01 K accurately. Design provides large area for electrical connections (to reduce electrical gradients and increase sensitivity to changes in temperatures) and large heat sink (to minimize resistance heating). Gold pads on top and bottom of germanium crystal distribute electrical current and flow of heat nearly uniformly across crystal. Less expensive than magnetic thermometers or superconducting quantum interference devices (SQUID's) otherwise used.
New technologies for the detection of millimeter and submillimeter waves
NASA Technical Reports Server (NTRS)
Richards, P. L.; Clarke, J.; Gildemeister, J. M.; Lanting, T.; Lee, A. T.
2001-01-01
Voltage-biased superconducting bolometers have many operational advantages over conventional bolometer technology including sensitivity, linearity, speed, and immunity from environmental disturbance. A review is given of the Berkeley program for developing this new technology. Developments include fully lithographed individual bolometers in the spiderweb configuration, arrays of 1024 close-packed absorber-coupled bolometers, antenna-coupled bolometers, and a frequency-domain SQUID (superconducting quantum interference device) readout multiplexer.
Non-perturbative measurement of low-intensity charged particle beams
NASA Astrophysics Data System (ADS)
Fernandes, M.; Geithner, R.; Golm, J.; Neubert, R.; Schwickert, M.; Stöhlker, T.; Tan, J.; Welsch, C. P.
2017-01-01
Non-perturbative measurements of low-intensity charged particle beams are particularly challenging to beam diagnostics due to the low amplitude of the induced electromagnetic fields. In the low-energy antiproton decelerator (AD) and the future extra low energy antiproton rings at CERN, an absolute measurement of the beam intensity is essential to monitor the operation efficiency. Superconducting quantum interference device (SQUID) based cryogenic current comparators (CCC) have been used for measuring slow charged beams in the nA range, showing a very good current resolution. But these were unable to measure fast bunched beams, due to the slew-rate limitation of SQUID devices and presented a strong susceptibility to external perturbations. Here, we present a CCC system developed for the AD machine, which was optimised in terms of its current resolution, system stability, ability to cope with short bunched beams, and immunity to mechanical vibrations. This paper presents the monitor design and the first results from measurements with a low energy antiproton beam obtained in the AD in 2015. These are the first CCC beam current measurements ever performed in a synchrotron machine with both coasting and short bunched beams. It is shown that the system is able to stably measure the AD beam throughout the entire cycle, with a current resolution of 30 {nA}.
Infrared-Bolometer Arrays with Reflective Backshorts
NASA Technical Reports Server (NTRS)
Miller, Timothy M.; Abrahams, John; Allen, Christine A.
2011-01-01
Integrated circuits that incorporate square arrays of superconducting-transition- edge bolometers with optically reflective backshorts are being developed for use in image sensors in the spectral range from far infrared to millimeter wavelengths. To maximize the optical efficiency (and, thus, sensitivity) of such a sensor at a specific wavelength, resonant optical structures are created by placing the backshorts at a quarter wavelength behind the bolometer plane. The bolometer and backshort arrays are fabricated separately, then integrated to form a single unit denoted a backshort-under-grid (BUG) bolometer array. In a subsequent fabrication step, the BUG bolometer array is connected, by use of single-sided indium bump bonding, to a readout device that comprises mostly a superconducting quantum interference device (SQUID) multiplexer circuit. The resulting sensor unit comprising the BUG bolometer array and the readout device is operated at a temperature below 1 K. The concept of increasing optical efficiency by use of backshorts at a quarter wavelength behind the bolometers is not new. Instead, the novelty of the present development lies mainly in several features of the design of the BUG bolometer array and the fabrication sequence used to implement the design. Prior to joining with the backshort array, the bolometer array comprises, more specifically, a square grid of free-standing molybdenum/gold superconducting-transition-edge bolometer elements on a 1.4- m-thick top layer of silicon that is part of a silicon support frame made from a silicon-on-insulator wafer. The backshort array is fabricated separately as a frame structure that includes support beams and contains a correspond - ing grid of optically reflective patches on a single-crystal silicon substrate. The process used to fabricate the bolometer array includes standard patterning and etching steps that result in the formation of deep notches in the silicon support frame. These notches are designed to interlock with the support beams on the backshort-array structure to provide structural support and precise relative positioning. The backshort-array structure is inserted in the silicon support frame behind the bolometer array, and the notches in the frame serve to receive the support beams of the backshort-array structure and thus determine the distance between the backshort and bolometer planes. The depth of the notches and, thus, the distance between the backshort and bolometer planes, can be tailored to a value between 25 to 300 m adjusting only a few process steps. The backshort array is designed so as not to interfere with the placement of indium bumps for subsequent indium bump-bonding to the multiplexing readout circuitry
Open quantum systems, effective Hamiltonians, and device characterization
NASA Astrophysics Data System (ADS)
Duffus, S. N. A.; Dwyer, V. M.; Everitt, M. J.
2017-10-01
High fidelity models, which are able to both support accurate device characterization and correctly account for environmental effects, are crucial to the engineering of scalable quantum technologies. As it ensures positivity of the density matrix, one preferred model of open systems describes the dynamics with a master equation in Lindblad form. In practice, Linblad operators are rarely derived from first principles, and often a particular form of annihilator is assumed. This results in dynamical models that miss those additional terms which must generally be added for the master equation to assume the Lindblad form, together with the other concomitant terms that must be assimilated into an effective Hamiltonian to produce the correct free evolution. In first principles derivations, such additional terms are often canceled (or countered), frequently in a somewhat ad hoc manner, leading to a number of competing models. Whilst the implications of this paper are quite general, to illustrate the point we focus here on an example anharmonic system; specifically that of a superconducting quantum interference device (SQUID) coupled to an Ohmic bath. The resulting master equation implies that the environment has a significant impact on the system's energy; we discuss the prospect of keeping or canceling this impact and note that, for the SQUID, monitoring the magnetic susceptibility under control of the capacitive coupling strength and the externally applied flux results in experimentally measurable differences between a number of these models. In particular, one should be able to determine whether a squeezing term of the form X ̂P ̂+P ̂X ̂ should be present in the effective Hamiltonian or not. If model generation is not performed correctly, device characterization will be prone to systemic errors.
Trophic niche of squids: Insights from isotopic data in marine systems worldwide
NASA Astrophysics Data System (ADS)
Navarro, Joan; Coll, Marta; Somes, Christoper J.; Olson, Robert J.
2013-10-01
Cephalopods are an important prey resource for fishes, seabirds, and marine mammals, and are also voracious predators on crustaceans, fishes, squid and zooplankton. Because of their high feeding rates and abundance, squids have the potential to exert control on the recruitment of commercially important fishes. In this review, we synthesize the available information for two intrinsic markers (δ15N and δ13C isotopic values) in squids for all oceans and several types of ecosystems to obtain a global view of the trophic niches of squids in marine ecosystems. In particular, we aimed to examine whether the trophic positions and trophic widths of squid species vary among oceans and ecosystem types. To correctly compare across systems, we adjusted squid δ15N values for the isotopic variability of phytoplankton at the base of the food web provided by an ocean circulation-biogeochemistry-isotope model. Studies that focused on the trophic ecology of squids using isotopic techniques were few, and most of the information on squids was from studies on their predators. Our results showed that squids occupy a large range of trophic positions and exploit a large range of trophic resources, reflecting the versatility of their feeding behavior and confirming conclusions from food-web models. Clear differences in both trophic position and trophic width were found among oceans and ecosystem types. The study also reinforces the importance of considering the natural variation in isotopic values when comparing the isotopic values of consumers inhabiting different ecosystems.
Statistical characterization of voltage-biased SQUIDs with weakly damped junctions
NASA Astrophysics Data System (ADS)
Liu, Chao; Zhang, Yi; Mück, Michael; Zhang, Shulin; Krause, Hans-Joachim; Braginski, Alex I.; Zhang, Guofeng; Wang, Yongliang; Kong, Xiangyan; Xie, Xiaoming; Offenhäusser, Andreas; Jiang, Mianheng
2013-06-01
Recently, it has been shown that voltage-biased readout of SQUIDs with weakly damped junctions (large Stewart-McCumber parameter βc, due to high shunt resistance) is useful for suppression of preamplifier noise. We experimentally studied the characteristics of 53 planar niobium-SQUID magnetometers with junction shunt resistors RJ nominally of 30 Ω fabricated on 5 × 5 mm2 chips. The field-to-flux transfer coefficient ∂B/∂Φ of the magnetometers was 1.5 nT/Φ0, with a SQUID loop inductance Ls of about 350 pH. The distributions of important SQUID parameters, such as the current swing Iswing, the dynamic resistance Rd, and the flux-to-voltage transfer coefficient ∂V/∂Φ, are given. Nearly all the SQUIDs could be stably operated in the voltage bias mode and their ∂V/∂Φ reached a large mean value of 380 μV/Φ0. In this case, the SQUIDs can be read out directly by a commercial operational amplifier without any additional means to suppress preamplifier noise. The mean flux noise of the SQUIDs was found to be 4.5 μΦ0 Hz-1/2, corresponding to a field resolution of 7 fT Hz-1/2. To demonstrate the applicability of these SQUIDs in the direct readout scheme, a simple four-channel SQUID gradiometer system was set up to perform magnetocardiography and magnetoencephalography measurements in a magnetically shielded room.
Alabia, Irene D.; Saitoh, Sei-Ichi; Mugo, Robinson; Igarashi, Hiromichi; Ishikawa, Yoichi; Usui, Norihisa; Kamachi, Masafumi; Awaji, Toshiyuki; Seito, Masaki
2015-01-01
We identified the pelagic habitat hotspots of the neon flying squid (Ommastrephes bartramii) in the central North Pacific from May to July and characterized the spatial patterns of squid aggregations in relation to oceanographic features such as mesoscale oceanic eddies and the Transition Zone Chlorophyll-a Front (TZCF). The data used for the habitat model construction and analyses were squid fishery information, remotely-sensed and numerical model-derived environmental data from May to July 1999–2010. Squid habitat hotspots were deduced from the monthly Maximum Entropy (MaxEnt) models and were identified as regions of persistent high suitable habitat across the 12-year period. The distribution of predicted squid habitat hotspots in central North Pacific revealed interesting spatial and temporal patterns likely linked with the presence and dynamics of oceanographic features in squid’s putative foraging grounds from late spring to summer. From May to June, the inferred patches of squid habitat hotspots developed within the Kuroshio-Oyashio transition zone (KOTZ; 37–40°N) and further expanded north towards the subarctic frontal zone (SAFZ; 40–44°N) in July. The squid habitat hotspots within the KOTZ and areas west of the dateline (160°W-180°) were likely influenced and associated with the highly dynamic and transient oceanic eddies and could possibly account for lower squid suitable habitat persistence obtained from these regions. However, predicted squid habitat hotspots located in regions east of the dateline (180°-160°W) from June to July, showed predominantly higher squid habitat persistence presumably due to their proximity to the mean position of the seasonally-shifting TZCF and consequent utilization of the highly productive waters of the SAFZ. PMID:26571118
An efficient calibration method for SQUID measurement system using three orthogonal Helmholtz coils
NASA Astrophysics Data System (ADS)
Hua, Li; Shu-Lin, Zhang; Chao-Xiang, Zhang; Xiang-Yan, Kong; Xiao-Ming, Xie
2016-06-01
For a practical superconducting quantum interference device (SQUID) based measurement system, the Tesla/volt coefficient must be accurately calibrated. In this paper, we propose a highly efficient method of calibrating a SQUID magnetometer system using three orthogonal Helmholtz coils. The Tesla/volt coefficient is regarded as the magnitude of a vector pointing to the normal direction of the pickup coil. By applying magnetic fields through a three-dimensional Helmholtz coil, the Tesla/volt coefficient can be directly calculated from magnetometer responses to the three orthogonally applied magnetic fields. Calibration with alternating current (AC) field is normally used for better signal-to-noise ratio in noisy urban environments and the results are compared with the direct current (DC) calibration to avoid possible effects due to eddy current. In our experiment, a calibration relative error of about 6.89 × 10-4 is obtained, and the error is mainly caused by the non-orthogonality of three axes of the Helmholtz coils. The method does not need precise alignment of the magnetometer inside the Helmholtz coil. It can be used for the multichannel magnetometer system calibration effectively and accurately. Project supported by the “Strategic Priority Research Program (B)” of the Chinese Academy of Sciences (Grant No. XDB04020200) and the Shanghai Municipal Science and Technology Commission Project, China (Grant No. 15DZ1940902).
Ultra-high sensitivity moment magnetometry of geological samples using magnetic microscopy
NASA Astrophysics Data System (ADS)
Lima, Eduardo A.; Weiss, Benjamin P.
2016-09-01
Useful paleomagnetic information is expected to be recorded by samples with moments up to three orders of magnitude below the detection limit of standard superconducting rock magnetometers. Such samples are now detectable using recently developed magnetic microscopes, which map the magnetic fields above room-temperature samples with unprecedented spatial resolutions and field sensitivities. However, realizing this potential requires the development of techniques for retrieving sample moments from magnetic microscopy data. With this goal, we developed a technique for uniquely obtaining the net magnetic moment of geological samples from magnetic microscopy maps of unresolved or nearly unresolved magnetization. This technique is particularly powerful for analyzing small, weakly magnetized samples such as meteoritic chondrules and terrestrial silicate crystals like zircons. We validated this technique by applying it to field maps generated from synthetic sources and also to field maps measured using a superconducting quantum interference device (SQUID) microscope above geological samples with moments down to 10-15 Am2. For the most magnetic rock samples, the net moments estimated from the SQUID microscope data are within error of independent moment measurements acquired using lower sensitivity standard rock magnetometers. In addition to its superior moment sensitivity, SQUID microscope net moment magnetometry also enables the identification and isolation of magnetic contamination and background sources, which is critical for improving accuracy in paleomagnetic studies of weakly magnetic samples.
Hand Held Device for Wireless Powering and Interrogation of Biomems Sensors and Actuators
NASA Technical Reports Server (NTRS)
Simons, Rainee N (Inventor); Miranda, Felix Antonio (Inventor)
2007-01-01
A compact, hand-held device for wireless powering, interrogation and data retrieval from at least one implanted sensor. The hand-held device includes an antenna for powering an implanted sensor and for receiving data from the implanted sensor to the hand-held device for at least one of storage, display or analysis. The hand-held device establishes electromagnetic coupling with a low radiating radio frequency power inductor in the implanted sensor at a predefined separation and the antenna geometry allows for the antenna to power, interrogate and retrieve data from the implanted sensor without strapping the hand-held device to a human body housing the implanted sensor The hand-held device optionally allows for activation of the implanted sensor only during interrogation and data retrieval.
Mismatch between the eye and the optic lobe in the giant squid.
Liu, Yung-Chieh; Liu, Tsung-Han; Yu, Chun-Chieh; Su, Chia-Hao; Chiao, Chuan-Chin
2017-07-01
Giant squids ( Architeuthis ) are a legendary species among the cephalopods. They live in the deep sea and are well known for their enormous body and giant eyes. It has been suggested that their giant eyes are not adapted for the detection of either mates or prey at distance, but rather are best suited for monitoring very large predators, such as sperm whales, at distances exceeding 120 m and at a depth below 600 m (Nilsson et al. 2012 Curr. Biol. 22 , 683-688. (doi:10.1016/j.cub.2012.02.031)). However, it is not clear how the brain of giant squids processes visual information. In this study, the optic lobe of a giant squid ( Architeuthis dux , male, mantle length 89 cm), which was caught by local fishermen off the northeastern coast of Taiwan, was scanned using high-resolution magnetic resonance imaging in order to examine its internal structure. It was evident that the volume ratio of the optic lobe to the eye in the giant squid is much smaller than that in the oval squid ( Sepioteuthis lessoniana ) and the cuttlefish ( Sepia pharaonis ). Furthermore, the cell density in the cortex of the optic lobe is significantly higher in the giant squid than in oval squids and cuttlefish, with the relative thickness of the cortex being much larger in Architeuthis optic lobe than in cuttlefish. This indicates that the relative size of the medulla of the optic lobe in the giant squid is disproportionally smaller compared with these two cephalopod species. This morphological study of the giant squid brain, though limited only to the optic lobe, provides the first evidence to support that the optic lobe cortex, the visual information processing area in cephalopods, is well developed in the giant squid. In comparison, the optic lobe medulla, the visuomotor integration centre in cephalopods, is much less developed in the giant squid than other species. This finding suggests that, despite the giant eye and a full-fledged cortex within the optic lobe, the brain of giant squids has not evolved proportionally in terms of performing complex tasks compared with shallow-water cephalopod species.
Distributed Antenna-Coupled TES for FIR Detectors Arrays
NASA Technical Reports Server (NTRS)
Day, Peter K.; Leduc, Henry G.; Dowell, C. Darren; Lee, Richard A.; Zmuidzinas, Jonas
2007-01-01
We describe a new architecture for a superconducting detector for the submillimeter and far-infrared. This detector uses a distributed hot-electron transition edge sensor (TES) to collect the power from a focal-plane-filling slot antenna array. The sensors lay directly across the slots of the antenna and match the antenna impedance of about 30 ohms. Each pixel contains many sensors that are wired in parallel as a single distributed TES, which results in a low impedance that readily matches to a multiplexed SQUID readout These detectors are inherently polarization sensitive, with very low cross-polarization response, but can also be configured to sum both polarizations. The dual-polarization design can have a bandwidth of 50The use of electron-phonon decoupling eliminates the need for micro-machining, making the focal plane much easier to fabricate than with absorber-coupled, mechanically isolated pixels. We discuss applications of these detectors and a hybridization scheme compatible with arrays of tens of thousands of pixels.
Photon-Number-Resolving Transition-Edge Sensors for the Metrology of Quantum Light Sources
NASA Astrophysics Data System (ADS)
Schmidt, M.; von Helversen, M.; López, M.; Gericke, F.; Schlottmann, E.; Heindel, T.; Kück, S.; Reitzenstein, S.; Beyer, J.
2018-05-01
Low-temperature photon-number-resolving detectors allow for direct access to the photon number distribution of quantum light sources and can thus be exploited to explore the photon statistics, e.g., solid-state-based non-classical light sources. In this work, we report on the setup and calibration of a detection system based on fiber-coupled tungsten transition-edge sensors (W-TESs). Our stand-alone system comprises two W-TESs, read out by two 2-stage-SQUID current sensors, operated in a compact detector unit that is integrated in an adiabatic demagnetization refrigerator. Fast low-noise analog amplifiers and digitizers are used for signal acquisition. The detection efficiency of the single-mode fiber-coupled detector system in the spectral region of interest (850-950 nm) is determined to be larger than 87 %. The presented detector system opens up new routes in the characterization of quantum light sources for quantum information, quantum-enhanced sensing and quantum metrology.
SQUID magnetometry from nanometer to centimeter length scales
NASA Astrophysics Data System (ADS)
Hatridge, Michael Jonathan
Information stored in magnetic fields plays an important role in everyday life. This information exists over a remarkably wide range of sizes, so that magnetometry at a variety of length scales can extract useful information. Examples at centimeter to millimeter length scales include measurement of spatial and temporal character of fields generated in the human brain and heart, and active manipulation of spins in the human body for non-invasive magnetic resonance imaging (MRI). At micron length scales, magnetometry can be used to measure magnetic objects such as flux qubits; at nanometer length scales it can be used to study individual magnetic domains, and even individual spins. The development of Superconducting QUantum Interference Device (SQUID) based magnetometer for two such applications, in vivo prepolarized, ultra-low field MRI of humans and dispersive readout of SQUIDs for micro- and nanoscale magnetometry, are the focus of this thesis. Conventional MRI has developed into a powerful clinical tool for imaging the human body. This technique is based on nuclear magnetic resonance of protons with the addition application of three-dimensional magnetic field gradients to encode spatial information. Most clinical MRI systems involve magnetic fields generated by superconducting magnets, and the current trend is to higher magnetic fields than the widely used 1.5-T systems. Nonetheless, there is ongoing interest in the development of less expensive imagers operating at lower fields. The prepolarized, SQUID detected ultra-low field MRI (ULF MRI) developed by the Clarke group allows imaging in very weak fields (typically 132 muT, corresponding to a resonant frequency of 5.6 kHz). At these low field strengths, there is enhanced contrast in the longitudinal relaxation time of various tissue types, enabling imaging of objects which are not visible to conventional MRI, for instance prostate cancer. We are currently investigating the contrast between normal and cancerous prostate tissue in ex vivo prostate specimens in collaboration with the UCSF Genitourinary Oncology/Prostate SPORE Tissue Core. In characterizing pairs of nominally normal and cancerous tissue, we measure a marked difference in the longitudinal relaxation times, with an average value of cancerous tissue 0.66 times shorter than normal prostate tissue. However, in vivo imaging is required to definitively demonstrate the feasibility of ULF MR imaging of prostate cancer. To that end, we have worked to improve the performance of the system to facilitate human imaging. This is accomplished by increasing the prepolarizing field amplitude, and minimizing magnetic noise in the SQUID detector. We have achieved polarizing fields as high as 150 mT and SQUID effective field noise below 1 fT Hz-1/2, enabling us to demonstrate proof-of-principle in vivo images of the human forearm with 2 x 2 x 10 mm3 resolution in 6 minutes. On a much smaller spatial scale, there is currently fundamental and technological interest in measuring and manipulating nanoscale magnets, particularly in the quantum coherent regime. The observation of the dynamics of such systems requires a magnetometer with not only exceptional sensitivity but also high gain, wide bandwidth and low backaction. We demonstrate a dispersive magnetometer consisting of a two-junction SQUID in parallel with an integrated, lumped-element capacitor. Input flux signals are encoded as a phase modulation of the microwave drive tone applied to the magnetometer, resulting in a single quadrature voltage signal. For strong drive power, the nonlinearity of the resonator results in quantum limited, phase sensitive parametric amplification of this signal. We have achieved a bandwidth of 20 MHz---approximately two orders of magnitude higher than dispersive devices of comparable sensitivity---with an effective flux noise of 0.29 muphi0 Hz-12 . This performance is in excellent agreement with our theoretical model.
Sensor sentinel computing device
Damico, Joseph P.
2016-08-02
Technologies pertaining to authenticating data output by sensors in an industrial environment are described herein. A sensor sentinel computing device receives time-series data from a sensor by way of a wireline connection. The sensor sentinel computing device generates a validation signal that is a function of the time-series signal. The sensor sentinel computing device then transmits the validation signal to a programmable logic controller in the industrial environment.
Portable data collection device
French, P.D.
1996-06-11
The present invention provides a portable data collection device that has a variety of sensors that are interchangeable with a variety of input ports in the device. The various sensors include a data identification feature that provides information to the device regarding the type of physical data produced by each sensor and therefore the type of sensor itself. The data identification feature enables the device to locate the input port where the sensor is connected and self adjust when a sensor is removed or replaced. The device is able to collect physical data, whether or not a function of a time. 7 figs.
Portable data collection device
French, Patrick D.
1996-01-01
The present invention provides a portable data collection device that has a variety of sensors that are interchangeable with a variety of input ports in the device. The various sensors include a data identification feature that provides information to the device regarding the type of physical data produced by each sensor and therefore the type of sensor itself. The data identification feature enables the device to locate the input port where the sensor is connected and self adjust when a sensor is removed or replaced. The device is able to collect physical data, whether or not a function of a time.
NASA Astrophysics Data System (ADS)
Winarni Agustini, Tri; Hadiyanto; Wijayanti, Ima; Amalia, Ulfah; Benjakul, Soottawat
2018-02-01
Antioxidant could be extracted and isolated from squid inks. Squid ink in the form of melanin free ink (MFI) could be act as an electron donor which can stabilize free radicals in lipid oxidation. This study was carried out to assess the antioxidant activity of squid inks converted into MFI in different dilution and to optimize the extraction conditions for the application of MFI as an antioxidative agent on fish product. Three different types of MFI extracts i.e : pure squid ink, squid ink with 5 times dilution and squid ink with 10 times dilutions by using cooled ionized water (4°C). The ink was then centrifuged at 18.000 x g for 30 minutes at cooled centrifuge (4°C) followed by DPPH analysis. The results showed that the IC50 of MFI extracts were 2.84 ppm; 1.11 ppm and 0.34 ppm, respectively (p < 0.05). The results indicated that squid ink with 10 times dilution in extraction of MFI had the highest value in free radical inhibitory. Although the IC50 of three different dilutions are equally low, and are considered as very strong antioxidative agent, however, it showed that the MFI extracted from squid ink had the ability to prevent free radical
Multiplexed HTS rf SQUID magnetometer array for eddy current testing of aircraft rivet joints
NASA Astrophysics Data System (ADS)
Gärtner, S.; Krause, H.-J.; Wolters, N.; Lomparski, D.; Wolf, W.; Schubert, J.; Kreutzbruck, M. v.; Allweins, K.
2002-05-01
Using three rf SQUID magnetometers, a multiplexed SQUID array was implemented. The SQUIDs are positioned in line with 7 mm spacing and operated using one feedback electronics with sequential read out demodulation at different radio frequencies (rf). The cross-talk between SQUID channels was determined to be negligible. To show the performance of the SQUID array, eddy current (EC) measurements of aluminum aircraft samples in conjunction with a differential (double-D) EC excitation and lock-in readout were carried out. With computer-controlled continuous switching of the SQUIDs during the scan, three EC signal traces of the sample are obtained simultaneously. We performed measurements with an EC excitation frequency of 135 Hz to localize an artificial crack (sawcut flaw) of 20 mm length in an aluminum sheet with 0.6 mm thickness. The flaw was still detected when covered with aluminum of up to 10 mm thickness. In addition, measurements with varying angles between scanning direction and flaw orientation are presented.
Proposal for a transmon-based quantum router.
Sala, Arnau; Blaauboer, M
2016-07-13
We propose an implementation of a quantum router for microwave photons in a superconducting qubit architecture consisting of a transmon qubit, SQUIDs and a nonlinear capacitor. We model and analyze the dynamics of operation of the quantum switch using quantum Langevin equations in a scattering approach and compute the photon reflection and transmission probabilities. For parameters corresponding to up-to-date experimental devices we predict successful operation of the router with probabilities above 94%.
NASA Astrophysics Data System (ADS)
Raj, C. Justin; Rajesh, Murugesan; Manikandan, Ramu; Yu, Kook Hyun; Anusha, J. R.; Ahn, Jun Hwan; Kim, Dong-Won; Park, Sang Yeup; Kim, Byung Chul
2018-05-01
Activated carbon containing nitrogen functionalities exhibits excellent electrochemical property which is more interesting for several renewable energy storage and catalytic applications. Here, we report the synthesis of microporous oxygen and nitrogen doped activated carbon utilizing chitin from the gladius of squid fish. The activated carbon has large surface area of 1129 m2 g-1 with microporous network and possess ∼4.04% of nitrogen content in the form of pyridinic/pyrrolic-N, graphitic-N and N-oxide groups along with oxygen and carbon species. The microporous oxygen/nitrogen doped activated carbon is utilize for the fabrication of aqueous and flexible supercapacitor electrodes, which presents excellent electrochemical performance with maximum specific capacitance of 204 Fg-1 in 1 M H2SO4 electrolyte and 197 Fg-1 as a flexible supercapacitor. Moreover, the device displays 100% of specific capacitance retention after 25,000 subsequent charge/discharge cycles in 1 M H2SO4 electrolyte.
SQUID-Detected MRI in the Limit of Zero Static Field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelso, Nathan Dean
2009-12-14
This thesis describes an implementation of the so-called"zero-field MRI" (ZFMRI) pulse sequence, which allows for imaging in an arbitrarily low B 0 field. The ZFMRI sequence created an effective unidirectional gradient field by using a train of pi pulses to average out the concomitant gradient components during encoding. The signals were acquired using a low-transition temperature dc Superconducting QUantum Interference Device (low-Tc dc SQUID) coupled to a first-order axial gradiometer. The experiments were carried out in a liquid helium dewar which was magnetically shielded with a single-layer mu-metal can around the outside and a superconducting Pb can contained within themore » helium space. We increased the filling factor of the custom-made, double-walled Pyrex insert by placing the liquid alcohol sample, at a temperature of approximately -50 degrees C, at the center of one loop of the superconducting gradiometer, which was immersed in the helium bath.« less
NASA Astrophysics Data System (ADS)
Sakakura, Hibiki; Kim, Jun-Seop; Takeda, Mahoto
2018-03-01
We have investigated the influence of magnetic interactions on the microstructural evolution of nano-scale granular precipitates formed spontaneously in an annealed Cu-20at%Ni-5at%Co alloy and the associated changes of magnetic properties. The techniques used included transmission electron microscopy, superconducting quantum interference device (SQUID) magnetometry, magneto-thermogravimetry (MTG), and first-principles calculations based on the method of Koster-Korringa-Rostker with the coherent potential approximation. Our work has revealed that the nano-scale spherical and cubic precipitates which formed on annealing at 873 K and 973 K comprise mainly cobalt and nickel with a small amount of copper, and are arranged in the 〈1 0 0〉 direction of the copper matrix. The SQUID and MTG measurements suggest that magnetic properties such as coercivity and Curie temperature are closely correlated with the microstructure. The combination of results suggests that magnetic interactions between precipitates during annealing can explain consistently the observed precipitation phenomena.
Magnetic cooling for microkelvin nanoelectronics on a cryofree platform.
Palma, M; Maradan, D; Casparis, L; Liu, T-M; Froning, F N M; Zumbühl, D M
2017-04-01
We present a parallel network of 16 demagnetization refrigerators mounted on a cryofree dilution refrigerator aimed to cool nanoelectronic devices to sub-millikelvin temperatures. To measure the refrigerator temperature, the thermal motion of electrons in a Ag wire-thermalized by a spot-weld to one of the Cu nuclear refrigerators-is inductively picked-up by a superconducting gradiometer and amplified by a SQUID mounted at 4 K. The noise thermometer as well as other thermometers are used to characterize the performance of the system, finding magnetic field independent heat-leaks of a few nW/mol, cold times of several days below 1 mK, and a lowest temperature of 150 μK of one of the nuclear stages in a final field of 80 mT, close to the intrinsic SQUID noise of about 100 μK. A simple thermal model of the system capturing the nuclear refrigerator, heat leaks, and thermal and Korringa links describes the main features very well, including rather high refrigerator efficiencies typically above 80%.
Analytical balance-based Faraday magnetometer
NASA Astrophysics Data System (ADS)
Riminucci, Alberto; Uhlarz, Marc; De Santis, Roberto; Herrmannsdörfer, Thomas
2017-03-01
We introduce a Faraday magnetometer based on an analytical balance in which we were able to apply magnetic fields up to 0.14 T. We calibrated it with a 1 mm Ni sphere previously characterized in a superconducting quantum interference device (SQUID) magnetometer. The proposed magnetometer reached a theoretical sensitivity of 3 × 10-8 A m2. We demonstrated its operation on magnetic composite scaffolds made of poly(ɛ-caprolactone)/iron-doped hydroxyapatite. To confirm the validity of the method, we measured the same scaffold properties in a SQUID magnetometer. The agreement between the two measurements was within 5% at 0.127 T and 12% at 24 mT. With the addition, for a small cost, of a permanent magnet and computer controlled linear translators, we were thus able to assemble a Faraday magnetometer based on an analytical balance, which is a virtually ubiquitous instrument. This will make simple but effective magnetometry easily accessible to most laboratories, in particular, to life sciences ones, which are increasingly interested in magnetic materials.
Nondegenerate parametric oscillations in a tunable superconducting resonator
NASA Astrophysics Data System (ADS)
Bengtsson, Andreas; Krantz, Philip; Simoen, Michaël; Svensson, Ida-Maria; Schneider, Ben; Shumeiko, Vitaly; Delsing, Per; Bylander, Jonas
2018-04-01
We investigate nondegenerate parametric oscillations in a superconducting microwave multimode resonator that is terminated by a superconducting quantum interference device (SQUID). The parametric effect is achieved by modulating magnetic flux through the SQUID at a frequency close to the sum of two resonator-mode frequencies. For modulation amplitudes exceeding an instability threshold, self-sustained oscillations are observed in both modes. The amplitudes of these oscillations show good quantitative agreement with a theoretical model. The oscillation phases are found to be correlated and exhibit strong fluctuations which broaden the oscillation spectral linewidths. These linewidths are significantly reduced by applying a weak on-resonant tone, which also suppresses the phase fluctuations. When the weak tone is detuned, we observe synchronization of the oscillation frequency with the frequency of the input. For the detuned input, we also observe an emergence of three idlers in the output. This observation is in agreement with theory indicating four-mode amplification and squeezing of a coherent input.
NASA Astrophysics Data System (ADS)
Lees, A.; Koettig, T.; Fernandes, M.; Tan, J.
2017-02-01
The Cryogenic Current Comparator (CCC) is installed in the low-energy Antiproton Decelerator (AD) at CERN to make an absolute measurement of the beam intensity. Operating below 4.2 K, it is based on a superconducting quantum interference device (SQUID) and employs a superconducting niobium shield to supress magnetic field components not linked to the beam current. The AD contains no permanent cryogenic infrastructure so the local continuous liquefaction of helium using a pulse-tube is required; limiting the available cooling power to 0.69 W at 4.2K. Due to the sensitivity of the SQUID to variations in magnetic fields, the CCC is highly sensitive to mechanical vibration which is limited to a minimum by the support systems of the cryostat. This article presents the cooling system of the cryostat and discusses the design challenges overcome to minimise the transmission of vibration to the CCC while operating within the cryogenic limits imposed by the cooling system.
NASA Technical Reports Server (NTRS)
2009-01-01
Topics covered include: Direct-Solve Image-Based Wavefront Sensing; Use of UV Sources for Detection and Identification of Explosives; Using Fluorescent Viruses for Detecting Bacteria in Water; Gradiometer Using Middle Loops as Sensing Elements in a Low-Field SQUID MRI System; Volcano Monitor: Autonomous Triggering of In-Situ Sensors; Wireless Fluid-Level Sensors for Harsh Environments; Interference-Detection Module in a Digital Radar Receiver; Modal Vibration Analysis of Large Castings; Structural/Radiation-Shielding Epoxies; Integrated Multilayer Insulation; Apparatus for Screening Multiple Oxygen-Reduction Catalysts; Determining Aliasing in Isolated Signal Conditioning Modules; Composite Bipolar Plate for Unitized Fuel Cell/Electrolyzer Systems; Spectrum Analyzers Incorporating Tunable WGM Resonators; Quantum-Well Thermophotovoltaic Cells; Bounded-Angle Iterative Decoding of LDPC Codes; Conversion from Tree to Graph Representation of Requirements; Parallel Hybrid Vehicle Optimal Storage System; and Anaerobic Digestion in a Flooded Densified Leachbed.
Anderson, E J; DeMont, M E
2000-09-01
High-speed, high-resolution digital video recordings of swimming squid (Loligo pealei) were acquired. These recordings were used to determine very accurate swimming kinematics, body deformations and mantle cavity volume. The time-varying squid profile was digitized automatically from the acquired swimming sequences. Mantle cavity volume flow rates were determined under the assumption of axisymmetry and the condition of incompressibility. The data were then used to calculate jet velocity, jet thrust and intramantle pressure, including unsteady effects. Because of the accurate measurements of volume flow rate, the standard use of estimated discharge coefficients was avoided. Equations for jet and whole-cycle propulsive efficiency were developed, including a general equation incorporating unsteady effects. Squid were observed to eject up to 94 % of their intramantle working fluid at relatively high swimming speeds. As a result, the standard use of the so-called large-reservoir approximation in the determination of intramantle pressure by the Bernoulli equation leads to significant errors in calculating intramantle pressure from jet velocity and vice versa. The failure of this approximation in squid locomotion also implies that pressure variation throughout the mantle cannot be ignored. In addition, the unsteady terms of the Bernoulli equation and the momentum equation proved to be significant to the determination of intramantle pressure and jet thrust. Equations of propulsive efficiency derived for squid did not resemble Froude efficiency. Instead, they resembled the equation of rocket motor propulsive efficiency. The Froude equation was found to underestimate the propulsive efficiency of the jet period of the squid locomotory cycle and to overestimate whole-cycle propulsive efficiency when compared with efficiencies calculated from equations derived with the squid locomotory apparatus in mind. The equations for squid propulsive efficiency reveal that the refill period of squid plays a greater role, and the jet period a lesser role, in the low whole-cycle efficiencies predicted in squid and similar jet-propelled organisms. These findings offer new perspectives on locomotory hydrodynamics, intramantle pressure measurements and functional morphology with regard to squid and other jet-propelled organisms.
NASA Astrophysics Data System (ADS)
Robinson, C. J.; Gomez-Gutierrez, J.
2016-02-01
Dosidicus gigas (jumbo squid) is an ecologically relevant predator in the Gulf of California, Mexico, where it supports an economically valuable fishery. The commercial jumbo squid fishery in the Gulf declined steeply after an El Niño event in 2009-2010, and subsequent landings have remained at historically low levels in the relevant squid fishing centers (Guaymas, Sonora, and Santa Rosalia, Baja California Sur). In this paper, we examined wind speed and satellite chlorophyll a concentrations on the jumbo squid fishing grounds as factors that would be expected to be relevant to this prolonged period of low landings. Analysis from local weather stations, remote sensing and fishery data showed that low jumbo squid landings from 2010 to 2015 occurred during a period abnormally weak winter/spring winds and extremely low chlorophyll a concentrations off the East Guaymas Basin. Results indicate that the squid fishing area in the Guaymas region has been chronically impoverished during this period, and that this area may no longer be a productive habitat for jumbo squid. In response to this decreased productivity, size-at-maturity of jumbo squid showed a drastic decrease over the same period. Results are compared with the effect of El Niño 1997-1998 on the jumbo squid fishery and size-at-maturity of this species in the Gulf of California. The key difference between the recovery phases for El Niño 1997-1998 versus El Niño2009-2010 was the wind intensity as measured in the Guaymas fishing area.
Gas sensor protection device and method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyd, David; Magera, Craig
A gas sensor includes a sensor housing and a sensing element located within the sensor housing. The sensing element has a distal end and defines an axis. The gas sensor also includes a sensor protection device coupled to the sensor housing and at least partially surrounding the distal end of the sensing element. The sensor protection device includes a first member coupled to the housing, the first member having a generally rectangular cross-sectional shape in a plane perpendicular to the axis. The first member includes a gas inlet and a gas outlet. The sensor protection device also includes a secondmore » member coupled to the housing.« less
Galitsopoulou, A; Georgantelis, D; Kontominas, M G
2009-01-01
Cadmium (Cd) levels were determined in 70 samples of mantle tissue and 70 whole individual squid (Loligo opalescens; commercially known as California squid). Samples were collected from the coastal zones of California (USA) during the period 2007/2008. To further investigate consumer exposure to processed fishery products, cadmium concentration was also determined in 200 canned samples of squid. Cd concentrations in raw mantle were low, between 0.01 and 0.29 mg kg(-1) and below the tolerance limit of current regulations (1 mg kg(-1)). Respective concentrations in whole individuals were significantly higher, ranging from 0.51 to 1.18 mg kg(-1), attributed to the presence of the visceral portion in whole squid samples. Cd concentrations varied in relation to age and sex of squid, indicating that several physiological factors may influence accumulation. Furthermore, canning of squid substantially enhanced Cd levels. Cd concentration ranged 0.17-0.67 mg kg(-1) in canned mantle tissue and 0.86-2.07 mg kg(-1) in canned whole squid samples, due to both concentration after canning and movement of the metal between different tissues. Several biological compounds, including metallothioneins, nucleic acids and enzymes, may affect Cd concentrations in commercial fishery products.
Large format imaging arrays for the Atacama Cosmology Telescope
NASA Technical Reports Server (NTRS)
Chervenak, J. A.; Wollack, E. J.; Marraige, T.; Staggs, S.; Niemack, M.; Doriese, B.
2006-01-01
We describe progress in the fabrication, characterization, and production of detector arrays for the Atacama Cosmology Telescope (ACT). The completed ACT instrument is specified to image simultaneously at 145, 225, and 265 GHz using three 32x32 filled arrays of superconducting transition edge sensors (TES) read out with time-division-multiplexed SQUID amplifiers. We present details of the pixel design and testing including the optimization of the electrical parameters for multiplexed readout. Using geometric noise suppression and careful tuning of operation temperature and device bias resistance, the excess noise in the TES devices is balanced with detector speed for interfacing with the ACT optics. The design also accounts for practical tolerances such as transition temperature gradients and scatter that occur in the production of multiple wafers to populate fully the kilopixel cameras. We have developed an implanted absorber layer compatible with our silicon-on-insulator process that allows for tunable optical resistance with requisite on-wafer uniformity and wafer-to-wafer reproducibility. Arrays of 32 elements have been tested in the laboratory environment including electrical, optical, and multiplexed performance. Given this pixel design, optical tests and modeling are used to predict the performance of the filled array under anticipated viewing conditions. Integration of the filled array of pixels with a tuned backshort and dielectric plate in front of the array maximize absorption and the focal plane and suppress reflections. A mechanical design for the build of the full structure is completed and we report on progress toward the construction of a prototype array for first light on the ACT.
Magnetoencephalographic accuracy profiles for the detection of auditory pathway sources.
Bauer, Martin; Trahms, Lutz; Sander, Tilmann
2015-04-01
The detection limits for cortical and brain stem sources associated with the auditory pathway are examined in order to analyse brain responses at the limits of the audible frequency range. The results obtained from this study are also relevant to other issues of auditory brain research. A complementary approach consisting of recordings of magnetoencephalographic (MEG) data and simulations of magnetic field distributions is presented in this work. A biomagnetic phantom consisting of a spherical volume filled with a saline solution and four current dipoles is built. The magnetic fields outside of the phantom generated by the current dipoles are then measured for a range of applied electric dipole moments with a planar multichannel SQUID magnetometer device and a helmet MEG gradiometer device. The inclusion of a magnetometer system is expected to be more sensitive to brain stem sources compared with a gradiometer system. The same electrical and geometrical configuration is simulated in a forward calculation. From both the measured and the simulated data, the dipole positions are estimated using an inverse calculation. Results are obtained for the reconstruction accuracy as a function of applied electric dipole moment and depth of the current dipole. We found that both systems can localize cortical and subcortical sources at physiological dipole strength even for brain stem sources. Further, we found that a planar magnetometer system is more suitable if the position of the brain source can be restricted in a limited region of the brain. If this is not the case, a helmet-shaped sensor system offers more accurate source estimation.
Energy storage management system with distributed wireless sensors
Farmer, Joseph C.; Bandhauer, Todd M.
2015-12-08
An energy storage system having a multiple different types of energy storage and conversion devices. Each device is equipped with one or more sensors and RFID tags to communicate sensor information wirelessly to a central electronic management system, which is used to control the operation of each device. Each device can have multiple RFID tags and sensor types. Several energy storage and conversion devices can be combined.
30 CFR 75.1103-3 - Automatic fire sensor and warning device systems; minimum requirements; general.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-3 Automatic fire sensor and warning device systems; minimum requirements; general. Automatic fire sensor and warning device systems installed in belt haulageways of...
30 CFR 75.1103-3 - Automatic fire sensor and warning device systems; minimum requirements; general.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-3 Automatic fire sensor and warning device systems; minimum requirements; general. Automatic fire sensor and warning device systems installed in belt haulageways of...
30 CFR 75.1103-3 - Automatic fire sensor and warning device systems; minimum requirements; general.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-3 Automatic fire sensor and warning device systems; minimum requirements; general. Automatic fire sensor and warning device systems installed in belt haulageways of...
30 CFR 75.1103-3 - Automatic fire sensor and warning device systems; minimum requirements; general.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-3 Automatic fire sensor and warning device systems; minimum requirements; general. Automatic fire sensor and warning device systems installed in belt haulageways of...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-4 Automatic fire sensor and warning device systems; installation; minimum requirements. (a) Effective December 31, 2009, automatic fire sensor and warning device...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-4 Automatic fire sensor and warning device systems; installation; minimum requirements. (a) Effective December 31, 2009, automatic fire sensor and warning device...
Superconducting transition edge sensors and methods for design and manufacture thereof
NASA Technical Reports Server (NTRS)
Sadleir, John E. (Inventor)
2013-01-01
Methods for forming sensors using transition edge sensors (TES) and sensors therefrom are described. The method includes forming a plurality of sensor arrays includes at least one TES device. The TES device includes a TES device body, a first superconducting lead contacting a first portion of the TES device body, and a second superconducting lead contacting of a second portion of the TES device body, where the first and second superconducting leads separated on the TES device body by a lead spacing. The lead spacing can be selected to be different for at least two of the plurality of sensor arrays. The method also includes determining a transition temperature for each of the plurality of sensor arrays and generating a signal responsive to detecting a change in the electrical characteristics of one of the plurality of sensor arrays meeting a transition temperature criterion.
Design of Magnetic Shielding and Field Coils for a TES X-Ray Microcalorimeter Test Platform
NASA Technical Reports Server (NTRS)
Miniussi, Antoine R.; Adams, Joseph S.; Bandler, Simon R.; Chervenak, James A.; Datesman, Aaron M.; Doriese, William B.; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Richard L.; Kilbourne, Caroline A.;
2017-01-01
The performance of Transition-Edge Sensors (TES) and their SQUID multiplexed read-outs are very sensitive to the ambient magnetic field from Earth and fluctuations that can arise due to fluctuating magnetic fields outside of the focal plane assembly from the Adiabatic Demagnetization Refrigerator (ADR).Thus, the experimental platform we are building to test the FPA of the X-ray Integral Field Unit (X-IFU) of the Athena mission needs to include a series of shields and a coil in order to meet the following requirement of magnetic field density and uniformity.
Non-invasive detection of language-related prefrontal high gamma band activity with beamforming MEG.
Hashimoto, Hiroaki; Hasegawa, Yuka; Araki, Toshihiko; Sugata, Hisato; Yanagisawa, Takufumi; Yorifuji, Shiro; Hirata, Masayuki
2017-10-27
High gamma band (>50 Hz) activity is a key oscillatory phenomenon of brain activation. However, there has not been a non-invasive method established to detect language-related high gamma band activity. We used a 160-channel whole-head magnetoencephalography (MEG) system equipped with superconducting quantum interference device (SQUID) gradiometers to non-invasively investigate neuromagnetic activities during silent reading and verb generation tasks in 15 healthy participants. Individual data were divided into alpha (8-13 Hz), beta (13-25 Hz), low gamma (25-50 Hz), and high gamma (50-100 Hz) bands and analysed with the beamformer method. The time window was consecutively moved. Group analysis was performed to delineate common areas of brain activation. In the verb generation task, transient power increases in the high gamma band appeared in the left middle frontal gyrus (MFG) at the 550-750 ms post-stimulus window. We set a virtual sensor on the left MFG for time-frequency analysis, and high gamma event-related synchronization (ERS) induced by a verb generation task was demonstrated at 650 ms. In contrast, ERS in the high gamma band was not detected in the silent reading task. Thus, our study successfully non-invasively measured language-related prefrontal high gamma band activity.
Characterization of Kilopixel TES detector arrays for PIPER
NASA Astrophysics Data System (ADS)
Datta, Rahul; Ade, Peter; Benford, Dominic; Bennett, Charles; Chuss, David; Costen, Nicholas; Coughlin, Kevin; Dotson, Jessie; Eimer, Joseph; Fixsen, Dale; Gandilo, Natalie; Halpern, Mark; Essinger-Hileman, Thomas; Hilton, Gene; Hinshaw, Gary; Irwin, Kent; Jhabvala, Christine; Kimball, Mark; Kogut, Al; Lazear, Justin; Lowe, Luke; Manos, George; McMahon, Jeff; Miller, Timothy; Mirel, Paul; Moseley, Samuel Harvey; Pawlyk, Samuel; Rodriguez, Samelys; Sharp, Elmer; Shirron, Peter; Staguhn, Johannes G.; Sullivan, Dan; Switzer, Eric; Taraschi, Peter; Tucker, Carole; Walts, Alexander; Wollack, Edward
2018-01-01
The Primordial Inflation Polarization ExploreR (PIPER) is a balloon-borne instrument optimized to measure the polarization of the Cosmic Microwave Background (CMB) at large angular scales. It will map 85% of the sky in four frequency bands centered at 200, 270, 350, and 600 GHz to characterize dust foregrounds and constrain the tensor-to-scalar ratio, r. The sky is imaged on to 32x40 pixel arrays of time-domain multiplexed Transition-Edge Sensor (TES) bolometers operating at a bath temperature of 100 mK to achieve background-limited sensitivity. Each kilopixel array is indium-bump-bonded to a 2D superconducting quantum interference device (SQUID) time-domain multiplexer (MUX) chip and read out by warm electronics. Each pixel measures total incident power over a frequency band defined by bandpass filters in front of the array, while polarization sensitivity is provided by the upstream Variable-delay Polarization Modulators (VPMs) and analyzer grids. We present measurements of the detector parameters from the laboratory characterization of the first kilopixel science array for PIPER including transition temperature, saturation power, thermal conductivity, time constant, and noise performance. We also describe the testing of the 2D MUX chips, optimization of the integrated readout parameters, and the overall pixel yield of the array. The first PIPER science flight is planned for June 2018 from Palestine, Texas.
1992-08-17
Conclusions. Key personnel planned and administered the 193-nm lithography SBIR workshop on May 7, 1992 as well as planned the GaAs Insertion...converters can use Josephson junctions (JJ) to improve performance. Superconductive quantum interference devices (SQUIDs), such as JJs, are used to form...forward control of a lithography stepper. Mark Conner at Booz-Allen has copies of the charts. You should take a few minutes to review them. I asked Costos
Asymmetric planar gradiometer for rejection of uniform ambient magnetic noise
Dantsker, Eugene; Clarke, John
2000-01-01
An asymmetric planar gradiometer for use in making biomagnetic measurements. The gradiometer is formed from a magnetometer which is inductively-coupled to the smaller of two connected loops patterned in a superconducting film which form a flux transformer. The magnetometer is based on a SQUID formed from a high T.sub.c superconducting material. The flux transformer and magnetometer may be formed on separate substrates, allowing the baseline to be increased relative to presently available devices.
Detection of bacteria in suspension using a superconducting Quantum interference device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grossman, H.L.; Myers, W.R.; Vreeland, V.J.
2003-06-09
We demonstrate a technique for detecting magnetically-labeled Listeria monocytogenes and for measuring the binding rate between antibody-linked magnetic particles and bacteria. This assay, which is both sensitive and straightforward to perform, can quantify specific bacteria in a sample without the need to immobilize the bacteria or wash away unbound magnetic particles. In the measurement, we add 50 nm diameter superparamagnetic particles, coated with antibodies, to a liquid sample containing L. monocytogenes. We apply a pulsed magnetic field to align the magnetic dipole moments and use a high transition temperature Superconducting Quantum Interference Device (SQUID), an extremely sensitive detector of magneticmore » flux, to measure the magnetic relaxation signal when the field is turned off. Unbound particles randomize direction by Brownian rotation too quickly to be detected. In contrast, particles bound to L. monocytogenes are effectively immobilized and relax in about 1 s by rotation of the internal dipole moment. This Neel relaxation process is detected by the SQUID. The measurements indicate a detection limit of (5.6 {+-} 1.1) x 10{sup 6} L. monocytogenes for a 20 {micro}L sample volume. If the sample volume were reduced to 1 nL, we estimate that the detection limit could be improved to 230 {+-} 40 L. monocytogenes cells. Time-resolved measurements yield the binding rate between the particles and bacteria.« less
Biosensing utilizing magnetic markers and superconducting quantum interference devices
NASA Astrophysics Data System (ADS)
Enpuku, Keiji; Tsujita, Yuya; Nakamura, Kota; Sasayama, Teruyoshi; Yoshida, Takashi
2017-05-01
Magnetic biosensing techniques that are based on the use of bio-functionalized magnetic nanoparticles (magnetic markers) and superconducting quantum interference devices (SQUIDs) are expected to have various advantages when compared with conventional biosensing methods. In this paper, we review the recent progress made in magnetic biosensing techniques. First, we describe the most important parameters of magnetic markers that are intended for use in biosensing, i.e., the magnetic signal and the relaxation time that are determined by the Brownian and/or Néel relaxation mechanisms. We note that these parameters are significantly dependent on the marker size, and as a result, commercial markers exhibit a wide variety of values for these key parameters. Next, we describe three measurement methods that have been developed based on the magnetic properties of these markers, i.e., AC susceptibility, relaxation and remanence-based measurement methods. The weak (picotesla-range) signals emitted by the markers can be measured precisely with a SQUID system using these methods. Finally, we give examples of biosensing for in vitro and in vivo medical diagnosis applications. For in vitro diagnosis, high-sensitivity detection of various biological targets has been demonstrated without use of any washing process to separate the bound and free markers. For in vivo applications, detection of the quantities and the three-dimensional positions of the markers that have been injected into the test subject are demonstrated. These results confirm the effectiveness of magnetic biosensing techniques.
Multilayer MgB{sub 2} superconducting quantum interference filter magnetometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galan, Elias; Melbourne, Thomas; Davidson, Bruce A.
2016-04-25
We report two types of all-MgB{sub 2} superconductive quantum interference filter (SQIF) magnetometers that can measure absolute magnetic fields with high sensitivity. In one configuration, the SQIFs were made of 20 multilayer nonplanar all-MgB{sub 2} superconducting quantum interference devices (SQUIDs) connected in parallel with loop areas ranging in size from 0.4 to 3.6 μm{sup 2}. These devices are sensitive to magnetic fields parallel to the substrate and show a single antipeak from 3 to 16 K with a maximum transfer function of ∼16 V/T at 3 K and a field noise of ∼110 pT/Hz{sup 1/2} above 100 Hz at 10 K. In a second configuration, themore » SQIFs were made with 16 planar SQUIDs connected in parallel with loop areas ranging in size from 4 μm{sup 2} to 25 μm{sup 2} and are sensitive to the magnetic fields perpendicular to the substrate. The planar SQIF shows a single antipeak from 10 to 22 K with a maximum transfer function of 7800 V/T at 10 K and a field noise of ∼70 pT/Hz{sup 1/2} above 100 Hz at 20 K.« less
The UT 19-channel DC SQUID based neuromagnetometer.
ter Brake, H J; Flokstra, J; Jaszczuk, W; Stammis, R; van Ancum, G K; Martinez, A; Rogalla, H
1991-01-01
A 19-channel DC SQUID based neuromagnetometer is under construction at the University of Twente (UT). Except for the cryostat all elements of the system are developed at the UT. It comprises 19 wire-wound first-order gradiometers in a hexagonal configuration. The gradiometers are connected to planar DC SQUIDs fabricated with a Nb/Al, AlO kappa/Nb technology. For this connection we developed a method to bond a Nb wire to a Nb thin-film. The SQUIDs are placed in compartmentalised Nb modules. Further, external feedback is incorporated in order to eliminate cross talk between the gradiometers. The electronics basically consist of a phase-locked loop operating with a modulation frequency of 100 kHz. Between SQUID and preamplifier a small transformer is used to limit the noise contribution of the preamplifier. In the paper the overall system is described, and special attention is paid to the SQUID module (bonding, compartments, external-feedback setup, output transformer).
Biofunctional Properties of Enzymatic Squid Meat Hydrolysate
Choi, Joon Hyuk; Kim, Kyung-Tae; Kim, Sang Moo
2015-01-01
Squid is one of the most important commercial fishes in the world and is mainly utilized or consumed as sliced raw fish or as processed products. The biofunctional activities of enzymatic squid meat hydrolysate were determined to develop value-added products. Enzymatic squid hydrolysate manufactured by Alcalase effectively quenched 1,1-diphenyl-2-picrylhydrazyl radical, hydroxyl radical, and hydrogen peroxide radical with IC50 values of 311, 3,410, and 111.5 μg/mL, respectively. Angiotensin I-converting enzyme inhibitory activity of squid hydrolysate was strong with an IC50 value of 145.1 μg/mL, while tyrosinase inhibitory activity with an IC50 value of 4.72 mg/mL was moderately low. Overall, squid meat hydrolysate can be used in food or cosmetic industries as a bioactive ingredient and possibly be used in the manufacture of seasoning, bread, noodle, or cosmetics. PMID:25866752
A tunable microstrip SQUID amplifier for the Axion Dark Matter eXperiment (ADMX)
NASA Astrophysics Data System (ADS)
O'Kelley, Sean; Hansen, Jorn; Weingarten, Elan; Mueck, Michael; Hilton, Gene; Clarke, John
2014-03-01
We describe a microstrip SQUID (Superconducting QUantum Interference Device) amplifier (MSA) used as the photon detector in the Axion Dark Matter eXperiment (ADMX). Cooled to 100 mK or lower, an optimized MSA approaches the quantum limit of detection. The axion dark matter is detected via Primakoff conversion to a microwave photon in a high-Q (~ 105) tunable microwave cavity, currently cooled to about 1.6 K, in the presence of a 7-tesla magnetic field. The MSA consists of a square loop of thin Nb film, incorporating two Josephson tunnel junctions with resistive shunts to prevent hysteresis in the current-voltage characteristic. The microstrip is a square Nb coil deposited over an intervening insulating layer. Since the photon frequency is determined by the unknown axion mass, the cavity and amplifier must be tunable over a broad frequency range. Tunability is achieved by terminating the microstrip with a GaAs varactor diode with a voltage-controlled capacitance that enables us to vary the resonance from nearly 1/2 to 1/4 of a wavelength. With the SQUID current-biased in the voltage state, we demonstrate a gain of typically 20 dB over nearly one octave, 415 MHz to 800 MHz. Supported by DOE Grants DE-FG02-97ER41029, DE-FG02-96ER40956, DE-AC52-07NA27344, DE-AC03-76SF00098, NSF grants PHY-1067242 and PHY-1306729, and the Livermore LDRD program.
Impact of SQUIDs on functional imaging in neuroscience
NASA Astrophysics Data System (ADS)
Della Penna, Stefania; Pizzella, Vittorio; Romani, Gian Luca
2014-04-01
This paper provides an overview on the basic principles and applications of magnetoencephalography (MEG), a technique that requires the use of many SQUIDs and thus represents one of the most important applications of superconducting electronics. Since the development of the first SQUID magnetometers, it was clear that these devices could be used to measure the ultra-low magnetic signals associated with the bioelectric activity of the neurons of the human brain. Forty years on from the first measurement of magnetic alpha rhythm by David Cohen, MEG has become a fundamental tool for the investigation of brain functions. The simple localization of cerebral sources activated by sensory stimulation performed in the early years has been successively expanded to the identification of the sequence of neuronal pool activations, thus decrypting information of the hierarchy underlying cerebral processing. This goal has been achieved thanks to the development of complex instrumentation, namely whole head MEG systems, allowing simultaneous measurement of magnetic fields all over the scalp with an exquisite time resolution. The latest trends in MEG, such as the study of brain networks, i.e. how the brain organizes itself in a coherent and stable way, are discussed. These sound applications together with the latest technological developments aimed at implementing systems able to record MEG signals and magnetic resonance imaging (MRI) of the head with the same set-up pave the way to high performance systems for brain functional investigation in the healthy and the sick population.
Development of multichannel MEG system at IGCAR
NASA Astrophysics Data System (ADS)
Mariyappa, N.; Parasakthi, C.; Gireesan, K.; Sengottuvel, S.; Patel, Rajesh; Janawadkar, M. P.; Radhakrishnan, T. S.; Sundar, C. S.
2013-02-01
We describe some of the challenging aspects in the indigenous development of the whole head multichannel magnetoencephalography (MEG) system at IGCAR, Kalpakkam. These are: i) fabrication and testing of a helmet shaped sensor array holder of a polymeric material experimentally tested to be compatible with liquid helium temperatures, ii) the design and fabrication of the PCB adapter modules, keeping in mind the inter-track cross talk considerations between the electrical leads used to provide connections from SQUID at liquid helium temperature (4.2K) to the electronics at room temperature (300K) and iii) use of high resistance manganin wires for the 86 channels (86×8 leads) essential to reduce the total heat leak which, however, inevitably causes an attenuation of the SQUID output signal due to voltage drop in the leads. We have presently populated 22 of the 86 channels, which include 6 reference channels to reject the common mode noise. The whole head MEG system to cover all the lobes of the brain will be progressively assembled when other three PCB adapter modules, presently under fabrication, become available. The MEG system will be used for a variety of basic and clinical studies including localization of epileptic foci during pre-surgical mapping in collaboration with neurologists.
Magnetic properties of Cu80Co20 and Cu80Co15Fe5 melt-spun ribbons
NASA Astrophysics Data System (ADS)
Rubinstein, Mark; Harris, V. G.; Das, B. N.; Koon, N. C.
1994-11-01
The magnetic properties of granular, annealed, melt-spun ribbons of the ``giant'' magnetoresistors, Cu80Co20 and Cu80Co15Fe5, have been studied by a variety of techniques. These include x-ray dfiffraction, electron microscopy, ferromagnetic resonance, SQUID magnetometry, Mössbauer-effect spectroscopy, and magnetoresistance. We utilize each of these measurements to reveal different aspects of the particle size distribution as a function of annealing temperatures. These melt-spun alloys require large magnetic fields for magnetic saturation, impairing their utility as magnetic sensors. However, the properties of melt-spun ribbons provide an understanding of why all granular magnetic materials are difficult to saturate. The magnetoresistance ratio of these alloys is maximized by a 500 °C anneal with Δρ/ρ~=14% at 4.2 K. The paramagnetic fraction determined by SQUID magnetometry at 4.2 K is 33% for this annealing temperature. The paramagnetic fraction determined by Mössbauer spectroscopy is 14% for samples annealed by 500 °C, and vanishes when the sample is annealed at 900 °C. The discrepancy between the two measurements of the paramagnetic fraction is due to the vastly different averaging times of the two techniques.
NASA Astrophysics Data System (ADS)
Wikus, P.; Doriese, W. B.; Eckart, M. E.; Adams, J. S.; Bandler, S. R.; Brekosky, R. P.; Chervenak, J. A.; Ewin, A. J.; Figueroa-Feliciano, E.; Finkbeiner, F. M.; Galeazzi, M.; Hilton, G.; Irwin, K. D.; Kelley, R. L.; Kilbourne, C. A.; Leman, S. W.; McCammon, D.; Porter, F. S.; Reintsema, C. D.; Rutherford, J. M.; Trowbridge, S. N.
2009-12-01
The Micro-X sounding rocket experiment will deploy an imaging transition-edge-sensor (TES) microcalorimeter spectrometer to observe astrophysical sources in the 0.2-3.0 keV band. The instrument has been designed at a systems level, and the first items of flight hardware are presently being built. In the first flight, planned for January 2011, the spectrometer will observe a recently discovered Silicon knot in the Puppis-A supernova remnant. Here we describe the design of the Micro-X science instrument, focusing on the instrument's detector and detector assembly. The current design of the 2-dimensional spectrometer array contains 128 close-packed pixels with a pitch of 600 μm. The conically approximated Wolter-1 mirror will map each of these pixels to a 0.95 arcmin region on the sky; the field of view will be 11.4 arcmin. Targeted energy resolution of the TESs is about 2 eV over the full observing band. A SQUID time-division multiplexer (TDM) will read out the array. The detector time constants will be engineered to approximately 2 ms to match the TDM, which samples each pixel at 32.6 kHz, limited only by the telemetry system of the rocket. The detector array and two SQUID stages of the TDM readout system are accommodated in a lightweight Mg enclosure, which is mounted to the 50 mK stage of an adiabatic demagnetization refrigerator. A third SQUID amplification stage is located on the 1.6 K liquid He stage of the cryostat. An on-board 55-Fe source will fluoresce a Ca target, providing 3.69 and 4.01 keV calibration lines that will not interfere with the scientifically interesting energy band.
NASA Astrophysics Data System (ADS)
Marhoubi, Asmaa H.; Saravi, Sara; Edirisinghe, Eran A.
2015-05-01
The present generation of mobile handheld devices comes equipped with a large number of sensors. The key sensors include the Ambient Light Sensor, Proximity Sensor, Gyroscope, Compass and the Accelerometer. Many mobile applications are driven based on the readings obtained from either one or two of these sensors. However the presence of multiple-sensors will enable the determination of more detailed activities that are carried out by the user of a mobile device, thus enabling smarter mobile applications to be developed that responds more appropriately to user behavior and device usage. In the proposed research we use recent advances in machine learning to fuse together the data obtained from all key sensors of a mobile device. We investigate the possible use of single and ensemble classifier based approaches to identify a mobile device's behavior in the space it is present. Feature selection algorithms are used to remove non-discriminant features that often lead to poor classifier performance. As the sensor readings are noisy and include a significant proportion of missing values and outliers, we use machine learning based approaches to clean the raw data obtained from the sensors, before use. Based on selected practical case studies, we demonstrate the ability to accurately recognize device behavior based on multi-sensor data fusion.
Potential aerospace applications of high temperature superconductors
NASA Technical Reports Server (NTRS)
Selim, Raouf
1994-01-01
The recent discovery of High Temperature Superconductors (HTS) with superconducting transition temperature, T(sub c), above the boiling point of liquid nitrogen has opened the door for using these materials in new and practical applications. These materials have zero resistance to electric current, have the capability of carrying large currents and as such have the potential to be used in high magnetic field applications. One of the space applications that can use superconductors is electromagnetic launch of payloads to low-earth-orbit. An electromagnetic gun-type launcher can be used in small payload systems that are launched at very high velocity, while sled-type magnetically levitated launcher can be used to launch larger payloads at smaller velocities. Both types of launchers are being studied by NASA and the aerospace industry. The use of superconductors will be essential in any of these types of launchers in order to produce the large magnetic fields required to obtain large thrust forces. Low Temperature Superconductor (LTS) technology is mature enough and can be easily integrated in such systems. As for the HTS, many leading companies are currently producing HTS coils and magnets that potentially can be mass-produced for these launchers. It seems that designing and building a small-scale electromagnetic launcher is the next logical step toward seriously considering this method for launching payloads into low-earth-orbit. A second potential application is the use of HTS to build sensitive portable devices for the use in Non Destructive Evaluation (NDE). Superconducting Quantum Interference Devices (SQUID's) are the most sensitive instruments for measuring changes in magnetic flux. By using HTS in SQUID's, one will be able to design a portable unit that uses liquid nitrogen or a cryocooler pump to explore the use of gradiometers or magnetometers to detect deep cracks or corrosion in structures. A third use is the replacement of Infra-Red (IR) sensor leads on Earth Orbit Systems (EOS) with HTS leads. IR detectors on these EOS missions are cooled to a 4.2K to improve their signal to noise ratio. They are connected to data acquisitions systems using manganin wires (low thermal conductors) to reduce the heat load on the cryogen. Replacing these wires with HTS leads will increase the lifetime of these missions by about 50 percent. This is a promising application that is ready for actual implementation on such systems. The analysis also show that an the number of IR detectors increase in larger EOS systems, substantial increase in the lifetime of each mission will be realized by using HTS leads instead of the manganin ones.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-8 Automatic fire sensor and warning device systems; examination and test requirements. (a) Automatic fire sensor and warning device systems shall be examined at...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-8 Automatic fire sensor and warning device systems; examination and test requirements. (a) Automatic fire sensor and warning device systems shall be examined at...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-8 Automatic fire sensor and warning device systems; examination and test requirements. (a) Automatic fire sensor and warning device systems shall be examined at...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-8 Automatic fire sensor and warning device systems; examination and test requirements. (a) Automatic fire sensor and warning device systems shall be examined at...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-8 Automatic fire sensor and warning device systems; examination and test requirements. (a) Automatic fire sensor and warning device systems shall be examined at...
Gong, Yi; Li, Yunkai; Chen, Xinjun; Chen, Ling
2018-04-15
Squid is an important seafood resource for Asian and European countries. With the continuous development of processed squid products, an effective traceability system has become increasingly prominent. Here, we attempt to trace the fishery products of the main target species, jumbo squid (Dosidicus gigas), by using biochemical tracers. Carbon and nitrogen isotope ratios (δ 13 C and δ 15 N values) and fatty acid profiles were identified in squid from three harvest locations in the eastern Pacific Ocean by isotope ratio mass spectrometry and gas chromatography/mass spectrometry, respectively. Comparative analysis was used to evaluate the geographic variations in tracers and to identify the suitable discriminatory variables among origins. Significant spatial variations were found in isotopic values and fatty acid profiles in squid muscle tissues, possibly because of different food availability and/or oceanographic conditions that each group experiences at a given location. The stepwise discriminant analysis indicated that δ 15 N, C16:1n7, C17:1n7, C18:2n6, C20:1 and C20:4n6 were effective variables at differentiating origin. Combined use of stable isotope ratios and fatty acid analyses could trace geographic origins of jumbo squid. This study provides an alternative approach for improving authenticity evaluation of commercial squid products. Copyright © 2018 John Wiley & Sons, Ltd.
Timing of squid migration reflects North Atlantic climate variability.
Sims, D W; Genner, M J; Southward, A J; Hawkins, S J
2001-12-22
The environmental and biotic conditions affecting fisheries for cephalopods are only partially understood. A problem central to this is how climate change may influence population movements by altering the availability of thermal resources. In this study we investigate the links between climate and sea-temperature changes and squid arrival time off southwestern England over a 20-year period. We show that veined squid (Loligo forbesi) migrate eastward in the English Channel earlier when water in the preceding months is warmer, and that higher temperatures and early arrival correspond with warm (positive) phases of the North Atlantic oscillation (NAO). The timing of squid peak abundance advanced by 120-150 days in the warmest years ('early' years) compared with the coldest ('late' years). Furthermore, sea-bottom temperature was closely linked to the extent of squid movement. Temperature increases over the five months prior to and during the month of peak squid abundance did not differ between early and late years, indicating squid responded to temperature changes independently of time of year. We conclude that the temporal variation in peak abundance of squid seen off Plymouth represents temperature-dependent movement, which is in turn mediated by climatic changes associated with the NAO. Such climate-mediated movement may be a widespread characteristic of cephalopod populations worldwide, and may have implications for future fisheries management because global warming may alter both the timing and location of peak population abundance.
Therapeutic Significance of Loligo vulgaris (Lamarck, 1798) ink Extract: A Biomedical Approach.
Nadarajah, Sri Kumaran; Vijayaraj, Radha; Mani, Jayaprakashvel
2017-12-01
The squid ink extract is well known for its biomedical properties. In this study, squid Loligo vulgaris was collected from Tuticorin costal water, Bay of Bengal, India. Proximate composition of the crude squid ink was studied and found to have protein as the major component over lipid and carbohydrates. Further, bioactive fractions of squid ink were extracted with ethanol, and therapeutic applications such as hemolytic, antioxidant, antimicrobial, and in vitro anti-inflammatory properties were analyzed using standard methods. In hemolytic assay, the squid ink extract exhibited a maximum hemolytic activity of 128 hemolytic unit against tested erythrocytes. In DPPH assay, the ethanolic extract of squid ink has exhibited an antioxidant activity of 83.5%. The squid ink was found to be potent antibacterial agent against the pathogens tested. 200 μL of L. vulgaris ink extract showed remarkable antibacterial activity as zone of inhibition against Escherichia coli (28 mm), Klebsiella pneumoniae (22 mm), Pseudomonas aeruginosa (21 mm), and Staphylococcus aureus (24 mm). The 68.9% inhibition of protein denaturation by the squid ink extract indicated that it has very good in vitro anti-inflammatory properties. The Fourier transform infrared spectroscopy analysis of the ethanolic extracts of the squid ink indicated the presence of functional groups such as 1° and 2° amines, amides, alkynes (terminal), alkenes, aldehydes, nitriles, alkanes, aliphatic amines, carboxylic acids, and alkyl halides, which complements the biochemical background of therapeutic applications. Hence, results of this study concluded that the ethanolic extract of L. vulgaris has many therapeutic applications such as antimicrobial, antioxidant, and anti-inflammatory activities. Squid ink is very high in a number of important nutrients. It's particularly high in antioxidants for instance, which as well all know help to protect the cells and the heart against damage from free radicals. In the present study, the squid ink have antioxidant, anti-inflammatory and cytotoxic properties and can be considered as promising the developing the drugs. Abbreviations Used: DPPH: 2,2-diphenyl-1-picrylhydrazyl, FTIR: Fourier-transform infrared spectroscopy, BSA: Bovine Serum Albumin.
Therapeutic Significance of Loligo vulgaris (Lamarck, 1798) ink Extract: A Biomedical Approach
Nadarajah, Sri Kumaran; Vijayaraj, Radha; Mani, Jayaprakashvel
2017-01-01
Background: The squid ink extract is well known for its biomedical properties. Objective: In this study, squid Loligo vulgaris was collected from Tuticorin costal water, Bay of Bengal, India. Materials and Methods: Proximate composition of the crude squid ink was studied and found to have protein as the major component over lipid and carbohydrates. Further, bioactive fractions of squid ink were extracted with ethanol, and therapeutic applications such as hemolytic, antioxidant, antimicrobial, and in vitro anti-inflammatory properties were analyzed using standard methods. Results: In hemolytic assay, the squid ink extract exhibited a maximum hemolytic activity of 128 hemolytic unit against tested erythrocytes. In DPPH assay, the ethanolic extract of squid ink has exhibited an antioxidant activity of 83.5%. The squid ink was found to be potent antibacterial agent against the pathogens tested. 200 μL of L. vulgaris ink extract showed remarkable antibacterial activity as zone of inhibition against Escherichia coli (28 mm), Klebsiella pneumoniae (22 mm), Pseudomonas aeruginosa (21 mm), and Staphylococcus aureus (24 mm). The 68.9% inhibition of protein denaturation by the squid ink extract indicated that it has very good in vitro anti-inflammatory properties. The Fourier transform infrared spectroscopy analysis of the ethanolic extracts of the squid ink indicated the presence of functional groups such as 1° and 2° amines, amides, alkynes (terminal), alkenes, aldehydes, nitriles, alkanes, aliphatic amines, carboxylic acids, and alkyl halides, which complements the biochemical background of therapeutic applications. Conclusion: Hence, results of this study concluded that the ethanolic extract of L. vulgaris has many therapeutic applications such as antimicrobial, antioxidant, and anti-inflammatory activities. SUMMARY Squid ink is very high in a number of important nutrients. It’s particularly high in antioxidants for instance, which as well all know help to protect the cells and the heart against damage from free radicals. In the present study, the squid ink have antioxidant, anti-inflammatory and cytotoxic properties and can be considered as promising the developing the drugs. Abbreviations Used: DPPH: 2,2-diphenyl-1-picrylhydrazyl, FTIR: Fourier-transform infrared spectroscopy, BSA: Bovine Serum Albumin PMID:29333051
Mandel, Mark J; Schaefer, Amy L; Brennan, Caitlin A; Heath-Heckman, Elizabeth A C; Deloney-Marino, Cindy R; McFall-Ngai, Margaret J; Ruby, Edward G
2012-07-01
Chitin, a polymer of N-acetylglucosamine (GlcNAc), is noted as the second most abundant biopolymer in nature. Chitin serves many functions for marine bacteria in the family Vibrionaceae ("vibrios"), in some instances providing a physical attachment site, inducing natural genetic competence, and serving as an attractant for chemotaxis. The marine luminous bacterium Vibrio fischeri is the specific symbiont in the light-emitting organ of the Hawaiian bobtail squid, Euprymna scolopes. The bacterium provides the squid with luminescence that the animal uses in an antipredatory defense, while the squid supports the symbiont's nutritional requirements. V. fischeri cells are harvested from seawater during each host generation, and V. fischeri is the only species that can complete this process in nature. Furthermore, chitin is located in squid hemocytes and plays a nutritional role in the symbiosis. We demonstrate here that chitin oligosaccharides produced by the squid host serve as a chemotactic signal for colonizing bacteria. V. fischeri uses the gradient of host chitin to enter the squid light organ duct and colonize the animal. We provide evidence that chitin serves a novel function in an animal-bacterial mutualism, as an animal-produced bacterium-attracting synomone.
Size increment of jumbo flying squid Dosidicus gigas mature females in Peruvian waters, 1989-2004
NASA Astrophysics Data System (ADS)
Argüelles, Juan; Tafur, Ricardo; Taipe, Anatolio; Villegas, Piero; Keyl, Friedeman; Dominguez, Noel; Salazar, Martín
2008-10-01
Changes in population structure of the jumbo flying squid Dosidicus gigas in Peruvian waters were studied based on size-at-maturity from 1989 to 2004. From 1989 to 1999, mature squid belonging to the medium-sized group prevailed, but from 2001 on, mature squids were larger. This change is not related to the changes in sea surface temperature and we hypothesized that it was caused by the population increase of mesopelagic fishes as prey.
2014-09-01
junction is a thin layer of insulating material sep- arating two superconductors that is thin enough for electrons to tunnel through. Two Josephson...can sense minute magnetic fields approaching 1015 Tesla. These SQUIDs can be arranged in arrays with different coupling schemes and parameter values to...different material and/or method on the bisecting Josephson junction for high temperature superconductor (HTS) YBa2Cu3O7 (YBCO) bi-SQUIDs. This
Chlorine gas sensing performance of palladium doped nickel ferrite thin films
NASA Astrophysics Data System (ADS)
Rao, Pratibha; Godbole, R. V.; Bhagwat, Sunita
2016-05-01
NiFe2O4 and Pd:NiFe2O4 (Pd=1 w/o, 3 w/o and 5 w/o) thin films, p-type semiconducting oxides with an inverse spinel structure have been used as a gas sensor to detect chlorine. These films were prepared by spray pyrolysis technique and XRD was used to confirm the structure. The surface morphology was studied using SEM. Magnetization measurements were carried out at room temperature using SQUID VSM, which shows ferrimagnetic behavior of the samples. The reduction in optimum operating temperature and enhancement in response was observed on Pd-incorporation in nickel ferrite thin films. Faster response and recovery characteristic is observed Pd-incorporated nickel ferrite thin films. The long-term stability is evaluated over a period of six months. This feature may be regarded as a significant facet towards their practical application as gas sensors.
A Passive Wireless Multi-Sensor SAW Technology Device and System Perspectives
Malocha, Donald C.; Gallagher, Mark; Fisher, Brian; Humphries, James; Gallagher, Daniel; Kozlovski, Nikolai
2013-01-01
This paper will discuss a SAW passive, wireless multi-sensor system under development by our group for the past several years. The device focus is on orthogonal frequency coded (OFC) SAW sensors, which use both frequency diversity and pulse position reflectors to encode the device ID and will be briefly contrasted to other embodiments. A synchronous correlator transceiver is used for the hardware and post processing and correlation techniques of the received signal to extract the sensor information will be presented. Critical device and system parameters addressed include encoding, operational range, SAW device parameters, post-processing, and antenna-SAW device integration. A fully developed 915 MHz OFC SAW multi-sensor system is used to show experimental results. The system is based on a software radio approach that provides great flexibility for future enhancements and diverse sensor applications. Several different sensor types using the OFC SAW platform are shown. PMID:23666124
NASA Astrophysics Data System (ADS)
Kumar, Nikhil; Winkelmann, C. B.; Biswas, Sourav; Courtois, H.; Gupta, Anjan K.
We have fabricated and studied the current-voltage characteristics of a number of niobium film based weak-link devices and μ-SQUIDs showing a critical current and two re-trapping currents. We have proposed a new understanding for the re-trapping currents in terms of thermal instabilities in different portions of the device. We also find that the superconducting proximity effect and the phase-slip processes play an important role in dictating the temperature dependence of the critical current in the non-hysteretic regime. The proximity effect helps in widening the temperature range of hysteresis-free characteristics. Finally we demonstrate control on temperature-range with hysteresis-free characteristics in two ways: 1) By using a parallel shunt resistor in close vicinity of the device, and 2) by reducing the weak-link width. Thus we get non-hysteretic behavior down to 1.3 K temperature in some of the studied devices. We acknowledge the financial support from CSIR, India as well as CNRS-Institute Neel, Grenoble, France.
NASA Astrophysics Data System (ADS)
Setyobudi, Eko; Jeon, Chan-Hyeok; Choi, Kwangho; Lee, Sung Il; Lee, Chung Il; Kim, Jeong-Ho
2013-06-01
The occurrence of Genus Anisakis nematode larvae in marine fishes and cephalopods is epidemiologically important because Anisakis simplex larval stage can cause a clinical disease in humans when infected hosts are consumed raw. Common squid ( Todarodes pacificus) from Korean waters were investigated for anisakid nematodes infection during 2009˜2011. In total, 1,556 larvae were collected from 615 common squids and 732 of them were subsequently identified by PCR-RFLP analysis of ITS rDNA. Depending on the sampling locations, the nematode larvae from common squid showed different prevalence, intensity and species distribution. A high prevalence (P) and mean intensity (MI) of infection were observed in the Yellow Sea (n = 250, P = 86.0%, MI = 5.99 larvae/host) and the southern sea of Korea (n = 126, P = 57.1%, MI = 3.36 larvae/host). Anisakis pegreffii was dominantly found in common squid from the southern sea (127/ 140, 90.7%) and the Yellow Sea (561/565, 98.9%). In contrast, the P and MI of infection were relatively low in the East Sea (n = 239, P = 8.37%, MI = 1.25 larvae/host). A. pegreffii was not found from the East Sea and 52.0% (13/25) of the nematodes were identified as A. simplex. Most of them were found in the body cavity or digestive tract of common squid, which are rarely consumed raw by humans. Considering the differenences in anisakid nematode species distribution and their microhabitat in common squid, it remains unclear whether common squid plays an important role in the epidemiology of human anisakis infection in Korea. Further extensive identification of anisakid nematodes in common squid, with geographical and seasonal information will be necessary.
High-T(c) squid application in medicine and geophysics
NASA Technical Reports Server (NTRS)
Polushkin, V. N.; Uchaikin, S. V.; Vasiliev, B. V.
1991-01-01
In our laboratory of high-T(sub c), a one-hole squid was built from Y1Ba2Cu3O(7-x) ceramics obtained by a standard procedure of solid state reaction. The ceramics with critical current density J(sub c) is greater than 100 A/sq cm was selected. In the middle of a 10 x 10 x 2 mm ceramics pellet, a 0.8 mm hole was drilled in which the superconducting loop of the squid was located. Between the hole and the edge of the pellet, a cut was mechanically filed out with a bridge inside it connecting the superconducting ring. A scheme of the magnetometer is presented. The resonant frequency shift of the tank circuit, the connection of the squid with this circuit, and the squid inductance are evaluated. One of the most interesting fields of the squid-based magnetometer application is biomagnetism, particularly, the human heart magnetocardiogram measuring. The low-temperature squids were used in this area and many interesting and important scientific results have been obtained. The observations have shown that the main noise contribution was not due to the squid but to the Earth's magnetic field variations, industrial inductions, and mainly to the vibrations caused by liquid nitrogen boiling and by vibrations of the box. Further attempts are needed to reduce the magnetic noise inductions. Nevertheless, the estimations promise the maximum signal/noise relation of the high-T(sub c) squid-magnetocardiometer to be not less than 10:1 in a bandwidth of 60 Hz. Apparently, such resolution would be enough not only for steady cardiogram reading but even for thin structure investigation at average technique application.
High-T(sub c) squid application in medicine and geophysics
NASA Technical Reports Server (NTRS)
Polushkin, V. N.; Uchaikin, S. V.; Vasiliev, B. V.
1990-01-01
In the Laboratory a high-T(sub c) one-hole squid was built from Y1Ba2Cu3O(7-x) ceramics obtained by a standard procedure of solid state reaction. The ceramics with critical current density J(sub c) is greater than 100 A/sq cm was selected. In the middle of 10 x 10 x 2 mm ceramics pellet a 0.8 mm hole was drilled in which superconducting loop of the squid was located. Between the hole and the edge of the pellet a cut was mechanically filed out with a bridge inside it connecting the superconducting ring. A scheme of the magnetometer is presented. The resonant frequency shift of the tank circuit, the connection of the squid with this circuit, and the squid inductance are evaluated. One of the most interesting fields of the squid-based magnetometer application is biomagnetism, particularly, the human heart magnetocardiogram measuring. The low-temperature squids were used in this area and many interesting and important scientific results have been obtained. The observations have shown that the main noise contribution was not due to the squid but to the Earth's magnetic field variations, industrial inductions, and mainly to the vibrations caused by liquid nitrogen boiling and by vibrations of the box. Further attempts are needed to reduce the magnetic noise inductions. Nevertheless, the estimations promise the maximum signal/noise relation of the high-T(sub c) squid-magnetocardiometer to be not less than 10:1 in a bandwidth of 60 Hz. Apparently, such resolution would be enough not only for steady cardiogram reading but even for thin structure investigation at average technique application.
NASA Astrophysics Data System (ADS)
Neira, Sergio; Arancibia, Hugo
2013-10-01
We analyzed recent food web and fish stock changes in the central Chile marine ecosystem, comparing the roles of jumbo squid (Dosidicus gigas) as predator, the environment, and fishing. To accomplish this we used food web modeling and the Ecopath with Ecosim software (EwE). The principal fish stocks have experienced wide decadal fluctuations in the past 30 years, including stock collapses of horse mackerel (Trachurus murphyi) and hake (Merluccius gayi), and there was a large influx of jumbo squid during the mid-2000s. We used two EwE models representing the food web off central Chile to test the hypothesis that predation by jumbo squid has been significant in explaining the dynamics of the main fishing resources and other species in the study area. Results indicate that predation by jumbo squid on fish stocks is lower than that of other predators (e.g. hake) and the fishery. Long-term fluctuations (1978-2004) in the biomass of the main fish stocks (as well as other components of the food web) seem to be related to fishing and to variation in primary production, rather than to predation by jumbo squid alone. Jumbo squid seems to play a role as predator rather than prey in the system, but its impacts are low when compared with the impacts of other predators and fishing. Therefore, we conclude that jumbo squid predation on its prey was not the primary force behind the collapse of important fish stocks off central Chile. Future efforts should be directed to better understanding factors that trigger sudden increases in jumbo squid abundance off central Chile, as well as modeling its trophic impacts.
Guerrero-Ferreira, Ricardo; Gorman, Clayton; Chavez, Alba A.; Willie, Shantell
2013-01-01
Loliginid and sepiolid squid light organs are known to host a variety of bacterial species from the family Vibrionaceae, yet little is known about the species diversity and characteristics among different host squids. Here we present a broad-ranging molecular and physiological analysis of the bacteria colonizing light organs in loliginid and sepiolid squids from various field locations of the Indo-West Pacific (Australia and Thailand). Our PCR-RFLP analysis, physiological characterization, carbon utilization profiling, and electron microscopy data indicate that loliginid squid in the Indo-West Pacific carry a consortium of bacterial species from the families Vibrionaceae and Photobacteriaceae. This research also confirms our previous report of the presence of Vibrio harveyi as a member of the bacterial population colonizing light organs in loliginid squid. pyrH sequence data were used to confirm isolate identity, and indicates that Vibrio and Photobacterium comprise most of the light organ colonizers of squids from Australia, confirming previous reports for Australian loliginid and sepiolid squids. In addition, combined phylogenetic analysis of PCR-RFLP and 16S rDNA data from Australian and Thai isolates associated both Photobacterium and Vibrio clades with both loliginid and sepiolid strains, providing support that geographical origin does not correlate with their relatedness. These results indicate that both loliginid and sepiolid squids demonstrate symbiont specificity (Vibrionaceae), but their distribution is more likely due to environmental factors that are present during the infection process. This study adds significantly to the growing evidence for complex and dynamic associations in nature and highlights the importance of exploring symbiotic relationships in which non-virulent strains of pathogenic Vibrio species could establish associations with marine invertebrates. PMID:22885637
A Bluetooth-Based Device Management Platform for Smart Sensor Environment
NASA Astrophysics Data System (ADS)
Lim, Ivan Boon-Kiat; Yow, Kin Choong
In this paper, we propose the use of Bluetooth as the device management platform for the various embedded sensors and actuators in an ambient intelligent environment. We demonstrate the ease of adding Bluetooth capability to common sensor circuits (e.g. motion sensor circuit based on a pyroelectric infrared (PIR) sensor). A central logic application is proposed which controls the operation of controller devices, based on values returned by sensors via Bluetooth. The operation of devices depends on rules that are learnt from user behavior using an Elman recurrent neural network. Overall, Bluetooth has shown its potential in being used as a device management platform in an ambient intelligent environment, which allows sensors and controllers to be deployed even in locations where power sources are not readily available, by using battery power.
Likitlersuang, Jirapat; Leineweber, Matthew J; Andrysek, Jan
2017-10-01
Thin film force sensors are commonly used within biomechanical systems, and at the interface of the human body and medical and non-medical devices. However, limited information is available about their performance in such applications. The aims of this study were to evaluate and determine ways to improve the performance of thin film (FlexiForce) sensors at the body/device interface. Using a custom apparatus designed to load the sensors under simulated body/device conditions, two aspects were explored relating to sensor calibration and application. The findings revealed accuracy errors of 23.3±17.6% for force measurements at the body/device interface with conventional techniques of sensor calibration and application. Applying a thin rigid disc between the sensor and human body and calibrating the sensor using compliant surfaces was found to substantially reduce measurement errors to 2.9±2.0%. The use of alternative calibration and application procedures is recommended to gain acceptable measurement performance from thin film force sensors in body/device applications. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
Galitsopoulou, A; Georgantelis, D; Kontominas, M G
2013-01-01
The effects of two common seafood preparation practices (roasting and industrial canning) on the heavy metal content--cadmium (Cd) and lead (Pb)--of various tissues of California market squid were studied. Emphasis was placed on the role of metallothioneins (MT) in Cd and Pb behaviour during processing. Cd and Pb analysis was conducted by a Zeeman GTA-AAS atomic absorption spectrometry system; MT analysis was performed by a mercury saturation assay. Results showed that Cd levels in the mantle and whole squid were considerably affected by both processing practices, reaching a 240% increase in mantle and a 40% increase in whole squid. Interestingly, Cd behaviour was associated with MT changes during squid processing. On the other hand, Pb content was not affected from either processing or associated with MT content in the raw or processed squid. Therefore, processing operations may affect Cd and Pb content differently due to the specific metal bioaccumulation and chemical features of each heavy metal type.
System having unmodulated flux locked loop for measuring magnetic fields
Ganther, Jr., Kenneth R.; Snapp, Lowell D [Blue Springs, MO
2006-08-15
A system (10) for measuring magnetic fields, wherein the system (10) comprises an unmodulated or direct-feedback flux locked loop (12) connected by first and second unbalanced RF coaxial transmission lines (16a, 16b) to a superconducting quantum interference device (14). The FLL (12) operates for the most part in a room-temperature or non-cryogenic environment, while the SQUID (14) operates in a cryogenic environment, with the first and second lines (16a, 16b) extending between these two operating environments.
2012-12-13
pressure of ∼2.5 GPa. The final bulk magnets having dimensions Ø6 mm × 1.5 mm were characterized for morphology and the crystalline structure using scanning... Magnetic properties were measured with a superconducting quantum interference device (SQUID) magnetometer with a maximum applied field of 70 kOe. To...calculate the true energy product (BH)max of the bulk sample, we determined the demagnetization factor experimentally as described in [9]. Figure 1 shows
Prospects for small cryocoolers. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radebaugh, R.
1982-01-01
Small cryocoolers are commonly used in the areas of infrared detection, satellite communication, and cryopumps. Some emerging application areas deal with SQUID and Josephson junction devices, which require temperatures of about 8 K or below. The need for high reliability in these small cryocoolers has dictated the use of regenerative-cycle machines, but such machines are presently limited to temperatures above about 8 K. This paper discusses some of the research being done to improve reliability, decrease noise, and reduce the low-temperature limit of small cryocoolers.
Novel Polymers Containing Metal Ligands in the Side Chain
2012-10-01
10 2011): 0. doi: 10.1021/bm2010142 2012/10/01 15:35:02 10 Jun Cui, Melissa A. Lackey, Ahmad E. Madkour , Erika M. Saffer, David M. Griffin, Surita R...values for the linear fits are around 0.98. [M] denotes the monomer concentration. M- H measurement. If the RTF behavior of the previously...magnetization as a function of the applied field (M- H ) was measured at room temperature by a superconducting quantum interference device (SQUID) for all of
Realizing various approximate quantum cloning with XY-type exchange interactions of flux qubits
NASA Astrophysics Data System (ADS)
Li, Na; Ye, Liu
2014-03-01
In this paper, we realize all kinds of 1 → 2 approximate quantum cloning, including optimal 1 → 2 symmetric (or asymmetric) universal quantum cloning (UQC) and phase-covariant cloning (PCC), symmetric economical phase-covariant cloning (EPCC) and real state quantum cloning, with the XY-type exchange interactions of the flux qubits which are coupled by dc superconducting quantum interference devices (SQUIDs). It is shown that our schemes can be realized with the current experimental technology.
Experimental formation of a fractional vortex in a superconducting bi-layer
NASA Astrophysics Data System (ADS)
Tanaka, Y.; Yamamori, H.; Yanagisawa, T.; Nishio, T.; Arisawa, S.
2018-05-01
We report the experimental formation of a fractional vortex generated by using a thin superconducting bi-layer in the form of a niobium bi-layer, observed as a magnetic flux distribution image taken by a scanning superconducting quantum interference device (SQUID) microscope. Thus, we demonstrated that multi-component superconductivity can be realized by an s-wave conventional superconductor, because, in these superconductors, the magnetic flux is no longer quantized as it is destroyed by the existence of an inter-component phase soliton (i-soliton).
Mean-Square Error Due to Gradiometer Field Measuring Devices
1991-06-01
convolving the gradiometer data with the inverse transform of I /T(a, 13), applying an ap- Hence (2) may be expressed in the transform domain as propriate... inverse transform of I / T(ot, 1) will not be possible quency measurements," Superconductor Applications: SQUID’s and because its inverse does not exist...and because it is a high- Machines, B. B. Schwartz and S. Foner, Eds. New York: Plenum pass function its use in an inverse transform technique Press
Analog cosmological particle generation in a superconducting circuit
NASA Astrophysics Data System (ADS)
Tian, Zehua; Jing, Jiliang; Dragan, Andrzej
2017-06-01
We propose the use of a waveguidelike transmission line based on direct-current superconducting quantum interference devices (dc-SQUID) and demonstrate that the node flux in this transmission line behaves in the same way as quantum fields in an expanding (or contracting) universe. We show how to detect the analog cosmological particle generation and analyze its feasibility with current circuit quantum electrodynamics (cQED) technology. Our setup in principle paves a new way for the exploration of analog quantum gravitational effects.
In-vivo orthopedic implant diagnostic device for sensing load, wear, and infection
Evans, III, Boyd McCutchen; Thundat, Thomas G.; Komistek, Richard D.; Dennis, Douglas A.; Mahfouz, Mohamed
2006-08-29
A device for providing in vivo diagnostics of loads, wear, and infection in orthopedic implants having at least one load sensor associated with the implant, at least one temperature sensor associated with the implant, at least one vibration sensor associated with the implant, and at least one signal processing device operatively coupled with the sensors. The signal processing device is operable to receive the output signal from the sensors and transmit a signal corresponding with the output signal.
Sensor device and methods for using same
Rothgeb, Timothy Michael; Gansle, Kristina Marie Rohal; Joyce, Jonathan Livingston; Jordan, James Madison; Rohwer, Tedd Addison; Lockhart, Randal Ray; Smith, Christopher Lawrence; Trinh, Toan; Cipollone, Mark Gary
2005-10-25
A sensor device and method of employment is provided. More specifically, a sensor device adapted to detect, identify and/or measure a chemical and/or physical characteristic upon placement of the device into an environment, especially a liquid medium for which monitoring is sought is provided.
Aperture effects in squid jet propulsion.
Staaf, Danna J; Gilly, William F; Denny, Mark W
2014-05-01
Squid are the largest jet propellers in nature as adults, but as paralarvae they are some of the smallest, faced with the inherent inefficiency of jet propulsion at a low Reynolds number. In this study we describe the behavior and kinematics of locomotion in 1 mm paralarvae of Dosidicus gigas, the smallest squid yet studied. They swim with hop-and-sink behavior and can engage in fast jets by reducing the size of the mantle aperture during the contraction phase of a jetting cycle. We go on to explore the general effects of a variable mantle and funnel aperture in a theoretical model of jet propulsion scaled from the smallest (1 mm mantle length) to the largest (3 m) squid. Aperture reduction during mantle contraction increases propulsive efficiency at all squid sizes, although 1 mm squid still suffer from low efficiency (20%) because of a limited speed of contraction. Efficiency increases to a peak of 40% for 1 cm squid, then slowly declines. Squid larger than 6 cm must either reduce contraction speed or increase aperture size to maintain stress within maximal muscle tolerance. Ecological pressure to maintain maximum velocity may lead them to increase aperture size, which reduces efficiency. This effect might be ameliorated by nonaxial flow during the refill phase of the cycle. Our model's predictions highlight areas for future empirical work, and emphasize the existence of complex behavioral options for maximizing efficiency at both very small and large sizes.
Phloem-sap-dynamics sensor device for monitoring photosynthates transportation in plant shoots
NASA Astrophysics Data System (ADS)
Yano, Yuya; Ono, Akihito; Terao, Kyohei; Suzuki, Takaaki; Takao, Hidekuni; Kobayashi, Tsuyoshi; Kataoka, Ikuo; Shimokawa, Fusao
2018-06-01
We propose a microscale phloem-sap-dynamics sensor device to obtain the index of an internal plant condition regarding the transportation of primary photosynthates in phloem, which is an essential indicator of stable crop production under controlled-growth environments. In detail, we integrated a conventional Granier sensor with a thermal-flow sensor and devised an improved sensor device to quantify such index, including the information on velocity and direction of the phloem-sap flow using the microelectromechanical systems (MEMS) technology. The experimental results showed that although the proposed sensor device was approximately only 1/10 the size of the conventional Granier sensor, it could generate an output nearly equal to that of the conventional sensor. Furthermore, experiments using mimicked plants demonstrated that the proposed device could measure minute flow velocities in the range of 0–200 µm/s, which are generally known as the phloem-sap flow velocity, and simultaneously detect the flow direction.
Updates on the Transition-Edge Sensors and Multiplexed Readout for HOLMES
NASA Astrophysics Data System (ADS)
Puiu, A.; Becker, D.; Bennett, D.; Biasotti, M.; Borghesi, M.; Ceriale, V.; De Gerone, M.; Faverzani, M.; Ferri, E.; Fowler, J.; Gallucci, G.; Gard, J.; Hays-Wehle, J.; Hilton, G.; Giachero, A.; Mates, J.; Nucciotti, A.; Orlando, A.; Pessina, G.; Schmidt, D.; Swetz, D.; Ullom, J.; Vale, L.
2018-05-01
Measuring the neutrino mass is one of the most compelling issues in particle physics. HOLMES is an experiment for a direct measurement of the neutrino mass. HOLMES will perform a precise measurement of the end point of the electron capture decay spectrum of ^{163}Ho in order to extract information on the neutrino mass with a sensitivity as low as 1 eV. HOLMES, in its final configuration, will deploy a 1000-pixel array of low-temperature microcalorimeters: each calorimeter is made of an absorber, where the Ho atoms will be implanted, coupled to a transition-edge sensor (TES) thermometer. The detectors will be operated at the working temperature of 100 mK provided by a dilution refrigerator. In order to read out the 1000-detector array of HOLMES, a multiplexing system is necessary: the choice is to couple the transition-edge sensors to a multiplexed rf-SQUID. In this contribution we outline the progress made towards the final configuration of HOLMES regarding both the performances of the TES detectors and the characteristics of the multiplexing system.
NASA Astrophysics Data System (ADS)
Bogena, H. R.; Huisman, S.; Rosenbaum, U.; Wuethen, A.; Vereecken, H.
2009-04-01
Wireless sensor network technology allows near real-time monitoring of soil properties with a high spatial and temporal resolution for observing hydrological processes in small watersheds. The novel wireless sensor network SoilNet uses the low-cost ZigBee radio network for communication and a hybrid topology with a mixture of underground end devices each wired to several soil sensors and aboveground router devices. The SoilNet sensor network consists of soil water content, salinity and temperature sensors attached to end devices by cables, router devices and a coordinator device. The end devices are buried in the soil and linked wirelessly with nearby aboveground router devices. This ZigBee network design considers channel errors, delays, packet losses, and power and topology constraints. In order to conserve battery power, a reactive routing protocol is used that determines a new route only when it is required. The sensor network is also able to react to external influences, e.g. the occurrence of precipitation. The SoilNet communicator, routing and end devices have been developed by the Forschungszentrum Juelich and will be marketed through external companies. Simultaneously, we have also developed a data management and visualisation system. Recently, a small forest catchment Wüstebach (27 ha) was instrumented with 50 end devices and more than 400 soil sensors in the frame of the TERENO-RUR hydrological observatory. We will present first results of this large sensor network both in terms of spatial-temporal variations in soil water content and the performance of the sensor network (e.g. network stability and power use).
Methods of use for sensor based fluid detection devices
NASA Technical Reports Server (NTRS)
Lewis, Nathan S. (Inventor)
2001-01-01
Methods of use and devices for detecting analyte in fluid. A system for detecting an analyte in a fluid is described comprising a substrate having a sensor comprising a first organic material and a second organic material where the sensor has a response to permeation by an analyte. A detector is operatively associated with the sensor. Further, a fluid delivery appliance is operatively associated with the sensor. The sensor device has information storage and processing equipment, which is operably connected with the device. This device compares a response from the detector with a stored ideal response to detect the presence of analyte. An integrated system for detecting an analyte in a fluid is also described where the sensing device, detector, information storage and processing device, and fluid delivery device are incorporated in a substrate. Methods for use for the above system are also described where the first organic material and a second organic material are sensed and the analyte is detected with a detector operatively associated with the sensor. The method provides for a device, which delivers fluid to the sensor and measures the response of the sensor with the detector. Further, the response is compared to a stored ideal response for the analyte to determine the presence of the analyte. In different embodiments, the fluid measured may be a gaseous fluid, a liquid, or a fluid extracted from a solid. Methods of fluid delivery for each embodiment are accordingly provided.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-17
.... 110707371-2136-02] RIN 0648- XB145 Fisheries of the Northeastern United States; Atlantic Mackerel, Squid, and Butterfish Fisheries; Closure of the Trimester 1 Longfin Squid Fishery AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION...
NASA Astrophysics Data System (ADS)
Wang, Xuehui; Qiu, Yongsong; Zhang, Peng; Du, Feiyan
2017-07-01
Based on the biological data of purpleback flying squid ( Sthenoteuthis oualaniensis) collected by light falling-net in the southern South China Sea (SCS) during September to October 2012 and March to April 2013, growth and mortality of `Medium' and `Dwarf' forms of squid are derived using the Powell-Wetherall, ELEFAN methods and length-converted catch curves (FiSAT package). Given a lack of commercial exploitation, we assume total mortality to be due entirely to natural mortality. We estimate these squid have fast growth, with growth coefficients ( k) ranging from 1.42 to 2.39, and high natural mortality ( M), with estimates ranging from 1.61 to 2.92. To sustainably exploit these squid stocks, yield per recruitment based on growth and natural mortality was determined using the Beverton-Holt dynamic pool model. We demonstrate squid stocks could sustain high fishing mortality and low ages at first capture, with an optimal fishing mortality >3.0, with the optimal age at first capture increased to 0.4-0.6 years when fishing mortality approached optimal levels. On the basis of our analyses and estimates of stock biomass, we believe considerable potential exists to expand the squid fishery into the open SCS, relieving fishing pressure on coastal waters.
Becker, Kaylyn N; Warren, Joseph D
2015-05-01
Material properties of the flesh from three fish species (Merluccius productus, Symbolophorus californiensis, and Diaphus theta), and several body parts of the Humboldt squid (Dosidicus gigas) collected from the California Current ecosystem were measured. The density contrast relative to seawater varied within and among taxa for fish flesh (0.9919-1.036), squid soft body parts (mantle, arms, tentacle, braincase, eyes; 1.009-1.057), and squid hard body parts (beak and pen; 1.085-1.459). Effects of animal length and environmental conditions on nekton density contrast were investigated. The sound speed contrast relative to seawater varied within and among taxa for fish flesh (0.986-1.027) and Humboldt squid mantle and braincase (0.937-1.028). Material properties in this study are similar to values from previous studies on species with similar life histories. In general, the sound speed and density of soft body parts of fish and squid were 1%-3% and 1%-6%, respectively, greater than the surrounding seawater. Hard parts of the squid were significantly more dense (6%-46%) than seawater. The material properties reported here can be used to improve target strength estimates from acoustic scattering models, which could increase the accuracy of biomass estimates from acoustic surveys for these nekton.
Squid rocket science: How squid launch into air
NASA Astrophysics Data System (ADS)
O'Dor, Ron; Stewart, Julia; Gilly, William; Payne, John; Borges, Teresa Cerveira; Thys, Tierney
2013-10-01
Squid not only swim, they can also fly like rockets, accelerating through the air by forcefully expelling water out of their mantles. Using available lab and field data from four squid species, Sthenoteuthis pteropus, Dosidicus gigas, Illex illecebrosus and Loligo opalescens, including sixteen remarkable photographs of flying S. pteropus off the coast of Brazil, we compared the cost of transport in both water and air and discussed methods of maximizing power output through funnel and mantle constriction. Additionally we found that fin flaps develop at approximately the same size range as flight behaviors in these squids, consistent with previous hypotheses that flaps could function as ailerons whilst aloft. S. pteropus acceleration in air (265 body lengths [BL]/s2; 24.5m/s2) was found to exceed that in water (79BL/s2) three-fold based on estimated mantle length from still photos. Velocities in air (37BL/s; 3.4m/s) exceed those in water (11BL/s) almost four-fold. Given the obvious advantages of this extreme mode of transport, squid flight may in fact be more common than previously thought and potentially employed to reduce migration cost in addition to predation avoidance. Clearly squid flight, the role of fin flaps and funnel, and the energetic benefits are worthy of extended investigation.
Identification of four squid species by quantitative real-time polymerase chain reaction.
Ye, Jian; Feng, Junli; Liu, Shasha; Zhang, Yanping; Jiang, Xiaona; Dai, Zhiyuan
2016-02-01
Squids are distributed worldwide, including many species of commercial importance, and they are often made into varieties of flavor foods. The rapid identification methods for squid species especially their processed products, however, have not been well developed. In this study, quantitative real-time PCR (qPCR) systems based on specific primers and TaqMan probes have been established for rapid and accurate identification of four common squid species (Ommastrephes bartramii, Dosidicus gigas, Illex argentinus, Todarodes pacificus) in Chinese domestic market. After analyzing mitochondrial genes reported in GenBank, the mitochondrial cytochrome b (Cytb) gene was selected for O. bartramii detection, cytochrome c oxidase subunit I (COI) gene for D. gigas and T. Pacificus detection, ATPase subunit 6 (ATPase 6) gene for I. Argentinus detection, and 12S ribosomal RNA (12S rDNA) gene for designing Ommastrephidae-specific primers and probe. As a result, all the TaqMan systems are of good performance, and efficiency of each reaction was calculated by making standard curves. This method could detect target species either in single or mixed squid specimen, and it was applied to identify 12 squid processed products successfully. Thus, it would play an important role in fulfilling labeling regulations and squid fishery control. Copyright © 2016 Elsevier Ltd. All rights reserved.
Investigation of the Vortex States of Sr2RuO4-Ru Eutectic Microplates Using DC-SQUIDs
NASA Astrophysics Data System (ADS)
Sakuma, Daisuke; Nago, Yusuke; Ishiguro, Ryosuke; Kashiwaya, Satoshi; Nomura, Shintaro; Kono, Kimitoshi; Maeno, Yoshiteru; Takayanagi, Hideaki
2017-11-01
We investigated the magnetic properties of a Sr2RuO4-Ru eutectic microplate containing a single Ru-inclusion using micrometer-sized DC-SQUIDs (direct-current superconducting quantum interference devices). A phase frustration at the interface between chiral p-wave superconducting Sr2RuO4 and s-wave superconducting Ru is expected to cause novel magnetic vortex states such as the spontaneous Ru-center vortex under zero magnetic field [as reported by H. Kaneyasu and M. Sigrist,
Lewis, Crystal S.; Moronta, Dominic; Terban, Maxwell W.; ...
2017-12-12
In this report, we have synthesized and structurally characterized nanowire bundles of cobalt-substituted pyroxenes, similar to the crystal structure of aegirine (i.e. Co-substituted XYSi 2O 6 with X and Y referring to metallic elements such as but not limited to Co, Na, and Fe), using a readily scalable hydrothermal technique. We then propose a growth mechanism for these bundles, based on detailed time and temperature dependent studies as well as complementary control experiments, particularly reactions in the absence of either 3-aminopropyltriethoxysilane (APTES) or sodium hydroxide (NaOH), via a transmission electron microscopy visualization study. Moreover, these nanowire bundles were probed formore » their magnetic properties and chemical composition using superconducting quantum interference device (SQUID) measurements, X-ray diffraction, and pair distribution function analysis, respectively. Specifically, SQUID measurement observations highlighted that these bundles evince (i) unique and interesting super-paramagnetic properties at 5 K that are consistent with that of our previously published ~2 nm ultra-small nanoparticles as well as (ii) paramagnetic behavior at 300 K.« less
Correcting Concomitant Gradient Distortion in Microtesla Magnetic Resonance Imaging
NASA Astrophysics Data System (ADS)
Myers, Whittier
2005-03-01
Progress in ultra-low field magnetic resonance imaging (MRI) using an untuned gradiometer coupled to a Superconducting Quantum Interference Device (SQUID) has resulted in three-dimensional images with an in-plane resolution of 2 mm. Protons in samples up to 80 mm in size were prepolarized in a 100 mT field, manipulated by ˜100 μT/m gradients for image encoding, and detected by the SQUID in the ˜65 μT precession field. Maxwell's equations prohibit a unidirectional magnetic field gradient. While the additional concomitant gradients can be neglected in high-field MRI, they distort high-resolution images of large samples taken in microtesla precession fields. We propose two methods to mitigate such distortion: raising the precession field during image encoding, and software post-processing. Both approaches are demonstrated using computer simulations and MRI images. Simulations show that the combination of these techniques can correct the concomitant gradient distortion present in a 4-mm resolution image of an object the size of a human brain with a precession field of 50 μT. Supported by USDOE.
Experiments with d-wave Superconductors
NASA Astrophysics Data System (ADS)
Mannhart, J.; Hilgenkamp, H.; Hammerl, G.; Schneider, C. W.
2003-10-01
The predominant d
NASA Astrophysics Data System (ADS)
Noguchi, A.; Oda, H.; Yamamoto, Y.; Usui, A.; Sato, M.; Kawai, J.
2017-06-01
Ferromanganese crusts record long-term deep-sea environmental changes. Thus, providing their reliable high-resolution age models is important. We applied a magnetostratigraphic technique to estimate the growth rate of a ferromanganese crust using scanning SQUID (superconducting quantum interference device) microscope (SSM). SSM is designed to map the magnetic field across thin sections with submillimeter resolution. The crust sample was taken from the Takuyo-Daigo Seamount, northwestern Pacific, and recorded a limited supply of dust and sediment from continents. After drift correction and removal of spike noises, the magnetic field values were stacked within the areas of high signal-to-noise ratios. By correlating the obtained profiles with a standard geomagnetic polarity timescale, we obtained an average growth rate of 3.37 ± 0.06 mm/Ma, which is consistent with that obtained by 10Be/9Be geochronology (2.93 ± 0.15 mm/Ma). S ratio mapping shows low values after 3 Ma, associated with voids between columnar structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Crystal S.; Moronta, Dominic; Terban, Maxwell W.
In this report, we have synthesized and structurally characterized nanowire bundles of cobalt-substituted pyroxenes, similar to the crystal structure of aegirine (i.e. Co-substituted XYSi 2O 6 with X and Y referring to metallic elements such as but not limited to Co, Na, and Fe), using a readily scalable hydrothermal technique. We then propose a growth mechanism for these bundles, based on detailed time and temperature dependent studies as well as complementary control experiments, particularly reactions in the absence of either 3-aminopropyltriethoxysilane (APTES) or sodium hydroxide (NaOH), via a transmission electron microscopy visualization study. Moreover, these nanowire bundles were probed formore » their magnetic properties and chemical composition using superconducting quantum interference device (SQUID) measurements, X-ray diffraction, and pair distribution function analysis, respectively. Specifically, SQUID measurement observations highlighted that these bundles evince (i) unique and interesting super-paramagnetic properties at 5 K that are consistent with that of our previously published ~2 nm ultra-small nanoparticles as well as (ii) paramagnetic behavior at 300 K.« less
a Web Service Approach for Linking Sensors and Cellular Spaces
NASA Astrophysics Data System (ADS)
Isikdag, U.
2013-09-01
More and more devices are starting to be connected to the Internet. In the future the Internet will not only be a communication medium for people, it will in fact be a communication environment for devices. The connected devices which are also referred as Things will have an ability to interact with other devices over the Internet, i.) provide information in interoperable form and ii.) consume /utilize such information with the help of sensors embedded in them. This overall concept is known as Internet-of- Things (IoT). This requires new approaches to be investigated for system architectures to establish relations between spaces and sensors. The research presented in this paper elaborates on an architecture developed with this aim, i.e. linking spaces and sensors using a RESTful approach. The objective is making spaces aware of (sensor-embedded) devices, and making devices aware of spaces in a loosely coupled way (i.e. a state/usage/function change in the spaces would not have effect on sensors, similarly a location/state/usage/function change in sensors would not have any effect on spaces). The proposed architecture also enables the automatic assignment of sensors to spaces depending on space geometry and sensor location.
NASA Astrophysics Data System (ADS)
Peña, Marian; Villanueva, Roger; Escánez, Alejandro; Ariza, Alejandro
2018-03-01
Squids are fast swimmers that are difficult to catch by nets and to record with echosounders in the open ocean. A rare detection of orangeback flying squid Sthenoteuthis pteropus in the Central Eastern Atlantic Ocean off the coast of Senegal was accomplished during the MAFIA oceanographic survey carried out between Brazil and the Canary Islands in April 2015. Although net sampling did not yield any subadult or adult individuals, dozens were visually detected from the vessel jumping out of the water at night and displaying their characteristic dorsal photophore patch. A few squids were caught with fishing lines and identified at the species level. The acoustic echograms revealed distinctive previously unobserved acoustic echotraces that seemed to be caused by those squids, which were the only new species detected at that station (over a bottom depth ranging from 4010 to 5215 m, between 10° 45‧ N 22° 41‧ W and 10° 53‧ N 22° 40‧ W). The acoustic response and swimming behaviour shown by those echotraces reinforced this hypothesis. The (potentially) squid recordings dove rapidly (0.19 m/s to 0.48 m/s) from around 10 m below the mesopelagic fish layer, which had migrated to the subsurface at night (35 m depth), to depths of 70-95 m, and swam upward, apparently attacking fish from below. The morning squid migration to deeper waters (250-300 m) was also recorded acoustically. Downward movements of squid swimming at speeds of 0.22 m/s were calculated from the echogram, while the mesopelagic migrating fish swam at 0.27 m/s reaching 250 m depth. Sv120 - Sv38 averaged 2.7 ± 3.2 dB for the squid echotraces while the mesopelagic layer showed values of -8.8 ± 0.9 dB. These ranges agreed with values in the literature and from theoretical models. This study provides more insight into the migrating behaviour of oceanic squids, a species group that is poorly represented in the acoustic literature due to challenges in studying them.
Hoving, Henk-Jan T; Gilly, William F; Markaida, Unai; Benoit-Bird, Kelly J; -Brown, Zachary W; Daniel, Patrick; Field, John C; Parassenti, Liz; Liu, Bilin; Campos, Bernardita
2013-07-01
Dosidicus gigas (jumbo or Humboldt squid) is a semelparous, major predator of the eastern Pacific that is ecologically and commercially important. In the Gulf of California, these animals mature at large size (>55 cm mantle length) in 1-1.5 years and have supported a major commercial fishery in the Guaymas Basin during the last 20 years. An El Niño event in 2009-2010, was accompanied by a collapse of this fishery, and squid in the region showed major changes in the distribution and life-history strategy. Large squid abandoned seasonal coastal-shelf habitats in 2010 and instead were found in the Salsipuedes Basin to the north, an area buffered from the effects of El Niño by tidal upwelling and a well-mixed water column. The commercial fishery also relocated to this region. Although large squid were not found in the Guaymas Basin from 2010 to 2012, small squid were abundant and matured at an unusually small mantle-length (<30 cm) and young age (approximately 6 months). Juvenile squid thus appeared to respond to El Niño with an alternative life-history trajectory in which gigantism and high fecundity in normally productive coastal-shelf habitats were traded for accelerated reproduction at small size in an offshore environment. Both small and large mature squid, were present in the Salsipuedes Basin during 2011, indicating that both life- history strategies can coexist. Hydro-acoustic data, reveal that squid biomass in this study area nearly doubled between 2010 and 2011, primarily due to a large increase in small squid that were not susceptible to the fishery. Such a climate-driven switch in size-at-maturity may allow D. gigas to rapidly adapt to and cope with El Niño. This ability is likely to be an important factor in conjunction with longerterm climate-change and the potential ecological impacts of this invasive predator on marine ecosystems. © 2013 Blackwell Publishing Ltd.
Valenzuela-Lagarda, José Luis; García-Armenta, Evangelina; Pacheco-Aguilar, Ramón; Gutiérrez-Dorado, Roberto; Mazorra-Manzano, Miguel Ángel; Lugo-Sánchez, María Elena; Muy-Rangel, María Dolores
2018-01-24
The giant squid (Dosidicus gigas) is a species of commercial interest as a source of protein, and it can be developed into ready-to-eat food products, including expanded extrusion snacks (EES). EES are prepared primarily from starch; however, adding animal protein increases the nutritional contents. The objective of this study was to evaluate the effect of the protein-carbohydrate interactions on the physical and morphological characteristics of an EES made of squid mantle and potato-corn flour. The independent variable was the squid mantle content (40, 60, 80, and 100%) and two controls (0 1 = 100% potato, 0 2 = 100% corn). The expansion rate (ER) of the sample is significantly minor (p < .5) when the squid mantle content increases ER = 2.0, 1.8 1.4 to 40, 60, and 80%, respectively. In samples with more protein, crispness and crunchiness were reduced, whereas the hardness increased. Digital imaging analysis indicated that the interaction between protein and starch causes significant morphometric changes to the fractal dimension (2.665-2.739) and lacunarity (0.61-1.29). The results showed that it is possible to incorporate up to 60% squid mantle to prepare EES that possess texture and morphometric characteristics competitive in reported studies with snacks usually incorporating flours, corn, and wheat in the formulations. The giant squid is a very attractive species because its meat has low caloric intake, high protein content, and is an important source of omega 3 fatty acids. Despite the desirable qualities of the squid meat its consumption is very low due to the low diffusion of the properties of its meat, acid, and ammoniacal flavor, rigid texture that requires prolonged cooking times and lack of alternatives of consumption. In Mexico, this type of squid is mainly destined for export as frozen mantle and products with little added value, which generates little economic benefit. Therefore, the results of this research may be of interest to the squid processing industry, which demands new forms of consumption of this marine species to increase their commercialization and added value. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Bajpai, Ritu
The motivation behind this work has been to address two of the most challenging issues posed to semiconductor gas sensors--- tuning the device selectivity and sensitivity to a wide variety of gases. In a chemiresistor type nanowire sensor, the sensitivity and selectivity depend on the interaction of different chemical analytes with the nanowire surface. Constrained by the surface properties of the nanowire material, most nanowire sensors can detect only specific type of analytes. In order to make a nano-sensor array for a wide range of analytes, there is a need to tune the device sensitivity and selectivity towards different chemicals. Employing the inherent advantages of nanostructure based sensing such as large surface area, miniature size, low power consumption, and nmol/mol (ppb) sensitivity, an attempt has been made to propose a device with tunable selectivity and sensitivity. The idea proposed in this work is to functionalize GaN nanowires which have relatively inactive surface properties (i.e., with no chemiresistive sensitivity to different classes of organic vapors), with analyte dependent active metal oxides. The selectivity of the sensor devices is controlled independent of the surface properties of the nanowire itself. It is the surface properties of the functionalizing metal oxides which determine the selectivity of these sensors. Further facilitated by the proposed fabrication technique, these sensors can be easily tuned to detect different gases. The prototype developed in this work is that of a UV assisted alcohol sensor using GaN nanowires functionalized with ZnO and SnO2 nanoparticles. As opposed to the widely demonstrated metal oxide based sensors assisted by elevated temperature, the operation of photoconductive semiconductor sensor devices such as those fabricated in this work, can also be assisted by UV illumination at room temperature. Temperature assisted sensing requires an integrated on-chip heater, which could impose constraints on the device fabrication process conditions. Additionally, light assisted sensing can be employed to tailor device response towards an analyte as demonstrated in this work. Therefore, there are two control knobs available for these sensor devices which are independent of the nanowire surface properties: i) sensor selectivity, regulated by the nanoparticle material selection ii) percentage response, tuned by the intensity of the incident light. Due to the small magnitude of device operating current and sensor activation at low illumination intensity (375 nW/cm2 at 365 nm wavelength has been used in this work), these sensors have low power consumption which makes them suitable for portable battery assisted operation. A fabrication recipe for freely suspended two-terminal nanowire devices has been developed. The deposition of nanoparticles was performed using the sputter deposition technique. A change in device current was observed when the device was exposed to alcohol vapors (methanol, ethanol, propanol, and butanol) at room temperature under 215 nm--400 nm UV illumination at 365 nm wavelength. The sensor reproducibly responded to a wide range of alcohol vapor concentrations, from 5000 mumol/mol (ppm) down to 200 nmol/mol (ppb) in air. Notably, the devices show low sensitivity to acetone and hexane, which allows them to selectively detect the alcohol vapors mixed with these two common volatile organic compounds (VOCs). The sensor response was not observed without UV excitation. To make a simplified quantitative and qualitative study of the sensitivity variation with variation of light intensity, the behavior of ZnO nanowire sensor devices was investigated in addition to the hybrid metal-oxide nanoparticle/GaN nanowire devices. With an increase in the light intensity, a corresponding increase in the device sensitivity was observed. In addition to the proposed sensor fabrication technique being a highly suitable candidate for making nano-sensor arrays for detection of a wide range of gases, the alcohol sensors fabricated in this work have many practical applications such as monitoring air quality, and testing the blood alcohol content (BAC) for impaired drivers.
Multiple sensory modalities used by squid in successful predator evasion throughout ontogeny.
York, Carly A; Bartol, Ian K; Krueger, Paul S
2016-09-15
Squid rely on multiple sensory systems for predator detection. In this study we examine the role of two sensory systems, the lateral line analogue and vision, in successful predator evasion throughout ontogeny. Squid Doryteuthis pealeii and Lolliguncula brevis were recorded using high-speed videography in the presence of natural predators under light and dark conditions with their lateral line analogue intact or ablated via a pharmacological technique. Paralarval squid showed reduced escape responses when ablated; however, no differences were found between light and dark conditions in non-ablated paralarvae, as was previously shown in juveniles and adults, indicating that the lateral line analogue is integral for predator detection early in life. However, vision does play a role in survival because ablated squid in dark conditions had lower levels of survival than all other treatments. Throughout ontogeny, squid oriented themselves anteriorly towards the oncoming predator, maximizing sensory input to the lateral line analogue system and providing better positioning for tail-first escape jetting, the preferred escape mode. Ablated juveniles and adults had lower response times, escape velocities and peak acceleration than non-ablated individuals, indicating that the lateral line analogue enables squid to respond quicker and with more powerful jets to a predator and maximize escape success. Our findings reveal that the lateral line analogue plays a role in predator detection and successful escape response at the earliest life stages, and continues to contribute to successful evasion by aiding visual cues in juvenile and adult squid. © 2016. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
Yu, Wei; Chen, Xinjun; Yi, Qian
2016-06-01
The neon flying squid, Ommastrephes bartramii, is a species of economically important cephalopod in the Northwest Pacific Ocean. Its short lifespan increases the susceptibility of the distribution and abundance to the direct impact of the environmental conditions. Based on the generalized linear model (GLM) and generalized additive model (GAM), the commercial fishery data from the Chinese squid-jigging fleets during 1995 to 2011 were used to examine the interannual and seasonal variability in the abundance of O. bartramii, and to evaluate the influences of variables on the abundance (catch per unit effort, CPUE). The results from GLM suggested that year, month, latitude, sea surface temperature (SST), mixed layer depth (MLD), and the interaction term ( SST×MLD) were significant factors. The optimal model based on GAM included all the six significant variables and could explain 42.43% of the variance in nominal CPUE. The importance of the six variables was ranked by decreasing magnitude: year, month, latitude, SST, MLD and SST×MLD. The squid was mainly distributed in the waters between 40°N and 44°N in the Northwest Pacific Ocean. The optimal ranges of SST and MLD were from 14 to 20°C and from 10 to 30 m, respectively. The squid abundance greatly fluctuated from 1995 to 2011. The CPUE was low during 1995-2002 and high during 2003-2008. Furthermore, the squid abundance was typically high in August. The interannual and seasonal variabilities in the squid abundance were associated with the variations of marine environmental conditions and the life history characteristics of squid.
Single flux quantum voltage amplifiers
NASA Astrophysics Data System (ADS)
Golomidov, Vladimir; Kaplunenko, Vsevolod; Khabipov, Marat; Koshelets, Valery; Kaplunenko, Olga
The novel elements of the Rapid Single Flux Quantum (RSFQ) logic family — a Quasi Digital Voltage Parallel and Series Amplifiers (QDVA) have been computer simulated, designed and experimentally investigated. The Parallel QDVA consists of six stages and provides multiplication of the input voltage with factor five. The output resistance of the QDVA is five times larger than the input so this amplifier seems to be a good matching stage between RSFQL and usual semiconductor electronics. The series QDVA provides a gain factor four and involves two doublers connected by transmission line. The proposed parallel QDVA can be integrated on the same chip with a SQUID sensor.
A Planar Two-Dimensional Superconducting Bolometer Array for the Green Bank Telescope
NASA Technical Reports Server (NTRS)
Benford, Dominic; Staguhn, Johannes G.; Chervenak, James A.; Chen, Tina C.; Moseley, S. Harvey; Wollack, Edward J.; Devlin, Mark J.; Dicker, Simon R.; Supanich, Mark
2004-01-01
In order to provide high sensitivity rapid imaging at 3.3mm (90GHz) for the Green Bank Telescope - the world's largest steerable aperture - a camera is being built by the University of Pennsylvania, NASA/GSFC, and NRAO. The heart of this camera is an 8x8 close-packed, Nyquist-sampled detector array. We have designed and are fabricating a functional superconducting bolometer array system using a monolithic planar architecture. Read out by SQUID multiplexers, the superconducting transition edge sensors will provide fast, linear, sensitive response for high performance imaging. This will provide the first ever superconducting bolometer array on a facility instrument.
NASA Astrophysics Data System (ADS)
Gonnelli, R. S.; Daghero, D.; Calzolari, A.; Ummarino, G. A.; Tortello, M.; Stepanov, V. A.; Zhigadlo, N. D.; Rogacki, K.; Karpinski, J.; Portesi, C.; Monticone, E.; Mijatovic, D.; Veldhuis, D.; Brinkman, A.
2006-03-01
In the first part of the present paper we discuss the fabrication and the characterization of an MgB2-based SQUID magnetometer with a directly coupled large-area pick-up loop, made on an MgB2 film deposited by an all in situ technique. The coarse structure of the SQUID was defined by optical lithography and Ar-ion milling, while the two nanobridges acting as weak links in the superconducting loop were made by focused ion beam (FIB) milling. The device was characterized at different temperatures and showed Josephson quantum interference up to 20 K as well as a noise level already compatible with the recording of an adult magnetocardiogram. In the second part, concerning the fundamental physics of MgB2, we present the results of very recent point-contact measurements on Mg1-xMnxB2 single crystals with 34.1 ⩾ Tc ⩾ 13.3 K (i.e. 0.37% ⩽ x ⩽ 1.5%). The experimental conductance curves were fitted with the generalized two-band BTK model and their behaviour in magnetic fields was studied to check if both the order parameters (OPs) of the σ and π bands were present in the whole doping range. The dependence of the OPs (evaluated through the fit) on the Andreev critical temperature of the junctions is analyzed in the framework of the two-band Eliashberg theory by including the effects of magnetic impurities. The results give an evidence of a dominant effect of the magnetic impurities on the σ-band channel.
NASA Astrophysics Data System (ADS)
Kempf, Sebastian; Wegner, Mathias; Fleischmann, Andreas; Gastaldo, Loredana; Herrmann, Felix; Papst, Maximilian; Richter, Daniel; Enss, Christian
2017-01-01
We report on the first demonstration of a scalable GHz frequency-domain readout of metallic magnetic calorimeters (MMCs) using a 64 pixel detector array that is read out by an integrated, on-chip microwave SQUID multiplexer. The detector array is optimized for detecting soft X-ray photons and the multiplexer is designed to provide a signal rise time τrise<400 ns and an intrinsic energy sensitivity ɛ <30 h . This results in an expected energy resolution Δ EFWHM <10 eV . We measured a signal rise time τrise as low as 90 ns and an energy resolution Δ EFWHM as low as 50 eV for 5.9 keV photons. The rise time is about an order of magnitude faster compared to other multiplexed low-temperature microcalorimeters and close to the intrinsic value set by the coupling between electron and spins. The energy resolution is degraded with respect to our design value due to a rather low intrinsic quality factor of the microwave resonators that is caused by the quality of the Josephson junction of the associated rf-SQUID as well as an elevated chip temperature as compared to the heat bath. Though the achieved energy resolution is not yet compatible with state-of-the-art single-channel MMCs, this demonstration of a scalable readout approach for MMCs in combination with the full understanding of the device performance showing ways how to improve represents an important milestone for the development of future large-scale MMC detector arrays.
Asymmetric nanowire SQUID: Linear current-phase relation, stochastic switching, and symmetries
NASA Astrophysics Data System (ADS)
Murphy, A.; Bezryadin, A.
2017-09-01
We study nanostructures based on two ultrathin superconducting nanowires connected in parallel to form a superconducting quantum interference device (SQUID). The measured function of the critical current versus magnetic field, IC(B ) , is multivalued, asymmetric, and its maxima and minima are shifted from the usual integer and half integer flux quantum points. We also propose a low-temperature-limit model which generates accurate fits to the IC(B ) functions and provides verifiable predictions. The key assumption of our model is that each wire is characterized by a sample-specific critical phase ϕC defined as the phase difference at which the supercurrent in the wire is the maximum. For our nanowires ϕC is much greater than the usual π /2 , which makes a qualitative difference in the behavior of the SQUID. The nanowire current-phase relation is assumed linear, since the wires are much longer than the coherence length. The model explains single-valuedness regions where only one vorticity value nv is stable. Also, it predicts regions where multiple vorticity values are stable because the Little-Parks (LP) diamonds, which describe the region of stability for each winding number nv in the current-field diagram, can overlap. We also observe and explain regions in which the standard deviation of the switching current is independent of the magnetic field. We develop a technique that allows a reliable detection of hidden phase slips and use it to determine the boundaries of the LP diamonds even at low currents where IC(B ) is not directly measurable.
50 CFR 648.124 - Scup commercial season and commercial fishery area restrictions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... vessels in the Southern Gear Restricted Area that are fishing for or in possession of the following non-exempt species: Longfin squid; black sea bass; and silver hake (whiting). (b) Northern Gear Restricted... are fishing for, or in possession of, the following non-exempt species: Longfin squid squid; black sea...
50 CFR 648.124 - Scup commercial season and commercial fishery area restrictions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... vessels in the Southern Gear Restricted Area that are fishing for or in possession of the following non-exempt species: Longfin squid; black sea bass; and silver hake (whiting). (b) Northern Gear Restricted... are fishing for, or in possession of, the following non-exempt species: Longfin squid squid; black sea...
50 CFR 648.124 - Scup commercial season and commercial fishery area restrictions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... vessels in the Southern Gear Restricted Area that are fishing for or in possession of the following non-exempt species: Longfin squid; black sea bass; and silver hake (whiting). (b) Northern Gear Restricted... are fishing for, or in possession of, the following non-exempt species: Longfin squid squid; black sea...
Non-destructive inspection using HTS SQUID on aluminum liner covered by CFRP
NASA Astrophysics Data System (ADS)
Hatsukade, Y.; Yotsugi, K.; Sakaguchi, Y.; Tanaka, S.
2007-10-01
An eddy-current-based SQUID non-destructive inspection (NDI) system to detect deep-lying cracks in multi-layer composite-Al vessels was developed taking advantage of the uncontested sensitivity of HTS-SQUID in low-frequency range. An HTS-SQUID gradiometer was mounted in a pulse tube cryocooler. A pair of differential coils with C-shaped ferrite cores was employed to induce an enhanced eddy current in an Al vessel wrapped in a carbon fiber reinforced plastic (CFRP) cover. Ellipsoidal dome-shaped Al liners containing through cracks, which were made by pressure cycle tests, in the CFRP covers with total thickness of 6 mm (CFPR 3 mm, and Al 3 mm) were inspected by the system. While inducing eddy currents in the vessels with excitation fields at 100 Hz or 7 kHz, the vessels were rotated under the HTS-SQUID. Above the cracks, anomalous signals due to the cracks were clearly detected at both frequencies. These results suggested the SQUID-NDI technique would be a possible candidate for inspection of high-pressure multi-layer composite-Al vessels.
Rosas-Romero, Zaidy G; Ramirez-Suarez, Juan C; Pacheco-Aguilar, Ramón; Lugo-Sánchez, Maria E; Carvallo-Ruiz, Gisela; García-Sánchez, Guillermina
2010-01-01
Jumbo squid (Dosidicus gigas) mantle muscle was cooked simulating industrial procedures (95 degrees C x 25 min, 1.2:5 muscle:water ratio). The effluent produced was analyzed for chemical and biochemical oxygen demands (COD and BOD(5), respectively), proximate analysis, flavor-related compounds (free amino acids, nucleotides and carbohydrates) and SDS-PAGE. The COD and BOD(5) exhibited variation among samplings (N=3) (27.4-118.5 g O(2)/L for COD and 11.3-26.7 g O(2)/L for BOD(5)). The effluent consisted of 1% total solids, 75% of which represented crude protein. Sixty percent of the total free amino acid content, which imparts flavor in squid species, corresponded to glutamic acid, serine, glycine, arginine, alanine, leucine and lysine. The nucleotide concentration followed this order, Hx>ADP>AMP>ATP>IMP>HxR. The variation observed in the present work was probably due to physiological maturity differences among the squid specimens (i.e., juvenile versus mature). Solids present in squid cooking effluent could be recovered and potentially used as flavor ingredients in squid-analog production by the food industry.
IMAPS Device Packaging Conference 2017 - Engineered Micro Systems & Devices Track
NASA Technical Reports Server (NTRS)
Varnavas, Kosta
2017-01-01
NASA field center Marshall Space Flight Center (Huntsville, AL), has invested in advanced wireless sensor technology development. Developments for a wireless microcontroller back-end were primarily focused on the commercial Synapse Wireless family of devices. These devices have many useful features for NASA applications, good characteristics and the ability to be programmed Over-The-Air (OTA). The effort has focused on two widely used sensor types, mechanical strain gauges and thermal sensors. Mechanical strain gauges are used extensively in NASA structural testing and even on vehicle instrumentation systems. Additionally, thermal monitoring with many types of sensors is extensively used. These thermal sensors include thermocouples of all types, resistive temperature devices (RTDs), diodes and other thermal sensor types. The wireless thermal board will accommodate all of these types of sensor inputs to an analog front end. The analog front end on each of the sensors interfaces to the Synapse wireless microcontroller, based on the Atmel Atmega128 device. Once the analog sensor output data is digitized by the onboard analog to digital converter (A/D), the data is available for analysis, computation or transmission. Various hardware features allow custom embedded software to manage battery power to enhance battery life. This technology development fits nicely into using numerous additional sensor front ends, including some of the low-cost printed circuit board capacitive moisture content sensors currently being developed at Auburn University.
Cryogenic High-Sensitivity Magnetometer
NASA Technical Reports Server (NTRS)
Day, Peter; Chui, Talso; Goodstein, David
2005-01-01
A proposed magnetometer for use in a cryogenic environment would be sensitive enough to measure a magnetic-flux density as small as a picogauss (10(exp -16) Tesla). In contrast, a typical conventional flux-gate magnetometer cannot measure a magnetic-flux density smaller that about 1 microgauss (10(exp -10) Tesla). One version of this device, for operation near the low end of the cryogenic temperature range, would include a piece of a paramagnetic material on a platform, the temperature of which would be controlled with a periodic variation. The variation in temperature would be measured by use of a conventional germanium resistance thermometer. A superconducting coil would be wound around the paramagnetic material and coupled to a superconducting quantum interference device (SQUID) magnetometer.
Large resistance change on magnetic tunnel junction based molecular spintronics devices
NASA Astrophysics Data System (ADS)
Tyagi, Pawan; Friebe, Edward
2018-05-01
Molecular bridges covalently bonded to two ferromagnetic electrodes can transform ferromagnetic materials and produce intriguing spin transport characteristics. This paper discusses the impact of molecule induced strong coupling on the spin transport. To study molecular coupling effect the octametallic molecular cluster (OMC) was bridged between two ferromagnetic electrodes of a magnetic tunnel junction (Ta/Co/NiFe/AlOx/NiFe/Ta) along the exposed side edges. OMCs induced strong inter-ferromagnetic electrode coupling to yield drastic changes in transport properties of the magnetic tunnel junction testbed at the room temperature. These OMCs also transformed the magnetic properties of magnetic tunnel junctions. SQUID and ferromagnetic resonance studies provided insightful data to explain transport studies on the magnetic tunnel junction based molecular spintronics devices.
NASA Astrophysics Data System (ADS)
Field, John C.; Elliger, Carl; Baltz, Ken; Gillespie, Graham E.; Gilly, William F.; Ruiz-Cooley, R. I.; Pearse, Devon; Stewart, Julia S.; Matsubu, William; Walker, William A.
2013-10-01
From 2002 to 2010, the jumbo squid (Dosidicus gigas) has been regularly encountered in large numbers throughout the California Current System (CCS). This species, usually found in subtropical waters, could affect coastal pelagic ecosystems and fisheries as both predator and prey. Neither the abundance of jumbo squid nor the optimal ocean conditions in which they flourish are well known. To understand better the potential impacts of this species on both commercial fisheries and on food-web structure we collected nearly 900 specimens from waters of the CCS, covering over 20° of latitude, over a range of depths and seasons. We used demographic information (size, sex, and maturity state) and analyzed stomach contents using morphological and molecular methods to best understand the foraging ecology of this species in different habitats of the CCS. Squid were found to consume a broad array of prey. Prey in offshore waters generally reflected the forage base reported in previous studies (mainly mesopelagic fishes and squids), whereas in more coastal waters (shelf, shelf break and slope habitats) squid foraged on a much broader mix that included substantial numbers of coastal pelagic fishes (Pacific herring and northern anchovy, as well as osmerids and salmonids in northern waters) and groundfish (Pacific hake, several species of rockfish and flatfish). We propose a seasonal movement pattern, based on size and maturity distributions along with qualitative patterns of presence or absence, and discuss the relevance of both the movement and distribution of jumbo squid over space and time. We find that jumbo squid are a generalist predator, which feeds primarily on small, pelagic or mesopelagic micronekton but also on larger fishes when they are available. We also conclude that interactions with and potential impacts on ecosystems likely vary over space and time, in response to both seasonal movement patterns and highly variable year-to-year abundance of the squid themselves.
Prospects on the application of HTS SQUID magnetometry to nondestructive evaluation (NDE)
NASA Astrophysics Data System (ADS)
Weinstock, H.
1993-04-01
In light of recent advances in the fabrication of low-noise HTS SQUIDs, a review is presented on the use of LTS SQUID magnetometry for nondestructive evaluation (NDE). Examples are given on applications relating to defects in steel, subsurface cracks in aircraft frames, and voids in non-metallic structures. HTS SQUIDs may make a significant difference in the acceptance of these applications because sensing coils will be closer to a sample under test, there will be greater instrument portability and the problem of bringing liquid helium to remote locations will be eliminated.
OpenSQUID: A Flexible Open-Source Software Framework for the Control of SQUID Electronics
Jaeckel, Felix T.; Lafler, Randy J.; Boyd, S. T. P.
2013-02-06
We report commercially available computer-controlled SQUID electronics are usually delivered with software providing a basic user interface for adjustment of SQUID tuning parameters, such as bias current, flux offset, and feedback loop settings. However, in a research context it would often be useful to be able to modify this code and/or to have full control over all these parameters from researcher-written software. In the case of the STAR Cryoelectronics PCI/PFL family of SQUID control electronics, the supplied software contains modules for automatic tuning and noise characterization, but does not provide an interface for user code. On the other hand, themore » Magnicon SQUIDViewer software package includes a public application programming interface (API), but lacks auto-tuning and noise characterization features. To overcome these and other limitations, we are developing an "open-source" framework for controlling SQUID electronics which should provide maximal interoperability with user software, a unified user interface for electronics from different manufacturers, and a flexible platform for the rapid development of customized SQUID auto-tuning and other advanced features. Finally, we have completed a first implementation for the STAR Cryoelectronics hardware and have made the source code for this ongoing project available to the research community on SourceForge (http://opensquid.sourceforge.net) under the GNU public license.« less
[Biochemistry and functional characterization of squid mantle meat (Dosidicus gigas)].
Abugoch, L; Guarda, A; María Pérez, L; Isabel Donghi, M
2000-12-01
A study for the characterization of frozen giant squid mantle (meat) protein stored at -25 degrees C for 8 month was started. In the present research, the following functional properties were investigate: emulsifying, water holding and gel forming capacities. Optimal conditions for the separation and differentiation of miofibrillar and sarcoplasmatic proteins were also studied. It was found that the unfrozen giant squid mantle meat es capable of emulifying 2.817,4 g of oil/g of protein and holding capacity was 3.64 g of water/g of protein. Related to the gel forming capacity, it was not obtain, probably due to excessive storage of the meat. With regard to miofibrilar protein obtention of the squid mantle meat, it was found that two low ionic strength washings (I = 0.05), the sarcoplasmic proteins were practically eliminated from the protein matrix. The differentiation of miofibrilar and sarcoplasmatic proteins was obtained by PAGE-SDS of the squid mantle meat extracted at two different ionic strength (I = 0.05 and I = 0.5). This work demonstrates that the giant squid mantle protein has a high emulsifying and water holding capacity, and it can be used, as a raw material, for the improvement of sausage products. About the gelling products, more studies will be necessary with fresh squid mantle meat to conclude about this functional property.
Structural elements of the signal propagation pathway in squid rhodopsin and bovine rhodopsin.
Sugihara, Minoru; Fujibuchi, Wataru; Suwa, Makiko
2011-05-19
Squid and bovine rhodopsins are G-protein coupled receptors (GPCRs) that activate Gq- and Gt-type G-proteins, respectively. To understand the structural elements of the signal propagation pathway, we performed molecular dynamics (MD) simulations of squid and bovine rhodopsins plus a detailed sequence analysis of class A GPCRs. The computations indicate that although the geometry of the retinal is similar in bovine and squid rhodopsins, the important interhelical hydrogen bond networks are different. In squid rhodopsin, an extended hydrogen bond network that spans ∼13 Å to Tyr315 on the cytoplasmic site is present regardless of the protonation state of Asp80. In contrast, the extended hydrogen bond network is interrupted at Tyr306 in bovine rhodopsin. Those differences in the hydrogen bond network may play significant functional roles in the signal propagation from the retinal binding site to the cytoplasmic site, including transmembrane helix (TM) 6 to which the G-protein binds. The MD calculations demonstrate that the elongated conformation of TM6 in squid rhodopsin is stabilized by salt bridges formed with helix (H) 9. Together with the interhelical hydrogen bonds, the salt bridges between TM6 and H9 stabilize the protein conformation of squid rhodopsin and may hinder the occurrence of large conformational changes that are observed upon activation of bovine rhodopsin. © 2011 American Chemical Society
Magnetoencephalography recording and analysis.
Velmurugan, Jayabal; Sinha, Sanjib; Satishchandra, Parthasarathy
2014-03-01
Magnetoencephalography (MEG) non-invasively measures the magnetic field generated due to the excitatory postsynaptic electrical activity of the apical dendritic pyramidal cells. Such a tiny magnetic field is measured with the help of the biomagnetometer sensors coupled with the Super Conducting Quantum Interference Device (SQUID) inside the magnetically shielded room (MSR). The subjects are usually screened for the presence of ferromagnetic materials, and then the head position indicator coils, electroencephalography (EEG) electrodes (if measured simultaneously), and fiducials are digitized using a 3D digitizer, which aids in movement correction and also in transferring the MEG data from the head coordinates to the device and voxel coordinates, thereby enabling more accurate co-registration and localization. MEG data pre-processing involves filtering the data for environmental and subject interferences, artefact identification, and rejection. Magnetic resonance Imaging (MRI) is processed for correction and identifying fiducials. After choosing and computing for the appropriate head models (spherical or realistic; boundary/finite element model), the interictal/ictal epileptiform discharges are selected and modeled by an appropriate source modeling technique (clinically and commonly used - single equivalent current dipole - ECD model). The equivalent current dipole (ECD) source localization of the modeled interictal epileptiform discharge (IED) is considered physiologically valid or acceptable based on waveform morphology, isofield pattern, and dipole parameters (localization, dipole moment, confidence volume, goodness of fit). Thus, MEG source localization can aid clinicians in sublobar localization, lateralization, and grid placement, by evoking the irritative/seizure onset zone. It also accurately localizes the eloquent cortex-like visual, language areas. MEG also aids in diagnosing and delineating multiple novel findings in other neuropsychiatric disorders, including Alzheimer's disease, Parkinsonism, Traumatic brain injury, autistic disorders, and so oon.
Portable MRI developed at Los Alamos
Espy, Michelle
2018-02-14
Scientists at Los Alamos National Laboratory are developing an ultra-low-field Magnetic Resonance Imaging (MRI) system that could be low-power and lightweight enough for forward deployment on the battlefield and to field hospitals in the World's poorest regions. "MRI technology is a powerful medical diagnostic tool," said Michelle Espy, the Battlefield MRI (bMRI) project leader, "ideally suited for imaging soft-tissue injury, particularly to the brain." But hospital-based MRI devices are big and expensive, and require considerable infrastructure, such as large quantities of cryogens like liquid nitrogen and helium, and they typically use a large amount of energy. "Standard MRI machines just can't go everywhere," said Espy. "Soldiers wounded in battle usually have to be flown to a large hospital and people in emerging nations just don't have access to MRI at all. We've been in contact with doctors who routinely work in the Third World and report that MRI would be extremely valuable in treating pediatric encephalopathy, and other serious diseases in children." So the Los Alamos team started thinking about a way to make an MRI device that could be relatively easy to transport, set up, and use in an unconventional setting. Conventional MRI machines use very large magnetic fields that align the protons in water molecules to then create magnetic resonance signals, which are detected by the machine and turned into images. The large magnetic fields create exceptionally detailed images, but they are difficult and expensive to make. Espy and her team wanted to see if images of sufficient quality could be made with ultra-low-magnetic fields, similar in strength to the Earth's magnetic field. To achieve images at such low fields they use exquisitely sensitive detectors called Superconducting Quantum Interference Devices, or SQUIDs. SQUIDs are among the most sensitive magnetic field detectors available, so interference with the signal is the primary stumbling block. "SQUIDs are so sensitive they'll respond to a truck driving by outside or a radio signal 50 miles away," said Al Urbaitis, a bMRI engineer. The team's first generation bMRI had to be built in a large metal housing in order to shield it from interference. Now the Los Alamos team is working in the open environment without the large metal housing using a lightweight series of wire coils that surround the bMRI system to compensate the Earthâs magnetic field. In the future, the field compensation system will also function similar to noise-cancelling headphones to eradicate invading magnetic field signals on-the-fly.
Portable MRI developed at Los Alamos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Espy, Michelle
Scientists at Los Alamos National Laboratory are developing an ultra-low-field Magnetic Resonance Imaging (MRI) system that could be low-power and lightweight enough for forward deployment on the battlefield and to field hospitals in the World's poorest regions. "MRI technology is a powerful medical diagnostic tool," said Michelle Espy, the Battlefield MRI (bMRI) project leader, "ideally suited for imaging soft-tissue injury, particularly to the brain." But hospital-based MRI devices are big and expensive, and require considerable infrastructure, such as large quantities of cryogens like liquid nitrogen and helium, and they typically use a large amount of energy. "Standard MRI machines justmore » can't go everywhere," said Espy. "Soldiers wounded in battle usually have to be flown to a large hospital and people in emerging nations just don't have access to MRI at all. We've been in contact with doctors who routinely work in the Third World and report that MRI would be extremely valuable in treating pediatric encephalopathy, and other serious diseases in children." So the Los Alamos team started thinking about a way to make an MRI device that could be relatively easy to transport, set up, and use in an unconventional setting. Conventional MRI machines use very large magnetic fields that align the protons in water molecules to then create magnetic resonance signals, which are detected by the machine and turned into images. The large magnetic fields create exceptionally detailed images, but they are difficult and expensive to make. Espy and her team wanted to see if images of sufficient quality could be made with ultra-low-magnetic fields, similar in strength to the Earth's magnetic field. To achieve images at such low fields they use exquisitely sensitive detectors called Superconducting Quantum Interference Devices, or SQUIDs. SQUIDs are among the most sensitive magnetic field detectors available, so interference with the signal is the primary stumbling block. "SQUIDs are so sensitive they'll respond to a truck driving by outside or a radio signal 50 miles away," said Al Urbaitis, a bMRI engineer. The team's first generation bMRI had to be built in a large metal housing in order to shield it from interference. Now the Los Alamos team is working in the open environment without the large metal housing using a lightweight series of wire coils that surround the bMRI system to compensate the Earth’s magnetic field. In the future, the field compensation system will also function similar to noise-cancelling headphones to eradicate invading magnetic field signals on-the-fly.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-06
... and GOA sharks, sculpins, and octopuses, and GOA squids as a group for purposes of prohibited species.../npfmc/default.htm . One alternative previously adopted for a Tier 6 stock (squid and octopus in the GOA... groups (sharks, skates, sculpins, octopus, or squid) approaches overfishing. Response: See the response...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-13
.... SUMMARY: NMFS proposes changing the butterfish mortality cap on the longfin squid fishery from a catch cap to a discard cap in Framework Adjustment 7 to the Atlantic Mackerel, Squid, and Butterfish Fishery Management Plan,. This action also proposes reducing the butterfish mortality cap for the 2013 fishing year...
Is there a relationship between curvature and inductance in the Josephson junction?
NASA Astrophysics Data System (ADS)
Dobrowolski, T.; Jarmoliński, A.
2018-03-01
A Josephson junction is a device made of two superconducting electrodes separated by a very thin layer of isolator or normal metal. This relatively simple device has found a variety of technical applications in the form of Superconducting Quantum Interference Devices (SQUIDs) and Single Electron Transistors (SETs). One can expect that in the near future the Josephson junction will find applications in digital electronics technology RSFQ (Rapid Single Flux Quantum) and in the more distant future in construction of quantum computers. Here we concentrate on the relation of the curvature of the Josephson junction with its inductance. We apply a simple Capacitively Shunted Junction (CSJ) model in order to find condition which guarantees consistency of this model with prediction based on the Maxwell and London equations with Landau-Ginzburg current of Cooper pairs. This condition can find direct experimental verification.
US Navy superconductivity program
NASA Technical Reports Server (NTRS)
Gubser, Donald U.
1991-01-01
Both the new high temperature superconductors (HTS) and the low temperature superconductors (LTS) are important components of the Navy's total plan to integrate superconductivity into field operational systems. Fundamental research is an important component of the total Navy program and focuses on the HTS materials. Power applications (ship propulsion) use LTS materials while space applications (millimeter wave electronics) use HTS materials. The Space Experiment to be conducted at NRL will involve space flight testing of HTS devices built by industry and will demonstrate the ability to engineer and space qualify these devices for systems use. Another important component of the Navy's effort is the development of Superconducting Quantum Interference Device (SQUID) magnetometers. This program will use LTS materials initially, but plans to implement HTS materials as soon as possible. Hybrid HTS/LTS systems are probable in many applications. A review of the status of the Navy's HTS materials research is given as well as an update on the Navy's development efforts in superconductivity.
Zhang, Yifeng; Jiao, Shunshan; Lian, Zixuan; Deng, Yun; Zhao, Yanyun
2015-05-01
This study investigated the effect of single- and two-cycle high hydrostatic pressure (HHP) treatments on water properties, physicochemical, and microbial qualities of squids (Todarodes pacificus) during 4 °C storage for up to 10 d. Single-cycle treatments were applied at 200, 400, or 600 MPa for 20 min (S-200, S-400, and S-600), and two-cycle treatments consisted of two 10 min cycles at 200, 400, or 600 MPa, respectively (T-200, T-400, and T-600). HHP-treated samples had higher (P < 0.05) content of P2b (immobilized water) and P21 (myofibril water), but lower P22 (free water) than those of control. The single- and two-cycle HHP treatments at the same pressure level caused no significant difference in water state of squids. The two-cycle HHP treatment was more effective in controlling total volatile basic nitrogen, pH, and total plate counts (TPC) of squids during storage, in which TPC of S-600 and T-600 was 2.9 and 1.8 log CFU/g at 10 d, respectively, compared with 7.5 log CFU/g in control. HHP treatments delayed browning discoloration of the squids during storage, and the higher pressure level and two-cycle HHP were more effective. Water properties highly corresponded with color and texture indices of squids. This study demonstrated that the two-cycle HHP treatment was more effective in controlling microbial growth and quality deterioration while having similar impact on the physicochemical and water properties of squids in comparison with the single-cycle treatment, thus more desirable for extending shelf-life of fresh squids. © 2015 Institute of Food Technologists®
A shot in the dark: same-sex sexual behaviour in a deep-sea squid.
Hoving, Hendrik J T; Bush, Stephanie L; Robison, Bruce H
2012-04-23
Little is known about the reproductive habits of deep-living squids. Using remotely operated vehicles in the deep waters of the Monterey Submarine Canyon, we have found evidence of mating, i.e. implanted sperm packages, on similar body locations in males and females of the rarely seen mesopelagic squid Octopoteuthis deletron. Equivalent numbers of both sexes were found to have mated, indicating that male squid routinely and indiscriminately mate with both males and females. Most squid species are short-lived, semelparous (i.e. with a single, brief reproductive period) and promiscuous. In the deep, dark habitat where O. deletron lives, potential mates are few and far between. We suggest that same-sex mating behaviour by O. deletron is part of a reproductive strategy that maximizes success by inducing males to indiscriminately and swiftly inseminate every conspecific that they encounter.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-21
...NMFS is implementing final 2012 specifications and management measures for Atlantic mackerel (mackerel), and 2012-2014 specifications for Illex and longfin squid, and interim final 2012 specifications and management measures for butterfish. This is the first year that the specifications are being set for Atlantic mackerel and butterfish under the provisions of the Mid-Atlantic Fishery Management Council's (Council) Annual Catch Limit and Accountability Measure Omnibus Amendment. This action also adjusts the closure threshold for the commercial mackerel fishery to 95 percent (from 90 percent), and allows the use of jigging gear to target longfin squid if the longfin squid fishery is closed due to the butterfish mortality cap. Finally, this rule makes minor corrections in existing regulatory text to clarify the intent of the regulations. These specifications and management measures promote the utilization and conservation of the Atlantic Mackerel, Squid, and Butterfish (MSB) resource.
Squid as nutrient vectors linking Southwest Atlantic marine ecosystems
NASA Astrophysics Data System (ADS)
Arkhipkin, Alexander I.
2013-10-01
Long-term investigations of three abundant nektonic squid species from the Southwest Atlantic, Illex argentinus, Doryteuthis gahi and Onykia ingens, permitted to estimate important population parameters including individual growth rates, duration of ontogenetic phases and mortalities. Using production model, the productivity of squid populations at different phases of their life cycle was assessed and the amount of biomass they convey between marine ecosystems as a result of their ontogenetic migrations was quantified. It was found that squid are major nutrient vectors and play a key role as transient 'biological pumps' linking spatially distinct marine ecosystems. I. argentinus has the largest impact in all three ecosystems it encounters due to its high abundance and productivity. The variable nature of squid populations increases the vulnerability of these biological conveyers to overfishing and environmental change. Failure of these critical biological pathways may induce irreversible long-term consequences for biodiversity, resource abundance and spatial availability in the world ocean.
A SQUID-Based RF Cavity Search for Dark Matter Axions
NASA Astrophysics Data System (ADS)
Hotz, Michael T.
The axion is a hypothetical elementary particle resulting from a solution to the "Strong-CP" problem. This serious problem in the standard model of particle physics is manifested as a 1010 discrepancy between the measured upper limit and the calculated value of the neutron's electric dipole moment. Furthermore, a light (~mueV) axion is an ideal dark matter candidate: axions would have been copiously produced during the Big Bang and would be the primary component of the dark matter in the universe. The resolution of the Strong-CP problem and the discovery of the composition of dark matter are two of the most pressing problems in physics. The observation of a light, dark-matter axion would resolve both of these problems. The Axion Dark Matter eXperiment (ADMX) is the most sensitive search for dark-matter axions. Axions in our Milky Way Galaxy may scatter off a magnetic field and convert into microwave photons. ADMX consists of a tunable high-Q RF cavity within the bore of a large, 8.5 Tesla superconducting solenoidal magnet. When the cavity's resonant frequency matches the axion's total energy, the probability of axion-to-photon conversion is enhanced. The cavity's narrow bandwidth requires ADMX to slowly scan possible axion masses. A receiver amplifies, mixes, and digitizes the power developed in the cavity from possible axion-to-photon conversions. This is the most sensitive spectral receiver of microwave radiation in the world. The resulting data is scrutinized for an axion signal above the thermal background. ADMX first operated from 1995-2005 and produced exclusion limits on the energy of dark-matter axions from 1.9 mueV to 3.3 mueV. In order to improve on these limits and continue the search for plausible dark-matter axions, the system was considerably upgraded from 2005 until 2008. In the upgrade, the key technical advance was the use of a dc Superconducting QUantum Interference Device (SQUID) as a microwave amplifier. The SQUID amplifier's noise level is near the allowed minimum from quantum mechanics, allowing ADMX to reduce its thermal noise background by up to 100x. However, SQUIDs are extremely sensitive to magnetic fields, such as those within in ADMX. Integrating a SQUID amplifier into ADMX presented a serious technical challenge. Commissioning the SQUID amplifier was a major focus of my thesis work. This work demonstrates the successful use of a SQUID amplifier in ADMX during operations from 2008-2010. Compared to other dark-matter candidates, the axion's mass and the axion's coupling strength to normal matter and radiation are rather tightly constrained. This allows for the near-definitive elimination or detection of dark-matter axions. A successful detection in ADMX would immediately lead to a determination of the axion's spectral line shape. This shape encodes the history of the Milky Way's formation and is therefore of high scientific importance. The imperfectly-constrained Milky Way dark-matter halo, however, produces remnant uncertainties of the axion signal in both its spectral line-shape and its total intensity, complicating the ADMX search. This work investigates proposed features of dark-matter halo models which enhance ADMX's sensitivity. From these models, this work presents the corresponding exclusion limits for both the local axion density and axion-to-photon coupling strength for axions with mass in the 3.36 mueV to 3.69 mueV region.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-19
..., Squid, and Octopus in the Gulf of Alaska AGENCY: National Marine Fisheries Service (NMFS), National... prohibiting directed fishing for sculpins, sharks, squid, and octopus in the Gulf of Alaska (GOA). This action..., and octopus in the GOA. DATES: Effective 1200 hrs, Alaska local time (A.l.t.), January 13, 2011...
Macroscale and Microscale Structural Characterization of Cephalopod Chromatophores
2011-04-01
ABSTRACT Cephalopods, the class of mollusks that include squid, cuttlefish, and octopus , possess skin with dynamic adaptable appearance. Their unique...Cephalopods, the class of mollusks that include squid, cuttlefish, and octopus , possess skin with dynamic adaptable appearance. Their unique ability to...Cephalopoda including cuttlefish, octopus , and squid (Hanlon, 2007; Hanlon and Messenger, 1996; Hanlon, 1982; Hanlon and Messenger, 1988). These
Designing a Microhydraulically driven Mini robotic Squid
2016-05-20
applications for microrobots include remote monitoring, surveillance, search and rescue, nanoassembly, medicine, and in-vivo surgery . Robotics platforms...Secretary of Defense for Research and Engineering. Designing a Microhydraulically-driven Mini- robotic Squid by Kevin Dehan Meng B.S., U.S. Air...Committee on Graduate Students 2 Designing a Microhydraulically-driven Mini- robotic Squid by Kevin Dehan Meng Submitted to the Department
jSquid: a Java applet for graphical on-line network exploration.
Klammer, Martin; Roopra, Sanjit; Sonnhammer, Erik L L
2008-06-15
jSquid is a graph visualization tool for exploring graphs from protein-protein interaction or functional coupling networks. The tool was designed for the FunCoup web site, but can be used for any similar network exploring purpose. The program offers various visualization and graph manipulation techniques to increase the utility for the user. jSquid is available for direct usage and download at http://jSquid.sbc.su.se including source code under the GPLv3 license, and input examples. It requires Java version 5 or higher to run properly. erik.sonnhammer@sbc.su.se Supplementary data are available at Bioinformatics online.
Gong, Yi; Chen, Xin-jun; Li, Yun-kai; Han, Meng-jie
2015-09-01
As a pelagic cephalopod and one of the main target species of Chinese distant water fishery, jumbo squids (Dosidicus gigas) play a major role in the marine ecosystems of the eastern Pacific. Understanding the feeding ecology and migration patterns of jumbo squids is of importance for better utilizing the resources. The isotopic signatures of gladius, have been proved to be a powerful tool to reveal high resolution and ontogenic variations in individual foraging strategies of squids; which is an archival tissue with no elemental turnover after formation. In this study, the growth equation of gladius proostracum was established based on the age information determined by statolith. Gladius was cut successionally by the growth curve of gladius proostracum, the stable isotopic values of the gladius profiles were determined, and the feeding ecology and migration patterns of jumbo squids during its growth process were investigated. Results showed that the jumbo squids began to migrate after 180 days of postnatal, and their trophic levels tended to decrease throughout the life span. These results demonstrated the feasibility of using continuous sampling hard tissue to study the feeding ecology and habitat transfer of jumbo squids.
Zhu, Junli; Jia, Jia; Li, Xuepeng; Dong, Liangliang; Li, Jianrong
2013-12-15
The effects of ferrous iron, heating temperature and different additives on the decomposition of trimethylamine oxide (TMAO) to formaldehyde (FA) and dimethylamine (DMA) and generation of free radicals in jumbo squid (Dosidicus gigas) extract during heating were evaluated by electron spin resonance (ESR). The thermal decomposition of TMAO to TMA, DMA and FA and free radical signals was observed in squid extract, whereas no DMA, FA and free radical signals were detected in cod extract or in aqueous TMAO solution in vitro at high temperatures. Significant increase in levels of DMA, FA and radicals intensity were observed in squid extract and TMAO solution in the presence of ferrous iron with increasing temperature. Hydrogen peroxide stimulated the production of DMA, FA and ESR signals in squid extract, while citric acid, trisodium citrate, calcium chloride, tea polyphenols and resveratrol had the opposite effect. Similar ESR spectra of six peaks regarded as amminium radical were detected in the squid extract and TMAO-iron(II) solution, suggesting that the amminium radical was involved in the decomposition of TMAO. Copyright © 2013 Elsevier Ltd. All rights reserved.
Deep-sea in situ observations of gonatid squid and their prey reveal high occurrence of cannibalism
NASA Astrophysics Data System (ADS)
Hoving, H. J. T.; Robison, B. H.
2016-10-01
In situ observations are rarely applied in food web studies of deep-sea organisms. Using deep-sea observations obtained by remotely operated vehicles in the Monterey Submarine Canyon, we examined the prey choices of more than 100 individual squids of the genus Gonatus. Off the California coast, these squids are abundant, semelparous (one reproductive cycle) oceanic predators but their diet has remained virtually unknown. Gonatus onyx and Gonatus berryi were observed to feed on mesopelagic fishes (in particular the myctophid Stenobrachius leucopsarus) as often as on squids but inter-specific differences in feeding were apparent. Gonatids were the most common squid prey and while cannibalism occurred in both species it was particularly high in Gonatus onyx (42% of all prey items). Typically, the size of prey was similar to the size of the predator but the squids were also seen to take much larger prey. Postjuvenile gonatids are opportunistic predators that consume nektonic members of the meso-and bathypelagic communities, including their own species. Such voracious feeding is likely necessary to support the high energetic demands associated with the single reproductive event; and for females the long brooding period during which they must depend on stored resources.
Morak, Jürgen; Kumpusch, Hannes; Hayn, Dieter; Modre-Osprian, Robert; Schreier, Günter
2012-01-01
Utilization of information and communication technologies such as mobile phones and wireless sensor networks becomes more and more common in the field of telemonitoring for chronic diseases. Providing elderly people with a mobile-phone-based patient terminal requires a barrier-free design of the overall user interface including the setup of wireless communication links to sensor devices. To easily manage the connection between a mobile phone and wireless sensor devices, a concept based on the combination of Bluetooth and near-field communication technology has been developed. It allows us initiating communication between two devices just by bringing them close together for a few seconds without manually configuring the communication link. This concept has been piloted with a sensor device and evaluated in terms of usability and feasibility. Results indicate that this solution has the potential to simplify the handling of wireless sensor networks for people with limited technical skills.
Pires, Ivan Miguel; Garcia, Nuno M.; Pombo, Nuno; Flórez-Revuelta, Francisco
2016-01-01
This paper focuses on the research on the state of the art for sensor fusion techniques, applied to the sensors embedded in mobile devices, as a means to help identify the mobile device user’s daily activities. Sensor data fusion techniques are used to consolidate the data collected from several sensors, increasing the reliability of the algorithms for the identification of the different activities. However, mobile devices have several constraints, e.g., low memory, low battery life and low processing power, and some data fusion techniques are not suited to this scenario. The main purpose of this paper is to present an overview of the state of the art to identify examples of sensor data fusion techniques that can be applied to the sensors available in mobile devices aiming to identify activities of daily living (ADLs). PMID:26848664
Nilsson, Dan-E; Warrant, Eric J; Johnsen, Sönke; Hanlon, Roger T; Shashar, Nadav
2013-09-08
We recently reported (Curr Biol 22:683-688, 2012) that the eyes of giant and colossal squid can grow to three times the diameter of the eyes of any other animal, including large fishes and whales. As an explanation to this extreme absolute eye size, we developed a theory for visual performance in aquatic habitats, leading to the conclusion that the huge eyes of giant and colossal squid are uniquely suited for detection of sperm whales, which are important squid-predators in the depths where these squid live. A paper in this journal by Schmitz et al. (BMC Evol Biol 13:45, 2013) refutes our conclusions on the basis of two claims: (1) using allometric data they argue that the eyes of giant and colossal squid are not unexpectedly large for the size of the squid, and (2) a revision of the values used for modelling indicates that large eyes are not better for detection of approaching sperm whales than they are for any other task. We agree with Schmitz et al. that their revised values for intensity and abundance of planktonic bioluminescence may be more realistic, or at least more appropriately conservative, but argue that their conclusions are incorrect because they have not considered some of the main arguments put forward in our paper. We also present new modelling to demonstrate that our conclusions remain robust, even with the revised input values suggested by Schmitz et al.
Predictive monitoring research: Summary of the PREMON system
NASA Technical Reports Server (NTRS)
Doyle, Richard J.; Sellers, Suzanne M.; Atkinson, David J.
1987-01-01
Traditional approaches to monitoring are proving inadequate in the face of two important issues: the dynamic adjustment of expectations about sensor values when the behavior of the device is too complex to enumerate beforehand, and the selective but effective interpretation of sensor readings when the number of sensors becomes overwhelming. This system addresses these issues by building an explicit model of a device and applying common-sense theories of physics to model causality in the device. The resulting causal simulation of the device supports planning decisions about how to efficiently yet reliably utilize a limited number of sensors to verify correct operation of the device.
Wearable sweat detector device design for health monitoring and clinical diagnosis
NASA Astrophysics Data System (ADS)
Wu, Qiuchen; Zhang, Xiaodong; Tian, Bihao; Zhang, Hongyan; Yu, Yang; Wang, Ming
2017-06-01
Miniaturized sensor is necessary part for wearable detector for biomedical applications. Wearable detector device is indispensable for online health care. This paper presents a concept of an wearable digital health monitoring device design for sweat analysis. The flexible sensor is developed to quantify the amount of hydrogen ions in sweat and skin temperature in real time. The detection system includes pH sensor, temperature sensor, signal processing module, power source, microprocessor, display module and so on. The sweat monitoring device is designed for sport monitoring or clinical diagnosis.
Acoustic sensors using microstructures tunable with energy other than acoustic energy
Datskos, Panagiotis G.
2003-11-25
A sensor for detecting acoustic energy includes a microstructure tuned to a predetermined acoustic frequency and a device for detecting movement of the microstructure. A display device is operatively linked to the movement detecting device. When acoustic energy strikes the acoustic sensor, acoustic energy having a predetermined frequency moves the microstructure, where the movement is detected by the movement detecting device.
Acoustic sensors using microstructures tunable with energy other than acoustic energy
Datskos, Panagiotis G.
2005-06-07
A sensor for detecting acoustic energy includes a microstructure tuned to a predetermined acoustic frequency and a device for detecting movement of the microstructure. A display device is operatively linked to the movement detecting device. When acoustic energy strikes the acoustic sensor, acoustic energy having a predetermined frequency moves the microstructure, where the movement is detected by the movement detecting device.
Metal–Organic Frameworks as Active Materials in Electronic Sensor Devices
Campbell, Michael G.; Dincă, Mircea
2017-01-01
In the past decade, advances in electrically conductive metal–organic frameworks (MOFs) and MOF-based electronic devices have created new opportunities for the development of next-generation sensors. Here we review this rapidly-growing field, with a focus on the different types of device configurations that have allowed for the use of MOFs as active components of electronic sensor devices. PMID:28498308
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-08
... rulemaking (ANPR); notice to reaffirm the control date for the Loligo squid (Loligo) and Illex squid (Illex...: Public comments on the ANPR must be received no later than 5 p.m., eastern standard time, on February 8... fisheries since 2003. On May 20, 2003 (68 FR 27516), NMFS published, at the request of the Council, an ANPR...
Sensor Measurement Strategies for Monitoring Offshore Wind and Wave Energy Devices
NASA Astrophysics Data System (ADS)
O'Donnell, Deirdre; Srbinovsky, Bruno; Murphy, Jimmy; Popovici, Emanuel; Pakrashi, Vikram
2015-07-01
While the potential of offshore wind and wave energy devices is well established and accepted, operations and maintenance issues are still not very well researched or understood. In this regard, scaled model testing has gained popularity over time for such devices at various technological readiness levels. The dynamic response of these devices are typically measured by different instruments during such scaled tests but agreed sensor choice, measurement and placement guidelines are still not in place. This paper compared the dynamic responses of some of these sensors from a scaled ocean wave testing to highlight the importance of sensor measurement strategies. The possibility of using multiple, cheaper sensors of seemingly inferior performance as opposed to the deployment of a small number of expensive and accurate sensors are also explored. An energy aware adaptive sampling theory is applied to highlight the possibility of more efficient computing when large volumes of data are available from the tested structures. Efficient sensor measurement strategies are expected to have a positive impact on the development of an device at different technological readiness levels while it is expected to be helpful in reducing operation and maintenance costs if such an approach is considered for the devices when they are in operation.
Open hardware: a role to play in wireless sensor networks?
Fisher, Roy; Ledwaba, Lehlogonolo; Hancke, Gerhard; Kruger, Carel
2015-03-20
The concept of the Internet of Things is rapidly becoming a reality, with many applications being deployed within industrial and consumer sectors. At the 'thing' level-devices and inter-device network communication-the core technical building blocks are generally the same as those found in wireless sensor network implementations. For the Internet of Things to continue growing, we need more plentiful resources for building intelligent devices and sensor networks. Unfortunately, current commercial devices, e.g., sensor nodes and network gateways, tend to be expensive and proprietary, which presents a barrier to entry and arguably slows down further development. There are, however, an increasing number of open embedded platforms available and also a wide selection of off-the-shelf components that can quickly and easily be built into device and network gateway solutions. The question is whether these solutions measure up to built-for-purpose devices. In the paper, we provide a comparison of existing built-for-purpose devices against open source devices. For comparison, we have also designed and rapidly prototyped a sensor node based on off-the-shelf components. We show that these devices compare favorably to built-for-purpose devices in terms of performance, power and cost. Using open platforms and off-the-shelf components would allow more developers to build intelligent devices and sensor networks, which could result in a better overall development ecosystem, lower barriers to entry and rapid growth in the number of IoT applications.