Sezdi, Mana
2016-01-01
A maintenance program generated through the consideration of characteristics and failures of medical equipment is an important component of technology management. However, older technology devices and newer high-tech devices cannot be efficiently managed using the same strategies because of their different characteristics. This study aimed to generate a maintenance program comprising two different strategies to increase the efficiency of device management: preventive maintenance for older technology devices and predictive maintenance for newer high-tech devices. For preventive maintenance development, 589 older technology devices were subjected to performance verification and safety testing (PVST). For predictive maintenance development, the manufacturers' recommendations were used for 134 high-tech devices. These strategies were evaluated in terms of device reliability. This study recommends the use of two different maintenance strategies for old and new devices at hospitals in developing countries. Thus, older technology devices that applied only corrective maintenance will be included in maintenance like high-tech devices.
Sezdi, Mana
2016-01-01
A maintenance program generated through the consideration of characteristics and failures of medical equipment is an important component of technology management. However, older technology devices and newer high-tech devices cannot be efficiently managed using the same strategies because of their different characteristics. This study aimed to generate a maintenance program comprising two different strategies to increase the efficiency of device management: preventive maintenance for older technology devices and predictive maintenance for newer high-tech devices. For preventive maintenance development, 589 older technology devices were subjected to performance verification and safety testing (PVST). For predictive maintenance development, the manufacturers' recommendations were used for 134 high-tech devices. These strategies were evaluated in terms of device reliability. This study recommends the use of two different maintenance strategies for old and new devices at hospitals in developing countries. Thus, older technology devices that applied only corrective maintenance will be included in maintenance like high-tech devices. PMID:27195666
NASA Astrophysics Data System (ADS)
1995-04-01
Bell Laboratories has developed the world's first optical information processor. Its core device is a self-excited electrooptical effect apparatus array of symmetric operation. After being developed in the United States, this high-technology device was successfully developed by China's scientists,thus making the fact that China's optoelectronic technology is among the most advanced in the world.
Assistive Technology Developments in Puerto Rico.
ERIC Educational Resources Information Center
Lizama, Mauricio A.; Mendez, Hector L.
Recent efforts to develop Spanish-based adaptations for alternate computer input devices are considered, as are their implications for Hispanics with disabilities and for the development of language sensitive devices worldwide. Emphasis is placed on the particular need to develop low-cost high technology devices for Puerto Rico and Latin America…
Regulatory science based approach in development of novel medical devices.
Sakuma, Ichiro
2015-08-01
For development rational evaluation method for medical devices' safety and efficacy, regulatory science studies are important. Studies on regulatory affairs related to a medical device under development should be conducted as well as its technological development. Clinical performance of a medical device is influenced by performance of the device, medical doctors' skill, pathological condition of a patient, and so on. Thus it is sometimes difficult to demonstrate superiority of the device in terms of clinical outcome although its efficacy as a medical device is accepted. Setting of appropriate end points is required to evaluate a medical device appropriately. Risk assessment and risk management are the basis of medical device safety assurance. In case of medical device software, there are difficulties in identifying the risk due to its complexity of user environment and different design and manufacturing procedure compared with conventional hardware based medical devices. Recent technological advancement such as information and communication technologies (ICT) for medical devices and wireless network has raised new issue on risk management: cybersecurity. We have to watch closely the progress of safety standard development.
Gupta, Rajesh; Patel, Rajan; Murty, Naganand; Panicker, Rahul; Chen, Jane
2015-02-01
Relative to drugs, diagnostics, and vaccines, efforts to develop other global health technologies, such as medical devices, are limited and often focus on the short-term goal of prototype development instead of the long-term goal of a sustainable business model. To develop a medical device to address neonatal hypothermia for use in resource-limited settings, we turned to principles of design theory: (1) define the problem with consideration of appropriate integration into relevant health policies, (2) identify the users of the technology and the scenarios in which the technology would be used, and (3) use a highly iterative product design and development process that incorporates the perspective of the user of the technology at the outset and addresses scalability. In contrast to our initial idea, to create a single device, the process guided us to create two separate devices, both strikingly different from current solutions. We offer insights from our initial experience that may be helpful to others engaging in global health technology development.
Application and Design Characteristics of Generalized Training Devices.
ERIC Educational Resources Information Center
Parker, Edward L.
This program identified applications and developed design characteristics for generalized training devices. The first of three sequential phases reviewed in detail new developments in Naval equipment technology that influence the design of maintenance training devices: solid-state circuitry, modularization, digital technology, standardization,…
Recent Advances in Biosensor Development for Foodborne Virus Detection
Neethirajan, Suresh; Ahmed, Syed Rahin; Chand, Rohit; Buozis, John; Nagy, Éva
2017-01-01
Outbreaks of foodborne diseases related to fresh produce have been increasing in North America and Europe. Viral foodborne pathogens are poorly understood, suffering from insufficient awareness and surveillance due to the limits on knowledge, availability, and costs of related technologies and devices. Current foodborne viruses are emphasized and newly emerging foodborne viruses are beginning to attract interest. To face current challenges regarding foodborne pathogens, a point-of-care (POC) concept has been introduced to food testing technology and device. POC device development involves technologies such as microfluidics, nanomaterials, biosensors and other advanced techniques. These advanced technologies, together with the challenges in developing foodborne virus detection assays and devices, are described and analysed in this critical review. Advanced technologies provide a path forward for foodborne virus detection, but more research and development will be needed to provide the level of manufacturing capacity required. PMID:29071193
Technology in Paralympic sport: performance enhancement or essential for performance?
Burkett, Brendan
2010-02-01
People with disabilities often depend on assistive devices to enable activities of daily living as well as to compete in sport. Technological developments in sport can be controversial. To review, identify and describe current technological developments in assistive devices used in the summer Paralympic Games; and to prepare for the London 2012 Games, the future challenges and the role of technology are debated. A systematic review of the peer-reviewed literature and personal observations of technological developments at the Athens (2004) and Beijing (2008) Paralympic Games was conducted. Standard assistive devices can inhibit the Paralympians' abilities to perform the strenuous activities of their sports. Although many Paralympic sports only require technology similar to their Olympic counterparts, several unique technological modifications have been made in prosthetic and wheelchair devices. Technology is essential for the Paralympic athlete, and the potential technological advantage for a Paralympian, when competing against an Olympian, is unclear. Technology must match the individual requirements of the athlete with the sport in order for Paralympians to safely maximise their performance. Within the 'performance enhancement or essential for performance?' debate, any potential increase in mechanical performance from an assistive device must be considered holistically with the compensatory consequences the disability creates. To avoid potential technology controversies at the 2012 London Olympic and Paralympic Games, the role of technology in sport must be clarified.
High Power Broadband Millimeter Wave TWTs
NASA Astrophysics Data System (ADS)
James, Bill G.
1998-04-01
In the early 1980's the requirement for high power broadband millimeter wave sources encouraged the development of microwave vacuum device amplifiers for radar and communication systems. Many government funded programs were implemented for the development of high power broadband millimeter wave amplifiers that would meet the needs of the high power community. The tube design capable of meeting these goals was the slow wave coupled cavity traveling wave device, which had a proven technology base at the lower frequencies (X Band). However scaling this technology to the millimeter frequencies had severe shortcomings in both thermal and manufacturing design. These shortcomings were overcome with the development of the Ladder Circuit technology. In conjunction with the circuit development high power electron beam systems had to be developed for the generation of high rf powers. These beam systems had to be capable of many megawatts of beam power density and high current densities. The cathode technology required to be capable of operating at current densities of 10 amperes per square centimeter at long pulse lengths and high duty cycle. Since the introduction of the Ladder Circuit technology a number of high power broadband millimeter wave amplifiers have been developed and deployed in operating radar and communication systems. Broadband millimeter wave sources have been manufactured in the frequency range from 27 GHz to 100 GHz with power levels ranging from 100 watts CW to 10 kilowatts Peak at W band over a 2 GHz bandwidth. Also a 50 kW peak power and 10 kW average power device at Ka band with 2 GHz bandwidth has been developed. Today the power levels achieved by these devices are nearing the limits of this technology; therefore to gain a significant increase in power at the millimeter wave frequencies, other technologies will have to be considered, particularly fast wave devices. This paper will briefly review the ladder circuit technology and present the designs of a number of broadband high power devices developed at Ka and W band. The discussion will include the beam systems employed in these devices which are the highest power density linear beams generated to date. In conclusion the limits of the power generating capability of this technology will be presented.
Development concepts of a Smart Cyber Operating Theater (SCOT) using ORiN technology.
Okamoto, Jun; Masamune, Ken; Iseki, Hiroshi; Muragaki, Yoshihiro
2018-02-23
Currently, networking has not progressed in the treatment room. Almost every medical device in the treatment room operates as a stand-alone device. In this project, we aim to develop a networked operating room called "Smart Cyber Operating Theater (SCOT)". Medical devices are connected using Open Resource interface for the Network (ORiN) technology. In this paper, we describe the concept of the SCOT project. SCOT is integrated using the communication interface ORiN, which was originally developed for industry. One feature of ORiN is that the system can be constructed flexibly. ORiN creates abstracts of the same type of devices and increases the robustness of the system for device exchange. By using ORiN technology, we are developing new applications, such as decision-making navigation or a precision guided treatment system.
Singaporean Parents' Views of Their Young Children's Access and Use of Technological Devices
ERIC Educational Resources Information Center
Ebbeck, Marjory; Yim, Hoi Yin Bonnie; Chan, Yvonne; Goh, Mandy
2016-01-01
Debates continue about the access young children have to technological devices, given the increasingly accessible and available technology in most developed countries. Concerns have been expressed by parents/caregivers and researchers, and questions have been raised about possible risks and benefits of these devices on young children who, in some…
Recent progress on thin-film encapsulation technologies for organic electronic devices
NASA Astrophysics Data System (ADS)
Yu, Duan; Yang, Yong-Qiang; Chen, Zheng; Tao, Ye; Liu, Yun-Fei
2016-03-01
Among the advanced electronic devices, flexible organic electronic devices with rapid development are the most promising technologies to customers and industries. Organic thin films accommodate low-cost fabrication and can exploit diverse molecules in inexpensive plastic light emitting diodes, plastic solar cells, and even plastic lasers. These properties may ultimately enable organic materials for practical applications in industry. However, the stability of organic electronic devices still remains a big challenge, because of the difficulty in fabricating commercial products with flexibility. These organic materials can be protected using substrates and barriers such as glass and metal; however, this results in a rigid device and does not satisfy the applications demanding flexible devices. Plastic substrates and transparent flexible encapsulation barriers are other possible alternatives; however, these offer little protection to oxygen and water, thus rapidly degrading the devices. Thin-film encapsulation (TFE) technology is most effective in preventing water vapor and oxygen permeation into the flexible devices. Because of these (and other) reasons, there has been an intense interest in developing transparent barrier materials with much lower permeabilities, and their market is expected to reach over 550 million by 2025. In this study, the degradation mechanism of organic electronic devices is reviewed. To increase the stability of devices in air, several TFE technologies were applied to provide efficient barrier performance. In this review, the degradation mechanism of organic electronic devices, permeation rate measurement, traditional encapsulation technologies, and TFE technologies are presented.
High power broadband millimeter wave TWTs
NASA Astrophysics Data System (ADS)
James, Bill G.
1999-05-01
In the early 1980's the requirement for high power broadband millimeter wave sources encouraged the development of microwave vacuum device amplifiers for radar and communication systems. Many government funded programs were implemented for the development of high power broadband millimeter wave amplifiers that would meet the needs of the high power community. The tube design capable of meeting these goals was the slow wave coupled cavity traveling wave device, which had a proven technology base at the lower frequencies (X Band). However scaling this technology to the millimeter frequencies had severe shortcomings in both thermal and manufacturing design. These shortcomings were overcome with the development of the Ladder Circuit technology. In conjunction with the circuit development high power electron beam systems had to be developed for the generation of high rf powers. These beam systems had to be capable of many megawatts of beam power density and high current densities. The cathode technology required to be capable of operating at current densities of 10 amperes per square centimeter at long pulse lengths and high duty cycle. Since the introduction of the Ladder Circuit technology a number of high power broadband millimeter wave amplifiers have been developed using this technology, and have been deployed in operating radar and communication systems. Broadband millimeter wave sources have been manufactured in the frequency range from 27 GHz to 100 GHz with power levels ranging from 100 watts to 50 kilowatts. Today the power levels achieved by these devices are nearing the limits of this technology; therefore to gain a significant increase in power at the millimeter wave frequencies other technologies will have to be considered particularly fast wave devices. This paper will briefly review the ladder circuit technology and present the designs of a number of broadband high power devices developed at Ka and W band. The discussion will include the beam systems employed in these devices which are the highest power density linear beams generated to date. In conclusion the limits of the power generating capability of this technology will be presented.
New technology continues to invade healthcare. What are the strategic implications/outcomes?
Smith, Coy
2004-01-01
Healthcare technology continues to advance and be implemented in healthcare organizations. Nurse executives must strategically evaluate the effectiveness of each proposed system or device using a strategic planning process. Clinical information systems, computer-chip-based clinical monitoring devices, advanced Web-based applications with remote, wireless communication devices, clinical decision support software--all compete for capital and registered nurse salary dollars. The concept of clinical transformation is developed with new models of care delivery being supported by technology rather than driving care delivery. Senior nursing leadership's role in clinical transformation and healthcare technology implementation is developed. Proposed standards, expert group action, business and consumer groups, and legislation are reviewed as strategic drivers in the development of an electronic health record and healthcare technology. A matrix of advancing technology and strategic decision-making parameters are outlined.
Hydrogen sensors based on catalytic metals
NASA Astrophysics Data System (ADS)
Beklemyshev, V. I.; Berezine, V.; Bykov, Victor A.; Kiselev, L.; Makhonin, I.; Pevgov, V.; Pustovoy, V.; Semynov, A.; Sencov, Y.; Shkuropat, I.; Shokin, A.
1999-11-01
On the base of microelectronical and micromechanical technology were designed and developed converters of hydrogen concentration to electrical signals. The devices of controlling concentration of hydrogen in the air were developed. These devices were applied for ensuring fire and explosion security of complex technological teste of missile oxygen-hydrogen engine, developed for cryogenic accelerations block. The sensor block of such device was installed directly on the armor-plate, to which was attached tested engine.
High-power microwave LDMOS transistors for wireless data transmission technologies (Review)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuznetsov, E. V., E-mail: E.Kouzntsov@tcen.ru; Shemyakin, A. V.
The fields of the application, structure, fabrication, and packaging technology of high-power microwave LDMOS transistors and the main advantages of these devices were analyzed. Basic physical parameters and some technology factors were matched for optimum device operation. Solid-state microwave electronics has been actively developed for the last 10-15 years. Simultaneously with improvement of old devices, new devices and structures are actively being adopted and developed and new semiconductor materials are being commercialized. Microwave LDMOS technology is in demand in such fields as avionics, civil and military radars, repeaters, base stations of cellular communication systems, television and broadcasting transmitters, and transceiversmore » for high-speed wireless computer networks (promising Wi-Fi and Wi-Max standards).« less
NASA Astrophysics Data System (ADS)
Ilev, Ilko K.; Walker, Bennett; Calhoun, William; Hassan, Moinuddin
2016-03-01
Biophotonics is an emerging field in modern biomedical technology that has opened up new horizons for transfer of state-of-the-art techniques from the areas of lasers, fiber optics and biomedical optics to the life sciences and medicine. This field continues to vastly expand with advanced developments across the entire spectrum of biomedical applications ranging from fundamental "bench" laboratory studies to clinical patient "bedside" diagnostics and therapeutics. However, in order to translate these technologies to clinical device applications, the scientific and industrial community, and FDA are facing the requirement for a thorough evaluation and review of laser radiation safety and efficacy concerns. In many cases, however, the review process is complicated due the lack of effective means and standard test methods to precisely analyze safety and effectiveness of some of the newly developed biophotonics techniques and devices. There is, therefore, an immediate public health need for new test protocols, guidance documents and standard test methods to precisely evaluate fundamental characteristics, performance quality and safety of these technologies and devices. Here, we will overview our recent developments of novel test methodologies for safety and efficacy evaluation of some emerging biophotonics technologies and medical devices. These methodologies are based on integrating the advanced features of state-of-the-art optical sensor technologies and approaches such as high-resolution fiber-optic sensing, confocal and optical coherence tomography imaging, and infrared spectroscopy. The presentation will also illustrate some methodologies developed and implemented for testing intraocular lens implants, biochemical contaminations of medical devices, ultrahigh-resolution nanoscopy, and femtosecond laser therapeutics.
Dissolvable tattoo sensors: from science fiction to a viable technology
NASA Astrophysics Data System (ADS)
Cheng, Huanyu; Yi, Ning
2017-01-01
Early surrealistic painting and science fiction movies have envisioned dissolvable tattoo electronic devices. In this paper, we will review the recent advances that transform that vision into a viable technology, with extended capabilities even beyond the early vision. Specifically, we focus on the discussion of a stretchable design for tattoo sensors and degradable materials for dissolvable sensors, in the form of inorganic devices with a performance comparable to modern electronics. Integration of these two technologies as well as the future developments of bio-integrated devices is also discussed. Many of the appealing ideas behind developments of these devices are drawn from nature and especially biological systems. Thus, bio-inspiration is believed to continue playing a key role in future devices for bio-integration and beyond.
Gori, Monica; Cappagli, Giulia; Tonelli, Alessia; Baud-Bovy, Gabriel; Finocchietti, Sara
2016-10-01
Considering that cortical plasticity is maximal in the child, why are the majority of technological devices available for visually impaired users meant for adults and not for children? Moreover, despite high technological advancements in recent years, why is there still no full user acceptance of existing sensory substitution devices? The goal of this review is to create a link between neuroscientists and engineers by opening a discussion about the direction that the development of technological devices for visually impaired people is taking. Firstly, we review works on spatial and social skills in children with visual impairments, showing that lack of vision is associated with other sensory and motor delays. Secondly, we present some of the technological solutions developed to date for visually impaired people. Doing this, we highlight the core features of these systems and discuss their limits. We also discuss the possible reasons behind the low adaptability in children. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Tapia-Siles, Silvia C; Coleman, Stuart; Cuschieri, Alfred
2016-02-01
Previous reports have described several candidates, which have the potential to replace colonoscopy, but to date, there is still no device capable of fully replacing flexible colonoscopy in the management of colonic disorders and for mass adult population screening for asymptomatic colorectal cancer. NASA developed the TRL methodology to describe and define the stages of development before use and marketing of any device. The definitions of the TRLS used in the present review are those formulated by "The US Department of Defense Technology Readiness Assessment Guidance" but adapted to micro-robots for colonoscopy. All the devices included are reported in scientific literature. They were identified by a systematic search in Web of Science, PubMed and IEEE Xplore amongst other sources. Devices that clearly lack the potential for full replacement of flexible colonoscopy were excluded. The technological salient features of all the devices included for assessment are described briefly, with particular focus on device propulsion. The devices are classified according to the TRL criteria based on the reported information. An analysis is next undertaken of the characteristics and salient features of the devices included in the review: wireless/tethered devices, data storage-transmission and navigation, additional functionality, residual technology challenges and clinical and socio-economical needs. Few devices currently possess the required functionality and performance to replace the conventional colonoscopy. The requirements, including functionalities which favour the development of a micro-robot platform to replace colonoscopy, are highlighted.
DataPlay's mobile recording technology
NASA Astrophysics Data System (ADS)
Bell, Bernard W., Jr.
2002-01-01
A small rotating memory device which utilizes optical prerecorded and writeable technology to provide a mobile recording technology solution for digital cameras, cell phones, music players, PDA's, and hybrid multipurpose devices have been developed. This solution encompasses writeable, read only, and encrypted storage media.
Development and evaluation of a new taxonomy of mobility-related assistive technology devices.
Shoemaker, Laura L; Lenker, James A; Fuhrer, Marcus J; Jutai, Jeffrey W; Demers, Louise; DeRuyter, Frank
2010-10-01
This article reports on the development of a new taxonomy for mobility-related assistive technology devices. A prototype taxonomy was created based on the extant literature. Five mobility device experts were engaged in a modified Delphi process to evaluate and refine the taxonomy. Multiple iterations of expert feedback and revision yielded consensual agreement on the structure and terminology of a new mobility device taxonomy. The taxonomy uses a hierarchical framework to classify ambulation aids and wheeled mobility devices, including their key features that impact mobility. Five attributes of the new taxonomy differentiate it from previous mobility-related device classifications: (1) hierarchical structure, (2) primary device categories are grouped based on their intended mobility impact, (3) comprehensive inclusion of technical features, (4) a capacity to assimilate reimbursement codes, and (5) availability of a detailed glossary. The taxonomy is intended to support assistive technology outcomes research. The taxonomy will enable researchers to capture mobility-related assistive technology device interventions with precision and provide a common terminology that will allow comparisons among studies. The prominence of technical features within the new taxonomy will hopefully promote research that helps clinicians predict how devices will perform, thus aiding clinical decision making and supporting funding recommendations.
An overview of silicon carbide device technology
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.; Matus, Lawrence G.
1992-01-01
Recent progress in the development of silicon carbide (SiC) as a semiconductor is briefly reviewed. This material shows great promise towards providing electronic devices that can operate under the high-temperature, high-radiation, and/or high-power conditions where current semiconductor technologies fail. High quality single crystal wafers have become available, and techniques for growing high quality epilayers have been refined to the point where experimental SiC devices and circuits can be developed. The prototype diodes and transistors that have been produced to date show encouraging characteristics, but by the same token they also exhibit some device-related problems that are not unlike those faced in the early days of silicon technology development. Although these problems will not prevent the implementation of some useful circuits, the performance and operating regime of SiC electronics will be limited until these device-related issues are solved.
Evolution of corundum-structured III-oxide semiconductors: Growth, properties, and devices
NASA Astrophysics Data System (ADS)
Fujita, Shizuo; Oda, Masaya; Kaneko, Kentaro; Hitora, Toshimi
2016-12-01
The recent progress and development of corundum-structured III-oxide semiconductors are reviewed. They allow bandgap engineering from 3.7 to ∼9 eV and function engineering, leading to highly durable electronic devices and deep ultraviolet optical devices as well as multifunctional devices. Mist chemical vapor deposition can be a simple and safe growth technology and is advantageous for reducing energy and cost for the growth. This is favorable for the wide commercial use of devices at low cost. The III-oxide semiconductors are promising candidates for new devices contributing to sustainable social, economic, and technological development for the future.
Three fundamental devices in one: a reconfigurable multifunctional device in two-dimensional WSe2
NASA Astrophysics Data System (ADS)
Dhakras, Prathamesh; Agnihotri, Pratik; Lee, Ji Ung
2017-06-01
The three pillars of semiconductor device technologies are (1) the p-n diode, (2) the metal-oxide-semiconductor field-effect transistor and (3) the bipolar junction transistor. They have enabled the unprecedented growth in the field of information technology that we see today. Until recently, the technological revolution for better, faster and more efficient devices has been governed by scaling down the device dimensions following Moore’s Law. With the slowing of Moore’s law, there is a need for alternative materials and computing technologies that can continue the advancement in functionality. Here, we describe a single, dynamically reconfigurable device that implements these three fundamental device functions. The device uses buried gates to achieve n- and p-channels and fits into a larger effort to develop devices with enhanced functionalities, including logic functions, over device scaling. As they are all surface conducting devices, we use one material parameter, the interface trap density of states, to describe the key figure-of-merit of each device.
NASA Technical Reports Server (NTRS)
Kwak, Dochan
2000-01-01
Over three million Americans and 20 million people worldwide suffer from some form of heart failure. Mechanical heart assist devices are being used as a temporary support to sick ventricle and valves as a bridge-to-transplant or bridge-to-recovery. This viewgraph presentation gives an overview of the development of NASA-DeBakey Ventricular Assist Device (VAD) using numerical aerospace simulation technology.
Blood Pump Development Using Rocket Engine Flow Simulation Technology
NASA Technical Reports Server (NTRS)
Kiris, Cetin C.; Kwak, Dochan
2002-01-01
This viewgraph presentation provides information on the transfer of rocket engine flow simulation technology to work involving the development of blood pumps. Details are offered regarding the design and requirements of mechanical heart assist devices, or VADs (ventricular assist device). There are various computational fluid dynamics issues involved in the visualization of flow in such devices, and these are highlighted and compared to those of rocket turbopumps.
A prototype for communitising technology: Development of a smart salt water desalination device
NASA Astrophysics Data System (ADS)
Fakharuddin, F. M.; Fatchurrohman, N.; Puteh, S.; Puteri, H. M. A. R.
2018-04-01
Desalination is defined as the process that removes minerals from saline water or commonly known as salt water. Seawater desalination is becoming an attractive source of drinking water in coastal states as the costs for desalination declines. The purpose of this study is to develop a small scale desalination device and able to do an analysis of the process flow by using suitable sensors. Thermal technology was used to aid the desalination process. A graphical user interface (GUI) for the interface was made to enable the real time data analysis of the desalination device. ArduinoTM microcontroller was used in this device in order to develop an automatic device.
ERIC Educational Resources Information Center
Lipson, Joseph I.; Fisher, Kathleen M.
1985-01-01
In the future, the requirements of industry will generate a wide range of hardware devices and software programs that will significantly alter and improve the quality of education. The driving forces behind the development of new technological devices include economics; emotional factors, e.g., the desire to develop aids for the handicapped;…
Towards end to end technology modeling: Carbon nanotube and thermoelectric devices
NASA Astrophysics Data System (ADS)
Salamat, Shuaib
The goal of this work is to demonstrate the feasibility of end-to-end ("atoms to applications") technology modeling. Two different technologies were selected to drive this work. The first technology is carbon nanotube field-effect transistors (CNTFETs), and the goal is to model device level variability and identify the origin of variations in these devices. Recently, there has been significant progress in understanding the physics of carbon nanotube electronic devices and in identifying their potential applications. For nanotubes, the carrier mobility is high, so low bias transport across several hundred nanometers is nearly ballistic, and the deposition of high-k gate dielectrics does not degrade the carrier mobility. The conduction and valence bands are symmetric (useful for complimentary application) and the bandstructure is direct (enables optical emission). Because of these striking features, carbon nanotubes (CNTs) have received much attention. Carbon nanotubes field-effect transistors (CNTFETs) are one of the main potential candidates for large-area electronics. In this research model, systematic simulation approaches are applied to understand the intrinsic performance variability in CNTFETs. It is shown that control over diameter distribution is critically important process parameter for attaining high performance transistors and circuits with characteristics rivaling those of state-of-the-art Si technology. The second technology driver concerns the development of a multi-scale framework for thermoelectric device design. An essential step in the development of new materials and devices for thermoelectrics is to develop accurate, efficient, and realistic models. The ready availability of user friendly ab-initio codes and the ever-increasing computing power have made the band structure calculations routine. Thermoelectric device design, however, is still largely done at the effective mass level. Tools that allow device designers to make use of sophisticated electronic structure and phonon dispersion calculations are needed. We have developed a proof-of-concept, integrated, multi-scale design framework for TE technology. Beginning from full electronic and phonon dispersions, Landauer approach is used to evaluate the temperature-dependent thermoelectric transport parameters needed for device simulation. A comprehensive SPICE-based model for electro-thermal transport has also been developed to serve as a bridge between the materials and device level descriptions and the system level simulations. This prototype framework has been used to design a thermoelectric cooler for managing hot spots in the integrated circuit chips. What's more, as a byproduct of this research a suite of educational and simulation resources have been developed and deployed, on the nanoHUB.org science gateway to serve as a resource for the TE community.
Multiplatform E-Learning Systems and Technologies: Mobile Devices for Ubiquitous ICT-Based Education
ERIC Educational Resources Information Center
Goh, Tiong Thye, Ed.
2010-01-01
Multiplatform e-learning systems are emerging technologies that provide integrated learning content to various accessing devices. This book addresses technical challenges, design frameworks, and development experiences of the future that integrate multiple mobile devices into a single multiplatform e-learning system. With expert international…
NASA Astrophysics Data System (ADS)
Agaian, Sos S.; Akopian, David; D'Souza, Sunil
2006-02-01
Modern mobile devices are some of the most technologically advanced devices that people use on a daily basis and the current trends in mobile phone technology indicate that tasks achievable by mobile devices will soon exceed our imagination. This paper undertakes a case study of the development and implementation of one of the first known steganography (data hiding) applications on a mobile device. Steganography is traditionally accomplished using the high processing speeds of desktop or notebook computers. With the introduction of mobile platform operating systems, there arises an opportunity for the users to develop and embed their own applications. We take advantage of this opportunity with the introduction of wireless steganographic algorithms. Thus we demonstrates that custom applications, popular with security establishments, can be developed also on mobile systems independent of both the mobile device manufacturer and mobile service provider. For example, this might be a very important feature if the communication is to be controlled exclusively by authorized personnel. The paper begins by reviewing the technological capabilities of modern mobile devices. Then we address a suitable development platform which is based on Symbian TM/Series60 TM architecture. Finally, two data hiding applications developed for Symbian TM/Series60 TM mobile phones are presented.
High-performance silicon photonics technology for telecommunications applications.
Yamada, Koji; Tsuchizawa, Tai; Nishi, Hidetaka; Kou, Rai; Hiraki, Tatsurou; Takeda, Kotaro; Fukuda, Hiroshi; Ishikawa, Yasuhiko; Wada, Kazumi; Yamamoto, Tsuyoshi
2014-04-01
By way of a brief review of Si photonics technology, we show that significant improvements in device performance are necessary for practical telecommunications applications. In order to improve device performance in Si photonics, we have developed a Si-Ge-silica monolithic integration platform, on which compact Si-Ge-based modulators/detectors and silica-based high-performance wavelength filters are monolithically integrated. The platform features low-temperature silica film deposition, which cannot damage Si-Ge-based active devices. Using this platform, we have developed various integrated photonic devices for broadband telecommunications applications.
High-performance silicon photonics technology for telecommunications applications
Yamada, Koji; Tsuchizawa, Tai; Nishi, Hidetaka; Kou, Rai; Hiraki, Tatsurou; Takeda, Kotaro; Fukuda, Hiroshi; Ishikawa, Yasuhiko; Wada, Kazumi; Yamamoto, Tsuyoshi
2014-01-01
By way of a brief review of Si photonics technology, we show that significant improvements in device performance are necessary for practical telecommunications applications. In order to improve device performance in Si photonics, we have developed a Si-Ge-silica monolithic integration platform, on which compact Si-Ge–based modulators/detectors and silica-based high-performance wavelength filters are monolithically integrated. The platform features low-temperature silica film deposition, which cannot damage Si-Ge–based active devices. Using this platform, we have developed various integrated photonic devices for broadband telecommunications applications. PMID:27877659
High-performance silicon photonics technology for telecommunications applications
NASA Astrophysics Data System (ADS)
Yamada, Koji; Tsuchizawa, Tai; Nishi, Hidetaka; Kou, Rai; Hiraki, Tatsurou; Takeda, Kotaro; Fukuda, Hiroshi; Ishikawa, Yasuhiko; Wada, Kazumi; Yamamoto, Tsuyoshi
2014-04-01
By way of a brief review of Si photonics technology, we show that significant improvements in device performance are necessary for practical telecommunications applications. In order to improve device performance in Si photonics, we have developed a Si-Ge-silica monolithic integration platform, on which compact Si-Ge-based modulators/detectors and silica-based high-performance wavelength filters are monolithically integrated. The platform features low-temperature silica film deposition, which cannot damage Si-Ge-based active devices. Using this platform, we have developed various integrated photonic devices for broadband telecommunications applications.
Simulation of Ultra-Small MOSFETs Using a 2-D Quantum-Corrected Drift-Diffusion Model
NASA Technical Reports Server (NTRS)
Biegal, Bryan A.; Rafferty, Connor S.; Yu, Zhiping; Ancona, Mario G.; Dutton, Robert W.; Saini, Subhash (Technical Monitor)
1998-01-01
The continued down-scaling of electronic devices, in particular the commercially dominant MOSFET, will force a fundamental change in the process of new electronics technology development in the next five to ten years. The cost of developing new technology generations is soaring along with the price of new fabrication facilities, even as competitive pressure intensifies to bring this new technology to market faster than ever before. To reduce cost and time to market, device simulation must become a more fundamental, indeed dominant, part of the technology development cycle. In order to produce these benefits, simulation accuracy must improve markedly. At the same time, device physics will become more complex, with the rapid increase in various small-geometry and quantum effects. This work describes both an approach to device simulator development and a physical model which advance the effort to meet the tremendous electronic device simulation challenge described above. The device simulation approach is to specify the physical model at a high level to a general-purpose (but highly efficient) partial differential equation solver (in this case PROPHET, developed by Lucent Technologies), which then simulates the model in 1-D, 2-D, or 3-D for a specified device and test regime. This approach allows for the rapid investigation of a wide range of device models and effects, which is certainly essential for device simulation to catch up with, and then stay ahead of, electronic device technology of the present and future. The physical device model used in this work is the density-gradient (DG) quantum correction to the drift-diffusion model [Ancona, Phys. Rev. B 35(5), 7959 (1987)]. This model adds tunneling and quantum smoothing of carrier density profiles to the drift-diffusion model. We used the DG model in 1-D and 2-D (for the first time) to simulate both bipolar and unipolar devices. Simulations of heavily-doped, short-base diodes indicated that the DG quantum corrections do not have a large effect on the IN characteristics of electronic devices without heteroj unction s. On the other hand, ultra-small MOSFETs certainly exhibit important quantum effects that the DG model will include: quantum repulsion of the inversion and gate charges from the oxide interfaces, and quantum tunneling through thin gate oxides. We present initial results of 2-D DG simulations of ultra-small MOSFETs. Subtle but important issues involving the specification of the model, boundary conditions, and interface constraints for DG simulation of MOSFETs will also be illuminated.
CMOS compatible thin-film ALD tungsten nanoelectromechanical devices
NASA Astrophysics Data System (ADS)
Davidson, Bradley Darren
This research focuses on the development of a novel, low-temperature, CMOS compatible, atomic-layer-deposition (ALD) enabled NEMS fabrication process for the development of ALD Tungsten (WALD) NEMS devices. The devices are intended for use in CMOS/NEMS hybrid systems, and NEMS based micro-processors/controllers capable of reliable operation in harsh environments not accessible to standard CMOS technologies. The majority of NEMS switches/devices to date have been based on carbon-nano-tube (CNT) designs. The devices consume little power during actuation, and as expected, have demonstrated actuation voltages much smaller than MEMS switches. Unfortunately, NEMS CNT switches are not typically CMOS integrable due to the high temperatures required for their growth, and their fabrication typically results in extremely low and unpredictable yields. Thin-film NEMS devices offer great advantages over reported CNT devices for several reasons, including: higher fabrication yields, low-temperature (CMOS compatible) deposition techniques like ALD, and increased control over design parameters/device performance metrics, i.e., device geometry. Furthermore, top-down, thin-film, nano-fabrication techniques are better capable of producing complicated device geometries than CNT based processes, enabling the design and development of multi-terminal switches well-suited for low-power hybrid NEMS/CMOS systems as well as electromechanical transistors and logic devices for use in temperature/radiation hard computing architectures. In this work several novel, low-temperature, CMOS compatible fabrication technologies, employing WALD as a structural layer for MEMS or NEMS devices, were developed. The technologies developed are top-down nano-scale fabrication processes based on traditional micro-machining techniques commonly used in the fabrication of MEMS devices. Using these processes a variety of novel WALD NEMS devices have been successfully fabricated and characterized. Using two different WALD fabrication technologies two generations of 2-terminal WALD NEMS switches have been developed. These devices have functional gap heights of 30-50 nm, and actuation voltages typically ranging from 3--5 Volts. Via the extension of a two terminal WALD technology novel 3-terminal WALD NEMS devices were developed. These devices have actuation voltages ranging from 1.5--3 Volts, reliabilities in excess of 2 million cycles, and have been designed to be the fundamental building blocks for WALD NEMS complementary inverters. Through the development of these devices several advancements in the modeling and design of thin-film NEMS devices were achieved. A new model was developed to better characterize pre-actuation currents commonly measured for NEMS switches with nano-scale gate-to-source gap heights. The developed model is an extension of the standard field-emission model and considers the electromechanical response, and electric field effects specific to thin-film NEMS switches. Finally, a multi-physics FEM/FD based model was developed to simulate the dynamic behavior of 2 or 3-terminal electrostatically actuated devices whose electrostatic domains have an aspect ratio on the order of 10-3. The model uses a faux-Lagrangian finite difference method to solve Laplaces equation in a quasi-statatically deforming domain. This model allows for the numerical characterization and design of thin-film NEMS devices not feasible using typical non-specialized BEM/FEM based software. Using this model several novel and feasible designs for fixed-fixed 3-terminal WALD NEMS switches capable for the construction of complementary inverters were discovered.
2015-03-10
AFRL-OSR-VA-TR-2015-0080 Biosensing and Bioprocessing Devices in Living Cells Domitilla Del Vecchio MASSACHUSETTS INSTITUTE OF TECHNOLOGY Final...Of Biosensing And Bioprocessing Devices In Living Cells FA9550-12-1-0129 D. Del Vecchio Massachusetts Institute of Technology -- 77 Massachusetts...research is to develop quantitative techniques for the de novo design and fabrication of biosensing devices in living cells . Such devices will be entirely
[Design of medical devices management system supporting full life-cycle process management].
Su, Peng; Zhong, Jianping
2014-03-01
Based on the analysis of the present status of medical devices management, this paper optimized management process, developed a medical devices management system with Web technologies. With information technology to dynamic master the use of state of the entire life-cycle of medical devices. Through the closed-loop management with pre-event budget, mid-event control and after-event analysis, improved the delicacy management level of medical devices, optimized asset allocation, promoted positive operation of devices.
Influence of technology on magnetic tape storage device characteristics
NASA Technical Reports Server (NTRS)
Gniewek, John J.; Vogel, Stephen M.
1994-01-01
There are available today many data storage devices that serve the diverse application requirements of the consumer, professional entertainment, and computer data processing industries. Storage technologies include semiconductors, several varieties of optical disk, optical tape, magnetic disk, and many varieties of magnetic tape. In some cases, devices are developed with specific characteristics to meet specification requirements. In other cases, an existing storage device is modified and adapted to a different application. For magnetic tape storage devices, examples of the former case are 3480/3490 and QIC device types developed for the high end and low end segments of the data processing industry respectively, VHS, Beta, and 8 mm formats developed for consumer video applications, and D-1, D-2, D-3 formats developed for professional video applications. Examples of modified and adapted devices include 4 mm, 8 mm, 12.7 mm and 19 mm computer data storage devices derived from consumer and professional audio and video applications. With the conversion of the consumer and professional entertainment industries from analog to digital storage and signal processing, there have been increasing references to the 'convergence' of the computer data processing and entertainment industry technologies. There has yet to be seen, however, any evidence of convergence of data storage device types. There are several reasons for this. The diversity of application requirements results in varying degrees of importance for each of the tape storage characteristics.
[Information technology in learning sign language].
Hernández, Cesar; Pulido, Jose L; Arias, Jorge E
2015-01-01
To develop a technological tool that improves the initial learning of sign language in hearing impaired children. The development of this research was conducted in three phases: the lifting of requirements, design and development of the proposed device, and validation and evaluation device. Through the use of information technology and with the advice of special education professionals, we were able to develop an electronic device that facilitates the learning of sign language in deaf children. This is formed mainly by a graphic touch screen, a voice synthesizer, and a voice recognition system. Validation was performed with the deaf children in the Filadelfia School of the city of Bogotá. A learning methodology was established that improves learning times through a small, portable, lightweight, and educational technological prototype. Tests showed the effectiveness of this prototype, achieving a 32 % reduction in the initial learning time for sign language in deaf children.
Test devices for aeronautical research and technology
NASA Technical Reports Server (NTRS)
1985-01-01
The objectives of the DFVLR in six areas are described: (1) transportation and communication systems; (2) aircraft, space technology, (4) remote sensing, (5) energy and propulsion technology; and (6) research and development. A detailed description of testing devices and other facilities required to carry out the research program is given.
Electromechanical Devices. Energy Technology Series.
ERIC Educational Resources Information Center
Center for Occupational Research and Development, Inc., Waco, TX.
This course in electromechanical devices is one of 16 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in company-sponsored training…
Electronic Devices and Systems. Energy Technology Series.
ERIC Educational Resources Information Center
Technical Education Research Centre-Southwest, Waco, TX.
This course in electronic devices and systems is one of 16 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in…
Issues and challenges of involving users in medical device development.
Bridgelal Ram, Mala; Grocott, Patricia R; Weir, Heather C M
2008-03-01
User engagement has become a central tenet of health-care policy. This paper reports on a case study in progress that highlights user engagement in the research process in relation to medical device development. To work with a specific group of medical device users to uncover unmet needs, translating these into design concepts, novel technologies and products. To validate a knowledge transfer model that may be replicated for a range of medical device applications and user groups. In depth qualitative case study to elicit and analyse user needs. The focus is on identifying design concepts for medical device applications from unmet needs, and validating these in an iterative feedback loop to the users. The case study has highlighted three interrelated challenges: ensuring unmet needs drive new design concepts and technology development; managing user expectations and managing the research process. Despite the challenges, active participation of users is crucial to developing usable and clinically effective devices.
From science to technology: Orientation and mobility in blind children and adults.
Cuturi, Luigi F; Aggius-Vella, Elena; Campus, Claudio; Parmiggiani, Alberto; Gori, Monica
2016-12-01
The last quarter of a century has seen a dramatic rise of interest in the development of technological solutions for visually impaired people. However, despite the presence of many devices, user acceptance is low. Not only are visually impaired adults not using these devices but they are also too complex for children. The majority of these devices have been developed without considering either the brain mechanisms underlying the deficit or the natural ability of the brain to process information. Most of them use complex feedback systems and overwhelm sensory, attentional and memory capacities. Here we review the neuroscientific studies on orientation and mobility in visually impaired adults and children and present the technological devices developed so far to improve locomotion skills. We also discuss how we think these solutions could be improved. We hope that this paper may be of interest to neuroscientists and technologists and it will provide a common background to develop new science-driven technology, more accepted by visually impaired adults and suitable for children with visual disabilities. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Krueger, Wesley W O
2011-01-01
An eyewear mounted visual display ("User-worn see-through display") projecting an artificial horizon aligned with the user's head and body position in space can prevent or lessen motion sickness in susceptible individuals when in a motion provocative environment as well as aid patients undergoing vestibular rehabilitation. In this project, a wearable display device, including software technology and hardware, was developed and a phase I feasibility study and phase II clinical trial for safety and efficacy were performed. Both phase I and phase II were prospective studies funded by the NIH. The phase II study used repeated measures for motion intolerant subjects and a randomized control group (display device/no display device) pre-posttest design for patients in vestibular rehabilitation. Following technology and display device development, 75 patients were evaluated by test and rating scales in the phase II study; 25 subjects with motion intolerance used the technology in the display device in provocative environments and completed subjective rating scales, whereas 50 patients were evaluated before and after vestibular rehabilitation (25 using the display device and 25 in a control group) using established test measures. All patients with motion intolerance rated the technology as helpful for nine symptoms assessed, and 96% rated the display device as simple and easy to use. Duration of symptoms significantly decreased with use of the technology displayed. In patients undergoing vestibular rehabilitation, there were no significant differences in amount of change from pre- to posttherapy on objective balance tests between display device users and controls. However, those using the technology required significantly fewer rehabilitation sessions to achieve those outcomes than the control group. A user-worn see-through display, utilizing a visual fixation target coupled with a stable artificial horizon and aligned with user movement, has demonstrated substantial benefit for individuals susceptible to motion intolerance and spatial disorientation and those undergoing vestibular rehabilitation. The technology developed has applications in any environment where motion sensitivity affects human performance.
Fluid technology (selected components, devices, and systems): A compilation
NASA Technical Reports Server (NTRS)
1974-01-01
Developments in fluid technology and hydraulic equipment are presented. The subjects considered are: (1) the use of fluids in the operation of switches, amplifiers, and servo devices, (2) devices and data for laboratory use in the study of fluid dynamics, and (3) the use of fluids as controls and certain methods of controlling fluids.
Development and Assessment of Mobile Device Support for Certification Exam Preparation
ERIC Educational Resources Information Center
Moh, Chiou
2013-01-01
Technological innovation in mobile devices has upgraded the potential uses of the devices for living and learning. Mobile learning provides opportunities for mobile users to learn at any time in any location. A certification that confirms computing and Internet technology skills and knowledge provides more opportunities to students in higher…
Total Ionizing Dose Effects in MOS Oxides and Devices
NASA Technical Reports Server (NTRS)
Oldham, Timothy R.; McLean, F. B.
2003-01-01
The development of military and space electronics technology has traditionally been heavily influenced by the commercial semiconductor industry. The development of MOS technology, and particularly CMOS technology, as dominant commercial technologies has occurred entirely within the lifetime of the NSREC. For this reason, it is not surprising that the study of radiation interactions with MOS materials, devices and circuits has been a major theme of this conference for most of its history. The basic radiation problem in a MOS transistor is illustrated. The application of an appropriate gate voltage causes a conducting channel to form between the source and drain, so that current flows when the device is turned on. In Fig. lb, the effect of ionizing radiation is illustrated. Radiation-induced trapped charge has built up in the gate oxide, which causes a shift in the threshold voltage (that is, a change in the voltage which must be applied to turn the device on). If this shift is large enough, the device cannot be turned off, even at zero volts applied, and the device is said to have failed by going depletion mode.
Photonics: Technology project summary
NASA Technical Reports Server (NTRS)
Depaula, Ramon P.
1991-01-01
Photonics involves the use of light (photons) in conjunction with electronics for applications in communications, computing, control, and sensing. Components used in photonic systems include lasers, optical detectors, optical wave guide devices, fiber optics, and traditional electronic devices. The goal of this program is to develop hybrid optoelectronic devices and systems for sensing, information processing, communications, and control. It is hoped that these new devices will yield at least an order of magnitude improvement in performance over existing technology. The objective of the program is to conduct research and development in the following areas: (1) materials and devices; (2) networking and computing; (3) optical processing/advanced pattern recognition; and (4) sensing.
Re-Entry: Inflatable Technology Development in Russian Collaboration (RITD)
NASA Astrophysics Data System (ADS)
Koryanov, V. V.; Kazakovtsev, V. P.; Harri, A.-M.; Da-Poian, V.
2018-04-01
Technology has been developed specifically for launching spacecraft into the planet's atmosphere. The technology is based on the concept of using inflatable braking device, which was originally developed for landing in conditions of Mars.
Exploring new packaging and delivery options for the immunization supply chain.
Zehrung, Darin; Jarrahian, Courtney; Giersing, Birgitte; Kristensen, Debra
2017-04-19
A variety of vaccine packaging and delivery technologies may benefit the immunization supply chain. These include alternative primary packaging, such as blow-fill-seal polymer containers, and novel delivery technologies, such intradermal delivery devices, microarray patches, and sublingual formulations of vaccines, and others in development. The potential timeline to availability of these technologies varies and depends on their stage of development and the type of data necessary to achieve licensure. Some new delivery devices are anticipated to be introduced in 2017, such as intradermal devices for delivery of inactivated poliovirus vaccine to stretch vaccine supplies due to a supply limitation. Other new technologies requiring vaccine reformulation, such as microarray patches and sublingual vaccines, may become available in the long term (2021 and beyond). Development of many new technologies requires partnership between vaccine and technology manufacturers and identification of the applicable regulatory pathway. Interaction with public-sector stakeholders early on (through engagement with forums such as the World Health Organization's Immunization Practices Advisory Committee Delivery Technologies Working Group) is important to ensure suitability for immunization program use. Key considerations for programmatic suitability of a new vaccine, packaging, and delivery device include cold chain volume, costs, and health impact. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
[Advances on enzymes and enzyme inhibitors research based on microfluidic devices].
Hou, Feng-Hua; Ye, Jian-Qing; Chen, Zuan-Guang; Cheng, Zhi-Yi
2010-06-01
With the continuous development in microfluidic fabrication technology, microfluidic analysis has evolved from a concept to one of research frontiers in last twenty years. The research of enzymes and enzyme inhibitors based on microfluidic devices has also made great progress. Microfluidic technology improved greatly the analytical performance of the research of enzymes and enzyme inhibitors by reducing the consumption of reagents, decreasing the analysis time, and developing automation. This review focuses on the development and classification of enzymes and enzyme inhibitors research based on microfluidic devices.
Legislative aspects of the development of medical devices.
Marešová, Petra; Klímová, Blanka; Krejcar, Ondřej; Kuča, Kamil
2015-09-01
European industry of medical device technologies represents 30% of all worlds sales. New health technologies bring effective treatment approaches, help shorten stays in hospital1),bring better treatment results and accelerate rehabilitation which leads to the earlier patients recovery.Legislative aspects are one of the key areas influencing the speed of development of medical devices and their launching. The aim of this article is to specify current state of legislation in the development of medical devices in the European Union in comparison with the market leaders such as China, Japan and USA.The best established market of medical devices is in the USA. Both Japan and China follow the USA model. However, a non-professional code of ethics in China in some respect contributes to the decrease of quality of medical devices, while Japan as well as the EU countries try really hard to conform to all the regulations imposed on the manufacturing of medical devices.
UniDA: Uniform Device Access Framework for Human Interaction Environments
Varela, Gervasio; Paz-Lopez, Alejandro; Becerra, Jose Antonio; Vazquez-Rodriguez, Santiago; Duro, Richard José
2011-01-01
Human interaction environments (HIE) must be understood as any place where people carry out their daily life, including their work, family life, leisure and social life, interacting with technology to enhance or facilitate the experience. The integration of technology in these environments has been achieved in a disorderly and incompatible way, with devices operating in isolated islands with artificial edges delimited by the manufacturers. In this paper we are presenting the UniDA framework, an integral solution for the development of systems that require the integration and interoperation of devices and technologies in HIEs. It provides developers and installers with a uniform conceptual framework capable of modelling an HIE, together with a set of libraries, tools and devices to build distributed instrumentation networks with support for transparent integration of other technologies. A series of use case examples and a comparison to many of the existing technologies in the field has been included in order to show the benefits of using UniDA. PMID:22163700
UniDA: uniform device access framework for human interaction environments.
Varela, Gervasio; Paz-Lopez, Alejandro; Becerra, Jose Antonio; Vazquez-Rodriguez, Santiago; Duro, Richard José
2011-01-01
Human interaction environments (HIE) must be understood as any place where people carry out their daily life, including their work, family life, leisure and social life, interacting with technology to enhance or facilitate the experience. The integration of technology in these environments has been achieved in a disorderly and incompatible way, with devices operating in isolated islands with artificial edges delimited by the manufacturers. In this paper we are presenting the UniDA framework, an integral solution for the development of systems that require the integration and interoperation of devices and technologies in HIEs. It provides developers and installers with a uniform conceptual framework capable of modelling an HIE, together with a set of libraries, tools and devices to build distributed instrumentation networks with support for transparent integration of other technologies. A series of use case examples and a comparison to many of the existing technologies in the field has been included in order to show the benefits of using UniDA.
The potential of medical device industry in technological and economical context.
Maresova, Petra; Penhaker, Marek; Selamat, Ali; Kuca, Kamil
2015-01-01
The high quality of public health improves not only healthy life expectancy, but also the productivity of labor. The most important part of the health care sector is the medical technology industry. The aim of this study is to analyze the current situation in the medical device industry in Europe, its potential strengths and weaknesses in the context of topical economic and demographic development. The contribution specifies an analysis of the economic state of the medical device industry in the context of demographic development of European Union's macroeconomic indicators and views of experts in the field of medical device development, concerning the opportunities for entities involved in the medical device market. There is fierce competition on the European market. The innovative activity is stable and well regulated by responsible authorities. Worldwide, the medical device market is expected to grow.
Feng, Qianmei
2007-10-01
Federal law mandates that every checked bag at all commercial airports be screened by explosive detection systems (EDS), explosive trace detection systems (ETD), or alternative technologies. These technologies serve as critical components of airport security systems that strive to reduce security risks at both national and global levels. To improve the operational efficiency and airport security, emerging image-based technologies have been developed, such as dual-energy X-ray (DX), backscatter X-ray (BX), and multiview tomography (MVT). These technologies differ widely in purchasing cost, maintenance cost, operating cost, processing rate, and accuracy. Based on a mathematical framework that takes into account all these factors, this article investigates two critical issues for operating screening devices: setting specifications for continuous security responses by different technologies; and selecting technology or combination of technologies for efficient 100% baggage screening. For continuous security responses, specifications or thresholds are used for classifying threat items from nonthreat items. By investigating the setting of specifications on system security responses, this article assesses the risk and cost effectiveness of various technologies for both single-device and two-device systems. The findings provide the best selection of image-based technologies for both single-device and two-device systems. Our study suggests that two-device systems outperform single-device systems in terms of both cost effectiveness and accuracy. The model can be readily extended to evaluate risk and cost effectiveness of multiple-device systems for airport checked-baggage security screening.
Bioanalysis in microfluidic devices.
Khandurina, Julia; Guttman, András
2002-01-18
Microfabricated bioanalytical devices (also referred to as laboratory-on-a-chip or micro-TAS) offer highly efficient platforms for simultaneous analysis of a large number of biologically important molecules, possessing great potential for genome, proteome and metabolome studies. Development and implementation of microfluidic-based bioanalytical tools involves both established and evolving technologies, including microlithography, micromachining, micro-electromechanical systems technology and nanotechnology. This article provides an overview of the latest developments in the key device subject areas and the basic interdisciplinary technologies. Important aspects of DNA and protein analysis, interfacing issues and system integration are all thoroughly discussed, along with applications for this novel "synergized" technology in high-throughput separations of biologically important molecules. This review also gives a better understanding of how to utilize these technologies as well as to provide appropriate technical solutions to problems perceived as being more fundamental.
Sumboja, Afriyanti; Liu, Jiawei; Zheng, Wesley Guangyuan; Zong, Yun; Zhang, Hua; Liu, Zhaolin
2018-06-27
Compatible energy storage devices that are able to withstand various mechanical deformations, while delivering their intended functions, are required in wearable technologies. This imposes constraints on the structural designs, materials selection, and miniaturization of the cells. To date, extensive efforts have been dedicated towards developing electrochemical energy storage devices for wearables, with a focus on incorporation of shape-conformable materials into mechanically robust designs that can be worn on the human body. In this review, we highlight the quantified performances of reported wearable electrochemical energy storage devices, as well as their micro-sized counterparts under specific mechanical deformations, which can be used as the benchmark for future studies in this field. A general introduction to the wearable technology, the development of the selection and synthesis of active materials, cell design approaches and device fabrications are discussed. It is followed by challenges and outlook toward the practical use of electrochemical energy storage devices for wearable applications.
Recent progress in MEMS technology development for military applications
NASA Astrophysics Data System (ADS)
Ruffin, Paul B.; Burgett, Sherrie J.
2001-08-01
The recent progress of ongoing efforts at the Army Aviation and Missile Command (AMCOM) to develop microelectromechanical systems (MEMS) technology for military applications is discussed in this paper. The current maturity level of low cost, low power, micro devices in industry, which range from simple temperature and pressure sensors to accelerometers in airbags, provides a viable foundation for the development of rugged MEMS devices for dual-use applications. Early MEMS technology development efforts at AMCOM emphasized inertial MEMS sensors. An Army Science and Technology Objective (STO) project was initiated to develop low cost inertial components with moderate angular rate sensor resolution for measuring pitch and yaw of missile attitude and rotational roll rate. Leveraging the Defense Advanced Research Projects Agency and other Government agencies has resulted in the development of breadboard inertial MEMS devices with improved robustness. During the past two years, MEMS research at AMCOM has been expanded to include environmental MEMS sensors for missile health monitoring, RF-MEMS, optical MEMS devices for beam steering, and micro-optic 'benches' for opto-electronics miniaturization. Additionally, MEMS packaging and integration issues have come into focus and are being addressed. Selected ongoing research efforts in these areas are presented, and some horizon MEMS sensors requirements for Army and law enforcement are presented for consideration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2006-03-01
Renewable energy technologies offer the promise of non-polluting alternatives to fossil and nuclear-fueled power plants to meet growing demand for electrical energy. Two emerging categories of renewable energy technologies, hydrokinetic and wave energy conversion devices, offer ways to tap the energy of moving water without impoundment (dams) or diversion required by many conventional hydroelectric facilities. These technologies include devices designed for deployment in natural streams, tidal estuaries, ocean currents, and constructed waterways, as well as devices designed to capture the energy of ocean waves. On October 26-28, 2005, 54 representatives from government, non-governmental organizations, and private business met to (1)more » identify the varieties of hydrokinetic energy and wave technology devices, their stages of development, and the projected cost to bring each to market; (2) identify where these technologies can best operate; (3) identify the potential environmental issues associated with these technologies and possible mitigation measures; (4) develop a list of research needs and/or practical solutions to address unresolved environmental issues. These workshop proceedings include detailed summaries of the 24 presentations made and the discussions that followed.« less
The potential of medical device industry in technological and economical context
Maresova, Petra; Penhaker, Marek; Selamat, Ali; Kuca, Kamil
2015-01-01
The high quality of public health improves not only healthy life expectancy, but also the productivity of labor. The most important part of the health care sector is the medical technology industry. The aim of this study is to analyze the current situation in the medical device industry in Europe, its potential strengths and weaknesses in the context of topical economic and demographic development. The contribution specifies an analysis of the economic state of the medical device industry in the context of demographic development of European Union’s macroeconomic indicators and views of experts in the field of medical device development, concerning the opportunities for entities involved in the medical device market. There is fierce competition on the European market. The innovative activity is stable and well regulated by responsible authorities. Worldwide, the medical device market is expected to grow. PMID:26491337
Using IoT Device Technology in Spacecraft Checkout Systems
NASA Astrophysics Data System (ADS)
Plummer, Chris
2015-09-01
The Internet of Things (IoT) has become a common theme in both the technical and popular press in recent years because many of the enabling technologies that are required to make IoT a reality have now matured. Those technologies are revolutionising the way industrial systems and products are developed because they offer significant advantages over older technologies. This paper looks at how IoT device technology can be used in spacecraft checkout systems to achieve smaller, more capable, and more scalable solutions than are currently available. It covers the use of IoT device technology for classical spacecraft test systems as well as for hardware-in-the-loop simulation systems used to support spacecraft checkout.
High-frequency applications of high-temperature superconductor thin films
NASA Astrophysics Data System (ADS)
Klein, N.
2002-10-01
High-temperature superconducting thin films offer unique properties which can be utilized for a variety of high-frequency device applications in many areas related to the strongly progressing market of information technology. One important property is an exceptionally low level of microwave absorption at temperatures attainable with low power cryocoolers. This unique property has initiated the development of various novel type of microwave devices and commercialized subsystems with special emphasis on application in advanced microwave communication systems. The second important achievement related to efforts in oxide thin and multilayer technology was the reproducible fabrication of low-noise Josephson junctions in high-temperature superconducting thin films. As a consequence of this achievement, several novel nonlinear high-frequency devices, most of them exploiting the unique features of the ac Josephson effect, have been developed and found to exhibit challenging properties to be utilized in basic metrology and Terahertz technology. On the longer timescale, the achievements in integrated high-temperature superconductor circuit technology may offer a strong potential for the development of digital devices with possible clock frequencies in the range of 100 GHz.
ERIC Educational Resources Information Center
Young, Shelley Shwu-Ching; Hung, Hui-Chun
2014-01-01
In an era witnessing the rapid development of information technology, mobile devices have brought revolutionary changes to learning. A single conventional media platform is not enough for the various mobile devices. Technology-enriched educational environments supported by different devices are important research issues nowadays. To capture the…
Microelectromechanical Systems and Nephrology: The Next Frontier in Renal Replacement Technology
Kim, Steven; Roy, Shuvo
2013-01-01
Microelectromechanical systems (MEMS) is playing a prominent role in the development of many new and innovative biomedical devices, but remains a relatively underutilized technology in nephrology. The future landscape of clinical medicine and research will only see further expansion of MEMS based technologies in device designs and applications. The enthusiasm stems from the ability to create small-scale device features with high precision in a cost effective manner. MEMS also offers the possibility to integrate multiple components into a single device. The adoption of MEMS has the potential to revolutionize how nephrologists manage kidney disease by improving the delivery of renal replacement therapies and enhancing the monitoring of physiologic parameters. To introduce nephrologists to MEMS, this review will first define relevant terms and describe the basic processes used to fabricate MEMS devices. Next, a survey of MEMS devices being developed for various biomedical applications will be illustrated with current examples. Finally, MEMS technology specific to nephrology will be highlighted and future applications will be examined. The adoption of MEMS offers novel avenues to improve the care of kidney disease patients and assist nephrologists in clinical practice. This review will serve as an introduction for nephrologists to the exciting world of MEMS. PMID:24206604
Silica waveguide devices and their applications
NASA Astrophysics Data System (ADS)
Sun, C. J.; Schmidt, Kevin M.; Lin, Wenhua
2005-03-01
Silica waveguide technology transitioned from laboratories to commercial use in early 1990. Since then, various applications have been exploited based on this technology. Tens of thousands of array waveguide grating (AWG) devices have been installed worldwide for DWDM Mux and Demux. The recent FTTH push in Japan has renewed the significance of this technology for passive optical network (PON) application. This paper reviews the past development of this technology, compare it with competing technologies, and outline the future role of this technology in the evolving optical communications.
Foley, Alan R; Masingila, Joanna O
2015-07-01
In this paper, the authors explore the use of mobile devices as assistive technology for students with visual impairments in resource-limited environments. This paper provides initial data and analysis from an ongoing project in Kenya using tablet devices to provide access to education and independence for university students with visual impairments in Kenya. The project is a design-based research project in which we have developed and are refining a theoretically grounded intervention--a model for developing communities of practice to support the use of mobile technology as an assistive technology. We are collecting data to assess the efficacy and improve the model as well as inform the literature that has guided the design of the intervention. In examining the impact of the use of mobile devices for the students with visual impairments, we found that the devices provide the students with (a) access to education, (b) the means to participate in everyday life and (c) the opportunity to create a community of practice. Findings from this project suggest that communities of practice are both a viable and a valuable approach for facilitating the diffusion and support of mobile devices as assistive technology for students with visual impairments in resource-limited environments. Implications for Rehabilitation The use of mobile devices as assistive technology in resource-limited environments provides students with visual impairments access to education and enhanced means to participate in everyday life. Communities of practice are both a viable and a valuable approach for facilitating the diffusion and support of mobile devices as assistive technology for students with visual impairments in resource-limited environments. Providing access to assistive technology early and consistently throughout students' schooling builds both their skill and confidence and also demonstrates the capabilities of people with visual impairments to the larger society.
SiC Integrated Circuits for Power Device Drivers Able to Operate in Harsh Environments
NASA Astrophysics Data System (ADS)
Godignon, P.; Alexandru, M.; Banu, V.; Montserrat, J.; Jorda, X.; Vellvehi, M.; Schmidt, B.; Michel, P.; Millan, J.
2014-08-01
The currently developed SiC electronic devices are more robust to high temperature operation and radiation exposure damage than correspondingly rated Si ones. In order to integrate the existent SiC high power and high temperature electronics into more complex systems, a SiC integrated circuit (IC) technology capable of operation at temperatures substantially above the conventional ones is required. Therefore, this paper is a step towards the development of ICs-control electronics that have to attend the harsh environment power applications. Concretely, we present the development of SiC MESFET-based digital circuitry, able to integrate gate driver for SiC power devices. Furthermore, a planar lateral power MESFET is developed with the aim of its co-integration on the same chip with the previously mentioned SiC digital ICs technology. And finally, experimental results on SiC Schottky-gated devices irradiated with protons and electrons are presented. This development is based on the Tungsten-Schottky interface technology used for the fabrication of stable SiC Schottky diodes for the European Space Agency Mission BepiColombo.
Physical sciences: Thermodynamics, cryogenics, and vacuum technology: A compilation
NASA Technical Reports Server (NTRS)
1974-01-01
Technological developments which have potential application outside the aerospace community are reported. A variety of thermodynamic devices including heat pipes and cooling systems are described along with methods of handling cryogenic fluids. Vacuum devices are also described. Pata et information is included.
Technology assessment of medical devices at the Center for Devices and Radiological Health.
Kessler, L; Richter, K
1998-09-25
We reviewed the Food and Drug Administration's regulatory process for medical devices and described the issues that arise in assessing device safety and effectiveness during the postmarket period. The Center for Devices and Radiological Health (CDRH), an organization within the Food and Drug Administration, has the legal authority and responsibility for ensuring that medical devices marketed in the United States are both reasonably safe and effective for their intended use. This is an enormous challenge given the diversity of medical devices and the large number of different types of devices on the market. Many scientific and regulatory activities are necessary to ensure device safety and effectiveness, including technology assessment, albeit in a manner quite different from that of conventional technology assessment. The basic approach taken at the CDRH to ensure device safety and effectiveness is to develop an understanding of the way in which a medical device works and how it will perform in clinical situations.
Krueger, Wesley W.O.
2010-01-01
Objectives/Hypotheses An eyewear mounted visual display (“User-worn see-through display”) projecting an artificial horizon aligned with the user's head and body position in space can prevent or lessen motion sickness in susceptible individuals when in a motion provocative environment as well as aid patients undergoing vestibular rehabilitation. In this project, a wearable display device, including software technology and hardware, was developed and a phase I feasibility study and phase II clinical trial for safety and efficacy were performed. Study Design Both phase I and phase II were prospective studies funded by the NIH. The phase II study used repeated measures for motion intolerant subjects and a randomized control group (display device/no display device) pre-post test design for patients in vestibular rehabilitation. Methods Following technology and display device development, 75 patients were evaluated by test and rating scales in the phase II study; 25 subjects with motion intolerance used the technology in the display device in provocative environments and completed subjective rating scales while 50 patients were evaluated before and after vestibular rehabilitation (25 using the display device and 25 in a control group) using established test measures. Results All patients with motion intolerance rated the technology as helpful for nine symptoms assessed, and 96% rated the display device as simple and easy to use. Duration of symptoms significantly decreased with use of the technology displayed. In patients undergoing vestibular rehabilitation, there were no significant differences in amount of change from pre- to post-therapy on objective balance tests between display device users and controls. However, those using the technology required significantly fewer rehabilitation sessions to achieve those outcomes than the control group. Conclusions A user-worn see-through display, utilizing a visual fixation target coupled with a stable artificial horizon and aligned with user movement, has demonstrated substantial benefit for individuals susceptible to motion intolerance and spatial disorientation and those undergoing vestibular rehabilitation. The technology developed has applications in any environment where motion sensitivity affects human performance. PMID:21181963
Optical fiber end-facet polymer suspended-mirror devices
NASA Astrophysics Data System (ADS)
Yao, Mian; Wu, Jushuai; Zhang, A. Ping; Tam, Hwa-Yaw; Wai, P. K. A.
2017-04-01
This paper presents a novel optical fiber device based on a polymer suspended mirror on the end facet of an optical fiber. With an own-developed optical 3D micro-printing technology, SU-8 suspended-mirror devices (SMDs) were successfully fabricated on the top of a standard single-mode optical fiber. Optical reflection spectra of the fabricated SU- 8 SMDs were measured and compared with theoretical analysis. The proposed technology paves a way towards 3D microengineering of the small end-facet of optical fibers to develop novel fiber-optic sensors.
Packaging of silicon photonic devices: from prototypes to production
NASA Astrophysics Data System (ADS)
Morrissey, Padraic E.; Gradkowski, Kamil; Carroll, Lee; O'Brien, Peter
2018-02-01
The challenges associated with the photonic packaging of silicon devices is often underestimated and remains technically challenging. In this paper, we review some key enabling technologies that will allow us to overcome the current bottleneck in silicon photonic packaging; while also describing the recent developments in standardisation, including the establishment of PIXAPP as the worlds first open-access PIC packaging and assembly Pilot Line. These developments will allow the community to move from low volume prototype photonic packaged devices to large scale volume manufacturing, where the full commercialisation of PIC technology can be realised.
Trends in solid state electronics, part 2
NASA Technical Reports Server (NTRS)
Gassaway, J. D.
1972-01-01
Developments in the fields of semiconductors and magnetics are surveyed. Materials, devices, theory, and fabrication technology are discussed. Important events up until the present time are reported, and events are interpreted through historical perspective. A brief analysis of forces which have driven the development of today's electronic technology and some projections of present trends are given. More detailed discussions are presented for four areas of contemporary interest: amorphous semiconductors, bubble domain devices, charge-coupled devices, and electron and ion beam techniques. Beam addressed magnetic memories are reviewed to a lesser extent.
Flexible MEMS: A novel technology to fabricate flexible sensors and electronics
NASA Astrophysics Data System (ADS)
Tu, Hongen
This dissertation presents the design and fabrication techniques used to fabricate flexible MEMS (Micro Electro Mechanical Systems) devices. MEMS devices and CMOS(Complementary Metal-Oxide-Semiconductor) circuits are traditionally fabricated on rigid substrates with inorganic semiconductor materials such as Silicon. However, it is highly desirable that functional elements like sensors, actuators or micro fluidic components to be fabricated on flexible substrates for a wide variety of applications. Due to the fact that flexible substrate is temperature sensitive, typically only low temperature materials, such as polymers, metals, and organic semiconductor materials, can be directly fabricated on flexible substrates. A novel technology based on XeF2(xenon difluoride) isotropic silicon etching and parylene conformal coating, which is able to monolithically incorporate high temperature materials and fluidic channels, was developed at Wayne State University. The technology was first implemented in the development of out-of-plane parylene microneedle arrays that can be individually addressed by integrated flexible micro-channels. These devices enable the delivery of chemicals with controlled temporal and spatial patterns and allow us to study neurotransmitter-based retinal prosthesis. The technology was further explored by adopting the conventional SOI-CMOS processes. High performance and high density CMOS circuits can be first fabricated on SOI wafers, and then be integrated into flexible substrates. Flexible p-channel MOSFETs (Metal-Oxide-Semiconductor Field-Effect-Transistors) were successfully integrated and tested. Integration of pressure sensors and flow sensors based on single crystal silicon has also been demonstrated. A novel smart yarn technology that enables the invisible integration of sensors and electronics into fabrics has been developed. The most significant advantage of this technology is its post-MEMS and post-CMOS compatibility. Various high-performance MEMS devices and electronics can be integrated into flexible substrates. The potential of our technology is enormous. Many wearable and implantable devices can be developed based on this technology.
Technology Review for Mobile Multimedia Learning Environments
ERIC Educational Resources Information Center
Styliaras, Georgios
2015-01-01
Nowadays, the technological advancement in mobile devices has made possible the development of hypermedia applications that exploit their features. A potential application domain for mobile devices is multimedia educational applications and modules. Such modules may be shared, commented and further reused under other circumstances through the…
Solid state technology: A compilation. [on semiconductor devices
NASA Technical Reports Server (NTRS)
1973-01-01
A compilation, covering selected solid state devices developed and integrated into systems by NASA to improve performance, is presented. Data are also given on device shielding in hostile radiation environments.
ERIC Educational Resources Information Center
Plunkett, Diane M.
2013-01-01
The purpose of this study was to gain greater understanding of the potential benefits of assistive technology (AT) devices on young children's social development. Specifically, changes to the quality of the adult/young child social interactions as a function of the child's access to and use of his/her personal AT device was examined. Using a…
Vallejo-Torres, Laura; Steuten, Lotte M G; Buxton, Martin J; Girling, Alan J; Lilford, Richard J; Young, Terry
2008-01-01
Medical device companies are under growing pressure to provide health-economic evaluations of their products. Cost-effectiveness analyses are commonly undertaken as a one-off exercise at the late stage of development of new technologies; however, the benefits of an iterative use of economic evaluation during the development process of new products have been acknowledged in the literature. Furthermore, the use of Bayesian methods within health technology assessment has been shown to be of particular value in the dynamic framework of technology appraisal when new information becomes available in the life cycle of technologies. In this study, we set out a methodology to adapt these methods for their application to directly support investment decisions in a commercial setting from early stages of the development of new medical devices. Starting with relatively simple analysis from the very early development phase and proceeding to greater depth of analysis at later stages, a Bayesian approach facilitates the incorporation of all available evidence and would help companies to make better informed choices at each decision point.
25th anniversary article: a decade of organic/polymeric photovoltaic research.
Dou, Letian; You, Jingbi; Hong, Ziruo; Xu, Zheng; Li, Gang; Street, Robert A; Yang, Yang
2013-12-10
Organic photovoltaic (OPV) technology has been developed and improved from a fancy concept with less than 1% power conversion efficiency (PCE) to over 10% PCE, particularly through the efforts in the last decade. The significant progress is the result of multidisciplinary research ranging from chemistry, material science, physics, and engineering. These efforts include the design and synthesis of novel compounds, understanding and controlling the film morphology, elucidating the device mechanisms, developing new device architectures, and improving large-scale manufacture. All of these achievements catalyzed the rapid growth of the OPV technology. This review article takes a retrospective look at the research and development of OPV, and focuses on recent advances of solution-processed materials and devices during the last decade, particular the polymer version of the materials and devices. The work in this field is exciting and OPV technology is a promising candidate for future thin film solar cells. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
MEMS: Enabled Drug Delivery Systems.
Cobo, Angelica; Sheybani, Roya; Meng, Ellis
2015-05-01
Drug delivery systems play a crucial role in the treatment and management of medical conditions. Microelectromechanical systems (MEMS) technologies have allowed the development of advanced miniaturized devices for medical and biological applications. This Review presents the use of MEMS technologies to produce drug delivery devices detailing the delivery mechanisms, device formats employed, and various biomedical applications. The integration of dosing control systems, examples of commercially available microtechnology-enabled drug delivery devices, remaining challenges, and future outlook are also discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Teleoperator/robot technology can help solve biomedical problems
NASA Technical Reports Server (NTRS)
Heer, E.; Bejczy, A. K.
1975-01-01
Teleoperator and robot technology appears to offer the possibility to apply these techniques to the benefit for the severely handicapped giving them greater self reliance and independence. Major problem areas in the development of prostheses and remotely controlled devices for the handicapped are briefly discussed, and the parallelism with problems in the development of teleoperator/robots identified. A brief description of specific ongoing and projected developments in the area of remotely controlled devices (wheelchairs and manipulators) is provided.
Klonoff, David C; Zimliki, Charles L; Stevens, LCDR Alan; Beaston, Patricia; Pinkos, Arleen; Choe, Sally Y; Arreaza-Rubín, Guillermo; Heetderks, William
2011-01-01
The Food and Drug Administration in collaboration with the National Institutes of Health presented a public workshop to facilitate medical device innovation in the development of the artificial pancreas (or autonomous system) for the treatment of diabetes mellitus on November 10, 2010 in Gaithersburg, Maryland. The purpose of the workshop was to discuss four aspects of artificial pancreas research and development, including: (1) the current state of device systems for autonomous systems for the treatment of diabetes mellitus; (2) challenges in developing this expert device system using existing technology; (3) clinical expectations for these systems; and (4) development plans for the transition of this device system toward an outpatient setting. The patients discussed how clinical science, system components, and regulatory policies will all need to harmonize in order to achieve the goal of seeing an AP product brought forward to the marketplace for patients to use. PMID:21722597
Android Based Mobile Environment for Moodle Users
ERIC Educational Resources Information Center
de Clunie, Gisela T.; Clunie, Clifton; Castillo, Aris; Rangel, Norman
2013-01-01
This paper is about the development of a platform that eases, throughout Android based mobile devices, mobility of users of virtual courses at Technological University of Panama. The platform deploys computational techniques such as "web services," design patterns, ontologies and mobile technologies to allow mobile devices communicate…
Advanced 3-V semiconductor technology assessment
NASA Technical Reports Server (NTRS)
Nowogrodzki, M.
1983-01-01
Components required for extensions of currently planned space communications systems are discussed for large antennas, crosslink systems, single sideband systems, Aerostat systems, and digital signal processing. Systems using advanced modulation concepts and new concepts in communications satellites are included. The current status and trends in materials technology are examined with emphasis on bulk growth of semi-insulating GaAs and InP, epitaxial growth, and ion implantation. Microwave solid state discrete active devices, multigigabit rate GaAs digital integrated circuits, microwave integrated circuits, and the exploratory development of GaInAs devices, heterojunction devices, and quasi-ballistic devices is considered. Competing technologies such as RF power generation, filter structures, and microwave circuit fabrication are discussed. The fundamental limits of semiconductor devices and problems in implementation are explored.
NASA Astrophysics Data System (ADS)
Moia, Franco
2002-04-01
With linear photo-polymerization (LPP) ROLIC has invented a photo-patternable technology enabling to align not only conventional liquid crystals but also liquid crystals polymers (LCP). ROLIC's optical security device technology derives from its LPP/LCP technology. LPP/LCP security devices are created by structured photo-alignment of an LPP layer through phot-masks, thus generating a high resolution, photo-patterned aligning layer which carries the aligning information of the image to be created. The subsequent LCP layer transforms the aligning information into an optical phase image with low and/or very high information content, such as invisible photographic pictures. The building block capability of the LPP/LCP technology allows the manufacturing of cholesteric and non-cholesteric LPP/LCP devices which cover 1st and/or 2nd level applications. Apart from black/white security devices colored information zones can be integrated. Moreover, we have developed an LPP/LCP security device which covers all three- 1st, 2nd and 3rd- inspection levels in one and the same authentication device: besides a color shift by tilting the device (1st level) and the detection of normally hidden information by use of a simple sheet polarizer (2nd level) the new device contains encrypted hidden information which can be visualized only by superimposing an LPP/LCP inspection tool (key) for decryption (3rd level). This optical key is also based on the LPP/LCP technology and is itself a 3rd level security device.
Smartphone attachment for stethoscope recording.
Thompson, Jeff
2015-01-01
With the ubiquity of smartphones and the rising technology of 3D printing, novel devices can be developed that leverage the "computer in your pocket" and rapid prototyping technologies toward scientific, medical, engineering, and creative purposes. This paper describes such a device: a simple 3D-printed extension for Apple's iPhone that allows the sound from an off-the-shelf acoustic stethoscope to be recorded using the phone's built-in microphone. The attachment's digital 3D files can be easily shared, modified for similar phones and devices capable of recording audio, and in combination with 3D printing technology allow for fabrication of a durable device without need for an entire factory of expensive and specialized machining tools. It is hoped that by releasing this device as an open source set of printable files that can be downloaded and reproduced cheaply, others can make use of these developments where access to cost-prohibitive, specialized medical instruments are not available. Coupled with specialized smartphone software ("apps"), more sophisticated and automated diagnostics may also be possible on-site.
Monitoring Devices for Railroad Emergency Response Teams
DOT National Transportation Integrated Search
1986-02-01
This report examines new devices and technologies either commercially available or being developed which might have application to the railroad hazardous material spill response problem. Procedure and monitoring device information from Southern Railw...
Acoustic charge transport technology investigation for advanced development transponder
NASA Technical Reports Server (NTRS)
Kayalar, S.
1993-01-01
Acoustic charge transport (ACT) technology has provided a basis for a new family of analog signal processors, including a programmable transversal filter (PTF). Through monolithic integration of ACT delay lines with GaAs metal semiconductor field effect transistor (MESFET) digital memory and controllers, these devices significantly extend the performance of PTF's. This article introduces the basic operation of these devices and summarizes their present and future specifications. The production and testing of these devices indicate that this new technology is a promising one for future space applications.
Wafer-level vacuum/hermetic packaging technologies for MEMS
NASA Astrophysics Data System (ADS)
Lee, Sang-Hyun; Mitchell, Jay; Welch, Warren; Lee, Sangwoo; Najafi, Khalil
2010-02-01
An overview of wafer-level packaging technologies developed at the University of Michigan is presented. Two sets of packaging technologies are discussed: (i) a low temperature wafer-level packaging processes for vacuum/hermeticity sealing, and (ii) an environmentally resistant packaging (ERP) technology for thermal and mechanical control as well as vacuum packaging. The low temperature wafer-level encapsulation processes are implemented using solder bond rings which are first patterned on a cap wafer and then mated with a device wafer in order to encircle and encapsulate the device at temperatures ranging from 200 to 390 °C. Vacuum levels below 10 mTorr were achieved with yields in an optimized process of better than 90%. Pressures were monitored for more than 4 years yielding important information on reliability and process control. The ERP adopts an environment isolation platform in the packaging substrate. The isolation platform is designed to provide low power oven-control, vibration isolation and shock protection. It involves batch flip-chip assembly of a MEMS device onto the isolation platform wafer. The MEMS device and isolation structure are encapsulated at the wafer-level by another substrate with vertical feedthroughs for vacuum/hermetic sealing and electrical signal connections. This technology was developed for high performance gyroscopes, but can be applied to any type of MEMS device.
NASA Technical Reports Server (NTRS)
Rocker, Marvin; Nesman, Tomas E.; Hulka, James R.; Dougherty, N. Sam
2003-01-01
The Next-Generation Launch Technology (NGLT) project was introduced with its objectives. To meet the objectives, NASA has directed aerospace industry to perform advances and risk reduction of relevant technologies, including propulsion. Originally, the propulsion industry focused on producing both LOWLH2 and LOWkerosene flight engine technology demonstrators. These flight engine technology demonstrators were briefly reviewed. NASA recently redirected this focus to Lowkerosene only. Discussion of LOWkerosene combustion devices was and is prefaced by grave concerns about combustion instability. These concerns have prompted a review of LOWkerosene combustion instability in American and Russian combustion devices. In the review of the Russian propulsion industry's experience in eliminating LOWkerosene combustion instabilities, the history of principal Russian rocket scientists and their role in the development of LOXkerosene combustion devices is presented. The innovative methods implemented by the Russians of eliminations combustion instabilities in LOXkerosene combustion devices were reviewed. The successful elimination of these combustion instabilities has resulted in two generations of Russian-produced, high-performance LOWkerosene combustion devices.
McHenry, Megan S; Fischer, Lydia J; Chun, Yeona; Vreeman, Rachel C
2017-08-01
The objective of this study is to conduct a systematic review of the literature of how portable electronic technologies with offline functionality are perceived and used to provide health education in resource-limited settings. Three reviewers evaluated articles and performed a bibliography search to identify studies describing health education delivered by portable electronic device with offline functionality in low- or middle-income countries. Data extracted included: study population; study design and type of analysis; type of technology used; method of use; setting of technology use; impact on caregivers, patients, or overall health outcomes; and reported limitations. Searches yielded 5514 unique titles. Out of 75 critically reviewed full-text articles, 10 met inclusion criteria. Study locations included Botswana, Peru, Kenya, Thailand, Nigeria, India, Ghana, and Tanzania. Topics addressed included: development of healthcare worker training modules, clinical decision support tools, patient education tools, perceptions and usability of portable electronic technology, and comparisons of technologies and/or mobile applications. Studies primarily looked at the assessment of developed educational modules on trainee health knowledge, perceptions and usability of technology, and comparisons of technologies. Overall, studies reported positive results for portable electronic device-based health education, frequently reporting increased provider/patient knowledge, improved patient outcomes in both quality of care and management, increased provider comfort level with technology, and an environment characterized by increased levels of technology-based, informal learning situations. Negative assessments included high investment costs, lack of technical support, and fear of device theft. While the research is limited, portable electronic educational resources present promising avenues to increase access to effective health education in resource-limited settings, contingent on the development of culturally adapted and functional materials to be used on such devices.
Godin, Jessica; Chen, Chun-Hao; Cho, Sung Hwan; Qiao, Wen; Tsai, Frank; Lo, Yu-Hwa
2008-10-01
Microfluidics and photonics come together to form a field commonly referred to as 'optofluidics'. Flow cytometry provides the field with a technology base from which both microfluidic and photonic components be developed and integrated into a useful device. This article reviews some of the more recent developments to familiarize a reader with the current state of the technologies and also highlights the requirements of the device and how researchers are working to meet these needs.
Roach, Nick; Hussain, Asif; Burdet, Etienne
2012-01-01
The aging population and the wish to improve quality of life, as well as the economic pressure to work longer, call for intuitive and efficient assistive and rehabilitation technologies. Therefore, we have developed a project based education paradigm in the design of assistive and rehabilitation devices. Using a miniature wireless sensing and feedback platform, the multimodal interactive motor assessment and training environment (MIMATE), students from different engineering backgrounds were able to develop innovative devices implementing rehabilitative games in the short span of a one-term course. We describe here this novel H-CARD course on the human-centered design of assistive and rehabilitative devices.
Assistive Technology in the Schools: A Guide for Idaho Educators.
ERIC Educational Resources Information Center
Doty, Michelle; Seiler, Ron; Rhoads, LaRae
This manual is designed to provide Idaho educators, parents, students with disabilities, and related service providers with assistance in identifying, selecting, and acquiring assistive technology (AT) devices and services. The consideration of AT devices and services is required during the development of every Individualized Family Service Plan…
Progress in silicon carbide semiconductor technology
NASA Technical Reports Server (NTRS)
Powell, J. A.; Neudeck, P. G.; Matus, L. G.; Petit, J. B.
1992-01-01
Silicon carbide semiconductor technology has been advancing rapidly over the last several years. Advances have been made in boule growth, thin film growth, and device fabrication. This paper wi11 review reasons for the renewed interest in SiC, and will review recent developments in both crystal growth and device fabrication.
NASA Astrophysics Data System (ADS)
Gray, Bonnie L.
2012-04-01
Microfluidics is revolutionizing laboratory methods and biomedical devices, offering new capabilities and instrumentation in multiple areas such as DNA analysis, proteomics, enzymatic analysis, single cell analysis, immunology, point-of-care medicine, personalized medicine, drug delivery, and environmental toxin and pathogen detection. For many applications (e.g., wearable and implantable health monitors, drug delivery devices, and prosthetics) mechanically flexible polymer devices and systems that can conform to the body offer benefits that cannot be achieved using systems based on conventional rigid substrate materials. However, difficulties in implementing active devices and reliable packaging technologies have limited the success of flexible microfluidics. Employing highly compliant materials such as PDMS that are typically employed for prototyping, we review mechanically flexible polymer microfluidic technologies based on free-standing polymer substrates and novel electronic and microfluidic interconnection schemes. Central to these new technologies are hybrid microfabrication methods employing novel nanocomposite polymer materials and devices. We review microfabrication methods using these materials, along with demonstrations of example devices and packaging schemes that employ them. We review these recent developments and place them in the context of the fields of flexible microfluidics and conformable systems, and discuss cross-over applications to conventional rigid-substrate microfluidics.
Future opportunities for advancing glucose test device electronics.
Young, Brian R; Young, Teresa L; Joyce, Margaret K; Kennedy, Spencer I; Atashbar, Massood Z
2011-09-01
Advancements in the field of printed electronics can be applied to the field of diabetes testing. A brief history and some new developments in printed electronics components applicable to personal test devices, including circuitry, batteries, transmission devices, displays, and sensors, are presented. Low-cost, thin, and lightweight materials containing printed circuits with energy storage or harvest capability and reactive/display centers, made using new printing/imaging technologies, are ideal for incorporation into personal-use medical devices such as glucose test meters. Semicontinuous rotogravure printing, which utilizes flexible substrates and polymeric, metallic, and/or nano "ink" composite materials to effect rapidly produced, lower-cost printed electronics, is showing promise. Continuing research advancing substrate, "ink," and continuous processing development presents the opportunity for research collaboration with medical device designers. © 2011 Diabetes Technology Society.
Transit Reconfigurable Exerciser - Intern Exit Abstract
NASA Technical Reports Server (NTRS)
Gebara, Christine A.
2014-01-01
The Transit Resistive Exerciser (TREX) was developed during a 16 week period in which a clutch device filled with smart material was built and began the testing phase. The clutch serves as a passive method of creating resistance. When paired with a series of springs, the device creates a rowing machine also capable of resistive exercise configurations. The device has loading profiles similar to the exercise devices used on the International Space Station today. The prototype created was designed in a modular fashion to support parallel development on various aspects of the project. Hardware and software are currently in development and make use of commercially available parts. Similar technologies have been used in the automotive industry but have never been explored in the context of countermeasure systems for space flight. If the work done leads to successful testing and further development, this technology has the potential to cut the size and weight of exercise devices by an order of magnitude or more.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Czanderna, A. W.; Jorgensen, G. J.
The purposes of this paper are to (1) discuss the necessity for conducting accelerated life testing (ALT) in the early stages of developing new photovoltaic (PV) technologies, (2) elucidate the crucial importance for combining ALT with real-time testing (RTT) in terrestrial environments for promising PV technologies for the 21st century, and (3) outline the essential steps for making a service lifetime prediction (SLP) for any PV technology. The specific objectives are to (a) illustrate the essential need for ALT of complete, encapsulated multilayer PV devices, (b) indicate the typical causes of degradation in PV stacks, (c) elucidate the complexity associatedmore » with quantifying the durability of the devices, (d) explain the major elements that constitute a generic SLP methodology, (e) show how the introduction of the SLP methodology in the early stages of new device development can reduce the cost of technology development, and (f) outline the procedure for combining the results of ALT and RTT, establishing degradation mechanisms, using sufficient numbers of samples, and applying the SLP methodology to produce a SLP for existing or new PV technologies.« less
NASA Astrophysics Data System (ADS)
Shinozaki, Kenichi; Yanaru, Torao
Recently, IT (Information Technology) have rapidly revolved and penetrated into the usual human life, with such as the household appliances and the mobile devices. Considering this strong change of social environment, what technology is introduced to satisfy the present educational needs and how to develop the teaching system is very important. Then in this paper, we describe the developed web-teaching material that links Xport, an embedded device server, with the control system using microcontroller technology. In the classes, we have implemented the lessons that utilize this system in the following subjects : programming technology, hardware technology, electronic circuit and practical training. Furthermore, because of high availability of the developed system through internet, it is also useful for the education on science and technical arts in general high schools or in junior high schools as well as in technical high schools.
Heavy vehicle driver workload assessment : executive summary
DOT National Transportation Integrated Search
1996-10-01
This report summarizes a program of research to develop methods, data, and guidelines to conduct heavy vehicle driver-oriented workload assessments of new, high-technology, in-cab devices. Many such devices are being developed and implemented in heav...
Review of emerging surgical robotic technology.
Peters, Brian S; Armijo, Priscila R; Krause, Crystal; Choudhury, Songita A; Oleynikov, Dmitry
2018-04-01
The use of laparoscopic and robotic procedures has increased in general surgery. Minimally invasive robotic surgery has made tremendous progress in a relatively short period of time, realizing improvements for both the patient and surgeon. This has led to an increase in the use and development of robotic devices and platforms for general surgery. The purpose of this review is to explore current and emerging surgical robotic technologies in a growing and dynamic environment of research and development. This review explores medical and surgical robotic endoscopic surgery and peripheral technologies currently available or in development. The devices discussed here are specific to general surgery, including laparoscopy, colonoscopy, esophagogastroduodenoscopy, and thoracoscopy. Benefits and limitations of each technology were identified and applicable future directions were described. A number of FDA-approved devices and platforms for robotic surgery were reviewed, including the da Vinci Surgical System, Sensei X Robotic Catheter System, FreeHand 1.2, invendoscopy E200 system, Flex® Robotic System, Senhance, ARES, the Single-Port Instrument Delivery Extended Research (SPIDER), and the NeoGuide Colonoscope. Additionally, platforms were reviewed which have not yet obtained FDA approval including MiroSurge, ViaCath System, SPORT™ Surgical System, SurgiBot, Versius Robotic System, Master and Slave Transluminal Endoscopic Robot, Verb Surgical, Miniature In Vivo Robot, and the Einstein Surgical Robot. The use and demand for robotic medical and surgical platforms is increasing and new technologies are continually being developed. New technologies are increasingly implemented to improve on the capabilities of previously established systems. Future studies are needed to further evaluate the strengths and weaknesses of each robotic surgical device and platform in the operating suite.
Simulation training tools for nonlethal weapons using gaming environments
NASA Astrophysics Data System (ADS)
Donne, Alexsana; Eagan, Justin; Tse, Gabriel; Vanderslice, Tom; Woods, Jerry
2006-05-01
Modern simulation techniques have a growing role for evaluating new technologies and for developing cost-effective training programs. A mission simulator facilitates the productive exchange of ideas by demonstration of concepts through compellingly realistic computer simulation. Revolutionary advances in 3D simulation technology have made it possible for desktop computers to process strikingly realistic and complex interactions with results depicted in real-time. Computer games now allow for multiple real human players and "artificially intelligent" (AI) simulated robots to play together. Advances in computer processing power have compensated for the inherent intensive calculations required for complex simulation scenarios. The main components of the leading game-engines have been released for user modifications, enabling game enthusiasts and amateur programmers to advance the state-of-the-art in AI and computer simulation technologies. It is now possible to simulate sophisticated and realistic conflict situations in order to evaluate the impact of non-lethal devices as well as conflict resolution procedures using such devices. Simulations can reduce training costs as end users: learn what a device does and doesn't do prior to use, understand responses to the device prior to deployment, determine if the device is appropriate for their situational responses, and train with new devices and techniques before purchasing hardware. This paper will present the status of SARA's mission simulation development activities, based on the Half-Life gameengine, for the purpose of evaluating the latest non-lethal weapon devices, and for developing training tools for such devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hudgins, Andrew P.; Sparn, Bethany F.; Jin, Xin
This document is the final report of a two-year development, test, and demonstration project entitled 'Cohesive Application of Standards-Based Connected Devices to Enable Clean Energy Technologies.' The project was part of the National Renewable Energy Laboratory's (NREL) Integrated Network Test-bed for Energy Grid Research and Technology (INTEGRATE) initiative. The Electric Power Research Institute (EPRI) and a team of partners were selected by NREL to carry out a project to develop and test how smart, connected consumer devices can act to enable the use of more clean energy technologies on the electric power grid. The project team includes a set ofmore » leading companies that produce key products in relation to achieving this vision: thermostats, water heaters, pool pumps, solar inverters, electric vehicle supply equipment, and battery storage systems. A key requirement of the project was open access at the device level - a feature seen as foundational to achieving a future of widespread distributed generation and storage. The internal intelligence, standard functionality and communication interfaces utilized in this project result in the ability to integrate devices at any level, to work collectively at the level of the home/business, microgrid, community, distribution circuit or other. Collectively, the set of products serve as a platform on which a wide range of control strategies may be developed and deployed.« less
Overview of Probe-based Storage Technologies
NASA Astrophysics Data System (ADS)
Wang, Lei; Yang, Ci Hui; Wen, Jing; Gong, Si Di; Peng, Yuan Xiu
2016-07-01
The current world is in the age of big data where the total amount of global digital data is growing up at an incredible rate. This indeed necessitates a drastic enhancement on the capacity of conventional data storage devices that are, however, suffering from their respective physical drawbacks. Under this circumstance, it is essential to aggressively explore and develop alternative promising mass storage devices, leading to the presence of probe-based storage devices. In this paper, the physical principles and the current status of several different probe storage devices, including thermo-mechanical probe memory, magnetic probe memory, ferroelectric probe memory, and phase-change probe memory, are reviewed in details, as well as their respective merits and weakness. This paper provides an overview of the emerging probe memories potentially for next generation storage device so as to motivate the exploration of more innovative technologies to push forward the development of the probe storage devices.
Design considerations for imaging charge-coupled device
NASA Astrophysics Data System (ADS)
1981-04-01
The image dissector tube, which was formerly used as detector in star trackers, will be replaced by solid state imaging devices. The technology advances of charge transfer devices, like the charge-coupled device (CCD) and the charge-injection device (CID) have made their application to star trackers an immediate reality. The Air Force in 1979 funded an American Aerospace company to develop an imaging CCD (ICCD) star sensor for the Multimission Attitude Determination and Autonomous Navigation (MADAN) system. The MADAN system is a technology development for a strapdown attitude and navigation system which can be used on all Air Force 3-axis stabilized satellites. The system will be autonomous and will provide real-time satellite attitude and position information. The star sensor accuracy provides an overall MADAN attitude accuracy of 2 arcsec for star rates up to 300 arcsec/sec. The ICCD is basically an integrating device. Its pixel resolution in not yet satisfactory for precision applications.
Overview of Probe-based Storage Technologies.
Wang, Lei; Yang, Ci Hui; Wen, Jing; Gong, Si Di; Peng, Yuan Xiu
2016-12-01
The current world is in the age of big data where the total amount of global digital data is growing up at an incredible rate. This indeed necessitates a drastic enhancement on the capacity of conventional data storage devices that are, however, suffering from their respective physical drawbacks. Under this circumstance, it is essential to aggressively explore and develop alternative promising mass storage devices, leading to the presence of probe-based storage devices. In this paper, the physical principles and the current status of several different probe storage devices, including thermo-mechanical probe memory, magnetic probe memory, ferroelectric probe memory, and phase-change probe memory, are reviewed in details, as well as their respective merits and weakness. This paper provides an overview of the emerging probe memories potentially for next generation storage device so as to motivate the exploration of more innovative technologies to push forward the development of the probe storage devices.
Future superconductivity applications in space - A review
NASA Astrophysics Data System (ADS)
Krishen, Kumar; Ignatiev, Alex
High temperature superconductor (HISC) materials and devices can provide immediate applications for many space missions. The in-space thermal environment provides an opportunity to develop, test, and apply this technology to enhance performance and reliability for many applications of crucial importance to NASA. Specifically, the technology development areas include: (1) high current power transmission, (2) microwave components, devices, and antennas, (3) microwave, optical, and infrared sensors, (4) signal processors, (5) submillimeter wave components and systems, (6) ultra stable space clocks, (7) electromagnetic launch systems, and (8) accelerometers and position sensors for flight operations. HTSC is expected to impact NASA's Lunar Bases, Mars exploration, Mission to Earth, and Planetary exploration programs providing enabling and cost-effect technology. A review of the space applications of the HTSC technology is presented. Problem areas in technology development needing special attention are identified.
Billaux, Mathilde; Borget, Isabelle; Prognon, Patrice; Pineau, Judith; Martelli, Nicolas
2016-06-01
Objectives Many university hospitals have developed local health technology assessment processes to guide informed decisions about new medical devices. However, little is known about stakeholders' perceptions and assessment of innovative devices. Herein, we investigated the perceptions regarding innovative medical devices of their chief users (physicians and surgeons), as well as those of hospital pharmacists, because they are responsible for the purchase and management of sterile medical devices. We noted the evaluation criteria used to assess and select new medical devices and suggestions for improving local health technology assessment processes indicated by the interviewees. Methods We randomly selected 18 physicians and surgeons (nine each) and 18 hospital pharmacists from 18 French university hospitals. Semistructured interviews were conducted between October 2012 and August 2013. Responses were coded separately by two researchers. Results Physicians and surgeons frequently described innovative medical devices as 'new', 'safe' and 'effective', whereas hospital pharmacists focused more on economic considerations and considered real innovative devices to be those for which no equivalent could be found on the market. No significant difference in evaluation criteria was found between these groups of professionals. Finally, hospital pharmacists considered the management of conflicts of interests in local health technology assessment processes to be an issue, whereas physicians and surgeons did not. Conclusions The present study highlights differences in perceptions related to professional affiliation. The findings suggest several ways in which current practices for local health technology assessment in French university hospitals could be improved and studied. What is known about the topic? Hospitals are faced with ever-growing demands for innovative and costly medical devices. To help hospital management deal with technology acquisition issues, hospital-based health technology assessment has been developed to support decisions. However, little is known about the different perceptions of innovative medical devices among practitioners and how different perceptions may affect decision making. What does this paper add? This paper compares and understands the perceptions of two groups of health professionals concerning innovative devices in the university hospital environment. What are the implications for practitioners? Such a comparison of viewpoints could facilitate improvements in current practices and decision-making processes in local health technology assessment for these medical products.
LEC GaAs for integrated circuit applications
NASA Technical Reports Server (NTRS)
Kirkpatrick, C. G.; Chen, R. T.; Homes, D. E.; Asbeck, P. M.; Elliott, K. R.; Fairman, R. D.; Oliver, J. D.
1984-01-01
Recent developments in liquid encapsulated Czochralski techniques for the growth of semiinsulating GaAs for integrated circuit applications have resulted in significant improvements in the quality and quantity of GaAs material suitable for device processing. The emergence of high performance GaAs integrated circuit technologies has accelerated the demand for high quality, large diameter semiinsulating GaAs substrates. The new device technologies, including digital integrated circuits, monolithic microwave integrated circuits and charge coupled devices have largely adopted direct ion implantation for the formation of doped layers. Ion implantation lends itself to good uniformity and reproducibility, high yield and low cost; however, this technique also places stringent demands on the quality of the semiinsulating GaAs substrates. Although significant progress was made in developing a viable planar ion implantation technology, the variability and poor quality of GaAs substrates have hindered progress in process development.
Performance Evaluation Methods for Assistive Robotic Technology
NASA Astrophysics Data System (ADS)
Tsui, Katherine M.; Feil-Seifer, David J.; Matarić, Maja J.; Yanco, Holly A.
Robots have been developed for several assistive technology domains, including intervention for Autism Spectrum Disorders, eldercare, and post-stroke rehabilitation. Assistive robots have also been used to promote independent living through the use of devices such as intelligent wheelchairs, assistive robotic arms, and external limb prostheses. Work in the broad field of assistive robotic technology can be divided into two major research phases: technology development, in which new devices, software, and interfaces are created; and clinical, in which assistive technology is applied to a given end-user population. Moving from technology development towards clinical applications is a significant challenge. Developing performance metrics for assistive robots poses a related set of challenges. In this paper, we survey several areas of assistive robotic technology in order to derive and demonstrate domain-specific means for evaluating the performance of such systems. We also present two case studies of applied performance measures and a discussion regarding the ubiquity of functional performance measures across the sampled domains. Finally, we present guidelines for incorporating human performance metrics into end-user evaluations of assistive robotic technologies.
1992-05-22
Evaluation and Control of Compound Semiconductor Materials and Technologies (EXMATEC) at Ecole Centrale de Lyon (Ecully, France, 19th to 22nd May...semiconductor technologies to manufacture advanced devices with improved reproducibility, better reliability and lower cost. -’Device structures...concepts are required for expert evaluation and control of still developing technologies . In this context, the EXMATEC series will constitute a major
The Analysis of New Generation Mobile Device Dependencies of Students in Faculty of Education
ERIC Educational Resources Information Center
Korucu, Agah Tugrul; Usta, Ertugrul
2016-01-01
The development of technology brought about some advantages as well as particular disadvantages. Smart phones which are new generation mobile devices are technological tools for meeting certain needs such as entertainment, social media, realization of daily routines and usage for educational purposes. The facts that new generation mobile devices…
ERIC Educational Resources Information Center
Yankelevich, Eleonora
2017-01-01
A variety of computing devices are available in today's classrooms, but they have not guaranteed the effective integration of technology. Nationally, teachers have ample devices, applications, productivity software, and digital audio and video tools. Despite all this, the literature suggests these tools are not employed to enhance student learning…
Nano-Bio Quantum Technology for Device-Specific Materials
NASA Technical Reports Server (NTRS)
Choi, Sang H.
2009-01-01
The areas discussed are still under development: I. Nano structured materials for TE applications a) SiGe and Be.Te; b) Nano particles and nanoshells. II. Quantum technology for optical devices: a) Quantum apertures; b) Smart optical materials; c) Micro spectrometer. III. Bio-template oriented materials: a) Bionanobattery; b) Bio-fuel cells; c) Energetic materials.
Environmental Effects on Data Retention in Flash Cells
NASA Technical Reports Server (NTRS)
Katz, Rich; Flowers, David; Bergevin, Keith
2017-01-01
Flash technology is being utilized in fuzed munition applications and, based on the development of digital logic devices in the commercial world, usage of flash technology will increase. Antifuse technology, prevalent in non-volatile field programmable gate arrays (FPGAs), will eventually be phased out as new devices have not been developed for approximately a decade. The reliance on flash technology presents a long-term reliability issue for both DoD and NASA safety- and mission-critical applications. A thorough understanding of the data retention failure modes and statistics associated with Flash data retention is of vital concern to the fuze safety community. A key retention parameter for a flash cell is the threshold voltage (VTH), which is an indirect indicator of the amount of charge stored on the cells floating gate. This paper will present the results of our on-going tests: long-term storage at 150 C for a small population of devices, neutron radiation exposure, electrostatic discharge (ESD) testing, and the trends of large populations (over 300 devices for each condition) exposed to three difference temperatures: 25 C, 125 C, and 150 C.
Technological innovation in neurosurgery: a quantitative study.
Marcus, Hani J; Hughes-Hallett, Archie; Kwasnicki, Richard M; Darzi, Ara; Yang, Guang-Zhong; Nandi, Dipankar
2015-07-01
Technological innovation within health care may be defined as the introduction of a new technology that initiates a change in clinical practice. Neurosurgery is a particularly technology-intensive surgical discipline, and new technologies have preceded many of the major advances in operative neurosurgical techniques. The aim of the present study was to quantitatively evaluate technological innovation in neurosurgery using patents and peer-reviewed publications as metrics of technology development and clinical translation, respectively. The authors searched a patent database for articles published between 1960 and 2010 using the Boolean search term "neurosurgeon OR neurosurgical OR neurosurgery." The top 50 performing patent codes were then grouped into technology clusters. Patent and publication growth curves were then generated for these technology clusters. A top-performing technology cluster was then selected as an exemplar for a more detailed analysis of individual patents. In all, 11,672 patents and 208,203 publications related to neurosurgery were identified. The top-performing technology clusters during these 50 years were image-guidance devices, clinical neurophysiology devices, neuromodulation devices, operating microscopes, and endoscopes. In relation to image-guidance and neuromodulation devices, the authors found a highly correlated rapid rise in the numbers of patents and publications, which suggests that these are areas of technology expansion. An in-depth analysis of neuromodulation-device patents revealed that the majority of well-performing patents were related to deep brain stimulation. Patent and publication data may be used to quantitatively evaluate technological innovation in neurosurgery.
RadWorks Project. ISS REM - to - BIRD - to - HERA: The Evolution of a Technology
NASA Technical Reports Server (NTRS)
McLeod, Catherine D.
2015-01-01
The advancement of particle detectors based on technologies developed for use in high-energy physics applications has enabled the development of a completely new generation of compact low-power active dosimeters and area monitors for use in space radiation environments. One such device, the TimePix, is being developed at CERN, and is providing the technology basis for the most recent line of radiation detection devices being developed by the NASA AES RadWorks project. The most fundamental of these devices, an ISS-Radiation Environment Monitor (REM), is installed as a USB device on ISS where it is monitoring the radiation environment on a perpetual basis. The second generation of this TimePix technology, the BIRD (Battery-operated Independent Radiation Detector), was flown on the NASA EFT-1 flight in December 2014. Data collected by BIRD was the first data made available from the Trapped Belt region of the Earth's atmosphere in over 40 years. The 3rdgeneration of this technology, the HERA (Hybrid Electronic Radiation Assessor), is planned to be integrated into the Orion EM-1, and EM-2 vehicles where it will monitor the radiation environment. For the EM-2 flight, HERA will provide Caution and Warning notification for SPEs as well as real time dose measurements for crew members. The development of this line of radiation detectors provide much greater information and characterization of charged particles in the space radiation environment than has been collected in the past, and in the process provide greater information to inform crew members of radiation related risks, while being very power and mass efficient.
Enhancing public involvement in assistive technology design research.
Williamson, Tracey; Kenney, Laurence; Barker, Anthony T; Cooper, Glen; Good, Tim; Healey, Jamie; Heller, Ben; Howard, David; Matthews, Martin; Prenton, Sarah; Ryan, Julia; Smith, Christine
2015-05-01
To appraise the application of accepted good practice guidance on public involvement in assistive technology research and to identify its impact on the research team, the public, device and trial design. Critical reflection and within-project evaluation were undertaken in a case study of the development of a functional electrical stimulation device. Individual and group interviews were undertaken with lay members of a 10 strong study user advisory group and also research team members. Public involvement was seen positively by research team members, who reported a positive impact on device and study designs. The public identified positive impact on confidence, skills, self-esteem, enjoyment, contribution to improving the care of others and opportunities for further involvement in research. A negative impact concerned the challenge of engaging the public in dissemination after the study end. The public were able to impact significantly on the design of an assistive technology device which was made more fit for purpose. Research team attitudes to public involvement were more positive after having witnessed its potential first hand. Within-project evaluation underpins this case study which presents a much needed detailed account of public involvement in assistive technology design research to add to the existing weak evidence base. The evidence base for impact of public involvement in rehabilitation technology design is in need of development. Public involvement in co-design of rehabilitation devices can lead to technologies that are fit for purpose. Rehabilitation researchers need to consider the merits of active public involvement in research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madan, A
2005-03-01
The work described in this report uses a modified pulsed plasma-enhanced chemical vapor deposition (PECVD) technique that has been successfully developed to fabricate state-of-the-art nc-Si materials and devices. Specifically, we have achieved the following benchmarks: nc SiH device with an efficiency of 8% achieved at a deposition rate of {approx}1 A/s; nc SiH device with an efficiency of 7% achieved at a deposition rate of {approx}5 A/s; large-area technology developed using pulsed PECVD with uniformity of +/-5% over 25 cm x 35 cm; devices have been fabricated in the large-area system (part of Phase 3); an innovative stable four-terminal (4-T)more » tandem-junction device of h> 9% fabricated. (Note that the 4-T device was fabricated with existing technology base and with further development can reach stabilized h of 12%); and with improvement in Voc {approx} 650 mV, from the current value of 480 mV can lead to stable 4-T device with h>16%. Toward this objective, modified pulsed PECVD was developed where layer- by-layer modification of nc-SiH has been achieved. (Note that due to budget cuts at NREL, this project was curtailed by about one year.)« less
Advanced Measurement Systems Available to PIWG Members
NASA Technical Reports Server (NTRS)
Anderson, Robert; Lei, Jih-Fen (Technical Monitor)
2002-01-01
It was developed advanced measurement technologies to meet NASA goals: reduce design cycle time, reduce emission, reduce testing time, increase safety. The technology are saving money. This technology are available now for technology transfer: optical diagnostics, the film technology and MEMS devices.
Park, Catherine C; Yom, Sue S; Podgorsak, Matthew B; Harris, Eleanor; Price, Robert A; Bevan, Alison; Pouliot, Jean; Konski, Andre A; Wallner, Paul E
2010-03-15
The development of novel technologies for the safe and effective delivery of radiation is critical to advancing the field of radiation oncology. The Emerging Technology Committee of the American Society for Therapeutic Radiology and Oncology appointed a Task Group within its Evaluation Subcommittee to evaluate new electronic brachytherapy methods that are being developed for, or are already in, clinical use. The Task Group evaluated two devices, the Axxent Electronic Brachytherapy System by Xoft, Inc. (Fremont, CA), and the Intrabeam Photon Radiosurgery Device by Carl Zeiss Surgical (Oberkochen, Germany). These devices are designed to deliver electronically generated radiation, and because of their relatively low energy output, they do not fall under existing regulatory scrutiny of radioactive sources that are used for conventional radioisotope brachytherapy. This report provides a descriptive overview of the technologies, current and future projected applications, comparison of competing technologies, potential impact, and potential safety issues. The full Emerging Technology Committee report is available on the American Society for Therapeutic Radiology and Oncology Web site. Copyright 2010. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Catherine C., E-mail: cpark@radonc.ucsf.ed; Yom, Sue S.; Podgorsak, Matthew B.
The development of novel technologies for the safe and effective delivery of radiation is critical to advancing the field of radiation oncology. The Emerging Technology Committee of the American Society for Therapeutic Radiology and Oncology appointed a Task Group within its Evaluation Subcommittee to evaluate new electronic brachytherapy methods that are being developed for, or are already in, clinical use. The Task Group evaluated two devices, the Axxent Electronic Brachytherapy System by Xoft, Inc. (Fremont, CA), and the Intrabeam Photon Radiosurgery Device by Carl Zeiss Surgical (Oberkochen, Germany). These devices are designed to deliver electronically generated radiation, and because ofmore » their relatively low energy output, they do not fall under existing regulatory scrutiny of radioactive sources that are used for conventional radioisotope brachytherapy. This report provides a descriptive overview of the technologies, current and future projected applications, comparison of competing technologies, potential impact, and potential safety issues. The full Emerging Technology Committee report is available on the American Society for Therapeutic Radiology and Oncology Web site.« less
Advanced Materials for Health Monitoring with Skin-Based Wearable Devices.
Jin, Han; Abu-Raya, Yasmin Shibli; Haick, Hossam
2017-06-01
Skin-based wearable devices have a great potential that could result in a revolutionary approach to health monitoring and diagnosing disease. With continued innovation and intensive attention to the materials and fabrication technologies, development of these healthcare devices is progressively encouraged. This article gives a concise, although admittedly non-exhaustive, didactic review of some of the main concepts and approaches related to recent advances and developments in the scope of skin-based wearable devices (e.g. temperature, strain, biomarker-analysis werable devices, etc.), with an emphasis on emerging materials and fabrication techniques in the relevant fields. To give a comprehensive statement, part of the review presents and discusses different aspects of these advanced materials, such as the sensitivity, biocompatibility and durability as well as the major approaches proposed for enhancing their chemical and physical properties. A complementary section of the review linking these advanced materials with wearable device technologies is particularly specified. Some of the strong and weak points in development of each wearable material/device are highlighted and criticized. Several ideas regarding further improvement of skin-based wearable devices are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Development and Application of Airway Devices in China
Chen, Xiangdong; Ma, Wuhua; Liu, Renyu; Yao, Shanglong
2017-01-01
Airway management is one of the most important tasks for anesthesiologists. Anesthesiologists are experts in airway management and have made tremendous contribution to the development of the airway devices. Chinese anesthesiologists have made significant contribution in introducing advanced airway management and developing innovative techniques and devices for airway management in China. This article overviews the development and application of airway devices in China as well as the dedication and contribution of Chinese experts in the development of novel airway devices. With the development of science and technology accompanied by the advanced knowledge in airway management, more effective and safe artificial airways will be developed for clinical practice. The authors believe that Chinese experts will continue their outstanding contribution to the development of innovative airway devices, systems and knowledge. PMID:28191485
NEW HORIZONS IN SENSOR DEVELOPMENT
Intille, Stephen S.; Lester, Jonathan; Sallis, James F.; Duncan, Glen
2011-01-01
Background Accelerometery and other sensing technologies are important tools for physical activity measurement. Engineering advances have allowed developers to transform clunky, uncomfortable, and conspicuous monitors into relatively small, ergonomic, and convenient research tools. New devices can be used to collect data on overall physical activity and in some cases posture, physiological state, and location, for many days or weeks from subjects during their everyday lives. In this review article, we identify emerging trends in several types of monitoring technologies and gaps in the current state of knowledge. Best practices The only certainty about the future of activity sensing technologies is that researchers must anticipate and plan for change. We propose a set of best practices that may accelerate adoption of new devices and increase the likelihood that data being collected and used today will be compatible with new datasets and methods likely to appear on the horizon. Future directions We describe several technology-driven trends, ranging from continued miniaturization of devices that provide gross summary information about activity levels and energy expenditure, to new devices that provide highly detailed information about the specific type, amount, and location of physical activity. Some devices will take advantage of consumer technologies, such as mobile phones, to detect and respond to physical activity in real time, creating new opportunities in measurement, remote compliance monitoring, data-driven discovery, and intervention. PMID:22157771
Aging society and gerontechnology: a solution for an independent living?
Piau, A; Campo, E; Rumeau, P; Vellas, B; Nourhashémi, F
2014-01-01
Recent studies report that the majority of older adults wish to live in their own homes, for as long as possible. This creates a growing interest in technologies to enable older people to remain living independently at home. The purpose of this article is to provide a narrative review of current technology appropriate for older adults' home use. The key research questions were as follow: 1- What is the evidence demonstrating that gerontechnologies are effective in enabling independent living? 2- What are devices designed specifically for frail elderly persons ? Several publications were identified about devices targeting social isolation (videophonic communication, affective orthotic devices or companion-type robots, personal emergency response systems [security]), autonomy loss (technologies for maintenance of autonomy in the activities of daily living) and cognitive disorders (cognitive orthotics, wandering management systems, telemonitoring). Very few articles dealt specifically with the frail older person. In particular, there was extremely limited evidence on use and efficacy of these devices within this population. There is a need to obtain a consensus on definition of the technologies, and also to revisit work strategies and develop innovative business models. To meet this goal, we need to create a network of technological companies, aging services organizations, end-users, academics, and government representatives to explore the real needs of the frail older population and to develop and validate new devices promoting aging at home.
Sensor and tracking data integration into a common operating picture
NASA Astrophysics Data System (ADS)
Bailey, Mark E.
2003-09-01
With rapid technological developments, a new innovative range of possibilities can be actualized in mainstreaming a network with checks and balances to provide sensor and tracking data integration/information to a wider Department of Defense (DoD) audience or group of agencies. As technologies are developed, methods to display the data are required. Multiple diverse tracking devices and sensors need to be displayed on a common operating picture. Sensors and tracking devices are used to monitor an area or object for movement or boundary penetration. Tracking devices in turn determine transit patterns of humans, animals and/or vehicles. In consortium these devices can have dual applications for military requirements and for other general purposes. The DoD Counterdrug Technology Development Program Office (CDTDPO) has designed a system to distribute sensor and tracking data to multiple users in separate agencies. This information can be displayed in whole or in part as to the specific needs of the user. It is with this purpose that the Data Distribution Network (DDN) was created to disseminate information to a collective group or to a select audience.
An update on mobile phones interference with medical devices.
Mahmoud Pashazadeh, Ali; Aghajani, Mahdi; Nabipour, Iraj; Assadi, Majid
2013-10-01
Mobile phones' electromagnetic interference with medical devices is an important issue for the medical safety of patients who are using life-supporting medical devices. This review mainly focuses on mobile phones' interference with implanted medical devices and with medical equipment located in critical areas of hospitals. A close look at the findings reveals that mobile phones may adversely affect the functioning of medical devices, and the specific effect and the degree of interference depend on the applied technology and the separation distance. According to the studies' findings and the authors' recommendations, besides mitigating interference, using mobile phones at a reasonable distance from medical devices and developing technology standards can lead to their effective use in hospital communication systems.
Mobile technology and the digitization of healthcare
Bhavnani, Sanjeev P.; Narula, Jagat; Sengupta, Partho P.
2016-01-01
The convergence of science and technology in our dynamic digital era has resulted in the development of innovative digital health devices that allow easy and accurate characterization in health and disease. Technological advancements and the miniaturization of diagnostic instruments to modern smartphone-connected and mobile health (mHealth) devices such as the iECG, handheld ultrasound, and lab-on-a-chip technologies have led to increasing enthusiasm for patient care with promises to decrease healthcare costs and to improve outcomes. This ‘hype’ for mHealth has recently intersected with the ‘real world’ and is providing important insights into how patients and practitioners are utilizing digital health technologies. It is also raising important questions regarding the evidence supporting widespread device use. In this state-of-the-art review, we assess the current literature of mHealth and aim to provide a framework for the advances in mHealth by understanding the various device, patient, and clinical factors as they relate to digital health from device designs and patient engagement, to clinical workflow and device regulation. We also outline new strategies for generation and analysis of mHealth data at the individual and population-based levels. PMID:26873093
Smart dental practice: capitalising on smart mobile technology.
Plangger, K; Bredican, J; Mills, A J; Armstrong, J
2015-08-14
To keep pace with consumer adoption of smart mobile devices, such as smartphones and tablets, and the applications ('apps') developed for these devices, dental professionals should consider how this technology could be used to simultaneously improve both patient service experiences and dental practice management. Using U-Commerce as a theoretical lens, this article discusses the potential value of smart mobile technology to the dental practice context, with a particular focus on the unique and customisable capabilities of apps. To take full advantage of this technology, a process is outlined for identifying and designing bespoke dental apps that takes into account the unique advantages of these devices. Dental practices, with increasing financial and competitive pressures, may improve the efficiency and profitability of operations and better manage patients, employees and stakeholders by integrating smart mobile technology.
Sheehan, B; Lee, Y; Rodriguez, M; Tiase, V; Schnall, R
2012-01-01
Mobile health (mHealth) is a growing field aimed at developing mobile information and communication technologies for healthcare. Adolescents are known for their ubiquitous use of mobile technologies in everyday life. However, the use of mHealth tools among adolescents is not well described. We examined the usability of four commonly used mobile devices (an iPhone, an Android with touchscreen keyboard, an Android with built-in keyboard, and an iPad) for accessing healthcare information among a group of urban-dwelling adolescents. Guided by the FITT (Fit between Individuals, Task, and Technology) framework, a thinkaloud protocol was combined with a questionnaire to describe usability on three dimensions: 1) task-technology fit; 2) individual-technology fit; and 3) individual-task fit. For task-technology fit, we compared the efficiency, and effectiveness of each of the devices tested and found that the iPhone was the most usable had the fewest errors and prompts and had the lowest mean overall task time For individual-task fit, we compared efficiency and learnability measures by website tasks and found no statistically significant effect on tasks steps, task time and number of errors. Following our comparison of success rates by website tasks, we compared the difference between two mobile applications which were used for diet tracking and found statistically significant effect on tasks steps, task time and number of errors. For individual-technology fit, interface quality was significantly different across devices indicating that this is an important factor to be considered in developing future mobile devices. All of our users were able to complete all of the tasks, however the time needed to complete the tasks was significantly different by mobile device and mHealth application. Future design of mobile technology and mHealth applications should place particular importance on interface quality.
Technological Innovations from NASA
NASA Technical Reports Server (NTRS)
Pellis, Neal R.
2006-01-01
The challenge of human space exploration places demands on technology that push concepts and development to the leading edge. In biotechnology and biomedical equipment development, NASA science has been the seed for numerous innovations, many of which are in the commercial arena. The biotechnology effort has led to rational drug design, analytical equipment, and cell culture and tissue engineering strategies. Biomedical research and development has resulted in medical devices that enable diagnosis and treatment advances. NASA Biomedical developments are exemplified in the new laser light scattering analysis for cataracts, the axial flow left ventricular-assist device, non contact electrocardiography, and the guidance system for LASIK surgery. Many more developments are in progress. NASA will continue to advance technologies, incorporating new approaches from basic and applied research, nanotechnology, computational modeling, and database analyses.
FSA future directions: FSA technology activities in FY86
NASA Technical Reports Server (NTRS)
Leipold, M. H.
1985-01-01
The silicon material, advanced silicon sheet, device research, and process research activities are explained. There will be no new initiatives. Many activities are targeted for completion and the emphasis will then be on technology transfer. Industrial development of the fluidized-bed reactor (FBR) deposition technology is proceeding. Technology transfer and industry funding of sheet development are continuing.
The Fundamentals of Using the Digital Micromirror Device (DMD(TM)) for Projection Display
NASA Technical Reports Server (NTRS)
Yoder, Lars A.
1995-01-01
Developed by Texas Instruments (TI) the digital micromirror device (DMD(tm)) is a quickly emerging and highly useful micro-electro-mechanical structures (MEMS) device. Using standard semiconductor fabrication technology, the DMD's simplicity in concept and design will provide advantageous solutions for many different applications. At the rudimentary level, the DMD is a precision, semiconductor light switch. In the initial commercial development of DMD technology, TI has concentrated on projection display and hardcopy. This paper will focus on how the DMD is used for projection display. Other application areas are being explored and evaluated to find appropriate and beneficial uses for the DMD.
O'Neill, Samuel; McAndrew, Darryl J
2016-04-01
The assessment of visual acuity is indicated in a number of clinical circumstances. It is commonly conducted through the use of a Snellen wall chart. Mobile technology developments and adoption rates by clinicians may potentially provide more convenient methods of assessing visual acuity. Limited data exist on the validity of these devices and applications. The objective of this study was to evaluate the assessment of distance visual acuity using mobile technology devices against the commonly used 3-metre Snellen chart in a primary care setting. A prospective quantitative comparative study was conducted at a regional medical practice. The visual acuity of 60 participants was assessed on a Snellen wall chart and two mobile technology devices (iPhone, iPad). Visual acuity intervals were converted to logarithm of minimum angle of resolution (logMAR) scores and subjected to intraclass correlation coefficient (ICC) assessment. The results show a high level of general agreement between testing modality (ICC 0.917 with a 95% confidence interval of 0.887-0.940). The high level of agreement of visual acuity results between the Snellen wall chart and both mobile technology devices suggests that clinicians can use this technology with confidence in the primary care setting.
Integrated MEMS-based variable optical attenuator and 10Gb/s receiver
NASA Astrophysics Data System (ADS)
Aberson, James; Cusin, Pierre; Fettig, H.; Hickey, Ryan; Wylde, James
2005-03-01
MEMS devices can be successfully commercialized in favour of competing technologies only if they offer an advantage to the customer in terms of lower cost or increased functionality. There are limited markets where MEMS can be manufactured cheaper than similar technologies due to large volumes: automotive, printing technology, wireless communications, etc. However, success in the marketplace can also be realized by adding significant value to a system at minimal cost or leverging MEMS technology when other solutions simply will not work. This paper describes a thermally actuated, MEMS based, variable optical attenuator that is co-packaged with existing opto-electronic devices to develop an integrated 10Gb/s SONET/SDH receiver. The configuration of the receiver opto-electronics and relatively low voltage availability (12V max) in optical systems bar the use of LCD, EO, and electro-chromic style attenuators. The device was designed and fabricated using a silicon-on-insulator (SOI) starting material. The design and performance of the device (displacement, power consumption, reliability, physical geometry) was defined by the receiver parameters geometry. This paper will describe how these design parameters (hence final device geometry) were determined in light of both the MEMS device fabrication process and the receiver performance. Reference will be made to the design tools used and the design flow which was a joint effort between the MEMS vendor and the end customer. The SOI technology offered a robust, manufacturable solution that gave the required performance in a cost-effective process. However, the singulation of the devices required the development of a new singulation technique that allowed large volumes of silicon to be removed during fabrication yet still offer high singulation yields.
Wave Energy Prize -- Carderock Test Design and Rigging to Accommodate Diversity of Device Types
DOE Office of Scientific and Technical Information (OSTI.GOV)
Driscoll, Frederick R
Wave Energy Prize Carderock Test Design and Rigging to Accommodate Diversity of Device Types presentation from the Water Power Technologies Office Peer Review, FY14-FY16. The challenge was to determine testing conditions, develop processing algorithms, and execute tests for equitable and consistent evaluation of different wave energy converter (WEC) technologies.
ERIC Educational Resources Information Center
Davies, T. Claire; Mudge, Suzie; Ameratunga, Shanthi; Stott, N. Susan
2010-01-01
Aim: The purpose of this study was to systematically review published evidence on the development, use, and effectiveness of devices and technologies that enable or enhance self-directed computer access by individuals with cerebral palsy (CP). Methods: Nine electronic databases were searched using keywords "computer", "software", "spastic",…
Advanced electrical power system technology for the all electric aircraft
NASA Technical Reports Server (NTRS)
Finke, R. C.; Sundberg, G. R.
1983-01-01
The application of advanced electric power system technology to an all electric airplane results in an estimated reduction of the total takeoff gross weight of over 23,000 pounds for a large airplane. This will result in a 5 to 10 percent reduction in direct operating costs (DOC). Critical to this savings is the basic electrical power system component technology. These advanced electrical power components will provide a solid foundation for the materials, devices, circuits, and subsystems needed to satisfy the unique requirements of advanced all electric aircraft power systems. The program for the development of advanced electrical power component technology is described. The program is divided into five generic areas: semiconductor devices (transistors, thyristors, and diodes); conductors (materials and transmission lines); dielectrics; magnetic devices; and load management devices. Examples of progress in each of the five areas are discussed. Bipolar power transistors up to 1000 V at 100 A with a gain of 10 and a 0.5 microsec rise and fall time are presented. A class of semiconductor devices with a possibility of switching up to 100 kV is described. Solid state power controllers for load management at 120 to 1000 V and power levels to 25 kW were developed along with a 25 kW, 20 kHz transformer weighing only 3.2 kg.
ERIC Educational Resources Information Center
Cho, Vincent; Littenberg-Tobias, Joshua
2016-01-01
Even as digital devices (e.g., tablets, smart phones, laptops) have become increasingly ubiquitous in schools, concerns have also been raised that such devices might hinder students' social, emotional, and personal development. Educators' perspectives on such matters could shape the success or failure of 1:1 technology initiatives. Thus, there is…
Developing medical device software in compliance with regulations.
Zema, M; Rosati, S; Gioia, V; Knaflitz, M; Balestra, G
2015-08-01
In the last decade, the use of information technology (IT) in healthcare has taken a growing role. In fact, the adoption of an increasing number of computer tools has led to several benefits related to the process of patient care and allowed easier access to social and health care resources. At the same time this trend gave rise to new challenges related to the implementation of these new technologies. Software used in healthcare can be classified as medical devices depending on the way they are used and on their functional characteristics. If they are classified as medical devices they must satisfy specific regulations. The aim of this work is to present a software development framework that can allow the production of safe and high quality medical device software and to highlight the correspondence between each software development phase and the appropriate standard and/or regulation.
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.
1998-01-01
Silicon carbide (SiC)-based semiconductor electronic devices and circuits are presently being developed for use in high-temperature, high-power, and/or high-radiation conditions under which conventional semiconductors cannot adequately perform. Silicon carbide's ability to function under such extreme conditions is expected to enable significant improvements to a far-ranging variety of applications and systems. These range from greatly improved high-voltage switching [1- 4] for energy savings in public electric power distribution and electric motor drives to more powerful microwave electronics for radar and communications [5-7] to sensors and controls for cleaner-burning more fuel-efficient jet aircraft and automobile engines. In the particular area of power devices, theoretical appraisals have indicated that SiC power MOSFET's and diode rectifiers would operate over higher voltage and temperature ranges, have superior switching characteristics, and yet have die sizes nearly 20 times smaller than correspondingly rated silicon-based devices [8]. However, these tremendous theoretical advantages have yet to be realized in experimental SiC devices, primarily due to the fact that SiC's relatively immature crystal growth and device fabrication technologies are not yet sufficiently developed to the degree required for reliable incorporation into most electronic systems [9]. This chapter briefly surveys the SiC semiconductor electronics technology. In particular, the differences (both good and bad) between SiC electronics technology and well-known silicon VLSI technology are highlighted. Projected performance benefits of SiC electronics are highlighted for several large-scale applications. Key crystal growth and device-fabrication issues that presently limit the performance and capability of high temperature and/or high power SiC electronics are identified.
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.
2006-01-01
Silicon carbide based semiconductor electronic devices and circuits are presently being developed for use in high-temperature, high-power, and high-radiation conditions under which conventional semiconductors cannot adequately perform. Silicon carbide's ability to function under such extreme conditions is expected to enable significant improvements to a far-ranging variety of applications and systems. These range from greatly improved high-voltage switching for energy savings in public electric power distribution and electric motor drives to more powerful microwave electronics for radar and communications to sensors and controls for cleaner-burning more fuel-efficient jet aircraft and automobile engines. In the particular area of power devices, theoretical appraisals have indicated that SiC power MOSFET's and diode rectifiers would operate over higher voltage and temperature ranges, have superior switching characteristics, and yet have die sizes nearly 20 times smaller than correspondingly rated silicon-based devices [8]. However, these tremendous theoretical advantages have yet to be widely realized in commercially available SiC devices, primarily owing to the fact that SiC's relatively immature crystal growth and device fabrication technologies are not yet sufficiently developed to the degree required for reliable incorporation into most electronic systems. This chapter briefly surveys the SiC semiconductor electronics technology. In particular, the differences (both good and bad) between SiC electronics technology and the well-known silicon VLSI technology are highlighted. Projected performance benefits of SiC electronics are highlighted for several large-scale applications. Key crystal growth and device-fabrication issues that presently limit the performance and capability of high-temperature and high-power SiC electronics are identified.
Weininger, Sandy; Jaffe, Michael B; Goldman, Julian M
2017-01-01
Medical device and health information technology systems are increasingly interdependent with users demanding increased interoperability. Related safety standards must be developed taking into account these systems' perspective. In this article, we describe the current development of medical device standards and the need for these standards to address medical device informatics. Medical device information should be gathered from a broad range of clinical scenarios to lay the foundation for safe medical device interoperability. Five clinical examples show how medical device informatics principles, if applied in the development of medical device standards, could help facilitate the development of safe interoperable medical device systems. These examples illustrate the clinical implications of the failure to capture important signals and device attributes. We provide recommendations relating to the coordination between historically separate standards development groups, some of which focus on safety and effectiveness and others focus on health informatics. We identify the need for a shared understanding among stakeholders and describe organizational structures to promote cooperation such that device-to-device interactions and related safety information are considered during standards development.
Weininger, Sandy; Jaffe, Michael B.; Goldman, Julian M
2016-01-01
Medical device and health information technology systems are increasingly interdependent with users demanding increased interoperability. Related safety standards must be developed taking into account this systems perspective. In this article we describe the current development of medical device standards and the need for these standards to address medical device informatics. Medical device information should be gathered from a broad range of clinical scenarios to lay the foundation for safe medical device interoperability. Five clinical examples show how medical device informatics principles, if applied in the development of medical device standards, could help facilitate the development of safe interoperable medical device systems. These examples illustrate the clinical implications of the failure to capture important signals and device attributes. We provide recommendations relating to the coordination between historically separate standards development groups; some which focus on safety and effectiveness, and others that focus on health informatics. We identify the need for a shared understanding among stakeholders and describe organizational structures to promote cooperation such that device-to-device interactions and related safety information are considered during standards development. PMID:27584685
Corredor, Iván; Bernardos, Ana M; Iglesias, Josué; Casar, José R
2012-01-01
Advances in electronics nowadays facilitate the design of smart spaces based on physical mash-ups of sensor and actuator devices. At the same time, software paradigms such as Internet of Things (IoT) and Web of Things (WoT) are motivating the creation of technology to support the development and deployment of web-enabled embedded sensor and actuator devices with two major objectives: (i) to integrate sensing and actuating functionalities into everyday objects, and (ii) to easily allow a diversity of devices to plug into the Internet. Currently, developers who are applying this Internet-oriented approach need to have solid understanding about specific platforms and web technologies. In order to alleviate this development process, this research proposes a Resource-Oriented and Ontology-Driven Development (ROOD) methodology based on the Model Driven Architecture (MDA). This methodology aims at enabling the development of smart spaces through a set of modeling tools and semantic technologies that support the definition of the smart space and the automatic generation of code at hardware level. ROOD feasibility is demonstrated by building an adaptive health monitoring service for a Smart Gym.
Point-of-care testing: applications of 3D printing.
Chan, Ho Nam; Tan, Ming Jun Andrew; Wu, Hongkai
2017-08-08
Point-of-care testing (POCT) devices fulfil a critical need in the modern healthcare ecosystem, enabling the decentralized delivery of imperative clinical strategies in both developed and developing worlds. To achieve diagnostic utility and clinical impact, POCT technologies are immensely dependent on effective translation from academic laboratories out to real-world deployment. However, the current research and development pipeline is highly bottlenecked owing to multiple restraints in material, cost, and complexity of conventionally available fabrication techniques. Recently, 3D printing technology has emerged as a revolutionary, industry-compatible method enabling cost-effective, facile, and rapid manufacturing of objects. This has allowed iterative design-build-test cycles of various things, from microfluidic chips to smartphone interfaces, that are geared towards point-of-care applications. In this review, we focus on highlighting recent works that exploit 3D printing in developing POCT devices, underscoring its utility in all analytical steps. Moreover, we also discuss key advantages of adopting 3D printing in the device development pipeline and identify promising opportunities in 3D printing technology that can benefit global health applications.
CMOS-based optical energy harvesting circuit for biomedical and Internet of Things devices
NASA Astrophysics Data System (ADS)
Nattakarn, Wuthibenjaphonchai; Ishizu, Takaaki; Haruta, Makito; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Sawan, Mohamad; Ohta, Jun
2018-04-01
In this work, we present a novel CMOS-based optical energy harvesting technology for implantable and Internet of Things (IoT) devices. In the proposed system, a CMOS energy-harvesting circuit accumulates a small amount of photoelectrically converted energy in an external capacitor, and intermittently supplies this power to a target device. Two optical energy-harvesting circuit types were implemented and evaluated. Furthermore, we developed a photoelectrically powered optical identification (ID) circuit that is suitable for IoT technology applications.
Adopting new technologies in stroke rehabilitation: the influence of the US health care system.
Stein, J
2009-06-01
Stroke rehabilitation is entering a new era of technological innovation, including the development of robotic aids for therapy, peripheral electrical stimulation devices, and brain stimulation systems. These technologies have the potential to significantly improve the efficiency and efficacy of stroke rehabilitation. The United States health care system creates both opportunities for new technologies to be created and adopted, as well as important barriers. Inadequate support of clinical trials of the efficacy of new non-invasive devices is a particular concern for practitioners seeking to determine if new devices are clinically useful. Government support of clinical trials of efficacy, coupled with reform of FDA approval processes for novel therapies, is needed to create an evidence-based approach to improving stroke rehabilitation.
Facial and Periorbital Cellulitis due to Skin Peeling with Jet Stream by an Unauthorized Person.
Kaptanoglu, Asli Feride; Mullaaziz, Didem; Suer, Kaya
2014-01-01
Technologies and devices for cosmetic procedures are developing with each passing day. However, increased and unauthorized use of such emerging technologies may also lead to increases in unexpected results and complications as well. Here, we report a case of facial cellulitis after a "beauty parlor" session of skin cleaning with jet stream peeling device in 19-year old female patient for the first time. Complications due to improper and unauthorized use of jet stream peeling devices may also cause doubts about the safety and impair the reputation of the technology as well. In order to avoid irreversible complications, local authorities should follow the technology and update the regulations where the dermatologists should take an active role.
ERIC Educational Resources Information Center
Cole, Charles; Cantero, Pablo; Ungar, Andras
2000-01-01
This article focuses on a study of undergraduates writing an essay for a remedial writing course that tested two devices, an uncertainty expansion device and an uncertainty reduction device. Highlights include Kuhlthau's information search process model, and enabling technology devices for the information needs of information retrieval system…
Component technology for space power systems
NASA Technical Reports Server (NTRS)
Finke, R.
1982-01-01
The Lewis/OAST program for the development of Component Technology for Space Power Systems is described. The program is divided into five generic areas: semiconductor devices (transistors, thyristors, and diodes); conductors (materials and transmission lines); dielectrics; magnetic devices; and thermal control devices. Examples of progress in each of the five areas is discussed. Bipolar power transistors up to 1000 V at 100 A with a gain of 10 and a 0.5 mu sec rise and fall time are presented. A new class of semiconductor devices with a possibility of switching 1000 000 V is described. Several 100 kW rotary power transformer designs and a 25 kW, 20 kHz transformer weighting 3.2 kg have been developed. Progress on the creation of diamond-like films for thermal devices and intercalated carbon fibers with the strength of steel and the conductivity of copper at one third the mass of copper is presented.
Challenges faced in long term ventricular assist device support.
Ikegami, Hirohisa; Kurlansky, Paul; Takeda, Koji; Naka, Yoshifumi
2016-08-01
The development of ventricular assist device (VAD) has been one of the revolutionary advancements in end-stage heart failure management. Although the device has developed and improved significantly over the last few decades, we still face multiple challenges. This review will discuss quality of life, survival, and clinically encountered complications in patients with VAD support. The literature was extensively reviewed for studies describing the above topic area. We describe the impact of major challenges faced in VAD support and discuss their future and expectations. Expert commentary: The technological advancement of VADs has contributed to major improvement of overall survival, enhancement of quality of life and decrease of incidence of complications. It is expected that technologies will continue to evolve. At the same time, the indications for and timing of device implantation, and selection of device type are continuously important in clinical practice setting.
Identifying, Licensing, and Commercializing Technology: An Entrepreneur's View
NASA Astrophysics Data System (ADS)
Appel, Kris
2013-03-01
A linguist by trade, Kris Appel left government service to pursue entrepreneurship. She knew she wanted to start a company, but she did not have a business idea. After researching various technologies available for commercialization, she began to focus on a prototype medical device at the University of Maryland Medical School, which had been developed to help stroke survivors recover their arm movement. The device was based upon emerging science into brain re-training, and was backed by very convincing clinical trials. Working closely with University researchers, she licensed the rights to the device, developed a commercial version, and launched it in 2009. Today the device is used around the globe, and has helped thousands of stroke and brain injury survivors improve their arm function and way of life. Kris will tell the story of the device, and how it got from idea to prototype to successful rehabilitation product.
Radiation Effects on Current Field Programmable Technologies
NASA Technical Reports Server (NTRS)
Katz, R.; LaBel, K.; Wang, J. J.; Cronquist, B.; Koga, R.; Penzin, S.; Swift, G.
1997-01-01
Manufacturers of field programmable gate arrays (FPGAS) take different technological and architectural approaches that directly affect radiation performance. Similar y technological and architectural features are used in related technologies such as programmable substrates and quick-turn application specific integrated circuits (ASICs). After analyzing current technologies and architectures and their radiation-effects implications, this paper includes extensive test data quantifying various devices total dose and single event susceptibilities, including performance degradation effects and temporary or permanent re-configuration faults. Test results will concentrate on recent technologies being used in space flight electronic systems and those being developed for use in the near term. This paper will provide the first extensive study of various configuration memories used in programmable devices. Radiation performance limits and their impacts will be discussed for each design. In addition, the interplay between device scaling, process, bias voltage, design, and architecture will be explored. Lastly, areas of ongoing research will be discussed.
Leaving patients to their own devices? Smart technology, safety and therapeutic relationships.
Ho, Anita; Quick, Oliver
2018-03-06
This debate article explores how smart technologies may create a double-edged sword for patient safety and effective therapeutic relationships. Increasing utilization of health monitoring devices by patients will likely become an important aspect of self-care and preventive medicine. It may also help to enhance accurate symptom reports, diagnoses, and prompt referral to specialist care where appropriate. However, the development, marketing, and use of such technology raise significant ethical implications for therapeutic relationships and patient safety. Drawing on lessons learned from other direct-to-consumer health products such as genetic testing, this article explores how smart technology can also pose regulatory challenges and encourage overutilization of healthcare services. In order for smart technology to promote safer care and effective therapeutic encounters, the technology and its utilization must be safe. This article argues for unified regulatory guidelines and better education for both healthcare providers and patients regarding the benefits and risks of these devices.
Yousif, Aziz; Kelly, Shawn K
2016-08-01
There has been a push for a greater number of channels in implantable neuroprosthetic devices; but, that number has largely been limited by current hermetic packaging technology. Microfabricated packaging is becoming reality, but a standard testing system is needed to prepare these devices for clinical trials. Impedance measurements of electrodes built into the packaging layers may give an early warning of device failure and predict device lifetime. Because the impedance magnitudes of such devices can be on the order of gigaohms, a versatile system was designed to accommodate ultra-high impedances and allow future integrated circuit implementation in current neural prosthetic technologies. Here we present the circuitry, control software, and preliminary testing results of our designed system.
TECHNOLOGICAL INNOVATION IN NEUROSURGERY: A QUANTITATIVE STUDY
Marcus, Hani J; Hughes-Hallett, Archie; Kwasnicki, Richard M; Darzi, Ara; Yang, Guang-Zhong; Nandi, Dipankar
2015-01-01
Object Technological innovation within healthcare may be defined as the introduction of a new technology that initiates a change in clinical practice. Neurosurgery is a particularly technologically intensive surgical discipline, and new technologies have preceded many of the major advances in operative neurosurgical technique. The aim of the present study was to quantitatively evaluate technological innovation in neurosurgery using patents and peer-reviewed publications as metrics of technology development and clinical translation respectively. Methods A patent database was searched between 1960 and 2010 using the search terms “neurosurgeon” OR “neurosurgical” OR “neurosurgery”. The top 50 performing patent codes were then grouped into technology clusters. Patent and publication growth curves were then generated for these technology clusters. A top performing technology cluster was then selected as an exemplar for more detailed analysis of individual patents. Results In all, 11,672 patents and 208,203 publications relating to neurosurgery were identified. The top performing technology clusters over the 50 years were: image guidance devices, clinical neurophysiology devices, neuromodulation devices, operating microscopes and endoscopes. Image guidance and neuromodulation devices demonstrated a highly correlated rapid rise in patents and publications, suggesting they are areas of technology expansion. In-depth analysis of neuromodulation patents revealed that the majority of high performing patents were related to Deep Brain Stimulation (DBS). Conclusions Patent and publication data may be used to quantitatively evaluate technological innovation in neurosurgery. PMID:25699414
Campbell, Jeffrey I; Haberer, Jessica E
2015-12-01
Numerous cell phone-based and adherence monitoring technologies have been developed to address barriers to effective HIV prevention, testing, and treatment. Because most people living with HIV and AIDS reside in resource-limited settings (RLS), it is important to understand the development and use of these technologies in RLS. Recent research on cell phone-based technologies has focused on HIV education, linkage to and retention in care, disease tracking, and antiretroviral therapy adherence reminders. Advances in adherence devices have focused on real-time adherence monitors, which have been used for both antiretroviral therapy and pre-exposure prophylaxis. Real-time monitoring has recently been combined with cell phone-based technologies to create real-time adherence interventions using short message service (SMS). New developments in adherence technologies are exploring ingestion monitoring and metabolite detection to confirm adherence. This article provides an overview of recent advances in these two families of technologies and includes research on their acceptability and cost-effectiveness when available. It additionally outlines key challenges and needed research as use of these technologies continues to expand and evolve.
Microchips and controlled-release drug reservoirs.
Staples, Mark
2010-01-01
This review summarizes and updates the development of implantable microchip-containing devices that control dosing from drug reservoirs integrated with the devices. As the expense and risk of new drug development continues to increase, technologies that make the best use of existing therapeutics may add significant value. Trends of future medical care that may require advanced drug delivery systems include individualized therapy and the capability to automate drug delivery. Implantable drug delivery devices that promise to address these anticipated needs have been constructed in a variety of ways using micro- and nanoelectromechanical systems (MEMS or NEMS)-based technology. These devices expand treatment options for addressing unmet medical needs related to dosing. Within the last few years, advances in several technologies (MEMS or NEMS fabrication, materials science, polymer chemistry, and data management) have converged to enable the construction of miniaturized implantable devices for controlled delivery of therapeutic agents from one or more reservoirs. Suboptimal performance of conventional dosing methods in terms of safety, efficacy, pain, or convenience can be improved with advanced delivery devices. Microchip-based implantable drug delivery devices allow localized delivery by direct placement of the device at the treatment site, delivery on demand (emergency administration, pulsatile, or adjustable continuous dosing), programmable dosing cycles, automated delivery of multiple drugs, and dosing in response to physiological and diagnostic feedback. In addition, innovative drug-medical device combinations may protect labile active ingredients within hermetically sealed reservoirs. Copyright (c) 2010 John Wiley & Sons, Inc.
Enhancing the Use of Vehicle Alcohol Interlocks With Emerging Technology.
Voas, Robert B
2014-01-01
Among the earliest applications of health technologies to a safety program was the development of blood alcohol content (BAC) tests for use in impaired-driving enforcement. This led to the development of miniature, highly accurate devices that officers could carry in their pockets. A natural extension of this technology was the vehicle alcohol interlock, which is used to reduce recidivism among drivers convicted of driving under the influence (DUI) by requiring them to install the devices (which will not allow someone with a positive BAC to drive) on their vehicles. While on the vehicle, interlocks have been shown to reduce recidivism by two-thirds. Use of these devices has been growing at the rate of 10 to 15 percent a year, and there currently are more than 300,000 units in use. This expansion in the application of interlocks has benefited from the integration of other emerging technologies into interlock systems. Such technologies include data systems that record both driver actions and vehicle responses, miniature cameras and face recognition to identify the user, Wi-Fi systems to provide rapid reporting on offender performance and any attempt to circumvent the device, GPS tracking of the vehicle, and more rapid means for monitoring the integrity of the interlock system. This article describes how these health technologies are being applied in interlock programs and the outlook for new technologies and new court sanctioning programs that may influence the growth in the use of interlocks in the future.
Advanced Data Acquisition Systems with Self-Healing Circuitry
NASA Technical Reports Server (NTRS)
Larson, William E.; Ihlefeld, Curtis M.; Medelius, Pedro J.; Delgado, H. (Technical Monitor)
2001-01-01
Kennedy Space Center's Spaceport Engineering & Technology Directorate has developed a data acquisition system that will help drive down the cost of ground launch operations. This system automates both the physical measurement set-up function as well as configuration management documentation. The key element of the system is a self-configuring, self-calibrating, signal-conditioning amplifier that automatically adapts to any sensor to which it is connected. This paper will describe the core technology behind this device and the automated data system in which it has been integrated. The paper will also describe the revolutionary enhancements that are planned for this innovative measurement technology. All measurement electronics devices contain circuitry that, if it fails or degrades, requires the unit to be replaced, adding to the cost of operations. Kennedy Space Center is now developing analog circuits that will be able to detect their own failure and dynamically reconfigure their circuitry to restore themselves to normal operation. This technology will have wide ranging application in all electronic devices used in space and ground systems.
NASA Astrophysics Data System (ADS)
Perconti, Philip; Bedair, Sarah S.; Bajaj, Jagmohan; Schuster, Jonathan; Reed, Meredith
2016-09-01
To increase Soldier readiness and enhance situational understanding in ever-changing and complex environments, there is a need for rapid development and deployment of Army technologies utilizing sensors, photonics, and electronics. Fundamental aspects of these technologies include the research and development of semiconductor materials and devices which are ubiquitous in numerous applications. Since many Army technologies are considered niche, there is a lack of significant industry investment in the fundamental research and understanding of semiconductor technologies relevant to the Army. To address this issue, the US Army Research Laboratory is establishing a Center for Semiconductor Materials and Device Modeling and seeks to leverage expertise and resources across academia, government and industry. Several key research areas—highlighted and addressed in this paper—have been identified by ARL and external partners and will be pursued in a collaborative fashion by this Center. This paper will also address the mechanisms by which the Center is being established and will operate.
NASA Technical Reports Server (NTRS)
1991-01-01
Optoelectronic materials and devices are examined. Optoelectronic devices, which generate, detect, modulate, or switch electromagnetic radiation are being developed for a variety of space applications. The program includes spatial light modulators, solid state lasers, optoelectronic integrated circuits, nonlinear optical materials and devices, fiber optics, and optical networking photovoltaic technology and optical processing.
ERIC Educational Resources Information Center
Bagley, Katherine G.
2012-01-01
Technological devices are ubiquitous in nearly every facet of society. There are substantial investments made in organizations on a daily basis to improve information technology. From a military perspective, the ultimate goal of these highly sophisticated devices is to assist soldiers in achieving mission success across dynamic and often chaotic…
ERIC Educational Resources Information Center
Lloyd, Jan M.; Dean, Laura A.; Cooper, Diane L.
2007-01-01
The purpose of this study was to explore students' technology use and its relationship with their psychosocial development. Previous research explored students' computer use in conjunction with their cognitive development. This study examined the effects of computer use and other technologies, such as instant messaging, handheld gaming devices,…
Monolithic integration of SOI waveguide photodetectors and transimpedance amplifiers
NASA Astrophysics Data System (ADS)
Li, Shuxia; Tarr, N. Garry; Ye, Winnie N.
2018-02-01
In the absence of commercial foundry technologies offering silicon-on-insulator (SOI) photonics combined with Complementary Metal Oxide Semiconductor (CMOS) transistors, monolithic integration of conventional electronics with SOI photonics is difficult. Here we explore the implementation of lateral bipolar junction transistors (LBJTs) and Junction Field Effect Transistors (JFETs) in a commercial SOI photonics technology lacking MOS devices but offering a variety of n- and p-type ion implants intended to provide waveguide modulators and photodetectors. The fabrication makes use of the commercial Institute of Microelectronics (IME) SOI photonics technology. Based on knowledge of device doping and geometry, simple compact LBJT and JFET device models are developed. These models are then used to design basic transimpedance amplifiers integrated with optical waveguides. The devices' experimental current-voltage characteristics results are reported.
Lee, Sang-Soo; Salole, Eugene
2017-01-01
In many developed countries with universal coverage healthcare systems, payers require new medical technologies to be assessed as safe, effective, and cost-effective through health technology assessment (HTA) before approval for reimbursement coverage and market access. However, in some cases, HTA is not the sole criterion for decision-making and other factors override the evidence. Remote patient monitoring (RPM) for cardiac implantable electronic devices, a novel technology recognized as safe, effective, and cost-effective, and the standard of care in many countries, is prohibited in South Korea. This peculiar situation is apparently due to deficiencies in healthcare policy and the delivery system and also to poor engagement between stakeholders. We propose that a higher level of engagement and trust between stakeholders needs to be developed, and healthcare providers should be involved in the early development of health policy, so that unnecessary barriers to access to useful medical technology are corrected, thereby allowing Koreans to enjoy the benefits available in other developed countries.
Development of a mini-mobile digital radiography system by using wireless smart devices.
Jeong, Chang-Won; Joo, Su-Chong; Ryu, Jong-Hyun; Lee, Jinseok; Kim, Kyong-Woo; Yoon, Kwon-Ha
2014-08-01
The current technologies that trend in digital radiology (DR) are toward systems using portable smart mobile as patient-centered care. We aimed to develop a mini-mobile DR system by using smart devices for wireless connection into medical information systems. We developed a mini-mobile DR system consisting of an X-ray source and a Complementary Metal-Oxide Semiconductor (CMOS) sensor based on a flat panel detector for small-field diagnostics in patients. It is used instead of the systems that are difficult to perform with a fixed traditional device. We also designed a method for embedded systems in the development of portable DR systems. The external interface used the fast and stable IEEE 802.11n wireless protocol, and we adapted the device for connections with Picture Archiving and Communication System (PACS) and smart devices. The smart device could display images on an external monitor other than the monitor in the DR system. The communication modules, main control board, and external interface supporting smart devices were implemented. Further, a smart viewer based on the external interface was developed to display image files on various smart devices. In addition, the advantage of operators is to reduce radiation dose when using remote smart devices. It is integrated with smart devices that can provide X-ray imaging services anywhere. With this technology, it can permit image observation on a smart device from a remote location by connecting to the external interface. We evaluated the response time of the mini-mobile DR system to compare to mobile PACS. The experimental results show that our system outperforms conventional mobile PACS in this regard.
Development of the fine-particle agglomerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldman, P.; Balasic, P.
1999-07-01
This paper presents the current status of the commercial development of a new technology to more efficiently control fine particulate emissions. The technology is based on an invention by Environmental Elements Corporation (EEC) which utilizes laminar flow to promote contact of fine submicron particles with larger particles to form agglomerates prior to their removal in a conventional particulate control device, such as an ESP. As agglomerates the particles are easily captured in the control device, whereas a substantial amount would pass through if allowed to remain as fine particles. EEC has developed the laminar-flow agglomerator technology through the laboratory proof-of-conceptmore » stage, which was funded by a DOE SBIR grant, to pilot-scale and full-scale demonstrations.« less
Navigation within the heart and vessels in clinical practice.
Beyar, Rafael
2010-02-01
The field of interventional cardiology has developed at an unprecedented pace on account of the visual and imaging power provided by constantly improving biomedical technologies. Transcatheter-based technology is now routinely used for coronary revascularization and noncoronary interventions using balloon angioplasty, stents, and many other devices. In the early days of interventional practice, the operating physician had to manually navigate catheters and devices under fluoroscopic imaging and was exposed to radiation, with its comcomitant necessity for wearing heavy lead aprons for protection. Until recently, very little has changed in the way procedures have been carried out in the catheterization laboratory. The technological capacity to remotely manipulate devices, using robotic arms and computational tools, has been developed for surgery and other medical procedures. This has brought to practice the powerful combination of the abilities afforded by imaging, navigational tools, and remote control manipulation. This review covers recent developments in navigational tools for catheter positioning, electromagnetic mapping, magnetic resonance imaging (MRI)-based cardiac electrophysiological interventions, and navigation tools through coronary arteries.
Mobile technology and the digitization of healthcare.
Bhavnani, Sanjeev P; Narula, Jagat; Sengupta, Partho P
2016-05-07
The convergence of science and technology in our dynamic digital era has resulted in the development of innovative digital health devices that allow easy and accurate characterization in health and disease. Technological advancements and the miniaturization of diagnostic instruments to modern smartphone-connected and mobile health (mHealth) devices such as the iECG, handheld ultrasound, and lab-on-a-chip technologies have led to increasing enthusiasm for patient care with promises to decrease healthcare costs and to improve outcomes. This 'hype' for mHealth has recently intersected with the 'real world' and is providing important insights into how patients and practitioners are utilizing digital health technologies. It is also raising important questions regarding the evidence supporting widespread device use. In this state-of-the-art review, we assess the current literature of mHealth and aim to provide a framework for the advances in mHealth by understanding the various device, patient, and clinical factors as they relate to digital health from device designs and patient engagement, to clinical workflow and device regulation. We also outline new strategies for generation and analysis of mHealth data at the individual and population-based levels. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
1980-01-01
The application of silicon solar cells are discussed with respect to their importance in the exploration of space. Several aspects of the technology associated with the development of photovoltaic devices are reported.
Neuroprosthetic technology for individuals with spinal cord injury
Collinger, Jennifer L.; Foldes, Stephen; Bruns, Tim M.; Wodlinger, Brian; Gaunt, Robert; Weber, Douglas J.
2013-01-01
Context Spinal cord injury (SCI) results in a loss of function and sensation below the level of the lesion. Neuroprosthetic technology has been developed to help restore motor and autonomic functions as well as to provide sensory feedback. Findings This paper provides an overview of neuroprosthetic technology that aims to address the priorities for functional restoration as defined by individuals with SCI. We describe neuroprostheses that are in various stages of preclinical development, clinical testing, and commercialization including functional electrical stimulators, epidural and intraspinal microstimulation, bladder neuroprosthesis, and cortical stimulation for restoring sensation. We also discuss neural recording technologies that may provide command or feedback signals for neuroprosthetic devices. Conclusion/clinical relevance Neuroprostheses have begun to address the priorities of individuals with SCI, although there remains room for improvement. In addition to continued technological improvements, closing the loop between the technology and the user may help provide intuitive device control with high levels of performance. PMID:23820142
Microbial fuel cells - Applications for generation of electrical power and beyond.
Mathuriya, Abhilasha Singh; Yakhmi, J V
2016-01-01
A Microbial Fuel Cell is a bioelectrochemical device that exploits metabolic activities of living microorganisms for generation of electric current. The usefulness and unique and exclusive architecture of this device has received wide attention recently of engineers and researchers of various disciplines such as microbiologists, chemical engineers, biotechnologists, environment engineers and mechanical engineers, and the subject of MFCs has thereby progressed as a well-developed technology. Sustained innovations and continuous development efforts have established the usefulness of MFCs towards many specialized and value-added applications beyond electricity generation, such as wastewater treatment and implantable body devices. This review is an attempt to provide an update on this rapidly growing technology.
Deployment Effects of Marin Renewable Energy Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brian Polagye; Mirko Previsic
2010-06-17
Given proper care in siting, design, deployment, operation and maintenance, marine and hydrokinetic technologies could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood, due to a lack of technical certainty.more » In September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based approach to the emerging wave and tidal technology sectors in order to evaluate the impact of these technologies on the marine environment and potentially conflicting uses. The project’s scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios will capture variations in technical approaches and deployment scales to properly identify and characterize environmental impacts and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential effects of these emerging technologies and focus all stakeholders onto the critical issues that need to be addressed. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industry’s development in the U.S. today. Re vision is coordinating its efforts with two other project teams funded by DoE which are focused on regulatory and navigational issues. The results of this study are structured into three reports: 1. Wave power scenario description 2. Tidal power scenario description 3. Framework for Identifying Key Environmental Concerns This is the second report in the sequence and describes the results of conceptual feasibility studies of tidal power plants deployed in Tacoma Narrows, Washington. The Narrows contain many of the same competing stakeholder interactions identified at other tidal power sites and serves as a representative case study. Tidal power remains at an early stage of development. As such, a wide range of different technologies are being pursued by different manufacturers. In order to properly characterize impacts, it is useful to characterize the range of technologies that could be deployed at the site of interest. An industry survey informs the process of selecting representative tidal power devices. The selection criteria is that such devices are at an advanced stage of development to reduce technical uncertainties and that enough data are available from the manufacturers to inform the conceptual design process of this study. Further, an attempt is made to cover the range of different technologies under development to capture variations in potential environmental effects. A number of other developers are also at an advanced stage of development including Verdant Power, which has demonstrated an array of turbines in the East River of New York, Clean Current, which has demonstrated a device off Race Rocks, BC, and OpenHydro, which has demonstrated a device at the European Marine Energy Test Center and is on the verge of deploying a larger device in the Bay of Fundy. MCT demonstrated their device both at Devon (UK) and Strangford Narrows (Northern Ireland). Furthermore OpenHydro, CleanCurrent, and MCT are the three devices being installed at the Minas Passage (Canada). Environmental effects will largely scale with the size of tidal power development. In many cases, the effects of a single device may not be measurable, while larger scale device arrays may have cumulative impacts that differ significantly from smaller scale deployments. In order to characterize these effects, scenarios are established at three deployment scales which nominally represent (1) a small pilot deployment, (2) an early, small commercial deployment, and (3) a large commercial scale plant. For the three technologies and scales at the selected site, this results in a total of nine deployment scenarios outlined in the report.« less
Bruck, Hugh A; Gershon, Alan L; Golden, Ira; Gupta, Satyandra K; Gyger, Lawrence S; Magrab, Edward B; Spranklin, Brent W
2007-12-01
The use of bio-inspiration for the development of new products and devices requires new educational tools for students consisting of appropriate design and manufacturing technologies, as well as curriculum. At the University of Maryland, new educational tools have been developed that introduce bio-inspired product realization to undergraduate mechanical engineering students. These tools include the development of a bio-inspired design repository, a concurrent fabrication and assembly manufacturing technology, a series of undergraduate curriculum modules and a new senior elective in the bio-inspired robotics area. This paper first presents an overview of the two new design and manufacturing technologies that enable students to realize bio-inspired products, and describes how these technologies are integrated into the undergraduate educational experience. Then, the undergraduate curriculum modules are presented, which provide students with the fundamental design and manufacturing principles needed to support bio-inspired product and device development. Finally, an elective bio-inspired robotics project course is present, which provides undergraduates with the opportunity to demonstrate the application of the knowledge acquired through the curriculum modules in their senior year using the new design and manufacturing technologies.
NASA photovoltaic research and technology
NASA Technical Reports Server (NTRS)
Flood, Dennis J.
1988-01-01
NASA photovoltaic R and D efforts address future Agency space mission needs through a comprehensive, integrated program. Activities range from fundamental studies of materials and devices to technology demonstrations of prototype hardware. The program aims to develop and apply an improved understanding of photovoltaic energy conversion devices and systems that will increase the performance, reduce the mass, and extend the lifetime of photovoltaic arrays for use in space. To that end, there are efforts aimed at improving cell efficiency, reducing the effects of space particulate radiation damage (primarily electrons and protons), developing ultralightweight cells, and developing advanced ray component technology for high efficiency concentrator arrays and high performance, ultralightweight arrays. Current goals that have been quantified for the program are to develop cell and array technology capable of achieving 300 watts/kg for future missions for which mass is a critical factor, or 300 watts/sq m for future missions for which array size is a major driver (i.e., Space Station). A third important goal is to develop cell and array technology which will survive the GEO space radiation environment for at least 10 years.
Development of high-performance printed organic field-effect transistors and integrated circuits.
Xu, Yong; Liu, Chuan; Khim, Dongyoon; Noh, Yong-Young
2015-10-28
Organic electronics is regarded as an important branch of future microelectronics especially suited for large-area, flexible, transparent, and green devices, with their low cost being a key benefit. Organic field-effect transistors (OFETs), the primary building blocks of numerous expected applications, have been intensively studied, and considerable progress has recently been made. However, there are still a number of challenges to the realization of high-performance OFETs and integrated circuits (ICs) using printing technologies. Therefore, in this perspective article, we investigate the main issues concerning developing high-performance printed OFETs and ICs and seek strategies for further improvement. Unlike many other studies in the literature that deal with organic semiconductors (OSCs), printing technology, and device physics, our study commences with a detailed examination of OFET performance parameters (e.g., carrier mobility, threshold voltage, and contact resistance) by which the related challenges and potential solutions to performance development are inspected. While keeping this complete understanding of device performance in mind, we check the printed OFETs' components one by one and explore the possibility of performance improvement regarding device physics, material engineering, processing procedure, and printing technology. Finally, we analyze the performance of various organic ICs and discuss ways to optimize OFET characteristics and thus develop high-performance printed ICs for broad practical applications.
Educational technologies in health sciences libraries: teaching technology skills.
Hurst, Emily J
2014-01-01
As technology rapidly changes, libraries remain go-to points for education and technology skill development. In academic health sciences libraries, trends suggest librarians provide more training on technology topics than ever before. While education and training have always been roles for librarians, providing technology training on new mobile devices and emerging systems requires class creation and training capabilities that are new to many librarians. To appeal to their users, many health sciences librarians are interested in developing technology-based classes. This column explores the question: what skills are necessary for developing and teaching technology in an academic health sciences library setting?
Educational Technologies in Health Science Libraries: Teaching Technology Skills
Hurst, Emily J.
2014-01-01
As technology rapidly changes, libraries remain go-to points for education and technology skill development. In academic health sciences libraries, trends suggest librarians provide more training on technology topics than ever before. While education and training have always been roles for librarians, providing technology training on new mobile devices and emerging systems requires class creation and training capabilities that are new to many. To appeal to their users, many health sciences librarians are interested in developing technology-based classes. This column explores the question: what skills are necessary for developing and teaching technology in an academic health sciences library setting? PMID:24528269
Electrical Impedance Tomography Technology (EITT) Project
NASA Technical Reports Server (NTRS)
Oliva-Buisson, Yvette J.
2014-01-01
Development of a portable, lightweight device providing two-dimensional tomographic imaging of the human body using impedance mapping. This technology can be developed to evaluate health risks and provide appropriate medical care on the ISS, during space travel and on the ground.
Arduini, Fabiana; Cinti, Stefano; Scognamiglio, Viviana; Moscone, Danila; Palleschi, Giuseppe
2017-03-22
Through the years, scientists have developed cutting-edge technologies to make (bio)sensors more convenient for environmental analytical purposes. Technological advancements in the fields of material science, rational design, microfluidics, and sensor printing, have radically shaped biosensor technology, which is even more evident in the continuous development of sensing systems for the monitoring of hazardous chemicals. These efforts will be crucial in solving some of the problems constraining biosensors to reach real environmental applications, such as continuous analyses in field by means of multi-analyte portable devices. This review (with 203 refs.) covers the progress between 2010 and 2015 in the field of technologies enabling biosensor applications in environmental analysis, including i) printing technology, ii) nanomaterial technology, iii) nanomotors, iv) biomimetic design, and (v) microfluidics. Next section describes futuristic cutting-edge technologies that are gaining momentum in recent years, which furnish highly innovative aspects to biosensing devices. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Fogarty, Jennifer A.
2010-01-01
A NASA engineer received a heart transplant performed by Drs. DeBakey and Noon after suffering a serious heart attack. 6 months later that engineer returned to work at NASA determined to use space technology to help people with heart disease. A relationship between NASA and Drs. DeBakey and Noon was formed and the group worked to develop a low cost, low power implantable ventricular assist device (VAD). NASA patented the method to reduce pumping damage to red blood cells and the design of a continuous flow heart pump (#5,678,306 and #5,947,892). The technology and methodology were licensed exclusively to MicroMed Technology, Inc.. In late 1998 MicroMed received international quality and electronic certifications and began clinical trials in Europe. Ventricular assist devices were developed to bridge the gap between heart failure and transplant. Early devices were cumbersome, damaged red blood cells, and increased the risk of developing dangerous blood clots. Application emerged from NASA turbopump technology and computational fluid dynamics analysis capabilities. To develop the high performance required of the Space Shuttle main engines, NASA pushed the state of the art in the technology of turbopump design. NASA supercomputers and computational fluid dynamics software developed for use in the modeling analysis of fuel and oxidizer flow through rocket engines was used in the miniaturization and optimization of a very small heart pump. Approximately 5 million people worldwide suffer from chronic heart failure at a cost of 40 billion dollars In the US, more than 5000 people are on the transplant list and less than 3000 transplants are performed each year due to the lack of donors. The success of ventricular assist devices has led to an application as a therapeutic destination as well as a bridge to transplant. This success has been attributed to smaller size, improved efficiency, and reduced complications such as the formation of blood clots and infection.
Liu, Shenglin; Zhang, Xutian; Wang, Guohong; Zhang, Qiang
2012-03-01
Based on specified demands on medical devices maintenance for clinical engineers and Browser/Server architecture technology, a medical device maintenance information platform was developed, which implemented the following modules such as repair, preventive maintenance, accessories management, training, document, system management and regional cooperation. The characteristics of this system were summarized and application in increase of repair efficiency, improvement of preventive maintenance and cost control was introduced. The application of this platform increases medical device maintenance service level.
Advanced optical technologies for space exploration
NASA Astrophysics Data System (ADS)
Clark, Natalie
2007-09-01
NASA Langley Research Center is involved in the development of photonic devices and systems for space exploration missions. Photonic technologies of particular interest are those that can be utilized for in-space communication, remote sensing, guidance navigation and control, lunar descent and landing, and rendezvous and docking. NASA Langley has recently established a class-100 clean-room which serves as a Photonics Fabrication Facility for development of prototype optoelectronic devices for aerospace applications. In this paper we discuss our design, fabrication, and testing of novel active pixels, deformable mirrors, and liquid crystal spatial light modulators. Successful implementation of these intelligent optical devices and systems in space, requires careful consideration of temperature and space radiation effects in inorganic and electronic materials. Applications including high bandwidth inertial reference units, lightweight, high precision star trackers for guidance, navigation, and control, deformable mirrors, wavefront sensing, and beam steering technologies are discussed. In addition, experimental results are presented which characterize their performance in space exploration systems
Boger, Jennifer; Mihailidis, Alex
2011-01-01
A person's ability to be independent is dependent on his or her overall health, mobility, and ability to complete activities of daily living. Intelligent assistive technologies (IATs) are devices that incorporate context into their decision-making process, which enables them to provide customised and dynamic assistance in an appropriate manner. IATs have tremendous potential to support people with cognitive impairments as they can be used to support many facets of well-being; from augmenting memory and decision making tasks to providing autonomous and early detection of possible changes in health. This paper presents IATs that are currently in development in the research community to support tasks that can be impacted by compromised cognition. While they are not yet ready for the general public, these devices showcase the capabilities of technologies one can expect to see in the consumer marketplace in the near future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, Nelson S.; Sarobol, Pylin; Cook, Adam
There is a rising interest in developing functional electronics using additively manufactured components. Considerations in materials selection and pathways to forming hybrid circuits and devices must demonstrate useful electronic function; must enable integration; and must complement the complex shape, low cost, high volume, and high functionality of structural but generally electronically passive additively manufactured components. This article reviews several emerging technologies being used in industry and research/development to provide integration advantages of fabricating multilayer hybrid circuits or devices. First, we review a maskless, noncontact, direct write (DW) technology that excels in the deposition of metallic colloid inks for electrical interconnects.more » Second, we review a complementary technology, aerosol deposition (AD), which excels in the deposition of metallic and ceramic powder as consolidated, thick conformal coatings and is additionally patternable through masking. As a result, we show examples of hybrid circuits/devices integrated beyond 2-D planes, using combinations of DW or AD processes and conventional, established processes.« less
Advanced Optical Technologies for Space Exploration
NASA Technical Reports Server (NTRS)
Clark, Natalie
2007-01-01
NASA Langley Research Center is involved in the development of photonic devices and systems for space exploration missions. Photonic technologies of particular interest are those that can be utilized for in-space communication, remote sensing, guidance navigation and control, lunar descent and landing, and rendezvous and docking. NASA Langley has recently established a class-100 clean-room which serves as a Photonics Fabrication Facility for development of prototype optoelectronic devices for aerospace applications. In this paper we discuss our design, fabrication, and testing of novel active pixels, deformable mirrors, and liquid crystal spatial light modulators. Successful implementation of these intelligent optical devices and systems in space, requires careful consideration of temperature and space radiation effects in inorganic and electronic materials. Applications including high bandwidth inertial reference units, lightweight, high precision star trackers for guidance, navigation, and control, deformable mirrors, wavefront sensing, and beam steering technologies are discussed. In addition, experimental results are presented which characterize their performance in space exploration systems.
High-performance visible/UV CCD focal plane technology for spacebased applications
NASA Technical Reports Server (NTRS)
Burke, B. E.; Mountain, R. W.; Gregory, J. A.; Huang, J. C. M.; Cooper, M. J.; Savoye, E. D.; Kosicki, B. B.
1993-01-01
We describe recent technology developments aimed at large CCD imagers for space based applications in the visible and UV. Some of the principal areas of effort include work on reducing device degradation in the natural space-radiation environment, improvements in quantum efficiency in the visible and UV, and larger-device formats. One of the most serious hazards for space based CCD's operating at low signal levels is the displacement damage resulting from bombardment by energetic protons. Such damage degrades charge-transfer efficiency and increases dark current. We have achieved improved hardness to proton-induced displacement damage by selective ion implants into the CCD channel and by reduced temperature of operation. To attain high quantum efficiency across the visible and UV we have developed a technology for back-illuminated CCD's. With suitable antireflection (AR) coatings such devices have quantum efficiencies near 90 percent in the 500-700-nm band. In the UV band from 200 to 400 nm, where it is difficult to find coatings that are sufficiently transparent and can provide good matching to the high refractive index of silicon, we have been able to substantially increase the quantum efficiency using a thin film of HfO2 as an AR coating. These technology efforts were applied to a 420 x 420-pixel frame-transfer imager, and future work will be extended to a 1024 x 1024-pixel device now under development.
Optical devices: A compilation
NASA Technical Reports Server (NTRS)
1976-01-01
Technological developments in the field of optics devices which have potential utility outside the aerospace community are described. Optical instrumentation, light generation and transmission, and laser techniques are among the topics covered. Patent information is given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DR. DEVIN MACKENZIE
2011-12-13
Progress over Phase II of DE-FG02-07ER86293 'Materials Degradation Analysis and Development to Enable Ultra Low Cost, Web-Processed White P-OLED for SSL' was initially rapid in terms of device performance improvements. We exceeded our device luminance lifetime goals for printed flexible white OLEDs as laid out in our project proposal. Our Phase II performance target was to demonstrate >1500 hours luminance lifetime at 100 Cd/m2 from a printed flexible device. We now have R&D devices well in excess of 8000 hrs lifetime at 100 Cd/m2, tested in air. We also were able to produce devices which met the voltage target ofmore » >1500 hours below 15V operation. After completing the initial performance milestones, we went on to focus on color-related degradation issues which were cited as important to commercialization of the technology by our manufacturing partners. We also put additional focus on cathode work as the active material development that occurred over the STTR time period required an adaptation of the cathode from the original cathode formulations which were developed based on previous generation active layer materials. We were able to improve compatibility of the cathode with some of the newer generation active layer materials and improve device yield and voltage behavior. An additional objective of the initial Phase II was to further develop the underlying manufacturing technology and real-life product specifications. This is a key requirement that must be met to ensure eventual commercialization of this DOE-funded technology. The link between commercial investment for full commercialization and R&D efforts in OLED solid State Lighting is often a large one. Add-Vision's lower cost, printed OLED manufacturing approach is an attraction, but close engagement with manufacturing partners and addressing customer specifications is a very important link. Manufacturing technology encompasses development of moisture reduction encapsulation technology, improved cost performance, and reductions in operating voltage through thinner and higher uniformity active device layers. We have now installed a pilot encapsulation system at AVI for controlled, high throughput lamination encapsulation of flexible OLEDs in a novel process. Along with this, we have developed, with our materials supply partners, adhesives, barrier films and other encapsulation materials and we are showing total air product lifetimes in the 2-4 years range from a process consistent with our throughput goals of {approx}1M device per month ({approx}30,000 sq. ft. of processed OLEDs). Within the last year of the project, we have been working to introduce the manufacturing improvements made in our LEP deposition and annealing process to our commercial partners. Based on the success of this, a pilot scale-up program was begun. During this process, Add-Vision was acquired by a strategic partner, in no small part, because of the promise of future success of the technology as evidenced by our commercial partners pilot scale-up plans. Overall, the performance, manufacturing and product work in this project has been successful. Additional analysis and device work at LBL has also shown a unique adhesion change with device bias stressing which may result from active layer polymer cross-linking during bias stressing of device. It was shown that even small bias stresses, as a fraction of a full device lifetime stress period, result in measurable chemical change in the device. Further work needs to be conducted to fully understand the chemical nature of this interaction. Elucidation of this effect would enable doped OLED formulation to be engineered to suppress this effect and further extend lifetimes and reduce voltage climb.« less
NASA Technical Reports Server (NTRS)
Nelson, Emily S.; Chait, Arnon
2010-01-01
The changes in the scope of NASA s mission in the coming decade are profound and demand nimble, yet insightful, responses. On-board clinical and environmental diagnostics must be available for both mid-term lunar and long-term Mars exploration missions in an environment marked by scarce resources. Miniaturization has become an obvious focus. Despite solid achievements in lab-based devices, broad-based, robust tools for application in the field are not yet on the market. The confluence of rapid, wide-ranging technology evolution and internal planning needs are the impetus behind this work. This report presents an analytical tool for the ongoing evaluation of promising technology platforms based on mission- and application-specific attributes. It is not meant to assess specific devices, but rather to provide objective guidelines for a rational down-select of general categories of technology platforms. In this study, we have employed our expertise in the microgravity operation of fluidic devices, laboratory diagnostics for space applications, and terrestrial research in biochip development. A rating of the current state of technology development is presented using the present tool. Two mission scenarios are also investigated: a 30-day lunar mission using proven, tested technology in 5 years; and a 2- to 3-year mission to Mars in 10 to 15 years.
Superconductivity devices: Commercial use of space
NASA Technical Reports Server (NTRS)
Haertling, Gene; Furman, Eugene; Li, Guang
1995-01-01
The work described in this report covers various aspects of the Rainbow solid-state actuator technology. It is presented in six parts dealing with materials, processing, fabrication, properties and associated phenomena. The Rainbow actuator technology is a relatively new materials development which had its inception in 1992. It consists of a new processing technology for preparing piezoelectric and electrostrictive ceramic materials. It involves a high temperature chemical reduction process which leads to an internal pre-stressing of the oxide wafer, thus the name Rainbow, an acronym for Reduced And INternally Biased Oxide Wafer. Ceramics fabricated by this method produce bending-mode actuator devices which possess several times more displacement and load bearing capacity than present-day benders (unimorphs, bimorphs). It is anticipated that these solid-state, electromechanical actuators which can be used in a number of applications in space such as cryopump motors, anti-vibration active structures, autoleveling platforms, telescope mirror correctors and autofocusing devices. When considering any of these applications, the key to the development of a successful device is the successful development of a ceramic material which can produce maximum displacement per volt input; hence, this initiative involving a solid-state means for achieving unusually high electromechanical displacement can be significant and far reaching. An additional benefit obtained from employing the piezoelectric effect in these actuator devices is the ability to also utilize them as sensors; and, indeed, they can be used as both motor (actuator) and generator (sensor) in multifunction devices.
Advancement of CMOS Doping Technology in an External Development Framework
NASA Astrophysics Data System (ADS)
Jain, Amitabh; Chambers, James J.; Shaw, Judy B.
2011-01-01
The consumer appetite for a rich multimedia experience drives technology development for mobile hand-held devices and the infrastructure to support them. Enhancements in functionality, speed, and user experience are derived from advancements in CMOS technology. The technical challenges in developing each successive CMOS technology node to support these enhancements have become increasingly difficult. These trends have motivated the CMOS business towards a collaborative approach based on strategic partnerships. This paper describes our model and experience of CMOS development, based on multi-dimensional industrial and academic partnerships. We provide to our process equipment, materials, and simulation partners, as well as to our silicon foundry partners, the detailed requirements for future integrated circuit products. This is done very early in the development cycle to ensure that these requirements can be met. In order to determine these fundamental requirements, we rely on a strategy that requires strong interaction between process and device simulation, physical and chemical analytical methods, and research at academic institutions. This learning is shared with each project partner to address integration and manufacturing issues encountered during CMOS technology development from its inception through product ramp. We utilize TI's core strengths in physical analysis, unit processes and integration, yield ramp, reliability, and product engineering to support this technological development. Finally, this paper presents examples of the advancement of CMOS doping technology for the 28 nm node and beyond through this development model.
Advanced electrical power system technology for the all electric aircraft
NASA Technical Reports Server (NTRS)
Finke, R. C.; Sundberg, G. R.
1983-01-01
The application of advanced electric power system technology to an all electric airplane results in an estimated reduction of the total takeoff gross weight of over 23,000 pounds for a large airplane. This will result in a 5 to 10 percent reduction in direct operating costs (DOC). Critical to this savings is the basic electrical power system component technology. These advanced electrical power components will provide a solid foundation for the materials, devices, circuits, and subsystems needed to satisfy the unique requirements of advanced all electric aircraft power systems. The program for the development of advanced electrical power component technology is described. The program is divided into five generic areas: semiconductor devices (transistors, thyristors, and diodes); conductors (materials and transmission lines); dielectrics; magnetic devices; and load management devices. Examples of progress in each of the five areas are discussed. Bipolar power transistors up to 1000 V at 100 A with a gain of 10 and a 0.5 microsec rise and fall time are presented. A class of semiconductor devices with a possibility of switching up to 100 kV is described. Solid state power controllers for load management at 120 to 1000 V and power levels to 25 kW were developed along with a 25 kW, 20 kHz transformer weighing only 3.2 kg. Previously announced in STAR as N83-24764
Ciani, Oriana; Wilcher, Britni; van Giessen, Anoukh; Taylor, Rod S
2017-02-01
Much criticism has been directed at the licencing requirements for medical devices (MDs) as they often result in a lack of robust evidence to inform health technology assessment (HTA) decisions. To better understand the current international decisional framework on MD technologies, we undertook three linked research studies: a review of the device regulatory procedures, a survey of current HTA practices and an empirical comparison of HTA reports of drugs versus MDs. Our review confirms that current device regulatory processes across the globe are substantially less stringent than drugs. As a result, international HTA agencies report that they face a number of challenges when assessing MDs, including reliance on suboptimal data to make clinical and cost-effectiveness decisions. Whilst many HTA agencies have adapted their processes and procedures to handle MD technology submissions, in our comparison of HTA reports we found little evidence of the application of methodologies that take account of device-specific issues, such as incremental development. Overall, our research reinforces the need for better linkage between licencing and HTA and the development and application of innovative HTA methodologies with the objective of securing faster patient access for those technologies that can be shown to represent good value for money. © 2017 The Authors. Health Economics Published by John Wiley & Sons, Ltd. © 2017 The Authors. Health Economics Published by John Wiley & Sons, Ltd.
Lansdowne, Krystal; Scully, Christopher G; Galeotti, Loriano; Schwartz, Suzanne; Marcozzi, David; Strauss, David G
2015-06-01
In 2010, the US Food and Drug Administration (Silver Spring, Maryland USA) created the Medical Countermeasures Initiative with the mission of development and promoting medical countermeasures that would be needed to protect the nation from identified, high-priority chemical, biological, radiological, or nuclear (CBRN) threats and emerging infectious diseases. The aim of this review was to promote regulatory science research of medical devices and to analyze how the devices can be employed in different CBRN scenarios. Triage in CBRN scenarios presents unique challenges for first responders because the effects of CBRN agents and the clinical presentations of casualties at each triage stage can vary. The uniqueness of a CBRN event can render standard patient monitoring medical device and conventional triage algorithms ineffective. Despite the challenges, there have been recent advances in CBRN triage technology that include: novel technologies; mobile medical applications ("medical apps") for CBRN disasters; electronic triage tags, such as eTriage; diagnostic field devices, such as the Joint Biological Agent Identification System; and decision support systems, such as the Chemical Hazards Emergency Medical Management Intelligent Syndromes Tool (CHEMM-IST). Further research and medical device validation can help to advance prehospital triage technology for CBRN events.
Thurow, Kerstin; Stoll, Regina
2017-01-01
Objectives Wearable devices are currently at the heart of just about every discussion related to the Internet of Things. The requirement for self-health monitoring and preventive medicine is increasing due to the projected dramatic increase in the number of elderly people until 2020. Developed technologies are truly able to reduce the overall costs for prevention and monitoring. This is possible by constantly monitoring health indicators in various areas, and in particular, wearable devices are considered to carry this task out. These wearable devices and mobile apps now have been integrated with telemedicine and telehealth efficiently, to structure the medical Internet of Things. This paper reviews wearable health care devices both in scientific papers and commercial efforts. Methods MIoT is demonstrated through a defined architecture design, including hardware and software dealing with wearable devices, sensors, smart phones, medical application, and medical station analyzers for further diagnosis and data storage. Results Wearables, with the help of improved technology have been developed greatly and are considered reliable tools for long-term health monitoring systems. These are applied in the observation of a large variety of health monitoring indicators in the environment, vital signs, and fitness. Conclusions Wearable devices are now used for a wide range of healthcare observation. One of the most important elements essential in data collection is the sensor. During recent years with improvement in semiconductor technology, sensors have made investigation of a full range of parameters closer to realization. PMID:28261526
NASA Astrophysics Data System (ADS)
Enoki, Toshiaki; Kiguchi, Manabu
2018-03-01
Interest in utilizing organic molecules to fabricate electronic materials has existed ever since organic (molecular) semiconductors were first discovered in the 1950s. Since then, scientists have devoted serious effort to the creation of various molecule-based electronic systems, such as molecular metals and molecular superconductors. Single-molecule electronics and the associated basic science have emerged over the past two decades and provided hope for the development of highly integrated molecule-based electronic devices in the future (after the Si-based technology era has ended). Here, nanographenes (nano-sized graphene) with atomically precise structures are among the most promising molecules that can be utilized for electronic/spintronic devices. To manipulate single small molecules for an electronic device, a single molecular junction has been developed. It is a powerful tool that allows even small molecules to be utilized. External electric, magnetic, chemical, and mechanical perturbations can change the physical and chemical properties of molecules in a way that is different from bulk materials. Therefore, the various functionalities of molecules, along with changes induced by external perturbations, allows us to create electronic devices that we cannot create using current top-down Si-based technology. Future challenges that involve the incorporation of condensed matter physics, quantum chemistry calculations, organic synthetic chemistry, and electronic device engineering are expected to open a new era in single-molecule device electronic technology.
Haghi, Mostafa; Thurow, Kerstin; Stoll, Regina
2017-01-01
Wearable devices are currently at the heart of just about every discussion related to the Internet of Things. The requirement for self-health monitoring and preventive medicine is increasing due to the projected dramatic increase in the number of elderly people until 2020. Developed technologies are truly able to reduce the overall costs for prevention and monitoring. This is possible by constantly monitoring health indicators in various areas, and in particular, wearable devices are considered to carry this task out. These wearable devices and mobile apps now have been integrated with telemedicine and telehealth efficiently, to structure the medical Internet of Things. This paper reviews wearable health care devices both in scientific papers and commercial efforts. MIoT is demonstrated through a defined architecture design, including hardware and software dealing with wearable devices, sensors, smart phones, medical application, and medical station analyzers for further diagnosis and data storage. Wearables, with the help of improved technology have been developed greatly and are considered reliable tools for long-term health monitoring systems. These are applied in the observation of a large variety of health monitoring indicators in the environment, vital signs, and fitness. Wearable devices are now used for a wide range of healthcare observation. One of the most important elements essential in data collection is the sensor. During recent years with improvement in semiconductor technology, sensors have made investigation of a full range of parameters closer to realization.
Bauer, Stephen; Elsaesser, Linda-Jeanne
2012-09-01
ISO26000:2010 International Guidance Standard on Organizational Social Responsibility requires that effective organizational performance recognize social responsibility, including the rights of persons with disabilities (PWD), engage stakeholders and contribute to sustainable development. Millennium Development Goals 2010 notes that the most vulnerable people require special attention, while the World Report on Disability 2011 identifies improved data collection and removal of barriers to rehabilitation as the means to empower PWD. The Assistive Technology Device Classification (ATDC), Assistive Technology Service Method (ATSM) and Matching Person and Technology models provide an evidence-based, standardized, internationally comparable framework to improve data collection and rehabilitation interventions. The ATDC and ATSM encompass and support universal design (UD) principles, and use the language and concepts of the International Classification of Functioning, Disability and Health (ICF). Use ATDC and ICF concepts to differentiate medical, assistive and UD products and technology; relate technology "types" to markets and costs; and support provision of UD products and technologies as sustainable and socially responsible behavior. Supply-side and demand-side incentives are suggested to foster private sector development and commercialization of UD products and technologies. Health and health-related professionals should be knowledgeable of UD principles and interventions.
Blood Pump Development Using Rocket Engine Flow Simulation Technology
NASA Technical Reports Server (NTRS)
Kwak, Dochan; Kiris, Cetin
2001-01-01
This paper reports the progress made towards developing complete blood flow simulation capability in humans, especially in the presence of artificial devices such as valves and ventricular assist devices. Devices modeling poses unique challenges different from computing the blood flow in natural hearts and arteries. There are many elements needed to quantify the flow in these devices such as flow solvers, geometry modeling including flexible walls, moving boundary procedures and physiological characterization of blood. As a first step, computational technology developed for aerospace applications was extended to the analysis and development of a ventricular assist device (VAD), i.e., a blood pump. The blood flow in a VAD is practically incompressible and Newtonian, and thus an incompressible Navier-Stokes solution procedure can be applied. A primitive variable formulation is used in conjunction with the overset grid approach to handle complex moving geometry. The primary purpose of developing the incompressible flow analysis capability was to quantify the flow in advanced turbopump for space propulsion system. The same procedure has been extended to the development of NASA-DeBakey VAD that is based on an axial blood pump. Due to massive computing requirements, high-end computing is necessary for simulating three-dimensional flow in these pumps. Computational, experimental, and clinical results are presented.
Place-Based Learning and Mobile Technology
ERIC Educational Resources Information Center
LaBelle, Chris
2011-01-01
When delivered on a mobile device, interpretive tours of a locale afford powerful learning experiences. As mobile devices become more powerful, content for these devices that is individualized and location-specific has become more common. In light of this trend, Oregon State University Extension developed a GPS-enabled iPhone tree tour…
Ultrasonic Drilling and Coring
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph
1998-01-01
A novel drilling and coring device, driven by a combination, of sonic and ultrasonic vibration, was developed. The device is applicable to soft and hard objects using low axial load and potentially operational under extreme conditions. The device has numerous potential planetary applications. Significant potential for commercialization in construction, demining, drilling and medical technologies.
ERIC Educational Resources Information Center
Stav, John; Nielsen, Kjetil; Hansen-Nygard, Gabrielle; Thorseth, Trond
2010-01-01
A new type of Student Response System (SRS) based up on the latest wireless technologies and hand held mobile devices has been developed to enhance active learning methods and assess students' understanding. The key services involve a set of XML technologies, web services and modern mobile devices. A group consisting of engineers, scientists and…
The Medical Devices Special Access Program in Canada: A Scoping Study
Menon, Devidas; Stafinski, Tania
2018-01-01
New health technologies enter Canadian healthcare organizations in various ways, and understanding them is essential to the development of a pan-Canadian Health Technology Management (HTM) Strategy, now a priority of governments across Canada. One way is through Health Canada's Medical Devices Special Access Program (MDSAP), which permits unlicensed devices to be obtained by healthcare professionals. However, the circumstances around and implications of the current use of this program are not clear. A scoping literature review was conducted to clarify these and identify important roles and issues related to the MDSAP. Limited information was found on the MDSAP. Nevertheless, three themes demonstrating the roles of the MDSAP in HTM emerged: arbiter in technology selection, a route to technology procurement and facilitator of health technology innovation. No information suggesting that MDSAP is used to circumvent licensing was found. Rather, it enables desired patient outcomes and product commercialization. PMID:29595436
Emerging technologies for long-term antimicrobial device coatings: advantages and limitations
Cyphert, Erika L
2017-01-01
Over the past 20 years, the field of antimicrobial medical device coatings has expanded nearly 30-fold with technologies shifting their focus from diffusion-only based (short-term antimicrobial eluting) coatings to long-term antimicrobial eluting and intrinsically antimicrobial functioning materials. A variety of emergent coatings have been developed with the goal of achieving long-term antimicrobial activity in order to mitigate the risk of implanted device failure. Specifically, the coatings can be grouped into two categories: those that use antibiotics in conjunction with a polymer coating and those that rely on the intrinsic properties of the material to kill or repel bacteria that come into contact with the surface. This review covers both long-term drug-eluting and non-eluting coatings and evaluates the inherent advantages and disadvantages of each type while providing an overview of variety applications that the coatings have been utilized in. Impact statement This work provides an overview, with advantages and limitations of the most recently developed antibacterial coating technologies, enabling other researchers in the field to more easily determine which technology is most advantageous for them to further develop and pursue. PMID:28110543
Riener, Robert
2016-05-31
The Cybathlon is a new kind of championship, where people with physical disabilities compete against each other at tasks of daily life, with the aid of advanced assistive devices including robotic technologies. The first championship will take place at the Swiss Arena Kloten, Zurich, on 8 October 2016. Six disciplines are part of the competition comprising races with powered leg prostheses, powered arm prostheses, functional electrical stimulation driven bikes, powered wheelchairs, powered exoskeletons and brain-computer interfaces. This commentary describes the six disciplines and explains the current technological deficiencies that have to be addressed by the competing teams. These deficiencies at present often lead to disappointment or even rejection of some of the related technologies in daily applications. The Cybathlon aims to promote the development of useful technologies that facilitate the lives of people with disabilities. In the long run, the developed devices should become affordable and functional for all relevant activities in daily life.
REVIEW ARTICLE: Sensor communication technology towards ambient intelligence
NASA Astrophysics Data System (ADS)
Delsing, J.; Lindgren, P.
2005-04-01
This paper is a review of the fascinating development of sensors and the communication of sensor data. A brief historical introduction is given, followed by a discussion on architectures for sensor networks. Further, realistic specifications on sensor devices suitable for ambient intelligence and ubiquitous computing are given. Based on these specifications, the status and current frontline development are discussed. In total, it is shown that future technology for ambient intelligence based on sensor and actuator devices using standardized Internet communication is within the range of possibilities within five years.
Review of radiation effects on ReRAM devices and technology
NASA Astrophysics Data System (ADS)
Gonzalez-Velo, Yago; Barnaby, Hugh J.; Kozicki, Michael N.
2017-08-01
A review of the ionizing radiation effects on resistive random access memory (ReRAM) technology and devices is presented in this article. The review focuses on vertical devices exhibiting bipolar resistance switching, devices that have already exhibited interesting properties and characteristics for memory applications and, in particular, for non-volatile memory applications. Non-volatile memories are important devices for any type of electronic and embedded system, as they are for space applications. In such applications, specific environmental issues related to the existence of cosmic rays and Van Allen radiation belts around the Earth contribute to specific failure mechanisms related to the energy deposition induced by such ionizing radiation. Such effects are important in non-volatile memory as the current leading technology, i.e. flash-based technology, is sensitive to the total ionizing dose (TID) and single-event effects. New technologies such as ReRAM, if competing with or complementing the existing non-volatile area of memories from the point of view of performance, also have to exhibit great reliability for use in radiation environments such as space. This has driven research on the radiation effects of such ReRAM technology, on both the conductive-bridge RAM as well as the valence-change memories, or OxRAM variants of the technology. Initial characterizations of ReRAM technology showed a high degree of resilience to TID, developing researchers’ interest in characterizing such resilience as well as investigating the cause of such behavior. The state of the art of such research is reviewed in this article.
Custom large scale integrated circuits for spaceborne SAR processors
NASA Technical Reports Server (NTRS)
Tyree, V. C.
1978-01-01
The application of modern LSI technology to the development of a time-domain azimuth correlator for SAR processing is discussed. General design requirements for azimuth correlators for missions such as SEASAT-A, Venus orbital imaging radar (VOIR), and shuttle imaging radar (SIR) are summarized. Several azimuth correlator architectures that are suitable for implementation using custom LSI devices are described. Technical factors pertaining to selection of appropriate LSI technologies are discussed, and the maturity of alternative technologies for spacecraft applications are reported in the context of expected space mission launch dates. The preliminary design of a custom LSI time-domain azimuth correlator device (ACD) being developed for use in future SAR processors is detailed.
Non-technical Issues in Design and Development of Personal Portable Devices.
Lhotska, Lenka; Cheshire, Paul; Pharow, Peter; Macku, David
2016-01-01
Mobile technologies are constantly evolving and with the development of Internet of Things we can expect continuous increase of various applications. Mobile technologies have undeniable opportunities to play an important role in health services. Concerning purely technical aspects, almost every problem can be solved. However, there are still many unsolved and unclear issues related with ethics and governance mechanisms for mobile phone applications. These issues are even more critical in medical and health care applications of mobile technologies. This paper tries to analyse ethical, and privacy-related challenges that may occur when introducing Personal Portable Devices (PPD) to collect and record personal health data in health care and welfare environment.
Bioanalytical devices: Technological leap for sweat sensing
NASA Astrophysics Data System (ADS)
Heikenfeld, Jason
2016-01-01
Sweat analysis is an ideal method for continuously tracking a person's physiological state, but developing devices for this is difficult. A wearable sweat monitor that measures several biomarkers is a breakthrough. See Letter p.509
NASA Astrophysics Data System (ADS)
Sugimachi, Masaru; Kawada, Toru; Uemura, Kazunori
Effective countermeasures against explosive increase in healthcare expenditures are urgently needed. A paradigm shift in healthcare is called for, and academics and governments worldwide are working hard on the application of information and communication technologies (ICT) as a feasible and effective measure for reducing medical cost. The more prevalent the disease and the easier disease outcome can be improved, the more efficient is medical ICT in reducing healthcare cost. Hypertension and diabetes mellitus are such examples. Chronic heart failure is another disease in which patients may benefit from ICT-based medical practice. It is conceivable that daily monitoring of hemodynamics together with appropriate treatments may obviate the expensive hospitalization. ICT potentially permit continuous monitoring with wearable or implantable medical devices. ICT may also help accelerate the development of new therapeutic devices. Traditionally effectiveness of treatments is sequentially examined by sacrificing a number of animals at a given time point. These inefficient and inaccurate methods can be replaced by applying ICT to the devices used in chronic animal experiments. These devices allow researchers to obtain biosignals and images from live animals without killing them. They include implantable telemetric devices, implantable telestimulation devices, and imaging devices. Implanted rather than wired monitoring and stimulation devices permit experiments to be conducted under even more physiological conditions, i.e., untethered, free-moving states. Wireless communication and ICT are indispensible technologies for the development of such telemetric and telestimulation devices.
Corredor, Iván; Bernardos, Ana M.; Iglesias, Josué; Casar, José R.
2012-01-01
Advances in electronics nowadays facilitate the design of smart spaces based on physical mash-ups of sensor and actuator devices. At the same time, software paradigms such as Internet of Things (IoT) and Web of Things (WoT) are motivating the creation of technology to support the development and deployment of web-enabled embedded sensor and actuator devices with two major objectives: (i) to integrate sensing and actuating functionalities into everyday objects, and (ii) to easily allow a diversity of devices to plug into the Internet. Currently, developers who are applying this Internet-oriented approach need to have solid understanding about specific platforms and web technologies. In order to alleviate this development process, this research proposes a Resource-Oriented and Ontology-Driven Development (ROOD) methodology based on the Model Driven Architecture (MDA). This methodology aims at enabling the development of smart spaces through a set of modeling tools and semantic technologies that support the definition of the smart space and the automatic generation of code at hardware level. ROOD feasibility is demonstrated by building an adaptive health monitoring service for a Smart Gym. PMID:23012544
NASA Astrophysics Data System (ADS)
Li, Yang; Yao, Zhao; Fu, Xiao-Qian; Li, Zhi-Ming; Shan, Fu-Kai; Wang, Cong
2017-05-01
Recently, integrated passive devices have become increasingly popular; inductor realization, in particular, offers interesting high performance for RF modules and systems. In this paper, a development of differential inductor fabricated by integrated passive devices technology using a double air-bridge structure is presented. A study of the model development of the differential inductor is first demonstrated. In this model section, a segment box analysis method is applied to provide a clear presentation of the differential inductor. Compared with other work that only shows a brief description of the process, the integrated passive devices process used to fabricate the inductor in this study is elaborated on. Finally, a characterization of differential inductors with different physical layout parameters is illustrated based on inductance and quality factors, which provides a valuable reference for realizing high performance. The proposed work provides a good solution for the design, fabrication and practical application of RF modules and systems.
An integrated approach to Smart House technology for people with disabilities.
Allen, B
1996-04-01
It is now commonly accepted that 'Smart House' technology can play a significant part in helping both elderly and disabled people enjoy a greater degree of independence in the near future. In order to realize this aspiration, it is necessary to examine a number of factors: the development of the appropriate Home Bus technologies and supported devices; the development of the appropriate user interfaces that will allow people with a range of special needs use the system; the incorporation of the requirements of the 'Smart House' controller with the other technological needs of the user; and the development of mainstream technologies that will affect the cost and availability of devices to the user. This paper will examine the above points and suggest appropriate actions and trends. It will draw upon the work of a four-member consortium currently finalizing a technical development project under the EC TIDE program, the experience of research and commercial organizations engaged in development work in associated areas and the experiences of the Dublin-based, Central Remedial Clinic and in particular, its Client Technical Services Unit. The CTSU have been actively engaged in the development of systems for clients and direct clinical assessments for the last 12 years.
The U.S. EPA's Office of Research and Development operates the Environmental Technology Verification (ETV) program to facilitate the deployment of innovative technologies through performance verification and information dissemination. Congress funds ETV in response to the belief ...
The Social Effects of Communication Technology.
ERIC Educational Resources Information Center
Goldhamer, Herbert, Ed.; Westrum, Ronald
The principal technological developments that underlie the communication revolution, especially the transistor and the computer, are reviewed in a nontechnical way. A number of devices and communication subsystems, such as cable television, ultramicrofiche, and communication satellites, that make use of these developments are then described,…
Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Čada, Glenn F.
2007-04-01
A new generation of hydropower technologies, the kinetic hydro and wave energy conversion devices, offers the possibility of generating electricity from the movements of water, without the need for dams and diversions. The Energy Policy Act of 2005 encouraged the development of these sources of renewable energy in the United States, and there is growing interest in deploying them globally. The technologies that would extract electricity from free-flowing streams, estuaries, and oceans have not been widely tested. Consequently, the U.S. Department of Energy convened a workshop to (1) identify the varieties of hydrokinetic energy and wave energy conversion devices andmore » their stages of development, (2) identify where these technologies can best operate, (3) identify the potential environmental issues associated with these technologies and possible mitigation measures, and (4) develop a list of research needs and/or practical solutions to address unresolved environmental issues. The article reviews the results of that workshop, focusing on potential effects on freshwater, estuarine, and marine ecosystems, and we describe recent national and international developments.« less
Technology CAD for integrated circuit fabrication technology development and technology transfer
NASA Astrophysics Data System (ADS)
Saha, Samar
2003-07-01
In this paper systematic simulation-based methodologies for integrated circuit (IC) manufacturing technology development and technology transfer are presented. In technology development, technology computer-aided design (TCAD) tools are used to optimize the device and process parameters to develop a new generation of IC manufacturing technology by reverse engineering from the target product specifications. While in technology transfer to manufacturing co-location, TCAD is used for process centering with respect to high-volume manufacturing equipment of the target manufacturing equipment of the target manufacturing facility. A quantitative model is developed to demonstrate the potential benefits of the simulation-based methodology in reducing the cycle time and cost of typical technology development and technology transfer projects over the traditional practices. The strategy for predictive simulation to improve the effectiveness of a TCAD-based project, is also discussed.
NASA Astrophysics Data System (ADS)
Paquette, Mark S.
New tools are often required to facilitate new discoveries and test new methods. Commercial offerings can be prohibitively expensive and difficult to customize. The development of ad-hoc tools provides the most flexibility and provides an opportunity to modify and refine a technology. An embossing system was developed for silk film imprinting and stamping in order to facilitate and add versatility to the efforts involving micro- and nanoscale device manufacturing in biopolymers. This system features temperature controlled embossing surfaces, adjustable embossing pressures, and variable embossing times. The device can also be fitted with interchangeable temperature controlled embossing and stamping tools. The design, development, fabrication, applications, and future improvements are explored for the system. This device may facilitate new discoveries in the realm of biopolymer micro- and nanomanufacturing and may provide a path towards high volume production of silk film based technologies.
Progress and opportunities in high-voltage microactuator powering technology towards one-chip MEMS
NASA Astrophysics Data System (ADS)
Mita, Yoshio; Hirakawa, Atsushi; Stefanelli, Bruno; Mori, Isao; Okamoto, Yuki; Morishita, Satoshi; Kubota, Masanori; Lebrasseur, Eric; Kaiser, Andreas
2018-04-01
In this paper, we address issues and solutions for micro-electro-mechanical-systems (MEMS) powering through semiconductor devices towards one-chip MEMS, especially those with microactuators that require high voltage (HV, which is more than 10 V, and is often over 100 V) for operation. We experimentally and theoretically demonstrated that the main reason why MEMS actuators need such HV is the tradeoff between resonant frequency and displacement amplitude. Indeed, the product of frequency and displacement is constant regardless of the MEMS design, but proportional to the input energy, which is the square of applied voltage in an electrostatic actuator. A comprehensive study on the principles of HV device technology and associated circuit technologies, especially voltage shifter circuits, was conducted. From the viewpoint of on-chip energy source, series-connected HV photovoltaic cells have been discussed. Isolation and electrical connection methods were identified to be key enabling technologies. Towards future rapid development of such autonomous devices, a technology to convert standard 5 V CMOS devices into HV circuits using SOI substrate and a MEMS postprocess is presented. HV breakdown experiments demonstrated this technology can hold over 700 to 1000 V, depending on the layout.
NASA Technical Reports Server (NTRS)
Nerren, B. H.
1977-01-01
The electrophoresis of six columns was accomplished on the Apollo-Soyuz test Project. After separation, these columns were frozen in orbit and were returned for ground-based analyses. One major goal of the MA-011 experiment was the assessment of the separation achieved in orbit by slicing these frozen columns. The slicing of the frozen columns required a new device. The development of that device is described.
Consumer mechatronics: a challenging playground for transducing materials and devices
NASA Astrophysics Data System (ADS)
Skjolstrup, Carl E.; Vonsild, Asbjorn L.
2003-03-01
The authors of this article are characterised by having a background within robotics technology, and have within the last 2-3 years moved into a material & process dominated environment. The authors are among other things responsible within LEGO Company; an internationally known toy developer and producer, for identification, prioritisation and procurement of new technological opportunities within materials, processes and devices providing new functionalities for the LEGO product.
Thin film encapsulation for flexible AM-OLED: a review
NASA Astrophysics Data System (ADS)
Park, Jin-Seong; Chae, Heeyeop; Chung, Ho Kyoon; In Lee, Sang
2011-03-01
Flexible organic light emitting diode (OLED) will be the ultimate display technology to customers and industries in the near future but the challenges are still being unveiled one by one. Thin-film encapsulation (TFE) technology is the most demanding requirement to prevent water and oxygen permeation into flexible OLED devices. As a polymer substrate does not offer the same barrier performance as glass, the TFE should be developed on both the bottom and top side of the device layers for sufficient lifetimes. This work provides a review of promising thin-film barrier technologies as well as the basic gas diffusion background. Topics include the significance of the device structure, permeation rate measurement, proposed permeation mechanism, and thin-film deposition technologies (Vitex system and atomic layer deposition (ALD)/molecular layer deposition (MLD)) for effective barrier films.
Drajsajtl, Tomáš; Struk, Petr; Bednárová, Alice
2013-01-01
AsTeRICS - "The Assistive Technology Rapid Integration & Construction Set" is a construction set for assistive technologies which can be adapted to the motor abilities of end-users. AsTeRICS allows access to different devices such as PCs, cell phones and smart home devices, with all of them integrated in a platform adapted as much as possible to each user. People with motor disabilities in the upper limbs, with no cognitive impairment, no perceptual limitations (neither visual nor auditory) and with basic skills in using technologies such as PCs, cell phones, electronic agendas, etc. have available a flexible and adaptable technology which enables them to access the Human-Machine-Interfaces (HMI) on the standard desktop and beyond. AsTeRICS provides graphical model design tools, a middleware and hardware support for the creation of tailored AT-solutions involving bioelectric signal acquisition, Brain-/Neural Computer Interfaces, Computer-Vision techniques and standardized actuator and device controls and allows combining several off-the-shelf AT-devices in every desired combination. Novel, end-user ready solutions can be created and adapted via a graphical editor without additional programming efforts. The AsTeRICS open-source framework provides resources for utilization and extension of the system to developers and researches. AsTeRICS was developed by the AsTeRICS project and was partially funded by EC.
Green IT Model for IT Departments in Gulf Cooperation Council (GCC) Organisations
ERIC Educational Resources Information Center
Albahlal, Abdulaziz
2016-01-01
Environmental problems such as climate change, pollution, non-sustainable energy, resource depletion, and recycling Information Technology (IT) devices considered the biggest glitches which are facing developed and developing countries. IT devices have become a critical issue due to the great amount of environmental damage caused by IT companies…
Human factors in labeling and training for home healthcare technology.
Patterson, Patricia A
2010-01-01
In this article, Patricia A. Patterson, a contributor to the recently-released standard ANSI/AAMI HE75:2009 Human factors engineering-Design of medical devices, highlights information from the standard important to developing labeling and training for homecare devices. She also describes one approach to developing labeling and training materials.
Strengthening the Role of Nurses in Medical Device Development.
Castner, Jessica; Sullivan, Suzanne S; Titus, Albert H; Klingman, Karen J
2016-01-01
Medical devices and innovative technology promise to revolutionize health care. Despite the importance of involving nurses in the collaborative medical device development processes, there are few learning opportunities in nursing programs. The purpose of this article is to provide a conceptual guide for nurse educators and researchers to engage nursing expertise in medical device development processes. A review of the literature guided the creation of the "Strengthening the Role of Nurses in Medical Device Development Roadmap" model. The model was used to describe how nurses can be engaged in multidisciplinary design of medical devices. An academic transdisciplinary team piloted the application of the model. The model includes the stages of needs assessment, planned brainstorm, feasibility determination, concept design, and prototype building. A transdisciplinary team case study of improving an asthma home-monitoring devices illustrates effective application of the model. Nurse leaders in the academic setting can effectively use the "Strengthening the Role of Nurses in Medical Device Development Roadmap" to inform their engagement of nurses in early medical device development and innovation processes. Copyright © 2016 Elsevier Inc. All rights reserved.
Technology Acceptance Model for Wireless Internet.
ERIC Educational Resources Information Center
Lu, June; Yu, Chun-Sheng; Liu, Chang; Yao, James E.
2003-01-01
Develops a technology acceptance model (TAM) for wireless Internet via mobile devices (WIMD) and proposes that constructs, such as individual differences, technology complexity, facilitating conditions, social influences, and wireless trust environment determine user-perceived short and long-term usefulness, and ease of using WIMD. Twelve…
Computer Access. Tech Use Guide: Using Computer Technology.
ERIC Educational Resources Information Center
Council for Exceptional Children, Reston, VA. Center for Special Education Technology.
One of nine brief guides for special educators on using computer technology, this guide focuses on access including adaptations in input devices, output devices, and computer interfaces. Low technology devices include "no-technology" devices (usually modifications to existing devices), simple switches, and multiple switches. High technology input…
Technology platforms for remote monitoring of vital signs in the new era of telemedicine.
Zhao, Fang; Li, Meng; Tsien, Joe Z
2015-07-01
Driven by healthcare cost and home healthcare need, the development of remote monitoring technologies is poised to improve and revolutionize healthcare delivery and accessibility. This paper reviews the recent progress in the field of remote monitoring technologies that may have the potential to become the basic platforms for telemedicine. In particular, key techniques and devices for monitoring cardiorespiratory activity, blood pressure and blood glucose concentration are summarized and discussed. In addition, the US FDA approved remote vital signs monitoring devices currently available on the market are presented.
DFT algorithms for bit-serial GaAs array processor architectures
NASA Technical Reports Server (NTRS)
Mcmillan, Gary B.
1988-01-01
Systems and Processes Engineering Corporation (SPEC) has developed an innovative array processor architecture for computing Fourier transforms and other commonly used signal processing algorithms. This architecture is designed to extract the highest possible array performance from state-of-the-art GaAs technology. SPEC's architectural design includes a high performance RISC processor implemented in GaAs, along with a Floating Point Coprocessor and a unique Array Communications Coprocessor, also implemented in GaAs technology. Together, these data processors represent the latest in technology, both from an architectural and implementation viewpoint. SPEC has examined numerous algorithms and parallel processing architectures to determine the optimum array processor architecture. SPEC has developed an array processor architecture with integral communications ability to provide maximum node connectivity. The Array Communications Coprocessor embeds communications operations directly in the core of the processor architecture. A Floating Point Coprocessor architecture has been defined that utilizes Bit-Serial arithmetic units, operating at very high frequency, to perform floating point operations. These Bit-Serial devices reduce the device integration level and complexity to a level compatible with state-of-the-art GaAs device technology.
NASA Technical Reports Server (NTRS)
1999-01-01
Through a licensing agreement with NASA, Face International Corporation has successfully commercialized ferroelectric actuator/sensor technology developed at Langley Research Center. Face International manufactures both ferroelectric actuators and sensors under the trademark "Thunder" (Thin Layer Composite Unimorph Ferroelectric Driver and Sensor). As actuators the Thunder technology provides a high level of movement not seen before in piezoelectric devices. Crystal structures generate electricity when stressed and move when voltage is applied. As sensors, the technology can be used in such applications as microphones, non-destructive testing, and vibration sensing. Thunder technology is being researched as a noise reduction device for aircraft engines. The technology is durable enough to be used in harsh environments, making it applicable to many commercial applications.
Undergraduate nurses' preferred use of mobile devices in healthcare settings.
Mather, Carey; Cummings, Elizabeth; Allen, Penny
2015-01-01
The growth of digital technology has created challenges for appropriate and safe use of mobile or portable devices in healthcare environments. There is perceived risk that the use of mobile technology for learning may distract from provision of patient care if used by undergraduate students during work-integrated learning. This paper reports on a study that aimed to identify differences in preferred behavior of student nurses in their use of mobile technology during and away from the clinical practice environment. A previously validated online survey was administered to students during a period of work integrated learning in a range of healthcare settings in two Australian states. Respondents agreed that mobile devices could be beneficial to patient care. Overall, students proposed they would use mobile devices for accessing information, during work integrated learning, less than when away from the workplace. The development of policy to guide the use of mobile devices, in situ, is important to the provision of safe and competent care and improved health outcomes for patients.
Devices for Self-Monitoring Sedentary Time or Physical Activity: A Scoping Review.
Sanders, James P; Loveday, Adam; Pearson, Natalie; Edwardson, Charlotte; Yates, Thomas; Biddle, Stuart J H; Esliger, Dale W
2016-05-04
It is well documented that meeting the guideline levels (150 minutes per week) of moderate-to-vigorous physical activity (PA) is protective against chronic disease. Conversely, emerging evidence indicates the deleterious effects of prolonged sitting. Therefore, there is a need to change both behaviors. Self-monitoring of behavior is one of the most robust behavior-change techniques available. The growing number of technologies in the consumer electronics sector provides a unique opportunity for individuals to self-monitor their behavior. The aim of this study is to review the characteristics and measurement properties of currently available self-monitoring devices for sedentary time and/or PA. To identify technologies, four scientific databases were systematically searched using key terms related to behavior, measurement, and population. Articles published through October 2015 were identified. To identify technologies from the consumer electronic sector, systematic searches of three Internet search engines were also performed through to October 1, 2015. The initial database searches identified 46 devices and the Internet search engines identified 100 devices yielding a total of 146 technologies. Of these, 64 were further removed because they were currently unavailable for purchase or there was no evidence that they were designed for, had been used in, or could readily be modified for self-monitoring purposes. The remaining 82 technologies were included in this review (73 devices self-monitored PA, 9 devices self-monitored sedentary time). Of the 82 devices included, this review identified no published articles in which these devices were used for the purpose of self-monitoring PA and/or sedentary behavior; however, a number of technologies were found via Internet searches that matched the criteria for self-monitoring and provided immediate feedback on PA (ActiGraph Link, Microsoft Band, and Garmin Vivofit) and sedentary time (activPAL VT, the Lumo Back, and Darma). There are a large number of devices that self-monitor PA; however, there is a greater need for the development of tools to self-monitor sedentary time. The novelty of these devices means they have yet to be used in behavior change interventions, although the growing field of wearable technology may facilitate this to change.
Devices for Self-Monitoring Sedentary Time or Physical Activity: A Scoping Review
Loveday, Adam; Pearson, Natalie; Edwardson, Charlotte; Yates, Thomas; Biddle, Stuart JH; Esliger, Dale W
2016-01-01
Background It is well documented that meeting the guideline levels (150 minutes per week) of moderate-to-vigorous physical activity (PA) is protective against chronic disease. Conversely, emerging evidence indicates the deleterious effects of prolonged sitting. Therefore, there is a need to change both behaviors. Self-monitoring of behavior is one of the most robust behavior-change techniques available. The growing number of technologies in the consumer electronics sector provides a unique opportunity for individuals to self-monitor their behavior. Objective The aim of this study is to review the characteristics and measurement properties of currently available self-monitoring devices for sedentary time and/or PA. Methods To identify technologies, four scientific databases were systematically searched using key terms related to behavior, measurement, and population. Articles published through October 2015 were identified. To identify technologies from the consumer electronic sector, systematic searches of three Internet search engines were also performed through to October 1, 2015. Results The initial database searches identified 46 devices and the Internet search engines identified 100 devices yielding a total of 146 technologies. Of these, 64 were further removed because they were currently unavailable for purchase or there was no evidence that they were designed for, had been used in, or could readily be modified for self-monitoring purposes. The remaining 82 technologies were included in this review (73 devices self-monitored PA, 9 devices self-monitored sedentary time). Of the 82 devices included, this review identified no published articles in which these devices were used for the purpose of self-monitoring PA and/or sedentary behavior; however, a number of technologies were found via Internet searches that matched the criteria for self-monitoring and provided immediate feedback on PA (ActiGraph Link, Microsoft Band, and Garmin Vivofit) and sedentary time (activPAL VT, the Lumo Back, and Darma). Conclusions There are a large number of devices that self-monitor PA; however, there is a greater need for the development of tools to self-monitor sedentary time. The novelty of these devices means they have yet to be used in behavior change interventions, although the growing field of wearable technology may facilitate this to change. PMID:27145905
Development of a Novel Self-Enclosed Sample Preparation Device for DNA/RNA Isolation in Space
NASA Technical Reports Server (NTRS)
Zhang, Ye; Mehta, Satish K.; Pensinger, Stuart J.; Pickering, Karen D.
2011-01-01
Modern biology techniques present potentials for a wide range of molecular, cellular, and biochemistry applications in space, including detection of infectious pathogens and environmental contaminations, monitoring of drug-resistant microbial and dangerous mutations, identification of new phenotypes of microbial and new life species. However, one of the major technological blockades in enabling these technologies in space is a lack of devices for sample preparation in the space environment. To overcome such an obstacle, we constructed a prototype of a DNA/RNA isolation device based on our novel designs documented in the NASA New Technology Reporting System (MSC-24811-1/3-1). This device is self-enclosed and pipette free, purposely designed for use in the absence of gravity. Our design can also be modified easily for preparing samples in space for other applications, such as flowcytometry, immunostaining, cell separation, sample purification and separation according to its size and charges, sample chemical labeling, and sample purification. The prototype of our DNA/RNA isolation device was tested for efficiencies of DNA and RNA isolation from various cell types for PCR analysis. The purity and integrity of purified DNA and RNA were determined as well. Results showed that our developed DNA/RNA isolation device offers similar efficiency and quality in comparison to the samples prepared using the standard protocol in the laboratory.
Single-Event Effects in Silicon Carbide Power Devices
NASA Technical Reports Server (NTRS)
Lauenstein, Jean-Marie; Casey, Megan C.; LaBel, Kenneth A.; Ikpe, Stanley; Topper, Alyson D.; Wilcox, Edward P.; Kim, Hak; Phan, Anthony M.
2015-01-01
This report summarizes the NASA Electronic Parts and Packaging Program Silicon Carbide Power Device Subtask efforts in FY15. Benefits of SiC are described and example NASA Programs and Projects desiring this technology are given. The current status of the radiation tolerance of silicon carbide power devices is given and paths forward in the effort to develop heavy-ion single-event effect hardened devices indicated.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-19
..., including warehousing and distribution; research and development; technology manufacturing; food processing... warehousing and distribution; research and development; technology manufacturing; food processing and... defense manufacturing, sensor manufacturing, or medical devices; (iv) Food/Agriculture--such as wine, food...
US FDA perspective on regulatory issues affecting circulatory assist devices.
Sapirstein, Wolf; Chen, Eric; Swain, Julie; Zuckerman, Bram
2006-11-01
There has been a rapid development in mechanical circulatory support systems in the decade since the US FDA first approved a mechanical device to provide the circulatory support lacking from a failing heart. Devices are presently approved for marketing by the FDA to replace a failing ventricle, the Ventricular Assist Device or the entire heart, Total Artificial Heart. Contemporaneous with, and permitted by, improvement in technology and design, devices have evolved from units located extracorporeally to paracorporeal systems and totally implanted devices. Clinical studies have demonstrated a parallel improvement in the homeostatic adequacy of the circulatory support provided. Thus, while the circulatory support was initially tolerated for short periods to permit recovery of cardiac function, this technology eventually provided effective circulatory support for increasing periods that permitted the FDA to approve devices for bridging patients in end-stage cardiac failure awaiting transplant and eventually a device for destination therapy where patients in end-stage heart failure are not cardiac transplant candidates. The approved devices have relied on displacement pumps that mimic the pulsatility of the physiological system. Accelerated development of more compact devices that rely on alternative pump mechanisms have challenged both the FDA and device manufacturers to assure that the regulatory requirements for safety and effectiveness are met for use of mechanical circulatory support systems in expanded target populations. An FDA regulatory perspective is reviewed of what can be a potentially critical healthcare issue.
Gallium nitride vertical power devices on foreign substrates: a review and outlook
NASA Astrophysics Data System (ADS)
Zhang, Yuhao; Dadgar, Armin; Palacios, Tomás
2018-07-01
Vertical gallium nitride (GaN) power devices have attracted increased attention due to their superior high-voltage and high-current capacity as well as easier thermal management than lateral GaN high electron mobility transistors. Vertical GaN devices are promising candidates for next-generation power electronics in electric vehicles, data centers, smart grids and renewable energy process. The use of low-cost foreign substrates such as silicon (Si) substrates, instead of the expensive free-standing GaN substrates, could greatly trim material cost and enable large-diameter wafer processing while maintaining high device performance. This review illustrates recent progress in material epitaxy, device design, device physics and processing technologies for the development of vertical GaN power devices on low-cost foreign substrates. Although the device technologies are still at the early stage of development, state-of-the-art vertical GaN-on-Si power diodes have already shown superior Baliga’s figure of merit than commercial SiC and Si power devices at the voltage classes beyond 600 V. Furthermore, we unveil the design space of vertical GaN power devices on native and different foreign substrates, from the analysis of the impact of dislocation and defects on device performance. We conclude by identifying the application space, current challenges and exciting research opportunities in this very dynamic research field.
Low Mass Printable Devices for Energy Capture, Storage, and Use
NASA Technical Reports Server (NTRS)
Frazier, Donald O.; Singer, Christopher E.; Rogers, Jan R.; Schramm, Harry F.; Fabisinski, Leo L.; Lowenthal, Mark; Ray, William J.; Fuller, Kirk A.
2010-01-01
The energy-efficient, environmentally friendly technology that will be presented is the result of a Space Act Agreement between NthDegree Technologies Worldwide, Inc., and the National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center (MSFC). The work combines semiconductor and printing technologies to advance lightweight electronic and photonic devices having excellent potential for commercial and exploration applications. Device development involves three projects that relate to energy generation and consumption: (1) a low-mass efficient (low power, low heat emission) micro light-emitting diode (LED) area lighting device; (2) a low-mass omni-directional efficient photovoltaic (PV) device with significantly improved energy capture; and (3) a new approach to building super-capacitors. These three technologies, energy capture, storage, and usage (e.g., lighting), represent a systematic approach for building efficient local micro-grids that are commercially feasible; furthermore, these same technologies, appropriately replacing lighting with lightweight power generation, will be useful for enabling inner planetary missions using smaller launch vehicles and to facilitate surface operations during lunar and planetary surface missions. The PV device model is a two sphere, light trapped sheet approximately 2-mm thick. The model suggests a significant improvement over current thin film systems. For lighting applications, all three technology components are printable in-line by printing sequential layers on a standard screen or flexographic direct impact press using the three-dimensional printing technique (3DFM) patented by NthDegree. One primary contribution to this work in the near term by the MSFC is to test the robustness of prototype devices in the harsh environments that prevail in space and on the lunar surface. It is anticipated that this composite device, of which the lighting component has passed off-gassing testing, will function appropriately in such environments consistent with NASA s exploration missions. Advanced technologies such as this show promise for both space flight and terrestrial applications.
Contributive research in compound semiconductor material and related devices
NASA Astrophysics Data System (ADS)
Twist, James R.
1988-05-01
The objective of this program was to provide the Electronic Device Branch (AFWAL/AADR) with the support needed to perform state of the art electronic device research. In the process of managing and performing on the project, UES has provided a wide variety of scientific and engineering talent who worked in-house for the Avionics Laboratory. These personnel worked on many different types of research programs from gas phase microwave driven lasers, CVD and MOCVD of electronic materials to Electronic Device Technology for new devices. The fields of research included MBE and theoretical research in this novel growth technique. Much of the work was slanted towards the rapidly developing technology of GaAs and the general thrust of the research that these tasks started has remained constant. This work was started because the Avionics Laboratory saw a chance to advance the knowledge and level of the current device technology by working in the compounds semiconductor field. UES is pleased to have had the opportunity to perform on this program and is looking forward to future efforts with the Avionics Laboratory.
NASA Astrophysics Data System (ADS)
Tanisawa, Hidekazu; Kato, Fumiki; Koui, Kenichi; Sato, Shinji; Watanabe, Kinuyo; Takahashi, Hiroki; Murakami, Yoshinori; Sato, Hiroshi
2018-04-01
In this paper, we demonstrate a mounting technology that improves the tolerance to transient power loss by adding a heat capacity near the device. Silicon carbide (SiC) power devices can operate at high temperatures, up to 250 °C, at which silicon (Si) power devices cannot. Therefore, it is possible to allow a large temperature difference between the device and ambient air. Thus, the size of a power converter equipped with an SiC power module is reduced by simplifying the cooling system. The temperature of the power module is important not only in the steady state, but in transient loads as well. Therefore, we developed the Al-bump flip-chip mounting technology to increase heat capacity near the device. With this proposed structure, the heat capacity per device increased by 1.7% compared with the total heat capacity of the conventional structure using wire bonding. The reduction in transient thermal impedance is observed from 0.003 to 3 s, and we confirmed that the transient thermal impedance is reduced very efficiently by 15% at the maximum, compared with the conventional structure.
Raab, G Gregory; Parr, David H
2006-10-01
This paper, the second of 3 that discuss the reimbursement challenges facing new medical device technology in various issues of this journal, explains the key aspects of coverage that affect the adoption of medical devices. The process Medicare uses to make coverage determinations has become more timely and open over the past several years, but it still lacks the predictability that product innovators prefer. The continued uncertainty surrounding evidence requirements undermines the predictability needed for optimal product planning and innovation. Recent steps taken by the Centers for Medicare and Medicaid Services to provide coverage in return for evidence development should provide patients with access to promising new technologies and procedures while generating important evidence concerning their effectiveness.
The 20 GHz spacecraft FET solid state transmitter
NASA Technical Reports Server (NTRS)
1983-01-01
The engineering development of a solid state transmitter amplifier operating in the 20 GHz frequency band using GaAs field effect transistors (FETs) was detailed. The major efforts include GaAs FET device development, single-ended amplifier stage, balanced amplifier stage, cascaded stage and radial combiner designs, and amplifier integration and test. A multistage GaAs FET amplifier capable of 8.2 W CW output over the 17.9 to 19.1 GHz frequency band was developed. The GaAs FET devices developed represent state of the art FET power device technology. Further device improvements are necessary to increase the bandwidth to 2.5 GHz, improve dc-to-RF efficiency, and increase power capability at the device level. Higher power devices will simplify the amplifier combining scheme, reducing the size and weight of the overall amplifier.
NeuroSeek dual-color image processing infrared focal plane array
NASA Astrophysics Data System (ADS)
McCarley, Paul L.; Massie, Mark A.; Baxter, Christopher R.; Huynh, Buu L.
1998-09-01
Several technologies have been developed in recent years to advance the state of the art of IR sensor systems including dual color affordable focal planes, on-focal plane array biologically inspired image and signal processing techniques and spectral sensing techniques. Pacific Advanced Technology (PAT) and the Air Force Research Lab Munitions Directorate have developed a system which incorporates the best of these capabilities into a single device. The 'NeuroSeek' device integrates these technologies into an IR focal plane array (FPA) which combines multicolor Midwave IR/Longwave IR radiometric response with on-focal plane 'smart' neuromorphic analog image processing. The readout and processing integrated circuit very large scale integration chip which was developed under this effort will be hybridized to a dual color detector array to produce the NeuroSeek FPA, which will have the capability to fuse multiple pixel-based sensor inputs directly on the focal plane. Great advantages are afforded by application of massively parallel processing algorithms to image data in the analog domain; the high speed and low power consumption of this device mimic operations performed in the human retina.
Krisher, Sarah; Riley, Alison; Mehta, Khanjan
2014-04-01
The meteoric rise in the prevalence of non-communicable diseases, alongside already high rates of infectious diseases, is exacerbating the 'double disease burden' in the developing world. There is a desperate need for affordable, accessible and ruggedized diagnostic tools that detect diseases early and direct patients to the correct channels. Breath analysis, the science of utilizing biomarkers in the breath for diagnostic measures, is growing rapidly, especially for use in clinical diagnostic settings. Breathalyser technologies are improving scientifically, but are not yet ready for productization and dissemination to address healthcare challenges. How does one ensure that these new biomedical devices will be suitable for use in developing communities? This article presents a comprehensive review of breath analysis technologies followed by a discussion on how such devices can be designed to conform with WHO's ASSURED criteria so as to reach and sustain in developing countries where they are needed the most.
Nanocoaxes for Optical and Electronic Devices
Rizal, Binod; Merlo, Juan M.; Burns, Michael J.; Chiles, Thomas C.; Naughton, Michael J.
2014-01-01
The evolution of micro/nanoelectronics technology, including the shrinking of devices and integrated circuit components, has included the miniaturization of linear and coaxial structures to micro/nanoscale dimensions. This reduction in the size of coaxial structures may offer advantages to existing technologies and benefit the exploration and development of new technologies. The reduction in the size of coaxial structures has been realized with various permutations between metals, semiconductors and dielectrics for the core, shield, and annulus. This review will focus on fabrication schemes of arrays of metal – nonmetal – metal nanocoax structures using non-template and template methods, followed by possible applications. The performance and scientific advantages associated with nanocoax-based optical devices including waveguides, negative refractive index materials, light emitting diodes, and photovoltaics are presented. In addition, benefits and challenges that accrue from the application of novel nanocoax structures in energy storage, electronic and sensing devices are summarized. PMID:25279400
Hoganson, David M; Pryor, Howard I; Bassett, Erik K; Spool, Ira D; Vacanti, Joseph P
2011-02-21
There is no technology available to support failing lung function for patients outside the hospital. An implantable lung assist device would augment lung function as a bridge to transplant or possible destination therapy. Utilizing biomimetic design principles, a microfluidic vascular network was developed for blood inflow from the pulmonary artery and blood return to the left atrium. Computational fluid dynamics analysis was used to optimize blood flow within the vascular network. A micro milled variable depth mold with 3D features was created to achieve both physiologic blood flow and shear stress. Gas exchange occurs across a thin silicone membrane between the vascular network and adjacent alveolar chamber with flowing oxygen. The device had a surface area of 23.1 cm(2) and respiratory membrane thickness of 8.7 ± 1.2 μm. Carbon dioxide transfer within the device was 156 ml min(-1) m(-2) and the oxygen transfer was 34 ml min(-1) m(-2). A lung assist device based on tissue engineering architecture achieves gas exchange comparable to hollow fiber oxygenators yet does so while maintaining physiologic blood flow. This device may be scaled up to create an implantable ambulatory lung assist device.
NASA Astrophysics Data System (ADS)
Zhilenkov, A. A.; Chernyi, S. G.; Nyrkov, A. P.; Sokolov, S. S.
2017-10-01
Nitrides of group III elements are a very suitable basis for deriving light-emitting devices with the radiating modes lengths of 200-600 nm. The use of such semiconductors allows obtaining full-color RGB light sources, increasing record density of a digital data storage device, getting high-capacity and efficient sources of white light. Electronic properties of such semi-conductors allow using them as a basis for high-power and high-frequency transistors and other electronic devices, the specifications of which are competitive with those of SiC-based devices. Only since 2000, the technology of cultivation of crystals III-N of group has come to the level of wide recognition by both abstract science, and the industry that has led to the creation of the multi-billion dollar market. And this is despite a rather low level of development of the production technology of devices on the basis of III-N of materials. The progress that has happened in the last decade requires the solution of the main problem, constraining further development of this technology today - ensuring cultivation of III-N structures of necessary quality. For this purpose, it is necessary to solve problems of the analysis and optimization of processes in installations of epitaxial growth, and, as a result, optimization of its constructions.
WHAT ARE USER PERSPECTIVES OF EXOSKELETON TECHNOLOGY? A LITERATURE REVIEW.
Hill, Deborah; Holloway, Catherine Sarah; Morgado Ramirez, Dafne Zuleima; Smitham, Peter; Pappas, Yannis
2017-01-01
Exoskeletons are electromechanical devices that are worn by a human operator to increase their physical performance. Several exoskeletons have been developed to restore functional movements, such as walking, for those with paralysis due to neurological impairment. However, existing exoskeletons have limitations with respect to affordability, size, weight, speed, and efficiency, which may reduce their functional application. Therefore, the aim of this scoping review is to collect and narratively synthesize the perspectives of users of exoskeleton technology. A systematic literature search was conducted across several healthcare related online databases. A total of 4,619 articles were identified, of which 51 were selected for full review. Only three studies were identified that met the inclusion criteria. Of these, one showed an incongruence between users' expectations and experiences of device use; another reported perspectives on potential rather than actual device use, ranking design features in order of perceived importance; and the other reported ratings of ease of device use in training. The heterogeneity of studies included within this review, leave the authors unable to suggest consensus as to user perspectives of exoskeleton technology. However, it is apparent that users are able to suggest priorities for exoskeleton design and that users' perspectives of exoskeleton technology might change in response to experience of use. The authors, therefore, suggest that exoskeleton design should be an iterative process, whereby user perspectives are sought, incorporated and refined by tangible experience, to ensure that devices developed are acceptable to and usable by the populations they seek to re-enable.
Applying the miniaturization technologies for biosensor design.
Derkus, Burak
2016-05-15
Microengineering technologies give us some opportunities in developing high-tech sensing systems that operate with low volumes of samples, integrates one or more laboratory functions on a single substrate, and enables automation. These millimetric sized devices can be produced for only a few dollars, which makes them promising candidates for mass-production. Besides electron beam lithography, stencil lithography, nano-imprint lithography or dip pen lithography, basic photolithography is the technique which is extensively used for the design of microengineered sensing systems. This technique has some advantages such as easy-to-manufacture, do not require expensive instrumentation, and allow creation of lower micron-sized patterns. In this review, it has been focused on three different type of microengineered sensing devices which are developed using micro/nano-patterning techniques, microfluidic technology, and microelectromechanics system based technology. Copyright © 2016 Elsevier B.V. All rights reserved.
Low Mass Printable Devices for Energy Capture, Storage, and Use for Space Exploration Missions
NASA Technical Reports Server (NTRS)
Frazier, Donald O.; Singer, Christopher E.; Ray, William J.; Fuller, Kirk A.
2010-01-01
The energy-efficient, environmentally friendly technology that will be presented is the result of a Space Act Agreement between -Technologies Worldwide, Inc., and the National Aeronautics and Space Administration s (NASA s) Marshall Space Flight Center (MSFC). This work combines semiconductor and printing technologies to advance lightweight electronic and photonic devices having excellent potential for commercial and exploration applications, and is an example of industry and government cooperation that leads to novel inventions. Device development involves three energy generation and consumption projects: 1) a low mass efficient (low power, low heat emission) micro light-emitting diode (LED) area lighting device; 2) a low-mass omni-directional efficient photovoltaic (PV) device with significantly improved energy capture; and 3) a new approach to building supercapacitors. These three technologies - energy capture, storage, and usage (e.g., lighting) - represent a systematic approach for building efficient local micro-grids that are commercially feasible; furthermore, these same technologies will be useful for lightweight power generation that enables inner planetary missions using smaller launch vehicles and facilitates surface operations. The PV device model is a two-sphere, light-trapped sheet approximately 2-mm thick. The model suggests a significant improvement over current thin film systems. All three components may be printed in line by printing sequential layers on a standard screen or flexographic direct impact press using the threedimensional printing technique (3DFM) patented by NthDegree. MSFC is testing the robustness of prototype devices in the harsh space and lunar surface environments, and available results will be reported. Unlike many traditional light sources, this device does not contain toxic compounds, and the LED component has passed stringent off-gassing tests required for potential manifesting on spacecraft such as the International Space Station. Future exploration missions will benefit from "green" technology lighting devices such as this, which show great promise for both terrestrial use and space missions.
15 CFR 752.3 - Eligible items.
Code of Federal Regulations, 2013 CFR
2013-01-01
... identified in § 744.5 of the EAR; (7) Communications intercepting devices and related software and technology... section technology for the development, production or overhaul of commercial aircraft engines controlled...) Items controlled for missile technology reasons that are identified by the letters MT in the applicable...
15 CFR 752.3 - Eligible items.
Code of Federal Regulations, 2014 CFR
2014-01-01
... identified in § 744.5 of the EAR; (7) Communications intercepting devices and related software and technology...) Hot section technology for the development, production or overhaul of commercial aircraft engines...) Items controlled for missile technology reasons that are identified by the letters MT in the applicable...
Advances in point-of-care technologies for molecular diagnostics.
Zarei, Mohammad
2017-12-15
Advances in miniaturization, nanotechnology, and microfluidics, along with developments in cloud-connected point-of-care (POC) diagnostics technologies are pushing the frontiers of POC devices toward low-cost, user-friendly, and enhanced sensitivity molecular-level diagnostics. The combination of various bio-sensing platforms within smartphone-integrated electronic readers provides accurate on-site and on-time diagnostics based on various types of chemical and biological targets. Further, 3D printing technology shows a huge potential toward fabrication and improving the performance of POC devices. Integration of skin-like flexible sensors with wireless communication technology creates a unique opportunity for continuous, real-time monitoring of patients for both preventative healthcare and during disease outbreaks. Here, we review recent developments and advances in POC technologies and describe how these advances enhance the performance of POC platforms. Also, this review describes challenges, directions, and future trends on application of emerging technologies in POC diagnostics. Copyright © 2017 Elsevier B.V. All rights reserved.
Lamarche, Kimberley; Park, Caroline; Fraser, Shawn; Rich, Mariann; MacKenzie, Susan
2016-01-01
The use of mobile devices by nurse practitioners (NPs) to meet an evolving technological landscape is expanding rapidly. A longitudinal study of the ways NP students "normalize" the use of mobile devices in clinical education was completed. This study used researcher-designed survey tools, including sociodemographic questions, and the numerical picture was augmented and interpreted in light of the textual data in the form of selected interviews. Data indicate that mobile technology is normalized in the social realm but still developing in the clinical realm. Progress is hindered by non-modelling by faculty, inconsistent healthcare policy and lack of understanding of the affordances available through this technology. Overall, mobile technology is utilized and normalized in practice; this in turn has influenced their ability to prepare students for practice. Data presented can assist educators and clinicians alike in developing a more fulsome understanding on how to appropriately incorporate mobile technology into education and practice.
Tissue-electronics interfaces: from implantable devices to engineered tissues
NASA Astrophysics Data System (ADS)
Feiner, Ron; Dvir, Tal
2018-01-01
Biomedical electronic devices are interfaced with the human body to extract precise medical data and to interfere with tissue function by providing electrical stimuli. In this Review, we outline physiologically and pathologically relevant tissue properties and processes that are important for designing implantable electronic devices. We summarize design principles for flexible and stretchable electronics that adapt to the mechanics of soft tissues, such as those including conducting polymers, liquid metal alloys, metallic buckling and meandering architectures. We further discuss technologies for inserting devices into the body in a minimally invasive manner and for eliminating them without further intervention. Finally, we introduce the concept of integrating electronic devices with biomaterials and cells, and we envision how such technologies may lead to the development of bionic organs for regenerative medicine.
NASA Astrophysics Data System (ADS)
White, Victor E.; Yee, Karl Y.; Balasubramanian, Kunjithapatham; Echternach, Pierre M.; Muller, Richard E.; Dickie, Matthew R.; Cady, Eric; Ryan, Daniel J.; Eastwood, Michael; van Gorp, Byron; Riggs, A. J. Eldorado; Zimmerman, Niel; Kasdin, N. Jeremy
2015-08-01
Optical devices with features exhibiting ultra low reflectivity on the order of 10-7 specular reflectance in the visible spectrum are required for coronagraph instruments and some spectrometers employed in space research. Nanofabrication technologies have been developed to produce such devices with various shapes and feature dimensions to meet these requirements. Infrared reflection is also suppressed significantly with chosen wafers and processes. Particularly, devices with very high (>0.9) and very low reflectivity (<10-7) on adjacent areas have been fabricated and characterized. Significantly increased surface area due to the long needle like nano structures also provides some unique applications in other technology areas. We present some of the approaches, challenges and achieved results in producing and characterizing such devices currently employed in laboratory testbeds and instruments.
The Right Track for Vision Correction
NASA Technical Reports Server (NTRS)
2003-01-01
More and more people are putting away their eyeglasses and contact lenses as a result of laser vision correction surgery. LASIK, the most widely performed version of this surgical procedure, improves vision by reshaping the cornea, the clear front surface of the eye, using an excimer laser. One excimer laser system, Alcon s LADARVision 4000, utilizes a laser radar (LADAR) eye tracking device that gives it unmatched precision. During LASIK surgery, laser During LASIK surgery, laser pulses must be accurately placed to reshape the cornea. A challenge to this procedure is the patient s constant eye movement. A person s eyes make small, involuntary movements known as saccadic movements about 100 times per second. Since the saccadic movements will not stop during LASIK surgery, most excimer laser systems use an eye tracking device that measures the movements and guides the placement of the laser beam. LADARVision s eye tracking device stems from the LADAR technology originally developed through several Small Business Innovation Research (SBIR) contracts with NASA s Johnson Space Center and the U.S. Department of Defense s Ballistic Missile Defense Office (BMDO). In the 1980s, Johnson awarded Autonomous Technologies Corporation a Phase I SBIR contract to develop technology for autonomous rendezvous and docking of space vehicles to service satellites. During Phase II of the Johnson SBIR contract, Autonomous Technologies developed a prototype range and velocity imaging LADAR to demonstrate technology that could be used for this purpose.
ERIC Educational Resources Information Center
Menon, Deepika; Chandrasekhar, Meera; Kosztin, Dorina; Steinhoff, Douglas
2017-01-01
While iPads and other mobile devices are gaining popularity in educational settings, challenges associated with teachers' use of technology continue to hold true. Preparing preservice teachers within teacher preparation programs to gain experience learning and teaching science using mobile technologies is critical for them to develop positive…
Electromedical devices test laboratories accreditation
NASA Astrophysics Data System (ADS)
Murad, C.; Rubio, D.; Ponce, S.; Álvarez Abri, A.; Terrón, A.; Vicencio, D.; Fascioli, E.
2007-11-01
In the last years, the technology and equipment at hospitals have been increase in a great way as the risks of their implementation. Safety in medical equipment must be considered an important issue to protect patients and their users. For this reason, test and calibrations laboratories must verify the correct performance of this kind of devices under national and international standards. Is an essential mission for laboratories to develop their measurement activities taking into account a quality management system. In this article, we intend to transmit our experience working to achieve an accredited Test Laboratories for medical devices in National technological University.
Chadha, Shelly; Moussy, Francis; Friede, Martin Howell
2014-09-01
Philanthropy continues to play an important role in provision of hearing devices and is often the only alternative for the majority of those in need of these devices. While this leads to improved access to services it may also create unsustainable service delivery models. Over the past decade, World Health Organization (WHO) has been making consistent efforts towards promoting accessibility and affordability of high-quality hearing devices, especially in Low- and Middle-Income Countries (LMIC). WHO developed and updated the "Guidelines for Hearing Aids and Services in Developing Countries", in 2004. In 2006, WHO supported the establishment of "World Wide (WW) Hearing", to promote hearing aid access across the globe. In the past year, WHO has renewed these efforts. As the first step and following a consultation on promoting access to hearing devices, WHO has developed a preferred product profile in order to facilitate the development and access of appropriate and affordable hearing aids for developing countries. The Convention on the Rights of Persons with Disabilities (article 32), calls for international collaboration to promote access to assistive technology including hearing devices. A coordinated global effort is required to promote availability and affordability of high-quality hearing devices. Such an undertaking requires the cooperation of all stakeholders: WHO, Member States, Non-Governmental Organizations (NGOs), philanthropists, manufacturers and users, to fulfill the international obligation and bring about a change in the quality of life of millions of people with hearing loss. Development of preferred product profile for hearing aids in LMICs can improve development and provision of high-quality, affordable hearing devices. Investment made by the recipients, such as partial financial contribution towards the cost of device or through purchase of ear mould or batteries, leads to a greater sense of responsibility towards the device and its maintenance. Low level of awareness about hearing loss and the potential benefits of hearing aids contribute to the underutilization of hearing aids.
NASA Technical Reports Server (NTRS)
Steele, John W.; Rector, Tony; Bue, Grant C.; Campbell, Colin; Makinen, Janice
2013-01-01
A dual-bed device to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been designed and is undergoing testing. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the development of a water recirculation maintenance device is to further enhance this advantage through the leveraging of fluid loop management lessons-learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The bed design further leverages a sorbent developed for ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.
NASA Technical Reports Server (NTRS)
Steele, John W.; Rector, Tony; Bue, Grant C.; Campbell, Colin; Makinen, Janice
2012-01-01
A dual-bed device to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been designed and is undergoing testing. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing sublimator technology. The driver for the development of a water recirculation maintenance device is to further enhance this advantage through the leveraging of fluid loop management lessons learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high-capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit Transport Water Loop. The bed design further leverages a sorbent developed for the ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System. The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of crewed spaceflight Environmental Control and Life Support System hardware.
NASA Technical Reports Server (NTRS)
Steele, John W.; Rector, Tony; Bue, Grant C.; Campbell, Colin; Makinen, Janice
2011-01-01
A dual-bed device to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been designed and is undergoing testing. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the development of a water recirculation maintenance device is to further enhance this advantage through the leveraging of fluid loop management lessons-learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The bed design further leverages a sorbent developed for ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a clear demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.
The Development of Si and SiGe Technologies for Microwave and Millimeter-Wave Integrated Circuits
NASA Technical Reports Server (NTRS)
Ponchak, George E.; Alterovitz, Samuel A.; Katehi, Linda P. B.; Bhattacharya, Pallab K.
1997-01-01
Historically, microwave technology was developed by military and space agencies from around the world to satisfy their unique radar, communication, and science applications. Throughout this development phase, the sole goal was to improve the performance of the microwave circuits and components comprising the systems. For example, power amplifiers with output powers of several watts over broad bandwidths, low noise amplifiers with noise figures as low as 3 dB at 94 GHz, stable oscillators with low noise characteristics and high output power, and electronically steerable antennas were required. In addition, the reliability of the systems had to be increased because of the high monetary and human cost if a failure occurred. To achieve these goals, industry, academia and the government agencies supporting them chose to develop technologies with the greatest possibility of surpassing the state of the art performance. Thus, Si, which was already widely used for digital circuits but had material characteristics that were perceived to limit its high frequency performance, was bypassed for a progression of devices starting with GaAs Metal Semiconductor Field Effect Transistors (MESFETs) and ending with InP Pseudomorphic High Electron Mobility Transistors (PHEMTs). For each new material or device structure, the electron mobility increased, and therefore, the high frequency characteristics of the device were improved. In addition, ultra small geometry lithographic processes were developed to reduce the gate length to 0.1 pm which further increases the cutoff frequency. The resulting devices had excellent performance through the millimeter-wave spectrum.
A Domain Specific Modeling Approach for Coordinating User-Centric Communication Services
ERIC Educational Resources Information Center
Wu, Yali
2011-01-01
Rapid advances in electronic communication devices and technologies have resulted in a shift in the way communication applications are being developed. These new development strategies provide abstract views of the underlying communication technologies and lead to the so-called "user-centric communication applications." One user-centric…
Sage, Cindy; Burgio, Ernesto
2018-01-01
Mobile phones and other wireless devices that produce electromagnetic fields (EMF) and pulsed radiofrequency radiation (RFR) are widely documented to cause potentially harmful health impacts that can be detrimental to young people. New epigenetic studies are profiled in this review to account for some neurodevelopmental and neurobehavioral changes due to exposure to wireless technologies. Symptoms of retarded memory, learning, cognition, attention, and behavioral problems have been reported in numerous studies and are similarly manifested in autism and attention deficit hyperactivity disorders, as a result of EMF and RFR exposures where both epigenetic drivers and genetic (DNA) damage are likely contributors. Technology benefits can be realized by adopting wired devices for education to avoid health risk and promote academic achievement. © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.
IMAPS Device Packaging Conference 2017 - Engineered Micro Systems & Devices Track
NASA Technical Reports Server (NTRS)
Varnavas, Kosta
2017-01-01
NASA field center Marshall Space Flight Center (Huntsville, AL), has invested in advanced wireless sensor technology development. Developments for a wireless microcontroller back-end were primarily focused on the commercial Synapse Wireless family of devices. These devices have many useful features for NASA applications, good characteristics and the ability to be programmed Over-The-Air (OTA). The effort has focused on two widely used sensor types, mechanical strain gauges and thermal sensors. Mechanical strain gauges are used extensively in NASA structural testing and even on vehicle instrumentation systems. Additionally, thermal monitoring with many types of sensors is extensively used. These thermal sensors include thermocouples of all types, resistive temperature devices (RTDs), diodes and other thermal sensor types. The wireless thermal board will accommodate all of these types of sensor inputs to an analog front end. The analog front end on each of the sensors interfaces to the Synapse wireless microcontroller, based on the Atmel Atmega128 device. Once the analog sensor output data is digitized by the onboard analog to digital converter (A/D), the data is available for analysis, computation or transmission. Various hardware features allow custom embedded software to manage battery power to enhance battery life. This technology development fits nicely into using numerous additional sensor front ends, including some of the low-cost printed circuit board capacitive moisture content sensors currently being developed at Auburn University.
Multi-depth valved microfluidics for biofilm segmentation
NASA Astrophysics Data System (ADS)
Meyer, M. T.; Subramanian, S.; Kim, Y. W.; Ben-Yoav, H.; Gnerlich, M.; Gerasopoulos, K.; Bentley, W. E.; Ghodssi, R.
2015-09-01
Bacterial biofilms present a societal challenge, as they occur in the majority of infections but are highly resistant to both immune mechanisms and traditional antibiotics. In the pursuit of better understanding biofilm biology for developing new treatments, there is a need for streamlined, controlled platforms for biofilm growth and evaluation. We leverage advantages of microfluidics to develop a system in which biofilms are formed and sectioned, allowing parallel assays on multiple sections of one biofilm. A microfluidic testbed with multiple depth profiles was developed to accommodate biofilm growth and sectioning by hydraulically actuated valves. In realization of the platform, a novel fabrication technique was developed for creating multi-depth microfluidic molds using sequentially patterned photoresist separated and passivated by conformal coatings using atomic layer deposition. Biofilm thickness variation within three separately tested devices was less than 13% of the average thickness in each device, while variation between devices was 23% of the average thickness. In a demonstration of parallel experiments performed on one biofilm within one device, integrated valves were used to trisect the uniform biofilms with one section maintained as a control, and two sections exposed to different concentrations of sodium dodecyl sulfate. The technology presented here for multi-depth microchannel fabrication can be used to create a host of microfluidic devices with diverse architectures. While this work focuses on one application of such a device in biofilm sectioning for parallel experimentation, the tailored architectures enabled by the fabrication technology can be used to create devices that provide new biological information.
NASA Technical Reports Server (NTRS)
1985-01-01
A visual alert system resulted from circuitry developed by Applied Cybernetics Systems for Langley as part of a space related telemetry system. James Campman, Applied Cybernetics president, left the company and founded Grace Industries, Inc. to manufacture security devices based on the Langley technology. His visual alert system combines visual and audible alerts for hearing impaired people. The company also manufactures an arson detection device called the electronic nose, and is currently researching additional applications of the NASA technology.
The fabrication of a programmable via using phase-change material in CMOS-compatible technology.
Chen, Kuan-Neng; Krusin-Elbaum, Lia
2010-04-02
We demonstrate an energy-efficient programmable via concept using indirectly heated phase-change material. This via structure has maximum phase-change volume to achieve a minimum on resistance for high performance logic applications. Process development and material investigations for this device structure are reported. The device concept is successfully demonstrated in a standard CMOS-compatible technology capable of multiple cycles between on/off states for reconfigurable applications.
Monolithic microwave integrated circuit technology for advanced space communication
NASA Technical Reports Server (NTRS)
Ponchak, George E.; Romanofsky, Robert R.
1988-01-01
Future Space Communications subsystems will utilize GaAs Monolithic Microwave Integrated Circuits (MMIC's) to reduce volume, weight, and cost and to enhance system reliability. Recent advances in GaAs MMIC technology have led to high-performance devices which show promise for insertion into these next generation systems. The status and development of a number of these devices operating from Ku through Ka band will be discussed along with anticipated potential applications.
3D MOEMS-based optical micro-bench platform for the miniaturization of sensing devices
NASA Astrophysics Data System (ADS)
Garcia-Blanco, Sonia; Caron, Jean-Sol; Leclair, Sébastien; Topart, Patrice A.; Jerominek, Hubert
2008-02-01
As we enter into the 21st century, the need for miniaturized portable diagnostic devices is increasing continuously. Portable devices find important applications for point-of-care diagnostics, patient self-monitoring and in remote areas, such as unpopulated regions where the cost of large laboratory facilities is not justifiable, underdeveloped countries and other remote locations such as space missions. The advantage of miniaturized sensing optical systems includes not only the reduced weight and size but also reduced cost, decreased time to results and robustness (e.g. no need for frequent re-alignments). Recent advances in micro-fabrication and assembly technologies have enabled important developments in the field of miniaturized sensing systems. INO has developed a technology platform for the three dimensional integration of MOEMS on an optical microbench. Building blocks of the platform include microlenses, micromirrors, dichroic beamsplitters, filters and optical fibers, which can be positioned using passive alignment structures to build the desired miniaturised system. The technology involves standard microfabrication, thick resist UV-lithography, thick metal electroplating, soldering, replication in sol-gel materials and flip-chip bonding processes. The technology is compatible with wafer-to-wafer bonding. A placement accuracy of +/- 5 μm has been demonstrated thanks to the integration of alignment marks co registered with other optical elements fabricated on different wafers. In this paper, the building blocks of the technology will be detailed. The design and fabrication of a 5x5 channels light processing unit including optical fibers, mirrors and collimating microlenses will be described. Application of the technology to various kinds of sensing devices will be discussed.
New horizons for orthotic and prosthetic technology: artificial muscle for ambulation
NASA Astrophysics Data System (ADS)
Herr, Hugh M.; Kornbluh, Roy D.
2004-07-01
The rehabilitation community is at the threshold of a new age in which orthotic and prosthetic devices will no longer be separate, lifeless mechanisms, but intimate extensions of the human body-structurally, neurologically, and dynamically. In this paper we discuss scientific and technological advances that promise to accelerate the merging of body and machine, including the development of actuator technologies that behave like muscle and control methodologies that exploit principles of biological movement. We present a state-of-the-art device for leg rehabilitation: a powered ankle-foot orthosis for stroke, cerebral palsy, or multiple sclerosis patients. The device employs a forcecontrollable actuator and a biomimetic control scheme that automatically modulates ankle impedance and motive torque to satisfy patient-specific gait requirements. Although the device has some clinical benefits, problems still remain. The force-controllable actuator comprises an electric motor and a mechanical transmission, resulting in a heavy, bulky, and noisy mechanism. As a resolution of this difficulty, we argue that electroactive polymer-based artificial muscle technologies may offer considerable advantages to the physically challenged, allowing for joint impedance and motive force controllability, noise-free operation, and anthropomorphic device morphologies.
MEMS applications in space exploration
NASA Astrophysics Data System (ADS)
Tang, William C.
1997-09-01
Space exploration in the coming century will emphasize cost effectiveness and highly focused mission objectives, which will result in frequent multiple missions that broaden the scope of space science and to validate new technologies on a timely basis. MEMS is one of the key enabling technology to create cost-effective, ultra-miniaturized, robust, and functionally focused spacecraft for both robotic and human exploration programs. Examples of MEMS devices at various stages of development include microgyroscope, microseismometer, microhygrometer, quadrupole mass spectrometer, and micropropulsion engine. These devices, when proven successful, will serve as models for developing components and systems for new-millennium spacecraft.
Applications of MEMS for Space Exploration
NASA Astrophysics Data System (ADS)
Tang, William C.
1998-03-01
Space exploration in the coming century will emphasize cost effectiveness and highly focused mission objectives, which will result in frequent multiple missions that broaden the scope of space science and to validate new technologies on a timely basis. Micro Electro Mechanical Systems (MEMS) is one of the key enabling technologies to create cost-effective, ultra-miniaturized, robust, and functionally focused spacecraft for both robotic and human exploration programs. Examples of MEMS devices at various stages of development include microgyroscope, microseismometer, microhygrometer, quadrupole mass spectrometer, and micropropulsion engine. These devices, when proven successful, will serve as models for developing components and systems for new-millennium spacecraft.
Development of Si(1-x)Ge(x) technology for microwave sensing applications
NASA Technical Reports Server (NTRS)
Mena, Rafael A.; Taub, Susan R.; Alterovitz, Samuel A.; Young, Paul E.; Simons, Rainee N.; Rosenfeld, David
1993-01-01
The progress for the first year of the work done under the Director's Discretionary Fund (DDF) research project entitled, 'Development of Si(1-x)Ge(x) Technology for Microwave Sensing Applications.' This project includes basic material characterization studies of silicon-germanium (SiGe), device processing on both silicon (Si) and SiGe substrates, and microwave characterization of transmission lines on silicon substrates. The material characterization studies consisted of ellipsometric and magneto-transport measurements and theoretical calculations of the SiGe band-structure. The device fabrication efforts consisted of establishing SiGe device processing capabilities in the Lewis cleanroom. The characterization of microwave transmission lines included studying the losses of various coplanar transmission lines and the development of transitions on silicon. Each part of the project is discussed individually and the findings for each part are presented. Future directions are also discussed.
ERIC Educational Resources Information Center
Brown, Timothy T.
2016-01-01
In this issue, Cavanaugh, Giapponi, and Golden (2016) have discussed the new prominent role of digital devices in the lives of students; the possible impact of these widely-used technologies on developing, learning minds; and the relevance of new cognitive neuroscience research and technologies for better understanding the potential effects of…
Medical Device Plug-and-Play Interoperability Standards and Technology Leadership
2012-10-01
External Network Pump Adapter PulseOx Adapter • MD MP3 cart is a platform for the development of smart pump control algorithms • It includes...delivery with bounded latency Medical Device Mobile PnP Prototype Platform (MD MP3 ) • Got MDCF code to run on the BeagleBoard development boards we are
NASA Astrophysics Data System (ADS)
Jakubský, Michal; Lenhard, Richard; Vantúch, Martin; Malcho, Milan
2012-04-01
In the call OPVaV-2008/2.2/01-SORO Operational Programme Research and Development - knowledge and technology transfer from research and development into practice (ITMS-26220220057), whose strategic goal is "Device to use low-potential geothermal heat without forced circulation of heat carrier deep in the well "in the Department of Energy laboratory techniques to construct a simulator of transport low potential of geothermal energy in comparative test-drilling in the laboratory. The article describes a device that was designed as a scale model of two deep boreholes each of which withdraws the earth's heat by heat transfer technology and heat carrier. Device using forced circulation of heat carrier will respond in the construction of equipment currently used to transport heat from deep borehole. As the heat carrier will be used CO2. Facilities without using forced circulation of heat carrier, the new technology, which will be used as heat carrier ammonia (NH3).
Additive manufacturing of hybrid circuits
Bell, Nelson S.; Sarobol, Pylin; Cook, Adam; ...
2016-03-26
There is a rising interest in developing functional electronics using additively manufactured components. Considerations in materials selection and pathways to forming hybrid circuits and devices must demonstrate useful electronic function; must enable integration; and must complement the complex shape, low cost, high volume, and high functionality of structural but generally electronically passive additively manufactured components. This article reviews several emerging technologies being used in industry and research/development to provide integration advantages of fabricating multilayer hybrid circuits or devices. First, we review a maskless, noncontact, direct write (DW) technology that excels in the deposition of metallic colloid inks for electrical interconnects.more » Second, we review a complementary technology, aerosol deposition (AD), which excels in the deposition of metallic and ceramic powder as consolidated, thick conformal coatings and is additionally patternable through masking. As a result, we show examples of hybrid circuits/devices integrated beyond 2-D planes, using combinations of DW or AD processes and conventional, established processes.« less
A 3D Polymer Based Printed Two-Dimensional Laser Scanner
NASA Astrophysics Data System (ADS)
Oyman, H. A.; Gokdel, Y. D.; Ferhanoglu, O.; Yalcinkaya, A. D.
2016-10-01
A two-dimensional (2D) polymer based scanning mirror with magnetic actuation is developed for imaging applications. Proposed device consists of a circular suspension holding a rectangular mirror and can generate a 2D scan pattern. Three dimensional (3D) printing technology which is used for implementation of the device, offers added flexibility in controlling the cross-sectional profile as well as the stress distribution compared to the traditional planar process technologies. The mirror device is developed to meet a portable, miniaturized confocal microscope application in mind, delivering 4.5 and 4.8 degrees of optical scan angles at 111 and 267 Hz, respectively. As a result of this mechanical performance, the resulting microscope incorporating the mirror is estimated to accomplish a field of view (FOV) of 350 µm × 350 µm.
Possibilities and limitations of current stereo-endoscopy.
Mueller-Richter, U D A; Limberger, A; Weber, P; Ruprecht, K W; Spitzer, W; Schilling, M
2004-06-01
Stereo-endoscopy has become a commonly used technology. In many comparative studies striking advantages of stereo-endoscopy over two-dimensional presentation could not be proven. To show the potential and fields for further improvement of this technology is the aim of this article. The physiological basis of three-dimensional vision limitations of current stereo-endoscopes is discussed and fields for further research are indicated. New developments in spatial picture acquisition and spatial picture presentation are discussed. Current limitations of stereo-endoscopy that prevent a better ranking in comparative studies with two-dimensional presentation are mainly based on insufficient picture acquisition. Devices for three-dimensional picture presentation are at a more advanced developmental stage than devices for three-dimensional picture acquisition. Further research should emphasize the development of new devices for three-dimensional picture acquisition.
NASA Astrophysics Data System (ADS)
Cohen, W.; Holbrook, D.; Klepper, S.
1994-06-01
This study examines the early years of the semiconductor industry and focuses on the roles played by different size firms in technologically innovative processes. A large and diverse pool of firms participated in the growth of the industry. Three related technological areas were chosen for in-depth analysis: integrated circuits, materials technology, and device packaging. Large business producing vacuum tubes dominated the early production of semiconductor devices. As the market for new devices grew during the 1950's, new firms were founded and existing firms from other industries, e.g. aircraft builders and instrument makers, began to pursue semiconductor electronics. Small firms began to cater to the emerging industry by supplying materials and equipment. These firms contributed to the development of certain aspects of one thousand firms that were playing some part in the semiconductor industry.
NASA Astrophysics Data System (ADS)
Cowan, Troy E.
2018-02-01
Healthcare Acquired Infections (HAIs) pose a significant health risk to our nation, especially to those most in need of healthcare. One in every 25 people admitted to a hospital will be infected by one or more HAIs. Significant reductions in HAI risks can be advanced through innovative technologies, such as UV antimicrobial disinfecting devices. Development of such technologies, along with the associated Behavioral, Chemical and Technological protocols to combat infectious HAIs is a worthwhile pursuit for the public good. A significant good will be accomplished by engaging optical scientists and engineers as well as healthcare professionals in opportunities to advance light-driven antimicrobial devices to halt infections. Fundamental change can be effected through a path of advancing standards and methods including optical measurements, and testing the efficacy of UV light antimicrobial devices and related technologies.
NASA Astrophysics Data System (ADS)
Toyama, Toshihiko; Ichihara, Tokuyuki; Yamaguchi, Daisuke; Okamoto, Hiroaki
2007-10-01
Thin-film light emitting devices based on organic materials have been gathering attentions for applying a flat-panel display and a solid-state lighting. Alternatively, inorganic technologies such as Si-based thin-film technology have been growing almost independently. It is then expected that combining the Si-based thin-film technology with the organic light emitting diode (OLED) technology will develop innovative devices. Here, we report syntheses of the hybrid light emitting diode (LED) with a heterostructure consisting of p-type SiC x and tris-(8-hydroxyquinoline) aluminum films and characterization for the hybrid LEDs. We present the energy diagram of the heterostructure, and describe that the use of high dark conductivities of the p-type SiC x as well as inserting wide-gap intrinsic a-SiC x at the p-type SiC x/Alq interface are effective for improving device performance.
Security Frameworks for Machine-to-Machine Devices and Networks
NASA Astrophysics Data System (ADS)
Demblewski, Michael
Attacks against mobile systems have escalated over the past decade. There have been increases of fraud, platform attacks, and malware. The Internet of Things (IoT) offers a new attack vector for Cybercriminals. M2M contributes to the growing number of devices that use wireless systems for Internet connection. As new applications and platforms are created, old vulnerabilities are transferred to next-generation systems. There is a research gap that exists between the current approaches for security framework development and the understanding of how these new technologies are different and how they are similar. This gap exists because system designers, security architects, and users are not fully aware of security risks and how next-generation devices can jeopardize safety and personal privacy. Current techniques, for developing security requirements, do not adequately consider the use of new technologies, and this weakens countermeasure implementations. These techniques rely on security frameworks for requirements development. These frameworks lack a method for identifying next generation security concerns and processes for comparing, contrasting and evaluating non-human device security protections. This research presents a solution for this problem by offering a novel security framework that is focused on the study of the "functions and capabilities" of M2M devices and improves the systems development life cycle for the overall IoT ecosystem.
Smart Power: New power integrated circuit technologies and their applications
NASA Astrophysics Data System (ADS)
Kuivalainen, Pekka; Pohjonen, Helena; Yli-Pietilae, Timo; Lenkkeri, Jaakko
1992-05-01
Power Integrated Circuits (PIC) is one of the most rapidly growing branches of the semiconductor technology. The PIC markets has been forecast to grow from 660 million dollars in 1990 to 1658 million dollars in 1994. It has even been forecast that at the end of the 1990's the PIC markets would correspond to the value of the whole semiconductor production in 1990. Automotive electronics will play the leading role in the development of the standard PIC's. Integrated motor drivers (36 V/4 A), smart integrated switches (60 V/30 A), solenoid drivers, integrated switch-mode power supplies and regulators are the latest standard devices of the PIC manufactures. ASIC (Application Specific Integrated Circuits) PIC solutions are needed for the same reasons as other ASIC devices: there are no proper standard devices, a company has a lot of application knowhow, which should be kept inside the company, the size of the product must be reduced, and assembly costs are wished to be reduced by decreasing the number of discrete devices. During the next few years the most probable ASIC PIC applications in Finland will be integrated solenoid and motor drivers, an integrated electronic lamp ballast circuit and various sensor interface circuits. Application of the PIC technologies to machines and actuators will strongly be increased all over the world. This means that various PIC's, either standard PIC's or full custom ASIC circuits, will appear in many products which compete with the corresponding Finnish products. Therefore the development of the PIC technologies must be followed carefully in order to immediately be able to apply the latest development in the smart power technologies and their design methods.
Development of Quasi-3DOF upper limb rehabilitation system using ER brake: PLEMO-P1
NASA Astrophysics Data System (ADS)
Kikuchi, T.; Fukushima, K.; Furusho, J.; Ozawa, T.
2009-02-01
In recent years, many researchers have studied the potential of using robotics technology to assist and quantify the motor functions for neuron-rehabilitation. Some kinds of haptic devices have been developed and evaluated its efficiency with clinical tests, for example, upper limb training for patients with spasticity after stroke. However, almost all the devices are active-type (motor-driven) haptic devices and they basically require high-cost safety system compared to passive-type (brake-based) devices. In this study, we developed a new practical haptic device 'PLEMO-P1'; this system adopted ER brakes as its force generators. In this paper, the mechanism of PLEMO-P1 and its software for a reaching rehabilitation are described.
Electronics: State of the Art No. 2.
ERIC Educational Resources Information Center
Gosling, W.
1979-01-01
Reviewed is a brief history of electronics technology, from the early beginnings of vacuum devices to development of solid state devices, silicon fabrication in the use of transistors, and integrated circuits. Educational needs at the university or polytechnic level are discussed. (CS)
Commercial vehicle (CV) retrofit safety device (RSD) kits project.
DOT National Transportation Integrated Search
2014-07-01
Retrofit Safety Device (RSD) kits were developed and deployed on commercial vehicles as part of the U.S. DOT Connected Vehicle Safety Pilot to gain insight into the unique aspects of deploying connected vehicle technology in a commercial vehicle envi...
Use of consumer wireless devices by South Africans with severe communication disability
Bryen, Diane Nelson; Moolman, Enid; Morris, John
2016-01-01
Background Advancements in wireless technology (e.g. cell phones and tablets) have opened new communication opportunities and environments for individuals with severe communication disabilities. The advancement of these technologies poses challenges to ensuring that these individuals enjoy equal access to this increasingly essential technology. However, a paucity of research exists. Objectives To describe the nature and frequency with which South African adults with severe communication disabilities have access to and use wireless devices, as well as the types of activities for which wireless devices are used. Method Survey research was conducted with 30 individuals who use augmentative and alternative communication (AAC) technology using the Survey of User Needs Questionnaire developed in the United States, and localized to the South African context. Results All participants, despite their limited education, unemployment and low economic status, owned and/or used mainstream wireless devices. Slightly more than half of the participants (53.3%) needed adaptations to their wireless devices. Advantages of using wireless devices were highlighted, including connecting with others (through using text messaging, social networking, making plans with others, sharing photos and videos with friends), for leisure activities (e.g. listening to music, watching videos, playing games), and for safety purposes (e.g. to navigate when lost, using the device when in trouble and needing immediate assistance). Conclusion These wireless devices offer substantial benefits and opportunities to individuals with disabilities who rely on AAC in terms of independence, social participation, education and safety/security. However, they still do not enjoy equal opportunity to access and use wireless devices relative to the non-disabled population. PMID:28730045
Are Current SEE Test Procedures Adequate for Modern Devices and Electronics Technologies?
NASA Technical Reports Server (NTRS)
LaBel, Kenneth A.; Cohn, Lewis M.; Ladbury, Ray
2008-01-01
Believe it or not, this has been a simplistic look at starting a checklist for SEE testing. Given a memory that has 68 operating modes, when a SEU occurs that changes the mode, just how do you determine what's going on? Laser and microbeam tests can help, but not easily for modern packaged devices. Expanding this approach to other more complex devices such as ADCs or processors as well as analog devices should be considered. The recommendation is to use the existing text standards as the starting point. Just make your own checklist for the device/technology/issues being considered. At HEART 2007, we presented some of the burgeoning challenges associated with single event effect(SEE) testing of modern commercial memories: a) Package, device complexity, test fixture, and data analysis issues were discussed; b) "Complete" SEE Characterization would take 15 years; c) Qualification test costs have a greater than 4 times increase over the last decade. In this talk, we continue to explore the roles of technology with an emphasis on the existing SEE Test Procedures and some of the concerns related to modern devices. The primary objective of the briefing is to provide some overarching guidance concerning the many considerations involved in the formulation of a SEE test plan provided in a " Checklist" format.we note that there is no such thing as a complete check list and that the best approach is to develop a flexible test plan that takes into account the device type and functions, the device technology, circuit and package design, and, of course, test facility and beam characteristics.
Use of consumer wireless devices by South Africans with severe communication disability.
Bornman, Juan; Bryen, Diane Nelson; Moolman, Enid; Morris, John
2016-01-01
Advancements in wireless technology (e.g. cell phones and tablets) have opened new communication opportunities and environments for individuals with severe communication disabilities. The advancement of these technologies poses challenges to ensuring that these individuals enjoy equal access to this increasingly essential technology. However, a paucity of research exists. To describe the nature and frequency with which South African adults with severe communication disabilities have access to and use wireless devices, as well as the types of activities for which wireless devices are used. Survey research was conducted with 30 individuals who use augmentative and alternative communication (AAC) technology using the Survey of User Needs Questionnaire developed in the United States, and localized to the South African context. All participants, despite their limited education, unemployment and low economic status, owned and/or used mainstream wireless devices. Slightly more than half of the participants (53.3%) needed adaptations to their wireless devices. Advantages of using wireless devices were highlighted, including connecting with others (through using text messaging, social networking, making plans with others, sharing photos and videos with friends), for leisure activities (e.g. listening to music, watching videos, playing games), and for safety purposes (e.g. to navigate when lost, using the device when in trouble and needing immediate assistance). These wireless devices offer substantial benefits and opportunities to individuals with disabilities who rely on AAC in terms of independence, social participation, education and safety/security. However, they still do not enjoy equal opportunity to access and use wireless devices relative to the non-disabled population.
Polycrystalline Thin Film Photovoltaics: Research, Development, and Technologies: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ullal, H. S.; Zweibel, K.; von Roedern, B.
2002-05-01
II-VI binary thin-film solar cells based on cadmium telluride (CdTe) and I-III-VI ternary thin-film solar cells based on copper indium diselenide (CIS) and related materials have been the subject of intense research and development in the past few years. Substantial progress has been made thus far in the area of materials research, device fabrication, and technology development, and numerous applications based on CdTe and CIS have been deployed worldwide. World record efficiency of 16.5% has been achieved by NREL scientists for a thin-film CdTe solar cell using a modified device structure. Also, NREL scientists achieved world-record efficiency of 21.1% formore » a thin-film CIGS solar cell under a 14X concentration and AM1.5 global spectrum. When measured under a AM1.5 direct spectrum, the efficiency increases to 21.5%. Pathways for achieving 25% efficiency for tandem polycrystalline thin-film solar cells are elucidated. R&D issues relating to CdTe and CIS are reported in this paper, such as contact stability and accelerated life testing in CdTe, and effects of moisture ingress in thin-film CIS devices. Substantial technology development is currently under way, with various groups reporting power module efficiencies in the range of 7.0% to 12.1% and power output of 40.0 to 92.5 W. A number of lessons learned during the scale-up activities of the technology development for fabrication of thin-film power modules are discussed. The major global players actively involved in the technology development and commercialization efforts using both rigid and flexible power modules are highlighted.« less
Virtual reality applications to automated rendezvous and capture
NASA Technical Reports Server (NTRS)
Hale, Joseph; Oneil, Daniel
1991-01-01
Virtual Reality (VR) is a rapidly developing Human/Computer Interface (HCI) technology. The evolution of high-speed graphics processors and development of specialized anthropomorphic user interface devices, that more fully involve the human senses, have enabled VR technology. Recently, the maturity of this technology has reached a level where it can be used as a tool in a variety of applications. This paper provides an overview of: VR technology, VR activities at Marshall Space Flight Center (MSFC), applications of VR to Automated Rendezvous and Capture (AR&C), and identifies areas of VR technology that requires further development.
Smart Technology in Lung Disease Clinical Trials.
Geller, Nancy L; Kim, Dong-Yun; Tian, Xin
2016-01-01
This article describes the use of smart technology by investigators and patients to facilitate lung disease clinical trials and make them less costly and more efficient. By "smart technology" we include various electronic media, such as computer databases, the Internet, and mobile devices. We first describe the use of electronic health records for identifying potential subjects and then discuss electronic informed consent. We give several examples of using the Internet and mobile technology in clinical trials. Interventions have been delivered via the World Wide Web or via mobile devices, and both have been used to collect outcome data. We discuss examples of new electronic devices that recently have been introduced to collect health data. While use of smart technology in clinical trials is an exciting development, comparison with similar interventions applied in a conventional manner is still in its infancy. We discuss advantages and disadvantages of using this omnipresent, powerful tool in clinical trials, as well as directions for future research. Published by Elsevier Inc.
Development of Implantable Medical Devices: From an Engineering Perspective
2013-01-01
From the first pacemaker implant in 1958, numerous engineering and medical activities for implantable medical device development have faced challenges in materials, battery power, functionality, electrical power consumption, size shrinkage, system delivery, and wireless communication. With explosive advances in scientific and engineering technology, many implantable medical devices such as the pacemaker, cochlear implant, and real-time blood pressure sensors have been developed and improved. This trend of progress in medical devices will continue because of the coming super-aged society, which will result in more consumers for the devices. The inner body is a special space filled with electrical, chemical, mechanical, and marine-salted reactions. Therefore, electrical connectivity and communication, corrosion, robustness, and hermeticity are key factors to be considered during the development stage. The main participants in the development stage are the user, the medical staff, and the engineer or technician. Thus, there are three different viewpoints in the development of implantable devices. In this review paper, considerations in the development of implantable medical devices will be presented from the viewpoint of an engineering mind. PMID:24143287
KURTI, ALLISON N.; DALLERY, JESSE
2015-01-01
The use of mobile devices is growing worldwide in both industrialized and developing nations. Alongside the worldwide penetration of web-enabled devices, the leading causes of morbidity and mortality are increasingly modifiable lifestyle factors (e.g., improving one’s diet and exercising more). Behavior analysts have the opportunity to promote health by combining effective behavioral methods with technological advancements. The objectives of this paper are (1) to highlight the public health gains that may be achieved by integrating technology with a behavior analytic approach to developing interventions, and (2) to review some of the currently, under-examined issues related to merging technology and behavior analysis (enhancing sustainability, obtaining frequent measures of behavior, conducting component analyses, evaluating cost-effectiveness, incorporating behavior analysis in the creation of consumer-based applications, and reducing health disparities). Thorough consideration of these issues may inspire the development, implementation, and dissemination of innovative, efficacious interventions that substantially improve global public health. PMID:25774070
Aerodynamic Measurement Technology
NASA Technical Reports Server (NTRS)
Burner, Alpheus W.
2002-01-01
Ohio State University developed a new spectrally filtered light-scattering apparatus based on a diode laser injected-locked titanium: sapphire laser and rubidium vapor filter at 780.2 nm. When the device was combined with a stimulated Brillouin scattering phase conjugate mirror, the realizable peak attenuation of elastic scattering interferences exceeded 105. The potential of the system was demonstrated by performing Thomson scattering measurements. Under USAF-NASA funding, West Virginia University developed a Doppler global velocimetry system using inexpensive 8-bit charged coupled device cameras and digitizers and a CW argon ion laser. It has demonstrated a precision of +/- 2.5 m/sec in a swirling jet flow. Low-noise silicon-micromachined microphones developed and incorporated in a novel two-tier, hybrid packaging scheme at the University of Florida used printed circuit board technology to realize a MEMS-based directional acoustic array. The array demonstrated excellent performance relative to conventional sensor technologies and provides scaling technologies that can reduce cost and increase speed and mobility.
High-Temperature Electronics: A Role for Wide Bandgap Semiconductors?
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.; Okojie, Robert S.; Chen, Liang-Yu
2002-01-01
It is increasingly recognized that semiconductor based electronics that can function at ambient temperatures higher than 150 C without external cooling could greatly benefit a variety of important applications, especially-in the automotive, aerospace, and energy production industries. The fact that wide bandgap semiconductors are capable of electronic functionality at much higher temperatures than silicon has partially fueled their development, particularly in the case of SiC. It appears unlikely that wide bandgap semiconductor devices will find much use in low-power transistor applications until the ambient temperature exceeds approximately 300 C, as commercially available silicon and silicon-on-insulator technologies are already satisfying requirements for digital and analog very large scale integrated circuits in this temperature range. However, practical operation of silicon power devices at ambient temperatures above 200 C appears problematic, as self-heating at higher power levels results in high internal junction temperatures and leakages. Thus, most electronic subsystems that simultaneously require high-temperature and high-power operation will necessarily be realized using wide bandgap devices, once the technology for realizing these devices become sufficiently developed that they become widely available. Technological challenges impeding the realization of beneficial wide bandgap high ambient temperature electronics, including material growth, contacts, and packaging, are briefly discussed.
SR&DB Cryogenic Research & Development for Space Applications
NASA Astrophysics Data System (ADS)
Bondarenko, S. I.; Arkhipov, V. T.; Logvinenko, S. P.; Solodovnik, L. L.; Rusanov, K. V.; Shcherbakova, N. S.
The Special Research and Development Bureau (SR&DB) for Cryogenic Technology of the B. Verkin Institute for Low Temperature Physics & Engineering was founded in 1971 and is located in Kharkov, Ukraine. Its primary focus has been in the area of applied r&d in the field of cryogenic technology for space applications. Within this field SR&DB has had many successful accomplishments, especially in the development of satellite based cryogenic cooling systems, mass spectrometer measurement devices, resistence thermometers, and cryogenically cooled optical systems. We have developed very advanced technology in the fields of fluids, heat transfer and hydrodynamics under micro-gravity conditions. Many of the SR&DB cryogenic products have been successfully implemented for former Soviet space applications, both near-earth and deep space. The SR&DB unique experience in many R&D areas can be and are being used for a new generation of space applications which have a requirement for planetary and deep-space missions. Systems we have developed have been proven to have a 5-year life in orbit. Recently we have focused much of our attention, as well, to the requirement low-weight and low-power systems which are mandatory requirements for outerspace missions. The funtionality of the exterior surfaces of a spacecraft are mainly dependent on the composition of its internally generated local atmosphere. In order to continually assess the content and concentration of components of this atmosphere we have developed space based mass spectrometric measuring devices. Devices which require such continual measurement are optical devices, emission receivers, solar cells, etc. A significant technology advance in the field of cryogenics is the application of cryoagents in systems of life support and spacecraft engine operation. We have studied and have an in-depth comprehension of unique phase-transition for these cryoagents such as oxygen, hydrogen, et al. under microgravity conditions. Currently SR&DB under contract to the National Space Agency of Ukraine has been developing an experimental apparatus for studying the continuous boiling off of cryogenic fluids under micro-gravity conditions.
The Defense Threat Reduction Agency's Technical Nuclear Forensics Research and Development Program
NASA Astrophysics Data System (ADS)
Franks, J.
2015-12-01
The Defense Threat Reduction Agency (DTRA) Technical Nuclear Forensics (TNF) Research and Development (R&D) Program's overarching goal is to design, develop, demonstrate, and transition advanced technologies and methodologies that improve the interagency operational capability to provide forensics conclusions after the detonation of a nuclear device. This goal is attained through the execution of three focus areas covering the span of the TNF process to enable strategic decision-making (attribution): Nuclear Forensic Materials Exploitation - Development of targeted technologies, methodologies and tools enabling the timely collection, analysis and interpretation of detonation materials.Prompt Nuclear Effects Exploitation - Improve ground-based capabilities to collect prompt nuclear device outputs and effects data for rapid, complementary and corroborative information.Nuclear Forensics Device Characterization - Development of a validated and verified capability to reverse model a nuclear device with high confidence from observables (e.g., prompt diagnostics, sample analysis, etc.) seen after an attack. This presentation will outline DTRA's TNF R&D strategy and current investments, with efforts focusing on: (1) introducing new technical data collection capabilities (e.g., ground-based prompt diagnostics sensor systems; innovative debris collection and analysis); (2) developing new TNF process paradigms and concepts of operations to decrease timelines and uncertainties, and increase results confidence; (3) enhanced validation and verification (V&V) of capabilities through technology evaluations and demonstrations; and (4) updated weapon output predictions to account for the modern threat environment. A key challenge to expanding these efforts to a global capability is the need for increased post-detonation TNF international cooperation, collaboration and peer reviews.
NASA Astrophysics Data System (ADS)
Boulade, Olivier; Moreau, Vincent; Mulet, Patrick; Gravrand, Olivier; Cervera, Cyril; Zanatta, Jean-Paul; Castelein, Pierre; Guellec, Fabrice; Fièque, Bruno; Chorier, Philippe; Roumegoux, Julien
2016-07-01
CEA and SOFRADIR have been manufacturing and characterizing near infrared detectors in the frame of ESA's near infrared large format sensor array roadmap to develop a 2Kx2K large format low flux low noise device for space applications such as astrophysics. These detectors use HgCdTe as the absorbing material and p/n diode technology. The technological developments (photovoltaic technology, readout circuit, ...) are shared between CEA/LETI and SOFRADIR, both in Grenoble, while most of the performances are evaluated at CEA/IRFU in Saclay where a dedicated test facility has been developed, in particular to measure very low dark currents. The paper will present the current status of these developments at the end of ESA's NIRLFSA phase 2. The performances of the latest batch of devices meet or are very close to all the requirements (quantum efficiency, dark current, cross talk, readout noise, ...) even though a glow induced by the ROIC prevents the accurate measurement of the dark current. The current devices are fairly small, 640x512 15μm pixels, and the next phase of activity will target the development of a full size 2Kx2K detector. From the design and development, to the manufacturing and finally the testing, that type of detector requests a high level of mastering. An appropriate manufacturing and process chain compatible with such a size is needed at industrial level and results obtained with CEA technology coupled with Sofradir industrial experience and work on large dimension detector allow French actors to be confident to address this type of future missions.
Results of Measurements of Accelerations of Technological Devices onboard the FotonSpacecraft
NASA Astrophysics Data System (ADS)
Barmin, I. V.; Volkov, M. V.; Egorov, A. V.; Reut, E. F.; Senchenkov, A. S.
2001-07-01
This paper generalizes the results of measuring the residual accelerations arising when investigations in space materials science are carried out onboard the unmanned Fotonspacecraft. The levels of vibroaccelerations are analyzed in the frequency band of 1 500 Hz for the technological devices UZ01, UZ04, and POLIZON, developed by the Federal Unitary State Enterprise “Barmin Design Bureau of General Machine Building” (V.P. Barmin KBOM). The levels of accelerations are estimated in the frequency band of 0 1 Hz in the zone of technological operations of these facilities. The basic sources of vibroaccelerations acting upon the frames of devices are determined in the capsule zone, where technological processes of producing new materials take place. In the frequency band of 1 500 Hz the vibroaccelerations are shown to be generated by the operation of Fotonspacecraft units and a drive of capsule translation during the technological process. On the capsule frame they reach the values of (1 3) × 10 3 g. The level of linear accelerations in the infralow-frequency band is determined by rotational motions of the Fotonspacecraft. It depends on the device location with respect to the spacecraft center of mass and does not exceed (1 7) × 10 6 gin the steady-state regime in the zone of technological activity.
Klatzky, Roberta L; Giudice, Nicholas A; Bennett, Christopher R; Loomis, Jack M
2014-01-01
Many developers wish to capitalize on touch-screen technology for developing aids for the blind, particularly by incorporating vibrotactile stimulation to convey patterns on their surfaces, which otherwise are featureless. Our belief is that they will need to take into account basic research on haptic perception in designing these graphics interfaces. We point out constraints and limitations in haptic processing that affect the use of these devices. We also suggest ways to use sound to augment basic information from touch, and we include evaluation data from users of a touch-screen device with vibrotactile and auditory feedback that we have been developing, called a vibro-audio interface.
2018-01-01
Hospital-acquired infections (HAIs) are infections that patients contract while in the hospital that were neither present nor developing at the time of admission. In Canada an estimated 10% of adults with short-term hospitalization have HAIs. According to 2003 Canadian data, between 4% and 6% of these patients die from these infections. The most common HAIs in Ontario are caused by Clostridium difficile . The standard method of reducing and preventing these infections is decontamination of patient rooms through manual cleaning and disinfection. Several portable no-touch ultraviolet (UV) light systems have been proposed to supplement current hospital cleaning and disinfecting practices. We searched for studies published from inception of UV disinfection technology to January 23, 2017. We compared portable UV surface-disinfecting devices used together with standard hospital room cleaning and disinfecting versus standard hospital cleaning and disinfecting alone. The primary outcome was HAI from C. difficile . Other outcomes were combined HAIs, colonization (i.e., carrying an infectious agent without exhibiting disease symptoms), and the HAI-associated mortality rate. We used Grading of Recommendations Assessment, Development, and Evaluation (GRADE) to rate the quality of evidence of included studies. We also performed a 5-year budget impact analysis from the hospital's perspective. This assessment was limited to portable devices and did not examine wall mounted devices, which are used in some hospitals. The database search for the clinical review yielded 10 peer-reviewed publications that met eligibility criteria. Three studies focused on mercury UV-C-based technology, seven on pulsed xenon UV technology. Findings were either inconsistent or produced very low-quality evidence using the GRADE rating system. The intervention was effective in reducing the rate of the composite outcome of HAIs (combined) and colonization (but quality of evidence was low). For the review of economic studies, 152 peer-reviewed publications were identified and screened. No studies met the inclusion criteria. Under the assumption that two devices would be purchased per hospital, we estimated the 5-year budget impact of $586,023 for devices that use the pulsed xenon technology and of $634,255 for devices that use the mercury technology. We are unable to make a firm conclusion about the effectiveness of this technology on HAIs given the very low to low quality of evidence. The budget impact estimates are sensitive to assumptions made about the number of UV disinfecting devices purchased per hospital, frequency of daytime use, and staff time required per use.
Nikitovic-Jokic, Milica; Kabali, Conrad; Li, Chunmei; Higgins, Caroline
2018-01-01
Background Hospital-acquired infections (HAIs) are infections that patients contract while in the hospital that were neither present nor developing at the time of admission. In Canada an estimated 10% of adults with short-term hospitalization have HAIs. According to 2003 Canadian data, between 4% and 6% of these patients die from these infections. The most common HAIs in Ontario are caused by Clostridium difficile. The standard method of reducing and preventing these infections is decontamination of patient rooms through manual cleaning and disinfection. Several portable no-touch ultraviolet (UV) light systems have been proposed to supplement current hospital cleaning and disinfecting practices. Methods We searched for studies published from inception of UV disinfection technology to January 23, 2017. We compared portable UV surface-disinfecting devices used together with standard hospital room cleaning and disinfecting versus standard hospital cleaning and disinfecting alone. The primary outcome was HAI from C. difficile. Other outcomes were combined HAIs, colonization (i.e., carrying an infectious agent without exhibiting disease symptoms), and the HAI-associated mortality rate. We used Grading of Recommendations Assessment, Development, and Evaluation (GRADE) to rate the quality of evidence of included studies. We also performed a 5-year budget impact analysis from the hospital's perspective. This assessment was limited to portable devices and did not examine wall mounted devices, which are used in some hospitals. Results The database search for the clinical review yielded 10 peer-reviewed publications that met eligibility criteria. Three studies focused on mercury UV-C–based technology, seven on pulsed xenon UV technology. Findings were either inconsistent or produced very low-quality evidence using the GRADE rating system. The intervention was effective in reducing the rate of the composite outcome of HAIs (combined) and colonization (but quality of evidence was low). For the review of economic studies, 152 peer-reviewed publications were identified and screened. No studies met the inclusion criteria. Under the assumption that two devices would be purchased per hospital, we estimated the 5-year budget impact of $586,023 for devices that use the pulsed xenon technology and of $634,255 for devices that use the mercury technology. Conclusions We are unable to make a firm conclusion about the effectiveness of this technology on HAIs given the very low to low quality of evidence. The budget impact estimates are sensitive to assumptions made about the number of UV disinfecting devices purchased per hospital, frequency of daytime use, and staff time required per use. PMID:29487629
Origins of medical innovation: the case of coronary artery stents.
Xu, Shuai; Avorn, Jerry; Kesselheim, Aaron S
2012-11-01
Innovative medical devices make major contributions to patient welfare, and coronary stents have been among the most important device developments of recent decades. However, the origins of such breakthrough medical technologies remain poorly understood. Using a comprehensive database of patents, we identified all individuals and institutions that developed intellectual property related to stent technology early in its development process. The patents were categorized and described using a predetermined qualitative coding strategy. We found 245 granted patents related to bare metal coronary artery stents from 1984 (when the first patent issued in this field) to 1994 (after the first stents were approved). Each year showed an increase in the number of patent filings: from 1 in 1984 to 97 in 1994. The largest fraction of patents was issued to private entities (44.9% of the total). Public companies, individual inventors, and nonprofit institutions represented 31.4%, 18.0%, and 5.7%, respectively. The top 10 most-cited patents in the field were dominated by 2 private entities, Expandable Grafts Partnership and Cook Inc, organizations created by or dependent on the work of independent academic physician-inventors. Coronary artery stent technology first arose from individual physician-inventors within academic medical centers and their associated private companies. After these initial innovations were in place, the field became dominated by large public companies. This history suggests that policies aimed at encouraging transformative medical device development would have their greatest effect if focused on individual inventors and scientists performing the early stages of technology development.
Flexible Architecture for FPGAs in Embedded Systems
NASA Technical Reports Server (NTRS)
Clark, Duane I.; Lim, Chester N.
2012-01-01
Commonly, field-programmable gate arrays (FPGAs) being developed in cPCI embedded systems include the bus interface in the FPGA. This complicates the development because the interface is complicated and requires a lot of development time and FPGA resources. In addition, flight qualification requires a substantial amount of time be devoted to just this interface. Another complication of putting the cPCI interface into the FPGA being developed is that configuration information loaded into the device by the cPCI microprocessor is lost when a new bit file is loaded, requiring cumbersome operations to return the system to an operational state. Finally, SRAM-based FPGAs are typically programmed via specialized cables and software, with programming files being loaded either directly into the FPGA, or into PROM devices. This can be cumbersome when doing FPGA development in an embedded environment, and does not have an easy path to flight. Currently, FPGAs used in space applications are usually programmed via multiple space-qualified PROM devices that are physically large and require extra circuitry (typically including a separate one-time programmable FPGA) to enable them to be used for this application. This technology adds a cPCI interface device with a simple, flexible, high-performance backend interface supporting multiple backend FPGAs. It includes a mechanism for programming the FPGAs directly via the microprocessor in the embedded system, eliminating specialized hardware, software, and PROM devices and their associated circuitry. It has a direct path to flight, and no extra hardware and minimal software are required to support reprogramming in flight. The device added is currently a small FPGA, but an advantage of this technology is that the design of the device does not change, regardless of the application in which it is being used. This means that it needs to be qualified for flight only once, and is suitable for one-time programmable devices or an application specific integrated circuit (ASIC). An application programming interface (API) further reduces the development time needed to use the interface device in a system.
Applying Digital Sensor Technology: A Problem-Solving Approach
ERIC Educational Resources Information Center
Seedhouse, Paul; Knight, Dawn
2016-01-01
There is currently an explosion in the number and range of new devices coming onto the technology market that use digital sensor technology to track aspects of human behaviour. In this article, we present and exemplify a three-stage model for the application of digital sensor technology in applied linguistics that we have developed, namely,…
Embedded Data Processor and Portable Computer Technology testbeds
NASA Technical Reports Server (NTRS)
Alena, Richard; Liu, Yuan-Kwei; Goforth, Andre; Fernquist, Alan R.
1993-01-01
Attention is given to current activities in the Embedded Data Processor and Portable Computer Technology testbed configurations that are part of the Advanced Data Systems Architectures Testbed at the Information Sciences Division at NASA Ames Research Center. The Embedded Data Processor Testbed evaluates advanced microprocessors for potential use in mission and payload applications within the Space Station Freedom Program. The Portable Computer Technology (PCT) Testbed integrates and demonstrates advanced portable computing devices and data system architectures. The PCT Testbed uses both commercial and custom-developed devices to demonstrate the feasibility of functional expansion and networking for portable computers in flight missions.
Air Purifiers Eliminate Pathogens, Preserve Food
NASA Technical Reports Server (NTRS)
2009-01-01
NASA-funded researchers produced an ethylene reduction device for a plant growth unit. KES Science & Technology Inc., a Kennesaw, Georgia-based company specializing in sustaining perishable foods, licensed the ethylene scrubbing technology. KES partnered with Akida Holdings, of Jacksonville, Florida, which now markets the NASA-developed technology as AiroCide. According to the company, it is the only air purifier that completely destroys airborne bacteria, mold, fungi, mycotoxins, viruses, volatile organic compounds (like ethylene), and odors. What?s more, the devices have no filters that need changing and produce no harmful byproducts, such as the ozone created by some filtration systems.
Inventing urine incontinence devices for women.
Pieper, B; Cleland, V; Johnson, D E; O'Reilly, J L
1989-01-01
Nurses have long been aware of the devastating effects of urinary incontinence on women. Although women may find diapers, pads and protective clothing valuable protection, there are few options for a continuous wear, external urine incontinence device (EUID). Inventors have attempted to develop an EUID since ancient times; the first United States patent for an EUID was awarded in 1949. The purpose of this paper is to review technological considerations for development of an external urinary incontinence device for women. Patents and products illustrate the considerations.
Optimizing the construction of devices to control inaccesible surfaces - case study
NASA Astrophysics Data System (ADS)
Niţu, E. L.; Costea, A.; Iordache, M. D.; Rizea, A. D.; Babă, Al
2017-10-01
The modern concept for the evolution of manufacturing systems requires multi-criteria optimization of technological processes and equipments, prioritizing associated criteria according to their importance. Technological preparation of the manufacturing can be developed, depending on the volume of production, to the limit of favourable economical effects related to the recovery of the costs for the design and execution of the technological equipment. Devices, as subsystems of the technological system, in the general context of modernization and diversification of machines, tools, semi-finished products and drives, are made in a multitude of constructive variants, which in many cases do not allow their identification, study and improvement. This paper presents a case study in which the multi-criteria analysis of some structures, based on a general optimization method, of novelty character, is used in order to determine the optimal construction variant of a control device. The rational construction of the control device confirms that the optimization method and the proposed calculation methods are correct and determine a different system configuration, new features and functions, and a specific method of working to control inaccessible surfaces.
3D Integration for Wireless Multimedia
NASA Astrophysics Data System (ADS)
Kimmich, Georg
The convergence of mobile phone, internet, mapping, gaming and office automation tools with high quality video and still imaging capture capability is becoming a strong market trend for portable devices. High-density video encode and decode, 3D graphics for gaming, increased application-software complexity and ultra-high-bandwidth 4G modem technologies are driving the CPU performance and memory bandwidth requirements close to the PC segment. These portable multimedia devices are battery operated, which requires the deployment of new low-power-optimized silicon process technologies and ultra-low-power design techniques at system, architecture and device level. Mobile devices also need to comply with stringent silicon-area and package-volume constraints. As for all consumer devices, low production cost and fast time-to-volume production is key for success. This chapter shows how 3D architectures can bring a possible breakthrough to meet the conflicting power, performance and area constraints. Multiple 3D die-stacking partitioning strategies are described and analyzed on their potential to improve the overall system power, performance and cost for specific application scenarios. Requirements and maturity of the basic process-technology bricks including through-silicon via (TSV) and die-to-die attachment techniques are reviewed. Finally, we highlight new challenges which will arise with 3D stacking and an outlook on how they may be addressed: Higher power density will require thermal design considerations, new EDA tools will need to be developed to cope with the integration of heterogeneous technologies and to guarantee signal and power integrity across the die stack. The silicon/wafer test strategies have to be adapted to handle high-density IO arrays, ultra-thin wafers and provide built-in self-test of attached memories. New standards and business models have to be developed to allow cost-efficient assembly and testing of devices from different silicon and technology providers.
History highlights and future trends of infrared sensors
NASA Astrophysics Data System (ADS)
Corsi, Carlo
2010-10-01
Infrared (IR) technologies (materials, devices and systems) represent an area of excellence in science and technology and, even if they have been generally confined to a selected scientific community, they have achieved technological and scientific highlights constituting 'innovation drivers' for neighbouring disciplines, especially in the sensors field. The development of IR sensors, initially linked to astronomical observations, since World War II and for many years has been fostered essentially by defence applications, particularly thermo-vision and, later on, smart vision and detection, for surveillance and warning. Only in the last few decades, the impact of silicon technology has changed the development of IR detectors dramatically, with the advent of integrated signal read-outs and the opening of civilian markets (EO communications, biomedical, environmental, transport and energy applications). The history of infrared sensors contains examples of real breakthroughs, particularly true in the case of focal plane arrays that first appeared in the late 1970s, when the superiority of bi-dimensional arrays for most applications pushed the development of technologies providing the highest number of pixels. An impressive impulse was given to the development of FPA arrays by integration with charge coupled devices (CCD), with strong competition from different technologies (high-efficiency photon sensors, Schottky diodes, multi-quantum wells and, later on, room temperature microbolometers/cantilevers). This breakthrough allowed the development of high performance IR systems of small size, light weight and low cost - and therefore suitable for civil applications - thanks to the elimination of the mechanical scanning system and the progressive reduction of cooling requirements (up to the advent of microbolometers, capable of working at room temperature). In particular, the elimination of cryogenic cooling allowed the development and commercialisation of IR Smart Sensors; strategic components for important areas like transport, environment, territory control and security. Infrared history is showing oscillations and variations in raw materials, technology processes and in device design and characteristics. Various technologies oscillating between the two main detection techniques (photon and bolometer effects) have been developed and evaluated as the best ones, depending on the system use as well as expectable performances. Analysis of the 'waving change' in the history of IR sensor technologies is given with the fundamental theory of the various approaches. Highlights of the main historical IR developments and their impact and use in civil and military applications is shown and correlated with the leading technology of silicon microelectronics: scientific and economic comparisons are given and emerging technologies and forecasting of future developments are outlined.
Music, Technology, and an Evolving Curriculum.
ERIC Educational Resources Information Center
Moore, Brian
1992-01-01
Mechanical examples of musical technology, like the Steinway piano, are well known and accepted. Use of computers and electronic technology is the next logical step in developing art of music. MIDI (Musical Instrument Digital Interface) is explained, along with digital devices (such as synthesizers, sequencers, music notation software, multimedia,…
A method for EIA scoping of wave energy converters-based on classification of the used technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Margheritini, Lucia, E-mail: lm@civil.aau.dk; Hansen, Anne Merrild, E-mail: merrild@plan.aau.dk; Frigaard, Peter, E-mail: pf@civil.aau.dk
2012-01-15
During the first decade of the 21st Century the World faces spread concern for global warming caused by rise of green house gasses produced mainly by combustion of fossil fuels. Under this latest spin all renewable energies run parallel in order to achieve sustainable development. Among them wave energy has an unequivocal potential and technology is ready to enter the market and contribute to the renewable energy sector. Yet, frameworks and regulations for wave energy development are not fully ready, experiencing a setback caused by lack of understanding of the interaction of the technologies and marine environment, lack of coordinationmore » from the competent Authorities regulating device deployment and conflicts of maritime areas utilization. The EIA within the consent process is central in the realization of full scale devices and often is the meeting point for technology, politics and public. This paper presents the development of a classification of wave energy converters that is based on the different impact the technologies are expected to have on the environment. This innovative classification can be used in order to simplify the scoping process for developers and authorities.« less
Martin, Jennifer L; Barnett, Julie
2012-07-19
It is well established that considering users is an important aspect of medical device development. However it is also well established that there are numerous barriers to successfully conducting user research and integrating the results into product development. It is not sufficient to simply conduct user research, it must also be effectively integrated into product development. A case study of the development of a new medical imaging device was conducted to examine in detail how users were involved in a medical device development project. Two user research studies were conducted: a requirements elicitation interview study and an early prototype evaluation using contextual inquiry. A descriptive in situ approach was taken to investigate how these studies contributed to the product development process and how the results of this work influenced the development of the technology. Data was collected qualitatively through interviews with the development team, participant observation at development meetings and document analysis. The focus was on investigating the barriers that exist to prevent user data from being integrated into product development. A number of individual, organisational and system barriers were identified that functioned to prevent the results of the user research being fully integrated into development. The user and technological aspects of development were seen as separate work streams during development. The expectations of the developers were that user research would collect requirements for the appearance of the device, rather than challenge its fundamental concept. The manner that the user data was communicated to the development team was not effective in conveying the significance or breadth of the findings. There are a range of informal and formal organisational processes that can affect the uptake of user data during medical device development. Adopting formal decision making processes may assist manufacturers to take a more integrated and reflective approach to development, which should result in improved business decisions and a higher quality end product.
Integrating the results of user research into medical device development: insights from a case study
2012-01-01
Background It is well established that considering users is an important aspect of medical device development. However it is also well established that there are numerous barriers to successfully conducting user research and integrating the results into product development. It is not sufficient to simply conduct user research, it must also be effectively integrated into product development. Methods A case study of the development of a new medical imaging device was conducted to examine in detail how users were involved in a medical device development project. Two user research studies were conducted: a requirements elicitation interview study and an early prototype evaluation using contextual inquiry. A descriptive in situ approach was taken to investigate how these studies contributed to the product development process and how the results of this work influenced the development of the technology. Data was collected qualitatively through interviews with the development team, participant observation at development meetings and document analysis. The focus was on investigating the barriers that exist to prevent user data from being integrated into product development. Results A number of individual, organisational and system barriers were identified that functioned to prevent the results of the user research being fully integrated into development. The user and technological aspects of development were seen as separate work streams during development. The expectations of the developers were that user research would collect requirements for the appearance of the device, rather than challenge its fundamental concept. The manner that the user data was communicated to the development team was not effective in conveying the significance or breadth of the findings. Conclusion There are a range of informal and formal organisational processes that can affect the uptake of user data during medical device development. Adopting formal decision making processes may assist manufacturers to take a more integrated and reflective approach to development, which should result in improved business decisions and a higher quality end product. PMID:22812565
Statistical innovations in diagnostic device evaluation.
Yu, Tinghui; Li, Qin; Gray, Gerry; Yue, Lilly Q
2016-01-01
Due to rapid technological development, innovations in diagnostic devices are proceeding at an extremely fast pace. Accordingly, the needs for adopting innovative statistical methods have emerged in the evaluation of diagnostic devices. Statisticians in the Center for Devices and Radiological Health at the Food and Drug Administration have provided leadership in implementing statistical innovations. The innovations discussed in this article include: the adoption of bootstrap and Jackknife methods, the implementation of appropriate multiple reader multiple case study design, the application of robustness analyses for missing data, and the development of study designs and data analyses for companion diagnostics.
A comparison of optical gradation analysis devices to current test methods--phase 2.
DOT National Transportation Integrated Search
2012-04-01
Optical devices are being developed to deliver accurate size and shape of aggregate particles with, less labor, less consistency error, : and greater reliability. This study was initiated to review the existing technology, and generate basic data to ...
Current technology in ion and electrothermal propulsion
NASA Technical Reports Server (NTRS)
Finke, R. C.; Murch, C. K.
1973-01-01
High performance propulsion devices, such as electrostatic ion engines and electrothermal thrusters, are achieving wide user acceptance. The current technology and projected development trends in the areas of ion and electrothermal propulsion systems and components are surveyed.
In-Field Performance Testing of Stormwater Treatment Devices
The Environmental Technology Verification (ETV) Program was created by EPA’s Office of Research and Development to facilitate the deployment of innovative or improved environmental technologies through performance verification and dissemination of information. The program’s goal ...
Status of the Combustion Devices Injector Technology Program at the NASA MSFC
NASA Technical Reports Server (NTRS)
Jones, Gregg; Protz, Christopher; Trinh, Huu; Tucker, Kevin; Nesman, Tomas; Hulka, James
2005-01-01
To support the NASA Space Exploration Mission, an in-house program called Combustion Devices Injector Technology (CDIT) is being conducted at the NASA Marshall Space Flight Center (MSFC) for the fiscal year 2005. CDIT is focused on developing combustor technology and analysis tools to improve reliability and durability of upper-stage and in-space liquid propellant rocket engines. The three areas of focus include injector/chamber thermal compatibility, ignition, and combustion stability. In the compatibility and ignition areas, small-scale single- and multi-element hardware experiments will be conducted to demonstrate advanced technological concepts as well as to provide experimental data for validation of computational analysis tools. In addition, advanced analysis tools will be developed to eventually include 3-dimensional and multi- element effects and improve capability and validity to analyze heat transfer and ignition in large, multi-element injectors.
Hybrid energy storage test procedures and high power battery project FY-1995 interim report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunt, G.L.
1995-12-01
Near the end of FY 1994, DOE provided funding and guidance to INEL for two separate but closely related tasks involving high power energy storage technology. One task was intended to develop and refine application-specific test procedures appropriate to high power energy storage devices for potential use in hybrid vehicles, including batteries, ultracapacitors, flywheels, and similar devices. The second task was intended to characterize the high power capabilities of presently available battery technologies, as well as eventually to evaluate the potential high power capabilities of advanced battery technologies such as those being developed by the USABC. Since the evaluation ofmore » such technologies is necessarily dependent to some extent on the availability of appropriate test methods, these two tasks have been closely coordinated. This report is intended to summarize the activities and results for both tasks accomplished during FY-1995.« less
Compact, High Power, Multi-Spectral Mid-Infrared Semiconductor Laser Package
NASA Astrophysics Data System (ADS)
Guo, Bujin; Hwang, Wen-Yen; Lin, Chich-Hsiang
2001-10-01
Through a vertically integrated effort involving atomic level material engineering, advanced device processing development, state-of-the-art optomechanical packaging, and thermal management, Applied Optoelectronics, Inc. (AOI), University of Houston (U H), and Physical Science, Inc. (PSI) have made progress in both Sb-based type-II semiconductor material and in P-based type-I laser device development. We have achieved record performance on inP based quantum cascade continuous wave (CW) laser (with more than 5 mW CW power at 210 K). Grating-coupled external-cavity quantum cascade lasers were studied for temperatures from 20 to 230 K. A tuning range of 88 nm has been obtained at 80 K. The technology can be made commercially available and represents a significant milestone with regard to the Dual Use Science and Technology (DUST) intention of fostering dual use commercial technology for defense need. AOI is the first commercial company to ship products of this licensed technology.
Cost analysis of medical device spare parts
Bektemur, Guven; Muzoglu, Nedim; Arici, Mehmet Ali; Karaaslan, Melike Kaya
2018-01-01
Objective: To establish estimation method on budget management of medical device spare parts and to evaluate the cost of medical device spare parts in affiliated hospitals of Istanbul Public Hospital Unions (PHUs). Methods: While this evaluation was performed, the relationship between paid cost for spare parts according to technological development level of device groups and total inventory value was used. Spare part cost analysis was carried out by using the normalized weighted arithmetic average method. Cost analysis of medical equipment spare parts of Istanbul PHUs was performed by using the data retrieved from Ministry of Health Business Intelligence Decision Support System for spending of spare parts in 2015. Results: The medical device spare part groups were categorized based on technological development. Among 1 to 6 PHUs, the cost ratios were acquired for high, middle, low and simple technology group as 17.31 – 40.08%, 29.14 – 43.36%, 22.62 – 27.44% and 8.16 – 11.89%, respectively. The ratio between the spare part and total inventory costs for 1-6 PHUs were calculated as 1.66%, 2.87%, 3.03%, 3.31%, 2.57% and 4.69% respectively. Expected rates based on normalized weighted method were obtained as follows; 5.76%, 4.67%, 5.31%, 4.87%, 4.34% and 4.27%. Conclusion: The expenditure analysis and budget planning for medical device spare parts in PHU could be predicted more accurately by taking into consideration the expected rate calculated by the normal weight method. In additon, the importance of Clinical Engineering Service Units in management of medical devices has been determined. PMID:29805429
Research and Development Limited Partnerships as a Device to Exploit University Owned Technology.
ERIC Educational Resources Information Center
Bartlett, Joseph W.; Siena, James V.
1984-01-01
The research and development limited partnership offers a university a better approach to determining the commercial potential of technology, funding its developmnt, bringing it to market, and maximizing profit without entangling the university in a commercial venture or draining institutional funds. It also has attractive tax benefits for…
Superconductivity and fusion energy—the inseparable companions
NASA Astrophysics Data System (ADS)
Bruzzone, Pierluigi
2015-02-01
Although superconductivity will never produce energy by itself, it plays an important role in energy-related applications both because of its saving potential (e.g., power transmission lines and generators), and its role as an enabling technology (e.g., for nuclear fusion energy). The superconducting magnet’s need for plasma confinement has been recognized since the early development of fusion devices. As long as the research and development of plasma burning was carried out on pulsed devices, the technology of superconducting fusion magnets was aimed at demonstrations of feasibility. In the latest generation of plasma devices, which are larger and have longer confinement times, the superconducting coils are a key enabling technology. The cost of a superconducting magnet system is a major portion of the overall cost of a fusion plant and deserves significant attention in the long-term planning of electricity supply; only cheap superconducting magnets will help fusion get to the energy market. In this paper, the technology challenges and design approaches for fusion magnets are briefly reviewed for past, present, and future projects, from the early superconducting tokamaks in the 1970s, to the current ITER (International Thermonuclear Experimental Reactor) and W7-X projects and future DEMO (Demonstration Reactor) projects. The associated cryogenic technology is also reviewed: 4.2 K helium baths, superfluid baths, forced-flow supercritical helium, and helium-free designs. Open issues and risk mitigation are discussed in terms of reliability, technology, and cost.
Development of a simulated smart pump interface.
Elias, Beth L; Moss, Jacqueline A; Shih, Alan; Dillavou, Marcus
2014-01-01
Medical device user interfaces are increasingly complex, resulting in a need for evaluation in clinicallyaccurate settings. Simulation of these interfaces can allow for evaluation, training, and use for research without the risk of harming patients and with a significant cost reduction over using the actual medical devices. This pilot project was phase 1 of a study to define and evaluate a methodology for development of simulated medical device interface technology to be used for education, device development, and research. Digital video and audio recordings of interface interactions were analyzed to develop a model of a smart intravenous medication infusion pump user interface. This model was used to program a high-fidelity simulated smart intravenous medication infusion pump user interface on an inexpensive netbook platform.
New technologies for the detection of millimeter and submillimeter waves
NASA Technical Reports Server (NTRS)
Richards, P. L.; Clarke, J.; Gildemeister, J. M.; Lanting, T.; Lee, A. T.
2001-01-01
Voltage-biased superconducting bolometers have many operational advantages over conventional bolometer technology including sensitivity, linearity, speed, and immunity from environmental disturbance. A review is given of the Berkeley program for developing this new technology. Developments include fully lithographed individual bolometers in the spiderweb configuration, arrays of 1024 close-packed absorber-coupled bolometers, antenna-coupled bolometers, and a frequency-domain SQUID (superconducting quantum interference device) readout multiplexer.
Mao, Hui-Fen; Chen, Wan-Yin; Yao, Grace; Huang, Sheau-Ling; Lin, Chia-Chi; Huang, Wen-Ni Wennie
2010-05-01
To develop and validate a cross-cultural version of the Quebec User Evaluation of Satisfaction with Assistive Technology (QUEST 2.0) for users of assistive technology devices in Taiwan. A cross-sectional survey. The standard cultural adaptation procedure was used for questionnaire translation and cultural item design. A field test was then conducted for item selection and psychometric properties testing. One hundred and five volunteer assistive device users in community. A questionnaire comprising 12 items of the QUEST 2.0 and 16 culture-specific items. One culture-specific item, 'Cost', was selected based on eight criteria and added to the QUEST 2.0 (12 items) to formulate the Taiwanese version of QUEST 2.0 (T-QUEST). The T-QUEST consisted of 13 items which were classified into two domains: device (8 items) and service (5 items). The internal consistencies of the device, service and total T-QUEST scores were 0.87, 0.84 and 0.90, respectively. The device, services and total T-QUEST scores achieved good test-retest stability (intraclass correlation coefficient (ICC) 0.90, 0.97, 0.95). Exploratory factor analysis revealed that T-QUEST had a two-factor structure for device and service in the construct of user satisfaction (53.42% of the variance explained). Users of assistive device in different culture may have different concerns regarding satisfaction. T-QUEST is the first published version of QUEST with culture-specific items added to the original translated items of QUEST 2.0. T-QUEST was a valid and reliable tool for measuring user satisfaction among Mandarin-speaking individuals using various kinds of assistive devices.
Superconducting Mixers for Far-Infrared Spectroscopy
NASA Technical Reports Server (NTRS)
Betz, A. L.; Boreiko, R. T.; Grossman, E. R.; Reintsema, C. D.; Ono, R. H.; Gerecht, E.
2002-01-01
The goal of this project was to fabricate and test planar arrays of superconducting mixers for the 2-6 THz band. The technology is intended for multi-beam receivers aboard Explorer-class missions and the SOFIA Airborne Observatory. The mixer technology is the superconducting transition-edge microbolometer, which is more commonly known as the Hot-Electron micro-Bolometer (HEB). As originally proposed, two superconducting technologies were to be developed: (1) low-Tc niobium HEBs which could approach quantum-noise-limited sensitivities but require cooling to 2- 4 K, and (2) high-Tc YBCO HEBs with sensitivities 10 times worse but with a relaxed cooling requirement of 30-60 K. The low-Tc devices would be best for astronomy applications on SOFIA, whereas the high-Tc devices would be more suitable for planetary missions using systems without stored cryogens. The work plan called for planar micro-fabrication and initial testing of HEB devices at the NIST Boulder clean-room facility. Subsequent assembly and RF testing of selected devices would be done at the CASA laboratory at U. Colorado. Approximately 1-year after work began on this project, Dr. Eyal Gerecht joined the NIST group, and assumed day-to-day responsibility for Nb-HEB development at NIST outside of micro-fabrication. The YBCO-HEB work was to be guided by Dr. Ron Ono, who was the NIST expert in YBCO technology. Unfortunately, recurrent health problems limited the time Ron could devote to the project in its first year. These problems became aggravated in early 2001, and sadly led to Ron's death in October, 2001. His loss was not only a blow to his friends and associates at NIST, but was mounted by the US superconductivity community at large. With his passing, work on high-Tc HEBs ceased at NIST. There was no one to replace him or his expertise. Our work subsequently shifted solely to Nb-HEB devices. In the sections which follow, our progress in the development of diffusion-cooled Nb-HEB mixers is detailed. To simplify the terminology, these devices will subsequently be called DHEB mixers to distinguish them from phonon-cooled devices (PHEBs).
Organic and Hybrid Organic Solid-State Photovoltaic Materials and Devices
2014-03-06
Microscopy Research, 2012, 7, 158-169. Organic photovoltaic materials, hybrid organic devices, solar cells 6 1 FINAL TECHNICAL REPORT 1... hybrids have potential applications in solar cells and may thus provide mobile energy sources for aircraft and soldier technologies. Modeling and...modeling and simulation developed in this project are encouraging further development. 2. Technical Activities Hybrid organic solar cells are an
Improvement of screening methods for silicon planar semiconductor devices
NASA Technical Reports Server (NTRS)
Berger, W. M.
1972-01-01
The results of the program for the development of a more sensitive method for selecting silicon planar semiconductor devices for long life applications are reported. The manufacturing technologies (MOS and Bipolar) are discussed along with the screening procedures developed as a result of the tests and evaluations, and the effectiveness of the MOS and Bilayer screening procedures are evaluated.
Molecular Photovoltaics in Nanoscale Dimension
Burtman, Vladimir; Zelichonok, Alexander; Pakoulev, Andrei V.
2011-01-01
This review focuses on the intrinsic charge transport in organic photovoltaic (PVC) devices and field-effect transistors (SAM-OFETs) fabricated by vapor phase molecular self-assembly (VP-SAM) method. The dynamics of charge transport are determined and used to clarify a transport mechanism. The 1,4,5,8-naphthalene-tetracarboxylic diphenylimide (NTCDI) SAM devices provide a useful tool to study the fundamentals of polaronic transport at organic surfaces and to discuss the performance of organic photovoltaic devices in nanoscale. Time-resolved photovoltaic studies allow us to separate the charge annihilation kinetics in the conductive NTCDI channel from the overall charge kinetic in a SAM-OFET device. It has been demonstrated that tuning of the type of conductivity in NTCDI SAM-OFET devices is possible by changing Si substrate doping. Our study of the polaron charge transfer in organic materials proposes that a cation-radical exchange (redox) mechanism is the major transport mechanism in the studied SAM-PVC devices. The role and contribution of the transport through delocalized states of redox active surface molecular aggregates of NTCDI are exposed and investigated. This example of technological development is used to highlight the significance of future technological development of nanotechnologies and to appreciate a structure-property paradigm in organic nanostructures. PMID:21339983
NASA Astrophysics Data System (ADS)
Snaith, Henry J.; Hacke, Peter
2018-06-01
Photovoltaic modules are expected to operate in the field for more than 25 years, so reliability assessment is critical for the commercialization of new photovoltaic technologies. In early development stages, understanding and addressing the device degradation mechanisms are the priorities. However, any technology targeting large-scale deployment must eventually pass industry-standard qualification tests and undergo reliability testing to validate the module lifetime. In this Perspective, we review the methodologies used to assess the reliability of established photovoltaics technologies and to develop standardized qualification tests. We present the stress factors and stress levels for degradation mechanisms currently identified in pre-commercial perovskite devices, along with engineering concepts for mitigation of those degradation modes. Recommendations for complete and transparent reporting of stability tests are given, to facilitate future inter-laboratory comparisons and to further the understanding of field-relevant degradation mechanisms, which will benefit the development of accelerated stress tests.
Advances in Degradable Embolic Microspheres: A State of the Art Review
Doucet, Jensen; Kiri, Lauren; O’Connell, Kathleen; Kehoe, Sharon; Lewandowski, Robert J.; Liu, David M.; Abraham, Robert J.; Boyd, Daniel
2018-01-01
Considerable efforts have been placed on the development of degradable microspheres for use in transarterial embolization indications. Using the guidance of the U.S. Food and Drug Administration (FDA) special controls document for the preclinical evaluation of vascular embolization devices, this review consolidates all relevant data pertaining to novel degradable microsphere technologies for bland embolization into a single reference. This review emphasizes intended use, chemical composition, degradative mechanisms, and pre-clinical safety, efficacy, and performance, while summarizing the key advantages and disadvantages for each degradable technology that is currently under development for transarterial embolization. This review is intended to provide an inclusive reference for clinicians that may facilitate an understanding of clinical and technical concepts related to this field of interventional radiology. For materials scientists, this review highlights innovative devices and current evaluation methodologies (i.e., preclinical models), and is designed to be instructive in the development of innovative/new technologies and evaluation methodologies. PMID:29373510
Energy harvesting: an integrated view of materials, devices and applications.
Radousky, H B; Liang, H
2012-12-21
Energy harvesting refers to the set of processes by which useful energy is captured from waste, environmental, or mechanical sources and is converted into a usable form. The discipline of energy harvesting is a broad topic that includes established methods and materials such as photovoltaics and thermoelectrics, as well as more recent technologies that convert mechanical energy, magnetic energy and waste heat to electricity. This article will review various state-of-the-art materials and devices for direct energy conversion and in particular will include multistep energy conversion approaches. The article will highlight the nano-materials science underlying energy harvesting principles and devices, but also include more traditional bulk processes and devices as appropriate and synergistic. Emphasis is placed on device-design innovations that lead to higher efficiency energy harvesting or conversion technologies ranging from the cm/mm-scale down to MEMS/NEMS (micro- and nano-electromechanical systems) devices. Theoretical studies are reviewed, which address transport properties, crystal chemistry, thermodynamic analysis, energy transfer, system efficiency and device operation. New developments in experimental methods; device design and fabrication; nanostructured materials fabrication; materials properties; and device performance measurement techniques are discussed.
Energy harvesting: an integrated view of materials, devices and applications
NASA Astrophysics Data System (ADS)
Radousky, H. B.; Liang, H.
2012-12-01
Energy harvesting refers to the set of processes by which useful energy is captured from waste, environmental, or mechanical sources and is converted into a usable form. The discipline of energy harvesting is a broad topic that includes established methods and materials such as photovoltaics and thermoelectrics, as well as more recent technologies that convert mechanical energy, magnetic energy and waste heat to electricity. This article will review various state-of-the-art materials and devices for direct energy conversion and in particular will include multistep energy conversion approaches. The article will highlight the nano-materials science underlying energy harvesting principles and devices, but also include more traditional bulk processes and devices as appropriate and synergistic. Emphasis is placed on device-design innovations that lead to higher efficiency energy harvesting or conversion technologies ranging from the cm/mm-scale down to MEMS/NEMS (micro- and nano-electromechanical systems) devices. Theoretical studies are reviewed, which address transport properties, crystal chemistry, thermodynamic analysis, energy transfer, system efficiency and device operation. New developments in experimental methods; device design and fabrication; nanostructured materials fabrication; materials properties; and device performance measurement techniques are discussed.
Development of an open technology sensor suite for assisted living: a student-led research project.
Manton, James D; Hughes, Josephine A E; Bonner, Oliver; Amjad, Omar A; Mair, Philip; Miele, Isabella; Wang, Tiesheng; Levdik, Vitaly; Hall, Richard D; Baekelandt, Géraldine; Vasconcellos, Fernando da Cruz; Hadeler, Oliver; Hutter, Tanya; Kaminski, Clemens F
2016-08-06
Many countries have a rapidly ageing population, placing strain on health services and creating a growing market for assistive technology for older people. We have, through a student-led, 12-week project for 10 students from a variety of science and engineering backgrounds, developed an integrated sensor system to enable older people, or those at risk, to live independently in their own homes for longer, while providing reassurance for their family and carers. We provide details on the design procedure and performance of our sensor system and the management and execution of a short-term, student-led research project. Detailed information on the design and use of our devices, including a door sensor, power monitor, fall detector, general in-house sensor unit and easy-to-use location-aware communications device, is given, with our open designs being contrasted with closed proprietary systems. A case study is presented for the use of our devices in a real-world context, along with a comparison with commercially available systems. We discuss how the system could lead to improvements in the quality of life of older users and increase the effectiveness of their associated care network. We reflect on how recent developments in open source technology and rapid prototyping increase the scope and potential for the development of powerful sensor systems and, finally, conclude with a student perspective on this team effort and highlight learning outcomes, arguing that open technologies will revolutionize the way in which technology will be deployed in academic research in the future.
Development of an open technology sensor suite for assisted living: a student-led research project
Hughes, Josephine A. E.; Bonner, Oliver; Amjad, Omar A.; Levdik, Vitaly; Hall, Richard D.; Baekelandt, Géraldine; Hutter, Tanya; Kaminski, Clemens F.
2016-01-01
Many countries have a rapidly ageing population, placing strain on health services and creating a growing market for assistive technology for older people. We have, through a student-led, 12-week project for 10 students from a variety of science and engineering backgrounds, developed an integrated sensor system to enable older people, or those at risk, to live independently in their own homes for longer, while providing reassurance for their family and carers. We provide details on the design procedure and performance of our sensor system and the management and execution of a short-term, student-led research project. Detailed information on the design and use of our devices, including a door sensor, power monitor, fall detector, general in-house sensor unit and easy-to-use location-aware communications device, is given, with our open designs being contrasted with closed proprietary systems. A case study is presented for the use of our devices in a real-world context, along with a comparison with commercially available systems. We discuss how the system could lead to improvements in the quality of life of older users and increase the effectiveness of their associated care network. We reflect on how recent developments in open source technology and rapid prototyping increase the scope and potential for the development of powerful sensor systems and, finally, conclude with a student perspective on this team effort and highlight learning outcomes, arguing that open technologies will revolutionize the way in which technology will be deployed in academic research in the future. PMID:27499844
Reducing graphene device variability with yttrium sacrificial layers
NASA Astrophysics Data System (ADS)
Wang, Ning C.; Carrion, Enrique A.; Tung, Maryann C.; Pop, Eric
2017-05-01
Graphene technology has made great strides since the material was isolated more than a decade ago. However, despite improvements in growth quality and numerous "hero" devices, challenges of uniformity remain, restricting the large-scale development of graphene-based technologies. Here, we investigate and reduce the variability of graphene transistors by studying the effects of contact metals (with and without a Ti layer), resist, and yttrium (Y) sacrificial layers during the fabrication of hundreds of devices. We find that with optical photolithography, residual resist and process contamination are unavoidable, ultimately limiting the device performance and yield. However, using Y sacrificial layers to isolate the graphene from processing conditions improves the yield (from 73% to 97%), the average device performance (three-fold increase of mobility and 58% lower contact resistance), and the device-to-device variability (standard deviation of Dirac voltage reduced by 20%). In contrast to other sacrificial layer techniques, the removal of the Y sacrificial layer with dilute HCl does not harm surrounding materials, simplifying large-scale graphene fabrication.
NASA Technical Reports Server (NTRS)
Rector, Tony; Steele, John W.; Bue, Grant C.; Campbell, Colin; Makinen, Janice
2012-01-01
A water loop maintenance device and process to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been undergoing a performance evaluation. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the water recirculation maintenance device and process is to further enhance this advantage through the leveraging of fluid loop management lessons-learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance process further leverages a sorbent developed for ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware. This
NASA Astrophysics Data System (ADS)
Zhang, Xinyue; Zhang, Qisheng; Wang, Meng; Kong, Qiang; Zhang, Shengquan; He, Ruihao; Liu, Shenghui; Li, Shuhan; Yuan, Zhenzhong
2017-11-01
Due to the pressing demand for metallic ore exploration technology in China, several new technologies are being employed in the relevant exploration instruments. In addition to possessing the high resolution of the traditional transient electromagnetic method, high-efficiency measurements, and a short measurement time, the multichannel transient electromagnetic method (MTEM) technology can also sensitively determine the characteristics of a low-resistivity geologic body, without being affected by the terrain. Besides, the MTEM technology also solves the critical, existing interference problem in electrical exploration technology. This study develops a full-waveform voltage and current recording device for MTEM transmitters. After continuous acquisition and storage of the large, pseudo-random current signals emitted by the MTEM transmitter, these signals are then convoluted with the signals collected by the receiver to obtain the earth's impulse response. In this paper, the overall design of the full-waveform recording apparatus, including the hardware and upper-computer software designs, the software interface display, and the results of field test, is discussed in detail.
Labview Based ECG Patient Monitoring System for Cardiovascular Patient Using SMTP Technology.
Singh, Om Prakash; Mekonnen, Dawit; Malarvili, M B
2015-01-01
This paper leads to developing a Labview based ECG patient monitoring system for cardiovascular patient using Simple Mail Transfer Protocol technology. The designed device has been divided into three parts. First part is ECG amplifier circuit, built using instrumentation amplifier (AD620) followed by signal conditioning circuit with the operation amplifier (lm741). Secondly, the DAQ card is used to convert the analog signal into digital form for the further process. Furthermore, the data has been processed in Labview where the digital filter techniques have been implemented to remove the noise from the acquired signal. After processing, the algorithm was developed to calculate the heart rate and to analyze the arrhythmia condition. Finally, SMTP technology has been added in our work to make device more communicative and much more cost-effective solution in telemedicine technology which has been key-problem to realize the telediagnosis and monitoring of ECG signals. The technology also can be easily implemented over already existing Internet.
Labview Based ECG Patient Monitoring System for Cardiovascular Patient Using SMTP Technology
Singh, Om Prakash; Mekonnen, Dawit; Malarvili, M. B.
2015-01-01
This paper leads to developing a Labview based ECG patient monitoring system for cardiovascular patient using Simple Mail Transfer Protocol technology. The designed device has been divided into three parts. First part is ECG amplifier circuit, built using instrumentation amplifier (AD620) followed by signal conditioning circuit with the operation amplifier (lm741). Secondly, the DAQ card is used to convert the analog signal into digital form for the further process. Furthermore, the data has been processed in Labview where the digital filter techniques have been implemented to remove the noise from the acquired signal. After processing, the algorithm was developed to calculate the heart rate and to analyze the arrhythmia condition. Finally, SMTP technology has been added in our work to make device more communicative and much more cost-effective solution in telemedicine technology which has been key-problem to realize the telediagnosis and monitoring of ECG signals. The technology also can be easily implemented over already existing Internet. PMID:27006940
Mobile Tablet Use among Academic Physicians and Trainees
Sclafani, Joseph; Tirrell, Timothy F.
2014-01-01
The rapid adoption rate and integration of mobile technology (tablet computing devices and smartphones) by physicians is reshaping the current clinical landscape. These devices have sparked an evolution in a variety of arenas, including educational media dissemination, remote patient data access and point of care applications. Quantifying usage patterns of clinical applications of mobile technology is of interest to understand how these technologies are shaping current clinical care. A digital survey examining mobile tablet and associated application usage was administered via email to all ACGME training programs. Data regarding respondent specialty, level of training, and habits of tablet usage were collected and analyzed. 40 % of respondents used a tablet, of which the iPad was the most popular. Nearly half of the tablet owners reported using the tablet in clinical settings; the most commonly used application types were point of care and electronic medical record access. Increased level of training was associated with decreased support for mobile computing improving physician capabilities and patient interactions. There was strong and consistent desire for institutional support of mobile computing and integration of mobile computing technology into medical education. While many physicians are currently purchasing mobile devices, often without institutional support, successful integration of these devices into the clinical setting is still developing. Potential reasons behind the low adoption rate may include interference of technology in doctor-patient interactions or the lack of appropriate applications available for download. However, the results convincingly demonstrate that physicians recognize a potential utility in mobile computing, indicated by their desire for institutional support and integration of mobile technology into medical education. It is likely that the use of tablet computers in clinical practice will expand in the future. Thus, we believe medical institutions, providers, educators, and developers should collaborate in ways that enhance the efficacy, reliability, and safety of integrating these devices into daily medical practice. PMID:23321961
The potential of smart homes for injury prevention among the elderly.
Eriksson, Henrik; Timpka, Toomas
2002-06-01
Smart homes promise to make the lives of elderly people more comfortable and safe. Today, there is a significant interest from industry and policy makers in developing these technologies. In theory, the emerging technologies make it possible to provide a new range of services. So far, however, the goal has often been to develop new services for young people rather than assisting old people to improve their quality of life. Especially important is the potential for using these technologies to promote safety and prevent injury among old people because this group is at home more than the other age groups. Networked devices can collect data from sensors and aid decision-making on intervention and other measures. Furthermore, these devices can instruct and remind individuals about safety-related issues.
Sustainable mobile information infrastructures in low resource settings.
Braa, Kristin; Purkayastha, Saptarshi
2010-01-01
Developing countries represent the fastest growing mobile markets in the world. For people with no computing access, a mobile will be their first computing device. Mobile technologies offer a significant potential to strengthen health systems in developing countries with respect to community based monitoring, reporting, feedback to service providers, and strengthening communication and coordination between different health functionaries, medical officers and the community. However, there are various challenges in realizing this potential including technological such as lack of power, social, institutional and use issues. In this paper a case study from India on mobile health implementation and use will be reported. An underlying principle guiding this paper is to see mobile technology not as a "stand alone device" but potentially an integral component of an integrated mobile supported health information infrastructure.
Trade-off study of data storage technologies
NASA Technical Reports Server (NTRS)
Kadyszewski, R. V.
1977-01-01
The need to store and retrieve large quantities of data at modest cost has generated the need for an economical, compact, archival mass storage system. Very significant improvements in the state-of-the-art of mass storage systems have been accomplished through the development of a number of magnetic, electro-optical, and other related devices. This study was conducted in order to do a trade-off between these data storage devices and the related technologies in order to determine an optimum approach for an archival mass data storage system based upon a comparison of the projected capabilities and characteristics of these devices to yield operational systems in the early 1980's.
Advances in bioartificial liver assist devices.
Patzer, J F
2001-11-01
Rapid advances in development of bioartificial liver assist devices (BLADs) are exciting clinical interest in the application of BLAD technology for support of patients with acute liver failure. Four devices (Circe Biomedical HepatAssist, Vitagen ELAD, Gerlach BELS, and Excorp Medical BLSS) that rely on hepatocytes cultured in hollow-fiber membrane technology are currently in various stages of clinical evaluation. Several alternative approaches for culture and perfusion of hepatocytes have been evaluated in preclinical, large animal models of liver failure, or at a laboratory scale. Engineering design issues with respect to xenotransplantation, BLAD perfusion, hepatocyte functionality and culture maintenance, and ultimate distribution of a BLAD to a clinical site are delineated.
Seven Capital Devices for the Future of Stroke Rehabilitation
Iosa, M.; Morone, G.; Fusco, A.; Bragoni, M.; Coiro, P.; Multari, M.; Venturiero, V.; De Angelis, D.; Pratesi, L.; Paolucci, S.
2012-01-01
Stroke is the leading cause of long-term disability for adults in industrialized societies. Rehabilitation's efforts are tended to avoid long-term impairments, but, actually, the rehabilitative outcomes are still poor. Novel tools based on new technologies have been developed to improve the motor recovery. In this paper, we have taken into account seven promising technologies that can improve rehabilitation of patients with stroke in the early future: (1) robotic devices for lower and upper limb recovery, (2) brain computer interfaces, (3) noninvasive brain stimulators, (4) neuroprostheses, (5) wearable devices for quantitative human movement analysis, (6) virtual reality, and (7) tablet-pc used for neurorehabilitation. PMID:23304640
Latest Trends in Home Networking Technologies
NASA Astrophysics Data System (ADS)
Tsutsui, Akihiro
Broadband access service, including FTTH, is now in widespread use in Japan. More than half of the households that have broadband Internet access construct local area networks (home networks) in their homes. In addition, information appliances such as personal computers, networked audio, and visual devices and game machines are connected to home networks, and many novel service applications are provided via the Internet. However, it is still difficult to install and incorporate these devices and services because networked devices have been developed in different communities. I briefly explain the current status of information appliances and home networking technologies and services and discuss some of the problems in this and their solutions.
NASA Astrophysics Data System (ADS)
Zhidik, Y. S.; Troyan, P. E.; Baturina, E. V.; Korzhenko, D. V.; Yurjev, Y. N.
2016-06-01
Detailed information on the deposition technology of the low-resistive ITO-films in oxygen-containing media by magnetron reactive sputtering from the In(90%)/Sn(10%) target on the cold substrate is given. Developed technology allows deposition ITO-films with sheet resistance 2-3 Ω/□, transparency higher than 90%. Developed technology is notable for high reproducibility of results and is compatible with production technology of semiconductor devices of optoelectronics.
Design and user evaluation of a wheelchair mounted robotic assisted transfer device.
Grindle, Garrett G; Wang, Hongwu; Jeannis, Hervens; Teodorski, Emily; Cooper, Rory A
2015-01-01
The aim of this study is to describe the robotic assisted transfer device (RATD) and an initial focus group evaluation by end users. The purpose of the device is to aid in the transfers of people with disabilities to and from their electric powered wheelchair (EPW) onto other surfaces. The device can be used for both stand-pivot transfers and fully dependent transfers, where the person being transferred is in a sling and weight is fully on the robot. The RATD is fixed to an EPW to allow for its use in community settings. A functional prototype of the RATD was designed and fabricated. The prototype was presented to a group of 16 end users and feedback on the device was obtained via a survey and group discussion. Thirteen out of sixteen (83%) participants agreed that it was important to develop this type of technology. They also indicated that user, caregiver, and robotic controls were important features to be included in the device. Participants in this study suggested that they would be accepting the use of robotic technology for transfers and a majority did not feel that they would be embarrassed to use this technology.
75 FR 19340 - Wireless Technologies, Devices, and Services
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-14
... Technologies, Devices, and Services AGENCY: Federal Communications Commission. ACTION: Proposed rule. SUMMARY... technologies, devices, and services. Specifically, the Commission seeks comment regarding particular changes to... concise rules that facilitate new wireless technologies, devices and services, and are easy for the public...
Nie, L H; Sanchez, S; Newton, K; Grodzins, L; Cleveland, R O; Weisskopf, M G
2011-02-07
This study was conducted to investigate the methodology and feasibility of developing a portable x-ray fluorescence (XRF) technology to quantify lead (Pb) in bone in vivo. A portable XRF device was set up and optimal settings of voltage, current, and filter combination for bone lead quantification were selected to achieve the lowest detection limit. The minimum radiation dose delivered to the subject was calculated by Monte Carlo simulations. An ultrasound device was used to measure soft tissue thickness to account for signal attenuation, and an alternative method to obtain soft tissue thickness from the XRF spectrum was developed and shown to be equivalent to the ultrasound measurements (intraclass correlation coefficient, ICC = 0.82). We tested the correlation of in vivo bone lead concentrations between the standard KXRF technology and the portable XRF technology. There was a significant correlation between the bone lead concentrations obtained from the standard KXRF technology and those obtained from the portable XRF technology (ICC = 0.65). The detection limit for the portable XRF device was about 8.4 ppm with 2 mm soft tissue thickness. The entrance skin dose delivered to the human subject was about 13 mSv and the total body effective dose was about 1.5 µSv and should pose minimal radiation risk. In conclusion, portable XRF technology can be used for in vivo bone lead measurement with sensitivity comparable to the KXRF technology and good correlation with KXRF measurements.
Nie, LH; Sanchez, S; Newton, K; Grodzins, L; Cleveland, RO; Weisskopf, MG
2013-01-01
This study was conducted to investigate the methodology and feasibility of developing a portable XRF technology to quantify lead (Pb) in bone in vivo. A portable XRF device was set up and optimal setting of voltage, current, and filter combination for bone lead quantification were selected to achieve the lowest detection limit. The minimum radiation dose delivered to the subject was calculated by Monte Carlo simulations. An ultrasound device was used to measure soft tissue thickness to account for signal attenuation, and an alternative method to obtain soft tissue thickness from the XRF spectrum was developed and shown to be equivalent to the ultrasound measurements (Intraclass Correlation Coefficient, ICC=0.82). We tested the correlation of in vivo bone lead concentrations between the standard KXRF technology and the portable XRF technology. There was a significant correlation between the bone lead concentrations obtained from the standard KXRF technology and those obtained from the portable XRF technology (ICC=0.65). The detection limit for the portable XRF device was about 8.4 ppm with 2 mm soft tissue thickness. The entrance skin dose delivered to the human subject was about 13 mSv and the total body effective dose was about 1.5 μSv and should pose a minimal radiation risk. In conclusion, portable XRF technology can be used for in vivo bone lead measurement with sensitivity comparable to the KXRF technology and good correlation with KXRF measurements. PMID:21242629
NASA Astrophysics Data System (ADS)
Logsdon, James
2002-03-01
This presentation will provide a brief history of the development of MEMS products and technology, beginning with the manifold absolute pressure sensor in the late seventies through the current variety of Delphi Delco Electronics sensors available today. The technology development of micromachining from uncompensated P plus etch stops to deep reactive ion etching and the technology development of wafer level packaging from electrostatic bonding to glass frit sealing and silicon to silicon direct bonding will be reviewed.
Innovative newborn health technology for resource-limited environments.
Thairu, L; Wirth, M; Lunze, K
2013-01-01
To review medical devices addressing newborn health in resource-poor settings, and to identify existing and potential barriers to their actual and efficient use in these settings. We searched Pubmed as our principal electronic reference library and dedicated databases such as Maternova and the Maternal and Neonatal Directed Assessment of Technology. We also researched standard public search engines. Studies and grey literature reports describing devices for use in a low- or middle-income country context were eligible for inclusion. Few devices are currently described in the peer-reviewed medical or public health literature. The majority of newborn-specific devices were found in the grey literature. Most sources described infant warmers, neonatal resuscitators, and phototherapy devices. Other devices address the diagnosis of infectious diseases, monitoring of oxygen saturation, assisted ventilation, prevention of mother-to-child transmission of HIV, assisted childbirth, weight or temperature assessment, and others. Many medical devices designed for newborns in the developing world are under development or in the early stages of production, but the vast majority of them are not available when and where they are needed. Making them available to mothers, newborns, and birth attendants in resource-limited countries at the time and place of birth will require innovative and creative production, distribution, and implementation approaches. © 2012 Blackwell Publishing Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moghadam, Reza M.; Xiao, Zhiyong; Ahmadi-Majlan, Kamyar
The epitaxial growth of multifunctional oxides on semiconductors has opened a pathway to introduce new functionalities to semiconductor device technologies. In particular, ferroelectric materials integrated on semiconductors could lead to low-power field-effect devices that can be used for logic or memory. Essential to realizing such field-effect devices is the development of ferroelectric metal-oxide-semiconductor (MOS) capacitors, in which the polarization of a ferroelectric gate is coupled to the surface potential of a semiconducting channel. Here we demonstrate that ferroelectric MOS capacitors can be realized using single crystalline SrZrxTi1-xO3 (x= 0.7) that has been epitaxially grown on Ge. We find that themore » ferroelectric properties of SrZrxTi1-xO3 are exceptionally robust, as gate layers as thin as 5 nm give rise to hysteretic capacitance-voltage characteristics that are 2 V in width. The development of ferroelectric MOS capacitors with gate thicknesses that are technologically relevant opens a pathway to realize scalable ferroelectric field-effect devices.« less
NASA Astrophysics Data System (ADS)
Teo, Adrian J. T.; Li, Holden; Tan, Say Hwa; Yoon, Yong-Jin
2017-06-01
Optical MEMS devices provide fast detection, electromagnetic resilience and high sensitivity. Using this technology, an optical gratings based accelerometer design concept was developed for seismic motion detection purposes that provides miniaturization, high manufacturability, low costs and high sensitivity. Detailed in-house fabrication procedures of a double-sided deep reactive ion etching (DRIE) on a silicon-on-insulator (SOI) wafer for a micro opto electro mechanical system (MOEMS) device are presented and discussed. Experimental results obtained show that the conceptual device successfully captured motion similar to a commercial accelerometer with an average sensitivity of 13.6 mV G-1, and a highest recorded sensitivity of 44.1 mV G-1. A noise level of 13.5 mV was detected due to experimental setup limitations. This is the first MOEMS accelerometer developed using double-sided DRIE on SOI wafer for the application of seismic motion detection, and is a breakthrough technology platform to open up options for lower cost MOEMS devices.
[Testing system design and analysis for the execution units of anti-thrombotic device].
Li, Zhelong; Cui, Haipo; Shang, Kun; Liao, Yuehua; Zhou, Xun
2015-02-01
In an anti-thrombotic pressure circulatory device, relays and solenoid valves serve as core execution units. Thus the therapeutic efficacy and patient safety of the device will directly depend on their performance. A new type of testing system for relays and solenoid valves used in the anti-thrombotic device has been developed, which can test action response time and fatigue performance of relay and solenoid valve. PC, data acquisition card and test platform are used in this testing system based on human-computer interaction testing modules. The testing objectives are realized by using the virtual instrument technology, the high-speed data acquisition technology and reasonable software design. The two sets of the system made by relay and solenoid valve are tested. The results proved the universality and reliability of the testing system so that these relays and solenoid valves could be accurately used in the antithrombotic pressure circulatory equipment. The newly-developed testing system has a bright future in the aspects of promotion and application prospect.
Furberg, Robert D; Ortiz, Alexa M; Zulkiewicz, Brittany A; Hudson, Jordan P; Taylor, Olivia M; Lewis, Megan A
2016-06-27
Tablet-based health care interventions have the potential to encourage patient care in a timelier manner, allow physicians convenient access to patient records, and provide an improved method for patient education. However, along with the continued adoption of tablet technologies, there is a concomitant need to develop protocols focusing on the configuration, management, and maintenance of these devices within the health care setting to support the conduct of clinical research. Develop three protocols to support tablet configuration, tablet management, and tablet maintenance. The Configurator software, Tile technology, and current infection control recommendations were employed to develop three distinct protocols for tablet-based digital health interventions. Configurator is a mobile device management software specifically for iPhone operating system (iOS) devices. The capabilities and current applications of Configurator were reviewed and used to develop the protocol to support device configuration. Tile is a tracking tag associated with a free mobile app available for iOS and Android devices. The features associated with Tile were evaluated and used to develop the Tile protocol to support tablet management. Furthermore, current recommendations on preventing health care-related infections were reviewed to develop the infection control protocol to support tablet maintenance. This article provides three protocols: the Configurator protocol, the Tile protocol, and the infection control protocol. These protocols can help to ensure consistent implementation of tablet-based interventions, enhance fidelity when employing tablets for research purposes, and serve as a guide for tablet deployments within clinical settings.
Cables and connectors: A compilation
NASA Technical Reports Server (NTRS)
1974-01-01
A technological compilation on devices and techniques for various types of electrical cables and connections is presented. Data are reported under three sections: flat conductor cable technology, newly developed electrical connectors, and miscellaneous articles and information on cables and connector techniques.
Navigating conflicts of interest for the medical device entrepreneur.
Donovan, Aine; Kaplan, Aaron V
2012-01-01
The past fifty years has witnessed dramatic progress in the understanding and treatment of patients suffering from cardiovascular disease leading to symptomatic relief and impressive increases in longevity. These advances have been due in large part to the development, study and implementation of new technology. Within interventional cardiology in particular, these advances have been driven by the availability of new technology in the form of medical devices. Successful device development efforts require close collaboration among basic scientist, clinician-inventors/entrepreneurs, clinician-investigators and corporations. Though the role of the clinician is central to this process, these activities present important conflicts-of-interest (COIs). The purpose of this paper is to 1) characterize these conflicts, 2) provide a context from which to approach their management and 3) recommend management strategies. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Knudson, Christa K.; Kemp, Michael C.; Lombardo, Nicholas J.
2009-05-01
The U.S. Department of Homeland Security's Standoff Technology Integration and Demonstration Program is designed to accelerate the development and integration of technologies, concepts of operations, and training to defeat explosives attacks at large public events and mass transit facilities. The program will address threats posed by suicide bombers, vehicle-borne improvised explosive devices, and leave-behind bombs. The program is focused on developing and testing explosives countermeasure architectures using commercial off-the-shelf and near-commercial standoff and remotely operated detection technologies in prototypic operational environments. An important part of the program is the integration of multiple technologies and systems to protect against a wider range of threats, improve countermeasure performance, increase the distance from the venue at which screening is conducted, and reduce staffing requirements. The program will routinely conduct tests in public venues involving successively more advanced technology, higher levels of system integration, and more complex scenarios. This paper describes the initial field test of an integrated countermeasure system that included infrared, millimeter-wave, and video analytics technologies for detecting person-borne improvised explosive devices at a public arena. The test results are being used to develop a concept for the next generation of integrated countermeasures, to refine technical and operational requirements for architectures and technologies, and engage industry and academia in solution development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knudson, Christa K.; Kemp, Michael C.; Lombardo, Nicholas J.
The Department of Homeland Security’s Standoff Technology Integration and Demonstration Program is designed to accelerate the development and integration of technologies, concepts of operations, and training to prevent explosives attacks at large public events and mass transit facilities. The program will address threats posed by suicide bombers, vehicle-borne improvised explosive devices, and leave-behind bombs. The program is focused on developing and testing explosives countermeasure architectures using commercial off-the-shelf and near-commercial standoff and remotely operated detection technologies in prototypic operational environments. An important part of the program is the integration of multiple technologies and systems to protect against a wider rangemore » of threats, improve countermeasure performance, increase the distance from the venue at which screening is conducted, and reduce staffing requirements. The program will routinely conduct tests in public venues involving successively more advanced technology, higher levels of system integration, and more complex scenarios. This paper describes the initial field test of an integrated countermeasure system that included infrared, millimeter-wave, and video analytics technologies for detecting person-borne improvised explosive devices at a public arena. The test results are being used to develop a concept for the next generation of integrated countermeasures, to refine technical and operational requirements for architectures and technologies, and engage industry and academia in solution development.« less
A Gas Lubricant Combined Support-sealing Node
NASA Astrophysics Data System (ADS)
Falaleev, S. V.; Nadjari, H.; Vinogradov, A. S.
2018-01-01
The purpose of the research provided in this article is to develop a gas-dynamic device capable of performing the functions of support sealing, unloading devices for axial thrust bearings and damping of axial vibrations of the rotor. Some kinds of seals applied in supports of aircraft engines are known. A face gas-dynamic seal is one of the most effective and standard technology solution for compressors. As the basic element of the developed device, a face gas-dynamic seal with spiral grooves is considered. It also includes the fundamental mathematical calculation of such devices and the experimental research outcomes that form the basis of which such devices can be produced and adapted for use.
Drug-device combination products: regulatory landscape and market growth.
Bayarri, L
2015-08-01
Combination products are therapeutic and diagnostic products that combine drugs, devices and/or biological products, leading to safer and more effective treatments thanks to careful and precise drug targeting, local administration and individualized therapy. These technologies can especially benefit patients suffering from serious diseases and conditions such as cancer, heart disease, multiple sclerosis and diabetes, among others. On the other hand, drug-device combination products have also introduced a new dynamic in medical product development, regulatory approval and corporate interaction. Due to the increasing integration of drugs and devices observed in the latest generation of combination products, regulatory agencies have developed specific competences and regulations over the last decade. Manufacturers are required to fully understand the specific requirements in each country in order to ensure timely and accurate market access of new combination products, and the development of combination products involves a very specific pattern of interactions between manufacturers and regulatory agencies. The increased sophistication of the products brought to market over the last couple of decades has accentuated the need to develop drugs and devices collaboratively using resources from both industries, fostering the need of business partnering and technology licensing. This review will provide a global overview of the market trends, as well as (in the last section) an analysis of the drug-device combination products approved by the FDA during the latest 5 years. Copyright 2015 Prous Science, S.A.U. or its licensors. All rights reserved.
NASA's Cryogenic Fluid Management Technology Project
NASA Technical Reports Server (NTRS)
Tramel, Terri L.; Motil, Susan M.
2008-01-01
The Cryogenic Fluid Management (CFM) Project's primary objective is to develop storage, transfer, and handling technologies for cryogens that will support the enabling of high performance cryogenic propulsion systems, lunar surface systems and economical ground operations. Such technologies can significantly reduce propellant launch mass and required on-orbit margins, reduce or even eliminate propellant tank fluid boil-off losses for long term missions, and simplify vehicle operations. This paper will present the status of the specific technologies that the CFM Project is developing. The two main areas of concentration are analysis models development and CFM hardware development. The project develops analysis tools and models based on thermodynamics, hydrodynamics, and existing flight/test data. These tools assist in the development of pressure/thermal control devices (such as the Thermodynamic Vent System (TVS), and Multi-layer insulation); with the ultimate goal being to develop a mature set of tools and models that can characterize the performance of the pressure/thermal control devices incorporated in the design of an entire CFM system with minimal cryogen loss. The project does hardware development and testing to verify our understanding of the physical principles involved, and to validate the performance of CFM components, subsystems and systems. This database provides information to anchor our analytical models. This paper describes some of the current activities of the NASA's Cryogenic Fluid Management Project.
Direct laser writing of auxetic structures: present capabilities and challenges
NASA Astrophysics Data System (ADS)
Hengsbach, Stefan; Díaz Lantada, Andrés
2014-08-01
Auxetic materials (or metamaterials) are those with a negative Poisson ratio (NPR) and that display the unexpected property of lateral expansion when stretched, as well as an equal and opposing densification when compressed. Such geometries are being progressively employed in the development of novel products, especially in the fields of intelligent expandable actuators, shape morphing structures and minimally invasive implantable devices. Although several micromanufacturing technologies have already been applied to the development of auxetic geometries and devices, additional precision is needed to take full advantage of their special mechanical properties. In this study we present a very promising approach for the development of auxetic metamaterials and devices based on the use of direct laser writing. The process stands out for its precision and complex three-dimensional (3D) geometries attainable without the need of supporting structures. To our knowledge it represents one of the first examples of the application of this technology to the manufacture of auxetic geometries and mechanical metamaterials, with details even more remarkable than those shown in very recent studies, almost reaching the current limit of this additive manufacturing technology. We have used some special 3D auxetic designs whose remarkable NPR has been previously highlighted.
Design and Development of Intelligent Electrodes for Future Digital Health Monitoring: A Review
NASA Astrophysics Data System (ADS)
Khairuddin, A. M.; Azir, K. N. F. Ku; Kan, P. Eh
2018-03-01
Electrodes are sensors used in electrocardiography (ECG) monitoring system to diagnose heart diseases. Over the years, diverse types of electrodes have been designed and developed to improve ECG monitoring system. However, more recently, with the technological advances and capabilities from the Internet of Things (IoT), cloud computing and data analytics in personalized healthcare, researchers are attempting to design and develop more effective as well as flexible ECG devices by using intelligent electrodes. This paper reviews previous works on electrodes used in electrocardiography (ECG) monitoring devices to identify the key ftures for designing and developing intelligent electrodes in digital health monitoring devices.
Psychology, technology, and diabetes management.
Gonder-Frederick, Linda A; Shepard, Jaclyn A; Grabman, Jesse H; Ritterband, Lee M
2016-10-01
Use of technology in diabetes management is rapidly advancing and has the potential to help individuals with diabetes achieve optimal glycemic control. Over the past 40 years, several devices have been developed and refined, including the blood glucose meter, insulin pump, and continuous glucose monitor. When used in tandem, the insulin pump and continuous glucose monitor have prompted the Artificial Pancreas initiative, aimed at developing control system for fully automating glucose monitoring and insulin delivery. In addition to devices, modern technology, such as the Internet and mobile phone applications, have been used to promote patient education, support, and intervention to address the behavioral and emotional challenges of diabetes management. These state-of-the-art technologies not only have the potential to improve clinical outcomes, but there are possible psychological benefits, such as improved quality of life, as well. However, practical and psychosocial limitations related to advanced technology exist and, in the context of several technology-related theoretical frameworks, can influence patient adoption and continued use. It is essential for future diabetes technology research to address these barriers given that the clinical benefits appear to largely depend on patient engagement and consistence of technology use. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Analytical Chemistry in the Regulatory Science of Medical Devices.
Wang, Yi; Guan, Allan; Wickramasekara, Samanthi; Phillips, K Scott
2018-06-12
In the United States, regulatory science is the science of developing new tools, standards, and approaches to assess the safety, efficacy, quality, and performance of all Food and Drug Administration-regulated products. Good regulatory science facilitates consumer access to innovative medical devices that are safe and effective throughout the Total Product Life Cycle (TPLC). Because the need to measure things is fundamental to the regulatory science of medical devices, analytical chemistry plays an important role, contributing to medical device technology in two ways: It can be an integral part of an innovative medical device (e.g., diagnostic devices), and it can be used to support medical device development throughout the TPLC. In this review, we focus on analytical chemistry as a tool for the regulatory science of medical devices. We highlight recent progress in companion diagnostics, medical devices on chips for preclinical testing, mass spectrometry for postmarket monitoring, and detection/characterization of bacterial biofilm to prevent infections.
NASA Wearable Technology CLUSTER 2013-2014 Report
NASA Technical Reports Server (NTRS)
Simon, Cory; Dunne, Lucy; Zeagler, Clint; Martin, Tom; Pailes-Friedman, Rebecca
2014-01-01
Wearable technology has the potential to revolutionize the way humans interact with one another, with information, and with the electronic systems that surround them. This change can already be seen in the dramatic increase in the availability and use of wearable health and activity monitors. These devices continuously monitor the wearer using on--body sensors and wireless communication. They provide feedback that can be used to improve physical health and performance. Smart watches and head mounted displays are also receiving a great deal of commercial attention, providing immediate access to information via graphical displays, as well as additional sensing features. For the purposes of the Wearable Technology CLUSTER, wearable technology is broadly defined as any electronic sensing, human interfaces, computing, or communication that is mounted on the body. Current commercially available wearable devices primarily house electronics in rigid packaging to provide protection from flexing, moisture, and other contaminants. NASA mentors are interested in this approach, but are also interested in direct integration of electronics into clothing to enable more comfortable systems. For human spaceflight, wearable technology holds a great deal of promise for significantly improving safety, efficiency, autonomy, and research capacity for the crew in space and support personnel on the ground. Specific capabilities of interest include: Continuous biomedical monitoring for research and detection of health problems. Environmental monitoring for individual exposure assessments and alarms. Activity monitoring for responsive robotics and environments. Multi-modal caution and warning using tactile, auditory, and visual alarms. Wireless, hands-free, on-demand voice communication. Mobile, on-demand access to space vehicle and robotic displays and controls. Many technical challenges must be overcome to realize these wearable technology applications. For example, to make a wearable device that is both functional and comfortable for long duration wear, developers must strive to reduce electronic mass and volume while also addressing constraints imposed by the body attachment method. Depending on the application, the device must be placed in a location that the user can see and reach, and that provides the appropriate access to air and the wearer's skin. Limited power is available from body--worn batteries and heat must be managed to prevent discomfort. If the clothing is to be washed, there are additional durability and washability hurdles that traditional electronics are not designed to address. Finally, each specific capability has unique technical challenges that will likely require unique solutions. In addition to the technical challenges, development of wearable devices is made more difficult by the diversity of skills required and the historic lack of collaboration across domains. Wearable technology development requires expertise in textiles engineering, apparel design, software and computer engineering, electronic design and manufacturing, human factors engineering, and application--specific fields such as acoustics, medical devices, and sensing. Knowledge from each of these domains must be integrated to create functional and comfortable devices. For this reason, the diversity of knowledge and experience represented in the Wearable Technology is critical to overcoming the fundamental challenges in the field.
NASA Astrophysics Data System (ADS)
Marinella, M.
In the not too distant future, the traditional memory and storage hierarchy of may be replaced by a single Storage Class Memory (SCM) device integrated on or near the logic processor. Traditional magnetic hard drives, NAND flash, DRAM, and higher level caches (L2 and up) will be replaced with a single high performance memory device. The Storage Class Memory paradigm will require high speed (< 100 ns read/write), excellent endurance (> 1012), nonvolatility (retention > 10 years), and low switching energies (< 10 pJ per switch). The International Technology Roadmap for Semiconductors (ITRS) has recently evaluated several potential candidates SCM technologies, including Resistive (or Redox) RAM, Spin Torque Transfer RAM (STT-MRAM), and phase change memory (PCM). All of these devices show potential well beyond that of current flash technologies and research efforts are underway to improve the endurance, write speeds, and scalabilities to be on-par with DRAM. This progress has interesting implications for space electronics: each of these emerging device technologies show excellent resistance to the types of radiation typically found in space applications. Commercially developed, high density storage class memory-based systems may include a memory that is physically radiation hard, and suitable for space applications without major shielding efforts. This paper reviews the Storage Class Memory concept, emerging memory devices, and possible applicability to radiation hardened electronics for space.
Trevitt, Sara; Simpson, Sue; Wood, Annette
2016-05-01
Closed-loop artificial pancreas device (APD) systems are externally worn medical devices that are being developed to enable people with type 1 diabetes to regulate their blood glucose levels in a more automated way. The innovative concept of this emerging technology is that hands-free, continuous, glycemic control can be achieved by using digital communication technology and advanced computer algorithms. A horizon scanning review of this field was conducted using online sources of intelligence to identify systems in development. The systems were classified into subtypes according to their level of automation, the hormonal and glycemic control approaches used, and their research setting. Eighteen closed-loop APD systems were identified. All were being tested in clinical trials prior to potential commercialization. Six were being studied in the home setting, 5 in outpatient settings, and 7 in inpatient settings. It is estimated that 2 systems may become commercially available in the EU by the end of 2016, 1 during 2017, and 2 more in 2018. There are around 18 closed-loop APD systems progressing through early stages of clinical development. Only a few of these are currently in phase 3 trials and in settings that replicate real life. © 2015 Diabetes Technology Society.
34 CFR 303.13 - Early intervention services.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Assistive technology device and service are defined as follows: (i) Assistive technology device means any... device. (ii) Assistive technology service means any service that directly assists an infant or toddler with a disability in the selection, acquisition, or use of an assistive technology device. The term...
34 CFR 303.13 - Early intervention services.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Assistive technology device and service are defined as follows: (i) Assistive technology device means any... device. (ii) Assistive technology service means any service that directly assists an infant or toddler with a disability in the selection, acquisition, or use of an assistive technology device. The term...
34 CFR 303.13 - Early intervention services.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Assistive technology device and service are defined as follows: (i) Assistive technology device means any... device. (ii) Assistive technology service means any service that directly assists an infant or toddler with a disability in the selection, acquisition, or use of an assistive technology device. The term...
CFD Validation with Experiment and Verification with Physics of a Propellant Damping Device
NASA Technical Reports Server (NTRS)
Yang, H. Q.; Peugeot, John
2011-01-01
This paper will document our effort in validating a coupled fluid-structure interaction CFD tool in predicting a damping device performance in the laboratory condition. Consistently good comparisons of "blind" CFD predictions against experimental data under various operation conditions, design parameters, and cryogenic environment will be presented. The power of the coupled CFD-structures interaction code in explaining some unexpected phenomena of the device observed during the technology development will be illustrated. The evolution of the damper device design inside the LOX tank will be used to demonstrate the contribution of the tool in understanding, optimization and implementation of LOX damper in Ares I vehicle. It is due to the present validation effort, the LOX damper technology has matured to TRL 5. The present effort has also contributed to the transition of the technology from an early conceptual observation to the baseline design of thrust oscillation mitigation for the Ares I within a 10 month period.
Song, Shang; Roy, Shuvo
2018-01-01
Macroencapsulation technology has been an attractive topic in the field of treatment for Type 1 diabetes due to mechanical stability, versatility, and retrievability of the macrocapsule design. Macro-capsules can be categorized into extravascular and intravascular devices, in which solute transport relies either on diffusion or convection, respectively. Failure of macroencapsulation strategies can be due to limited regenerative capacity of the encased insulin-producing cells, sub-optimal performance of encapsulation biomaterials, insufficient immunoisolation, excessive blood thrombosis for vascular perfusion devices, and inadequate modes of mass transfer to support cell viability and function. However, significant technical advancements have been achieved in macroencapsulation technology, namely reducing diffusion distance for oxygen and nutrients, using pro-angiogenic factors to increase vascularization for islet engraftment, and optimizing membrane permeability and selectivity to prevent immune attacks from host’s body. This review presents an overview of existing macroencapsulation devices and discusses the advances based on tissue-engineering approaches that will stimulate future research and development of macroencapsulation technology. PMID:26615050
NASA Astrophysics Data System (ADS)
Zhu, Feng; Macdonald, Niall; Skommer, Joanna; Wlodkowic, Donald
2015-06-01
Current microfabrication methods are often restricted to two-dimensional (2D) or two and a half dimensional (2.5D) structures. Those fabrication issues can be potentially addressed by emerging additive manufacturing technologies. Despite rapid growth of additive manufacturing technologies in tissue engineering, microfluidics has seen relatively little developments with regards to adopting 3D printing for rapid fabrication of complex chip-based devices. This has been due to two major factors: lack of sufficient resolution of current rapid-prototyping methods (usually >100 μm ) and optical transparency of polymers to allow in vitro imaging of specimens. We postulate that adopting innovative fabrication processes can provide effective solutions for prototyping and manufacturing of chip-based devices with high-aspect ratios (i.e. above ration of 20:1). This work provides a comprehensive investigation of commercially available additive manufacturing technologies as an alternative for rapid prototyping of complex monolithic Lab-on-a-Chip devices for biological applications. We explored both multi-jet modelling (MJM) and several stereolithography (SLA) processes with five different 3D printing resins. Compared with other rapid prototyping technologies such as PDMS soft lithography and infrared laser micromachining, we demonstrated that selected SLA technologies had superior resolution and feature quality. We also for the first time optimised the post-processing protocols and demonstrated polymer features under scanning electronic microscope (SEM). Finally we demonstrate that selected SLA polymers have optical properties enabling high-resolution biological imaging. A caution should be, however, exercised as more work is needed to develop fully bio-compatible and non-toxic polymer chemistries.
Technology Use among Adults Who Are Deaf and Hard of Hearing: A National Survey
ERIC Educational Resources Information Center
Maiorana-Basas, Michella; Pagliaro, Claudia M.
2014-01-01
As society becomes increasingly more dependent on technology, information regarding the use, preference, and accessibility of commonly used devices and services among individuals who are deaf and hard of hearing (DHH) is crucial. Developing technologies that are functional and appropriately accessible allows persons who are DHH to fully…
The Effectiveness of Video Tutorials for Teaching Preservice Educators to Use Assistive Technologies
ERIC Educational Resources Information Center
Van Laarhoven, Toni; Munk, Dennis D.; Zurita, Leslie M.; Lynch, Kathleen; Zurita, Brian; Smith, Thomas; Chandler, Lynette
2009-01-01
Students with disabilities are guaranteed access to assistive technologies (AT) by provisions of the Individuals with Disabilities Education Improvement Act (IDEIA) (2004) and its predecessor, the Technology Related Assistance Act (Tech Act) (1988). Design and development of AT, including devices and software programs, has burgeoned to a point…
Synthesis and processing of materials for direct thermal-to-electric energy conversion and storage
NASA Astrophysics Data System (ADS)
Thompson, Travis
Currently, fossil fuels are the primary source of energy. Mechanical heat engines convert the chemical potential energy in fossil fuels to useful electrical energy through combustion; a relatively low efficiency process that generates carbon dioxide. This practice has led to a significant increase in carbon dioxide emissions and is contributing to climate change. However, not all heat engines are mechanical. Alternative energy generation technologies to mechanical heat engines are known, yet underutilized. Thermoelectric generators are solid-state devices originally developed by NASA to power deep space spacecraft, which can also convert heat into electricity but without any moving parts. Similar to their mechanical counterparts, any heat source, including the burning of fossil fuels, can be used. However, clean heat sources, such as concentrated solar, can alternatively be used. Since the energy sources for many of the alternative energy technologies is intermittent, including concentrated solar for thermoelectric devices, load matching is difficult or impossible and an energy storage technology is needed in addition to the energy conversion technology. This increases the overall cost and complexity of the systems since two devices are required and represents a significant barrier for mass adoption of an alternative energy technology. However, it is possible to convert heat energy to electrical energy and store excess charge for use at a later time when the demand increases, in a single device. One such of a device is a thermogalvanic generator and is the electrochemical analog of electronic thermoelectric devices. Essentially, a thermogalvanic device represents the combination of thermoelectric and galvanic systems. As such, the rich history of strategies developed by both the thermoelectric community to better the performance of thermoelectric devices and by the electrochemical community to better traditional galvanic devices (i.e. batteries) can be applied to thermogalvanic devices. Although thermogalvanic devices are known, there has been little exploration into the use of thermogalvanic devices for power generation and energy storage. First, this work formalizes the energy problem and introduces the operating principles of thermoelectric, galvanic, and thermogalvanic devices. Second, oxide based thermoelectric materials are explored from a synthetic and processing standpoint. Out of necessity, a new synthetic technique was invented and a novel hot-press technique was developed. Third, a solid Li-ion conducting electrolyte, based on the garnet crystal structure, is identified for the use in a thermogalvanic cell. In order to better understand the conductivity behavior, an in-depth exploration into the variables that control the ionic transport is performed on the electrolyte. Third, a thermogalvanic cell is constructed using this garnet based Li-ion conducting solid electrolyte and the first demonstration of such a cell is presented. Finally, strategies to improve the performance of thermogalvanic cells based on garnet type solid electrolytes are outlined for future work. The purpose of this work is to use an interdisciplinary approach to marry together the electrochemistry of galvanic systems with the strategies used to better semiconductor based thermoelectric materials and ceramics processing techniques to fabricate these systems. This dissertation will explore the interplay of these areas.
Plasma-Assisted Synthesis and Surface Modification of Electrode Materials for Renewable Energy.
Dou, Shuo; Tao, Li; Wang, Ruilun; El Hankari, Samir; Chen, Ru; Wang, Shuangyin
2018-05-01
Renewable energy technology has been considered as a "MUST" option to lower the use of fossil fuels for industry and daily life. Designing critical and sophisticated materials is of great importance in order to realize high-performance energy technology. Typically, efficient synthesis and soft surface modification of nanomaterials are important for energy technology. Therefore, there are increasing demands on the rational design of efficient electrocatalysts or electrode materials, which are the key for scalable and practical electrochemical energy devices. Nevertheless, the development of versatile and cheap strategies is one of the main challenges to achieve the aforementioned goals. Accordingly, plasma technology has recently appeared as an extremely promising alternative for the synthesis and surface modification of nanomaterials for electrochemical devices. Here, the recent progress on the development of nonthermal plasma technology is highlighted for the synthesis and surface modification of advanced electrode materials for renewable energy technology including electrocatalysts for fuel cells, water splitting, metal-air batteries, and electrode materials for batteries and supercapacitors, etc. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, J.H.; Ellis, J.R.; Montague, S.
1997-03-01
One of the principal applications of monolithically integrated micromechanical/microelectronic systems has been accelerometers for automotive applications. As integrated MEMS/CMOS technologies such as those developed by U.C. Berkeley, Analog Devices, and Sandia National Laboratories mature, additional systems for more sensitive inertial measurements will enter the commercial marketplace. In this paper, the authors will examine key technology design rules which impact the performance and cost of inertial measurement devices manufactured in integrated MEMS/CMOS technologies. These design parameters include: (1) minimum MEMS feature size, (2) minimum CMOS feature size, (3) maximum MEMS linear dimension, (4) number of mechanical MEMS layers, (5) MEMS/CMOS spacing.more » In particular, the embedded approach to integration developed at Sandia will be examined in the context of these technology features. Presently, this technology offers MEMS feature sizes as small as 1 {micro}m, CMOS critical dimensions of 1.25 {micro}m, MEMS linear dimensions of 1,000 {micro}m, a single mechanical level of polysilicon, and a 100 {micro}m space between MEMS and CMOS. This is applicable to modern precision guided munitions.« less
Lithography for enabling advances in integrated circuits and devices.
Garner, C Michael
2012-08-28
Because the transistor was fabricated in volume, lithography has enabled the increase in density of devices and integrated circuits. With the invention of the integrated circuit, lithography enabled the integration of higher densities of field-effect transistors through evolutionary applications of optical lithography. In 1994, the semiconductor industry determined that continuing the increase in density transistors was increasingly difficult and required coordinated development of lithography and process capabilities. It established the US National Technology Roadmap for Semiconductors and this was expanded in 1999 to the International Technology Roadmap for Semiconductors to align multiple industries to provide the complex capabilities to continue increasing the density of integrated circuits to nanometre scales. Since the 1960s, lithography has become increasingly complex with the evolution from contact printers, to steppers, pattern reduction technology at i-line, 248 nm and 193 nm wavelengths, which required dramatic improvements of mask-making technology, photolithography printing and alignment capabilities and photoresist capabilities. At the same time, pattern transfer has evolved from wet etching of features, to plasma etch and more complex etching capabilities to fabricate features that are currently 32 nm in high-volume production. To continue increasing the density of devices and interconnects, new pattern transfer technologies will be needed with options for the future including extreme ultraviolet lithography, imprint technology and directed self-assembly. While complementary metal oxide semiconductors will continue to be extended for many years, these advanced pattern transfer technologies may enable development of novel memory and logic technologies based on different physical phenomena in the future to enhance and extend information processing.
Semiconductor diode laser device adjuvanting intradermal vaccine
Kimizuka, Yoshifumi; Callahan, John J.; Huang, Zilong; Morse, Kaitlyn; Katagiri, Wataru; Shigeta, Ayako; Bronson, Roderick; Takeuchi, Shu; Shimaoka, Yusuke; Chan, Megan P. K.; Zeng, Yang; Li, Binghao; Chen, Huabiao; Tan, Rhea Y. Y.; Dwyer, Conor; Mulley, Tyler; Leblanc, Pierre; Goudie, Calum; Gelfand, Jeffrey; Tsukada, Kosuke; Brauns, Timothy; Poznansky, Mark C.; Bean, David; Kashiwagi, Satoshi
2017-01-01
A brief exposure of skin to a low-power, non-tissue damaging laser light has been demonstrated to augment immune responses to intradermal vaccination. Both preclinical and clinical studies show that this approach is simple, effective, safe and well tolerated compared to standard chemical or biological adjuvants. Until now, these laser exposures have been performed using a diode-pumped solid-state laser (DPSSL) devices, which are expensive and require labor-intensive maintenance and special training. Development of an inexpensive, easy-to-use and small device would form an important step in translating this technology toward clinical application Here we report that we have established a handheld, near-infrared (NIR) laser device using semiconductor diodes emitting either 1061, 1258, or 1301 nm light that costs less than $4,000, and that this device replicates the adjuvant effect of a DPSSL system in a mouse model of influenza vaccination. Our results also indicate that a broader range of NIR laser wavelengths possess the ability to enhance vaccine immune responses, allowing engineering options for the device design. This small, low-cost device establishes the feasibility of using a laser adjuvant approach for mass-vaccination programs in a clinical setting, opens the door for broader testing of this technology with a variety of vaccines and forms the foundation for development of devices ready for use in the clinic. PMID:28365253
Semiconductor diode laser device adjuvanting intradermal vaccine.
Kimizuka, Yoshifumi; Callahan, John J; Huang, Zilong; Morse, Kaitlyn; Katagiri, Wataru; Shigeta, Ayako; Bronson, Roderick; Takeuchi, Shu; Shimaoka, Yusuke; Chan, Megan P K; Zeng, Yang; Li, Binghao; Chen, Huabiao; Tan, Rhea Y Y; Dwyer, Conor; Mulley, Tyler; Leblanc, Pierre; Goudie, Calum; Gelfand, Jeffrey; Tsukada, Kosuke; Brauns, Timothy; Poznansky, Mark C; Bean, David; Kashiwagi, Satoshi
2017-04-25
A brief exposure of skin to a low-power, non-tissue damaging laser light has been demonstrated to augment immune responses to intradermal vaccination. Both preclinical and clinical studies show that this approach is simple, effective, safe and well tolerated compared to standard chemical or biological adjuvants. Until now, these laser exposures have been performed using a diode-pumped solid-state laser (DPSSL) devices, which are expensive and require labor-intensive maintenance and special training. Development of an inexpensive, easy-to-use and small device would form an important step in translating this technology toward clinical application. Here we report that we have established a handheld, near-infrared (NIR) laser device using semiconductor diodes emitting either 1061, 1258, or 1301nm light that costs less than $4000, and that this device replicates the adjuvant effect of a DPSSL system in a mouse model of influenza vaccination. Our results also indicate that a broader range of NIR laser wavelengths possess the ability to enhance vaccine immune responses, allowing engineering options for the device design. This small, low-cost device establishes the feasibility of using a laser adjuvant approach for mass-vaccination programs in a clinical setting, opens the door for broader testing of this technology with a variety of vaccines and forms the foundation for development of devices ready for use in the clinic. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tao, Hu; Hwang, Suk-Won; Marelli, Benedetto; An, Bo; Moreau, Jodie E.; Yang, Miaomiao; Brenckle, Mark A.; Kim, Stanley; Kaplan, David L.; Rogers, John A.; Omenetto, Fiorenzo G.
2014-01-01
A paradigm shift for implantable medical devices lies at the confluence between regenerative medicine, where materials remodel and integrate in the biological milieu, and technology, through the use of recently developed material platforms based on biomaterials and bioresorbable technologies such as optics and electronics. The union of materials and technology in this context enables a class of biomedical devices that can be optically or electronically functional and yet harmlessly degrade once their use is complete. We present here a fully degradable, remotely controlled, implantable therapeutic device operating in vivo to counter a Staphylococcus aureus infection that disappears once its function is complete. This class of device provides fully resorbable packaging and electronics that can be turned on remotely, after implantation, to provide the necessary thermal therapy or trigger drug delivery. Such externally controllable, resorbable devices not only obviate the need for secondary surgeries and retrieval, but also have extended utility as therapeutic devices that can be left behind at a surgical or suturing site, following intervention, and can be externally controlled to allow for infection management by either thermal treatment or by remote triggering of drug release when there is retardation of antibiotic diffusion, deep infections are present, or when systemic antibiotic treatment alone is insufficient due to the emergence of antibiotic-resistant strains. After completion of function, the device is safely resorbed into the body, within a programmable period. PMID:25422476
Tao, Hu; Hwang, Suk-Won; Marelli, Benedetto; An, Bo; Moreau, Jodie E; Yang, Miaomiao; Brenckle, Mark A; Kim, Stanley; Kaplan, David L; Rogers, John A; Omenetto, Fiorenzo G
2014-12-09
A paradigm shift for implantable medical devices lies at the confluence between regenerative medicine, where materials remodel and integrate in the biological milieu, and technology, through the use of recently developed material platforms based on biomaterials and bioresorbable technologies such as optics and electronics. The union of materials and technology in this context enables a class of biomedical devices that can be optically or electronically functional and yet harmlessly degrade once their use is complete. We present here a fully degradable, remotely controlled, implantable therapeutic device operating in vivo to counter a Staphylococcus aureus infection that disappears once its function is complete. This class of device provides fully resorbable packaging and electronics that can be turned on remotely, after implantation, to provide the necessary thermal therapy or trigger drug delivery. Such externally controllable, resorbable devices not only obviate the need for secondary surgeries and retrieval, but also have extended utility as therapeutic devices that can be left behind at a surgical or suturing site, following intervention, and can be externally controlled to allow for infection management by either thermal treatment or by remote triggering of drug release when there is retardation of antibiotic diffusion, deep infections are present, or when systemic antibiotic treatment alone is insufficient due to the emergence of antibiotic-resistant strains. After completion of function, the device is safely resorbed into the body, within a programmable period.
Mobile phone-based biosensing: An emerging "diagnostic and communication" technology.
Quesada-González, Daniel; Merkoçi, Arben
2017-06-15
In this review we discuss recent developments on the use of mobile phones and similar devices for biosensing applications in which diagnostics and communications are coupled. Owing to the capabilities of mobile phones (their cameras, connectivity, portability, etc.) and to advances in biosensing, the coupling of these two technologies is enabling portable and user-friendly analytical devices. Any user can now perform quick, robust and easy (bio)assays anywhere and at any time. Among the most widely reported of such devices are paper-based platforms. Herein we provide an overview of a broad range of biosensing possibilities, from optical to electrochemical measurements; explore the various reported designs for adapters; and consider future opportunities for this technology in fields such as health diagnostics, safety & security, and environment monitoring. Copyright © 2016 Elsevier B.V. All rights reserved.
Current Issues and Trends in Multidimensional Sensing Technologies for Digital Media
NASA Astrophysics Data System (ADS)
Nagata, Noriko; Ohki, Hidehiro; Kato, Kunihito; Koshimizu, Hiroyasu; Sagawa, Ryusuke; Fujiwara, Takayuki; Yamashita, Atsushi; Hashimoto, Manabu
Multidimensional sensing (MDS) technologies have numerous applications in the field of digital media, including the development of audio and visual equipment for human-computer interaction (HCI) and manufacture of data storage devices; furthermore, MDS finds applications in the fields of medicine and marketing, i.e., in e-marketing and the development of diagnosis equipment.
ERIC Educational Resources Information Center
Argyropoulos, Vassilios; Nikolaraizi, Magda; Tsiakali, Thomai; Kountrias, Polychronis; Koutsogiorgou, Sofia-Marina; Martos, Aineias
2014-01-01
This paper highlights the framework and discusses the results of an action research project which aimed to facilitate the adoption of assistive technology devices and specialized software by teachers of students with visual impairment via a digital educational game, developed specifically for this project. The persons involved in this…
Handheld Diagnostic Device Delivers Quick Medical Readings
NASA Technical Reports Server (NTRS)
2014-01-01
To monitor astronauts' health remotely, Glenn Research Center awarded SBIR funding to Cambridge, Massachusetts-based DNA Medical Institute, which developed a device capable of analyzing blood cell counts and a variety of medical biomarkers. The technology will prove especially useful in rural areas without easy access to labs.
NASA Technical Reports Server (NTRS)
1973-01-01
A photovoltaic device development plan is reported that considers technological as well as economical aspects of single crystal silicon, polycrystal silicon, cadmium sulfide/copper sulfide thin films, as well as other materials and devices for solar cell energy conversion systems.
34 CFR 300.5 - Assistive technology device.
Code of Federal Regulations, 2012 CFR
2012-07-01
... CHILDREN WITH DISABILITIES General Definitions Used in This Part § 300.5 Assistive technology device. Assistive technology device means any item, piece of equipment, or product system, whether acquired... 34 Education 2 2012-07-01 2012-07-01 false Assistive technology device. 300.5 Section 300.5...
34 CFR 300.5 - Assistive technology device.
Code of Federal Regulations, 2013 CFR
2013-07-01
... CHILDREN WITH DISABILITIES General Definitions Used in This Part § 300.5 Assistive technology device. Assistive technology device means any item, piece of equipment, or product system, whether acquired... 34 Education 2 2013-07-01 2013-07-01 false Assistive technology device. 300.5 Section 300.5...
34 CFR 300.5 - Assistive technology device.
Code of Federal Regulations, 2014 CFR
2014-07-01
... CHILDREN WITH DISABILITIES General Definitions Used in This Part § 300.5 Assistive technology device. Assistive technology device means any item, piece of equipment, or product system, whether acquired... 34 Education 2 2014-07-01 2013-07-01 true Assistive technology device. 300.5 Section 300.5...
34 CFR 300.5 - Assistive technology device.
Code of Federal Regulations, 2011 CFR
2011-07-01
... CHILDREN WITH DISABILITIES General Definitions Used in This Part § 300.5 Assistive technology device. Assistive technology device means any item, piece of equipment, or product system, whether acquired... 34 Education 2 2011-07-01 2010-07-01 true Assistive technology device. 300.5 Section 300.5...
34 CFR 300.5 - Assistive technology device.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 34 Education 2 2010-07-01 2010-07-01 false Assistive technology device. 300.5 Section 300.5... CHILDREN WITH DISABILITIES General Definitions Used in This Part § 300.5 Assistive technology device. Assistive technology device means any item, piece of equipment, or product system, whether acquired...
Kitsikopoulos, Harry
2013-09-01
This essay provides an analytical account of the history of various steam devices by tracing the key technological and scientific developments culminating in the Savery and Newcomen models. It begins in antiquity with the writings of Hero of Alexandria, which were rediscovered and translated in Italy fourteen centuries later, followed by the construction of simple steam devices. The most decisive development comes in the middle of the seventeenth century with the overturning, through the experimental work of Torricelli, Pascal, and Guericke, of the Aristotelian dogma that no vacuum exists. The final stretch of this discovery process amounted to an Anglo-French race, with English inventors being more successful in the end.
Radiation Effects in III-V Nanowire Devices
2016-09-01
Nanowire Devices Distribution Statement A. Approved for public release; distribution is unlimited. September 2016 HDTRA1-11-1-0021 Steven R...Name: Prof. S. R. J. Brueck Organization/Institution: University of New Mexico Project Title: Radiation Effects in III-V Nanowire Devices What are...the agency approved application or plan. The objectives of this program were to: a) develop a new nanowire transistor technology based on nanoscale
Silicon-Based Quantum MOS Technology Development
2000-03-07
resonant interband tunnel diodes were demonstrated with peak current density greater than 104 A/cm2; peak-to-valley current ratio exceeding 2 was...photon emission reduce the peak-to-valley current ratio and device performance. Therefore, interband tunnel devices should be more resilient to...Comparison of bipolar interband tunnel and optical devices: (a) Esaki diode biased into the valley current region and (b) optical light emitter. The Esaki
NASA Astrophysics Data System (ADS)
D'Ascenzo, N.; Xie, Q.
2018-04-01
Modern concepts of single photon or charged particle detection systems are based on geiger mode avalanche devices developed in CMOS technology. The key-problem encountered in the fabrication of these devices in CMOS is the dark rate level. The dark rate and single photon signal are not distinguishable. This sets also the limits of the application of geiger mode avalanche devices to single photon or charged particle detection systems. We report the design and fabrication of four possible layouts of these devices using the 0.18 μm BCDLite GLOBALFOUNDRIES process. The devices have an area of 50×50 μm2. They are characterized by a fast response time and an approximately 60 ns recovery time. The best topology exhibits an average dark rate as low as 3×103 kHz/mm2.
Morak, Jürgen; Kumpusch, Hannes; Hayn, Dieter; Modre-Osprian, Robert; Schreier, Günter
2012-01-01
Utilization of information and communication technologies such as mobile phones and wireless sensor networks becomes more and more common in the field of telemonitoring for chronic diseases. Providing elderly people with a mobile-phone-based patient terminal requires a barrier-free design of the overall user interface including the setup of wireless communication links to sensor devices. To easily manage the connection between a mobile phone and wireless sensor devices, a concept based on the combination of Bluetooth and near-field communication technology has been developed. It allows us initiating communication between two devices just by bringing them close together for a few seconds without manually configuring the communication link. This concept has been piloted with a sensor device and evaluated in terms of usability and feasibility. Results indicate that this solution has the potential to simplify the handling of wireless sensor networks for people with limited technical skills.
Filamentary model in resistive switching materials
NASA Astrophysics Data System (ADS)
Jasmin, Alladin C.
2017-12-01
The need for next generation computer devices is increasing as the demand for efficient data processing increases. The amount of data generated every second also increases which requires large data storage devices. Oxide-based memory devices are being studied to explore new research frontiers thanks to modern advances in nanofabrication. Various oxide materials are studied as active layers for non-volatile memory. This technology has potential application in resistive random-access-memory (ReRAM) and can be easily integrated in CMOS technologies. The long term perspective of this research field is to develop devices which mimic how the brain processes information. To realize such application, a thorough understanding of the charge transport and switching mechanism is important. A new perspective in the multistate resistive switching based on current-induced filament dynamics will be discussed. A simple equivalent circuit of the device gives quantitative information about the nature of the conducting filament at different resistance states.
Toward biomaterial-based implantable photonic devices
NASA Astrophysics Data System (ADS)
Humar, Matjaž; Kwok, Sheldon J. J.; Choi, Myunghwan; Yetisen, Ali K.; Cho, Sangyeon; Yun, Seok-Hyun
2017-03-01
Optical technologies are essential for the rapid and efficient delivery of health care to patients. Efforts have begun to implement these technologies in miniature devices that are implantable in patients for continuous or chronic uses. In this review, we discuss guidelines for biomaterials suitable for use in vivo. Basic optical functions such as focusing, reflection, and diffraction have been realized with biopolymers. Biocompatible optical fibers can deliver sensing or therapeutic-inducing light into tissues and enable optical communications with implanted photonic devices. Wirelessly powered, light-emitting diodes (LEDs) and miniature lasers made of biocompatible materials may offer new approaches in optical sensing and therapy. Advances in biotechnologies, such as optogenetics, enable more sophisticated photonic devices with a high level of integration with neurological or physiological circuits. With further innovations and translational development, implantable photonic devices offer a pathway to improve health monitoring, diagnostics, and light-activated therapies.
NASA Astrophysics Data System (ADS)
Sihombing, Oloan; Zendrato, Niskarto; Laia, Yonata; Nababan, Marlince; Sitanggang, Delima; Purba, Windania; Batubara, Diarmansyah; Aisyah, Siti; Indra, Evta; Siregar, Saut
2018-04-01
In the era of technological development today, the technology has become the need for the life of today's society. One is needed to create a smart home in turning on and off electronic devices via smartphone. So far in turning off and turning the home electronic device is done by pressing the switch or remote button, so in control of electronic device control less effective. The home smart design is done by simulation concept by testing system, network configuration, and wireless home gateway computer network equipment required by a smart home network on cisco packet tracer using Internet Thing (IoT) control. In testing the IoT home network wireless network gateway system, multiple electronic devices can be controlled and monitored via smartphone based on predefined configuration conditions. With the Smart Ho me can potentially increase energy efficiency, decrease energy usage costs, control electronics and change the role of residents.
Nanophotonic applications for silicon-on-insulator (SOI)
NASA Astrophysics Data System (ADS)
de la Houssaye, Paul R.; Russell, Stephen D.; Shimabukuro, Randy L.
2004-07-01
Silicon-on-insulator is a proven technology for very large scale integration of microelectronic devices. The technology also offers the potential for development of nanophotonic devices and the ability to interface such devices to the macroscopic world. This paper will report on fabrication techniques used to form nano-structured silicon wires on an insulating structure that is amenable to interfacing nanostructured sensors with high-performance microelectronic circuitry for practical implementation. Nanostructures formed on silicon-on-sapphire can also exploit the transparent substrate for novel device geometries. This research harnesses the unique properties of a high-quality single crystal film of silicon on sapphire and uses the film thickness as one of the confinement dimensions. Lateral arrays of silicon nanowires were fabricated in the thin (5 to 20 nm) silicon layer and studied. This technique offers simplified contact to individual wires and provides wire surfaces that are more readily accessible for controlled alteration and device designs.
Design and Deployment of a General Purpose, Open Source LoRa to Wi-Fi Hub and Data Logger
NASA Astrophysics Data System (ADS)
DeBell, T. C.; Udell, C.; Kwon, M.; Selker, J. S.; Lopez Alcala, J. M.
2017-12-01
Methods and technologies facilitating internet connectivity and near-real-time status updates for in site environmental sensor data are of increasing interest in Earth Science. However, Open Source, Do-It-Yourself technologies that enable plug and play functionality for web-connected sensors and devices remain largely inaccessible for typical researchers in our community. The Openly Published Environmental Sensing Lab at Oregon State University (OPEnS Lab) constructed an Open Source 900 MHz Long Range Radio (LoRa) receiver hub with SD card data logger, Ethernet and Wi-Fi shield, and 3D printed enclosure that dynamically uploads transmissions from multiple wirelessly-connected environmental sensing devices. Data transmissions may be received from devices up to 20km away. The hub time-stamps, saves to SD card, and uploads all transmissions to a Google Drive spreadsheet to be accessed in near-real-time by researchers and GeoVisualization applications (such as Arc GIS) for access, visualization, and analysis. This research expands the possibilities of scientific observation of our Earth, transforming the technology, methods, and culture by combining open-source development and cutting edge technology. This poster details our methods and evaluates the application of using 3D printing, Arduino Integrated Development Environment (IDE), Adafruit's Open-Hardware Feather development boards, and the WIZNET5500 Ethernet shield for designing this open-source, general purpose LoRa to Wi-Fi data logger.
Microscale Particulate Classifiers (MiPAC) Being Developed
NASA Technical Reports Server (NTRS)
Greenberg, Paul S.
2001-01-01
The NASA Glenn Research Center is developing microscale sensors to characterize atmospheric-borne particulates. The devices are fabricated using MEMS (microelectromechanical systems) technologies. These technologies are derived from those originally developed in support of the semiconductor processing industry. The resulting microsensors can characterize a wide range of particles and are, therefore, suitable to a broad range of applications. This project is supported under a collaborative program called the Glennan Microsystems Initiative. The initiative comprises members of NASA Glenn Research Center, various university affiliates from the State of Ohio, and a number of participating industrial partners. Funding is jointly provided by NASA, the State of Ohio, and industrial members. The work described here is a collaborative arrangement between researchers at Glenn, the University of Minnesota, The National Institute of Standards and Technology (NIST), and the Cleveland State University. Actual device fabrication is conducted at Glenn and at the laboratories of Case Western Reserve University. Case Western is also located in Cleveland, Ohio, and is a participating member of the initiative. The principal investigator for this project is Paul S. Greenberg of Glenn. Two basic types of devices are being developed, and target different ranges of particle sizes. The first class of devices, which is used to measure nanoparticles (i.e., particles in the range of 0.002 to 1 mm), is based on the technique of Electrical Mobility Classification. This technique also affords the valuable ability of measuring the electrical charge state of the particles. Such information is important in the understanding of agglomeration mechanisms and is useful in the development of methods for particle repulsion. The second type of device being developed, which utilizes optical scattering, is suitable for particles larger than 1 mm. This technique also provides information on particle shape and composition. Applications for these sensors include fundamental planetary climatology, monitoring and filtration in spacecraft, human habitation modules and related systems, characterization of particulate emissions from propulsion and power systems, and as early warning sensors for both space-based and ter-restrial fire detection. These devices are also suitable for characterizing biological compounds such as allergens, infectious agents, and biotoxic agents.
Experimental research on a modular miniaturization nanoindentation device
NASA Astrophysics Data System (ADS)
Huang, Hu; Zhao, Hongwei; Mi, Jie; Yang, Jie; Wan, Shunguang; Yang, Zhaojun; Yan, Jiwang; Ma, Zhichao; Geng, Chunyang
2011-09-01
Nanoindentation technology is developing toward the in situ test which requires miniaturization of indentation instruments. This paper presents a miniaturization nanoindentation device based on the modular idea. It mainly consists of macro-adjusting mechanism, x-y precise positioning platform, z axis precise driving unit, and the load-depth measuring unit. The device can be assembled with different forms and has minimum dimensions of 200 mm × 135 mm × 200 mm. The load resolution is about 0.1 mN and the displacement resolution is about 10 nm. A new calibration method named the reference-mapping method is proposed to calibrate the developed device. Output performance tests and indentation experiments indicate the feasibility of the developed device and calibration method. This paper gives an example that combining piezoelectric actuators with flexure hinge to realize nanoindentation tests. Integrating a smaller displacement sensor, a more compact nanoindentation device can be designed in the future.
Assistive technologies after stroke: self-management or fending for yourself? A focus group study
2013-01-01
Background Assistive Technologies, defined as “electrical or mechanical devices designed to help people recover movement” have demonstrated clinical benefits in upper-limb stroke rehabilitation. Stroke services are becoming community-based and more reliant on self-management approaches. Assistive technologies could become important tools within self-management, however, in practice, few people currently use assistive technologies. This study investigated patients’, family caregivers and health professionals’ experiences and perceptions of stroke upper-limb rehabilitation and assistive technology use and identified the barriers and facilitators to their use in supporting stroke self-management. Methods A three-day exhibition of assistive technologies was attended by 204 patients, family caregivers/friends and health professionals. Four focus groups were conducted with people purposively sampled from exhibition attendees. They included i) people with stroke who had used assistive technologies (n = 5), ii) people with stroke who had not used assistive technologies (n = 6), iii) family caregivers (n = 5) and iv) health professionals (n = 6). The audio-taped focus groups were facilitated by a moderator and observer. All participants were asked to discuss experiences, strengths, weaknesses, barriers and facilitators to using assistive technologies. Following transcription, data were analysed using thematic analysis. Results All respondents thought assistive technologies had the potential to support self-management but that this opportunity was currently unrealised. All respondents considered assistive technologies could provide a home-based solution to the need for high intensity upper-limb rehabilitation. All stakeholders also reported significant barriers to assistive technology use, related to i) device design ii) access to assistive technology information and iii) access to assistive technology provision. The lack of and need for a coordinated system for assistive technology provision was apparent. A circular limitation of lack of evidence in clinical settings, lack of funded provision, lack of health professional knowledge about assistive technologies and confidence in prescribing them leading to lack of assistive technology service provision meant that often patients either received no assistive technologies or they and/or their family caregivers liaised directly with manufacturers without any independent expert advice. Conclusions Considerable systemic barriers to realising the potential of assistive technologies in upper-limb stroke rehabilitation were reported. Attention needs to be paid to increasing evidence of assistive technology effectiveness and develop clinical service provision. Device manufacturers, researchers, health professionals, service funders and people with stroke and family caregivers need to work creatively and collaboratively to develop new funding models, improve device design and increase knowledge and training in assistive technology use. PMID:23968362
NASA Technical Reports Server (NTRS)
Leslie, Thomas M.
1993-01-01
A focused approach to development and evaluation of organic polymer films for use in optoelectronics is presented. The issues and challenges that are addressed include: (1) material synthesis, purification, and the tailoring of the material properties; (2) deposition of uniform thin films by a variety of methods; (3) characterization of material physical properties (thermal, electrical, optical, and electro-optical); and (4) device fabrication and testing. Photonic materials, devices, and systems were identified as critical technology areas by the Department of Commerce and the Department of Defense. This approach offers strong integration of basic material issues through engineering applications by the development of materials that can be exploited as the active unit in a variety of polymeric thin film devices. Improved materials were developed with unprecedented purity and stability. The absorptive properties can be tailored and controlled to provide significant improvement in propagation losses and nonlinear performance. Furthermore, the materials were incorporated into polymers that are highly compatible with fabrication and patterning processes for integrated optical devices and circuits. By simultaneously addressing the issues of materials development and characterization, keeping device design and fabrication in mind, many obstacles were overcome for implementation of these polymeric materials and devices into systems. We intend to considerably improve the upper use temperature, poling stability, and compatibility with silicon based devices. The principal device application that was targeted is a linear electro-optic modulation etalon. Organic polymers need to be properly designed and coupled with existing integrated circuit technology to create new photonic devices for optical communication, image processing, other laser applications such as harmonic generation, and eventually optical computing. The progression from microscopic sample to a suitable film-forming material in a working device is a complex, multifaceted endeavor. It requires close attention to maintaining the optical properties of the electro-optic active portion of the polymer while manipulating the polymer structure to obtain the desired secondary polymer properties.
Low-Dimensional Nanomaterials and Molecular Dielectrics for Radiation-Hard Electronics
NASA Astrophysics Data System (ADS)
McMorrow, Julian
The electronic materials research driving Moore's law has provided several decades of increasingly powerful yet simultaneously miniaturized computer technologies. As we approach the physical and practical limits of what can be accomplished with silicon electronics, we look to new materials to drive innovation in future electronic applications. New materials paradigms require the development of understanding from first principles to the demonstration of applications that comes with mature technologies. Semiconducting single-walled carbon nanotubes (SWCNTs), single- and few-layer molybdenum disulfide (MoS2) and self-assembled nanodielectric (SAND) gate materials have all made significant impacts in the research field of unconventional electronic materials. The materials selection, interfaces between materials, processing steps to assemble them, and their interaction with their environment all have significant bearing on the operation of the overall device. Operating in harsh radiation environments, like those of satellites orbiting the Earth, present unique challenges to the functionality and reliability of electronic devices. Because the future of space-bound electronics is often informed by the technology of terrestrial devices, a proactive approach is adopted to identify and understand the radiation response of new materials systems as they emerge and develop. The work discussed here drives the innovation and development of multiple nanomaterial based electronic technologies while simultaneously exploring their relevant radiation response mechanisms. First, collaborative efforts result in the demonstration of a SWCNT-based circuit technology that is solution processed, large-area, and compatible with flexible substrates. The statistical characterization of SWCNT transistors enables the development of robust doping and encapsulation schemes, which make the SWCNT circuits stable, scalable, and low-power. These SWCNTs are then integrated into static random access memory (SRAM) cells, an accomplishment that illustrates the technological relevance of this work by implementing a highly utilized component of modern day computing. Next, these SRAM devices demonstrate functionality as true random number generators (TRNGs), which are critical components in cryptography and encryption. The randomness of these SWCNT TRNGs is verified by a suite of statistical tests. This achievement has implications for securing data and communication in future solution-processed, large-area, flexible electronics. The unprecedented integration achieved by the underlying SWCNT doping and encapsulation motivates the study of this technology in a radiation environment. Doing so results in an understanding of the fundamental charge trapping mechanisms responsible for the radiation response in this system. The integrated nature of these devices enables, for the first time, the observation of system-level effects in a SWCNT integrated circuit technology. This technology is found to be total ionizing dose-hard, a promising result for the adoption of SWCNTs in future space-bound applications. Compared to SWCNTs, the field of MoS2 electronics is relatively nascent. As a result, studies of radiation effects in MoS2 devices focus on the fundamental mechanisms at play in the materials system. Here, we reveal the critical role of atmospheric adsorbates in the radiation effects of MoS2 transistors by measuring their response to vacuum ultraviolet radiation. These results highlight the importance of controlling the atmosphere of MoS2 devices during irradiation. Furthermore, we make recommendations for radiation-hard MoS2-based devices in the future as the technology continues to mature. One such recommendation is the incorporation of specialized dielectrics with proven radiation hardness. To this end, we address the materials integration challenge of incorporating SAND gate dielectrics on arbitrary substrates. We explore a novel approach for preparing metal substrates for SAND deposition, supporting the SAND superlattice structure and its superlative electronic properties on a metal surface. This result is critical for conducting fundamental transport studies when integrating SAND with novel semiconductor materials, as well as enabling complex circuit integration and SAND on flexible substrates. Altogether, these works drive the integration of novel nanoelectronic materials for future electronics while providing an understanding of their varying radiation response mechanisms to enable their adoption in future space-bound applications.
Design and demonstration of an intracortical probe technology with tunable modulus.
Simon, Dustin M; Charkhkar, Hamid; St John, Conan; Rajendran, Sakthi; Kang, Tong; Reit, Radu; Arreaga-Salas, David; McHail, Daniel G; Knaack, Gretchen L; Sloan, Andrew; Grasse, Dane; Dumas, Theodore C; Rennaker, Robert L; Pancrazio, Joseph J; Voit, Walter E
2017-01-01
Intracortical probe technology, consisting of arrays of microelectrodes, offers a means of recording the bioelectrical activity from neural tissue. A major limitation of existing intracortical probe technology pertains to limited lifetime of 6 months to a year of recording after implantation. A major contributor to device failure is widely believed to be the interfacial mechanical mismatch of conventional stiff intracortical devices and the surrounding brain tissue. We describe the design, development, and demonstration of a novel functional intracortical probe technology that has a tunable Young's modulus from ∼2 GPa to ∼50 MPa. This technology leverages advances in dynamically softening materials, specifically thiol-ene/acrylate thermoset polymers, which exhibit minimal swelling of < 3% weight upon softening in vitro. We demonstrate that a shape memory polymer-based multichannel intracortical probe can be fabricated, that the mechanical properties are stable for at least 2 months and that the device is capable of single unit recordings for durations up to 77 days in vivo. This novel technology, which is amenable to processes suitable for manufacturing via standard semiconductor fabrication techniques, offers the capability of softening in vivo to reduce the tissue-device modulus mismatch to ultimately improve long term viability of neural recordings. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 159-168, 2017. © 2016 Wiley Periodicals, Inc.
The future of the provision process for mobility assistive technology: a survey of providers.
Dicianno, Brad E; Joseph, James; Eckstein, Stacy; Zigler, Christina K; Quinby, Eleanor J; Schmeler, Mark R; Schein, Richard M; Pearlman, Jon; Cooper, Rory A
2018-03-20
The purpose of this study was to evaluate the opinions of providers of mobility assistive technologies to help inform a research agenda and set priorities. This survey study was anonymous and gathered opinions of individuals who participate in the process to provide wheelchairs and other assistive technologies to clients. Participants were asked to rank the importance of developing various technologies and rank items against each other in terms of order of importance. Participants were also asked to respond to several open-ended questions or statements. A total of 161 providers from 35 states within the USA consented to participation and completed the survey. This survey revealed themes of advanced wheelchair design, assistive robotics and intelligent systems, human machine interfaces and smart device applications. It also outlined priorities for researchers to provide continuing education to clients and providers. These themes will be used to develop research and development priorities. Implications for Rehabilitation • Research in advanced wheelchair design is needed to facilitate travel and environmental access with wheelchairs and to develop alternative power sources for wheelchairs.• New assistive robotics and intelligent systems are needed to help wheelchairs overcome obstacles or self-adjust, assist wheelchair navigation in the community, assist caregivers and transfers, and aid ambulation.• Innovations in human machine interfaces may help advance the control of mobility devices and robots with the brain, eye movements, facial gesture recognition or other systems.• Development of new smart devices is needed for better control of the environment, monitoring activity and promoting healthy behaviours.
High-Temperature Optical Sensor
NASA Technical Reports Server (NTRS)
Adamovsky, Grigory; Juergens, Jeffrey R.; Varga, Donald J.; Floyd, Bertram M.
2010-01-01
A high-temperature optical sensor (see Figure 1) has been developed that can operate at temperatures up to 1,000 C. The sensor development process consists of two parts: packaging of a fiber Bragg grating into a housing that allows a more sturdy thermally stable device, and a technological process to which the device is subjected to in order to meet environmental requirements of several hundred C. This technology uses a newly discovered phenomenon of the formation of thermally stable secondary Bragg gratings in communication-grade fibers at high temperatures to construct robust, optical, high-temperature sensors. Testing and performance evaluation (see Figure 2) of packaged sensors demonstrated operability of the devices at 1,000 C for several hundred hours, and during numerous thermal cycling from 400 to 800 C with different heating rates. The technology significantly extends applicability of optical sensors to high-temperature environments including ground testing of engines, flight propulsion control, thermal protection monitoring of launch vehicles, etc. It may also find applications in such non-aerospace arenas as monitoring of nuclear reactors, furnaces, chemical processes, and other hightemperature environments where other measurement techniques are either unreliable, dangerous, undesirable, or unavailable.
Development of a helmet-mounted PLZT thermal/flash protection system. [Protective goggles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, J.O. Jr.; Cutchen, J.T.; Pfoff, B.J.
1976-01-01
Sandia Laboratories is developing PLZT thermal/flash protective devices (TFPD's) goggles to prevent exposure and resultant eye damage from nuclear weapon detonations. The primary emphasis of the present program is to transfer technology and establish production capability for helmet-mounted PLZT/TFPD goggles for USAF flight crews, with a non-helmet-mounted configuration to follow. The first production units are anticipated in the fall of 1977. The operating principles of the PLZT/TFPD goggle device are briefly outlined, and the device configuration and operational characteristics are described.
Diffusion of novel healthcare technologies to resource poor settings.
Malkin, Robert; von Oldenburg Beer, Kim
2013-09-01
A new product has completed clinical trials in a distant, resource poor hospital using a few dozen prototypes. The data looks great. The novel medical device solves a widely felt problem. The next goal is to integrate the device into the country's healthcare system and spread the device to other countries. But how? In order to be widely used, the device must be manufactured and distributed. One option is to license the intellectual property (IP) to an interested third party, if one can be found. However, it is possible to manage the manufacturing and distribution without licensing. There are at least two common means for manufacturing a novel medical device targeted to resource poor settings: (a) formal (contract) manufacturing and (b) informal (local) manufacturing. There are three primary routes to diffusion of novel medical devices in the developing world: (1) local distributors (2) direct international sales and (3) international donations. Perhaps surprisingly, the least effective mechanism is direct importation through donation. The most successful mechanism, the method used by nearly all working medical devices in resource-poor settings, is the use of contract manufacturing and a local distributor. This article is written for the biomedical innovator and entrepreneur who wishes to make a novel healthcare technology or product available and accessible to healthcare providers and patients in the developing world. There are very few documented cases and little formal research in this area. To this end, this article describes and explores the manufacturing and distribution options in order to provide insights into when and how each can be applied to scale up a novel technology to make a difference in a resource poor setting.
Development of Stabilimax NZ From Biomechanical Principles.
Panjabi, Manohar M; Timm, Jens Peter
2007-01-01
Traditionally, spinal degeneration and injury have been associated with abnormal intervertebral motion; thus, treatment for lowback pain has centered on prevention of motion through spinal fusion. Although the rate of successful spinal fusions is improving, complications such as adjacent-level syndrome emphasize the need to develop alternatives for treating spinal degeneration. In an effort to improve the clinical outcomes associated with such treatment, we hypothesized that spinal stabilization and a consequent reduction in symptoms is achievable without the harsh restrictions to spinal motion imposed by fusion. This idea was based on the principle of the neutral zone and the neutral zone hypothesis of back pain. Performance requirements for a novel device were determined through a series of biomechanical experiments. From these data, the Stabilimax NZ was developed to provide stabilization to a degenerated or surgically destabilized spine while maintaining the maximum possible total range of motion. Applied Spine Technologies Inc has tested 70 bilateral assemblies of the final design of the Stabilimax NZ, and all exceeded the biomechanical, static, fatigue, wear, and histological requirements necessary to initiate clinical investigation. The Stabilimax NZ device has been systematically designed and tested under protocols developed by Applied Spine Technologies in conjunction with Panjabi, Patwardhan, and Goel. The device decreased the neutral zone in destabilized spines while maintaining substantial range of motion. Development testing has been submitted to the US Food and Drug Administration and permission obtained to initiate an investigational device exemption trial to clinically investigate the efficacy of the Stabilimax NZ device.
George E. Pake Prize Lecture: CMOS Technology Roadmap: Is Scaling Ending?
NASA Astrophysics Data System (ADS)
Chen, Tze-Chiang (T. C.)
The development of silicon technology has been based on the principle of physics and driven by the system needs. Traditionally, the system needs have been satisfied by the increase in transistor density and performance, as suggested by Moore's Law and guided by ''Dennard CMOS scaling theory''. As the silicon industry moves towards the 14nm node and beyond, three of the most important challenges facing Moore's Law and continued CMOS scaling are the growing standby power dissipation, the increasing variability in device characteristics and the ever increasing manufacturing cost. Actually, the first two factors are the embodiments of CMOS approaching atomistic and quantum-mechanical physics boundaries. Industry directions for addressing these challenges are also developing along three primary approaches: Extending silicon scaling through innovations in materials and device structure, expanding the level of integration through three-dimensional structures comprised of through-silicon-vias holes and chip stacking in order to enhance functionality and parallelism and exploring post-silicon CMOS innovation with new nano-devices based on distinctly different principles of physics, new materials and new processes such as spintronics, carbon nanotubes and nanowires. Hence, the infusion of new materials, innovative integration and novel device structures will continue to extend CMOS technology scaling for at least another decade.
MEMS packaging: state of the art and future trends
NASA Astrophysics Data System (ADS)
Bossche, Andre; Cotofana, Carmen V. B.; Mollinger, Jeff R.
1998-07-01
Now that the technology for Integrated sensor and MEMS devices has become sufficiently mature to allow mass production, it is expected that the prices of bare chips will drop dramatically. This means that the package prices will become a limiting factor in market penetration, unless low cost packaging solutions become available. This paper will discuss the developments in packaging technology. Both single-chip and multi-chip packaging solutions will be addressed. It first starts with a discussion on the different requirements that have to be met; both from a device point of view (open access paths to the environment, vacuum cavities, etc.) and from the application point of view (e.g. environmental hostility). Subsequently current technologies are judged on their applicability for MEMS and sensor packaging and a forecast is given for future trends. It is expected that the large majority of sensing devices will be applied in relative friendly environments for which plastic packages would suffice. Therefore, on the short term an important role is foreseen for recently developed plastic packaging techniques such as precision molding and precision dispensing. Just like in standard electronic packaging, complete wafer level packaging methods for sensing devices still have a long way to go before they can compete with the highly optimized and automated plastic packaging processes.
Overview of detector technologies for EO/IR sensing applications
NASA Astrophysics Data System (ADS)
Sood, Ashok K.; Zeller, John W.; Welser, Roger E.; Puri, Yash R.; Lewis, Jay S.; Dhar, Nibir K.; Wijewarnasuriya, Priyalal
2016-05-01
Optical sensing technology is critical for optical communication, defense and security applications. Advances in optoelectronics materials in the UV, Visible and Infrared, using nanostructures, and use of novel materials such as CNT and Graphene have opened doors for new approaches to apply device design methodology that are expected to offer enhanced performance and low cost optical sensors in a wide range of applications. This paper is intended to review recent advancements and present different device architectures and analysis. The chapter will briefly introduce the basics of UV and Infrared detection physics and various wave bands of interest and their characteristics [1, 2] We will cover the UV band (200-400 nm) and address some of the recent advances in nanostructures growth and characterization using ZnO/MgZnO based technologies and their applications. Recent advancements in design and development of CNT and Graphene based detection technologies have shown promise for optical sensor applications. We will present theoretical and experimental results on these device and their potential applications in various bands of interest.
Technology-design-manufacturing co-optimization for advanced mobile SoCs
NASA Astrophysics Data System (ADS)
Yang, Da; Gan, Chock; Chidambaram, P. R.; Nallapadi, Giri; Zhu, John; Song, S. C.; Xu, Jeff; Yeap, Geoffrey
2014-03-01
How to maintain the Moore's Law scaling beyond the 193 immersion resolution limit is the key question semiconductor industry needs to answer in the near future. Process complexity will undoubtfully increase for 14nm node and beyond, which brings both challenges and opportunities for technology development. A vertically integrated design-technologymanufacturing co-optimization flow is desired to better address the complicated issues new process changes bring. In recent years smart mobile wireless devices have been the fastest growing consumer electronics market. Advanced mobile devices such as smartphones are complex systems with the overriding objective of providing the best userexperience value by harnessing all the technology innovations. Most critical system drivers are better system performance/power efficiency, cost effectiveness, and smaller form factors, which, in turns, drive the need of system design and solution with More-than-Moore innovations. Mobile system-on-chips (SoCs) has become the leading driver for semiconductor technology definition and manufacturing. Here we highlight how the co-optimization strategy influenced architecture, device/circuit, process technology and package, in the face of growing process cost/complexity and variability as well as design rule restrictions.
Active Control Technology at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Antcliff, Richard R.; McGowan, Anna-Marie R.
2000-01-01
NASA Langley has a long history of attacking important technical Opportunities from a broad base of supporting disciplines. The research and development at Langley in this subject area range from the test tube to the test flight, The information covered here will range from the development of innovative new materials, sensors and actuators, to the incorporation of smart sensors and actuators in practical devices, to the optimization of the location of these devices, to, finally, a wide variety of applications of these devices utilizing Langley's facilities and expertise. Advanced materials are being developed for sensors and actuators, as well as polymers for integrating smart devices into composite structures. Contributions reside in three key areas: computational materials; advanced piezoelectric materials; and integrated composite structures.
NASA Astrophysics Data System (ADS)
Gladkii, V. P.; Nikitin, V. A.; Prokhorov, V. P.; Yakovenko, N. A.
1995-10-01
The results are given of technologic and circuit-engineering development of planar micro-optics components made of glasses and of lithium niobate. These components are intended for devices to be used in logic—arithmetic processing of information.
The Efficacy of Surface Haptics and Force Feedback in Education
ERIC Educational Resources Information Center
Gorlewicz, Jenna Lynn
2013-01-01
This dissertation bridges the fields of haptics, engineering, and education to realize some of the potential benefits haptic devices may have in Science, Technology, Engineering, and Math (STEM) education. Specifically, this dissertation demonstrates the development, implementation, and assessment of two haptic devices in engineering and math…
76 FR 6789 - Unlicensed Operation in the TV Broadcast Bands
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-08
...., Spectrum Bridge Inc., Telcordia Technologies, and WSdb LLC--as TV bands device database administrators. The TV bands databases will be used by fixed and personal portable unlicensed devices to identify unused... administrators to develop the databases that are necessary to enable the introduction of this new class of...
Schnell-Inderst, Petra; Mayer, Julia; Lauterberg, Jörg; Hunger, Theresa; Arvandi, Marjan; Conrads-Frank, Annette; Nachtnebel, Anna; Wild, Claudia; Siebert, Uwe
2015-01-01
With the growing use and importance of health technology assessment (HTA) in decision making during recent years, health technology assessors, decision makers and stakeholders are confronted with methodological challenges due to specific characteristics of health technologies (e. g., pharmaceuticals, diagnostic tests, screening programs), their developmental environment, and their regulation process. Being aware of the necessity to use HTA as a policy instrument for sustainable health care systems in a regulatory environment of decentralized Conformité Européenne (CE) marking, the European Union (EU) is increasingly supporting the development of methods for the assessment of medical devices (MD) on different levels: within the scope of European research projects and within joint assessment activities of the member states of the European network for Health Technology Assessment (EUnetHTA). First, this article describes three projects: MedtecHTA-Methods for Health Technology Assessment of Medical Devices, a European Perspective Work Package 3 (WP3), Comparative Effectiveness of Medical Devices led by the University for Health Sciences, Medical Informatics and Technology (UMIT). Second, we discuss the experiences of the Ludwig Boltzmann Institute Health Technology Assessment (LBI HTA) with the joint production of rapid assessments of medical devices by several European HTA agencies within EUnetHTA. Third, a brief outline is given of the framework of joint methodological guideline elaboration by the EUnetHTA partner organizations because a guideline for therapeutic MD is also being developed here. We will describe aims, methods and some preliminary results of MedtecHTA and EUnetHTA Joint Action 2 Work Package 5 Strand B (WP5B) applying the HTA Core Model for Rapid Assessment for national adaptation and reporting, and give an overview of the development process of methodological guidelines within WP 7 of EUnetHTA Joint Action 2. Based on a literature review in MedtecHTA WP3 incremental development, context dependency and the physical mode of action of MD were identified as those characteristics making therapeutic MD different from drugs with regard to evaluation methods. In addition, regulation does not stipulate clinical trials. These characteristics were also identified as challenges for the production of joint assessments of MD within the HTA network EUnetHTA. Furthermore, adequate timing of assessment production, the variety of involved manufacturers, the non-transparent regulation process of MD in Europe and the often poor evidence base pose a challenge to EUnetHTA assessors. As a consequence, processes and methods for the joint production of rapid assessments must be continuously adapted and improved. Research on HTA methods for the assessment of MD tries to provide tools to deal with rapidly developing devices during evidence generation, dependence of clinical effectiveness of MD on user experience and context factors. There are also tools to integrate evidence from different sources adjusting for different levels of validity, but these methods are not established and need high epidemiological and statistical expertise. A framework for deciding whether additional evidence is needed to reduce uncertainty regarding safety, clinical effectiveness and cost-effectiveness will be adapted to MD. The whole process of evidence generation before and after market access has to be considered to provide an environment for conclusive HTA recommendations informing health care decision making. In Joint Action 2, EUnetHTA develops transparent processes for the early dialogue with stakeholders and fosters dissemination of appropriate HTA methods. In the case of MD, there are special accumulated needs for such efforts. Copyright © 2015. Published by Elsevier GmbH.
Advanced technology component derating
NASA Astrophysics Data System (ADS)
Jennings, Timothy A.
1992-02-01
A technical study performed to determine the derating criteria of advanced technology components is summarized. The study covered existing criteria from AFSC Pamphlet 800-27 and the development of new criteria based on data, literature searches, and the use of advanced technology prediction methods developed in RADC-TR-90-72. The devices that were investigated were as follows: VHSIC, ASIC, MIMIC, Microprocessor, PROM, Power Transistors, RF Pulse Transistors, RF Multi-Transistor Packages, Photo Diodes, Photo Transistors, Opto-Electronic Couplers, Injection Laser Diodes, LED, Hybrid Deposited Film Resistors, Chip Resistors, and Capacitors and SAW devices. The results of the study are additional derating criteria that extend the range of AFSC Pamphlet 800-27. These data will be transitioned from the report to AFSC Pamphlet 800-27 for use by government and contractor personnel in derating electronics systems yielding increased safety margins and improved system reliability.
Technology study of quantum remote sensing imaging
NASA Astrophysics Data System (ADS)
Bi, Siwen; Lin, Xuling; Yang, Song; Wu, Zhiqiang
2016-02-01
According to remote sensing science and technology development and application requirements, quantum remote sensing is proposed. First on the background of quantum remote sensing, quantum remote sensing theory, information mechanism, imaging experiments and prototype principle prototype research situation, related research at home and abroad are briefly introduced. Then we expounds compress operator of the quantum remote sensing radiation field and the basic principles of single-mode compression operator, quantum quantum light field of remote sensing image compression experiment preparation and optical imaging, the quantum remote sensing imaging principle prototype, Quantum remote sensing spaceborne active imaging technology is brought forward, mainly including quantum remote sensing spaceborne active imaging system composition and working principle, preparation and injection compression light active imaging device and quantum noise amplification device. Finally, the summary of quantum remote sensing research in the past 15 years work and future development are introduced.
Elliott, Lydia; DeCristofaro, Claire; Carpenter, Alesia
2012-09-01
This article describes the development and implementation of integrated use of personal handheld devices (personal digital assistants, PDAs) and high-fidelity simulation in an advanced health assessment course in a graduate family nurse practitioner (NP) program. A teaching tool was developed that can be utilized as a template for clinical case scenarios blending these separate technologies. Review of the evidence-based literature, including peer-reviewed articles and reviews. Blending the technologies of high-fidelity simulation and handheld devices (PDAs) provided a positive learning experience for graduate NP students in a teaching laboratory setting. Combining both technologies in clinical case scenarios offered a more real-world learning experience, with a focus on point-of-care service and integration of interview and physical assessment skills with existing standards of care and external clinical resources. Faculty modeling and advance training with PDA technology was crucial to success. Faculty developed a general template tool and systems-based clinical scenarios integrating PDA and high-fidelity simulation. Faculty observations, the general template tool, and one scenario example are included in this article. ©2012 The Author(s) Journal compilation ©2012 American Academy of Nurse Practitioners.
NASA Astrophysics Data System (ADS)
Bridge, Michael John
Hollow fiber membrane (HFM) cell encapsulation devices use a semipermeable membrane to physically immunoisolate transplanted secretory cells from host tissues and high molecular weight solutes. Advantages inherent to macroencapsulation technology have led to extensive research towards their utilization for treating a wide range of disorders including a number of neurodegenerative diseases and diabetes. Although feasibility studies have already established the therapeutic potential of macroencapsulation technology, a common observation among these and later studies is diminishing therapeutic efficacy over a span of a few weeks following implantation of devices. Progress towards fulfilling the therapeutic potential of this technology initially recognized by investigators has potentially been hampered by inadequate diffusive transport characterization of membranes employed in studies. In addition, the potential effects of host tissue responses following central nervous system (CNS) implantation of these devices is completely unknown. To address these issues a membrane characterization instrument capable of efficiently characterizing the diffusive and convective transport properties of individual HFM segments, such as they are used in devices, was developed. The instrument was then employed to study the effects of ethanol exposure, a common sterilization method, on PAN-PVC membranes commonly used in CNS implantation macro encapsulation device studies. Lastly, the solute diffusivity properties of tissue that forms adjacent to the membranes of brain implanted transcranial access devices were investigated. Coinciding with this investigation was the development of a novel technique for examining the solute diffusivity properties in the extracellular spaces of CNS tissue.
photovoltaic and energy storage technologies. He has conducted pioneer nanometer-scale characterization for photovoltaic technology by developing and applying SPM-based nanoelectrical probes of Kelvin probe force ). These characterizations involve a wide range of photovoltaic materials and devices including organic
New developments in power semiconductors
NASA Technical Reports Server (NTRS)
Sundberg, G. R.
1983-01-01
This paper represents an overview of some recent power semiconductor developments and spotlights new technologies that may have significant impact for aircraft electric secondary power. Primary emphasis will be on NASA-Lewis-supported developments in transistors, diodes, a new family of semiconductors, and solid-state remote power controllers. Several semiconductor companies that are moving into the power arena with devices rated at 400 V and 50 A and above are listed, with a brief look at a few devices.
Emerging technologies in Si active photonics
NASA Astrophysics Data System (ADS)
Wang, Xiaoxin; Liu, Jifeng
2018-06-01
Silicon photonics for synergistic electronic–photonic integration has achieved remarkable progress in the past two decades. Active photonic devices, including lasers, modulators, and photodetectors, are the key challenges for Si photonics to meet the requirement of high bandwidth and low power consumption in photonic datalinks. Here we review recent efforts and progress in high-performance active photonic devices on Si, focusing on emerging technologies beyond conventional foundry-ready Si photonics devices. For emerging laser sources, we will discuss recent progress towards efficient monolithic Ge lasers, mid-infrared GeSn lasers, and high-performance InAs quantum dot lasers on Si for data center applications in the near future. We will then review novel modulator materials and devices beyond the free carrier plasma dispersion effect in Si, including GeSi and graphene electro-absorption modulators and plasmonic-organic electro-optical modulators, to achieve ultralow power and high speed modulation. Finally, we discuss emerging photodetectors beyond epitaxial Ge p–i–n photodiodes, including GeSn mid-infrared photodetectors, all-Si plasmonic Schottky infrared photodetectors, and Si quanta image sensors for non-avalanche, low noise single photon detection and photon counting. These emerging technologies, though still under development, could make a significant impact on the future of large-scale electronicSilicon photonics for synergistic electronic-photonic integration has achieved remarkable progress in the past two decades. Active photonic devices, including lasers, modulators, and photodetectors, are the key challenges for Si photonics to meet the requirement of high bandwidth and low power consumption in photonic datalinks. Here we review recent efforts and progress in high-performance active photonic devices on Si, focusing on emerging technologies beyond conventional foundry-ready Si photonics devices. For emerging laser sources, we will discuss recent progress towards efficient monolithic Ge lasers, mid-infrared GeSn lasers, and high-performance InAs quantum dot lasers on Si for data center applications in the near future. We will then review novel modulator materials and devices beyond the free carrier plasma dispersion effect in Si, including GeSi and graphene electro-absorption modulators and plasmonic-organic electro–optical modulators, to achieve ultralow power and high speed modulation. Finally, we discuss emerging photodetectors beyond epitaxial Ge p–i–n photodiodes, including GeSn mid-infrared photodetectors, all-Si plasmonic Schottky infrared photodetectors, and Si quanta image sensors for non-avalanche, low noise single photon detection and photon counting. These emerging technologies, though still under development, could make a significant impact on the future of large-scale electronic–photonic integration with performance inaccessible from conventional Si photonics technologies-photonic integration with performance inaccessible from conventional Si photonics technologies.
Hand-Held Devices Detect Explosives and Chemical Agents
NASA Technical Reports Server (NTRS)
2010-01-01
Ion Applications Inc., of West Palm Beach, Florida, partnered with Ames Research Center through Small Business Innovation Research (SBIR) agreements to develop a miniature version ion mobility spectrometer (IMS). While NASA was interested in the instrument for detecting chemicals during exploration of distant planets, moons, and comets, the company has incorporated the technology into a commercial hand-held IMS device for use by the military and other public safety organizations. Capable of detecting and identifying molecules with part-per-billion sensitivity, the technology now provides soldiers with portable explosives and chemical warfare agent detection. The device is also being adapted for detecting drugs and is employed in industrial processes such as semiconductor manufacturing.
3D-printed Bioanalytical Devices
Bishop, Gregory W; Satterwhite-Warden, Jennifer E; Kadimisetty, Karteek; Rusling, James F
2016-01-01
While 3D printing technologies first appeared in the 1980s, prohibitive costs, limited materials, and the relatively small number of commercially available printers confined applications mainly to prototyping for manufacturing purposes. As technologies, printer cost, materials, and accessibility continue to improve, 3D printing has found widespread implementation in research and development in many disciplines due to ease-of-use and relatively fast design-to-object workflow. Several 3D printing techniques have been used to prepare devices such as milli- and microfluidic flow cells for analyses of cells and biomolecules as well as interfaces that enable bioanalytical measurements using cellphones. This review focuses on preparation and applications of 3D-printed bioanalytical devices. PMID:27250897
Graphene-Based Three-Dimensional Capacitive Touch Sensor for Wearable Electronics.
Kang, Minpyo; Kim, Jejung; Jang, Bongkyun; Chae, Youngcheol; Kim, Jae-Hyun; Ahn, Jong-Hyun
2017-08-22
The development of input device technology in a conformal and stretchable format is important for the advancement of various wearable electronics. Herein, we report a capacitive touch sensor with good sensing capabilities in both contact and noncontact modes, enabled by the use of graphene and a thin device geometry. This device can be integrated with highly deformable areas of the human body, such as the forearms and palms. This touch sensor detects multiple touch signals in acute recordings and recognizes the distance and shape of the approaching objects before direct contact is made. This technology offers a convenient and immersive human-machine interface and additional potential utility as a multifunctional sensor for emerging wearable electronics and robotics.
Performance evaluation of hybrid VLC using device cost and power over data throughput criteria
NASA Astrophysics Data System (ADS)
Lee, C. C.; Tan, C. S.; Wong, H. Y.; Yahya, M. B.
2013-09-01
Visible light communication (VLC) technology has attained its attention in both academic and industry lately. It is determined by the development of light emitting diode (LED) technology for solid-state lighting (SSL).It has great potential to gradually replace radio frequency (RF) wireless technology because it offers unregulated and unlicensed bandwidth to withstand future demand of indoor wireless access to real-time bandwidth-demanding applications. However, it was found to provide intrusive uplink channel that give rise to unpleasant irradiance from the user device which could interfere with the downlink channel of VLC and hence limit mobility to users as a result of small coverage (field of view of VLC).To address this potential problem, a Hybrid VLC system which integrates VLC (for downlink) and RF (for uplink) technology is proposed. It offers a non-intrusive RF back channel that provides high throughput VLC and maintains durability with conventional RF devices. To deploy Hybrid VLC system in the market, it must be energy and cost saving to attain its equivalent economical advantage by comparing to existing architecture that employs fluorescent or LED lights with RF technology. In this paper, performance evaluation on the proposed hybrid system was carried out in terms of device cost and power consumption against data throughput. Based on our simulation, Hybrid VLC system was found to reduce device cost by 3% and power consumption by 68% when compares to fluorescent lights with RF technology. Nevertheless, when it is compared to LED lights with RF technology, our proposed hybrid system is found to achieve device cost saving as high as 47% and reduced power consumption by 49%. Such promising results have demonstrated that Hybrid VLC system is a feasible solution and has paved the way for greater cost saving and energy efficient compares with the current RF architecture even with the increasing requirement of indoor area coverage.
Diffused Silicon Transistors and Switches (1954-55): The Beginning of Integrated Circuit Technology
NASA Astrophysics Data System (ADS)
Holonyak, N.
2003-09-01
Silicon (Si) transistor and integrated circuit (IC) technology has grown so big, and become so important, that it is now hard to recognize where, apart from the invention of the transistor itself (Bardeen and Brattain, Dec 16, 1947), it had its origin. In spite of obvious differences in Ge and Si, in 1950-55 it was not evident in many laboratories, concentrating only on Ge, what form of Ge transistor (grown, alloyed, jet-etched, etc.) might be expected to prevail, with Si not even being considered (or being dismissed outright). What was the need for Si and, at the time, such a seemingly intractable peculiar new technology? The requirement on switching devices of low leakage, and thus the need to leave Ge in favor of Si, led directly in 1954-55 (Bell Telephone Laboratories, BTL) to the exploration of impurity-diffusion and metallization technology to realize Si transistors and p-n-p-n switches. This technology, a more or less ideal thin-layer technology that can be referenced from a single surface (and which indeed has proven to be basically invariant and constantly growing), led further to the discovery (1955) of the protective Si oxide, oxide masking and patterning, and the fundamental basis of the integrated circuit (i.e., device-to-device interconnection by patterned metallization across the oxide). We recount some of the exploratory diffused-impurity Si device development of 1954-55 at BTL, particularly the work in and near Moll's group, that helped to establish the basis for today's electronics. The Si diffused-impurity devices of 1954-55 are described, including work and data not previously reported or broadly known—in fact, much work and data (a new technology) that was carried across the Country to a place that became known as Silicon Valley. For further perspective, an appendix is included of independent early suggestions of Bardeen (Urbana notebook, Feb 1952) to leave Ge in favor of diffused Si devices.
Involving children in the development of assistive technology devices.
Allsop, M; Gallagher, J; Holt, R; Bhakta, B; Wilkie, R M
2011-01-01
To investigate the implementation of a web-based survey for involving children in the design of assistive technology devices within the primary school environment. Children were recruited within their normal school environment. They completed tasks within the survey that sought to gather their personal preferences about assistive technology devices. From six primary schools, 257 children (mean age = 9 years and 8 months, SD = 1.51; 123 males, 134 females) including children with cerebral palsy (N = 11), varying levels of deafness (N = 7), global developmental delay (N = 2) and Down's syndrome (N = 1) participated. Observations were taken whilst the children completed the survey tasks. All children were able to complete the tasks from the survey, although children with disabilities had higher completion times and most required a form of assistance from support assistants and/or sign language interpreters. The use of the web-based survey provided a novel means with which to involve children with and without disabilities in the design of assistive technology devices within a primary school environment. In order for the survey to be utilised more widely, issues that arose when involving children with disabilities need to be addressed.
Evidence for the Use of Hearing Assistive Technology by Adults: The Role of the FM System
Chisolm, Theresa Hnath; Noe, Colleen M.; McArdle, Rachel; Abrams, Harvey
2007-01-01
Hearing assistive technologies include listening, alerting, and/or signaling devices that use auditory, visual, and/or tactile modalities to augment communication and/or facilitate awareness of environmental sounds. The importance of hearing assistive technologies in the management of adults with hearing loss was recently acknowledged in an evidence-based clinical practice guideline developed by the American Academy of Audiology. Most currently available evidence for hearing assistive technology use by adults focuses on frequency-modulated (FM) technology. Previous research is reviewed that demonstrates the efficacy of FM devices for adults in terms of laboratory measures of speech understanding in noise. Also reviewed are the outcomes from field trials of FM use by community-dwelling adults, which, to date, have been disappointing. Few to no individuals, in previous studies, elected to use FM devices at the end of the trial periods. Data are presented from a 1-group pretest-posttest study examining the role of extensive counseling, coaching, and instruction on FM use by adults. In addition, the potential influence of the cost of devices to the individual was eliminated by conducting the study with veterans who were eligible to receive FM systems through the Veterans Affairs National Hearing Aid Program. Positive outcomes were obtained at the end of a 6-week trial period and were found to remain 1 year after study completion. Implications for increasing the evidence base for the use of FM devices by adults are discussed. PMID:17494874
Medical Representatives' Intention to Use Information Technology in Pharmaceutical Marketing.
Kwak, Eun-Seon; Chang, Hyejung
2016-10-01
Electronic detailing (e-detailing), the use of electronic devices to facilitate sales presentations to physicians, has been adopted and expanded in the pharmaceutical industry. To maximize the potential outcome of e-detailing, it is important to understand medical representatives (MRs)' behavior and attitude to e-detailing. This study investigates how information technology devices such as laptop computers and tablet PCs are utilized in pharmaceutical marketing, and it analyzes the factors influencing MRs' intention to use devices. This study has adopted and modified the theory of Roger's diffusion of innovation model and the technology acceptance model. To test the model empirically, a questionnaire survey was conducted with 221 MRs who were working in three multinational or eleven domestic pharmaceutical companies in Korea. Overall, 28% and 35% of MRs experienced using laptop computers and tablet PCs in pharmaceutical marketing, respectively. However, the rates were different across different groups of MRs, categorized by age, education level, position, and career. The results showed that MRs' intention to use information technology devices was significantly influenced by perceived usefulness in general. Perceived ease of use, organizational and individual innovativeness, and several MR characteristics were also found to have significant impacts. This study provides timely information about e-detailing devices to marketing managers and policy makers in the pharmaceutical industry for successful marketing strategy development by understanding the needs of MRs' intention to use information technology. Further in-depth study should be conducted to understand obstacles and limitations and to improve the strategies for better marketing tools.
Improving NASA's technology for space science
NASA Technical Reports Server (NTRS)
1993-01-01
The continued advance of the nation's space program is directly dependent upon the development and use of new technology. Technology is the foundation for every aspect of space missions and ground operations. The improvements in technology that will enable future advances are not only in device and system performance, but also in permitting missions to be carried out more rapidly and at lower cost. Although more can be done with current technology, NASA's recent call for new and innovative approaches should not be answered by employing only today's technologies; new technologies with revolutionary potential should be sought. The study reported here was performed to identify means to enhance the development of technologies for the space sciences and applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kupriyanov, M. S., E-mail: mikhail.kupriyanov@gmail.com; Shukeilo, E. Y., E-mail: eyshukeylo@gmail.com; Shichkina, J. A., E-mail: strange.y@mail.ru
2015-11-17
Nowadays technologies which are used in traumatology are a combination of mechanical, electronic, calculating and programming tools. Relevance of development of mobile applications for an expeditious data processing which are received from medical devices (in particular, wearable devices), and formulation of management decisions increases. Using of a mathematical method of building of decision trees for an assessment of a patient’s health condition using data from a wearable device considers in this article.
NASA Astrophysics Data System (ADS)
Kupriyanov, M. S.; Shukeilo, E. Y.; Shichkina, J. A.
2015-11-01
Nowadays technologies which are used in traumatology are a combination of mechanical, electronic, calculating and programming tools. Relevance of development of mobile applications for an expeditious data processing which are received from medical devices (in particular, wearable devices), and formulation of management decisions increases. Using of a mathematical method of building of decision trees for an assessment of a patient's health condition using data from a wearable device considers in this article.
NASA Astrophysics Data System (ADS)
Nikitin, I. A.; Sherstnev, V. S.; Sherstneva, A. I.; Botygin, I. A.
2017-02-01
The results of the research of existent routing protocols in wireless networks and their main features are discussed in the paper. Basing on the protocol data, the routing protocols in wireless networks, including search routing algorithms and phone directory exchange algorithms, are designed with the ‘WiFi-Direct’ technology. Algorithms without IP-protocol were designed, and that enabled one to increase the efficiency of the algorithms while working only with the MAC-addresses of the devices. The developed algorithms are expected to be used in the mobile software engineering with the Android platform taken as base. Easier algorithms and formats of the well-known route protocols, rejection of the IP-protocols enables to use the developed protocols on more primitive mobile devices. Implementation of the protocols to the engineering industry enables to create data transmission networks among working places and mobile robots without any access points.
Anderson, Travis; Ren, Fan; Pearton, Stephen; Kang, Byoung Sam; Wang, Hung-Ta; Chang, Chih-Yang; Lin, Jenshan
2009-01-01
In this paper, we review our recent results in developing gas sensors for hydrogen using various device structures, including ZnO nanowires and GaN High Electron Mobility Transistors (HEMTs). ZnO nanowires are particularly interesting because they have a large surface area to volume ratio, which will improve sensitivity, and because they operate at low current levels, will have low power requirements in a sensor module. GaN-based devices offer the advantage of the HEMT structure, high temperature operation, and simple integration with existing fabrication technology and sensing systems. Improvements in sensitivity, recoverability, and reliability are presented. Also reported are demonstrations of detection of other gases, including CO2 and C2H4 using functionalized GaN HEMTs. This is critical for the development of lab-on-a-chip type systems and can provide a significant advance towards a market-ready sensor application. PMID:22408548
Research on NC motion controller based on SOPC technology
NASA Astrophysics Data System (ADS)
Jiang, Tingbiao; Meng, Biao
2006-11-01
With the rapid development of the digitization and informationization, the application of numerical control technology in the manufacturing industry becomes more and more important. However, the conventional numerical control system usually has some shortcomings such as the poor in system openness, character of real-time, cutability and reconfiguration. In order to solve these problems, this paper investigates the development prospect and advantage of the application in numerical control area with system-on-a-Programmable-Chip (SOPC) technology, and puts forward to a research program approach to the NC controller based on SOPC technology. Utilizing the characteristic of SOPC technology, we integrate high density logic device FPGA, memory SRAM, and embedded processor ARM into a single programmable logic device. We also combine the 32-bit RISC processor with high computing capability of the complicated algorithm with the FPGA device with strong motivable reconfiguration logic control ability. With these steps, we can greatly resolve the defect described in above existing numerical control systems. For the concrete implementation method, we use FPGA chip embedded with ARM hard nuclear processor to construct the control core of the motion controller. We also design the peripheral circuit of the controller according to the requirements of actual control functions, transplant real-time operating system into ARM, design the driver of the peripheral assisted chip, develop the application program to control and configuration of FPGA, design IP core of logic algorithm for various NC motion control to configured it into FPGA. The whole control system uses the concept of modular and structured design to develop hardware and software system. Thus the NC motion controller with the advantage of easily tailoring, highly opening, reconfigurable, and expandable can be implemented.
The Implementation of Advanced Solar Array Technology in Future NASA Missions
NASA Technical Reports Server (NTRS)
Piszczor, Michael F.; Kerslake, Thomas W.; Hoffman, David J.; White, Steve; Douglas, Mark; Spence, Brian; Jones, P. Alan
2003-01-01
Advanced solar array technology is expected to be critical in achieving the mission goals on many future NASA space flight programs. Current PV cell development programs offer significant potential and performance improvements. However, in order to achieve the performance improvements promised by these devices, new solar array structures must be designed and developed to accommodate these new PV cell technologies. This paper will address the use of advanced solar array technology in future NASA space missions and specifically look at how newer solar cell technologies impact solar array designs and overall power system performance.
Development of CMOS Active Pixel Image Sensors for Low Cost Commercial Applications
NASA Technical Reports Server (NTRS)
Gee, R.; Kemeny, S.; Kim, Q.; Mendis, S.; Nakamura, J.; Nixon, R.; Ortiz, M.; Pain, B.; Staller, C.; Zhou, Z;
1994-01-01
JPL, under sponsorship from the NASA Office of Advanced Concepts and Technology, has been developing a second-generation solid-state image sensor technology. Charge-coupled devices (CCD) are a well-established first generation image sensor technology. For both commercial and NASA applications, CCDs have numerous shortcomings. In response, the active pixel sensor (APS) technology has been under research. The major advantages of APS technology are the ability to integrate on-chip timing, control, signal-processing and analog-to-digital converter functions, reduced sensitivity to radiation effects, low power operation, and random access readout.
Low-Cost Inkjet Printing Technology for the Rapid Prototyping of Transducers
Andò, Bruno; Baglio, Salvatore; Bulsara, Adi R.; Emery, Teresa; Marletta, Vincenzo; Pistorio, Antonio
2017-01-01
Recently, there has been an upsurge in efforts dedicated to developing low-cost flexible electronics by exploiting innovative materials and direct printing technologies. This interest is motivated by the need for low-cost mass-production, shapeable, and disposable devices, and the rapid prototyping of electronics and sensors. This review, following a short overview of main printing processes, reports examples of the development of flexible transducers through low-cost inkjet printing technology. PMID:28368318
Advanced 3-V semiconductor technology assessment. [space communications
NASA Technical Reports Server (NTRS)
Nowogrodzki, M.
1983-01-01
Against a background of an extensive survey of the present state of the art in the field of III-V semiconductors for operation at microwave frequencies (or gigabit rate speeds), likely requirements of future space communications systems are identified, competing technologies and physical device limitations are discussed, and difficulties in implementing emerging technologies are projected. On the basis of these analyses, specific research and development programs required for the development of future systems components are recommended.
Cost effective solution using inverse lithography OPC for DRAM random contact layer
NASA Astrophysics Data System (ADS)
Jun, Jinhyuck; Hwang, Jaehee; Choi, Jaeseung; Oh, Seyoung; Park, Chanha; Yang, Hyunjo; Dam, Thuc; Do, Munhoe; Lee, Dong Chan; Xiao, Guangming; Choi, Jung-Hoe; Lucas, Kevin
2017-04-01
Many different advanced devices and design layers currently employ double patterning technology (DPT) as a means to overcome lithographic and OPC limitations at low k1 values. Certainly device layers with k1 value below 0.25 require DPT or other pitch splitting methodologies. DPT has also been used to improve patterning of certain device layers with k1 values slightly above 0.25, due to the difficulty of achieving sufficient pattern fidelity with only a single exposure. Unfortunately, this broad adoption of DPT also came with a significant increase in patterning process cost. In this paper, we discuss the development of a single patterning technology process using an integrated Inverse Lithography Technology (ILT) flow for mask synthesis. A single pattering technology flow will reduce the manufacturing cost for a k1 > 0.25 full chip random contact layer in a memory device by replacing the more expensive DPT process with ILT flow, while also maintaining good lithographic production quality and manufacturable OPC/RET production metrics. This new integrated flow consists of applying ILT to the difficult core region and traditional rule-based assist features (RBAFs) with OPC to the peripheral region of a DRAM contact layer. Comparisons of wafer results between the ILT process and the non-ILT process showed the lithographic benefits of ILT and its ability to enable a robust single patterning process for this low-k1 device layer. Advanced modeling with a negative tone develop (NTD) process achieved the accuracy levels needed for ILT to control feature shapes through dose and focus. Details of these afore mentioned results will be described in the paper.
Agapova, Maria; Devine, Emily Beth; Bresnahan, Brian W; Higashi, Mitchell K; Garrison, Louis P
2014-09-01
Health agencies making regulatory marketing-authorization decisions use qualitative and quantitative approaches to assess expected benefits and expected risks associated with medical interventions. There is, however, no universal standard approach that regulatory agencies consistently use to conduct benefit-risk assessment (BRA) for pharmaceuticals or medical devices, including for imaging technologies. Economics, health services research, and health outcomes research use quantitative approaches to elicit preferences of stakeholders, identify priorities, and model health conditions and health intervention effects. Challenges to BRA in medical devices are outlined, highlighting additional barriers in radiology. Three quantitative methods--multi-criteria decision analysis, health outcomes modeling and stated-choice survey--are assessed using criteria that are important in balancing benefits and risks of medical devices and imaging technologies. To be useful in regulatory BRA, quantitative methods need to: aggregate multiple benefits and risks, incorporate qualitative considerations, account for uncertainty, and make clear whose preferences/priorities are being used. Each quantitative method performs differently across these criteria and little is known about how BRA estimates and conclusions vary by approach. While no specific quantitative method is likely to be the strongest in all of the important areas, quantitative methods may have a place in BRA of medical devices and radiology. Quantitative BRA approaches have been more widely applied in medicines, with fewer BRAs in devices. Despite substantial differences in characteristics of pharmaceuticals and devices, BRA methods may be as applicable to medical devices and imaging technologies as they are to pharmaceuticals. Further research to guide the development and selection of quantitative BRA methods for medical devices and imaging technologies is needed. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.
Low cost assistive technology to support educational activities for adolescents with cerebral palsy.
da Silva, Alan Patricio; Bulle Oliveira, Acary Souza; Pinheiro Bezerra, Italla Maria; Pedrozo Campos Antunes, Thaiany; Guerrero Daboin, Blanca Elena; Raimundo, Rodrigo Daminello; Dos Santos, Vagner Rogério; de Abreu, Luiz Carlos
2017-08-30
The concept of assistive technology covers several areas of action; one of them is communication with the elaboration of accessible solutions to overcome daily difficulties. It contributes to the resumption of functional abilities, expanding and facilitating inclusion and independent living. To analyze the usability of a low cost prototype device to support educational activities of adolescents with cerebral palsy. A descriptive observational study. The evaluation of a prototype device was made through a validated questionnaire, Quest Version 2.0, on the level of the user's satisfaction with an assistive technology, composed of 12 evaluation items. The questionnaire was filled out by the educator based on the observation of four wheelchair-bound participants diagnosed with cerebral palsy according to the international classification of diseases and health-related problems, ICD-10, who attend a coexistence and teaching institution in the state of São Paulo, Brazil. The device developed was considered an assistive technology, which provided an experience with a positive level of satisfaction for the participants. The tested prototype contributes to communication and interaction allowing adolescents with cerebral palsy to participate in educational activities. Implications for Rehabilitation The device assists the individual in the educational activities and can positively influence their development, observe the individual number 5, who has an important limitation in coordination and fine movements, placing the role of the task in the vertical position offers a new perspective to perform the task, this stimulates him to try to perform the work, so the challenge was adjusted to the demands of each individual which can contribute to its neuromotor development, the amplitude of the distal movements and the manual ability, since it must look for alternatives to complete the task requested.
ERIC Educational Resources Information Center
Stoilescu, Dorian
2014-01-01
This paper describes challenges encountered by two secondary mathematics teachers when they try to integrate ICT devices in their classes. These findings are based on using the Technological Pedagogical and Content Knowledge (TPACK) context, the four dimension framework developed by Niess: 1) overarching conceptions of integrating ICT, 2)…
How Digital Technologies, Blended Learning and MOOCs Will Impact the Future of Higher Education
ERIC Educational Resources Information Center
Morris, Neil P.
2014-01-01
Digital technologies are revolutionizing all parts of society, including higher education. Universities are rapidly adapting to the prevalence of staff and student mobile devices, digital tools and services on campus, and are developing strategies to harness these technologies to enhance student learning. In this paper, I explore the use of…
Probe-pin device for optical neurotransmitter sensing in the brain
NASA Astrophysics Data System (ADS)
Kim, Min Hyuck; Song, Kyo D.; Yoon, Hargsoon; Park, Yeonjoon; Choi, Sang H.; Lee, Dae-Sung; Shin, Kyu-Sik; Hwang, Hak-In; Lee, Uhn
2015-04-01
Development of an optical neurotransmitter sensing device using nano-plasmonic probes and a micro-spectrometer for real time monitoring of neural signals in the brain is underway. Clinical application of this device technology is to provide autonomous closed-loop feedback control to a deep brain stimulation (DBS) system and enhance the accuracy and efficacy of DBS treatment. By far, we have developed an implantable probe-pin device based on localized field enhancement of surface plasmonic resonance on a nanostructured sensing domain which can amplify neurochemical signals from evoked neural activity in the brain. In this paper, we will introduce the details of design and sensing performance of a proto-typed microspectrometer and nanostructured probing devices for real time measurement of neurotransmitter concentrations.
Sher, Mazhar; Zhuang, Rachel; Demirci, Utkan; Asghar, Waseem
2017-01-01
Introduction There is a significant interest in developing inexpensive portable biosensing platforms for various applications including disease diagnostics, environmental monitoring, food safety, and water testing at the point-of-care (POC) settings. Current diagnostic assays available in the developed world require sophisticated laboratory infrastructure and expensive reagents. Hence, they are not suitable for resource-constrained settings with limited financial resources, basic health infrastructure, and few trained technicians. Cellulose and flexible transparency paper-based analytical devices have demonstrated enormous potential for developing robust, inexpensive and portable devices for disease diagnostics. These devices offer promising solutions to disease management in resource-constrained settings where the vast majority of the population cannot afford expensive and highly sophisticated treatment options. Areas covered In this review, the authors describe currently developed cellulose and flexible transparency paper-based microfluidic devices, device fabrication techniques, and sensing technologies that are integrated with these devices. The authors also discuss the limitations and challenges associated with these devices and their potential in clinical settings. Expert commentary In recent years, cellulose and flexible transparency paper-based microfluidic devices have demonstrated the potential to become future healthcare options despite a few limitations such as low sensitivity and reproducibility. PMID:28103450
Sher, Mazhar; Zhuang, Rachel; Demirci, Utkan; Asghar, Waseem
2017-04-01
There is a significant interest in developing inexpensive portable biosensing platforms for various applications including disease diagnostics, environmental monitoring, food safety, and water testing at the point-of-care (POC) settings. Current diagnostic assays available in the developed world require sophisticated laboratory infrastructure and expensive reagents. Hence, they are not suitable for resource-constrained settings with limited financial resources, basic health infrastructure, and few trained technicians. Cellulose and flexible transparency paper-based analytical devices have demonstrated enormous potential for developing robust, inexpensive and portable devices for disease diagnostics. These devices offer promising solutions to disease management in resource-constrained settings where the vast majority of the population cannot afford expensive and highly sophisticated treatment options. Areas covered: In this review, the authors describe currently developed cellulose and flexible transparency paper-based microfluidic devices, device fabrication techniques, and sensing technologies that are integrated with these devices. The authors also discuss the limitations and challenges associated with these devices and their potential in clinical settings. Expert commentary: In recent years, cellulose and flexible transparency paper-based microfluidic devices have demonstrated the potential to become future healthcare options despite a few limitations such as low sensitivity and reproducibility.
Novel optical interconnect devices applying mask-transfer self-written method
NASA Astrophysics Data System (ADS)
Ishizawa, Nobuhiko; Matsuzawa, Yusuke; Tokiwa, Yu; Nakama, Kenichi; Mikami, Osamu
2012-01-01
The introduction of optical interconnect technology is expected to solve problems of conventional electric wiring. One of the promising technologies realizing optical interconnect is the self-written waveguide (SWW) technology with lightcurable resin. We have developed a new technology of the "Mask-Transfer Self-Written (MTSW)" method. This new method enables fabrication of arrayed M x N optical channels at one shot of UV-light. Using this technology, several new optical interconnect devices and connection technologies have been proposed and investigated. In this paper, first, we introduce MTSW method briefly. Next, we show plug-in alignment approach using optical waveguide plugs (OWP) and a micro-hole array (MHA) which are made of the light-curable resin. Easy and high efficiency plug-in alignment between fibers and an optoelectronic-printed wiring board (OE-PWB), between a fiber and a VCSEL, so on will be feasible. Then, we propose a new three-dimensional (3D) branch waveguide. By controlling the irradiating angle through the photomask aperture, it will be possible to fabricate 2-branch and 4-branch waveguides with a certain branch angle. The 3D branch waveguide will be very promising in the future optical interconnects and coupler devices of the multicore optical fiber.
Parsons, Thomas D; McMahan, Timothy; Kane, Robert
2018-01-01
Clinical neuropsychologists have long underutilized computer technologies for neuropsychological assessment. Given the rapid advances in technology (e.g. virtual reality; tablets; iPhones) and the increased accessibility in the past decade, there is an on-going need to identify optimal specifications for advanced technologies while minimizing potential sources of error. Herein, we discuss concerns raised by a joint American Academy of Clinical Neuropsychology/National Academy of Neuropsychology position paper. Moreover, we proffer parameters for the development and use of advanced technologies in neuropsychological assessments. We aim to first describe software and hardware configurations that can impact a computerized neuropsychological assessment. This is followed by a description of best practices for developers and practicing neuropsychologists to minimize error in neuropsychological assessments using advanced technologies. We also discuss the relevance of weighing potential computer error in light of possible errors associated with traditional testing. Throughout there is an emphasis on the need for developers to provide bench test results for their software's performance on various devices and minimum specifications (documented in manuals) for the hardware (e.g. computer, monitor, input devices) in the neuropsychologist's practice. Advances in computerized assessment platforms offer both opportunities and challenges. The challenges can appear daunting but are a manageable and require informed consumers who can appreciate the issues and ask pertinent questions in evaluating their options.
Complete solid state lighting (SSL) line at CEA LETI
NASA Astrophysics Data System (ADS)
Robin, I. C.; Ferret, P.; Dussaigne, A.; Bougerol, C.; Salomon, D.; Chen, X. J.; Charles, M.; Tchoulfian, P.; Gasse, A.; Lagrange, A.; Consonni, M.; Bono, H.; Levy, F.; Desieres, Y.; Aitmani, A.; Makram-Matta, S.; Bialic, E.; Gorrochategui, P.; Mendizabal, L.
2014-09-01
With a long experience in optoelectronics, CEA-LETI has focused on Light Emitting Diode (LED) lighting since 2006. Today, all the technical challenges in the implementation of GaN LED based solid state lighting (SSL) are addressed at CEA-LETI who is now an RandD player throughout the entire value chain of LED lighting. The SSL Line at CEA-LETI first deals with the simulation of the active structures and LED devices. Then the growth is addressed in particular 2D growth on 200 mm silicon substrates. Then, technological steps are developed for the fabrication of LED dies with innovative architectures. For instance, Versatile LED Array Devices are currently being developed with a dedicated μLED technology. The objective in this case is to achieve monolithical LED arrays reported and interconnected through a silicon submount. In addition to the required bonding and 3D integration technologies, new solutions for LED chip packaging, thermal management of LED lamps and luminaires are also addressed. LETI is also active in Smart Lighting concepts which offer the possibility of new application fields for SSL technologies. An example is the recent development at CEA LETI of Visible Light Communication Technology also called LiFi. With this technology, we demonstrated a transmission rate up to 10 Mb/s and real time HD-Video transmission.
A survey of stakeholder perspectives on exoskeleton technology.
Wolff, Jamie; Parker, Claire; Borisoff, Jaimie; Mortenson, W Ben; Mattie, Johanne
2014-12-19
Exoskeleton technology has potential benefits for wheelchair users' health and mobility. However, there are practical barriers to their everyday use as a mobility device. To further understand potential exoskeleton use, and facilitate the development of new technologies, a study was undertaken to explore perspectives of wheelchair users and healthcare professionals on reasons for use of exoskeleton technology, and the importance of a variety of device characteristics. An online survey with quantitative and qualitative components was conducted with wheelchair users and healthcare professionals working directly with individuals with mobility impairments. Respondents rated whether they would use or recommend an exoskeleton for four potential reasons. Seventeen design features were rated and compared in terms of their importance. An exploratory factor analysis was conducted to categorize the 17 design features into meaningful groupings. Content analysis was used to identify themes for the open ended questions regarding reasons for use of an exoskeleton. 481 survey responses were analyzed, 354 from wheelchair users and 127 from healthcare professionals. The most highly rated reason for potential use or recommendation of an exoskeleton was health benefits. Of the design features, 4 had a median rating of very important: minimization of falls risk, comfort, putting on/taking off the device, and purchase cost. Factor analysis identified two main categories of design features: Functional Activities and Technology Characteristics. Qualitative findings indicated that health and physical benefits, use for activity and access reasons, and psychosocial benefits were important considerations in whether to use or recommend an exoskeleton. This study emphasizes the importance of developing future exoskeletons that are comfortable, affordable, minimize fall risk, and enable functional activities. Findings from this study can be utilized to inform the priorities for future development of this technology.
Multi-junction Thin-film Solar Cells on Flexible Substrates for Space Power
NASA Technical Reports Server (NTRS)
Hepp, Aloysius F.; Smith, Mark; Scofield, John H.; Dickman, John E.; Lush, Gregory B.; Morel, Donald L.; Ferekides, Christos; Dhere, Neelkanth G.
2002-01-01
The ultimate objective of the thin-film program at NASA GRC is development of a 20 percent AM0 thin-film device technology with high power/weight ratio. Several approaches are outlined to improve overall device efficiency and power/weight ratio. One approach involves the use of very lightweight flexible substrates such as polyimides (i.e., Kapton(Trademark)) or metal foil. Also, a compound semiconductor tandem device structure that can meet this objective is proposed and simulated using Analysis of Microelectronic and Photonic Structures (AMPS). AMPS modeling of current devices in tandem format indicate that AM0 efficiencies near 20 percent can be achieved. And with improvements in materials, efficiencies approaching 25 percent are achievable. Several important technical issues need to be resolved to realize these complex devices: development of a wide bandgap material with good electronic properties, development of transparent contacts, and targeting a 2-terminal device structure (with more complicated processing and tunnel junction) or 4-terminal device. Recent progress in the NASA GRC program is outlined.
Acoustic devices for particle and cell manipulation and sensing.
Qiu, Yongqiang; Wang, Han; Demore, Christine E M; Hughes, David A; Glynne-Jones, Peter; Gebhardt, Sylvia; Bolhovitins, Aleksandrs; Poltarjonoks, Romans; Weijer, Kees; Schönecker, Andreas; Hill, Martyn; Cochran, Sandy
2014-08-13
An emerging demand for the precise manipulation of cells and particles for applications in cell biology and analytical chemistry has driven rapid development of ultrasonic manipulation technology. Compared to the other manipulation technologies, such as magnetic tweezing, dielectrophoresis and optical tweezing, ultrasonic manipulation has shown potential in a variety of applications, with its advantages of versatile, inexpensive and easy integration into microfluidic systems, maintenance of cell viability, and generation of sufficient forces to handle particles, cells and their agglomerates. This article briefly reviews current practice and reports our development of various ultrasonic standing wave manipulation devices, including simple devices integrated with high frequency (>20 MHz) ultrasonic transducers for the investigation of biological cells and complex ultrasonic transducer array systems to explore the feasibility of electronically controlled 2-D and 3-D manipulation. Piezoelectric and passive materials, fabrication techniques, characterization methods and possible applications are discussed. The behavior and performance of the devices have been investigated and predicted with computer simulations, and verified experimentally. Issues met during development are highlighted and discussed. To assist long term practical adoption, approaches to low-cost, wafer level batch-production and commercialization potential are also addressed.
Global responses for recycling waste CRTs in e-waste.
Singh, Narendra; Li, Jinhui; Zeng, Xianlai
2016-11-01
The management of used cathode ray tube (CRT) devices is a major problem worldwide due to rapid uptake of the technology and early obsolescence of CRT devices, which is considered an environment hazard if disposed improperly. Previously, their production has grown in step with computer and television demand but later on with rapid technological innovation; TVs and computer screens has been replaced by new products such as Liquid Crystal Displays (LCDs) and Plasma Display Panel (PDPs). This change creates a large volume of waste stream of obsolete CRTs waste in developed countries and developing countries will be becoming major CRTs waste producers in the upcoming years. We studied that there is also high level of trans-boundary movement of these devices as second-hand electronic equipment into developing countries in an attempt to bridge the 'digital divide'. Moreover, the current global production of e-waste is estimated to be '41million tonnes per year' where a major part of the e-waste stream consists of CRT devices. This review article provides a concise overview of world's current CRTs waste scenario, namely magnitude of the demand and processing, current disposal and recycling operations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Oliveira, Ana Emília F; França, Rômulo M; Castro Júnior, Eurides F; Baesse, Deborah C L; Maia, Mariana F L; Ferreira, Elza B
2015-01-01
The world is experiencing the popularization of mobile devices. This was made possible by the increasing technological advances and the advent of the Internet as a communication and information tool. These facts demonstrate that the development of applications compatible with such devices is an effective way to provide content to diverse audiences. In the educational field, these devices can be seen as technological support artifacts for distance education, serving as strategy for continuous and permanent education for health professionals. The Open University of Brazilian National Health System (UNA-SUS) offers distance learning courses, including specializating on free access. In order to increase the public reach, UNA-SUS developed mobile applications as supporting material for students. These applications can be accessed in offline mode, increasing the accessibility and therefore, improving the efficiency of the material. The 28 applications developed with responsive online books format currently reached the milestone of over 6,000 downloads. This number shows the positive acceptance of the format used, accentuated by the ease of having material downloaded from the device, not requiring the user to be connected to access content.
Acoustic Devices for Particle and Cell Manipulation and Sensing
Qiu, Yongqiang; Wang, Han; Demore, Christine E. M.; Hughes, David A.; Glynne-Jones, Peter; Gebhardt, Sylvia; Bolhovitins, Aleksandrs; Poltarjonoks, Romans; Weijer, Kees; Schönecker, Andreas; Hill, Martyn; Cochran, Sandy
2014-01-01
An emerging demand for the precise manipulation of cells and particles for applications in cell biology and analytical chemistry has driven rapid development of ultrasonic manipulation technology. Compared to the other manipulation technologies, such as magnetic tweezing, dielectrophoresis and optical tweezing, ultrasonic manipulation has shown potential in a variety of applications, with its advantages of versatile, inexpensive and easy integration into microfluidic systems, maintenance of cell viability, and generation of sufficient forces to handle particles, cells and their agglomerates. This article briefly reviews current practice and reports our development of various ultrasonic standing wave manipulation devices, including simple devices integrated with high frequency (>20 MHz) ultrasonic transducers for the investigation of biological cells and complex ultrasonic transducer array systems to explore the feasibility of electronically controlled 2-D and 3-D manipulation. Piezoelectric and passive materials, fabrication techniques, characterization methods and possible applications are discussed. The behavior and performance of the devices have been investigated and predicted with computer simulations, and verified experimentally. Issues met during development are highlighted and discussed. To assist long term practical adoption, approaches to low-cost, wafer level batch-production and commercialization potential are also addressed. PMID:25123465
Design of an LVDS to USB3.0 adapter and application
NASA Astrophysics Data System (ADS)
Qiu, Xiaohan; Wang, Yu; Zhao, Xin; Chang, Zhen; Zhang, Quan; Tian, Yuze; Zhang, Yunyi; Lin, Fang; Liu, Wenqing
2016-10-01
USB 3.0 specification was published in 2008. With the development of technology, USB 3.0 is becoming popular. LVDS(Low Voltage Differential Signaling) to USB 3.0 Adapter connects the communication port of spectrometer device and the USB 3.0 port of a computer, and converts the output of an LVDS spectrometer device data to USB. In order to adapt to the changing and developing of technology, LVDS to USB3.0 Adapter was designed and developed based on LVDS to USB2.0 Adapter. The CYUSB3014, a new generation of USB bus interface chip produced by Cypress and conforming to USB3.0 communication protocol, utilizes GPIF-II (GPIF, general programmable interface) to connect the FPGA and increases effective communication speed to 2Gbps. Therefore, the adapter, based on USB3.0 technology, is able to connect more spectrometers to single computer and provides technical basis for the development of the higher speed industrial camera. This article describes the design and development process of the LVDS to USB3.0 adapter.
Deep Space Habitat Wireless Smart Plug
NASA Technical Reports Server (NTRS)
Morgan, Joseph A.; Porter, Jay; Rojdev, Kristina; Carrejo, Daniel B.; Colozza, Anthony J.
2014-01-01
NASA has been interested in technology development for deep space exploration, and one avenue of developing these technologies is via the eXploration Habitat (X-Hab) Academic Innovation Challenge. In 2013, NASA's Deep Space Habitat (DSH) project was in need of sensors that could monitor the power consumption of various devices in the habitat with added capability to control the power to these devices for load shedding in emergency situations. Texas A&M University's Electronic Systems Engineering Technology Program (ESET) in conjunction with their Mobile Integrated Solutions Laboratory (MISL) accepted this challenge, and over the course of 2013, several undergraduate students in a Capstone design course developed five wireless DC Smart Plugs for NASA. The wireless DC Smart Plugs developed by Texas A&M in conjunction with NASA's Deep Space Habitat team is a first step in developing wireless instrumentation for future flight hardware. This paper will further discuss the X-Hab challenge and requirements set out by NASA, the detailed design and testing performed by Texas A&M, challenges faced by the team and lessons learned, and potential future work on this design.
An economical device for carbon supplement in large-scale micro-algae production.
Su, Zhenfeng; Kang, Ruijuan; Shi, Shaoyuan; Cong, Wei; Cai, Zhaoling
2008-10-01
One simple but efficient carbon-supplying device was designed and developed, and the correlative carbon-supplying technology was described. The absorbing characterization of this device was studied. The carbon-supplying system proved to be economical for large-scale cultivation of Spirulina sp. in an outdoor raceway pond, and the gaseous carbon dioxide absorptivity was enhanced above 78%, which could reduce the production cost greatly.
Monitors Enable Medication Management in Patients' Homes
NASA Technical Reports Server (NTRS)
2014-01-01
Glenn Research Center awarded SBIR funding to ZIN Technologies to develop a platform that could incorporate sensors quantifying an astronaut’s health status and then communicate with the ground. ZIN created a device, developed the system further, and then formed Cleveland-based FlexLife Health to commercialize the technology. Today it is part of an anti-coagulation management system for people with cardiovascular disease.
Electroactive Reactive Oligomers and Polymers as Device Components
2009-02-03
promise to impact the development of reflective and transmissive color-changing systems spanning ’smart’ polyclu’omic glassing technologies and e-papers...mediated cross-coupling reactions. While the first substitution is expected to have the largest impact on the energy gap of the donor-acceptor system, a...transmissive device applications, it is expected that processable black to transmissive analogues will impact the development of EC windows, e- papers and
Srebnicki, Tomasz; Bryńska, Anita
2016-01-01
First applications of computer-assisted technologies (CAT) in the rehabilitation of cognitive deficits, including child and adolescent psychiatric disorders date back to the 80's last century. Recent developments in computer technologies, wide access to the Internet and vast expansion of electronic devices resulted in dynamic increase in therapeutic software as well as supporting devices. The aim of computer assisted technologies is the improvement in the comfort and quality of life as well as the rehabilitation of impaired functions. The goal of the article is the presentation of most common computer-assisted technologies used in the therapy of children and adolescents with cognitive deficits as well as the literature review of their effectiveness including the challenges and limitations in regard to the implementation of such interventions.
Furberg, Robert D; Zulkiewicz, Brittany A; Hudson, Jordan P; Taylor, Olivia M; Lewis, Megan A
2016-01-01
Background Tablet-based health care interventions have the potential to encourage patient care in a timelier manner, allow physicians convenient access to patient records, and provide an improved method for patient education. However, along with the continued adoption of tablet technologies, there is a concomitant need to develop protocols focusing on the configuration, management, and maintenance of these devices within the health care setting to support the conduct of clinical research. Objective Develop three protocols to support tablet configuration, tablet management, and tablet maintenance. Methods The Configurator software, Tile technology, and current infection control recommendations were employed to develop three distinct protocols for tablet-based digital health interventions. Configurator is a mobile device management software specifically for iPhone operating system (iOS) devices. The capabilities and current applications of Configurator were reviewed and used to develop the protocol to support device configuration. Tile is a tracking tag associated with a free mobile app available for iOS and Android devices. The features associated with Tile were evaluated and used to develop the Tile protocol to support tablet management. Furthermore, current recommendations on preventing health care–related infections were reviewed to develop the infection control protocol to support tablet maintenance. Results This article provides three protocols: the Configurator protocol, the Tile protocol, and the infection control protocol. Conclusions These protocols can help to ensure consistent implementation of tablet-based interventions, enhance fidelity when employing tablets for research purposes, and serve as a guide for tablet deployments within clinical settings. PMID:27350013
Bulk-Heterojunction Organic Solar Cells: Five Core Technologies for Their Commercialization.
Kang, Hongkyu; Kim, Geunjin; Kim, Junghwan; Kwon, Sooncheol; Kim, Heejoo; Lee, Kwanghee
2016-09-01
The past two decades of vigorous interdisciplinary approaches has seen tremendous breakthroughs in both scientific and technological developments of bulk-heterojunction organic solar cells (OSCs) based on nanocomposites of π-conjugated organic semiconductors. Because of their unique functionalities, the OSC field is expected to enable innovative photovoltaic applications that can be difficult to achieve using traditional inorganic solar cells: OSCs are printable, portable, wearable, disposable, biocompatible, and attachable to curved surfaces. The ultimate objective of this field is to develop cost-effective, stable, and high-performance photovoltaic modules fabricated on large-area flexible plastic substrates via high-volume/throughput roll-to-roll printing processing and thus achieve the practical implementation of OSCs. Recently, intensive research efforts into the development of organic materials, processing techniques, interface engineering, and device architectures have led to a remarkable improvement in power conversion efficiencies, exceeding 11%, which has finally brought OSCs close to commercialization. Current research interests are expanding from academic to industrial viewpoints to improve device stability and compatibility with large-scale printing processes, which must be addressed to realize viable applications. Here, both academic and industrial issues are reviewed by highlighting historically monumental research results and recent state-of-the-art progress in OSCs. Moreover, perspectives on five core technologies that affect the realization of the practical use of OSCs are presented, including device efficiency, device stability, flexible and transparent electrodes, module designs, and printing techniques. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Capsule endoscopy—A mechatronics perspective
NASA Astrophysics Data System (ADS)
Lin, Lin; Rasouli, Mahdi; Kencana, Andy Prima; Tan, Su Lim; Wong, Kai Juan; Ho, Khek Yu; Phee, Soo Jay
2011-03-01
The recent advances in integrated circuit technology, wireless communication, and sensor technology have opened the door for development of miniature medical devices that can be used for enhanced monitoring and treatment of medical conditions. Wireless capsule endoscopy is one of such medical devices that has gained significant attention during the past few years. It is envisaged that future wireless capsule endoscopies replace traditional endoscopy procedures by providing advanced functionalities such as active locomotion, body fluid/tissue sampling, and drug delivery. Development of energy-efficient miniaturized actuation mechanisms is a key step toward achieving this goal. Here, we review some of the actuators that could be integrated into future wireless capsules and discuss the existing challenges.