Science.gov

Sample records for devices mounting process

  1. Isolation Mounting for Charge-Coupled Devices

    NASA Technical Reports Server (NTRS)

    Goss, W. C.; Salomon, P. M.

    1985-01-01

    CCD's suspended by wires under tension. Remote thermoelectric cooling of charge coupled device allows vibration isolating mounting of CCD assembly alone, without having to suspend entire mass and bulk of thermoelectric module. Mounting hardware simple and light. Developed for charge-coupled devices (CCD's) in infrared telescope support adaptable to sensors in variety of environments, e.g., sensors in nuclear reactors, engine exhausts and plasma chambers.

  2. Electro-optic component mounting device

    DOEpatents

    Gruchalla, Michael E.

    1994-01-01

    A technique is provided for integrally mounting a device such as an electro-optic device (50) in a transmission line to avoid series resonant effects. A center conductor (52) of the transmission line has an aperture (58) formed therein for receiving the device (50). The aperture (58) splits the center conductor into two parallel sections on opposite sides of the device. For a waveguide application, the center conductor is surrounded by a conductive ground surface (54), which is spaced apart from the center conductor with a dielectric material (56). One set of electrodes formed on the surface of the electro-optic device (50) is directly connected to the center conductor 52 and an electrode formed on the surface of the electro-optic device is directly connected to the conductive ground surface (54). The electrodes formed on the surface of the electro-optic device are formed on curved sections of the surface of the device to mate with correspondingly shaped electrodes on the conductor and ground surface to provide a uniform electric field across the electro-optic device. The center conductor includes a passage ( 60) formed therein for passage of optical signals to an electro-optic device.

  3. Electro-optic component mounting device

    DOEpatents

    Gruchalla, M.E.

    1994-09-13

    A technique is provided for integrally mounting a device such as an electro-optic device in a transmission line to avoid series resonant effects. A center conductor of the transmission line has an aperture formed therein for receiving the device. The aperture splits the center conductor into two parallel sections on opposite sides of the device. For a waveguide application, the center conductor is surrounded by a conductive ground surface which is spaced apart from the center conductor with a dielectric material. One set of electrodes formed on the surface of the electro-optic device is directly connected to the center conductor and an electrode formed on the surface of the electro-optic device is directly connected to the conductive ground surface. The electrodes formed on the surface of the electro-optic device are formed on curved sections of the surface of the device to mate with correspondingly shaped electrodes on the conductor and ground surface to provide a uniform electric field across the electro-optic device. The center conductor includes a passage formed therein for passage of optical signals to an electro-optic device. 10 figs.

  4. Frame-mounted wire management device

    DOEpatents

    Grushkowitz, Tyler; Fischer, Kevin; Danning, Matthew

    2016-09-20

    A wire management device is disclosed. The device comprises a clip comprising an upper planar member and a lower planar member, each planar member having an inner and outer surface, wherein the inner surface of the upper planar member includes a post extending toward the inner surface of the lower planar member, a stem extending from the outer surface of the lower planar member, the stem including two outwardly-extending flanges, each of the first and second outwardly-extending flanges including an edge portion extending toward the outer surface of the lower planar member, and a transverse passage extending along the outer surface of the lower planar member, the transverse passage extending across the stem, wherein the stem has a recessed portion along the transverse passage.

  5. Direct mounted photovoltaic device with improved adhesion and method thereof

    SciTech Connect

    Boven, Michelle L; Keenihan, James R; Lickly, Stan; Brown, Jr., Claude; Cleereman, Robert J; Plum, Timothy C

    2014-12-23

    The present invention is premised upon a photovoltaic device suitable for directly mounting on a structure. The device includes an active portion including a photovoltaic cell assembly having a top surface portion that allows transmission of light energy to a photoactive portion of the photovoltaic device for conversion into electrical energy and a bottom surface having a bottom bonding zone; and an inactive portion immediately adjacent to and connected to the active portion, the inactive portion having a region for receiving a fastener to connect the device to the structure and having on a top surface, a top bonding zone; wherein one of the top and bottom bonding zones comprises a first bonding element and the other comprises a second bonding element, the second bonding element designed to interact with the first bonding element on a vertically overlapped adjacent photovoltaic device to bond the device to such adjacent device or to the structure.

  6. Fixture for mounting small parts for processing

    DOEpatents

    Foreman, Larry R.; Gomez, Veronica M.; Thomas, Michael H.

    1990-01-01

    A fixture for mounting small parts, such as fusion target spheres or microelectronic components. A glass stalk is drawn and truncated near its tip. The truncated end of the glass stalk is dipped into silicone rubber forming an extending streamer. After the rubber cures for approximately 24 hours, a small part is touched to the streamer, and will be held securely throughout processing.

  7. Fixture for mounting small parts for processing

    DOEpatents

    Foreman, L.R.; Gomez, V.M.; Thomas, M.H.

    1990-05-29

    A fixture for mounting small parts, such as fusion target spheres or microelectronic components is disclosed. A glass stalk is drawn and truncated near its tip. The truncated end of the glass stalk is dipped into silicone rubber forming an extending streamer. After the rubber cures for approximately 24 hours, a small part is touched to the streamer, and will be held securely throughout processing. 5 figs.

  8. Regenerative braking device with rotationally mounted energy storage means

    DOEpatents

    Hoppie, Lyle O.

    1982-03-16

    A regenerative braking device for an automotive vehicle includes an energy storage assembly (12) having a plurality of rubber rollers (26, 28) mounted for rotation between an input shaft (30) and an output shaft (32), clutches (50, 56) and brakes (52, 58) associated with each shaft, and a continuously variable transmission (22) connectable to a vehicle drivetrain and to the input and output shafts by the respective clutches. In a second embodiment the clutches and brakes are dispensed with and the variable ratio transmission is connected directly across the input and output shafts. In both embodiments the rubber rollers are torsionally stressed to accumulate energy from the vehicle when the input shaft rotates faster or relative to the output shaft and are torsionally relaxed to deliver energy to the vehicle when the output shaft rotates faster or relative to the input shaft.

  9. Fabrication of an ultrathin lead zirconate titanate mirror device mounted on flexible substrate

    NASA Astrophysics Data System (ADS)

    Takeshita, Toshihiro; Yamashita, Takahiro; Makimoto, Natsumi; Kobayashi, Takeshi

    2017-10-01

    We have developedultrathin MEMS mirror devices. The mirror device was driven by lead zirconate titanate (PZT) actuators. Because the thickness of the mirror device is 5.31 µm, the mirror device is flexible. The mirror device was mounted on a polyimide substrate by a mounting method that we have developed. After fabrication, we investigated the characteristics of the mirror device experimentally. The frequency of the resonant mode for scanning optical light was 10.4 kHz. Also, we conducted an experiment to confirm the flexibility of the mirror device. When the polyimide substrate was bent (radius of curvature was 125 mm), the mirror device can be actuated without breakage. Moreover, it was observed that the resonance frequency and mechanical angle of the mirror device were dependent on the radius of curvature of the flexible substrate. This fabrication and mounting technology is highly promising for the development of flexible hybrid electronic (FHE) devices.

  10. Hydrothermal processes at Mount Rainier, Washington

    SciTech Connect

    Frank, D.G.

    1985-01-01

    Field studies and thermal-infrared mapping at Mount Rainier indicate areas of active hydrothermal alteration where excess surface heat flux is about 9 megawatts. Three representative settings include: (1) An extensive area (greater than 12,000 m/sup 2/) of heated ground and slightly acidic boiling-point fumaroles at 76-82/sup 0/C at East and West Craters on the volcano's summit; (2) A small area (less than 500 m/sup 2/) of heated ground and sub-boiling-point fumaroles at 55-60/sup 0/C on the upper flank at Disappointment Cleaver, and other probably similar areas at Willis Wall, Sunset Amphitheater, and the South Tahoma and Kautz headwalls; (3) Sulfate and carbon dioxide enriched thermal springs at 9-24/sup 0/C on the lower flank of the volcano in valley walls beside the Winthrop and Paradise Glaciers. In addition, chloride- and carbon dioxide-enriched thermal springs issue from thin sediments that overlie Tertiary rocks at, or somewhat beyond, the base of the volcanic edifice in valley bottoms of the Nisqually and Ohanapecosh Rivers where maximum spring temperatures are 19-25/sup 0/C, respectively, and where extensive travertine deposits have developed. The heat flow, distribution of thermal activity, and nature of alteration products indicate that a narrow, central hydrothermal system exists within Mount Rainier forming steam-heated snowmelt at the summit craters and localized leakage of steam-heated fluids within 2 kilometers of the summit. The lateral extent of the hydrothermal system is limited in that only sparse, neutral sulfate-enriched thermal water issues from the lower flank of the cone. Simulations of geochemical mass transfer suggest that the thermal springs may be derived from an acid sulfate-chloride parent fluid which has been neutralized by reaction with andesite and highly diluted with shallow ground water.

  11. Electrical wiring box with structure for fast device mounting

    DOEpatents

    Johnston, Earl S.

    1991-01-08

    An electrical wiring box of molded insulating material is provided with bosses having screw holes for receiving a mounting screw that include two colinear portions of which a first portion proximate the front surface has an internal configuration, such as molded threads, that engage the mounting screw while permitting the mounting screw to be manually inserted therethrough without turning because of flexibility built into the boss structure. A second portion of the screw hole is of greater restriction for securely engaging the screw such as by self tapping. The flexibility of the boss is provided by a first center slot that extends from the screw hole to the boss exterior over a length substantially equal to the first portion of the screw hole. Second and third slots are located respectively on each side of the screw hole and provide projections respectively between the first and second slots and the first and third slots that flex to allow easy screw insertion through the first portion of the screw hole.

  12. Direct mounted photovoltaic device with improved front clip

    SciTech Connect

    Keenihan, James R; Boven, Michelle; Brown, Jr., Claude; Gaston, Ryan S; Hus, Michael; Langmaid, Joe A; Lesniak, Mike

    2013-11-05

    The present invention is premised upon a photovoltaic assembly system for securing and/or aligning at least a plurality of vertically adjacent (overlapping) photovoltaic device assemblies to one another. The securing function being accomplished by a clip member that may be a separate component or integral to one or more of the photovoltaic device assemblies.

  13. Direct mounted photovoltaic device with improved side clip

    DOEpatents

    Keenihan, James R; Boven, Michelle L; Brown, Jr., Claude; Eurich, Gerald K; Gaston, Ryan S; Hus, Michael

    2013-11-19

    The present invention is premised upon a photovoltaic assembly system for securing and/or aligning at least a plurality of vertically adjacent photovoltaic device assemblies to one another. The securing function being accomplished by a clip member that may be a separate component or integral to one or more of the photovoltaic device assemblies.

  14. Comparing two input devices for virtual walkthroughs using a Head Mounted Display (HMD)

    NASA Astrophysics Data System (ADS)

    Sousa Santos, Beatriz; Dias, Paulo; Santos, Paulo; Ferreira, Carlos

    2014-02-01

    Selecting input and output devices to be used in virtual walkthroughs is an important issue as it may have significant impact in usability and comfort. This paper presents a user study meant to compare the usability of two input devices used for walkthroughs in a virtual environment with a Head-Mounted Display. User performance, satisfaction, ease of use and comfort, were compared with two different input devices: a two button mouse and a joystick from a gamepad. Participants also used a desktop to perform the same tasks in order to assess if the participant groups had similar profiles. The results obtained by 45 participants suggest that both input devices have a comparable usability in the used conditions and show that participants generally performed better with the desktop; a discussion of possible causes is presented.

  15. GaAs/GaAlAs device structures prepared by molecular beam epitaxy using indium-free mounting techniques

    SciTech Connect

    SpringThorpe, A.J.; Mandeville, P.

    1986-07-01

    A simple indium-free mount is described for the VG-Semicon V80-H MBE system. In conjunction with nonstandard substrate preparation techniques, the use of this mount has enabled GaAs/GaAlAs device structures to be prepared with consistently low (< or =200/cm/sup 2/) oval defect concentrations. Both 2DEG structures, with high 4 K mobilities, and GRINSCH lasers, with low thresholds, have been prepared to demonstrate the capabilities of the mounting procedures.

  16. Influence of Steering Control Devices Mounted in Cars for the Disabled on Passive Safety

    NASA Astrophysics Data System (ADS)

    Masiá, J.; Eixerés, B.; Dols, J. F.; Colomina, F. J.

    2009-11-01

    The purpose of this research is to analyze the influence of steering control devices for disabled people on passive safety. It is based on the advances made in the modelling and simulation of the driver position and in the suit verification test. The influence of these devices is studied through airbag deployment and/or its influence on driver safety. We characterize the different adaptations that are used in adapted cars that can be found mounted in vehicles in order to generating models that are verified by experimental test. A three dimensional design software package was used to develop the model. The simulations were generated using a dynamic simulation program employing LSDYNA finite elements. This program plots the geometry and assigns materials. The airbag is shaped, meshed and folded just as it is mounted in current vehicles. The thermodynamic model of expansion of gases is assigned and the contact interfaces are defined. Static tests were carried out on deployment of the airbag to contrast with and to validate the computational models and to measure the behaviour of the airbag when there are steering adaptations mounted in the vehicle.

  17. Wheelchair-mounted robotic arm to hold and move a communication device - final design.

    PubMed

    Barrett, Graham; Kurley, Kyle; Brauchie, Casey; Morton, Scott; Barrett, Steven

    2015-01-01

    At the 51st Rocky Mountain Bioengineering Symposium we presented a preliminary design for a robotic arm to assist an individual living within an assistive technology smart home. The individual controls much of their environment with a Dynavox Maestro communication device. However, the device obstructs the individual’s line of site when navigating about the smart home. A robotic arm was developed to move the communication device in and out of the user’s field of view as desired. The robotic arm is controlled by a conveniently mounted jelly switch. The jelly switch sends control signals to a four state (up, off, down, off) single-axis robotic arm interfaced to a DC motor by high power electronic relays. This paper describes the system, control circuitry, and multiple safety features. The arm will be delivered for use later in 2015.

  18. Development of a locust bean processing device.

    PubMed

    Owolarafe, Oseni Kehinde; Adetan, Dare Aderibigbe; Olatunde, Gbenga Adebayo; Ajayi, Adebowale Oladeji; Okoh, Ile Kehinde

    2013-04-01

    A locust bean steaming, dehulling and separating machine was designed in this study by simulating the traditional processing operations. The machine consist of pressure cooking pot (as the cooking device) mounted on a separate stand and equipped with rocker- arm system to facilitate discharge of contents, a hopper made of mild steel sheet, the dehulling unit made of screwed shaft and abrasive barrel, a conical-shaped separating section equipped with paddles (made of aluminum material) and a standing frame to support the whole arrangement. The machine was evaluated by processing seed at cooking times of 30, 45, 60 and 90 min. The result indicated increase in dehulling efficiency with increase in cooking time from 30 to 60 min while it dropped at 90 min. The highest dehulling efficiency of 82% was obtained at cooking time of 60 min. The separation efficiency obtained at this optimal cooking time was 79%.

  19. In vivo evaluation of a novel, wrist-mounted arterial pressure sensing device versus the traditional hand-held tonometer.

    PubMed

    Vardoulis, Orestis; Saponas, T Scott; Morris, Dan; Villar, Nicolas; Smith, Greg; Patel, Shwetak; Tan, Desney

    2016-10-01

    Although hemodynamic parameters can be assessed non-invasively, state-of-the-art non-invasive systems generally require an expert operator and are not applicable for ambulatory measurements. These limitations have restricted our understanding of the continuous behavior of hemodynamic parameters. In this manuscript, we introduce a novel wrist-mounted device that incorporates an array of pressure sensors which can be used to extract arterial waveforms and relevant pulse wave analysis biomarkers. In vivo evaluation is performed with Bland-Altman analysis to compare the novel sensor to a gold-standard hand-held tonometer by assessing their reproducibility and agreement in peripheral augmentation index (AIx) estimation at the radial artery. Arterial waves from 28 randomly selected participants were recorded in a controlled environment. Initially we assess the reproducibility of AIx results for both devices. The intra-class correlation coefficient (ICC) and mean difference ± SD were [0.913, 0.033±0.048] and [0.859, 0.039±0.076] for the hand-held and the wrist-mounted tonometer respectively. We then show that the AIx values derived from the novel tonometer have good agreement, accuracy, and precision when compared against the AIx values derived from the reference hand-held tonometer (ICC 0.927, mean difference 0.026±0.049). In conclusion, we have presented evidence that the new wrist-mounted arterial pressure sensor records arterial waveforms that can be processed to yield AIx values that are in good agreement with its traditional hand-held counterpart.

  20. Adjustable mounting device for high-volume production of beam-shaping systems for high-power diode lasers

    NASA Astrophysics Data System (ADS)

    Haag, Sebastian; Bernhardt, Henning; Rübenach, Olaf; Haverkamp, Tobias; Müller, Tobias; Zontar, Daniel; Brecher, Christian

    2015-02-01

    In many applications for high-power diode lasers, the production of beam-shaping and homogenizing optical systems experience rising volumes and dynamical market demands. The automation of assembly processes on flexible and reconfigurable machines can contribute to a more responsive and scalable production. The paper presents a flexible mounting device designed for the challenging assembly of side-tab based optical systems. It provides design elements for precisely referencing and fixating two optical elements in a well-defined geometric relation. Side tabs are presented to the machine allowing the application of glue and a rotating mechanism allows the attachment to the optical elements. The device can be adjusted to fit different form factors and it can be used in high-volume assembly machines. The paper shows the utilization of the device for a collimation module consisting of a fast-axis and a slow-axis collimation lens. Results regarding the repeatability and process capability of bonding side tab assemblies as well as estimates from 3D simulation for overall performance indicators achieved such as cycle time and throughput will be discussed.

  1. Microencapsulation and Electrostatic Processing Device

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor); Cassanto, John M. (Inventor)

    2001-01-01

    A microencapsulation and electrostatic processing (MEP) device is provided for forming microcapsules. In one embodiment, the device comprises a chamber having a filter which separates a first region in the chamber from a second region in the chamber. An aqueous solution is introduced into the first region through an inlet port, and a hydrocarbon/ polymer solution is introduced into the second region through another inlet port. The filter acts to stabilize the interface and suppress mixing between the two immiscible solutions as they are being introduced into their respective regions. After the solutions have been introduced and have become quiescent, the interface is gently separated from the filter. At this point, spontaneous formation of microcapsules at the interface may begin to occur, or some fluid motion may be provided to induce microcapsule formation. In any case, the fluid shear force at the interface is limited to less than 100 dynes/sq cm. This low-shear approach to microcapsule formation yields microcapsules with good sphericity and desirable size distribution. The MEP device is also capable of downstream processing of microcapsules, including rinsing, re-suspension in tertiary fluids, electrostatic deposition of ancillary coatings, and free-fluid electrophoretic separation of charged microcapsules.

  2. Eyetracked optical see-through head-mounted display as an AAC device

    NASA Astrophysics Data System (ADS)

    Hua, Hong; Hu, Xinda; Gao, Chunyu; Qin, Xiao

    2014-06-01

    An eye-tracked head-mounted display (ET-HMD) system is able to display virtual images as a classical headmounted display (HMD) does, while additionally tracking the gaze direction of the user. An HMD with fullyintegrated eyetracking capability offers multi-fold benefits, not only to fundamental scientific research but also to emerging applications of such technology. A key limitation of the state-of-the-art ET-HMD technology is the lack of compactness and portability. In this paper, we present an innovative design of a high resolution optical see-through ET-HMD system based on freeform optical technology. A prototype system is demonstrated, which offers a goggle-like compact form factor, non-obstructive see-through field of view, true high-definition image resolution for the virtual display, and better than 0.5 arc minute of angular resolution for the see-through view. We will demonstrate the application of the technology as an assistive and augmentative communication (AAC) device.

  3. 77 FR 58576 - Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-21

    ... COMMISSION Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers, and... importation of certain wireless communication devices, portable music and data processing devices, computers... after importation of certain wireless communication devices, portable music and data processing devices...

  4. Instructive head-mounted display system: pointing device using a vision-based finger tracking technique applied to surgical education

    PubMed Central

    Yoshida, Soichiro; Takeshita, Hideki; Fujii, Yasuhisa

    2014-01-01

    Introduction The head-mounted display (HMD) system is a novel personalized imaging monitoring system for use in a medical setting. Aim To support interactive intraoperative communication among HMD wearers, we integrated vision-based finger tracking into our system as a pointing device. Material and methods Our vision-based finger tracking system is composed of a commercially available real-time video camera, which is mounted on the modern HMD, and computer software that enables tracking of the tip of the operator's index finger and superimposing the marker on the endoscopic view. Results We used this system in an experimental demonstration. The operator used the finger-tracking pointer to explain the intraoperative findings of transurethral resection for bladder cancer to medical students. Conclusions This finger tracking system-based pointing device can function as a supportive tool for the HMD system, enabling interactive instruction and communication between the operator and other attending physicians or medical students. PMID:25337172

  5. Development of pulse laser processing for mounting fiber Bragg grating

    SciTech Connect

    Nishimura, Aikihko; Shimada, Yukihiro; Yonemoto, Yukihiro; Suzuki, Hirokazu; Ishibashi, Hisayoshi

    2012-07-11

    Pulse laser processing has been developed for the application of industrial plants in monitoring and maintenance. Surface cleaning by nano-second laser ablation was demonstrated for decontamination of oxide layers of Cr contained steel. Direct writing by femtosecond processing induced a Bragg grating in optical fiber to make it a seismic sensor for structural health monitoring. Adhesive cement was used to fix the seismic sensor on the surface of reactor coolant pipe material. Pulse laser processing and its related technologies were presented to overcome the severe accidents of nuclear power plants.

  6. Development of pulse laser processing for mounting fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Nishimura, Aikihko; Shimada, Yukihiro; Yonemoto, Yukihiro; Suzuki, Hirokazu; Ishibashi, Hisayoshi

    2012-07-01

    Pulse laser processing has been developed for the application of industrial plants in monitoring and maintenance. Surface cleaning by nano-second laser ablation was demonstrated for decontamination of oxide layers of Cr contained steel. Direct writing by femtosecond processing induced a Bragg grating in optical fiber to make it a seismic sensor for structural health monitoring. Adhesive cement was used to fix the seismic sensor on the surface of reactor coolant pipe material. Pulse laser processing and its related technologies were presented to overcome the severe accidents of nuclear power plants.

  7. Mirror mount

    DOEpatents

    Kuklo, Thomas C.; Bender, Donald A.

    1994-01-01

    A unique lens or mirror mount having adjustable constraints at two key locations to allow for "X" and "Y" tilts of the mirror only. The device uses two pair of flexures of a type such that the pivots of the mirror gimble are rigidly fixed in all planes allowing the device to have zero stacking tolerance and zero wear over time.

  8. GaN Device Processing

    SciTech Connect

    Pearton, S.J.; Ren, F.; Zolper, J.C.; Shul, R.J.

    1998-01-01

    Recent progress in the development of dry and wet etching techniques, implant doping and isolation, thermal processing, gate insulator technology and high reliability contacts is reviewed. Etch selectivities up to 10 for InN over AlN are possible in Inductively Coupled Plasmas using a Cl2/Ar chemistry, but in general selectivities for each binary nitride relative to each other are low ({lt} OR = 2) BECAUSE OF THE HIGH ION ENERGIES NEEDED TO INITIATE ETCHING. IMPROVED N-TYPE OHMIC CONTACT RESISTANCES ARE OBTAINED BY SELECTIVE AREA SI+ IMPLANTATION FOLLOWED BY VERY HIGH TEMPERATURE ({gt}1300 deg C) anneals in which the thermal budget is minimized and AlN encapsulation prevents GaN surface decomposition. Implant isolation is effective in GaN, AlGaN and AlInN, but marginal in InGaN. Candidate gate insulators for GaN include AlN, AlON and Ga(Gd)O(x), but interface state densities are still to high to realize state-of-the-art MIS devices.

  9. Visual processing: implications for helmet-mounted displays

    NASA Astrophysics Data System (ADS)

    Caldwell, J. L.; Cornum, Rhonda L. S.; Stephens, Robert L.; Rash, Clarence E.

    1990-10-01

    A study was conducted to compare the performance of AH-64 (Apache) pilots to other Army pilots on visual tasks. Each pilot was given a task presented monocularly to the right eye, a task presented monocularly to the left eye, and a task presented to both eyes simultaneously in a dichoptic task. Results indicated no performance difference between the groups of pilots on the dichoptic task, but indicated better performance on the left monocular task for the AH-64 pilots. These results indicate that AH-64 pilots who are required to switch their attention from their left eyes to their right eyes in order to obtain needed information are capable of processing information efficiently and effectively using only one eye. The implications of these results for the Integrated Helmet and Display Sighting System (IHADSS) are discussed.

  10. 77 FR 51571 - Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-24

    ... COMMISSION Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers, and... communication devices, portable music and data processing devices, computers, and components thereof. The... and Data Processing Devices, Computers, and Components Thereof, DN 2910; the Commission is soliciting...

  11. Optical processing for semiconductor device fabrication

    NASA Technical Reports Server (NTRS)

    Sopori, Bhushan L.

    1994-01-01

    A new technique for semiconductor device processing is described that uses optical energy to produce local heating/melting in the vicinity of a preselected interface of the device. This process, called optical processing, invokes assistance of photons to enhance interface reactions such as diffusion and melting, as compared to the use of thermal heating alone. Optical processing is performed in a 'cold wall' furnace, and requires considerably lower energies than furnace or rapid thermal annealing. This technique can produce some device structures with unique properties that cannot be produced by conventional thermal processing. Some applications of optical processing involving semiconductor-metal interfaces are described.

  12. Broadband, wide-area active control of sound radiated from vibrating structures using local surface-mounted radiation suppression devices

    NASA Astrophysics Data System (ADS)

    Mason, V. Bradford; Naghshineh, Koorosh; Toth, G. K.

    A new active noise-control device, which offers a practical solution for complex noise problems, has been developed and experimentally evaluated. Noise reduction is achieved by distributing an array of control devices over the surface of the radiating structure (e.g., aircraft fuselage interior). Each device consists of a motion sensor, a control circuit, and a loudspeaker. The control circuits are independent and can be manufactured inexpensively from analog components. The loudspeaker is driven such that it reduces the volume velocity of the radiating structure within its close proximity. Experimental verification of this concept was performed using a uniformly vibrating circular plate with a single device. The controller transfer function was derived and implemented in an analog circuit. Broadband (50-500 Hz) sound reductions in the range of 10-20 dB were achieved over a wide spatial area, including the immediate vicinity of the device. The controller was found to be stable and robust. Since this device in its final implementation may be mounted behind the aircraft trim panels, it was covered by a large, flexible panel. The performance was measured and found to be excellent.

  13. Magnetic core mounting system

    DOEpatents

    Ronning, Jeffrey J.

    2002-01-01

    A mounting apparatus for an electromagnetic device such as a transformer of inductor includes a generally planar metallic plate as a first heat sink, and a metallic mounting cup as a second heat sink. The mounting cup includes a cavity configured to receive the electromagnetic device, the cavity being defined by a base, and an axially-extending annular sidewall extending from the base to a flange portion of the mounting cup. The mounting cup includes first and second passages for allowing the leads of first and second windings of the electromagnetic device to be routed out of the cavity. The cavity is filled with a polyurethane potting resin, and the mounting cup, including the potted electromagnetic device, is mounted to the plate heat sink using fasteners. The mounting cup, which surrounds the electromagnetic device, in combination with the potting resin provides improved thermal transfer to the plate heat sink, as well as providing resistance to vibration and shocks.

  14. Mirror mount

    DOEpatents

    Kuklo, T.C.; Bender, D.A.

    1994-10-04

    A unique lens or mirror mount having adjustable constraints at two key locations to allow for ''X'' and ''Y'' tilts of the mirror only is disclosed. The device uses two pair of flexures of a type such that the pivots of the mirror gimble are rigidly fixed in all planes allowing the device to have zero stacking tolerance and zero wear over time. 4 figs.

  15. An externally head-mounted wireless neural recording device for laboratory animal research and possible human clinical use.

    PubMed

    Yin, Ming; Li, Hao; Bull, Christopher; Borton, David A; Aceros, Juan; Larson, Lawrence; Nurmikko, Arto V

    2013-01-01

    In this paper we present a new type of head-mounted wireless neural recording device in a highly compact package, dedicated for untethered laboratory animal research and designed for future mobile human clinical use. The device, which takes its input from an array of intracortical microelectrode arrays (MEA) has ninety-seven broadband parallel neural recording channels and was integrated on to two custom designed printed circuit boards. These house several low power, custom integrated circuits, including a preamplifier ASIC, a controller ASIC, plus two SAR ADCs, a 3-axis accelerometer, a 48MHz clock source, and a Manchester encoder. Another ultralow power RF chip supports an OOK transmitter with the center frequency tunable from 3GHz to 4GHz, mounted on a separate low loss dielectric board together with a 3V LDO, with output fed to a UWB chip antenna. The IC boards were interconnected and packaged in a polyether ether ketone (PEEK) enclosure which is compatible with both animal and human use (e.g. sterilizable). The entire system consumes 17mA from a 1.2Ahr 3.6V Li-SOCl2 1/2AA battery, which operates the device for more than 2 days. The overall system includes a custom RF receiver electronics which are designed to directly interface with any number of commercial (or custom) neural signal processors for multi-channel broadband neural recording. Bench-top measurements and in vivo testing of the device in rhesus macaques are presented to demonstrate the performance of the wireless neural interface.

  16. Flexible hybrid circuit fully inkjet-printed: Surface mount devices assembled by silver nanoparticles-based inkjet ink

    NASA Astrophysics Data System (ADS)

    Arrese, J.; Vescio, G.; Xuriguera, E.; Medina-Rodriguez, B.; Cornet, A.; Cirera, A.

    2017-03-01

    Nowadays, inkjet-printed devices such as transistors are still unstable in air and have poor performances. Moreover, the present electronics applications require a high degree of reliability and quality of their properties. In order to accomplish these application requirements, hybrid electronics is fulfilled by combining the advantages of the printing technologies with the surface-mount technology. In this work, silver nanoparticle-based inkjet ink (AgNP ink) is used as a novel approach to connect surface-mount devices (SMDs) onto inkjet-printed pads, conducted by inkjet printing technology. Excellent quality AgNP ink-junctions are ensured with high resolution picoliter drop jetting at low temperature (˜150 °C). Electrical, mechanical, and morphological characterizations are carried out to assess the performance of the AgNP ink junction. Moreover, AgNP ink is compared with common benchmark materials (i.e., silver epoxy and solder). Electrical contact resistance characterization shows a similar performance between the AgNP ink and the usual ones. Mechanical characterization shows comparable shear strength for AgNP ink and silver epoxy, and both present higher adhesion than solder. Morphological inspections by field-emission scanning electron microscopy confirm a high quality interface of the silver nanoparticle interconnection. Finally, a flexible hybrid circuit on paper controlled by an Arduino board is manufactured, demonstrating the viability and scalability of the AgNP ink assembling technique.

  17. Design and User Evaluation of a Wheelchair Mounted Robotic Assisted Transfer Device

    PubMed Central

    Grindle, Garrett G.; Jeannis, Hervens; Teodorski, Emily; Cooper, Rory A.

    2015-01-01

    Purpose. The aim of this study is to describe the robotic assisted transfer device (RATD) and an initial focus group evaluation by end users. The purpose of the device is to aid in the transfers of people with disabilities to and from their electric powered wheelchair (EPW) onto other surfaces. The device can be used for both stand-pivot transfers and fully dependent transfers, where the person being transferred is in a sling and weight is fully on the robot. The RATD is fixed to an EPW to allow for its use in community settings. Method. A functional prototype of the RATD was designed and fabricated. The prototype was presented to a group of 16 end users and feedback on the device was obtained via a survey and group discussion. Results. Thirteen out of sixteen (83%) participants agreed that it was important to develop this type of technology. They also indicated that user, caregiver, and robotic controls were important features to be included in the device. Conclusions. Participants in this study suggested that they would be accepting the use of robotic technology for transfers and a majority did not feel that they would be embarrassed to use this technology. PMID:25793190

  18. Design and user evaluation of a wheelchair mounted robotic assisted transfer device.

    PubMed

    Grindle, Garrett G; Wang, Hongwu; Jeannis, Hervens; Teodorski, Emily; Cooper, Rory A

    2015-01-01

    The aim of this study is to describe the robotic assisted transfer device (RATD) and an initial focus group evaluation by end users. The purpose of the device is to aid in the transfers of people with disabilities to and from their electric powered wheelchair (EPW) onto other surfaces. The device can be used for both stand-pivot transfers and fully dependent transfers, where the person being transferred is in a sling and weight is fully on the robot. The RATD is fixed to an EPW to allow for its use in community settings. A functional prototype of the RATD was designed and fabricated. The prototype was presented to a group of 16 end users and feedback on the device was obtained via a survey and group discussion. Thirteen out of sixteen (83%) participants agreed that it was important to develop this type of technology. They also indicated that user, caregiver, and robotic controls were important features to be included in the device. Participants in this study suggested that they would be accepting the use of robotic technology for transfers and a majority did not feel that they would be embarrassed to use this technology.

  19. Design and Implementation of Foot-Mounted Inertial Sensor Based Wearable Electronic Device for Game Play Application

    PubMed Central

    Zhou, Qifan; Zhang, Hai; Lari, Zahra; Liu, Zhenbo; El-Sheimy, Naser

    2016-01-01

    Wearable electronic devices have experienced increasing development with the advances in the semiconductor industry and have received more attention during the last decades. This paper presents the development and implementation of a novel inertial sensor-based foot-mounted wearable electronic device for a brand new application: game playing. The main objective of the introduced system is to monitor and identify the human foot stepping direction in real time, and coordinate these motions to control the player operation in games. This proposed system extends the utilized field of currently available wearable devices and introduces a convenient and portable medium to perform exercise in a more compelling way in the near future. This paper provides an overview of the previously-developed system platforms, introduces the main idea behind this novel application, and describes the implemented human foot moving direction identification algorithm. Practical experiment results demonstrate that the proposed system is capable of recognizing five foot motions, jump, step left, step right, step forward, and step backward, and has achieved an over 97% accuracy performance for different users. The functionality of the system for real-time application has also been verified through the practical experiments. PMID:27775673

  20. Design and Implementation of Foot-Mounted Inertial Sensor Based Wearable Electronic Device for Game Play Application.

    PubMed

    Zhou, Qifan; Zhang, Hai; Lari, Zahra; Liu, Zhenbo; El-Sheimy, Naser

    2016-10-21

    Wearable electronic devices have experienced increasing development with the advances in the semiconductor industry and have received more attention during the last decades. This paper presents the development and implementation of a novel inertial sensor-based foot-mounted wearable electronic device for a brand new application: game playing. The main objective of the introduced system is to monitor and identify the human foot stepping direction in real time, and coordinate these motions to control the player operation in games. This proposed system extends the utilized field of currently available wearable devices and introduces a convenient and portable medium to perform exercise in a more compelling way in the near future. This paper provides an overview of the previously-developed system platforms, introduces the main idea behind this novel application, and describes the implemented human foot moving direction identification algorithm. Practical experiment results demonstrate that the proposed system is capable of recognizing five foot motions, jump, step left, step right, step forward, and step backward, and has achieved an over 97% accuracy performance for different users. The functionality of the system for real-time application has also been verified through the practical experiments.

  1. Collision judgment when using an augmented-vision head-mounted display device

    PubMed Central

    Luo, Gang; Woods, Russell L; Peli, Eli

    2016-01-01

    Purpose We have developed a device to provide an expanded visual field to patients with tunnel vision by superimposing minified edge images of the wide scene, in which objects appear closer to the heading direction than they really are. We conducted experiments in a virtual environment to determine if users would overestimate collision risks. Methods Given simulated scenes of walking or standing with intention to walk towards a given direction (intended walking) in a shopping mall corridor, participants (12 normally sighted and 7 with tunnel vision) reported whether they would collide with obstacles appearing at different offsets from variable walking paths (or intended directions), with and without the device. The collision envelope (CE), a personal space based on perceived collision judgments, and judgment uncertainty (variability of response) were measured. When the device was used, combinations of two image scales (5× minified and 1:1) and two image types (grayscale or edge images) were tested. Results Image type did not significantly alter collision judgment (p>0.7). Compared to the without-device baseline, minification did not significantly change the CE of normally sighted subjects for simulated walking (p=0.12), but increased CE by 30% for intended walking (p<0.001). Their uncertainty was not affected by minification (p>0.25). For the patients, neither CE nor uncertainty was affected by minification (p>0.13) in both walking conditions. Baseline CE and uncertainty were greater for patients than normally-sighted subjects in simulated walking (p=0.03), but the two groups were not significantly different in all other conditions. Conclusion Users did not substantially overestimate collision risk, as the 5× minified images had only limited impact on collision judgments either during walking or before starting to walk. PMID:19458339

  2. New optical mountings of the spectral devices with concave diffraction gratings and high entrance slit

    NASA Astrophysics Data System (ADS)

    Sokolova, Elena A.; Reyes Cortes, Santiago D.

    1996-11-01

    The concave diffraction grating is both the dispersive and the focusing element at the same time. It can be the only optical unit of monochromator or polychromator. Using the concave diffraction gratings with nonequidistant and curved grooves gives the possibility for correction of the aberrations in the useful region of spectrum and provides the devices with determined focal surfaces. To increase the height of the entrance slit of the spectroscopic device we have to eliminate the first and the second-order astigmatism aberrations. Consideration of this type of aberration is very important now in view of the new types of spectral devices using fiber optics and multielement detectors being developed. These new elements allow us to register the spectrum of extended objects or a number of spectrums simultaneously. For the case of the double monochromator we noticed, that the second-order astigmatism can be completely eliminated if the second part of the double monochromator is equivalent to its first part, but the ray tracing is inverse. The experiment on the mathematical model of the double monochromator confirms this idea. For the case of polychromator or CCD spectrometer we can compensate that aberrations using the illumination system, consists of the spherical mirror. The angle of incidence of the light to the mirror is calculated such a way, that the astigmatism of the grating is compensated by the astigmatism of the mirror.

  3. Production of A357 motor mount bracket by the metal compression forming process

    SciTech Connect

    Viswanathan, S.; Brinkman, C.R.; Porter, W.D.; Purgert, R.M.

    1997-09-01

    The use of aluminum alloy castings for safety critical structural components such as engine mount brackets, steering knuckles, and control arms, offers significant opportunities for achieving weight reduction in automobiles, since they are typically about half the weight of the steel, cast iron, or ductile iron component that they replace. Metal Compression Forming (MCF) is a variant of the squeeze casting process, in which molten metal is allowed to solidify under pressure in order to close porosity and form a sound part. However, the MCF process applies pressure on the entire mold face, thereby directing pressure on all regions of the casting and producing a uniformly sound part. The process is capable of producing parts with properties close to those of forgings, while retaining the near net shape, complexity in geometry, and relatively low cost of the casting process. The paper describes the casting process development involved in the production of an aluminum A357 alloy motor mount bracket, including the use of a filling and solidification model to design the gating and determine process parameters. Tensile properties of the component are presented and correlated with those of forged components. Limited fatigue properties obtained by fully reversed strain controlled testing are also presented.

  4. A Device for Logic Information Processing.

    ERIC Educational Resources Information Center

    Levinskiy, L. S.; Vissonova, I. A.

    Two essential components of the information-logic problem are: (1) choosing some known part of the total information block for parallel review of the entire block and (2) parallel logic processing of a sequence of codes. The described device fulfills these essential components thereby improving information processing and increasing the speed of…

  5. Stability analysis of electrical powered wheelchair-mounted robotic-assisted transfer device.

    PubMed

    Wang, Hongwu; Tsai, Chung-Ying; Jeannis, Hervens; Chung, Cheng-Shiu; Kelleher, Annmarie; Grindle, Garrett G; Cooper, Rory A

    2014-01-01

    The ability of people with disabilities to live in their homes and communities with maximal independence often hinges, at least in part, on their ability to transfer or be transferred by an assistant. Because of limited resources and the expense of personal care, robotic transfer assistance devices will likely be in great demand. An easy-to-use system for assisting with transfers, attachable to electrical powered wheelchairs (EPWs) and readily transportable, could have a significant positive effect on the quality of life of people with disabilities. We investigated the stability of our newly developed Strong Arm, which is attached and integrated with an EPW to assist with transfers. The stability of the system was analyzed and verified by experiments applying different loads and using different system configurations. The model predicted the distributions of the system's center of mass very well compared with the experimental results. When real transfers were conducted with 50 and 75 kg loads and an 83.25 kg dummy, the current Strong Arm could transfer all weights safely without tip-over. Our modeling accurately predicts the stability of the system and is suitable for developing better control algorithms to enhance the safety of the device.

  6. Compact device for cleaning scanner-mounted scanning tunneling microscope tips using electron bombardment

    NASA Astrophysics Data System (ADS)

    Hellmann, D.; Worbes, L.; Kittel, A.

    2011-08-01

    Most scanning probe techniques rely on the assumption that both sample and tip are free from adsorbates, residues, and oxide not deposited intentionally. Getting a clean sample surface can be readily accomplished by applying ion sputtering and subsequent annealing, whereas finding an adequate treatment for tips is much more complicated. The method of choice would effectively desorb undesired compounds without reducing the sharpness or the general geometry of the tip. Several devices which employ accelerated electrons to achieve this are described in the literature. To minimize both the effort to implement this technique in a UHV chamber and the overall duration of the cleaning procedure, we constructed a compact electron source fitted into a sample holder, which can be operated in a standard Omicron variable-temperature (VT)-STM while the tip stays in place. This way a maximum of compatibility with existing systems is achieved and short turnaround times are possible for tip cleaning.

  7. Evaluation of Manufacturing Processes for Microfluidic Devices

    NASA Astrophysics Data System (ADS)

    Laura Jáuregui, Ana; Siller, Héctor R.; Rodriguez, Ciro A.; Elías-Zúñiga, Alex

    2009-11-01

    In this paper several micro-mechanical manufacturing technologies were studied in order to characterize their performance for making miniaturized geometries known as micro-channels, which are the main geometric features of micro-fluidic devices. The technologies used were Micro-End Milling, Wire Electro Discharge Machiningesol Sandblasting and Abrasive Water Jet. Their capabilities were compared with Lithography capabilities, which is the conventional process for micro-channel manufacturing. The evaluation consists in a comprehensive study of surface quality and topography, made with the help of advanced contact and non-contact devices over each prototype made by each technology. Also economical considerations have been taken into account in order to choose the most appropriate manufacturing process for the prototyping of micro-fluidic devices. The results show that Micro-End Milling process can compete with Lithography, in terms of achieving acceptable levels of product quality and economics.

  8. Semiconductors: In Situ Processing of Photovoltaic Devices

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A.

    1998-01-01

    The possible processing of semiconductor photovoltaic devices is discussed. The requirements for lunar PV cells is reviewed, and the key challenges involved in their manufacturing are investigated. A schematic diagram of a passivated emitter and rear cell (PERC) is presented. The possible fabrication of large photovoltaic arrays in space from lunar materials is also discussed.

  9. An ultrasonic device for signal processing

    NASA Astrophysics Data System (ADS)

    Kulakov, S. V.; Leks, A. G.; Semenov, S. P.; Ulyanov, G. K.

    1985-11-01

    The invention concerns the field of radioengineering and can be used in analog processors of the signals of phased antenna arrays. There are familiar devices for processing the signals of phased antenna arrays. However these are large in size, structurally complicated, and contain expensive parts. In the proposed device, for the purpose of simplification and cheapening the design and reducing the dimensions, the counting system is in the form of a receiving acoustical array, the elements of which are hooked up to a television-type indicator.

  10. Design and processing of organic electroluminescent devices

    NASA Astrophysics Data System (ADS)

    Pardo-Guzman, Dino Alejandro

    2000-11-01

    The present dissertation compiles three aspects of my Ph.D. work on OLED device design, fabrication and characterization. The first chapter is a review of the concepts and theories describing the mechanisms of organic electroluminescence. The second chapter makes use of these concepts to articulate some basic principles for the design of efficient and stable OLEDs. The third chapter describes the main characterization and sample preparation techniques used along this dissertation. Chapter IV describes the processing of efficient organic electroluminescent EL devices with ITO/TPD/AIQ3/Mg:Ag structures. The screen printing technique of a hole transport polymeric blend was used in an unusual mode to render thin films in the order of 60-80 nm. EL devices were then fabricated on top of these sp films to provide ~0.9% quantum efficiencies, comparable to spin coating with the same structures. Various polymer:TPD and solvent combinations were studied to find the paste with the best rheological properties. The same technique was also used to deposit a patterned MEH-PPV film. Chapter V describes my research work on the wetting of TPD on ITO substrates. The wetting was monitored by following its surface morphology evolution as a function of temperature. The effect of these surface changes was then correlated to the I-V-L characteristics of devices made with these TPD films. The surface roughness was measured with tapping AFM showed island formation at temperatures as low as 50-60°C. I Also investigated the effect of the purity of materials like AlQ3 on the device EL performance, as described in Chapter VI. In order to improve the purity of these environmentally degradable complexes a new in situ purification technique was developed with excellent enhancement of the EL cell properties. The in situ purification process was then used to purify/deposit organic dyes with improved film formation and EL characteristics.

  11. Processing and interpretation of microbarograph signals generated by the explosion of Mount St. Helens

    SciTech Connect

    Delclos, C.; Blanc, E. ); Broche, P. ); Glangeaud, F.; Lacoume, J.L. )

    1990-04-20

    Following the eruption of the Mount St. Helens volcano on May 18, 1980, atmospheric waves were recorded by a network of micrographs located over 7,000 km from the source. Analysis of these data requires the use of complex processing techniques based on a high-resolution method to extract the signals produced by the St. Helens source from spurious waves or noise in each record. This facilitates interpretation of the wave trains in terms of propagation modes. It is thus shown that Lamb mode L{sub 0} is present in the low-frequency part of all signals, whereas acoustic modes (more probably A{prime}{sub 2}) are needed to explain all the properties of the high-frequency part, which is clearly observed for a westward and a southward propagation.

  12. Seasonal geomorphic processes and rates of sand movement at Mount Baldy dune in Indiana, USA

    NASA Astrophysics Data System (ADS)

    Kilibarda, Zoran; Kilibarda, Vesna

    2016-12-01

    Winds are very strong, frequent, and have high energy (annual DP ∼800 VU) along the southern shores of Lake Michigan, allowing the coexistence of fixed and active dunes. Six years (2007-13) of monitoring Mount Baldy in the Indiana Dunes National Lakeshore reveals that this is the most active coastal dune in the Great Lakes region. This paper documents aeolian processes and changes in the dune's morphology that occur temporarily, following storms, or seasonally, due to weather (climate) variations. Most of the sand transport in this area takes place during strong storms with gale force (>17.5 m/s) winds, which occur in the autumn and winter months. A single storm, such as the October 28-31, 2013 event, can contribute 25% of the annual sand transport and dune movement inland. In its most active year (June 1, 2011 through May 31, 2012), Mount Baldy moved inland on average 4.34 m, with a maximum of 6.52 m along the blowout's axis (155° azimuth). During this particularly active season, there were six storms with sustained gale force winds, winter air temperatures were warmer than average, and shelf ice on Lake Michigan lasted only one day. The dune is least active during the summer season, when the winds are weakest. The late fall and winter winds are the strongest. But in a typical year, most of the dune's advance inland takes place during the spring thaw when sand is released from over-steepened and lumpy slip face, allowing it to avalanche to the toe of the slip face. However, with a warming air temperatures, a reduction in the duration of winter shelf ice, and rising Lake Michigan levels, the annual rates of sand transport and dune movement may increase. The recent Mount Baldy management strategy, which includes planting vegetation and installing wind barriers on the dune's stoss side in an effort to fix the dune and stop its further movement inland, may potentially cause the destruction of the mobile sand, open dune habitat, resulting in the extinction of rare

  13. The December 2015 Mount Etna eruption: An analysis of inflation/deflation phases and faulting processes

    NASA Astrophysics Data System (ADS)

    Aloisi, Marco; Jin, Shuanggen; Pulvirenti, Fabio; Scaltrito, Antonio

    2017-06-01

    During the first days of December 2015, there were four paroxysmal events at the ;Voragine; crater on Mount Etna, which were among the most violent observed during the last two decades. A few days after the ;Voragine; paroxysms, the Pernicana - Provenzana fault system, located near the crater area, underwent an intense seismic swarm with a maximum ;local; magnitude ML of 3.6. This paper investigates the relationship between the eruptive phenomenon and the faulting process in terms of Coulomb stress changes. The recorded seismicity is compatible with a multicausal stress redistribution inside the volcano edifice, occurring after the four paroxysmal episodes that interrupted the usual trend of inflation observed at Mt. Etna. The recorded seismicity falls within the framework of a complex chain of various and intercorrelated processes that started with the inflation preparing the ;Voragine; magmatic activity. This was followed with the rapid deflation of the volcano edifice during the paroxysmal episodes. We determined that the recorded deflation was not the direct cause of the seismic swarm. In fact, the associated Coulomb stress change, in the area of seismic swarm, was of about -1 [bar]. Instead, the fast deflation caused the rarely observed inversion of dislocation in the eastern flank at the same time as intense hydrothermal activity that, consequently, underwent an alteration. This process probably reduced the friction along the fault system. Then, the new phase of inflation, observed at the end of the magmatic activity, triggered the faulting processes.

  14. Concept Generation Process for Patient Transferring Device

    NASA Astrophysics Data System (ADS)

    Dandavate, A. L.; Sarje, S. H.

    2012-07-01

    In this paper, an attempt has been made to develop concepts for patient transferring tasks. The concept generation process of patient transferring device (PTD), which includes interviews of the customers, interpretation of the needs, organizing the needs into a hierarchy, establishing relative importance of the needs, establishing target specifications, and conceptualization has been discussed in this paper. The authors conducted the interviews of customers at Mobilink NGO, St. John's Hospital, Bangalore in order to know the needs and wants for the PTD. AHP technique was used for establishing and evaluating relative importance of needs, and based on the importance of the customer needs, concepts were developed through brainstorming.

  15. Research on Superconductive Signal-Processing Devices.

    DTIC Science & Technology

    1984-11-30

    LABORATORY RESEARCH ON SUPERCONDUCTIVE SIGNAL-PROCESSING DEVICES ANNUAIL REPORT To THlE AIR FORCE OFF ICE O1P SCIENT [F[C RESEARCH ELE(;TRONICS ANI... J .,.-,.c.t n......... :.. u ll.. . . -1i1611tiC /.. TABLE OF CONTENTS Abstract iii 1.0 Introduction 1 2.0 Background 3 2.1 Summary of early program...desirable at the present time. 30 30 ............ j . . . ... .o.o. -....... ’’•."".-’,-.-.-............ -. . i 3.2.2 Extension of Time-Bandwidth

  16. 78 FR 24775 - Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-26

    ... COMMISSION Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers and... United States after importation of certain wireless communication devices, portable music and data processing devices, computers and components thereof by reason of ] infringement of certain claims of U.S...

  17. 77 FR 52759 - Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-30

    ... COMMISSION Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers and... importation of certain wireless communication devices, portable music and data processing devices, computers... to a data communications system.'' The Commission has determined to affirm the ID's finding that...

  18. Optoelectronic Mounting Structure

    DOEpatents

    Anderson, Gene R.; Armendariz, Marcelino G.; Baca, Johnny R. F.; Bryan, Robert P.; Carson, Richard F.; Chu, Dahwey; Duckett, III, Edwin B.; McCormick, Frederick B.; Peterson, David W.; Peterson, Gary D.; Reber, Cathleen A.; Reysen, Bill H.

    2004-10-05

    An optoelectronic mounting structure is provided that may be used in conjunction with an optical transmitter, receiver or transceiver module. The mounting structure may be a flexible printed circuit board. Thermal vias or heat pipes in the head region may transmit heat from the mounting structure to the heat spreader. The heat spreader may provide mechanical rigidity or stiffness to the heat region. In another embodiment, an electrical contact and ground plane may pass along a surface of the head region so as to provide an electrical contact path to the optoelectronic devices and limit electromagnetic interference. In yet another embodiment, a window may be formed in the head region of the mounting structure so as to provide access to the heat spreader. Optoelectronic devices may be adapted to the heat spreader in such a manner that the devices are accessible through the window in the mounting structure.

  19. Advanced colour processing for mobile devices

    NASA Astrophysics Data System (ADS)

    Gillich, Eugen; Dörksen, Helene; Lohweg, Volker

    2015-02-01

    Mobile devices such as smartphones are going to play an important role in professionally image processing tasks. However, mobile systems were not designed for such applications, especially in terms of image processing requirements like stability and robustness. One major drawback is the automatic white balance, which comes with the devices. It is necessary for many applications, but of no use when applied to shiny surfaces. Such an issue appears when image acquisition takes place in differently coloured illuminations caused by different environments. This results in inhomogeneous appearances of the same subject. In our paper we show a new approach for handling the complex task of generating a low-noise and sharp image without spatial filtering. Our method is based on the fact that we analyze the spectral and saturation distribution of the channels. Furthermore, the RGB space is transformed into a more convenient space, a particular HSI space. We generate the greyscale image by a control procedure that takes into account the colour channels. This leads in an adaptive colour mixing model with reduced noise. The results of the optimized images are used to show how, e. g., image classification benefits from our colour adaptation approach.

  20. Solution-processable singlet fission photovoltaic devices.

    PubMed

    Yang, Le; Tabachnyk, Maxim; Bayliss, Sam L; Böhm, Marcus L; Broch, Katharina; Greenham, Neil C; Friend, Richard H; Ehrler, Bruno

    2015-01-14

    We demonstrate the successful incorporation of a solution-processable singlet fission material, 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene), into photovoltaic devices. TIPS-pentacene rapidly converts high-energy singlet excitons into pairs of triplet excitons via singlet fission, potentially doubling the photocurrent from high-energy photons. Low-energy photons are captured by small-bandgap electron-accepting lead chalcogenide nanocrystals. This is the first solution-processable singlet fission system that performs with substantial efficiency with maximum power conversion efficiencies exceeding 4.8%, and external quantum efficiencies of up to 60% in the TIPS-pentacene absorption range. With PbSe nanocrystal of suitable bandgap, its internal quantum efficiency reaches 170 ± 30%.

  1. Stable mirror mount

    DOEpatents

    Cutburth, Ronald W.

    1990-01-01

    An improved mirror mount assembly is disclosed. The mirror mount assembly provides a post assembly slidable in a Y-axis orientation and a nut plate assembly slidable in an X-axis orientation and a device for simultaneously locking the post assembly and the key assembly in a fixed position.

  2. The 1980 eruptions of Mount St. Helens - Physical and chemical processes in the stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Turco, R. P.; Toon, O. B.; Whitten, R. C.; Hamill, P.; Keesee, R. G.

    1983-01-01

    The large and diverse set of observational data collected in the high-altitude plumes of the May 18, May 25, and June 13, 1980 eruptions is organized and analyzed with a view to discerning the processes at work. The data serve to guide and constrain detailed model simulations of the volcanic clouds. For this purpose, use is made of a comprehensive one-dimensional model of stratospheric sulfate aerosols, sulfur precursor gases, and volcanic ash and dust. The model takes into account gas-phase and condensed-phase (heterogeneous) chemistry in the clouds, aerosol nucleation and growth, and cloud expansion. Computational results are presented for the time histories of the gaseous species concentrations, aerosol size distributions, and ash burdens of the eruption clouds. Also investigated are the long-term buildup of stratospheric aerosols in the Northern Hemisphere and the persistent effects of injected chlorine and water vapor on stratospheric ozone. It is concluded that SO2, water vapor, and ash were probably the most important substances injected into the stratosphere by the Mount St. Helens volcano, both with respect to their widespread effects on composition and their effect on climate.

  3. Signal processing device to control microwave output

    NASA Astrophysics Data System (ADS)

    Pinto, J. G.

    1989-08-01

    The development of an electronic device to control the operation of a commercial microwave oven is discussed. This device when installed in conjunction with the existing circuitry of SHARP MICROWAVE OVEN (model R-9524) is capable of automatically advancing through a sequence of thawing recipes programmed and stored in the memory bank of the oven. The device therefore eliminates or minimizes human operator action needed in previous prototype version of a blood thawing device.

  4. Amphibole trace elements as indicators of magmatic processes at Mount St. Helens

    NASA Astrophysics Data System (ADS)

    Hampel, T. R.; Rowe, M. C.; Kent, A.; Thornber, C. R.

    2011-12-01

    Amphibole has the capability of incorporating a wide variety of trace elements resulting from a range of magmatic processes. Prior studies have used trace elements such as Li and Cu in amphibole to investigate volatile mobility associated with magma ascent regarding the 2004-2008 eruption of Mount St. Helens (Rowe et al. 2008). In order to investigate magmatic processes associated with the 2004-2008 eruption of Mount St. Helens we have measured a range of fluid-mobile trace elements in conjunction with major element compositions of amphibole phenocrysts in dacite lava. Major elements and volatiles (Cl, F) were measured by electron microprobe analysis at Washington State University and trace elements (Li, Sc, Co, Cu, Zn, Sr, Y, Zr, Mo, Ag, Sn, Sb, Te, Ba, Ce, W, and Pb) were analyzed by laser ablation (LA)-ICP-MS at Oregon State University. Amphibole crystallization temperatures were calculated after Ridolfi et al. (2010). Core to rim transects were measured by electron microprobe to evaluate volatile concentrations and temperature profiles across individual phenocrysts. Core temperatures from 17 days and 226 days post eruption are consistently hotter than the rim temperatures 997 to 881 degrees C, respectively. Amphiboles from the end of the eruption (811 days post eruption) appear to be more complex, with phenocrysts having both increasing and decreasing temperatures toward the rims. The overall calculated temperature range of the amphiboles at the end of the eruption is 1022 to 919 degrees C. There is much diversity in the concentrations of Li and Cu within the phenocrysts in both the samples and throughout the eruption. Concentrations steadily increase in the beginning of the eruption then drop dramatically toward the middle, slowly increase toward the end eruption. Overall concentrations of Sr, Sb, Co, Sn, Mo, Ba, Ce, Sc, and Y do not change over the course of the eruption but do vary sample to sample. Preliminary data for Zn, Sb, Ag, and W suggest the

  5. Open-path FTIR spectroscopy of magma degassing processes during eight lava fountains on Mount Etna

    NASA Astrophysics Data System (ADS)

    La Spina, Alessandro; Burton, Mike; Allard, Patrick; Alparone, Salvatore; Muré, Filippo

    2015-03-01

    In June-July 2001 a series of 16 discrete lava fountain paroxysms occurred at the Southeast summit crater (SEC) of Mount Etna, preceding a 28-day long violent flank eruption. Each paroxysm was preceded by lava effusion, growing seismic tremor and a crescendo of Strombolian explosive activity culminating into powerful lava fountaining up to 500 m in height. During 8 of these 16 events we could measure the chemical composition of the magmatic gas phase (H2O, CO2, SO2, HCl, HF and CO), using open-path Fourier transform infrared (OP-FTIR) spectrometry at ∼1-2 km distance from SEC and absorption spectra of the radiation emitted by hot lava fragments. We show that each fountaining episode was characterized by increasingly CO2-rich gas release, with CO2/SO2 and CO2/HCl ratios peaking in coincidence with maxima in seismic tremor and fountain height, whilst the SO2/HCl ratio showed a weak inverse relationship with respect to eruption intensity. Moreover, peak values in both CO2/SO2 ratio and seismic tremor amplitude for each paroxysm were found to increase linearly in proportion with the repose interval (2-6 days) between lava fountains. These observations, together with a model of volatile degassing at Etna, support the following driving process. Prior to and during the June-July 2001 lava fountain sequence, the shallow (∼2 km) magma reservoir feeding SEC received an increasing influx of deeply derived carbon dioxide, likely promoted by the deep ascent of volatile-rich primitive basalt that produced the subsequent flank eruption. This CO2-rich gas supply led to gas accumulation and overpressure in SEC reservoir, generating a bubble foam layer whose periodical collapse powered the successive fountaining events. The anti-correlation between SO2/HCl and eruption intensity is best explained by enhanced syn-eruptive degassing of chlorine from finer particles produced during more intense magma fragmentation.

  6. Open-path FTIR spectroscopy of magma degassing processes during eight lava fountains on Mount Etna

    NASA Astrophysics Data System (ADS)

    La Spina, Alessandro; Burton, Mike; Allard, Patrick; Alparone, Salvatore; Murè, Filippo

    2016-04-01

    In June-July 2001 a series of 16 discrete lava fountain paroxysms occurred at the Southeast summit crater (SEC) of Mount Etna, preceding a 28-day long violent flank eruption. Each paroxysm was preceded by lava effusion, growing seismic tremor and a crescendo of Strombolian explosive activity culminating into powerful lava fountaining up to 500m in height. During 8 of these 16 events we could measure the chemical composition of the magmatic gas phase (H2O, CO2, SO2, HCl, HF and CO), using open-path Fourier transform infrared (OP-FTIR) spectrometry at ˜1-2km distance from SEC and absorption spectra of the radiation emitted by hot lava fragments. We show that each fountaining episode was characterized by increasingly CO2-rich gas release, with CO2/SO2and CO2/HCl ratios peaking in coincidence with maxima in seismic tremor and fountain height, whilst the SO2/HCl ratio showed a weak inverse relationship with respect to eruption intensity. Moreover, peak values in both CO2/SO2ratio and seismic tremor amplitude for each paroxysm were found to increase linearly in proportion with the repose interval (2-6 days) between lava fountains. These observations, together with a model of volatile degassing at Etna, support the following driving process. Prior to and during the June-July 2001 lava fountain sequence, the shallow (˜2km) magma reservoir feeding SEC received an increasing influx of deeply derived carbon dioxide, likely promoted by the deep ascent of volatile-rich primitive basalt that produced the subsequent flank eruption. This CO2-rich gas supply led to gas accumulation and overpressure in SEC reservoir, generating a bubble foam layer whose periodical collapse powered the successive fountaining events. The anti-correlation between SO2/HCl and eruption intensity is best explained by enhanced syn-eruptive degassing of chlorine from finer particles produced during more intense magma fragmentation.

  7. Crystallization Processes and Magma Chamber Dynamics at the Mount Erebus Volcano Lava Lake: The Mineralogic Message

    NASA Astrophysics Data System (ADS)

    Kelly, P. J.; Kyle, P. R.; Dunbar, N. W.

    2006-12-01

    Mount Erebus volcano, Antarctica, hosts a persistently convecting and degassing lake of crystal-rich (30-40 vol.% phenocrysts) phonolite magma, providing a direct view into an active, stable, upper-level magma chamber. Mineral phases in lava bombs ejected by small strombolian eruptions from the lava lake between 1972 and 2004 were examined. Detailed compositional profiles of Ti-magnetite and large (up to 10 cm) anorthoclase feldspar phenocrysts were obtained by electron microprobe (EMP). The EMP data provide insight into the controls on crystallization in the lava lake/shallow magmatic system as well as the processes occurring in the magma chamber. Ti-magnetite are uniform and unzoned. The anorthoclase are complexly compositionally zoned over a restricted range (An10.3-22.9Ab62.8-68.1Or11.4-27.2) and contain abundant melt inclusions (up to ~30 vol. %). Coupled, inverse variations of An and Or account for ~96% of major element compositional variability and independent Ab variations account for ~4%. The anorthoclase compositions and textures suggest crystallization proceeds at low degrees of effective undercooling and is controlled by decompression-induced degassing of water. Unlike microlites that form during a single episode of ascent and eruption, the anorthoclase phenocrysts record multiple episodes of decompression and rim growth due to shallow convection in the lava lake under variable PH2O conditions. Crystals contained within a single lava bomb do not have shared crystallization histories, suggesting that differential movement of crystals and melt occurs within the magma chamber and that lava bombs are a mechanical assembly of crystals brought together a short time before or during an eruption. Large temperature variations at the surface of the lava lake (~400°C) are not reflected in the crystal compositions. Apparently, the kinetics of mineral growth are too sluggish to record the transient cooling (estimated to be ~20 mins.) experienced by crystals at the

  8. 77 FR 65580 - Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-29

    ... From the Federal Register Online via the Government Publishing Office ] INTERNATIONAL TRADE COMMISSION Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers, and Components Thereof AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby...

  9. Internal bone transport using a cannulated screw as a mounting device in the treatment of a post-infective ulnar defect.

    PubMed

    Tsitskaris, Konstantinos; Havard, Heledd; Bijlsma, Paulien; Hill, Robert A

    2016-04-01

    Bone transport techniques can be used to address the segmental bone loss occurring after debridement for infection. Secure fixation of the bone transport construct to the bone transport segment can be challenging, particularly if the bone is small and osteopenic. We report a case of a segmental ulnar bone defect in a young child treated with internal bone transport using a cannulated screw as the mounting device. We found this technique particularly useful in the treatment of bone loss secondary to infection, where previous treatment and prolonged immobilisation had led to osteopenia. This technique has not been previously reported.

  10. Method and device for determining the position of a cutting tool relative to the rotational axis of a spindle-mounted workpiece

    DOEpatents

    Williams, R.R.

    1980-09-03

    The present invention is directed to a method and device for determining the location of a cutting tool with respect to the rotational axis of a spindle-mounted workpiece. A vacuum cup supporting a machinable sacrificial pin is secured to the workpiece at a location where the pin will project along and encompass the rotational axis of the workpiece. The pin is then machined into a cylinder. The position of the surface of the cutting tool contacting the machine cylinder is spaced from the rotational axis of the workpiece a distance equal to the radius of the cylinder.

  11. Method and device for determining the position of a cutting tool relative to the rotational axis of a spindle-mounted workpiece

    DOEpatents

    Williams, Richard R.

    1982-01-01

    The present invention is directed to a method and device for determining the location of a cutting tool with respect to the rotational axis of a spindle-mounted workpiece. A vacuum cup supporting a machinable sacrifical pin is secured to the workpiece at a location where the pin will project along and encompass the rotational axis of the workpiece. The pin is then machined into a cylinder. The position of the surface of the cutting tool contacting the machine cylinder is spaced from the rotational aixs of the workpiece a distance equal to the radius of the cylinder.

  12. Front and backside processed thin film electronic devices

    DOEpatents

    Evans, Paul G [Madison, WI; Lagally, Max G [Madison, WI; Ma, Zhenqiang [Middleton, WI; Yuan, Hao-Chih [Lakewood, CO; Wang, Guogong [Madison, WI; Eriksson, Mark A [Madison, WI

    2012-01-03

    This invention provides thin film devices that have been processed on their front- and backside. The devices include an active layer that is sufficiently thin to be mechanically flexible. Examples of the devices include back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.

  13. CIGS Material and Device Stability: A Processing Perspective (Presentation)

    SciTech Connect

    Ramanathan, K.

    2012-03-01

    This is a general overview of CIGS material and device fundamentals. In the first part, the basic features of high efficiency CIGS absorbers and devices are described. In the second part, some examples of previous collaboration with Shell Solar CIGSS graded absorbers and devices are shown to illustrate how process information was used to correct deviations and improve the performance and stability.

  14. Membrane device and process for mass exchange, separation, and filtration

    DOEpatents

    Liu, Wei; Canfield, Nathan L.

    2016-11-15

    A membrane device and processes for fabrication and for using are disclosed. The membrane device may include a number of porous metal membranes that provide a high membrane surface area per unit volume. The membrane device provides various operation modes that enhance throughput and selectivity for mass exchange, mass transfer, separation, and/or filtration applications between feed flow streams and permeate flow streams.

  15. 75 FR 68619 - In the Matter of Certain Wireless Communication Devices, Portable Music and Data Processing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-08

    ... certain wireless communication devices, portable music and data processing devices, computers and... certain wireless communication devices, portable music and data processing devices, computers and... COMMISSION In the Matter of Certain Wireless Communication Devices, Portable Music and Data Processing...

  16. Combustor mount

    SciTech Connect

    Harris, H.S.

    1986-07-01

    For a gas turbine engine, mounting means are described for attaching the annular burner to the engine case including a mount lug having a relatively flat surface extending from and secured to the annular burner, a mount pin attached to the engine case having one end extending through an opening in the flat surface of the mount lug, a bushing frictionally engaging the pin and extending through the opening, and having a flange surrounding the opening and bearing against one side of the flat surface, a washer fitted over the pin and bearing against the opposite side of the flat surface to sandwich with the flange the mount lug, and the bushing having an increased internal diameter portion adjacent the washer and weldment means securing the washer to the mount lug.

  17. Vibration isolation mounting system

    NASA Technical Reports Server (NTRS)

    Carter, Sam D. (Inventor); Bastin, Paul H. (Inventor)

    1995-01-01

    A system is disclosed for mounting a vibration producing device onto a spacecraft structure and also for isolating the vibration forces thereof from the structure. The system includes a mount on which the device is securely mounted and inner and outer rings. The rings and mount are concentrically positioned. The system includes a base (secured to the structure) and a set of links which are interconnected by a set of torsion bars which allow and resist relative rotational movement therebetween. The set of links are also rotatably connected to a set of brackets which are rigidly connected to the outer ring. Damped leaf springs interconnect the inner and outer rings and the mount allow relative translational movement therebetween in X and Y directions. The links, brackets and base are interconnected and configured so that they allow and resist translational movement of the device in the Z direction so that in combination with the springs they provide absorption of vibrational energy produced by the device in all three dimensions while providing rotational stiffness about all three axes to prevent undesired rotational motions.

  18. Process for fabricating a charge coupled device

    DOEpatents

    Conder, Alan D.; Young, Bruce K. F.

    2002-01-01

    A monolithic three dimensional charged coupled device (3D-CCD) which utilizes the entire bulk of the semiconductor for charge generation, storage, and transfer. The 3D-CCD provides a vast improvement of current CCD architectures that use only the surface of the semiconductor substrate. The 3D-CCD is capable of developing a strong E-field throughout the depth of the semiconductor by using deep (buried) parallel (bulk) electrodes in the substrate material. Using backside illumination, the 3D-CCD architecture enables a single device to image photon energies from the visible, to the ultra-violet and soft x-ray, and out to higher energy x-rays of 30 keV and beyond. The buried or bulk electrodes are electrically connected to the surface electrodes, and an E-field parallel to the surface is established with the pixel in which the bulk electrodes are located. This E-field attracts charge to the bulk electrodes independent of depth and confines it within the pixel in which it is generated. Charge diffusion is greatly reduced because the E-field is strong due to the proximity of the bulk electrodes.

  19. Life test results of OLED-XL long-life devices for use in active matrix organic light emitting diode (AMOLED) displays for head mounted applications

    NASA Astrophysics Data System (ADS)

    Fellowes, David A.; Wood, Michael V.; Hastings, Arthur R., Jr.; Ghosh, Amalkumar P.; Prache, Olivier

    2007-04-01

    eMagin Corporation has recently developed long-life OLED-XL devices for use in their AMOLED microdisplays for head-worn applications. AMOLED displays have been known to exhibit high levels of performance with regards to contrast, response time, uniformity, and viewing angle, but a lifetime improvement has been perceived to be essential for broadening the applications of OLED's in the military and in the commercial market. The new OLED-XL devices gave the promise of improvements in usable lifetime over 6X what the standard full color, white, and green devices could provide. The US Army's RDECOM CERDEC NVESD performed life tests on several standard and OLED-XL panels from eMagin under a Cooperative Research and Development Agreement (CRADA). Displays were tested at room temperature, utilizing eMagin's Design Reference Kit driver, allowing computer controlled optimization, brightness adjustment, and manual temperature compensation. The OLED Usable Lifetime Model, developed under a previous NVESD/eMagin SPIE paper presented at DSS 2005, has been adjusted based on the findings of these tests. The result is a better understanding of the applicability of AMOLEDs in military and commercial head mounted systems: where good fits are made, and where further development might be needed.

  20. Device research task (processing and high-efficiency solar cells)

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This task has been expanded since the last 25th Project Integration Meeting (PIM) to include process research in addition to device research. The objective of this task is to assist the Flat-plate Solar Array (FSA) Project in meeting its near- and long-term goals by identifying and implementing research in the areas of device physics, device structures, measurement techniques, material-device interactions, and cell processing. The research efforts of this task are described and reflect the deversity of device research being conducted. All of the contracts being reported are either completed or near completion and culminate the device research efforts of the FSA Project. Optimazation methods and silicon solar cell numerical models, carrier transport and recombination parameters in heavily doped silicon, development and analysis of silicon solar cells of near 20% efficiency, and SiN sub x passivation of silicon surfaces are discussed.

  1. Thermal compensating mount

    NASA Technical Reports Server (NTRS)

    Jalink, Antony, Jr. (Inventor); Campbell, Scott R. (Inventor)

    1990-01-01

    The main objective is to provide a device for maintaining the alignment integrity of an alignment sensitive component over a wide range of temperatures. A thermal compensating mount is presented. A cylindrical extension is integrally formed to the alignment sensitive component. Both the extension and component share the same coefficient of thermal expansion. The cylindrical extension is placed into a mounting structure which has a diameter greater than that of the extension. An adhesive secures the cylindrical extension to the mount. The difference between the diameters of the cylindrical extension and the cylindrical receptacle is such that the differential thermal expansion across the extension and the receptacle edges is exactly compensated for by the thermal compensation of the adhesive between them. Accordingly, the alignment sensitive component does not change position when subjected to temperature variations. One application of this invention is laser optical-path folding prisms, which are fixed to the mounting surface by a small amount of epoxy adhesive.

  2. Processing device with self-scrubbing logic

    SciTech Connect

    Wojahn, Christopher K.

    2016-03-01

    An apparatus includes a processing unit including a configuration memory and self-scrubber logic coupled to read the configuration memory to detect compromised data stored in the configuration memory. The apparatus also includes a watchdog unit external to the processing unit and coupled to the self-scrubber logic to detect a failure in the self-scrubber logic. The watchdog unit is coupled to the processing unit to selectively reset the processing unit in response to detecting the failure in the self-scrubber logic. The apparatus also includes an external memory external to the processing unit and coupled to send configuration data to the configuration memory in response to a data feed signal outputted by the self-scrubber logic.

  3. Semiconductors: In Situ Processing of Photovoltaic Devices

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A.

    1998-01-01

    Current proposals for developing an extended human presence on the Moon and Mars increasingly consider the processing of nonterrestrial materials essential for keeping the Earth launch burden reasonable. Utilization of in situ resources for construction of lunar and Mars bases will initially require assessment of resource availability followed by the development of economically acceptable and technically feasible extraction processes. In regard to materials processing and fabrication, the lower gravity level on the Moon (0.125 g) and Mars (0.367 g) will dramatically change the presently accepted hierarchy of materials in terms of specific properties, a factor that must be understood and exploited. Furthermore, significant changes are expected in the behavior of liquid materials during processing. In casting, for example, mold filling and associated solidification processes have to be reevaluated. Finally, microstructural development, and therefore material properties, presently being documented through ongoing research in microgravity science and applications, need to be understood and scaled to the reduced gravity environments.

  4. 77 FR 28621 - Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-15

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers and Components Thereof; Notice of Request for Statements on the Public Interest AGENCY: U.S. International Trade...

  5. Preparatory and precursory processes leading up to the 2014 phreatic eruption of Mount Ontake, Japan

    NASA Astrophysics Data System (ADS)

    Kato, Aitaro; Terakawa, Toshiko; Yamanaka, Yoshiko; Maeda, Yuta; Horikawa, Shinichiro; Matsuhiro, Kenjiro; Okuda, Takashi

    2015-07-01

    We analyzed seismicity linked to the 2014 phreatic eruption of Mount Ontake, Japan, on 27 September 2014. We first relocated shallow volcano tectonic (VT) earthquakes and long-period (LP) events from August to September 2014. By applying a matched-filter technique to continuous waveforms using these relocated earthquakes, we detected numerous additional micro-earthquakes beneath the craters. The relocated VT earthquakes aligned on a near-vertical plane oriented NNW-SSE, suggesting they occurred around a conduit related to the intrusion of magmatic-hydrothermal fluids into the craters. The frequency of VT earthquakes gradually increased from 6 September 2014 and reached a peak on 11 September 2014. After the peak, seismicity levels remained elevated until the eruption. b-values gradually increased from 1.2 to 1.7 from 11 to 16 September 2014 then declined gradually and dropped to 0.8 just before the eruption. During the 10-min period immediately preceding the phreatic eruption, VT earthquakes migrated in the up-dip direction as well as laterally along the NNW-SSE feature. The migrating seismicity coincided with an accelerated increase of pre-eruptive tremor amplitude and with an anomalous tiltmeter signal that indicated summit upheaval. Therefore, the migrating seismicity suggests that the vertical conduit was filled with pressurized fluids, which rapidly propagated to the surface during the final 10 min before the eruption.

  6. Process for anodizing a robotic device

    SciTech Connect

    Townsend, William T

    2011-11-08

    A robotic device has a base and at least one finger having at least two links that are connected in series on rotary joints with at least two degrees of freedom. A brushless motor and an associated controller are located at each joint to produce a rotational movement of a link. Wires for electrical power and communication serially connect the controllers in a distributed control network. A network operating controller coordinates the operation of the network, including power distribution. At least one, but more typically two to five, wires interconnect all the controllers through one or more joints. Motor sensors and external world sensors monitor operating parameters of the robotic hand. The electrical signal output of the sensors can be input anywhere on the distributed control network. V-grooves on the robotic hand locate objects precisely and assist in gripping. The hand is sealed, immersible and has electrical connections through the rotary joints for anodizing in a single dunk without masking. In various forms, this intelligent, self-contained, dexterous hand, or combinations of such hands, can perform a wide variety of object gripping and manipulating tasks, as well as locomotion and combinations of locomotion and gripping.

  7. [Digital thoracic radiology: devices, image processing, limits].

    PubMed

    Frija, J; de Géry, S; Lallouet, F; Guermazi, A; Zagdanski, A M; De Kerviler, E

    2001-09-01

    In a first part, the different techniques of digital thoracic radiography are described. Since computed radiography with phosphore plates are the most commercialized it is more emphasized. But the other detectors are also described, as the drum coated with selenium and the direct digital radiography with selenium detectors. The other detectors are also studied in particular indirect flat panels detectors and the system with four high resolution CCD cameras. In a second step the most important image processing are discussed: the gradation curves, the unsharp mask processing, the system MUSICA, the dynamic range compression or reduction, the soustraction with dual energy. In the last part the advantages and the drawbacks of computed thoracic radiography are emphasized. The most important are the almost constant good quality of the pictures and the possibilities of image processing.

  8. Mirror mount

    DOEpatents

    Humpal, H.H.

    1987-11-10

    A mirror mount is provided that allows free pitch, yaw and roll motion of the mirror while keeping the location of a point on the surface of the mirror fixed in the rest frame of reference of the mount. Yaw movement is provided by two yaw cylinders that are bearing mounted to provide rotation. Pitch and roll motion is provided by a spherically annular shell that is air bearing mounted to move between a clamp and an upper pedestal bearing. The centers of curvature of the spherical surfaces of the shell lie upon the point. Pitch motion and roll motion are separately and independently imparted to mirror by a pair of pitch paddles and a pair of roll paddles that are independently and separately moved by control rods driven by motors. 5 figs.

  9. Mirror mount

    DOEpatents

    Humpal, H.H.

    1986-03-21

    A mirror mount is provided that allows free pitch, yaw and roll motion of the mirror while keeping the location of a point on the surface of the mirror fixed in the rest frame of reference of the mount. Yaw movement is provided by two yaw cylinders that are bearing mounted to provide rotation. Pitch and roll motion is provided by a spherically annular shell that is air bearing mounted to move between a clamp and an upper pedestal bearing. The centers of curvature of the spherical surfaces of the shell lie upon the point. Pitch motion and roll motion are separately and independently imparted to mirror by a pair of pitch paddles and a pair of roll paddles that are independently and separately moved by control rods driven by motors.

  10. Mirror mount

    DOEpatents

    Humpal, Harold H.

    1987-01-01

    A mirror mount (10) is provided that allows free pitch, yaw and roll motion of the mirror (28) while keeping the location of a point (56) on the surface of the mirror (28) fixed in the rest frame of reference of the mount (10). Yaw movement is provided by two yaw cylinders (30,32) that are bearing (52) mounted to provide rotation. Pitch and roll motion is provided by a spherically annular shell (42) that is air bearing (72,74) mounted to move between a clamp (60) and an upper pedestal bearing (44). The centers of curvature of the spherical surfaces of the shell (42) lie upon the point (56). Pitch motion and roll motion are separately and independently imparted to mirror (28) by a pair of pitch paddles (34) and a pair of roll paddles (36) that are independently and separately moved by control rods (76,80) driven by motors (78,82).

  11. Mount Cameroon

    NASA Image and Video Library

    2014-10-09

    NASA Terra spacecraft shows Mount Cameroon, an active volcano in Cameroon near the Gulf of Guinea. It is one of Africa largest volcanoes, rising over 4,000 meters, with more than 100 small cinder cones.

  12. Lithography process for patterning HgI2 photonic devices

    DOEpatents

    Mescher, Mark J.; James, Ralph B.; Hermon, Haim

    2004-11-23

    A photolithographic process forms patterns on HgI.sub.2 surfaces and defines metal sublimation masks and electrodes to substantially improve device performance by increasing the realizable design space. Techniques for smoothing HgI.sub.2 surfaces and for producing trenches in HgI.sub.2 are provided. A sublimation process is described which produces etched-trench devices with enhanced electron-transport-only behavior.

  13. Device for isolation of seed crystals during processing of solution

    DOEpatents

    Montgomery, Kenneth E.; Zaitseva, Natalia P.; Deyoreo, James J.; Vital, Russell L.

    1999-01-01

    A device for isolation of see crystals during processing of solutions. The device enables a seed crystal to be introduced into the solution without exposing the solution to contaminants or to sources of drying and cooling. The device constitutes a seed protector which allows the seed to be present in the growth solution during filtration and overheating operations while at the same time preventing the seed from being dissolved by the under saturated solution. When the solution processing has been completed and the solution cooled to near the saturation point, the seed protector is opened, exposing the seed to the solution and allowing growth to begin.

  14. Device for isolation of seed crystals during processing of solution

    DOEpatents

    Montgomery, K.E.; Zaitseva, N.P.; Deyoreo, J.J.; Vital, R.L.

    1999-05-18

    A device is described for isolation of seed crystals during processing of solutions. The device enables a seed crystal to be introduced into the solution without exposing the solution to contaminants or to sources of drying and cooling. The device constitutes a seed protector which allows the seed to be present in the growth solution during filtration and overheating operations while at the same time preventing the seed from being dissolved by the under saturated solution. When the solution processing has been completed and the solution cooled to near the saturation point, the seed protector is opened, exposing the seed to the solution and allowing growth to begin. 3 figs.

  15. Flat, whole-mount nerve preparations: a useful tool for studying the process of regenerating axon outgrowth.

    PubMed

    Geinisman, Y; Shipley, M T

    1983-11-01

    A method, which is based on the use of flat, whole-mount nerve preparations, has been developed for studying the process of regenerating axon outgrowth, employing the rat sciatic nerve as a model. At various intervals after a nerve crush, animals are perfused with aldehyde fixatives, the nerve dissected out, and its epineurium removed. Next the nerve is flattened between two glass slides, removed and reacted (floating), then whole-mounted on a micro slide and cover-slipped. Regenerating axons have been labeled by means of the horseradish peroxidase tracing technique, a histochemical technique for acetylcholinesterase, or an indirect immunocytochemical technique utilizing antibodies against tubulin. With all these techniques, individual outgrowing axons and their bundles can be clearly visualized. Regenerating axons labeled by horseradish peroxidase are readily traced along their entire undulating courses from the distal margin of the crush zone to axonal tips, which mark the leading edge of several waves of outgrowing axons. It appears that such flat, whole-amount nerve preparations can be useful for obtaining: (1) accurate estimates of the rate of regenerating axon elongation, (2) values characterizing the duration of the initial delay of axonal outgrowth, and (3) information concerning the nature of axonal subpopulations that elongate at different rates.

  16. Observations of paraglacial processes on glacier forelands in Aoraki/Mount Cook National Park, Southern Alps, New Zealand

    NASA Astrophysics Data System (ADS)

    Winkler, Stefan

    2015-04-01

    The large and extensively debris-covered valley glaciers in Aoraki/Mount Cook National Park immediate east of the Main Divide in the Southern Alps of New Zealand experienced a substantial frontal retreat and vertical downwasting during the past few decades, often connected with the development of a proglacial lake and retreat by calving. Their Holocene glacier forelands are characterised by huge lateral moraines and multi-ridged lateral moraine systems alongside smaller terminal moraines and frontal outwash heads. Placed within a very dynamic general geomorphological regime of various efficient process-systems, these Holocene glacier forelands are currently affected by substantial paraglacial modification. These paraglacial processes have already caused some consequences for the touristic infrastructure in the area and are likely to cause further problems for the accessibility of established tramping routes, tourist huts, and lookouts in the near and medium future. One of the first steps in a project under development presented here is a detailed visual comparison of changes documented during the past 15 Years on the glacier forelands of Hooker, Mueller and Tasman Glaciers in Aoraki/Mount Cook National Park. It reveals considerable erosion especially on the proximal slopes of the lateral moraines by gully development and retreat of erosion scars at their crest in order of several metres in just a few years. Different processes contribute to high erosion rates, among others rill erosion connected to mid-slope springs that only are temporarily active following substantial rainfall events, efficient gully incision, and slumping. Although any quantification of the actual erosion rates is just preliminary and further studies are necessary in order to make reliable predictions for future development, the amount of paraglacial erosion in this environment is very high compared to other regions and highlights the current importance of the paraglacial process-system in the

  17. Device and method for shortening reactor process tubes

    DOEpatents

    Frantz, Charles E.; Alexander, William K.; Lander, Walter E. B.

    1980-01-01

    This disclosure describes a device and method for in situ shortening of nuclear reactor zirconium alloy process tubes which have grown as a result of radiation exposure. An upsetting technique is utilized which involves inductively heating a short band of a process tube with simultaneous application of an axial load sufficient to cause upsetting with an attendant decrease in length of the process tube.

  18. Device and method for shortening reactor process tubes

    DOEpatents

    Frantz, C.E.; Alexander, W.K.; Lander, W.E.B.

    A device and method are described for in situ shortening of nuclear reactor zirconium alloy process tubes which have grown as a result of radiation exposure. An upsetting technique is utilized which involves inductively heating a short band of a process tube with simultaneous application of an axial load sufficient to cause upsetting with an attendant decrease in length of the process tube.

  19. Front and backside processed thin film electronic devices

    DOEpatents

    Yuan, Hao-Chih; Wang, Guogong; Eriksson, Mark A.; Evans, Paul G.; Lagally, Max G.; Ma, Zhenqiang

    2010-10-12

    This invention provides methods for fabricating thin film electronic devices with both front- and backside processing capabilities. Using these methods, high temperature processing steps may be carried out during both frontside and backside processing. The methods are well-suited for fabricating back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.

  20. A novel detachable head-mounted device for simultaneous EEG and photoacoustic monitoring of epilepsy in freely moving rats.

    PubMed

    Wang, Bo; Zhou, Junli; Carney, Paul; Jiang, Huabei

    2015-02-01

    The study of neuro-hemodynamic changes in freely moving animals provides for a better understanding of brain dynamics in normal and disease states. While it has been shown that hemodynamic changes are closely related to seizures, methods for detection in freely moving animals are limited. In this work, we integrate photoacoustic sensor technology and electroencephalography into a small portable device that can be attached on the head of wake freely moving animals. We demonstrate chronic simultaneous monitoring of photoacoustic and electroencephalographic signals in an acute seizure model of epilepsy. Our results demonstrate that both the neural and vascular responses during seizures in freely moving rats have characteristics which are observed to be different and more diverse from that of anesthetized rats. This implies that the neurovascular coupling in seizure in free moving animals are more complicated, which calls for more detailed study in future. To the best of our knowledge, this is the first time for hemodynamic monitoring of seizure in free moving animals. This technology also promises for other hemodynamic related research study in freely moving small animals.

  1. Mechanical strain isolator mount

    NASA Technical Reports Server (NTRS)

    James, Gordon E. (Inventor)

    1991-01-01

    Certain devices such as optical instruments must preserve their alignmental integrity while being subjected to mechanical strain. A mechanical strain isolator mount is provided to preserve the alignmental integrity of an alignment sensitive instrument. An alignment sensitive instrument is mounted on a rectangular base. Flexural legs are connected at their proximal ends to the rectangular base. Flexural legs are also spaced parallel to the sides. Mounting pads are connected to the legs at the distal end and the mechanical strain isolator mount is attached to the substrate by means of threaded bolts. When a mounting pad and its respective leg is subjected to lateral strain in either the X or Y direction via the substrate, the respective leg relieves the strain by bending in the direction of the strain. An axial strain on a mounting pad in the Z direction is relieved by a rotational motion of the legs in the direction of the strain. When the substrate is stress free, the flexural legs return to their original condition and thus preserve the original alignment integrity of the alignment sensitive instrument.

  2. NIF small mirror mount

    SciTech Connect

    McCarville, T

    1999-07-01

    A number of small mirror mounts have been identified that meet the stringent stability, wave front, and cleanliness standards of the NIF. These requirements are similar to those required in other performance critical optical design applications. Future design teams would conserve time and effort if recognized standards were established for mirror mount design and performance characteristics. Standards for stability, physical features, wave front distortion, and cleanliness would simplify the qualification process considerably. At this point such standards are not difficult to define, as the technical support work has been performed repeatedly by mirror mount consumers and suppliers.

  3. Using the virtual reality device Oculus Rift for neuropsychological assessment of visual processing capabilities

    PubMed Central

    Foerster, Rebecca M.; Poth, Christian H.; Behler, Christian; Botsch, Mario; Schneider, Werner X.

    2016-01-01

    Neuropsychological assessment of human visual processing capabilities strongly depends on visual testing conditions including room lighting, stimuli, and viewing-distance. This limits standardization, threatens reliability, and prevents the assessment of core visual functions such as visual processing speed. Increasingly available virtual reality devices allow to address these problems. One such device is the portable, light-weight, and easy-to-use Oculus Rift. It is head-mounted and covers the entire visual field, thereby shielding and standardizing the visual stimulation. A fundamental prerequisite to use Oculus Rift for neuropsychological assessment is sufficient test-retest reliability. Here, we compare the test-retest reliabilities of Bundesen’s visual processing components (visual processing speed, threshold of conscious perception, capacity of visual working memory) as measured with Oculus Rift and a standard CRT computer screen. Our results show that Oculus Rift allows to measure the processing components as reliably as the standard CRT. This means that Oculus Rift is applicable for standardized and reliable assessment and diagnosis of elementary cognitive functions in laboratory and clinical settings. Oculus Rift thus provides the opportunity to compare visual processing components between individuals and institutions and to establish statistical norm distributions. PMID:27869220

  4. Using the virtual reality device Oculus Rift for neuropsychological assessment of visual processing capabilities.

    PubMed

    Foerster, Rebecca M; Poth, Christian H; Behler, Christian; Botsch, Mario; Schneider, Werner X

    2016-11-21

    Neuropsychological assessment of human visual processing capabilities strongly depends on visual testing conditions including room lighting, stimuli, and viewing-distance. This limits standardization, threatens reliability, and prevents the assessment of core visual functions such as visual processing speed. Increasingly available virtual reality devices allow to address these problems. One such device is the portable, light-weight, and easy-to-use Oculus Rift. It is head-mounted and covers the entire visual field, thereby shielding and standardizing the visual stimulation. A fundamental prerequisite to use Oculus Rift for neuropsychological assessment is sufficient test-retest reliability. Here, we compare the test-retest reliabilities of Bundesen's visual processing components (visual processing speed, threshold of conscious perception, capacity of visual working memory) as measured with Oculus Rift and a standard CRT computer screen. Our results show that Oculus Rift allows to measure the processing components as reliably as the standard CRT. This means that Oculus Rift is applicable for standardized and reliable assessment and diagnosis of elementary cognitive functions in laboratory and clinical settings. Oculus Rift thus provides the opportunity to compare visual processing components between individuals and institutions and to establish statistical norm distributions.

  5. A real-time optical data processing device

    NASA Technical Reports Server (NTRS)

    Jacobson, A.; Grinberg, J.; Bleha, W.; Miller, L.; Fraas, L.; Myer, G.; Boswell, D.

    1976-01-01

    A novel liquid-crystal electro-optical device useful as a real-time input device in coherent optical data processing is described. The device is a special adaptation of an ac photoactivated liquid-crystal light valve, and utilizes a hybrid field effect (45 deg twisted nematic effect in OFF state and pure optical birefringence of the liquid crystal in ON state). A thin-film sandwich exerts photoelectric control over the optical birefringence of a thin liquid-crystal layer. Liquid-crystal layer thickness is successfully reduced without image degradation. The device offers high resolution (better than 100 lines/mm), contrast (better than 100/1), high speed (10 msec ON, 15 msec OFF), high input sensitivity, low power input, low fabrication cost, and can be operated at below 10 V rms. Preliminary measurements on device performance in level slicing, filtering, contrast reversal, and edge enhancement are under way.

  6. Functionalized graphene and other two-dimensional materials for photovoltaic devices: device design and processing.

    PubMed

    Liu, Zhike; Lau, Shu Ping; Yan, Feng

    2015-08-07

    Graphene is the thinnest two-dimensional (2D) carbon material and has many advantages including high carrier mobilities and conductivity, high optical transparency, excellent mechanical flexibility and chemical stability, which make graphene an ideal material for various optoelectronic devices. The major applications of graphene in photovoltaic devices are for transparent electrodes and charge transport layers. Several other 2D materials have also shown advantages in charge transport and light absorption over traditional semiconductor materials used in photovoltaic devices. Great achievements in the applications of 2D materials in photovoltaic devices have been reported, yet numerous challenges still remain. For practical applications, the device performance should be further improved by optimizing the 2D material synthesis, film transfer, surface functionalization and chemical/physical doping processes. In this review, we will focus on the recent advances in the applications of graphene and other 2D materials in various photovoltaic devices, including organic solar cells, Schottky junction solar cells, dye-sensitized solar cells, quantum dot-sensitized solar cells, other inorganic solar cells, and perovskite solar cells, in terms of the functionalization techniques of the materials, the device design and the device performance. Finally, conclusions and an outlook for the future development of this field will be addressed.

  7. Organic light-emitting devices using spin-dependent processes

    DOEpatents

    Vardeny, Z. Valy; Wohlgenannt, Markus

    2010-03-23

    The maximum luminous efficiency of organic light-emitting materials is increased through spin-dependent processing. The technique is applicable to all electro-luminescent processes in which light is produced by singlet exciton decay, and all devices which use such effects, including LEDs, super-radiant devices, amplified stimulated emission devices, lasers, other optical microcavity devices, electrically pumped optical amplifiers, and phosphorescence (Ph) based light emitting devices. In preferred embodiments, the emissive material is doped with an impurity, or otherwise modified, to increase the spin-lattice relaxation rate (i.e., decrease the spin-lattice time), and hence raise the efficiency of the device. The material may be a polymer, oligomer, small molecule, single crystal, molecular crystal, or fullerene. The impurity is preferably a magnetic or paramagnetic substance. The invention is applicable to IR, UV, and other electromagnetic radiation generation and is thus not limited to the visible region of the spectrum. The methods of the invention may also be combined with other techniques used to improve device performance.

  8. Modeling a Dry Etch Process for Large-Area Devices

    SciTech Connect

    Buss, R.J.; Hebner, G.A.; Ruby, D.S.; Yang, P.

    1999-07-28

    There has been considerable interest in developing dry processes which can effectively replace wet processing in the manufacture of large area photovoltaic devices. Environmental and health issues are a driver for this activity because wet processes generally increase worker exposure to toxic and hazardous chemicals and generate large volumes of liquid hazardous waste. Our work has been directed toward improving the performance of screen-printed solar cells while using plasma processing to reduce hazardous chemical usage.

  9. The development process for a new spacer device.

    PubMed

    Watson, Paul

    The British Thoracic Society and Scottish Intercollegiate Guidelines Network recommend that children up to the age of five should use a pressurised metered dose inhaler with a spacer device to deliver inhaled steroids. However, large-volume spacers can be cumbersome, which is why I designed a smaller, more portable device to encourage spacer use. After prototypes were made, the idea was presented to the local NHS innovations department. With its advice and assistance, a collapsible spacer device has been developed. This article describes the product development process.

  10. Introduction to charge transfer device discrete time processing

    NASA Technical Reports Server (NTRS)

    Brodersen, R. W.

    1976-01-01

    This tutorial paper reviews some of the advantages and disadvantages of a discrete time representation of a signal. Also reviewed are some of the recent theoretical advances in digital signal processing which can be implemented by the use of charge transfer signal processing devices. In particular, the design and implementation of transversal filters and spectrum analyzers will be discussed.

  11. Higher-order cellular information processing with synthetic RNA devices.

    PubMed

    Win, Maung Nyan; Smolke, Christina D

    2008-10-17

    The engineering of biological systems is anticipated to provide effective solutions to challenges that include energy and food production, environmental quality, and health and medicine. Our ability to transmit information to and from living systems, and to process and act on information inside cells, is critical to advancing the scale and complexity at which we can engineer, manipulate, and probe biological systems. We developed a general approach for assembling RNA devices that can execute higher-order cellular information processing operations from standard components. The engineered devices can function as logic gates (AND, NOR, NAND, or OR gates) and signal filters, and exhibit cooperativity. RNA devices process and transmit molecular inputs to targeted protein outputs, linking computation to gene expression and thus the potential to control cellular function.

  12. Enabling customer self service through image processing on mobile devices

    NASA Astrophysics Data System (ADS)

    Kliche, Ingmar; Hellmann, Sascha; Kreutel, Jörn

    2013-03-01

    Our paper will outline the results of a research project that employs image processing for the automatic diagnosis of technical devices whose internal state is communicated through visual displays. In particular, we developed a method for detecting exceptional states of retail wireless routers, analysing the state and blinking behaviour of the LEDs that make up most routers' user interface. The method was made configurable by means of abstracting away from a particular device's display properties, thus being able to analyse a whole range of different devices whose displays are covered by our abstraction. The method of analysis and its configuration mechanism were implemented as a native mobile application for the Android Platform. It employs the local camera of mobile devices for capturing a router's state, and uses overlaid visual hints for guiding the user toward that perspective from where an analysis is possible.

  13. Formal mechanization of device interactions with a process algebra

    NASA Technical Reports Server (NTRS)

    Schubert, E. Thomas; Levitt, Karl; Cohen, Gerald C.

    1992-01-01

    The principle emphasis is to develop a methodology to formally verify correct synchronization communication of devices in a composed hardware system. Previous system integration efforts have focused on vertical integration of one layer on top of another. This task examines 'horizontal' integration of peer devices. To formally reason about communication, we mechanize a process algebra in the Higher Order Logic (HOL) theorem proving system. Using this formalization we show how four types of device interactions can be represented and verified to behave as specified. The report also describes the specification of a system consisting of an AVM-1 microprocessor and a memory management unit which were verified in previous work. A proof of correct communication is presented, and the extensions to the system specification to add a direct memory device are discussed.

  14. Processing of radio signals by acoustoelectronic and acoustooptic devices

    NASA Astrophysics Data System (ADS)

    Kulakov, S. V.

    Particular papers are presented on radio-signal spectrum analyzers using SAW devices; the acoustic field of a fan-type converter of surface acoustic waves; the design of devices executing the Mellin transform on the basis of SAW components; the synchronization of complex signals by acoustoelectronic convolvers; panoramic acoustooptic receivers; and wideband acoustooptic devices base on integrated optics. Consideration is also given to an acoustooptic method for the coding and recognition of images; an integral-equation method for investigating light diffraction by ultrasound; acoustooptic signal processing devices based on diffused waveguides in lithium niobate; the effect of additive noise on the operation of a time-integrating acoustooptic correlator; and a high-resolution acoustooptic spectrum-analyzer. For individual items see A84-33477 to A84-33495

  15. Low power signal processing electronics for wearable medical devices.

    PubMed

    Casson, Alexander J; Rodriguez-Villegas, Esther

    2010-01-01

    Custom designed microchips, known as Application Specific Integrated Circuits (ASICs), offer the lowest possible power consumption electronics. However, this comes at the cost of a longer, more complex and more costly design process compared to one using generic, off-the-shelf components. Nevertheless, their use is essential in future truly wearable medical devices that must operate for long periods of time from physically small, energy limited batteries. This presentation will demonstrate the state-of-the-art in ASIC technology for providing online signal processing for use in these wearable medical devices.

  16. High-Throughput Dry Processes for Large-Area Devices

    SciTech Connect

    BUSS,RICHARD J.; HEBNER,GREGORY A.; RUBY,DOUGLAS S.; YANG,PIN

    1999-11-01

    In October 1996, an interdisciplinary team began a three-year LDRD project to study the plasma processes of reactive ion etching and plasma-enhanced chemical vapor deposition on large-area silicon devices. The goal was to develop numerical models that could be used in a variety of applications for surface cleaning, selective etching, and thin-film deposition. Silicon solar cells were chosen as the experimental vehicle for this project because an innovative device design was identified that would benefit from immediate performance improvement using a combination of plasma etching and deposition processes. This report presents a summary of the technical accomplishments and conclusions of the team.

  17. Ultrafast phase-change logic device driven by melting processes

    PubMed Central

    Loke, Desmond; Skelton, Jonathan M.; Wang, Wei-Jie; Lee, Tae-Hoon; Zhao, Rong; Chong, Tow-Chong; Elliott, Stephen R.

    2014-01-01

    The ultrahigh demand for faster computers is currently tackled by traditional methods such as size scaling (for increasing the number of devices), but this is rapidly becoming almost impossible, due to physical and lithographic limitations. To boost the speed of computers without increasing the number of logic devices, one of the most feasible solutions is to increase the number of operations performed by a device, which is largely impossible to achieve using current silicon-based logic devices. Multiple operations in phase-change–based logic devices have been achieved using crystallization; however, they can achieve mostly speeds of several hundreds of nanoseconds. A difficulty also arises from the trade-off between the speed of crystallization and long-term stability of the amorphous phase. We here instead control the process of melting through premelting disordering effects, while maintaining the superior advantage of phase-change–based logic devices over silicon-based logic devices. A melting speed of just 900 ps was achieved to perform multiple Boolean algebraic operations (e.g., NOR and NOT). Ab initio molecular-dynamics simulations and in situ electrical characterization revealed the origin (i.e., bond buckling of atoms) and kinetics (e.g., discontinuouslike behavior) of melting through premelting disordering, which were key to increasing the melting speeds. By a subtle investigation of the well-characterized phase-transition behavior, this simple method provides an elegant solution to boost significantly the speed of phase-change–based in-memory logic devices, thus paving the way for achieving computers that can perform computations approaching terahertz processing rates. PMID:25197044

  18. Ultrafast phase-change logic device driven by melting processes.

    PubMed

    Loke, Desmond; Skelton, Jonathan M; Wang, Wei-Jie; Lee, Tae-Hoon; Zhao, Rong; Chong, Tow-Chong; Elliott, Stephen R

    2014-09-16

    The ultrahigh demand for faster computers is currently tackled by traditional methods such as size scaling (for increasing the number of devices), but this is rapidly becoming almost impossible, due to physical and lithographic limitations. To boost the speed of computers without increasing the number of logic devices, one of the most feasible solutions is to increase the number of operations performed by a device, which is largely impossible to achieve using current silicon-based logic devices. Multiple operations in phase-change-based logic devices have been achieved using crystallization; however, they can achieve mostly speeds of several hundreds of nanoseconds. A difficulty also arises from the trade-off between the speed of crystallization and long-term stability of the amorphous phase. We here instead control the process of melting through premelting disordering effects, while maintaining the superior advantage of phase-change-based logic devices over silicon-based logic devices. A melting speed of just 900 ps was achieved to perform multiple Boolean algebraic operations (e.g., NOR and NOT). Ab initio molecular-dynamics simulations and in situ electrical characterization revealed the origin (i.e., bond buckling of atoms) and kinetics (e.g., discontinuouslike behavior) of melting through premelting disordering, which were key to increasing the melting speeds. By a subtle investigation of the well-characterized phase-transition behavior, this simple method provides an elegant solution to boost significantly the speed of phase-change-based in-memory logic devices, thus paving the way for achieving computers that can perform computations approaching terahertz processing rates.

  19. Methods of Measurement for Semiconductor Materials, Process Control, and Devices

    NASA Technical Reports Server (NTRS)

    Bullis, W. M. (Editor)

    1973-01-01

    The development of methods of measurement for semiconductor materials, process control, and devices is reported. Significant accomplishments include: (1) Completion of an initial identification of the more important problems in process control for integrated circuit fabrication and assembly; (2) preparations for making silicon bulk resistivity wafer standards available to the industry; and (3) establishment of the relationship between carrier mobility and impurity density in silicon. Work is continuing on measurement of resistivity of semiconductor crystals; characterization of generation-recombination-trapping centers, including gold, in silicon; evaluation of wire bonds and die attachment; study of scanning electron microscopy for wafer inspection and test; measurement of thermal properties of semiconductor devices; determination of S-parameters and delay time in junction devices; and characterization of noise and conversion loss of microwave detector diodes.

  20. EMU helmet mounted display

    NASA Technical Reports Server (NTRS)

    Marmolejo, Jose (Inventor); Smith, Stephen (Inventor); Plough, Alan (Inventor); Clarke, Robert (Inventor); Mclean, William (Inventor); Fournier, Joseph (Inventor)

    1990-01-01

    A helmet mounted display device is disclosed for projecting a display on a flat combiner surface located above the line of sight where the display is produced by two independent optical channels with independent LCD image generators. The display has a fully overlapped field of view on the combiner surface and the focus can be adjusted from a near field of four feet to infinity.

  1. A mechanized process algebra for verification of device synchronization protocols

    NASA Technical Reports Server (NTRS)

    Schubert, E. Thomas

    1992-01-01

    We describe the formalization of a process algebra based on CCS within the Higher Order Logic (HOL) theorem-proving system. The representation of four types of device interactions and a correctness proof of the communication between a microprocessor and MMU is presented.

  2. New product development processes within the UK medical device industry.

    PubMed

    Glen, J M; Lord, M

    1996-12-01

    This paper reports on the findings of an extensive survey investigating practising design engineers' perceptions of new product development within the UK medical device industry. The design activity recorded was predominantly the small-scale development of low volume products. Explicit formal procedures were rarely used in these small-scale developments of low volume products. Specific organizational and design process issues are identified by the respondents as key requirements for the success of the new product development process.

  3. Process and Radiation Induced Defects in Electronic Materials and Devices

    NASA Technical Reports Server (NTRS)

    Washington, Kenneth; Fogarty, T. N.

    1997-01-01

    Process and radiation induced defects are characterized by a variety of electrical techniques, including capacitance-voltage measurements and charge pumping. Separation of defect type into stacking faults, displacement damage, oxide traps, interface states, etc. and their related causes are discussed. The defects are then related to effects on device parameters. Silicon MOS technology is emphasized. Several reviews of radiation effects and silicon processing exist.

  4. Process and Radiation Induced Defects in Electronic Materials and Devices

    NASA Technical Reports Server (NTRS)

    Washington, Kenneth; Fogarty, T. N.

    1997-01-01

    Process and radiation induced defects are characterized by a variety of electrical techniques, including capacitance-voltage measurements and charge pumping. Separation of defect type into stacking faults, displacement damage, oxide traps, interface states, etc. and their related causes are discussed. The defects are then related to effects on device parameters. Silicon MOS technology is emphasized. Several reviews of radiation effects and silicon processing exist.

  5. Effects of soft pellicle frame curvature and mounting process on pellicle-induced distortions in advanced photomasks

    NASA Astrophysics Data System (ADS)

    Cotte, Eric P.; Engelstad, Roxann L.; Lovell, Edward G.; Tanzil, Daniel; Eschbach, Florence O.; Korobko, Yulia O.; Fujita, Minoru; Nakagawa, Hiroaki

    2003-06-01

    Lithography registration errors induced by the attachment of soft pellicles on reticles can significantly affect wafer overlay performance for sub-90 nm lithography chip manufacturing. Intel Corporation, Mitsui Chemicals, and the University of Wisconsin Computational Mechanics Center (UW-CMC) have conducted an extensive experimental study to quantify and minimize the pellicle-induced distortions in order to meet advanced mask manufacturing requirements. A comprehensive design of experiment was elaborated to evaluate the effects of frame curvature, adhesive gasket compliance, and mounting load on pellicle-induced distortions for soft pellicle systems. A frame curvature measurement tool was custom-made at the UW-CMC, employing an MTI Instruments capacitive sensor. A TA Instruments dynamic mechanical analyzer was used to determine the elastic modulus of the adhesive gasket materials. Registration measurements were conducted by Intel on test reticles on a 21 × 21 array of grid points, before and after pellicle attachment, to obtain pellicle-induced distortion results. Results characterize the influence of attachment process, type of adhesive gasket, frame curvature, reticle guiding plate configuration, and attachment load on pellicle-induced distortions.

  6. Rapid and continuous analyte processing in droplet microfluidic devices

    DOEpatents

    Strey, Helmut; Kimmerling, Robert; Bakowski, Tomasz

    2017-04-18

    The compositions and methods described herein are designed to introduce functionalized microparticles into droplets that can be manipulated in microfluidic devices by fields, including electric (dielectrophoretic) or magnetic fields, and extracted by splitting a droplet to separate the portion of the droplet that contains the majority of the microparticles from the part that is largely devoid of the microparticles. Within the device, channels are variously configured at Y- or T junctions that facilitate continuous, serial isolation and dilution of analytes in solution. The devices can be limited in the sense that they can be designed to output purified analytes that are then further analyzed in separate machines or they can include additional channels through which purified analytes can be further processed and analyzed.

  7. Methods of measurement for semiconductor materials, process control, and devices

    NASA Technical Reports Server (NTRS)

    Bullis, W. M. (Editor)

    1973-01-01

    This progress report describes NBS activities directed toward the development of methods of measurement for semiconductor materials, process control, and devices. Significant accomplishments during this reporting period include design of a plan to provide standard silicon wafers for four-probe resistivity measurements for the industry, publication of a summary report on the photoconductive decay method for measuring carrier lifetime, publication of a comprehensive review of the field of wire bond fabrication and testing, and successful completion of organizational activity leading to the establishment of a new group on quality and hardness assurance in ASTM Committee F-1 on Electronics. Work is continuing on measurement of resistivity of semiconductor crystals; characterization of generation-recombination-trapping centers in silicon; study of gold-doped silicon; development of the infrared response technique; evaluation of wire bonds and die attachment; and measurement of thermal properties of semiconductor devices, delay time and related carrier transport properties in junction devices, and noise properties of microwave diodes.

  8. Methods of measurement for semiconductor materials, process control, and devices

    NASA Technical Reports Server (NTRS)

    Bullis, W. M. (Editor)

    1972-01-01

    Activities directed toward the development of methods of measurement for semiconductor materials, process control, and devices are described. Accomplishments include the determination of the reasons for differences in measurements of transistor delay time, identification of an energy level model for gold-doped silicon, and the finding of evidence that it does not appear to be necessary for an ultrasonic bonding tool to grip the wire and move it across the substrate metallization to make the bond. Work is continuing on measurement of resistivity of semiconductor crystals; study of gold-doped silicon; development of the infrared response technique; evaluation of wire bonds and die attachment; measurement of thermal properties of semiconductor devices, delay time, and related carrier transport properties in junction devices, and noise properties of microwave diodes; and characterization of silicon nuclear radiation detectors.

  9. Process Orchestration With Modular Software Applications On Intelligent Field Devices

    NASA Astrophysics Data System (ADS)

    Orfgen, Marius; Schmitt, Mathias

    2015-07-01

    The method developed by the DFKI-IFS for extending the functionality of intelligent field devices through the use of reloadable software applications (so-called Apps) is to be further augmented with a methodology and communication concept for process orchestration. The concept allows individual Apps from different manufacturers to decentrally share information. This way of communicating forms the basis for the dynamic orchestration of Apps to complete processes, in that it allows the actions of one App (e.g. detecting a component part with a sensor App) to trigger reactions in other Apps (e.g. triggering the processing of that component part). A holistic methodology and its implementation as a configuration tool allows one to model the information flow between Apps, as well as automatically introduce it into physical production hardware via available interfaces provided by the Field Device Middleware. Consequently, configuring industrial facilities is made simpler, resulting in shorter changeover and shutdown times.

  10. A new data processing and calibration method for an eye-tracking device pronunciation system

    NASA Astrophysics Data System (ADS)

    Lin, Chern-Sheng; Chang, Kai-Chieh; Jain, Young-Jou

    2002-07-01

    In this paper, a new data processing and calibration method for a pronunciation system of an eye-tracking device is described. The eye-tracking device was created using both head mounted display (HMD) technology and remote operation capabilities. A pattern recognition computer program was used to distinguish the pupil position and calculate its coordinates. This system can be adapted to provide a digital speech function. A new method for processing the image of the eye in the PC-based system was also developed. With one video CCD camera and frame grabber analyzing a series of human pupil images while the subject is gazing at the screen, an auto-calibration algorithm is used to obtain the direction of the eye gaze in real time. The computers provide the speech sound according to the location where the eye gazes exceed 0.5 s. The availability of multipurpose in this eye-tracking system with very simple equipment will be reconfirmed for future advanced research.

  11. Magnetostrictive pressure device for thermoplastic fiber placement process

    NASA Astrophysics Data System (ADS)

    Ahrens, Markus; Mallick, Vishal

    1999-07-01

    Fiber reinforced composites offer excellent specific stiffness and strength and are therefore interesting for rotating machinery applications. The main disadvantage of high performance composites is the manufacturing process which is labor intensive and thus slow and expensive. The Thermoplastic Fiber Placement process overcomes these difficulties due to its high degree of automation. During the process, an impregnated tape is heated up and then consolidated in-situ under pressure. The process which is used at ABB consists of a six axis robot, a heat source and a pressure device for consolidation. Today mechanical roller element are used to apply the forces normal to the surface to the composite part. These forces are necessary for proper consolidation. The roller action prevents damage due to shearing of the tape during lay down. To improve the processing sped, and to expand the use of the Thermoplastic Fiber Placement process for more complex structures, two severe drawbacks of the solid roller approach need to be overcome; the small pressure contact area which limits the speed of the process and the poor conformability which prevents the process from being applied to highly 3D surfaces. Smart materials such as piezoelectrics, electrostrictives and magnetostrictives can produce high forces at high operating frequencies and enable a large, conformable actuated surface to be realized. A pressure device made with a magnetostrictive actuator has been tested. The main design goal is to apply the consolidation pressure correctly, without introducing shear forces on the tape, in order to produce parts with optimal mechanical properties.

  12. Transient Fluvial Response to Alpine Deglaciation, Mount Rainier, WA: Geomorphic Process Domains and Proglacial Flux Controls on Channel Evolution.

    NASA Astrophysics Data System (ADS)

    Beyeler, J. D.; Montgomery, D.; Kennard, P. M.

    2016-12-01

    Downwasting of all glaciers on the flanks of Mount Rainier, WA, in recent decades has debuttressed Little Ice Age glaciogenic sediments driving proglacial responses to regionally warming climate. Rivers draining the deglaciating edifice are responding to paraglacial sedimentation processes through transient storage of retreat-liberated sediments in aggrading (e.g., >5m) fluvial networks with widening channel corridors (i.e., 50-150%) post-LIA (ca., 1880-1910 locally). We hypothesize that the downstream transmission of proglacial fluxes (i.e., sediment and water) through deglaciating alpine terrain is a two-step geomorphic process. The ice-proximal portion of the proglacial system is dominated by the delivery of high sediment-to-water ratio flows (i.e., hyperconcentrated and debris slurries) and sediment retention by in-channel accumulation (e.g., confined debris fans within channel margins of valley segments) exacerbated by recruitment and accumulation of large wood (e.g., late seral stage conifers), whereas ice-distal fluvial reworking of transient sediment accumulations generates downstream aggradation. Historical Carbon River observations show restricted ice-proximal proglacial aggradation until a mainstem avulsion in 2009 initiated incision into sediment accumulations formed in recent decades, which is translating into aggradation farther down the network. Surficial morphology mapped with GPS, exposed subsurface sedimentology, and preliminary dating of buried trees suggest a transitional geomorphic process zone has persisted along the proglacial Carbon River through recent centuries and prior to the ultimate LIA glaciation. Structure-from-motion DEM differencing through the 2016 water year shows discrete zones of proglacial evolution through channel-spanning bed aggradation forced by interactions between large wood and sediment-rich flows that transition to fluvial process dominance as sediment is transported downstream. Long-term DEM differencing suggests

  13. Solar panel parallel mounting configuration

    NASA Technical Reports Server (NTRS)

    Mutschler, Jr., Edward Charles (Inventor)

    1998-01-01

    A spacecraft includes a plurality of solar panels interconnected with a power coupler and an electrically operated device to provide power to the device when the solar cells are insolated. The solar panels are subject to bending distortion when entering or leaving eclipse. Spacecraft attitude disturbances are reduced by mounting each of the solar panels to an elongated boom made from a material with a low coefficient of thermal expansion, so that the bending of one panel is not communicated to the next. The boom may be insulated to reduce its bending during changes in insolation. A particularly advantageous embodiment mounts each panel to the boom with a single mounting, which may be a hinge. The single mounting prevents transfer of bending moments from the panel to the boom.

  14. Some limitations on processing materials in acoustic levitation devices

    NASA Technical Reports Server (NTRS)

    Oran, W. A.; Witherow, W. K.; Ross, B. B.; Rush, J. E.

    1979-01-01

    The spot heating of samples, suspended in an acoustic field, was investigated to determine if the technique could be used to process materials. A single axis resonance device operating in air at 25 C with an rms pressure maximum of 160 to 170 db was used in the experiments. The heat flow from a hot object suspended in a levitation node is dominated by the effects of the field, with the heat loss approximately 20 times larger than that due to natural convection. The acoustic forces which suspend the body at a node also serve to eject the heated air. The coupling between the locally heated region around the body and the acoustic field results in instabilities in both the pressure wave and force field. The investigations indicated the extreme difficulties in developing a materials processing device based on acoustic/spot heating for use in a terrestrial environment.

  15. Organic electronic devices with multiple solution-processed layers

    DOEpatents

    Forrest, Stephen R.; Lassiter, Brian E.; Zimmerman, Jeramy D.

    2015-08-04

    A method of fabricating a tandem organic photosensitive device involves depositing a first layer of an organic electron donor type material film by solution-processing of the organic electron donor type material dissolved in a first solvent; depositing a first layer of an organic electron acceptor type material over the first layer of the organic electron donor type material film by a dry deposition process; depositing a conductive layer over the interim stack by a dry deposition process; depositing a second layer of the organic electron donor type material over the conductive layer by solution-processing of the organic electron donor type material dissolved in a second solvent, wherein the organic electron acceptor type material and the conductive layer are insoluble in the second solvent; depositing a second layer of an organic electron acceptor type material over the second layer of the organic electron donor type material film by a dry deposition process, resulting in a stack.

  16. Mobile Devices and GPU Parallelism in Ionospheric Data Processing

    NASA Astrophysics Data System (ADS)

    Mascharka, D.; Pankratius, V.

    2015-12-01

    Scientific data acquisition in the field is often constrained by data transfer backchannels to analysis environments. Geoscientists are therefore facing practical bottlenecks with increasing sensor density and variety. Mobile devices, such as smartphones and tablets, offer promising solutions to key problems in scientific data acquisition, pre-processing, and validation by providing advanced capabilities in the field. This is due to affordable network connectivity options and the increasing mobile computational power. This contribution exemplifies a scenario faced by scientists in the field and presents the "Mahali TEC Processing App" developed in the context of the NSF-funded Mahali project. Aimed at atmospheric science and the study of ionospheric Total Electron Content (TEC), this app is able to gather data from various dual-frequency GPS receivers. It demonstrates parsing of full-day RINEX files on mobile devices and on-the-fly computation of vertical TEC values based on satellite ephemeris models that are obtained from NASA. Our experiments show how parallel computing on the mobile device GPU enables fast processing and visualization of up to 2 million datapoints in real-time using OpenGL. GPS receiver bias is estimated through minimum TEC approximations that can be interactively adjusted by scientists in the graphical user interface. Scientists can also perform approximate computations for "quickviews" to reduce CPU processing time and memory consumption. In the final stage of our mobile processing pipeline, scientists can upload data to the cloud for further processing. Acknowledgements: The Mahali project (http://mahali.mit.edu) is funded by the NSF INSPIRE grant no. AGS-1343967 (PI: V. Pankratius). We would like to acknowledge our collaborators at Boston College, Virginia Tech, Johns Hopkins University, Colorado State University, as well as the support of UNAVCO for loans of dual-frequency GPS receivers for use in this project, and Intel for loans of

  17. Application of SCM to process development of novel devices

    NASA Astrophysics Data System (ADS)

    Duhayon, N.; Vandervorst, W.; Hellemans, L.

    2003-09-01

    Due to the continuous shrinkage of semiconductor devices, the use of a good 2D-profiling technique is essential as these structures are entirely two-dimensional and dopant nor carrier profiles are accessible with the standard 1D profiling techniques such as SRP and SIMS. In this work we present the application of SCM in support of the process development for a wide range of novel devices, such as trenchMOSFET, vertical RESURF diode, bipolar transistor. In all these applications, one of the most important issues to get good qualitative results is the sample preparation of the device. Therefore the sample preparation was optimized to get the best contrast in doping concentration at the same time avoiding the effects of contrast reversal. Also SCM at different dc-bias in amplitude and phase mode is investigated in more detail. We systematically observe for both p- and n-type a phase shift for high voltages as well as a large shift of the flatband voltage. With this knowledge reliable results are achieved for the different devices and especially measuring in phase mode offers more advantages in delineating p- and n-type regions in comparison to SCM in amplitude mode.

  18. Dual resolution, vacuum compatible optical mount

    SciTech Connect

    Halpin, John Michael

    2011-10-04

    An optical mount for an optical element includes a mounting plate, a lever arm pivot coupled to mounting plate, and an adjustment plate. The optical mount also includes a flexure pivot mechanically coupling the adjustment plate to the mounting plate and a lever arm. The optical mount further includes a first adjustment device extending from the adjustment plate to make contact with the lever arm at a first contact point. A projection of a line from the first contact point to a pivot point, measured along the lever arm, is a first predetermined distance. The optical mount additionally includes a second adjustment device extending from the adjustment plate to make contact with the lever arm at a second contact point. A projection of a line from the second contact point to the pivot point, measured along the lever arm, is a second predetermined distance greater than the first predetermined distance.

  19. Development and characterization for the automated surface mount assembly

    SciTech Connect

    Yerganian, S.S.; Grice, J.V.

    1996-11-01

    Development of the ability to automatically assemble surface mount devices on circuits is described, including the characterization of the assembly process and improvements made to the system to increase the accuracy and repeatability of this process. The accuracy and repeatability of the system were characterized by measurements of the individual system components as well as the actual placement of components on a specially designed gauge. The forces and stresses experienced by the components when handled by the system were analyzed. The ability to deliver surface mount components to the system was developed by the design and development of stick magazines, vibratory feeders, a feeder control system, and an automatic stick magazine loader.

  20. An in-mold packaging process for plastic fluidic devices.

    PubMed

    Yoo, Y E; Lee, K H; Je, T J; Choi, D S; Kim, S K

    2011-01-01

    Micro or nanofluidic devices have many channel shapes to deliver chemical solutions, body fluids or any fluids. The channels in these devices should be covered to prevent the fluids from overflowing or leaking. A typical method to fabricate an enclosed channel is to bond or weld a cover plate to a channel plate. This solid-to-solid bonding process, however, takes a considerable amount of time for mass production. In this study, a new process for molding a cover layer that can enclose open micro or nanochannels without solid-to-solid bonding is proposed and its feasibility is estimated. First, based on the design of a model microchannel, a brass microchannel master core was machined and a plastic microchannel platform was injection-molded. Using this molded platform, a series of experiments was performed for four process or mold design parameters. Some feasible conditions were successfully found to enclosed channels without filling the microchannels for the injection molding of a cover layer over the plastic microchannel platform. In addition, the bond strength and seal performance were estimated in a comparison with those done by conventional bonding or welding processes.

  1. Processes for multi-layer devices utilizing layer transfer

    DOEpatents

    Nielson, Gregory N; Sanchez, Carlos Anthony; Tauke-Pedretti, Anna; Kim, Bongsang; Cederberg, Jeffrey; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2015-02-03

    A method includes forming a release layer over a donor substrate. A plurality of devices made of a first semiconductor material are formed over the release layer. A first dielectric layer is formed over the plurality of devices such that all exposed surfaces of the plurality of devices are covered by the first dielectric layer. The plurality of devices are chemically attached to a receiving device made of a second semiconductor material different than the first semiconductor material, the receiving device having a receiving substrate attached to a surface of the receiving device opposite the plurality of devices. The release layer is etched to release the donor substrate from the plurality of devices. A second dielectric layer is applied over the plurality of devices and the receiving device to mechanically attach the plurality of devices to the receiving device.

  2. Organic electronic devices with multiple solution-processed layers

    DOEpatents

    Forrest, Stephen R.; Lassiter, Brian E.; Zimmerman, Jeramy D.

    2016-07-05

    A method for fabricating an organic light emitting device stack involves depositing a first conductive electrode layer over a substrate; depositing a first set of one or more organic layers, wherein at least one of the first set of organic layers is a first emissive layer and one of the first set of organic layers is deposited by a solution-based process that utilizes a first solvent; depositing a first conductive interlayer by a dry deposition process; and depositing a second set of one or more organic layers, wherein at least one of the second set of organic layers is a second emissive layer and one of the second set of organic layers is deposited by a solution-based process that utilizes a second solvent, wherein all layers that precede the layer deposited using the second solvent are insoluble in the second solvent.

  3. Manipulator mounted transfer platform

    SciTech Connect

    Dobbins, J.C.; Hoover, M.A.; May, K.W.; Ross, M.J.

    1990-01-23

    The patent describes in a manipulator system for use in hazardous environments including a manipulator adapted for reciprocal movement upon a guide device, a transfer platform. It comprises: a bed frame defining a generally horizontal bed projecting outwardly from the manipulator; and frame mounting means securing the bed frame to the manipulator in a generally cantilevered fashion, thereby essentially minimizing the structure necessary to support the platform outwardly of the manipulator while enhancing operator visibility of the platform and the manipulator during use of the manipulator system.

  4. Process for preparing liquid metal electrical contact device

    NASA Technical Reports Server (NTRS)

    Lovell, R. R.; Berkopec, F. D.; Culp, D. H. (Inventor)

    1977-01-01

    The parts of an electrical contact device are treated by sputter etching to remove the parent metal oxide. Prior to exposure of the electrodes to any oxygen, a sacrificial metal is sputter deposited on the parts. Preferably this sacrificial metal is one that oxidizes slowly and is readily dissolved by the liquid metal. The sacrificial metal may then be removed from unwanted areas. The remainder of the ring and the probe to be wet by the liquid metal are submerged in the liquid metal or the liquid metal is flushed over these areas, preferably while they are being slightly abraded, unitl all the sacrificial material on these portions is wet by the liquid metal. In doing so the liquid metal dissolves the sacrificial metal and permanently wets the parent metal. Preferred materials used in the process and for the electrodes of electrical contact devices are high purity (99.0%) nickel or AISI type 304 stainless steel for the electrical contact devices, gallium as the liquid metal, and gold as the sacrificial material.

  5. Methods of measurement for semiconductor materials, process control, and devices

    NASA Technical Reports Server (NTRS)

    Bullis, W. M. (Editor)

    1972-01-01

    Activities directed toward the development of methods of measurement for semiconductor materials, process control, and devices are described. Topics investigated include: measurements of transistor delay time; application of the infrared response technique to the study of radiation-damaged, lithium-drifted silicon detectors; and identification of a condition that minimizes wire flexure and reduces the failure rate of wire bonds in transistors and integrated circuits under slow thermal cycling conditions. Supplementary data concerning staff, standards committee activities, technical services, and publications are included as appendixes.

  6. Methods of measurement for semiconductor materials, process control, and devices

    NASA Technical Reports Server (NTRS)

    Bullis, W. M. (Editor)

    1971-01-01

    The development of methods of measurement for semiconductor materials, process control, and devices is discussed. The following subjects are also presented: (1) demonstration of the high sensitivity of the infrared response technique by the identification of gold in a germanium diode, (2) verification that transient thermal response is significantly more sensitive to the presence of voids in die attachment than steady-state thermal resistance, and (3) development of equipment for determining susceptibility of transistors to hot spot formation by the current-gain technique.

  7. Process for mounting and packaging of fiber Bragg grating strain sensors for use in harsh environment applications

    NASA Astrophysics Data System (ADS)

    Wnuk, Vincent P.; Mendez, Alexis; Ferguson, Steve; Graver, Tom

    2005-05-01

    In this paper, we report the development of a new bonding agent and method for the surface mounting of optical fiber Bragg grating strain and temperature sensors for use in harsh environments. The compound is based on a combination of ceramic fillers with an epoxy binder that is applied with a brush technique. Samples of optical fiber Bragg gratings were successfully encapsulated and mounted on metal shims. The packaged sensors were tested for strain (+/- 1000´ɛ) and temperature (-20 to +120 °C) response. The encapsulated sensors display a linear response with an increase in the temperature sensitivity of the FBG, with a factor of 24.37pm/°C, and a strain gauge factor of 1.25pm/μɛ.

  8. Micro-inverter solar panel mounting

    DOEpatents

    Morris, John; Gilchrist, Phillip Charles

    2016-02-02

    Processes, systems, devices, and articles of manufacture are provided. Each may include adapting micro-inverters initially configured for frame-mounting to mounting on a frameless solar panel. This securement may include using an adaptive clamp or several adaptive clamps secured to a micro-inverter or its components, and using compressive forces applied directly to the solar panel to secure the adaptive clamp and the components to the solar panel. The clamps can also include compressive spacers and safeties for managing the compressive forces exerted on the solar panels. Friction zones may also be used for managing slipping between the clamp and the solar panel during or after installation. Adjustments to the clamps may be carried out through various means and by changing the physical size of the clamps themselves.

  9. NMR data visualization, processing, and analysis on mobile devices.

    PubMed

    Cobas, Carlos; Iglesias, Isaac; Seoane, Felipe

    2015-08-01

    Touch-screen computers are emerging as a popular platform for many applications, including those in chemistry and analytical sciences. In this work, we present our implementation of a new NMR 'app' designed for hand-held and portable touch-controlled devices, such as smartphones and tablets. It features a flexible architecture formed by a powerful NMR processing and analysis kernel and an intuitive user interface that makes full use of the smart devices haptic capabilities. Routine 1D and 2D NMR spectra acquired in most NMR instruments can be processed in a fully unattended way. More advanced experiments such as non-uniform sampled NMR spectra are also supported through a very efficient parallelized Modified Iterative Soft Thresholding algorithm. Specific technical development features as well as the overall feasibility of using NMR software apps will also be discussed. All aspects considered the functionalities of the app allowing it to work as a stand-alone tool or as a 'companion' to more advanced desktop applications such as Mnova NMR. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Growing perovskite into polymers for easy-processable optoelectronic devices

    PubMed Central

    Masi, Sofia; Colella, Silvia; Listorti, Andrea; Roiati, Vittoria; Liscio, Andrea; Palermo, Vincenzo; Rizzo, Aurora; Gigli, Giuseppe

    2015-01-01

    Here we conceive an innovative nanocomposite to endow hybrid perovskites with the easy processability of polymers, providing a tool to control film quality and material crystallinity. We verify that the employed semiconducting polymer, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), controls the self-assembly of CH3NH3PbI3 (MAPbI3) crystalline domains and favors the deposition of a very smooth and homogenous layer in one straightforward step. This idea offers a new paradigm for the implementation of polymer/perovskite nanocomposites towards versatile optoelectronic devices combined with the feasibility of mass production. As a proof-of-concept we propose the application of such nanocomposite in polymer solar cell architecture, demonstrating a power conversion efficiency up to 3%, to date the highest reported for MEH-PPV. On-purpose designed polymers are expected to suit the nanocomposite properties for the integration in diverse optoelectronic devices via facile processing condition. PMID:25579988

  11. Growing perovskite into polymers for easy-processable optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Masi, Sofia; Colella, Silvia; Listorti, Andrea; Roiati, Vittoria; Liscio, Andrea; Palermo, Vincenzo; Rizzo, Aurora; Gigli, Giuseppe

    2015-01-01

    Here we conceive an innovative nanocomposite to endow hybrid perovskites with the easy processability of polymers, providing a tool to control film quality and material crystallinity. We verify that the employed semiconducting polymer, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), controls the self-assembly of CH3NH3PbI3 (MAPbI3) crystalline domains and favors the deposition of a very smooth and homogenous layer in one straightforward step. This idea offers a new paradigm for the implementation of polymer/perovskite nanocomposites towards versatile optoelectronic devices combined with the feasibility of mass production. As a proof-of-concept we propose the application of such nanocomposite in polymer solar cell architecture, demonstrating a power conversion efficiency up to 3%, to date the highest reported for MEH-PPV. On-purpose designed polymers are expected to suit the nanocomposite properties for the integration in diverse optoelectronic devices via facile processing condition.

  12. Data processing device test apparatus and method therefor

    DOEpatents

    Wilcox, Richard Jacob; Mulig, Jason D.; Eppes, David; Bruce, Michael R.; Bruce, Victoria J.; Ring, Rosalinda M.; Cole, Jr., Edward I.; Tangyunyong, Paiboon; Hawkins, Charles F.; Louie, Arnold Y.

    2003-04-08

    A method and apparatus mechanism for testing data processing devices are implemented. The test mechanism isolates critical paths by correlating a scanning microscope image with a selected speed path failure. A trigger signal having a preselected value is generated at the start of each pattern vector. The sweep of the scanning microscope is controlled by a computer, which also receives and processes the image signals returned from the microscope. The value of the trigger signal is correlated with a set of pattern lines being driven on the DUT. The trigger is either asserted or negated depending the detection of a pattern line failure and the particular line that failed. In response to the detection of the particular speed path failure being characterized, and the trigger signal, the control computer overlays a mask on the image of the device under test (DUT). The overlaid image provides a visual correlation of the failure with the structural elements of the DUT at the level of resolution of the microscope itself.

  13. Solution processed integrated pixel element for an imaging device

    NASA Astrophysics Data System (ADS)

    Swathi, K.; Narayan, K. S.

    2016-09-01

    We demonstrate the implementation of a solid state circuit/structure comprising of a high performing polymer field effect transistor (PFET) utilizing an oxide layer in conjunction with a self-assembled monolayer (SAM) as the dielectric and a bulk-heterostructure based organic photodiode as a CMOS-like pixel element for an imaging sensor. Practical usage of functional organic photon detectors requires on chip components for image capture and signal transfer as in the CMOS/CCD architecture rather than simple photodiode arrays in order to increase speed and sensitivity of the sensor. The availability of high performing PFETs with low operating voltage and photodiodes with high sensitivity provides the necessary prerequisite to implement a CMOS type image sensing device structure based on organic electronic devices. Solution processing routes in organic electronics offers relatively facile procedures to integrate these components, combined with unique features of large-area, form factor and multiple optical attributes. We utilize the inherent property of a binary mixture in a blend to phase-separate vertically and create a graded junction for effective photocurrent response. The implemented design enables photocharge generation along with on chip charge to voltage conversion with performance parameters comparable to traditional counterparts. Charge integration analysis for the passive pixel element using 2D TCAD simulations is also presented to evaluate the different processes that take place in the monolithic structure.

  14. Diamond MEMS: wafer scale processing, devices, and technology insertion

    NASA Astrophysics Data System (ADS)

    Carlisle, J. A.

    2009-05-01

    Diamond has long held the promise of revolutionary new devices: impervious chemical barriers, smooth and reliable microscopic machines, and tough mechanical tools. Yet it's been an outsider. Laboratories have been effectively growing diamond crystals for at least 25 years, but the jump to market viability has always been blocked by the expense of diamond production and inability to integrate with other materials. Advances in chemical vapor deposition (CVD) processes have given rise to a hierarchy of carbon films ranging from diamond-like carbon (DLC) to vapor-deposited diamond coatings, however. All have pros and cons based on structure and cost, but they all share some of diamond's heralded attributes. The best performer, in theory, is the purest form of diamond film possible, one absent of graphitic phases. Such a material would capture the extreme hardness, high Young's modulus and chemical inertness of natural diamond. Advanced Diamond Technologies Inc., Romeoville, Ill., is the first company to develop a distinct chemical process to create a marketable phase-pure diamond film. The material, called UNCD® (for ultrananocrystalline diamond), features grain sizes from 3 to 300 nm in size, and layers just 1 to 2 microns thick. With significant advantages over other thin films, UNCD is designed to be inexpensive enough for use in atomic force microscopy (AFM) probes, microelectromechanical machines (MEMS), cell phone circuitry, radio frequency devices, and even biosensors.

  15. Solution-Processable Silicon Phthalocyanines in Electroluminescent and Photovoltaic Devices

    PubMed Central

    2016-01-01

    Phthalocyanines and their main group and metal complexes are important classes of organic semiconductor materials but are usually highly insoluble and so frequently need to be processed by vacuum deposition in devices. We report two highly soluble silicon phthalocyanine (SiPc) diester compounds and demonstrate their potential as organic semiconductor materials. Near-infrared (λEL = 698–709 nm) solution-processed organic light-emitting diodes (OLEDs) were fabricated and exhibited external quantum efficiencies (EQEs) of up to 1.4%. Binary bulk heterojunction solar cells employing P3HT or PTB7 as the donor and the SiPc as the acceptor provided power conversion efficiencies (PCE) of up to 2.7% under simulated solar illumination. Our results show that soluble SiPcs are promising materials for organic electronics. PMID:26990151

  16. Investigations of semiconductor devices using SIMS; diffusion, contamination, process control

    NASA Astrophysics Data System (ADS)

    Lee, Jae Cheol; Won, Jeongyeon; Chung, Youngsu; Lee, Hyungik; Lee, Eunha; Kang, Donghun; Kim, Changjung; Choi, Jinhak; Kim, Jeomsik

    2008-12-01

    We have surveyed 22,155 analyses issues to know the portion of surface analysis at the total analyses activities. According to the survey result, the contribution of SIMS in the total analyses issues was about 7%. The portions of semiconductor process control, composition and contamination in the SIMS analyses issues are 25%, 29% and 16%, respectively. In this article, some examples of the semiconductor device process control, identification of contaminants, and failure analyses have been reviewed. The behavior of H, O, and Ti at the Pt/Ti/GaInZnO interfaces and their influences on the electrical property of thin film transistor are demonstrated. Also discolor issues including organic material contamination problem on Au pad are discussed in detail.

  17. Solution-Processable Silicon Phthalocyanines in Electroluminescent and Photovoltaic Devices.

    PubMed

    Zysman-Colman, Eli; Ghosh, Sanjay S; Xie, Guohua; Varghese, Shinto; Chowdhury, Mithun; Sharma, Nidhi; Cordes, David B; Slawin, Alexandra M Z; Samuel, Ifor D W

    2016-04-13

    Phthalocyanines and their main group and metal complexes are important classes of organic semiconductor materials but are usually highly insoluble and so frequently need to be processed by vacuum deposition in devices. We report two highly soluble silicon phthalocyanine (SiPc) diester compounds and demonstrate their potential as organic semiconductor materials. Near-infrared (λ(EL) = 698-709 nm) solution-processed organic light-emitting diodes (OLEDs) were fabricated and exhibited external quantum efficiencies (EQEs) of up to 1.4%. Binary bulk heterojunction solar cells employing P3HT or PTB7 as the donor and the SiPc as the acceptor provided power conversion efficiencies (PCE) of up to 2.7% under simulated solar illumination. Our results show that soluble SiPcs are promising materials for organic electronics.

  18. Process and Device Simulation of 65 nm NMOS

    NASA Astrophysics Data System (ADS)

    Ng, K. M.; Ong, B. H.

    2011-03-01

    In this paper, a 65 nm N-type Metal Oxide Semiconductor (NMOS) with 1.36 nm physical gate oxide, 34.5 nm gate length, ultra shallow junction and threshold voltage of 0.185 V have been designed using Silvaco Technology Computer Aided Design (TCAD) software. The physical and electrical properties of simulated results are in line with International Roadmap Semiconductor Standard (ITRS) guideline for 65nm technology node. From the aspect of processing, influencing parameters such as (i) gate oxide thickness, (ii) concentration of source/drain, (iii) energy level of source/drain, and (iv) substrate doping impurity are studied in order to investigate individual effects towards device workability. Limits of these processing parameters also have been examined and reported.

  19. Process for making photovoltaic devices and resultant product

    SciTech Connect

    Foote, J.B.; Kaake, S.A.F.; Meyers, P.V.; Nolan, J.F.

    1996-07-16

    A process and apparatus are disclosed for making a large area photovoltaic device that is capable of generating low cost electrical power. The apparatus for performing the process includes an enclosure providing a controlled environment in which an oven is located. At least one and preferably a plurality of deposition stations provide heated vapors of semiconductor material within the oven for continuous elevated temperature deposition of semiconductor material on a sheet substrate including a glass sheet conveyed within the oven. The sheet substrate is conveyed on a roller conveyor within the oven and the semiconductor material whose main layer is cadmium telluride is deposited on an upwardly facing surface of the substrate by each deposition station from a location within the oven above the roller conveyor. A cooling station rapidly cools the substrate after deposition of the semiconductor material thereon to strengthen the glass sheet of the substrate. 10 figs.

  20. Process for making photovoltaic devices and resultant product

    SciTech Connect

    Foote, J.B.; Kaake, S.A.F.; Meyers, P.V.; Nolan, J.F.

    1995-11-28

    A process and apparatus are disclosed for making a large area photovoltaic device that is capable of generating low cost electrical power. The apparatus for performing the process includes an enclosure providing a controlled environment in which an oven is located. At least one and preferably a plurality of deposition stations provide heated vapors of semiconductor material within the oven for continuous elevated temperature deposition of semiconductor material on a sheet substrate including a glass sheet conveyed within the oven. The sheet substrate is conveyed on a roller conveyor within the oven and the semiconductor material whose main layer is cadmium telluride is deposited on an upwardly facing surface of the substrate by each deposition station from a location within the oven above the roller conveyor. A cooling station rapidly cools the substrate after deposition of the semiconductor material thereon to strengthen the glass sheet of the substrate. 10 figs.

  1. Memory devices based on self-assembled materials and processes (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lee, Jang-Sik

    2016-09-01

    Device fabrication based on top-down approach will reach its limit due to difficulties in patterning and processes below 10 nm node. The bottom-up approach using self-assembled materials and processes can be a viable candidate for further device scaling, but the fabrication processes are mostly not compatible with current device fabrication. In this presentation, device fabrication strategy for next-generation data-storage devices will be discussed in detail based on self-assembled materials and processes. The emphasis is placed on compatibility with current device fabrication strategies. Ordered array of various materials and systems based on bottom-up nanotechnology can be utilized as the charge storage layer for memory devices and the templates for nanoscale device fabrication. Novel device applications, for example, printed/flexible/transparent electronic devices, will be explored based on the self-assembly processes.

  2. A review of test results on parabolic dish solar thermal power modules with dish-mounted Rankine engines and for production of process steam

    NASA Technical Reports Server (NTRS)

    Jaffe, Leonard D.

    1988-01-01

    This paper presents results of development testing of various solar thermal parabolic dish modules and assemblies. Most of the tests were at modules and assemblies that used a dish-mounted, organic Rankine cycle turbine for production of electric power. Some tests were also run on equipment for production of process steam or for production of electricity using dish-mounted reciprocating steam engines. These tests indicate that early modules achieve efficiencies of about 18 percent in converting sunlight to electricity (excluding the inverter but including parasitics). A number of malfunctions occurred. The performance measurements, as well as the malfunctions and other operating experience, provided information that should be of value in developing systems with improved performance and reduced maintenance.

  3. A review of test results on parabolic dish solar thermal power modules with dish-mounted Rankine engines and for production of process steam

    NASA Astrophysics Data System (ADS)

    Jaffe, Leonard D.

    1988-11-01

    This paper presents results of development testing of various solar thermal parabolic dish modules and assemblies. Most of the tests were at modules and assemblies that used a dish-mounted, organic Rankine cycle turbine for production of electric power. Some tests were also run on equipment for production of process steam or for production of electricity using dish-mounted reciprocating steam engines. These tests indicate that early modules achieve efficiencies of about 18 percent in converting sunlight to electricity (excluding the inverter but including parasitics). A number of malfunctions occurred. The performance measurements, as well as the malfunctions and other operating experience, provided information that should be of value in developing systems with improved performance and reduced maintenance.

  4. Phase Change Heat Transfer Device for Process Heat Applications

    SciTech Connect

    Piyush Sabharwall; Mike Patterson; Vivek Utgikar; Fred Gunnerson

    2010-10-01

    The next generation nuclear plant (NGNP) will most likely produce electricity and process heat, with both being considered for hydrogen production. To capture nuclear process heat, and transport it to a distant industrial facility requires a high temperature system of heat exchangers, pumps and/or compressors. The heat transfer system is particularly challenging not only due to the elevated temperatures (up to approx.1300 K) and industrial scale power transport (=50MW), but also due to a potentially large separation distance between the nuclear and industrial plants (100+m) dictated by safety and licensing mandates. The work reported here is the preliminary analysis of two-phase thermosyphon heat transfer performance with alkali metals. A thermosyphon is a thermal device for transporting heat from one point to another with quite extraordinary properties. In contrast to single-phased forced convective heat transfer via ‘pumping a fluid’, a thermosyphon (also called a wickless heat pipe) transfers heat through the vaporization/condensing process. The condensate is further returned to the hot source by gravity, i.e., without any requirement of pumps or compressors. With this mode of heat transfer, the thermosyphon has the capability to transport heat at high rates over appreciable distances, virtually isothermally and without any requirement for external pumping devices. Two-phase heat transfer by a thermosyphon has the advantage of high enthalpy transport that includes the sensible heat of the liquid, the latent heat of vaporization, and vapor superheat. In contrast, single-phase forced convection transports only the sensible heat of the fluid. Additionally, vapor-phase velocities within a thermosyphon are much greater than single-phase liquid velocities within a forced convective loop. Thermosyphon performance can be limited by the sonic limit (choking) of vapor flow and/or by condensate entrainment. Proper thermosyphon requires analysis of both.

  5. Mafic magmas from Mount Baker in the northern Cascade arc, Washington: probes into mantle and crustal processes

    NASA Astrophysics Data System (ADS)

    Moore, Nicole E.; Debari, Susan M.

    2012-03-01

    Five mafic lava flows located on the southern flank of Mount Baker are among the most primitive in the volcanic field. A comprehensive dataset of whole rock and mineral chemistry reveals the diversity of these mafic lavas that come from distinct sources and have been variably affected by ascent through the crust. Disequilibrium textures present in all of the lavas indicate that crustal processes have affected the magmas. Despite this evidence, mantle source characteristics have been retained and three primitive endmember lava types are represented. These include (1) modified low-K tholeiitic basalt (LKOT-like), (2) typical calc-alkaline (CA) lavas, and (3) high-Mg basaltic andesite and andesite (HMBA and HMA). The Type 1 endmember, the basalt of Park Butte (49.3-50.3 wt% SiO2, Mg# 64-65), has major element chemistry similar to LKOT found elsewhere in the Cascades. Park Butte also has the lowest overall abundances of trace elements (with the exception of the HREE), indicating it is either derived from the most depleted mantle source or has undergone the largest degree of partial melting. The Type 2 endmember is represented by the basalts of Lake Shannon (50.7-52.6 wt% SiO2, Mg# 58-62) and Sulphur Creek (51.2-54.6 wt% SiO2, Mg# 56-57). These two lavas are comparable to calc-alkaline rocks found in arcs worldwide and have similar trace element patterns; however, they differ from each other in abundances of REE, indicating variation in degree of partial melting or fractionation. The Type 3 endmember is represented by the HMBA of Tarn Plateau (51.8-54.0 wt% SiO2, Mg# 68-70) and the HMA of Glacier Creek (58.3-58.7 wt% SiO2, Mg# 63-64). The strongly depleted HREE nature of these Type 3 units and their decreasing Mg# with increasing SiO2 suggests fractionation from a high-Mg basaltic parent derived from a source with residual garnet. Another basaltic andesite unit, Cathedral Crag (52.2-52.6 wt% SiO2, Mg# 55-58), is an Mg-poor differentiate of the Type 3 endmember. The calc

  6. Attachment of lead wires to thin film thermocouples mounted on high temperature materials using the parallel gap welding process

    NASA Technical Reports Server (NTRS)

    Holanda, Raymond; Kim, Walter S.; Pencil, Eric; Groth, Mary; Danzey, Gerald A.

    1990-01-01

    Parallel gap resistance welding was used to attach lead wires to sputtered thin film sensors. Ranges of optimum welding parameters to produce an acceptable weld were determined. The thin film sensors were Pt13Rh/Pt thermocouples; they were mounted on substrates of MCrAlY-coated superalloys, aluminum oxide, silicon carbide and silicon nitride. The entire sensor system is designed to be used on aircraft engine parts. These sensor systems, including the thin-film-to-lead-wire connectors, were tested to 1000 C.

  7. Device Processing of II-VI Semiconductor Films and Quantum Well Structures

    DTIC Science & Technology

    1991-03-07

    The objectives of this program is to develop a device processing technology necessary for proper utilization of Hg-based heterostructures and...superlattices in device applications. The specific focus or long term goal guiding the direction of the program is to develop the devices and processing ... technology required for an IR focal plane integrated with on-board signal processing electronics.

  8. Chemical and Mineralogical Characterization of a Hematite-bearing Ridge on Mauna Kea, Hawaii: A Potential Mineralogical Process Analog for the Mount Sharp Hematite Ridge

    NASA Technical Reports Server (NTRS)

    Graff, T. G.; Morris, R. V.; Ming, D. W.; Hamilton, J. C.; Adams, M.; Fraeman, A. A.; Arvidson, R. E.; Catalano, J. G.; Mertzman, S. A.

    2014-01-01

    The Mars Science Laboratory (MSL) rover Curiosity landed in Gale Crater in August 2012 and is currently roving towards the layered central mound known as Mount Sharp [1]. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) hyperspectral data indicate Mount Sharp contains an 5 km stratigraphic sequence including Fe-Mg smectites, hematite, and hydrated sulfates in the lower layers separated by an unconformity from the overlying anhydrous strata [1,2,3]. Hematite was initially detected in CRISM data to occur in the lower sulfate layers on the north side of the mound [2]. [3] further mapped a distinct hematite detection occurring as part of a 200 m wide ridge that extends 6.5 km NE-SW, approximately parallel with the base of Mount Sharp. It is likely a target for in-situ analyses by Curiosity. We document here the occurrence of a stratum of hematite-bearing breccia that is exposed on the Puu Poliahu cinder cone near the summit of Mauna Kea volcano (Hawaii) (Fig.1). The stratum is more resistant to weathering than surrounding material, giving it the appearance of a ridge. The Mauna Kea hematite ridge is thus arguably a potential terrestrial mineralogical and process analog for the Gale Crater hematite ridge. We are acquiring a variety of chemical and mineralogical data on the Mauna Kea samples, with a focus on the chemical and mineralogical information already available or planned for the Gale hematite ridge.

  9. Influence of material quality and process-induced defects on semiconductor device performance and yield

    NASA Technical Reports Server (NTRS)

    Porter, W. A.; Mckee, W. R.

    1974-01-01

    An overview of major causes of device yield degradation is presented. The relationships of device types to critical processes and typical defects are discussed, and the influence of the defect on device yield and performance is demonstrated. Various defect characterization techniques are described and applied. A correlation of device failure, defect type, and cause of defect is presented in tabular form with accompanying illustrations.

  10. 21 CFR 801.150 - Medical devices; processing, labeling, or repacking.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical devices; processing, labeling, or... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES LABELING Other Exemptions § 801.150 Medical devices... shipment or other delivery of a device which is, in accordance with the practice of the trade, to...

  11. 21 CFR 801.150 - Medical devices; processing, labeling, or repacking.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical devices; processing, labeling, or... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES LABELING Other Exemptions § 801.150 Medical devices... shipment or other delivery of a device which is, in accordance with the practice of the trade, to...

  12. Fabrication of Fully Solution Processed Inorganic Nanocrystal Photovoltaic Devices.

    PubMed

    Townsend, Troy K; Durastanti, Dario; Heuer, William B; Foos, Edward E; Yoon, Woojun; Tischler, Joseph G

    2016-07-08

    We demonstrate a method for the preparation of fully solution processed inorganic solar cells from a spin and spray coating deposition of nanocrystal inks. For the photoactive absorber layer, colloidal CdTe and CdSe nanocrystals (3-5 nm) are synthesized using an inert hot injection technique and cleaned with precipitations to remove excess starting reagents. Similarly, gold nanocrystals (3-5 nm) are synthesized under ambient conditions and dissolved in organic solvents. In addition, precursor solutions for transparent conductive indium tin oxide (ITO) films are prepared from solutions of indium and tin salts paired with a reactive oxidizer. Layer-by-layer, these solutions are deposited onto a glass substrate following annealing (200-400 °C) to build the nanocrystal solar cell (glass/ITO/CdSe/CdTe/Au). Pre-annealing ligand exchange is required for CdSe and CdTe nanocrystals where films are dipped in NH4Cl:methanol to replace long-chain native ligands with small inorganic Cl(-) anions. NH4Cl(s) was found to act as a catalyst for the sintering reaction (as a non-toxic alternative to the conventional CdCl2(s) treatment) leading to grain growth (136±39 nm) during heating. The thickness and roughness of the prepared films are characterized with SEM and optical profilometry. FTIR is used to determine the degree of ligand exchange prior to sintering, and XRD is used to verify the crystallinity and phase of each material. UV/Vis spectra show high visible light transmission through the ITO layer and a red shift in the absorbance of the cadmium chalcogenide nanocrystals after thermal annealing. Current-voltage curves of completed devices are measured under simulated one sun illumination. Small differences in deposition techniques and reagents employed during ligand exchange have been shown to have a profound influence on the device properties. Here, we examine the effects of chemical (sintering and ligand exchange agents) and physical treatments (solution concentration

  13. Process for making photovoltaic devices and resultant product

    DOEpatents

    Foote, James B.; Kaake, Steven A. F.; Meyers, Peter V.; Nolan, James F.

    1993-09-28

    A process and apparatus (70) for making a large area photovoltaic device (22) that is capable of generating low cost electrical power. The apparatus (70) for performing the process includes an enclosure (126) providing a controlled environment in which an oven (156) is located. At least one and preferably a plurality of deposition stations (74,76,78) provide heated vapors of semiconductor material within the oven (156) for continuous elevated temperature deposition of semiconductor material on a sheet substrate (24) including a glass sheet (26) conveyed within the oven. The sheet substrate (24) is conveyed on a roller conveyor (184) within the oven (156) and the semiconductor material whose main layer (82) is cadmium telluride is deposited on an upwardly facing surface (28) of the substrate by each deposition station from a location within the oven above the roller conveyor. A cooling station (86) rapidly cools the substrate (24) after deposition of the semiconductor material thereon to strengthen the glass sheet of the substrate.

  14. Process for making photovoltaic devices and resultant product

    DOEpatents

    Foote, James B.; Kaake, Steven A. F.; Meyers, Peter V.; Nolan, James F.

    1996-07-16

    A process and apparatus (70) for making a large area photovoltaic device (22) that is capable of generating low cost electrical power. The apparatus (70) for performing the process includes an enclosure (126) providing a controlled environment in which an oven (156) is located. At least one and preferably a plurality of deposition stations (74,76,78) provide heated vapors of semiconductor material within the oven (156) for continuous elevated temperature deposition of semiconductor material on a sheet substrate (24) including a glass sheet (26) conveyed within the oven. The sheet substrate (24) is conveyed on a roller conveyor (184) within the oven (156) and the semiconductor material whose main layer (82) is cadmium telluride is deposited on an upwardly facing surface (28) of the substrate by each deposition station from a location within the oven above the roller conveyor. A cooling station (86) rapidly cools the substrate (24) after deposition of the semiconductor material thereon to strengthen the glass sheet of the substrate.

  15. Process for making photovoltaic devices and resultant product

    DOEpatents

    Foote, James B.; Kaake, Steven A. F.; Meyers, Peter V.; Nolan, James F.

    1995-11-28

    A process and apparatus (70) for making a large area photovoltaic device (22) that is capable of generating low cost electrical power. The apparatus (70) for performing the process includes an enclosure (126) providing a controlled environment in which an oven (156) is located. At least one and preferably a plurality of deposition stations (74,76,78) provide heated vapors of semiconductor material within the oven (156) for continuous elevated temperature deposition of semiconductor material on a sheet substrate (24) including a glass sheet (26) conveyed within the oven. The sheet substrate (24) is conveyed on a roller conveyor (184) within the oven (156) and the semiconductor material whose main layer (82) is cadmium telluride is deposited on an upwardly facing surface (28) of the substrate by each deposition station from a location within the oven above the roller conveyor. A cooling station (86) rapidly cools the substrate (24) after deposition of the semiconductor material thereon to strengthen the glass sheet of the substrate.

  16. Rates and processes of channel development and recovery following the 1980 eruption of Mount St. Helens, Washington

    USGS Publications Warehouse

    Meyer, D.F.; Martinson, H.A.

    1989-01-01

    Stream channel development in response to the eruption of Mount St. Helens on 18 May 1980, resulted in some of the largest sediment yields documented anywhere on earth. Development of new channels on the 2.7 km3 debris-avalanche deposit in the North Fork Toutle River caused net erosion of as much as 1.3 X 105 t km-2 annually. The principal effect of the blast on channels throughout the 550 km2 devastated area was the subsequent rapid delivery of sand- and silt-size sediment eroded from hillslopes. Since 1984, instability and sedimentation in lahar and blast-affected channels have been within the range of pre-1980 levels. -from Authors

  17. Advanced Simulation Technology to Design Etching Process on CMOS Devices

    NASA Astrophysics Data System (ADS)

    Kuboi, Nobuyuki

    2015-09-01

    Prediction and control of plasma-induced damage is needed to mass-produce high performance CMOS devices. In particular, side-wall (SW) etching with low damage is a key process for the next generation of MOSFETs and FinFETs. To predict and control the damage, we have developed a SiN etching simulation technique for CHxFy/Ar/O2 plasma processes using a three-dimensional (3D) voxel model. This model includes new concepts for the gas transportation in the pattern, detailed surface reactions on the SiN reactive layer divided into several thin slabs and C-F polymer layer dependent on the H/N ratio, and use of ``smart voxels''. We successfully predicted the etching properties such as the etch rate, polymer layer thickness, and selectivity for Si, SiO2, and SiN films along with process variations and demonstrated the 3D damage distribution time-dependently during SW etching on MOSFETs and FinFETs. We confirmed that a large amount of Si damage was caused in the source/drain region with the passage of time in spite of the existing SiO2 layer of 15 nm in the over etch step and the Si fin having been directly damaged by a large amount of high energy H during the removal step of the parasitic fin spacer leading to Si fin damage to a depth of 14 to 18 nm. By analyzing the results of these simulations and our previous simulations, we found that it is important to carefully control the dose of high energy H, incident energy of H, polymer layer thickness, and over-etch time considering the effects of the pattern structure, chamber-wall condition, and wafer open area ratio. In collaboration with Masanaga Fukasawa and Tetsuya Tatsumi, Sony Corporation. We thank Mr. T. Shigetoshi and Mr. T. Kinoshita of Sony Corporation for their assistance with the experiments.

  18. Surface mount component jig

    DOEpatents

    Kronberg, James W.

    1990-08-07

    A device for bending and trimming the pins of a dual-inline-package component and the like for surface mounting rather than through mounting to a circuit board comprises, in a first part, in pin cutter astride a holder having a recess for holding the component, a first spring therebetween, and, in a second part, two flat members pivotally interconnected by a hinge and urged to an upward peaked position from a downward peaked position by a second spring. As a downward force is applied to the pin cutter it urges the holder downward, assisted by the first spring and a pair of ridges riding on shoulders of the holder, to carry the component against the upward peaked flat members which guide the pins outwardly. As the holder continues downwardly, the flat members pivot to the downward peaked position bending the pins upwardly against the sides of the holder. When the downward movement is met with sufficient resistance, the ridges of the pin cutter ride over the holder's shoulders to continue downward to cut any excess length of pin.

  19. A microgravity isolation mount

    NASA Technical Reports Server (NTRS)

    Jones, D. I.; Owens, A. R.; Owen, R. G.; Roberts, G.; Wyn-Roberts, D. W.; Robinson, A. A.

    1987-01-01

    The design and preliminary testing of a system for isolating microgravity sensitive payloads from spacecraft vibrational and impulsive disturbances is discussed. The Microgravity Isolation Mount (MGIM) concept consists of a platform which floats almost freely within a limited volume inside the spacecraft, but which is constrained to follow the spacecraft in the long term by means of very weak springs. The springs are realized magnetically and form part of a six degree of freedom active magnetic suspension system. The latter operates without any physical contact between the spacecraft and the platform itself. Power and data transfer is also performed by contactless means. Specifications are given for the expected level of input disturbances and the tolerable level of platform acceleration. The structural configuration of the mount is discussed and the design of the principal elements, i.e., actuators, sensors, control loops and power/data transfer devices are described. Finally, the construction of a hardware model that is being used to verify the predicted performance of the MGIM is described.

  20. Extended device profiles and testing procedures for the approval process of integrated medical devices using the IEEE 11073 communication standard.

    PubMed

    Janß, Armin; Thorn, Johannes; Schmitz, Malte; Mildner, Alexander; Dell'Anna-Pudlik, Jasmin; Leucker, Martin; Radermacher, Klaus

    2017-08-25

    Nowadays, only closed and proprietary integrated operating room systems (IORS) from big manufacturers are available on the market. Hence, the interconnection of components from third-party vendors is only possible with increased time and costs. In the context of the German Federal Ministry of Education and Research (BMBF)-funded project OR.NET (2012-2016), the open integration of medical devices from different manufacturers was addressed. An integrated operating theater based on the open communication standard IEEE 11073 shall give clinical operators the opportunity to choose medical devices independently of the manufacturer. This approach would be advantageous especially for hospital operators and small- and medium-sized enterprises (SME) of medical devices. Actual standards and concepts regarding technical feasibility and the approval process do not cope with the requirements for a modular integration of medical devices in the operating room (OR), based on an open communication standard. Therefore, innovative approval strategies and corresponding certification and test procedures, which cover actual legal and normative standards, have to be developed in order to support the future risk management and the usability engineering process of open integrated medical devices in the OR. The use of standardized device and service profiles and a three-step testing procedure, including conformity, interoperability and integration tests are described in this paper and shall support the manufacturers to integrate their medical devices without disclosing the medical devices' risk analysis and related confidential expertise or proprietary information.

  1. 21 CFR 892.1770 - Diagnostic x-ray tube mount.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Diagnostic x-ray tube mount. 892.1770 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1770 Diagnostic x-ray tube mount. (a) Identification. A diagnostic x-ray tube mount is a device intended to support and to position the diagnostic...

  2. 21 CFR 892.1770 - Diagnostic x-ray tube mount.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Diagnostic x-ray tube mount. 892.1770 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1770 Diagnostic x-ray tube mount. (a) Identification. A diagnostic x-ray tube mount is a device intended to support and to position the diagnostic...

  3. 21 CFR 892.1770 - Diagnostic x-ray tube mount.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Diagnostic x-ray tube mount. 892.1770 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1770 Diagnostic x-ray tube mount. (a) Identification. A diagnostic x-ray tube mount is a device intended to support and to position the diagnostic...

  4. 21 CFR 892.1770 - Diagnostic x-ray tube mount.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Diagnostic x-ray tube mount. 892.1770 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1770 Diagnostic x-ray tube mount. (a) Identification. A diagnostic x-ray tube mount is a device intended to support and to position the diagnostic...

  5. 21 CFR 892.1770 - Diagnostic x-ray tube mount.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Diagnostic x-ray tube mount. 892.1770 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1770 Diagnostic x-ray tube mount. (a) Identification. A diagnostic x-ray tube mount is a device intended to support and to position the diagnostic...

  6. Frameless Stereotactic Insertion of Viewsite Brain Access System with Microscope-Mounted Tracking Device for Resection of Deep Brain Lesions: Technical Report

    PubMed Central

    Chakraborty, Shamik; Lall, Rohan; Fanous, Andrew A; Boockvar, John; Langer, David J

    2017-01-01

    The surgical management of deep brain tumors is often challenging due to the limitations of stereotactic needle biopsies and the morbidity associated with transcortical approaches. We present a novel microscopic navigational technique utilizing the Viewsite Brain Access System (VBAS) (Vycor Medical, Boca Raton, FL, USA) for resection of a deep parietal periventricular high-grade glioma as well as another glioma and a cavernoma with no related morbidity. The approach utilized a navigational tracker mounted on a microscope, which was set to the desired trajectory and depth. It allowed gentle continuous insertion of the VBAS directly to a deep lesion under continuous microscopic visualization, increasing safety by obviating the need to look up from the microscope and thus avoiding loss of trajectory. This technique has broad value for the resection of a variety of deep brain lesions. PMID:28331774

  7. Frameless Stereotactic Insertion of Viewsite Brain Access System with Microscope-Mounted Tracking Device for Resection of Deep Brain Lesions: Technical Report.

    PubMed

    White, Tim; Chakraborty, Shamik; Lall, Rohan; Fanous, Andrew A; Boockvar, John; Langer, David J

    2017-02-04

    The surgical management of deep brain tumors is often challenging due to the limitations of stereotactic needle biopsies and the morbidity associated with transcortical approaches. We present a novel microscopic navigational technique utilizing the Viewsite Brain Access System (VBAS) (Vycor Medical, Boca Raton, FL, USA) for resection of a deep parietal periventricular high-grade glioma as well as another glioma and a cavernoma with no related morbidity. The approach utilized a navigational tracker mounted on a microscope, which was set to the desired trajectory and depth. It allowed gentle continuous insertion of the VBAS directly to a deep lesion under continuous microscopic visualization, increasing safety by obviating the need to look up from the microscope and thus avoiding loss of trajectory. This technique has broad value for the resection of a variety of deep brain lesions.

  8. Mount St. Helens Rebirth

    NASA Technical Reports Server (NTRS)

    2002-01-01

    could be seen falling from the sky over the Great Plains, more than 1500 km distant. This image was acquired by Landsat 7 on Aug. 22, 1999. It was produced at 30-m resolution using bands 3, 2, and 1 to display red, green, and blue, respectively ('true color'). Some of the effects of the massive eruption on May 18, 1980, can still be seen clearly, especially on the northern and eastern flanks of Mount St. Helens, which are still mostly barren (shades of white and gray). The crater is in the center of the image. Note the streaking from the crater (gray on the image). These are the remnants of pyroclastic flows (superheated avalanches of gas, ash and pieces of rock) that carved deep channels down the slopes and onto the relatively flat areas near the base of the mountain. The partially-filled Spirit Lake can be seen just to the northeast of the crater (blue-black on the image), and the where most of the energy was directed during the blast is the gray area immediately to the northwest of the crater. However, on other parts of the mountain, the rejuvenation process is obvious. Ash deposits have supplied minerals which have accelerated vegetation growth (various shades of green). Though far from what it looked like 20 years ago, Mount St Helens is actively recovering. Data courtesy Landsat 7 project and EROS Data Center. Caption by James Foster, NASA Goddard Space Flight Center.

  9. Multipass optical device and process for gas and analyte determination

    DOEpatents

    Bernacki, Bruce E.

    2011-01-25

    A torus multipass optical device and method are described that provide for trace level determination of gases and gas-phase analytes. The torus device includes an optical cavity defined by at least one ring mirror. The mirror delivers optical power in at least a radial and axial direction and propagates light in a multipass optical path of a predefined path length.

  10. Device processing of wide bandgap semiconductors - challenges and directions

    SciTech Connect

    Pearton, S.J.; Shul, R.J.; Zolper, J.C.

    1997-10-01

    The wide gap materials SiC, GaN and to a lesser extent diamond are attracting great interest for high power/high temperature electronics. There are a host of device processing challenges presented by these materials because of their physical and chemical stability, including difficulty in achieving stable, low contact resistances, especially for one conductivity type, absence of convenient wet etch recipes, generally slow dry etch rates, the high temperatures needed for implant activation, control of suitable gate dielectrics and the lack of cheap, large diameter conducting and semi-insulating substrates. The relatively deep ionization levels of some of the common dopants (Mg, in GaN; B, Al in SiC; P in diamond) means that carrier densities may be low at room temperature even if the impurity is electrically active - this problem will be reduced at elevated temperature, and thus contact resistances will be greatly improved provided the metallization is stable and reliable. Some recent work with CoSi{sub x} on SiC and W-alloys on GaN show promise for improved ohmic contacts. The issue of unintentional hydrogen passivation of dopants will also be covered - this leads to strong increases in resistivity of p-SiC and GaN, but to large decreases in resistivity of diamond. Recent work on development of wet etches has found recipes for AlN (KOH), while photochemical etching of SiC and GaN has been reported. In the latter cases p-type materials is not etched, which can be a major liability in some devices. The dry etch results obtained with various novel reactors, including ICP, ECR and LE4 will be compared - the high ion densities in the former techniques produce the highest etch rates for strongly-bonded materials, but can lead to preferential loss of N from the nitrides and therefore to a highly conducting surface. This is potentially a major problem for fabrication of dry etched, recessed gate FET structures.

  11. PV module mounting method and mounting assembly

    DOEpatents

    Lenox, Carl J.S.; Johnson, Kurt M.

    2013-04-23

    A method for mounting PV modules to a deck includes selecting PV module layout pattern so that adjacent PV module edges are spaced apart. PV mounting and support assemblies are secured to the deck according to the layout pattern using fasteners extending into the deck. The PV modules are placed on the PV mounting and support assemblies. Retaining elements are located over and secured against the upper peripheral edge surfaces of the PV modules so to secure them to the deck with the peripheral edges of the PV modules spaced apart from the deck. In some examples a PV module mounting assembly, for use on a shingled deck, comprises flashing, a base mountable on the flashing, a deck-penetrating fastener engageable with the base and securable to the deck so to secure the flashing and the base to the shingled deck, and PV module mounting hardware securable to the base.

  12. Quality management for the processing of medical devices.

    PubMed

    Klosz, Kerstin

    2008-09-03

    Rules on the reprocessing of medical devices were put into place in Germany in 2001. The present article explains the background situation and the provisions that are currently in force.The implementation of these statutory requirements is described using the example of the quality management system of Germany's market leader, Vanguard AG. This quality management system was successfully certified pursuant to DIN EN ISO 13485:2003 for the scope "reprocessing of medical devices", including class "critical C", in accordance with the recommendation of the Commission for Hospital Hygiene and the Prevention of Infection at the Robert-Koch-Institute (RKI) and the German Federal Institute for Drugs and Medical Devices (BfArM) on the "Hygiene requirements for reprocessing of medical devices".

  13. Initial Effects of the Mount St. Helens Eruption on Nitrogen Cycle and Related Chemical Processes in Ryan Lake

    PubMed Central

    Dahm, Clifford N.; Baross, John A.; Ward, Amelia K.; Lilley, Marvin D.; Sedell, James R.

    1983-01-01

    Ryan Lake, a 1.6-hectare basin lake near the periphery of the tree blowdown area in the blast zone 19 km north of Mount St. Helens, was studied from August to October 1980 to determine the microbial and chemical response of the lake to the eruption. Nutrient enrichment through the addition of fresh volcanic material and the organic debris from the surrounding conifer forest stimulated intense microbial activity. Concentrations of such nutrients as phosphorus, sulfur, manganese, iron, and dissolved organic carbon were markedly elevated. Nitrogen cycle activity was especially important to the lake ecosystem in regulating biogeochemical cycling owing to the limiting abundance of nitrogen compounds. Nitrogen fixation, both aerobic and anaerobic, was active from aerobic benthic and planktonic cyanobacteria with rates up to 210 nmol of N2 cm−1 h−1 and 667 nmol of N2 liter−1 h−1, respectively, and from anaerobic bacteria with rates reaching 220 nmol of N2 liter−1 h−1. Nitrification was limited to the aerobic epilimnion and littoral zones where rates were 43 and 261 nmol of NO2 liter−1 day−1, respectively. Potential denitrification rates were as high as 30 μmol of N2O liter−1 day−1 in the anaerobic hypolimnion. Total bacterial numbers ranged from 1 × 106 to 3 × 108 ml−1 with the number of viable sulfur-metal-oxidizing bacteria reaching 2 × 106 ml−1 in the hypolimnion. A general scenario for the microbial cycling of nitrogen, carbon, sulfur, and metals is presented for volcanically impacted lakes. The important role of nitrogen as these lakes recover from the cataclysmic eruption and proceed back towards their prior status as oligotrophic alpine lakes is emphasized. Images PMID:16346298

  14. Initial effects of the mount st. Helens eruption on nitrogen cycle and related chemical processes in ryan lake.

    PubMed

    Dahm, C N; Baross, J A; Ward, A K; Lilley, M D; Sedell, J R

    1983-05-01

    Ryan Lake, a 1.6-hectare basin lake near the periphery of the tree blowdown area in the blast zone 19 km north of Mount St. Helens, was studied from August to October 1980 to determine the microbial and chemical response of the lake to the eruption. Nutrient enrichment through the addition of fresh volcanic material and the organic debris from the surrounding conifer forest stimulated intense microbial activity. Concentrations of such nutrients as phosphorus, sulfur, manganese, iron, and dissolved organic carbon were markedly elevated. Nitrogen cycle activity was especially important to the lake ecosystem in regulating biogeochemical cycling owing to the limiting abundance of nitrogen compounds. Nitrogen fixation, both aerobic and anaerobic, was active from aerobic benthic and planktonic cyanobacteria with rates up to 210 nmol of N(2) cm h and 667 nmol of N(2) liter h, respectively, and from anaerobic bacteria with rates reaching 220 nmol of N(2) liter h. Nitrification was limited to the aerobic epilimnion and littoral zones where rates were 43 and 261 nmol of NO(2) liter day, respectively. Potential denitrification rates were as high as 30 mumol of N(2)O liter day in the anaerobic hypolimnion. Total bacterial numbers ranged from 1 x 10 to 3 x 10 ml with the number of viable sulfur-metal-oxidizing bacteria reaching 2 x 10 ml in the hypolimnion. A general scenario for the microbial cycling of nitrogen, carbon, sulfur, and metals is presented for volcanically impacted lakes. The important role of nitrogen as these lakes recover from the cataclysmic eruption and proceed back towards their prior status as oligotrophic alpine lakes is emphasized.

  15. 21 CFR 820.80 - Receiving, in-process, and finished device acceptance.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...-process, and finished device acceptance. (a) General. Each manufacturer shall establish and maintain... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Receiving, in-process, and finished device... as conforming to specified requirements. Acceptance or rejection shall be documented. (c) In-process...

  16. 21 CFR 801.122 - Medical devices for processing, repacking, or manufacturing.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... manufacturing. 801.122 Section 801.122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND....122 Medical devices for processing, repacking, or manufacturing. A device intended for processing... act if its label bears the statement “Caution: For manufacturing, processing, or repacking”....

  17. 21 CFR 801.122 - Medical devices for processing, repacking, or manufacturing.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... manufacturing. 801.122 Section 801.122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND....122 Medical devices for processing, repacking, or manufacturing. A device intended for processing... act if its label bears the statement “Caution: For manufacturing, processing, or repacking”....

  18. 21 CFR 801.122 - Medical devices for processing, repacking, or manufacturing.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... manufacturing. 801.122 Section 801.122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND....122 Medical devices for processing, repacking, or manufacturing. A device intended for processing... act if its label bears the statement “Caution: For manufacturing, processing, or repacking”....

  19. 21 CFR 801.122 - Medical devices for processing, repacking, or manufacturing.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... manufacturing. 801.122 Section 801.122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND....122 Medical devices for processing, repacking, or manufacturing. A device intended for processing... act if its label bears the statement “Caution: For manufacturing, processing, or repacking”....

  20. 21 CFR 801.122 - Medical devices for processing, repacking, or manufacturing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... manufacturing. 801.122 Section 801.122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND....122 Medical devices for processing, repacking, or manufacturing. A device intended for processing... act if its label bears the statement “Caution: For manufacturing, processing, or repacking”....

  1. Fixed mount wavefront sensor

    DOEpatents

    Neal, Daniel R.

    2000-01-01

    A rigid mount and method of mounting for a wavefront sensor. A wavefront dissector, such as a lenslet array, is rigidly mounted at a fixed distance relative to an imager, such as a CCD camera, without need for a relay imaging lens therebetween.

  2. Thin film photovoltaic device and process of manufacture

    DOEpatents

    Albright, S.P.; Chamberlin, R.

    1999-02-09

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells. 13 figs.

  3. Thin film photovoltaic device and process of manufacture

    DOEpatents

    Albright, Scot P.; Chamberlin, Rhodes

    1999-02-09

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells.

  4. Thin film photovoltaic device and process of manufacture

    DOEpatents

    Albright, Scot P.; Chamberlin, Rhodes

    1997-10-07

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells.

  5. Thin film photovoltaic device and process of manufacture

    DOEpatents

    Albright, S.P.; Chamberlin, R.

    1997-10-07

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells. 13 figs.

  6. Thin film photovoltaic device and process of manufacture

    SciTech Connect

    Albright, S.P.; Chamberlin, R.

    1999-02-09

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells. 13 figs.

  7. Quality management for the processing of medical devices

    PubMed Central

    Klosz, Kerstin

    2008-01-01

    Rules on the reprocessing of medical devices were put into place in Germany in 2001. The present article explains the background situation and the provisions that are currently in force. The implementation of these statutory requirements is described using the example of the quality management system of Germany’s market leader, Vanguard AG. This quality management system was successfully certified pursuant to DIN EN ISO 13485:2003 for the scope "reprocessing of medical devices", including class “critical C”, in accordance with the recommendation of the Commission for Hospital Hygiene and the Prevention of Infection at the Robert-Koch-Institute (RKI) and the German Federal Institute for Drugs and Medical Devices (BfArM) on the “Hygiene requirements for reprocessing of medical devices”. PMID:20204094

  8. CMOS Devices and Beyond — A Process Integration Perspective

    NASA Astrophysics Data System (ADS)

    Hutchby, James A.; Zhirnov, Victor; Cavin, Ralph; Bourianoff, George

    2003-09-01

    Development of CMOS technology is approaching severe technological limits in the next 10 - 15 years. Overcoming these limits will demand introduction of new manufacturable materials and device structures to extend the speed of silicon integrated circuits at the historical rate of 17 % per year to the end of the 2001 International Technology Roadmap for Semiconductors (2016). Following a brief discussion of these limits, this paper will review the most promising approaches to new materials, device structures and issues related to their integration in advanced CMOS structures. The paper will conclude with some brief observations and issues regarding extension of CMOS-like FET structures via new nano-scale materials.

  9. Optical and electronic processes in organic photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Myers, Jason David

    Organic photovoltaic devices (OPVs) have become a promising research field. OPVs have intrinsic advantages over conventional inorganic technologies: they can be produced from inexpensive source materials using high-throughput techniques on a variety of substrates, including glass and flexible plastics. However, organic semiconductors have radically different operation characteristics which present challenges to achieving high performance OPVs. To increase the efficiency of OPVs, knowledge of fundamental operation principles is crucial. Here, the photocurrent behavior of OPVs with different heterojunction architectures was studied using synchronous photocurrent detection. It was revealed that photocurrent is always negative in planar and planar-mixed heterojunction devices as it is dominated by photocarrier diffusion. In mixed layer devices, however, the drift current dominates except at biases where the internal electric field is negligible. At these biases, the diffusion current dominates, exhibiting behavior that is correlated to the optical interference patterns within the device active layer. Further, in an effort to increase OPV performance without redesigning the active layer, soft-lithographically stamped microlens arrays (MLAs) were developed and applied to a variety of devices. MLAs refract and reflect incident light, giving light a longer path length through the active layer compared to a device without a MLA; this increases absorption and photocurrent. The experimentally measured efficiency enhancements range from 10 to 60%, with the bulk of this value coming from increased photocurrent. Additionally, because the enhancement is dependent on the substrate/air interface and not the active layer, MLAs are applicable to all organic material systems. Finally, novel architectures for bifunctional organic optoelectronic devices (BFDs), which can function as either an OPV or an organic light emitting device (OLED), were investigated. Because OPVs and OLEDs have

  10. Process for fabricating device structures for real-time process control of silicon doping

    DOEpatents

    Weiner, Kurt H.

    2001-01-01

    Silicon device structures designed to allow measurement of important doping process parameters immediately after the doping step has occurred. The test structures are processed through contact formation using standard semiconductor fabrication techniques. After the contacts have been formed, the structures are covered by an oxide layer and an aluminum layer. The aluminum layer is then patterned to expose the contact pads and selected regions of the silicon to be doped. Doping is then performed, and the whole structure is annealed with a pulsed excimer laser. But laser annealing, unlike standard annealing techniques, does not effect the aluminum contacts because the laser light is reflected by the aluminum. Once the annealing process is complete, the structures can be probed, using standard techniques, to ascertain data about the doping step. Analysis of the data can be used to determine probable yield reductions due to improper execution of the doping step and thus provide real-time feedback during integrated circuit fabrication.

  11. The Processing of High Temperature Ceramic Superconducting Devices. Volume 1.

    DTIC Science & Technology

    1992-01-31

    vacuum packaging of HTS devices. I STI further recognized that there is an urgent need for these components. Based on experience from the infrared...develop "common modules" which are produced at low cost, reliable, industry standardized, flexible, and universally accepted for vacuum packaging cryogenically

  12. Germanium accumulation-mode charge-injection-device process

    NASA Technical Reports Server (NTRS)

    Moore, T. G.

    1981-01-01

    Gallium doped germanium is suitable for applications in the detection of far infrared radiation. Measurements were made on experimental photoconductors (PCs), accumulation mode charge injection devices (AMCIDs), and the SSPC (a switched, sampled PC alternative to the AMCID). The results indicate that the SSPC, which had a responsivity near 1.5 amp/watt, is desirable for use in two dimensional detector arrays.

  13. Evaporant feed device facilitates flash vapor deposition process in vacuum

    NASA Technical Reports Server (NTRS)

    Hermann, W. A.; Stirn, R. J.

    1967-01-01

    Mechanism using a helix sequentially feeds prescribed amounts of metal charges into an evaporation boat used for flash vapor deposition of the evaporants onto a substrate in a vacuum chamber. The helix is advanced by external manual controls extending through sealed feed- through devices into the chamber wall.

  14. Inplementation of an automated signal processing approach for the analysis of chemical spectral signatures collected from FT-IR mounted in an aircraft

    SciTech Connect

    Kroutil, Robert T

    2008-01-01

    The automated detection of chemical spectral signatures using a passive infrared Fourier Transform Infrared (FT-IR) Spectrometer mounted in an aircraft is a difficult challenge due to the small total infrared energy contribution of a particular chemical species compared to the background signature. The detection of spectral signatures is complicated by the fact that a large, widely varying infrared background is present that is coupled with the presence of a number of chemical interferents in the atmosphere. This paper describes a mathematical technique that has been demonstrated to automatically detect specific chemical species in an automated processing environment. The data analysis methodology has been demonstrated to be effective using data of low spectral resolution at low aircraft altitudes. An overview of the implementation and basic concepts of the approach are presented.

  15. Photovoltaic module mounting system

    DOEpatents

    Miros, Robert H. J. [Fairfax, CA; Mittan, Margaret Birmingham [Oakland, CA; Seery, Martin N [San Rafael, CA; Holland, Rodney H [Novato, CA

    2012-04-17

    A solar array mounting system having unique installation, load distribution, and grounding features, and which is adaptable for mounting solar panels having no external frame. The solar array mounting system includes flexible, pedestal-style feet and structural links connected in a grid formation on the mounting surface. The photovoltaic modules are secured in place via the use of attachment clamps that grip the edge of the typically glass substrate. The panel mounting clamps are then held in place by tilt brackets and/or mid-link brackets that provide fixation for the clamps and align the solar panels at a tilt to the horizontal mounting surface. The tilt brackets are held in place atop the flexible feet and connected link members thus creating a complete mounting structure.

  16. Photovoltaic module mounting system

    DOEpatents

    Miros, Robert H. J.; Mittan, Margaret Birmingham; Seery, Martin N; Holland, Rodney H

    2012-09-18

    A solar array mounting system having unique installation, load distribution, and grounding features, and which is adaptable for mounting solar panels having no external frame. The solar array mounting system includes flexible, pedestal-style feet and structural links connected in a grid formation on the mounting surface. The photovoltaic modules are secured in place via the use of attachment clamps that grip the edge of the typically glass substrate. The panel mounting clamps are then held in place by tilt brackets and/or mid-link brackets that provide fixation for the clamps and align the solar panels at a tilt to the horizontal mounting surface. The tilt brackets are held in place atop the flexible feet and connected link members thus creating a complete mounting structure.

  17. The role of the user within the medical device design and development process: medical device manufacturers' perspectives

    PubMed Central

    2011-01-01

    Background Academic literature and international standards bodies suggest that user involvement, via the incorporation of human factors engineering methods within the medical device design and development (MDDD) process, offer many benefits that enable the development of safer and more usable medical devices that are better suited to users' needs. However, little research has been carried out to explore medical device manufacturers' beliefs and attitudes towards user involvement within this process, or indeed what value they believe can be added by doing so. Methods In-depth interviews with representatives from 11 medical device manufacturers are carried out. We ask them to specify who they believe the intended users of the device to be, who they consult to inform the MDDD process, what role they believe the user plays within this process, and what value (if any) they believe users add. Thematic analysis is used to analyse the fully transcribed interview data, to gain insight into medical device manufacturers' beliefs and attitudes towards user involvement within the MDDD process. Results A number of high-level themes emerged, relating who the user is perceived to be, the methods used, the perceived value and barriers to user involvement, and the nature of user contributions. The findings reveal that despite standards agencies and academic literature offering strong support for the employment formal methods, manufacturers are still hesitant due to a range of factors including: perceived barriers to obtaining ethical approval; the speed at which such activity may be carried out; the belief that there is no need given the 'all-knowing' nature of senior health care staff and clinical champions; a belief that effective results are achievable by consulting a minimal number of champions. Furthermore, less senior health care practitioners and patients were rarely seen as being able to provide valuable input into the process. Conclusions Medical device manufacturers often

  18. Signal processing applications of massively parallel charge domain computing devices

    NASA Technical Reports Server (NTRS)

    Fijany, Amir (Inventor); Barhen, Jacob (Inventor); Toomarian, Nikzad (Inventor)

    1999-01-01

    The present invention is embodied in a charge coupled device (CCD)/charge injection device (CID) architecture capable of performing a Fourier transform by simultaneous matrix vector multiplication (MVM) operations in respective plural CCD/CID arrays in parallel in O(1) steps. For example, in one embodiment, a first CCD/CID array stores charge packets representing a first matrix operator based upon permutations of a Hartley transform and computes the Fourier transform of an incoming vector. A second CCD/CID array stores charge packets representing a second matrix operator based upon different permutations of a Hartley transform and computes the Fourier transform of an incoming vector. The incoming vector is applied to the inputs of the two CCD/CID arrays simultaneously, and the real and imaginary parts of the Fourier transform are produced simultaneously in the time required to perform a single MVM operation in a CCD/CID array.

  19. Methods of measurement for semiconductor materials, process control, and devices

    NASA Technical Reports Server (NTRS)

    Bullis, W. M. (Editor)

    1972-01-01

    Significant accomplishments include development of a procedure to correct for the substantial differences of transistor delay time as measured with different instruments or with the same instrument at different frequencies; association of infrared response spectra of poor quality germanium gamma ray detectors with spectra of detectors fabricated from portions of a good crystal that had been degraded in known ways; and confirmation of the excellent quality and cosmetic appearance of ultrasonic bonds made with aluminum ribbon wire. Work is continuing on measurement of resistivity of semiconductor crystals; study of gold-doped silicon, development of the infrared response technique; evaluation of wire bonds and die attachment; and measurement of thermal properties of semiconductor devices, delay time and related carrier transport properties in junction devices, and noise properties of microwave diodes.

  20. Guided-Wave Optic Devices for Integrated Optic Information Processing.

    DTIC Science & Technology

    1984-08-08

    integrating miniature optical components such as laser light sources, modulators, switches, deflectors , lenses, prisms, and detectors in a common substrate...ZnO composite waveguides, and 2 . Planar Guided-Wave Magneto- Optic Bragg Diffraction and Devices in YIG-GGG Waveguides. Some very significant progress... optical wavelength. We have recently obtained further theoretical results. ( 2 ) For example, as shown in Fig. l(a) and 1(b), the topographical

  1. Investigation of Charge Coupled Devices for Signal Processing.

    DTIC Science & Technology

    1980-12-01

    capacitor biased into inversion range but neglecting the interface edge effect to be illustrated in Fig.5.5. . 31 5.4 Lumped equivalent circuit model...Complete and simplifed equivalent circuit models for n-type MOS capacitor in inversion with interface edge effect . (a) Two-dimensional model. (b), (c...device is biased into inversion and the interface edge effect is neglected, the equivalent circuit of Figure 3.1 can be 29 OXIDE 1 BULK SEMICONDUCTOR

  2. A novel device for the study of somatosensory information processing

    PubMed Central

    Holden, Jameson K.; Nguyen, Richard H.; Francisco, Eric M.; Zhang, Zheng; Dennis, Robert G.; Tommerdahl, Mark

    2012-01-01

    Current methods for applying multi-site vibratory stimuli to the skin typically involve the use of multiple, individual vibrotactile stimulators. Limitations of such an arrangement include difficulty with both positioning the stimuli as well as ensuring that stimuli are delivered in a synchronized and deliberate manner. Previously, we reported a two-site tactile stimulator that was developed in order to solve these problems (Tannan et al., 2007a). Due to both the success of that novel stimulator and the limitations that were inherent in that device, we designed and fabricated a four-site stimulator that provides a number of advantages over the previous version. First, the device can stimulate four independent skin sites and is primarily designed for stimulating the digit tips. Second, the positioning of the probe tips has been re-designed to provide better ergonomic hand placement. Third, the device is much more portable than the previously-reported stimulator. Fourth, the stimulator head has a much smaller footprint on the table or surface where it resides. To demonstrate the capacity of the device for delivering tactile stimulation at four independent sites, a finger agnosia protocol, in the presence and absence of conditioning stimuli, was conducted on seventeen healthy control subjects. The study demonstrated that with increasing amplitudes of vibrotactile conditioning stimuli concurrent with the agnosia test, inaccuracies of digit identification increased, particularly at digits D3 and D4. The results are consistent with prior studies that implicated synchronization of adjacent and near-adjacent cortical ensembles with conditioning stimuli in impacting TOJ performance (Tommerdahl et al., 2007). PMID:22155443

  3. Process for attaching molecular wires and devices to carbon nanotubes and compositions thereof

    NASA Technical Reports Server (NTRS)

    Tour, James M. (Inventor); Bahr, Jeffrey L. (Inventor); Yang, Jiping (Inventor)

    2008-01-01

    The present invention is directed towards processes for covalently attaching molecular wires and molecular electronic devices to carbon nanotubes and compositions thereof. Such processes utilize diazonium chemistry to bring about this marriage of wire-like nanotubes with molecular wires and molecular electronic devices.

  4. A Review of the Design Process for Implantable Orthopedic Medical Devices

    PubMed Central

    Aitchison, G.A; Hukins, D.W.L; Parry, J.J; Shepherd, D.E.T; Trotman, S.G

    2009-01-01

    The design process for medical devices is highly regulated to ensure the safety of patients. This paper will present a review of the design process for implantable orthopedic medical devices. It will cover the main stages of feasibility, design reviews, design, design verification, manufacture, design validation, design transfer and design changes. PMID:19662153

  5. 76 FR 54777 - Center for Devices and Radiological Health 510(k) Clearance Process; Recommendations Proposed in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-02

    ... HUMAN SERVICES Food and Drug Administration Center for Devices and Radiological Health 510(k) Clearance... Health, The FDA 510(k) Clearance Process at 35 Years''; Public Meeting; Correction AGENCY: Food and Drug... Devices and the Public's Health, The FDA 510(k) Clearance Process at 35 Years.' '' The document...

  6. Distributed processing for features improvement in real-time portable medical devices.

    PubMed

    Mercado, Erwin John Saavedra

    2008-01-01

    Portable biomedical devices are being developed and incorporated in daily life. Nevertheless, their standalone capacity is diminished due to the lack of processing power required to face such duties as for example, signal artifacts robustness in EKG monitor devices. The following paper presents a multiprocessor architecture made from simple microcontrollers to provide an increase in processing performance, power consumption efficiency and lower cost.

  7. Mounting and Alignment of IXO Mirror Segments

    NASA Technical Reports Server (NTRS)

    Chan, Kai-Wing; Zhang, William; Evans, Tyler; McClelland, Ryan; Hong, Melinda; Mazzarella, James; Saha, Timo; Jalota, Lalit; Olsen, Lawrence; Byron, Glenn

    2010-01-01

    A suspension-mounting scheme is developed for the IXO (International X-ray Observatory) mirror segments in which the figure of the mirror segment is preserved in each stage of mounting. The mirror, first fixed on a thermally compatible strongback, is subsequently transported, aligned and transferred onto its mirror housing. In this paper, we shall outline the requirement, approaches, and recent progress of the suspension mount processes.

  8. 76 FR 81363 - Temperature-Indicating Devices; Thermally Processed Low-Acid Foods Packaged in Hermetically...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-28

    ... Devices; Thermally Processed Low-Acid Foods Packaged in Hermetically Sealed Containers; Correction AGENCY... (76 FR 11892). The final rule amended FDA's regulations for thermally processed low-acid foods...

  9. 75 FR 38118 - In the Matter of Certain Electronic Devices With Image Processing Systems, Components Thereof...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-01

    ... Associated Software; Notice of Investigation AGENCY: U.S. International Trade Commission. ACTION: Institution... processing systems, components thereof, and associated software by reason of infringement of certain claims... certain electronic devices with image processing systems, components thereof, and associated software...

  10. Glass-to-metal bonding process improves stability and performance of semiconductor devices

    NASA Technical Reports Server (NTRS)

    Trent, R. L.

    1970-01-01

    Anodic bonding of glass coverslips to photodiodes and photovoltaic devices eliminates the need for adhesive. The process requires relatively low temperatures /less than 560 degrees C/ and the metals and glass remain solid throughout the bonding process.

  11. The Fixture Device of the Horizontal Machining Center for the Input Tray Part Processing

    NASA Astrophysics Data System (ADS)

    Zhou, Ping

    The input tray part is key parts on the production of auto parts of the on the automatic line, this paper mainly studies on the horizontal machining center using the fixture device, the device to ensure the machining accuracy of the input tray part. Through the analysis of the positioning and clamping of the input tray part, design a clamp device, the device is applied in on the horizontal machining center, and on the basis of the fixture add auxiliary support device, in order to improve the input tray part rigidity and stability of processing.

  12. Direct coupled microwave thermal processing for photovoltaic device fabrication

    NASA Astrophysics Data System (ADS)

    Guidici, D. C.

    A microwave thermal processing technology has been developed which reduces cycle time and energy requirements for solar cell manufacture through the direct coupling of a tuned microwave field to the material processed. The microwave processing is shown to be feasible for both junction formation and metallization sintering; cells produced have an efficiency of 8%. Diffusion throughput is satisfactory if multiple wafer processing (coin stacks) is used. Metallization sintering throughput is, however, limited by the single wafer process capability, and another form of applicator would be necessary to make microwave heating economically attractive for this process.

  13. High bandwidth optical mount

    DOEpatents

    Bender, Donald A.; Kuklo, Thomas

    1994-01-01

    An optical mount, which directs a laser beam to a point by controlling the position of a light-transmitting optic, is stiffened so that a lowest resonant frequency of the mount is approximately one kilohertz. The optical mount, which is cylindrically-shaped, positions the optic by individually moving a plurality of carriages which are positioned longitudinally within a sidewall of the mount. The optical mount is stiffened by allowing each carriage, which is attached to the optic, to move only in a direction which is substantially parallel to a center axis of the optic. The carriage is limited to an axial movement by flexures or linear bearings which connect the carriage to the mount. The carriage is moved by a piezoelectric transducer. By limiting the carriage to axial movement, the optic can be kinematically clamped to a carriage.

  14. High bandwidth optical mount

    DOEpatents

    Bender, D.A.; Kuklo, T.

    1994-11-08

    An optical mount, which directs a laser beam to a point by controlling the position of a light-transmitting optic, is stiffened so that a lowest resonant frequency of the mount is approximately one kilohertz. The optical mount, which is cylindrically-shaped, positions the optic by individually moving a plurality of carriages which are positioned longitudinally within a sidewall of the mount. The optical mount is stiffened by allowing each carriage, which is attached to the optic, to move only in a direction which is substantially parallel to a center axis of the optic. The carriage is limited to an axial movement by flexures or linear bearings which connect the carriage to the mount. The carriage is moved by a piezoelectric transducer. By limiting the carriage to axial movement, the optic can be kinematically clamped to a carriage. 5 figs.

  15. Orthopaedic Device Approval Through the Premarket Approval Process: A Financial Feasibility Analysis for a Single Center.

    PubMed

    Yang, Brian W; Iorio, Matthew L; Day, Charles S

    2017-03-15

    The 2 main routes of medical device approval through the U.S. Food and Drug Administration are the premarket approval (PMA) process, which requires clinical trials, and the 510(k) premarket notification, which exempts devices from clinical trials if they are substantially equivalent to an existing device. Recently, there has been growing concern regarding the safety of devices approved through the 510(k) premarket notification. The PMA process decreases the potential for device recall; however, it is substantially more costly and time-consuming. Investors and medical device companies are only willing to invest in devices if they can expect to recoup their investment within a timeline of roughly 7 years. Our study utilizes financial modeling to assess the financial feasibility of approving various orthopaedic medical devices through the 510(k) and PMA processes. The expected time to recoup investment through the 510(k) process ranged from 0.585 years to 7.715 years, with an average time of 2.4 years; the expected time to recoup investment through the PMA route ranged from 2.9 years to 24.5 years, with an average time of 8.5 years. Six of the 13 orthopaedic device systems that we analyzed would require longer than our 7-year benchmark to recoup the investment costs of the PMA process. With the 510(k) premarket notification, only 1 device system would take longer than 7 years to recoup its investment costs. Although the 510(k) premarket notification has demonstrated safety concerns, broad requirements for PMA authorization may limit device innovation for less-prevalent orthopaedic conditions. As a result, new approval frameworks may be beneficial. Our report demonstrates how current regulatory policies can potentially influence orthopaedic device innovation.

  16. Effects of the Mount Pinatubo eruption on the radiative and chemical processes in the troposphere and stratosphere

    NASA Technical Reports Server (NTRS)

    Kinnison, Douglas E.; Grant, Keith E.; Connell, Peter S.; Wuebbles, Donald J.

    1994-01-01

    The Lawrence Livermore National Laboratory two-dimensional zonally-averaged chemical-radiative-transport model of the global atmosphere was used to study the effects of the 15 June 1991 eruption of the Mt. Pinatubo volcano on stratospheric processes. SAGE 2 time-dependent aerosol surface area density and optical extinction data were used as input into the model. By 22 December 1991, a maximum equatorial change of -1.8 percent in column ozone was derived from heterogeneous chemical processes that convert NO(x) into HNO3 on sulfuric acid aerosols. Radiative feedbacks from increased aerosol optical thickness independently changes column ozone by approximately -3.5 percent for the same period. This occurs from increasing the net heating of the lower stratosphere, which indirectly increases chemical reaction rates via their temperature dependence and from changes in actinic fluxes, which directly modify photodissociation rates. Including both heterogeneous and radiative effects changes column ozone by -5.5 percent. The model-derived change overestimates the decrease in column ozone relative to the TOMS instrument on the Nimbus 7 satellite. Maximum local ozone decreases of 12 percent were derived in the equatorial region, at 25 km. Model-derived column NO2 peaked (-14 percent) at 30 deg S in October 1991. The timing of the NO2 peak is consistent with observation, but the model underestimates the magnitude of the decrease. Local concentrations of NO(x) (NO + NO2), ClO(x) (Cl + ClO), and HO(x) (OH + HO2), in the lower stratosphere between 30 deg S and 30 deg N, were calculated to have changed by -40 percent, +100 to +160 percent, and +120 to +140 percent respectively.

  17. The stratigraphy, depositional processes, and environment of the late Pleistocene Polallie-period deposits at Mount Hood Volcano, Oregon, USA

    NASA Astrophysics Data System (ADS)

    Thouret, Jean-Claude

    2005-08-01

    The Polallie eruptive period of Mt. Hood, Oregon, is the last major episode of eruption and dome growth, before the late Holocene activity which was centered at Crater Rock. A volume of 4-8 km 3 of Polallie deposits forms an apron of ca. 60 km 2 on the east, northeast and southeast flanks. The Polallie deposits can be divided, stratigraphically, into four groups: Group I rockslide avalanche and pyroclastic-flow deposits; Group II debris-flow and pyroclastic-flow deposits that suggest some explosive activity and remobilization of pyroclastic debris in a glacial environment; Group III block-and-ash flow deposits that attest to summit dome growth; Group IV alternating debris-flow deposits, glacial sediments, and reworked pyroclastic-flow deposits that indicate a decrease in dome activity and an increase in erosion and transport. Group III clearly indicates frequent episodes of dome growth and collapse, whereas Groups II and IV imply increasing erosion and, conversely, decreasing volcanic activity. The Polallie period occurred in the late Pleistocene during and just after the last Alpine glaciation, which is named Evans Creek in the Cascade Range. According to four K-Ar age dates on lava flows interbedded with Polallie deposits and to published minimum 14C ages on tephra and soils overlying these deposits, the Polallie period had lasted 15,000-22,000 years between 28-34 ka and 12-13 ka. From stratigraphic subdivisions, sedimentary lithofacies and features and from the grain-size and geochemical data, we infer that the Polallie depositional record is a result of the interplay of several processes acting during a long-lasting period of dome growth and destruction. The growth of several domes near the present summit was intermittent, because each group of sediments encompasses primary (pyroclastic) and secondary (volcaniclastic and epiclastic) deposition. Direct deposition of primary material has occurred within intervals of erosion that have probably included meltwater

  18. Timescale of Petrogenetic Processes Recorded in the Mount Perkins Magma System, Northern Colorado River Extension Corridor, Arizona

    NASA Technical Reports Server (NTRS)

    Danielson, Lisa R.; Metcalf, Rodney V.; Miller, Calvin F.; Rhodes Gregory T.; Wooden, J. L.

    2013-01-01

    The Miocene Mt. Perkins Pluton is a small composite intrusive body emplaced in the shallow crust as four separate phases during the earliest stages of crustal extension. Phase 1 (oldest) consists of isotropic hornblende gabbro and a layered cumulate sequence. Phase 2 consists of quartz monzonite to quartz monzodiorite hosting mafic microgranitoid enclaves. Phase 3 is composed of quartz monzonite and is subdivided into mafic enclave-rich zones and enclave-free zones. Phase 4 consists of aphanitic dikes of mafic, intermediate and felsic compositions hosting mafic enclaves. Phases 2-4 enclaves record significant isotopic disequilibrium with surrounding granitoid host rocks, but collectively enclaves and host rocks form a cogenetic suite exhibiting systematic variations in Nd-Sr-Pb isotopes that correlate with major and trace elements. Phases 2-4 record multiple episodes of magma mingling among cogenetic hybrid magmas that formed via magma mixing and fractional crystallization at a deeper crustal. The mafic end-member was alkali basalt similar to nearby 6-4 Ma basalt with enriched OIB-like trace elements and Nd-Sr-Pb isotopes. The felsic end-member was a subalkaline crustal-derived magma. Phase 1 isotropic gabbro exhibits elemental and isotopic compositional variations at relatively constant SiO2, suggesting generation of isotropic gabbro by an open-system process involving two mafic end-members. One end-member is similar in composition to the OIB-like mafic end-member for phases 2-4; the second is similar to nearby 11-8 Ma tholeiite basalt exhibiting low epsilon (sub Nd), and depleted incompatible trace elements. Phase 1 cumulates record in situ fractional crystallization of an OIB-like mafic magma with isotopic evidence of crustal contamination by partial melts generated in adjacent Proterozoic gneiss. The Mt Perkins pluton records a complex history in a lithospheric scale magma system involving two distinct mantle-derived mafic magmas and felsic magma sourced in the

  19. Solution processed nickel oxide anodes for organic photovoltaic devices

    SciTech Connect

    Mustafa, Bestoon; Griffin, Jonathan; Alsulami, Abdullah S.; Lidzey, David G.; Buckley, Alastair R.

    2014-02-10

    Nickel oxide thin films have been prepared from a nickel acetylacetonate (Ni(acac)) precursor for use in bulk heterojunction organic photovoltaic devices. The conversion of Ni(acac) to NiO{sub x} has been investigated. Oxygen plasma treatment of the NiO layer after annealing at 400 °C affords solar cell efficiencies of 5.2%. Photoelectron spectroscopy shows that high temperature annealing converts the Ni(acac) to a reduced form of nickel oxide. Additional oxygen plasma treatment further oxidizes the surface layers and deepens the NiO work function from 4.7 eV for the annealed film, to 5.0 eV allowing for efficient hole extraction at the organic interface.

  20. Low power, compact charge coupled device signal processing system

    NASA Technical Reports Server (NTRS)

    Bosshart, P. W.; Buss, D. D.; Eversole, W. L.; Hewes, C. R.; Mayer, D. J.

    1980-01-01

    A variety of charged coupled devices (CCDs) for performing programmable correlation for preprocessing environmental sensor data preparatory to its transmission to the ground were developed. A total of two separate ICs were developed and a third was evaluated. The first IC was a CCD chirp z transform IC capable of performing a 32 point DFT at frequencies to 1 MHz. All on chip circuitry operated as designed with the exception of the limited dynamic range caused by a fixed pattern noise due to interactions between the digital and analog circuits. The second IC developed was a 64 stage CCD analog/analog correlator for performing time domain correlation. Multiplier errors were found to be less than 1 percent at designed signal levels and less than 0.3 percent at the measured smaller levels. A prototype IC for performing time domain correlation was also evaluated.

  1. Sensory processing and world modeling for an active ranging device

    NASA Technical Reports Server (NTRS)

    Hong, Tsai-Hong; Wu, Angela Y.

    1991-01-01

    In this project, we studied world modeling and sensory processing for laser range data. World Model data representation and operation were defined. Sensory processing algorithms for point processing and linear feature detection were designed and implemented. The interface between world modeling and sensory processing in the Servo and Primitive levels was investigated and implemented. In the primitive level, linear features detectors for edges were also implemented, analyzed and compared. The existing world model representations is surveyed. Also presented is the design and implementation of the Y-frame model, a hierarchical world model. The interfaces between the world model module and the sensory processing module are discussed as well as the linear feature detectors that were designed and implemented.

  2. Mount St. Augustine volcano fumarole wall rock alteration: Mineralogy, zoning, composition and numerical models of its formation process

    USGS Publications Warehouse

    Getahun, A.; Reed, M.H.; Symonds, R.

    1996-01-01

    ), sulfates (anhydrite) and halides (halite). The cooling calculations produce: (a) anhydrite, halite, sylvite; (b) Cu, Mo, Fe and Zn sulfides; (c) Mg fluoride at high temperature (> 370??C); (d) chlorides, fluorides and sulfates of Mn, Fe, Zn, Cu and Al at intermediate temperature (170-370??C); and (e) hydrated sulfates, liquid sulfur, crystalline sulfur, hydrated sulfuric acid and water at low temperature ( 0.41 (> 628??C). This is followed by precipitation of sulfates of Fe, Cu, Pb, Zn and Al at lg/a ratios between 0.41 and -0.4 (628-178??C). At a lg/r ratio of < - 0.4 (178??C), anhydrous sulfates are replaced by their hydrated forms and hygroscopic sulfuric acid forms. At these low g/a ratios, hydrated sulfuric acid becomes the dominant phase in the system. Comparison of the thermochemical modeling results with the natural samples suggests that the alteration assemblages include: (1) minerals that precipitate from direct cooling of the volcanic gas; (2) phases that form by volcanic gases mixing with air; and (3) phases that form by volcanic gas-air-rock reaction. A complex interplay of the three processes produces the observed mineral zoning. Another implication of the numerical simulation results is that most of the observed incrustation and sublimate minerals apparently formed below 700??C.

  3. Using electrochemistry in device processing on poly(tetrafluoroethylene) substrates

    SciTech Connect

    Howard, A.J.; Rye, R.R.; Ricco, A.J.; Rieger, D.J.; Lovejoy, M.L.; Sloan, L.R.; Mitchell, M.A.

    1994-10-01

    By combining electrochemical and electroless metal deposition processes with standard optical lithography and wet chemical etching, the authors have developed techniques for the fabrication of fine (<20 {mu}m), adherent, conducting features on poly(tetrafluoroethylene) (PTFE) substrates. These techniques are less expensive and have demonstrated resolution of at least a factor of five better than existing printed wiring board-based processes. Using these PTFE-based processes, the authors have fabricated {approximately} 10 GHz coupled-line quadrature (Lange) couplers, for which test results will be presented.

  4. 21 CFR 820.80 - Receiving, in-process, and finished device acceptance.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Receiving, in-process, and finished device acceptance. 820.80 Section 820.80 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES QUALITY SYSTEM REGULATION Acceptance Activities § 820.80 Receiving,...

  5. FinFET Doping; Material Science, Metrology, and Process Modeling Studies for Optimized Device Performance

    SciTech Connect

    Duffy, R.; Shayesteh, M.

    2011-01-07

    In this review paper the challenges that face doping optimization in 3-dimensional (3D) thin-body silicon devices will be discussed, within the context of material science studies, metrology methodologies, process modeling insight, ultimately leading to optimized device performance. The focus will be on ion implantation at the method to introduce the dopants to the target material.

  6. Thermistor mount efficiency calibration

    SciTech Connect

    Cable, J.W.

    1980-05-01

    Thermistor mount efficiency calibration is accomplished by use of the power equation concept and by complex signal-ratio measurements. A comparison of thermistor mounts at microwave frequencies is made by mixing the reference and the reflected signals to produce a frequency at which the amplitude and phase difference may be readily measured.

  7. Spherical mirror mount

    NASA Technical Reports Server (NTRS)

    Meyer, Jay L. (Inventor); Messick, Glenn C. (Inventor); Nardell, Carl A. (Inventor); Hendlin, Martin J. (Inventor)

    2011-01-01

    A spherical mounting assembly for mounting an optical element allows for rotational motion of an optical surface of the optical element only. In that regard, an optical surface of the optical element does not translate in any of the three perpendicular translational axes. More importantly, the assembly provides adjustment that may be independently controlled for each of the three mutually perpendicular rotational axes.

  8. Stable mirror mount

    DOEpatents

    Cutburth, R.W.

    1983-11-04

    An improved mirror mount assembly is disclosed. The mirror mount assembly provides a post assembly slidable in a Y-axis orientation and a nut plate assembly slidable in an X-axis orientation and means for simultaneously locking said post assembly and said key assembly in a fixed position.

  9. Toward lightweight biometric signal processing for wearable devices.

    PubMed

    Francescon, Roberto; Hooshmand, Mohsen; Gadaleta, Matteo; Grisan, Enrico; Yoon, Seung Keun; Rossi, Michele

    2015-01-01

    Wearable devices are becoming a natural and economic means to gather biometric data from end users. The massive amount of information that they will provide, unimaginable until a few years ago, owns an immense potential for applications such as continuous monitoring for personalized healthcare and use within fitness applications. Wearables are however heavily constrained in terms of amount of memory, transmission capability and energy reserve. This calls for dedicated, lightweight but still effective algorithms for data management. This paper is centered around lossy data compression techniques, whose aim is to minimize the amount of information that is to be stored on their onboard memory and subsequently transmitted over wireless interfaces. Specifically, we analyze selected compression techniques for biometric signals, quantifying their complexity (energy consumption) and compression performance. Hence, we propose a new class of codebook-based (CB) compression algorithms, designed to be energy efficient, online and amenable to any type of signal exhibiting recurrent patterns. Finally, the performance of the selected and the new algorithm is assessed, underlining the advantages offered by CB schemes in terms of memory savings and classification algorithms.

  10. Solution-processing of chalcogenide materials for device applications

    NASA Astrophysics Data System (ADS)

    Zha, Yunlai

    Chalcogenide glasses are well-known for their desirable optical properties, which have enabled many infrared applications in the fields of photonics, medicine, environmental sensing and security. Conventional deposition methods such as thermal evaporation, chemical vapor deposition, sputtering or pulse laser deposition are efficient for fabricating structures on flat surfaces. However, they have limitations in deposition on curved surfaces, deposition of thick layers and component integration. In these cases, solution-based methods, which involve the dissolution of chalcogenide glasses and processing as a liquid, become a better choice for their flexibility. After proper treatment, the associated structures can have similar optical, chemical and physical properties to the bulk. This thesis presents an in-depth study of solution-processing chalcogenide glasses, starting from the "solution state" to the "film state" and the "structure state". Firstly, chalcogenide dissolution is studied to reveal the mechanisms at molecular level and build a foundation for material processing. Dissolution processes for various chalcogenide solvent pairs are reviewed and compared. Secondly, thermal processing, in the context of high temperature annealing, is explained along with the chemical and physical properties of the annealed films. Another focus is on nanopore formation in propylamine-processed arsenic sulfide films. Pore density changes with respect to annealing temperatures and durations are characterized. Base on a proposed vacancy coalescence theory, we have identified new dissolution strategies and achieved the breakthrough of pore-free film deposition. Thirdly, several solution methods developed along with the associated photonic structures are demonstrated. The first example is "spin-coating and lamination", which produces thick (over 10 mum) chalcogenide structures. Both homogeneous thick chalcogenide structures and heterogeneous layers of different chalcogenide glasses

  11. Instructions included? Make safety training part of medical device procurement process.

    PubMed

    Keller, James P

    2010-04-01

    Before hospitals embrace new technologies, it's important that medical personnel agree on how best to use them. Likewise, hospitals must provide the support to operate these sophisticated devices safely. With this in mind, it's wise for hospitals to include medical device training in the procurement process. Moreover, purchasing professionals can play a key role in helping to increase the amount of user training for medical devices and systems. What steps should you take to help ensure that new medical devices are implemented safely? Here are some tips.

  12. Process technologies of MPACVD planar waveguide devices and fiber attachment

    NASA Astrophysics Data System (ADS)

    Li, Cheng-Chung; Qian, Fan; Boudreau, Robert A.; Rowlette, John R., Sr.; Bowen, Terry P.

    1999-03-01

    Optical circuits based on low-loss glass waveguide on silicon are a practical and promising approach to integrate different functional components. Fiber attachment to planar waveguide provides a practical application for optical communications. Microwave Plasma Assisted Chemical Vapor Deposition (MPACVD) produces superior quality, low birefringence, low-loss, planar waveguides for integrated optical devices. Microwave plasma initiates the chemical vapor of SiCl4, GeCl4 and oxygen. A Ge-doped silica layer is thus deposited with a compatible high growth rate (i.e. 0.4 - 0.5 micrometer/min). Film properties are based on various parameters, such as chemical flow rates, chamber pressure and temperature, power level and injector design. The resultant refractive index can be varied between 1.46 (i.e. pure silica) and 1.60 (i.e. pure germania). Waveguides can be fabricated with any desired refractive index profile. Standard photolithography defines the waveguide pattern on a mask layer. The core layer is removed by plasma dry etch which has been investigated by both reactive ion etch (RIE) and inductively coupled plasma (ICP) etch. Etch rates of 3000 - 4000 angstrom/min have been achieved using ICP compared to typical etch rates of 200 - 300 angstrom/min using conventional RIE. Planar waveguides offer good mode matching to optical fiber. A polished fiber end can be glued to the end facet of waveguide with a very low optical coupling loss. In addition, anisotropic etching of silicon V- grooves provides a passive alignment capability. Epoxy and solder were used to fix the fiber within the guiding groove. Several designs of waveguide-fiber attachment will be discussed.

  13. Heck coupling of haloaromatics with octavinylsilsesquioxane: solution processable nanocomposites for application in electroluminescent devices.

    PubMed

    Sellinger, Alan; Tamaki, Ryo; Laine, Richard M; Ueno, Kazunori; Tanabe, Hiroshi; Williams, Evan; Jabbour, Ghassan E

    2005-08-07

    A new solution processable nanocomposite material has been prepared via the Heck coupling of octavinylsilsesquioxane with a selected bromoaromatic hole transport compound. Resultant electroluminescent devices show an 18% improvement in external quantum efficiencies over their small molecule analogues.

  14. 238U-230Th-226Ra disequilibria in plagioclase from recent mixed magmas at Mount Hood: constraints on crystal storage timescales and eruption triggering processes

    NASA Astrophysics Data System (ADS)

    Eppich, G. R.; Cooper, K. M.; Kent, A. J.; Koleszar, A. M.

    2010-12-01

    Uranium-series crystal ages, interpreted within a textural and geochemical framework, can provide insight into crystal storage timescales and eruption triggering processes. Mount Hood is a mixing-driven volcano that consistently erupts magmas of intermediate composition. Mixed magmas incorporate plagioclase derived from mafic and silicic end-member magmas (Kent AJR; Darr C; Koleszar AM; Salisbury MJ; Cooper KM. 2010. Preferential eruption of andesitic magmas through recharge filtering. Nature Geosci.). We measured 238U-230Th-226Ra disequilibria for four plagioclase size fractions, groundmass separates, and mafic inclusions from the Timberline (1500 a) and Old Maid (215 a) eruptive sequences. Measured (230Th)/(238U) was 1.126-1.143 for Timberline plagioclase and 1.127-1.143 for Old Maid plagioclase. Measured (226Ra)/(230Th) was 1.22-1.62 for Timberline plagioclase and 1.27-1.43 for Old Maid plagioclase. Corrections were performed for the presence of groundmass in the >500 µm plagioclase separates, and large plagioclase + groundmass in the <500 µm plagioclase separates. Small (<500 µm) plagioclase, derived from mafic magma, records enriched present-day (226Ra)/Ba relative to equilibrium with liquid proxies (groundmass and mafic inclusions), leading to undefined Ra-Th model ages. However, the measured disequilibria require that the majority of plagioclase in the separate is young (<<10 ka). Large (>500 µm) plagioclase, derived from the silicic mixing end-member, records (238U)/(230Th) disequilibrium and minor (226Ra)/(230Th) disequilibrium. Ra-Th model ages are 5-10 ka. Rims of large plagioclase crystallized within weeks of eruption (Kent et al., 2010), suggesting that the 5-10 ka Ra-Th model ages are averages of young rim growth and old cores, which could be >10 ka. Crystallization timescales of large plagioclase cores are longer than timescales of repose between eruptions, suggesting that the crystals must have been present yet remained untapped during older

  15. Electronic Devices With Diffusion Barrier and Process for Making Same

    DTIC Science & Technology

    2000-05-03

    under ultrahigh vacuum conditions of less than 10"u Torr chamber background pressure , and then the metal halide vapor is discontinued while the coated...such as damascene patterning, in lieu of subtractive processing. 5 Among the barrier materials under development within the semiconductor industry...then is resumed under the ultra high vacuum conditions so that a single crystal homoepitaxial film portion of the barrier material, which is formed of

  16. Electronic Devices with Diffusion Barrier and Process for Making Same

    DTIC Science & Technology

    2001-05-09

    processing. 5 Among the barrier materials under development within the semiconductor industry, nitrides or silico-nitrides of the transition metals...metal halide upon a clean, hot surface of a semiconducting substrate material under ultrahigh vacuum conditions of less than 10~n Torr chamber...background pressure , and then the metal halide vapor is discontinued while the coated substrate is heated for a time period such that the metal 15

  17. Atomic Layer Epitaxy of Group IV Materials: Surface Processes, Thin Films, Devices and their Characterization

    DTIC Science & Technology

    1993-12-01

    U AD-A274 325 Semiannual Technical Report U Atomic Layer Epitaxy of Group IV Materials: Surface Processes, Thin Films, Devices and Their... Group IV Materials: Surface Processes, Thin 414v001---01 Films, Devices and Their Characterization 1114SS S. AUTHOS) N00179 Robert F. Davis, Salah... Conformal deposition of SiC has been demonstrated within trenches etched into Si(100) wafers. P-type films have also been achieved using Al as a

  18. Highly sensitive devices for primary signal processing of the micromechanical capacitive transducers

    NASA Astrophysics Data System (ADS)

    Konoplev, B.; Ryndin, E.; Lysenko, I.; Denisenko, M.; Isaeva, A.

    2016-12-01

    A method of signal processing devices design for micromechanical accelerometers with capacitive transducers is proposed. This method provides the complex solution of the sensibility increasing and noise immunity problems by finding of the difference frequency of signals, which are formed by two identical generators with micromechanical capacitive transducers in frequency control circuits. In this study the analog and digital versions of the highly sensitive signal processing devices circuits with frequency output were developed. The breadboards of these devices are fabricated and studied and the project of their integral realization is designed.

  19. Advanced Silicon Microring Resonator Devices for Optical Signal Processing

    NASA Astrophysics Data System (ADS)

    Masilamani, Ashok Prabhu

    Chip level optical interconnects has gained momentum with recent demonstrations of silicon-on-insulator (SOI) based photonic modules such as lasers, modulators, wavelength division multiplexing (WDM) filters, etc. A fundamental building block that has enabled many of these silicon photonic modules is the compact, high Q factor microring resonator cavity. However, most of these demonstrations have WDM processing components based on simple add-drop filters that cannot realize the dense WDM systems required for the chip level interconnects. Dense WDM filters have stringent spectral shape requirements such as flat-top filter passband, steep band transition etc. Optical filters that can meet these specifications involve precise placement of the poles and zeros of the filter transfer function. Realization of such filters requires the use of multiple coupled microring resonators arranged in complex coupling topologies. In this thesis we have proposed and demonstrated new multiple coupled resonator topologies based on compact microring resonators in SOI material system. First we explored novel microring architectures which resulted in the proposal of two new coupled microring architectures, namely, the general 2D microring array topology and the general cascaded microring network topology. We also developed the synthesis procedures for these two microring architectures. The second part of this thesis focussed on the demonstration of the proposed architectures in the SOI material system. To accomplish this, a fabrication process for SOI was developed at the UofA Nanofab facility. Using this process, ultra-compact single microring filters with microring radii as small as 1mum were demonstrated. Higher order filter demonstration with multiple microrings necessitated post-fabrication microring resonance tuning. We developed additional fabrication steps to install micro heaters on top of the microrings to thermally tune its resonance. Subsequently, a thermally tuned fourth

  20. Electronic Devices with Barrier Film and Process for Making Same

    DTIC Science & Technology

    1998-08-20

    technique 20 must be developed that will prevent the diffusion of copper into silicon. Among the possible solutions currently under development...processing tool. The pressure within the deposition chamber 30 should be 10Ŝ mbar or less, more -15- preferably 10ŝ mbar or less, and still more...as a precursor in forming the diffusion barrier film, the precursor, e.g., BaF2 or SrF2 , can be deposited for a sufficient duration of time to

  1. High-speed optical processing using digital micromirror device

    NASA Astrophysics Data System (ADS)

    Chao, Tien-Hsin; Lu, Thomas; Walker, Brian; Reyes, George

    2014-04-01

    We have designed optical processing architecture and algorithms utilizing the DMD as the input and filter Spatial Light Modulators (SLM). Detailed system analysis will be depicted. Experimental demonstration, for the first time, showing that a complex-valued spatial filtered can be successfully written on the DMDSLM using a Computer Generated Hologram (CGH) [1] encoding technique will also be provided. The high-resolution, high-bandwidth provided by the DMD and its potential low cost due to mass production will enable its vast defense and civil application.

  2. Mineral complexities as evidence for open-system processes in intermediate magmas of the Mount Baker volcanic field, northern Cascade arc

    NASA Astrophysics Data System (ADS)

    Escobar-Burciaga, R. D.; DeBari, S. M.

    2015-12-01

    The petrogenesis of intermediate magmas in arcs is a critical contribution to crustal growth. Andesites are commonly thought of as a hybrid product, the result of two endmember magmas mixing. At the Mount Baker volcanic field (MBVF), northern Cascade arc, andesites are the predominantly erupted lavas since 1 Ma and yet their origin is poorly constrained. Previous studies have suggested that open-system processes play a dominant role. However, the studies rely heavily on bulk rock compositions and overlook complex mineral textures and compositions. To better understand the complex processes at work at MBVF, we focus on establishing mineral and crystal clot populations in three andesitic flow units (55-59% SiO2). Petrographic and geochemical analyses suggest that variable-composition crystal clot and phenocryst populations in a single flow are related. We interpret the crystal clots to represent cumulates entrained in the erupting host magma and that related phenocrysts are disaggregates of crystal clots. The existence of common, multiple phenocryst and crystal clot populations in each flow of different age and SiO2 content provides strong evidence that intermediate magmas of MBVF are more than just the end product of mixing between two magmas. Furthermore, we suggest that most phenocrysts do not represent equilibrium products of their host liquid, evident from wide compositional ranges of ferromagnesian minerals (e.g. augite core Mg# 70-87). In fact, the most primitive phenocryst populations show the least amount of disequilibrium texture but represent assemblages expected to fractionate from basaltic to basaltic-andesitic liquids rather than equilibrium assemblages from their host bulk rock "liquid" composition. As a result, we interpret the variable SiO2 signature of the three andesitic flow units to have been obtained through the incorporation of cumulates/liquids as basaltic to basaltic-andesitic magma ascends.

  3. SAMPLING DEVICE FOR pH MEASUREMENT IN PROCESS STREAMS

    DOEpatents

    Michelson, C.E.; Carson, W.N. Jr.

    1958-11-01

    A pH cell is presented for monitoring the hydrogen ion concentration of a fluid in a process stream. The cell is made of glass with a side entry arm just above a reservoir in which the ends of a glass electrode and a reference electrode are situated. The glass electrode contains the usual internal solution which is connected to a lead. The reference electrode is formed of saturated calomel having a salt bridge in its bottom portion fabricated of a porous glass to insure low electrolyte flow. A flush tube leads into the cell through which buffer and flush solutions are introduced. A ground wire twists about both electrode ends to insure constant electrical grounding of the sample. The electrode leads are electrically connected to a pH meter of aay standard type.

  4. Addressable inverter matrix for process and device characterization

    NASA Technical Reports Server (NTRS)

    Buehler, M. G.; Sayah, H. R.

    1985-01-01

    The addressable inverter matrix consists of 222 inverters each accessible with the aid of a shift register. The structure has proven useful in characterizing the variability of inverter transfer curves and in diagnosing processing faults. For good 3-micron CMOS bulk inverters investigated in this study, the percent standard deviation of the inverter threshold voltage was less than one percent and the inverter gain (the slope of the inverter transfer curve at the inverter threshold voltage) was less than 3 percent. The average noise margin for the inverters was near 2 volts for a power supply voltage of 5 volts. The specific faults studied included undersize pull-down transistor widths and various open contacts in the matrix.

  5. Addressable inverter matrix for process and device characterization

    NASA Technical Reports Server (NTRS)

    Buehler, M. G.; Sayah, H. R.

    1985-01-01

    The addressable inverter matrix consists of 222 inverters each accessible with the aid of a shift register. The structure has proven useful in characterizing the variability of inverter transfer curves and in diagnosing processing faults. For good 3-micron CMOS bulk inverters investigated, the percent standard deviation of the inverter threshold voltage was less than one percent and the inverter gain (the slope of the inverter transfer curve at the inverter threshold vltage) was less than 3 percent. The average noise margin for the inverters was near 2 volts for a power supply voltage of 5 volts. The specific faults studied included undersize pull-down transistor widths and various open contacts in the matrix.

  6. Addressable inverter matrix for process and device characterization

    NASA Technical Reports Server (NTRS)

    Buehler, M. G.; Sayah, H. R.

    1985-01-01

    The addressable inverter matrix consists of 222 inverters each accessible with the aid of a shift register. The structure has proven useful in characterizing the variability of inverter transfer curves and in diagnosing processing faults. For good 3-micron CMOS bulk inverters investigated, the percent standard deviation of the inverter threshold voltage was less than one percent and the inverter gain (the slope of the inverter transfer curve at the inverter threshold vltage) was less than 3 percent. The average noise margin for the inverters was near 2 volts for a power supply voltage of 5 volts. The specific faults studied included undersize pull-down transistor widths and various open contacts in the matrix.

  7. Addressable inverter matrix for process and device characterization

    NASA Technical Reports Server (NTRS)

    Buehler, M. G.; Sayah, H. R.

    1985-01-01

    The addressable inverter matrix consists of 222 inverters each accessible with the aid of a shift register. The structure has proven useful in characterizing the variability of inverter transfer curves and in diagnosing processing faults. For good 3-micron CMOS bulk inverters investigated in this study, the percent standard deviation of the inverter threshold voltage was less than one percent and the inverter gain (the slope of the inverter transfer curve at the inverter threshold voltage) was less than 3 percent. The average noise margin for the inverters was near 2 volts for a power supply voltage of 5 volts. The specific faults studied included undersize pull-down transistor widths and various open contacts in the matrix.

  8. Impact of alternative medical device approval processes on costs and health.

    PubMed

    George, Benjamin P; Venkataraman, Vinayak; Dorsey, E Ray; Johnston, S Claiborne

    2014-10-01

    Medical devices are often introduced prior to randomized-trial evidence of efficacy and this slows completion of trials. Alternative regulatory approaches include restricting device use outside of trials prior to trial evidence of efficacy (like the drug approval process) or restricting out-of-trial use but permitting coverage within trials such as Medicare's Coverage with Study Participation (CSP). We compared the financial impact to manufacturers and insurers of three regulatory alternatives: (1) limited regulation (current approach), (2) CSP, and (3) restrictive regulation (like the current drug approval process). Using data for patent foramen ovale closure devices, we modeled key parameters including recruitment time, probability of device efficacy, market adoption, and device cost/price to calculate profits to manufacturers, costs to insurers, and overall societal impact on health. For manufacturers, profits were greatest under CSP-driven by faster market adoption of effective devices-followed by restrictive regulation. Societal health benefit in total quality-adjusted life years was greatest under CSP. Insurers' expenditures for ineffective devices were greatest with limited regulation. Findings were robust over a reasonable range of probabilities of trial success. Regulation restricting out-of-trial device use and extending limited insurance coverage to clinical trial participants may balance manufacturer and societal interests. © 2014 Wiley Periodicals, Inc.

  9. The effect of reactive ion etch (RIE) process conditions on ReRAM device performance

    NASA Astrophysics Data System (ADS)

    Beckmann, K.; Holt, J.; Olin-Ammentorp, W.; Alamgir, Z.; Van Nostrand, J.; Cady, N. C.

    2017-09-01

    The recent surge of research on resistive random access memory (ReRAM) devices has resulted in a wealth of different materials and fabrication approaches. In this work, we describe the performance implications of utilizing a reactive ion etch (RIE) based process to fabricate HfO2 based ReRAM devices, versus a more unconventional shadow mask fabrication approach. The work is the result of an effort to increase device yield and reduce individual device size. Our results show that choice of RIE etch gas (SF6 versus CF4) is critical for defining the post-etch device profile (cross-section), and for tuning the removal of metal layers used as bottom electrodes in the ReRAM device stack. We have shown that etch conditions leading to a tapered profile for the device stack cause poor electrical performance, likely due to metal re-deposition during etching, and damage to the switching layer. These devices exhibit nonlinear I-V during the low resistive state, but this could be improved to linear behavior once a near-vertical etch profile was achieved. Device stacks with vertical etch profiles also showed an increase in forming voltage, reduced switching variability and increased endurance.

  10. Laser Processed Silver Nanowire Network Transparent Electrodes for Novel Electronic Devices

    NASA Astrophysics Data System (ADS)

    Spechler, Joshua Allen

    Silver nanowire network transparent conducting layers are poised to make headway into a space previously dominated by transparent conducting oxides due to the promise of a flexible, scaleable, lab-atmosphere processable alternative. However, there are many challenges standing in the way between research scale use and consumer technology scale adaptation of this technology. In this thesis we will explore many, and overcome a few of these challenges. We will address the poor conductivity at the narrow nanowire-nanowire junction points in the network by developing a laser based process to weld nanowires together on a microscopic scale. We address the need for a comparative metric for transparent conductors in general, by taking a device level rather than a component level view of these layers. We also address the mechanical, physical, and thermal limitations to the silver nanowire networks by making composites from materials including a colorless polyimide and titania sol-gel. Additionally, we verify our findings by integrating these processes into devices. Studying a hybrid organic/inorganic heterojunction photovoltaic device we show the benefits of a laser processed electrode. Green phosphorescent organic light emitting diodes fabricated on a solution phase processed silver nanowire based electrode show favorable device metrics compared to a conductive oxide electrode based control. The work in this thesis is intended to push the adoption of silver nanowire networks to further allow new device architectures, and thereby new device applications.

  11. Comprehensive design and process flow configuration for micro and nano tech devices

    NASA Astrophysics Data System (ADS)

    Hahn, Kai; Schmidt, Thilo; Mielke, Matthias; Ortloff, Dirk; Popp, Jens; Brück, Rainer

    2010-04-01

    The development of micro and nano tech devices based on semiconductor manufacturing processes comprises the structural design as well as the definition of the manufacturing process flow. The approach is characterized by application specific fabrication flows, i.e. fabrication processes (built up by a large variety of process steps and materials) depending on the later product. Technology constraints have a great impact on the device design and vice-versa. In this paper we introduce a comprehensive methodology and based on that an environment for customer-oriented product engineering of MEMS products. The development is currently carried out in an international multi-site research project.

  12. Shaft mount for data coupler system

    NASA Technical Reports Server (NTRS)

    Elliott, James R., Jr. (Inventor); Lord, Mark T. (Inventor)

    1993-01-01

    A device for mounting a data transmission apparatus to a rotating, tapered, and instrumented shaft is provided. This device permits attachment without interfering with shaft rotation or the accuracy of data output, and prevents both radial and axial slippage of the data transmission apparatus. The mounting device consists of a sleeve assembly which is attached to the shaft by means of clamps that are situated at some distance removed from the instrumented area of the shaft. The data transmission device is secured to the sleeve such that the entire assembly rotates with the shaft. Shim adjustments between sleeve sections assure that a minimum compressive load is transferred to the instrumented area of the shaft and a rubber lining is affixed to a large portion of the interior surface of the sleeve to absorb vibration.

  13. Femtosecond all-optical devices for ultrafast communication and signal processing

    NASA Astrophysics Data System (ADS)

    Wada, Osamu

    2004-11-01

    Future bandwidth demand in optical communication and signal processing systems will soon exceed 100 Gb s-1 as is commonly forecasted from a throughput experience curve for communication systems. However, such systems cannot be realized without introducing ultrafast, all-optical devices, since existing optoelectronic and electronic devices and integrated circuits would not be able to function at a bit rate exceeding 100 Gb s-1, because of the speed limit intrinsic to conventional semiconductor materials and devices. All-optical devices based on completely new principles, not being restricted by properties of existing materials and device principles, must be developed for the realization of ultrafast communication and signal processing systems. This paper reviews requirements of ultrafast all-optical devices and recent progress in ultrafast light sources and all-optical switches based on either novel device principles or ultrafast phenomena in novel materials such as quantum-confined nanostructures. Recent developments described here include mode-locked lasers and a variety of all-optical switches based on different phenomena including Mach-Zehnder interferometer structures, spin relaxation, intersubband transition, and ultrafast absorption recovery in organic thin films and semiconductor quantum dots. Some of the recent developments have already shown capability of basic functions such as ultrafast pulse generation and signal processing at the bit rate of 500 Gb s-1 to 1 Tb s-1. Technical challenges expected for the future are discussed in view of their applications in real systems.

  14. Integrated acoustooptic device modules for optical information processing

    NASA Astrophysics Data System (ADS)

    Tsai, Chen S.

    1988-07-01

    The objectives of this program year are focused on design, fabrication, and testing of wideband guided wave AO Bragg diffraction from surface acoustic waves in Gallium arsenide optical waveguides and conception/realization of multichannel integrated acousto-optics and electrooptics Bragg modulator modules in TIPE microlenses-based lithium niobates and GaAs channel-planar composite waveguides with applications to signal processing and computing. Wideband GaAs waveguide AO Bragg cells that operate in the acoustic frequency range from 300 to 1200 MHz have been realized. This represents realization of GHz GaAs waveguide AO Bragg cells shows that monolithically integrated optic signal processors such as radiofrequency spectrum analyzers may be fabricated in a common GaAs chip. Multichannel single-mode electrooptic cutoff modulator arrays and Bragg diffraction modulator arrays have been successfully realized in GaAs. One of the vital and remaining components toward monolithic (total) integration in GaAs is the waveguide microlens and linear lens array. Fabrication of negative index-change planar waveguide microlenses in both LiNbO3 and GaAs using ion milling. The waveguide lenses that have been fabricated and tested include single lenses and lens arrays of analog Fresnel, chirp grating, and hybrid analog Fresnel chirp grating types. We have obtained near diffraction-limited spot sizes and good efficiencies in such preliminary components.

  15. Combined heat and mass transfer device for improving separation process

    DOEpatents

    Tran, T.N.

    1999-08-24

    A two-phase small channel heat exchange matrix simultaneously provides for heat transfer and mass transfer between the liquid and vapor phases of a multi-component mixture at a single, predetermined location within a separation column, significantly improving the thermodynamic efficiency of the separation process. The small channel heat exchange matrix is composed of a series of channels having a hydraulic diameter no greater than 5.0 millimeters for conducting a two-phase coolant. In operation, the matrix provides the liquid-vapor contacting surfaces within the separation column, such that heat and mass are transferred simultaneously between the liquid and vapor phases. The two-phase coolant allows for a uniform heat transfer coefficient to be maintained along the length of the channels and across the surface of the matrix. Preferably, a perforated, concave sheet connects each channel to an adjacent channel to facilitate the flow of the liquid and vapor phases within the column and to increase the liquid-vapor contacting surface area. 12 figs.

  16. Combined heat and mass transfer device for improving separation process

    DOEpatents

    Tran, Thanh Nhon

    1999-01-01

    A two-phase small channel heat exchange matrix simultaneously provides for heat transfer and mass transfer between the liquid and vapor phases of a multi-component mixture at a single, predetermined location within a separation column, significantly improving the thermodynamic efficiency of the separation process. The small channel heat exchange matrix is composed of a series of channels having a hydraulic diameter no greater than 5.0 millimeters for conducting a two-phase coolant. In operation, the matrix provides the liquid-vapor contacting surfaces within the separation column, such that heat and mass are transferred simultaneously between the liquid and vapor phases. The two-phase coolant allows for a uniform heat transfer coefficient to be maintained along the length of the channels and across the surface of the matrix. Preferably, a perforated, concave sheet connects each channel to an adjacent channel to facilitate the flow of the liquid and vapor phases within the column and to increase the liquid-vapor contacting surface area.

  17. Value driven innovation in medical device design: a process for balancing stakeholder voices.

    PubMed

    de Ana, F J; Umstead, K A; Phillips, G J; Conner, C P

    2013-09-01

    The innovation process has often been represented as a linear process which funnels customer needs through various business and process filters. This method may be appropriate for some consumer products, but in the medical device industry there are some inherent limitations to the traditional innovation funnel approach. In the medical device industry, there are a number of stakeholders who need to have their voices heard throughout the innovation process. Each stakeholder has diverse and unique needs relating to the medical device, the needs of one may highly affect the needs of another, and the relationships between stakeholders may be tenuous. This paper describes the application of a spiral innovation process to the development of a medical device which considers three distinct stakeholder voices: the Voice of the Customer, the Voice of the Business and the Voice of the Technology. The process is presented as a case study focusing on the front-end redesign of a class III medical device for an orthopedics company. Starting from project initiation and scope alignment, the process describes four phases, Discover, Envision, Create, and Refine, and concludes with value assessment of the final design features.

  18. Mounting for ceramic scroll

    DOEpatents

    Petty, Jack D.

    1993-01-01

    A mounting for a ceramic scroll on a metal engine block of a gas turbine engine includes a first ceramic ring and a pair of cross key connections between the first ceramic ring, the ceramic scroll, and the engine block. The cross key connections support the scroll on the engine block independent of relative radial thermal growth and for bodily movement toward an annular mounting shoulder on the engine. The scroll has an uninterrupted annular shoulder facing the mounting shoulder on the engine block. A second ceramic ring is captured between mounting shoulder and the uninterrupted shoulder on the scroll when the latter is bodily shifted toward the mouting shoulder to define a gas seal between the scroll and the engine block.

  19. Absolute and relative locations of earthquakes at Mount St. Helens, Washington, using continuous data: implications for magmatic processes: Chapter 4 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Thelen, Weston A.; Crosson, Robert S.; Creager, Kenneth C.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    This study uses a combination of absolute and relative locations from earthquake multiplets to investigate the seismicity associated with the eruptive sequence at Mount St. Helens between September 23, 2004, and November 20, 2004. Multiplets, a prominent feature of seismicity during this time period, occurred as volcano-tectonic, hybrid, and low-frequency earthquakes spanning a large range of magnitudes and lifespans. Absolute locations were improved through the use of a new one-dimensional velocity model with excellent shallow constraints on P-wave velocities. We used jackknife tests to minimize possible biases in absolute and relative locations resulting from station outages and changing station configurations. In this paper, we show that earthquake hypocenters shallowed before the October 1 explosion along a north-dipping structure under the 1980-86 dome. Relative relocations of multiplets during the initial seismic unrest and ensuing eruption showed rather small source volumes before the October 1 explosion and larger tabular source volumes after October 5. All multiplets possess absolute locations very close to each other. However, the highly dissimilar waveforms displayed by each of the multiplets analyzed suggest that different sources and mechanisms were present within a very small source volume. We suggest that multiplets were related to pressurization of the conduit system that produced a stationary source that was highly stable over long time periods. On the basis of their response to explosions occurring in October 2004, earthquakes not associated with multiplets also appeared to be pressure dependent. The pressure source for these earthquakes appeared, however, to be different from the pressure source of the multiplets.

  20. Photonic materials and devices for optical information processing and computing applications

    NASA Astrophysics Data System (ADS)

    Tanguay, Armand R., Jr.

    1991-02-01

    The research program is focused on a critical evaluation of advanced photonic materials and device concepts for the implementation of optical information processing and computing systems. The effort ranges from a detailed investigation of the fundamental physical and technological limitations that impact the potential computational gain (e.g., increases in throughput, decreases in decision time subsequent to processing, or minimization of the energy expended during computation) of optical information processing and computing systems, through the invention and characterization of key enabling devices such as two dimensional spatial light modulators and volume holographic optical elements, to the development of advanced techniques for materials growth, deposition, and processing that have a critical impact on potential device performance. This multifaceted evaluation of novel materials, device, and system concepts has been directly responsible for the invention and characterization of a number of photonic devices and materials processing techniques that exhibit both high performance and capacity for practical manufacturing. The primary program thrusts can be organized into three principal categories: (1) fundamental and technological limitations of optical information processing and computing; (2) electrically and optically addressed spatial light modulators; and (3) volume holographic optical elements.

  1. Selective Processing Techniques for Electronics and Opto-Electronic Applications: Quantum-Well Devices and Integrated Optic Circuits

    DTIC Science & Technology

    1993-02-10

    new technology is to have sufficient control of processing to *- describable by an appropriate elecromagnetic model . build useful devices. For example...3. W aveguide Modulators .................................. 7 B. Integrated Optical Device and Circuit Modeling ... ................... .. 10 C...following categories: A. Integrated Optical Devices and Technology B. Integrated Optical Device and Circuit Modeling C. Cryogenic Etching for Low

  2. Impact of Alternative Medical Device Approval Processes on Costs and Health

    PubMed Central

    George, Benjamin P.; Venkataraman, Vinayak; Dorsey, E. Ray

    2014-01-01

    Background Medical devices are often introduced prior to randomized‐trial evidence of efficacy and this slows completion of trials. Alternative regulatory approaches include restricting device use outside of trials prior to trial evidence of efficacy (like the drug approval process) or restricting out‐of‐trial use but permitting coverage within trials such as Medicare's Coverage with Study Participation (CSP). Methods We compared the financial impact to manufacturers and insurers of three regulatory alternatives: (1) limited regulation (current approach), (2) CSP, and (3) restrictive regulation (like the current drug approval process). Using data for patent foramen ovale closure devices, we modeled key parameters including recruitment time, probability of device efficacy, market adoption, and device cost/price to calculate profits to manufacturers, costs to insurers, and overall societal impact on health. Results For manufacturers, profits were greatest under CSP—driven by faster market adoption of effective devices—followed by restrictive regulation. Societal health benefit in total quality‐adjusted life years was greatest under CSP. Insurers’ expenditures for ineffective devices were greatest with limited regulation. Findings were robust over a reasonable range of probabilities of trial success. Conclusions Regulation restricting out‐of‐trial device use and extending limited insurance coverage to clinical trial participants may balance manufacturer and societal interests. PMID:25185975

  3. The role of point defects and defect complexes in silicon device processing. Summary report and papers

    SciTech Connect

    Sopori, B.; Tan, T.Y.

    1994-08-01

    This report is the summary of the third workshop on the role of point defects and defect complexes in silicon device processing. The workshop was organized: (1) to discuss recent progress in the material quality produced by photovoltaic Si manufacturers, (2) to foster the understanding of point defect issues in Si device processing, (3) to review the effects of inhomogeneities on large- area solar cell performance, (4) to discuss how to improve Si solar cell processing, and (5) to develop a new understanding of gettering, defect passivation, and defect annihilation. Separate abstract were prepared for the individual papers, for the database.

  4. Microfabricated Modular Scale-Down Device for Regenerative Medicine Process Development

    PubMed Central

    Reichen, Marcel; Macown, Rhys J.; Jaccard, Nicolas; Super, Alexandre; Ruban, Ludmila; Griffin, Lewis D.; Veraitch, Farlan S.; Szita, Nicolas

    2012-01-01

    The capacity of milli and micro litre bioreactors to accelerate process development has been successfully demonstrated in traditional biotechnology. However, for regenerative medicine present smaller scale culture methods cannot cope with the wide range of processing variables that need to be evaluated. Existing microfabricated culture devices, which could test different culture variables with a minimum amount of resources (e.g. expensive culture medium), are typically not designed with process development in mind. We present a novel, autoclavable, and microfabricated scale-down device designed for regenerative medicine process development. The microfabricated device contains a re-sealable culture chamber that facilitates use of standard culture protocols, creating a link with traditional small-scale culture devices for validation and scale-up studies. Further, the modular design can easily accommodate investigation of different culture substrate/extra-cellular matrix combinations. Inactivated mouse embryonic fibroblasts (iMEF) and human embryonic stem cell (hESC) colonies were successfully seeded on gelatine-coated tissue culture polystyrene (TC-PS) using standard static seeding protocols. The microfluidic chip included in the device offers precise and accurate control over the culture medium flow rate and resulting shear stresses in the device. Cells were cultured for two days with media perfused at 300 µl.h−1 resulting in a modelled shear stress of 1.1×10−4 Pa. Following perfusion, hESC colonies stained positively for different pluripotency markers and retained an undifferentiated morphology. An image processing algorithm was developed which permits quantification of co-cultured colony-forming cells from phase contrast microscope images. hESC colony sizes were quantified against the background of the feeder cells (iMEF) in less than 45 seconds for high-resolution images, which will permit real-time monitoring of culture progress in future experiments. The

  5. Glass composition and process for sealing void spaces in electrochemical devices

    DOEpatents

    Meinhardt, Kerry D [Richland, WA; Kirby, Brent W [Kennewick, WA

    2012-05-01

    A glass foaming material and method are disclosed for filling void spaces in electrochemical devices. The glass material includes a reagent that foams at a temperature above the softening point of the glass. Expansion of the glass fills void spaces including by-pass and tolerance channels of electrochemical devices. In addition, cassette to cassette seals can also be formed while channels and other void spaces are filled, reducing the number of processing steps needed.

  6. Transform Domain Processing for Digital Communication Systems Using Surface Acoustic Wave Devices

    DTIC Science & Technology

    1978-05-15

    reasonable amount of attention. This is because SAW devices can be used to perform accurate real-time convolutions of broadband * waveforms , thus...S interference removal by Fourier transforming the received signal, passing the resulting waveform through either a4 notch-filter or a hard limiter...limitations of processing signals in the Fourier transform domain vith SAW devices is the fact that only finite segments in time of the -input- waveform

  7. 21 CFR 801.150 - Medical devices; processing, labeling, or repacking.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... commerce to another establishment or to a contract sterilizer for sterilization, the Food and Drug... receiving the devices for sterilization. (ii) Provides instructions for maintaining proper records or... is being shipped for further processing, and (iv) States in detail the sterilization process, the...

  8. 21 CFR 801.150 - Medical devices; processing, labeling, or repacking.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... commerce to another establishment or to a contract sterilizer for sterilization, the Food and Drug... receiving the devices for sterilization. (ii) Provides instructions for maintaining proper records or... is being shipped for further processing, and (iv) States in detail the sterilization process, the...

  9. Electric poling-assisted additive manufacturing process for PVDF polymer-based piezoelectric device applications

    NASA Astrophysics Data System (ADS)

    Lee, ChaBum; Tarbutton, Joshua A.

    2014-09-01

    This paper presents a new additive manufacturing (AM) process to directly and continuously print piezoelectric devices from polyvinylidene fluoride (PVDF) polymeric filament rods under a strong electric field. This process, called ‘electric poling-assisted additive manufacturing or EPAM, combines AM and electric poling processes and is able to fabricate free-form shape piezoelectric devices continuously. In this process, the PVDF polymer dipoles remain well-aligned and uniform over a large area in a single design, production and fabrication step. During EPAM process, molten PVDF polymer is simultaneously mechanically stresses in-situ by the leading nozzle and electrically poled by applying high electric field under high temperature. The EPAM system was constructed to directly print piezoelectric structures from PVDF polymeric filament while applying high electric field between nozzle tip and printing bed in AM machine. Piezoelectric devices were successfully fabricated using the EPAM process. The crystalline phase transitions that occurred from the process were identified by using the Fourier transform infrared spectroscope. The results indicate that devices printed under a strong electric field become piezoelectric during the EPAM process and that stronger electric fields result in greater piezoelectricity as marked by the electrical response and the formation of sharper peaks at the polar β crystalline wavenumber of the PVDF polymer. Performing this process in the absence of an electric field does not result in dipole alignment of PVDF polymer. The EPAM process is expected to lead to the widespread use of AM to fabricate a variety of piezoelectric PVDF polymer-based devices for sensing, actuation and energy harvesting applications with simple, low cost, single processing and fabrication step.

  10. Integral Flexure Mounts for Metal Mirrors for Cryogenic Use

    NASA Technical Reports Server (NTRS)

    Zewari, S. Wahid; Hylan, Jason E.; Irish, Sandra M.; Ohl, Raymond G.; Conkey, Shelly B.

    2006-01-01

    Semi-kinematic, six-degree-of-freedom flexure mounts have been incorporated as integral parts of metal mirrors designed to be used under cryogenic conditions as parts of an astronomical instrument. The design of the mirrors and their integral flexure mounts can also be adapted to other instruments and other operating temperatures. In comparison with prior kinematic cryogenic mirror mounts, the present mounts are more compact and can be fabricated easily using Ram-EDM (electrical discharge machining) process

  11. Characterization of an oxygen plasma process for cleaning packaged semiconductor devices. Final report

    SciTech Connect

    Adams, B.E.

    1996-11-01

    The purpose of this research was to experimentally determine the operating {open_quotes}window{close_quotes} for an oxygen plasma cleaning process to be used on microelectronics components just prior to wire bonding. The process was being developed to replace one that used vapor degreasing with trichlorotrifluoroethane, an ozone-depleting substance. A Box-Behnken experimental design was used to generate data from which the oxygen plasma cleaning process could be characterized. Auger electron spectrophotometry was used to measure the contamination thickness on the dice after cleaning. An empirical equation correlating the contamination thickness on the die surface with the operating parameters of the plasma system was developed from the collected Auger data, and optimum settings for cleaning semiconductor devices were determined. Devices were also tested for undesirable changes in electrical parameters resulting from cleaning in the plasma system. An increase in leakage current occurred for bipolar transistors and diodes after exposure to the oxygen plasma. Although an increase in leakage current occurred, each device`s parameter remained well below the acceptable specification limit. Based upon the experimental results, the optimum settings for the plasma cleaning process were determined to be 200 watts of power applied for five minutes in an enclosure maintained at 0.7 torr. At these settings, all measurable contamination was removed without compromising the reliability of the devices.

  12. Processing Device for High-Speed Execution of an Xrisc Computer Program

    NASA Technical Reports Server (NTRS)

    Ng, Tak-Kwong (Inventor); Mills, Carl S. (Inventor)

    2016-01-01

    A processing device for high-speed execution of a computer program is provided. A memory module may store one or more computer programs. A sequencer may select one of the computer programs and controls execution of the selected program. A register module may store intermediate values associated with a current calculation set, a set of output values associated with a previous calculation set, and a set of input values associated with a subsequent calculation set. An external interface may receive the set of input values from a computing device and provides the set of output values to the computing device. A computation interface may provide a set of operands for computation during processing of the current calculation set. The set of input values are loaded into the register and the set of output values are unloaded from the register in parallel with processing of the current calculation set.

  13. 76 FR 24494 - Draft Guidance for Industry and FDA Staff: Processing/Reprocessing Medical Devices in Health Care...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    .../ Reprocessing Medical Devices in Health Care Settings: Validation Methods and Labeling; Availability AGENCY... Staff: Processing/Reprocessing Medical Devices in Health Care Settings: Validation Methods and Labeling... ``Draft Guidance for Industry and FDA Staff: Processing/Reprocessing Medical Devices in Health Care...

  14. Disposable patient-mounted geared robot for image-guided needle insertion

    NASA Astrophysics Data System (ADS)

    Watkins, Charles; Kato, Takahisa; Hata, Nobuhiko

    2016-03-01

    Patient-mounted robotic needle guidance is an emerging method of needle insertion in percutaneous ablation therapies. During needle insertion, patient-mounted robots can account for patient body movement, unlike gantry or floor mounted devices, and still increase the accuracy and precision of needle placement. Patient-mounted robots, however, require repeated sterilisation, which is often a difficult process with complex devices; overcoming this challenge is therefore key to the success of a patient mounted robot. To eliminate the need for repeated sterilization, we have developed a disposable patient-mounted robot with two rings as a kinematic structure: an angled upper ring both rotates and revolves about the lower ring. Using this structure, the robot has a clinically suitable range of needle insertion angles with a remote center of motion. To achieve disposability, our structure applies a disposable gear transmission component which detachably interfaces with non-disposable driving motors. With a manually driven prototype of the gear trains, we assessed whether the kinematic structure of the two rings can be operated only by using input pinions locating at outside of the kinematic structure. Our tests confirmed that the input pinions were able to rotate both upper and lower rings independently. We also determined a linear relationship of rotation transmission with the gear trains and determined that the rotation transmission between the pinions and the two rings were within 3 % of error from the designed value. Our robot introduces a novel approach to patient-mounted robots, and has potential to enable sterile and accurate needle guidance in percutaneous ablation therapies.

  15. Safety-cost trade-offs in medical device reuse: a Markov decision process model.

    PubMed

    Sloan, Thomas W

    2007-02-01

    Healthcare expenditures in the US are approaching 2 trillion dollars, and hospitals and other healthcare providers are under tremendous pressure to rein in costs. One cost-saving approach which is gaining popularity is the reuse of medical devices which were designed only for a single use. Device makers decry this practice as unsanitary and unsafe, but a growing number of third-party firms are willing to sterilize, refurbish, and/or remanufacture devices and resell them to hospitals at a fraction of the original price. Is this practice safe? Is reliance on single-use devices sustainable? A Markov decision process (MDP) model is formulated to study the trade-offs involved in these decisions. Several key parameters are examined: device costs, device failure probabilities, and failure penalty cost. For each of these parameters, expressions are developed which identify the indifference point between using new and reprocessed devices. The results can be used to inform the debate on the economic, ethical, legal, and environmental dimensions of this complex issue.

  16. Processing and characterization of protein polymer thin films for surface modification of neural prosthetic devices

    NASA Astrophysics Data System (ADS)

    Buchko, Christopher John

    The objective of this research has been to develop methods for modifying the surfaces of neural prosthetic devices to enhance biocompatibility. Also central to this work was the characterization of the processes used to modify the surfaces, the resulting macroscopic and microscopic structure, and the relevant physical properties of the new surface. The application required a coating that could attract and adhere cells, mediate the stiffness mismatch between the device and tissue, and facilitate signal transport from the device to tissue. The materials chosen for use as surface modifiers were genetically engineered polypeptides that combine biofunctional sequences with structural segments, creating a processable bioadhesive agent. An electric field mediated deposition process was used to create thin coatings on the devices from these protein polymers. Varying the process parameters was found to exert controllable changes on the morphology, and porous thin films with a range of structures were fabricated. This deposition process was combined with lithographic techniques to generate high-fidelity patterned surfaces. It was anticipated that the surface structure of these films could augment their biochemical composition and facilitate cell adhesion. A Fourier Transform-based method of explicitly quantifying the surface topography was employed to evaluate the effects of process parameters on topography. The mechanical properties of the coatings were examined to determine a suitable morphology for joining the mechanically dissimilar device and tissue. Fibrous coatings composed of randomly oriented filaments exhibited a stiffness gradient while under compression. The films were compliant near the tissue and stiffer near the device. The biological performance of these films was assayed and the films were seen to be potent cellular adhesives. The coatings were also found to be capable of delivering biologically-relevant molecules in vitro.

  17. Support for equipment - Quick mounting with quick release

    NASA Technical Reports Server (NTRS)

    Chamberlain, W. W., II; Jacobson, H. B.

    1970-01-01

    Temporary support device for equipment consists of pin bracket for attachment to item and socket bracket for mounting on any structure. System is adaptable to broad range of temporary storage media. No engagement, release, or adjustment of components is required.

  18. Mounted drilling apparatus

    SciTech Connect

    Manten, H.

    1982-07-20

    The drilling apparatus includes a mount in the form of a cylindrical member defining an elongated passageway and being provided with two opposite guiding rails each being formed with an elongated recessed channel communicating with the passageway; a rotary drive for holding a drill rod has a non-rotating casing provided with guiding elements movable in the recesses of the guiding rails; a feeding mechanism for advancing the rotary drive includes either tooth racks arranged in the recesses of the guiding rails and driving pinions mounted on the casing of the rotary drive or cylinder and piston units located in the recesses of the guide rails and cooperating with feed cables or chains. The mount is supported on a mobile undercarriage which is provided with two pairs of vertically adjustable supporting legs.

  19. Pressure vessel bottle mount

    NASA Technical Reports Server (NTRS)

    Wingett, Paul (Inventor)

    2001-01-01

    A mounting assembly for mounting a composite pressure vessel to a vehicle includes a saddle having a curved surface extending between two pillars for receiving the vessel. The saddle also has flanged portions which can be bolted to the vehicle. Each of the pillars has hole in which is mounted the shaft portion of an attachment member. A resilient member is disposed between each of the shaft portions and the holes and loaded by a tightening nut. External to the holes, each of the attachment members has a head portion to which a steel band is attached. The steel band circumscribes the vessel and translates the load on the springs into a clamping force on the vessel. As the vessel expands and contracts, the resilient members expand and contract so that the clamping force applied by the band to the vessel remains constant.

  20. Thermo-optic silica PLC devices for applications in high speed optical signal processing

    NASA Astrophysics Data System (ADS)

    Blanchetiere, Chantal; Callender, Claire L.; Jacob, Sarkis; Ledderhof, Christopher J.; Dumais, Patrick; Celo, Dritan; Chen, Lawrence R.; Samadi, Payman

    2011-08-01

    The optimization of a 2×2 silica-on-silicon Mach-Zehnder interferometer (MZI) thermo-optic switch is presented. The device consists of 2 multimode interference (MMI) couplers as splitter and combiner with metal heater strips for phase control. The switching characteristics of the devices have been examined in detail as a function of several parameters. The electrical power consumption of the switch has been reduced by a factor of 2 by etching trenches alongside the waveguide heaters located on the arms of the MZI, and the polarization dependent loss has been controlled and reduced through adjustment of top cladding properties. The effect on the response time of the switch of these design changes has been investigated. Detailed characterization of the devices will be presented, and trade-offs in optimization discussed. Incorporation of these device elements into increasingly complex components for new applications in optical signal processing will be demonstrated.

  1. Air processed organic photovoltaic devices incorporating a MoOx anode buffer layer

    NASA Astrophysics Data System (ADS)

    Bovill, Edward S. R.; Griffin, Jonathan; Wang, Tao; Kingsley, James W.; Yi, Hunan; Iraqi, Ahmed; Buckley, Alastair R.; Lidzey, David G.

    2013-05-01

    Molybdenum oxide (MoOx) has been shown to act as an efficient hole extraction layer in organic photovoltaic (OPV) devices. However, exposing MoOx films to air is problematic as it is hygroscopic; the uptake of moisture having a negative impact on its electronic properties. Here, we use spectroscopic ellipsometry to characterise the uptake of water, and fabricate PCDTBT:PC70BM based OPVs to determine its effects on device performance. We then show that thermally annealing MoOx reduces its hygroscopicity, permitting it to be processed in air. Using this process, we create air-processsed OPVs having PCEs (power conversion efficiencies) of up to 5.36%.

  2. Development and process control of magnetic tunnel junctions for magnetic random access memory devices

    NASA Astrophysics Data System (ADS)

    Kula, Witold; Wolfman, Jerome; Ounadjela, Kamel; Chen, Eugene; Koutny, William

    2003-05-01

    We report on the development and process control of magnetic tunnel junctions (MTJs) for magnetic random access memory (MRAM) devices. It is demonstrated that MTJs with high magnetoresistance ˜40% at 300 mV, resistance-area product (RA) ˜1-3 kΩ μm2, low intrinsic interlayer coupling (Hin) ˜2-3 Oe, and excellent bit switching characteristics can be developed and fully integrated with complementary metal-oxide-semiconductor circuitry into MRAM devices. MTJ uniformity and repeatability level suitable for mass production has been demonstrated with the advanced processing and monitoring techniques.

  3. Influence of process parameters on threshold voltage and leakage current in 18nm NMOS device

    NASA Astrophysics Data System (ADS)

    Atan, Norani Binti; Ahmad, Ibrahim Bin; Majlis, Burhanuddin Bin Yeop; Fauzi, Izzati Binti Ahmad

    2015-04-01

    The process parameters are very crucial factor in the development of transistors. There are many process parameters that influenced in the development of the transistors. In this research, we investigate the effects of the process parameters variation on response characteristics such as threshold voltage (VTH) and sub-threshold leakage current (IOFF) in 18nm NMOS device. The technique to identify semiconductor process parameters whose variability would impact most on the device characteristic is realized through the process by using Taguchi robust design method. This paper presents the process parameters that influenced in threshold voltage (VTH) and sub-threshold leakage current (IOFF) which includes the Halo Implantation, Compensation Implantation, Adjustment Threshold voltage Implantation and Source/Drain Implantation. The design, fabrication and characterization of 18nm HfO2/TiSi2 NMOS device is simulated and performed via a tool called Virtual Wafer Fabrication (VWF) Silvaco TCAD Tool known as ATHENA and ATLAS simulators. These two simulators were combined with Taguchi L9 Orthogonal method to aid in the design and the optimization of the process parameters to achieve the optimum average of threshold voltage (VTH) and sub-threshold leakage current, (IOFF) in 18nm device. Results from this research were obtained; where Halo Implantation dose was identified as one of the process parameter that has the strongest effect on the response characteristics. Whereby the Compensation Implantation dose was identified as an adjustment factor to get the nominal values of threshold voltage VTH, and sub-threshold leakage current, IOFF for 18nm NMOS devices equal to 0.302849 volts and 1.9123×10-16 A/μm respectively. The design values are referred to ITRS 2011 prediction.

  4. MOUNT BALDY WILDERNESS, ARIZONA.

    USGS Publications Warehouse

    Finnell, Tommy L.; Soule, John H.

    1984-01-01

    The Mount Baldy Wilderness, Arizona, was surveyed for mineral resources and was judged to have little or no promise for the occurrence of mineral resources. No mineral deposits, mining claims, or concentrations of trace metals were recognized within the area. No oil test holes have been drilled within the area; holes drilled about 35 mi north of the area were not productive. Further study of the Mount Baldy Wilderness would seem warranted only in the event that economic deposits of minerals or petroleum are found in nearby areas.

  5. High process yield rates of thermoplastic nanofluidic devices using a hybrid thermal assembly technique.

    PubMed

    Uba, Franklin I; Hu, Bo; Weerakoon-Ratnayake, Kumuditha; Oliver-Calixte, Nyote; Soper, Steven A

    2015-02-21

    Over the past decade, thermoplastics have been used as alternative substrates to glass and Si for microfluidic devices because of the diverse and robust fabrication protocols available for thermoplastics that can generate high production rates of the desired structures at low cost and with high replication fidelity, the extensive array of physiochemical properties they possess, and the simple surface activation strategies that can be employed to tune their surface chemistry appropriate for the intended application. While the advantages of polymer microfluidics are currently being realized, the evolution of thermoplastic-based nanofluidic devices is fraught with challenges. One challenge is assembly of the device, which consists of sealing a cover plate to the patterned fluidic substrate. Typically, channel collapse or substrate dissolution occurs during assembly making the device inoperable resulting in low process yield rates. In this work, we report a low temperature hybrid assembly approach for the generation of functional thermoplastic nanofluidic devices with high process yield rates (>90%) and with a short total assembly time (16 min). The approach involves thermally sealing a high T(g) (glass transition temperature) substrate containing the nanofluidic structures to a cover plate possessing a lower T(g). Nanofluidic devices with critical feature sizes ranging between 25-250 nm were fabricated in a thermoplastic substrate (T(g) = 104 °C) and sealed with a cover plate (T(g) = 75 °C) at a temperature significantly below the T(g) of the substrate. Results obtained from sealing tests revealed that the integrity of the nanochannels remained intact after assembly and devices were useful for fluorescence imaging at high signal-to-noise ratios. The functionality of the assembled devices was demonstrated by studying the stretching and translocation dynamics of dsDNA in the enclosed thermoplastic nanofluidic channels.

  6. Technology development of high-quality semiconductor devices using solution-processed crystallization of pentacene

    NASA Astrophysics Data System (ADS)

    Liu, Hung-Wei

    Organic electronic materials and processing techniques have attracted considerable attention for developing organic thin-film transistors (OTFTs), since they may be patterned on flexible substrates which may be bent into a variety of shapes for applications such as displays, smart cards, solar devices and sensors Various fabrication methods for building pentacene-based OTFTs have been demonstrated. Traditional vacuum deposition and vapor deposition methods have been studied for deposition on plastic and paper, but these are unlikely to scale well to large area printing. Researchers have developed methods for processing OTFTs from solution because of the potential for low-cost and large area device manufacturing, such as through inkjet or offset printing. Most methods require the use of precursors which are used to make pentacene soluble, and these methods have typically produced much lower carrier mobility than the best vacuum deposited devices. We have investigated devices built from solution-processed pentacene that is locally crystallized at room temperature on the polymer substrates. Pentacene crystals grown in this manner are highly localized at pre-determined sites, have good crystallinity and show good carrier mobility, making this an attractive method for large area manufacturing of semiconductor devices.

  7. A Laminated Microfluidic Device for Comprehensive Preclinical Testing in the Drug ADME Process.

    PubMed

    An, Fan; Qu, Yueyang; Luo, Yong; Fang, Ning; Liu, Yang; Gao, Zhigang; Zhao, Weijie; Lin, Bingcheng

    2016-04-28

    New techniques are urgently needed to replace conventional long and costly pre-clinical testing in the new drug administration process. In this study, a laminated microfluidic device was fabricated to mimic the drug ADME response test in vivo. This proposed device was loaded and cultured with functional cells for drug response investigation and organ tissues that are involved in ADME testing. The drug was introduced from the top of the device and first absorbed by the Caco-2 cell layer, and then metabolized by the primary hepatocyte layer. It subsequently interacted with the MCF-7 cell layer, distributed in the lung, heart and fat tissues, and was finally eliminated through the dialysis membrane. Throughout this on-chip ADME process, the proposed device can be used as a reliable tool to simultaneously evaluate the drug anti-tumor activity, hepatotoxicity and pharmacokinetics. Furthermore, this device was proven to be able to reflect the hepatic metabolism of a drug, drug distribution in the target tissues, and the administration method of a drug. Furthermore, this microdevice is expected to reduce the number of drug candidates and accelerate the pre-clinical testing process subject to animal testing upon adaptation in new drug discovery.

  8. Investigation of Processing, Microstructures and Efficiencies of Polycrystalline CdTe Photovoltaic Films and Devices

    NASA Astrophysics Data System (ADS)

    Munshi, Amit Harenkumar

    CdTe based photovoltaics have been commercialized at multiple GWs/year level. The performance of CdTe thin film photovoltaic devices is sensitive to process conditions. Variations in deposition temperatures as well as other treatment parameters have a significant impact on film microstructure and device performance. In this work, extensive investigations are carried out using advanced microstructural characterization techniques in an attempt to relate microstructural changes due to varying deposition parameters and their effects on device performance for cadmium telluride based photovoltaic cells deposited using close space sublimation (CSS). The goal of this investigation is to apply advanced material characterization techniques to aid process development for higher efficiency CdTe based photovoltaic devices. Several techniques have been used to observe the morphological changes to the microstructure along with materials and crystallographic changes as a function of deposition temperature and treatment times. Traditional device structures as well as advanced structures with electron reflector and films deposited on Mg1-xZnxO instead of conventional CdS window layer are investigated. These techniques include Scanning Electron Microscopy (SEM) with Electron Back Scattered Diffraction (EBSD) and Energy dispersive X-ray spectroscopy (EDS) to study grain structure and High Resolution Transmission Electron Microscopy (TEM) with electron diffraction and EDS. These investigations have provided insights into the mechanisms that lead to change in film structure and device performance with change in deposition conditions. Energy dispersive X-ray spectroscopy (EDS) is used for chemical mapping of the films as well as to understand interlayer material diffusion between subsequent layers. Electrical performance of these devices has been studied using current density vs voltage plots. Devices with efficiency over 18% have been fabricated on low cost commercial glass substrates

  9. Software tool for processing and interpretation of the satellite data from device AVHRR

    NASA Astrophysics Data System (ADS)

    Kataev, M. Yu.; Maksyutov, S.; Byshlanov, F. S.; Chugunov, A. G.

    2006-02-01

    The wide distribution of the satellite data measurements lead to increase of their role in the solving of the monitoring tasks. Now the set of satellites with the various characteristics works, but data received by device AVHRR of satellite NOAA near 30 years find the maximal application in many tasks of the industry, an agriculture and a science. However, the low spatial resolution, essential geometrical and brightness distortions of the images received from satellite devices AVHRR, established on satellites of series NOAA, complicate their direct analysis algorithms of thematic processing. There is a task of calibration received data to transition from the value directly measured by the device (ADC units) to real physical dimension (W/(m2×sr)), taking into account characteristics of the device at the moment of measurement. Because measurements are carried out not only in subsatellite point, and in some angular span, there is a problem of definition of exact geographical coordinates of a point in which measurement was carried out, and also geometrical correction of a image. Device AVHRR established on satellites of series NOAA, represents the space digital polyzonal system providing reception of the image of a surface of the Earth in 5 spectral channels with the spatial resolution of 1.1 km, the radiometric resolution of 10 bytes (1024 gradation) some times in day. As some satellites of this series simultaneously are in orbits so the same site of a surface of 5-6 times in day is accessible to the review. The width of a strip of scanning of the device makes 2048 points. For solving tasks of the satellite data processing for the educational-research purposes we develop the software "SATELLITEEXPLORER", working as Windows application. This application allows to process of the satellite data of device AVHRR which has been written in format HRPT.

  10. A process for the agile product realization of electromechanical devices (A-primed)

    SciTech Connect

    Forsythe, C.; Ashby, M.R.; Benavides, G.L.; Diegert, K.V.; Jones, R.E.; Longcope, D.B.; Parratt, S.W.

    1996-02-01

    This paper describes a product realization process developed at Sandia National Laboratories by the A-PRIMED project that integrates many of the key components of ``agile manufacturing`` (Nagel & Dove, 1992) into a complete, step-by-step, design-to-production process. For two separate product realization efforts, each geared to a different set of requirements, A-PRIMED demonstrated product realization of a custom device in less than a month. A-PRIMED used a discriminator (a precision electro mechanical device) as the demonstration device, but the process is readily adaptable to other electro mechanical products. The process begins with a qualified design parameter space (Diegert et al, 1995). From that point, the product realization process encompasses all facets of requirements development, analysis and testing, design, manufacturing, robot assembly and quality assurance, as well as product data management and concurrent engineering. In developing the product realization process, A-PRIMED employed an iterative approach whereby after each build, the process was reviewed and refinements were made on the basis of lessons learned. This paper describes the integration of project functions and product realization technologies to develop a product realization process that on repeated iterations, was proven successful.

  11. Device and method to enhance availability of cluster-based processing systems

    NASA Technical Reports Server (NTRS)

    Lupia, David J. (Inventor); Ramos, Jeremy (Inventor); Samson, Jr., John R. (Inventor)

    2010-01-01

    An electronic computing device including at least one processing unit that implements a specific fault signal upon experiencing an associated fault, a control unit that generates a specific recovery signal upon receiving the fault signal from the at least one processing unit, and at least one input memory unit. The recovery signal initiates specific recovery processes in the at least one processing unit. The input memory buffers input data signals input to the at least one processing unit that experienced the fault during the recovery period.

  12. Effect of Back Contact and Rapid Thermal Processing Conditions on Flexible CdTe Device Performance

    SciTech Connect

    Mahabaduge, Hasitha; Meysing, D. M.; Rance, Will L.; Burst, James M.; Reese, Matthew O.; Wolden, C. A.; Gessert, Timothy A.; Metzger, Wyatt K.; Garner, S.; Barnes, Teresa M.

    2015-06-14

    Flexible CdTe solar cells on ultra-thin glass substrates can enable new applications that require high specific power, unique form-factors, and low manufacturing costs. To be successful, these cells must be cost competitive, have high efficiency, and have high reliability. Here we present back contact processing conditions that enabled us to achieve over 16% efficiency on flexible Corning (R) Willow (R) Glass substrates. We used co-evaporated ZnTe:Cu and Au as our back contact and used rapid thermal processing (RTP) to activate the back contact. Both the ZnTe to Cu ratio and the RTP activation temperature provide independent control over the device performance. We have investigated the influence of various RTP conditions to Cu activation and distribution. Current density-voltage, capacitance-voltage measurements along with device simulations were used to examine the device performance in terms of ZnTe to Cu ratio and rapid thermal activation temperature.

  13. Housing And Mounting Structure

    DOEpatents

    Anderson, Gene R.; Armendariz, Marcelino G.; Baca, Johnny R.F.; Bryan, Robert P.; Carson, Richard F.; Duckett, III, Edwin B.; McCormick, Frederick B.; Miller, Gregory V.; Peterson, David W.; Smith, Terrance T.

    2005-03-08

    This invention relates to an optical transmitter, receiver or transceiver module, and more particularly, to an apparatus for connecting a first optical connector to a second optical connector. The apparatus comprises: (1) a housing having at least a first end and at least a second end, the first end of the housing capable of receiving the first optical connector, and the second end of the housing capable of receiving the second optical connector; (2) a longitudinal cavity extending from the first end of the housing to the second end of the housing; and (3) an electromagnetic shield comprising at least a portion of the housing. This invention also relates to an apparatus for housing a flexible printed circuit board, and this apparatus comprises: (1) a mounting structure having at least a first surface and a second surface; (2) alignment ridges along the first and second surfaces of the mounting structure, the alignment ridges functioning to align and secure a flexible printed circuit board that is wrapped around and attached to the first and second surfaces of the mounting structure; and (3) a series of heat sink ridges adapted to the mounting structure, the heat sink ridges functioning to dissipate heat that is generated from the flexible printed circuit board.

  14. Transducer-Mounting Fixture

    NASA Technical Reports Server (NTRS)

    Spiegel, Kirk W.

    1990-01-01

    Transducer-mounting fixture holds transducer securely against stud. Projects only slightly beyond stud after installation. Flanged transducer fits into fixture when hinged halves open. When halves reclosed, fixture tightened onto threaded stud until stud makes contact with transducer. Knurled area on fixture aids in tightening fixture on stud.

  15. Apollo Telescope Mount Illustration

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Apollo Telescope Mount (ATM) served as the first marned astronomical observatory in space. It was designed for solar research from Earth orbit aboard the Skylab. This image is a cutaway illustration of the ATM canister with callouts and characteristics. The ATM was designed and developed by the Marshall Space Flight Center.

  16. Apollo Telescope Mount Illustration

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The Apollo Telescope Mount (ATM) served as the first marned astronomical observatory in space. It was designed for solar research from Earth orbit aboard the Skylab. This image is a cutaway illustration of the ATM canister. The ATM was designed and developed by the Marshall Space Flight Center.

  17. Apollo Telescope Mount Illustration

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The Apollo Telescope Mount (ATM) served as the first marned astronomical observatory in space. It was designed for solar research from Earth orbit aboard the Skylab. This image is a cutaway illustration of the ATM canister with callouts. The ATM was designed and developed by the Marshall Space Flight Center.

  18. Internal Consistency Reliability of the Self-Report Antisocial Process Screening Device

    ERIC Educational Resources Information Center

    Poythress, Norman G.; Douglas, Kevin S.; Falkenbach, Diana; Cruise, Keith; Lee, Zina; Murrie, Daniel C.; Vitacco, Michael

    2006-01-01

    The self-report version of the Antisocial Process Screening Device (APSD) has become a popular measure for assessing psychopathic features in justice-involved adolescents. However, the internal consistency reliability of its component scales (Narcissism, Callous-Unemotional, and Impulsivity) has been questioned in several studies. This study…

  19. "Split Cast Mounting: Review and New Technique".

    PubMed

    Gundawar, S M; Pande, Neelam A; Jaiswal, Priti; Radke, U M

    2014-12-01

    For the fabrication of a prosthesis, the Prosthodontist meticulously performs all the steps. The laboratory technician then make every effort/strives to perform the remaining lab procedures. However when the processed dentures are remounted on the articulator, some changes are seen. These changes may be divided into two categories: Pre-insertion and post-insertion changes, which deal with the physical properties of the materials involved (Parker, J Prosthet Dent 31:335-342, 1974). Split cast mounting is the method of mounting casts on the articulator. It is essentially a maxillary cast constructed in two parts with a horizontal division. The procedure allows for the verification of the accuracy of the initial mounting and the ease of removal and replacement of the cast. This provides a precise means of correcting the changes in occlusion occurring as a result of the processing technique (Nogueira et al., J Prosthet Dent 91:386-388, 2004). Instability of the split mounting has always been a problem to the Prosthodontist thereby limiting its use. There are various materials mentioned in the literature. The new technique by using Dowel pins and twill thread is very easy, cheaper and simple way to stabilize the split mounting. It is useful and easy in day to day laboratory procedures. The article presents different methods of split cast mounting and the new procedure using easily available materials in prosthetic laboratory.

  20. Physics-based process modeling, reliability prediction, and design guidelines for flip-chip devices

    NASA Astrophysics Data System (ADS)

    Michaelides, Stylianos

    Flip Chip on Board (FCOB) and Chip-Scale Packages (CSPs) are relatively new technologies that are being increasingly used in the electronic packaging industry. Compared to the more widely used face-up wirebonding and TAB technologies, flip-chips and most CSPs provide the shortest possible leads, lower inductance, higher frequency, better noise control, higher density, greater input/output (I/O), smaller device footprint and lower profile. However, due to the short history and due to the introduction of several new electronic materials, designs, and processing conditions, very limited work has been done to understand the role of material, geometry, and processing parameters on the reliability of flip-chip devices. Also, with the ever-increasing complexity of semiconductor packages and with the continued reduction in time to market, it is too costly to wait until the later stages of design and testing to discover that the reliability is not satisfactory. The objective of the research is to develop integrated process-reliability models that will take into consideration the mechanics of assembly processes to be able to determine the reliability of face-down devices under thermal cycling and long-term temperature dwelling. The models incorporate the time and temperature-dependent constitutive behavior of various materials in the assembly to be able to predict failure modes such as die cracking and solder cracking. In addition, the models account for process-induced defects and macro-micro features of the assembly. Creep-fatigue and continuum-damage mechanics models for the solder interconnects and fracture-mechanics models for the die have been used to determine the reliability of the devices. The results predicted by the models have been successfully validated against experimental data. The validated models have been used to develop qualification and test procedures for implantable medical devices. In addition, the research has helped develop innovative face

  1. Devices with extended area structures for mass transfer processing of fluids

    DOEpatents

    TeGrotenhuis, Ward E.; Wegeng, Robert S.; Whyatt, Greg A.; King, David L.; Brooks, Kriston P.; Stenkamp, Victoria S.

    2009-04-21

    A microchannel device includes several mass transfer microchannels to receive a fluid media for processing at least one heat transfer microchannel in fluid communication with a heat transfer fluid defined by a thermally conductive wall, and at several thermally conductive fins each connected to the wall and extending therefrom to separate the mass transfer microchannels from one another. In one form, the device may optionally include another heat transfer microchannel and corresponding wall that is positioned opposite the first wall and has the fins and the mass transfer microchannels extending therebetween.

  2. A Simple Single Step diffusion and Emitter Etching Process for High Efficiency Gallium Antimonide Thermophotovoltaic Devices

    SciTech Connect

    G. Rajagopalan; N.S. Reddy; E. Ehsani; I.B. Bhat; P.S. Dutta; R.J. Gutmann; G. Nichols; G.W. Charache; O. Sulima

    2003-08-29

    A single step diffusion followed by precise etching of the diffused layer has been developed to obtain a diffusion profile appropriate for high efficiency GaSb thermophotovoltaic cells. The junction depth was controlled through monitoring of light current-voltage (I-V) curves (photovoltaic response) during the post diffusion emitter etching process. The measured photoresponses (prior to device fabrication) have been correlated with the quantum efficiencies and the open circuit voltages in the fabricated devices. An optimum junction depth for obtaining highest quantum efficiency and open circuit voltage is presented based on diffusion lengths (or monitoring carrier lifetimes), carrier mobility and typical diffused impurity profile in GaSb.

  3. SXI prototype mirror mount

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The purpose of this contract was to provide optomechanical engineering and fabrication support to the Solar X-ray Imager (SXI) program in the areas of mirror, optical bench and camera assemblies of the telescope. The Center for Applied Optics (CAO) worked closely with the Optics and S&E technical staff of MSFC to develop and investigate the most viable and economical options for the design and fabrication of a number of parts for the various telescope assemblies. All the tasks under this delivery order have been successfully completed within budget and schedule. A number of development hardware parts have been designed and fabricated jointly by MSFC and UAH for the engineering model of SXI. The major parts include a nickel electroformed mirror and a mirror mount, plating and coating of the ceramic spacers, and gold plating of the contact rings and fingers for the camera assembly. An aluminum model of the high accuracy sun sensor (HASS) was also designed and fabricated. A number of fiber optic tapers for the camera assembly were also coated with indium tin oxide and phosphor for testing and evaluation by MSFC. A large number of the SXI optical bench parts were also redesigned and simplified for a prototype telescope. These parts include the forward and rear support flanges, front aperture plate, the graphite epoxy optical bench and a test fixture for the prototype telescope. More than fifty (50) drawings were generated for various components of the prototype telescope. Some of these parts were subsequently fabricated at UAH machine shop or at MSFC or by the outside contractors. UAH also provide technical support to MSFC staff for a number of preliminary and critical design reviews. These design reviews included PDR and CDR for the mirror assembly by United Technologies Optical Systems (UTOS), and the program quarterly reviews, and SXI PDR and CDR. UAH staff also regularly attended the monthly status reviews, and made a significant number of suggestions to improve

  4. SXI prototype mirror mount

    NASA Astrophysics Data System (ADS)

    1995-04-01

    The purpose of this contract was to provide optomechanical engineering and fabrication support to the Solar X-ray Imager (SXI) program in the areas of mirror, optical bench and camera assemblies of the telescope. The Center for Applied Optics (CAO) worked closely with the Optics and S&E technical staff of MSFC to develop and investigate the most viable and economical options for the design and fabrication of a number of parts for the various telescope assemblies. All the tasks under this delivery order have been successfully completed within budget and schedule. A number of development hardware parts have been designed and fabricated jointly by MSFC and UAH for the engineering model of SXI. The major parts include a nickel electroformed mirror and a mirror mount, plating and coating of the ceramic spacers, and gold plating of the contact rings and fingers for the camera assembly. An aluminum model of the high accuracy sun sensor (HASS) was also designed and fabricated. A number of fiber optic tapers for the camera assembly were also coated with indium tin oxide and phosphor for testing and evaluation by MSFC. A large number of the SXI optical bench parts were also redesigned and simplified for a prototype telescope. These parts include the forward and rear support flanges, front aperture plate, the graphite epoxy optical bench and a test fixture for the prototype telescope. More than fifty (50) drawings were generated for various components of the prototype telescope. Some of these parts were subsequently fabricated at UAH machine shop or at MSFC or by the outside contractors. UAH also provide technical support to MSFC staff for a number of preliminary and critical design reviews. These design reviews included PDR and CDR for the mirror assembly by United Technologies Optical Systems (UTOS), and the program quarterly reviews, and SXI PDR and CDR. UAH staff also regularly attended the monthly status reviews, and made a significant number of suggestions to improve

  5. Characterizing Information Processing With a Mobile Device: Measurement of Simple and Choice Reaction Time.

    PubMed

    Burke, Daniel; Linder, Susan; Hirsch, Joshua; Dey, Tanujit; Kana, Daniel; Ringenbach, Shannon; Schindler, David; Alberts, Jay

    2016-03-01

    Information processing is typically evaluated using simple reaction time (SRT) and choice reaction time (CRT) paradigms in which a specific response is initiated following a given stimulus. The measurement of reaction time (RT) has evolved from monitoring the timing of mechanical switches to computerized paradigms. The proliferation of mobile devices with touch screens makes them a natural next technological approach to assess information processing. The aims of this study were to determine the validity and reliability of using of a mobile device (Apple iPad or iTouch) to accurately measure RT. Sixty healthy young adults completed SRT and CRT tasks using a traditional test platform and mobile platforms on two occasions. The SRT was similar across test modality: 300, 287, and 280 milliseconds (ms) for the traditional, iPad, and iTouch, respectively. The CRT was similar within mobile devices, though slightly faster on the traditional: 359, 408, and 384 ms for traditional, iPad, and iTouch, respectively. Intraclass correlation coefficients ranged from 0.79 to 0.85 for SRT and from 0.75 to 0.83 for CRT. The similarity and reliability of SRT across platforms and consistency of SRT and CRT across test conditions indicate that mobile devices provide the next generation of assessment platforms for information processing.

  6. Tropical forest phenology and metabolism: Integrated analysis of tower-mounted camera images and tower derived GPP for interpreting ecosystem scale processes

    NASA Astrophysics Data System (ADS)

    Wu, J.; Restrepo-Coupe, N.; Hayek, M.; Stark, S. C.; Smith, M.; Wiedemann, K.; Marostica, S.; Ferreira, M.; Woodcock, T.; Prohaska, N.; da Silva, R.; Nelson, B. W.; Huete, A. R.; Saleska, S. R.

    2013-12-01

    Seasonal and interannual patterns of leaf development and metabolism are a central topic of global change ecology. However, the seasonality of leaf development in tropical forests remains poorly understood due to the relatively low variation in climate, the high biodiversity of tropical biomes and the limitations of current observation techniques. In this study, we aim to demonstrate the feasibility of using near-surface remote sensing techniques to understand the phenology of an evergreen tropical forest (Tapajos National Forest or TNF site, Santarem, Para, Brazil), and how this phenology affects the metabolism of tropical vegetation. Two continuous years (2010-2011) of daily images from a tower mounted three-channel (red, green, and near-infrared) TetraCAM ADC camera were analyzed for this study. A new approach was developed based on an automatic image classification scheme which decomposed the images into two components (leaves and bare wood) to extract seasonality of leaf development. A confusion matrix method was used to assess the accuracy of image classification. MODIS EVI composites (MOD13Q1) were also acquired and processed for the TNF site (5km*5km). The camera based phenology information was first compared with MODIS EVI, and then combined with tower based eddy covariance measurements at the same site to quantify the effect of canopy-scale phenology on ecosystem metabolism. We found that: (1) Tower-based images revealed a clear seasonal pattern in leaf phenology that was supported by confusion matrix analysis. Matrix analysis gave a 96.7% user accuracy (user accuracy represents the probability that an image pixel classification actually corresponds to that category on the ground) for the leaf component, based on 24 images in 2010 (2 images per month). The tower-based pattern matched that retrieved from satellites (camera-sensed leaf phenology vs monthly MODIS EVI (01/2010-12/2011, R2=0.57, P-value<0.01). This suggests that quality-controlled MODIS EVI

  7. Embedded processing for SHM with integrated software control of a wireless impedance device

    NASA Astrophysics Data System (ADS)

    Taylor, Stuart G.; Carroll, Joetta; Farinholt, Kevin M.; Park, Gyuhae; Farrar, Charles R.; Todd, Michael D.

    2011-04-01

    Wireless sensor nodes with impedance measurement capabilities, often based on the Analog Devices AD5933 impedance chip and Atmel's 8-bit ATMega 1281 microcontroller, have been demonstrated to be effective in collecting data for localized damage detection (such as for loose bolt detection) and for sensor self-diagnostics. Previouslydeveloped nodes rely on radio telemetry and off-board processing (usually via a PC) to ascertain damage presence or sensor condition. Recent firmware improvements for the wireless impedance device (WID) now allow seamless integration of the WID with SHMTools and mFUSE, an open-source function sequencer and SHM process platform for Matlab. Furthermore, SHM processes developed using mFUSE can be implemented in hardware on the WID, allowing greater autonomy among the sensor nodes to identify and report damage in real time. This paper presents the capabilities of the newly integrated hardware and software, as well as experimental validation.

  8. A dicing-free SOI process for MEMS devices based on the lag effect

    NASA Astrophysics Data System (ADS)

    Xie, J.; Hao, Y.; Shen, Q.; Chang, H.; Yuan, W.

    2013-12-01

    This paper presents a dicing-free process for silicon-on-insulator (SOI) microelectromechanical systems (MEMS). In the process, the lag effect in deep reactive ion etching (DRIE) is used to form the breaking trenches. In the backside DRIE, the wide backside cavities are etched down to the buried oxide layer. The narrow breaking trenches, in contrast, are not etched to the buried oxide layer. Therefore, the narrow trench can be used to break the wafer after the entire process; in addition, the handle layer can still act as a bracing structure before ‘breaking’. Finally, the device layer is patterned, and a DRIE step is used to form the MEMS devices. In this way, the dicing step can be omitted to prevent further damages from high pressure water jets and silicon dust. Meanwhile, the process can also prevent notching simply because the insulating layer is removed before device etching. To demonstrate the feasibility of the proposed fabrication process, a micromachined gyroscope is designed and fabricated.

  9. Mount Pinatubo, Philippines

    NASA Image and Video Library

    1994-09-30

    STS068-232-083 (30 September-11 October 1994) --- This is a view of Mount Pinatubo, Philippine Islands, orient with the coast to the top. View westward across central Luzon and Mount Pinatubo. Manilla Bay is in partial sunglint along the left edge of the frame. The extensive flows of volcanic ash (lahars) extending from the mountain are readily seen despite partial cloud cover. The ash is mobilized with every rain in this typhoon-ridden region, flowing down valleys, filling drainage channels, and covering fields and towns. The STS-68 crew obtained excellent photographs of the region, for comparison to the radar data also obtained on the mission. Photographs in sunglint have proven particularly helpful because they show the exact outlines of surface water, which provides a datum point for the radar returns.

  10. Mount Erebus activity

    NASA Astrophysics Data System (ADS)

    An international team of scientists reports that unusually high seismic activity joggled Mount Erebus last fall. However, the Antarctic volcano showed no external signs of an eruption.When scientists from the United States, Japan, and New Zealand returned to the world's southernmost active volcano last November for their annual field expedition, they found that seismic stations recorded 650 small tremors on October 8; prior to that, the number of quakes had averaged between 20 and 80 per day. The October 8 maximum was followed by 140 on October 9 and 120 on October 10. Philip R. Kyle, assistant professor of geochemistry at the New Mexico Institute of Mining and Technology in Socorro and leader of the team studying Mount Erebus, noted that some of the strongest earthquakes recorded during the team's 3 years of observations occurred on October 8; these registered less than 2 on the Richter scale.

  11. A service protocol for post-processing of medical images on the mobile device

    NASA Astrophysics Data System (ADS)

    He, Longjun; Ming, Xing; Xu, Lang; Liu, Qian

    2014-03-01

    With computing capability and display size growing, the mobile device has been used as a tool to help clinicians view patient information and medical images anywhere and anytime. It is uneasy and time-consuming for transferring medical images with large data size from picture archiving and communication system to mobile client, since the wireless network is unstable and limited by bandwidth. Besides, limited by computing capability, memory and power endurance, it is hard to provide a satisfactory quality of experience for radiologists to handle some complex post-processing of medical images on the mobile device, such as real-time direct interactive three-dimensional visualization. In this work, remote rendering technology is employed to implement the post-processing of medical images instead of local rendering, and a service protocol is developed to standardize the communication between the render server and mobile client. In order to make mobile devices with different platforms be able to access post-processing of medical images, the Extensible Markup Language is taken to describe this protocol, which contains four main parts: user authentication, medical image query/ retrieval, 2D post-processing (e.g. window leveling, pixel values obtained) and 3D post-processing (e.g. maximum intensity projection, multi-planar reconstruction, curved planar reformation and direct volume rendering). And then an instance is implemented to verify the protocol. This instance can support the mobile device access post-processing of medical image services on the render server via a client application or on the web page.

  12. Plasma Screen Floating Mount

    DOEpatents

    Eakle, Robert F.; Pak, Donald J.

    2004-10-26

    A mounting system for a flat display screen, particularly a plasma display screen, suspends the screen separately in each of the x-, y- and z-directions. A series of frames located by linear bearings and isolated by springs and dampers allows separate controlled movement in each axis. The system enables the use of relatively larger display screens in vehicles in which plasma screen are subject to damage from vibration.

  13. Mount Wilson Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Mount Wilson Observatory, located in the San Gabriel Mountains near Pasadena, California, was founded in 1904 by George Ellery Hale with financial support from Andrew Carnegie. In the 1920s and 1930s, working at the 2.5 m Hooker telescope, Edwin Hubble made two of the most important discoveries in the history of astronomy: first, that `nebulae' are actually island universes—galaxies—each with bil...

  14. Mount Kilimanjaro, Tanzania

    NASA Image and Video Library

    1996-01-20

    STS072-722-004 (11-20 Jan. 1996) --- Mount Kilimanjaro in Tanzania is featured in this 70mm frame exposed from the Earth-orbiting Space Shuttle Endeavour. Orient with the clouds trailing to the left; then the view is southwest from Kenya past Kilimanjaro to Mount Meru, in Tanzania. Mount Kilimanjaro is about three degrees south of the Equator, but at nearly 6,000 meters has a permanent snowfield. The mountain displays a classic zonation of vegetation types from seasonally dry savannah on the plains at 1,000 meters, to the cloud forest near the top. The mountain is being managed experimentally as an international biosphere reserve. A buffer zone of "traditional" agriculture and pastoral land use is designated around the closed-canopy forest reserve. Specialists familiar with this area say management is partially successful so far, but cleared areas of the forest can be seen on this photograph as light green "nibbles" or "cookie cuts" extending into the dark forest region.

  15. Monitoring Mount Baker Volcano

    USGS Publications Warehouse

    Malone, S.D.; Frank, D.

    1976-01-01

    Hisotrically active volcanoes in the conterminous United States are restricted to the Cascade Range and extend to the Cascade Range and extend from Mount Baker near the Canadian border to Lassen Peak in northern California. Since 1800 A.D, most eruptive activity has been on a relatively small scale and has not caused loss of life or significant property damage. However, future  volcanism predictably will have more serious effects because of greatly increased use of land near volcanoes during the present century. (See "Appraising Volcanic Hazards of the Cascade Range of the Northwestern United States," Earthquake Inf. Bull., Sept.-Oct. 1974.) The recognition an impending eruption is highly important in order to minimize the potential hazard to people and property. Thus, a substantial increase in hydrothermal activity at Mount Baker in March 1975 ( see "Mount Baker Heating Up," July-Aug. 1975 issue) was regarded as a possible first signal that an eruption might occur, and an intensive monitoring program was undertaken. 

  16. Solar panel mounting assembly

    SciTech Connect

    Eiden, G.E.

    1990-01-02

    This patent describes a mounting assembly for pivotally connecting a solar panel or collector to a base. The mounting assembly comprising: a frame whereupon the solar panel or collector can be mounted; a first plate connected to the frame, the plate having a pivot hole and a plurality of angle displacement holes each being equidistant from the pivot hole; a second plate connected to the base and situated substantially parallel to the first plate. The second plate having a pivot hole and an angle displacement hole being situated substantially the same distance apart from the second plate pivot hole as the distance between the pivot and displacement holes of the first plate; a pivot shaft received through the plate pivot hole and the second plate pivot hole whereby the frame and first plate can pivot with respect to the second plate and the base; an angle displacement shaft selectively received through the second plate angle displacement hole and any one of the first plate angle displacement holes whereby the frame and first plate can be selectively angularly fixed with respect to the second plate and the base; a U-member having two legs, the second plate being connected to the U-member; and, a selectively rotable shaft.

  17. Process-induced bias: a study of resist design, device node, illumination conditions, and process implications

    NASA Astrophysics Data System (ADS)

    Carcasi, Michael; Scheer, Steven; Fonseca, Carlos; Shibata, Tsuyoshi; Kosugi, Hitoshi; Kondo, Yoshihiro; Saito, Takashi

    2009-03-01

    Critical dimension uniformity (CDU) has both across field and across wafer components. CD error generated by across wafer etching non-uniformity and other process variations can have a significant impact on CDU. To correct these across wafer systematic variations, compensation by exposure dose and/or post exposure bake (PEB) temperature have been proposed. These compensation strategies often focus on a specific structure without evaluating how process compensation impacts the CDU of all structures to be printed in a given design. In one previous study limited to a single resist and minimal coater/developer and scanner variations, the authors evaluated the relative merits of across wafer dose and PEB temperature compensation on the process induced CD bias and CDU. For the process studied, it was found that using PEB temperature to control CD across wafer was preferable to using dose compensation. In another previous study, the impact of resist design was explored to understand how resist design, as well as coater/developer and scanner processing, impact process induced bias (PIB). The previous PIB studies were limited to a single illumination case and explore the effect of PIB on only L/S structures. It is the goal of this work to understand additionally how illumination design and mask design, as well as resist design and coater/developer and scanner processing, impact process induced bias (PIB)/OPC integrity.

  18. Holographic Helmet-Mounted Display Unit

    NASA Technical Reports Server (NTRS)

    Burley, James R., II; Larussa, Joseph A.

    1995-01-01

    Helmet-mounted display unit designed for use in testing innovative concepts for display of information to aircraft pilots. Operates in conjunction with computers generating graphical displays. Includes two ocular subunits containing miniature cathoderay tubes and optics providing 40 degrees vertical, 50 degrees horizontal field of view to each eye, with or without stereopsis. In future color application, each ocular subunit includes trichromatic holographic combiner tuned to red, green, and blue wavelengths of phosphors used in development of miniature color display devices.

  19. A process for the agile product realization of electro-mechanical devices

    SciTech Connect

    Forsythe, C.; Ashby, M.R.; Benavides, G.L.; Diegert, K.V.; Jones, R.E.; Longcope, D.B.; Parratt, S.W.

    1995-09-01

    This paper describes a product realization process developed and demonstrated at Sandia by the A-PRIMED (Agile Product Realization for Innovative Electro MEchanical Devices) project that integrates many of the key components of ``agile manufacturing`` into a complete, design-to-production process. Evidence indicates that the process has reduced the product realization cycle and assured product quality. Products included discriminators for a robotic quick change adapter and for an electronic defense system. These discriminators, built using A-PRIMED, met random vibration requirements and had life cycles that far surpass the performance obtained from earlier efforts.

  20. Spectroscopic ellipsometry as a process control tool for manufacturing cadmium telluride thin film photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Smith, Westcott P.

    In recent decades, there has been concern regarding the sustainability of fossil fuels. One of the more promising alternatives is Cadmium Telluride (CdTe) thin-film photovoltaic (PV) devices. Improved quality measurement techniques may aid in improving this existing technology. Spectroscopic ellipsometry (SE) is a common, non-destructive technique for measuring thin films in the silicon wafer industry. SE results have also been tied to properties believed to play a role in CdTe PV device efficiency. A study assessing the potential of SE for use as a quality measurement tool had not been previously reported. Samples of CdTe devices produced by both laboratory and industrial scale processes were measured by SE and Scanning Electron Microscopy (SEM). Mathematical models of the optical characteristics of the devices were developed and fit to SE data from multiple angles and locations on each sample. Basic statistical analysis was performed on results from the automated fits to provide an initial evaluation of SE as a quantitative quality measurement process. In all cases studied, automated SE models produced average stack thickness values within 10% of the values produced by SEM, and standard deviations for the top bulk layer thickness were less than 1% of the average values.

  1. Linking the Regulatory and Reimbursement Processes for Medical Devices: The Need for Integrated Assessments.

    PubMed

    Ciani, Oriana; Wilcher, Britni; van Giessen, Anoukh; Taylor, Rod S

    2017-02-01

    Much criticism has been directed at the licencing requirements for medical devices (MDs) as they often result in a lack of robust evidence to inform health technology assessment (HTA) decisions. To better understand the current international decisional framework on MD technologies, we undertook three linked research studies: a review of the device regulatory procedures, a survey of current HTA practices and an empirical comparison of HTA reports of drugs versus MDs. Our review confirms that current device regulatory processes across the globe are substantially less stringent than drugs. As a result, international HTA agencies report that they face a number of challenges when assessing MDs, including reliance on suboptimal data to make clinical and cost-effectiveness decisions. Whilst many HTA agencies have adapted their processes and procedures to handle MD technology submissions, in our comparison of HTA reports we found little evidence of the application of methodologies that take account of device-specific issues, such as incremental development. Overall, our research reinforces the need for better linkage between licencing and HTA and the development and application of innovative HTA methodologies with the objective of securing faster patient access for those technologies that can be shown to represent good value for money. © 2017 The Authors. Health Economics Published by John Wiley & Sons, Ltd.

  2. Dip-Coating Process Engineering and Performance Optimization for Three-State Electrochromic Devices

    NASA Astrophysics Data System (ADS)

    Wu, Lu; Yang, Dejiang; Fei, Lixun; Huang, Yue; Wu, Fang; Sun, Yiling; Shi, Jiayuan; Xiang, Yong

    2017-06-01

    Titanium dioxide (TiO2) nanoparticles were modified onto fluorine-doped tin oxide (FTO) via dip-coating technique with different nanoparticle sizes, lifting speeds, precursor concentrations, and dipping numbers. Electrodeposition-based electrochromic device with reversible three-state optical transformation (transparent, mirror, and black) was fabricated subsequently by sandwiching a suitable amount of gel electrolyte between modified FTO electrode and flat FTO electrode. Correlation between dip-coating process engineering, morphological features of TiO2 thin films, i.e., thickness and roughness, as well as performance of electrochromic devices, i.e., optical contrast, switching time, and cycling stability, were investigated. The modified device exhibits high optical contrast of 57%, the short coloration/bleaching switching time of 6 and 20 s, and excellent cycling stability after 1500 cycles of only 27% decrement rate by adjusting dip-coating processes engineering. The results in this study will provide valuable guidance for rational design of the electrochromic device with satisfactory performance.

  3. Dip-Coating Process Engineering and Performance Optimization for Three-State Electrochromic Devices.

    PubMed

    Wu, Lu; Yang, Dejiang; Fei, Lixun; Huang, Yue; Wu, Fang; Sun, Yiling; Shi, Jiayuan; Xiang, Yong

    2017-12-01

    Titanium dioxide (TiO2) nanoparticles were modified onto fluorine-doped tin oxide (FTO) via dip-coating technique with different nanoparticle sizes, lifting speeds, precursor concentrations, and dipping numbers. Electrodeposition-based electrochromic device with reversible three-state optical transformation (transparent, mirror, and black) was fabricated subsequently by sandwiching a suitable amount of gel electrolyte between modified FTO electrode and flat FTO electrode. Correlation between dip-coating process engineering, morphological features of TiO2 thin films, i.e., thickness and roughness, as well as performance of electrochromic devices, i.e., optical contrast, switching time, and cycling stability, were investigated. The modified device exhibits high optical contrast of 57%, the short coloration/bleaching switching time of 6 and 20 s, and excellent cycling stability after 1500 cycles of only 27% decrement rate by adjusting dip-coating processes engineering. The results in this study will provide valuable guidance for rational design of the electrochromic device with satisfactory performance.

  4. Ultrasonic measurement device for the characterization of microbiological and biochemical processes in liquid media

    NASA Astrophysics Data System (ADS)

    Elvira, L.; Durán, C.; Sierra, C.; Resa, P.; Montero de Espinosa, F.

    2007-07-01

    A measuring device for the characterization of liquid media based on the propagation of ultrasonic waves is presented. It is a four-channel system especially designed for monitoring microbiological and biochemical processes. The liquid samples are placed in commercial glass bottles which can be sterilized. The bottles have inlet and outlet tubes, which can be used for adding substances or extracting samples during the measuring process without interruption. Magnetic stirring can be used to keep the liquid agitated for homogenization purposes. Thermal control elements assure the temperature stability during the measurement. The liquid characterization is based on the detection of amplitude and time-of-flight changes in the sample under study. The main features, operation and performance of this ultrasonic device are analysed in this work, and some measurements and preliminary results are shown.

  5. Multichannel Integrated Acoustooptic Device Modules for Signal Processing, Computing and Optical Interconnect.

    NASA Astrophysics Data System (ADS)

    Le, Phat Duc

    A variety of lithium niobate (LiNbO_3 )-based multichannel integrated optic (IO) device modules for applications in signal processing, computing, and optical interconnect have been realized. The key to the realization of these device modules is the titanium -indiffusion proton-exchange (TIPE) technique developed recently at our laboratory for fabrication of microlenses and microlens arrays. First, two ten-channel IO device modules have been constructed and tested. These two high -packing density devices modules represent the highest degree of integration and the largest number of components that have been accomplished thus far. The architecture common to both modules consists of a composite waveguide 1.0 x 2.0 cm^2 in size in which a channel -waveguide array, a planar waveguide, a linear microlens array, an electrooptic Bragg modulator array or an acoustooptic and electrooptic Bragg modulator array, and a large-aperture lens are integrated. These device modules have been used to perform matrix-matrix multiplications and digital correlations with encouraging results. In performing these computations, a convenient scheme that utilizes a linear ion-milled planar microlens array, devised specifically for these multichannel device modules, has been employed for simultaneous and efficient excitation of the entire channel-waveguide array. Secondly, a new type of strictly nonblocking IO switching network has been conceived and realized in LiNbO_3 . In this new optical switching network module two arrays of channel waveguides, a pair of large-aperture TIPE lenses, and a set of surface-acoustic-wave (SAW) transducers are configured such that the acoustooptic Bragg diffraction serves as a means to activate the connection between any input and any output channels. The working principle of this guided-wave acoustooptic switching network has been verified by using a 4 x 4 switching network module with encouraging performance such as a typical crosstalk level of -16 dB.

  6. —Part II. Development of the Electrolysis Devices and Process Technology Approval

    NASA Astrophysics Data System (ADS)

    Zaikov, Yurii P.; Shurov, Nikolay I.; Batukhtin, Victor P.; Molostov, Oleg G.

    2014-06-01

    The electrolyzers used to extract calcium from copper-calcium alloys at 0.5 to 3.0 kA were designed, manufactured, and utilized to study the process parameters more precisely. The pilot electrolysis device used to produce calcium from copper-calcium alloys at 12 to 15 kA was developed. The calcium production using the bipolar electrolyzer was proved to be possible and was experimentally tested.

  7. [Preliminary Study on Error Control of Medical Devices Test Reports Based on the Analytic Hierarchy Process].

    PubMed

    Huang, Yanhong; Xu, Honglei; Tu, Rong; Zhang, Xu; Huang, Min

    2016-01-01

    In this paper, the common errors in medical devices test reports are classified and analyzed. And then the main 11 influence factors for these inspection report errors are summarized. The hierarchy model was also developed and verified by presentation data using MATLAB. The feasibility of comprehensive weights quantitative comparison has been analyzed by using the analytic hierarchy process. In the end, this paper porspects the further research direction.

  8. Precision tuning of silicon nanophotonic devices through post-fabrication processes

    NASA Astrophysics Data System (ADS)

    Chen, Charlton J.

    In recent years, silicon photonics has begun to transition from research to commercialization. Decades of relentless advances in the field of computing have led to fundamental bottlenecks in the design of computers, especially in interconnect bandwidth density. For IBM, silicon photonics has become a potential technological solution for enabling the future of server systems and cutting-edge supercomputers. For Intel, silicon photonics has become a cost-effective solution for supplying the necessary bandwidth needed by future generations of consumer computing products. While the field of silicon photonics is now advancing at a rapid pace there is still a great deal of research to be done. This thesis investigates ways of improving the performance of fundamental silicon nanophotonic devices through post-fabrication processes. These devices include numerous optical resonator designs as well as slow-light waveguides. Optical resonators are used to confine photons both spatially and temporally. In recent years, there has been much research, both theoretical and experimental, into improving the design of optical resonators. Improving these devices through fabrication processes has generally been less studied. Optical waveguides are used to guide the flow of photons over chip-level distances. Slow-light waveguides have also been studied by many research groups in recent years and can be applied to an increasingly wide-range of applications. The work can be divided into several parts: Chapter 1 is an introduction to the field of silicon photonics as well as an overview of the fabrication, experimental and computational techniques used throughout this work. Chapters 2, 3 and 4 describe our investigations into the precision tuning of nanophotonic devices using laser-assisted thermal oxidation and atomic layer deposition. Chapters 5 and 6 describe our investigations into improving the sidewall roughness of silicon photonic devices using hydrogen annealing and excimer laser

  9. Focused-ion-beam post-processing technology for active devices

    NASA Astrophysics Data System (ADS)

    Tee, Chyng Wen; Lau, Fat Kit; Zhao, Xin; Penty, Richard; White, Ian

    2006-09-01

    Focused ion beam (FIB) etching technology is a highly efficient post-processing technique with the functionality to perform sputter etching and deposition of metals or insulators by means of a computer-generated mask. The high resolution and the ability to remove material directly from the sample in-situ make FIB etching the ideal candidate for device prototyping of novel micro-size photonic component design. Furthermore, the fact that arbitrary profile can be etched directly onto a sample without the need to prepare conventional mask and photolithography process makes novel device research with rapid feedback from characterisation to design activities possible. In this paper, we present a concise summary of the research work in Cambridge based on FIB technology. We demonstrate the applicability of focussed ion beam post processing technology to active photonic devices research. Applications include the integration of advanced waveguide architectures onto active photonic components. We documents details on the integration of lens structure on tapered lasers, photonic crystals on active SOA-integrated waveguides and surface profiling of low-cost gain-guided vertical-cavity surface-emitting lasers. Furthermore, we discuss additional functions of FIB in the measurement of buried waveguide structures or the integration of total-internal-reflection (TIR) mirror in optical interconnect structures.

  10. Methods, media and systems for managing a distributed application running in a plurality of digital processing devices

    DOEpatents

    Laadan, Oren; Nieh, Jason; Phung, Dan

    2012-10-02

    Methods, media and systems for managing a distributed application running in a plurality of digital processing devices are provided. In some embodiments, a method includes running one or more processes associated with the distributed application in virtualized operating system environments on a plurality of digital processing devices, suspending the one or more processes, and saving network state information relating to network connections among the one or more processes. The method further include storing process information relating to the one or more processes, recreating the network connections using the saved network state information, and restarting the one or more processes using the stored process information.

  11. Real Time Signal Processing and Data Handling with dedicated hardware in handheld OCT Device

    NASA Astrophysics Data System (ADS)

    Guerra, P.; Valverde, J. J.; Martin, A.; Ledesma, M. J.; Rubio-Guivernau, J. L.; Santos, A.

    2015-11-01

    The manuscript presents the topics on real time signal processing with dedicated hardware presented at the INFIERI Summer School 2014. The focus of this work is on real-time signal processing, filtering and massive parallel computing. In general, medical devices have stringed demands on energy consumption as well as on data processing and handling. In fact, the development of novel medical devices has led to significant advances in fields such as instrumentation, algorithm development and image processing. In this manuscript, two aspects of the design are brought into consideration: the transformation of a conventional signal processing algorithm into an equivalent version that is suitable for hardware implementation and the use of on-chip modules originally developed for mass-electronics applications, for high speed data transmission. The development of a novel state-of-the-art hand-held OCT probe is used to exemplify theses aspects. In particular, the ``design process'' behind the implementation of a multichannel quadrature coherent demodulator is disclosed.

  12. Dynamic switching mechanism of conduction/set process in Cu/a-Si/Si memristive device

    NASA Astrophysics Data System (ADS)

    Gao, Ligang; Lee, Shin Buhm; Hoskins, Brian; Yoo, Hyang Keun; Kang, Bo Soo

    2013-07-01

    The conduction/set processes of resistive switching have been systemically investigated for Cu/a-Si/Si electrochemical memristive devices. Experimental results indicate that the set process was driven by two different mechanisms, depending on the programming pulse amplitude: a purely electrical dielectric breakdown and a thermally assisted dielectric breakdown. For the latter process, we observe that the set time decreased exponentially with the increase in the programming pulse amplitude, whereas the former process shows amplitude independence. Through the temperature-dependent set transition characteristics, we argue that the filament growth in set process could be dominated by cation transport in the dielectric film. The thermal activation energy of Cu hopping in a-Si is extracted to be 0.16 eV.

  13. Three-dimensional integration (3DI) of semiconductor circuit layers: New devices and fabrication process

    NASA Astrophysics Data System (ADS)

    Sehari, Babak E.

    1998-12-01

    The device density of Integrated Circuits (ICs) manufactured by current VLSI technology is reaching its theoretical limit. Nevertheless, the demand for integration of more devices per chip is growing. To accommodate this need three main possibilities can be explored: Wafer Scale Integration (WSI), Ultra Large Scale Integration (ULSI), and Three Dimensional Integration (3DI). A brief review of these techniques along with their comparative advantages and disadvantages is presented. It has been concluded that 3DI technology is superior to others. Therefore, an attempt is made to develop a viable fabrication process for this technology. This is done by first reviewing the current technologies that are utilized for fabrication of Integrated Circuits (ICs) and their compatibility with 3DI stringent requirements. Based on this review, a set of fabrication procedure for realization of 3DI technology, are presented in chapter 3. In Chapter 1 the compatibility of the currently used devices, such as BJTs and FETs, with 3DI technology is examined. Moreover, a new active device is developed for 3DI technology to replace BJTs and FETs in circuits. This new device is more compatible to the constrains of 3DI technology. Chapter 2 is devoted to solving the overall problems of 3DI circuits. The problem of heat and power dispassion and signal coupling (Cross-Talk) between the layers are reviewed, and an inter-layer shield is proposed to overcome these problems. The effectiveness of such a thin shield is considered theoretically. In Chapter 3 a fabrication process for 3DI technology is proposed. This is done after a short analysis of previous attempts in developing 3DI technologies. Chapter 4 focuses on analog extension of 3DI technology. Moreover, in this chapter microwave 3DI circuits or 3DI MMIC is investigated. Practical considerations in choice of material for the proposed device is the subject of study in Chapter 5. Low temperature ohmic contact and utilization of metal

  14. Rebuilding Mount St. Helens

    USGS Publications Warehouse

    Schilling, Steve P.; Ramsey, David W.; Messerich, James A.; Thompson, Ren A.

    2006-01-01

    On May 18, 1980, Mount St. Helens, Washington exploded in a spectacular and devastating eruption that shocked the world. The eruption, one of the most powerful in the history of the United States, removed 2.7 cubic kilometers of rock from the volcano's edifice, the bulk of which had been constructed by nearly 4,000 years of lava-dome-building eruptions. In seconds, the mountain's summit elevation was lowered from 2,950 meters to 2,549 meters, leaving a north-facing, horseshoe-shaped crater over 2 kilometers wide. Following the 1980 eruption, Mount St. Helens remained active. A large lava dome began episodically extruding in the center of the volcano's empty crater. This dome-building eruption lasted until 1986 and added about 80 million cubic meters of rock to the volcano. During the two decades following the May 18, 1980 eruption, Crater Glacier formed tongues of ice around the east and west sides of the lava dome in the deeply shaded niche between the lava dome and the south crater wall. Long the most active volcano in the Cascade Range with a complex 300,000-year history, Mount St. Helens erupted again in the fall of 2004 as a new period of dome building began within the 1980 crater. Between October 2004 and February 2006, about 80 million cubic meters of dacite lava erupted immediately south of the 1980-86 lava dome. The erupting lava separated the glacier into two parts, first squeezing the east arm of the glacier against the east crater wall and then causing equally spectacular crevassing and broad uplift of the glacier's west arm. Vertical aerial photographs document dome growth and glacier deformation. These photographs enabled photogrammetric construction of a series of high-resolution digital elevation models (DEMs) showing changes from October 4, 2004 to February 9, 2006. From the DEMs, Geographic Information Systems (GIS) applications were used to estimate extruded volumes and growth rates of the new lava dome. The DEMs were also used to quantify dome

  15. MOUNT WASHINGTON WILDERNESS, OREGON.

    USGS Publications Warehouse

    Taylor, Edward M.; Causey, J. Douglas

    1984-01-01

    On the basis of a mineral survey, Mount Washington Wilderness, Oregon has little promise for the occurrence of metallic mineral or fossil fuel resources. Abundant cinder resources occur in the wilderness, but other large volume cinder deposits are available outside the wilderness and closer to markets. Analysis of the geothermal potential of the High Cascades province cannot be made without data on the subsurface thermal and hydrologic regimes which can only be provided by deep drill holes. Several deep holes could be drilled in areas outside the wildernesses of the High Cascades, from which extrapolations of the geothermal potential of the wildernesses could be made.

  16. The Mount Wilson magnetograph

    NASA Technical Reports Server (NTRS)

    Howard, R.; Boyden, J. E.; Bruning, D. H.; Clark, M. K.; Crist, H. W.; Labonte, B. J.

    1983-01-01

    In the summer of 1957, an instrument quite similar to the prototype solar magnetograph described by Babcock (1953) was installed at the 150-foot tower telescope at the Mount Wilson Observatory, and daily magnetograph observations of the full disk of the sun were started. During the following years, the instrument was modified and improved on several occasions. The present investigation is concerned with the present state of the magnetograph, which was largely rebuilt during 1981. Attention is given to the spectrograph entrance slit, the diffraction grating, the exit slit, the employed microprocessor, the setup procedure, the magnetic signal, the Doppler signal, and a solar magnetogram.

  17. Ultra-Smooth, Fully Solution-Processed Large-Area Transparent Conducting Electrodes for Organic Devices.

    PubMed

    Jin, Won-Yong; Ginting, Riski Titian; Ko, Keum-Jin; Kang, Jae-Wook

    2016-11-03

    A novel approach for the fabrication of ultra-smooth and highly bendable substrates consisting of metal grid-conducting polymers that are fully embedded into transparent substrates (ME-TCEs) was successfully demonstrated. The fully printed ME-TCEs exhibited ultra-smooth surfaces (surface roughness ~1.0 nm), were highly transparent (~90% transmittance at a wavelength of 550 nm), highly conductive (sheet resistance ~4 Ω ◻(-1)), and relatively stable under ambient air (retaining ~96% initial resistance up to 30 days). The ME-TCE substrates were used to fabricate flexible organic solar cells and organic light-emitting diodes exhibiting devices efficiencies comparable to devices fabricated on ITO/glass substrates. Additionally, the flexibility of the organic devices did not degrade their performance even after being bent to a bending radius of ~1 mm. Our findings suggest that ME-TCEs are a promising alternative to indium tin oxide and show potential for application toward large-area optoelectronic devices via fully printing processes.

  18. Laser processing of VO2 thin films for THz devices and metamaterials

    NASA Astrophysics Data System (ADS)

    Charipar, Nicholas A.; Charipar, Kristin M.; Kim, Heungsoo; Mathews, Scott A.; Breckenfeld, Eric; Auyeung, Raymond C. Y.; Piqué, Alberto

    2017-02-01

    Vanadium dioxide (VO2) undergoes a metal-insulator transition (MIT) at 68°C, at which point its electrical conductivity changes by several orders of magnitude. This extremely fast transition (Δt < 100 fs) can be induced thermally, mechanically, electrically, or optically. The combination of fast switching times and response to a broad range of external stimuli make VO2 an ideal material for a variety of novel devices and sensors. While the MIT in VO2 has been exploited for a variety of microwave/terahertz applications (i.e. tunable filters and modulators), very few devices exploiting the fast switching time of VO2 have been reported. The electrical properties of thin film VO2 (conductivity, carrier concentration, switching speed, etc.) are highly dependent on growth and post-processing conditions. The optimization of these conditions is therefore critical to the design and fabrication of VO2 devices. This paper will report the effects of various pulsed laser deposition (PLD) growth conditions on the metal-insulator transition in thin film VO2. In particular, we report the effect of PLD growth conditions on the stress/strain state of the VO2 layer, and the subsequent change in electrical properties. Finally, results from fabricated VO2 devices (THz emitters and THz modulators) will be presented.

  19. Ultra-Smooth, Fully Solution-Processed Large-Area Transparent Conducting Electrodes for Organic Devices

    NASA Astrophysics Data System (ADS)

    Jin, Won-Yong; Ginting, Riski Titian; Ko, Keum-Jin; Kang, Jae-Wook

    2016-11-01

    A novel approach for the fabrication of ultra-smooth and highly bendable substrates consisting of metal grid-conducting polymers that are fully embedded into transparent substrates (ME-TCEs) was successfully demonstrated. The fully printed ME-TCEs exhibited ultra-smooth surfaces (surface roughness ~1.0 nm), were highly transparent (~90% transmittance at a wavelength of 550 nm), highly conductive (sheet resistance ~4 Ω ◻‑1), and relatively stable under ambient air (retaining ~96% initial resistance up to 30 days). The ME-TCE substrates were used to fabricate flexible organic solar cells and organic light-emitting diodes exhibiting devices efficiencies comparable to devices fabricated on ITO/glass substrates. Additionally, the flexibility of the organic devices did not degrade their performance even after being bent to a bending radius of ~1 mm. Our findings suggest that ME-TCEs are a promising alternative to indium tin oxide and show potential for application toward large-area optoelectronic devices via fully printing processes.

  20. Ultra-Smooth, Fully Solution-Processed Large-Area Transparent Conducting Electrodes for Organic Devices

    PubMed Central

    Jin, Won-Yong; Ginting, Riski Titian; Ko, Keum-Jin; Kang, Jae-Wook

    2016-01-01

    A novel approach for the fabrication of ultra-smooth and highly bendable substrates consisting of metal grid-conducting polymers that are fully embedded into transparent substrates (ME-TCEs) was successfully demonstrated. The fully printed ME-TCEs exhibited ultra-smooth surfaces (surface roughness ~1.0 nm), were highly transparent (~90% transmittance at a wavelength of 550 nm), highly conductive (sheet resistance ~4 Ω ◻−1), and relatively stable under ambient air (retaining ~96% initial resistance up to 30 days). The ME-TCE substrates were used to fabricate flexible organic solar cells and organic light-emitting diodes exhibiting devices efficiencies comparable to devices fabricated on ITO/glass substrates. Additionally, the flexibility of the organic devices did not degrade their performance even after being bent to a bending radius of ~1 mm. Our findings suggest that ME-TCEs are a promising alternative to indium tin oxide and show potential for application toward large-area optoelectronic devices via fully printing processes. PMID:27808221

  1. Frictional processes during flank motion at Mount Etna (Italy): experimental characterisation of slip on similar and dissimilar volcanic and sedimentary rocks.

    NASA Astrophysics Data System (ADS)

    Rozanski, Wojciech; Lavallee, Yan; Kendrick, Jackie; Castagna, Angela; Mitchell, Thomas; Heap, Michael; Vinciguerra, Sergio; Hirose, Takehiro; Dingwell, Donald

    2015-04-01

    The edifice of Mount Etna (Italy) is structurally unstable, exhibiting a near continuous ESE seaward sliding along a set of faults due to interplay between regional tectonics, gravity instability and magma intrusion. Continuous seismic and ground deformation monitoring reveals the resulting large-scale flank motion at variable rates. The mechanisms controlling this faulting kinetic remains, however, poorly constrained. Examination of the fault zones reveals a range of rock types along the different fault segments: fresh and altered basalt, clay and limestone. As lithological contrasts can jeopardise the structural stability of an edifice, we experimentally investigate the frictional properties of these rocks using low- to high-velocity-rotary shear tests on similar and dissimilar rocks to better understand episodes of slow flank motion as well as rapid and catastrophic sector collapse events. The first set of experiments was performed at velocities up to 1.2 m/s and at normal stresses of 1.5 MPa, commensurate with depths of the contacts seen in the Etna edifice. Friction experiments on clay gouge shows the strong rate-weakening dependence of slip in this material as well as the release of carbon dioxide. Friction experiments on solid rocks show a wider range of mechanical behaviour. At high velocity (>0.6 m/s) volcanic rocks tend to melt whereas the clay and limestone do not; rather they decarbonate, which prevents the rock from achieving the temperature required for melting. Experiments on dissimilar rocks clearly show that composition of host rocks affects the composition and viscosity of the resultant frictional melt, which can have a dramatic effect on shear stress leading to fault weakening or strengthening depending on the combination of host rock samples. A series of low- to moderate-slip velocity experiments is now being conducted to complement our dataset and provide a more complete rock friction model applicable to Mount Etna.

  2. Sol-gel processed alumina based materials in microcalorimeter sensor device fabrication for automotive applications

    SciTech Connect

    Nakouzi, S.R.; McBride, J.R.; Nietering, K.E.; Narula, C.K.

    1996-12-31

    The application of sol-gel processed materials in a variety of sensors has been proposed. The authors describe microcalorimeter sensor devices employing sol-gel processed alumina based materials which can be used to monitor pollutants in automotive exhaust. These sensors operate by measuring changes in resistance upon catalysis and are economically acceptable for automotive applications. It is important to point out that automobiles will be required to have a means of monitoring exhaust gases by on-board sensors as mandated by the EPA and the California Air Resources Board (OBD-II).

  3. Mount Rainier, a decade volcano

    SciTech Connect

    Kuehn, S.C.; Hooper, P.R. . Dept. of Geology); Eggers, A.E. . Dept. of Geology)

    1993-04-01

    Mount Rainier, recently designated as a decade volcano, is a 14,410 foot landmark which towers over the heavily populated southern Puget Sound Lowland of Washington State. It last erupted in the mid-1800's and is an obvious threat to this area, yet Rainier has received little detailed study. Previous work has divided Rainier into two distinct pre-glacial eruptive episodes and one post-glacial eruptive episode. In a pilot project, the authors analyzed 253 well-located samples from the volcano for 27 major and trace elements. Their objective is to test the value of chemical compositions as a tool in mapping the stratigraphy and understanding the eruptive history of the volcano which they regard as prerequisite to determining the petrogenesis and potential hazard of the volcano. The preliminary data demonstrates that variation between flows is significantly greater than intra-flow variation -- a necessary condition for stratigraphic use. Numerous flows or groups of flows can be distinguished chemically. It is also apparent from the small variation in Zr abundances and considerable variation in such ratios as Ba/Nb that fractional crystallization plays a subordinate role to some form of mixing process in the origin of the Mount Rainier lavas.

  4. Manufacturing process and material selection in concurrent collaborative design of MEMS devices

    NASA Astrophysics Data System (ADS)

    Zha, Xuan F.; Du, H.

    2003-09-01

    In this paper we present knowledge of an intensive approach and system for selecting suitable manufacturing processes and materials for microelectromechanical systems (MEMS) devices in concurrent collaborative design environment. In the paper, fundamental issues on MEMS manufacturing process and material selection such as concurrent design framework, manufacturing process and material hierarchies, and selection strategy are first addressed. Then, a fuzzy decision support scheme for a multi-criteria decision-making problem is proposed for estimating, ranking and selecting possible manufacturing processes, materials and their combinations. A Web-based prototype advisory system for the MEMS manufacturing process and material selection, WebMEMS-MASS, is developed based on the client-knowledge server architecture and framework to help the designer find good processes and materials for MEMS devices. The system, as one of the important parts of an advanced simulation and modeling tool for MEMS design, is a concept level process and material selection tool, which can be used as a standalone application or a Java applet via the Web. The running sessions of the system are inter-linked with webpages of tutorials and reference pages to explain the facets, fabrication processes and material choices, and calculations and reasoning in selection are performed using process capability and material property data from a remote Web-based database and interactive knowledge base that can be maintained and updated via the Internet. The use of the developed system including operation scenario, use support, and integration with an MEMS collaborative design system is presented. Finally, an illustration example is provided.

  5. Mounting of molded AFM probes by soldering

    NASA Astrophysics Data System (ADS)

    Hantschel, Thomas; Pape, Uwe; Slesazeck, Stefan; Niedermann, Philippe; Vandervorst, Wilfried

    2000-08-01

    Electrical probes consisting of cantilever beams with integrated pyramidal metal or diamond tips have to be mounted to small holder chips before they can be used in electrical atomic force microscopy (AFM). Gluing procedures have been developed for this step but such a connection suffers mainly from low electrical conductivity and often also from low mechanical stability. Furthermore, it is not very suitable for massfabrication. Soldering is a well-established mounting method in microelectronics (e.g. surface mounted devices (SMD)) and could overcome these problems. Therefore, we have developed a soldering procedure for moulded AFM probes. This paper presents the optimized soldering procedure and demonstartes its use for probe mounting. Excellent results were obtained using a metallization system of Ti:W+Ni+Au and a SnBi58 solder paste in combination with a hotplate for the soldering step. The soldered probes are highly conductive and the mechanical connection between probe and holder chip is very rigid. They show clear resonance peaks in tapping mode AFM which we could not obtain with our glued probes before.

  6. Quantitative Study of Cell Invasion Process under Extracellular Stimulation of Cytokine in a Microfluidic Device.

    PubMed

    Lei, Kin Fong; Tseng, Hsueh-Peng; Lee, Chia-Yi; Tsang, Ngan-Ming

    2016-05-06

    Cell invasion is the first step of cancer metastasis that is the primary cause of death for cancer patients and defined as cell movement through extracellular matrix (ECM). Investigation of the correlation between cell invasive and extracellular stimulation is critical for the inhabitation of metastatic dissemination. Conventional cell invasion assay is based on Boyden chamber assay, which has a number of limitations. In this work, a microfluidic device incorporating with impedance measurement technique was developed for quantitative investigation of cell invasion process. The device consisted of 2 reservoirs connecting with a microchannel filled with hydrogel. Malignant cells invaded along the microchannel and impedance measurement was concurrently conducted by measuring across electrodes located at the bottom of the microchannel. Therefore, cell invasion process could be monitored in real-time and non-invasive manner. Also, cell invasion rate was then calculated to study the correlation between cell invasion and extracellular stimulation, i.e., IL-6 cytokine. Results showed that cell invasion rate was directly proportional to the IL-6 concentration. The microfluidic device provides a reliable and convenient platform for cell-based assays to facilitate more quantitative assessments in cancer research.

  7. Processing and modeling issues for thin-film solar cell devices. Final report

    SciTech Connect

    Birkmire, R.W.; Phillips, J.E.

    1997-11-01

    During the third phase of the subcontract, IEC researchers have continued to provide the thin film PV community with greater depth of understanding and insight into a wide variety of issues including: the deposition and characterization of CuIn{sub 1-x}Ga{sub x}Se{sub 2}, a-Si, CdTe, CdS, and TCO thin films; the relationships between film and device properties; and the processing and analysis of thin film PV devices. This has been achieved through the systematic investigation of all aspects of film and device production and through the analysis and quantification of the reaction chemistries involved in thin film deposition. This methodology has led to controlled fabrications of 15% efficient CuIn{sub 1-x}Ga{sub x}Se{sub 2} solar cells over a wide range of Ga compositions, improved process control of the fabrication of 10% efficient a-Si solar cells, and reliable and generally applicable procedures for both contacting and doping films. Additional accomplishments are listed below.

  8. Quantitative Study of Cell Invasion Process under Extracellular Stimulation of Cytokine in a Microfluidic Device

    NASA Astrophysics Data System (ADS)

    Lei, Kin Fong; Tseng, Hsueh-Peng; Lee, Chia-Yi; Tsang, Ngan-Ming

    2016-05-01

    Cell invasion is the first step of cancer metastasis that is the primary cause of death for cancer patients and defined as cell movement through extracellular matrix (ECM). Investigation of the correlation between cell invasive and extracellular stimulation is critical for the inhabitation of metastatic dissemination. Conventional cell invasion assay is based on Boyden chamber assay, which has a number of limitations. In this work, a microfluidic device incorporating with impedance measurement technique was developed for quantitative investigation of cell invasion process. The device consisted of 2 reservoirs connecting with a microchannel filled with hydrogel. Malignant cells invaded along the microchannel and impedance measurement was concurrently conducted by measuring across electrodes located at the bottom of the microchannel. Therefore, cell invasion process could be monitored in real-time and non-invasive manner. Also, cell invasion rate was then calculated to study the correlation between cell invasion and extracellular stimulation, i.e., IL-6 cytokine. Results showed that cell invasion rate was directly proportional to the IL-6 concentration. The microfluidic device provides a reliable and convenient platform for cell-based assays to facilitate more quantitative assessments in cancer research.

  9. The fabrication of polyfluorene and polycarbazole-based photovoltaic devices using an air-stable process route

    SciTech Connect

    Bovill, E.; Lidzey, D. G.; Yi, H.; Iraqi, A.

    2014-12-01

    We report a comparative study based on the fabrication of polymer:fullerene photovoltaic (PV) devices incorporating carbazole, fluorene, and a PTB based co-polymer. We have explored the efficiency and performance of such devices when the active polymer:fullerene layer is deposited by spin-casting either under nitrogen or ambient conditions. We show that PV devices based on carbazole and fluorene based materials have very similar power conversion efficiencies when processed under both air and nitrogen, with other photobleaching measurements suggesting that such materials have comparatively enhanced photostability. Devices based on the PTB co-polymer, however, have reduced efficiency when processed in air.

  10. Mars Science Laboratory CHIMRA: A Device for Processing Powdered Martian Samples

    NASA Technical Reports Server (NTRS)

    Sunshine, Daniel

    2010-01-01

    The CHIMRA is an extraterrestrial sample acquisition and processing device for the Mars Science Laboratory that emphasizes robustness and adaptability through design configuration. This work reviews the guidelines utilized to invent the initial CHIMRA and the strategy employed in advancing the design; these principles will be discussed in relation to both the final CHIMRA design and similar future devices. The computational synthesis necessary to mature a boxed-in impact-generating mechanism will be presented alongside a detailed mechanism description. Results from the development testing required to advance the design for a highly-loaded, long-life and high-speed bearing application will be presented. Lessons learned during the assembly and testing of this subsystem as well as results and lessons from the sample-handling development test program will be reviewed.

  11. Growth and device processing of hexagonal boron nitride epilayers for thermal neutron and deep ultraviolet detectors

    SciTech Connect

    Doan, T. C.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2016-07-15

    Solid-state neutron detectors with high performance are highly sought after for the detection of fissile materials. However, direct-conversion neutron detectors based on semiconductors with a measureable efficiency have not been realized. We report here the first successful demonstration of a direct-conversion semiconductor neutron detector with an overall detection efficiency for thermal neutrons of 4% and a charge collection efficiency as high as 83%. The detector is based on a 2.7 μm thick {sup 10}B-enriched hexagonal boron nitride (h-BN) epitaxial layer. The results represent a significant step towards the realization of practical neutron detectors based on h-BN epilayers. Neutron detectors based on h-BN are expected to possess all the advantages of semiconductor devices including wafer-scale processing, compact size, light weight, and ability to integrate with other functional devices.

  12. Thin film processing and device fabrication in the Tl-Ca-Ba-Cu-O system

    SciTech Connect

    Martens, J.S.; Ginley, D.S.; Zipperian, T.E.; Hietala, V.M.; Tigges, C.P.

    1990-01-01

    An obvious group of applications for high temperature superconducting (HTS) materials is microwave and millimeter wave circuitry. Besides low loss, unique features of these materials, such as flux flow, can be exploited. We have been concentrating on the Tl-Ca-Ba-Cu-O family of materials. The film growth techniques, lithographic processing methods and characteristics of several devices we have developed will be presented. These devices include a flux flow-based transistor with demonstrated operation at frequencies above 35 GHz, real gain in a 50 {Omega} system and potentially useful non-linearities and impedance levels. A number of passive microwave components are under investigation to form a more complete HTS microwave technology group. 16 refs., 6 figs.

  13. Polymer Device of Poly(3-hexylthiophene) with a Cathode Fabricated from Silver Nanoparticles by Wet Processing

    NASA Astrophysics Data System (ADS)

    Kajii, Hirotake; Maki, Hideki; Kin, Zenken; Morimune, Taichiro; Ohmori, Yutaka

    2005-06-01

    The fabrication and characteristics of a polymer device of poly(3-hexylthiophene) (PAT6) with a cathode fabricated from silver (Ag) nanoparticles were investigated. As the formation temperature is 210°C, the cathode electrode can be formed by wet processing on the organic layer with an amorphous carbon nitride buffer layer and a bank to prevent Ag nanoparticles from penetrating into the organic layer. The PAT6 device with a cathode fabricated from Ag nanoparticles shows a photo-response and a red emission in the reverse and forward bias regions, respectively. We demonstrated the possibility of a polymer photodiode and an organic light-emitting diode with a cathode utilizing Ag nanoparticles.

  14. Paper-based analytical devices for electrochemical study of the breathing process of red blood cells.

    PubMed

    Lin, Xiang-Yun; Wu, Ling-Ling; Pan, Zhong-Qin; Shi, Chuan-Guo; Bao, Ning; Gu, Hai-Ying

    2015-04-01

    Herein we utilized the filter paper to physically trap red blood cells (RBC) to observe the breathing process of red blood cells based on the permeability of the filter paper. By integrating double-sided conductive carbon tape as the working electrodes, the device could be applied to monitor electrochemical responses of RBC for up to hundreds of minutes. The differential pulse voltammetry (DPV) peak currents increased under oxygen while decreased under nitrogen, indicating that RBC could take in and release oxygen. Further studies demonstrated that the RBC suspension could more effectively take in oxygen than the solution of hemoglobin and the supernatant of RBC, suggesting the natural advantage of RBC on oxygen transportation. This study implied that simple paper-based analytical devices might be effectively applied in the study of gas-participating reactions and biochemical detections.

  15. Critical problems of ion implantation in processing small geometry integrated devices

    NASA Astrophysics Data System (ADS)

    Tokuyama, Takashi

    1989-02-01

    A brief review is described on the critical problems of ion implantation in processing small geometry integrated devices. The commonly recognized critical paths of the technology, i.e. formation of shallow junctions, impurity doping of vertical side walls, shadowing and the scattering effect of the incident beam are discussed based on recent data. Discussion is also given of the annealing behavior and residual defects of small and isolated implanted regions, and the considerable difference from those of the continuous implanted layers is shown. These problems are more or less related to the fundamental principles of implantation that impurities are doped by the incidence of energetic ions. Based on these facts, attempts are made to estimate the final size of the future devices to which implantation can be applied.

  16. Material structure and processes required for the manufacture of micromechanical devices

    NASA Astrophysics Data System (ADS)

    Skrobis, Kenneth J.; Christenson, J.; Staller, Steve E.; Freeman, J.; Gadgil, Prashant

    1997-09-01

    The field of micromechanics is rapidly expanding in both the number of research groups and the number of materials being employed. Although this diversity is a strong indication of a healthy field, care must be taken to keep the focus on producing products and processes which can be transferred to the manufacturing facility. During the 1980s polysilicon was shown to contain a significant amount of process flexibility and economic potential. Although the demonstration of polysilicon sensors was noticed and in some cases pursued by industry, single-crystal silicon sensors continue to dominate the products used by the primary sensor customer, the automotive industry. A similar trend which also began in the 1980s was the use of the LIGA process for sensor fabrication. Once again, this field showed a significant amount of economic promise. However, for the resources being invested and the number of research groups pursuing this process, significant problems exist with respect to product manufacturability. Although LIGA remains an exciting field of research, new micromechanical processes or materials may greatly reduce the window of device profitability before the difficulties associated with LIGA can be brought under control. Oddly enough, it is the same material which polysilicon has failed to displace which may limit the LIGA process to only one application area, that area being magnetics. New deep anisotropic etching systems and new substrate suppliers for micromachining applications, along with the knowledge and experience industry already possesses, will maintain single crystal silicon as the sensor material of choice for the 1990s and beyond. This article reviews the material stability and processes associated with polysilicon, single crystal silicon, and electrodeposits. Emphasis will be placed on the inherent material structure and processes required to manufacture a profitable device.

  17. Modelling of Optical Guided Wave Devices in Lithium Niobate Using Test Structures for Process Characterization

    NASA Astrophysics Data System (ADS)

    Wooten, Eddie Lynn

    This dissertation presents a study of the modelling of optical guided wave devices in LiNbO_3 with emphasis on experimental verification of the models. The goals are to identify the main sources of error in the modelling process, construct a model capable of achieving qualitative and quantitative accuracy, and develop a method of determining the correct set of input parameters to the model for a given fabrication process. The investigation is limited to mode interference type devices and the switching voltage is used as a basis for comparison. The finite element method is used for calculation of optical modes in waveguides with graded refractive index profiles. The integral equation method is used for calculation of the static electric field due to electrodes in a three layer anisotropic structure. It is proposed that the main source of error in the modelling process is not in the model itself, but in determining the correct input parameters to the model. The investigation of the input parameters focusses on a priori knowledge of the parameters and the sensitivity of the model to each parameter. The five parameters responsible for the largest errors in Ti:LiNbO_3 devices are identified as the Ti diffusion coefficients, the peak index change in the waveguides, the electrooptic coefficient, and the buffer layer dielectric constant. A method is presented for determining each of the selected parameters using a set of test devices fabricated on a single chip. The test set includes a planar waveguide, Mach-Zehnder modulators, and symmetrically perturbed directional couplers. Several sets of these devices have been fabricated using different fabrication conditions. The parameter values determined using this method compare favorably to those reported in the literature. The diffusion of Ti for x-cut crystals is found to be highly anisotropic, with the lateral diffusion length being about twice as large as the diffusion depth. The dependence of the diffusion lengths on

  18. Toward practical gas sensing with highly reduced graphene oxide : a new signal processing method to circumvent run-to-run and device-to-device variations.

    SciTech Connect

    Ocola, L. E.; Park, S.; Yu, K.; Ruoff, R. S.; Ocola, L. E.; Rosenmann, D.; Chen, J.; Univ. of Wisconsin at Milwaukee; Univ. of Texas at Austin

    2011-01-04

    Graphene is worth evaluating for chemical sensing and biosensing due to its outstanding physical and chemical properties. We first report on the fabrication and characterization of gas sensors using a back-gated field-effect transistor platform with chemically reduced graphene oxide (R-GO) as the conducting channel. These sensors exhibited a 360% increase in response when exposed to 100 ppm NO{sub 2} in air, compared with thermally reduced graphene oxide sensors we reported earlier. We then present a new method of signal processing/data interpretation that addresses (i) sensing devices with long recovery periods (such as required for sensing gases with these R-GO sensors) as well as (ii) device-to-device variations. A theoretical analysis is used to illuminate the importance of using the new signal processing method when the sensing device suffers from slow recovery and non-negligible contact resistance. We suggest that the work reported here (including the sensor signal processing method and the inherent simplicity of device fabrication) is a significant step toward the real-world application of graphene-based chemical sensors.

  19. High density interconnection technology - Surface mount technology

    NASA Astrophysics Data System (ADS)

    Menozzi, G.

    The design features of surface mount technology (SMT) circuits for data transmission, engineering and aerospace applications are examined. Details of pin out, dual face, and interconnection techniques employed for SMT circuits mounted on plastic or ceramic leadless chip carriers are explored. The industrial processes applied to obtain the SMT boards are discussed, along with methods for quality assurance, especially for the soldered connections. SMT installations in the form of 4 Mbit multilayer circuits for an ESA project and a 32-bit mainframe computer are described.

  20. 3D-additive manufactured optical mount

    NASA Astrophysics Data System (ADS)

    Mammini, Paul V.; Ciscel, David; Wooten, John

    2015-09-01

    The Area Defense Anti-Munitions (ADAM) is a low cost and effective high power laser weapon system. It's designed to address and negate important threats such as short-range rockets, UAVs, and small boats. Many critical optical components operate in the system. The optics and mounts must accommodate thermal and mechanical stresses, plus maintain an exceptional wave front during operation. Lockheed Martin Space Systems Company (LMSSC) developed, designed, and currently operates ADAM. This paper covers the design and development of a key monolithic, flexured, titanium mirror mount that was manufactured by CalRAM using additive processes.

  1. Mount Vesuvius, Italy

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image of Mt. Vesuvius, Italy was acquired September 26, 2000. The full-size false-color image covers an area of 36 by 45 km. Vesuvius overlooks the city of Naples and the Bay of Naples in central Italy. (Popocatepetl and Mount Fuji are other volcanos surrounded by dense urban areas.) In 79 AD, Vesuvius erupted cataclysmically, burying all of the surrounding cites with up to 30 m of ash. The towns of Pompeii and Herculanaeum were rediscovered in the 18th century, and excavated in the 20th century. They provide a snapshot of Roman life from 2000 years ago: perfectly preserved are wooden objects, food items, and the casts of hundreds of victims. Vesuvius is intensively monitored for potential signs of unrest that could signal the beginning of another eruption. Image courtesy NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team

  2. Mount Vesuvius, Italy

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image of Mt. Vesuvius, Italy was acquired September 26, 2000. The full-size false-color image covers an area of 36 by 45 km. Vesuvius overlooks the city of Naples and the Bay of Naples in central Italy. (Popocatepetl and Mount Fuji are other volcanos surrounded by dense urban areas.) In 79 AD, Vesuvius erupted cataclysmically, burying all of the surrounding cites with up to 30 m of ash. The towns of Pompeii and Herculanaeum were rediscovered in the 18th century, and excavated in the 20th century. They provide a snapshot of Roman life from 2000 years ago: perfectly preserved are wooden objects, food items, and the casts of hundreds of victims. Vesuvius is intensively monitored for potential signs of unrest that could signal the beginning of another eruption. Image courtesy NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team

  3. Optic device for generating metallic parts with the LAPS-J process

    NASA Astrophysics Data System (ADS)

    Sigel, Julian; Dausinger, Friedrich; Huegel, Helmut

    1997-09-01

    To increase the flexibility of the generative LAPS-J (laser aided power solidification -- powder jet) process, a special focusing device has been developed. The beam of a Nd:YAG laser is delivered into the production machine via a step-index glass fiber. To utilize the resulting top-hat intensity distribution, the end facet of the fiber is imaged on the workpiece by a special optical system, consisting of four lenses. It allows the variation of the scale of imaging between 4:1 and 1:1. By the computer controlled movement of two motors it is possible to change the width of the generated tracks in this range during laser processing. Integrated in a turning center, the LAPS-J proces allows new and complex applications, e.g. in the fields of cladding, rapid prototyping or repairing of metal parts. With an additional process control, the quality and accuracy of generated metallic parts can be considerably increased.

  4. Beneficial effects of the aluminum alloy process as practiced in the photovoltaic device fabrication laboratory

    SciTech Connect

    Schubert, W.K.

    1995-07-01

    The aluminum alloy process implemented in Sandia`s Photovoltaic Device Fabrication Laboratory (PDFL) has major beneficial effects on the performance of commercial multicrystalline-silicon (mc-Si) substrates. Careful analysis of identically processed cells (except for the alloyed layer) in matched mc-Si substrates clearly indicates that the majority of the benefit arises from improved bulk minority carrier diffusion length. Based on spectral response measurements and PC-1D modeling the authors have observed improvements due to the alloy process of up to 400% in the average diffusion length in moderate-area cells and around 50% in large-area cells. The diffusion length is dramatically improved in the interior of the silicon grains in alloyed substrates, resulting in the majority of the recombination occurring at the grain boundaries and localized areas with high defect densities.

  5. Optical wafer metrology sensors for process-robust CD and overlay control in semiconductor device manufacturing

    NASA Astrophysics Data System (ADS)

    den Boef, Arie J.

    2016-06-01

    This paper presents three optical wafer metrology sensors that are used in lithography for robustly measuring the shape and position of wafers and device patterns on these wafers. The first two sensors are a level sensor and an alignment sensor that measure, respectively, a wafer height map and a wafer position before a new pattern is printed on the wafer. The third sensor is an optical scatterometer that measures critical dimension-variations and overlay after the resist has been exposed and developed. These sensors have different optical concepts but they share the same challenge that sub-nm precision is required at high throughput on a large variety of processed wafers and in the presence of unknown wafer processing variations. It is the purpose of this paper to explain these challenges in more detail and give an overview of the various solutions that have been introduced over the years to come to process-robust optical wafer metrology.

  6. Environment for thin-film manufacturing process development for product engineering of micro and nano devices

    NASA Astrophysics Data System (ADS)

    Ortloff, Dirk; Hahn, Kai; Popp, Jens; Schmidt, Thilo; Brück, Rainer

    2009-08-01

    Product engineering of micro and nano technology (MNT) devices differs substantially from product engineering in more traditional industries. The general development approach is mostly bottom up, as it centers around the available fabrication techniques and is characterised by application specific fabrication flows, i.e. fabrication processes depending on the later product. In the first part of this paper we introduce a comprehensive customer-oriented product engineering methodology for MNT products that regards the customer as the driving force behind new product developments. The MNT product engineering process is analyzed with regard to application-specific procedures and interfaces. An environment for the development of MNT manufacturing processes has been identified as a technical foundation for the methodology and will be described in the second part of this paper.

  7. Rapid thermal processing in the manufacturing technology of contacts to InP-based photonic devices

    NASA Astrophysics Data System (ADS)

    Katz, Avishay

    1991-04-01

    Rapid thermal alloying and sintering of metal ohmic contacts such as AuBe PtTFi and W to InP-based materials is shown to perform with better electrical properties than the same contacts heated by means of conventional furnace. The metalsemiconductor interfacial reactions induced by the rapid thermal processing were much shallower than those formed during the conventional heating cycle at the same temperature however with a negligible influence on the overall stresses developed in the film. These results demonstrate the superiority of the rapid thermal processing over the conventional furnace heating in sintering the metal electrical contacts and its potential while integrated into the overall manufacturing process sequence of the InP based photonic devices.

  8. Toward high-performance quality meeting IC device manufacturing requirements with AZ SMART DSA process

    NASA Astrophysics Data System (ADS)

    Kim, JiHoon; Yin, Jian; Cao, Yi; Her, YoungJun; Petermann, Claire; Wu, Hengpeng; Shan, Jianhui; Tsutsumi, Tomohiko; Lin, Guanyang

    2015-03-01

    Significant progresses on 300 mm wafer level DSA (Directed Self-Assembly) performance stability and pattern quality were demonstrated in recent years. DSA technology is now widely regarded as a leading complementary patterning technique for future node integrated circuit (IC) device manufacturing. We first published SMARTTM DSA flow in 2012. In 2013, we demonstrated that SMARTTM DSA pattern quality is comparable to that generated using traditional multiple patterning technique for pattern uniformity on a 300 mm wafer. In addition, we also demonstrated that less than 1.5 nm/3σ LER (line edge roughness) for 16 nm half pitch DSA line/space pattern is achievable through SMARTTM DSA process. In this publication, we will report impacts on SMARTTM DSA performances of key pre-pattern features and processing conditions. 300mm wafer performance process window, CD uniformity and pattern LER/LWR after etching transfer into carbon-hard mask will be discussed as well.

  9. Materials characterization for process integration of multi-channel gate all around (GAA) devices

    NASA Astrophysics Data System (ADS)

    Muthinti, Gangadhara Raja; Loubet, Nicolas; Chao, Robin; de la Peña, Abraham A.; Li, Juntao; Guillorn, Michael A.; Yamashita, Tenko; Kanakasabapathy, Sivananda; Gaudiello, John; Cepler, Aron J.; Sendelbach, Matthew; Emans, Susan; Wolfling, Shay; Ger, Avron; Kandel, Daniel; Koret, Roy; Lee, Wei Ti; Gin, Peter; Matney, Kevin; Wormington, Matthew

    2017-03-01

    Multi-channel gate all around (GAA) semiconductor devices march closer to becoming a reality in production as their maturity in development continues. From this development, an understanding of what physical parameters affecting the device has emerged. The importance of material property characterization relative to that of other physical parameters has continued to increase for GAA architecture when compared to its relative importance in earlier architectures. Among these materials properties are the concentration of Ge in SiGe channels and the strain in these channels and related films. But because these properties can be altered by many different process steps, each one adding its own variation to these parameters, their characterization and control at multiple steps in the process flow is crucial. This paper investigates the characterization of strain and Ge concentration, and the relationships between these properties, in the PFET SiGe channel material at the earliest stages of processing for GAA devices. Grown on a bulk Si substrate, multiple pairs of thin SiGe/Si layers that eventually form the basis of the PFET channel are measured and characterized in this study. Multiple measurement techniques are used to measure the material properties. In-line X-Ray Photoelectron Spectroscopy (XPS) and Low Energy X-Ray Fluorescence (LE-XRF) are used to characterize Ge content, while in-line High Resolution X-Ray Diffraction (HRXRD) is used to characterize strain. Because both patterned and un-patterned structures were investigated, scatterometry (also called optical critical dimension, or OCD) is used to provide valuable geometrical metrology.

  10. Controlling the freezing process: a robotic device for rapidly freezing biological tissues with millisecond time resolution.

    PubMed

    Tikunov, Boris A; Rome, Lawrence C

    2007-10-01

    A robotic cryogenic device was developed which allows freezing of thick biological tissues with millisecond time resolution. The device consists of two horizontally oriented hammers (pre-cooled with liquid N(2)) driven by two linear servo-motors. The tissue sample is bathed in Ringers contained in a chamber which drops rapidly out of the way just as the hammers approach. A third linear motor is vertically oriented, and permits the rapidly dropping chamber to smoothly decelerate. All movements were performed by the three motors and four solenoids controlled by a PC. Mechanical adjustments, that change the size of the gap between the hammers at the end position, permit the final thickness of the frozen tissue to be varied. Here we show that the freezing time increased with the square of the final thickness of the frozen bundle. However, when bundles of different original thicknesses (up to at least 1mm) were compressed to the same final thickness (e.g., 0.2mm), they exhibited nearly equal freezing times. Hence, by being able to adjust the final thickness of the frozen bundles, the device not only speeds the rate of freezing, but standardizes the freezing time for different diameter samples. This permits the use of freezing for accurate determination of the kinetics of cellular processes in biological tissue.

  11. A home sleep apnea screening device with time-domain signal processing and autonomous scoring capability.

    PubMed

    Jin, Jiayi; Sánchez-Sinencio, Edgar

    2015-02-01

    Current solutions of sleep apnea diagnosis require the patient to undergo overnight studies at a specialized sleep laboratory. Due to such inconvenience and high cost, millions of sleep apnea patients remain undiagnosed and thus untreated. Based on a micro-electro-mechanical systems (MEMS) sensor and an effective apnea detection algorithm, we propose a low-cost single-channel apnea screening solution applicable in the comfort of patients' homes. A prototype device was designed and assembled including a MEMS sensor for measuring the patient's nasal air flows, and a time-domain signal processing IC for apnea detection and autonomous scoring. The IC chip was fabricated in standard 0.5- μm CMOS technology. The proposed device was tested for both respiratory rhythm detection and sleep apnea screening under clinical environment. Apnea-hypopnea indices (AHI) were scored to indicate severity of sleep apnea conditions. Test results suggest that the proposed device can be a valuable screening solution for the broader public with undiagnosed apnea conditions.

  12. Analysis of impact of suspension rubber mounts on ride comfort

    NASA Astrophysics Data System (ADS)

    Chen, Bao; Chen, Zheming; Lei, Gang

    2017-01-01

    Two multi-body car models with rubber mounts and without rubber mounts have been built up to research how the suspension rubber mounts impact ride comfort. The comfort mount was used to simulate the impact process. Two scenarios have been set up, and time integrations have been performed to get the acceleration-time histories of seat surface in the x-, y-, and z-direction. A MATLAB program was compiled to calculate the weighted RMS acceleration. For the first scenario, the relative difference of weighted RMS acceleration between the car models with rubber mounts and without rubber mounts gradually decreases as the road roughness increases. For the second scenario, the relative difference increases as the driving speed increases. The conclusion shows that the change of driving speed or road roughness impacts ride comfort. Especially for high driving speed this impact is quite obvious.

  13. Modeling the electromagnetic processes in a technological device for producing ultradispersed particles in pulsed arc discharges

    NASA Astrophysics Data System (ADS)

    Goncharov, V. D.; Yashkardin, R. V.; Sorokin, K. S.; Fiskin, E. M.

    2017-07-01

    The article contains a brief description of the operation principles of the device for creating ultrafine metal powders under the action of electrically charged flows with a high power density. The results of creating a mathematical model of electromagnetic processes in the installation are presented. The results of solving the problem of current flow in the installation during its operation are presented. The dependence of the magnetic field strength in the section of the plasma bunch during the operation of the apparatus is illustrated.

  14. Life Distribution Properties of Devices Subject to a Levy Wear Process.

    DTIC Science & Technology

    1982-01-01

    and1 Pr,)schan A . , it suff ices to provi. tl,, properties of ) t(-rtns of those, of Vanm) -, and tnen draw thca conclu’- on for tlhV non-stat ionarv...AD1A27 062 LFOSTRIBUTION PROPERTIES OF DEVICES SUBJECT 0O A 1 LEVY WEAR PROCESS(U) NORTH CAROLINA UNIV AT CHAPEL HIL DEPT OF MATHEMATICS M ABOEL...BUREAU OF STANDARDS-1963- A AFOSR-TR. 83-0261 , - LECTE Department ’ A ,2.- ’..<APR 2 2 1983. >- of " C’- Q. of A C.’) Mathematics __J The

  15. Applications of electro-optic gratings in integrated optical signal processing devices

    NASA Technical Reports Server (NTRS)

    Verber, C. M.

    1981-01-01

    A variety of applications of electro-optically induced Bragg gratings in integrated optical signal processing and computation devices are shown. The gratings are easy to fabricate, operate efficiently on relatively low voltages and have design principles which are well known and reliable. The component allows a rapid and efficient interaction with an optical wave in a planar electro-optic waveguide. The operation of such gratings and their use as intensity modulators, spatial light modulators, and components in correlators and in a variety of computational units is described.

  16. A device for conducting a dynamic modes of UIAB therapy with automatic process testing

    NASA Astrophysics Data System (ADS)

    Barylo, Hryhoriy I.; Hotra, Zenon Yu.; Kozhukhar, Oleksandr T.; Ivakh, Mariya S.; Surtel, Wojciech; Maciejewski, Marcin

    2016-09-01

    The structure and circuit of the implemented device is using an environmentally friendly radiation sources and pulse photo stimulus modes with frequencies that correspond frequencies processes in BL to create bio resonance effects to accelerate the procedures. Proposed one of the possible hardware solutions are based on usage of dynamic irradiation modes and automatic continuous optical testing procedures UIAB and PP. The changes of the optical characteristics of BL provides the doctor continuous information on the effectiveness of the procedure on the patient's condition.

  17. High resolution infrared ``vision'' of dynamic electron processes in semiconductor devices (abstract)

    NASA Astrophysics Data System (ADS)

    Malyutenko, V. K.

    2003-01-01

    Infrared cameras have been traditionally used in semiconductor industry for noncontact measurements of printed circuit boards (PCBs) local overheating. While an effective way to prevent defective PCB application in a "find-problems-before-your-customer-do" manner, this conventional static (25-50 frames/s) and small spatial resolution (>100 μm) approach is incapable, in principle, of explaining the physical reason for the PCB failure. What follows in this report is the demonstration of an IR camera based new approach in high-resolution dynamic study of electron processes responsible for single device performance. More specifically, time resolved two-dimensional visualization of current carrier drift and diffusion processes across the device base that happen in microsecond scale is of prime concern in the work. Thus, contrary to the conventional visualization-through-heating measurements, objective is mapping of electron processes in a device base through negative and positive luminescence (provoked by band-to-band electron transitions) and nonequilibrium thermal emission (provoked by intraband electron transitions) studies inside the region in which current flows. Therefore, the parameters of interest are not only a device thermal mass and thermal conductance, but also free carrier lifetime, surface recombination velocity, diffusion length, and contact properties. The micro-mapping system developed consists of reflective type IR microscope coaxially attached to calibrated scanning IR thermal imaging cameras (3-5 and 8-12 μm spectral ranges, HgCdTe cooled photodetectors, scene spatial resolution of some 20 μm, minimum time resolved interval of 10 μs, and temperature resolution of about 0.5 °C at 30 °C). Data acquisition and image processing (emissivity equalization, noise reduction by image averaging, and external triggering) are computer controlled. Parallel video channel equipped with a CCD camera permits easy positioning and focusing of <1×1 mm2 object

  18. Multilayered Microelectronic Device Package With An Integral Window

    DOEpatents

    Peterson, Kenneth A.; Watson, Robert D.

    2004-10-26

    A microelectronic package with an integral window mounted in a recessed lip for housing a microelectronic device. The device can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The package can be formed of a low temperature co-fired ceramic (LTCC) or high temperature cofired ceramic (HTCC) multilayered material, with the integral window being simultaneously joined (e.g. co-fired) to the package body during LTCC or HTCC processing. The microelectronic device can be flip-chip bonded and oriented so that a light-sensitive side is optically accessible through the window. The result is a compact, low profile package, having an integral window mounted in a recessed lip, that can be hermetically sealed.

  19. LOADING DEVICE

    DOEpatents

    Ohlinger, L.A.

    1958-10-01

    A device is presented for loading or charging bodies of fissionable material into a reactor. This device consists of a car, mounted on tracks, into which the fissionable materials may be placed at a remote area, transported to the reactor, and inserted without danger to the operating personnel. The car has mounted on it a heavily shielded magazine for holding a number of the radioactive bodies. The magazine is of a U-shaped configuration and is inclined to the horizontal plane, with a cap covering the elevated open end, and a remotely operated plunger at the lower, closed end. After the fissionable bodies are loaded in the magazine and transported to the reactor, the plunger inserts the body at the lower end of the magazine into the reactor, then is withdrawn, thereby allowing gravity to roll the remaining bodies into position for successive loading in a similar manner.

  20. Microfluidic electrochemical device and process for chemical imaging and electrochemical analysis at the electrode-liquid interface in-situ

    DOEpatents

    Yu, Xiao-Ying; Liu, Bingwen; Yang, Li; Zhu, Zihua; Marshall, Matthew J.

    2016-03-01

    A microfluidic electrochemical device and process are detailed that provide chemical imaging and electrochemical analysis under vacuum at the surface of the electrode-sample or electrode-liquid interface in-situ. The electrochemical device allows investigation of various surface layers including diffuse layers at selected depths populated with, e.g., adsorbed molecules in which chemical transformation in electrolyte solutions occurs.

  1. Dip molding to form intricately-shaped medical elastomer devices

    NASA Technical Reports Server (NTRS)

    Broyles, H. F.

    1975-01-01

    Preshaped mandrel mounted on rotating mechanism is partically immersed in tank filled with liquid elastomer. While mandrel rotates, elastomer film forms om mandrel surface due to surface tension and capillary behavior of liquid. Devices with well-defined flanges can be made using process.

  2. Mount Zion Cemetery, 1975 Plot Plan Mount Zion Cemetery/ ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Mount Zion Cemetery, 1975 Plot Plan - Mount Zion Cemetery/ Female Union Band Cemetery, Bounded by 27th Street right-of-way N.W. (formerly Lyons Mill Road), Q Street N.W., & Mill Road N.W., Washington, District of Columbia, DC

  3. [Discussion on Quality Evaluation Method of Medical Device During Life-Cycle in Operation Based on the Analytic Hierarchy Process].

    PubMed

    Zheng, Caixian; Zheng, Kun; Shen, Yunming; Wu, Yunyun

    2016-01-01

    The content related to the quality during life-cycle in operation of medical device includes daily use, repair volume, preventive maintenance, quality control and adverse event monitoring. In view of this, the article aims at discussion on the quality evaluation method of medical devices during their life cycle in operation based on the Analytic Hierarchy Process (AHP). The presented method is proved to be effective by evaluating patient monitors as example. The method presented in can promote and guide the device quality control work, and it can provide valuable inputs to decisions about purchase of new device.

  4. Real-time signal processing of accelerometer data for wearable medical patient monitoring devices.

    PubMed

    Van Wieringen, Matt; Eklund, J

    2008-01-01

    Elderly and other people who live at home but required some physical assistance to do so are often more susceptible injury causing falls in and around their place of residence. In the event that a fall does occur, as a direct result of a previous medical condition or the fall itself, these people are typically less likely to be able to seek timely medical help without assistance. The goal of this research is to develop a wearable sensor device that uses an accelerometer for monitoring the movement of the person to detect falls after they have occurred in order to enable timely medical assistance. The data coming from the accelerometer is processed in real-time in the device and sent to a remote monitoring station where operators can attempt to make contact with the person and/or notify medical personnel of the situation. The ADXL330 accelerometer is contained within a Nintendo WiiMote controller, which forms the basis of the wearable medical sensor. The accelerometer data can then be sent via Bluetooth connection and processed by a local gateway processor. If a fall is detected, the gateway will then contact a remote monitoring station, on a cellular network, for example, via satellite, and/or through a hardwired phone or Internet connection. To detect the occurrence of ta fall, the accelerometer data is passed through a matched filter and the data is compared to benchmark analysis data that will define the conditions that represents the occurrence of a fall.

  5. Process monitor of 3D-device features by using FIB and CD-SEM

    NASA Astrophysics Data System (ADS)

    Kawada, Hiroki; Ikota, Masami; Sakai, Hideo; Torikawa, Shota; Tomimatsu, Satoshi; Onishi, Tsuyoshi

    2016-03-01

    For yield improvement of 3D-device manufacturing, metrology for the variability of individual device-features is on hot issue. Transmission Electron Microscope (TEM) can be used for monitoring the individual cross-section. However, efficiency of process monitoring is limited by the speed of measurement including preparation of lamella sample. In this work we demonstrate speedy 3D-profile measurement of individual line-features without the lamella sampling. For instance, we make a-few-micrometer-wide and 45-degree-descending slope in dense line-features by using Focused Ion Beam (FIB) tool capable of 300mm-wafer. On the descending slope, obliquely cut cross-section of the line features appears. Then, we transfer the wafer to Critical-Dimension Secondary Electron Microscope (CDSEM) to measure the oblique cross-section in normal top-down view. As the descending angle is 45 degrees, the oblique cross-section looks like a cross-section normal to the wafer surface. For every single line-features the 3D dimensions are measured. To the reference metrology of the Scanning TEM (STEM), nanometric linearity and precision are confirmed for the height and the width under the hard mask of the line features. Without cleaving wafer the 60 cells on the wafer can be measured in 3 hours, which allows us of near-line process monitor of in-wafer uniformity.

  6. Satisfaction with assistive technology device in relation to the service delivery process - a systematic review.

    PubMed

    Ranada, Åsa Larsson; Lidström, Helene

    2017-09-11

    The service delivery process (SDP) of assistive technology device (ATD) is attracting interest, as the provision of ATD is critical for the independence and participation in society of individuals with disabilities. The purpose of the current study was to investigate what impact the SDP has on satisfaction with ATDs in individuals with disabilities in relation to everyday activities. A systematic literature review was conducted, which resulted in 53 articles included. The results showed that there are factors in almost all the different steps of the SDP that affect the satisfaction with of the devices, which can lead to underutilization and abandonment of ATDs. Only a few studies have been conducted with a design robust enough to generalize the results, therefore more research is needed. Therefore the conclusion is that the evidence that the SDP as a whole contributes to the satisfaction with and usability of ATDs in individuals with disability in relation to achieving the desired goals of participation in everyday activities for the articles included must be deemed as moderate. A client-centred approach in the process is advocated, and was found to be an important factor for an effective SDP and satisfied users.

  7. Low Temperature Processed Complementary Metal Oxide Semiconductor (CMOS) Device by Oxidation Effect from Capping Layer

    PubMed Central

    Wang, Zhenwei; Al-Jawhari, Hala A.; Nayak, Pradipta K.; Caraveo-Frescas, J. A.; Wei, Nini; Hedhili, M. N.; Alshareef, H. N.

    2015-01-01

    In this report, both p- and n-type tin oxide thin-film transistors (TFTs) were simultaneously achieved using single-step deposition of the tin oxide channel layer. The tuning of charge carrier polarity in the tin oxide channel is achieved by selectively depositing a copper oxide capping layer on top of tin oxide, which serves as an oxygen source, providing additional oxygen to form an n-type tin dioxide phase. The oxidation process can be realized by annealing at temperature as low as 190°C in air, which is significantly lower than the temperature generally required to form tin dioxide. Based on this approach, CMOS inverters based entirely on tin oxide TFTs were fabricated. Our method provides a solution to lower the process temperature for tin dioxide phase, which facilitates the application of this transparent oxide semiconductor in emerging electronic devices field. PMID:25892711

  8. Molecular Interdiffusion between Stacked Layers by Solution and Thermal Annealing Processes in Organic Light Emitting Devices.

    PubMed

    Ohisa, Satoru; Pu, Yong-Jin; Yamada, Norifumi L; Matsuba, Go; Kido, Junji

    2015-09-23

    In organic light emitting devices (OLEDs), interfacial structures between multilayers have large impacts on the characteristics of OLEDs. Herein, we succeeded in revealing the interdiffusion in solution processed and thermal annealed OLEDs by neutron reflectometry. We investigated interfaces between a polymer under layer and small molecules upper layer. The small molecules diffused into the swollen polymer layer during the interfacial formation by the solution process, but the polymer did not diffuse into the small molecules layer. At temperatures close to the glass transition temperatures of the materials, asymmetric molecular diffusion was observed. We elucidated the effects of the interdiffusion on the characteristics of OLEDs. Partially mixing the interface improved the current efficiencies due to suppressed triplet-polaron quenching at the interface. Controlling and understanding the interfacial structures of the miultilayers will be more important to improve the OLED characteristics.

  9. Organic photovoltaic devices based on an acceptor of solution-processable functionalized graphene.

    PubMed

    Wang, Jigang; Wang, Yongsheng; He, Dawei; Wu, Hongpeng; Wang, Haiteng; Zhou, Pan; Fu, Ming; Jiang, Ke; Chen, Wei

    2011-11-01

    We prepared the exfoliation of graphite, which was necessary for the production of graphene sheets that are desirable for the fabrication of nano-composites. Then a Solution-Processable Functionalized Graphene (SPFGraphene) with functionalization groups doped with P3HT hybrid thin film-based organic photovoltaic cells (OPVCs) was systematically identified using a general device structure of, ITO/PEDOT:PSS/P3HT:SPFGraphene/LiF/Al. The effect of annealing on the photoelectric properties of the SPFGraphene was analyzed by Fourier transform infrared FT-IR spectroscopy and solar cell performance. After treatment at different annealing temperatures, with an increase in the SPFGraphene content, the short-circuit current density J(SC) and power conversion efficiency PCE of the hybrid devices increased first, reaching the peak efficiency for the 10 wt% SPFGraphene content, and then decreased. After annealing at 160 degrees C, the device containing 10 wt% SPFGraphene showed the open-circuit voltage V(OC) of 0.73 V, the J(SC) value of 3.98 mA cm(-2), fill factor (FF) value of 0.36, the PCE value of 1.046%. After thermal annealing at 210 degrees C, with the removal of the functional groups and recovery of the pi-conjugated areas, the conductivity of the graphene sheet and the charge carrier-transport mobility increased greatly, the J(SC) value of the 10 wt% SPFGraphene content device increased to 4.2 mA cm(-2), the V(OC) value decreased to 0.59 V, which may be attributed to the altered work-function value of the functionalized graphene and low quasi-Fermi levels for electrons and holes, the FF value was 0.27, and the PCE was 0.669%, which is lower than the former one. The results indicated that annealing at the appropriate temperature can improve the device performance greatly, and the functionalized graphene is expected to be a competitive candidate in organic photovoltaic applications because it is soluble, cheap, easily prepared, stable, and inert against the ambient

  10. Charge Carrier Processes in Photovoltaic Materials and Devices: Lead Sulfide Quantum Dots and Cadmium Telluride

    NASA Astrophysics Data System (ADS)

    Roland, Paul

    Charge separation, transport, and recombination represent fundamental processes for electrons and holes in semiconductor photovoltaic devices. Here, two distinct materials systems, based on lead sulfide quantum dots and on polycrystalline cadmium telluride, are investigated to advance the understanding of their fundamental nature for insights into the material science necessary to improve the technologies. Lead sulfide quantum dots QDs have been of growing interest in photovoltaics, having recently produced devices exceeding 10% conversion efficiency. Carrier transport via hopping through the quantum dot thin films is not only a function of inter-QD distance, but of the QD size and dielectric media of the surrounding materials. By conducting temperature dependent transmission, photoluminescence, and time resolved photoluminescence measurements, we gain insight into photoluminescence quenching and size-dependent carrier transport through QD ensembles. Turning to commercially relevant cadmium telluride (CdTe), we explore the high concentrations of self-compensating defects (donors and acceptors) in polycrystalline thin films via photoluminescence from recombination at defect sites. Low temperature (25 K) photoluminescence measurements of CdTe reveal numerous radiative transitions due to exciton, trap assisted, and donor-acceptor pair recombination events linked with various defect states. Here we explore the difference between films deposited via close space sublimation (CSS) and radio frequency magnetron sputtering, both as-grown and following a cadmium chloride treatment. The as-grown CSS films exhibited a strong donor-acceptor pair transition associated with deep defect states. Constructing photoluminescence spectra as a function of time from time-resolved photoluminescence data, we report on the temporal evolution of this donor-acceptor transition. Having gained insight into the cadmium telluride film quality from low temperature photoluminescence measurements

  11. Mount St. Helens Flyover

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image of Mt. St. Helens volcano in Washington State was acquired on August 8, 2000 and covers an area of 37 by 51 km. Mount Saint Helens, a volcano in the Cascade Range of southwestern Washington that had been dormant since 1857, began to show signs of renewed activity in early 1980. On 18 May 1980, it erupted with such violence that the top of the mountain was blown off, spewing a cloud of ash and gases that rose to an altitude of 19 kilometers. The blast killed about 60 people and destroyed all life in an area of some 180 square kilometers (some 70 square miles), while a much larger area was covered with ash and debris. It continues to spit forth ash and steam intermittently. As a result of the eruption, the mountain's elevation decreased from 2,950 meters to 2,549 meters. The simulated fly-over was produced by draping ASTER visible and near infrared image data over a digital topography model, created from ASTER's 3-D stereo bands. The color was computer enhanced to create a 'natural' color image, where the vegetation appears green. The topography has been exaggerated 2 times to enhance the appearance of the relief. Landsat7 aquired an image of Mt. St. Helens on August 22, 1999. Image and animation courtesy NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team.

  12. Surface Mounted Neutron Generators

    NASA Astrophysics Data System (ADS)

    Elizondo-Decanini, Juan M.

    2012-10-01

    A deuterium-tritium (DT) base reaction pulsed neutron generator packaged in a flat computer chip shape of 1.54 cm (0.600 in) wide by 3.175 cm (1.25 in) length and 0.3 cm (0.120 in) thick has been successfully demonstrated to produce 14 MeV neutrons at a rate of 10^9 neutrons per second. The neutron generator is based on a deuterium ion beam accelerated to impact a tritium loaded target. The accelerating voltage is in the 15 to 20 kV in a 3 mm (0.120 in) gap, the ion beam is shaped by using a lens design to produce a flat ion beam that conforms to the flat rectangular target. The ion source is a simple surface mounted deuterium filled titanium film with a fused gap that operates at a current-voltage design to release the deuterium during a pulse length of about 1 μs. We present the general description of the working prototypes, which we have labeled the ``NEUTRISTOR.''[4pt] Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration. Work funded by the LDRD office.

  13. Map of Lower Mount Sharp

    NASA Image and Video Library

    2014-09-11

    This is a map of lower Mount Sharp on Mars, showing the major geologic units identified from orbit. The rocks of the Murray Formation, mapped in green, likely represent the oldest layers of Mount Sharp that NASA Curiosity rover will explore.

  14. Tunable high-refractive index hybrid for solution-processed light management devices (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Bachevillier, Stefan

    2016-10-01

    After the use of highly efficient but expensive inorganic optical materials, solution-processable polymers and hybrids have drawn more and more interest. Our group have recently developed a novel polymer-based hybrid optical material from titanium oxide hydrate exhibiting an outstanding set of optical and material properties. Firstly, their low cost, processability and cross-linked states are particularly attractive for many applications. Moreover, a high refractive index can be repeatedly achieved while optical losses stays considerably low over the entire visible and near-infrared wavelength regime. Indeed, the formation of inorganic nanoparticles, usually present in nanocomposites, is avoided by a specific formulation process. Even more remarkably, the refractive index can be tuned by either changing the inorganic content, using different titanium precursors or via a low-temperature curing process. A part of our work is focused on the reliable optical characterization of these properties, in particular a microscope-based setup allowing in-situ measurement and sample mapping has been developed. Our efforts are also concentrated on various applications of these exceptional properties. This hybrid material is tailored for photonic devices, with a specific emphasis on the production of highly efficient solution processable Distributed Bragg Reflectors (DBR) and anti-reflection coatings. Furthermore, waveguides can be fabricated from thin films along with in-coupling and out-coupling structures. These light managements structures are particularly adapted to organic photovoltaic cells (OPVs) and light emitting diodes (OLEDs).

  15. Device variability and circuit redundancy in signal processing based on nanoswitches

    NASA Astrophysics Data System (ADS)

    Cervera, Javier; Manzanares, José A.; Mafé, Salvador

    2009-11-01

    Signal processing based on molecular switches whose conductance can be tuned by an external stimulus between two (on and off) states has been proposed recently (Cervera et al 2008 J. Appl. Phys. 104 084317). The basic building block is a metal nanoparticle linked to two electrodes by an organic ligand and a nanoswitch. The net charge delivered by this nanostructure exhibits a sharp resonance when the alternating potential applied between the electrodes has the same frequency as the periodic variation between the on and off conductance states induced on the nanoswitch. This resonance can be used to process an external signal by selectively extracting the weight of the different harmonics. However, because of the fabrication process at the nanoscale, the nanostructures will show a significant variability in the physical characteristics. By using a phenomenological model that includes this variability, the stochastic nature of electron transference, and the thermal noise, we demonstrate that reliable signal processing can still be achieved by adapting the number of nanoswitches per bit of information (circuit redundancy) to the nanostructure tolerance (device variability). Extensive kinetic Monte Carlo simulations show that a moderate level of redundancy can compensate for significant nanostructure variability. This result gives support to the concept of ensembles of redundant switches as reliable components for signal processing at the nanoscale.

  16. Device variability and circuit redundancy in signal processing based on nanoswitches.

    PubMed

    Cervera, Javier; Manzanares, José A; Mafé, Salvador

    2009-11-18

    Signal processing based on molecular switches whose conductance can be tuned by an external stimulus between two (on and off) states has been proposed recently (Cervera et al 2008 J. Appl. Phys. 104 084317). The basic building block is a metal nanoparticle linked to two electrodes by an organic ligand and a nanoswitch. The net charge delivered by this nanostructure exhibits a sharp resonance when the alternating potential applied between the electrodes has the same frequency as the periodic variation between the on and off conductance states induced on the nanoswitch. This resonance can be used to process an external signal by selectively extracting the weight of the different harmonics. However, because of the fabrication process at the nanoscale, the nanostructures will show a significant variability in the physical characteristics. By using a phenomenological model that includes this variability, the stochastic nature of electron transference, and the thermal noise, we demonstrate that reliable signal processing can still be achieved by adapting the number of nanoswitches per bit of information (circuit redundancy) to the nanostructure tolerance (device variability). Extensive kinetic Monte Carlo simulations show that a moderate level of redundancy can compensate for significant nanostructure variability. This result gives support to the concept of ensembles of redundant switches as reliable components for signal processing at the nanoscale.

  17. 29 CFR 1910.67 - Vehicle-mounted elevating and rotating work platforms.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... aerial device designed for work on energized lines and apparatus. (6) Mobile unit. A combination of an...) Definitions applicable to this section—(1) Aerial device. Any vehicle—mounted device, telescoping or articulating, or both, which is used to position personnel. (2) Aerial ladder. An aerial device consisting of...

  18. Microfluidic blood filtration device.

    PubMed

    Maltezos, George; Lee, John; Rajagopal, Aditya; Scholten, Kee; Kartalov, Emil; Scherer, Axel

    2011-02-01

    Rapid decentralized biomedical diagnostics have become increasingly necessary in a medical environment of growing costs and mounting demands on healthcare personnel and infrastructure. Such diagnostics require low-cost novel devices that can operate at bedside or in doctor offices using small amounts of sample that can be extracted and processed on the spot. Thus, point-of-care sample preparation is an important component of the necessary diagnostic paradigm shift. We therefore introduce a microfluidic device which produces plasma from whole blood. The device is inexpensive, reliable, easy to fabricate, and requires only 3.5 kPa pressure to operate. The device is fully compatible with microfluidic diagnostic chips. The output 23-gauge microtube of the former can be directly plugged into the input ports of the latter allowing immediate applicability in practice as a sample-prep pre-stage to a variety of emergent microfluidic diagnostic devices. In addition, the shown approach of filter encapsulation in elastomer has principle importance as it is compatible with and applicable to microfluidic sample-prep integration with analytical stages within the same elastomeric chip. This can eventually lead to finger-prick blood tests in point-of-care settings.

  19. The compact electromagnetic device optimization modeling of seismo-electromagnetic processes for the Earth

    NASA Astrophysics Data System (ADS)

    Sengor, T.

    2009-04-01

    modeling of seismo-electromagnetic processes," IUGG Perugia 2007. [2] T. Sengor,"The electromagnetic device optimization modeling of seismo-electromagnetic Processes for Marmara Sea earthquakes," EGU Vienna 2008. [3] T. Sengor,"On the exact interaction mechanism of electromagnetically generated phenomena with significant earthquakes and the observations related the exact predictions before the significant earthquakes at July 1999-May 2000 period," HelsinkiUniv. Tech. Electrom. Lab. Rept. 368, May 2001. [4] T. Sengor,"The Observational Findings Before The Great Earthquakes Of December 2004 And The Mechanism Extraction From Associated Electromagnetic Phenomena," Book of XXVIIIth URSI GA 2005, pp. 191, EGH.9 (01443) and Proceedings 2005 CD, New Delhi, India, Oct. 23-29, 2005. [5] T. Sengor, "The interaction mechanism among electromagnetic phenomena and geophysical-seismic-ionospheric phenomena with extraction for exact earthquake prediction genetics," 10th SA of the IAGA 2005, Abst. CD,. GAI, C109, No.: IAGA2005-A-0134, Toulouse, France, July18-29, 2005.

  20. All-optical devices realized by the post-growth processing of multiquantum-well structures

    NASA Astrophysics Data System (ADS)

    LiKamWa, Patrick; Kan'an, Ayman M.; Dutta, Mitra; Pamulapati, Jagadeesh

    1997-01-01

    An inexpensive and reliable process for the area-selective disordering of MQW structures is reported. The method relies on the diffusion, by rapid thermal annealing, of surface vacancies into the quantum wells thereby intermixing the Ga and Al atoms between the wells and barriers. A silicon oxide cap that is formed by curing a spun-on solution of glass forming compound acts as porous layer that enhances the formation of surface vacancies by allowing out-diffusion of Ga and Al atoms. This technique has been applied to the fabrication of two integrated optical devices. One is the nonlinear zero-gap directional coupler with disordered input and output branching waveguides, and the other is the symmetric nonlinear integrated Mach-Zehnder interferometer with one arm containing a non-intermixed MQW section. In both devices, the mechanism for the switching is the nonlinear refractive index that is caused by photo-generated carriers. Since this mechanism entails absorption of some of the pump beam, it is hence very important that the optical absorption be confined to the active sections only. Selective area disordering is shown to be very effective at defining regions of different bandgap energies. Hence it can be ensured that the energy of the pump laser beam is too low in comparison to the bandgap energy of the passive regions to be absorbed and the free carriers are only created in the non-intermixed active sections. The devices investigated using a pump-probe setup, exhibited strong all-optical switching behavior with a contrast ratio of better than 7:1. The controlled selective area intermixing of MQW structures will potentially play a significant role in the advancement of photonic integrated circuits.

  1. Bottom-up engineering of thermoelectric nanomaterials and devices from solution-processed nanoparticle building blocks.

    PubMed

    Ortega, Silvia; Ibáñez, Maria; Liu, Yu; Zhang, Yu; Kovalenko, Maksym V; Cadavid, Doris; Cabot, Andreu

    2017-06-19

    The conversion of thermal energy to electricity and vice versa by means of solid state thermoelectric devices is extremely appealing. However, its cost-effectiveness is seriously hampered by the relatively high production cost and low efficiency of current thermoelectric materials and devices. To overcome present challenges and enable a successful deployment of thermoelectric systems in their wide application range, materials with significantly improved performance need to be developed. Nanostructuration can help in several ways to reach the very particular group of properties required to achieve high thermoelectric performances. Nanodomains inserted within a crystalline matrix can provide large charge carrier concentrations without strongly influencing their mobility, thus allowing to reach very high electrical conductivities. Nanostructured materials contain numerous grain boundaries that efficiently scatter mid- and long-wavelength phonons thus reducing the thermal conductivity. Furthermore, nanocrystalline domains can enhance the Seebeck coefficient by modifying the density of states and/or providing type- and energy-dependent charge carrier scattering. All these advantages can only be reached when engineering a complex type of material, nanocomposites, with exquisite control over structural and chemical parameters at multiple length scales. Since current conventional nanomaterial production technologies lack such level of control, alternative strategies need to be developed and adjusted to the specifics of the field. A particularly suitable approach to produce nanocomposites with unique level of control over their structural and compositional parameters is their bottom-up engineering from solution-processed nanoparticles. In this work, we review the state-of-the-art of this technology applied to the thermoelectric field, including the synthesis of nanoparticles of suitable materials with precisely engineered composition and surface chemistry, their combination

  2. Understanding wax screen-printing: a novel patterning process for microfluidic cloth-based analytical devices.

    PubMed

    Liu, Min; Zhang, Chunsun; Liu, Feifei

    2015-09-03

    In this work, we first introduce the fabrication of microfluidic cloth-based analytical devices (μCADs) using a wax screen-printing approach that is suitable for simple, inexpensive, rapid, low-energy-consumption and high-throughput preparation of cloth-based analytical devices. We have carried out a detailed study on the wax screen-printing of μCADs and have obtained some interesting results. Firstly, an analytical model is established for the spreading of molten wax in cloth. Secondly, a new wax screen-printing process has been proposed for fabricating μCADs, where the melting of wax into the cloth is much faster (∼5 s) and the heating temperature is much lower (75 °C). Thirdly, the experimental results show that the patterning effects of the proposed wax screen-printing method depend to a certain extent on types of screens, wax melting temperatures and melting time. Under optimized conditions, the minimum printing width of hydrophobic wax barrier and hydrophilic channel is 100 μm and 1.9 mm, respectively. Importantly, the developed analytical model is also well validated by these experiments. Fourthly, the μCADs fabricated by the presented wax screen-printing method are used to perform a proof-of-concept assay of glucose or protein in artificial urine with rapid high-throughput detection taking place on a 48-chamber cloth-based device and being performed by a visual readout. Overall, the developed cloth-based wax screen-printing and arrayed μCADs should provide a new research direction in the development of advanced sensor arrays for detection of a series of analytes relevant to many diverse applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Mount Rainier National Park

    USGS Publications Warehouse

    Hoffman, Robert; Woodward, Andrea; Haggerty, Patricia K.; Jenkins, Kurt J.; Griffin, Paul C.; Adams, Michael J.; Hagar, Joan; Cummings, Tonnie; Duriscoe, Dan; Kopper, Karen; Riedel, Jon; Samora, Barbara; Marin, Lelaina; Mauger, Guillaume S.; Bumbaco, Karen; Littell, Jeremy S.

    2014-01-01

    Natural Resource Condition Assessments (NRCAs) evaluate current conditions for a subset of natural resources and resource indicators in national parks. NRCAs also report on trends in resource condition (when possible), identify critical data gaps, and characterize a general level of confidence for study findings. The resources and indicators emphasized in a given project depend on the park’s resource setting, status of resource stewardship planning and science in identifying high-priority indicators, and availability of data and expertise to assess current conditions for a variety of potential study resources and indicators. Although the primary objective of NRCAs is to report on current conditions relative to logical forms of reference conditions and values, NRCAs also report on trends, when appropriate (i.e., when the underlying data and methods support such reporting), as well as influences on resource conditions. These influences may include past activities or conditions that provide a helpful context for understanding current conditions and present-day threats and stressors that are best interpreted at park, watershed, or landscape scales (though NRCAs do not report on condition status for land areas and natural resources beyond park boundaries). Intensive cause-andeffect analyses of threats and stressors, and development of detailed treatment options, are outside the scope of NRCAs. It is also important to note that NRCAs do not address resources that lack sufficient data for assessment. For Mount Rainier National Park, this includes most invertebrate species and many other animal species that are subject to significant stressors from climate change and other anthropogenic sources such as air pollutants and recreational use. In addition, we did not include an analysis of the physical hydrology associated with streams (such as riverine landforms, erosion and aggradation which is significant in MORA streams), due to a loss of staff expertise from the USGS

  4. Mount St. Helens

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image of Mount St. Helens was captured one week after the March 8, 2005, ash and steam eruption, the latest activity since the volcano's reawakening in September 2004. The new lava dome in the southeast part of the crater is clearly visible, highlighted by red areas where ASTER's infrared channels detected hot spots from incandescent lava. The new lava dome is 155 meters (500 feet) higher than the old lava dome, and still growing.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

    Size: 21.9 by 24.4 kilometers (13.6 by 15.1 miles) Location: 46.2 degrees North latitude, 122.2 degrees West longitude Orientation: North at top Image Data: ASTER bands 8, 3, and 1 Original Data Resolution

  5. Proceedings of defect engineering in semiconductor growth, processing and device technology

    SciTech Connect

    Ashok, S.; Chevallier, J.; Sumino, K.; Weber, E.

    1992-01-01

    This volume results from a symposium that was part of the 1992 Spring Meeting of the Materials Research Society, held in San Francisco from April 26 to May 1, 1992. The symposium, entitled Defect Engineering in Semiconductor Growth, Processing and Device Technology, was the first of its kind at MRS and brought together academic and industrial researchers with varying perspectives on defects in semiconductors. Its aim was to go beyond defect control, and focus instead on deliberate and controlled introduction and manipulation of defects in order to engineer some desired properties in semiconductor materials and devices. While the concept of defect engineering has at least a vague perception in techniques such as impurity/defect gettering and the use of the EL2 level in GaAs, more extensive as well as subtle uses of defects are emerging to augment the field. This symposium was intended principally to encourage creative new applications of defects in all aspects of semiconductor technology. The organization of this proceedings volume closely follows the topics around which the sessions were built. The papers on grown-in defects in bulk crystals deal with overviews of intrinsic and impurity-related defects, their influence on electrical, optical and mechanical properties, as well as the use of impurities to arrest certain types of defects during growth and defects to control growth. The issues addressed by the papers on defects in thin films include impurity and stoichiometry control, defects created by plasmas and the use of electron/ion irradiation for doping control.

  6. Investigating the fluid dynamics of rapid processes within microfluidic devices using bright-field microscopy.

    PubMed

    Pirbodaghi, Tohid; Vigolo, Daniele; Akbari, Samin; deMello, Andrew

    2015-05-07

    The widespread application of microfluidic devices in the biological and chemical sciences requires the implementation of complex designs and geometries, which in turn leads to atypical fluid dynamic phenomena. Accordingly, a complete understanding of fluid dynamics in such systems is key in the facile engineering of novel and efficient analytical tools. Herein, we present an accurate approach for studying the fluid dynamics of rapid processes within microfluidic devices using bright-field microscopy with white light illumination and a standard high-speed camera. Specifically, we combine Ghost Particle Velocimetry and the detection of moving objects in automated video surveillance to track submicron size tracing particles via cross correlation between the speckle patterns of successive images. The efficacy of the presented technique is demonstrated by measuring the flow field over a square pillar (80 μm × 80 μm) in a 200 μm wide microchannel at high volumetric flow rates. Experimental results are in excellent agreement with those obtained via computational fluid dynamics simulations. The method is subsequently used to study the dynamics of droplet generation at a flow focusing microfluidic geometry. A unique feature of the presented technique is the ability to perform velocimetry analysis of high-speed phenomena, which is not possible using micron-resolution particle image velocimetry (μPIV) approaches based on confocal or fluorescence microscopy.

  7. MEMS accelerometers in accurate mount positioning systems

    NASA Astrophysics Data System (ADS)

    Mészáros, László; Pál, András.; Jaskó, Attila

    2014-07-01

    In order to attain precise, accurate and stateless positioning of telescope mounts we apply microelectromechanical accelerometer systems (also known as MEMS accelerometers). In common practice, feedback from the mount position is provided by electronic, optical or magneto-mechanical systems or via real-time astrometric solution based on the acquired images. Hence, MEMS-based systems are completely independent from these mechanisms. Our goal is to investigate the advantages and challenges of applying such devices and to reach the sub-arcminute range { that is well smaller than the field-of-view of conventional imaging telescope systems. We present how this sub-arcminute accuracy can be achieved with very cheap MEMS sensors. Basically, these sensors yield raw output within an accuracy of a few degrees. We show what kind of calibration procedures could exploit spherical and cylindrical constraints between accelerometer output channels in order to achieve the previously mentioned accuracy level. We also demonstrate how can our implementation be inserted in a telescope control system. Although this attainable precision is less than both the resolution of telescope mount drive mechanics and the accuracy of astrometric solutions, the independent nature of attitude determination could significantly increase the reliability of autonomous or remotely operated astronomical observations.

  8. Helmet-Mounted Display Of Clouds Of Harmful Gases

    NASA Technical Reports Server (NTRS)

    Diner, Daniel B.; Barengoltz, Jack B.; Schober, Wayne R.

    1995-01-01

    Proposed helmet-mounted opto-electronic instrument provides real-time stereoscopic views of clouds of otherwise invisible toxic, explosive, and/or corrosive gas. Display semitransparent: images of clouds superimposed on scene ordinarily visible to wearer. Images give indications on sizes and concentrations of gas clouds and their locations in relation to other objects in scene. Instruments serve as safety devices for astronauts, emergency response crews, fire fighters, people cleaning up chemical spills, or anyone working near invisible hazardous gases. Similar instruments used as sensors in automated emergency response systems that activate safety equipment and emergency procedures. Both helmet-mounted and automated-sensor versions used at industrial sites, chemical plants, or anywhere dangerous and invisible or difficult-to-see gases present. In addition to helmet-mounted and automated-sensor versions, there could be hand-held version. In some industrial applications, desirable to mount instruments and use them similarly to parking-lot surveillance cameras.

  9. Helmet-Mounted Display Of Clouds Of Harmful Gases

    NASA Technical Reports Server (NTRS)

    Diner, Daniel B.; Barengoltz, Jack B.; Schober, Wayne R.

    1995-01-01

    Proposed helmet-mounted opto-electronic instrument provides real-time stereoscopic views of clouds of otherwise invisible toxic, explosive, and/or corrosive gas. Display semitransparent: images of clouds superimposed on scene ordinarily visible to wearer. Images give indications on sizes and concentrations of gas clouds and their locations in relation to other objects in scene. Instruments serve as safety devices for astronauts, emergency response crews, fire fighters, people cleaning up chemical spills, or anyone working near invisible hazardous gases. Similar instruments used as sensors in automated emergency response systems that activate safety equipment and emergency procedures. Both helmet-mounted and automated-sensor versions used at industrial sites, chemical plants, or anywhere dangerous and invisible or difficult-to-see gases present. In addition to helmet-mounted and automated-sensor versions, there could be hand-held version. In some industrial applications, desirable to mount instruments and use them similarly to parking-lot surveillance cameras.

  10. Bi-level microelectronic device package with an integral window

    DOEpatents

    Peterson, Kenneth A.; Watson, Robert D.

    2004-01-06

    A package with an integral window for housing a microelectronic device. The integral window is bonded directly to the package without having a separate layer of adhesive material disposed in-between the window and the package. The device can be a semiconductor chip, CCD chip, CMOS chip, VCSEL chip, laser diode, MEMS device, or IMEMS device. The multilayered package can be formed of a LTCC or HTCC cofired ceramic material, with the integral window being simultaneously joined to the package during LTCC or HTCC processing. The microelectronic device can be flip-chip bonded so that the light-sensitive side is optically accessible through the window. The package has at least two levels of circuits for making electrical interconnections to a pair of microelectronic devices. The result is a compact, low-profile package having an integral window that is hermetically sealed to the package prior to mounting and interconnecting the microelectronic device(s).

  11. OLED Fundamentals: Materials, Devices, and Processing of Organic Light-Emitting Diodes

    SciTech Connect

    Blochwitz-Nimoth, Jan; Bhandari, Abhinav; Boesch, Damien; Fincher, Curtis R.; Gaspar, Daniel J.; Gotthold, David W.; Greiner, Mark T.; Kido, Junji; Kondakov, Denis; Korotkov, Roman; Krylova, Valentina A.; Loeser, Falk; Lu, Min-Hao; Lu, Zheng-Hong; Lussem, Bjorn; Moro, Lorenza; Padmaperuma, Asanga B.; Polikarpov, Evgueni; Rostovtsev, Vsevolod V.; Sasabe, Hisahiro; Silverman, Gary; Thompson, Mark E.; Tietze, Max; Tyan, Yuan-Sheng; Weaver, Michael; Xin , Xu; Zeng, Xianghui

    2015-05-26

    -efficiency OLED demonstrated in 1987. Thus, we expect to see exciting advances in the science, technology and commercialization in the coming years. We hope that this book helps to advance the field in some small way. Contributors to this monograph are experts from top academic institutions, industry and national laboratories who provide comprehensive and up-to-date coverage of the rapidly evolving field of OLEDs. Furthermore, this monograph collects in one place, for the first time, key topics across the field of OLEDs, from fundamental chemistry and physics, to practical materials science and engineering topics, to aspects of design and manufacturing. The monograph synthesizes and puts into context information scattered throughout the literature for easy review in one book. The scope of the monograph reflects the necessity to focus on new technological challenges brought about by the transition to manufacturing. In the Section 1, all materials of construction of the OLED device are covered, from substrate to encapsulation. In Section 2, for the first time, additional challenges in devices and processing are addressed. This book is geared towards a broad audience, including materials scientists, device physicists, synthetic chemists and electrical engineers. Furthermore, this book makes a great introduction to scientists in industry and academia, as well as graduate students interested in applied aspects of photophysics and electrochemistry in organic thin films. This book is a comprehensive source for OLED R&D professionals from all backgrounds and institutions.

  12. Detector Mount Design for IGRINS

    NASA Astrophysics Data System (ADS)

    Oh, Jae Sok; Park, Chan; Cha, Sang-Mok; Yuk, In-Soo; Park, Kwijong; Kim, Kang-Min; Chun, Moo-Young; Ko, Kyeongyeon; Oh, Heeyoung; Jeong, Ueejeong; Nah, Jakyoung; Lee, Hanshin; Jaffe, Daniel T.

    2014-06-01

    The Immersion Grating Infrared Spectrometer (IGRINS) is a near-infrared wide-band high-resolution spectrograph jointly developed by the Korea Astronomy and Space Science Institute and the University of Texas at Austin. IGRINS employs three HAWAII-2RG Focal Plane Array (H2RG FPA) detectors. We present the design and fabrication of the detector mount for the H2RG detector. The detector mount consists of a detector housing, an ASIC housing, a Field Flattener Lens (FFL) mount, and a support base frame. The detector and the ASIC housing should be kept at 65 K and the support base frame at 130 K. Therefore they are thermally isolated by the support made of GFRP material. The detector mount is designed so that it has features of fine adjusting the position of the detector surface in the optical axis and of fine adjusting yaw and pitch angles in order to utilize as an optical system alignment compensator. We optimized the structural stability and thermal characteristics of the mount design using computer-aided 3D modeling and finite element analysis. Based on the structural and thermal analysis, the designed detector mount meets an optical stability tolerance and system thermal requirements. Actual detector mount fabricated based on the design has been installed into the IGRINS cryostat and successfully passed a vacuum test and a cold test.

  13. Electronic-carrier-controlled photochemical etching process in semiconductor device fabrication

    DOEpatents

    Ashby, Carol I. H.; Myers, David R.; Vook, Frederick L.

    1989-01-01

    An electronic-carrier-controlled photochemical etching process for carrying out patterning and selective removing of material in semiconductor device fabrication includes the steps of selective ion implanting, photochemical dry etching, and thermal annealing, in that order. In the selective ion implanting step, regions of the semiconductor material in a desired pattern are damaged and the remainder of the regions of the material not implanted are left undamaged. The rate of recombination of electrons and holes is increased in the damaged regions of the pattern compared to undamaged regions. In the photochemical dry etching step which follows ion implanting step, the material in the undamaged regions of the semiconductor are removed substantially faster than in the damaged regions representing the pattern, leaving the ion-implanted, damaged regions as raised surface structures on the semiconductor material. After completion of photochemical dry etching step, the thermal annealing step is used to restore the electrical conductivity of the damaged regions of the semiconductor material.

  14. Electronic-carrier-controlled photochemical etching process in semiconductor device fabrication

    DOEpatents

    Ashby, C.I.H.; Myers, D.R.; Vook, F.L.

    1988-06-16

    An electronic-carrier-controlled photochemical etching process for carrying out patterning and selective removing of material in semiconductor device fabrication includes the steps of selective ion implanting, photochemical dry etching, and thermal annealing, in that order. In the selective ion implanting step, regions of the semiconductor material in a desired pattern are damaged and the remainder of the regions of the material not implanted are left undamaged. The rate of recombination of electrons and holes is increased in the damaged regions of the pattern compared to undamaged regions. In the photochemical dry etching step which follows ion implanting step, the material in the undamaged regions of the semiconductor are removed substantially faster than in the damaged regions representing the pattern, leaving the ion-implanted, damaged regions as raised surface structures on the semiconductor material. After completion of photochemical dry etching step, the thermal annealing step is used to restore the electrical conductivity of the damaged regions of the semiconductor material.

  15. Using mobile devices to improve the safety of medication administration processes.

    PubMed

    Navas, H; Graffi Moltrasio, L; Ares, F; Strumia, G; Dourado, E; Alvarez, M

    2015-01-01

    Within preventable medical errors, those related to medications are frequent in every stage of the prescribing cycle. Nursing is responsible for maintaining each patients safety and care quality. Moreover, nurses are the last people who can detect an error in medication before its administration. Medication administration is one of the riskiest tasks in nursing. The use of information and communication technologies is related to a decrease in these errors. Including mobile devices related to 2D code reading of patients and medication will decrease the possibility of error when preparing and administering medication by nurses. A cross-platform software (iOS and Android) was developed to ensure the five Rights of the medication administration process (patient, medication, dose, route and schedule). Deployment in November showed 39% use.

  16. A Comparative Study of Measuring Devices Used During Space Shuttle Processing for Inside Diameters

    NASA Technical Reports Server (NTRS)

    Rodriguez, Antonio

    2006-01-01

    During Space Shuttle processing, discrepancies between vehicle dimensions and per print dimensions determine if a part should be refurbished, replaced or accepted "as-is." The engineer's job is to address each discrepancy by choosing the most accurate procedure and tool available, sometimes with up to ten thousands of an inch tolerance. Four methods of measurement are commonly used at the Kennedy Space Center: 1) caliper, 2) mold impressions, 3) optical comparator, 4) dial bore gage. During a problem report evaluation, uncertainty arose between methods after measuring diameters with variations of up to 0.0004" inches. The results showed that computer based measuring devices are extremely accurate, but when human factor is involved in determining points of reference, the results may vary widely compared to more traditional methods. iv

  17. Prospects of Wannier functions in investigating photonic crystal all-optical devices for signal processing.

    PubMed

    Muradoglu, M S; Baghai-Wadji, A R; Ng, T W

    2010-04-01

    Wannier functions derived from Bloch functions have been identified as an efficient means of analyzing the properties of photonic crystals in which localized functions have now opened the door for 2D and 3D structures containing defects to be investigated. In this paper, based on the Maxwell equations in diagonalized form and utilizing Bloch waves we have obtained an equivalent system of algebraic equations in eigenform. By establishing and exploiting several distinct properties of the resulting eigenpairs, we demonstrate an ability to construct Wannier functions associated with the simplest one-dimensional photonic structure. More importantly, the numerical investigation of the inner- and intra-band orthonormality conditions as well as Hilbert space partitioning features shows a capability for multi-resolution analysis that will make all-optical signal processing devices with photonic crystal structures feasible.

  18. MCF (Magnetic Compound Fluid) Polishing Process for Free-formed Resin Device using Robotic Arm

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Sato, T.; Lin, W.; Yamamoto, K.; Shimada, K.

    2011-01-01

    The automatic polishing process for three-dimensional forms, such as prototype models of products made of acrylic resin, are being required to develop in order to reduce cost and time consumption. This paper proposes a new polishing technique using magnetic compound fluid (MCF) and robotic arm. Firstly, a polishing unit, which can generate a dynamic magnetic field and be attachable to the robotic arm, is developed. This unit can hold MCF slurry that acts as a flexible and restorable polishing tool for the sake of magnetic force. Secondly, the effects of the clearance between workpiece and polishing unit, the composition of MCF slurry, the relative motion, the dynamic magnetic field and the supplied amount of slurry on polishing characteristics of acrylic resin are experimentally demonstrated. As a result, the smoothest surface roughness is achieved to below 10 nm Ra in a few min, and the feasibility of polishing the free-formed device by controlling robotic arm has been confirmed.

  19. A miniature rigid/flex salinity measurement device fabricated using printed circuit processing techniques

    NASA Astrophysics Data System (ADS)

    Broadbent, H. A.; Ketterl, T. P.; Reid, C. S.

    2010-08-01

    The design, fabrication and initial performance of a single substrate, miniature, low-cost conductivity, temperature, depth (CTD) sensor board with interconnects are presented. In combination these sensors measure ocean salinity. The miniature CTD device board was designed and fabricated as the main component of a 50 mm × 25 mm × 25 mm animal-attached biologger. The board was fabricated using printed circuit processes and consists of two distinct regions on a continuous single liquid crystal polymer substrate: an 18 mm × 28 mm rigid multi-metal sensor section and a 72 mm long flexible interconnect section. The 95% confidence intervals for the conductivity, temperature and pressure sensors were demonstrated to be ±0.083 mS cm-1, 0.01 °C, and ±0.135 dbar, respectively.

  20. Adjustable Optical Mount Is More Rigid

    NASA Technical Reports Server (NTRS)

    Asbury, Bill G.; Coombs, David S.; Jones, Irby W.; Moore, Alvah S., Jr.

    1994-01-01

    Improved mount for lens or mirror in laser offers rigidity similar to that of nonadjustable optical mount. In comparison with older adjustable optical mounts, this one less susceptible to movements and distortions caused by vibrations and by thermal expansions and contractions. Mount contains neither adjustment rods (which grow or shrink as temperature varies) nor springs (which transmit vibrations to mounted optic).

  1. Enhanced functionality in GaN and SiC devices by using novel processing

    NASA Astrophysics Data System (ADS)

    Pearton, S. J.; Abernathy, C. R.; Gila, B. P.; Ren, F.; Zavada, J. M.; Park, Y. D.

    2004-11-01

    Some examples of recent advances in enhancing or adding functionality to GaN and SiC devices through the use of novel processing techniques are discussed. The first example is the use of ion implantation to incorporate transition metals such as Mn, Cr and Co at atomic percent levels in the wide bandgap semiconductors to produce room temperature ferromagnetism. A discussion is given of the phase space within which single-phase material can be obtained and the requirements for demonstrating the presence of a true dilute magnetic semiconductor. The ability to make GaN and SiC ferromagnetic leads to the possibility of magnetic devices with gain, spin FETs operating at low voltages and spin polarized light emitters. The second example is the use of novel oxides such as Sc 2O 3 and MgO as gate dielectrics or surface passivants on GaN. True inversion behavior has been demonstrated in gated MOS-GaN diodes with implanted n-regions supplying the minority carriers need for inversion. These oxide layers also effectively mitigate current collapse in AlGaN/GaN HEMTs through their passivation of surface states in the gate-drain region. The third example is the use of laser drilling to make through-wafer via holes in SiC, sapphire and GaN. The ablation rate is sufficiently high that this maskless, serial process appears capable of achieving similar throughput to the more conventional approach of plasma etching of vias. The fourth example is the use of either ungated AlGaN/GaN HEMTs or simple GaN and SiC Schottky diodes as sensors for chemicals, biogens, radiation, combustion gases or strain. The sensitivity of either the channel carrier density or the barrier height to changes in surface condition make these materials systems ideal for compact robust sensors capable of operating at elevated temperatures.

  2. 75 FR 4402 - Strengthening the Center for Devices and Radiological Health's 510(k) Review Process; Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    ... not always initially provide sufficient engineering and design information for their devices under... context, or tool-type devices such as scalpels or lasers that may be cleared to cut and coagulate...

  3. Mount Meager landslide flow history

    NASA Astrophysics Data System (ADS)

    Moretti, L.; Allstadt, K.; Mangeney, A.; Capdeville, Y.; Stutzmann, E.; Bouchut, F.

    2013-12-01

    Gravitational instabilities, such as landslides, avalanches, or debris flows, play a key role in erosional processes and represent one of the major natural hazards in mountainous, coastal, and volcanic regions. Despite the great amount of field, experimental and numerical work devoted to this problem, the understanding of the physical processes at work in gravitational flows is still an open issue, in particular due to the lack of observations relevant to their dynamics. In this context, the seismic signal generated by gravitational flows is a unique opportunity to obtain information on their dynamics. Indeed, as shown recently by Favreau et al., (2010), simulation of the seismic signal generated by landslides makes it possible to discriminate different flow scenarios and estimate rheological parameters. Global and regional seismic networks continuously record gravitational instabilities, so this new method will help gather new data on landslide behavior, particularly when combined with a landslide numerical modeling. Using this approach, we focus on the 6 August 2010 Mount Meager landslide: a 48.5 Mm3 rockslide-debris flow occurring in the Mount Meager Volcanic complex in the Southwest British Columbia. This landslide traveled over 12.7 km in just a few minutes time and was recorded by 25 broadband seismic stations. The time history of the forces exerted by the landslide on the ground surface was inverted from the seismic waveforms. The forcing history revealed the occurrence of a complicated initiation and showed features attributable to flow over a complicated path that included two sharp turns and runup at a valley wall barrier. To reliably interpret this signal and thus obtain detailed information about the dynamics of the landslide, we ran simulations for a range of scenarios by varying the coefficient of friction and the number, mass, and timings of subevents and compute the forces generated in each case. By comparing the results of these simulations to the

  4. Mount Meager landslide flow history

    NASA Astrophysics Data System (ADS)

    Moretti, Laurent; Allstadt, Kate; Mangeney, Anne; Yann, capdeville; Eleonore, Stutzmann; François, Bouchut

    2014-05-01

    Gravitational instabilities, such as landslides, avalanches, or debris flows, play a key role in erosional processes and represent one of the major natural hazards in mountainous, coastal, and volcanic regions. Despite the great amount of field, experimental and numerical work devoted to this problem, the understanding of the physical processes at work in gravitational flows is still an open issue, in particular due to the lack of observations relevant to their dynamics. In this context, the seismic signal generated by gravitational flows is a unique opportunity to obtain information on their dynamics. Indeed, as shown recently by Favreau et al., (2010), simulation of the seismic signal generated by landslides makes it possible to discriminate different flow scenarios and estimate rheological parameters. Global and regional seismic networks continuously record gravitational instabilities, so this new method will help gather new data on landslide behavior, particularly when combined with a landslide numerical modeling. Using this approach, we focus on the 6 August 2010 Mount Meager landslide: a 48.5 Mm3 rockslide-debris flow occurring in the Mount Meager Volcanic complex in the Southwest British Columbia. This landslide traveled over 12.7 km in just a few minutes time and was recorded by 25 broadband seismic stations. The time history of the forces exerted by the landslide on the ground surface was inverted from the seismic waveforms. The forcing history revealed the occurrence of a complicated initiation and showed features attributable to flow over a complicated path that included two sharp turns and runup at a valley wall barrier. To reliably interpret this signal and thus obtain detailed information about the dynamics of the landslide, we ran simulations for a range of scenarios by varying the coefficient of friction and the number, mass, and timings of subevents and compute the forces generated in each case. By comparing the results of these simulations to the

  5. Apollo Telescope Mount Spar Assembly

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo Telescope Mount (ATM), designed and developed by the Marshall Space Flight Center, served as the primary scientific instrument unit aboard the Skylab. The ATM contained eight complex astronomical instruments designed to observe the Sun over a wide spectrum from visible light to x-rays. This image shows the ATM spar assembly. All solar telescopes, the fine Sun sensors, and some auxiliary systems are mounted on the spar, a cruciform lightweight perforated metal mounting panel that divides the 10-foot long canister lengthwise into four equal compartments. The spar assembly was nested inside a cylindrical canister that fit into the rack, a complex frame, and was protected by the solar shield.

  6. Low-temperature optical processing of semiconductor devices using photon effects

    SciTech Connect

    Sopori, B.L.; Cudzinovic, M.; Symko, M.

    1995-08-01

    In an RTA process the primary purpose of the optical energy incident on the semiconductor sample is to increase its temperature rapidly. The activation of reactions involved in processes such as the formation of junctions, metal contacts, deposition of oxides or nitrides, takes place purely by the temperature effects. We describe the observation of a number of new photonic effects that take place within the bulk and at the interfaces of a semiconductor when a semiconductor device is illuminated with a spectrally broad-band light. Such effects include changes in the diffusion properties of impurities in the semiconductor, increased diffusivity of impurities across interfaces, and generation of electric fields that can alter physical and chemical properties of the interface. These phenomena lead to certain unique effects in an RTA process that do not occur during conventional furnace annealing under the same temperature conditions. Of particular interest are observations of low-temperature alloying of Si-Al interfaces, enhanced activation of phosphorus in Si during drive-in, low-temperature oxidation of Si, and gettering of impurities at low-temperatures under optical illumination. These optically induced effects, in general, diminish with an increase in the temperature, thus allowing thermally activated reaction rates to dominate at higher temperatures.

  7. Aqueous Nanoparticle Polymer Solar Cells: Effects of Surfactant Concentration and Processing on Device Performance

    PubMed Central

    2017-01-01

    Polymer solar cells based on PDPP5T and PCBM as donor and acceptor materials, respectively, were processed from aqueous nanoparticle dispersions. Careful monitoring and optimization of the concentration of free and surface-bound surfactants in the dispersion, by measuring the conductivity and ζ-potential, is essential to avoid aggregation of nanoparticles at low concentration and dewetting of the film at high concentration. The surfactant concentration is crucial for creating reproducible processing conditions that aid in further developing aqueous nanoparticle processed solar cells. In addition, the effects of adding ethanol, of aging the dispersion, and of replacing [60]PCBM with [70]PCBM to enhance light absorption were studied. The highest power conversion efficiencies (PCEs) obtained are 2.0% for [60]PCBM and 2.4% for [70]PCBM-based devices. These PCEs are limited by bimolecular recombination of photogenerated charges. Cryo-TEM reveals that the two components phase separate in the nanoparticles, forming a PCBM-rich core and a PDPP5T-rich shell and causing a nonoptimal film morphology. PMID:28345859

  8. Device for removing blackheads

    DOEpatents

    Berkovich, Tamara

    1995-03-07

    A device for removing blackheads from pores in the skin having a elongated handle with a spoon shaped portion mounted on one end thereof, the spoon having multiple small holes piercing therethrough. Also covered is method for using the device to remove blackheads.

  9. Modeling Cu Migration in CdTe Solar Cells Under Device-Processing and Long-Term Stability Conditions: Preprint

    SciTech Connect

    Teeter, G.; Asher, S.

    2008-05-01

    An impurity migration model for systems with material interfaces is applied to Cu migration in CdTe solar cells. In the model, diffusion fluxes are calculated from the Cu chemical potential gradient. Inputs to the model include Cu diffusivities, solubilities, and segregation enthalpies in CdTe, CdS and contact materials. The model yields transient and equilibrium Cu distributions in CdTe devices during device processing and under field-deployed conditions. Preliminary results for Cu migration in CdTe photovoltaic devices using available diffusivity and solubility data from the literature show that Cu segregates in the CdS, a phenomenon that is commonly observed in devices after back-contact processing and/or stress conditions.

  10. Processing and Device Oriented Approach to CIGS Module Reliability; SunShot Initiative, U.S. Department of Energy (DOE)

    SciTech Connect

    Ramanathan, K.; Mansfield, L.; Garris, R.; Deline, C.; Silverman, T.

    2015-02-24

    Abstract: A device level understanding of thin film module reliability has been lacking. We propose that device performance and stability issues are strongly coupled and simultaneous attention to both is necessary. Commonly discussed technical issues such as light soaking, metastability, reverse bias breakdown and junction breakdown can be understood by comparing the behaviors of cells made inAbstract: A device level understanding of thin film module reliability has been lacking. We propose that device performance and stability issues are strongly coupled and simultaneous attention to both is necessary. Commonly discussed technical issues such as light soaking, metastability, reverse bias breakdown and junction breakdown can be understood by comparing the behaviors of cells made in the laboratory and industry. It will then be possible to attribute the observed effects in terms of processing and cell design. Process connection to stability studies can help identify root causes and a path for mitigating the degradation.

  11. Modeling Cu Migration in CdTe Solar Cells Under Device-Processing and Long-Term Stability Conditions (Poster)

    SciTech Connect

    Teeter, G.; Asher, S.

    2008-05-01

    An impurity migration model for systems with material interfaces is applied to Cu migration in CdTe solar cells. In the model, diffusion fluxes are calculated from the Cu chemical potential gradient. Inputs to the model include Cu diffusivities, solubilities, and segregation enthalpies in CdTe, CdS and contact materials. The model yields transient and equilibrium Cu distributions in CdTe devices during device processing and under field-deployed conditions. Preliminary results for Cu migration in CdTe PV devices using available diffusivity and solubility data from the literature show that Cu segregates in the CdS, a phenomenon that is commonly observed in devices after back-contact processing and/or stress conditions.

  12. Efficient and mechanically robust stretchable organic light-emitting devices by a laser-programmable buckling process

    PubMed Central

    Yin, Da; Feng, Jing; Ma, Rui; Liu, Yue-Feng; Zhang, Yong-Lai; Zhang, Xu-Lin; Bi, Yan-Gang; Chen, Qi-Dai; Sun, Hong-Bo

    2016-01-01

    Stretchable organic light-emitting devices are becoming increasingly important in the fast-growing fields of wearable displays, biomedical devices and health-monitoring technology. Although highly stretchable devices have been demonstrated, their luminous efficiency and mechanical stability remain impractical for the purposes of real-life applications. This is due to significant challenges arising from the high strain-induced limitations on the structure design of the device, the materials used and the difficulty of controlling the stretch-release process. Here we have developed a laser-programmable buckling process to overcome these obstacles and realize a highly stretchable organic light-emitting diode with unprecedented efficiency and mechanical robustness. The strained device luminous efficiency −70 cd A−1 under 70% strain - is the largest to date and the device can accommodate 100% strain while exhibiting only small fluctuations in performance over 15,000 stretch-release cycles. This work paves the way towards fully stretchable organic light-emitting diodes that can be used in wearable electronic devices. PMID:27187936

  13. Efficient and mechanically robust stretchable organic light-emitting devices by a laser-programmable buckling process.

    PubMed

    Yin, Da; Feng, Jing; Ma, Rui; Liu, Yue-Feng; Zhang, Yong-Lai; Zhang, Xu-Lin; Bi, Yan-Gang; Chen, Qi-Dai; Sun, Hong-Bo

    2016-05-17

    Stretchable organic light-emitting devices are becoming increasingly important in the fast-growing fields of wearable displays, biomedical devices and health-monitoring technology. Although highly stretchable devices have been demonstrated, their luminous efficiency and mechanical stability remain impractical for the purposes of real-life applications. This is due to significant challenges arising from the high strain-induced limitations on the structure design of the device, the materials used and the difficulty of controlling the stretch-release process. Here we have developed a laser-programmable buckling process to overcome these obstacles and realize a highly stretchable organic light-emitting diode with unprecedented efficiency and mechanical robustness. The strained device luminous efficiency -70 cd A(-1) under 70% strain - is the largest to date and the device can accommodate 100% strain while exhibiting only small fluctuations in performance over 15,000 stretch-release cycles. This work paves the way towards fully stretchable organic light-emitting diodes that can be used in wearable electronic devices.

  14. Efficient and mechanically robust stretchable organic light-emitting devices by a laser-programmable buckling process

    NASA Astrophysics Data System (ADS)

    Yin, Da; Feng, Jing; Ma, Rui; Liu, Yue-Feng; Zhang, Yong-Lai; Zhang, Xu-Lin; Bi, Yan-Gang; Chen, Qi-Dai; Sun, Hong-Bo

    2016-05-01

    Stretchable organic light-emitting devices are becoming increasingly important in the fast-growing fields of wearable displays, biomedical devices and health-monitoring technology. Although highly stretchable devices have been demonstrated, their luminous efficiency and mechanical stability remain impractical for the purposes of real-life applications. This is due to significant challenges arising from the high strain-induced limitations on the structure design of the device, the materials used and the difficulty of controlling the stretch-release process. Here we have developed a laser-programmable buckling process to overcome these obstacles and realize a highly stretchable organic light-emitting diode with unprecedented efficiency and mechanical robustness. The strained device luminous efficiency -70 cd A-1 under 70% strain - is the largest to date and the device can accommodate 100% strain while exhibiting only small fluctuations in performance over 15,000 stretch-release cycles. This work paves the way towards fully stretchable organic light-emitting diodes that can be used in wearable electronic devices.

  15. Fabricating process of hollow out-of-plane Ni microneedle arrays and properties of the integrated microfluidic device

    NASA Astrophysics Data System (ADS)

    Zhu, Jun; Cao, Ying; Wang, Hong; Li, Yigui; Chen, Xiang; Chen, Di

    2013-07-01

    Although microfluidic devices that integrate microfluidic chips with hollow out-of-plane microneedle arrays have many advantages in transdermal drug delivery applications, difficulties exist in their fabrication due to the special three-dimensional structures of hollow out-of-plane microneedles. A new, cost-effective process for the fabrication of a hollow out-of-plane Ni microneedle array is presented. The integration of PDMS microchips with the Ni hollow microneedle array and the properties of microfluidic devices are also presented. The integrated microfluidic devices provide a new approach for transdermal drug delivery.

  16. Kinematic high bandwidth mirror mount

    DOEpatents

    Kuklo, Thomas C.

    1995-01-01

    An adjustable mirror mount system for a mirror is disclosed comprising a mirror support having a planar surface thereon, a mirror frame containing a mirror and having a planar surface behind the mirror facing the planar surface of the mirror support and parallel to the reflecting surface of the mirror and mounted pivotally to the mirror support at a point central to the frame, a first adjustment means between the mirror support and the mirror frame spaced from the central pivot mount for adjusting the movement of the mirror along one axis lying in the plane of the planar surface of the mirror frame; and a second adjustment means between the mirror support and the mirror frame spaced from the central pivot mount for adjusting the movement of the mirror along a second axis lying in the plane of the planar surface of the mirror frame and perpendicular to the first axis.

  17. Mount Rainier: A decade volcano

    NASA Astrophysics Data System (ADS)

    Swanson, Donald A.; Malone, Stephen D.; Samora, Barbara A.

    Mount Rainier, the highest (4392 m) volcano in the Cascade Range, towers over a population of more than 2.5 million in the Seattle-Tacoma metropolitan area, and its drainage system via the Columbia River potentially affects another 500,000 residents of southwestern Washington and northwestern Oregon (Figure 1). Mount Rainier is the most hazardous volcano in the Cascades in terms of its potential for magma-water interaction and sector collapse. Major eruptions, or debris flows even without eruption, pose significant dangers and economic threats to the region. Despite such hazard and risk, Mount Rainier has received little study; such important topics as its petrologic and geochemical character, its proximal eruptive history, its susceptibility to major edifice failure, and its development over time have been barely investigated. This situation may soon change because of Mount Rainier's recent designation as a “Decade Volcano.”

  18. Kinematic high bandwidth mirror mount

    DOEpatents

    Kuklo, T.C.

    1995-03-21

    An adjustable mirror mount system for a mirror is disclosed comprising a mirror support having a planar surface thereon, a mirror frame containing a mirror and having a planar surface behind the mirror facing the planar surface of the mirror support and parallel to the reflecting surface of the mirror and mounted pivotally to the mirror support at a point central to the frame, a first adjustment means between the mirror support and the mirror frame spaced from the central pivot mount for adjusting the movement of the mirror along one axis lying in the plane of the planar surface of the mirror frame; and a second adjustment means between the mirror support and the mirror frame spaced from the central pivot mount for adjusting the movement of the mirror along a second axis lying in the plane of the planar surface of the mirror frame and perpendicular to the first axis. 7 figures.

  19. Selection of the logical model of the intellectual algorithm for dynamic processing of medical data (obtained through portable medical devices)

    NASA Astrophysics Data System (ADS)

    Starovoytova, V. A.; Taranik, M. A.

    2017-01-01

    Portable devices are one of the important emerging areas of modern medicine. This article presents the rationale for the selection of the logical model of the intellectual algorithm for dynamic processing of medical data obtained through portable medical devices. The description of the main criteria for the selection and application of the method of Saaty is provided. And the conclusion about the feasibility of using fuzzy logic as a logical model for the investigated subject area is made.

  20. Mounting clips for panel installation

    DOEpatents

    Cavieres, Andres; Al-Haddad, Tristan; Goodman, Joseph

    2017-07-11

    A photovoltaic panel mounting clip comprising a base, central indexing tabs, flanges, lateral indexing tabs, and vertical indexing tabs. The mounting clip removably attaches one or more panels to a beam or the like structure, both mechanically and electrically. It provides secure locking of the panels in all directions, while providing guidance in all directions for accurate installation of the panels to the beam or the like structure.

  1. 78 FR 29140 - Center for Devices and Radiological Health Appeals Processes: Questions and Answers About 517A...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-17

    ... HUMAN SERVICES Food and Drug Administration Center for Devices and Radiological Health Appeals Processes... Radiological Health (CDRH) Appeals Processes: Questions and Answers About 517A.'' This draft document provides...), which were added by the FDA Safety and Innovation Act (FDASIA), as those provisions pertain to...

  2. Thermal resistance of ridge-waveguide lasers mounted upside down

    SciTech Connect

    Amann, M.

    1987-01-05

    The heat dissipation in upside down mounted ridge-waveguide lasers equipped with a double-channel structure is analyzed by a simplified device model. Assuming an isothermal active region, the thermal resistance is obtained by means of conformal mapping. A comparison to published experimental results shows good agreement.

  3. The integration of the risk management process with the lifecycle of medical device software.

    PubMed

    Pecoraro, F; Luzi, D

    2014-01-01

    The application of software in the Medical Device (MD) domain has become central to the improvement of diagnoses and treatments. The new European regulations that specifically address software as an important component of MD, require complex procedures to make software compliant with safety requirements, introducing thereby new challenges in the qualification and classification of MD software as well as in the performance of risk management activities. Under this perspective, the aim of this paper is to propose an integrated framework that combines the activities to be carried out by the manufacturer to develop safe software within the development lifecycle based on the regulatory requirements reported in US and European regulations as well as in the relevant standards and guidelines. A comparative analysis was carried out to identify the main issues related to the application of the current new regulations. In addition, standards and guidelines recently released to harmonise procedures for the validation of MD software have been used to define the risk management activities to be carried out by the manufacturer during the software development process. This paper highlights the main issues related to the qualification and classification of MD software, providing an analysis of the different regulations applied in Europe and the US. A model that integrates the risk management process within the software development lifecycle has been proposed too. It is based on regulatory requirements and considers software risk analysis as a central input to be managed by the manufacturer already at the initial stages of the software design, in order to prevent MD failures. Relevant changes in the process of MD development have been introduced with the recognition of software being an important component of MDs as stated in regulations and standards. This implies the performance of highly iterative processes that have to integrate the risk management in the framework of software

  4. Novel Materials, Processing and Device Technologies for Space Exploration with Potential Dual-Use Applications

    NASA Technical Reports Server (NTRS)

    Hepp, A. F.; Bailey, S. G.; McNatt, J. S.; Chandrashekhar, M. V. S.; Harris, J. D.; Rusch, A. W.; Nogales, K. A.; Goettsche, K.V.; Hanson, W.; Amos, D.; hide

    2014-01-01

    We highlight results of a broad spectrum of efforts on lower-temperature processing of nanomaterials, novel approaches to energy conversion, and environmentally rugged devices. Solution-processed quantum dots of copper indium chalcogenide semiconductors and multiwalled carbon nanotubes from lower-temperature spray pyrolysis are enabled by novel (precursor) chemistry. Metal-doped zinc oxide (ZnO) nanostructured components of photovoltaic cells have been grown in solution at low temperature on a conductive indium tin oxide substrate. Arrays of ZnO nanorods can be templated and decorated with various semiconductor and metallic nanoparticles. Utilizing ZnO in a more broadly defined energy conversion sense as photocatalysts, unwanted organic waste materials can potentially be repurposed. Current efforts on charge carrier dynamics in nanoscale electrode architectures used in photoelectrochemical cells for generating solar electricity and fuels are described. The objective is to develop oxide nanowire-based electrode architectures that exhibit improved charge separation, charge collection and allow for efficient light absorption. Investigation of the charge carrier transport and recombination properties of the electrodes will aid in the understanding of how nanowire architectures improve performance of electrodes for dye-sensitized solar cells. Nanomaterials can be incorporated in a number of advanced higher-performance (i.e. mass specific power) photovoltaic arrays. Advanced technologies for the deposition of 4H-silicon carbide are described. The use of novel precursors, advanced processing, and process studies, including modeling are discussed from the perspective of enhancing the performance of this promising material for enabling technologies such as solar electric propulsion. Potential impact(s) of these technologies for a variety of aerospace applications are highlighted throughout. Finally, examples are given of technologies with potential spin-offs for dual-use or

  5. Novel Materials, Processing, and Device Technologies for Space Exploration with Potential Dual-Use Applications

    NASA Technical Reports Server (NTRS)

    Hepp, A. F.; Bailey, S. G.; McNatt, J. S.; Chandrashekhar, M. V. S.; Harris, J. D.; Rusch, A. W.; Nogales, K. A.; Goettsche, K. V.; Hanson, W.; Amos, D.; hide

    2015-01-01

    We highlight results of a broad spectrum of efforts on lower-temperature processing of nanomaterials, novel approaches to energy conversion, and environmentally rugged devices. Solution-processed quantum dots of copper indium chalcogenide semiconductors and multi-walled carbon nanotubes from lower-temperature spray pyrolysis are enabled by novel (precursor) chemistry. Metal-doped zinc oxide (ZnO) nanostructured components of photovoltaic cells have been grown in solution at low temperature on a conductive indium tin oxide substrate. Arrays of ZnO nanorods can be templated and decorated with various semiconductor and metallic nanoparticles. Utilizing ZnO in a more broadly defined energy conversion sense as photocatalysts, unwanted organic waste materials can potentially be re-purposed. Current efforts on charge carrier dynamics in nanoscale electrode architectures used in photoelectrochemical cells for generating solar electricity and fuels are described. The objective is to develop oxide nanowire-based electrode architectures that exhibit improved charge separation, charge collection and allow for efficient light absorption. Investigation of the charge carrier transport and recombination properties of the electrodes will aid in the understanding of how nanowire architectures improve performance of electrodes for dye-sensitized solar cells. Nanomaterials can be incorporated in a number of advanced higher-performance (i.e. mass specific power) photovoltaic arrays. Advanced technologies for the deposition of 4H-silicon carbide are described. The use of novel precursors, advanced processing, and process studies, including modeling are discussed from the perspective of enhancing the performance of this promising material for enabling technologies such as solar electric propulsion. Potential impact(s) of these technologies for a variety of aerospace applications are highlighted throughout. Finally, examples are given of technologies with potential spin-offs for dual

  6. Fracture Control for NIRSpec Kinematic Mounts

    NASA Astrophysics Data System (ADS)

    Vorel, M.; Novo, F.; Jollet, D.; Sinnema, G.; Jentsch, M.

    2014-06-01

    An ESA contribution to the JWST is the Near Infra-Red Spectrograph (NIRSpec) capable of high-resolution spectroscopy. The development of the NIRSpec was commissioned to Astrium. This contribution deals with the fracture control for the optical bench kinematic (OBK) mounts which are critical structural elements of the NIRSpec platform. A summary of the main activities is given as well as difficulties encountered throughout the process and solutions adopted.

  7. A new device to mount portable energy-dispersive X-ray fluorescence spectrometers (p-ED-XRF) for semi-continuous analyses of split (sediment) cores and solid samples

    NASA Astrophysics Data System (ADS)

    Hoelzmann, Philipp; Klein, Torsten; Kutz, Frank; Schütt, Brigitta

    2017-02-01

    Portable energy-dispersive X-ray fluorescence spectrometers (p-ED-XRF) have become increasingly popular in sedimentary laboratories to quantify the chemical composition of a range of materials such as sediments, soils, solid samples, and artefacts. Here, we introduce a low-cost, clearly arranged unit that functions as a sample chamber (German industrial property rights no. 20 2014 106 048.0) for p-ED-XRF devices to facilitate economic, non-destructive, fast, and semi-continuous analysis of (sediment) cores or other solid samples. The spatial resolution of the measurements is limited to the specifications of the applied p-ED-XRF device - in our case a Thermo Scientific Niton XL3t p-ED-XRF spectrometer with a maximum spatial resolution of 0.3 cm and equipped with a charge-coupled device (CCD) camera to document the measurement spot. We demonstrate the strength of combining p-ED-XRF analyses with this new sample chamber to identify Holocene facies changes (e.g. marine vs. terrestrial sedimentary facies) using a sediment core from an estuarine environment in the context of a geoarchaeological investigation at the Atlantic coast of southern Spain.

  8. A new device to mount portable energy dispersive X-ray fluorescence spectrometers (p-ED-XRF) for semi-continuous analyses of split (sediment) cores and solid samples

    NASA Astrophysics Data System (ADS)

    Hoelzmann, Philipp; Klein, Torsten; Kutz, Frank; Schütt, Brigitta

    2016-04-01

    Portable energy-dispersive X-ray fluorescence spectrometers (p-ED-XRF) have become increasingly popular in sedimentary laboratories to quantify the chemical composition of a range of materials such as sediments, solid samples, and artefacts. Here, we introduce a low-cost, clearly arranged unit that functions as a sample chamber (German industrial property right no. 20 2014 106 048.0) for p-ED-XRF devices to facilitate economic, non-destructive, fast, and semi-continuous analysis of (sediment) cores and/or other solid samples. The spatial resolution of the measurements is limited to the specifications of the applied p-ED-XRF device - in our case a Thermo Scientific NITON XL3t p-ED-XRF spectrometer with a maximum spatial resolution of 1 cm and equipped with a charge-coupled device (CCD)-camera to document the measurement spot. We demonstrate the strength of combining p-ED-XRF analyses with this new sample chamber to identify Holocene facies changes (e.g. marine vs terrestrial sedimentary facies) using a sediment core from an estuarine environment in context of a geoarchaeological investigation at the Atlantic coast of southern Spain.

  9. Mount Fuji [CI] Line Survey

    NASA Astrophysics Data System (ADS)

    Sakai, Takeshi; Yamamoto, Satoshi

    2005-06-01

    We have constructed the Mount Fuji submillimeter-wave telescope at Nishiyasugawara (alt. 3725 m) near the summit of Mt. Fuji (alt. 3774 m). Thanks to the excellent condition of Mt. Fuji, we have successfully carried out the [CI] survey toward more than 40 square degrees of sky, including Orion MC, Taurus MC, Rosetta MC, DR 15, DR 21, NGC 1333, NGC 2264, W 3, W 44, W 51, L 134, ρ-Oph. Our [CI] survey have revealed that the [CI] 492 GHz emission widely extends to the molecular clouds. The spatial and velocity structures of the [CI] 492 GHz emission resemble those of 13CO J=1--0 in many molecular clouds, implying that [CI] 492 GHz and 13CO J=1--0 are emitted from the same gas. The column density of C^0 linearly correlates with that of CO up to high A_V, suggesting that C^0 exist in the deep interior of molecular clouds. In several regions, we have found that the distributions of C^0 and CO are different from each other. The C^0-rich area is found in the Hieles' cloud 2. The C^+/CO/C^0 configuration is found in DR 15, ρ-Oph, M 17, Orion KL, and NGC 1333. These results indicate that an origin of C^0 is unrelated with the photodissociation process. We discuss the observed C^0 distributions in relation to the non-equilibrium chemistry.

  10. Processing challenges for GaN-based photonic and electronic devices

    SciTech Connect

    Pearton, S.J.; Ren, F.; Shul, R.J.

    1997-09-01

    The wide gap materials SiC, GaN and to a lesser extent diamond are attracting great interest for high power/high temperature electronics. There are a host of device processing challenges presented by these materials because of their physical and chemical stability, including difficulty in achieving stable, low contact resistances, especially for one conductivity type, absence of convenient wet etch recipes, generally slow dry etch rates, the high temperatures needed for implant activation, control of suitable gate dielectrics and the lack of cheap, large diameter conducting and semi-insulating substrates. The relatively deep ionization levels of some of the common dopants (Mg in GaN; B, Al in SiC; P in diamond) means that carrier densities may be low at room temperature, and thus contact resistances will be greatly improved provided the metallization is stable and reliable. Some recent work with CoSi{sub x} on SiC and W-alloys on GaN show promise for improved ohmic contacts. The issue of unintentional hydrogen passivation of dopants will also be covered - this leads to strong increases in resistivity of p-SiC and GaN, but to large decreases in resistivity of diamond. Recent work on development of wet etches has found recipes for AlN (KOH), while photochemical etching of SiC and GaN has been reported. In the latter cases p-type materials is not etched, which can be a major liability in some devices. The dry etch results obtained with various novel reactors, including ICP, ECR and LE4 will be compared - the high ion densities in the former techniques produce the highest etch rates for strongly-bonded materials, but can lead to preferential loss of N from the nitrides and therefore to a highly conducting surface. This is potentially a major problem for fabrication of dry etched, recessed gate FET structures.

  11. Conceptual Design of a Simplified Skid-Mounted Caustic-Side Solvent Extraction Process for Removal of Cesium from Savannah Rive Site High-Level Waste

    SciTech Connect

    Birdwell, JR.J.F.

    2004-05-12

    This report presents the results of a conceptual design of a solvent extraction process for the selective removal of {sup 137}Cs from high-level radioactive waste currently stored in underground tanks at the U.S. Department of Energy's Savannah River Site (SRS). This study establishes the need for and feasibility of deploying a simplified version of the Caustic-Side Solvent Extraction (CSSX) process; cost/benefit ratios ranging from 33 to 55 strongly support the considered deployment. Based on projected compositions, 18 million gallons of dissolved salt cake waste has been identified as having {sup 137}Cs concentrations that are substantially lower than the worst-case design basis for the CSSX system that is to be deployed as part of the Salt Waste Processing Facility (SWPF) but that does not meet the waste acceptance criteria for immobilization as grout in the Saltstone Manufacturing and Disposal Facility at SRS. Absent deployment of an alternative cesium removal process, this material will require treatment in the SWPF CSSX system, even though the cesium decontamination factor required is far less than that provided by that system. A conceptual design of a CSSX processing system designed for rapid deployment and having reduced cesium decontamination factor capability has been performed. The proposed accelerated-deployment CSSX system (CSSX-A) has been designed to have a processing rate of 3 million gallons per year, assuming 90% availability. At a more conservative availability of 75% (reflecting the novelty of the process), the annual processing capacity is 2.5 million gallons. The primary component of the process is a 20-stage cascade of centrifugal solvent extraction contactors. The decontamination and concentration factors are 40 and 15, respectively. The solvent, scrub, strip, and wash solutions are to have the same compositions as those planned for the SWPF CSSX system. As in the SWPF CSSX system, the solvent and scrub flow rates are equal. The system is

  12. Dry tilt network at Mount Rainier, Washington

    USGS Publications Warehouse

    Dzurisin, Daniel; Johnson, Daniel J.; Symonds, R.B.

    1984-01-01

    In addition to its primary responsibility of monitoring active Mount St. Helens, the David A. Johnston Cascades Volcano Observatory (CVO) has been charged with obtaining baseline geodetic and geochemical information at each of the other potentially active Cascade volcanoes. Dry tilt and/or trilateration networks were established during 1975-82 at Mount Baker, Mount St. Helens, Mount Hood, Mount Shasta, Lassen Peak, Crater Lake, and Long Valley caldera; coverage was extended during September 1982 to include Mount Rainier.

  13. Charge generation layers for all-solution processed organic tandem light emitting diodes with regular device architecture

    NASA Astrophysics Data System (ADS)

    Höfle, Stefan; Bernhard, Christoph; Bruns, Michael; Kübel, Christian; Scherer, Torsten; Colsmann, Alexander

    2015-10-01

    We present multi-photon OLEDs where enhanced light emission was achieved by stacking two OLEDs utilizing a regular device architecture (top cathode) and an intermediate charge carrier generation layer (CGL) for monolithic device interconnection. With respect to future printing processes for organic optoelectronic devices, all functional layers were deposited from solution. The CGL comprises a low-work function zinc oxide layer that was applied from solution under ambient conditions and at moderate processing temperatures and a high-work function interlayer that was realized from various solution processable precursor-based metal oxides, like molybdenum-, vanadium- and tungsten-oxide. Since every injected electron-hole pair generates two photons, the luminance and the current efficiency of the tandem OLED at a given device current are doubled while the power efficiency remains constant. At a given luminance, the lower operating current in the tandem device reduces electrical stress and improves the device life-time. ToF-SIMS, TEM/FIB and EDX analyses provided evidence of a distinct layer sequence without intermixing upon solution deposition.

  14. Advanced in-situ electron-beam lithography for deterministic nanophotonic device processing

    NASA Astrophysics Data System (ADS)

    Kaganskiy, Arsenty; Gschrey, Manuel; Schlehahn, Alexander; Schmidt, Ronny; Schulze, Jan-Hindrik; Heindel, Tobias; Strittmatter, André; Rodt, Sven; Reitzenstein, Stephan

    2015-07-01

    We report on an advanced in-situ electron-beam lithography technique based on high-resolution cathodoluminescence (CL) spectroscopy at low temperatures. The technique has been developed for the deterministic fabrication and quantitative evaluation of nanophotonic structures. It is of particular interest for the realization and optimization of non-classical light sources which require the pre-selection of single quantum dots (QDs) with very specific emission features. The two-step electron-beam lithography process comprises (a) the detailed optical study and selection of target QDs by means of CL-spectroscopy and (b) the precise retrieval of the locations and integration of target QDs into lithographically defined nanostructures. Our technology platform allows for a detailed pre-process determination of important optical and quantum optical properties of the QDs, such as the emission energies of excitonic complexes, the excitonic fine-structure splitting, the carrier dynamics, and the quantum nature of emission. In addition, it enables a direct and precise comparison of the optical properties of a single QD before and after integration which is very beneficial for the quantitative evaluation of cavity-enhanced quantum devices.

  15. Advanced in-situ electron-beam lithography for deterministic nanophotonic device processing

    SciTech Connect

    Kaganskiy, Arsenty; Gschrey, Manuel; Schlehahn, Alexander; Schmidt, Ronny; Schulze, Jan-Hindrik; Heindel, Tobias; Rodt, Sven Reitzenstein, Stephan; Strittmatter, André

    2015-07-15

    We report on an advanced in-situ electron-beam lithography technique based on high-resolution cathodoluminescence (CL) spectroscopy at low temperatures. The technique has been developed for the deterministic fabrication and quantitative evaluation of nanophotonic structures. It is of particular interest for the realization and optimization of non-classical light sources which require the pre-selection of single quantum dots (QDs) with very specific emission features. The two-step electron-beam lithography process comprises (a) the detailed optical study and selection of target QDs by means of CL-spectroscopy and (b) the precise retrieval of the locations and integration of target QDs into lithographically defined nanostructures. Our technology platform allows for a detailed pre-process determination of important optical and quantum optical properties of the QDs, such as the emission energies of excitonic complexes, the excitonic fine-structure splitting, the carrier dynamics, and the quantum nature of emission. In addition, it enables a direct and precise comparison of the optical properties of a single QD before and after integration which is very beneficial for the quantitative evaluation of cavity-enhanced quantum devices.

  16. New processes and materials for ultraviolet detection with solid state devices

    NASA Technical Reports Server (NTRS)

    Chopra, D.

    1977-01-01

    The three major effects that degrade external responsivity of silicon from the 1/lambda theoretical curve for a quantum detector are: surface reflectance, surface recombination, and junction depth. Since the p-n junction must be very shallow, problems relating to surface are further enhanced. MOS type of processing is necessary. HCl oxides and numerous acid clean-ups are utilized in order to obtain a contamination free surface with low Qss levels. Stringent process controls such as CV shifts, spreading resistance measurements, thickness monitoring etc., are used to analyze the surface contaminations, surface mobile charges, surface concentrations, junction depth, oxide thickness etc. Low surface concentrations of 10 to the 18th atoms/cu cm are achieved by low temperature boron nitride depositions. Shallow junction depths of the order of a few tenths of a micron are achieved by low temperature controlled diffusions. In order to improve breakdown characteristics of these shallow junction devices, field plate and deep diffused p(+) ring geometries are used.

  17. The head-mounted microscope.

    PubMed

    Chen, Ting; Dailey, Seth H; Naze, Sawyer A; Jiang, Jack J

    2012-04-01

    Microsurgical equipment has greatly advanced since the inception of the microscope into the operating room. These advancements have allowed for superior surgical precision and better post-operative results. This study focuses on the use of the Leica HM500 head-mounted microscope for the operating phonosurgeon. The head-mounted microscope has an optical zoom from 2× to 9× and provides a working distance from 300 mm to 700 mm. The headpiece, with its articulated eyepieces, adjusts easily to head shape and circumference, and offers a focus function, which is either automatic or manually controlled. We performed five microlaryngoscopic operations utilizing the head-mounted microscope with successful results. By creating a more ergonomically favorable operating posture, a surgeon may be able to obtain greater precision and success in phonomicrosurgery. Phonomicrosurgery requires the precise manipulation of long-handled cantilevered instruments through the narrow bore of a laryngoscope. The head-mounted microscope shortens the working distance compared with a stand microscope, thereby increasing arm stability, which may improve surgical precision. Also, the head-mounted design permits flexibility in head position, enabling operator comfort, and delaying musculoskeletal fatigue. A head-mounted microscope decreases the working distance and provides better ergonomics in laryngoscopic microsurgery. These advances provide the potential to promote precision in phonomicrosurgery.

  18. DFM based on layout restriction and process window verification for sub-60nm memory devices

    NASA Astrophysics Data System (ADS)

    Choi, Soo-Han; Jung, Dai-Hyun; Hong, Ji-Suk; Choi, Joon-Ho; Yoo, Moon-Hyun; Kong, Jeong-Taek

    2007-05-01

    The adoption of the model-based OPC and RET does not guarantee enough process margin any more in the low k1 lithography because potential patterning defects by layout-induced hot spots reduce common process window. The introduction of the litho-friendly layout has faced practical limitation by the designers' short knowledge of the lithography and its impact on the layout. In this paper, we develop a novel method based on restricted design rules (RDR) and process window verification (PWV) to get rid of the layout-related process hot spots during the physical layout design. Since RDR consists of simple design rules familiar to designers and PWV is implemented on layout editor environment, this proposed method is easy to apply in the current design flow. Since memory core layout is designed with typical and repeated patterns, the restriction of layout by design rule enforcement is effective to remove hot spots in the core area. We develop a systematic RDR extraction method by designing test patterns representing repeated memory core patterns by simple pattern matching technique. 1-dimensional (1D, simple line and space pattern) and 1.5-dimensional (1.5D, complicated line and space pattern) test patterns are analyzed to take into account the printability. The 2-dimension (2D) test patterns split by contact pad size are designed to consider the overlap margin between related layers. After removing the hot spots with RDR violations on unit cell by auto-fixer, PWV is applied to detect the random hot spots located on peripheral area. Analyzing CD difference between measurement and simulation according to variation of resist cutting plane and focus, the optical model having physical meaning is generated. The resist model, which uses focus exposure matrix (FEM) data within the process margin of memory cell, can represent the photo process variations accurately. Implementing the proposed method based on RDR and PWV, depth of focus (DOF) of sub-60nm memory device is improved

  19. Processes in construction of failure management expert systems from device design information

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Lance, Nick

    1987-01-01

    This paper analyzes the tasks and problem solving methods used by an engineer in constructing a failure management expert system from design information about the device to te diagnosed. An expert test engineer developed a trouble-shooting expert system based on device design information and experience with similar devices, rather than on specific expert knowledge gained from operating the device or troubleshooting its failures. The construction of the expert system was intensively observed and analyzed. This paper characterizes the knowledge, tasks, methods, and design decisions involved in constructing this type of expert system, and makes recommendations concerning tools for aiding and automating construction of such systems.

  20. Processes in construction of failure management expert systems from device design information

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Lance, Nick

    1987-01-01

    This paper analyzes the tasks and problem solving methods used by an engineer in constructing a failure management expert system from design information about the device to te diagnosed. An expert test engineer developed a trouble-shooting expert system based on device design information and experience with similar devices, rather than on specific expert knowledge gained from operating the device or troubleshooting its failures. The construction of the expert system was intensively observed and analyzed. This paper characterizes the knowledge, tasks, methods, and design decisions involved in constructing this type of expert system, and makes recommendations concerning tools for aiding and automating construction of such systems.

  1. Optical mounts for harsh environments

    NASA Astrophysics Data System (ADS)

    Mimovich, Mark E.; Griffee, Jonathan C.; Goodding, James C.

    2009-08-01

    Development and testing of a lightweight-kinematic optical mount with integrated passive vibration-and-shock mitigation technologies and simple / robust optical alignment functionality is presented. Traditionally, optical mounts are designed for use in laboratory environments where the thermal-mechanical environments are carefully controlled to preserve beam path conditions and background disturbances are minimized to facilitate precise optically based measurements. Today's weapon and surveillance systems, however, have optical sensor suites where static and dynamic alignment performance in the presence of harsh operating environments is required to nearly the same precision and where the system cannot afford the mass of laboratory-grade stabilized mounting systems. Jitter and alignment stability is particularly challenging for larger optics operating within moving vehicles and aircraft where high shock and significant temperature excursions occur. The design intent is to have the mount be suitable for integration into existing defense and security optical systems while also targeting new commercial and military components for improved structural dynamic and thermal distortion performance. A mount suitable for moderate-sized optics and an integrated disturbance-optical metrology system are described. The mount design has performance enhancements derived from the integration of proven aerospace mechanical vibration and shock mitigation technologies (i.e. multi-axis passive isolation and integral damping), precision alignment adjustment and lock-out functionality, high dimensional stability materials and design practices which provide benign optical surface figure errors under harsh thermal-mechanical loading. Optical jitter, alignment, and wave-front performance testing of an eight-inch-aperture optical mount based on this design approach are presented to validate predicted performance improvements over an existing commercial off-the-shelf (COTS) design.

  2. Solar panel truss mounting systems and methods

    DOEpatents

    Al-Haddad, Tristan Farris; Cavieres, Andres; Gentry, Russell; Goodman, Joseph; Nolan, Wade; Pitelka, Taylor; Rahimzadeh, Keyan; Brooks, Bradley; Lohr, Joshua; Crooks, Ryan; Porges, Jamie; Rubin, Daniel

    2015-10-20

    An exemplary embodiment of the present invention provides a solar panel truss mounting system comprising a base and a truss assembly coupled to the base. The truss assembly comprises a first panel rail mount, second panel rail mount parallel to the first panel rail mount, base rail mount parallel to the first and second panel rail mounts, and a plurality of support members. A first portion of the plurality of support members extends between the first and second panel rail mounts. A second portion of the plurality of support members extends between the first panel rail mount and the base rail mount. A third portion of the plurality of support members extends between the second panel rail mount and the base rail mount. The system can further comprise a plurality of connectors for coupling a plurality of photovoltaic solar panels to the truss assembly.

  3. Solar panel truss mounting systems and methods

    DOEpatents

    Al-Haddad, Tristan Farris; Cavieres, Andres; Gentry, Russell; Goodman, Joseph; Nolan, Wade; Pitelka, Taylor; Rahimzadeh, Keyan; Brooks, Bradley; Lohr, Joshua; Crooks, Ryan; Porges, Jamie; Rubin, Daniel

    2016-06-28

    An exemplary embodiment of the present invention provides a solar panel truss mounting system comprising a base and a truss assembly coupled to the base. The truss assembly comprises a first panel rail mount, second panel rail mount parallel to the first panel rail mount, base rail mount parallel to the first and second panel rail mounts, and a plurality of support members. A first portion of the plurality of support members extends between the first and second panel rail mounts. A second portion of the plurality of support members extends between the first panel rail mount and the base rail mount. A third portion of the plurality of support members extends between the second panel rail mount and the base rail mount. The system can further comprise a plurality of connectors for coupling a plurality of photovoltaic solar panels to the truss assembly.

  4. Processing of Silver-Implanted Aluminum Nitride for Energy Harvesting Devices

    NASA Astrophysics Data System (ADS)

    Alleyne, Fatima Sierre

    One of the more attractive sources of green energy has roots in the popular recycling theme of other green technologies, now known by the term "energy scavenging." In its most promising conformation, energy scavenging converts cyclic mechanical vibrations in the environment or random mechanical pressure pulses, caused by sources ranging from operating machinery to human footfalls, into electrical energy via piezoelectric transducers. While commercial piezoelectrics have evolved to favor lead zirconate titanate (PZT) for its combination of superior properties, the presence of lead in these ceramic compounds raises resistance to their application in anything "green" due to potential health implications during their manufacturing, recycling, or in-service application, if leaching occurs. Therefore in this study we have pursued the application of aluminum nitride (AlN) as a non-toxic alternative to PZT, seeking processing pathways to augment the modest piezoelectric performance of AlN and exploit its compatibility with complementary-metal-oxide semiconductor (CMOS) manufacturing. Such piezoelectric transducers have been categorized as microelectromechanical systems (MEMS), which despite more than a decade of research in this field, is plagued by delamination at the electrode/piezoelectric interface. Consequently the electric field essential to generate and sustain the piezoelectric response of these devices is lost, resulting in device failure. Working on the hypothesis that buried conducting layers can both mitigate the delamination problem and generate sufficient electric field to engage the operation of resonator devices, we have undertaken a study of silver ion implantation to experimentally assess its feasibility. As with most ion implantation procedures employed in semiconductor fabrication, the implanted sample is subjected to a thermal treatment, encouraging diffusion-assisted precipitation of the implanted species at high enough concentrations. The objective

  5. Calcium fluoride window mounting

    NASA Astrophysics Data System (ADS)

    Berger, D. Douglas

    1982-10-01

    A technique has been developed for joining a large calcium fluoride crystal to a stainless-steel flange by means of a silver transition ring. The process involves both vacuum brazing using a copper-silver alloy and air brazing using silver chloride. This paper describes the procedure used in fabricating a high-vacuum leak-tight calcium fluoride window assembly.

  6. Climbing Mount Probable

    ERIC Educational Resources Information Center

    Harper, Marc Allen

    2009-01-01

    This work attempts to explain the relationships between natural selection, information theory, and statistical inference. In particular, a geometric formulation of information theory known as information geometry and its deep connections to evolutionary game theory inform the role of natural selection in evolutionary processes. The goals of this…

  7. Climbing Mount Probable

    ERIC Educational Resources Information Center

    Harper, Marc Allen

    2009-01-01

    This work attempts to explain the relationships between natural selection, information theory, and statistical inference. In particular, a geometric formulation of information theory known as information geometry and its deep connections to evolutionary game theory inform the role of natural selection in evolutionary processes. The goals of this…

  8. Lagoudas model for optomechanical mountings: parametric study and characterization campaign

    NASA Astrophysics Data System (ADS)

    Rigamonti, D.; Zanetti, F.; Riva, M.; Villa, E.; Passaretti, F.; Zerbi, F. M.

    2013-04-01

    This paper is a study on the numerical modeling and the accordance between model and experiment of the behavior of Shape Memory Alloys (SMA) used as functional devices for application in Instrumentations for Astronomy. Some NiTi alloy samples was characterized using different experimental techniques, with the purpose of obtaining the material parameters, necessary to evaluate the correspondence between the simulation and the experimental behavior of the materials. The sensibility of the computational model to the variation of this parameters for the materials was investigated as well. Opto-mechanical mounting with pseudoelastic kinematic behavior and damping of launch loads onto optical elements are feasible applications that are investigated in this paper. The practical realization of a scaled down prototype is described. The device was thought for ground-based applications and made up of four small flexures that support an optical component and was designed and modeled in order to be able to evaluate the mechanical effects of different materials. The results of numerical modeling was compared to the data obtained from the prototype. We obtained a first evaluation of the development, selection and processing of NiTi-based supports for optomechanical applications and verified the performances of a complete system as a respect to an analogous system made up using traditional materials like steels.

  9. Device, Interface, Process and Electrode Engineering Towards Low Cost and High Efficiency Polymer Solar Cells in Inverted Structure

    NASA Astrophysics Data System (ADS)

    Zou, Jingyu

    As a promising technology for economically viable alternative energy source, polymer solar cells (PSCs) have attracted substantial interests and made significant progress in the past few years, due the advantages of being potentially easily solution processed into large areas, flexible, light weight, and have the versatility of material design. In this dissertation, an integrated approach is taken to improve the overall performance of polymer solar cells by the development of new polymer materials, device architectures, interface engineering of the contacts between layers, and new transparent electrodes. First, several new classes of polymers are explored as potential light harvesting materials for solar cells. Processing has been optimized and efficiency as high as 6.24% has been demonstrated. Then, with the development of inverted device structure, which has better air stability by utilizing more air stable, high work function metals, newly developed high efficiency polymers have been integrated into inverted structure device with integrated engineering approach. A comprehensive characterization and optical modeling based on conventional and inverted devices have been performed to understand the effect of device geometry on photovoltaic performance based on a newly developed high performance polymer poly(indacenodithiophene-co-phananthrene-quinoxaline) (PIDT-PhanQ). By modifying anode with a bilayer combining graphene oxide (GO) and poly(3,4-ethylenedioxylenethiophene):poly(styrenesulfonic acid) (PEDOT:PSS) as hole transporter/electron blocker, it further improved device performance of inverted structured to 6.38%. A novel processing method of sequentially bilayer deposition for active layer has been conducted based on a low band-gap polymer poly[2, 6-(4, 4-bis-(2-ethylhexyl)-4 H-cyclopenta [2,1-b;3,4-b‧] dithiophene)- alt-4,7-(2, 1, 3- fluorobenzothiadiazole)] (PCPDT-FBT). Inverted structure devices processed from bilayer deposition shows even higher

  10. In situ process diagnostics of silane plasma for device-quality a-Si:H deposition

    NASA Astrophysics Data System (ADS)

    Shing, Y. H.; Perry, J. W.; Hermann, A. M.

    Coherent anti-Stokes Raman spectroscopy (CARS) and mass spectrometry (MS) have been applied to in situ process diagnostics of a silane plasma for device-quality a-Si:H film deposition. Silane depletion was directly measured by CARS and is linearly dependent on RF power in the region of 4-12 W with a slope of 0.5 percent/mW-sq cm. The depletion is also dependent on SiH4 flow rate starting with a 50 percent depletion at a low flow rate of 5.6 sccm and asymptotically approaching an 8 percent depletion at a flow rate of 80 sccm. The mass spectral line signal intensity of disilane increases with RF power and shows an apparent transition at 6 W. Disilane formation in silane plasma, film deposition rate, and silane depletion ratio as a function of the RF power indicate that the film growth mechanism in the low-power region of 3.5-6.5 W is substantially different from that in the high-power region of 6.5-12 W.

  11. Unified trade-off optimization for general heat devices with nonisothermal processes.

    PubMed

    Long, Rui; Liu, Wei

    2015-04-01

    An analysis of the efficiency and coefficient of performance (COP) for general heat engines and refrigerators with nonisothermal processes is conducted under the trade-off criterion. The specific heat of the working medium has significant impacts on the optimal configurations of heat devices. For cycles with constant specific heat, the bounds of the efficiency and COP are found to be the same as those obtained through the endoreversible Carnot ones. However, they are independent of the cycle time durations. For cycles with nonconstant specific heat, whose dimensionless contact time approaches infinity, the general alternative upper and lower bounds of the efficiency and COP under the trade-off criteria have been proposed under the asymmetric limits. Furthermore, when the dimensionless contact time approaches zero, the endoreversible Carnot model is recovered. In addition, the efficiency and COP bounds of different kinds of actual heat engines and refrigerators have also been analyzed. This paper may provide practical insight for designing and operating actual heat engines and refrigerators.

  12. Unified trade-off optimization for general heat devices with nonisothermal processes

    NASA Astrophysics Data System (ADS)

    Long, Rui; Liu, Wei

    2015-04-01

    An analysis of the efficiency and coefficient of performance (COP) for general heat engines and refrigerators with nonisothermal processes is conducted under the trade-off criterion. The specific heat of the working medium has significant impacts on the optimal configurations of heat devices. For cycles with constant specific heat, the bounds of the efficiency and COP are found to be the same as those obtained through the endoreversible Carnot ones. However, they are independent of the cycle time durations. For cycles with nonconstant specific heat, whose dimensionless contact time approaches infinity, the general alternative upper and lower bounds of the efficiency and COP under the trade-off criteria have been proposed under the asymmetric limits. Furthermore, when the dimensionless contact time approaches zero, the endoreversible Carnot model is recovered. In addition, the efficiency and COP bounds of different kinds of actual heat engines and refrigerators have also been analyzed. This paper may provide practical insight for designing and operating actual heat engines and refrigerators.

  13. Collection and Processing of Data from Wrist Wearable Devices in Heterogeneous and Multiple-User Scenarios

    PubMed Central

    de Arriba-Pérez, Francisco; Caeiro-Rodríguez, Manuel; Santos-Gago, Juan M.

    2016-01-01

    Over recent years, we have witnessed the development of mobile and wearable technologies to collect data from human vital signs and activities. Nowadays, wrist wearables including sensors (e.g., heart rate, accelerometer, pedometer) that provide valuable data are common in market. We are working on the analytic exploitation of this kind of data towards the support of learners and teachers in educational contexts. More precisely, sleep and stress indicators are defined to assist teachers and learners on the regulation of their activities. During this development, we have identified interoperability challenges related to the collection and processing of data from wearable devices. Different vendors adopt specific approaches about the way data can be collected from wearables into third-party systems. This hinders such developments as the one that we are carrying out. This paper contributes to identifying key interoperability issues in this kind of scenario and proposes guidelines to solve them. Taking into account these topics, this work is situated in the context of the standardization activities being carried out in the Internet of Things and Machine to Machine domains. PMID:27657081

  14. Collection and Processing of Data from Wrist Wearable Devices in Heterogeneous and Multiple-User Scenarios.

    PubMed

    de Arriba-Pérez, Francisco; Caeiro-Rodríguez, Manuel; Santos-Gago, Juan M

    2016-09-21

    Over recent years, we have witnessed the development of mobile and wearable technologies to collect data from human vital signs and activities. Nowadays, wrist wearables including sensors (e.g., heart rate, accelerometer, pedometer) that provide valuable data are common in market. We are working on the analytic exploitation of this kind of data towards the support of learners and teachers in educational contexts. More precisely, sleep and stress indicators are defined to assist teachers and learners on the regulation of their activities. During this development, we have identified interoperability challenges related to the collection and processing of data from wearable devices. Different vendors adopt specific approaches about the way data can be collected from wearables into third-party systems. This hinders such developments as the one that we are carrying out. This paper contributes to identifying key interoperability issues in this kind of scenario and proposes guidelines to solve them. Taking into account these topics, this work is situated in the context of the standardization activities being carried out in the Internet of Things and Machine to Machine domains.

  15. Atomic layer epitaxy of group 4 materials: Surface processes, thin films, devices and their characterization

    NASA Astrophysics Data System (ADS)

    Davis, Robert F.; Bedair, Salah; El-Masry, Nadina; Glass, Jeffrey T.

    1993-12-01

    Atomic layer epitaxy of monocrystalline Beta-SiC on Si(100) and alpha (6H)-SiC(0001) substrates has been accomplished at 850 C by alternating the supplies of Si2H6, C2H4, and atomic hydrogen without the use of a carbonizing step. Conformal deposition of SiC has been demonstrated within trenches etched into Si(100) wafers. P-type films have also been achieved using Al as a dopant. Devices including HBT's with Beta-SiC emitters have been designed. Hydrogen plasma cleaning of SiC surfaces has been studied. XPS has shown that this process effectively removes C-O, C-F and C-H bonding at the surface. Temperature programmed desorption has been used to look at the amount of subsurface hydrogen generated during plasma cleaning. The diamond precursors of chlorinated methylsilanes and the substrate of Si(100) were subjected to bias enhanced high-frequency CVD. No difference in diamond nucleation density between the precursors was observed. An interface structure of single crystal CeO2/Si(111) grown by laser ablation has been investigated. An interfacial reaction occurred between these phases during deposition which resulted in the formation of an oxygen deficient amorphous (a) CeOx layer and an SiO2 layer. Post annealing in O2 caused the disappearance of the a-CeOx and the regrowth of crystalline CeO2.

  16. Study of metal sorption/desorption processes on competing sediment components with a multichamber device

    NASA Astrophysics Data System (ADS)

    Calmano, Wolfgang; Ahlf, Wolfgang; Förstner, Ulrich

    1988-02-01

    A new multichamber device was developed to study sorption/desorption reactions of metals on different competing sediment components and the influence of environmental factors on these reactions. The system consists of a central chamber connected with six external chambers and separated by 0.45-μm-diameter membranes. The diffusion kinetics of metals between the single chambers were determined. Equilibrium was attained within 24 h. Algal cell walls ( Scenedesmus quadricauda), bentonite, aluminium oxide, managese oxide, quartz powder, and goethite were used as model sediment components. Determination of metal sorption on the solid phases resulted in a significant enrichment on the algal cell walls, particularly for Cu and Cd. It was concluded that sorption depends not only on ion exchange but also on complexing reactions which lead to relatively stable surface binding. A second series of experiments investigated the effect of seawater on sediment components and dredged mud. Cadmium was remobilized from all solid components, but Cu was not remobilized from algal cell walls and bentonite. The dominant role of organic substrates in the binding of metals such as Cd andCu is of particular relevance for the transfer of these elements into biological systems. Even relatively small percentages of organic substrates, if involved in metabolic processes, may constitute a major pathway by which metals are transferred within the food chain.

  17. Study of metal sorption/desorption processes on competing sediment components with a multichamber device

    SciTech Connect

    Calmano, W.; Ahlf, W.; Foerstner, U. )

    1988-02-01

    A new multichamber device was developed to study sorption/desorption reactions of metals on different competing sediment components and the influence of environmental factors on these reactions. The system consists of a central chamber connected with six external chambers and separated by 0.45-{mu}m-diameter membranes. The diffusion kinetics of metals between the single chambers were determined. Equilibrium was attained within 24 h. Algal cell walls (Scenedesmus quadricauda), bentonite, aluminum oxide, manganese oxide, quartz powder, and goethite were used as model sediment components. Determination of metal sorption on the solid phases resulted in a significant enrichment on the algal cell walls, particularly for Cu and Cd. it was concluded that sorption depends not only on ion exchange but also on complexing reactions which lead to relatively stable surface binding. A second series of experiments investigated the effect of seawater on sediment components and dredged mud. Cadmium was remobilized from all solid components, but Cu was not remobilized from algal cell walls and bentonite. The dominant role of organic substrates in the binding of metals such as Cd and Cu is of particular relevance for the transfer of these elements into biological systems. Even relatively small percentages of organic substrates, if involved in metabolic processes, may constitute a major pathway by which metals are transferred within the food chain.

  18. Underwater Threat Source Localization: Processing Sensor Network TDOAs with a Terascale Optical Core Device

    SciTech Connect

    Barhen, Jacob; Imam, Neena

    2007-01-01

    Revolutionary computing technologies are defined in terms of technological breakthroughs, which leapfrog over near-term projected advances in conventional hardware and software to produce paradigm shifts in computational science. For underwater threat source localization using information provided by a dynamical sensor network, one of the most promising computational advances builds upon the emergence of digital optical-core devices. In this article, we present initial results of sensor network calculations that focus on the concept of signal wavefront time-difference-of-arrival (TDOA). The corresponding algorithms are implemented on the EnLight processing platform recently introduced by Lenslet Laboratories. This tera-scale digital optical core processor is optimized for array operations, which it performs in a fixed-point-arithmetic architecture. Our results (i) illustrate the ability to reach the required accuracy in the TDOA computation, and (ii) demonstrate that a considerable speed-up can be achieved when using the EnLight 64a prototype processor as compared to a dual Intel XeonTM processor.

  19. Processing-Induced Electrically Active Defects in Black Silicon Nanowire Devices.

    PubMed

    Carapezzi, Stefania; Castaldini, Antonio; Mancarella, Fulvio; Poggi, Antonella; Cavallini, Anna

    2016-04-27

    Silicon nanowires (Si NWs) are widely investigated nowadays for implementation in advanced energy conversion and storage devices, as well as many other possible applications. Black silicon (BSi)-NWs are dry etched NWs that merge the advantages related to low-dimensionality with the special industrial appeal connected to deep reactive ion etching (RIE). In fact, RIE is a well established technique in microelectronics manufacturing. However, RIE processing could affect the electrical properties of BSi-NWs by introducing deep states into their forbidden gap. This work applies deep level transient spectroscopy (DLTS) to identify electrically active deep levels and the associated defects in dry etched Si NW arrays. Besides, the successful fitting of DLTS spectra of BSi-NWs-based Schottky barrier diodes is an experimental confirmation that the same theoretical framework of dynamic electronic behavior of deep levels applies in bulk as well as in low dimensional structures like NWs, when quantum confinement conditions do not occur. This has been validated for deep levels associated with simple pointlike defects as well as for deep levels associated with defects with richer structures, whose dynamic electronic behavior implies a more complex picture.

  20. Assistive Device Use as a Dynamic Acquisition Process in Later Life

    ERIC Educational Resources Information Center

    Pressler, Karis A.; Ferraro, Kenneth F.

    2010-01-01

    Purpose: This study identifies risk factors, including incident disability, for the use of assistive devices (ADs) among older people. Design and Methods: Three waves of data from the National Long-Term Care Survey (NLTCS) are used to examine whether upper and lower body disability lead to use of ADs (both number of devices used and number of…